1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * DVA-based Adjustable Replacement Cache 31 * 32 * While much of the theory of operation used here is 33 * based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slows the flow of new data 52 * into the cache until we can make space available. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory pressure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefore exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefore choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() interface 80 * uses method 1, while the internal ARC algorithms for 81 * adjusting the cache use method 2. We therefore provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * ARC list locks. 84 * 85 * Buffers do not have their own mutexes, rather they rely on the 86 * hash table mutexes for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexes). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each ARC state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an ARC list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the active state mutex must be held before the ghost state mutex. 101 * 102 * Note that the majority of the performance stats are manipulated 103 * with atomic operations. 104 * 105 * The L2ARC uses the l2ad_mtx on each vdev for the following: 106 * 107 * - L2ARC buflist creation 108 * - L2ARC buflist eviction 109 * - L2ARC write completion, which walks L2ARC buflists 110 * - ARC header destruction, as it removes from L2ARC buflists 111 * - ARC header release, as it removes from L2ARC buflists 112 */ 113 114 /* 115 * ARC operation: 116 * 117 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 118 * This structure can point either to a block that is still in the cache or to 119 * one that is only accessible in an L2 ARC device, or it can provide 120 * information about a block that was recently evicted. If a block is 121 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 122 * information to retrieve it from the L2ARC device. This information is 123 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 124 * that is in this state cannot access the data directly. 125 * 126 * Blocks that are actively being referenced or have not been evicted 127 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 128 * the arc_buf_hdr_t that will point to the data block in memory. A block can 129 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 130 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 131 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 132 * 133 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 134 * ability to store the physical data (b_pabd) associated with the DVA of the 135 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 136 * it will match its on-disk compression characteristics. This behavior can be 137 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 138 * compressed ARC functionality is disabled, the b_pabd will point to an 139 * uncompressed version of the on-disk data. 140 * 141 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 142 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 143 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 144 * consumer. The ARC will provide references to this data and will keep it 145 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 146 * data block and will evict any arc_buf_t that is no longer referenced. The 147 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 148 * "overhead_size" kstat. 149 * 150 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 151 * compressed form. The typical case is that consumers will want uncompressed 152 * data, and when that happens a new data buffer is allocated where the data is 153 * decompressed for them to use. Currently the only consumer who wants 154 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 155 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 156 * with the arc_buf_hdr_t. 157 * 158 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 159 * first one is owned by a compressed send consumer (and therefore references 160 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 161 * used by any other consumer (and has its own uncompressed copy of the data 162 * buffer). 163 * 164 * arc_buf_hdr_t 165 * +-----------+ 166 * | fields | 167 * | common to | 168 * | L1- and | 169 * | L2ARC | 170 * +-----------+ 171 * | l2arc_buf_hdr_t 172 * | | 173 * +-----------+ 174 * | l1arc_buf_hdr_t 175 * | | arc_buf_t 176 * | b_buf +------------>+-----------+ arc_buf_t 177 * | b_pabd +-+ |b_next +---->+-----------+ 178 * +-----------+ | |-----------| |b_next +-->NULL 179 * | |b_comp = T | +-----------+ 180 * | |b_data +-+ |b_comp = F | 181 * | +-----------+ | |b_data +-+ 182 * +->+------+ | +-----------+ | 183 * compressed | | | | 184 * data | |<--------------+ | uncompressed 185 * +------+ compressed, | data 186 * shared +-->+------+ 187 * data | | 188 * | | 189 * +------+ 190 * 191 * When a consumer reads a block, the ARC must first look to see if the 192 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 193 * arc_buf_t and either copies uncompressed data into a new data buffer from an 194 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 195 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 196 * hdr is compressed and the desired compression characteristics of the 197 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 198 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 199 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 200 * be anywhere in the hdr's list. 201 * 202 * The diagram below shows an example of an uncompressed ARC hdr that is 203 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 204 * the last element in the buf list): 205 * 206 * arc_buf_hdr_t 207 * +-----------+ 208 * | | 209 * | | 210 * | | 211 * +-----------+ 212 * l2arc_buf_hdr_t| | 213 * | | 214 * +-----------+ 215 * l1arc_buf_hdr_t| | 216 * | | arc_buf_t (shared) 217 * | b_buf +------------>+---------+ arc_buf_t 218 * | | |b_next +---->+---------+ 219 * | b_pabd +-+ |---------| |b_next +-->NULL 220 * +-----------+ | | | +---------+ 221 * | |b_data +-+ | | 222 * | +---------+ | |b_data +-+ 223 * +->+------+ | +---------+ | 224 * | | | | 225 * uncompressed | | | | 226 * data +------+ | | 227 * ^ +->+------+ | 228 * | uncompressed | | | 229 * | data | | | 230 * | +------+ | 231 * +---------------------------------+ 232 * 233 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 234 * since the physical block is about to be rewritten. The new data contents 235 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 236 * it may compress the data before writing it to disk. The ARC will be called 237 * with the transformed data and will bcopy the transformed on-disk block into 238 * a newly allocated b_pabd. Writes are always done into buffers which have 239 * either been loaned (and hence are new and don't have other readers) or 240 * buffers which have been released (and hence have their own hdr, if there 241 * were originally other readers of the buf's original hdr). This ensures that 242 * the ARC only needs to update a single buf and its hdr after a write occurs. 243 * 244 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 245 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 246 * that when compressed ARC is enabled that the L2ARC blocks are identical 247 * to the on-disk block in the main data pool. This provides a significant 248 * advantage since the ARC can leverage the bp's checksum when reading from the 249 * L2ARC to determine if the contents are valid. However, if the compressed 250 * ARC is disabled, then the L2ARC's block must be transformed to look 251 * like the physical block in the main data pool before comparing the 252 * checksum and determining its validity. 253 */ 254 255 #include <sys/spa.h> 256 #include <sys/zio.h> 257 #include <sys/spa_impl.h> 258 #include <sys/zio_compress.h> 259 #include <sys/zio_checksum.h> 260 #include <sys/zfs_context.h> 261 #include <sys/arc.h> 262 #include <sys/refcount.h> 263 #include <sys/vdev.h> 264 #include <sys/vdev_impl.h> 265 #include <sys/dsl_pool.h> 266 #include <sys/zio_checksum.h> 267 #include <sys/multilist.h> 268 #include <sys/abd.h> 269 #ifdef _KERNEL 270 #include <sys/vmsystm.h> 271 #include <vm/anon.h> 272 #include <sys/fs/swapnode.h> 273 #include <sys/dnlc.h> 274 #endif 275 #include <sys/callb.h> 276 #include <sys/kstat.h> 277 #include <sys/zthr.h> 278 #include <zfs_fletcher.h> 279 #include <sys/aggsum.h> 280 #include <sys/cityhash.h> 281 282 #ifndef _KERNEL 283 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 284 boolean_t arc_watch = B_FALSE; 285 int arc_procfd; 286 #endif 287 288 /* 289 * This thread's job is to keep enough free memory in the system, by 290 * calling arc_kmem_reap_now() plus arc_shrink(), which improves 291 * arc_available_memory(). 292 */ 293 static zthr_t *arc_reap_zthr; 294 295 /* 296 * This thread's job is to keep arc_size under arc_c, by calling 297 * arc_adjust(), which improves arc_is_overflowing(). 298 */ 299 static zthr_t *arc_adjust_zthr; 300 301 static kmutex_t arc_adjust_lock; 302 static kcondvar_t arc_adjust_waiters_cv; 303 static boolean_t arc_adjust_needed = B_FALSE; 304 305 uint_t arc_reduce_dnlc_percent = 3; 306 307 /* 308 * The number of headers to evict in arc_evict_state_impl() before 309 * dropping the sublist lock and evicting from another sublist. A lower 310 * value means we're more likely to evict the "correct" header (i.e. the 311 * oldest header in the arc state), but comes with higher overhead 312 * (i.e. more invocations of arc_evict_state_impl()). 313 */ 314 int zfs_arc_evict_batch_limit = 10; 315 316 /* number of seconds before growing cache again */ 317 int arc_grow_retry = 60; 318 319 /* 320 * Minimum time between calls to arc_kmem_reap_soon(). Note that this will 321 * be converted to ticks, so with the default hz=100, a setting of 15 ms 322 * will actually wait 2 ticks, or 20ms. 323 */ 324 int arc_kmem_cache_reap_retry_ms = 1000; 325 326 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 327 int zfs_arc_overflow_shift = 8; 328 329 /* shift of arc_c for calculating both min and max arc_p */ 330 int arc_p_min_shift = 4; 331 332 /* log2(fraction of arc to reclaim) */ 333 int arc_shrink_shift = 7; 334 335 /* 336 * log2(fraction of ARC which must be free to allow growing). 337 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 338 * when reading a new block into the ARC, we will evict an equal-sized block 339 * from the ARC. 340 * 341 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 342 * we will still not allow it to grow. 343 */ 344 int arc_no_grow_shift = 5; 345 346 347 /* 348 * minimum lifespan of a prefetch block in clock ticks 349 * (initialized in arc_init()) 350 */ 351 static int arc_min_prefetch_lifespan; 352 353 /* 354 * If this percent of memory is free, don't throttle. 355 */ 356 int arc_lotsfree_percent = 10; 357 358 static boolean_t arc_initialized; 359 360 /* 361 * The arc has filled available memory and has now warmed up. 362 */ 363 static boolean_t arc_warm; 364 365 /* 366 * log2 fraction of the zio arena to keep free. 367 */ 368 int arc_zio_arena_free_shift = 2; 369 370 /* 371 * These tunables are for performance analysis. 372 */ 373 uint64_t zfs_arc_max; 374 uint64_t zfs_arc_min; 375 uint64_t zfs_arc_meta_limit = 0; 376 uint64_t zfs_arc_meta_min = 0; 377 int zfs_arc_grow_retry = 0; 378 int zfs_arc_shrink_shift = 0; 379 int zfs_arc_p_min_shift = 0; 380 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 381 382 /* 383 * ARC dirty data constraints for arc_tempreserve_space() throttle 384 */ 385 uint_t zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */ 386 uint_t zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */ 387 uint_t zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */ 388 389 boolean_t zfs_compressed_arc_enabled = B_TRUE; 390 391 /* 392 * Note that buffers can be in one of 6 states: 393 * ARC_anon - anonymous (discussed below) 394 * ARC_mru - recently used, currently cached 395 * ARC_mru_ghost - recentely used, no longer in cache 396 * ARC_mfu - frequently used, currently cached 397 * ARC_mfu_ghost - frequently used, no longer in cache 398 * ARC_l2c_only - exists in L2ARC but not other states 399 * When there are no active references to the buffer, they are 400 * are linked onto a list in one of these arc states. These are 401 * the only buffers that can be evicted or deleted. Within each 402 * state there are multiple lists, one for meta-data and one for 403 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 404 * etc.) is tracked separately so that it can be managed more 405 * explicitly: favored over data, limited explicitly. 406 * 407 * Anonymous buffers are buffers that are not associated with 408 * a DVA. These are buffers that hold dirty block copies 409 * before they are written to stable storage. By definition, 410 * they are "ref'd" and are considered part of arc_mru 411 * that cannot be freed. Generally, they will aquire a DVA 412 * as they are written and migrate onto the arc_mru list. 413 * 414 * The ARC_l2c_only state is for buffers that are in the second 415 * level ARC but no longer in any of the ARC_m* lists. The second 416 * level ARC itself may also contain buffers that are in any of 417 * the ARC_m* states - meaning that a buffer can exist in two 418 * places. The reason for the ARC_l2c_only state is to keep the 419 * buffer header in the hash table, so that reads that hit the 420 * second level ARC benefit from these fast lookups. 421 */ 422 423 typedef struct arc_state { 424 /* 425 * list of evictable buffers 426 */ 427 multilist_t *arcs_list[ARC_BUFC_NUMTYPES]; 428 /* 429 * total amount of evictable data in this state 430 */ 431 refcount_t arcs_esize[ARC_BUFC_NUMTYPES]; 432 /* 433 * total amount of data in this state; this includes: evictable, 434 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA. 435 */ 436 refcount_t arcs_size; 437 } arc_state_t; 438 439 /* The 6 states: */ 440 static arc_state_t ARC_anon; 441 static arc_state_t ARC_mru; 442 static arc_state_t ARC_mru_ghost; 443 static arc_state_t ARC_mfu; 444 static arc_state_t ARC_mfu_ghost; 445 static arc_state_t ARC_l2c_only; 446 447 typedef struct arc_stats { 448 kstat_named_t arcstat_hits; 449 kstat_named_t arcstat_misses; 450 kstat_named_t arcstat_demand_data_hits; 451 kstat_named_t arcstat_demand_data_misses; 452 kstat_named_t arcstat_demand_metadata_hits; 453 kstat_named_t arcstat_demand_metadata_misses; 454 kstat_named_t arcstat_prefetch_data_hits; 455 kstat_named_t arcstat_prefetch_data_misses; 456 kstat_named_t arcstat_prefetch_metadata_hits; 457 kstat_named_t arcstat_prefetch_metadata_misses; 458 kstat_named_t arcstat_mru_hits; 459 kstat_named_t arcstat_mru_ghost_hits; 460 kstat_named_t arcstat_mfu_hits; 461 kstat_named_t arcstat_mfu_ghost_hits; 462 kstat_named_t arcstat_deleted; 463 /* 464 * Number of buffers that could not be evicted because the hash lock 465 * was held by another thread. The lock may not necessarily be held 466 * by something using the same buffer, since hash locks are shared 467 * by multiple buffers. 468 */ 469 kstat_named_t arcstat_mutex_miss; 470 /* 471 * Number of buffers skipped because they have I/O in progress, are 472 * indrect prefetch buffers that have not lived long enough, or are 473 * not from the spa we're trying to evict from. 474 */ 475 kstat_named_t arcstat_evict_skip; 476 /* 477 * Number of times arc_evict_state() was unable to evict enough 478 * buffers to reach it's target amount. 479 */ 480 kstat_named_t arcstat_evict_not_enough; 481 kstat_named_t arcstat_evict_l2_cached; 482 kstat_named_t arcstat_evict_l2_eligible; 483 kstat_named_t arcstat_evict_l2_ineligible; 484 kstat_named_t arcstat_evict_l2_skip; 485 kstat_named_t arcstat_hash_elements; 486 kstat_named_t arcstat_hash_elements_max; 487 kstat_named_t arcstat_hash_collisions; 488 kstat_named_t arcstat_hash_chains; 489 kstat_named_t arcstat_hash_chain_max; 490 kstat_named_t arcstat_p; 491 kstat_named_t arcstat_c; 492 kstat_named_t arcstat_c_min; 493 kstat_named_t arcstat_c_max; 494 /* Not updated directly; only synced in arc_kstat_update. */ 495 kstat_named_t arcstat_size; 496 /* 497 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd. 498 * Note that the compressed bytes may match the uncompressed bytes 499 * if the block is either not compressed or compressed arc is disabled. 500 */ 501 kstat_named_t arcstat_compressed_size; 502 /* 503 * Uncompressed size of the data stored in b_pabd. If compressed 504 * arc is disabled then this value will be identical to the stat 505 * above. 506 */ 507 kstat_named_t arcstat_uncompressed_size; 508 /* 509 * Number of bytes stored in all the arc_buf_t's. This is classified 510 * as "overhead" since this data is typically short-lived and will 511 * be evicted from the arc when it becomes unreferenced unless the 512 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level 513 * values have been set (see comment in dbuf.c for more information). 514 */ 515 kstat_named_t arcstat_overhead_size; 516 /* 517 * Number of bytes consumed by internal ARC structures necessary 518 * for tracking purposes; these structures are not actually 519 * backed by ARC buffers. This includes arc_buf_hdr_t structures 520 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only 521 * caches), and arc_buf_t structures (allocated via arc_buf_t 522 * cache). 523 * Not updated directly; only synced in arc_kstat_update. 524 */ 525 kstat_named_t arcstat_hdr_size; 526 /* 527 * Number of bytes consumed by ARC buffers of type equal to 528 * ARC_BUFC_DATA. This is generally consumed by buffers backing 529 * on disk user data (e.g. plain file contents). 530 * Not updated directly; only synced in arc_kstat_update. 531 */ 532 kstat_named_t arcstat_data_size; 533 /* 534 * Number of bytes consumed by ARC buffers of type equal to 535 * ARC_BUFC_METADATA. This is generally consumed by buffers 536 * backing on disk data that is used for internal ZFS 537 * structures (e.g. ZAP, dnode, indirect blocks, etc). 538 * Not updated directly; only synced in arc_kstat_update. 539 */ 540 kstat_named_t arcstat_metadata_size; 541 /* 542 * Number of bytes consumed by various buffers and structures 543 * not actually backed with ARC buffers. This includes bonus 544 * buffers (allocated directly via zio_buf_* functions), 545 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t 546 * cache), and dnode_t structures (allocated via dnode_t cache). 547 * Not updated directly; only synced in arc_kstat_update. 548 */ 549 kstat_named_t arcstat_other_size; 550 /* 551 * Total number of bytes consumed by ARC buffers residing in the 552 * arc_anon state. This includes *all* buffers in the arc_anon 553 * state; e.g. data, metadata, evictable, and unevictable buffers 554 * are all included in this value. 555 * Not updated directly; only synced in arc_kstat_update. 556 */ 557 kstat_named_t arcstat_anon_size; 558 /* 559 * Number of bytes consumed by ARC buffers that meet the 560 * following criteria: backing buffers of type ARC_BUFC_DATA, 561 * residing in the arc_anon state, and are eligible for eviction 562 * (e.g. have no outstanding holds on the buffer). 563 * Not updated directly; only synced in arc_kstat_update. 564 */ 565 kstat_named_t arcstat_anon_evictable_data; 566 /* 567 * Number of bytes consumed by ARC buffers that meet the 568 * following criteria: backing buffers of type ARC_BUFC_METADATA, 569 * residing in the arc_anon state, and are eligible for eviction 570 * (e.g. have no outstanding holds on the buffer). 571 * Not updated directly; only synced in arc_kstat_update. 572 */ 573 kstat_named_t arcstat_anon_evictable_metadata; 574 /* 575 * Total number of bytes consumed by ARC buffers residing in the 576 * arc_mru state. This includes *all* buffers in the arc_mru 577 * state; e.g. data, metadata, evictable, and unevictable buffers 578 * are all included in this value. 579 * Not updated directly; only synced in arc_kstat_update. 580 */ 581 kstat_named_t arcstat_mru_size; 582 /* 583 * Number of bytes consumed by ARC buffers that meet the 584 * following criteria: backing buffers of type ARC_BUFC_DATA, 585 * residing in the arc_mru state, and are eligible for eviction 586 * (e.g. have no outstanding holds on the buffer). 587 * Not updated directly; only synced in arc_kstat_update. 588 */ 589 kstat_named_t arcstat_mru_evictable_data; 590 /* 591 * Number of bytes consumed by ARC buffers that meet the 592 * following criteria: backing buffers of type ARC_BUFC_METADATA, 593 * residing in the arc_mru state, and are eligible for eviction 594 * (e.g. have no outstanding holds on the buffer). 595 * Not updated directly; only synced in arc_kstat_update. 596 */ 597 kstat_named_t arcstat_mru_evictable_metadata; 598 /* 599 * Total number of bytes that *would have been* consumed by ARC 600 * buffers in the arc_mru_ghost state. The key thing to note 601 * here, is the fact that this size doesn't actually indicate 602 * RAM consumption. The ghost lists only consist of headers and 603 * don't actually have ARC buffers linked off of these headers. 604 * Thus, *if* the headers had associated ARC buffers, these 605 * buffers *would have* consumed this number of bytes. 606 * Not updated directly; only synced in arc_kstat_update. 607 */ 608 kstat_named_t arcstat_mru_ghost_size; 609 /* 610 * Number of bytes that *would have been* consumed by ARC 611 * buffers that are eligible for eviction, of type 612 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state. 613 * Not updated directly; only synced in arc_kstat_update. 614 */ 615 kstat_named_t arcstat_mru_ghost_evictable_data; 616 /* 617 * Number of bytes that *would have been* consumed by ARC 618 * buffers that are eligible for eviction, of type 619 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 620 * Not updated directly; only synced in arc_kstat_update. 621 */ 622 kstat_named_t arcstat_mru_ghost_evictable_metadata; 623 /* 624 * Total number of bytes consumed by ARC buffers residing in the 625 * arc_mfu state. This includes *all* buffers in the arc_mfu 626 * state; e.g. data, metadata, evictable, and unevictable buffers 627 * are all included in this value. 628 * Not updated directly; only synced in arc_kstat_update. 629 */ 630 kstat_named_t arcstat_mfu_size; 631 /* 632 * Number of bytes consumed by ARC buffers that are eligible for 633 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu 634 * state. 635 * Not updated directly; only synced in arc_kstat_update. 636 */ 637 kstat_named_t arcstat_mfu_evictable_data; 638 /* 639 * Number of bytes consumed by ARC buffers that are eligible for 640 * eviction, of type ARC_BUFC_METADATA, and reside in the 641 * arc_mfu state. 642 * Not updated directly; only synced in arc_kstat_update. 643 */ 644 kstat_named_t arcstat_mfu_evictable_metadata; 645 /* 646 * Total number of bytes that *would have been* consumed by ARC 647 * buffers in the arc_mfu_ghost state. See the comment above 648 * arcstat_mru_ghost_size for more details. 649 * Not updated directly; only synced in arc_kstat_update. 650 */ 651 kstat_named_t arcstat_mfu_ghost_size; 652 /* 653 * Number of bytes that *would have been* consumed by ARC 654 * buffers that are eligible for eviction, of type 655 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state. 656 * Not updated directly; only synced in arc_kstat_update. 657 */ 658 kstat_named_t arcstat_mfu_ghost_evictable_data; 659 /* 660 * Number of bytes that *would have been* consumed by ARC 661 * buffers that are eligible for eviction, of type 662 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 663 * Not updated directly; only synced in arc_kstat_update. 664 */ 665 kstat_named_t arcstat_mfu_ghost_evictable_metadata; 666 kstat_named_t arcstat_l2_hits; 667 kstat_named_t arcstat_l2_misses; 668 kstat_named_t arcstat_l2_feeds; 669 kstat_named_t arcstat_l2_rw_clash; 670 kstat_named_t arcstat_l2_read_bytes; 671 kstat_named_t arcstat_l2_write_bytes; 672 kstat_named_t arcstat_l2_writes_sent; 673 kstat_named_t arcstat_l2_writes_done; 674 kstat_named_t arcstat_l2_writes_error; 675 kstat_named_t arcstat_l2_writes_lock_retry; 676 kstat_named_t arcstat_l2_evict_lock_retry; 677 kstat_named_t arcstat_l2_evict_reading; 678 kstat_named_t arcstat_l2_evict_l1cached; 679 kstat_named_t arcstat_l2_free_on_write; 680 kstat_named_t arcstat_l2_abort_lowmem; 681 kstat_named_t arcstat_l2_cksum_bad; 682 kstat_named_t arcstat_l2_io_error; 683 kstat_named_t arcstat_l2_lsize; 684 kstat_named_t arcstat_l2_psize; 685 /* Not updated directly; only synced in arc_kstat_update. */ 686 kstat_named_t arcstat_l2_hdr_size; 687 kstat_named_t arcstat_memory_throttle_count; 688 /* Not updated directly; only synced in arc_kstat_update. */ 689 kstat_named_t arcstat_meta_used; 690 kstat_named_t arcstat_meta_limit; 691 kstat_named_t arcstat_meta_max; 692 kstat_named_t arcstat_meta_min; 693 kstat_named_t arcstat_sync_wait_for_async; 694 kstat_named_t arcstat_demand_hit_predictive_prefetch; 695 } arc_stats_t; 696 697 static arc_stats_t arc_stats = { 698 { "hits", KSTAT_DATA_UINT64 }, 699 { "misses", KSTAT_DATA_UINT64 }, 700 { "demand_data_hits", KSTAT_DATA_UINT64 }, 701 { "demand_data_misses", KSTAT_DATA_UINT64 }, 702 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 703 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 704 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 705 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 706 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 707 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 708 { "mru_hits", KSTAT_DATA_UINT64 }, 709 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 710 { "mfu_hits", KSTAT_DATA_UINT64 }, 711 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 712 { "deleted", KSTAT_DATA_UINT64 }, 713 { "mutex_miss", KSTAT_DATA_UINT64 }, 714 { "evict_skip", KSTAT_DATA_UINT64 }, 715 { "evict_not_enough", KSTAT_DATA_UINT64 }, 716 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 717 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 718 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 719 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 720 { "hash_elements", KSTAT_DATA_UINT64 }, 721 { "hash_elements_max", KSTAT_DATA_UINT64 }, 722 { "hash_collisions", KSTAT_DATA_UINT64 }, 723 { "hash_chains", KSTAT_DATA_UINT64 }, 724 { "hash_chain_max", KSTAT_DATA_UINT64 }, 725 { "p", KSTAT_DATA_UINT64 }, 726 { "c", KSTAT_DATA_UINT64 }, 727 { "c_min", KSTAT_DATA_UINT64 }, 728 { "c_max", KSTAT_DATA_UINT64 }, 729 { "size", KSTAT_DATA_UINT64 }, 730 { "compressed_size", KSTAT_DATA_UINT64 }, 731 { "uncompressed_size", KSTAT_DATA_UINT64 }, 732 { "overhead_size", KSTAT_DATA_UINT64 }, 733 { "hdr_size", KSTAT_DATA_UINT64 }, 734 { "data_size", KSTAT_DATA_UINT64 }, 735 { "metadata_size", KSTAT_DATA_UINT64 }, 736 { "other_size", KSTAT_DATA_UINT64 }, 737 { "anon_size", KSTAT_DATA_UINT64 }, 738 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 739 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 740 { "mru_size", KSTAT_DATA_UINT64 }, 741 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 742 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 743 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 744 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 745 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 746 { "mfu_size", KSTAT_DATA_UINT64 }, 747 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 748 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 749 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 750 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 751 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 752 { "l2_hits", KSTAT_DATA_UINT64 }, 753 { "l2_misses", KSTAT_DATA_UINT64 }, 754 { "l2_feeds", KSTAT_DATA_UINT64 }, 755 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 756 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 757 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 758 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 759 { "l2_writes_done", KSTAT_DATA_UINT64 }, 760 { "l2_writes_error", KSTAT_DATA_UINT64 }, 761 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 762 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 763 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 764 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 765 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 766 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 767 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 768 { "l2_io_error", KSTAT_DATA_UINT64 }, 769 { "l2_size", KSTAT_DATA_UINT64 }, 770 { "l2_asize", KSTAT_DATA_UINT64 }, 771 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 772 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 773 { "arc_meta_used", KSTAT_DATA_UINT64 }, 774 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 775 { "arc_meta_max", KSTAT_DATA_UINT64 }, 776 { "arc_meta_min", KSTAT_DATA_UINT64 }, 777 { "sync_wait_for_async", KSTAT_DATA_UINT64 }, 778 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 779 }; 780 781 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 782 783 #define ARCSTAT_INCR(stat, val) \ 784 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 785 786 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 787 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 788 789 #define ARCSTAT_MAX(stat, val) { \ 790 uint64_t m; \ 791 while ((val) > (m = arc_stats.stat.value.ui64) && \ 792 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 793 continue; \ 794 } 795 796 #define ARCSTAT_MAXSTAT(stat) \ 797 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 798 799 /* 800 * We define a macro to allow ARC hits/misses to be easily broken down by 801 * two separate conditions, giving a total of four different subtypes for 802 * each of hits and misses (so eight statistics total). 803 */ 804 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 805 if (cond1) { \ 806 if (cond2) { \ 807 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 808 } else { \ 809 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 810 } \ 811 } else { \ 812 if (cond2) { \ 813 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 814 } else { \ 815 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 816 } \ 817 } 818 819 kstat_t *arc_ksp; 820 static arc_state_t *arc_anon; 821 static arc_state_t *arc_mru; 822 static arc_state_t *arc_mru_ghost; 823 static arc_state_t *arc_mfu; 824 static arc_state_t *arc_mfu_ghost; 825 static arc_state_t *arc_l2c_only; 826 827 /* 828 * There are several ARC variables that are critical to export as kstats -- 829 * but we don't want to have to grovel around in the kstat whenever we wish to 830 * manipulate them. For these variables, we therefore define them to be in 831 * terms of the statistic variable. This assures that we are not introducing 832 * the possibility of inconsistency by having shadow copies of the variables, 833 * while still allowing the code to be readable. 834 */ 835 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 836 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 837 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 838 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 839 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 840 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 841 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 842 843 /* compressed size of entire arc */ 844 #define arc_compressed_size ARCSTAT(arcstat_compressed_size) 845 /* uncompressed size of entire arc */ 846 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size) 847 /* number of bytes in the arc from arc_buf_t's */ 848 #define arc_overhead_size ARCSTAT(arcstat_overhead_size) 849 850 /* 851 * There are also some ARC variables that we want to export, but that are 852 * updated so often that having the canonical representation be the statistic 853 * variable causes a performance bottleneck. We want to use aggsum_t's for these 854 * instead, but still be able to export the kstat in the same way as before. 855 * The solution is to always use the aggsum version, except in the kstat update 856 * callback. 857 */ 858 aggsum_t arc_size; 859 aggsum_t arc_meta_used; 860 aggsum_t astat_data_size; 861 aggsum_t astat_metadata_size; 862 aggsum_t astat_hdr_size; 863 aggsum_t astat_other_size; 864 aggsum_t astat_l2_hdr_size; 865 866 static int arc_no_grow; /* Don't try to grow cache size */ 867 static hrtime_t arc_growtime; 868 static uint64_t arc_tempreserve; 869 static uint64_t arc_loaned_bytes; 870 871 typedef struct arc_callback arc_callback_t; 872 873 struct arc_callback { 874 void *acb_private; 875 arc_done_func_t *acb_done; 876 arc_buf_t *acb_buf; 877 boolean_t acb_compressed; 878 zio_t *acb_zio_dummy; 879 arc_callback_t *acb_next; 880 }; 881 882 typedef struct arc_write_callback arc_write_callback_t; 883 884 struct arc_write_callback { 885 void *awcb_private; 886 arc_done_func_t *awcb_ready; 887 arc_done_func_t *awcb_children_ready; 888 arc_done_func_t *awcb_physdone; 889 arc_done_func_t *awcb_done; 890 arc_buf_t *awcb_buf; 891 }; 892 893 /* 894 * ARC buffers are separated into multiple structs as a memory saving measure: 895 * - Common fields struct, always defined, and embedded within it: 896 * - L2-only fields, always allocated but undefined when not in L2ARC 897 * - L1-only fields, only allocated when in L1ARC 898 * 899 * Buffer in L1 Buffer only in L2 900 * +------------------------+ +------------------------+ 901 * | arc_buf_hdr_t | | arc_buf_hdr_t | 902 * | | | | 903 * | | | | 904 * | | | | 905 * +------------------------+ +------------------------+ 906 * | l2arc_buf_hdr_t | | l2arc_buf_hdr_t | 907 * | (undefined if L1-only) | | | 908 * +------------------------+ +------------------------+ 909 * | l1arc_buf_hdr_t | 910 * | | 911 * | | 912 * | | 913 * | | 914 * +------------------------+ 915 * 916 * Because it's possible for the L2ARC to become extremely large, we can wind 917 * up eating a lot of memory in L2ARC buffer headers, so the size of a header 918 * is minimized by only allocating the fields necessary for an L1-cached buffer 919 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and 920 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple 921 * words in pointers. arc_hdr_realloc() is used to switch a header between 922 * these two allocation states. 923 */ 924 typedef struct l1arc_buf_hdr { 925 kmutex_t b_freeze_lock; 926 zio_cksum_t *b_freeze_cksum; 927 #ifdef ZFS_DEBUG 928 /* 929 * Used for debugging with kmem_flags - by allocating and freeing 930 * b_thawed when the buffer is thawed, we get a record of the stack 931 * trace that thawed it. 932 */ 933 void *b_thawed; 934 #endif 935 936 arc_buf_t *b_buf; 937 uint32_t b_bufcnt; 938 /* for waiting on writes to complete */ 939 kcondvar_t b_cv; 940 uint8_t b_byteswap; 941 942 /* protected by arc state mutex */ 943 arc_state_t *b_state; 944 multilist_node_t b_arc_node; 945 946 /* updated atomically */ 947 clock_t b_arc_access; 948 949 /* self protecting */ 950 refcount_t b_refcnt; 951 952 arc_callback_t *b_acb; 953 abd_t *b_pabd; 954 } l1arc_buf_hdr_t; 955 956 typedef struct l2arc_dev l2arc_dev_t; 957 958 typedef struct l2arc_buf_hdr { 959 /* protected by arc_buf_hdr mutex */ 960 l2arc_dev_t *b_dev; /* L2ARC device */ 961 uint64_t b_daddr; /* disk address, offset byte */ 962 963 list_node_t b_l2node; 964 } l2arc_buf_hdr_t; 965 966 struct arc_buf_hdr { 967 /* protected by hash lock */ 968 dva_t b_dva; 969 uint64_t b_birth; 970 971 arc_buf_contents_t b_type; 972 arc_buf_hdr_t *b_hash_next; 973 arc_flags_t b_flags; 974 975 /* 976 * This field stores the size of the data buffer after 977 * compression, and is set in the arc's zio completion handlers. 978 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes). 979 * 980 * While the block pointers can store up to 32MB in their psize 981 * field, we can only store up to 32MB minus 512B. This is due 982 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e. 983 * a field of zeros represents 512B in the bp). We can't use a 984 * bias of 1 since we need to reserve a psize of zero, here, to 985 * represent holes and embedded blocks. 986 * 987 * This isn't a problem in practice, since the maximum size of a 988 * buffer is limited to 16MB, so we never need to store 32MB in 989 * this field. Even in the upstream illumos code base, the 990 * maximum size of a buffer is limited to 16MB. 991 */ 992 uint16_t b_psize; 993 994 /* 995 * This field stores the size of the data buffer before 996 * compression, and cannot change once set. It is in units 997 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes) 998 */ 999 uint16_t b_lsize; /* immutable */ 1000 uint64_t b_spa; /* immutable */ 1001 1002 /* L2ARC fields. Undefined when not in L2ARC. */ 1003 l2arc_buf_hdr_t b_l2hdr; 1004 /* L1ARC fields. Undefined when in l2arc_only state */ 1005 l1arc_buf_hdr_t b_l1hdr; 1006 }; 1007 1008 #define GHOST_STATE(state) \ 1009 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 1010 (state) == arc_l2c_only) 1011 1012 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 1013 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 1014 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 1015 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 1016 #define HDR_COMPRESSION_ENABLED(hdr) \ 1017 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 1018 1019 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 1020 #define HDR_L2_READING(hdr) \ 1021 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 1022 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 1023 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 1024 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 1025 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 1026 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 1027 1028 #define HDR_ISTYPE_METADATA(hdr) \ 1029 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 1030 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 1031 1032 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 1033 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 1034 1035 /* For storing compression mode in b_flags */ 1036 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 1037 1038 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 1039 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 1040 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 1041 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 1042 1043 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 1044 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 1045 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 1046 1047 /* 1048 * Other sizes 1049 */ 1050 1051 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 1052 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 1053 1054 /* 1055 * Hash table routines 1056 */ 1057 1058 #define HT_LOCK_PAD 64 1059 1060 struct ht_lock { 1061 kmutex_t ht_lock; 1062 #ifdef _KERNEL 1063 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 1064 #endif 1065 }; 1066 1067 #define BUF_LOCKS 256 1068 typedef struct buf_hash_table { 1069 uint64_t ht_mask; 1070 arc_buf_hdr_t **ht_table; 1071 struct ht_lock ht_locks[BUF_LOCKS]; 1072 } buf_hash_table_t; 1073 1074 static buf_hash_table_t buf_hash_table; 1075 1076 #define BUF_HASH_INDEX(spa, dva, birth) \ 1077 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 1078 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 1079 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 1080 #define HDR_LOCK(hdr) \ 1081 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 1082 1083 uint64_t zfs_crc64_table[256]; 1084 1085 /* 1086 * Level 2 ARC 1087 */ 1088 1089 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 1090 #define L2ARC_HEADROOM 2 /* num of writes */ 1091 /* 1092 * If we discover during ARC scan any buffers to be compressed, we boost 1093 * our headroom for the next scanning cycle by this percentage multiple. 1094 */ 1095 #define L2ARC_HEADROOM_BOOST 200 1096 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 1097 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 1098 1099 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 1100 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 1101 1102 /* L2ARC Performance Tunables */ 1103 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 1104 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 1105 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 1106 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 1107 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 1108 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 1109 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 1110 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 1111 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 1112 1113 /* 1114 * L2ARC Internals 1115 */ 1116 struct l2arc_dev { 1117 vdev_t *l2ad_vdev; /* vdev */ 1118 spa_t *l2ad_spa; /* spa */ 1119 uint64_t l2ad_hand; /* next write location */ 1120 uint64_t l2ad_start; /* first addr on device */ 1121 uint64_t l2ad_end; /* last addr on device */ 1122 boolean_t l2ad_first; /* first sweep through */ 1123 boolean_t l2ad_writing; /* currently writing */ 1124 kmutex_t l2ad_mtx; /* lock for buffer list */ 1125 list_t l2ad_buflist; /* buffer list */ 1126 list_node_t l2ad_node; /* device list node */ 1127 refcount_t l2ad_alloc; /* allocated bytes */ 1128 }; 1129 1130 static list_t L2ARC_dev_list; /* device list */ 1131 static list_t *l2arc_dev_list; /* device list pointer */ 1132 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 1133 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 1134 static list_t L2ARC_free_on_write; /* free after write buf list */ 1135 static list_t *l2arc_free_on_write; /* free after write list ptr */ 1136 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 1137 static uint64_t l2arc_ndev; /* number of devices */ 1138 1139 typedef struct l2arc_read_callback { 1140 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 1141 blkptr_t l2rcb_bp; /* original blkptr */ 1142 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 1143 int l2rcb_flags; /* original flags */ 1144 abd_t *l2rcb_abd; /* temporary buffer */ 1145 } l2arc_read_callback_t; 1146 1147 typedef struct l2arc_write_callback { 1148 l2arc_dev_t *l2wcb_dev; /* device info */ 1149 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 1150 } l2arc_write_callback_t; 1151 1152 typedef struct l2arc_data_free { 1153 /* protected by l2arc_free_on_write_mtx */ 1154 abd_t *l2df_abd; 1155 size_t l2df_size; 1156 arc_buf_contents_t l2df_type; 1157 list_node_t l2df_list_node; 1158 } l2arc_data_free_t; 1159 1160 static kmutex_t l2arc_feed_thr_lock; 1161 static kcondvar_t l2arc_feed_thr_cv; 1162 static uint8_t l2arc_thread_exit; 1163 1164 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *); 1165 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 1166 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *); 1167 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 1168 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 1169 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 1170 static void arc_hdr_free_pabd(arc_buf_hdr_t *); 1171 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *); 1172 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 1173 static boolean_t arc_is_overflowing(); 1174 static void arc_buf_watch(arc_buf_t *); 1175 1176 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 1177 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 1178 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 1179 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 1180 1181 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 1182 static void l2arc_read_done(zio_t *); 1183 1184 1185 /* 1186 * We use Cityhash for this. It's fast, and has good hash properties without 1187 * requiring any large static buffers. 1188 */ 1189 static uint64_t 1190 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 1191 { 1192 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 1193 } 1194 1195 #define HDR_EMPTY(hdr) \ 1196 ((hdr)->b_dva.dva_word[0] == 0 && \ 1197 (hdr)->b_dva.dva_word[1] == 0) 1198 1199 #define HDR_EQUAL(spa, dva, birth, hdr) \ 1200 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 1201 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 1202 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 1203 1204 static void 1205 buf_discard_identity(arc_buf_hdr_t *hdr) 1206 { 1207 hdr->b_dva.dva_word[0] = 0; 1208 hdr->b_dva.dva_word[1] = 0; 1209 hdr->b_birth = 0; 1210 } 1211 1212 static arc_buf_hdr_t * 1213 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 1214 { 1215 const dva_t *dva = BP_IDENTITY(bp); 1216 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 1217 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1218 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1219 arc_buf_hdr_t *hdr; 1220 1221 mutex_enter(hash_lock); 1222 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1223 hdr = hdr->b_hash_next) { 1224 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1225 *lockp = hash_lock; 1226 return (hdr); 1227 } 1228 } 1229 mutex_exit(hash_lock); 1230 *lockp = NULL; 1231 return (NULL); 1232 } 1233 1234 /* 1235 * Insert an entry into the hash table. If there is already an element 1236 * equal to elem in the hash table, then the already existing element 1237 * will be returned and the new element will not be inserted. 1238 * Otherwise returns NULL. 1239 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1240 */ 1241 static arc_buf_hdr_t * 1242 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1243 { 1244 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1245 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1246 arc_buf_hdr_t *fhdr; 1247 uint32_t i; 1248 1249 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1250 ASSERT(hdr->b_birth != 0); 1251 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1252 1253 if (lockp != NULL) { 1254 *lockp = hash_lock; 1255 mutex_enter(hash_lock); 1256 } else { 1257 ASSERT(MUTEX_HELD(hash_lock)); 1258 } 1259 1260 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1261 fhdr = fhdr->b_hash_next, i++) { 1262 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1263 return (fhdr); 1264 } 1265 1266 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1267 buf_hash_table.ht_table[idx] = hdr; 1268 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1269 1270 /* collect some hash table performance data */ 1271 if (i > 0) { 1272 ARCSTAT_BUMP(arcstat_hash_collisions); 1273 if (i == 1) 1274 ARCSTAT_BUMP(arcstat_hash_chains); 1275 1276 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1277 } 1278 1279 ARCSTAT_BUMP(arcstat_hash_elements); 1280 ARCSTAT_MAXSTAT(arcstat_hash_elements); 1281 1282 return (NULL); 1283 } 1284 1285 static void 1286 buf_hash_remove(arc_buf_hdr_t *hdr) 1287 { 1288 arc_buf_hdr_t *fhdr, **hdrp; 1289 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1290 1291 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1292 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1293 1294 hdrp = &buf_hash_table.ht_table[idx]; 1295 while ((fhdr = *hdrp) != hdr) { 1296 ASSERT3P(fhdr, !=, NULL); 1297 hdrp = &fhdr->b_hash_next; 1298 } 1299 *hdrp = hdr->b_hash_next; 1300 hdr->b_hash_next = NULL; 1301 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1302 1303 /* collect some hash table performance data */ 1304 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 1305 1306 if (buf_hash_table.ht_table[idx] && 1307 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1308 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1309 } 1310 1311 /* 1312 * Global data structures and functions for the buf kmem cache. 1313 */ 1314 static kmem_cache_t *hdr_full_cache; 1315 static kmem_cache_t *hdr_l2only_cache; 1316 static kmem_cache_t *buf_cache; 1317 1318 static void 1319 buf_fini(void) 1320 { 1321 int i; 1322 1323 kmem_free(buf_hash_table.ht_table, 1324 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1325 for (i = 0; i < BUF_LOCKS; i++) 1326 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 1327 kmem_cache_destroy(hdr_full_cache); 1328 kmem_cache_destroy(hdr_l2only_cache); 1329 kmem_cache_destroy(buf_cache); 1330 } 1331 1332 /* 1333 * Constructor callback - called when the cache is empty 1334 * and a new buf is requested. 1335 */ 1336 /* ARGSUSED */ 1337 static int 1338 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1339 { 1340 arc_buf_hdr_t *hdr = vbuf; 1341 1342 bzero(hdr, HDR_FULL_SIZE); 1343 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1344 refcount_create(&hdr->b_l1hdr.b_refcnt); 1345 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1346 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1347 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1348 1349 return (0); 1350 } 1351 1352 /* ARGSUSED */ 1353 static int 1354 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1355 { 1356 arc_buf_hdr_t *hdr = vbuf; 1357 1358 bzero(hdr, HDR_L2ONLY_SIZE); 1359 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1360 1361 return (0); 1362 } 1363 1364 /* ARGSUSED */ 1365 static int 1366 buf_cons(void *vbuf, void *unused, int kmflag) 1367 { 1368 arc_buf_t *buf = vbuf; 1369 1370 bzero(buf, sizeof (arc_buf_t)); 1371 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1372 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1373 1374 return (0); 1375 } 1376 1377 /* 1378 * Destructor callback - called when a cached buf is 1379 * no longer required. 1380 */ 1381 /* ARGSUSED */ 1382 static void 1383 hdr_full_dest(void *vbuf, void *unused) 1384 { 1385 arc_buf_hdr_t *hdr = vbuf; 1386 1387 ASSERT(HDR_EMPTY(hdr)); 1388 cv_destroy(&hdr->b_l1hdr.b_cv); 1389 refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1390 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1391 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1392 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1393 } 1394 1395 /* ARGSUSED */ 1396 static void 1397 hdr_l2only_dest(void *vbuf, void *unused) 1398 { 1399 arc_buf_hdr_t *hdr = vbuf; 1400 1401 ASSERT(HDR_EMPTY(hdr)); 1402 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1403 } 1404 1405 /* ARGSUSED */ 1406 static void 1407 buf_dest(void *vbuf, void *unused) 1408 { 1409 arc_buf_t *buf = vbuf; 1410 1411 mutex_destroy(&buf->b_evict_lock); 1412 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1413 } 1414 1415 /* 1416 * Reclaim callback -- invoked when memory is low. 1417 */ 1418 /* ARGSUSED */ 1419 static void 1420 hdr_recl(void *unused) 1421 { 1422 dprintf("hdr_recl called\n"); 1423 /* 1424 * umem calls the reclaim func when we destroy the buf cache, 1425 * which is after we do arc_fini(). 1426 */ 1427 if (arc_initialized) 1428 zthr_wakeup(arc_reap_zthr); 1429 } 1430 1431 static void 1432 buf_init(void) 1433 { 1434 uint64_t *ct; 1435 uint64_t hsize = 1ULL << 12; 1436 int i, j; 1437 1438 /* 1439 * The hash table is big enough to fill all of physical memory 1440 * with an average block size of zfs_arc_average_blocksize (default 8K). 1441 * By default, the table will take up 1442 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1443 */ 1444 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 1445 hsize <<= 1; 1446 retry: 1447 buf_hash_table.ht_mask = hsize - 1; 1448 buf_hash_table.ht_table = 1449 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1450 if (buf_hash_table.ht_table == NULL) { 1451 ASSERT(hsize > (1ULL << 8)); 1452 hsize >>= 1; 1453 goto retry; 1454 } 1455 1456 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1457 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0); 1458 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1459 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl, 1460 NULL, NULL, 0); 1461 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1462 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1463 1464 for (i = 0; i < 256; i++) 1465 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1466 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1467 1468 for (i = 0; i < BUF_LOCKS; i++) { 1469 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1470 NULL, MUTEX_DEFAULT, NULL); 1471 } 1472 } 1473 1474 /* 1475 * This is the size that the buf occupies in memory. If the buf is compressed, 1476 * it will correspond to the compressed size. You should use this method of 1477 * getting the buf size unless you explicitly need the logical size. 1478 */ 1479 int32_t 1480 arc_buf_size(arc_buf_t *buf) 1481 { 1482 return (ARC_BUF_COMPRESSED(buf) ? 1483 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1484 } 1485 1486 int32_t 1487 arc_buf_lsize(arc_buf_t *buf) 1488 { 1489 return (HDR_GET_LSIZE(buf->b_hdr)); 1490 } 1491 1492 enum zio_compress 1493 arc_get_compression(arc_buf_t *buf) 1494 { 1495 return (ARC_BUF_COMPRESSED(buf) ? 1496 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1497 } 1498 1499 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1500 1501 static inline boolean_t 1502 arc_buf_is_shared(arc_buf_t *buf) 1503 { 1504 boolean_t shared = (buf->b_data != NULL && 1505 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1506 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1507 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1508 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1509 IMPLY(shared, ARC_BUF_SHARED(buf)); 1510 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1511 1512 /* 1513 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1514 * already being shared" requirement prevents us from doing that. 1515 */ 1516 1517 return (shared); 1518 } 1519 1520 /* 1521 * Free the checksum associated with this header. If there is no checksum, this 1522 * is a no-op. 1523 */ 1524 static inline void 1525 arc_cksum_free(arc_buf_hdr_t *hdr) 1526 { 1527 ASSERT(HDR_HAS_L1HDR(hdr)); 1528 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1529 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1530 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1531 hdr->b_l1hdr.b_freeze_cksum = NULL; 1532 } 1533 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1534 } 1535 1536 /* 1537 * Return true iff at least one of the bufs on hdr is not compressed. 1538 */ 1539 static boolean_t 1540 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1541 { 1542 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1543 if (!ARC_BUF_COMPRESSED(b)) { 1544 return (B_TRUE); 1545 } 1546 } 1547 return (B_FALSE); 1548 } 1549 1550 /* 1551 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1552 * matches the checksum that is stored in the hdr. If there is no checksum, 1553 * or if the buf is compressed, this is a no-op. 1554 */ 1555 static void 1556 arc_cksum_verify(arc_buf_t *buf) 1557 { 1558 arc_buf_hdr_t *hdr = buf->b_hdr; 1559 zio_cksum_t zc; 1560 1561 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1562 return; 1563 1564 if (ARC_BUF_COMPRESSED(buf)) { 1565 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL || 1566 arc_hdr_has_uncompressed_buf(hdr)); 1567 return; 1568 } 1569 1570 ASSERT(HDR_HAS_L1HDR(hdr)); 1571 1572 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1573 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1574 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1575 return; 1576 } 1577 1578 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1579 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1580 panic("buffer modified while frozen!"); 1581 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1582 } 1583 1584 static boolean_t 1585 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1586 { 1587 enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp); 1588 boolean_t valid_cksum; 1589 1590 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1591 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1592 1593 /* 1594 * We rely on the blkptr's checksum to determine if the block 1595 * is valid or not. When compressed arc is enabled, the l2arc 1596 * writes the block to the l2arc just as it appears in the pool. 1597 * This allows us to use the blkptr's checksum to validate the 1598 * data that we just read off of the l2arc without having to store 1599 * a separate checksum in the arc_buf_hdr_t. However, if compressed 1600 * arc is disabled, then the data written to the l2arc is always 1601 * uncompressed and won't match the block as it exists in the main 1602 * pool. When this is the case, we must first compress it if it is 1603 * compressed on the main pool before we can validate the checksum. 1604 */ 1605 if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) { 1606 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1607 uint64_t lsize = HDR_GET_LSIZE(hdr); 1608 uint64_t csize; 1609 1610 abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE); 1611 csize = zio_compress_data(compress, zio->io_abd, 1612 abd_to_buf(cdata), lsize); 1613 1614 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr)); 1615 if (csize < HDR_GET_PSIZE(hdr)) { 1616 /* 1617 * Compressed blocks are always a multiple of the 1618 * smallest ashift in the pool. Ideally, we would 1619 * like to round up the csize to the next 1620 * spa_min_ashift but that value may have changed 1621 * since the block was last written. Instead, 1622 * we rely on the fact that the hdr's psize 1623 * was set to the psize of the block when it was 1624 * last written. We set the csize to that value 1625 * and zero out any part that should not contain 1626 * data. 1627 */ 1628 abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize); 1629 csize = HDR_GET_PSIZE(hdr); 1630 } 1631 zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL); 1632 } 1633 1634 /* 1635 * Block pointers always store the checksum for the logical data. 1636 * If the block pointer has the gang bit set, then the checksum 1637 * it represents is for the reconstituted data and not for an 1638 * individual gang member. The zio pipeline, however, must be able to 1639 * determine the checksum of each of the gang constituents so it 1640 * treats the checksum comparison differently than what we need 1641 * for l2arc blocks. This prevents us from using the 1642 * zio_checksum_error() interface directly. Instead we must call the 1643 * zio_checksum_error_impl() so that we can ensure the checksum is 1644 * generated using the correct checksum algorithm and accounts for the 1645 * logical I/O size and not just a gang fragment. 1646 */ 1647 valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1648 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1649 zio->io_offset, NULL) == 0); 1650 zio_pop_transforms(zio); 1651 return (valid_cksum); 1652 } 1653 1654 /* 1655 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1656 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1657 * isn't modified later on. If buf is compressed or there is already a checksum 1658 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1659 */ 1660 static void 1661 arc_cksum_compute(arc_buf_t *buf) 1662 { 1663 arc_buf_hdr_t *hdr = buf->b_hdr; 1664 1665 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1666 return; 1667 1668 ASSERT(HDR_HAS_L1HDR(hdr)); 1669 1670 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1671 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1672 ASSERT(arc_hdr_has_uncompressed_buf(hdr)); 1673 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1674 return; 1675 } else if (ARC_BUF_COMPRESSED(buf)) { 1676 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1677 return; 1678 } 1679 1680 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1681 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1682 KM_SLEEP); 1683 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1684 hdr->b_l1hdr.b_freeze_cksum); 1685 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1686 arc_buf_watch(buf); 1687 } 1688 1689 #ifndef _KERNEL 1690 typedef struct procctl { 1691 long cmd; 1692 prwatch_t prwatch; 1693 } procctl_t; 1694 #endif 1695 1696 /* ARGSUSED */ 1697 static void 1698 arc_buf_unwatch(arc_buf_t *buf) 1699 { 1700 #ifndef _KERNEL 1701 if (arc_watch) { 1702 int result; 1703 procctl_t ctl; 1704 ctl.cmd = PCWATCH; 1705 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1706 ctl.prwatch.pr_size = 0; 1707 ctl.prwatch.pr_wflags = 0; 1708 result = write(arc_procfd, &ctl, sizeof (ctl)); 1709 ASSERT3U(result, ==, sizeof (ctl)); 1710 } 1711 #endif 1712 } 1713 1714 /* ARGSUSED */ 1715 static void 1716 arc_buf_watch(arc_buf_t *buf) 1717 { 1718 #ifndef _KERNEL 1719 if (arc_watch) { 1720 int result; 1721 procctl_t ctl; 1722 ctl.cmd = PCWATCH; 1723 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1724 ctl.prwatch.pr_size = arc_buf_size(buf); 1725 ctl.prwatch.pr_wflags = WA_WRITE; 1726 result = write(arc_procfd, &ctl, sizeof (ctl)); 1727 ASSERT3U(result, ==, sizeof (ctl)); 1728 } 1729 #endif 1730 } 1731 1732 static arc_buf_contents_t 1733 arc_buf_type(arc_buf_hdr_t *hdr) 1734 { 1735 arc_buf_contents_t type; 1736 if (HDR_ISTYPE_METADATA(hdr)) { 1737 type = ARC_BUFC_METADATA; 1738 } else { 1739 type = ARC_BUFC_DATA; 1740 } 1741 VERIFY3U(hdr->b_type, ==, type); 1742 return (type); 1743 } 1744 1745 boolean_t 1746 arc_is_metadata(arc_buf_t *buf) 1747 { 1748 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1749 } 1750 1751 static uint32_t 1752 arc_bufc_to_flags(arc_buf_contents_t type) 1753 { 1754 switch (type) { 1755 case ARC_BUFC_DATA: 1756 /* metadata field is 0 if buffer contains normal data */ 1757 return (0); 1758 case ARC_BUFC_METADATA: 1759 return (ARC_FLAG_BUFC_METADATA); 1760 default: 1761 break; 1762 } 1763 panic("undefined ARC buffer type!"); 1764 return ((uint32_t)-1); 1765 } 1766 1767 void 1768 arc_buf_thaw(arc_buf_t *buf) 1769 { 1770 arc_buf_hdr_t *hdr = buf->b_hdr; 1771 1772 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1773 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1774 1775 arc_cksum_verify(buf); 1776 1777 /* 1778 * Compressed buffers do not manipulate the b_freeze_cksum or 1779 * allocate b_thawed. 1780 */ 1781 if (ARC_BUF_COMPRESSED(buf)) { 1782 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL || 1783 arc_hdr_has_uncompressed_buf(hdr)); 1784 return; 1785 } 1786 1787 ASSERT(HDR_HAS_L1HDR(hdr)); 1788 arc_cksum_free(hdr); 1789 1790 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1791 #ifdef ZFS_DEBUG 1792 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1793 if (hdr->b_l1hdr.b_thawed != NULL) 1794 kmem_free(hdr->b_l1hdr.b_thawed, 1); 1795 hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP); 1796 } 1797 #endif 1798 1799 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1800 1801 arc_buf_unwatch(buf); 1802 } 1803 1804 void 1805 arc_buf_freeze(arc_buf_t *buf) 1806 { 1807 arc_buf_hdr_t *hdr = buf->b_hdr; 1808 kmutex_t *hash_lock; 1809 1810 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1811 return; 1812 1813 if (ARC_BUF_COMPRESSED(buf)) { 1814 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL || 1815 arc_hdr_has_uncompressed_buf(hdr)); 1816 return; 1817 } 1818 1819 hash_lock = HDR_LOCK(hdr); 1820 mutex_enter(hash_lock); 1821 1822 ASSERT(HDR_HAS_L1HDR(hdr)); 1823 ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL || 1824 hdr->b_l1hdr.b_state == arc_anon); 1825 arc_cksum_compute(buf); 1826 mutex_exit(hash_lock); 1827 } 1828 1829 /* 1830 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1831 * the following functions should be used to ensure that the flags are 1832 * updated in a thread-safe way. When manipulating the flags either 1833 * the hash_lock must be held or the hdr must be undiscoverable. This 1834 * ensures that we're not racing with any other threads when updating 1835 * the flags. 1836 */ 1837 static inline void 1838 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1839 { 1840 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1841 hdr->b_flags |= flags; 1842 } 1843 1844 static inline void 1845 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1846 { 1847 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1848 hdr->b_flags &= ~flags; 1849 } 1850 1851 /* 1852 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1853 * done in a special way since we have to clear and set bits 1854 * at the same time. Consumers that wish to set the compression bits 1855 * must use this function to ensure that the flags are updated in 1856 * thread-safe manner. 1857 */ 1858 static void 1859 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1860 { 1861 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1862 1863 /* 1864 * Holes and embedded blocks will always have a psize = 0 so 1865 * we ignore the compression of the blkptr and set the 1866 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF. 1867 * Holes and embedded blocks remain anonymous so we don't 1868 * want to uncompress them. Mark them as uncompressed. 1869 */ 1870 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1871 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1872 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 1873 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1874 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1875 } else { 1876 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1877 HDR_SET_COMPRESS(hdr, cmp); 1878 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1879 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1880 } 1881 } 1882 1883 /* 1884 * Looks for another buf on the same hdr which has the data decompressed, copies 1885 * from it, and returns true. If no such buf exists, returns false. 1886 */ 1887 static boolean_t 1888 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1889 { 1890 arc_buf_hdr_t *hdr = buf->b_hdr; 1891 boolean_t copied = B_FALSE; 1892 1893 ASSERT(HDR_HAS_L1HDR(hdr)); 1894 ASSERT3P(buf->b_data, !=, NULL); 1895 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1896 1897 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1898 from = from->b_next) { 1899 /* can't use our own data buffer */ 1900 if (from == buf) { 1901 continue; 1902 } 1903 1904 if (!ARC_BUF_COMPRESSED(from)) { 1905 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1906 copied = B_TRUE; 1907 break; 1908 } 1909 } 1910 1911 /* 1912 * There were no decompressed bufs, so there should not be a 1913 * checksum on the hdr either. 1914 */ 1915 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1916 1917 return (copied); 1918 } 1919 1920 /* 1921 * Given a buf that has a data buffer attached to it, this function will 1922 * efficiently fill the buf with data of the specified compression setting from 1923 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1924 * are already sharing a data buf, no copy is performed. 1925 * 1926 * If the buf is marked as compressed but uncompressed data was requested, this 1927 * will allocate a new data buffer for the buf, remove that flag, and fill the 1928 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1929 * uncompressed data, and (since we haven't added support for it yet) if you 1930 * want compressed data your buf must already be marked as compressed and have 1931 * the correct-sized data buffer. 1932 */ 1933 static int 1934 arc_buf_fill(arc_buf_t *buf, boolean_t compressed) 1935 { 1936 arc_buf_hdr_t *hdr = buf->b_hdr; 1937 boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF); 1938 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 1939 1940 ASSERT3P(buf->b_data, !=, NULL); 1941 IMPLY(compressed, hdr_compressed); 1942 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 1943 1944 if (hdr_compressed == compressed) { 1945 if (!arc_buf_is_shared(buf)) { 1946 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 1947 arc_buf_size(buf)); 1948 } 1949 } else { 1950 ASSERT(hdr_compressed); 1951 ASSERT(!compressed); 1952 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 1953 1954 /* 1955 * If the buf is sharing its data with the hdr, unlink it and 1956 * allocate a new data buffer for the buf. 1957 */ 1958 if (arc_buf_is_shared(buf)) { 1959 ASSERT(ARC_BUF_COMPRESSED(buf)); 1960 1961 /* We need to give the buf it's own b_data */ 1962 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 1963 buf->b_data = 1964 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 1965 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 1966 1967 /* Previously overhead was 0; just add new overhead */ 1968 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 1969 } else if (ARC_BUF_COMPRESSED(buf)) { 1970 /* We need to reallocate the buf's b_data */ 1971 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 1972 buf); 1973 buf->b_data = 1974 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 1975 1976 /* We increased the size of b_data; update overhead */ 1977 ARCSTAT_INCR(arcstat_overhead_size, 1978 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 1979 } 1980 1981 /* 1982 * Regardless of the buf's previous compression settings, it 1983 * should not be compressed at the end of this function. 1984 */ 1985 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1986 1987 /* 1988 * Try copying the data from another buf which already has a 1989 * decompressed version. If that's not possible, it's time to 1990 * bite the bullet and decompress the data from the hdr. 1991 */ 1992 if (arc_buf_try_copy_decompressed_data(buf)) { 1993 /* Skip byteswapping and checksumming (already done) */ 1994 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL); 1995 return (0); 1996 } else { 1997 int error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1998 hdr->b_l1hdr.b_pabd, buf->b_data, 1999 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2000 2001 /* 2002 * Absent hardware errors or software bugs, this should 2003 * be impossible, but log it anyway so we can debug it. 2004 */ 2005 if (error != 0) { 2006 zfs_dbgmsg( 2007 "hdr %p, compress %d, psize %d, lsize %d", 2008 hdr, HDR_GET_COMPRESS(hdr), 2009 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2010 return (SET_ERROR(EIO)); 2011 } 2012 } 2013 } 2014 2015 /* Byteswap the buf's data if necessary */ 2016 if (bswap != DMU_BSWAP_NUMFUNCS) { 2017 ASSERT(!HDR_SHARED_DATA(hdr)); 2018 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2019 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2020 } 2021 2022 /* Compute the hdr's checksum if necessary */ 2023 arc_cksum_compute(buf); 2024 2025 return (0); 2026 } 2027 2028 int 2029 arc_decompress(arc_buf_t *buf) 2030 { 2031 return (arc_buf_fill(buf, B_FALSE)); 2032 } 2033 2034 /* 2035 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 2036 */ 2037 static uint64_t 2038 arc_hdr_size(arc_buf_hdr_t *hdr) 2039 { 2040 uint64_t size; 2041 2042 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 2043 HDR_GET_PSIZE(hdr) > 0) { 2044 size = HDR_GET_PSIZE(hdr); 2045 } else { 2046 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 2047 size = HDR_GET_LSIZE(hdr); 2048 } 2049 return (size); 2050 } 2051 2052 /* 2053 * Increment the amount of evictable space in the arc_state_t's refcount. 2054 * We account for the space used by the hdr and the arc buf individually 2055 * so that we can add and remove them from the refcount individually. 2056 */ 2057 static void 2058 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2059 { 2060 arc_buf_contents_t type = arc_buf_type(hdr); 2061 2062 ASSERT(HDR_HAS_L1HDR(hdr)); 2063 2064 if (GHOST_STATE(state)) { 2065 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2066 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2067 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2068 (void) refcount_add_many(&state->arcs_esize[type], 2069 HDR_GET_LSIZE(hdr), hdr); 2070 return; 2071 } 2072 2073 ASSERT(!GHOST_STATE(state)); 2074 if (hdr->b_l1hdr.b_pabd != NULL) { 2075 (void) refcount_add_many(&state->arcs_esize[type], 2076 arc_hdr_size(hdr), hdr); 2077 } 2078 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2079 buf = buf->b_next) { 2080 if (arc_buf_is_shared(buf)) 2081 continue; 2082 (void) refcount_add_many(&state->arcs_esize[type], 2083 arc_buf_size(buf), buf); 2084 } 2085 } 2086 2087 /* 2088 * Decrement the amount of evictable space in the arc_state_t's refcount. 2089 * We account for the space used by the hdr and the arc buf individually 2090 * so that we can add and remove them from the refcount individually. 2091 */ 2092 static void 2093 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2094 { 2095 arc_buf_contents_t type = arc_buf_type(hdr); 2096 2097 ASSERT(HDR_HAS_L1HDR(hdr)); 2098 2099 if (GHOST_STATE(state)) { 2100 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2101 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2102 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2103 (void) refcount_remove_many(&state->arcs_esize[type], 2104 HDR_GET_LSIZE(hdr), hdr); 2105 return; 2106 } 2107 2108 ASSERT(!GHOST_STATE(state)); 2109 if (hdr->b_l1hdr.b_pabd != NULL) { 2110 (void) refcount_remove_many(&state->arcs_esize[type], 2111 arc_hdr_size(hdr), hdr); 2112 } 2113 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2114 buf = buf->b_next) { 2115 if (arc_buf_is_shared(buf)) 2116 continue; 2117 (void) refcount_remove_many(&state->arcs_esize[type], 2118 arc_buf_size(buf), buf); 2119 } 2120 } 2121 2122 /* 2123 * Add a reference to this hdr indicating that someone is actively 2124 * referencing that memory. When the refcount transitions from 0 to 1, 2125 * we remove it from the respective arc_state_t list to indicate that 2126 * it is not evictable. 2127 */ 2128 static void 2129 add_reference(arc_buf_hdr_t *hdr, void *tag) 2130 { 2131 ASSERT(HDR_HAS_L1HDR(hdr)); 2132 if (!MUTEX_HELD(HDR_LOCK(hdr))) { 2133 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2134 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2135 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2136 } 2137 2138 arc_state_t *state = hdr->b_l1hdr.b_state; 2139 2140 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2141 (state != arc_anon)) { 2142 /* We don't use the L2-only state list. */ 2143 if (state != arc_l2c_only) { 2144 multilist_remove(state->arcs_list[arc_buf_type(hdr)], 2145 hdr); 2146 arc_evictable_space_decrement(hdr, state); 2147 } 2148 /* remove the prefetch flag if we get a reference */ 2149 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2150 } 2151 } 2152 2153 /* 2154 * Remove a reference from this hdr. When the reference transitions from 2155 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2156 * list making it eligible for eviction. 2157 */ 2158 static int 2159 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2160 { 2161 int cnt; 2162 arc_state_t *state = hdr->b_l1hdr.b_state; 2163 2164 ASSERT(HDR_HAS_L1HDR(hdr)); 2165 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2166 ASSERT(!GHOST_STATE(state)); 2167 2168 /* 2169 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2170 * check to prevent usage of the arc_l2c_only list. 2171 */ 2172 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2173 (state != arc_anon)) { 2174 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr); 2175 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2176 arc_evictable_space_increment(hdr, state); 2177 } 2178 return (cnt); 2179 } 2180 2181 /* 2182 * Move the supplied buffer to the indicated state. The hash lock 2183 * for the buffer must be held by the caller. 2184 */ 2185 static void 2186 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2187 kmutex_t *hash_lock) 2188 { 2189 arc_state_t *old_state; 2190 int64_t refcnt; 2191 uint32_t bufcnt; 2192 boolean_t update_old, update_new; 2193 arc_buf_contents_t buftype = arc_buf_type(hdr); 2194 2195 /* 2196 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2197 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2198 * L1 hdr doesn't always exist when we change state to arc_anon before 2199 * destroying a header, in which case reallocating to add the L1 hdr is 2200 * pointless. 2201 */ 2202 if (HDR_HAS_L1HDR(hdr)) { 2203 old_state = hdr->b_l1hdr.b_state; 2204 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt); 2205 bufcnt = hdr->b_l1hdr.b_bufcnt; 2206 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL); 2207 } else { 2208 old_state = arc_l2c_only; 2209 refcnt = 0; 2210 bufcnt = 0; 2211 update_old = B_FALSE; 2212 } 2213 update_new = update_old; 2214 2215 ASSERT(MUTEX_HELD(hash_lock)); 2216 ASSERT3P(new_state, !=, old_state); 2217 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2218 ASSERT(old_state != arc_anon || bufcnt <= 1); 2219 2220 /* 2221 * If this buffer is evictable, transfer it from the 2222 * old state list to the new state list. 2223 */ 2224 if (refcnt == 0) { 2225 if (old_state != arc_anon && old_state != arc_l2c_only) { 2226 ASSERT(HDR_HAS_L1HDR(hdr)); 2227 multilist_remove(old_state->arcs_list[buftype], hdr); 2228 2229 if (GHOST_STATE(old_state)) { 2230 ASSERT0(bufcnt); 2231 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2232 update_old = B_TRUE; 2233 } 2234 arc_evictable_space_decrement(hdr, old_state); 2235 } 2236 if (new_state != arc_anon && new_state != arc_l2c_only) { 2237 2238 /* 2239 * An L1 header always exists here, since if we're 2240 * moving to some L1-cached state (i.e. not l2c_only or 2241 * anonymous), we realloc the header to add an L1hdr 2242 * beforehand. 2243 */ 2244 ASSERT(HDR_HAS_L1HDR(hdr)); 2245 multilist_insert(new_state->arcs_list[buftype], hdr); 2246 2247 if (GHOST_STATE(new_state)) { 2248 ASSERT0(bufcnt); 2249 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2250 update_new = B_TRUE; 2251 } 2252 arc_evictable_space_increment(hdr, new_state); 2253 } 2254 } 2255 2256 ASSERT(!HDR_EMPTY(hdr)); 2257 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2258 buf_hash_remove(hdr); 2259 2260 /* adjust state sizes (ignore arc_l2c_only) */ 2261 2262 if (update_new && new_state != arc_l2c_only) { 2263 ASSERT(HDR_HAS_L1HDR(hdr)); 2264 if (GHOST_STATE(new_state)) { 2265 ASSERT0(bufcnt); 2266 2267 /* 2268 * When moving a header to a ghost state, we first 2269 * remove all arc buffers. Thus, we'll have a 2270 * bufcnt of zero, and no arc buffer to use for 2271 * the reference. As a result, we use the arc 2272 * header pointer for the reference. 2273 */ 2274 (void) refcount_add_many(&new_state->arcs_size, 2275 HDR_GET_LSIZE(hdr), hdr); 2276 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2277 } else { 2278 uint32_t buffers = 0; 2279 2280 /* 2281 * Each individual buffer holds a unique reference, 2282 * thus we must remove each of these references one 2283 * at a time. 2284 */ 2285 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2286 buf = buf->b_next) { 2287 ASSERT3U(bufcnt, !=, 0); 2288 buffers++; 2289 2290 /* 2291 * When the arc_buf_t is sharing the data 2292 * block with the hdr, the owner of the 2293 * reference belongs to the hdr. Only 2294 * add to the refcount if the arc_buf_t is 2295 * not shared. 2296 */ 2297 if (arc_buf_is_shared(buf)) 2298 continue; 2299 2300 (void) refcount_add_many(&new_state->arcs_size, 2301 arc_buf_size(buf), buf); 2302 } 2303 ASSERT3U(bufcnt, ==, buffers); 2304 2305 if (hdr->b_l1hdr.b_pabd != NULL) { 2306 (void) refcount_add_many(&new_state->arcs_size, 2307 arc_hdr_size(hdr), hdr); 2308 } else { 2309 ASSERT(GHOST_STATE(old_state)); 2310 } 2311 } 2312 } 2313 2314 if (update_old && old_state != arc_l2c_only) { 2315 ASSERT(HDR_HAS_L1HDR(hdr)); 2316 if (GHOST_STATE(old_state)) { 2317 ASSERT0(bufcnt); 2318 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2319 2320 /* 2321 * When moving a header off of a ghost state, 2322 * the header will not contain any arc buffers. 2323 * We use the arc header pointer for the reference 2324 * which is exactly what we did when we put the 2325 * header on the ghost state. 2326 */ 2327 2328 (void) refcount_remove_many(&old_state->arcs_size, 2329 HDR_GET_LSIZE(hdr), hdr); 2330 } else { 2331 uint32_t buffers = 0; 2332 2333 /* 2334 * Each individual buffer holds a unique reference, 2335 * thus we must remove each of these references one 2336 * at a time. 2337 */ 2338 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2339 buf = buf->b_next) { 2340 ASSERT3U(bufcnt, !=, 0); 2341 buffers++; 2342 2343 /* 2344 * When the arc_buf_t is sharing the data 2345 * block with the hdr, the owner of the 2346 * reference belongs to the hdr. Only 2347 * add to the refcount if the arc_buf_t is 2348 * not shared. 2349 */ 2350 if (arc_buf_is_shared(buf)) 2351 continue; 2352 2353 (void) refcount_remove_many( 2354 &old_state->arcs_size, arc_buf_size(buf), 2355 buf); 2356 } 2357 ASSERT3U(bufcnt, ==, buffers); 2358 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2359 (void) refcount_remove_many( 2360 &old_state->arcs_size, arc_hdr_size(hdr), hdr); 2361 } 2362 } 2363 2364 if (HDR_HAS_L1HDR(hdr)) 2365 hdr->b_l1hdr.b_state = new_state; 2366 2367 /* 2368 * L2 headers should never be on the L2 state list since they don't 2369 * have L1 headers allocated. 2370 */ 2371 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2372 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2373 } 2374 2375 void 2376 arc_space_consume(uint64_t space, arc_space_type_t type) 2377 { 2378 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2379 2380 switch (type) { 2381 case ARC_SPACE_DATA: 2382 aggsum_add(&astat_data_size, space); 2383 break; 2384 case ARC_SPACE_META: 2385 aggsum_add(&astat_metadata_size, space); 2386 break; 2387 case ARC_SPACE_OTHER: 2388 aggsum_add(&astat_other_size, space); 2389 break; 2390 case ARC_SPACE_HDRS: 2391 aggsum_add(&astat_hdr_size, space); 2392 break; 2393 case ARC_SPACE_L2HDRS: 2394 aggsum_add(&astat_l2_hdr_size, space); 2395 break; 2396 } 2397 2398 if (type != ARC_SPACE_DATA) 2399 aggsum_add(&arc_meta_used, space); 2400 2401 aggsum_add(&arc_size, space); 2402 } 2403 2404 void 2405 arc_space_return(uint64_t space, arc_space_type_t type) 2406 { 2407 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2408 2409 switch (type) { 2410 case ARC_SPACE_DATA: 2411 aggsum_add(&astat_data_size, -space); 2412 break; 2413 case ARC_SPACE_META: 2414 aggsum_add(&astat_metadata_size, -space); 2415 break; 2416 case ARC_SPACE_OTHER: 2417 aggsum_add(&astat_other_size, -space); 2418 break; 2419 case ARC_SPACE_HDRS: 2420 aggsum_add(&astat_hdr_size, -space); 2421 break; 2422 case ARC_SPACE_L2HDRS: 2423 aggsum_add(&astat_l2_hdr_size, -space); 2424 break; 2425 } 2426 2427 if (type != ARC_SPACE_DATA) { 2428 ASSERT(aggsum_compare(&arc_meta_used, space) >= 0); 2429 /* 2430 * We use the upper bound here rather than the precise value 2431 * because the arc_meta_max value doesn't need to be 2432 * precise. It's only consumed by humans via arcstats. 2433 */ 2434 if (arc_meta_max < aggsum_upper_bound(&arc_meta_used)) 2435 arc_meta_max = aggsum_upper_bound(&arc_meta_used); 2436 aggsum_add(&arc_meta_used, -space); 2437 } 2438 2439 ASSERT(aggsum_compare(&arc_size, space) >= 0); 2440 aggsum_add(&arc_size, -space); 2441 } 2442 2443 /* 2444 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2445 * with the hdr's b_pabd. 2446 */ 2447 static boolean_t 2448 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2449 { 2450 /* 2451 * The criteria for sharing a hdr's data are: 2452 * 1. the hdr's compression matches the buf's compression 2453 * 2. the hdr doesn't need to be byteswapped 2454 * 3. the hdr isn't already being shared 2455 * 4. the buf is either compressed or it is the last buf in the hdr list 2456 * 2457 * Criterion #4 maintains the invariant that shared uncompressed 2458 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2459 * might ask, "if a compressed buf is allocated first, won't that be the 2460 * last thing in the list?", but in that case it's impossible to create 2461 * a shared uncompressed buf anyway (because the hdr must be compressed 2462 * to have the compressed buf). You might also think that #3 is 2463 * sufficient to make this guarantee, however it's possible 2464 * (specifically in the rare L2ARC write race mentioned in 2465 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2466 * is sharable, but wasn't at the time of its allocation. Rather than 2467 * allow a new shared uncompressed buf to be created and then shuffle 2468 * the list around to make it the last element, this simply disallows 2469 * sharing if the new buf isn't the first to be added. 2470 */ 2471 ASSERT3P(buf->b_hdr, ==, hdr); 2472 boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF; 2473 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2474 return (buf_compressed == hdr_compressed && 2475 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2476 !HDR_SHARED_DATA(hdr) && 2477 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2478 } 2479 2480 /* 2481 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2482 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2483 * copy was made successfully, or an error code otherwise. 2484 */ 2485 static int 2486 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed, 2487 boolean_t fill, arc_buf_t **ret) 2488 { 2489 arc_buf_t *buf; 2490 2491 ASSERT(HDR_HAS_L1HDR(hdr)); 2492 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2493 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2494 hdr->b_type == ARC_BUFC_METADATA); 2495 ASSERT3P(ret, !=, NULL); 2496 ASSERT3P(*ret, ==, NULL); 2497 2498 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2499 buf->b_hdr = hdr; 2500 buf->b_data = NULL; 2501 buf->b_next = hdr->b_l1hdr.b_buf; 2502 buf->b_flags = 0; 2503 2504 add_reference(hdr, tag); 2505 2506 /* 2507 * We're about to change the hdr's b_flags. We must either 2508 * hold the hash_lock or be undiscoverable. 2509 */ 2510 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2511 2512 /* 2513 * Only honor requests for compressed bufs if the hdr is actually 2514 * compressed. 2515 */ 2516 if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) 2517 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2518 2519 /* 2520 * If the hdr's data can be shared then we share the data buffer and 2521 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2522 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2523 * buffer to store the buf's data. 2524 * 2525 * There are two additional restrictions here because we're sharing 2526 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2527 * actively involved in an L2ARC write, because if this buf is used by 2528 * an arc_write() then the hdr's data buffer will be released when the 2529 * write completes, even though the L2ARC write might still be using it. 2530 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2531 * need to be ABD-aware. 2532 */ 2533 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) && 2534 abd_is_linear(hdr->b_l1hdr.b_pabd); 2535 2536 /* Set up b_data and sharing */ 2537 if (can_share) { 2538 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2539 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2540 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2541 } else { 2542 buf->b_data = 2543 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2544 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2545 } 2546 VERIFY3P(buf->b_data, !=, NULL); 2547 2548 hdr->b_l1hdr.b_buf = buf; 2549 hdr->b_l1hdr.b_bufcnt += 1; 2550 2551 /* 2552 * If the user wants the data from the hdr, we need to either copy or 2553 * decompress the data. 2554 */ 2555 if (fill) { 2556 return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0)); 2557 } 2558 2559 return (0); 2560 } 2561 2562 static char *arc_onloan_tag = "onloan"; 2563 2564 static inline void 2565 arc_loaned_bytes_update(int64_t delta) 2566 { 2567 atomic_add_64(&arc_loaned_bytes, delta); 2568 2569 /* assert that it did not wrap around */ 2570 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2571 } 2572 2573 /* 2574 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2575 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2576 * buffers must be returned to the arc before they can be used by the DMU or 2577 * freed. 2578 */ 2579 arc_buf_t * 2580 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2581 { 2582 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2583 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2584 2585 arc_loaned_bytes_update(arc_buf_size(buf)); 2586 2587 return (buf); 2588 } 2589 2590 arc_buf_t * 2591 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2592 enum zio_compress compression_type) 2593 { 2594 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2595 psize, lsize, compression_type); 2596 2597 arc_loaned_bytes_update(arc_buf_size(buf)); 2598 2599 return (buf); 2600 } 2601 2602 2603 /* 2604 * Return a loaned arc buffer to the arc. 2605 */ 2606 void 2607 arc_return_buf(arc_buf_t *buf, void *tag) 2608 { 2609 arc_buf_hdr_t *hdr = buf->b_hdr; 2610 2611 ASSERT3P(buf->b_data, !=, NULL); 2612 ASSERT(HDR_HAS_L1HDR(hdr)); 2613 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2614 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2615 2616 arc_loaned_bytes_update(-arc_buf_size(buf)); 2617 } 2618 2619 /* Detach an arc_buf from a dbuf (tag) */ 2620 void 2621 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2622 { 2623 arc_buf_hdr_t *hdr = buf->b_hdr; 2624 2625 ASSERT3P(buf->b_data, !=, NULL); 2626 ASSERT(HDR_HAS_L1HDR(hdr)); 2627 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2628 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2629 2630 arc_loaned_bytes_update(arc_buf_size(buf)); 2631 } 2632 2633 static void 2634 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2635 { 2636 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2637 2638 df->l2df_abd = abd; 2639 df->l2df_size = size; 2640 df->l2df_type = type; 2641 mutex_enter(&l2arc_free_on_write_mtx); 2642 list_insert_head(l2arc_free_on_write, df); 2643 mutex_exit(&l2arc_free_on_write_mtx); 2644 } 2645 2646 static void 2647 arc_hdr_free_on_write(arc_buf_hdr_t *hdr) 2648 { 2649 arc_state_t *state = hdr->b_l1hdr.b_state; 2650 arc_buf_contents_t type = arc_buf_type(hdr); 2651 uint64_t size = arc_hdr_size(hdr); 2652 2653 /* protected by hash lock, if in the hash table */ 2654 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2655 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2656 ASSERT(state != arc_anon && state != arc_l2c_only); 2657 2658 (void) refcount_remove_many(&state->arcs_esize[type], 2659 size, hdr); 2660 } 2661 (void) refcount_remove_many(&state->arcs_size, size, hdr); 2662 if (type == ARC_BUFC_METADATA) { 2663 arc_space_return(size, ARC_SPACE_META); 2664 } else { 2665 ASSERT(type == ARC_BUFC_DATA); 2666 arc_space_return(size, ARC_SPACE_DATA); 2667 } 2668 2669 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2670 } 2671 2672 /* 2673 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2674 * data buffer, we transfer the refcount ownership to the hdr and update 2675 * the appropriate kstats. 2676 */ 2677 static void 2678 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2679 { 2680 arc_state_t *state = hdr->b_l1hdr.b_state; 2681 2682 ASSERT(arc_can_share(hdr, buf)); 2683 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2684 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2685 2686 /* 2687 * Start sharing the data buffer. We transfer the 2688 * refcount ownership to the hdr since it always owns 2689 * the refcount whenever an arc_buf_t is shared. 2690 */ 2691 refcount_transfer_ownership(&state->arcs_size, buf, hdr); 2692 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2693 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 2694 HDR_ISTYPE_METADATA(hdr)); 2695 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2696 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2697 2698 /* 2699 * Since we've transferred ownership to the hdr we need 2700 * to increment its compressed and uncompressed kstats and 2701 * decrement the overhead size. 2702 */ 2703 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2704 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2705 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 2706 } 2707 2708 static void 2709 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2710 { 2711 arc_state_t *state = hdr->b_l1hdr.b_state; 2712 2713 ASSERT(arc_buf_is_shared(buf)); 2714 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2715 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2716 2717 /* 2718 * We are no longer sharing this buffer so we need 2719 * to transfer its ownership to the rightful owner. 2720 */ 2721 refcount_transfer_ownership(&state->arcs_size, hdr, buf); 2722 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2723 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 2724 abd_put(hdr->b_l1hdr.b_pabd); 2725 hdr->b_l1hdr.b_pabd = NULL; 2726 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2727 2728 /* 2729 * Since the buffer is no longer shared between 2730 * the arc buf and the hdr, count it as overhead. 2731 */ 2732 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2733 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2734 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2735 } 2736 2737 /* 2738 * Remove an arc_buf_t from the hdr's buf list and return the last 2739 * arc_buf_t on the list. If no buffers remain on the list then return 2740 * NULL. 2741 */ 2742 static arc_buf_t * 2743 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2744 { 2745 ASSERT(HDR_HAS_L1HDR(hdr)); 2746 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2747 2748 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 2749 arc_buf_t *lastbuf = NULL; 2750 2751 /* 2752 * Remove the buf from the hdr list and locate the last 2753 * remaining buffer on the list. 2754 */ 2755 while (*bufp != NULL) { 2756 if (*bufp == buf) 2757 *bufp = buf->b_next; 2758 2759 /* 2760 * If we've removed a buffer in the middle of 2761 * the list then update the lastbuf and update 2762 * bufp. 2763 */ 2764 if (*bufp != NULL) { 2765 lastbuf = *bufp; 2766 bufp = &(*bufp)->b_next; 2767 } 2768 } 2769 buf->b_next = NULL; 2770 ASSERT3P(lastbuf, !=, buf); 2771 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 2772 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 2773 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 2774 2775 return (lastbuf); 2776 } 2777 2778 /* 2779 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's 2780 * list and free it. 2781 */ 2782 static void 2783 arc_buf_destroy_impl(arc_buf_t *buf) 2784 { 2785 arc_buf_hdr_t *hdr = buf->b_hdr; 2786 2787 /* 2788 * Free up the data associated with the buf but only if we're not 2789 * sharing this with the hdr. If we are sharing it with the hdr, the 2790 * hdr is responsible for doing the free. 2791 */ 2792 if (buf->b_data != NULL) { 2793 /* 2794 * We're about to change the hdr's b_flags. We must either 2795 * hold the hash_lock or be undiscoverable. 2796 */ 2797 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2798 2799 arc_cksum_verify(buf); 2800 arc_buf_unwatch(buf); 2801 2802 if (arc_buf_is_shared(buf)) { 2803 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2804 } else { 2805 uint64_t size = arc_buf_size(buf); 2806 arc_free_data_buf(hdr, buf->b_data, size, buf); 2807 ARCSTAT_INCR(arcstat_overhead_size, -size); 2808 } 2809 buf->b_data = NULL; 2810 2811 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 2812 hdr->b_l1hdr.b_bufcnt -= 1; 2813 } 2814 2815 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 2816 2817 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 2818 /* 2819 * If the current arc_buf_t is sharing its data buffer with the 2820 * hdr, then reassign the hdr's b_pabd to share it with the new 2821 * buffer at the end of the list. The shared buffer is always 2822 * the last one on the hdr's buffer list. 2823 * 2824 * There is an equivalent case for compressed bufs, but since 2825 * they aren't guaranteed to be the last buf in the list and 2826 * that is an exceedingly rare case, we just allow that space be 2827 * wasted temporarily. 2828 */ 2829 if (lastbuf != NULL) { 2830 /* Only one buf can be shared at once */ 2831 VERIFY(!arc_buf_is_shared(lastbuf)); 2832 /* hdr is uncompressed so can't have compressed buf */ 2833 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 2834 2835 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2836 arc_hdr_free_pabd(hdr); 2837 2838 /* 2839 * We must setup a new shared block between the 2840 * last buffer and the hdr. The data would have 2841 * been allocated by the arc buf so we need to transfer 2842 * ownership to the hdr since it's now being shared. 2843 */ 2844 arc_share_buf(hdr, lastbuf); 2845 } 2846 } else if (HDR_SHARED_DATA(hdr)) { 2847 /* 2848 * Uncompressed shared buffers are always at the end 2849 * of the list. Compressed buffers don't have the 2850 * same requirements. This makes it hard to 2851 * simply assert that the lastbuf is shared so 2852 * we rely on the hdr's compression flags to determine 2853 * if we have a compressed, shared buffer. 2854 */ 2855 ASSERT3P(lastbuf, !=, NULL); 2856 ASSERT(arc_buf_is_shared(lastbuf) || 2857 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF); 2858 } 2859 2860 /* 2861 * Free the checksum if we're removing the last uncompressed buf from 2862 * this hdr. 2863 */ 2864 if (!arc_hdr_has_uncompressed_buf(hdr)) { 2865 arc_cksum_free(hdr); 2866 } 2867 2868 /* clean up the buf */ 2869 buf->b_hdr = NULL; 2870 kmem_cache_free(buf_cache, buf); 2871 } 2872 2873 static void 2874 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr) 2875 { 2876 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2877 ASSERT(HDR_HAS_L1HDR(hdr)); 2878 ASSERT(!HDR_SHARED_DATA(hdr)); 2879 2880 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2881 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr); 2882 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 2883 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2884 2885 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2886 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2887 } 2888 2889 static void 2890 arc_hdr_free_pabd(arc_buf_hdr_t *hdr) 2891 { 2892 ASSERT(HDR_HAS_L1HDR(hdr)); 2893 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2894 2895 /* 2896 * If the hdr is currently being written to the l2arc then 2897 * we defer freeing the data by adding it to the l2arc_free_on_write 2898 * list. The l2arc will free the data once it's finished 2899 * writing it to the l2arc device. 2900 */ 2901 if (HDR_L2_WRITING(hdr)) { 2902 arc_hdr_free_on_write(hdr); 2903 ARCSTAT_BUMP(arcstat_l2_free_on_write); 2904 } else { 2905 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 2906 arc_hdr_size(hdr), hdr); 2907 } 2908 hdr->b_l1hdr.b_pabd = NULL; 2909 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 2910 2911 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2912 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2913 } 2914 2915 static arc_buf_hdr_t * 2916 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 2917 enum zio_compress compression_type, arc_buf_contents_t type) 2918 { 2919 arc_buf_hdr_t *hdr; 2920 2921 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 2922 2923 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 2924 ASSERT(HDR_EMPTY(hdr)); 2925 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 2926 ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL); 2927 HDR_SET_PSIZE(hdr, psize); 2928 HDR_SET_LSIZE(hdr, lsize); 2929 hdr->b_spa = spa; 2930 hdr->b_type = type; 2931 hdr->b_flags = 0; 2932 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 2933 arc_hdr_set_compress(hdr, compression_type); 2934 2935 hdr->b_l1hdr.b_state = arc_anon; 2936 hdr->b_l1hdr.b_arc_access = 0; 2937 hdr->b_l1hdr.b_bufcnt = 0; 2938 hdr->b_l1hdr.b_buf = NULL; 2939 2940 /* 2941 * Allocate the hdr's buffer. This will contain either 2942 * the compressed or uncompressed data depending on the block 2943 * it references and compressed arc enablement. 2944 */ 2945 arc_hdr_alloc_pabd(hdr); 2946 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2947 2948 return (hdr); 2949 } 2950 2951 /* 2952 * Transition between the two allocation states for the arc_buf_hdr struct. 2953 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 2954 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 2955 * version is used when a cache buffer is only in the L2ARC in order to reduce 2956 * memory usage. 2957 */ 2958 static arc_buf_hdr_t * 2959 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 2960 { 2961 ASSERT(HDR_HAS_L2HDR(hdr)); 2962 2963 arc_buf_hdr_t *nhdr; 2964 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 2965 2966 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 2967 (old == hdr_l2only_cache && new == hdr_full_cache)); 2968 2969 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 2970 2971 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 2972 buf_hash_remove(hdr); 2973 2974 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 2975 2976 if (new == hdr_full_cache) { 2977 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 2978 /* 2979 * arc_access and arc_change_state need to be aware that a 2980 * header has just come out of L2ARC, so we set its state to 2981 * l2c_only even though it's about to change. 2982 */ 2983 nhdr->b_l1hdr.b_state = arc_l2c_only; 2984 2985 /* Verify previous threads set to NULL before freeing */ 2986 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 2987 } else { 2988 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2989 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2990 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 2991 2992 /* 2993 * If we've reached here, We must have been called from 2994 * arc_evict_hdr(), as such we should have already been 2995 * removed from any ghost list we were previously on 2996 * (which protects us from racing with arc_evict_state), 2997 * thus no locking is needed during this check. 2998 */ 2999 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3000 3001 /* 3002 * A buffer must not be moved into the arc_l2c_only 3003 * state if it's not finished being written out to the 3004 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3005 * might try to be accessed, even though it was removed. 3006 */ 3007 VERIFY(!HDR_L2_WRITING(hdr)); 3008 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3009 3010 #ifdef ZFS_DEBUG 3011 if (hdr->b_l1hdr.b_thawed != NULL) { 3012 kmem_free(hdr->b_l1hdr.b_thawed, 1); 3013 hdr->b_l1hdr.b_thawed = NULL; 3014 } 3015 #endif 3016 3017 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3018 } 3019 /* 3020 * The header has been reallocated so we need to re-insert it into any 3021 * lists it was on. 3022 */ 3023 (void) buf_hash_insert(nhdr, NULL); 3024 3025 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3026 3027 mutex_enter(&dev->l2ad_mtx); 3028 3029 /* 3030 * We must place the realloc'ed header back into the list at 3031 * the same spot. Otherwise, if it's placed earlier in the list, 3032 * l2arc_write_buffers() could find it during the function's 3033 * write phase, and try to write it out to the l2arc. 3034 */ 3035 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3036 list_remove(&dev->l2ad_buflist, hdr); 3037 3038 mutex_exit(&dev->l2ad_mtx); 3039 3040 /* 3041 * Since we're using the pointer address as the tag when 3042 * incrementing and decrementing the l2ad_alloc refcount, we 3043 * must remove the old pointer (that we're about to destroy) and 3044 * add the new pointer to the refcount. Otherwise we'd remove 3045 * the wrong pointer address when calling arc_hdr_destroy() later. 3046 */ 3047 3048 (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 3049 (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr); 3050 3051 buf_discard_identity(hdr); 3052 kmem_cache_free(old, hdr); 3053 3054 return (nhdr); 3055 } 3056 3057 /* 3058 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3059 * The buf is returned thawed since we expect the consumer to modify it. 3060 */ 3061 arc_buf_t * 3062 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3063 { 3064 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3065 ZIO_COMPRESS_OFF, type); 3066 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr))); 3067 3068 arc_buf_t *buf = NULL; 3069 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf)); 3070 arc_buf_thaw(buf); 3071 3072 return (buf); 3073 } 3074 3075 /* 3076 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3077 * for bufs containing metadata. 3078 */ 3079 arc_buf_t * 3080 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3081 enum zio_compress compression_type) 3082 { 3083 ASSERT3U(lsize, >, 0); 3084 ASSERT3U(lsize, >=, psize); 3085 ASSERT(compression_type > ZIO_COMPRESS_OFF); 3086 ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS); 3087 3088 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3089 compression_type, ARC_BUFC_DATA); 3090 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr))); 3091 3092 arc_buf_t *buf = NULL; 3093 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf)); 3094 arc_buf_thaw(buf); 3095 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3096 3097 if (!arc_buf_is_shared(buf)) { 3098 /* 3099 * To ensure that the hdr has the correct data in it if we call 3100 * arc_decompress() on this buf before it's been written to 3101 * disk, it's easiest if we just set up sharing between the 3102 * buf and the hdr. 3103 */ 3104 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd)); 3105 arc_hdr_free_pabd(hdr); 3106 arc_share_buf(hdr, buf); 3107 } 3108 3109 return (buf); 3110 } 3111 3112 static void 3113 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3114 { 3115 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3116 l2arc_dev_t *dev = l2hdr->b_dev; 3117 uint64_t psize = arc_hdr_size(hdr); 3118 3119 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3120 ASSERT(HDR_HAS_L2HDR(hdr)); 3121 3122 list_remove(&dev->l2ad_buflist, hdr); 3123 3124 ARCSTAT_INCR(arcstat_l2_psize, -psize); 3125 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr)); 3126 3127 vdev_space_update(dev->l2ad_vdev, -psize, 0, 0); 3128 3129 (void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr); 3130 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3131 } 3132 3133 static void 3134 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3135 { 3136 if (HDR_HAS_L1HDR(hdr)) { 3137 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3138 hdr->b_l1hdr.b_bufcnt > 0); 3139 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3140 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3141 } 3142 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3143 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3144 3145 if (!HDR_EMPTY(hdr)) 3146 buf_discard_identity(hdr); 3147 3148 if (HDR_HAS_L2HDR(hdr)) { 3149 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3150 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3151 3152 if (!buflist_held) 3153 mutex_enter(&dev->l2ad_mtx); 3154 3155 /* 3156 * Even though we checked this conditional above, we 3157 * need to check this again now that we have the 3158 * l2ad_mtx. This is because we could be racing with 3159 * another thread calling l2arc_evict() which might have 3160 * destroyed this header's L2 portion as we were waiting 3161 * to acquire the l2ad_mtx. If that happens, we don't 3162 * want to re-destroy the header's L2 portion. 3163 */ 3164 if (HDR_HAS_L2HDR(hdr)) 3165 arc_hdr_l2hdr_destroy(hdr); 3166 3167 if (!buflist_held) 3168 mutex_exit(&dev->l2ad_mtx); 3169 } 3170 3171 if (HDR_HAS_L1HDR(hdr)) { 3172 arc_cksum_free(hdr); 3173 3174 while (hdr->b_l1hdr.b_buf != NULL) 3175 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3176 3177 #ifdef ZFS_DEBUG 3178 if (hdr->b_l1hdr.b_thawed != NULL) { 3179 kmem_free(hdr->b_l1hdr.b_thawed, 1); 3180 hdr->b_l1hdr.b_thawed = NULL; 3181 } 3182 #endif 3183 3184 if (hdr->b_l1hdr.b_pabd != NULL) { 3185 arc_hdr_free_pabd(hdr); 3186 } 3187 } 3188 3189 ASSERT3P(hdr->b_hash_next, ==, NULL); 3190 if (HDR_HAS_L1HDR(hdr)) { 3191 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3192 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3193 kmem_cache_free(hdr_full_cache, hdr); 3194 } else { 3195 kmem_cache_free(hdr_l2only_cache, hdr); 3196 } 3197 } 3198 3199 void 3200 arc_buf_destroy(arc_buf_t *buf, void* tag) 3201 { 3202 arc_buf_hdr_t *hdr = buf->b_hdr; 3203 kmutex_t *hash_lock = HDR_LOCK(hdr); 3204 3205 if (hdr->b_l1hdr.b_state == arc_anon) { 3206 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3207 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3208 VERIFY0(remove_reference(hdr, NULL, tag)); 3209 arc_hdr_destroy(hdr); 3210 return; 3211 } 3212 3213 mutex_enter(hash_lock); 3214 ASSERT3P(hdr, ==, buf->b_hdr); 3215 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3216 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3217 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3218 ASSERT3P(buf->b_data, !=, NULL); 3219 3220 (void) remove_reference(hdr, hash_lock, tag); 3221 arc_buf_destroy_impl(buf); 3222 mutex_exit(hash_lock); 3223 } 3224 3225 /* 3226 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3227 * state of the header is dependent on it's state prior to entering this 3228 * function. The following transitions are possible: 3229 * 3230 * - arc_mru -> arc_mru_ghost 3231 * - arc_mfu -> arc_mfu_ghost 3232 * - arc_mru_ghost -> arc_l2c_only 3233 * - arc_mru_ghost -> deleted 3234 * - arc_mfu_ghost -> arc_l2c_only 3235 * - arc_mfu_ghost -> deleted 3236 */ 3237 static int64_t 3238 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3239 { 3240 arc_state_t *evicted_state, *state; 3241 int64_t bytes_evicted = 0; 3242 3243 ASSERT(MUTEX_HELD(hash_lock)); 3244 ASSERT(HDR_HAS_L1HDR(hdr)); 3245 3246 state = hdr->b_l1hdr.b_state; 3247 if (GHOST_STATE(state)) { 3248 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3249 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3250 3251 /* 3252 * l2arc_write_buffers() relies on a header's L1 portion 3253 * (i.e. its b_pabd field) during it's write phase. 3254 * Thus, we cannot push a header onto the arc_l2c_only 3255 * state (removing it's L1 piece) until the header is 3256 * done being written to the l2arc. 3257 */ 3258 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3259 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3260 return (bytes_evicted); 3261 } 3262 3263 ARCSTAT_BUMP(arcstat_deleted); 3264 bytes_evicted += HDR_GET_LSIZE(hdr); 3265 3266 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3267 3268 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3269 if (HDR_HAS_L2HDR(hdr)) { 3270 /* 3271 * This buffer is cached on the 2nd Level ARC; 3272 * don't destroy the header. 3273 */ 3274 arc_change_state(arc_l2c_only, hdr, hash_lock); 3275 /* 3276 * dropping from L1+L2 cached to L2-only, 3277 * realloc to remove the L1 header. 3278 */ 3279 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3280 hdr_l2only_cache); 3281 } else { 3282 arc_change_state(arc_anon, hdr, hash_lock); 3283 arc_hdr_destroy(hdr); 3284 } 3285 return (bytes_evicted); 3286 } 3287 3288 ASSERT(state == arc_mru || state == arc_mfu); 3289 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3290 3291 /* prefetch buffers have a minimum lifespan */ 3292 if (HDR_IO_IN_PROGRESS(hdr) || 3293 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3294 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3295 arc_min_prefetch_lifespan)) { 3296 ARCSTAT_BUMP(arcstat_evict_skip); 3297 return (bytes_evicted); 3298 } 3299 3300 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 3301 while (hdr->b_l1hdr.b_buf) { 3302 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3303 if (!mutex_tryenter(&buf->b_evict_lock)) { 3304 ARCSTAT_BUMP(arcstat_mutex_miss); 3305 break; 3306 } 3307 if (buf->b_data != NULL) 3308 bytes_evicted += HDR_GET_LSIZE(hdr); 3309 mutex_exit(&buf->b_evict_lock); 3310 arc_buf_destroy_impl(buf); 3311 } 3312 3313 if (HDR_HAS_L2HDR(hdr)) { 3314 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3315 } else { 3316 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3317 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3318 HDR_GET_LSIZE(hdr)); 3319 } else { 3320 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3321 HDR_GET_LSIZE(hdr)); 3322 } 3323 } 3324 3325 if (hdr->b_l1hdr.b_bufcnt == 0) { 3326 arc_cksum_free(hdr); 3327 3328 bytes_evicted += arc_hdr_size(hdr); 3329 3330 /* 3331 * If this hdr is being evicted and has a compressed 3332 * buffer then we discard it here before we change states. 3333 * This ensures that the accounting is updated correctly 3334 * in arc_free_data_impl(). 3335 */ 3336 arc_hdr_free_pabd(hdr); 3337 3338 arc_change_state(evicted_state, hdr, hash_lock); 3339 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3340 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 3341 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3342 } 3343 3344 return (bytes_evicted); 3345 } 3346 3347 static uint64_t 3348 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 3349 uint64_t spa, int64_t bytes) 3350 { 3351 multilist_sublist_t *mls; 3352 uint64_t bytes_evicted = 0; 3353 arc_buf_hdr_t *hdr; 3354 kmutex_t *hash_lock; 3355 int evict_count = 0; 3356 3357 ASSERT3P(marker, !=, NULL); 3358 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3359 3360 mls = multilist_sublist_lock(ml, idx); 3361 3362 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 3363 hdr = multilist_sublist_prev(mls, marker)) { 3364 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 3365 (evict_count >= zfs_arc_evict_batch_limit)) 3366 break; 3367 3368 /* 3369 * To keep our iteration location, move the marker 3370 * forward. Since we're not holding hdr's hash lock, we 3371 * must be very careful and not remove 'hdr' from the 3372 * sublist. Otherwise, other consumers might mistake the 3373 * 'hdr' as not being on a sublist when they call the 3374 * multilist_link_active() function (they all rely on 3375 * the hash lock protecting concurrent insertions and 3376 * removals). multilist_sublist_move_forward() was 3377 * specifically implemented to ensure this is the case 3378 * (only 'marker' will be removed and re-inserted). 3379 */ 3380 multilist_sublist_move_forward(mls, marker); 3381 3382 /* 3383 * The only case where the b_spa field should ever be 3384 * zero, is the marker headers inserted by 3385 * arc_evict_state(). It's possible for multiple threads 3386 * to be calling arc_evict_state() concurrently (e.g. 3387 * dsl_pool_close() and zio_inject_fault()), so we must 3388 * skip any markers we see from these other threads. 3389 */ 3390 if (hdr->b_spa == 0) 3391 continue; 3392 3393 /* we're only interested in evicting buffers of a certain spa */ 3394 if (spa != 0 && hdr->b_spa != spa) { 3395 ARCSTAT_BUMP(arcstat_evict_skip); 3396 continue; 3397 } 3398 3399 hash_lock = HDR_LOCK(hdr); 3400 3401 /* 3402 * We aren't calling this function from any code path 3403 * that would already be holding a hash lock, so we're 3404 * asserting on this assumption to be defensive in case 3405 * this ever changes. Without this check, it would be 3406 * possible to incorrectly increment arcstat_mutex_miss 3407 * below (e.g. if the code changed such that we called 3408 * this function with a hash lock held). 3409 */ 3410 ASSERT(!MUTEX_HELD(hash_lock)); 3411 3412 if (mutex_tryenter(hash_lock)) { 3413 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 3414 mutex_exit(hash_lock); 3415 3416 bytes_evicted += evicted; 3417 3418 /* 3419 * If evicted is zero, arc_evict_hdr() must have 3420 * decided to skip this header, don't increment 3421 * evict_count in this case. 3422 */ 3423 if (evicted != 0) 3424 evict_count++; 3425 3426 /* 3427 * If arc_size isn't overflowing, signal any 3428 * threads that might happen to be waiting. 3429 * 3430 * For each header evicted, we wake up a single 3431 * thread. If we used cv_broadcast, we could 3432 * wake up "too many" threads causing arc_size 3433 * to significantly overflow arc_c; since 3434 * arc_get_data_impl() doesn't check for overflow 3435 * when it's woken up (it doesn't because it's 3436 * possible for the ARC to be overflowing while 3437 * full of un-evictable buffers, and the 3438 * function should proceed in this case). 3439 * 3440 * If threads are left sleeping, due to not 3441 * using cv_broadcast here, they will be woken 3442 * up via cv_broadcast in arc_adjust_cb() just 3443 * before arc_adjust_zthr sleeps. 3444 */ 3445 mutex_enter(&arc_adjust_lock); 3446 if (!arc_is_overflowing()) 3447 cv_signal(&arc_adjust_waiters_cv); 3448 mutex_exit(&arc_adjust_lock); 3449 } else { 3450 ARCSTAT_BUMP(arcstat_mutex_miss); 3451 } 3452 } 3453 3454 multilist_sublist_unlock(mls); 3455 3456 return (bytes_evicted); 3457 } 3458 3459 /* 3460 * Evict buffers from the given arc state, until we've removed the 3461 * specified number of bytes. Move the removed buffers to the 3462 * appropriate evict state. 3463 * 3464 * This function makes a "best effort". It skips over any buffers 3465 * it can't get a hash_lock on, and so, may not catch all candidates. 3466 * It may also return without evicting as much space as requested. 3467 * 3468 * If bytes is specified using the special value ARC_EVICT_ALL, this 3469 * will evict all available (i.e. unlocked and evictable) buffers from 3470 * the given arc state; which is used by arc_flush(). 3471 */ 3472 static uint64_t 3473 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 3474 arc_buf_contents_t type) 3475 { 3476 uint64_t total_evicted = 0; 3477 multilist_t *ml = state->arcs_list[type]; 3478 int num_sublists; 3479 arc_buf_hdr_t **markers; 3480 3481 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3482 3483 num_sublists = multilist_get_num_sublists(ml); 3484 3485 /* 3486 * If we've tried to evict from each sublist, made some 3487 * progress, but still have not hit the target number of bytes 3488 * to evict, we want to keep trying. The markers allow us to 3489 * pick up where we left off for each individual sublist, rather 3490 * than starting from the tail each time. 3491 */ 3492 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 3493 for (int i = 0; i < num_sublists; i++) { 3494 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 3495 3496 /* 3497 * A b_spa of 0 is used to indicate that this header is 3498 * a marker. This fact is used in arc_adjust_type() and 3499 * arc_evict_state_impl(). 3500 */ 3501 markers[i]->b_spa = 0; 3502 3503 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 3504 multilist_sublist_insert_tail(mls, markers[i]); 3505 multilist_sublist_unlock(mls); 3506 } 3507 3508 /* 3509 * While we haven't hit our target number of bytes to evict, or 3510 * we're evicting all available buffers. 3511 */ 3512 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 3513 /* 3514 * Start eviction using a randomly selected sublist, 3515 * this is to try and evenly balance eviction across all 3516 * sublists. Always starting at the same sublist 3517 * (e.g. index 0) would cause evictions to favor certain 3518 * sublists over others. 3519 */ 3520 int sublist_idx = multilist_get_random_index(ml); 3521 uint64_t scan_evicted = 0; 3522 3523 for (int i = 0; i < num_sublists; i++) { 3524 uint64_t bytes_remaining; 3525 uint64_t bytes_evicted; 3526 3527 if (bytes == ARC_EVICT_ALL) 3528 bytes_remaining = ARC_EVICT_ALL; 3529 else if (total_evicted < bytes) 3530 bytes_remaining = bytes - total_evicted; 3531 else 3532 break; 3533 3534 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 3535 markers[sublist_idx], spa, bytes_remaining); 3536 3537 scan_evicted += bytes_evicted; 3538 total_evicted += bytes_evicted; 3539 3540 /* we've reached the end, wrap to the beginning */ 3541 if (++sublist_idx >= num_sublists) 3542 sublist_idx = 0; 3543 } 3544 3545 /* 3546 * If we didn't evict anything during this scan, we have 3547 * no reason to believe we'll evict more during another 3548 * scan, so break the loop. 3549 */ 3550 if (scan_evicted == 0) { 3551 /* This isn't possible, let's make that obvious */ 3552 ASSERT3S(bytes, !=, 0); 3553 3554 /* 3555 * When bytes is ARC_EVICT_ALL, the only way to 3556 * break the loop is when scan_evicted is zero. 3557 * In that case, we actually have evicted enough, 3558 * so we don't want to increment the kstat. 3559 */ 3560 if (bytes != ARC_EVICT_ALL) { 3561 ASSERT3S(total_evicted, <, bytes); 3562 ARCSTAT_BUMP(arcstat_evict_not_enough); 3563 } 3564 3565 break; 3566 } 3567 } 3568 3569 for (int i = 0; i < num_sublists; i++) { 3570 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 3571 multilist_sublist_remove(mls, markers[i]); 3572 multilist_sublist_unlock(mls); 3573 3574 kmem_cache_free(hdr_full_cache, markers[i]); 3575 } 3576 kmem_free(markers, sizeof (*markers) * num_sublists); 3577 3578 return (total_evicted); 3579 } 3580 3581 /* 3582 * Flush all "evictable" data of the given type from the arc state 3583 * specified. This will not evict any "active" buffers (i.e. referenced). 3584 * 3585 * When 'retry' is set to B_FALSE, the function will make a single pass 3586 * over the state and evict any buffers that it can. Since it doesn't 3587 * continually retry the eviction, it might end up leaving some buffers 3588 * in the ARC due to lock misses. 3589 * 3590 * When 'retry' is set to B_TRUE, the function will continually retry the 3591 * eviction until *all* evictable buffers have been removed from the 3592 * state. As a result, if concurrent insertions into the state are 3593 * allowed (e.g. if the ARC isn't shutting down), this function might 3594 * wind up in an infinite loop, continually trying to evict buffers. 3595 */ 3596 static uint64_t 3597 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 3598 boolean_t retry) 3599 { 3600 uint64_t evicted = 0; 3601 3602 while (refcount_count(&state->arcs_esize[type]) != 0) { 3603 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 3604 3605 if (!retry) 3606 break; 3607 } 3608 3609 return (evicted); 3610 } 3611 3612 /* 3613 * Evict the specified number of bytes from the state specified, 3614 * restricting eviction to the spa and type given. This function 3615 * prevents us from trying to evict more from a state's list than 3616 * is "evictable", and to skip evicting altogether when passed a 3617 * negative value for "bytes". In contrast, arc_evict_state() will 3618 * evict everything it can, when passed a negative value for "bytes". 3619 */ 3620 static uint64_t 3621 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 3622 arc_buf_contents_t type) 3623 { 3624 int64_t delta; 3625 3626 if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) { 3627 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes); 3628 return (arc_evict_state(state, spa, delta, type)); 3629 } 3630 3631 return (0); 3632 } 3633 3634 /* 3635 * Evict metadata buffers from the cache, such that arc_meta_used is 3636 * capped by the arc_meta_limit tunable. 3637 */ 3638 static uint64_t 3639 arc_adjust_meta(uint64_t meta_used) 3640 { 3641 uint64_t total_evicted = 0; 3642 int64_t target; 3643 3644 /* 3645 * If we're over the meta limit, we want to evict enough 3646 * metadata to get back under the meta limit. We don't want to 3647 * evict so much that we drop the MRU below arc_p, though. If 3648 * we're over the meta limit more than we're over arc_p, we 3649 * evict some from the MRU here, and some from the MFU below. 3650 */ 3651 target = MIN((int64_t)(meta_used - arc_meta_limit), 3652 (int64_t)(refcount_count(&arc_anon->arcs_size) + 3653 refcount_count(&arc_mru->arcs_size) - arc_p)); 3654 3655 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3656 3657 /* 3658 * Similar to the above, we want to evict enough bytes to get us 3659 * below the meta limit, but not so much as to drop us below the 3660 * space allotted to the MFU (which is defined as arc_c - arc_p). 3661 */ 3662 target = MIN((int64_t)(meta_used - arc_meta_limit), 3663 (int64_t)(refcount_count(&arc_mfu->arcs_size) - 3664 (arc_c - arc_p))); 3665 3666 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3667 3668 return (total_evicted); 3669 } 3670 3671 /* 3672 * Return the type of the oldest buffer in the given arc state 3673 * 3674 * This function will select a random sublist of type ARC_BUFC_DATA and 3675 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 3676 * is compared, and the type which contains the "older" buffer will be 3677 * returned. 3678 */ 3679 static arc_buf_contents_t 3680 arc_adjust_type(arc_state_t *state) 3681 { 3682 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA]; 3683 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA]; 3684 int data_idx = multilist_get_random_index(data_ml); 3685 int meta_idx = multilist_get_random_index(meta_ml); 3686 multilist_sublist_t *data_mls; 3687 multilist_sublist_t *meta_mls; 3688 arc_buf_contents_t type; 3689 arc_buf_hdr_t *data_hdr; 3690 arc_buf_hdr_t *meta_hdr; 3691 3692 /* 3693 * We keep the sublist lock until we're finished, to prevent 3694 * the headers from being destroyed via arc_evict_state(). 3695 */ 3696 data_mls = multilist_sublist_lock(data_ml, data_idx); 3697 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 3698 3699 /* 3700 * These two loops are to ensure we skip any markers that 3701 * might be at the tail of the lists due to arc_evict_state(). 3702 */ 3703 3704 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 3705 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 3706 if (data_hdr->b_spa != 0) 3707 break; 3708 } 3709 3710 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 3711 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 3712 if (meta_hdr->b_spa != 0) 3713 break; 3714 } 3715 3716 if (data_hdr == NULL && meta_hdr == NULL) { 3717 type = ARC_BUFC_DATA; 3718 } else if (data_hdr == NULL) { 3719 ASSERT3P(meta_hdr, !=, NULL); 3720 type = ARC_BUFC_METADATA; 3721 } else if (meta_hdr == NULL) { 3722 ASSERT3P(data_hdr, !=, NULL); 3723 type = ARC_BUFC_DATA; 3724 } else { 3725 ASSERT3P(data_hdr, !=, NULL); 3726 ASSERT3P(meta_hdr, !=, NULL); 3727 3728 /* The headers can't be on the sublist without an L1 header */ 3729 ASSERT(HDR_HAS_L1HDR(data_hdr)); 3730 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 3731 3732 if (data_hdr->b_l1hdr.b_arc_access < 3733 meta_hdr->b_l1hdr.b_arc_access) { 3734 type = ARC_BUFC_DATA; 3735 } else { 3736 type = ARC_BUFC_METADATA; 3737 } 3738 } 3739 3740 multilist_sublist_unlock(meta_mls); 3741 multilist_sublist_unlock(data_mls); 3742 3743 return (type); 3744 } 3745 3746 /* 3747 * Evict buffers from the cache, such that arc_size is capped by arc_c. 3748 */ 3749 static uint64_t 3750 arc_adjust(void) 3751 { 3752 uint64_t total_evicted = 0; 3753 uint64_t bytes; 3754 int64_t target; 3755 uint64_t asize = aggsum_value(&arc_size); 3756 uint64_t ameta = aggsum_value(&arc_meta_used); 3757 3758 /* 3759 * If we're over arc_meta_limit, we want to correct that before 3760 * potentially evicting data buffers below. 3761 */ 3762 total_evicted += arc_adjust_meta(ameta); 3763 3764 /* 3765 * Adjust MRU size 3766 * 3767 * If we're over the target cache size, we want to evict enough 3768 * from the list to get back to our target size. We don't want 3769 * to evict too much from the MRU, such that it drops below 3770 * arc_p. So, if we're over our target cache size more than 3771 * the MRU is over arc_p, we'll evict enough to get back to 3772 * arc_p here, and then evict more from the MFU below. 3773 */ 3774 target = MIN((int64_t)(asize - arc_c), 3775 (int64_t)(refcount_count(&arc_anon->arcs_size) + 3776 refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 3777 3778 /* 3779 * If we're below arc_meta_min, always prefer to evict data. 3780 * Otherwise, try to satisfy the requested number of bytes to 3781 * evict from the type which contains older buffers; in an 3782 * effort to keep newer buffers in the cache regardless of their 3783 * type. If we cannot satisfy the number of bytes from this 3784 * type, spill over into the next type. 3785 */ 3786 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA && 3787 ameta > arc_meta_min) { 3788 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3789 total_evicted += bytes; 3790 3791 /* 3792 * If we couldn't evict our target number of bytes from 3793 * metadata, we try to get the rest from data. 3794 */ 3795 target -= bytes; 3796 3797 total_evicted += 3798 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 3799 } else { 3800 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 3801 total_evicted += bytes; 3802 3803 /* 3804 * If we couldn't evict our target number of bytes from 3805 * data, we try to get the rest from metadata. 3806 */ 3807 target -= bytes; 3808 3809 total_evicted += 3810 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3811 } 3812 3813 /* 3814 * Adjust MFU size 3815 * 3816 * Now that we've tried to evict enough from the MRU to get its 3817 * size back to arc_p, if we're still above the target cache 3818 * size, we evict the rest from the MFU. 3819 */ 3820 target = asize - arc_c; 3821 3822 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA && 3823 ameta > arc_meta_min) { 3824 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3825 total_evicted += bytes; 3826 3827 /* 3828 * If we couldn't evict our target number of bytes from 3829 * metadata, we try to get the rest from data. 3830 */ 3831 target -= bytes; 3832 3833 total_evicted += 3834 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 3835 } else { 3836 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 3837 total_evicted += bytes; 3838 3839 /* 3840 * If we couldn't evict our target number of bytes from 3841 * data, we try to get the rest from data. 3842 */ 3843 target -= bytes; 3844 3845 total_evicted += 3846 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3847 } 3848 3849 /* 3850 * Adjust ghost lists 3851 * 3852 * In addition to the above, the ARC also defines target values 3853 * for the ghost lists. The sum of the mru list and mru ghost 3854 * list should never exceed the target size of the cache, and 3855 * the sum of the mru list, mfu list, mru ghost list, and mfu 3856 * ghost list should never exceed twice the target size of the 3857 * cache. The following logic enforces these limits on the ghost 3858 * caches, and evicts from them as needed. 3859 */ 3860 target = refcount_count(&arc_mru->arcs_size) + 3861 refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 3862 3863 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 3864 total_evicted += bytes; 3865 3866 target -= bytes; 3867 3868 total_evicted += 3869 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 3870 3871 /* 3872 * We assume the sum of the mru list and mfu list is less than 3873 * or equal to arc_c (we enforced this above), which means we 3874 * can use the simpler of the two equations below: 3875 * 3876 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 3877 * mru ghost + mfu ghost <= arc_c 3878 */ 3879 target = refcount_count(&arc_mru_ghost->arcs_size) + 3880 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 3881 3882 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 3883 total_evicted += bytes; 3884 3885 target -= bytes; 3886 3887 total_evicted += 3888 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 3889 3890 return (total_evicted); 3891 } 3892 3893 void 3894 arc_flush(spa_t *spa, boolean_t retry) 3895 { 3896 uint64_t guid = 0; 3897 3898 /* 3899 * If retry is B_TRUE, a spa must not be specified since we have 3900 * no good way to determine if all of a spa's buffers have been 3901 * evicted from an arc state. 3902 */ 3903 ASSERT(!retry || spa == 0); 3904 3905 if (spa != NULL) 3906 guid = spa_load_guid(spa); 3907 3908 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 3909 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 3910 3911 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 3912 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 3913 3914 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 3915 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 3916 3917 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 3918 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 3919 } 3920 3921 static void 3922 arc_reduce_target_size(int64_t to_free) 3923 { 3924 uint64_t asize = aggsum_value(&arc_size); 3925 if (arc_c > arc_c_min) { 3926 3927 if (arc_c > arc_c_min + to_free) 3928 atomic_add_64(&arc_c, -to_free); 3929 else 3930 arc_c = arc_c_min; 3931 3932 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 3933 if (asize < arc_c) 3934 arc_c = MAX(asize, arc_c_min); 3935 if (arc_p > arc_c) 3936 arc_p = (arc_c >> 1); 3937 ASSERT(arc_c >= arc_c_min); 3938 ASSERT((int64_t)arc_p >= 0); 3939 } 3940 3941 if (asize > arc_c) { 3942 /* See comment in arc_adjust_cb_check() on why lock+flag */ 3943 mutex_enter(&arc_adjust_lock); 3944 arc_adjust_needed = B_TRUE; 3945 mutex_exit(&arc_adjust_lock); 3946 zthr_wakeup(arc_adjust_zthr); 3947 } 3948 } 3949 3950 typedef enum free_memory_reason_t { 3951 FMR_UNKNOWN, 3952 FMR_NEEDFREE, 3953 FMR_LOTSFREE, 3954 FMR_SWAPFS_MINFREE, 3955 FMR_PAGES_PP_MAXIMUM, 3956 FMR_HEAP_ARENA, 3957 FMR_ZIO_ARENA, 3958 } free_memory_reason_t; 3959 3960 int64_t last_free_memory; 3961 free_memory_reason_t last_free_reason; 3962 3963 /* 3964 * Additional reserve of pages for pp_reserve. 3965 */ 3966 int64_t arc_pages_pp_reserve = 64; 3967 3968 /* 3969 * Additional reserve of pages for swapfs. 3970 */ 3971 int64_t arc_swapfs_reserve = 64; 3972 3973 /* 3974 * Return the amount of memory that can be consumed before reclaim will be 3975 * needed. Positive if there is sufficient free memory, negative indicates 3976 * the amount of memory that needs to be freed up. 3977 */ 3978 static int64_t 3979 arc_available_memory(void) 3980 { 3981 int64_t lowest = INT64_MAX; 3982 int64_t n; 3983 free_memory_reason_t r = FMR_UNKNOWN; 3984 3985 #ifdef _KERNEL 3986 if (needfree > 0) { 3987 n = PAGESIZE * (-needfree); 3988 if (n < lowest) { 3989 lowest = n; 3990 r = FMR_NEEDFREE; 3991 } 3992 } 3993 3994 /* 3995 * check that we're out of range of the pageout scanner. It starts to 3996 * schedule paging if freemem is less than lotsfree and needfree. 3997 * lotsfree is the high-water mark for pageout, and needfree is the 3998 * number of needed free pages. We add extra pages here to make sure 3999 * the scanner doesn't start up while we're freeing memory. 4000 */ 4001 n = PAGESIZE * (freemem - lotsfree - needfree - desfree); 4002 if (n < lowest) { 4003 lowest = n; 4004 r = FMR_LOTSFREE; 4005 } 4006 4007 /* 4008 * check to make sure that swapfs has enough space so that anon 4009 * reservations can still succeed. anon_resvmem() checks that the 4010 * availrmem is greater than swapfs_minfree, and the number of reserved 4011 * swap pages. We also add a bit of extra here just to prevent 4012 * circumstances from getting really dire. 4013 */ 4014 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve - 4015 desfree - arc_swapfs_reserve); 4016 if (n < lowest) { 4017 lowest = n; 4018 r = FMR_SWAPFS_MINFREE; 4019 } 4020 4021 4022 /* 4023 * Check that we have enough availrmem that memory locking (e.g., via 4024 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 4025 * stores the number of pages that cannot be locked; when availrmem 4026 * drops below pages_pp_maximum, page locking mechanisms such as 4027 * page_pp_lock() will fail.) 4028 */ 4029 n = PAGESIZE * (availrmem - pages_pp_maximum - 4030 arc_pages_pp_reserve); 4031 if (n < lowest) { 4032 lowest = n; 4033 r = FMR_PAGES_PP_MAXIMUM; 4034 } 4035 4036 #if defined(__i386) 4037 /* 4038 * If we're on an i386 platform, it's possible that we'll exhaust the 4039 * kernel heap space before we ever run out of available physical 4040 * memory. Most checks of the size of the heap_area compare against 4041 * tune.t_minarmem, which is the minimum available real memory that we 4042 * can have in the system. However, this is generally fixed at 25 pages 4043 * which is so low that it's useless. In this comparison, we seek to 4044 * calculate the total heap-size, and reclaim if more than 3/4ths of the 4045 * heap is allocated. (Or, in the calculation, if less than 1/4th is 4046 * free) 4047 */ 4048 n = (int64_t)vmem_size(heap_arena, VMEM_FREE) - 4049 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2); 4050 if (n < lowest) { 4051 lowest = n; 4052 r = FMR_HEAP_ARENA; 4053 } 4054 #endif 4055 4056 /* 4057 * If zio data pages are being allocated out of a separate heap segment, 4058 * then enforce that the size of available vmem for this arena remains 4059 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free. 4060 * 4061 * Note that reducing the arc_zio_arena_free_shift keeps more virtual 4062 * memory (in the zio_arena) free, which can avoid memory 4063 * fragmentation issues. 4064 */ 4065 if (zio_arena != NULL) { 4066 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) - 4067 (vmem_size(zio_arena, VMEM_ALLOC) >> 4068 arc_zio_arena_free_shift); 4069 if (n < lowest) { 4070 lowest = n; 4071 r = FMR_ZIO_ARENA; 4072 } 4073 } 4074 #else 4075 /* Every 100 calls, free a small amount */ 4076 if (spa_get_random(100) == 0) 4077 lowest = -1024; 4078 #endif 4079 4080 last_free_memory = lowest; 4081 last_free_reason = r; 4082 4083 return (lowest); 4084 } 4085 4086 4087 /* 4088 * Determine if the system is under memory pressure and is asking 4089 * to reclaim memory. A return value of B_TRUE indicates that the system 4090 * is under memory pressure and that the arc should adjust accordingly. 4091 */ 4092 static boolean_t 4093 arc_reclaim_needed(void) 4094 { 4095 return (arc_available_memory() < 0); 4096 } 4097 4098 static void 4099 arc_kmem_reap_soon(void) 4100 { 4101 size_t i; 4102 kmem_cache_t *prev_cache = NULL; 4103 kmem_cache_t *prev_data_cache = NULL; 4104 extern kmem_cache_t *zio_buf_cache[]; 4105 extern kmem_cache_t *zio_data_buf_cache[]; 4106 extern kmem_cache_t *range_seg_cache; 4107 extern kmem_cache_t *abd_chunk_cache; 4108 4109 #ifdef _KERNEL 4110 if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) { 4111 /* 4112 * We are exceeding our meta-data cache limit. 4113 * Purge some DNLC entries to release holds on meta-data. 4114 */ 4115 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 4116 } 4117 #if defined(__i386) 4118 /* 4119 * Reclaim unused memory from all kmem caches. 4120 */ 4121 kmem_reap(); 4122 #endif 4123 #endif 4124 4125 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4126 if (zio_buf_cache[i] != prev_cache) { 4127 prev_cache = zio_buf_cache[i]; 4128 kmem_cache_reap_soon(zio_buf_cache[i]); 4129 } 4130 if (zio_data_buf_cache[i] != prev_data_cache) { 4131 prev_data_cache = zio_data_buf_cache[i]; 4132 kmem_cache_reap_soon(zio_data_buf_cache[i]); 4133 } 4134 } 4135 kmem_cache_reap_soon(abd_chunk_cache); 4136 kmem_cache_reap_soon(buf_cache); 4137 kmem_cache_reap_soon(hdr_full_cache); 4138 kmem_cache_reap_soon(hdr_l2only_cache); 4139 kmem_cache_reap_soon(range_seg_cache); 4140 4141 if (zio_arena != NULL) { 4142 /* 4143 * Ask the vmem arena to reclaim unused memory from its 4144 * quantum caches. 4145 */ 4146 vmem_qcache_reap(zio_arena); 4147 } 4148 } 4149 4150 /* ARGSUSED */ 4151 static boolean_t 4152 arc_adjust_cb_check(void *arg, zthr_t *zthr) 4153 { 4154 /* 4155 * This is necessary in order for the mdb ::arc dcmd to 4156 * show up to date information. Since the ::arc command 4157 * does not call the kstat's update function, without 4158 * this call, the command may show stale stats for the 4159 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4160 * with this change, the data might be up to 1 second 4161 * out of date(the arc_adjust_zthr has a maximum sleep 4162 * time of 1 second); but that should suffice. The 4163 * arc_state_t structures can be queried directly if more 4164 * accurate information is needed. 4165 */ 4166 if (arc_ksp != NULL) 4167 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4168 4169 /* 4170 * We have to rely on arc_get_data_impl() to tell us when to adjust, 4171 * rather than checking if we are overflowing here, so that we are 4172 * sure to not leave arc_get_data_impl() waiting on 4173 * arc_adjust_waiters_cv. If we have become "not overflowing" since 4174 * arc_get_data_impl() checked, we need to wake it up. We could 4175 * broadcast the CV here, but arc_get_data_impl() may have not yet 4176 * gone to sleep. We would need to use a mutex to ensure that this 4177 * function doesn't broadcast until arc_get_data_impl() has gone to 4178 * sleep (e.g. the arc_adjust_lock). However, the lock ordering of 4179 * such a lock would necessarily be incorrect with respect to the 4180 * zthr_lock, which is held before this function is called, and is 4181 * held by arc_get_data_impl() when it calls zthr_wakeup(). 4182 */ 4183 return (arc_adjust_needed); 4184 } 4185 4186 /* 4187 * Keep arc_size under arc_c by running arc_adjust which evicts data 4188 * from the ARC. 4189 */ 4190 /* ARGSUSED */ 4191 static int 4192 arc_adjust_cb(void *arg, zthr_t *zthr) 4193 { 4194 uint64_t evicted = 0; 4195 4196 /* Evict from cache */ 4197 evicted = arc_adjust(); 4198 4199 /* 4200 * If evicted is zero, we couldn't evict anything 4201 * via arc_adjust(). This could be due to hash lock 4202 * collisions, but more likely due to the majority of 4203 * arc buffers being unevictable. Therefore, even if 4204 * arc_size is above arc_c, another pass is unlikely to 4205 * be helpful and could potentially cause us to enter an 4206 * infinite loop. Additionally, zthr_iscancelled() is 4207 * checked here so that if the arc is shutting down, the 4208 * broadcast will wake any remaining arc adjust waiters. 4209 */ 4210 mutex_enter(&arc_adjust_lock); 4211 arc_adjust_needed = !zthr_iscancelled(arc_adjust_zthr) && 4212 evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0; 4213 if (!arc_adjust_needed) { 4214 /* 4215 * We're either no longer overflowing, or we 4216 * can't evict anything more, so we should wake 4217 * up any waiters. 4218 */ 4219 cv_broadcast(&arc_adjust_waiters_cv); 4220 } 4221 mutex_exit(&arc_adjust_lock); 4222 4223 return (0); 4224 } 4225 4226 /* ARGSUSED */ 4227 static boolean_t 4228 arc_reap_cb_check(void *arg, zthr_t *zthr) 4229 { 4230 int64_t free_memory = arc_available_memory(); 4231 4232 /* 4233 * If a kmem reap is already active, don't schedule more. We must 4234 * check for this because kmem_cache_reap_soon() won't actually 4235 * block on the cache being reaped (this is to prevent callers from 4236 * becoming implicitly blocked by a system-wide kmem reap -- which, 4237 * on a system with many, many full magazines, can take minutes). 4238 */ 4239 if (!kmem_cache_reap_active() && 4240 free_memory < 0) { 4241 arc_no_grow = B_TRUE; 4242 arc_warm = B_TRUE; 4243 /* 4244 * Wait at least zfs_grow_retry (default 60) seconds 4245 * before considering growing. 4246 */ 4247 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4248 return (B_TRUE); 4249 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4250 arc_no_grow = B_TRUE; 4251 } else if (gethrtime() >= arc_growtime) { 4252 arc_no_grow = B_FALSE; 4253 } 4254 4255 return (B_FALSE); 4256 } 4257 4258 /* 4259 * Keep enough free memory in the system by reaping the ARC's kmem 4260 * caches. To cause more slabs to be reapable, we may reduce the 4261 * target size of the cache (arc_c), causing the arc_adjust_cb() 4262 * to free more buffers. 4263 */ 4264 /* ARGSUSED */ 4265 static int 4266 arc_reap_cb(void *arg, zthr_t *zthr) 4267 { 4268 int64_t free_memory; 4269 4270 /* 4271 * Kick off asynchronous kmem_reap()'s of all our caches. 4272 */ 4273 arc_kmem_reap_soon(); 4274 4275 /* 4276 * Wait at least arc_kmem_cache_reap_retry_ms between 4277 * arc_kmem_reap_soon() calls. Without this check it is possible to 4278 * end up in a situation where we spend lots of time reaping 4279 * caches, while we're near arc_c_min. Waiting here also gives the 4280 * subsequent free memory check a chance of finding that the 4281 * asynchronous reap has already freed enough memory, and we don't 4282 * need to call arc_reduce_target_size(). 4283 */ 4284 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 4285 4286 /* 4287 * Reduce the target size as needed to maintain the amount of free 4288 * memory in the system at a fraction of the arc_size (1/128th by 4289 * default). If oversubscribed (free_memory < 0) then reduce the 4290 * target arc_size by the deficit amount plus the fractional 4291 * amount. If free memory is positive but less then the fractional 4292 * amount, reduce by what is needed to hit the fractional amount. 4293 */ 4294 free_memory = arc_available_memory(); 4295 4296 int64_t to_free = 4297 (arc_c >> arc_shrink_shift) - free_memory; 4298 if (to_free > 0) { 4299 #ifdef _KERNEL 4300 to_free = MAX(to_free, ptob(needfree)); 4301 #endif 4302 arc_reduce_target_size(to_free); 4303 } 4304 4305 return (0); 4306 } 4307 4308 /* 4309 * Adapt arc info given the number of bytes we are trying to add and 4310 * the state that we are comming from. This function is only called 4311 * when we are adding new content to the cache. 4312 */ 4313 static void 4314 arc_adapt(int bytes, arc_state_t *state) 4315 { 4316 int mult; 4317 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 4318 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size); 4319 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size); 4320 4321 if (state == arc_l2c_only) 4322 return; 4323 4324 ASSERT(bytes > 0); 4325 /* 4326 * Adapt the target size of the MRU list: 4327 * - if we just hit in the MRU ghost list, then increase 4328 * the target size of the MRU list. 4329 * - if we just hit in the MFU ghost list, then increase 4330 * the target size of the MFU list by decreasing the 4331 * target size of the MRU list. 4332 */ 4333 if (state == arc_mru_ghost) { 4334 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 4335 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 4336 4337 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 4338 } else if (state == arc_mfu_ghost) { 4339 uint64_t delta; 4340 4341 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 4342 mult = MIN(mult, 10); 4343 4344 delta = MIN(bytes * mult, arc_p); 4345 arc_p = MAX(arc_p_min, arc_p - delta); 4346 } 4347 ASSERT((int64_t)arc_p >= 0); 4348 4349 /* 4350 * Wake reap thread if we do not have any available memory 4351 */ 4352 if (arc_reclaim_needed()) { 4353 zthr_wakeup(arc_reap_zthr); 4354 return; 4355 } 4356 4357 4358 if (arc_no_grow) 4359 return; 4360 4361 if (arc_c >= arc_c_max) 4362 return; 4363 4364 /* 4365 * If we're within (2 * maxblocksize) bytes of the target 4366 * cache size, increment the target cache size 4367 */ 4368 if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) > 4369 0) { 4370 atomic_add_64(&arc_c, (int64_t)bytes); 4371 if (arc_c > arc_c_max) 4372 arc_c = arc_c_max; 4373 else if (state == arc_anon) 4374 atomic_add_64(&arc_p, (int64_t)bytes); 4375 if (arc_p > arc_c) 4376 arc_p = arc_c; 4377 } 4378 ASSERT((int64_t)arc_p >= 0); 4379 } 4380 4381 /* 4382 * Check if arc_size has grown past our upper threshold, determined by 4383 * zfs_arc_overflow_shift. 4384 */ 4385 static boolean_t 4386 arc_is_overflowing(void) 4387 { 4388 /* Always allow at least one block of overflow */ 4389 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE, 4390 arc_c >> zfs_arc_overflow_shift); 4391 4392 /* 4393 * We just compare the lower bound here for performance reasons. Our 4394 * primary goals are to make sure that the arc never grows without 4395 * bound, and that it can reach its maximum size. This check 4396 * accomplishes both goals. The maximum amount we could run over by is 4397 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 4398 * in the ARC. In practice, that's in the tens of MB, which is low 4399 * enough to be safe. 4400 */ 4401 return (aggsum_lower_bound(&arc_size) >= arc_c + overflow); 4402 } 4403 4404 static abd_t * 4405 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4406 { 4407 arc_buf_contents_t type = arc_buf_type(hdr); 4408 4409 arc_get_data_impl(hdr, size, tag); 4410 if (type == ARC_BUFC_METADATA) { 4411 return (abd_alloc(size, B_TRUE)); 4412 } else { 4413 ASSERT(type == ARC_BUFC_DATA); 4414 return (abd_alloc(size, B_FALSE)); 4415 } 4416 } 4417 4418 static void * 4419 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4420 { 4421 arc_buf_contents_t type = arc_buf_type(hdr); 4422 4423 arc_get_data_impl(hdr, size, tag); 4424 if (type == ARC_BUFC_METADATA) { 4425 return (zio_buf_alloc(size)); 4426 } else { 4427 ASSERT(type == ARC_BUFC_DATA); 4428 return (zio_data_buf_alloc(size)); 4429 } 4430 } 4431 4432 /* 4433 * Allocate a block and return it to the caller. If we are hitting the 4434 * hard limit for the cache size, we must sleep, waiting for the eviction 4435 * thread to catch up. If we're past the target size but below the hard 4436 * limit, we'll only signal the reclaim thread and continue on. 4437 */ 4438 static void 4439 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4440 { 4441 arc_state_t *state = hdr->b_l1hdr.b_state; 4442 arc_buf_contents_t type = arc_buf_type(hdr); 4443 4444 arc_adapt(size, state); 4445 4446 /* 4447 * If arc_size is currently overflowing, and has grown past our 4448 * upper limit, we must be adding data faster than the evict 4449 * thread can evict. Thus, to ensure we don't compound the 4450 * problem by adding more data and forcing arc_size to grow even 4451 * further past it's target size, we halt and wait for the 4452 * eviction thread to catch up. 4453 * 4454 * It's also possible that the reclaim thread is unable to evict 4455 * enough buffers to get arc_size below the overflow limit (e.g. 4456 * due to buffers being un-evictable, or hash lock collisions). 4457 * In this case, we want to proceed regardless if we're 4458 * overflowing; thus we don't use a while loop here. 4459 */ 4460 if (arc_is_overflowing()) { 4461 mutex_enter(&arc_adjust_lock); 4462 4463 /* 4464 * Now that we've acquired the lock, we may no longer be 4465 * over the overflow limit, lets check. 4466 * 4467 * We're ignoring the case of spurious wake ups. If that 4468 * were to happen, it'd let this thread consume an ARC 4469 * buffer before it should have (i.e. before we're under 4470 * the overflow limit and were signalled by the reclaim 4471 * thread). As long as that is a rare occurrence, it 4472 * shouldn't cause any harm. 4473 */ 4474 if (arc_is_overflowing()) { 4475 arc_adjust_needed = B_TRUE; 4476 zthr_wakeup(arc_adjust_zthr); 4477 (void) cv_wait(&arc_adjust_waiters_cv, 4478 &arc_adjust_lock); 4479 } 4480 mutex_exit(&arc_adjust_lock); 4481 } 4482 4483 VERIFY3U(hdr->b_type, ==, type); 4484 if (type == ARC_BUFC_METADATA) { 4485 arc_space_consume(size, ARC_SPACE_META); 4486 } else { 4487 arc_space_consume(size, ARC_SPACE_DATA); 4488 } 4489 4490 /* 4491 * Update the state size. Note that ghost states have a 4492 * "ghost size" and so don't need to be updated. 4493 */ 4494 if (!GHOST_STATE(state)) { 4495 4496 (void) refcount_add_many(&state->arcs_size, size, tag); 4497 4498 /* 4499 * If this is reached via arc_read, the link is 4500 * protected by the hash lock. If reached via 4501 * arc_buf_alloc, the header should not be accessed by 4502 * any other thread. And, if reached via arc_read_done, 4503 * the hash lock will protect it if it's found in the 4504 * hash table; otherwise no other thread should be 4505 * trying to [add|remove]_reference it. 4506 */ 4507 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 4508 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4509 (void) refcount_add_many(&state->arcs_esize[type], 4510 size, tag); 4511 } 4512 4513 /* 4514 * If we are growing the cache, and we are adding anonymous 4515 * data, and we have outgrown arc_p, update arc_p 4516 */ 4517 if (aggsum_compare(&arc_size, arc_c) < 0 && 4518 hdr->b_l1hdr.b_state == arc_anon && 4519 (refcount_count(&arc_anon->arcs_size) + 4520 refcount_count(&arc_mru->arcs_size) > arc_p)) 4521 arc_p = MIN(arc_c, arc_p + size); 4522 } 4523 } 4524 4525 static void 4526 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 4527 { 4528 arc_free_data_impl(hdr, size, tag); 4529 abd_free(abd); 4530 } 4531 4532 static void 4533 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 4534 { 4535 arc_buf_contents_t type = arc_buf_type(hdr); 4536 4537 arc_free_data_impl(hdr, size, tag); 4538 if (type == ARC_BUFC_METADATA) { 4539 zio_buf_free(buf, size); 4540 } else { 4541 ASSERT(type == ARC_BUFC_DATA); 4542 zio_data_buf_free(buf, size); 4543 } 4544 } 4545 4546 /* 4547 * Free the arc data buffer. 4548 */ 4549 static void 4550 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4551 { 4552 arc_state_t *state = hdr->b_l1hdr.b_state; 4553 arc_buf_contents_t type = arc_buf_type(hdr); 4554 4555 /* protected by hash lock, if in the hash table */ 4556 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 4557 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4558 ASSERT(state != arc_anon && state != arc_l2c_only); 4559 4560 (void) refcount_remove_many(&state->arcs_esize[type], 4561 size, tag); 4562 } 4563 (void) refcount_remove_many(&state->arcs_size, size, tag); 4564 4565 VERIFY3U(hdr->b_type, ==, type); 4566 if (type == ARC_BUFC_METADATA) { 4567 arc_space_return(size, ARC_SPACE_META); 4568 } else { 4569 ASSERT(type == ARC_BUFC_DATA); 4570 arc_space_return(size, ARC_SPACE_DATA); 4571 } 4572 } 4573 4574 /* 4575 * This routine is called whenever a buffer is accessed. 4576 * NOTE: the hash lock is dropped in this function. 4577 */ 4578 static void 4579 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 4580 { 4581 clock_t now; 4582 4583 ASSERT(MUTEX_HELD(hash_lock)); 4584 ASSERT(HDR_HAS_L1HDR(hdr)); 4585 4586 if (hdr->b_l1hdr.b_state == arc_anon) { 4587 /* 4588 * This buffer is not in the cache, and does not 4589 * appear in our "ghost" list. Add the new buffer 4590 * to the MRU state. 4591 */ 4592 4593 ASSERT0(hdr->b_l1hdr.b_arc_access); 4594 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4595 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 4596 arc_change_state(arc_mru, hdr, hash_lock); 4597 4598 } else if (hdr->b_l1hdr.b_state == arc_mru) { 4599 now = ddi_get_lbolt(); 4600 4601 /* 4602 * If this buffer is here because of a prefetch, then either: 4603 * - clear the flag if this is a "referencing" read 4604 * (any subsequent access will bump this into the MFU state). 4605 * or 4606 * - move the buffer to the head of the list if this is 4607 * another prefetch (to make it less likely to be evicted). 4608 */ 4609 if (HDR_PREFETCH(hdr)) { 4610 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 4611 /* link protected by hash lock */ 4612 ASSERT(multilist_link_active( 4613 &hdr->b_l1hdr.b_arc_node)); 4614 } else { 4615 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 4616 ARCSTAT_BUMP(arcstat_mru_hits); 4617 } 4618 hdr->b_l1hdr.b_arc_access = now; 4619 return; 4620 } 4621 4622 /* 4623 * This buffer has been "accessed" only once so far, 4624 * but it is still in the cache. Move it to the MFU 4625 * state. 4626 */ 4627 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) { 4628 /* 4629 * More than 125ms have passed since we 4630 * instantiated this buffer. Move it to the 4631 * most frequently used state. 4632 */ 4633 hdr->b_l1hdr.b_arc_access = now; 4634 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4635 arc_change_state(arc_mfu, hdr, hash_lock); 4636 } 4637 ARCSTAT_BUMP(arcstat_mru_hits); 4638 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 4639 arc_state_t *new_state; 4640 /* 4641 * This buffer has been "accessed" recently, but 4642 * was evicted from the cache. Move it to the 4643 * MFU state. 4644 */ 4645 4646 if (HDR_PREFETCH(hdr)) { 4647 new_state = arc_mru; 4648 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) 4649 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 4650 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 4651 } else { 4652 new_state = arc_mfu; 4653 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4654 } 4655 4656 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4657 arc_change_state(new_state, hdr, hash_lock); 4658 4659 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 4660 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 4661 /* 4662 * This buffer has been accessed more than once and is 4663 * still in the cache. Keep it in the MFU state. 4664 * 4665 * NOTE: an add_reference() that occurred when we did 4666 * the arc_read() will have kicked this off the list. 4667 * If it was a prefetch, we will explicitly move it to 4668 * the head of the list now. 4669 */ 4670 if ((HDR_PREFETCH(hdr)) != 0) { 4671 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4672 /* link protected by hash_lock */ 4673 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 4674 } 4675 ARCSTAT_BUMP(arcstat_mfu_hits); 4676 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4677 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 4678 arc_state_t *new_state = arc_mfu; 4679 /* 4680 * This buffer has been accessed more than once but has 4681 * been evicted from the cache. Move it back to the 4682 * MFU state. 4683 */ 4684 4685 if (HDR_PREFETCH(hdr)) { 4686 /* 4687 * This is a prefetch access... 4688 * move this block back to the MRU state. 4689 */ 4690 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 4691 new_state = arc_mru; 4692 } 4693 4694 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4695 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4696 arc_change_state(new_state, hdr, hash_lock); 4697 4698 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 4699 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 4700 /* 4701 * This buffer is on the 2nd Level ARC. 4702 */ 4703 4704 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4705 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4706 arc_change_state(arc_mfu, hdr, hash_lock); 4707 } else { 4708 ASSERT(!"invalid arc state"); 4709 } 4710 } 4711 4712 /* a generic arc_done_func_t which you can use */ 4713 /* ARGSUSED */ 4714 void 4715 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 4716 { 4717 if (zio == NULL || zio->io_error == 0) 4718 bcopy(buf->b_data, arg, arc_buf_size(buf)); 4719 arc_buf_destroy(buf, arg); 4720 } 4721 4722 /* a generic arc_done_func_t */ 4723 void 4724 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 4725 { 4726 arc_buf_t **bufp = arg; 4727 if (buf == NULL) { 4728 ASSERT(zio == NULL || zio->io_error != 0); 4729 *bufp = NULL; 4730 } else { 4731 ASSERT(zio == NULL || zio->io_error == 0); 4732 *bufp = buf; 4733 ASSERT(buf->b_data != NULL); 4734 } 4735 } 4736 4737 static void 4738 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 4739 { 4740 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 4741 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 4742 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 4743 } else { 4744 if (HDR_COMPRESSION_ENABLED(hdr)) { 4745 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, 4746 BP_GET_COMPRESS(bp)); 4747 } 4748 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 4749 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 4750 } 4751 } 4752 4753 static void 4754 arc_read_done(zio_t *zio) 4755 { 4756 arc_buf_hdr_t *hdr = zio->io_private; 4757 kmutex_t *hash_lock = NULL; 4758 arc_callback_t *callback_list; 4759 arc_callback_t *acb; 4760 boolean_t freeable = B_FALSE; 4761 boolean_t no_zio_error = (zio->io_error == 0); 4762 4763 /* 4764 * The hdr was inserted into hash-table and removed from lists 4765 * prior to starting I/O. We should find this header, since 4766 * it's in the hash table, and it should be legit since it's 4767 * not possible to evict it during the I/O. The only possible 4768 * reason for it not to be found is if we were freed during the 4769 * read. 4770 */ 4771 if (HDR_IN_HASH_TABLE(hdr)) { 4772 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 4773 ASSERT3U(hdr->b_dva.dva_word[0], ==, 4774 BP_IDENTITY(zio->io_bp)->dva_word[0]); 4775 ASSERT3U(hdr->b_dva.dva_word[1], ==, 4776 BP_IDENTITY(zio->io_bp)->dva_word[1]); 4777 4778 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 4779 &hash_lock); 4780 4781 ASSERT((found == hdr && 4782 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 4783 (found == hdr && HDR_L2_READING(hdr))); 4784 ASSERT3P(hash_lock, !=, NULL); 4785 } 4786 4787 if (no_zio_error) { 4788 /* byteswap if necessary */ 4789 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 4790 if (BP_GET_LEVEL(zio->io_bp) > 0) { 4791 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 4792 } else { 4793 hdr->b_l1hdr.b_byteswap = 4794 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 4795 } 4796 } else { 4797 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 4798 } 4799 } 4800 4801 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 4802 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 4803 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 4804 4805 callback_list = hdr->b_l1hdr.b_acb; 4806 ASSERT3P(callback_list, !=, NULL); 4807 4808 if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) { 4809 /* 4810 * Only call arc_access on anonymous buffers. This is because 4811 * if we've issued an I/O for an evicted buffer, we've already 4812 * called arc_access (to prevent any simultaneous readers from 4813 * getting confused). 4814 */ 4815 arc_access(hdr, hash_lock); 4816 } 4817 4818 /* 4819 * If a read request has a callback (i.e. acb_done is not NULL), then we 4820 * make a buf containing the data according to the parameters which were 4821 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 4822 * aren't needlessly decompressing the data multiple times. 4823 */ 4824 int callback_cnt = 0; 4825 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 4826 if (!acb->acb_done) 4827 continue; 4828 4829 /* This is a demand read since prefetches don't use callbacks */ 4830 callback_cnt++; 4831 4832 if (no_zio_error) { 4833 int error = arc_buf_alloc_impl(hdr, acb->acb_private, 4834 acb->acb_compressed, zio->io_error == 0, 4835 &acb->acb_buf); 4836 if (error != 0) { 4837 /* 4838 * Decompression failed. Set io_error 4839 * so that when we call acb_done (below), 4840 * we will indicate that the read failed. 4841 * Note that in the unusual case where one 4842 * callback is compressed and another 4843 * uncompressed, we will mark all of them 4844 * as failed, even though the uncompressed 4845 * one can't actually fail. In this case, 4846 * the hdr will not be anonymous, because 4847 * if there are multiple callbacks, it's 4848 * because multiple threads found the same 4849 * arc buf in the hash table. 4850 */ 4851 zio->io_error = error; 4852 } 4853 } 4854 } 4855 /* 4856 * If there are multiple callbacks, we must have the hash lock, 4857 * because the only way for multiple threads to find this hdr is 4858 * in the hash table. This ensures that if there are multiple 4859 * callbacks, the hdr is not anonymous. If it were anonymous, 4860 * we couldn't use arc_buf_destroy() in the error case below. 4861 */ 4862 ASSERT(callback_cnt < 2 || hash_lock != NULL); 4863 4864 hdr->b_l1hdr.b_acb = NULL; 4865 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 4866 if (callback_cnt == 0) { 4867 ASSERT(HDR_PREFETCH(hdr)); 4868 ASSERT0(hdr->b_l1hdr.b_bufcnt); 4869 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 4870 } 4871 4872 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 4873 callback_list != NULL); 4874 4875 if (no_zio_error) { 4876 arc_hdr_verify(hdr, zio->io_bp); 4877 } else { 4878 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 4879 if (hdr->b_l1hdr.b_state != arc_anon) 4880 arc_change_state(arc_anon, hdr, hash_lock); 4881 if (HDR_IN_HASH_TABLE(hdr)) 4882 buf_hash_remove(hdr); 4883 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 4884 } 4885 4886 /* 4887 * Broadcast before we drop the hash_lock to avoid the possibility 4888 * that the hdr (and hence the cv) might be freed before we get to 4889 * the cv_broadcast(). 4890 */ 4891 cv_broadcast(&hdr->b_l1hdr.b_cv); 4892 4893 if (hash_lock != NULL) { 4894 mutex_exit(hash_lock); 4895 } else { 4896 /* 4897 * This block was freed while we waited for the read to 4898 * complete. It has been removed from the hash table and 4899 * moved to the anonymous state (so that it won't show up 4900 * in the cache). 4901 */ 4902 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 4903 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 4904 } 4905 4906 /* execute each callback and free its structure */ 4907 while ((acb = callback_list) != NULL) { 4908 if (acb->acb_done != NULL) { 4909 if (zio->io_error != 0 && acb->acb_buf != NULL) { 4910 /* 4911 * If arc_buf_alloc_impl() fails during 4912 * decompression, the buf will still be 4913 * allocated, and needs to be freed here. 4914 */ 4915 arc_buf_destroy(acb->acb_buf, acb->acb_private); 4916 acb->acb_buf = NULL; 4917 } 4918 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 4919 } 4920 4921 if (acb->acb_zio_dummy != NULL) { 4922 acb->acb_zio_dummy->io_error = zio->io_error; 4923 zio_nowait(acb->acb_zio_dummy); 4924 } 4925 4926 callback_list = acb->acb_next; 4927 kmem_free(acb, sizeof (arc_callback_t)); 4928 } 4929 4930 if (freeable) 4931 arc_hdr_destroy(hdr); 4932 } 4933 4934 /* 4935 * "Read" the block at the specified DVA (in bp) via the 4936 * cache. If the block is found in the cache, invoke the provided 4937 * callback immediately and return. Note that the `zio' parameter 4938 * in the callback will be NULL in this case, since no IO was 4939 * required. If the block is not in the cache pass the read request 4940 * on to the spa with a substitute callback function, so that the 4941 * requested block will be added to the cache. 4942 * 4943 * If a read request arrives for a block that has a read in-progress, 4944 * either wait for the in-progress read to complete (and return the 4945 * results); or, if this is a read with a "done" func, add a record 4946 * to the read to invoke the "done" func when the read completes, 4947 * and return; or just return. 4948 * 4949 * arc_read_done() will invoke all the requested "done" functions 4950 * for readers of this block. 4951 */ 4952 int 4953 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 4954 void *private, zio_priority_t priority, int zio_flags, 4955 arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 4956 { 4957 arc_buf_hdr_t *hdr = NULL; 4958 kmutex_t *hash_lock = NULL; 4959 zio_t *rzio; 4960 uint64_t guid = spa_load_guid(spa); 4961 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0; 4962 4963 ASSERT(!BP_IS_EMBEDDED(bp) || 4964 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 4965 4966 top: 4967 if (!BP_IS_EMBEDDED(bp)) { 4968 /* 4969 * Embedded BP's have no DVA and require no I/O to "read". 4970 * Create an anonymous arc buf to back it. 4971 */ 4972 hdr = buf_hash_find(guid, bp, &hash_lock); 4973 } 4974 4975 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) { 4976 arc_buf_t *buf = NULL; 4977 *arc_flags |= ARC_FLAG_CACHED; 4978 4979 if (HDR_IO_IN_PROGRESS(hdr)) { 4980 4981 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 4982 priority == ZIO_PRIORITY_SYNC_READ) { 4983 /* 4984 * This sync read must wait for an 4985 * in-progress async read (e.g. a predictive 4986 * prefetch). Async reads are queued 4987 * separately at the vdev_queue layer, so 4988 * this is a form of priority inversion. 4989 * Ideally, we would "inherit" the demand 4990 * i/o's priority by moving the i/o from 4991 * the async queue to the synchronous queue, 4992 * but there is currently no mechanism to do 4993 * so. Track this so that we can evaluate 4994 * the magnitude of this potential performance 4995 * problem. 4996 * 4997 * Note that if the prefetch i/o is already 4998 * active (has been issued to the device), 4999 * the prefetch improved performance, because 5000 * we issued it sooner than we would have 5001 * without the prefetch. 5002 */ 5003 DTRACE_PROBE1(arc__sync__wait__for__async, 5004 arc_buf_hdr_t *, hdr); 5005 ARCSTAT_BUMP(arcstat_sync_wait_for_async); 5006 } 5007 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5008 arc_hdr_clear_flags(hdr, 5009 ARC_FLAG_PREDICTIVE_PREFETCH); 5010 } 5011 5012 if (*arc_flags & ARC_FLAG_WAIT) { 5013 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5014 mutex_exit(hash_lock); 5015 goto top; 5016 } 5017 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5018 5019 if (done) { 5020 arc_callback_t *acb = NULL; 5021 5022 acb = kmem_zalloc(sizeof (arc_callback_t), 5023 KM_SLEEP); 5024 acb->acb_done = done; 5025 acb->acb_private = private; 5026 acb->acb_compressed = compressed_read; 5027 if (pio != NULL) 5028 acb->acb_zio_dummy = zio_null(pio, 5029 spa, NULL, NULL, NULL, zio_flags); 5030 5031 ASSERT3P(acb->acb_done, !=, NULL); 5032 acb->acb_next = hdr->b_l1hdr.b_acb; 5033 hdr->b_l1hdr.b_acb = acb; 5034 mutex_exit(hash_lock); 5035 return (0); 5036 } 5037 mutex_exit(hash_lock); 5038 return (0); 5039 } 5040 5041 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5042 hdr->b_l1hdr.b_state == arc_mfu); 5043 5044 if (done) { 5045 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5046 /* 5047 * This is a demand read which does not have to 5048 * wait for i/o because we did a predictive 5049 * prefetch i/o for it, which has completed. 5050 */ 5051 DTRACE_PROBE1( 5052 arc__demand__hit__predictive__prefetch, 5053 arc_buf_hdr_t *, hdr); 5054 ARCSTAT_BUMP( 5055 arcstat_demand_hit_predictive_prefetch); 5056 arc_hdr_clear_flags(hdr, 5057 ARC_FLAG_PREDICTIVE_PREFETCH); 5058 } 5059 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp)); 5060 5061 /* Get a buf with the desired data in it. */ 5062 VERIFY0(arc_buf_alloc_impl(hdr, private, 5063 compressed_read, B_TRUE, &buf)); 5064 } else if (*arc_flags & ARC_FLAG_PREFETCH && 5065 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5066 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5067 } 5068 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5069 arc_access(hdr, hash_lock); 5070 if (*arc_flags & ARC_FLAG_L2CACHE) 5071 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5072 mutex_exit(hash_lock); 5073 ARCSTAT_BUMP(arcstat_hits); 5074 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5075 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 5076 data, metadata, hits); 5077 5078 if (done) 5079 done(NULL, buf, private); 5080 } else { 5081 uint64_t lsize = BP_GET_LSIZE(bp); 5082 uint64_t psize = BP_GET_PSIZE(bp); 5083 arc_callback_t *acb; 5084 vdev_t *vd = NULL; 5085 uint64_t addr = 0; 5086 boolean_t devw = B_FALSE; 5087 uint64_t size; 5088 5089 if (hdr == NULL) { 5090 /* this block is not in the cache */ 5091 arc_buf_hdr_t *exists = NULL; 5092 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 5093 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 5094 BP_GET_COMPRESS(bp), type); 5095 5096 if (!BP_IS_EMBEDDED(bp)) { 5097 hdr->b_dva = *BP_IDENTITY(bp); 5098 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 5099 exists = buf_hash_insert(hdr, &hash_lock); 5100 } 5101 if (exists != NULL) { 5102 /* somebody beat us to the hash insert */ 5103 mutex_exit(hash_lock); 5104 buf_discard_identity(hdr); 5105 arc_hdr_destroy(hdr); 5106 goto top; /* restart the IO request */ 5107 } 5108 } else { 5109 /* 5110 * This block is in the ghost cache. If it was L2-only 5111 * (and thus didn't have an L1 hdr), we realloc the 5112 * header to add an L1 hdr. 5113 */ 5114 if (!HDR_HAS_L1HDR(hdr)) { 5115 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 5116 hdr_full_cache); 5117 } 5118 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 5119 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state)); 5120 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5121 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5122 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 5123 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 5124 5125 /* 5126 * This is a delicate dance that we play here. 5127 * This hdr is in the ghost list so we access it 5128 * to move it out of the ghost list before we 5129 * initiate the read. If it's a prefetch then 5130 * it won't have a callback so we'll remove the 5131 * reference that arc_buf_alloc_impl() created. We 5132 * do this after we've called arc_access() to 5133 * avoid hitting an assert in remove_reference(). 5134 */ 5135 arc_access(hdr, hash_lock); 5136 arc_hdr_alloc_pabd(hdr); 5137 } 5138 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 5139 size = arc_hdr_size(hdr); 5140 5141 /* 5142 * If compression is enabled on the hdr, then will do 5143 * RAW I/O and will store the compressed data in the hdr's 5144 * data block. Otherwise, the hdr's data block will contain 5145 * the uncompressed data. 5146 */ 5147 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) { 5148 zio_flags |= ZIO_FLAG_RAW; 5149 } 5150 5151 if (*arc_flags & ARC_FLAG_PREFETCH) 5152 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5153 if (*arc_flags & ARC_FLAG_L2CACHE) 5154 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5155 if (BP_GET_LEVEL(bp) > 0) 5156 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 5157 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 5158 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 5159 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 5160 5161 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 5162 acb->acb_done = done; 5163 acb->acb_private = private; 5164 acb->acb_compressed = compressed_read; 5165 5166 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5167 hdr->b_l1hdr.b_acb = acb; 5168 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5169 5170 if (HDR_HAS_L2HDR(hdr) && 5171 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 5172 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 5173 addr = hdr->b_l2hdr.b_daddr; 5174 /* 5175 * Lock out L2ARC device removal. 5176 */ 5177 if (vdev_is_dead(vd) || 5178 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 5179 vd = NULL; 5180 } 5181 5182 if (priority == ZIO_PRIORITY_ASYNC_READ) 5183 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5184 else 5185 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5186 5187 if (hash_lock != NULL) 5188 mutex_exit(hash_lock); 5189 5190 /* 5191 * At this point, we have a level 1 cache miss. Try again in 5192 * L2ARC if possible. 5193 */ 5194 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 5195 5196 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 5197 uint64_t, lsize, zbookmark_phys_t *, zb); 5198 ARCSTAT_BUMP(arcstat_misses); 5199 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5200 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 5201 data, metadata, misses); 5202 5203 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 5204 /* 5205 * Read from the L2ARC if the following are true: 5206 * 1. The L2ARC vdev was previously cached. 5207 * 2. This buffer still has L2ARC metadata. 5208 * 3. This buffer isn't currently writing to the L2ARC. 5209 * 4. The L2ARC entry wasn't evicted, which may 5210 * also have invalidated the vdev. 5211 * 5. This isn't prefetch and l2arc_noprefetch is set. 5212 */ 5213 if (HDR_HAS_L2HDR(hdr) && 5214 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 5215 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 5216 l2arc_read_callback_t *cb; 5217 abd_t *abd; 5218 uint64_t asize; 5219 5220 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 5221 ARCSTAT_BUMP(arcstat_l2_hits); 5222 5223 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 5224 KM_SLEEP); 5225 cb->l2rcb_hdr = hdr; 5226 cb->l2rcb_bp = *bp; 5227 cb->l2rcb_zb = *zb; 5228 cb->l2rcb_flags = zio_flags; 5229 5230 asize = vdev_psize_to_asize(vd, size); 5231 if (asize != size) { 5232 abd = abd_alloc_for_io(asize, 5233 HDR_ISTYPE_METADATA(hdr)); 5234 cb->l2rcb_abd = abd; 5235 } else { 5236 abd = hdr->b_l1hdr.b_pabd; 5237 } 5238 5239 ASSERT(addr >= VDEV_LABEL_START_SIZE && 5240 addr + asize <= vd->vdev_psize - 5241 VDEV_LABEL_END_SIZE); 5242 5243 /* 5244 * l2arc read. The SCL_L2ARC lock will be 5245 * released by l2arc_read_done(). 5246 * Issue a null zio if the underlying buffer 5247 * was squashed to zero size by compression. 5248 */ 5249 ASSERT3U(HDR_GET_COMPRESS(hdr), !=, 5250 ZIO_COMPRESS_EMPTY); 5251 rzio = zio_read_phys(pio, vd, addr, 5252 asize, abd, 5253 ZIO_CHECKSUM_OFF, 5254 l2arc_read_done, cb, priority, 5255 zio_flags | ZIO_FLAG_DONT_CACHE | 5256 ZIO_FLAG_CANFAIL | 5257 ZIO_FLAG_DONT_PROPAGATE | 5258 ZIO_FLAG_DONT_RETRY, B_FALSE); 5259 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 5260 zio_t *, rzio); 5261 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 5262 5263 if (*arc_flags & ARC_FLAG_NOWAIT) { 5264 zio_nowait(rzio); 5265 return (0); 5266 } 5267 5268 ASSERT(*arc_flags & ARC_FLAG_WAIT); 5269 if (zio_wait(rzio) == 0) 5270 return (0); 5271 5272 /* l2arc read error; goto zio_read() */ 5273 } else { 5274 DTRACE_PROBE1(l2arc__miss, 5275 arc_buf_hdr_t *, hdr); 5276 ARCSTAT_BUMP(arcstat_l2_misses); 5277 if (HDR_L2_WRITING(hdr)) 5278 ARCSTAT_BUMP(arcstat_l2_rw_clash); 5279 spa_config_exit(spa, SCL_L2ARC, vd); 5280 } 5281 } else { 5282 if (vd != NULL) 5283 spa_config_exit(spa, SCL_L2ARC, vd); 5284 if (l2arc_ndev != 0) { 5285 DTRACE_PROBE1(l2arc__miss, 5286 arc_buf_hdr_t *, hdr); 5287 ARCSTAT_BUMP(arcstat_l2_misses); 5288 } 5289 } 5290 5291 rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size, 5292 arc_read_done, hdr, priority, zio_flags, zb); 5293 5294 if (*arc_flags & ARC_FLAG_WAIT) 5295 return (zio_wait(rzio)); 5296 5297 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5298 zio_nowait(rzio); 5299 } 5300 return (0); 5301 } 5302 5303 /* 5304 * Notify the arc that a block was freed, and thus will never be used again. 5305 */ 5306 void 5307 arc_freed(spa_t *spa, const blkptr_t *bp) 5308 { 5309 arc_buf_hdr_t *hdr; 5310 kmutex_t *hash_lock; 5311 uint64_t guid = spa_load_guid(spa); 5312 5313 ASSERT(!BP_IS_EMBEDDED(bp)); 5314 5315 hdr = buf_hash_find(guid, bp, &hash_lock); 5316 if (hdr == NULL) 5317 return; 5318 5319 /* 5320 * We might be trying to free a block that is still doing I/O 5321 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 5322 * dmu_sync-ed block). If this block is being prefetched, then it 5323 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 5324 * until the I/O completes. A block may also have a reference if it is 5325 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 5326 * have written the new block to its final resting place on disk but 5327 * without the dedup flag set. This would have left the hdr in the MRU 5328 * state and discoverable. When the txg finally syncs it detects that 5329 * the block was overridden in open context and issues an override I/O. 5330 * Since this is a dedup block, the override I/O will determine if the 5331 * block is already in the DDT. If so, then it will replace the io_bp 5332 * with the bp from the DDT and allow the I/O to finish. When the I/O 5333 * reaches the done callback, dbuf_write_override_done, it will 5334 * check to see if the io_bp and io_bp_override are identical. 5335 * If they are not, then it indicates that the bp was replaced with 5336 * the bp in the DDT and the override bp is freed. This allows 5337 * us to arrive here with a reference on a block that is being 5338 * freed. So if we have an I/O in progress, or a reference to 5339 * this hdr, then we don't destroy the hdr. 5340 */ 5341 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 5342 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 5343 arc_change_state(arc_anon, hdr, hash_lock); 5344 arc_hdr_destroy(hdr); 5345 mutex_exit(hash_lock); 5346 } else { 5347 mutex_exit(hash_lock); 5348 } 5349 5350 } 5351 5352 /* 5353 * Release this buffer from the cache, making it an anonymous buffer. This 5354 * must be done after a read and prior to modifying the buffer contents. 5355 * If the buffer has more than one reference, we must make 5356 * a new hdr for the buffer. 5357 */ 5358 void 5359 arc_release(arc_buf_t *buf, void *tag) 5360 { 5361 arc_buf_hdr_t *hdr = buf->b_hdr; 5362 5363 /* 5364 * It would be nice to assert that if it's DMU metadata (level > 5365 * 0 || it's the dnode file), then it must be syncing context. 5366 * But we don't know that information at this level. 5367 */ 5368 5369 mutex_enter(&buf->b_evict_lock); 5370 5371 ASSERT(HDR_HAS_L1HDR(hdr)); 5372 5373 /* 5374 * We don't grab the hash lock prior to this check, because if 5375 * the buffer's header is in the arc_anon state, it won't be 5376 * linked into the hash table. 5377 */ 5378 if (hdr->b_l1hdr.b_state == arc_anon) { 5379 mutex_exit(&buf->b_evict_lock); 5380 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5381 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 5382 ASSERT(!HDR_HAS_L2HDR(hdr)); 5383 ASSERT(HDR_EMPTY(hdr)); 5384 5385 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 5386 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 5387 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 5388 5389 hdr->b_l1hdr.b_arc_access = 0; 5390 5391 /* 5392 * If the buf is being overridden then it may already 5393 * have a hdr that is not empty. 5394 */ 5395 buf_discard_identity(hdr); 5396 arc_buf_thaw(buf); 5397 5398 return; 5399 } 5400 5401 kmutex_t *hash_lock = HDR_LOCK(hdr); 5402 mutex_enter(hash_lock); 5403 5404 /* 5405 * This assignment is only valid as long as the hash_lock is 5406 * held, we must be careful not to reference state or the 5407 * b_state field after dropping the lock. 5408 */ 5409 arc_state_t *state = hdr->b_l1hdr.b_state; 5410 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 5411 ASSERT3P(state, !=, arc_anon); 5412 5413 /* this buffer is not on any list */ 5414 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 5415 5416 if (HDR_HAS_L2HDR(hdr)) { 5417 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 5418 5419 /* 5420 * We have to recheck this conditional again now that 5421 * we're holding the l2ad_mtx to prevent a race with 5422 * another thread which might be concurrently calling 5423 * l2arc_evict(). In that case, l2arc_evict() might have 5424 * destroyed the header's L2 portion as we were waiting 5425 * to acquire the l2ad_mtx. 5426 */ 5427 if (HDR_HAS_L2HDR(hdr)) 5428 arc_hdr_l2hdr_destroy(hdr); 5429 5430 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 5431 } 5432 5433 /* 5434 * Do we have more than one buf? 5435 */ 5436 if (hdr->b_l1hdr.b_bufcnt > 1) { 5437 arc_buf_hdr_t *nhdr; 5438 uint64_t spa = hdr->b_spa; 5439 uint64_t psize = HDR_GET_PSIZE(hdr); 5440 uint64_t lsize = HDR_GET_LSIZE(hdr); 5441 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 5442 arc_buf_contents_t type = arc_buf_type(hdr); 5443 VERIFY3U(hdr->b_type, ==, type); 5444 5445 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 5446 (void) remove_reference(hdr, hash_lock, tag); 5447 5448 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 5449 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 5450 ASSERT(ARC_BUF_LAST(buf)); 5451 } 5452 5453 /* 5454 * Pull the data off of this hdr and attach it to 5455 * a new anonymous hdr. Also find the last buffer 5456 * in the hdr's buffer list. 5457 */ 5458 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 5459 ASSERT3P(lastbuf, !=, NULL); 5460 5461 /* 5462 * If the current arc_buf_t and the hdr are sharing their data 5463 * buffer, then we must stop sharing that block. 5464 */ 5465 if (arc_buf_is_shared(buf)) { 5466 VERIFY(!arc_buf_is_shared(lastbuf)); 5467 5468 /* 5469 * First, sever the block sharing relationship between 5470 * buf and the arc_buf_hdr_t. 5471 */ 5472 arc_unshare_buf(hdr, buf); 5473 5474 /* 5475 * Now we need to recreate the hdr's b_pabd. Since we 5476 * have lastbuf handy, we try to share with it, but if 5477 * we can't then we allocate a new b_pabd and copy the 5478 * data from buf into it. 5479 */ 5480 if (arc_can_share(hdr, lastbuf)) { 5481 arc_share_buf(hdr, lastbuf); 5482 } else { 5483 arc_hdr_alloc_pabd(hdr); 5484 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 5485 buf->b_data, psize); 5486 } 5487 VERIFY3P(lastbuf->b_data, !=, NULL); 5488 } else if (HDR_SHARED_DATA(hdr)) { 5489 /* 5490 * Uncompressed shared buffers are always at the end 5491 * of the list. Compressed buffers don't have the 5492 * same requirements. This makes it hard to 5493 * simply assert that the lastbuf is shared so 5494 * we rely on the hdr's compression flags to determine 5495 * if we have a compressed, shared buffer. 5496 */ 5497 ASSERT(arc_buf_is_shared(lastbuf) || 5498 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF); 5499 ASSERT(!ARC_BUF_SHARED(buf)); 5500 } 5501 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 5502 ASSERT3P(state, !=, arc_l2c_only); 5503 5504 (void) refcount_remove_many(&state->arcs_size, 5505 arc_buf_size(buf), buf); 5506 5507 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 5508 ASSERT3P(state, !=, arc_l2c_only); 5509 (void) refcount_remove_many(&state->arcs_esize[type], 5510 arc_buf_size(buf), buf); 5511 } 5512 5513 hdr->b_l1hdr.b_bufcnt -= 1; 5514 arc_cksum_verify(buf); 5515 arc_buf_unwatch(buf); 5516 5517 mutex_exit(hash_lock); 5518 5519 /* 5520 * Allocate a new hdr. The new hdr will contain a b_pabd 5521 * buffer which will be freed in arc_write(). 5522 */ 5523 nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type); 5524 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 5525 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 5526 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt)); 5527 VERIFY3U(nhdr->b_type, ==, type); 5528 ASSERT(!HDR_SHARED_DATA(nhdr)); 5529 5530 nhdr->b_l1hdr.b_buf = buf; 5531 nhdr->b_l1hdr.b_bufcnt = 1; 5532 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 5533 buf->b_hdr = nhdr; 5534 5535 mutex_exit(&buf->b_evict_lock); 5536 (void) refcount_add_many(&arc_anon->arcs_size, 5537 arc_buf_size(buf), buf); 5538 } else { 5539 mutex_exit(&buf->b_evict_lock); 5540 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 5541 /* protected by hash lock, or hdr is on arc_anon */ 5542 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 5543 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5544 arc_change_state(arc_anon, hdr, hash_lock); 5545 hdr->b_l1hdr.b_arc_access = 0; 5546 mutex_exit(hash_lock); 5547 5548 buf_discard_identity(hdr); 5549 arc_buf_thaw(buf); 5550 } 5551 } 5552 5553 int 5554 arc_released(arc_buf_t *buf) 5555 { 5556 int released; 5557 5558 mutex_enter(&buf->b_evict_lock); 5559 released = (buf->b_data != NULL && 5560 buf->b_hdr->b_l1hdr.b_state == arc_anon); 5561 mutex_exit(&buf->b_evict_lock); 5562 return (released); 5563 } 5564 5565 #ifdef ZFS_DEBUG 5566 int 5567 arc_referenced(arc_buf_t *buf) 5568 { 5569 int referenced; 5570 5571 mutex_enter(&buf->b_evict_lock); 5572 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 5573 mutex_exit(&buf->b_evict_lock); 5574 return (referenced); 5575 } 5576 #endif 5577 5578 static void 5579 arc_write_ready(zio_t *zio) 5580 { 5581 arc_write_callback_t *callback = zio->io_private; 5582 arc_buf_t *buf = callback->awcb_buf; 5583 arc_buf_hdr_t *hdr = buf->b_hdr; 5584 uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp); 5585 5586 ASSERT(HDR_HAS_L1HDR(hdr)); 5587 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 5588 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 5589 5590 /* 5591 * If we're reexecuting this zio because the pool suspended, then 5592 * cleanup any state that was previously set the first time the 5593 * callback was invoked. 5594 */ 5595 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 5596 arc_cksum_free(hdr); 5597 arc_buf_unwatch(buf); 5598 if (hdr->b_l1hdr.b_pabd != NULL) { 5599 if (arc_buf_is_shared(buf)) { 5600 arc_unshare_buf(hdr, buf); 5601 } else { 5602 arc_hdr_free_pabd(hdr); 5603 } 5604 } 5605 } 5606 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 5607 ASSERT(!HDR_SHARED_DATA(hdr)); 5608 ASSERT(!arc_buf_is_shared(buf)); 5609 5610 callback->awcb_ready(zio, buf, callback->awcb_private); 5611 5612 if (HDR_IO_IN_PROGRESS(hdr)) 5613 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 5614 5615 arc_cksum_compute(buf); 5616 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5617 5618 enum zio_compress compress; 5619 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 5620 compress = ZIO_COMPRESS_OFF; 5621 } else { 5622 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp)); 5623 compress = BP_GET_COMPRESS(zio->io_bp); 5624 } 5625 HDR_SET_PSIZE(hdr, psize); 5626 arc_hdr_set_compress(hdr, compress); 5627 5628 5629 /* 5630 * Fill the hdr with data. If the hdr is compressed, the data we want 5631 * is available from the zio, otherwise we can take it from the buf. 5632 * 5633 * We might be able to share the buf's data with the hdr here. However, 5634 * doing so would cause the ARC to be full of linear ABDs if we write a 5635 * lot of shareable data. As a compromise, we check whether scattered 5636 * ABDs are allowed, and assume that if they are then the user wants 5637 * the ARC to be primarily filled with them regardless of the data being 5638 * written. Therefore, if they're allowed then we allocate one and copy 5639 * the data into it; otherwise, we share the data directly if we can. 5640 */ 5641 if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) { 5642 arc_hdr_alloc_pabd(hdr); 5643 5644 /* 5645 * Ideally, we would always copy the io_abd into b_pabd, but the 5646 * user may have disabled compressed ARC, thus we must check the 5647 * hdr's compression setting rather than the io_bp's. 5648 */ 5649 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) { 5650 ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=, 5651 ZIO_COMPRESS_OFF); 5652 ASSERT3U(psize, >, 0); 5653 5654 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 5655 } else { 5656 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 5657 5658 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 5659 arc_buf_size(buf)); 5660 } 5661 } else { 5662 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 5663 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 5664 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 5665 5666 arc_share_buf(hdr, buf); 5667 } 5668 5669 arc_hdr_verify(hdr, zio->io_bp); 5670 } 5671 5672 static void 5673 arc_write_children_ready(zio_t *zio) 5674 { 5675 arc_write_callback_t *callback = zio->io_private; 5676 arc_buf_t *buf = callback->awcb_buf; 5677 5678 callback->awcb_children_ready(zio, buf, callback->awcb_private); 5679 } 5680 5681 /* 5682 * The SPA calls this callback for each physical write that happens on behalf 5683 * of a logical write. See the comment in dbuf_write_physdone() for details. 5684 */ 5685 static void 5686 arc_write_physdone(zio_t *zio) 5687 { 5688 arc_write_callback_t *cb = zio->io_private; 5689 if (cb->awcb_physdone != NULL) 5690 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 5691 } 5692 5693 static void 5694 arc_write_done(zio_t *zio) 5695 { 5696 arc_write_callback_t *callback = zio->io_private; 5697 arc_buf_t *buf = callback->awcb_buf; 5698 arc_buf_hdr_t *hdr = buf->b_hdr; 5699 5700 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5701 5702 if (zio->io_error == 0) { 5703 arc_hdr_verify(hdr, zio->io_bp); 5704 5705 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 5706 buf_discard_identity(hdr); 5707 } else { 5708 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 5709 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 5710 } 5711 } else { 5712 ASSERT(HDR_EMPTY(hdr)); 5713 } 5714 5715 /* 5716 * If the block to be written was all-zero or compressed enough to be 5717 * embedded in the BP, no write was performed so there will be no 5718 * dva/birth/checksum. The buffer must therefore remain anonymous 5719 * (and uncached). 5720 */ 5721 if (!HDR_EMPTY(hdr)) { 5722 arc_buf_hdr_t *exists; 5723 kmutex_t *hash_lock; 5724 5725 ASSERT3U(zio->io_error, ==, 0); 5726 5727 arc_cksum_verify(buf); 5728 5729 exists = buf_hash_insert(hdr, &hash_lock); 5730 if (exists != NULL) { 5731 /* 5732 * This can only happen if we overwrite for 5733 * sync-to-convergence, because we remove 5734 * buffers from the hash table when we arc_free(). 5735 */ 5736 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 5737 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 5738 panic("bad overwrite, hdr=%p exists=%p", 5739 (void *)hdr, (void *)exists); 5740 ASSERT(refcount_is_zero( 5741 &exists->b_l1hdr.b_refcnt)); 5742 arc_change_state(arc_anon, exists, hash_lock); 5743 mutex_exit(hash_lock); 5744 arc_hdr_destroy(exists); 5745 exists = buf_hash_insert(hdr, &hash_lock); 5746 ASSERT3P(exists, ==, NULL); 5747 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 5748 /* nopwrite */ 5749 ASSERT(zio->io_prop.zp_nopwrite); 5750 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 5751 panic("bad nopwrite, hdr=%p exists=%p", 5752 (void *)hdr, (void *)exists); 5753 } else { 5754 /* Dedup */ 5755 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 5756 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 5757 ASSERT(BP_GET_DEDUP(zio->io_bp)); 5758 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 5759 } 5760 } 5761 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5762 /* if it's not anon, we are doing a scrub */ 5763 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 5764 arc_access(hdr, hash_lock); 5765 mutex_exit(hash_lock); 5766 } else { 5767 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5768 } 5769 5770 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5771 callback->awcb_done(zio, buf, callback->awcb_private); 5772 5773 abd_put(zio->io_abd); 5774 kmem_free(callback, sizeof (arc_write_callback_t)); 5775 } 5776 5777 zio_t * 5778 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 5779 boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready, 5780 arc_done_func_t *children_ready, arc_done_func_t *physdone, 5781 arc_done_func_t *done, void *private, zio_priority_t priority, 5782 int zio_flags, const zbookmark_phys_t *zb) 5783 { 5784 arc_buf_hdr_t *hdr = buf->b_hdr; 5785 arc_write_callback_t *callback; 5786 zio_t *zio; 5787 zio_prop_t localprop = *zp; 5788 5789 ASSERT3P(ready, !=, NULL); 5790 ASSERT3P(done, !=, NULL); 5791 ASSERT(!HDR_IO_ERROR(hdr)); 5792 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5793 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5794 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 5795 if (l2arc) 5796 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5797 if (ARC_BUF_COMPRESSED(buf)) { 5798 /* 5799 * We're writing a pre-compressed buffer. Make the 5800 * compression algorithm requested by the zio_prop_t match 5801 * the pre-compressed buffer's compression algorithm. 5802 */ 5803 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 5804 5805 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 5806 zio_flags |= ZIO_FLAG_RAW; 5807 } 5808 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 5809 callback->awcb_ready = ready; 5810 callback->awcb_children_ready = children_ready; 5811 callback->awcb_physdone = physdone; 5812 callback->awcb_done = done; 5813 callback->awcb_private = private; 5814 callback->awcb_buf = buf; 5815 5816 /* 5817 * The hdr's b_pabd is now stale, free it now. A new data block 5818 * will be allocated when the zio pipeline calls arc_write_ready(). 5819 */ 5820 if (hdr->b_l1hdr.b_pabd != NULL) { 5821 /* 5822 * If the buf is currently sharing the data block with 5823 * the hdr then we need to break that relationship here. 5824 * The hdr will remain with a NULL data pointer and the 5825 * buf will take sole ownership of the block. 5826 */ 5827 if (arc_buf_is_shared(buf)) { 5828 arc_unshare_buf(hdr, buf); 5829 } else { 5830 arc_hdr_free_pabd(hdr); 5831 } 5832 VERIFY3P(buf->b_data, !=, NULL); 5833 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 5834 } 5835 ASSERT(!arc_buf_is_shared(buf)); 5836 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 5837 5838 zio = zio_write(pio, spa, txg, bp, 5839 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 5840 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 5841 (children_ready != NULL) ? arc_write_children_ready : NULL, 5842 arc_write_physdone, arc_write_done, callback, 5843 priority, zio_flags, zb); 5844 5845 return (zio); 5846 } 5847 5848 static int 5849 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg) 5850 { 5851 #ifdef _KERNEL 5852 uint64_t available_memory = ptob(freemem); 5853 5854 #if defined(__i386) 5855 available_memory = 5856 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 5857 #endif 5858 5859 if (freemem > physmem * arc_lotsfree_percent / 100) 5860 return (0); 5861 5862 if (txg > spa->spa_lowmem_last_txg) { 5863 spa->spa_lowmem_last_txg = txg; 5864 spa->spa_lowmem_page_load = 0; 5865 } 5866 /* 5867 * If we are in pageout, we know that memory is already tight, 5868 * the arc is already going to be evicting, so we just want to 5869 * continue to let page writes occur as quickly as possible. 5870 */ 5871 if (curproc == proc_pageout) { 5872 if (spa->spa_lowmem_page_load > 5873 MAX(ptob(minfree), available_memory) / 4) 5874 return (SET_ERROR(ERESTART)); 5875 /* Note: reserve is inflated, so we deflate */ 5876 atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8); 5877 return (0); 5878 } else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) { 5879 /* memory is low, delay before restarting */ 5880 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 5881 return (SET_ERROR(EAGAIN)); 5882 } 5883 spa->spa_lowmem_page_load = 0; 5884 #endif /* _KERNEL */ 5885 return (0); 5886 } 5887 5888 void 5889 arc_tempreserve_clear(uint64_t reserve) 5890 { 5891 atomic_add_64(&arc_tempreserve, -reserve); 5892 ASSERT((int64_t)arc_tempreserve >= 0); 5893 } 5894 5895 int 5896 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 5897 { 5898 int error; 5899 uint64_t anon_size; 5900 5901 if (reserve > arc_c/4 && !arc_no_grow) 5902 arc_c = MIN(arc_c_max, reserve * 4); 5903 if (reserve > arc_c) 5904 return (SET_ERROR(ENOMEM)); 5905 5906 /* 5907 * Don't count loaned bufs as in flight dirty data to prevent long 5908 * network delays from blocking transactions that are ready to be 5909 * assigned to a txg. 5910 */ 5911 5912 /* assert that it has not wrapped around */ 5913 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 5914 5915 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) - 5916 arc_loaned_bytes), 0); 5917 5918 /* 5919 * Writes will, almost always, require additional memory allocations 5920 * in order to compress/encrypt/etc the data. We therefore need to 5921 * make sure that there is sufficient available memory for this. 5922 */ 5923 error = arc_memory_throttle(spa, reserve, txg); 5924 if (error != 0) 5925 return (error); 5926 5927 /* 5928 * Throttle writes when the amount of dirty data in the cache 5929 * gets too large. We try to keep the cache less than half full 5930 * of dirty blocks so that our sync times don't grow too large. 5931 * 5932 * In the case of one pool being built on another pool, we want 5933 * to make sure we don't end up throttling the lower (backing) 5934 * pool when the upper pool is the majority contributor to dirty 5935 * data. To insure we make forward progress during throttling, we 5936 * also check the current pool's net dirty data and only throttle 5937 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 5938 * data in the cache. 5939 * 5940 * Note: if two requests come in concurrently, we might let them 5941 * both succeed, when one of them should fail. Not a huge deal. 5942 */ 5943 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 5944 uint64_t spa_dirty_anon = spa_dirty_data(spa); 5945 5946 if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 && 5947 anon_size > arc_c * zfs_arc_anon_limit_percent / 100 && 5948 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 5949 uint64_t meta_esize = 5950 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 5951 uint64_t data_esize = 5952 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 5953 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 5954 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 5955 arc_tempreserve >> 10, meta_esize >> 10, 5956 data_esize >> 10, reserve >> 10, arc_c >> 10); 5957 return (SET_ERROR(ERESTART)); 5958 } 5959 atomic_add_64(&arc_tempreserve, reserve); 5960 return (0); 5961 } 5962 5963 static void 5964 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 5965 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 5966 { 5967 size->value.ui64 = refcount_count(&state->arcs_size); 5968 evict_data->value.ui64 = 5969 refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 5970 evict_metadata->value.ui64 = 5971 refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 5972 } 5973 5974 static int 5975 arc_kstat_update(kstat_t *ksp, int rw) 5976 { 5977 arc_stats_t *as = ksp->ks_data; 5978 5979 if (rw == KSTAT_WRITE) { 5980 return (EACCES); 5981 } else { 5982 arc_kstat_update_state(arc_anon, 5983 &as->arcstat_anon_size, 5984 &as->arcstat_anon_evictable_data, 5985 &as->arcstat_anon_evictable_metadata); 5986 arc_kstat_update_state(arc_mru, 5987 &as->arcstat_mru_size, 5988 &as->arcstat_mru_evictable_data, 5989 &as->arcstat_mru_evictable_metadata); 5990 arc_kstat_update_state(arc_mru_ghost, 5991 &as->arcstat_mru_ghost_size, 5992 &as->arcstat_mru_ghost_evictable_data, 5993 &as->arcstat_mru_ghost_evictable_metadata); 5994 arc_kstat_update_state(arc_mfu, 5995 &as->arcstat_mfu_size, 5996 &as->arcstat_mfu_evictable_data, 5997 &as->arcstat_mfu_evictable_metadata); 5998 arc_kstat_update_state(arc_mfu_ghost, 5999 &as->arcstat_mfu_ghost_size, 6000 &as->arcstat_mfu_ghost_evictable_data, 6001 &as->arcstat_mfu_ghost_evictable_metadata); 6002 6003 ARCSTAT(arcstat_size) = aggsum_value(&arc_size); 6004 ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used); 6005 ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size); 6006 ARCSTAT(arcstat_metadata_size) = 6007 aggsum_value(&astat_metadata_size); 6008 ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size); 6009 ARCSTAT(arcstat_other_size) = aggsum_value(&astat_other_size); 6010 ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size); 6011 } 6012 6013 return (0); 6014 } 6015 6016 /* 6017 * This function *must* return indices evenly distributed between all 6018 * sublists of the multilist. This is needed due to how the ARC eviction 6019 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 6020 * distributed between all sublists and uses this assumption when 6021 * deciding which sublist to evict from and how much to evict from it. 6022 */ 6023 unsigned int 6024 arc_state_multilist_index_func(multilist_t *ml, void *obj) 6025 { 6026 arc_buf_hdr_t *hdr = obj; 6027 6028 /* 6029 * We rely on b_dva to generate evenly distributed index 6030 * numbers using buf_hash below. So, as an added precaution, 6031 * let's make sure we never add empty buffers to the arc lists. 6032 */ 6033 ASSERT(!HDR_EMPTY(hdr)); 6034 6035 /* 6036 * The assumption here, is the hash value for a given 6037 * arc_buf_hdr_t will remain constant throughout it's lifetime 6038 * (i.e. it's b_spa, b_dva, and b_birth fields don't change). 6039 * Thus, we don't need to store the header's sublist index 6040 * on insertion, as this index can be recalculated on removal. 6041 * 6042 * Also, the low order bits of the hash value are thought to be 6043 * distributed evenly. Otherwise, in the case that the multilist 6044 * has a power of two number of sublists, each sublists' usage 6045 * would not be evenly distributed. 6046 */ 6047 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 6048 multilist_get_num_sublists(ml)); 6049 } 6050 6051 static void 6052 arc_state_init(void) 6053 { 6054 arc_anon = &ARC_anon; 6055 arc_mru = &ARC_mru; 6056 arc_mru_ghost = &ARC_mru_ghost; 6057 arc_mfu = &ARC_mfu; 6058 arc_mfu_ghost = &ARC_mfu_ghost; 6059 arc_l2c_only = &ARC_l2c_only; 6060 6061 arc_mru->arcs_list[ARC_BUFC_METADATA] = 6062 multilist_create(sizeof (arc_buf_hdr_t), 6063 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6064 arc_state_multilist_index_func); 6065 arc_mru->arcs_list[ARC_BUFC_DATA] = 6066 multilist_create(sizeof (arc_buf_hdr_t), 6067 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6068 arc_state_multilist_index_func); 6069 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] = 6070 multilist_create(sizeof (arc_buf_hdr_t), 6071 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6072 arc_state_multilist_index_func); 6073 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] = 6074 multilist_create(sizeof (arc_buf_hdr_t), 6075 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6076 arc_state_multilist_index_func); 6077 arc_mfu->arcs_list[ARC_BUFC_METADATA] = 6078 multilist_create(sizeof (arc_buf_hdr_t), 6079 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6080 arc_state_multilist_index_func); 6081 arc_mfu->arcs_list[ARC_BUFC_DATA] = 6082 multilist_create(sizeof (arc_buf_hdr_t), 6083 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6084 arc_state_multilist_index_func); 6085 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] = 6086 multilist_create(sizeof (arc_buf_hdr_t), 6087 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6088 arc_state_multilist_index_func); 6089 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] = 6090 multilist_create(sizeof (arc_buf_hdr_t), 6091 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6092 arc_state_multilist_index_func); 6093 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] = 6094 multilist_create(sizeof (arc_buf_hdr_t), 6095 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6096 arc_state_multilist_index_func); 6097 arc_l2c_only->arcs_list[ARC_BUFC_DATA] = 6098 multilist_create(sizeof (arc_buf_hdr_t), 6099 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6100 arc_state_multilist_index_func); 6101 6102 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 6103 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 6104 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 6105 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 6106 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 6107 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 6108 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 6109 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 6110 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 6111 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 6112 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 6113 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 6114 6115 refcount_create(&arc_anon->arcs_size); 6116 refcount_create(&arc_mru->arcs_size); 6117 refcount_create(&arc_mru_ghost->arcs_size); 6118 refcount_create(&arc_mfu->arcs_size); 6119 refcount_create(&arc_mfu_ghost->arcs_size); 6120 refcount_create(&arc_l2c_only->arcs_size); 6121 6122 aggsum_init(&arc_meta_used, 0); 6123 aggsum_init(&arc_size, 0); 6124 aggsum_init(&astat_data_size, 0); 6125 aggsum_init(&astat_metadata_size, 0); 6126 aggsum_init(&astat_hdr_size, 0); 6127 aggsum_init(&astat_other_size, 0); 6128 aggsum_init(&astat_l2_hdr_size, 0); 6129 } 6130 6131 static void 6132 arc_state_fini(void) 6133 { 6134 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 6135 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 6136 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 6137 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 6138 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 6139 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 6140 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 6141 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 6142 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 6143 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 6144 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 6145 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 6146 6147 refcount_destroy(&arc_anon->arcs_size); 6148 refcount_destroy(&arc_mru->arcs_size); 6149 refcount_destroy(&arc_mru_ghost->arcs_size); 6150 refcount_destroy(&arc_mfu->arcs_size); 6151 refcount_destroy(&arc_mfu_ghost->arcs_size); 6152 refcount_destroy(&arc_l2c_only->arcs_size); 6153 6154 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]); 6155 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 6156 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]); 6157 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 6158 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]); 6159 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 6160 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]); 6161 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 6162 6163 aggsum_fini(&arc_meta_used); 6164 aggsum_fini(&arc_size); 6165 aggsum_fini(&astat_data_size); 6166 aggsum_fini(&astat_metadata_size); 6167 aggsum_fini(&astat_hdr_size); 6168 aggsum_fini(&astat_other_size); 6169 aggsum_fini(&astat_l2_hdr_size); 6170 } 6171 6172 uint64_t 6173 arc_max_bytes(void) 6174 { 6175 return (arc_c_max); 6176 } 6177 6178 void 6179 arc_init(void) 6180 { 6181 /* 6182 * allmem is "all memory that we could possibly use". 6183 */ 6184 #ifdef _KERNEL 6185 uint64_t allmem = ptob(physmem - swapfs_minfree); 6186 #else 6187 uint64_t allmem = (physmem * PAGESIZE) / 2; 6188 #endif 6189 mutex_init(&arc_adjust_lock, NULL, MUTEX_DEFAULT, NULL); 6190 cv_init(&arc_adjust_waiters_cv, NULL, CV_DEFAULT, NULL); 6191 6192 /* Convert seconds to clock ticks */ 6193 arc_min_prefetch_lifespan = 1 * hz; 6194 6195 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 6196 arc_c_min = MAX(allmem / 32, 64 << 20); 6197 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 6198 if (allmem >= 1 << 30) 6199 arc_c_max = allmem - (1 << 30); 6200 else 6201 arc_c_max = arc_c_min; 6202 arc_c_max = MAX(allmem * 3 / 4, arc_c_max); 6203 6204 /* 6205 * In userland, there's only the memory pressure that we artificially 6206 * create (see arc_available_memory()). Don't let arc_c get too 6207 * small, because it can cause transactions to be larger than 6208 * arc_c, causing arc_tempreserve_space() to fail. 6209 */ 6210 #ifndef _KERNEL 6211 arc_c_min = arc_c_max / 2; 6212 #endif 6213 6214 /* 6215 * Allow the tunables to override our calculations if they are 6216 * reasonable (ie. over 64MB) 6217 */ 6218 if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) { 6219 arc_c_max = zfs_arc_max; 6220 arc_c_min = MIN(arc_c_min, arc_c_max); 6221 } 6222 if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max) 6223 arc_c_min = zfs_arc_min; 6224 6225 arc_c = arc_c_max; 6226 arc_p = (arc_c >> 1); 6227 6228 /* limit meta-data to 1/4 of the arc capacity */ 6229 arc_meta_limit = arc_c_max / 4; 6230 6231 #ifdef _KERNEL 6232 /* 6233 * Metadata is stored in the kernel's heap. Don't let us 6234 * use more than half the heap for the ARC. 6235 */ 6236 arc_meta_limit = MIN(arc_meta_limit, 6237 vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2); 6238 #endif 6239 6240 /* Allow the tunable to override if it is reasonable */ 6241 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 6242 arc_meta_limit = zfs_arc_meta_limit; 6243 6244 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 6245 arc_c_min = arc_meta_limit / 2; 6246 6247 if (zfs_arc_meta_min > 0) { 6248 arc_meta_min = zfs_arc_meta_min; 6249 } else { 6250 arc_meta_min = arc_c_min / 2; 6251 } 6252 6253 if (zfs_arc_grow_retry > 0) 6254 arc_grow_retry = zfs_arc_grow_retry; 6255 6256 if (zfs_arc_shrink_shift > 0) 6257 arc_shrink_shift = zfs_arc_shrink_shift; 6258 6259 /* 6260 * Ensure that arc_no_grow_shift is less than arc_shrink_shift. 6261 */ 6262 if (arc_no_grow_shift >= arc_shrink_shift) 6263 arc_no_grow_shift = arc_shrink_shift - 1; 6264 6265 if (zfs_arc_p_min_shift > 0) 6266 arc_p_min_shift = zfs_arc_p_min_shift; 6267 6268 /* if kmem_flags are set, lets try to use less memory */ 6269 if (kmem_debugging()) 6270 arc_c = arc_c / 2; 6271 if (arc_c < arc_c_min) 6272 arc_c = arc_c_min; 6273 6274 arc_state_init(); 6275 6276 /* 6277 * The arc must be "uninitialized", so that hdr_recl() (which is 6278 * registered by buf_init()) will not access arc_reap_zthr before 6279 * it is created. 6280 */ 6281 ASSERT(!arc_initialized); 6282 buf_init(); 6283 6284 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 6285 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 6286 6287 if (arc_ksp != NULL) { 6288 arc_ksp->ks_data = &arc_stats; 6289 arc_ksp->ks_update = arc_kstat_update; 6290 kstat_install(arc_ksp); 6291 } 6292 6293 arc_adjust_zthr = zthr_create(arc_adjust_cb_check, 6294 arc_adjust_cb, NULL); 6295 arc_reap_zthr = zthr_create_timer(arc_reap_cb_check, 6296 arc_reap_cb, NULL, SEC2NSEC(1)); 6297 6298 arc_initialized = B_TRUE; 6299 arc_warm = B_FALSE; 6300 6301 /* 6302 * Calculate maximum amount of dirty data per pool. 6303 * 6304 * If it has been set by /etc/system, take that. 6305 * Otherwise, use a percentage of physical memory defined by 6306 * zfs_dirty_data_max_percent (default 10%) with a cap at 6307 * zfs_dirty_data_max_max (default 4GB). 6308 */ 6309 if (zfs_dirty_data_max == 0) { 6310 zfs_dirty_data_max = physmem * PAGESIZE * 6311 zfs_dirty_data_max_percent / 100; 6312 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 6313 zfs_dirty_data_max_max); 6314 } 6315 } 6316 6317 void 6318 arc_fini(void) 6319 { 6320 /* Use B_TRUE to ensure *all* buffers are evicted */ 6321 arc_flush(NULL, B_TRUE); 6322 6323 arc_initialized = B_FALSE; 6324 6325 if (arc_ksp != NULL) { 6326 kstat_delete(arc_ksp); 6327 arc_ksp = NULL; 6328 } 6329 6330 (void) zthr_cancel(arc_adjust_zthr); 6331 zthr_destroy(arc_adjust_zthr); 6332 6333 (void) zthr_cancel(arc_reap_zthr); 6334 zthr_destroy(arc_reap_zthr); 6335 6336 mutex_destroy(&arc_adjust_lock); 6337 cv_destroy(&arc_adjust_waiters_cv); 6338 6339 /* 6340 * buf_fini() must proceed arc_state_fini() because buf_fin() may 6341 * trigger the release of kmem magazines, which can callback to 6342 * arc_space_return() which accesses aggsums freed in act_state_fini(). 6343 */ 6344 buf_fini(); 6345 arc_state_fini(); 6346 6347 ASSERT0(arc_loaned_bytes); 6348 } 6349 6350 /* 6351 * Level 2 ARC 6352 * 6353 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 6354 * It uses dedicated storage devices to hold cached data, which are populated 6355 * using large infrequent writes. The main role of this cache is to boost 6356 * the performance of random read workloads. The intended L2ARC devices 6357 * include short-stroked disks, solid state disks, and other media with 6358 * substantially faster read latency than disk. 6359 * 6360 * +-----------------------+ 6361 * | ARC | 6362 * +-----------------------+ 6363 * | ^ ^ 6364 * | | | 6365 * l2arc_feed_thread() arc_read() 6366 * | | | 6367 * | l2arc read | 6368 * V | | 6369 * +---------------+ | 6370 * | L2ARC | | 6371 * +---------------+ | 6372 * | ^ | 6373 * l2arc_write() | | 6374 * | | | 6375 * V | | 6376 * +-------+ +-------+ 6377 * | vdev | | vdev | 6378 * | cache | | cache | 6379 * +-------+ +-------+ 6380 * +=========+ .-----. 6381 * : L2ARC : |-_____-| 6382 * : devices : | Disks | 6383 * +=========+ `-_____-' 6384 * 6385 * Read requests are satisfied from the following sources, in order: 6386 * 6387 * 1) ARC 6388 * 2) vdev cache of L2ARC devices 6389 * 3) L2ARC devices 6390 * 4) vdev cache of disks 6391 * 5) disks 6392 * 6393 * Some L2ARC device types exhibit extremely slow write performance. 6394 * To accommodate for this there are some significant differences between 6395 * the L2ARC and traditional cache design: 6396 * 6397 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 6398 * the ARC behave as usual, freeing buffers and placing headers on ghost 6399 * lists. The ARC does not send buffers to the L2ARC during eviction as 6400 * this would add inflated write latencies for all ARC memory pressure. 6401 * 6402 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 6403 * It does this by periodically scanning buffers from the eviction-end of 6404 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 6405 * not already there. It scans until a headroom of buffers is satisfied, 6406 * which itself is a buffer for ARC eviction. If a compressible buffer is 6407 * found during scanning and selected for writing to an L2ARC device, we 6408 * temporarily boost scanning headroom during the next scan cycle to make 6409 * sure we adapt to compression effects (which might significantly reduce 6410 * the data volume we write to L2ARC). The thread that does this is 6411 * l2arc_feed_thread(), illustrated below; example sizes are included to 6412 * provide a better sense of ratio than this diagram: 6413 * 6414 * head --> tail 6415 * +---------------------+----------+ 6416 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 6417 * +---------------------+----------+ | o L2ARC eligible 6418 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 6419 * +---------------------+----------+ | 6420 * 15.9 Gbytes ^ 32 Mbytes | 6421 * headroom | 6422 * l2arc_feed_thread() 6423 * | 6424 * l2arc write hand <--[oooo]--' 6425 * | 8 Mbyte 6426 * | write max 6427 * V 6428 * +==============================+ 6429 * L2ARC dev |####|#|###|###| |####| ... | 6430 * +==============================+ 6431 * 32 Gbytes 6432 * 6433 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 6434 * evicted, then the L2ARC has cached a buffer much sooner than it probably 6435 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 6436 * safe to say that this is an uncommon case, since buffers at the end of 6437 * the ARC lists have moved there due to inactivity. 6438 * 6439 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 6440 * then the L2ARC simply misses copying some buffers. This serves as a 6441 * pressure valve to prevent heavy read workloads from both stalling the ARC 6442 * with waits and clogging the L2ARC with writes. This also helps prevent 6443 * the potential for the L2ARC to churn if it attempts to cache content too 6444 * quickly, such as during backups of the entire pool. 6445 * 6446 * 5. After system boot and before the ARC has filled main memory, there are 6447 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 6448 * lists can remain mostly static. Instead of searching from tail of these 6449 * lists as pictured, the l2arc_feed_thread() will search from the list heads 6450 * for eligible buffers, greatly increasing its chance of finding them. 6451 * 6452 * The L2ARC device write speed is also boosted during this time so that 6453 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 6454 * there are no L2ARC reads, and no fear of degrading read performance 6455 * through increased writes. 6456 * 6457 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 6458 * the vdev queue can aggregate them into larger and fewer writes. Each 6459 * device is written to in a rotor fashion, sweeping writes through 6460 * available space then repeating. 6461 * 6462 * 7. The L2ARC does not store dirty content. It never needs to flush 6463 * write buffers back to disk based storage. 6464 * 6465 * 8. If an ARC buffer is written (and dirtied) which also exists in the 6466 * L2ARC, the now stale L2ARC buffer is immediately dropped. 6467 * 6468 * The performance of the L2ARC can be tweaked by a number of tunables, which 6469 * may be necessary for different workloads: 6470 * 6471 * l2arc_write_max max write bytes per interval 6472 * l2arc_write_boost extra write bytes during device warmup 6473 * l2arc_noprefetch skip caching prefetched buffers 6474 * l2arc_headroom number of max device writes to precache 6475 * l2arc_headroom_boost when we find compressed buffers during ARC 6476 * scanning, we multiply headroom by this 6477 * percentage factor for the next scan cycle, 6478 * since more compressed buffers are likely to 6479 * be present 6480 * l2arc_feed_secs seconds between L2ARC writing 6481 * 6482 * Tunables may be removed or added as future performance improvements are 6483 * integrated, and also may become zpool properties. 6484 * 6485 * There are three key functions that control how the L2ARC warms up: 6486 * 6487 * l2arc_write_eligible() check if a buffer is eligible to cache 6488 * l2arc_write_size() calculate how much to write 6489 * l2arc_write_interval() calculate sleep delay between writes 6490 * 6491 * These three functions determine what to write, how much, and how quickly 6492 * to send writes. 6493 */ 6494 6495 static boolean_t 6496 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 6497 { 6498 /* 6499 * A buffer is *not* eligible for the L2ARC if it: 6500 * 1. belongs to a different spa. 6501 * 2. is already cached on the L2ARC. 6502 * 3. has an I/O in progress (it may be an incomplete read). 6503 * 4. is flagged not eligible (zfs property). 6504 */ 6505 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 6506 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 6507 return (B_FALSE); 6508 6509 return (B_TRUE); 6510 } 6511 6512 static uint64_t 6513 l2arc_write_size(void) 6514 { 6515 uint64_t size; 6516 6517 /* 6518 * Make sure our globals have meaningful values in case the user 6519 * altered them. 6520 */ 6521 size = l2arc_write_max; 6522 if (size == 0) { 6523 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 6524 "be greater than zero, resetting it to the default (%d)", 6525 L2ARC_WRITE_SIZE); 6526 size = l2arc_write_max = L2ARC_WRITE_SIZE; 6527 } 6528 6529 if (arc_warm == B_FALSE) 6530 size += l2arc_write_boost; 6531 6532 return (size); 6533 6534 } 6535 6536 static clock_t 6537 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 6538 { 6539 clock_t interval, next, now; 6540 6541 /* 6542 * If the ARC lists are busy, increase our write rate; if the 6543 * lists are stale, idle back. This is achieved by checking 6544 * how much we previously wrote - if it was more than half of 6545 * what we wanted, schedule the next write much sooner. 6546 */ 6547 if (l2arc_feed_again && wrote > (wanted / 2)) 6548 interval = (hz * l2arc_feed_min_ms) / 1000; 6549 else 6550 interval = hz * l2arc_feed_secs; 6551 6552 now = ddi_get_lbolt(); 6553 next = MAX(now, MIN(now + interval, began + interval)); 6554 6555 return (next); 6556 } 6557 6558 /* 6559 * Cycle through L2ARC devices. This is how L2ARC load balances. 6560 * If a device is returned, this also returns holding the spa config lock. 6561 */ 6562 static l2arc_dev_t * 6563 l2arc_dev_get_next(void) 6564 { 6565 l2arc_dev_t *first, *next = NULL; 6566 6567 /* 6568 * Lock out the removal of spas (spa_namespace_lock), then removal 6569 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 6570 * both locks will be dropped and a spa config lock held instead. 6571 */ 6572 mutex_enter(&spa_namespace_lock); 6573 mutex_enter(&l2arc_dev_mtx); 6574 6575 /* if there are no vdevs, there is nothing to do */ 6576 if (l2arc_ndev == 0) 6577 goto out; 6578 6579 first = NULL; 6580 next = l2arc_dev_last; 6581 do { 6582 /* loop around the list looking for a non-faulted vdev */ 6583 if (next == NULL) { 6584 next = list_head(l2arc_dev_list); 6585 } else { 6586 next = list_next(l2arc_dev_list, next); 6587 if (next == NULL) 6588 next = list_head(l2arc_dev_list); 6589 } 6590 6591 /* if we have come back to the start, bail out */ 6592 if (first == NULL) 6593 first = next; 6594 else if (next == first) 6595 break; 6596 6597 } while (vdev_is_dead(next->l2ad_vdev)); 6598 6599 /* if we were unable to find any usable vdevs, return NULL */ 6600 if (vdev_is_dead(next->l2ad_vdev)) 6601 next = NULL; 6602 6603 l2arc_dev_last = next; 6604 6605 out: 6606 mutex_exit(&l2arc_dev_mtx); 6607 6608 /* 6609 * Grab the config lock to prevent the 'next' device from being 6610 * removed while we are writing to it. 6611 */ 6612 if (next != NULL) 6613 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 6614 mutex_exit(&spa_namespace_lock); 6615 6616 return (next); 6617 } 6618 6619 /* 6620 * Free buffers that were tagged for destruction. 6621 */ 6622 static void 6623 l2arc_do_free_on_write() 6624 { 6625 list_t *buflist; 6626 l2arc_data_free_t *df, *df_prev; 6627 6628 mutex_enter(&l2arc_free_on_write_mtx); 6629 buflist = l2arc_free_on_write; 6630 6631 for (df = list_tail(buflist); df; df = df_prev) { 6632 df_prev = list_prev(buflist, df); 6633 ASSERT3P(df->l2df_abd, !=, NULL); 6634 abd_free(df->l2df_abd); 6635 list_remove(buflist, df); 6636 kmem_free(df, sizeof (l2arc_data_free_t)); 6637 } 6638 6639 mutex_exit(&l2arc_free_on_write_mtx); 6640 } 6641 6642 /* 6643 * A write to a cache device has completed. Update all headers to allow 6644 * reads from these buffers to begin. 6645 */ 6646 static void 6647 l2arc_write_done(zio_t *zio) 6648 { 6649 l2arc_write_callback_t *cb; 6650 l2arc_dev_t *dev; 6651 list_t *buflist; 6652 arc_buf_hdr_t *head, *hdr, *hdr_prev; 6653 kmutex_t *hash_lock; 6654 int64_t bytes_dropped = 0; 6655 6656 cb = zio->io_private; 6657 ASSERT3P(cb, !=, NULL); 6658 dev = cb->l2wcb_dev; 6659 ASSERT3P(dev, !=, NULL); 6660 head = cb->l2wcb_head; 6661 ASSERT3P(head, !=, NULL); 6662 buflist = &dev->l2ad_buflist; 6663 ASSERT3P(buflist, !=, NULL); 6664 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 6665 l2arc_write_callback_t *, cb); 6666 6667 if (zio->io_error != 0) 6668 ARCSTAT_BUMP(arcstat_l2_writes_error); 6669 6670 /* 6671 * All writes completed, or an error was hit. 6672 */ 6673 top: 6674 mutex_enter(&dev->l2ad_mtx); 6675 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 6676 hdr_prev = list_prev(buflist, hdr); 6677 6678 hash_lock = HDR_LOCK(hdr); 6679 6680 /* 6681 * We cannot use mutex_enter or else we can deadlock 6682 * with l2arc_write_buffers (due to swapping the order 6683 * the hash lock and l2ad_mtx are taken). 6684 */ 6685 if (!mutex_tryenter(hash_lock)) { 6686 /* 6687 * Missed the hash lock. We must retry so we 6688 * don't leave the ARC_FLAG_L2_WRITING bit set. 6689 */ 6690 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 6691 6692 /* 6693 * We don't want to rescan the headers we've 6694 * already marked as having been written out, so 6695 * we reinsert the head node so we can pick up 6696 * where we left off. 6697 */ 6698 list_remove(buflist, head); 6699 list_insert_after(buflist, hdr, head); 6700 6701 mutex_exit(&dev->l2ad_mtx); 6702 6703 /* 6704 * We wait for the hash lock to become available 6705 * to try and prevent busy waiting, and increase 6706 * the chance we'll be able to acquire the lock 6707 * the next time around. 6708 */ 6709 mutex_enter(hash_lock); 6710 mutex_exit(hash_lock); 6711 goto top; 6712 } 6713 6714 /* 6715 * We could not have been moved into the arc_l2c_only 6716 * state while in-flight due to our ARC_FLAG_L2_WRITING 6717 * bit being set. Let's just ensure that's being enforced. 6718 */ 6719 ASSERT(HDR_HAS_L1HDR(hdr)); 6720 6721 if (zio->io_error != 0) { 6722 /* 6723 * Error - drop L2ARC entry. 6724 */ 6725 list_remove(buflist, hdr); 6726 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 6727 6728 ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr)); 6729 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr)); 6730 6731 bytes_dropped += arc_hdr_size(hdr); 6732 (void) refcount_remove_many(&dev->l2ad_alloc, 6733 arc_hdr_size(hdr), hdr); 6734 } 6735 6736 /* 6737 * Allow ARC to begin reads and ghost list evictions to 6738 * this L2ARC entry. 6739 */ 6740 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 6741 6742 mutex_exit(hash_lock); 6743 } 6744 6745 atomic_inc_64(&l2arc_writes_done); 6746 list_remove(buflist, head); 6747 ASSERT(!HDR_HAS_L1HDR(head)); 6748 kmem_cache_free(hdr_l2only_cache, head); 6749 mutex_exit(&dev->l2ad_mtx); 6750 6751 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 6752 6753 l2arc_do_free_on_write(); 6754 6755 kmem_free(cb, sizeof (l2arc_write_callback_t)); 6756 } 6757 6758 /* 6759 * A read to a cache device completed. Validate buffer contents before 6760 * handing over to the regular ARC routines. 6761 */ 6762 static void 6763 l2arc_read_done(zio_t *zio) 6764 { 6765 l2arc_read_callback_t *cb; 6766 arc_buf_hdr_t *hdr; 6767 kmutex_t *hash_lock; 6768 boolean_t valid_cksum; 6769 6770 ASSERT3P(zio->io_vd, !=, NULL); 6771 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 6772 6773 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 6774 6775 cb = zio->io_private; 6776 ASSERT3P(cb, !=, NULL); 6777 hdr = cb->l2rcb_hdr; 6778 ASSERT3P(hdr, !=, NULL); 6779 6780 hash_lock = HDR_LOCK(hdr); 6781 mutex_enter(hash_lock); 6782 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6783 6784 /* 6785 * If the data was read into a temporary buffer, 6786 * move it and free the buffer. 6787 */ 6788 if (cb->l2rcb_abd != NULL) { 6789 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 6790 if (zio->io_error == 0) { 6791 abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd, 6792 arc_hdr_size(hdr)); 6793 } 6794 6795 /* 6796 * The following must be done regardless of whether 6797 * there was an error: 6798 * - free the temporary buffer 6799 * - point zio to the real ARC buffer 6800 * - set zio size accordingly 6801 * These are required because zio is either re-used for 6802 * an I/O of the block in the case of the error 6803 * or the zio is passed to arc_read_done() and it 6804 * needs real data. 6805 */ 6806 abd_free(cb->l2rcb_abd); 6807 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 6808 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 6809 } 6810 6811 ASSERT3P(zio->io_abd, !=, NULL); 6812 6813 /* 6814 * Check this survived the L2ARC journey. 6815 */ 6816 ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd); 6817 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 6818 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 6819 6820 valid_cksum = arc_cksum_is_equal(hdr, zio); 6821 if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 6822 mutex_exit(hash_lock); 6823 zio->io_private = hdr; 6824 arc_read_done(zio); 6825 } else { 6826 mutex_exit(hash_lock); 6827 /* 6828 * Buffer didn't survive caching. Increment stats and 6829 * reissue to the original storage device. 6830 */ 6831 if (zio->io_error != 0) { 6832 ARCSTAT_BUMP(arcstat_l2_io_error); 6833 } else { 6834 zio->io_error = SET_ERROR(EIO); 6835 } 6836 if (!valid_cksum) 6837 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 6838 6839 /* 6840 * If there's no waiter, issue an async i/o to the primary 6841 * storage now. If there *is* a waiter, the caller must 6842 * issue the i/o in a context where it's OK to block. 6843 */ 6844 if (zio->io_waiter == NULL) { 6845 zio_t *pio = zio_unique_parent(zio); 6846 6847 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 6848 6849 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp, 6850 hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done, 6851 hdr, zio->io_priority, cb->l2rcb_flags, 6852 &cb->l2rcb_zb)); 6853 } 6854 } 6855 6856 kmem_free(cb, sizeof (l2arc_read_callback_t)); 6857 } 6858 6859 /* 6860 * This is the list priority from which the L2ARC will search for pages to 6861 * cache. This is used within loops (0..3) to cycle through lists in the 6862 * desired order. This order can have a significant effect on cache 6863 * performance. 6864 * 6865 * Currently the metadata lists are hit first, MFU then MRU, followed by 6866 * the data lists. This function returns a locked list, and also returns 6867 * the lock pointer. 6868 */ 6869 static multilist_sublist_t * 6870 l2arc_sublist_lock(int list_num) 6871 { 6872 multilist_t *ml = NULL; 6873 unsigned int idx; 6874 6875 ASSERT(list_num >= 0 && list_num <= 3); 6876 6877 switch (list_num) { 6878 case 0: 6879 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA]; 6880 break; 6881 case 1: 6882 ml = arc_mru->arcs_list[ARC_BUFC_METADATA]; 6883 break; 6884 case 2: 6885 ml = arc_mfu->arcs_list[ARC_BUFC_DATA]; 6886 break; 6887 case 3: 6888 ml = arc_mru->arcs_list[ARC_BUFC_DATA]; 6889 break; 6890 } 6891 6892 /* 6893 * Return a randomly-selected sublist. This is acceptable 6894 * because the caller feeds only a little bit of data for each 6895 * call (8MB). Subsequent calls will result in different 6896 * sublists being selected. 6897 */ 6898 idx = multilist_get_random_index(ml); 6899 return (multilist_sublist_lock(ml, idx)); 6900 } 6901 6902 /* 6903 * Evict buffers from the device write hand to the distance specified in 6904 * bytes. This distance may span populated buffers, it may span nothing. 6905 * This is clearing a region on the L2ARC device ready for writing. 6906 * If the 'all' boolean is set, every buffer is evicted. 6907 */ 6908 static void 6909 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 6910 { 6911 list_t *buflist; 6912 arc_buf_hdr_t *hdr, *hdr_prev; 6913 kmutex_t *hash_lock; 6914 uint64_t taddr; 6915 6916 buflist = &dev->l2ad_buflist; 6917 6918 if (!all && dev->l2ad_first) { 6919 /* 6920 * This is the first sweep through the device. There is 6921 * nothing to evict. 6922 */ 6923 return; 6924 } 6925 6926 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 6927 /* 6928 * When nearing the end of the device, evict to the end 6929 * before the device write hand jumps to the start. 6930 */ 6931 taddr = dev->l2ad_end; 6932 } else { 6933 taddr = dev->l2ad_hand + distance; 6934 } 6935 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 6936 uint64_t, taddr, boolean_t, all); 6937 6938 top: 6939 mutex_enter(&dev->l2ad_mtx); 6940 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 6941 hdr_prev = list_prev(buflist, hdr); 6942 6943 hash_lock = HDR_LOCK(hdr); 6944 6945 /* 6946 * We cannot use mutex_enter or else we can deadlock 6947 * with l2arc_write_buffers (due to swapping the order 6948 * the hash lock and l2ad_mtx are taken). 6949 */ 6950 if (!mutex_tryenter(hash_lock)) { 6951 /* 6952 * Missed the hash lock. Retry. 6953 */ 6954 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 6955 mutex_exit(&dev->l2ad_mtx); 6956 mutex_enter(hash_lock); 6957 mutex_exit(hash_lock); 6958 goto top; 6959 } 6960 6961 /* 6962 * A header can't be on this list if it doesn't have L2 header. 6963 */ 6964 ASSERT(HDR_HAS_L2HDR(hdr)); 6965 6966 /* Ensure this header has finished being written. */ 6967 ASSERT(!HDR_L2_WRITING(hdr)); 6968 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 6969 6970 if (!all && (hdr->b_l2hdr.b_daddr >= taddr || 6971 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 6972 /* 6973 * We've evicted to the target address, 6974 * or the end of the device. 6975 */ 6976 mutex_exit(hash_lock); 6977 break; 6978 } 6979 6980 if (!HDR_HAS_L1HDR(hdr)) { 6981 ASSERT(!HDR_L2_READING(hdr)); 6982 /* 6983 * This doesn't exist in the ARC. Destroy. 6984 * arc_hdr_destroy() will call list_remove() 6985 * and decrement arcstat_l2_lsize. 6986 */ 6987 arc_change_state(arc_anon, hdr, hash_lock); 6988 arc_hdr_destroy(hdr); 6989 } else { 6990 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 6991 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 6992 /* 6993 * Invalidate issued or about to be issued 6994 * reads, since we may be about to write 6995 * over this location. 6996 */ 6997 if (HDR_L2_READING(hdr)) { 6998 ARCSTAT_BUMP(arcstat_l2_evict_reading); 6999 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 7000 } 7001 7002 arc_hdr_l2hdr_destroy(hdr); 7003 } 7004 mutex_exit(hash_lock); 7005 } 7006 mutex_exit(&dev->l2ad_mtx); 7007 } 7008 7009 /* 7010 * Find and write ARC buffers to the L2ARC device. 7011 * 7012 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 7013 * for reading until they have completed writing. 7014 * The headroom_boost is an in-out parameter used to maintain headroom boost 7015 * state between calls to this function. 7016 * 7017 * Returns the number of bytes actually written (which may be smaller than 7018 * the delta by which the device hand has changed due to alignment). 7019 */ 7020 static uint64_t 7021 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 7022 { 7023 arc_buf_hdr_t *hdr, *hdr_prev, *head; 7024 uint64_t write_asize, write_psize, write_lsize, headroom; 7025 boolean_t full; 7026 l2arc_write_callback_t *cb; 7027 zio_t *pio, *wzio; 7028 uint64_t guid = spa_load_guid(spa); 7029 7030 ASSERT3P(dev->l2ad_vdev, !=, NULL); 7031 7032 pio = NULL; 7033 write_lsize = write_asize = write_psize = 0; 7034 full = B_FALSE; 7035 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 7036 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 7037 7038 /* 7039 * Copy buffers for L2ARC writing. 7040 */ 7041 for (int try = 0; try <= 3; try++) { 7042 multilist_sublist_t *mls = l2arc_sublist_lock(try); 7043 uint64_t passed_sz = 0; 7044 7045 /* 7046 * L2ARC fast warmup. 7047 * 7048 * Until the ARC is warm and starts to evict, read from the 7049 * head of the ARC lists rather than the tail. 7050 */ 7051 if (arc_warm == B_FALSE) 7052 hdr = multilist_sublist_head(mls); 7053 else 7054 hdr = multilist_sublist_tail(mls); 7055 7056 headroom = target_sz * l2arc_headroom; 7057 if (zfs_compressed_arc_enabled) 7058 headroom = (headroom * l2arc_headroom_boost) / 100; 7059 7060 for (; hdr; hdr = hdr_prev) { 7061 kmutex_t *hash_lock; 7062 7063 if (arc_warm == B_FALSE) 7064 hdr_prev = multilist_sublist_next(mls, hdr); 7065 else 7066 hdr_prev = multilist_sublist_prev(mls, hdr); 7067 7068 hash_lock = HDR_LOCK(hdr); 7069 if (!mutex_tryenter(hash_lock)) { 7070 /* 7071 * Skip this buffer rather than waiting. 7072 */ 7073 continue; 7074 } 7075 7076 passed_sz += HDR_GET_LSIZE(hdr); 7077 if (passed_sz > headroom) { 7078 /* 7079 * Searched too far. 7080 */ 7081 mutex_exit(hash_lock); 7082 break; 7083 } 7084 7085 if (!l2arc_write_eligible(guid, hdr)) { 7086 mutex_exit(hash_lock); 7087 continue; 7088 } 7089 7090 /* 7091 * We rely on the L1 portion of the header below, so 7092 * it's invalid for this header to have been evicted out 7093 * of the ghost cache, prior to being written out. The 7094 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 7095 */ 7096 ASSERT(HDR_HAS_L1HDR(hdr)); 7097 7098 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 7099 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 7100 ASSERT3U(arc_hdr_size(hdr), >, 0); 7101 uint64_t psize = arc_hdr_size(hdr); 7102 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 7103 psize); 7104 7105 if ((write_asize + asize) > target_sz) { 7106 full = B_TRUE; 7107 mutex_exit(hash_lock); 7108 break; 7109 } 7110 7111 if (pio == NULL) { 7112 /* 7113 * Insert a dummy header on the buflist so 7114 * l2arc_write_done() can find where the 7115 * write buffers begin without searching. 7116 */ 7117 mutex_enter(&dev->l2ad_mtx); 7118 list_insert_head(&dev->l2ad_buflist, head); 7119 mutex_exit(&dev->l2ad_mtx); 7120 7121 cb = kmem_alloc( 7122 sizeof (l2arc_write_callback_t), KM_SLEEP); 7123 cb->l2wcb_dev = dev; 7124 cb->l2wcb_head = head; 7125 pio = zio_root(spa, l2arc_write_done, cb, 7126 ZIO_FLAG_CANFAIL); 7127 } 7128 7129 hdr->b_l2hdr.b_dev = dev; 7130 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 7131 arc_hdr_set_flags(hdr, 7132 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR); 7133 7134 mutex_enter(&dev->l2ad_mtx); 7135 list_insert_head(&dev->l2ad_buflist, hdr); 7136 mutex_exit(&dev->l2ad_mtx); 7137 7138 (void) refcount_add_many(&dev->l2ad_alloc, psize, hdr); 7139 7140 /* 7141 * Normally the L2ARC can use the hdr's data, but if 7142 * we're sharing data between the hdr and one of its 7143 * bufs, L2ARC needs its own copy of the data so that 7144 * the ZIO below can't race with the buf consumer. 7145 * Another case where we need to create a copy of the 7146 * data is when the buffer size is not device-aligned 7147 * and we need to pad the block to make it such. 7148 * That also keeps the clock hand suitably aligned. 7149 * 7150 * To ensure that the copy will be available for the 7151 * lifetime of the ZIO and be cleaned up afterwards, we 7152 * add it to the l2arc_free_on_write queue. 7153 */ 7154 abd_t *to_write; 7155 if (!HDR_SHARED_DATA(hdr) && psize == asize) { 7156 to_write = hdr->b_l1hdr.b_pabd; 7157 } else { 7158 to_write = abd_alloc_for_io(asize, 7159 HDR_ISTYPE_METADATA(hdr)); 7160 abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize); 7161 if (asize != psize) { 7162 abd_zero_off(to_write, psize, 7163 asize - psize); 7164 } 7165 l2arc_free_abd_on_write(to_write, asize, 7166 arc_buf_type(hdr)); 7167 } 7168 wzio = zio_write_phys(pio, dev->l2ad_vdev, 7169 hdr->b_l2hdr.b_daddr, asize, to_write, 7170 ZIO_CHECKSUM_OFF, NULL, hdr, 7171 ZIO_PRIORITY_ASYNC_WRITE, 7172 ZIO_FLAG_CANFAIL, B_FALSE); 7173 7174 write_lsize += HDR_GET_LSIZE(hdr); 7175 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 7176 zio_t *, wzio); 7177 7178 write_psize += psize; 7179 write_asize += asize; 7180 dev->l2ad_hand += asize; 7181 7182 mutex_exit(hash_lock); 7183 7184 (void) zio_nowait(wzio); 7185 } 7186 7187 multilist_sublist_unlock(mls); 7188 7189 if (full == B_TRUE) 7190 break; 7191 } 7192 7193 /* No buffers selected for writing? */ 7194 if (pio == NULL) { 7195 ASSERT0(write_lsize); 7196 ASSERT(!HDR_HAS_L1HDR(head)); 7197 kmem_cache_free(hdr_l2only_cache, head); 7198 return (0); 7199 } 7200 7201 ASSERT3U(write_asize, <=, target_sz); 7202 ARCSTAT_BUMP(arcstat_l2_writes_sent); 7203 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 7204 ARCSTAT_INCR(arcstat_l2_lsize, write_lsize); 7205 ARCSTAT_INCR(arcstat_l2_psize, write_psize); 7206 vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0); 7207 7208 /* 7209 * Bump device hand to the device start if it is approaching the end. 7210 * l2arc_evict() will already have evicted ahead for this case. 7211 */ 7212 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 7213 dev->l2ad_hand = dev->l2ad_start; 7214 dev->l2ad_first = B_FALSE; 7215 } 7216 7217 dev->l2ad_writing = B_TRUE; 7218 (void) zio_wait(pio); 7219 dev->l2ad_writing = B_FALSE; 7220 7221 return (write_asize); 7222 } 7223 7224 /* 7225 * This thread feeds the L2ARC at regular intervals. This is the beating 7226 * heart of the L2ARC. 7227 */ 7228 /* ARGSUSED */ 7229 static void 7230 l2arc_feed_thread(void *unused) 7231 { 7232 callb_cpr_t cpr; 7233 l2arc_dev_t *dev; 7234 spa_t *spa; 7235 uint64_t size, wrote; 7236 clock_t begin, next = ddi_get_lbolt(); 7237 7238 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 7239 7240 mutex_enter(&l2arc_feed_thr_lock); 7241 7242 while (l2arc_thread_exit == 0) { 7243 CALLB_CPR_SAFE_BEGIN(&cpr); 7244 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 7245 next); 7246 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 7247 next = ddi_get_lbolt() + hz; 7248 7249 /* 7250 * Quick check for L2ARC devices. 7251 */ 7252 mutex_enter(&l2arc_dev_mtx); 7253 if (l2arc_ndev == 0) { 7254 mutex_exit(&l2arc_dev_mtx); 7255 continue; 7256 } 7257 mutex_exit(&l2arc_dev_mtx); 7258 begin = ddi_get_lbolt(); 7259 7260 /* 7261 * This selects the next l2arc device to write to, and in 7262 * doing so the next spa to feed from: dev->l2ad_spa. This 7263 * will return NULL if there are now no l2arc devices or if 7264 * they are all faulted. 7265 * 7266 * If a device is returned, its spa's config lock is also 7267 * held to prevent device removal. l2arc_dev_get_next() 7268 * will grab and release l2arc_dev_mtx. 7269 */ 7270 if ((dev = l2arc_dev_get_next()) == NULL) 7271 continue; 7272 7273 spa = dev->l2ad_spa; 7274 ASSERT3P(spa, !=, NULL); 7275 7276 /* 7277 * If the pool is read-only then force the feed thread to 7278 * sleep a little longer. 7279 */ 7280 if (!spa_writeable(spa)) { 7281 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 7282 spa_config_exit(spa, SCL_L2ARC, dev); 7283 continue; 7284 } 7285 7286 /* 7287 * Avoid contributing to memory pressure. 7288 */ 7289 if (arc_reclaim_needed()) { 7290 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 7291 spa_config_exit(spa, SCL_L2ARC, dev); 7292 continue; 7293 } 7294 7295 ARCSTAT_BUMP(arcstat_l2_feeds); 7296 7297 size = l2arc_write_size(); 7298 7299 /* 7300 * Evict L2ARC buffers that will be overwritten. 7301 */ 7302 l2arc_evict(dev, size, B_FALSE); 7303 7304 /* 7305 * Write ARC buffers. 7306 */ 7307 wrote = l2arc_write_buffers(spa, dev, size); 7308 7309 /* 7310 * Calculate interval between writes. 7311 */ 7312 next = l2arc_write_interval(begin, size, wrote); 7313 spa_config_exit(spa, SCL_L2ARC, dev); 7314 } 7315 7316 l2arc_thread_exit = 0; 7317 cv_broadcast(&l2arc_feed_thr_cv); 7318 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 7319 thread_exit(); 7320 } 7321 7322 boolean_t 7323 l2arc_vdev_present(vdev_t *vd) 7324 { 7325 l2arc_dev_t *dev; 7326 7327 mutex_enter(&l2arc_dev_mtx); 7328 for (dev = list_head(l2arc_dev_list); dev != NULL; 7329 dev = list_next(l2arc_dev_list, dev)) { 7330 if (dev->l2ad_vdev == vd) 7331 break; 7332 } 7333 mutex_exit(&l2arc_dev_mtx); 7334 7335 return (dev != NULL); 7336 } 7337 7338 /* 7339 * Add a vdev for use by the L2ARC. By this point the spa has already 7340 * validated the vdev and opened it. 7341 */ 7342 void 7343 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 7344 { 7345 l2arc_dev_t *adddev; 7346 7347 ASSERT(!l2arc_vdev_present(vd)); 7348 7349 /* 7350 * Create a new l2arc device entry. 7351 */ 7352 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 7353 adddev->l2ad_spa = spa; 7354 adddev->l2ad_vdev = vd; 7355 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 7356 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 7357 adddev->l2ad_hand = adddev->l2ad_start; 7358 adddev->l2ad_first = B_TRUE; 7359 adddev->l2ad_writing = B_FALSE; 7360 7361 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 7362 /* 7363 * This is a list of all ARC buffers that are still valid on the 7364 * device. 7365 */ 7366 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 7367 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 7368 7369 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 7370 refcount_create(&adddev->l2ad_alloc); 7371 7372 /* 7373 * Add device to global list 7374 */ 7375 mutex_enter(&l2arc_dev_mtx); 7376 list_insert_head(l2arc_dev_list, adddev); 7377 atomic_inc_64(&l2arc_ndev); 7378 mutex_exit(&l2arc_dev_mtx); 7379 } 7380 7381 /* 7382 * Remove a vdev from the L2ARC. 7383 */ 7384 void 7385 l2arc_remove_vdev(vdev_t *vd) 7386 { 7387 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 7388 7389 /* 7390 * Find the device by vdev 7391 */ 7392 mutex_enter(&l2arc_dev_mtx); 7393 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 7394 nextdev = list_next(l2arc_dev_list, dev); 7395 if (vd == dev->l2ad_vdev) { 7396 remdev = dev; 7397 break; 7398 } 7399 } 7400 ASSERT3P(remdev, !=, NULL); 7401 7402 /* 7403 * Remove device from global list 7404 */ 7405 list_remove(l2arc_dev_list, remdev); 7406 l2arc_dev_last = NULL; /* may have been invalidated */ 7407 atomic_dec_64(&l2arc_ndev); 7408 mutex_exit(&l2arc_dev_mtx); 7409 7410 /* 7411 * Clear all buflists and ARC references. L2ARC device flush. 7412 */ 7413 l2arc_evict(remdev, 0, B_TRUE); 7414 list_destroy(&remdev->l2ad_buflist); 7415 mutex_destroy(&remdev->l2ad_mtx); 7416 refcount_destroy(&remdev->l2ad_alloc); 7417 kmem_free(remdev, sizeof (l2arc_dev_t)); 7418 } 7419 7420 void 7421 l2arc_init(void) 7422 { 7423 l2arc_thread_exit = 0; 7424 l2arc_ndev = 0; 7425 l2arc_writes_sent = 0; 7426 l2arc_writes_done = 0; 7427 7428 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 7429 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 7430 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 7431 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 7432 7433 l2arc_dev_list = &L2ARC_dev_list; 7434 l2arc_free_on_write = &L2ARC_free_on_write; 7435 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 7436 offsetof(l2arc_dev_t, l2ad_node)); 7437 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 7438 offsetof(l2arc_data_free_t, l2df_list_node)); 7439 } 7440 7441 void 7442 l2arc_fini(void) 7443 { 7444 /* 7445 * This is called from dmu_fini(), which is called from spa_fini(); 7446 * Because of this, we can assume that all l2arc devices have 7447 * already been removed when the pools themselves were removed. 7448 */ 7449 7450 l2arc_do_free_on_write(); 7451 7452 mutex_destroy(&l2arc_feed_thr_lock); 7453 cv_destroy(&l2arc_feed_thr_cv); 7454 mutex_destroy(&l2arc_dev_mtx); 7455 mutex_destroy(&l2arc_free_on_write_mtx); 7456 7457 list_destroy(l2arc_dev_list); 7458 list_destroy(l2arc_free_on_write); 7459 } 7460 7461 void 7462 l2arc_start(void) 7463 { 7464 if (!(spa_mode_global & FWRITE)) 7465 return; 7466 7467 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 7468 TS_RUN, minclsyspri); 7469 } 7470 7471 void 7472 l2arc_stop(void) 7473 { 7474 if (!(spa_mode_global & FWRITE)) 7475 return; 7476 7477 mutex_enter(&l2arc_feed_thr_lock); 7478 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 7479 l2arc_thread_exit = 1; 7480 while (l2arc_thread_exit != 0) 7481 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 7482 mutex_exit(&l2arc_feed_thr_lock); 7483 } 7484