1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * DVA-based Adjustable Replacement Cache 31 * 32 * While much of the theory of operation used here is 33 * based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slows the flow of new data 52 * into the cache until we can make space available. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory pressure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefore exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefore choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() interface 80 * uses method 1, while the internal ARC algorithms for 81 * adjusting the cache use method 2. We therefore provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * ARC list locks. 84 * 85 * Buffers do not have their own mutexes, rather they rely on the 86 * hash table mutexes for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexes). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each ARC state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an ARC list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the active state mutex must be held before the ghost state mutex. 101 * 102 * Note that the majority of the performance stats are manipulated 103 * with atomic operations. 104 * 105 * The L2ARC uses the l2ad_mtx on each vdev for the following: 106 * 107 * - L2ARC buflist creation 108 * - L2ARC buflist eviction 109 * - L2ARC write completion, which walks L2ARC buflists 110 * - ARC header destruction, as it removes from L2ARC buflists 111 * - ARC header release, as it removes from L2ARC buflists 112 */ 113 114 /* 115 * ARC operation: 116 * 117 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 118 * This structure can point either to a block that is still in the cache or to 119 * one that is only accessible in an L2 ARC device, or it can provide 120 * information about a block that was recently evicted. If a block is 121 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 122 * information to retrieve it from the L2ARC device. This information is 123 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 124 * that is in this state cannot access the data directly. 125 * 126 * Blocks that are actively being referenced or have not been evicted 127 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 128 * the arc_buf_hdr_t that will point to the data block in memory. A block can 129 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 130 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 131 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 132 * 133 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 134 * ability to store the physical data (b_pabd) associated with the DVA of the 135 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 136 * it will match its on-disk compression characteristics. This behavior can be 137 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 138 * compressed ARC functionality is disabled, the b_pabd will point to an 139 * uncompressed version of the on-disk data. 140 * 141 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 142 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 143 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 144 * consumer. The ARC will provide references to this data and will keep it 145 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 146 * data block and will evict any arc_buf_t that is no longer referenced. The 147 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 148 * "overhead_size" kstat. 149 * 150 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 151 * compressed form. The typical case is that consumers will want uncompressed 152 * data, and when that happens a new data buffer is allocated where the data is 153 * decompressed for them to use. Currently the only consumer who wants 154 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 155 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 156 * with the arc_buf_hdr_t. 157 * 158 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 159 * first one is owned by a compressed send consumer (and therefore references 160 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 161 * used by any other consumer (and has its own uncompressed copy of the data 162 * buffer). 163 * 164 * arc_buf_hdr_t 165 * +-----------+ 166 * | fields | 167 * | common to | 168 * | L1- and | 169 * | L2ARC | 170 * +-----------+ 171 * | l2arc_buf_hdr_t 172 * | | 173 * +-----------+ 174 * | l1arc_buf_hdr_t 175 * | | arc_buf_t 176 * | b_buf +------------>+-----------+ arc_buf_t 177 * | b_pabd +-+ |b_next +---->+-----------+ 178 * +-----------+ | |-----------| |b_next +-->NULL 179 * | |b_comp = T | +-----------+ 180 * | |b_data +-+ |b_comp = F | 181 * | +-----------+ | |b_data +-+ 182 * +->+------+ | +-----------+ | 183 * compressed | | | | 184 * data | |<--------------+ | uncompressed 185 * +------+ compressed, | data 186 * shared +-->+------+ 187 * data | | 188 * | | 189 * +------+ 190 * 191 * When a consumer reads a block, the ARC must first look to see if the 192 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 193 * arc_buf_t and either copies uncompressed data into a new data buffer from an 194 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 195 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 196 * hdr is compressed and the desired compression characteristics of the 197 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 198 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 199 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 200 * be anywhere in the hdr's list. 201 * 202 * The diagram below shows an example of an uncompressed ARC hdr that is 203 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 204 * the last element in the buf list): 205 * 206 * arc_buf_hdr_t 207 * +-----------+ 208 * | | 209 * | | 210 * | | 211 * +-----------+ 212 * l2arc_buf_hdr_t| | 213 * | | 214 * +-----------+ 215 * l1arc_buf_hdr_t| | 216 * | | arc_buf_t (shared) 217 * | b_buf +------------>+---------+ arc_buf_t 218 * | | |b_next +---->+---------+ 219 * | b_pabd +-+ |---------| |b_next +-->NULL 220 * +-----------+ | | | +---------+ 221 * | |b_data +-+ | | 222 * | +---------+ | |b_data +-+ 223 * +->+------+ | +---------+ | 224 * | | | | 225 * uncompressed | | | | 226 * data +------+ | | 227 * ^ +->+------+ | 228 * | uncompressed | | | 229 * | data | | | 230 * | +------+ | 231 * +---------------------------------+ 232 * 233 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 234 * since the physical block is about to be rewritten. The new data contents 235 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 236 * it may compress the data before writing it to disk. The ARC will be called 237 * with the transformed data and will bcopy the transformed on-disk block into 238 * a newly allocated b_pabd. Writes are always done into buffers which have 239 * either been loaned (and hence are new and don't have other readers) or 240 * buffers which have been released (and hence have their own hdr, if there 241 * were originally other readers of the buf's original hdr). This ensures that 242 * the ARC only needs to update a single buf and its hdr after a write occurs. 243 * 244 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 245 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 246 * that when compressed ARC is enabled that the L2ARC blocks are identical 247 * to the on-disk block in the main data pool. This provides a significant 248 * advantage since the ARC can leverage the bp's checksum when reading from the 249 * L2ARC to determine if the contents are valid. However, if the compressed 250 * ARC is disabled, then the L2ARC's block must be transformed to look 251 * like the physical block in the main data pool before comparing the 252 * checksum and determining its validity. 253 */ 254 255 #include <sys/spa.h> 256 #include <sys/zio.h> 257 #include <sys/spa_impl.h> 258 #include <sys/zio_compress.h> 259 #include <sys/zio_checksum.h> 260 #include <sys/zfs_context.h> 261 #include <sys/arc.h> 262 #include <sys/refcount.h> 263 #include <sys/vdev.h> 264 #include <sys/vdev_impl.h> 265 #include <sys/dsl_pool.h> 266 #include <sys/zio_checksum.h> 267 #include <sys/multilist.h> 268 #include <sys/abd.h> 269 #ifdef _KERNEL 270 #include <sys/vmsystm.h> 271 #include <vm/anon.h> 272 #include <sys/fs/swapnode.h> 273 #include <sys/dnlc.h> 274 #endif 275 #include <sys/callb.h> 276 #include <sys/kstat.h> 277 #include <zfs_fletcher.h> 278 #include <sys/aggsum.h> 279 #include <sys/cityhash.h> 280 281 #ifndef _KERNEL 282 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 283 boolean_t arc_watch = B_FALSE; 284 int arc_procfd; 285 #endif 286 287 static kmutex_t arc_reclaim_lock; 288 static kcondvar_t arc_reclaim_thread_cv; 289 static boolean_t arc_reclaim_thread_exit; 290 static kcondvar_t arc_reclaim_waiters_cv; 291 292 uint_t arc_reduce_dnlc_percent = 3; 293 294 /* 295 * The number of headers to evict in arc_evict_state_impl() before 296 * dropping the sublist lock and evicting from another sublist. A lower 297 * value means we're more likely to evict the "correct" header (i.e. the 298 * oldest header in the arc state), but comes with higher overhead 299 * (i.e. more invocations of arc_evict_state_impl()). 300 */ 301 int zfs_arc_evict_batch_limit = 10; 302 303 /* number of seconds before growing cache again */ 304 static int arc_grow_retry = 60; 305 306 /* number of milliseconds before attempting a kmem-cache-reap */ 307 static int arc_kmem_cache_reap_retry_ms = 1000; 308 309 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 310 int zfs_arc_overflow_shift = 8; 311 312 /* shift of arc_c for calculating both min and max arc_p */ 313 static int arc_p_min_shift = 4; 314 315 /* log2(fraction of arc to reclaim) */ 316 static int arc_shrink_shift = 7; 317 318 /* 319 * log2(fraction of ARC which must be free to allow growing). 320 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 321 * when reading a new block into the ARC, we will evict an equal-sized block 322 * from the ARC. 323 * 324 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 325 * we will still not allow it to grow. 326 */ 327 int arc_no_grow_shift = 5; 328 329 330 /* 331 * minimum lifespan of a prefetch block in clock ticks 332 * (initialized in arc_init()) 333 */ 334 static int arc_min_prefetch_lifespan; 335 336 /* 337 * If this percent of memory is free, don't throttle. 338 */ 339 int arc_lotsfree_percent = 10; 340 341 static int arc_dead; 342 343 /* 344 * The arc has filled available memory and has now warmed up. 345 */ 346 static boolean_t arc_warm; 347 348 /* 349 * log2 fraction of the zio arena to keep free. 350 */ 351 int arc_zio_arena_free_shift = 2; 352 353 /* 354 * These tunables are for performance analysis. 355 */ 356 uint64_t zfs_arc_max; 357 uint64_t zfs_arc_min; 358 uint64_t zfs_arc_meta_limit = 0; 359 uint64_t zfs_arc_meta_min = 0; 360 int zfs_arc_grow_retry = 0; 361 int zfs_arc_shrink_shift = 0; 362 int zfs_arc_p_min_shift = 0; 363 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 364 365 boolean_t zfs_compressed_arc_enabled = B_TRUE; 366 367 /* 368 * Note that buffers can be in one of 6 states: 369 * ARC_anon - anonymous (discussed below) 370 * ARC_mru - recently used, currently cached 371 * ARC_mru_ghost - recentely used, no longer in cache 372 * ARC_mfu - frequently used, currently cached 373 * ARC_mfu_ghost - frequently used, no longer in cache 374 * ARC_l2c_only - exists in L2ARC but not other states 375 * When there are no active references to the buffer, they are 376 * are linked onto a list in one of these arc states. These are 377 * the only buffers that can be evicted or deleted. Within each 378 * state there are multiple lists, one for meta-data and one for 379 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 380 * etc.) is tracked separately so that it can be managed more 381 * explicitly: favored over data, limited explicitly. 382 * 383 * Anonymous buffers are buffers that are not associated with 384 * a DVA. These are buffers that hold dirty block copies 385 * before they are written to stable storage. By definition, 386 * they are "ref'd" and are considered part of arc_mru 387 * that cannot be freed. Generally, they will aquire a DVA 388 * as they are written and migrate onto the arc_mru list. 389 * 390 * The ARC_l2c_only state is for buffers that are in the second 391 * level ARC but no longer in any of the ARC_m* lists. The second 392 * level ARC itself may also contain buffers that are in any of 393 * the ARC_m* states - meaning that a buffer can exist in two 394 * places. The reason for the ARC_l2c_only state is to keep the 395 * buffer header in the hash table, so that reads that hit the 396 * second level ARC benefit from these fast lookups. 397 */ 398 399 typedef struct arc_state { 400 /* 401 * list of evictable buffers 402 */ 403 multilist_t *arcs_list[ARC_BUFC_NUMTYPES]; 404 /* 405 * total amount of evictable data in this state 406 */ 407 refcount_t arcs_esize[ARC_BUFC_NUMTYPES]; 408 /* 409 * total amount of data in this state; this includes: evictable, 410 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA. 411 */ 412 refcount_t arcs_size; 413 } arc_state_t; 414 415 /* The 6 states: */ 416 static arc_state_t ARC_anon; 417 static arc_state_t ARC_mru; 418 static arc_state_t ARC_mru_ghost; 419 static arc_state_t ARC_mfu; 420 static arc_state_t ARC_mfu_ghost; 421 static arc_state_t ARC_l2c_only; 422 423 typedef struct arc_stats { 424 kstat_named_t arcstat_hits; 425 kstat_named_t arcstat_misses; 426 kstat_named_t arcstat_demand_data_hits; 427 kstat_named_t arcstat_demand_data_misses; 428 kstat_named_t arcstat_demand_metadata_hits; 429 kstat_named_t arcstat_demand_metadata_misses; 430 kstat_named_t arcstat_prefetch_data_hits; 431 kstat_named_t arcstat_prefetch_data_misses; 432 kstat_named_t arcstat_prefetch_metadata_hits; 433 kstat_named_t arcstat_prefetch_metadata_misses; 434 kstat_named_t arcstat_mru_hits; 435 kstat_named_t arcstat_mru_ghost_hits; 436 kstat_named_t arcstat_mfu_hits; 437 kstat_named_t arcstat_mfu_ghost_hits; 438 kstat_named_t arcstat_deleted; 439 /* 440 * Number of buffers that could not be evicted because the hash lock 441 * was held by another thread. The lock may not necessarily be held 442 * by something using the same buffer, since hash locks are shared 443 * by multiple buffers. 444 */ 445 kstat_named_t arcstat_mutex_miss; 446 /* 447 * Number of buffers skipped because they have I/O in progress, are 448 * indrect prefetch buffers that have not lived long enough, or are 449 * not from the spa we're trying to evict from. 450 */ 451 kstat_named_t arcstat_evict_skip; 452 /* 453 * Number of times arc_evict_state() was unable to evict enough 454 * buffers to reach it's target amount. 455 */ 456 kstat_named_t arcstat_evict_not_enough; 457 kstat_named_t arcstat_evict_l2_cached; 458 kstat_named_t arcstat_evict_l2_eligible; 459 kstat_named_t arcstat_evict_l2_ineligible; 460 kstat_named_t arcstat_evict_l2_skip; 461 kstat_named_t arcstat_hash_elements; 462 kstat_named_t arcstat_hash_elements_max; 463 kstat_named_t arcstat_hash_collisions; 464 kstat_named_t arcstat_hash_chains; 465 kstat_named_t arcstat_hash_chain_max; 466 kstat_named_t arcstat_p; 467 kstat_named_t arcstat_c; 468 kstat_named_t arcstat_c_min; 469 kstat_named_t arcstat_c_max; 470 /* Not updated directly; only synced in arc_kstat_update. */ 471 kstat_named_t arcstat_size; 472 /* 473 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd. 474 * Note that the compressed bytes may match the uncompressed bytes 475 * if the block is either not compressed or compressed arc is disabled. 476 */ 477 kstat_named_t arcstat_compressed_size; 478 /* 479 * Uncompressed size of the data stored in b_pabd. If compressed 480 * arc is disabled then this value will be identical to the stat 481 * above. 482 */ 483 kstat_named_t arcstat_uncompressed_size; 484 /* 485 * Number of bytes stored in all the arc_buf_t's. This is classified 486 * as "overhead" since this data is typically short-lived and will 487 * be evicted from the arc when it becomes unreferenced unless the 488 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level 489 * values have been set (see comment in dbuf.c for more information). 490 */ 491 kstat_named_t arcstat_overhead_size; 492 /* 493 * Number of bytes consumed by internal ARC structures necessary 494 * for tracking purposes; these structures are not actually 495 * backed by ARC buffers. This includes arc_buf_hdr_t structures 496 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only 497 * caches), and arc_buf_t structures (allocated via arc_buf_t 498 * cache). 499 * Not updated directly; only synced in arc_kstat_update. 500 */ 501 kstat_named_t arcstat_hdr_size; 502 /* 503 * Number of bytes consumed by ARC buffers of type equal to 504 * ARC_BUFC_DATA. This is generally consumed by buffers backing 505 * on disk user data (e.g. plain file contents). 506 * Not updated directly; only synced in arc_kstat_update. 507 */ 508 kstat_named_t arcstat_data_size; 509 /* 510 * Number of bytes consumed by ARC buffers of type equal to 511 * ARC_BUFC_METADATA. This is generally consumed by buffers 512 * backing on disk data that is used for internal ZFS 513 * structures (e.g. ZAP, dnode, indirect blocks, etc). 514 * Not updated directly; only synced in arc_kstat_update. 515 */ 516 kstat_named_t arcstat_metadata_size; 517 /* 518 * Number of bytes consumed by various buffers and structures 519 * not actually backed with ARC buffers. This includes bonus 520 * buffers (allocated directly via zio_buf_* functions), 521 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t 522 * cache), and dnode_t structures (allocated via dnode_t cache). 523 * Not updated directly; only synced in arc_kstat_update. 524 */ 525 kstat_named_t arcstat_other_size; 526 /* 527 * Total number of bytes consumed by ARC buffers residing in the 528 * arc_anon state. This includes *all* buffers in the arc_anon 529 * state; e.g. data, metadata, evictable, and unevictable buffers 530 * are all included in this value. 531 * Not updated directly; only synced in arc_kstat_update. 532 */ 533 kstat_named_t arcstat_anon_size; 534 /* 535 * Number of bytes consumed by ARC buffers that meet the 536 * following criteria: backing buffers of type ARC_BUFC_DATA, 537 * residing in the arc_anon state, and are eligible for eviction 538 * (e.g. have no outstanding holds on the buffer). 539 * Not updated directly; only synced in arc_kstat_update. 540 */ 541 kstat_named_t arcstat_anon_evictable_data; 542 /* 543 * Number of bytes consumed by ARC buffers that meet the 544 * following criteria: backing buffers of type ARC_BUFC_METADATA, 545 * residing in the arc_anon state, and are eligible for eviction 546 * (e.g. have no outstanding holds on the buffer). 547 * Not updated directly; only synced in arc_kstat_update. 548 */ 549 kstat_named_t arcstat_anon_evictable_metadata; 550 /* 551 * Total number of bytes consumed by ARC buffers residing in the 552 * arc_mru state. This includes *all* buffers in the arc_mru 553 * state; e.g. data, metadata, evictable, and unevictable buffers 554 * are all included in this value. 555 * Not updated directly; only synced in arc_kstat_update. 556 */ 557 kstat_named_t arcstat_mru_size; 558 /* 559 * Number of bytes consumed by ARC buffers that meet the 560 * following criteria: backing buffers of type ARC_BUFC_DATA, 561 * residing in the arc_mru state, and are eligible for eviction 562 * (e.g. have no outstanding holds on the buffer). 563 * Not updated directly; only synced in arc_kstat_update. 564 */ 565 kstat_named_t arcstat_mru_evictable_data; 566 /* 567 * Number of bytes consumed by ARC buffers that meet the 568 * following criteria: backing buffers of type ARC_BUFC_METADATA, 569 * residing in the arc_mru state, and are eligible for eviction 570 * (e.g. have no outstanding holds on the buffer). 571 * Not updated directly; only synced in arc_kstat_update. 572 */ 573 kstat_named_t arcstat_mru_evictable_metadata; 574 /* 575 * Total number of bytes that *would have been* consumed by ARC 576 * buffers in the arc_mru_ghost state. The key thing to note 577 * here, is the fact that this size doesn't actually indicate 578 * RAM consumption. The ghost lists only consist of headers and 579 * don't actually have ARC buffers linked off of these headers. 580 * Thus, *if* the headers had associated ARC buffers, these 581 * buffers *would have* consumed this number of bytes. 582 * Not updated directly; only synced in arc_kstat_update. 583 */ 584 kstat_named_t arcstat_mru_ghost_size; 585 /* 586 * Number of bytes that *would have been* consumed by ARC 587 * buffers that are eligible for eviction, of type 588 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state. 589 * Not updated directly; only synced in arc_kstat_update. 590 */ 591 kstat_named_t arcstat_mru_ghost_evictable_data; 592 /* 593 * Number of bytes that *would have been* consumed by ARC 594 * buffers that are eligible for eviction, of type 595 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 596 * Not updated directly; only synced in arc_kstat_update. 597 */ 598 kstat_named_t arcstat_mru_ghost_evictable_metadata; 599 /* 600 * Total number of bytes consumed by ARC buffers residing in the 601 * arc_mfu state. This includes *all* buffers in the arc_mfu 602 * state; e.g. data, metadata, evictable, and unevictable buffers 603 * are all included in this value. 604 * Not updated directly; only synced in arc_kstat_update. 605 */ 606 kstat_named_t arcstat_mfu_size; 607 /* 608 * Number of bytes consumed by ARC buffers that are eligible for 609 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu 610 * state. 611 * Not updated directly; only synced in arc_kstat_update. 612 */ 613 kstat_named_t arcstat_mfu_evictable_data; 614 /* 615 * Number of bytes consumed by ARC buffers that are eligible for 616 * eviction, of type ARC_BUFC_METADATA, and reside in the 617 * arc_mfu state. 618 * Not updated directly; only synced in arc_kstat_update. 619 */ 620 kstat_named_t arcstat_mfu_evictable_metadata; 621 /* 622 * Total number of bytes that *would have been* consumed by ARC 623 * buffers in the arc_mfu_ghost state. See the comment above 624 * arcstat_mru_ghost_size for more details. 625 * Not updated directly; only synced in arc_kstat_update. 626 */ 627 kstat_named_t arcstat_mfu_ghost_size; 628 /* 629 * Number of bytes that *would have been* consumed by ARC 630 * buffers that are eligible for eviction, of type 631 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state. 632 * Not updated directly; only synced in arc_kstat_update. 633 */ 634 kstat_named_t arcstat_mfu_ghost_evictable_data; 635 /* 636 * Number of bytes that *would have been* consumed by ARC 637 * buffers that are eligible for eviction, of type 638 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 639 * Not updated directly; only synced in arc_kstat_update. 640 */ 641 kstat_named_t arcstat_mfu_ghost_evictable_metadata; 642 kstat_named_t arcstat_l2_hits; 643 kstat_named_t arcstat_l2_misses; 644 kstat_named_t arcstat_l2_feeds; 645 kstat_named_t arcstat_l2_rw_clash; 646 kstat_named_t arcstat_l2_read_bytes; 647 kstat_named_t arcstat_l2_write_bytes; 648 kstat_named_t arcstat_l2_writes_sent; 649 kstat_named_t arcstat_l2_writes_done; 650 kstat_named_t arcstat_l2_writes_error; 651 kstat_named_t arcstat_l2_writes_lock_retry; 652 kstat_named_t arcstat_l2_evict_lock_retry; 653 kstat_named_t arcstat_l2_evict_reading; 654 kstat_named_t arcstat_l2_evict_l1cached; 655 kstat_named_t arcstat_l2_free_on_write; 656 kstat_named_t arcstat_l2_abort_lowmem; 657 kstat_named_t arcstat_l2_cksum_bad; 658 kstat_named_t arcstat_l2_io_error; 659 kstat_named_t arcstat_l2_lsize; 660 kstat_named_t arcstat_l2_psize; 661 /* Not updated directly; only synced in arc_kstat_update. */ 662 kstat_named_t arcstat_l2_hdr_size; 663 kstat_named_t arcstat_memory_throttle_count; 664 /* Not updated directly; only synced in arc_kstat_update. */ 665 kstat_named_t arcstat_meta_used; 666 kstat_named_t arcstat_meta_limit; 667 kstat_named_t arcstat_meta_max; 668 kstat_named_t arcstat_meta_min; 669 kstat_named_t arcstat_sync_wait_for_async; 670 kstat_named_t arcstat_demand_hit_predictive_prefetch; 671 } arc_stats_t; 672 673 static arc_stats_t arc_stats = { 674 { "hits", KSTAT_DATA_UINT64 }, 675 { "misses", KSTAT_DATA_UINT64 }, 676 { "demand_data_hits", KSTAT_DATA_UINT64 }, 677 { "demand_data_misses", KSTAT_DATA_UINT64 }, 678 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 679 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 680 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 681 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 682 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 683 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 684 { "mru_hits", KSTAT_DATA_UINT64 }, 685 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 686 { "mfu_hits", KSTAT_DATA_UINT64 }, 687 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 688 { "deleted", KSTAT_DATA_UINT64 }, 689 { "mutex_miss", KSTAT_DATA_UINT64 }, 690 { "evict_skip", KSTAT_DATA_UINT64 }, 691 { "evict_not_enough", KSTAT_DATA_UINT64 }, 692 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 693 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 694 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 695 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 696 { "hash_elements", KSTAT_DATA_UINT64 }, 697 { "hash_elements_max", KSTAT_DATA_UINT64 }, 698 { "hash_collisions", KSTAT_DATA_UINT64 }, 699 { "hash_chains", KSTAT_DATA_UINT64 }, 700 { "hash_chain_max", KSTAT_DATA_UINT64 }, 701 { "p", KSTAT_DATA_UINT64 }, 702 { "c", KSTAT_DATA_UINT64 }, 703 { "c_min", KSTAT_DATA_UINT64 }, 704 { "c_max", KSTAT_DATA_UINT64 }, 705 { "size", KSTAT_DATA_UINT64 }, 706 { "compressed_size", KSTAT_DATA_UINT64 }, 707 { "uncompressed_size", KSTAT_DATA_UINT64 }, 708 { "overhead_size", KSTAT_DATA_UINT64 }, 709 { "hdr_size", KSTAT_DATA_UINT64 }, 710 { "data_size", KSTAT_DATA_UINT64 }, 711 { "metadata_size", KSTAT_DATA_UINT64 }, 712 { "other_size", KSTAT_DATA_UINT64 }, 713 { "anon_size", KSTAT_DATA_UINT64 }, 714 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 715 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 716 { "mru_size", KSTAT_DATA_UINT64 }, 717 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 718 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 719 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 720 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 721 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 722 { "mfu_size", KSTAT_DATA_UINT64 }, 723 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 724 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 725 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 726 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 727 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 728 { "l2_hits", KSTAT_DATA_UINT64 }, 729 { "l2_misses", KSTAT_DATA_UINT64 }, 730 { "l2_feeds", KSTAT_DATA_UINT64 }, 731 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 732 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 733 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 734 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 735 { "l2_writes_done", KSTAT_DATA_UINT64 }, 736 { "l2_writes_error", KSTAT_DATA_UINT64 }, 737 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 738 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 739 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 740 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 741 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 742 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 743 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 744 { "l2_io_error", KSTAT_DATA_UINT64 }, 745 { "l2_size", KSTAT_DATA_UINT64 }, 746 { "l2_asize", KSTAT_DATA_UINT64 }, 747 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 748 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 749 { "arc_meta_used", KSTAT_DATA_UINT64 }, 750 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 751 { "arc_meta_max", KSTAT_DATA_UINT64 }, 752 { "arc_meta_min", KSTAT_DATA_UINT64 }, 753 { "sync_wait_for_async", KSTAT_DATA_UINT64 }, 754 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 755 }; 756 757 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 758 759 #define ARCSTAT_INCR(stat, val) \ 760 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 761 762 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 763 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 764 765 #define ARCSTAT_MAX(stat, val) { \ 766 uint64_t m; \ 767 while ((val) > (m = arc_stats.stat.value.ui64) && \ 768 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 769 continue; \ 770 } 771 772 #define ARCSTAT_MAXSTAT(stat) \ 773 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 774 775 /* 776 * We define a macro to allow ARC hits/misses to be easily broken down by 777 * two separate conditions, giving a total of four different subtypes for 778 * each of hits and misses (so eight statistics total). 779 */ 780 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 781 if (cond1) { \ 782 if (cond2) { \ 783 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 784 } else { \ 785 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 786 } \ 787 } else { \ 788 if (cond2) { \ 789 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 790 } else { \ 791 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 792 } \ 793 } 794 795 kstat_t *arc_ksp; 796 static arc_state_t *arc_anon; 797 static arc_state_t *arc_mru; 798 static arc_state_t *arc_mru_ghost; 799 static arc_state_t *arc_mfu; 800 static arc_state_t *arc_mfu_ghost; 801 static arc_state_t *arc_l2c_only; 802 803 /* 804 * There are several ARC variables that are critical to export as kstats -- 805 * but we don't want to have to grovel around in the kstat whenever we wish to 806 * manipulate them. For these variables, we therefore define them to be in 807 * terms of the statistic variable. This assures that we are not introducing 808 * the possibility of inconsistency by having shadow copies of the variables, 809 * while still allowing the code to be readable. 810 */ 811 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 812 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 813 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 814 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 815 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 816 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 817 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 818 819 /* compressed size of entire arc */ 820 #define arc_compressed_size ARCSTAT(arcstat_compressed_size) 821 /* uncompressed size of entire arc */ 822 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size) 823 /* number of bytes in the arc from arc_buf_t's */ 824 #define arc_overhead_size ARCSTAT(arcstat_overhead_size) 825 826 /* 827 * There are also some ARC variables that we want to export, but that are 828 * updated so often that having the canonical representation be the statistic 829 * variable causes a performance bottleneck. We want to use aggsum_t's for these 830 * instead, but still be able to export the kstat in the same way as before. 831 * The solution is to always use the aggsum version, except in the kstat update 832 * callback. 833 */ 834 aggsum_t arc_size; 835 aggsum_t arc_meta_used; 836 aggsum_t astat_data_size; 837 aggsum_t astat_metadata_size; 838 aggsum_t astat_hdr_size; 839 aggsum_t astat_other_size; 840 aggsum_t astat_l2_hdr_size; 841 842 static int arc_no_grow; /* Don't try to grow cache size */ 843 static uint64_t arc_tempreserve; 844 static uint64_t arc_loaned_bytes; 845 846 typedef struct arc_callback arc_callback_t; 847 848 struct arc_callback { 849 void *acb_private; 850 arc_done_func_t *acb_done; 851 arc_buf_t *acb_buf; 852 boolean_t acb_compressed; 853 zio_t *acb_zio_dummy; 854 arc_callback_t *acb_next; 855 }; 856 857 typedef struct arc_write_callback arc_write_callback_t; 858 859 struct arc_write_callback { 860 void *awcb_private; 861 arc_done_func_t *awcb_ready; 862 arc_done_func_t *awcb_children_ready; 863 arc_done_func_t *awcb_physdone; 864 arc_done_func_t *awcb_done; 865 arc_buf_t *awcb_buf; 866 }; 867 868 /* 869 * ARC buffers are separated into multiple structs as a memory saving measure: 870 * - Common fields struct, always defined, and embedded within it: 871 * - L2-only fields, always allocated but undefined when not in L2ARC 872 * - L1-only fields, only allocated when in L1ARC 873 * 874 * Buffer in L1 Buffer only in L2 875 * +------------------------+ +------------------------+ 876 * | arc_buf_hdr_t | | arc_buf_hdr_t | 877 * | | | | 878 * | | | | 879 * | | | | 880 * +------------------------+ +------------------------+ 881 * | l2arc_buf_hdr_t | | l2arc_buf_hdr_t | 882 * | (undefined if L1-only) | | | 883 * +------------------------+ +------------------------+ 884 * | l1arc_buf_hdr_t | 885 * | | 886 * | | 887 * | | 888 * | | 889 * +------------------------+ 890 * 891 * Because it's possible for the L2ARC to become extremely large, we can wind 892 * up eating a lot of memory in L2ARC buffer headers, so the size of a header 893 * is minimized by only allocating the fields necessary for an L1-cached buffer 894 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and 895 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple 896 * words in pointers. arc_hdr_realloc() is used to switch a header between 897 * these two allocation states. 898 */ 899 typedef struct l1arc_buf_hdr { 900 kmutex_t b_freeze_lock; 901 zio_cksum_t *b_freeze_cksum; 902 #ifdef ZFS_DEBUG 903 /* 904 * Used for debugging with kmem_flags - by allocating and freeing 905 * b_thawed when the buffer is thawed, we get a record of the stack 906 * trace that thawed it. 907 */ 908 void *b_thawed; 909 #endif 910 911 arc_buf_t *b_buf; 912 uint32_t b_bufcnt; 913 /* for waiting on writes to complete */ 914 kcondvar_t b_cv; 915 uint8_t b_byteswap; 916 917 /* protected by arc state mutex */ 918 arc_state_t *b_state; 919 multilist_node_t b_arc_node; 920 921 /* updated atomically */ 922 clock_t b_arc_access; 923 924 /* self protecting */ 925 refcount_t b_refcnt; 926 927 arc_callback_t *b_acb; 928 abd_t *b_pabd; 929 } l1arc_buf_hdr_t; 930 931 typedef struct l2arc_dev l2arc_dev_t; 932 933 typedef struct l2arc_buf_hdr { 934 /* protected by arc_buf_hdr mutex */ 935 l2arc_dev_t *b_dev; /* L2ARC device */ 936 uint64_t b_daddr; /* disk address, offset byte */ 937 938 list_node_t b_l2node; 939 } l2arc_buf_hdr_t; 940 941 struct arc_buf_hdr { 942 /* protected by hash lock */ 943 dva_t b_dva; 944 uint64_t b_birth; 945 946 arc_buf_contents_t b_type; 947 arc_buf_hdr_t *b_hash_next; 948 arc_flags_t b_flags; 949 950 /* 951 * This field stores the size of the data buffer after 952 * compression, and is set in the arc's zio completion handlers. 953 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes). 954 * 955 * While the block pointers can store up to 32MB in their psize 956 * field, we can only store up to 32MB minus 512B. This is due 957 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e. 958 * a field of zeros represents 512B in the bp). We can't use a 959 * bias of 1 since we need to reserve a psize of zero, here, to 960 * represent holes and embedded blocks. 961 * 962 * This isn't a problem in practice, since the maximum size of a 963 * buffer is limited to 16MB, so we never need to store 32MB in 964 * this field. Even in the upstream illumos code base, the 965 * maximum size of a buffer is limited to 16MB. 966 */ 967 uint16_t b_psize; 968 969 /* 970 * This field stores the size of the data buffer before 971 * compression, and cannot change once set. It is in units 972 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes) 973 */ 974 uint16_t b_lsize; /* immutable */ 975 uint64_t b_spa; /* immutable */ 976 977 /* L2ARC fields. Undefined when not in L2ARC. */ 978 l2arc_buf_hdr_t b_l2hdr; 979 /* L1ARC fields. Undefined when in l2arc_only state */ 980 l1arc_buf_hdr_t b_l1hdr; 981 }; 982 983 #define GHOST_STATE(state) \ 984 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 985 (state) == arc_l2c_only) 986 987 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 988 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 989 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 990 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 991 #define HDR_COMPRESSION_ENABLED(hdr) \ 992 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 993 994 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 995 #define HDR_L2_READING(hdr) \ 996 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 997 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 998 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 999 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 1000 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 1001 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 1002 1003 #define HDR_ISTYPE_METADATA(hdr) \ 1004 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 1005 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 1006 1007 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 1008 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 1009 1010 /* For storing compression mode in b_flags */ 1011 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 1012 1013 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 1014 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 1015 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 1016 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 1017 1018 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 1019 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 1020 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 1021 1022 /* 1023 * Other sizes 1024 */ 1025 1026 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 1027 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 1028 1029 /* 1030 * Hash table routines 1031 */ 1032 1033 #define HT_LOCK_PAD 64 1034 1035 struct ht_lock { 1036 kmutex_t ht_lock; 1037 #ifdef _KERNEL 1038 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 1039 #endif 1040 }; 1041 1042 #define BUF_LOCKS 256 1043 typedef struct buf_hash_table { 1044 uint64_t ht_mask; 1045 arc_buf_hdr_t **ht_table; 1046 struct ht_lock ht_locks[BUF_LOCKS]; 1047 } buf_hash_table_t; 1048 1049 static buf_hash_table_t buf_hash_table; 1050 1051 #define BUF_HASH_INDEX(spa, dva, birth) \ 1052 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 1053 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 1054 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 1055 #define HDR_LOCK(hdr) \ 1056 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 1057 1058 uint64_t zfs_crc64_table[256]; 1059 1060 /* 1061 * Level 2 ARC 1062 */ 1063 1064 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 1065 #define L2ARC_HEADROOM 2 /* num of writes */ 1066 /* 1067 * If we discover during ARC scan any buffers to be compressed, we boost 1068 * our headroom for the next scanning cycle by this percentage multiple. 1069 */ 1070 #define L2ARC_HEADROOM_BOOST 200 1071 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 1072 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 1073 1074 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 1075 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 1076 1077 /* L2ARC Performance Tunables */ 1078 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 1079 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 1080 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 1081 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 1082 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 1083 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 1084 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 1085 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 1086 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 1087 1088 /* 1089 * L2ARC Internals 1090 */ 1091 struct l2arc_dev { 1092 vdev_t *l2ad_vdev; /* vdev */ 1093 spa_t *l2ad_spa; /* spa */ 1094 uint64_t l2ad_hand; /* next write location */ 1095 uint64_t l2ad_start; /* first addr on device */ 1096 uint64_t l2ad_end; /* last addr on device */ 1097 boolean_t l2ad_first; /* first sweep through */ 1098 boolean_t l2ad_writing; /* currently writing */ 1099 kmutex_t l2ad_mtx; /* lock for buffer list */ 1100 list_t l2ad_buflist; /* buffer list */ 1101 list_node_t l2ad_node; /* device list node */ 1102 refcount_t l2ad_alloc; /* allocated bytes */ 1103 }; 1104 1105 static list_t L2ARC_dev_list; /* device list */ 1106 static list_t *l2arc_dev_list; /* device list pointer */ 1107 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 1108 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 1109 static list_t L2ARC_free_on_write; /* free after write buf list */ 1110 static list_t *l2arc_free_on_write; /* free after write list ptr */ 1111 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 1112 static uint64_t l2arc_ndev; /* number of devices */ 1113 1114 typedef struct l2arc_read_callback { 1115 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 1116 blkptr_t l2rcb_bp; /* original blkptr */ 1117 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 1118 int l2rcb_flags; /* original flags */ 1119 abd_t *l2rcb_abd; /* temporary buffer */ 1120 } l2arc_read_callback_t; 1121 1122 typedef struct l2arc_write_callback { 1123 l2arc_dev_t *l2wcb_dev; /* device info */ 1124 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 1125 } l2arc_write_callback_t; 1126 1127 typedef struct l2arc_data_free { 1128 /* protected by l2arc_free_on_write_mtx */ 1129 abd_t *l2df_abd; 1130 size_t l2df_size; 1131 arc_buf_contents_t l2df_type; 1132 list_node_t l2df_list_node; 1133 } l2arc_data_free_t; 1134 1135 static kmutex_t l2arc_feed_thr_lock; 1136 static kcondvar_t l2arc_feed_thr_cv; 1137 static uint8_t l2arc_thread_exit; 1138 1139 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *); 1140 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 1141 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *); 1142 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 1143 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 1144 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 1145 static void arc_hdr_free_pabd(arc_buf_hdr_t *); 1146 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *); 1147 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 1148 static boolean_t arc_is_overflowing(); 1149 static void arc_buf_watch(arc_buf_t *); 1150 1151 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 1152 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 1153 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 1154 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 1155 1156 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 1157 static void l2arc_read_done(zio_t *); 1158 1159 1160 /* 1161 * We use Cityhash for this. It's fast, and has good hash properties without 1162 * requiring any large static buffers. 1163 */ 1164 static uint64_t 1165 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 1166 { 1167 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 1168 } 1169 1170 #define HDR_EMPTY(hdr) \ 1171 ((hdr)->b_dva.dva_word[0] == 0 && \ 1172 (hdr)->b_dva.dva_word[1] == 0) 1173 1174 #define HDR_EQUAL(spa, dva, birth, hdr) \ 1175 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 1176 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 1177 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 1178 1179 static void 1180 buf_discard_identity(arc_buf_hdr_t *hdr) 1181 { 1182 hdr->b_dva.dva_word[0] = 0; 1183 hdr->b_dva.dva_word[1] = 0; 1184 hdr->b_birth = 0; 1185 } 1186 1187 static arc_buf_hdr_t * 1188 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 1189 { 1190 const dva_t *dva = BP_IDENTITY(bp); 1191 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 1192 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1193 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1194 arc_buf_hdr_t *hdr; 1195 1196 mutex_enter(hash_lock); 1197 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1198 hdr = hdr->b_hash_next) { 1199 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1200 *lockp = hash_lock; 1201 return (hdr); 1202 } 1203 } 1204 mutex_exit(hash_lock); 1205 *lockp = NULL; 1206 return (NULL); 1207 } 1208 1209 /* 1210 * Insert an entry into the hash table. If there is already an element 1211 * equal to elem in the hash table, then the already existing element 1212 * will be returned and the new element will not be inserted. 1213 * Otherwise returns NULL. 1214 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1215 */ 1216 static arc_buf_hdr_t * 1217 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1218 { 1219 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1220 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1221 arc_buf_hdr_t *fhdr; 1222 uint32_t i; 1223 1224 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1225 ASSERT(hdr->b_birth != 0); 1226 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1227 1228 if (lockp != NULL) { 1229 *lockp = hash_lock; 1230 mutex_enter(hash_lock); 1231 } else { 1232 ASSERT(MUTEX_HELD(hash_lock)); 1233 } 1234 1235 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1236 fhdr = fhdr->b_hash_next, i++) { 1237 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1238 return (fhdr); 1239 } 1240 1241 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1242 buf_hash_table.ht_table[idx] = hdr; 1243 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1244 1245 /* collect some hash table performance data */ 1246 if (i > 0) { 1247 ARCSTAT_BUMP(arcstat_hash_collisions); 1248 if (i == 1) 1249 ARCSTAT_BUMP(arcstat_hash_chains); 1250 1251 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1252 } 1253 1254 ARCSTAT_BUMP(arcstat_hash_elements); 1255 ARCSTAT_MAXSTAT(arcstat_hash_elements); 1256 1257 return (NULL); 1258 } 1259 1260 static void 1261 buf_hash_remove(arc_buf_hdr_t *hdr) 1262 { 1263 arc_buf_hdr_t *fhdr, **hdrp; 1264 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1265 1266 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1267 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1268 1269 hdrp = &buf_hash_table.ht_table[idx]; 1270 while ((fhdr = *hdrp) != hdr) { 1271 ASSERT3P(fhdr, !=, NULL); 1272 hdrp = &fhdr->b_hash_next; 1273 } 1274 *hdrp = hdr->b_hash_next; 1275 hdr->b_hash_next = NULL; 1276 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1277 1278 /* collect some hash table performance data */ 1279 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 1280 1281 if (buf_hash_table.ht_table[idx] && 1282 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1283 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1284 } 1285 1286 /* 1287 * Global data structures and functions for the buf kmem cache. 1288 */ 1289 static kmem_cache_t *hdr_full_cache; 1290 static kmem_cache_t *hdr_l2only_cache; 1291 static kmem_cache_t *buf_cache; 1292 1293 static void 1294 buf_fini(void) 1295 { 1296 int i; 1297 1298 kmem_free(buf_hash_table.ht_table, 1299 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1300 for (i = 0; i < BUF_LOCKS; i++) 1301 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 1302 kmem_cache_destroy(hdr_full_cache); 1303 kmem_cache_destroy(hdr_l2only_cache); 1304 kmem_cache_destroy(buf_cache); 1305 } 1306 1307 /* 1308 * Constructor callback - called when the cache is empty 1309 * and a new buf is requested. 1310 */ 1311 /* ARGSUSED */ 1312 static int 1313 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1314 { 1315 arc_buf_hdr_t *hdr = vbuf; 1316 1317 bzero(hdr, HDR_FULL_SIZE); 1318 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1319 refcount_create(&hdr->b_l1hdr.b_refcnt); 1320 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1321 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1322 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1323 1324 return (0); 1325 } 1326 1327 /* ARGSUSED */ 1328 static int 1329 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1330 { 1331 arc_buf_hdr_t *hdr = vbuf; 1332 1333 bzero(hdr, HDR_L2ONLY_SIZE); 1334 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1335 1336 return (0); 1337 } 1338 1339 /* ARGSUSED */ 1340 static int 1341 buf_cons(void *vbuf, void *unused, int kmflag) 1342 { 1343 arc_buf_t *buf = vbuf; 1344 1345 bzero(buf, sizeof (arc_buf_t)); 1346 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1347 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1348 1349 return (0); 1350 } 1351 1352 /* 1353 * Destructor callback - called when a cached buf is 1354 * no longer required. 1355 */ 1356 /* ARGSUSED */ 1357 static void 1358 hdr_full_dest(void *vbuf, void *unused) 1359 { 1360 arc_buf_hdr_t *hdr = vbuf; 1361 1362 ASSERT(HDR_EMPTY(hdr)); 1363 cv_destroy(&hdr->b_l1hdr.b_cv); 1364 refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1365 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1366 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1367 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1368 } 1369 1370 /* ARGSUSED */ 1371 static void 1372 hdr_l2only_dest(void *vbuf, void *unused) 1373 { 1374 arc_buf_hdr_t *hdr = vbuf; 1375 1376 ASSERT(HDR_EMPTY(hdr)); 1377 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1378 } 1379 1380 /* ARGSUSED */ 1381 static void 1382 buf_dest(void *vbuf, void *unused) 1383 { 1384 arc_buf_t *buf = vbuf; 1385 1386 mutex_destroy(&buf->b_evict_lock); 1387 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1388 } 1389 1390 /* 1391 * Reclaim callback -- invoked when memory is low. 1392 */ 1393 /* ARGSUSED */ 1394 static void 1395 hdr_recl(void *unused) 1396 { 1397 dprintf("hdr_recl called\n"); 1398 /* 1399 * umem calls the reclaim func when we destroy the buf cache, 1400 * which is after we do arc_fini(). 1401 */ 1402 if (!arc_dead) 1403 cv_signal(&arc_reclaim_thread_cv); 1404 } 1405 1406 static void 1407 buf_init(void) 1408 { 1409 uint64_t *ct; 1410 uint64_t hsize = 1ULL << 12; 1411 int i, j; 1412 1413 /* 1414 * The hash table is big enough to fill all of physical memory 1415 * with an average block size of zfs_arc_average_blocksize (default 8K). 1416 * By default, the table will take up 1417 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1418 */ 1419 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 1420 hsize <<= 1; 1421 retry: 1422 buf_hash_table.ht_mask = hsize - 1; 1423 buf_hash_table.ht_table = 1424 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1425 if (buf_hash_table.ht_table == NULL) { 1426 ASSERT(hsize > (1ULL << 8)); 1427 hsize >>= 1; 1428 goto retry; 1429 } 1430 1431 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1432 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0); 1433 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1434 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl, 1435 NULL, NULL, 0); 1436 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1437 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1438 1439 for (i = 0; i < 256; i++) 1440 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1441 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1442 1443 for (i = 0; i < BUF_LOCKS; i++) { 1444 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1445 NULL, MUTEX_DEFAULT, NULL); 1446 } 1447 } 1448 1449 /* 1450 * This is the size that the buf occupies in memory. If the buf is compressed, 1451 * it will correspond to the compressed size. You should use this method of 1452 * getting the buf size unless you explicitly need the logical size. 1453 */ 1454 int32_t 1455 arc_buf_size(arc_buf_t *buf) 1456 { 1457 return (ARC_BUF_COMPRESSED(buf) ? 1458 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1459 } 1460 1461 int32_t 1462 arc_buf_lsize(arc_buf_t *buf) 1463 { 1464 return (HDR_GET_LSIZE(buf->b_hdr)); 1465 } 1466 1467 enum zio_compress 1468 arc_get_compression(arc_buf_t *buf) 1469 { 1470 return (ARC_BUF_COMPRESSED(buf) ? 1471 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1472 } 1473 1474 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1475 1476 static inline boolean_t 1477 arc_buf_is_shared(arc_buf_t *buf) 1478 { 1479 boolean_t shared = (buf->b_data != NULL && 1480 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1481 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1482 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1483 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1484 IMPLY(shared, ARC_BUF_SHARED(buf)); 1485 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1486 1487 /* 1488 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1489 * already being shared" requirement prevents us from doing that. 1490 */ 1491 1492 return (shared); 1493 } 1494 1495 /* 1496 * Free the checksum associated with this header. If there is no checksum, this 1497 * is a no-op. 1498 */ 1499 static inline void 1500 arc_cksum_free(arc_buf_hdr_t *hdr) 1501 { 1502 ASSERT(HDR_HAS_L1HDR(hdr)); 1503 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1504 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1505 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1506 hdr->b_l1hdr.b_freeze_cksum = NULL; 1507 } 1508 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1509 } 1510 1511 /* 1512 * Return true iff at least one of the bufs on hdr is not compressed. 1513 */ 1514 static boolean_t 1515 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1516 { 1517 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1518 if (!ARC_BUF_COMPRESSED(b)) { 1519 return (B_TRUE); 1520 } 1521 } 1522 return (B_FALSE); 1523 } 1524 1525 /* 1526 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1527 * matches the checksum that is stored in the hdr. If there is no checksum, 1528 * or if the buf is compressed, this is a no-op. 1529 */ 1530 static void 1531 arc_cksum_verify(arc_buf_t *buf) 1532 { 1533 arc_buf_hdr_t *hdr = buf->b_hdr; 1534 zio_cksum_t zc; 1535 1536 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1537 return; 1538 1539 if (ARC_BUF_COMPRESSED(buf)) { 1540 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL || 1541 arc_hdr_has_uncompressed_buf(hdr)); 1542 return; 1543 } 1544 1545 ASSERT(HDR_HAS_L1HDR(hdr)); 1546 1547 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1548 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1549 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1550 return; 1551 } 1552 1553 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1554 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1555 panic("buffer modified while frozen!"); 1556 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1557 } 1558 1559 static boolean_t 1560 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1561 { 1562 enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp); 1563 boolean_t valid_cksum; 1564 1565 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1566 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1567 1568 /* 1569 * We rely on the blkptr's checksum to determine if the block 1570 * is valid or not. When compressed arc is enabled, the l2arc 1571 * writes the block to the l2arc just as it appears in the pool. 1572 * This allows us to use the blkptr's checksum to validate the 1573 * data that we just read off of the l2arc without having to store 1574 * a separate checksum in the arc_buf_hdr_t. However, if compressed 1575 * arc is disabled, then the data written to the l2arc is always 1576 * uncompressed and won't match the block as it exists in the main 1577 * pool. When this is the case, we must first compress it if it is 1578 * compressed on the main pool before we can validate the checksum. 1579 */ 1580 if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) { 1581 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1582 uint64_t lsize = HDR_GET_LSIZE(hdr); 1583 uint64_t csize; 1584 1585 abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE); 1586 csize = zio_compress_data(compress, zio->io_abd, 1587 abd_to_buf(cdata), lsize); 1588 1589 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr)); 1590 if (csize < HDR_GET_PSIZE(hdr)) { 1591 /* 1592 * Compressed blocks are always a multiple of the 1593 * smallest ashift in the pool. Ideally, we would 1594 * like to round up the csize to the next 1595 * spa_min_ashift but that value may have changed 1596 * since the block was last written. Instead, 1597 * we rely on the fact that the hdr's psize 1598 * was set to the psize of the block when it was 1599 * last written. We set the csize to that value 1600 * and zero out any part that should not contain 1601 * data. 1602 */ 1603 abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize); 1604 csize = HDR_GET_PSIZE(hdr); 1605 } 1606 zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL); 1607 } 1608 1609 /* 1610 * Block pointers always store the checksum for the logical data. 1611 * If the block pointer has the gang bit set, then the checksum 1612 * it represents is for the reconstituted data and not for an 1613 * individual gang member. The zio pipeline, however, must be able to 1614 * determine the checksum of each of the gang constituents so it 1615 * treats the checksum comparison differently than what we need 1616 * for l2arc blocks. This prevents us from using the 1617 * zio_checksum_error() interface directly. Instead we must call the 1618 * zio_checksum_error_impl() so that we can ensure the checksum is 1619 * generated using the correct checksum algorithm and accounts for the 1620 * logical I/O size and not just a gang fragment. 1621 */ 1622 valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1623 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1624 zio->io_offset, NULL) == 0); 1625 zio_pop_transforms(zio); 1626 return (valid_cksum); 1627 } 1628 1629 /* 1630 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1631 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1632 * isn't modified later on. If buf is compressed or there is already a checksum 1633 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1634 */ 1635 static void 1636 arc_cksum_compute(arc_buf_t *buf) 1637 { 1638 arc_buf_hdr_t *hdr = buf->b_hdr; 1639 1640 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1641 return; 1642 1643 ASSERT(HDR_HAS_L1HDR(hdr)); 1644 1645 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1646 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1647 ASSERT(arc_hdr_has_uncompressed_buf(hdr)); 1648 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1649 return; 1650 } else if (ARC_BUF_COMPRESSED(buf)) { 1651 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1652 return; 1653 } 1654 1655 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1656 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1657 KM_SLEEP); 1658 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1659 hdr->b_l1hdr.b_freeze_cksum); 1660 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1661 arc_buf_watch(buf); 1662 } 1663 1664 #ifndef _KERNEL 1665 typedef struct procctl { 1666 long cmd; 1667 prwatch_t prwatch; 1668 } procctl_t; 1669 #endif 1670 1671 /* ARGSUSED */ 1672 static void 1673 arc_buf_unwatch(arc_buf_t *buf) 1674 { 1675 #ifndef _KERNEL 1676 if (arc_watch) { 1677 int result; 1678 procctl_t ctl; 1679 ctl.cmd = PCWATCH; 1680 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1681 ctl.prwatch.pr_size = 0; 1682 ctl.prwatch.pr_wflags = 0; 1683 result = write(arc_procfd, &ctl, sizeof (ctl)); 1684 ASSERT3U(result, ==, sizeof (ctl)); 1685 } 1686 #endif 1687 } 1688 1689 /* ARGSUSED */ 1690 static void 1691 arc_buf_watch(arc_buf_t *buf) 1692 { 1693 #ifndef _KERNEL 1694 if (arc_watch) { 1695 int result; 1696 procctl_t ctl; 1697 ctl.cmd = PCWATCH; 1698 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1699 ctl.prwatch.pr_size = arc_buf_size(buf); 1700 ctl.prwatch.pr_wflags = WA_WRITE; 1701 result = write(arc_procfd, &ctl, sizeof (ctl)); 1702 ASSERT3U(result, ==, sizeof (ctl)); 1703 } 1704 #endif 1705 } 1706 1707 static arc_buf_contents_t 1708 arc_buf_type(arc_buf_hdr_t *hdr) 1709 { 1710 arc_buf_contents_t type; 1711 if (HDR_ISTYPE_METADATA(hdr)) { 1712 type = ARC_BUFC_METADATA; 1713 } else { 1714 type = ARC_BUFC_DATA; 1715 } 1716 VERIFY3U(hdr->b_type, ==, type); 1717 return (type); 1718 } 1719 1720 boolean_t 1721 arc_is_metadata(arc_buf_t *buf) 1722 { 1723 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1724 } 1725 1726 static uint32_t 1727 arc_bufc_to_flags(arc_buf_contents_t type) 1728 { 1729 switch (type) { 1730 case ARC_BUFC_DATA: 1731 /* metadata field is 0 if buffer contains normal data */ 1732 return (0); 1733 case ARC_BUFC_METADATA: 1734 return (ARC_FLAG_BUFC_METADATA); 1735 default: 1736 break; 1737 } 1738 panic("undefined ARC buffer type!"); 1739 return ((uint32_t)-1); 1740 } 1741 1742 void 1743 arc_buf_thaw(arc_buf_t *buf) 1744 { 1745 arc_buf_hdr_t *hdr = buf->b_hdr; 1746 1747 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1748 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1749 1750 arc_cksum_verify(buf); 1751 1752 /* 1753 * Compressed buffers do not manipulate the b_freeze_cksum or 1754 * allocate b_thawed. 1755 */ 1756 if (ARC_BUF_COMPRESSED(buf)) { 1757 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL || 1758 arc_hdr_has_uncompressed_buf(hdr)); 1759 return; 1760 } 1761 1762 ASSERT(HDR_HAS_L1HDR(hdr)); 1763 arc_cksum_free(hdr); 1764 1765 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1766 #ifdef ZFS_DEBUG 1767 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1768 if (hdr->b_l1hdr.b_thawed != NULL) 1769 kmem_free(hdr->b_l1hdr.b_thawed, 1); 1770 hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP); 1771 } 1772 #endif 1773 1774 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1775 1776 arc_buf_unwatch(buf); 1777 } 1778 1779 void 1780 arc_buf_freeze(arc_buf_t *buf) 1781 { 1782 arc_buf_hdr_t *hdr = buf->b_hdr; 1783 kmutex_t *hash_lock; 1784 1785 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1786 return; 1787 1788 if (ARC_BUF_COMPRESSED(buf)) { 1789 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL || 1790 arc_hdr_has_uncompressed_buf(hdr)); 1791 return; 1792 } 1793 1794 hash_lock = HDR_LOCK(hdr); 1795 mutex_enter(hash_lock); 1796 1797 ASSERT(HDR_HAS_L1HDR(hdr)); 1798 ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL || 1799 hdr->b_l1hdr.b_state == arc_anon); 1800 arc_cksum_compute(buf); 1801 mutex_exit(hash_lock); 1802 } 1803 1804 /* 1805 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1806 * the following functions should be used to ensure that the flags are 1807 * updated in a thread-safe way. When manipulating the flags either 1808 * the hash_lock must be held or the hdr must be undiscoverable. This 1809 * ensures that we're not racing with any other threads when updating 1810 * the flags. 1811 */ 1812 static inline void 1813 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1814 { 1815 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1816 hdr->b_flags |= flags; 1817 } 1818 1819 static inline void 1820 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1821 { 1822 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1823 hdr->b_flags &= ~flags; 1824 } 1825 1826 /* 1827 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1828 * done in a special way since we have to clear and set bits 1829 * at the same time. Consumers that wish to set the compression bits 1830 * must use this function to ensure that the flags are updated in 1831 * thread-safe manner. 1832 */ 1833 static void 1834 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1835 { 1836 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1837 1838 /* 1839 * Holes and embedded blocks will always have a psize = 0 so 1840 * we ignore the compression of the blkptr and set the 1841 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF. 1842 * Holes and embedded blocks remain anonymous so we don't 1843 * want to uncompress them. Mark them as uncompressed. 1844 */ 1845 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1846 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1847 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 1848 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1849 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1850 } else { 1851 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1852 HDR_SET_COMPRESS(hdr, cmp); 1853 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1854 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1855 } 1856 } 1857 1858 /* 1859 * Looks for another buf on the same hdr which has the data decompressed, copies 1860 * from it, and returns true. If no such buf exists, returns false. 1861 */ 1862 static boolean_t 1863 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1864 { 1865 arc_buf_hdr_t *hdr = buf->b_hdr; 1866 boolean_t copied = B_FALSE; 1867 1868 ASSERT(HDR_HAS_L1HDR(hdr)); 1869 ASSERT3P(buf->b_data, !=, NULL); 1870 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1871 1872 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1873 from = from->b_next) { 1874 /* can't use our own data buffer */ 1875 if (from == buf) { 1876 continue; 1877 } 1878 1879 if (!ARC_BUF_COMPRESSED(from)) { 1880 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1881 copied = B_TRUE; 1882 break; 1883 } 1884 } 1885 1886 /* 1887 * There were no decompressed bufs, so there should not be a 1888 * checksum on the hdr either. 1889 */ 1890 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1891 1892 return (copied); 1893 } 1894 1895 /* 1896 * Given a buf that has a data buffer attached to it, this function will 1897 * efficiently fill the buf with data of the specified compression setting from 1898 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1899 * are already sharing a data buf, no copy is performed. 1900 * 1901 * If the buf is marked as compressed but uncompressed data was requested, this 1902 * will allocate a new data buffer for the buf, remove that flag, and fill the 1903 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1904 * uncompressed data, and (since we haven't added support for it yet) if you 1905 * want compressed data your buf must already be marked as compressed and have 1906 * the correct-sized data buffer. 1907 */ 1908 static int 1909 arc_buf_fill(arc_buf_t *buf, boolean_t compressed) 1910 { 1911 arc_buf_hdr_t *hdr = buf->b_hdr; 1912 boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF); 1913 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 1914 1915 ASSERT3P(buf->b_data, !=, NULL); 1916 IMPLY(compressed, hdr_compressed); 1917 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 1918 1919 if (hdr_compressed == compressed) { 1920 if (!arc_buf_is_shared(buf)) { 1921 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 1922 arc_buf_size(buf)); 1923 } 1924 } else { 1925 ASSERT(hdr_compressed); 1926 ASSERT(!compressed); 1927 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 1928 1929 /* 1930 * If the buf is sharing its data with the hdr, unlink it and 1931 * allocate a new data buffer for the buf. 1932 */ 1933 if (arc_buf_is_shared(buf)) { 1934 ASSERT(ARC_BUF_COMPRESSED(buf)); 1935 1936 /* We need to give the buf it's own b_data */ 1937 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 1938 buf->b_data = 1939 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 1940 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 1941 1942 /* Previously overhead was 0; just add new overhead */ 1943 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 1944 } else if (ARC_BUF_COMPRESSED(buf)) { 1945 /* We need to reallocate the buf's b_data */ 1946 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 1947 buf); 1948 buf->b_data = 1949 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 1950 1951 /* We increased the size of b_data; update overhead */ 1952 ARCSTAT_INCR(arcstat_overhead_size, 1953 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 1954 } 1955 1956 /* 1957 * Regardless of the buf's previous compression settings, it 1958 * should not be compressed at the end of this function. 1959 */ 1960 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1961 1962 /* 1963 * Try copying the data from another buf which already has a 1964 * decompressed version. If that's not possible, it's time to 1965 * bite the bullet and decompress the data from the hdr. 1966 */ 1967 if (arc_buf_try_copy_decompressed_data(buf)) { 1968 /* Skip byteswapping and checksumming (already done) */ 1969 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL); 1970 return (0); 1971 } else { 1972 int error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1973 hdr->b_l1hdr.b_pabd, buf->b_data, 1974 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 1975 1976 /* 1977 * Absent hardware errors or software bugs, this should 1978 * be impossible, but log it anyway so we can debug it. 1979 */ 1980 if (error != 0) { 1981 zfs_dbgmsg( 1982 "hdr %p, compress %d, psize %d, lsize %d", 1983 hdr, HDR_GET_COMPRESS(hdr), 1984 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 1985 return (SET_ERROR(EIO)); 1986 } 1987 } 1988 } 1989 1990 /* Byteswap the buf's data if necessary */ 1991 if (bswap != DMU_BSWAP_NUMFUNCS) { 1992 ASSERT(!HDR_SHARED_DATA(hdr)); 1993 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 1994 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 1995 } 1996 1997 /* Compute the hdr's checksum if necessary */ 1998 arc_cksum_compute(buf); 1999 2000 return (0); 2001 } 2002 2003 int 2004 arc_decompress(arc_buf_t *buf) 2005 { 2006 return (arc_buf_fill(buf, B_FALSE)); 2007 } 2008 2009 /* 2010 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 2011 */ 2012 static uint64_t 2013 arc_hdr_size(arc_buf_hdr_t *hdr) 2014 { 2015 uint64_t size; 2016 2017 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 2018 HDR_GET_PSIZE(hdr) > 0) { 2019 size = HDR_GET_PSIZE(hdr); 2020 } else { 2021 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 2022 size = HDR_GET_LSIZE(hdr); 2023 } 2024 return (size); 2025 } 2026 2027 /* 2028 * Increment the amount of evictable space in the arc_state_t's refcount. 2029 * We account for the space used by the hdr and the arc buf individually 2030 * so that we can add and remove them from the refcount individually. 2031 */ 2032 static void 2033 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2034 { 2035 arc_buf_contents_t type = arc_buf_type(hdr); 2036 2037 ASSERT(HDR_HAS_L1HDR(hdr)); 2038 2039 if (GHOST_STATE(state)) { 2040 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2041 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2042 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2043 (void) refcount_add_many(&state->arcs_esize[type], 2044 HDR_GET_LSIZE(hdr), hdr); 2045 return; 2046 } 2047 2048 ASSERT(!GHOST_STATE(state)); 2049 if (hdr->b_l1hdr.b_pabd != NULL) { 2050 (void) refcount_add_many(&state->arcs_esize[type], 2051 arc_hdr_size(hdr), hdr); 2052 } 2053 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2054 buf = buf->b_next) { 2055 if (arc_buf_is_shared(buf)) 2056 continue; 2057 (void) refcount_add_many(&state->arcs_esize[type], 2058 arc_buf_size(buf), buf); 2059 } 2060 } 2061 2062 /* 2063 * Decrement the amount of evictable space in the arc_state_t's refcount. 2064 * We account for the space used by the hdr and the arc buf individually 2065 * so that we can add and remove them from the refcount individually. 2066 */ 2067 static void 2068 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2069 { 2070 arc_buf_contents_t type = arc_buf_type(hdr); 2071 2072 ASSERT(HDR_HAS_L1HDR(hdr)); 2073 2074 if (GHOST_STATE(state)) { 2075 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2076 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2077 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2078 (void) refcount_remove_many(&state->arcs_esize[type], 2079 HDR_GET_LSIZE(hdr), hdr); 2080 return; 2081 } 2082 2083 ASSERT(!GHOST_STATE(state)); 2084 if (hdr->b_l1hdr.b_pabd != NULL) { 2085 (void) refcount_remove_many(&state->arcs_esize[type], 2086 arc_hdr_size(hdr), hdr); 2087 } 2088 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2089 buf = buf->b_next) { 2090 if (arc_buf_is_shared(buf)) 2091 continue; 2092 (void) refcount_remove_many(&state->arcs_esize[type], 2093 arc_buf_size(buf), buf); 2094 } 2095 } 2096 2097 /* 2098 * Add a reference to this hdr indicating that someone is actively 2099 * referencing that memory. When the refcount transitions from 0 to 1, 2100 * we remove it from the respective arc_state_t list to indicate that 2101 * it is not evictable. 2102 */ 2103 static void 2104 add_reference(arc_buf_hdr_t *hdr, void *tag) 2105 { 2106 ASSERT(HDR_HAS_L1HDR(hdr)); 2107 if (!MUTEX_HELD(HDR_LOCK(hdr))) { 2108 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2109 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2110 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2111 } 2112 2113 arc_state_t *state = hdr->b_l1hdr.b_state; 2114 2115 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2116 (state != arc_anon)) { 2117 /* We don't use the L2-only state list. */ 2118 if (state != arc_l2c_only) { 2119 multilist_remove(state->arcs_list[arc_buf_type(hdr)], 2120 hdr); 2121 arc_evictable_space_decrement(hdr, state); 2122 } 2123 /* remove the prefetch flag if we get a reference */ 2124 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2125 } 2126 } 2127 2128 /* 2129 * Remove a reference from this hdr. When the reference transitions from 2130 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2131 * list making it eligible for eviction. 2132 */ 2133 static int 2134 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2135 { 2136 int cnt; 2137 arc_state_t *state = hdr->b_l1hdr.b_state; 2138 2139 ASSERT(HDR_HAS_L1HDR(hdr)); 2140 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2141 ASSERT(!GHOST_STATE(state)); 2142 2143 /* 2144 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2145 * check to prevent usage of the arc_l2c_only list. 2146 */ 2147 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2148 (state != arc_anon)) { 2149 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr); 2150 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2151 arc_evictable_space_increment(hdr, state); 2152 } 2153 return (cnt); 2154 } 2155 2156 /* 2157 * Move the supplied buffer to the indicated state. The hash lock 2158 * for the buffer must be held by the caller. 2159 */ 2160 static void 2161 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2162 kmutex_t *hash_lock) 2163 { 2164 arc_state_t *old_state; 2165 int64_t refcnt; 2166 uint32_t bufcnt; 2167 boolean_t update_old, update_new; 2168 arc_buf_contents_t buftype = arc_buf_type(hdr); 2169 2170 /* 2171 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2172 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2173 * L1 hdr doesn't always exist when we change state to arc_anon before 2174 * destroying a header, in which case reallocating to add the L1 hdr is 2175 * pointless. 2176 */ 2177 if (HDR_HAS_L1HDR(hdr)) { 2178 old_state = hdr->b_l1hdr.b_state; 2179 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt); 2180 bufcnt = hdr->b_l1hdr.b_bufcnt; 2181 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL); 2182 } else { 2183 old_state = arc_l2c_only; 2184 refcnt = 0; 2185 bufcnt = 0; 2186 update_old = B_FALSE; 2187 } 2188 update_new = update_old; 2189 2190 ASSERT(MUTEX_HELD(hash_lock)); 2191 ASSERT3P(new_state, !=, old_state); 2192 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2193 ASSERT(old_state != arc_anon || bufcnt <= 1); 2194 2195 /* 2196 * If this buffer is evictable, transfer it from the 2197 * old state list to the new state list. 2198 */ 2199 if (refcnt == 0) { 2200 if (old_state != arc_anon && old_state != arc_l2c_only) { 2201 ASSERT(HDR_HAS_L1HDR(hdr)); 2202 multilist_remove(old_state->arcs_list[buftype], hdr); 2203 2204 if (GHOST_STATE(old_state)) { 2205 ASSERT0(bufcnt); 2206 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2207 update_old = B_TRUE; 2208 } 2209 arc_evictable_space_decrement(hdr, old_state); 2210 } 2211 if (new_state != arc_anon && new_state != arc_l2c_only) { 2212 2213 /* 2214 * An L1 header always exists here, since if we're 2215 * moving to some L1-cached state (i.e. not l2c_only or 2216 * anonymous), we realloc the header to add an L1hdr 2217 * beforehand. 2218 */ 2219 ASSERT(HDR_HAS_L1HDR(hdr)); 2220 multilist_insert(new_state->arcs_list[buftype], hdr); 2221 2222 if (GHOST_STATE(new_state)) { 2223 ASSERT0(bufcnt); 2224 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2225 update_new = B_TRUE; 2226 } 2227 arc_evictable_space_increment(hdr, new_state); 2228 } 2229 } 2230 2231 ASSERT(!HDR_EMPTY(hdr)); 2232 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2233 buf_hash_remove(hdr); 2234 2235 /* adjust state sizes (ignore arc_l2c_only) */ 2236 2237 if (update_new && new_state != arc_l2c_only) { 2238 ASSERT(HDR_HAS_L1HDR(hdr)); 2239 if (GHOST_STATE(new_state)) { 2240 ASSERT0(bufcnt); 2241 2242 /* 2243 * When moving a header to a ghost state, we first 2244 * remove all arc buffers. Thus, we'll have a 2245 * bufcnt of zero, and no arc buffer to use for 2246 * the reference. As a result, we use the arc 2247 * header pointer for the reference. 2248 */ 2249 (void) refcount_add_many(&new_state->arcs_size, 2250 HDR_GET_LSIZE(hdr), hdr); 2251 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2252 } else { 2253 uint32_t buffers = 0; 2254 2255 /* 2256 * Each individual buffer holds a unique reference, 2257 * thus we must remove each of these references one 2258 * at a time. 2259 */ 2260 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2261 buf = buf->b_next) { 2262 ASSERT3U(bufcnt, !=, 0); 2263 buffers++; 2264 2265 /* 2266 * When the arc_buf_t is sharing the data 2267 * block with the hdr, the owner of the 2268 * reference belongs to the hdr. Only 2269 * add to the refcount if the arc_buf_t is 2270 * not shared. 2271 */ 2272 if (arc_buf_is_shared(buf)) 2273 continue; 2274 2275 (void) refcount_add_many(&new_state->arcs_size, 2276 arc_buf_size(buf), buf); 2277 } 2278 ASSERT3U(bufcnt, ==, buffers); 2279 2280 if (hdr->b_l1hdr.b_pabd != NULL) { 2281 (void) refcount_add_many(&new_state->arcs_size, 2282 arc_hdr_size(hdr), hdr); 2283 } else { 2284 ASSERT(GHOST_STATE(old_state)); 2285 } 2286 } 2287 } 2288 2289 if (update_old && old_state != arc_l2c_only) { 2290 ASSERT(HDR_HAS_L1HDR(hdr)); 2291 if (GHOST_STATE(old_state)) { 2292 ASSERT0(bufcnt); 2293 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2294 2295 /* 2296 * When moving a header off of a ghost state, 2297 * the header will not contain any arc buffers. 2298 * We use the arc header pointer for the reference 2299 * which is exactly what we did when we put the 2300 * header on the ghost state. 2301 */ 2302 2303 (void) refcount_remove_many(&old_state->arcs_size, 2304 HDR_GET_LSIZE(hdr), hdr); 2305 } else { 2306 uint32_t buffers = 0; 2307 2308 /* 2309 * Each individual buffer holds a unique reference, 2310 * thus we must remove each of these references one 2311 * at a time. 2312 */ 2313 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2314 buf = buf->b_next) { 2315 ASSERT3U(bufcnt, !=, 0); 2316 buffers++; 2317 2318 /* 2319 * When the arc_buf_t is sharing the data 2320 * block with the hdr, the owner of the 2321 * reference belongs to the hdr. Only 2322 * add to the refcount if the arc_buf_t is 2323 * not shared. 2324 */ 2325 if (arc_buf_is_shared(buf)) 2326 continue; 2327 2328 (void) refcount_remove_many( 2329 &old_state->arcs_size, arc_buf_size(buf), 2330 buf); 2331 } 2332 ASSERT3U(bufcnt, ==, buffers); 2333 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2334 (void) refcount_remove_many( 2335 &old_state->arcs_size, arc_hdr_size(hdr), hdr); 2336 } 2337 } 2338 2339 if (HDR_HAS_L1HDR(hdr)) 2340 hdr->b_l1hdr.b_state = new_state; 2341 2342 /* 2343 * L2 headers should never be on the L2 state list since they don't 2344 * have L1 headers allocated. 2345 */ 2346 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2347 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2348 } 2349 2350 void 2351 arc_space_consume(uint64_t space, arc_space_type_t type) 2352 { 2353 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2354 2355 switch (type) { 2356 case ARC_SPACE_DATA: 2357 aggsum_add(&astat_data_size, space); 2358 break; 2359 case ARC_SPACE_META: 2360 aggsum_add(&astat_metadata_size, space); 2361 break; 2362 case ARC_SPACE_OTHER: 2363 aggsum_add(&astat_other_size, space); 2364 break; 2365 case ARC_SPACE_HDRS: 2366 aggsum_add(&astat_hdr_size, space); 2367 break; 2368 case ARC_SPACE_L2HDRS: 2369 aggsum_add(&astat_l2_hdr_size, space); 2370 break; 2371 } 2372 2373 if (type != ARC_SPACE_DATA) 2374 aggsum_add(&arc_meta_used, space); 2375 2376 aggsum_add(&arc_size, space); 2377 } 2378 2379 void 2380 arc_space_return(uint64_t space, arc_space_type_t type) 2381 { 2382 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2383 2384 switch (type) { 2385 case ARC_SPACE_DATA: 2386 aggsum_add(&astat_data_size, -space); 2387 break; 2388 case ARC_SPACE_META: 2389 aggsum_add(&astat_metadata_size, -space); 2390 break; 2391 case ARC_SPACE_OTHER: 2392 aggsum_add(&astat_other_size, -space); 2393 break; 2394 case ARC_SPACE_HDRS: 2395 aggsum_add(&astat_hdr_size, -space); 2396 break; 2397 case ARC_SPACE_L2HDRS: 2398 aggsum_add(&astat_l2_hdr_size, -space); 2399 break; 2400 } 2401 2402 if (type != ARC_SPACE_DATA) { 2403 ASSERT(aggsum_compare(&arc_meta_used, space) >= 0); 2404 /* 2405 * We use the upper bound here rather than the precise value 2406 * because the arc_meta_max value doesn't need to be 2407 * precise. It's only consumed by humans via arcstats. 2408 */ 2409 if (arc_meta_max < aggsum_upper_bound(&arc_meta_used)) 2410 arc_meta_max = aggsum_upper_bound(&arc_meta_used); 2411 aggsum_add(&arc_meta_used, -space); 2412 } 2413 2414 ASSERT(aggsum_compare(&arc_size, space) >= 0); 2415 aggsum_add(&arc_size, -space); 2416 } 2417 2418 /* 2419 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2420 * with the hdr's b_pabd. 2421 */ 2422 static boolean_t 2423 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2424 { 2425 /* 2426 * The criteria for sharing a hdr's data are: 2427 * 1. the hdr's compression matches the buf's compression 2428 * 2. the hdr doesn't need to be byteswapped 2429 * 3. the hdr isn't already being shared 2430 * 4. the buf is either compressed or it is the last buf in the hdr list 2431 * 2432 * Criterion #4 maintains the invariant that shared uncompressed 2433 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2434 * might ask, "if a compressed buf is allocated first, won't that be the 2435 * last thing in the list?", but in that case it's impossible to create 2436 * a shared uncompressed buf anyway (because the hdr must be compressed 2437 * to have the compressed buf). You might also think that #3 is 2438 * sufficient to make this guarantee, however it's possible 2439 * (specifically in the rare L2ARC write race mentioned in 2440 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2441 * is sharable, but wasn't at the time of its allocation. Rather than 2442 * allow a new shared uncompressed buf to be created and then shuffle 2443 * the list around to make it the last element, this simply disallows 2444 * sharing if the new buf isn't the first to be added. 2445 */ 2446 ASSERT3P(buf->b_hdr, ==, hdr); 2447 boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF; 2448 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2449 return (buf_compressed == hdr_compressed && 2450 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2451 !HDR_SHARED_DATA(hdr) && 2452 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2453 } 2454 2455 /* 2456 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2457 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2458 * copy was made successfully, or an error code otherwise. 2459 */ 2460 static int 2461 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed, 2462 boolean_t fill, arc_buf_t **ret) 2463 { 2464 arc_buf_t *buf; 2465 2466 ASSERT(HDR_HAS_L1HDR(hdr)); 2467 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2468 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2469 hdr->b_type == ARC_BUFC_METADATA); 2470 ASSERT3P(ret, !=, NULL); 2471 ASSERT3P(*ret, ==, NULL); 2472 2473 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2474 buf->b_hdr = hdr; 2475 buf->b_data = NULL; 2476 buf->b_next = hdr->b_l1hdr.b_buf; 2477 buf->b_flags = 0; 2478 2479 add_reference(hdr, tag); 2480 2481 /* 2482 * We're about to change the hdr's b_flags. We must either 2483 * hold the hash_lock or be undiscoverable. 2484 */ 2485 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2486 2487 /* 2488 * Only honor requests for compressed bufs if the hdr is actually 2489 * compressed. 2490 */ 2491 if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) 2492 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2493 2494 /* 2495 * If the hdr's data can be shared then we share the data buffer and 2496 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2497 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2498 * buffer to store the buf's data. 2499 * 2500 * There are two additional restrictions here because we're sharing 2501 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2502 * actively involved in an L2ARC write, because if this buf is used by 2503 * an arc_write() then the hdr's data buffer will be released when the 2504 * write completes, even though the L2ARC write might still be using it. 2505 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2506 * need to be ABD-aware. 2507 */ 2508 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) && 2509 abd_is_linear(hdr->b_l1hdr.b_pabd); 2510 2511 /* Set up b_data and sharing */ 2512 if (can_share) { 2513 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2514 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2515 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2516 } else { 2517 buf->b_data = 2518 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2519 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2520 } 2521 VERIFY3P(buf->b_data, !=, NULL); 2522 2523 hdr->b_l1hdr.b_buf = buf; 2524 hdr->b_l1hdr.b_bufcnt += 1; 2525 2526 /* 2527 * If the user wants the data from the hdr, we need to either copy or 2528 * decompress the data. 2529 */ 2530 if (fill) { 2531 return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0)); 2532 } 2533 2534 return (0); 2535 } 2536 2537 static char *arc_onloan_tag = "onloan"; 2538 2539 static inline void 2540 arc_loaned_bytes_update(int64_t delta) 2541 { 2542 atomic_add_64(&arc_loaned_bytes, delta); 2543 2544 /* assert that it did not wrap around */ 2545 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2546 } 2547 2548 /* 2549 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2550 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2551 * buffers must be returned to the arc before they can be used by the DMU or 2552 * freed. 2553 */ 2554 arc_buf_t * 2555 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2556 { 2557 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2558 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2559 2560 arc_loaned_bytes_update(size); 2561 2562 return (buf); 2563 } 2564 2565 arc_buf_t * 2566 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2567 enum zio_compress compression_type) 2568 { 2569 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2570 psize, lsize, compression_type); 2571 2572 arc_loaned_bytes_update(psize); 2573 2574 return (buf); 2575 } 2576 2577 2578 /* 2579 * Return a loaned arc buffer to the arc. 2580 */ 2581 void 2582 arc_return_buf(arc_buf_t *buf, void *tag) 2583 { 2584 arc_buf_hdr_t *hdr = buf->b_hdr; 2585 2586 ASSERT3P(buf->b_data, !=, NULL); 2587 ASSERT(HDR_HAS_L1HDR(hdr)); 2588 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2589 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2590 2591 arc_loaned_bytes_update(-arc_buf_size(buf)); 2592 } 2593 2594 /* Detach an arc_buf from a dbuf (tag) */ 2595 void 2596 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2597 { 2598 arc_buf_hdr_t *hdr = buf->b_hdr; 2599 2600 ASSERT3P(buf->b_data, !=, NULL); 2601 ASSERT(HDR_HAS_L1HDR(hdr)); 2602 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2603 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2604 2605 arc_loaned_bytes_update(arc_buf_size(buf)); 2606 } 2607 2608 static void 2609 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2610 { 2611 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2612 2613 df->l2df_abd = abd; 2614 df->l2df_size = size; 2615 df->l2df_type = type; 2616 mutex_enter(&l2arc_free_on_write_mtx); 2617 list_insert_head(l2arc_free_on_write, df); 2618 mutex_exit(&l2arc_free_on_write_mtx); 2619 } 2620 2621 static void 2622 arc_hdr_free_on_write(arc_buf_hdr_t *hdr) 2623 { 2624 arc_state_t *state = hdr->b_l1hdr.b_state; 2625 arc_buf_contents_t type = arc_buf_type(hdr); 2626 uint64_t size = arc_hdr_size(hdr); 2627 2628 /* protected by hash lock, if in the hash table */ 2629 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2630 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2631 ASSERT(state != arc_anon && state != arc_l2c_only); 2632 2633 (void) refcount_remove_many(&state->arcs_esize[type], 2634 size, hdr); 2635 } 2636 (void) refcount_remove_many(&state->arcs_size, size, hdr); 2637 if (type == ARC_BUFC_METADATA) { 2638 arc_space_return(size, ARC_SPACE_META); 2639 } else { 2640 ASSERT(type == ARC_BUFC_DATA); 2641 arc_space_return(size, ARC_SPACE_DATA); 2642 } 2643 2644 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2645 } 2646 2647 /* 2648 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2649 * data buffer, we transfer the refcount ownership to the hdr and update 2650 * the appropriate kstats. 2651 */ 2652 static void 2653 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2654 { 2655 arc_state_t *state = hdr->b_l1hdr.b_state; 2656 2657 ASSERT(arc_can_share(hdr, buf)); 2658 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2659 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2660 2661 /* 2662 * Start sharing the data buffer. We transfer the 2663 * refcount ownership to the hdr since it always owns 2664 * the refcount whenever an arc_buf_t is shared. 2665 */ 2666 refcount_transfer_ownership(&state->arcs_size, buf, hdr); 2667 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2668 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 2669 HDR_ISTYPE_METADATA(hdr)); 2670 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2671 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2672 2673 /* 2674 * Since we've transferred ownership to the hdr we need 2675 * to increment its compressed and uncompressed kstats and 2676 * decrement the overhead size. 2677 */ 2678 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2679 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2680 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 2681 } 2682 2683 static void 2684 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2685 { 2686 arc_state_t *state = hdr->b_l1hdr.b_state; 2687 2688 ASSERT(arc_buf_is_shared(buf)); 2689 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2690 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2691 2692 /* 2693 * We are no longer sharing this buffer so we need 2694 * to transfer its ownership to the rightful owner. 2695 */ 2696 refcount_transfer_ownership(&state->arcs_size, hdr, buf); 2697 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2698 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 2699 abd_put(hdr->b_l1hdr.b_pabd); 2700 hdr->b_l1hdr.b_pabd = NULL; 2701 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2702 2703 /* 2704 * Since the buffer is no longer shared between 2705 * the arc buf and the hdr, count it as overhead. 2706 */ 2707 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2708 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2709 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2710 } 2711 2712 /* 2713 * Remove an arc_buf_t from the hdr's buf list and return the last 2714 * arc_buf_t on the list. If no buffers remain on the list then return 2715 * NULL. 2716 */ 2717 static arc_buf_t * 2718 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2719 { 2720 ASSERT(HDR_HAS_L1HDR(hdr)); 2721 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2722 2723 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 2724 arc_buf_t *lastbuf = NULL; 2725 2726 /* 2727 * Remove the buf from the hdr list and locate the last 2728 * remaining buffer on the list. 2729 */ 2730 while (*bufp != NULL) { 2731 if (*bufp == buf) 2732 *bufp = buf->b_next; 2733 2734 /* 2735 * If we've removed a buffer in the middle of 2736 * the list then update the lastbuf and update 2737 * bufp. 2738 */ 2739 if (*bufp != NULL) { 2740 lastbuf = *bufp; 2741 bufp = &(*bufp)->b_next; 2742 } 2743 } 2744 buf->b_next = NULL; 2745 ASSERT3P(lastbuf, !=, buf); 2746 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 2747 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 2748 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 2749 2750 return (lastbuf); 2751 } 2752 2753 /* 2754 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's 2755 * list and free it. 2756 */ 2757 static void 2758 arc_buf_destroy_impl(arc_buf_t *buf) 2759 { 2760 arc_buf_hdr_t *hdr = buf->b_hdr; 2761 2762 /* 2763 * Free up the data associated with the buf but only if we're not 2764 * sharing this with the hdr. If we are sharing it with the hdr, the 2765 * hdr is responsible for doing the free. 2766 */ 2767 if (buf->b_data != NULL) { 2768 /* 2769 * We're about to change the hdr's b_flags. We must either 2770 * hold the hash_lock or be undiscoverable. 2771 */ 2772 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2773 2774 arc_cksum_verify(buf); 2775 arc_buf_unwatch(buf); 2776 2777 if (arc_buf_is_shared(buf)) { 2778 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2779 } else { 2780 uint64_t size = arc_buf_size(buf); 2781 arc_free_data_buf(hdr, buf->b_data, size, buf); 2782 ARCSTAT_INCR(arcstat_overhead_size, -size); 2783 } 2784 buf->b_data = NULL; 2785 2786 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 2787 hdr->b_l1hdr.b_bufcnt -= 1; 2788 } 2789 2790 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 2791 2792 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 2793 /* 2794 * If the current arc_buf_t is sharing its data buffer with the 2795 * hdr, then reassign the hdr's b_pabd to share it with the new 2796 * buffer at the end of the list. The shared buffer is always 2797 * the last one on the hdr's buffer list. 2798 * 2799 * There is an equivalent case for compressed bufs, but since 2800 * they aren't guaranteed to be the last buf in the list and 2801 * that is an exceedingly rare case, we just allow that space be 2802 * wasted temporarily. 2803 */ 2804 if (lastbuf != NULL) { 2805 /* Only one buf can be shared at once */ 2806 VERIFY(!arc_buf_is_shared(lastbuf)); 2807 /* hdr is uncompressed so can't have compressed buf */ 2808 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 2809 2810 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2811 arc_hdr_free_pabd(hdr); 2812 2813 /* 2814 * We must setup a new shared block between the 2815 * last buffer and the hdr. The data would have 2816 * been allocated by the arc buf so we need to transfer 2817 * ownership to the hdr since it's now being shared. 2818 */ 2819 arc_share_buf(hdr, lastbuf); 2820 } 2821 } else if (HDR_SHARED_DATA(hdr)) { 2822 /* 2823 * Uncompressed shared buffers are always at the end 2824 * of the list. Compressed buffers don't have the 2825 * same requirements. This makes it hard to 2826 * simply assert that the lastbuf is shared so 2827 * we rely on the hdr's compression flags to determine 2828 * if we have a compressed, shared buffer. 2829 */ 2830 ASSERT3P(lastbuf, !=, NULL); 2831 ASSERT(arc_buf_is_shared(lastbuf) || 2832 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF); 2833 } 2834 2835 /* 2836 * Free the checksum if we're removing the last uncompressed buf from 2837 * this hdr. 2838 */ 2839 if (!arc_hdr_has_uncompressed_buf(hdr)) { 2840 arc_cksum_free(hdr); 2841 } 2842 2843 /* clean up the buf */ 2844 buf->b_hdr = NULL; 2845 kmem_cache_free(buf_cache, buf); 2846 } 2847 2848 static void 2849 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr) 2850 { 2851 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2852 ASSERT(HDR_HAS_L1HDR(hdr)); 2853 ASSERT(!HDR_SHARED_DATA(hdr)); 2854 2855 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2856 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr); 2857 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 2858 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2859 2860 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2861 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2862 } 2863 2864 static void 2865 arc_hdr_free_pabd(arc_buf_hdr_t *hdr) 2866 { 2867 ASSERT(HDR_HAS_L1HDR(hdr)); 2868 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2869 2870 /* 2871 * If the hdr is currently being written to the l2arc then 2872 * we defer freeing the data by adding it to the l2arc_free_on_write 2873 * list. The l2arc will free the data once it's finished 2874 * writing it to the l2arc device. 2875 */ 2876 if (HDR_L2_WRITING(hdr)) { 2877 arc_hdr_free_on_write(hdr); 2878 ARCSTAT_BUMP(arcstat_l2_free_on_write); 2879 } else { 2880 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 2881 arc_hdr_size(hdr), hdr); 2882 } 2883 hdr->b_l1hdr.b_pabd = NULL; 2884 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 2885 2886 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2887 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2888 } 2889 2890 static arc_buf_hdr_t * 2891 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 2892 enum zio_compress compression_type, arc_buf_contents_t type) 2893 { 2894 arc_buf_hdr_t *hdr; 2895 2896 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 2897 2898 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 2899 ASSERT(HDR_EMPTY(hdr)); 2900 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 2901 ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL); 2902 HDR_SET_PSIZE(hdr, psize); 2903 HDR_SET_LSIZE(hdr, lsize); 2904 hdr->b_spa = spa; 2905 hdr->b_type = type; 2906 hdr->b_flags = 0; 2907 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 2908 arc_hdr_set_compress(hdr, compression_type); 2909 2910 hdr->b_l1hdr.b_state = arc_anon; 2911 hdr->b_l1hdr.b_arc_access = 0; 2912 hdr->b_l1hdr.b_bufcnt = 0; 2913 hdr->b_l1hdr.b_buf = NULL; 2914 2915 /* 2916 * Allocate the hdr's buffer. This will contain either 2917 * the compressed or uncompressed data depending on the block 2918 * it references and compressed arc enablement. 2919 */ 2920 arc_hdr_alloc_pabd(hdr); 2921 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2922 2923 return (hdr); 2924 } 2925 2926 /* 2927 * Transition between the two allocation states for the arc_buf_hdr struct. 2928 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 2929 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 2930 * version is used when a cache buffer is only in the L2ARC in order to reduce 2931 * memory usage. 2932 */ 2933 static arc_buf_hdr_t * 2934 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 2935 { 2936 ASSERT(HDR_HAS_L2HDR(hdr)); 2937 2938 arc_buf_hdr_t *nhdr; 2939 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 2940 2941 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 2942 (old == hdr_l2only_cache && new == hdr_full_cache)); 2943 2944 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 2945 2946 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 2947 buf_hash_remove(hdr); 2948 2949 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 2950 2951 if (new == hdr_full_cache) { 2952 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 2953 /* 2954 * arc_access and arc_change_state need to be aware that a 2955 * header has just come out of L2ARC, so we set its state to 2956 * l2c_only even though it's about to change. 2957 */ 2958 nhdr->b_l1hdr.b_state = arc_l2c_only; 2959 2960 /* Verify previous threads set to NULL before freeing */ 2961 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 2962 } else { 2963 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2964 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2965 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 2966 2967 /* 2968 * If we've reached here, We must have been called from 2969 * arc_evict_hdr(), as such we should have already been 2970 * removed from any ghost list we were previously on 2971 * (which protects us from racing with arc_evict_state), 2972 * thus no locking is needed during this check. 2973 */ 2974 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 2975 2976 /* 2977 * A buffer must not be moved into the arc_l2c_only 2978 * state if it's not finished being written out to the 2979 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 2980 * might try to be accessed, even though it was removed. 2981 */ 2982 VERIFY(!HDR_L2_WRITING(hdr)); 2983 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2984 2985 #ifdef ZFS_DEBUG 2986 if (hdr->b_l1hdr.b_thawed != NULL) { 2987 kmem_free(hdr->b_l1hdr.b_thawed, 1); 2988 hdr->b_l1hdr.b_thawed = NULL; 2989 } 2990 #endif 2991 2992 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 2993 } 2994 /* 2995 * The header has been reallocated so we need to re-insert it into any 2996 * lists it was on. 2997 */ 2998 (void) buf_hash_insert(nhdr, NULL); 2999 3000 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3001 3002 mutex_enter(&dev->l2ad_mtx); 3003 3004 /* 3005 * We must place the realloc'ed header back into the list at 3006 * the same spot. Otherwise, if it's placed earlier in the list, 3007 * l2arc_write_buffers() could find it during the function's 3008 * write phase, and try to write it out to the l2arc. 3009 */ 3010 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3011 list_remove(&dev->l2ad_buflist, hdr); 3012 3013 mutex_exit(&dev->l2ad_mtx); 3014 3015 /* 3016 * Since we're using the pointer address as the tag when 3017 * incrementing and decrementing the l2ad_alloc refcount, we 3018 * must remove the old pointer (that we're about to destroy) and 3019 * add the new pointer to the refcount. Otherwise we'd remove 3020 * the wrong pointer address when calling arc_hdr_destroy() later. 3021 */ 3022 3023 (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 3024 (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr); 3025 3026 buf_discard_identity(hdr); 3027 kmem_cache_free(old, hdr); 3028 3029 return (nhdr); 3030 } 3031 3032 /* 3033 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3034 * The buf is returned thawed since we expect the consumer to modify it. 3035 */ 3036 arc_buf_t * 3037 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3038 { 3039 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3040 ZIO_COMPRESS_OFF, type); 3041 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr))); 3042 3043 arc_buf_t *buf = NULL; 3044 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf)); 3045 arc_buf_thaw(buf); 3046 3047 return (buf); 3048 } 3049 3050 /* 3051 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3052 * for bufs containing metadata. 3053 */ 3054 arc_buf_t * 3055 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3056 enum zio_compress compression_type) 3057 { 3058 ASSERT3U(lsize, >, 0); 3059 ASSERT3U(lsize, >=, psize); 3060 ASSERT(compression_type > ZIO_COMPRESS_OFF); 3061 ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS); 3062 3063 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3064 compression_type, ARC_BUFC_DATA); 3065 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr))); 3066 3067 arc_buf_t *buf = NULL; 3068 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf)); 3069 arc_buf_thaw(buf); 3070 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3071 3072 if (!arc_buf_is_shared(buf)) { 3073 /* 3074 * To ensure that the hdr has the correct data in it if we call 3075 * arc_decompress() on this buf before it's been written to 3076 * disk, it's easiest if we just set up sharing between the 3077 * buf and the hdr. 3078 */ 3079 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd)); 3080 arc_hdr_free_pabd(hdr); 3081 arc_share_buf(hdr, buf); 3082 } 3083 3084 return (buf); 3085 } 3086 3087 static void 3088 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3089 { 3090 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3091 l2arc_dev_t *dev = l2hdr->b_dev; 3092 uint64_t psize = arc_hdr_size(hdr); 3093 3094 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3095 ASSERT(HDR_HAS_L2HDR(hdr)); 3096 3097 list_remove(&dev->l2ad_buflist, hdr); 3098 3099 ARCSTAT_INCR(arcstat_l2_psize, -psize); 3100 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr)); 3101 3102 vdev_space_update(dev->l2ad_vdev, -psize, 0, 0); 3103 3104 (void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr); 3105 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3106 } 3107 3108 static void 3109 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3110 { 3111 if (HDR_HAS_L1HDR(hdr)) { 3112 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3113 hdr->b_l1hdr.b_bufcnt > 0); 3114 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3115 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3116 } 3117 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3118 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3119 3120 if (!HDR_EMPTY(hdr)) 3121 buf_discard_identity(hdr); 3122 3123 if (HDR_HAS_L2HDR(hdr)) { 3124 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3125 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3126 3127 if (!buflist_held) 3128 mutex_enter(&dev->l2ad_mtx); 3129 3130 /* 3131 * Even though we checked this conditional above, we 3132 * need to check this again now that we have the 3133 * l2ad_mtx. This is because we could be racing with 3134 * another thread calling l2arc_evict() which might have 3135 * destroyed this header's L2 portion as we were waiting 3136 * to acquire the l2ad_mtx. If that happens, we don't 3137 * want to re-destroy the header's L2 portion. 3138 */ 3139 if (HDR_HAS_L2HDR(hdr)) 3140 arc_hdr_l2hdr_destroy(hdr); 3141 3142 if (!buflist_held) 3143 mutex_exit(&dev->l2ad_mtx); 3144 } 3145 3146 if (HDR_HAS_L1HDR(hdr)) { 3147 arc_cksum_free(hdr); 3148 3149 while (hdr->b_l1hdr.b_buf != NULL) 3150 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3151 3152 #ifdef ZFS_DEBUG 3153 if (hdr->b_l1hdr.b_thawed != NULL) { 3154 kmem_free(hdr->b_l1hdr.b_thawed, 1); 3155 hdr->b_l1hdr.b_thawed = NULL; 3156 } 3157 #endif 3158 3159 if (hdr->b_l1hdr.b_pabd != NULL) { 3160 arc_hdr_free_pabd(hdr); 3161 } 3162 } 3163 3164 ASSERT3P(hdr->b_hash_next, ==, NULL); 3165 if (HDR_HAS_L1HDR(hdr)) { 3166 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3167 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3168 kmem_cache_free(hdr_full_cache, hdr); 3169 } else { 3170 kmem_cache_free(hdr_l2only_cache, hdr); 3171 } 3172 } 3173 3174 void 3175 arc_buf_destroy(arc_buf_t *buf, void* tag) 3176 { 3177 arc_buf_hdr_t *hdr = buf->b_hdr; 3178 kmutex_t *hash_lock = HDR_LOCK(hdr); 3179 3180 if (hdr->b_l1hdr.b_state == arc_anon) { 3181 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3182 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3183 VERIFY0(remove_reference(hdr, NULL, tag)); 3184 arc_hdr_destroy(hdr); 3185 return; 3186 } 3187 3188 mutex_enter(hash_lock); 3189 ASSERT3P(hdr, ==, buf->b_hdr); 3190 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3191 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3192 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3193 ASSERT3P(buf->b_data, !=, NULL); 3194 3195 (void) remove_reference(hdr, hash_lock, tag); 3196 arc_buf_destroy_impl(buf); 3197 mutex_exit(hash_lock); 3198 } 3199 3200 /* 3201 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3202 * state of the header is dependent on it's state prior to entering this 3203 * function. The following transitions are possible: 3204 * 3205 * - arc_mru -> arc_mru_ghost 3206 * - arc_mfu -> arc_mfu_ghost 3207 * - arc_mru_ghost -> arc_l2c_only 3208 * - arc_mru_ghost -> deleted 3209 * - arc_mfu_ghost -> arc_l2c_only 3210 * - arc_mfu_ghost -> deleted 3211 */ 3212 static int64_t 3213 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3214 { 3215 arc_state_t *evicted_state, *state; 3216 int64_t bytes_evicted = 0; 3217 3218 ASSERT(MUTEX_HELD(hash_lock)); 3219 ASSERT(HDR_HAS_L1HDR(hdr)); 3220 3221 state = hdr->b_l1hdr.b_state; 3222 if (GHOST_STATE(state)) { 3223 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3224 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3225 3226 /* 3227 * l2arc_write_buffers() relies on a header's L1 portion 3228 * (i.e. its b_pabd field) during it's write phase. 3229 * Thus, we cannot push a header onto the arc_l2c_only 3230 * state (removing it's L1 piece) until the header is 3231 * done being written to the l2arc. 3232 */ 3233 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3234 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3235 return (bytes_evicted); 3236 } 3237 3238 ARCSTAT_BUMP(arcstat_deleted); 3239 bytes_evicted += HDR_GET_LSIZE(hdr); 3240 3241 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3242 3243 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3244 if (HDR_HAS_L2HDR(hdr)) { 3245 /* 3246 * This buffer is cached on the 2nd Level ARC; 3247 * don't destroy the header. 3248 */ 3249 arc_change_state(arc_l2c_only, hdr, hash_lock); 3250 /* 3251 * dropping from L1+L2 cached to L2-only, 3252 * realloc to remove the L1 header. 3253 */ 3254 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3255 hdr_l2only_cache); 3256 } else { 3257 arc_change_state(arc_anon, hdr, hash_lock); 3258 arc_hdr_destroy(hdr); 3259 } 3260 return (bytes_evicted); 3261 } 3262 3263 ASSERT(state == arc_mru || state == arc_mfu); 3264 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3265 3266 /* prefetch buffers have a minimum lifespan */ 3267 if (HDR_IO_IN_PROGRESS(hdr) || 3268 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3269 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3270 arc_min_prefetch_lifespan)) { 3271 ARCSTAT_BUMP(arcstat_evict_skip); 3272 return (bytes_evicted); 3273 } 3274 3275 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 3276 while (hdr->b_l1hdr.b_buf) { 3277 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3278 if (!mutex_tryenter(&buf->b_evict_lock)) { 3279 ARCSTAT_BUMP(arcstat_mutex_miss); 3280 break; 3281 } 3282 if (buf->b_data != NULL) 3283 bytes_evicted += HDR_GET_LSIZE(hdr); 3284 mutex_exit(&buf->b_evict_lock); 3285 arc_buf_destroy_impl(buf); 3286 } 3287 3288 if (HDR_HAS_L2HDR(hdr)) { 3289 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3290 } else { 3291 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3292 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3293 HDR_GET_LSIZE(hdr)); 3294 } else { 3295 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3296 HDR_GET_LSIZE(hdr)); 3297 } 3298 } 3299 3300 if (hdr->b_l1hdr.b_bufcnt == 0) { 3301 arc_cksum_free(hdr); 3302 3303 bytes_evicted += arc_hdr_size(hdr); 3304 3305 /* 3306 * If this hdr is being evicted and has a compressed 3307 * buffer then we discard it here before we change states. 3308 * This ensures that the accounting is updated correctly 3309 * in arc_free_data_impl(). 3310 */ 3311 arc_hdr_free_pabd(hdr); 3312 3313 arc_change_state(evicted_state, hdr, hash_lock); 3314 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3315 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 3316 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3317 } 3318 3319 return (bytes_evicted); 3320 } 3321 3322 static uint64_t 3323 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 3324 uint64_t spa, int64_t bytes) 3325 { 3326 multilist_sublist_t *mls; 3327 uint64_t bytes_evicted = 0; 3328 arc_buf_hdr_t *hdr; 3329 kmutex_t *hash_lock; 3330 int evict_count = 0; 3331 3332 ASSERT3P(marker, !=, NULL); 3333 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3334 3335 mls = multilist_sublist_lock(ml, idx); 3336 3337 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 3338 hdr = multilist_sublist_prev(mls, marker)) { 3339 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 3340 (evict_count >= zfs_arc_evict_batch_limit)) 3341 break; 3342 3343 /* 3344 * To keep our iteration location, move the marker 3345 * forward. Since we're not holding hdr's hash lock, we 3346 * must be very careful and not remove 'hdr' from the 3347 * sublist. Otherwise, other consumers might mistake the 3348 * 'hdr' as not being on a sublist when they call the 3349 * multilist_link_active() function (they all rely on 3350 * the hash lock protecting concurrent insertions and 3351 * removals). multilist_sublist_move_forward() was 3352 * specifically implemented to ensure this is the case 3353 * (only 'marker' will be removed and re-inserted). 3354 */ 3355 multilist_sublist_move_forward(mls, marker); 3356 3357 /* 3358 * The only case where the b_spa field should ever be 3359 * zero, is the marker headers inserted by 3360 * arc_evict_state(). It's possible for multiple threads 3361 * to be calling arc_evict_state() concurrently (e.g. 3362 * dsl_pool_close() and zio_inject_fault()), so we must 3363 * skip any markers we see from these other threads. 3364 */ 3365 if (hdr->b_spa == 0) 3366 continue; 3367 3368 /* we're only interested in evicting buffers of a certain spa */ 3369 if (spa != 0 && hdr->b_spa != spa) { 3370 ARCSTAT_BUMP(arcstat_evict_skip); 3371 continue; 3372 } 3373 3374 hash_lock = HDR_LOCK(hdr); 3375 3376 /* 3377 * We aren't calling this function from any code path 3378 * that would already be holding a hash lock, so we're 3379 * asserting on this assumption to be defensive in case 3380 * this ever changes. Without this check, it would be 3381 * possible to incorrectly increment arcstat_mutex_miss 3382 * below (e.g. if the code changed such that we called 3383 * this function with a hash lock held). 3384 */ 3385 ASSERT(!MUTEX_HELD(hash_lock)); 3386 3387 if (mutex_tryenter(hash_lock)) { 3388 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 3389 mutex_exit(hash_lock); 3390 3391 bytes_evicted += evicted; 3392 3393 /* 3394 * If evicted is zero, arc_evict_hdr() must have 3395 * decided to skip this header, don't increment 3396 * evict_count in this case. 3397 */ 3398 if (evicted != 0) 3399 evict_count++; 3400 3401 /* 3402 * If arc_size isn't overflowing, signal any 3403 * threads that might happen to be waiting. 3404 * 3405 * For each header evicted, we wake up a single 3406 * thread. If we used cv_broadcast, we could 3407 * wake up "too many" threads causing arc_size 3408 * to significantly overflow arc_c; since 3409 * arc_get_data_impl() doesn't check for overflow 3410 * when it's woken up (it doesn't because it's 3411 * possible for the ARC to be overflowing while 3412 * full of un-evictable buffers, and the 3413 * function should proceed in this case). 3414 * 3415 * If threads are left sleeping, due to not 3416 * using cv_broadcast, they will be woken up 3417 * just before arc_reclaim_thread() sleeps. 3418 */ 3419 mutex_enter(&arc_reclaim_lock); 3420 if (!arc_is_overflowing()) 3421 cv_signal(&arc_reclaim_waiters_cv); 3422 mutex_exit(&arc_reclaim_lock); 3423 } else { 3424 ARCSTAT_BUMP(arcstat_mutex_miss); 3425 } 3426 } 3427 3428 multilist_sublist_unlock(mls); 3429 3430 return (bytes_evicted); 3431 } 3432 3433 /* 3434 * Evict buffers from the given arc state, until we've removed the 3435 * specified number of bytes. Move the removed buffers to the 3436 * appropriate evict state. 3437 * 3438 * This function makes a "best effort". It skips over any buffers 3439 * it can't get a hash_lock on, and so, may not catch all candidates. 3440 * It may also return without evicting as much space as requested. 3441 * 3442 * If bytes is specified using the special value ARC_EVICT_ALL, this 3443 * will evict all available (i.e. unlocked and evictable) buffers from 3444 * the given arc state; which is used by arc_flush(). 3445 */ 3446 static uint64_t 3447 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 3448 arc_buf_contents_t type) 3449 { 3450 uint64_t total_evicted = 0; 3451 multilist_t *ml = state->arcs_list[type]; 3452 int num_sublists; 3453 arc_buf_hdr_t **markers; 3454 3455 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3456 3457 num_sublists = multilist_get_num_sublists(ml); 3458 3459 /* 3460 * If we've tried to evict from each sublist, made some 3461 * progress, but still have not hit the target number of bytes 3462 * to evict, we want to keep trying. The markers allow us to 3463 * pick up where we left off for each individual sublist, rather 3464 * than starting from the tail each time. 3465 */ 3466 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 3467 for (int i = 0; i < num_sublists; i++) { 3468 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 3469 3470 /* 3471 * A b_spa of 0 is used to indicate that this header is 3472 * a marker. This fact is used in arc_adjust_type() and 3473 * arc_evict_state_impl(). 3474 */ 3475 markers[i]->b_spa = 0; 3476 3477 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 3478 multilist_sublist_insert_tail(mls, markers[i]); 3479 multilist_sublist_unlock(mls); 3480 } 3481 3482 /* 3483 * While we haven't hit our target number of bytes to evict, or 3484 * we're evicting all available buffers. 3485 */ 3486 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 3487 /* 3488 * Start eviction using a randomly selected sublist, 3489 * this is to try and evenly balance eviction across all 3490 * sublists. Always starting at the same sublist 3491 * (e.g. index 0) would cause evictions to favor certain 3492 * sublists over others. 3493 */ 3494 int sublist_idx = multilist_get_random_index(ml); 3495 uint64_t scan_evicted = 0; 3496 3497 for (int i = 0; i < num_sublists; i++) { 3498 uint64_t bytes_remaining; 3499 uint64_t bytes_evicted; 3500 3501 if (bytes == ARC_EVICT_ALL) 3502 bytes_remaining = ARC_EVICT_ALL; 3503 else if (total_evicted < bytes) 3504 bytes_remaining = bytes - total_evicted; 3505 else 3506 break; 3507 3508 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 3509 markers[sublist_idx], spa, bytes_remaining); 3510 3511 scan_evicted += bytes_evicted; 3512 total_evicted += bytes_evicted; 3513 3514 /* we've reached the end, wrap to the beginning */ 3515 if (++sublist_idx >= num_sublists) 3516 sublist_idx = 0; 3517 } 3518 3519 /* 3520 * If we didn't evict anything during this scan, we have 3521 * no reason to believe we'll evict more during another 3522 * scan, so break the loop. 3523 */ 3524 if (scan_evicted == 0) { 3525 /* This isn't possible, let's make that obvious */ 3526 ASSERT3S(bytes, !=, 0); 3527 3528 /* 3529 * When bytes is ARC_EVICT_ALL, the only way to 3530 * break the loop is when scan_evicted is zero. 3531 * In that case, we actually have evicted enough, 3532 * so we don't want to increment the kstat. 3533 */ 3534 if (bytes != ARC_EVICT_ALL) { 3535 ASSERT3S(total_evicted, <, bytes); 3536 ARCSTAT_BUMP(arcstat_evict_not_enough); 3537 } 3538 3539 break; 3540 } 3541 } 3542 3543 for (int i = 0; i < num_sublists; i++) { 3544 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 3545 multilist_sublist_remove(mls, markers[i]); 3546 multilist_sublist_unlock(mls); 3547 3548 kmem_cache_free(hdr_full_cache, markers[i]); 3549 } 3550 kmem_free(markers, sizeof (*markers) * num_sublists); 3551 3552 return (total_evicted); 3553 } 3554 3555 /* 3556 * Flush all "evictable" data of the given type from the arc state 3557 * specified. This will not evict any "active" buffers (i.e. referenced). 3558 * 3559 * When 'retry' is set to B_FALSE, the function will make a single pass 3560 * over the state and evict any buffers that it can. Since it doesn't 3561 * continually retry the eviction, it might end up leaving some buffers 3562 * in the ARC due to lock misses. 3563 * 3564 * When 'retry' is set to B_TRUE, the function will continually retry the 3565 * eviction until *all* evictable buffers have been removed from the 3566 * state. As a result, if concurrent insertions into the state are 3567 * allowed (e.g. if the ARC isn't shutting down), this function might 3568 * wind up in an infinite loop, continually trying to evict buffers. 3569 */ 3570 static uint64_t 3571 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 3572 boolean_t retry) 3573 { 3574 uint64_t evicted = 0; 3575 3576 while (refcount_count(&state->arcs_esize[type]) != 0) { 3577 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 3578 3579 if (!retry) 3580 break; 3581 } 3582 3583 return (evicted); 3584 } 3585 3586 /* 3587 * Evict the specified number of bytes from the state specified, 3588 * restricting eviction to the spa and type given. This function 3589 * prevents us from trying to evict more from a state's list than 3590 * is "evictable", and to skip evicting altogether when passed a 3591 * negative value for "bytes". In contrast, arc_evict_state() will 3592 * evict everything it can, when passed a negative value for "bytes". 3593 */ 3594 static uint64_t 3595 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 3596 arc_buf_contents_t type) 3597 { 3598 int64_t delta; 3599 3600 if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) { 3601 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes); 3602 return (arc_evict_state(state, spa, delta, type)); 3603 } 3604 3605 return (0); 3606 } 3607 3608 /* 3609 * Evict metadata buffers from the cache, such that arc_meta_used is 3610 * capped by the arc_meta_limit tunable. 3611 */ 3612 static uint64_t 3613 arc_adjust_meta(uint64_t meta_used) 3614 { 3615 uint64_t total_evicted = 0; 3616 int64_t target; 3617 3618 /* 3619 * If we're over the meta limit, we want to evict enough 3620 * metadata to get back under the meta limit. We don't want to 3621 * evict so much that we drop the MRU below arc_p, though. If 3622 * we're over the meta limit more than we're over arc_p, we 3623 * evict some from the MRU here, and some from the MFU below. 3624 */ 3625 target = MIN((int64_t)(meta_used - arc_meta_limit), 3626 (int64_t)(refcount_count(&arc_anon->arcs_size) + 3627 refcount_count(&arc_mru->arcs_size) - arc_p)); 3628 3629 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3630 3631 /* 3632 * Similar to the above, we want to evict enough bytes to get us 3633 * below the meta limit, but not so much as to drop us below the 3634 * space allotted to the MFU (which is defined as arc_c - arc_p). 3635 */ 3636 target = MIN((int64_t)(meta_used - arc_meta_limit), 3637 (int64_t)(refcount_count(&arc_mfu->arcs_size) - 3638 (arc_c - arc_p))); 3639 3640 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3641 3642 return (total_evicted); 3643 } 3644 3645 /* 3646 * Return the type of the oldest buffer in the given arc state 3647 * 3648 * This function will select a random sublist of type ARC_BUFC_DATA and 3649 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 3650 * is compared, and the type which contains the "older" buffer will be 3651 * returned. 3652 */ 3653 static arc_buf_contents_t 3654 arc_adjust_type(arc_state_t *state) 3655 { 3656 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA]; 3657 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA]; 3658 int data_idx = multilist_get_random_index(data_ml); 3659 int meta_idx = multilist_get_random_index(meta_ml); 3660 multilist_sublist_t *data_mls; 3661 multilist_sublist_t *meta_mls; 3662 arc_buf_contents_t type; 3663 arc_buf_hdr_t *data_hdr; 3664 arc_buf_hdr_t *meta_hdr; 3665 3666 /* 3667 * We keep the sublist lock until we're finished, to prevent 3668 * the headers from being destroyed via arc_evict_state(). 3669 */ 3670 data_mls = multilist_sublist_lock(data_ml, data_idx); 3671 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 3672 3673 /* 3674 * These two loops are to ensure we skip any markers that 3675 * might be at the tail of the lists due to arc_evict_state(). 3676 */ 3677 3678 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 3679 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 3680 if (data_hdr->b_spa != 0) 3681 break; 3682 } 3683 3684 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 3685 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 3686 if (meta_hdr->b_spa != 0) 3687 break; 3688 } 3689 3690 if (data_hdr == NULL && meta_hdr == NULL) { 3691 type = ARC_BUFC_DATA; 3692 } else if (data_hdr == NULL) { 3693 ASSERT3P(meta_hdr, !=, NULL); 3694 type = ARC_BUFC_METADATA; 3695 } else if (meta_hdr == NULL) { 3696 ASSERT3P(data_hdr, !=, NULL); 3697 type = ARC_BUFC_DATA; 3698 } else { 3699 ASSERT3P(data_hdr, !=, NULL); 3700 ASSERT3P(meta_hdr, !=, NULL); 3701 3702 /* The headers can't be on the sublist without an L1 header */ 3703 ASSERT(HDR_HAS_L1HDR(data_hdr)); 3704 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 3705 3706 if (data_hdr->b_l1hdr.b_arc_access < 3707 meta_hdr->b_l1hdr.b_arc_access) { 3708 type = ARC_BUFC_DATA; 3709 } else { 3710 type = ARC_BUFC_METADATA; 3711 } 3712 } 3713 3714 multilist_sublist_unlock(meta_mls); 3715 multilist_sublist_unlock(data_mls); 3716 3717 return (type); 3718 } 3719 3720 /* 3721 * Evict buffers from the cache, such that arc_size is capped by arc_c. 3722 */ 3723 static uint64_t 3724 arc_adjust(void) 3725 { 3726 uint64_t total_evicted = 0; 3727 uint64_t bytes; 3728 int64_t target; 3729 uint64_t asize = aggsum_value(&arc_size); 3730 uint64_t ameta = aggsum_value(&arc_meta_used); 3731 3732 /* 3733 * If we're over arc_meta_limit, we want to correct that before 3734 * potentially evicting data buffers below. 3735 */ 3736 total_evicted += arc_adjust_meta(ameta); 3737 3738 /* 3739 * Adjust MRU size 3740 * 3741 * If we're over the target cache size, we want to evict enough 3742 * from the list to get back to our target size. We don't want 3743 * to evict too much from the MRU, such that it drops below 3744 * arc_p. So, if we're over our target cache size more than 3745 * the MRU is over arc_p, we'll evict enough to get back to 3746 * arc_p here, and then evict more from the MFU below. 3747 */ 3748 target = MIN((int64_t)(asize - arc_c), 3749 (int64_t)(refcount_count(&arc_anon->arcs_size) + 3750 refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 3751 3752 /* 3753 * If we're below arc_meta_min, always prefer to evict data. 3754 * Otherwise, try to satisfy the requested number of bytes to 3755 * evict from the type which contains older buffers; in an 3756 * effort to keep newer buffers in the cache regardless of their 3757 * type. If we cannot satisfy the number of bytes from this 3758 * type, spill over into the next type. 3759 */ 3760 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA && 3761 ameta > arc_meta_min) { 3762 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3763 total_evicted += bytes; 3764 3765 /* 3766 * If we couldn't evict our target number of bytes from 3767 * metadata, we try to get the rest from data. 3768 */ 3769 target -= bytes; 3770 3771 total_evicted += 3772 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 3773 } else { 3774 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 3775 total_evicted += bytes; 3776 3777 /* 3778 * If we couldn't evict our target number of bytes from 3779 * data, we try to get the rest from metadata. 3780 */ 3781 target -= bytes; 3782 3783 total_evicted += 3784 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3785 } 3786 3787 /* 3788 * Adjust MFU size 3789 * 3790 * Now that we've tried to evict enough from the MRU to get its 3791 * size back to arc_p, if we're still above the target cache 3792 * size, we evict the rest from the MFU. 3793 */ 3794 target = asize - arc_c; 3795 3796 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA && 3797 ameta > arc_meta_min) { 3798 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3799 total_evicted += bytes; 3800 3801 /* 3802 * If we couldn't evict our target number of bytes from 3803 * metadata, we try to get the rest from data. 3804 */ 3805 target -= bytes; 3806 3807 total_evicted += 3808 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 3809 } else { 3810 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 3811 total_evicted += bytes; 3812 3813 /* 3814 * If we couldn't evict our target number of bytes from 3815 * data, we try to get the rest from data. 3816 */ 3817 target -= bytes; 3818 3819 total_evicted += 3820 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3821 } 3822 3823 /* 3824 * Adjust ghost lists 3825 * 3826 * In addition to the above, the ARC also defines target values 3827 * for the ghost lists. The sum of the mru list and mru ghost 3828 * list should never exceed the target size of the cache, and 3829 * the sum of the mru list, mfu list, mru ghost list, and mfu 3830 * ghost list should never exceed twice the target size of the 3831 * cache. The following logic enforces these limits on the ghost 3832 * caches, and evicts from them as needed. 3833 */ 3834 target = refcount_count(&arc_mru->arcs_size) + 3835 refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 3836 3837 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 3838 total_evicted += bytes; 3839 3840 target -= bytes; 3841 3842 total_evicted += 3843 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 3844 3845 /* 3846 * We assume the sum of the mru list and mfu list is less than 3847 * or equal to arc_c (we enforced this above), which means we 3848 * can use the simpler of the two equations below: 3849 * 3850 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 3851 * mru ghost + mfu ghost <= arc_c 3852 */ 3853 target = refcount_count(&arc_mru_ghost->arcs_size) + 3854 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 3855 3856 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 3857 total_evicted += bytes; 3858 3859 target -= bytes; 3860 3861 total_evicted += 3862 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 3863 3864 return (total_evicted); 3865 } 3866 3867 void 3868 arc_flush(spa_t *spa, boolean_t retry) 3869 { 3870 uint64_t guid = 0; 3871 3872 /* 3873 * If retry is B_TRUE, a spa must not be specified since we have 3874 * no good way to determine if all of a spa's buffers have been 3875 * evicted from an arc state. 3876 */ 3877 ASSERT(!retry || spa == 0); 3878 3879 if (spa != NULL) 3880 guid = spa_load_guid(spa); 3881 3882 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 3883 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 3884 3885 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 3886 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 3887 3888 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 3889 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 3890 3891 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 3892 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 3893 } 3894 3895 void 3896 arc_shrink(int64_t to_free) 3897 { 3898 uint64_t asize = aggsum_value(&arc_size); 3899 if (arc_c > arc_c_min) { 3900 3901 if (arc_c > arc_c_min + to_free) 3902 atomic_add_64(&arc_c, -to_free); 3903 else 3904 arc_c = arc_c_min; 3905 3906 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 3907 if (asize < arc_c) 3908 arc_c = MAX(asize, arc_c_min); 3909 if (arc_p > arc_c) 3910 arc_p = (arc_c >> 1); 3911 ASSERT(arc_c >= arc_c_min); 3912 ASSERT((int64_t)arc_p >= 0); 3913 } 3914 3915 if (asize > arc_c) 3916 (void) arc_adjust(); 3917 } 3918 3919 typedef enum free_memory_reason_t { 3920 FMR_UNKNOWN, 3921 FMR_NEEDFREE, 3922 FMR_LOTSFREE, 3923 FMR_SWAPFS_MINFREE, 3924 FMR_PAGES_PP_MAXIMUM, 3925 FMR_HEAP_ARENA, 3926 FMR_ZIO_ARENA, 3927 } free_memory_reason_t; 3928 3929 int64_t last_free_memory; 3930 free_memory_reason_t last_free_reason; 3931 3932 /* 3933 * Additional reserve of pages for pp_reserve. 3934 */ 3935 int64_t arc_pages_pp_reserve = 64; 3936 3937 /* 3938 * Additional reserve of pages for swapfs. 3939 */ 3940 int64_t arc_swapfs_reserve = 64; 3941 3942 /* 3943 * Return the amount of memory that can be consumed before reclaim will be 3944 * needed. Positive if there is sufficient free memory, negative indicates 3945 * the amount of memory that needs to be freed up. 3946 */ 3947 static int64_t 3948 arc_available_memory(void) 3949 { 3950 int64_t lowest = INT64_MAX; 3951 int64_t n; 3952 free_memory_reason_t r = FMR_UNKNOWN; 3953 3954 #ifdef _KERNEL 3955 if (needfree > 0) { 3956 n = PAGESIZE * (-needfree); 3957 if (n < lowest) { 3958 lowest = n; 3959 r = FMR_NEEDFREE; 3960 } 3961 } 3962 3963 /* 3964 * check that we're out of range of the pageout scanner. It starts to 3965 * schedule paging if freemem is less than lotsfree and needfree. 3966 * lotsfree is the high-water mark for pageout, and needfree is the 3967 * number of needed free pages. We add extra pages here to make sure 3968 * the scanner doesn't start up while we're freeing memory. 3969 */ 3970 n = PAGESIZE * (freemem - lotsfree - needfree - desfree); 3971 if (n < lowest) { 3972 lowest = n; 3973 r = FMR_LOTSFREE; 3974 } 3975 3976 /* 3977 * check to make sure that swapfs has enough space so that anon 3978 * reservations can still succeed. anon_resvmem() checks that the 3979 * availrmem is greater than swapfs_minfree, and the number of reserved 3980 * swap pages. We also add a bit of extra here just to prevent 3981 * circumstances from getting really dire. 3982 */ 3983 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve - 3984 desfree - arc_swapfs_reserve); 3985 if (n < lowest) { 3986 lowest = n; 3987 r = FMR_SWAPFS_MINFREE; 3988 } 3989 3990 3991 /* 3992 * Check that we have enough availrmem that memory locking (e.g., via 3993 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 3994 * stores the number of pages that cannot be locked; when availrmem 3995 * drops below pages_pp_maximum, page locking mechanisms such as 3996 * page_pp_lock() will fail.) 3997 */ 3998 n = PAGESIZE * (availrmem - pages_pp_maximum - 3999 arc_pages_pp_reserve); 4000 if (n < lowest) { 4001 lowest = n; 4002 r = FMR_PAGES_PP_MAXIMUM; 4003 } 4004 4005 #if defined(__i386) 4006 /* 4007 * If we're on an i386 platform, it's possible that we'll exhaust the 4008 * kernel heap space before we ever run out of available physical 4009 * memory. Most checks of the size of the heap_area compare against 4010 * tune.t_minarmem, which is the minimum available real memory that we 4011 * can have in the system. However, this is generally fixed at 25 pages 4012 * which is so low that it's useless. In this comparison, we seek to 4013 * calculate the total heap-size, and reclaim if more than 3/4ths of the 4014 * heap is allocated. (Or, in the calculation, if less than 1/4th is 4015 * free) 4016 */ 4017 n = (int64_t)vmem_size(heap_arena, VMEM_FREE) - 4018 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2); 4019 if (n < lowest) { 4020 lowest = n; 4021 r = FMR_HEAP_ARENA; 4022 } 4023 #endif 4024 4025 /* 4026 * If zio data pages are being allocated out of a separate heap segment, 4027 * then enforce that the size of available vmem for this arena remains 4028 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free. 4029 * 4030 * Note that reducing the arc_zio_arena_free_shift keeps more virtual 4031 * memory (in the zio_arena) free, which can avoid memory 4032 * fragmentation issues. 4033 */ 4034 if (zio_arena != NULL) { 4035 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) - 4036 (vmem_size(zio_arena, VMEM_ALLOC) >> 4037 arc_zio_arena_free_shift); 4038 if (n < lowest) { 4039 lowest = n; 4040 r = FMR_ZIO_ARENA; 4041 } 4042 } 4043 #else 4044 /* Every 100 calls, free a small amount */ 4045 if (spa_get_random(100) == 0) 4046 lowest = -1024; 4047 #endif 4048 4049 last_free_memory = lowest; 4050 last_free_reason = r; 4051 4052 return (lowest); 4053 } 4054 4055 4056 /* 4057 * Determine if the system is under memory pressure and is asking 4058 * to reclaim memory. A return value of B_TRUE indicates that the system 4059 * is under memory pressure and that the arc should adjust accordingly. 4060 */ 4061 static boolean_t 4062 arc_reclaim_needed(void) 4063 { 4064 return (arc_available_memory() < 0); 4065 } 4066 4067 static void 4068 arc_kmem_reap_now(void) 4069 { 4070 size_t i; 4071 kmem_cache_t *prev_cache = NULL; 4072 kmem_cache_t *prev_data_cache = NULL; 4073 extern kmem_cache_t *zio_buf_cache[]; 4074 extern kmem_cache_t *zio_data_buf_cache[]; 4075 extern kmem_cache_t *range_seg_cache; 4076 extern kmem_cache_t *abd_chunk_cache; 4077 4078 #ifdef _KERNEL 4079 if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) { 4080 /* 4081 * We are exceeding our meta-data cache limit. 4082 * Purge some DNLC entries to release holds on meta-data. 4083 */ 4084 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 4085 } 4086 #if defined(__i386) 4087 /* 4088 * Reclaim unused memory from all kmem caches. 4089 */ 4090 kmem_reap(); 4091 #endif 4092 #endif 4093 4094 /* 4095 * If a kmem reap is already active, don't schedule more. We must 4096 * check for this because kmem_cache_reap_soon() won't actually 4097 * block on the cache being reaped (this is to prevent callers from 4098 * becoming implicitly blocked by a system-wide kmem reap -- which, 4099 * on a system with many, many full magazines, can take minutes). 4100 */ 4101 if (kmem_cache_reap_active()) 4102 return; 4103 4104 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4105 if (zio_buf_cache[i] != prev_cache) { 4106 prev_cache = zio_buf_cache[i]; 4107 kmem_cache_reap_soon(zio_buf_cache[i]); 4108 } 4109 if (zio_data_buf_cache[i] != prev_data_cache) { 4110 prev_data_cache = zio_data_buf_cache[i]; 4111 kmem_cache_reap_soon(zio_data_buf_cache[i]); 4112 } 4113 } 4114 kmem_cache_reap_soon(abd_chunk_cache); 4115 kmem_cache_reap_soon(buf_cache); 4116 kmem_cache_reap_soon(hdr_full_cache); 4117 kmem_cache_reap_soon(hdr_l2only_cache); 4118 kmem_cache_reap_soon(range_seg_cache); 4119 4120 if (zio_arena != NULL) { 4121 /* 4122 * Ask the vmem arena to reclaim unused memory from its 4123 * quantum caches. 4124 */ 4125 vmem_qcache_reap(zio_arena); 4126 } 4127 } 4128 4129 /* 4130 * Threads can block in arc_get_data_impl() waiting for this thread to evict 4131 * enough data and signal them to proceed. When this happens, the threads in 4132 * arc_get_data_impl() are sleeping while holding the hash lock for their 4133 * particular arc header. Thus, we must be careful to never sleep on a 4134 * hash lock in this thread. This is to prevent the following deadlock: 4135 * 4136 * - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L", 4137 * waiting for the reclaim thread to signal it. 4138 * 4139 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter, 4140 * fails, and goes to sleep forever. 4141 * 4142 * This possible deadlock is avoided by always acquiring a hash lock 4143 * using mutex_tryenter() from arc_reclaim_thread(). 4144 */ 4145 /* ARGSUSED */ 4146 static void 4147 arc_reclaim_thread(void *unused) 4148 { 4149 hrtime_t growtime = 0; 4150 hrtime_t kmem_reap_time = 0; 4151 callb_cpr_t cpr; 4152 4153 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG); 4154 4155 mutex_enter(&arc_reclaim_lock); 4156 while (!arc_reclaim_thread_exit) { 4157 uint64_t evicted = 0; 4158 4159 /* 4160 * This is necessary in order for the mdb ::arc dcmd to 4161 * show up to date information. Since the ::arc command 4162 * does not call the kstat's update function, without 4163 * this call, the command may show stale stats for the 4164 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4165 * with this change, the data might be up to 1 second 4166 * out of date; but that should suffice. The arc_state_t 4167 * structures can be queried directly if more accurate 4168 * information is needed. 4169 */ 4170 if (arc_ksp != NULL) 4171 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4172 4173 mutex_exit(&arc_reclaim_lock); 4174 4175 /* 4176 * We call arc_adjust() before (possibly) calling 4177 * arc_kmem_reap_now(), so that we can wake up 4178 * arc_get_data_impl() sooner. 4179 */ 4180 evicted = arc_adjust(); 4181 4182 int64_t free_memory = arc_available_memory(); 4183 if (free_memory < 0) { 4184 hrtime_t curtime = gethrtime(); 4185 arc_no_grow = B_TRUE; 4186 arc_warm = B_TRUE; 4187 4188 /* 4189 * Wait at least zfs_grow_retry (default 60) seconds 4190 * before considering growing. 4191 */ 4192 growtime = curtime + SEC2NSEC(arc_grow_retry); 4193 4194 /* 4195 * Wait at least arc_kmem_cache_reap_retry_ms 4196 * between arc_kmem_reap_now() calls. Without 4197 * this check it is possible to end up in a 4198 * situation where we spend lots of time 4199 * reaping caches, while we're near arc_c_min. 4200 */ 4201 if (curtime >= kmem_reap_time) { 4202 arc_kmem_reap_now(); 4203 kmem_reap_time = gethrtime() + 4204 MSEC2NSEC(arc_kmem_cache_reap_retry_ms); 4205 } 4206 4207 /* 4208 * If we are still low on memory, shrink the ARC 4209 * so that we have arc_shrink_min free space. 4210 */ 4211 free_memory = arc_available_memory(); 4212 4213 int64_t to_free = 4214 (arc_c >> arc_shrink_shift) - free_memory; 4215 if (to_free > 0) { 4216 #ifdef _KERNEL 4217 to_free = MAX(to_free, ptob(needfree)); 4218 #endif 4219 arc_shrink(to_free); 4220 } 4221 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4222 arc_no_grow = B_TRUE; 4223 } else if (gethrtime() >= growtime) { 4224 arc_no_grow = B_FALSE; 4225 } 4226 4227 mutex_enter(&arc_reclaim_lock); 4228 4229 /* 4230 * If evicted is zero, we couldn't evict anything via 4231 * arc_adjust(). This could be due to hash lock 4232 * collisions, but more likely due to the majority of 4233 * arc buffers being unevictable. Therefore, even if 4234 * arc_size is above arc_c, another pass is unlikely to 4235 * be helpful and could potentially cause us to enter an 4236 * infinite loop. 4237 */ 4238 if (aggsum_compare(&arc_size, arc_c) <= 0|| evicted == 0) { 4239 /* 4240 * We're either no longer overflowing, or we 4241 * can't evict anything more, so we should wake 4242 * up any threads before we go to sleep. 4243 */ 4244 cv_broadcast(&arc_reclaim_waiters_cv); 4245 4246 /* 4247 * Block until signaled, or after one second (we 4248 * might need to perform arc_kmem_reap_now() 4249 * even if we aren't being signalled) 4250 */ 4251 CALLB_CPR_SAFE_BEGIN(&cpr); 4252 (void) cv_timedwait_hires(&arc_reclaim_thread_cv, 4253 &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 4254 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock); 4255 } 4256 } 4257 4258 arc_reclaim_thread_exit = B_FALSE; 4259 cv_broadcast(&arc_reclaim_thread_cv); 4260 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */ 4261 thread_exit(); 4262 } 4263 4264 /* 4265 * Adapt arc info given the number of bytes we are trying to add and 4266 * the state that we are comming from. This function is only called 4267 * when we are adding new content to the cache. 4268 */ 4269 static void 4270 arc_adapt(int bytes, arc_state_t *state) 4271 { 4272 int mult; 4273 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 4274 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size); 4275 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size); 4276 4277 if (state == arc_l2c_only) 4278 return; 4279 4280 ASSERT(bytes > 0); 4281 /* 4282 * Adapt the target size of the MRU list: 4283 * - if we just hit in the MRU ghost list, then increase 4284 * the target size of the MRU list. 4285 * - if we just hit in the MFU ghost list, then increase 4286 * the target size of the MFU list by decreasing the 4287 * target size of the MRU list. 4288 */ 4289 if (state == arc_mru_ghost) { 4290 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 4291 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 4292 4293 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 4294 } else if (state == arc_mfu_ghost) { 4295 uint64_t delta; 4296 4297 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 4298 mult = MIN(mult, 10); 4299 4300 delta = MIN(bytes * mult, arc_p); 4301 arc_p = MAX(arc_p_min, arc_p - delta); 4302 } 4303 ASSERT((int64_t)arc_p >= 0); 4304 4305 if (arc_reclaim_needed()) { 4306 cv_signal(&arc_reclaim_thread_cv); 4307 return; 4308 } 4309 4310 if (arc_no_grow) 4311 return; 4312 4313 if (arc_c >= arc_c_max) 4314 return; 4315 4316 /* 4317 * If we're within (2 * maxblocksize) bytes of the target 4318 * cache size, increment the target cache size 4319 */ 4320 if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) > 4321 0) { 4322 atomic_add_64(&arc_c, (int64_t)bytes); 4323 if (arc_c > arc_c_max) 4324 arc_c = arc_c_max; 4325 else if (state == arc_anon) 4326 atomic_add_64(&arc_p, (int64_t)bytes); 4327 if (arc_p > arc_c) 4328 arc_p = arc_c; 4329 } 4330 ASSERT((int64_t)arc_p >= 0); 4331 } 4332 4333 /* 4334 * Check if arc_size has grown past our upper threshold, determined by 4335 * zfs_arc_overflow_shift. 4336 */ 4337 static boolean_t 4338 arc_is_overflowing(void) 4339 { 4340 /* Always allow at least one block of overflow */ 4341 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE, 4342 arc_c >> zfs_arc_overflow_shift); 4343 4344 /* 4345 * We just compare the lower bound here for performance reasons. Our 4346 * primary goals are to make sure that the arc never grows without 4347 * bound, and that it can reach its maximum size. This check 4348 * accomplishes both goals. The maximum amount we could run over by is 4349 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 4350 * in the ARC. In practice, that's in the tens of MB, which is low 4351 * enough to be safe. 4352 */ 4353 return (aggsum_lower_bound(&arc_size) >= arc_c + overflow); 4354 } 4355 4356 static abd_t * 4357 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4358 { 4359 arc_buf_contents_t type = arc_buf_type(hdr); 4360 4361 arc_get_data_impl(hdr, size, tag); 4362 if (type == ARC_BUFC_METADATA) { 4363 return (abd_alloc(size, B_TRUE)); 4364 } else { 4365 ASSERT(type == ARC_BUFC_DATA); 4366 return (abd_alloc(size, B_FALSE)); 4367 } 4368 } 4369 4370 static void * 4371 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4372 { 4373 arc_buf_contents_t type = arc_buf_type(hdr); 4374 4375 arc_get_data_impl(hdr, size, tag); 4376 if (type == ARC_BUFC_METADATA) { 4377 return (zio_buf_alloc(size)); 4378 } else { 4379 ASSERT(type == ARC_BUFC_DATA); 4380 return (zio_data_buf_alloc(size)); 4381 } 4382 } 4383 4384 /* 4385 * Allocate a block and return it to the caller. If we are hitting the 4386 * hard limit for the cache size, we must sleep, waiting for the eviction 4387 * thread to catch up. If we're past the target size but below the hard 4388 * limit, we'll only signal the reclaim thread and continue on. 4389 */ 4390 static void 4391 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4392 { 4393 arc_state_t *state = hdr->b_l1hdr.b_state; 4394 arc_buf_contents_t type = arc_buf_type(hdr); 4395 4396 arc_adapt(size, state); 4397 4398 /* 4399 * If arc_size is currently overflowing, and has grown past our 4400 * upper limit, we must be adding data faster than the evict 4401 * thread can evict. Thus, to ensure we don't compound the 4402 * problem by adding more data and forcing arc_size to grow even 4403 * further past it's target size, we halt and wait for the 4404 * eviction thread to catch up. 4405 * 4406 * It's also possible that the reclaim thread is unable to evict 4407 * enough buffers to get arc_size below the overflow limit (e.g. 4408 * due to buffers being un-evictable, or hash lock collisions). 4409 * In this case, we want to proceed regardless if we're 4410 * overflowing; thus we don't use a while loop here. 4411 */ 4412 if (arc_is_overflowing()) { 4413 mutex_enter(&arc_reclaim_lock); 4414 4415 /* 4416 * Now that we've acquired the lock, we may no longer be 4417 * over the overflow limit, lets check. 4418 * 4419 * We're ignoring the case of spurious wake ups. If that 4420 * were to happen, it'd let this thread consume an ARC 4421 * buffer before it should have (i.e. before we're under 4422 * the overflow limit and were signalled by the reclaim 4423 * thread). As long as that is a rare occurrence, it 4424 * shouldn't cause any harm. 4425 */ 4426 if (arc_is_overflowing()) { 4427 cv_signal(&arc_reclaim_thread_cv); 4428 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock); 4429 } 4430 4431 mutex_exit(&arc_reclaim_lock); 4432 } 4433 4434 VERIFY3U(hdr->b_type, ==, type); 4435 if (type == ARC_BUFC_METADATA) { 4436 arc_space_consume(size, ARC_SPACE_META); 4437 } else { 4438 arc_space_consume(size, ARC_SPACE_DATA); 4439 } 4440 4441 /* 4442 * Update the state size. Note that ghost states have a 4443 * "ghost size" and so don't need to be updated. 4444 */ 4445 if (!GHOST_STATE(state)) { 4446 4447 (void) refcount_add_many(&state->arcs_size, size, tag); 4448 4449 /* 4450 * If this is reached via arc_read, the link is 4451 * protected by the hash lock. If reached via 4452 * arc_buf_alloc, the header should not be accessed by 4453 * any other thread. And, if reached via arc_read_done, 4454 * the hash lock will protect it if it's found in the 4455 * hash table; otherwise no other thread should be 4456 * trying to [add|remove]_reference it. 4457 */ 4458 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 4459 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4460 (void) refcount_add_many(&state->arcs_esize[type], 4461 size, tag); 4462 } 4463 4464 /* 4465 * If we are growing the cache, and we are adding anonymous 4466 * data, and we have outgrown arc_p, update arc_p 4467 */ 4468 if (aggsum_compare(&arc_size, arc_c) < 0 && 4469 hdr->b_l1hdr.b_state == arc_anon && 4470 (refcount_count(&arc_anon->arcs_size) + 4471 refcount_count(&arc_mru->arcs_size) > arc_p)) 4472 arc_p = MIN(arc_c, arc_p + size); 4473 } 4474 } 4475 4476 static void 4477 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 4478 { 4479 arc_free_data_impl(hdr, size, tag); 4480 abd_free(abd); 4481 } 4482 4483 static void 4484 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 4485 { 4486 arc_buf_contents_t type = arc_buf_type(hdr); 4487 4488 arc_free_data_impl(hdr, size, tag); 4489 if (type == ARC_BUFC_METADATA) { 4490 zio_buf_free(buf, size); 4491 } else { 4492 ASSERT(type == ARC_BUFC_DATA); 4493 zio_data_buf_free(buf, size); 4494 } 4495 } 4496 4497 /* 4498 * Free the arc data buffer. 4499 */ 4500 static void 4501 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4502 { 4503 arc_state_t *state = hdr->b_l1hdr.b_state; 4504 arc_buf_contents_t type = arc_buf_type(hdr); 4505 4506 /* protected by hash lock, if in the hash table */ 4507 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 4508 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4509 ASSERT(state != arc_anon && state != arc_l2c_only); 4510 4511 (void) refcount_remove_many(&state->arcs_esize[type], 4512 size, tag); 4513 } 4514 (void) refcount_remove_many(&state->arcs_size, size, tag); 4515 4516 VERIFY3U(hdr->b_type, ==, type); 4517 if (type == ARC_BUFC_METADATA) { 4518 arc_space_return(size, ARC_SPACE_META); 4519 } else { 4520 ASSERT(type == ARC_BUFC_DATA); 4521 arc_space_return(size, ARC_SPACE_DATA); 4522 } 4523 } 4524 4525 /* 4526 * This routine is called whenever a buffer is accessed. 4527 * NOTE: the hash lock is dropped in this function. 4528 */ 4529 static void 4530 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 4531 { 4532 clock_t now; 4533 4534 ASSERT(MUTEX_HELD(hash_lock)); 4535 ASSERT(HDR_HAS_L1HDR(hdr)); 4536 4537 if (hdr->b_l1hdr.b_state == arc_anon) { 4538 /* 4539 * This buffer is not in the cache, and does not 4540 * appear in our "ghost" list. Add the new buffer 4541 * to the MRU state. 4542 */ 4543 4544 ASSERT0(hdr->b_l1hdr.b_arc_access); 4545 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4546 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 4547 arc_change_state(arc_mru, hdr, hash_lock); 4548 4549 } else if (hdr->b_l1hdr.b_state == arc_mru) { 4550 now = ddi_get_lbolt(); 4551 4552 /* 4553 * If this buffer is here because of a prefetch, then either: 4554 * - clear the flag if this is a "referencing" read 4555 * (any subsequent access will bump this into the MFU state). 4556 * or 4557 * - move the buffer to the head of the list if this is 4558 * another prefetch (to make it less likely to be evicted). 4559 */ 4560 if (HDR_PREFETCH(hdr)) { 4561 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 4562 /* link protected by hash lock */ 4563 ASSERT(multilist_link_active( 4564 &hdr->b_l1hdr.b_arc_node)); 4565 } else { 4566 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 4567 ARCSTAT_BUMP(arcstat_mru_hits); 4568 } 4569 hdr->b_l1hdr.b_arc_access = now; 4570 return; 4571 } 4572 4573 /* 4574 * This buffer has been "accessed" only once so far, 4575 * but it is still in the cache. Move it to the MFU 4576 * state. 4577 */ 4578 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) { 4579 /* 4580 * More than 125ms have passed since we 4581 * instantiated this buffer. Move it to the 4582 * most frequently used state. 4583 */ 4584 hdr->b_l1hdr.b_arc_access = now; 4585 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4586 arc_change_state(arc_mfu, hdr, hash_lock); 4587 } 4588 ARCSTAT_BUMP(arcstat_mru_hits); 4589 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 4590 arc_state_t *new_state; 4591 /* 4592 * This buffer has been "accessed" recently, but 4593 * was evicted from the cache. Move it to the 4594 * MFU state. 4595 */ 4596 4597 if (HDR_PREFETCH(hdr)) { 4598 new_state = arc_mru; 4599 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) 4600 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 4601 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 4602 } else { 4603 new_state = arc_mfu; 4604 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4605 } 4606 4607 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4608 arc_change_state(new_state, hdr, hash_lock); 4609 4610 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 4611 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 4612 /* 4613 * This buffer has been accessed more than once and is 4614 * still in the cache. Keep it in the MFU state. 4615 * 4616 * NOTE: an add_reference() that occurred when we did 4617 * the arc_read() will have kicked this off the list. 4618 * If it was a prefetch, we will explicitly move it to 4619 * the head of the list now. 4620 */ 4621 if ((HDR_PREFETCH(hdr)) != 0) { 4622 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4623 /* link protected by hash_lock */ 4624 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 4625 } 4626 ARCSTAT_BUMP(arcstat_mfu_hits); 4627 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4628 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 4629 arc_state_t *new_state = arc_mfu; 4630 /* 4631 * This buffer has been accessed more than once but has 4632 * been evicted from the cache. Move it back to the 4633 * MFU state. 4634 */ 4635 4636 if (HDR_PREFETCH(hdr)) { 4637 /* 4638 * This is a prefetch access... 4639 * move this block back to the MRU state. 4640 */ 4641 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 4642 new_state = arc_mru; 4643 } 4644 4645 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4646 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4647 arc_change_state(new_state, hdr, hash_lock); 4648 4649 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 4650 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 4651 /* 4652 * This buffer is on the 2nd Level ARC. 4653 */ 4654 4655 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4656 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4657 arc_change_state(arc_mfu, hdr, hash_lock); 4658 } else { 4659 ASSERT(!"invalid arc state"); 4660 } 4661 } 4662 4663 /* a generic arc_done_func_t which you can use */ 4664 /* ARGSUSED */ 4665 void 4666 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 4667 { 4668 if (zio == NULL || zio->io_error == 0) 4669 bcopy(buf->b_data, arg, arc_buf_size(buf)); 4670 arc_buf_destroy(buf, arg); 4671 } 4672 4673 /* a generic arc_done_func_t */ 4674 void 4675 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 4676 { 4677 arc_buf_t **bufp = arg; 4678 if (zio && zio->io_error) { 4679 arc_buf_destroy(buf, arg); 4680 *bufp = NULL; 4681 } else { 4682 *bufp = buf; 4683 ASSERT(buf->b_data); 4684 } 4685 } 4686 4687 static void 4688 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 4689 { 4690 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 4691 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 4692 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 4693 } else { 4694 if (HDR_COMPRESSION_ENABLED(hdr)) { 4695 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, 4696 BP_GET_COMPRESS(bp)); 4697 } 4698 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 4699 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 4700 } 4701 } 4702 4703 static void 4704 arc_read_done(zio_t *zio) 4705 { 4706 arc_buf_hdr_t *hdr = zio->io_private; 4707 kmutex_t *hash_lock = NULL; 4708 arc_callback_t *callback_list; 4709 arc_callback_t *acb; 4710 boolean_t freeable = B_FALSE; 4711 boolean_t no_zio_error = (zio->io_error == 0); 4712 4713 /* 4714 * The hdr was inserted into hash-table and removed from lists 4715 * prior to starting I/O. We should find this header, since 4716 * it's in the hash table, and it should be legit since it's 4717 * not possible to evict it during the I/O. The only possible 4718 * reason for it not to be found is if we were freed during the 4719 * read. 4720 */ 4721 if (HDR_IN_HASH_TABLE(hdr)) { 4722 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 4723 ASSERT3U(hdr->b_dva.dva_word[0], ==, 4724 BP_IDENTITY(zio->io_bp)->dva_word[0]); 4725 ASSERT3U(hdr->b_dva.dva_word[1], ==, 4726 BP_IDENTITY(zio->io_bp)->dva_word[1]); 4727 4728 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 4729 &hash_lock); 4730 4731 ASSERT((found == hdr && 4732 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 4733 (found == hdr && HDR_L2_READING(hdr))); 4734 ASSERT3P(hash_lock, !=, NULL); 4735 } 4736 4737 if (no_zio_error) { 4738 /* byteswap if necessary */ 4739 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 4740 if (BP_GET_LEVEL(zio->io_bp) > 0) { 4741 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 4742 } else { 4743 hdr->b_l1hdr.b_byteswap = 4744 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 4745 } 4746 } else { 4747 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 4748 } 4749 } 4750 4751 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 4752 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 4753 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 4754 4755 callback_list = hdr->b_l1hdr.b_acb; 4756 ASSERT3P(callback_list, !=, NULL); 4757 4758 if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) { 4759 /* 4760 * Only call arc_access on anonymous buffers. This is because 4761 * if we've issued an I/O for an evicted buffer, we've already 4762 * called arc_access (to prevent any simultaneous readers from 4763 * getting confused). 4764 */ 4765 arc_access(hdr, hash_lock); 4766 } 4767 4768 /* 4769 * If a read request has a callback (i.e. acb_done is not NULL), then we 4770 * make a buf containing the data according to the parameters which were 4771 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 4772 * aren't needlessly decompressing the data multiple times. 4773 */ 4774 int callback_cnt = 0; 4775 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 4776 if (!acb->acb_done) 4777 continue; 4778 4779 /* This is a demand read since prefetches don't use callbacks */ 4780 callback_cnt++; 4781 4782 int error = arc_buf_alloc_impl(hdr, acb->acb_private, 4783 acb->acb_compressed, no_zio_error, &acb->acb_buf); 4784 if (no_zio_error) { 4785 zio->io_error = error; 4786 } 4787 } 4788 hdr->b_l1hdr.b_acb = NULL; 4789 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 4790 if (callback_cnt == 0) { 4791 ASSERT(HDR_PREFETCH(hdr)); 4792 ASSERT0(hdr->b_l1hdr.b_bufcnt); 4793 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 4794 } 4795 4796 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 4797 callback_list != NULL); 4798 4799 if (no_zio_error) { 4800 arc_hdr_verify(hdr, zio->io_bp); 4801 } else { 4802 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 4803 if (hdr->b_l1hdr.b_state != arc_anon) 4804 arc_change_state(arc_anon, hdr, hash_lock); 4805 if (HDR_IN_HASH_TABLE(hdr)) 4806 buf_hash_remove(hdr); 4807 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 4808 } 4809 4810 /* 4811 * Broadcast before we drop the hash_lock to avoid the possibility 4812 * that the hdr (and hence the cv) might be freed before we get to 4813 * the cv_broadcast(). 4814 */ 4815 cv_broadcast(&hdr->b_l1hdr.b_cv); 4816 4817 if (hash_lock != NULL) { 4818 mutex_exit(hash_lock); 4819 } else { 4820 /* 4821 * This block was freed while we waited for the read to 4822 * complete. It has been removed from the hash table and 4823 * moved to the anonymous state (so that it won't show up 4824 * in the cache). 4825 */ 4826 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 4827 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 4828 } 4829 4830 /* execute each callback and free its structure */ 4831 while ((acb = callback_list) != NULL) { 4832 if (acb->acb_done) 4833 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 4834 4835 if (acb->acb_zio_dummy != NULL) { 4836 acb->acb_zio_dummy->io_error = zio->io_error; 4837 zio_nowait(acb->acb_zio_dummy); 4838 } 4839 4840 callback_list = acb->acb_next; 4841 kmem_free(acb, sizeof (arc_callback_t)); 4842 } 4843 4844 if (freeable) 4845 arc_hdr_destroy(hdr); 4846 } 4847 4848 /* 4849 * "Read" the block at the specified DVA (in bp) via the 4850 * cache. If the block is found in the cache, invoke the provided 4851 * callback immediately and return. Note that the `zio' parameter 4852 * in the callback will be NULL in this case, since no IO was 4853 * required. If the block is not in the cache pass the read request 4854 * on to the spa with a substitute callback function, so that the 4855 * requested block will be added to the cache. 4856 * 4857 * If a read request arrives for a block that has a read in-progress, 4858 * either wait for the in-progress read to complete (and return the 4859 * results); or, if this is a read with a "done" func, add a record 4860 * to the read to invoke the "done" func when the read completes, 4861 * and return; or just return. 4862 * 4863 * arc_read_done() will invoke all the requested "done" functions 4864 * for readers of this block. 4865 */ 4866 int 4867 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 4868 void *private, zio_priority_t priority, int zio_flags, 4869 arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 4870 { 4871 arc_buf_hdr_t *hdr = NULL; 4872 kmutex_t *hash_lock = NULL; 4873 zio_t *rzio; 4874 uint64_t guid = spa_load_guid(spa); 4875 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0; 4876 4877 ASSERT(!BP_IS_EMBEDDED(bp) || 4878 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 4879 4880 top: 4881 if (!BP_IS_EMBEDDED(bp)) { 4882 /* 4883 * Embedded BP's have no DVA and require no I/O to "read". 4884 * Create an anonymous arc buf to back it. 4885 */ 4886 hdr = buf_hash_find(guid, bp, &hash_lock); 4887 } 4888 4889 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) { 4890 arc_buf_t *buf = NULL; 4891 *arc_flags |= ARC_FLAG_CACHED; 4892 4893 if (HDR_IO_IN_PROGRESS(hdr)) { 4894 4895 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 4896 priority == ZIO_PRIORITY_SYNC_READ) { 4897 /* 4898 * This sync read must wait for an 4899 * in-progress async read (e.g. a predictive 4900 * prefetch). Async reads are queued 4901 * separately at the vdev_queue layer, so 4902 * this is a form of priority inversion. 4903 * Ideally, we would "inherit" the demand 4904 * i/o's priority by moving the i/o from 4905 * the async queue to the synchronous queue, 4906 * but there is currently no mechanism to do 4907 * so. Track this so that we can evaluate 4908 * the magnitude of this potential performance 4909 * problem. 4910 * 4911 * Note that if the prefetch i/o is already 4912 * active (has been issued to the device), 4913 * the prefetch improved performance, because 4914 * we issued it sooner than we would have 4915 * without the prefetch. 4916 */ 4917 DTRACE_PROBE1(arc__sync__wait__for__async, 4918 arc_buf_hdr_t *, hdr); 4919 ARCSTAT_BUMP(arcstat_sync_wait_for_async); 4920 } 4921 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 4922 arc_hdr_clear_flags(hdr, 4923 ARC_FLAG_PREDICTIVE_PREFETCH); 4924 } 4925 4926 if (*arc_flags & ARC_FLAG_WAIT) { 4927 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 4928 mutex_exit(hash_lock); 4929 goto top; 4930 } 4931 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 4932 4933 if (done) { 4934 arc_callback_t *acb = NULL; 4935 4936 acb = kmem_zalloc(sizeof (arc_callback_t), 4937 KM_SLEEP); 4938 acb->acb_done = done; 4939 acb->acb_private = private; 4940 acb->acb_compressed = compressed_read; 4941 if (pio != NULL) 4942 acb->acb_zio_dummy = zio_null(pio, 4943 spa, NULL, NULL, NULL, zio_flags); 4944 4945 ASSERT3P(acb->acb_done, !=, NULL); 4946 acb->acb_next = hdr->b_l1hdr.b_acb; 4947 hdr->b_l1hdr.b_acb = acb; 4948 mutex_exit(hash_lock); 4949 return (0); 4950 } 4951 mutex_exit(hash_lock); 4952 return (0); 4953 } 4954 4955 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 4956 hdr->b_l1hdr.b_state == arc_mfu); 4957 4958 if (done) { 4959 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 4960 /* 4961 * This is a demand read which does not have to 4962 * wait for i/o because we did a predictive 4963 * prefetch i/o for it, which has completed. 4964 */ 4965 DTRACE_PROBE1( 4966 arc__demand__hit__predictive__prefetch, 4967 arc_buf_hdr_t *, hdr); 4968 ARCSTAT_BUMP( 4969 arcstat_demand_hit_predictive_prefetch); 4970 arc_hdr_clear_flags(hdr, 4971 ARC_FLAG_PREDICTIVE_PREFETCH); 4972 } 4973 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp)); 4974 4975 /* Get a buf with the desired data in it. */ 4976 VERIFY0(arc_buf_alloc_impl(hdr, private, 4977 compressed_read, B_TRUE, &buf)); 4978 } else if (*arc_flags & ARC_FLAG_PREFETCH && 4979 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 4980 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 4981 } 4982 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 4983 arc_access(hdr, hash_lock); 4984 if (*arc_flags & ARC_FLAG_L2CACHE) 4985 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 4986 mutex_exit(hash_lock); 4987 ARCSTAT_BUMP(arcstat_hits); 4988 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 4989 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 4990 data, metadata, hits); 4991 4992 if (done) 4993 done(NULL, buf, private); 4994 } else { 4995 uint64_t lsize = BP_GET_LSIZE(bp); 4996 uint64_t psize = BP_GET_PSIZE(bp); 4997 arc_callback_t *acb; 4998 vdev_t *vd = NULL; 4999 uint64_t addr = 0; 5000 boolean_t devw = B_FALSE; 5001 uint64_t size; 5002 5003 if (hdr == NULL) { 5004 /* this block is not in the cache */ 5005 arc_buf_hdr_t *exists = NULL; 5006 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 5007 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 5008 BP_GET_COMPRESS(bp), type); 5009 5010 if (!BP_IS_EMBEDDED(bp)) { 5011 hdr->b_dva = *BP_IDENTITY(bp); 5012 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 5013 exists = buf_hash_insert(hdr, &hash_lock); 5014 } 5015 if (exists != NULL) { 5016 /* somebody beat us to the hash insert */ 5017 mutex_exit(hash_lock); 5018 buf_discard_identity(hdr); 5019 arc_hdr_destroy(hdr); 5020 goto top; /* restart the IO request */ 5021 } 5022 } else { 5023 /* 5024 * This block is in the ghost cache. If it was L2-only 5025 * (and thus didn't have an L1 hdr), we realloc the 5026 * header to add an L1 hdr. 5027 */ 5028 if (!HDR_HAS_L1HDR(hdr)) { 5029 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 5030 hdr_full_cache); 5031 } 5032 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 5033 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state)); 5034 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5035 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5036 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 5037 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 5038 5039 /* 5040 * This is a delicate dance that we play here. 5041 * This hdr is in the ghost list so we access it 5042 * to move it out of the ghost list before we 5043 * initiate the read. If it's a prefetch then 5044 * it won't have a callback so we'll remove the 5045 * reference that arc_buf_alloc_impl() created. We 5046 * do this after we've called arc_access() to 5047 * avoid hitting an assert in remove_reference(). 5048 */ 5049 arc_access(hdr, hash_lock); 5050 arc_hdr_alloc_pabd(hdr); 5051 } 5052 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 5053 size = arc_hdr_size(hdr); 5054 5055 /* 5056 * If compression is enabled on the hdr, then will do 5057 * RAW I/O and will store the compressed data in the hdr's 5058 * data block. Otherwise, the hdr's data block will contain 5059 * the uncompressed data. 5060 */ 5061 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) { 5062 zio_flags |= ZIO_FLAG_RAW; 5063 } 5064 5065 if (*arc_flags & ARC_FLAG_PREFETCH) 5066 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5067 if (*arc_flags & ARC_FLAG_L2CACHE) 5068 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5069 if (BP_GET_LEVEL(bp) > 0) 5070 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 5071 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 5072 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 5073 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 5074 5075 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 5076 acb->acb_done = done; 5077 acb->acb_private = private; 5078 acb->acb_compressed = compressed_read; 5079 5080 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5081 hdr->b_l1hdr.b_acb = acb; 5082 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5083 5084 if (HDR_HAS_L2HDR(hdr) && 5085 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 5086 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 5087 addr = hdr->b_l2hdr.b_daddr; 5088 /* 5089 * Lock out L2ARC device removal. 5090 */ 5091 if (vdev_is_dead(vd) || 5092 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 5093 vd = NULL; 5094 } 5095 5096 if (priority == ZIO_PRIORITY_ASYNC_READ) 5097 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5098 else 5099 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5100 5101 if (hash_lock != NULL) 5102 mutex_exit(hash_lock); 5103 5104 /* 5105 * At this point, we have a level 1 cache miss. Try again in 5106 * L2ARC if possible. 5107 */ 5108 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 5109 5110 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 5111 uint64_t, lsize, zbookmark_phys_t *, zb); 5112 ARCSTAT_BUMP(arcstat_misses); 5113 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5114 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 5115 data, metadata, misses); 5116 5117 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 5118 /* 5119 * Read from the L2ARC if the following are true: 5120 * 1. The L2ARC vdev was previously cached. 5121 * 2. This buffer still has L2ARC metadata. 5122 * 3. This buffer isn't currently writing to the L2ARC. 5123 * 4. The L2ARC entry wasn't evicted, which may 5124 * also have invalidated the vdev. 5125 * 5. This isn't prefetch and l2arc_noprefetch is set. 5126 */ 5127 if (HDR_HAS_L2HDR(hdr) && 5128 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 5129 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 5130 l2arc_read_callback_t *cb; 5131 abd_t *abd; 5132 uint64_t asize; 5133 5134 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 5135 ARCSTAT_BUMP(arcstat_l2_hits); 5136 5137 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 5138 KM_SLEEP); 5139 cb->l2rcb_hdr = hdr; 5140 cb->l2rcb_bp = *bp; 5141 cb->l2rcb_zb = *zb; 5142 cb->l2rcb_flags = zio_flags; 5143 5144 asize = vdev_psize_to_asize(vd, size); 5145 if (asize != size) { 5146 abd = abd_alloc_for_io(asize, 5147 HDR_ISTYPE_METADATA(hdr)); 5148 cb->l2rcb_abd = abd; 5149 } else { 5150 abd = hdr->b_l1hdr.b_pabd; 5151 } 5152 5153 ASSERT(addr >= VDEV_LABEL_START_SIZE && 5154 addr + asize <= vd->vdev_psize - 5155 VDEV_LABEL_END_SIZE); 5156 5157 /* 5158 * l2arc read. The SCL_L2ARC lock will be 5159 * released by l2arc_read_done(). 5160 * Issue a null zio if the underlying buffer 5161 * was squashed to zero size by compression. 5162 */ 5163 ASSERT3U(HDR_GET_COMPRESS(hdr), !=, 5164 ZIO_COMPRESS_EMPTY); 5165 rzio = zio_read_phys(pio, vd, addr, 5166 asize, abd, 5167 ZIO_CHECKSUM_OFF, 5168 l2arc_read_done, cb, priority, 5169 zio_flags | ZIO_FLAG_DONT_CACHE | 5170 ZIO_FLAG_CANFAIL | 5171 ZIO_FLAG_DONT_PROPAGATE | 5172 ZIO_FLAG_DONT_RETRY, B_FALSE); 5173 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 5174 zio_t *, rzio); 5175 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 5176 5177 if (*arc_flags & ARC_FLAG_NOWAIT) { 5178 zio_nowait(rzio); 5179 return (0); 5180 } 5181 5182 ASSERT(*arc_flags & ARC_FLAG_WAIT); 5183 if (zio_wait(rzio) == 0) 5184 return (0); 5185 5186 /* l2arc read error; goto zio_read() */ 5187 } else { 5188 DTRACE_PROBE1(l2arc__miss, 5189 arc_buf_hdr_t *, hdr); 5190 ARCSTAT_BUMP(arcstat_l2_misses); 5191 if (HDR_L2_WRITING(hdr)) 5192 ARCSTAT_BUMP(arcstat_l2_rw_clash); 5193 spa_config_exit(spa, SCL_L2ARC, vd); 5194 } 5195 } else { 5196 if (vd != NULL) 5197 spa_config_exit(spa, SCL_L2ARC, vd); 5198 if (l2arc_ndev != 0) { 5199 DTRACE_PROBE1(l2arc__miss, 5200 arc_buf_hdr_t *, hdr); 5201 ARCSTAT_BUMP(arcstat_l2_misses); 5202 } 5203 } 5204 5205 rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size, 5206 arc_read_done, hdr, priority, zio_flags, zb); 5207 5208 if (*arc_flags & ARC_FLAG_WAIT) 5209 return (zio_wait(rzio)); 5210 5211 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5212 zio_nowait(rzio); 5213 } 5214 return (0); 5215 } 5216 5217 /* 5218 * Notify the arc that a block was freed, and thus will never be used again. 5219 */ 5220 void 5221 arc_freed(spa_t *spa, const blkptr_t *bp) 5222 { 5223 arc_buf_hdr_t *hdr; 5224 kmutex_t *hash_lock; 5225 uint64_t guid = spa_load_guid(spa); 5226 5227 ASSERT(!BP_IS_EMBEDDED(bp)); 5228 5229 hdr = buf_hash_find(guid, bp, &hash_lock); 5230 if (hdr == NULL) 5231 return; 5232 5233 /* 5234 * We might be trying to free a block that is still doing I/O 5235 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 5236 * dmu_sync-ed block). If this block is being prefetched, then it 5237 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 5238 * until the I/O completes. A block may also have a reference if it is 5239 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 5240 * have written the new block to its final resting place on disk but 5241 * without the dedup flag set. This would have left the hdr in the MRU 5242 * state and discoverable. When the txg finally syncs it detects that 5243 * the block was overridden in open context and issues an override I/O. 5244 * Since this is a dedup block, the override I/O will determine if the 5245 * block is already in the DDT. If so, then it will replace the io_bp 5246 * with the bp from the DDT and allow the I/O to finish. When the I/O 5247 * reaches the done callback, dbuf_write_override_done, it will 5248 * check to see if the io_bp and io_bp_override are identical. 5249 * If they are not, then it indicates that the bp was replaced with 5250 * the bp in the DDT and the override bp is freed. This allows 5251 * us to arrive here with a reference on a block that is being 5252 * freed. So if we have an I/O in progress, or a reference to 5253 * this hdr, then we don't destroy the hdr. 5254 */ 5255 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 5256 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 5257 arc_change_state(arc_anon, hdr, hash_lock); 5258 arc_hdr_destroy(hdr); 5259 mutex_exit(hash_lock); 5260 } else { 5261 mutex_exit(hash_lock); 5262 } 5263 5264 } 5265 5266 /* 5267 * Release this buffer from the cache, making it an anonymous buffer. This 5268 * must be done after a read and prior to modifying the buffer contents. 5269 * If the buffer has more than one reference, we must make 5270 * a new hdr for the buffer. 5271 */ 5272 void 5273 arc_release(arc_buf_t *buf, void *tag) 5274 { 5275 arc_buf_hdr_t *hdr = buf->b_hdr; 5276 5277 /* 5278 * It would be nice to assert that if it's DMU metadata (level > 5279 * 0 || it's the dnode file), then it must be syncing context. 5280 * But we don't know that information at this level. 5281 */ 5282 5283 mutex_enter(&buf->b_evict_lock); 5284 5285 ASSERT(HDR_HAS_L1HDR(hdr)); 5286 5287 /* 5288 * We don't grab the hash lock prior to this check, because if 5289 * the buffer's header is in the arc_anon state, it won't be 5290 * linked into the hash table. 5291 */ 5292 if (hdr->b_l1hdr.b_state == arc_anon) { 5293 mutex_exit(&buf->b_evict_lock); 5294 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5295 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 5296 ASSERT(!HDR_HAS_L2HDR(hdr)); 5297 ASSERT(HDR_EMPTY(hdr)); 5298 5299 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 5300 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 5301 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 5302 5303 hdr->b_l1hdr.b_arc_access = 0; 5304 5305 /* 5306 * If the buf is being overridden then it may already 5307 * have a hdr that is not empty. 5308 */ 5309 buf_discard_identity(hdr); 5310 arc_buf_thaw(buf); 5311 5312 return; 5313 } 5314 5315 kmutex_t *hash_lock = HDR_LOCK(hdr); 5316 mutex_enter(hash_lock); 5317 5318 /* 5319 * This assignment is only valid as long as the hash_lock is 5320 * held, we must be careful not to reference state or the 5321 * b_state field after dropping the lock. 5322 */ 5323 arc_state_t *state = hdr->b_l1hdr.b_state; 5324 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 5325 ASSERT3P(state, !=, arc_anon); 5326 5327 /* this buffer is not on any list */ 5328 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 5329 5330 if (HDR_HAS_L2HDR(hdr)) { 5331 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 5332 5333 /* 5334 * We have to recheck this conditional again now that 5335 * we're holding the l2ad_mtx to prevent a race with 5336 * another thread which might be concurrently calling 5337 * l2arc_evict(). In that case, l2arc_evict() might have 5338 * destroyed the header's L2 portion as we were waiting 5339 * to acquire the l2ad_mtx. 5340 */ 5341 if (HDR_HAS_L2HDR(hdr)) 5342 arc_hdr_l2hdr_destroy(hdr); 5343 5344 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 5345 } 5346 5347 /* 5348 * Do we have more than one buf? 5349 */ 5350 if (hdr->b_l1hdr.b_bufcnt > 1) { 5351 arc_buf_hdr_t *nhdr; 5352 uint64_t spa = hdr->b_spa; 5353 uint64_t psize = HDR_GET_PSIZE(hdr); 5354 uint64_t lsize = HDR_GET_LSIZE(hdr); 5355 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 5356 arc_buf_contents_t type = arc_buf_type(hdr); 5357 VERIFY3U(hdr->b_type, ==, type); 5358 5359 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 5360 (void) remove_reference(hdr, hash_lock, tag); 5361 5362 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 5363 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 5364 ASSERT(ARC_BUF_LAST(buf)); 5365 } 5366 5367 /* 5368 * Pull the data off of this hdr and attach it to 5369 * a new anonymous hdr. Also find the last buffer 5370 * in the hdr's buffer list. 5371 */ 5372 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 5373 ASSERT3P(lastbuf, !=, NULL); 5374 5375 /* 5376 * If the current arc_buf_t and the hdr are sharing their data 5377 * buffer, then we must stop sharing that block. 5378 */ 5379 if (arc_buf_is_shared(buf)) { 5380 VERIFY(!arc_buf_is_shared(lastbuf)); 5381 5382 /* 5383 * First, sever the block sharing relationship between 5384 * buf and the arc_buf_hdr_t. 5385 */ 5386 arc_unshare_buf(hdr, buf); 5387 5388 /* 5389 * Now we need to recreate the hdr's b_pabd. Since we 5390 * have lastbuf handy, we try to share with it, but if 5391 * we can't then we allocate a new b_pabd and copy the 5392 * data from buf into it. 5393 */ 5394 if (arc_can_share(hdr, lastbuf)) { 5395 arc_share_buf(hdr, lastbuf); 5396 } else { 5397 arc_hdr_alloc_pabd(hdr); 5398 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 5399 buf->b_data, psize); 5400 } 5401 VERIFY3P(lastbuf->b_data, !=, NULL); 5402 } else if (HDR_SHARED_DATA(hdr)) { 5403 /* 5404 * Uncompressed shared buffers are always at the end 5405 * of the list. Compressed buffers don't have the 5406 * same requirements. This makes it hard to 5407 * simply assert that the lastbuf is shared so 5408 * we rely on the hdr's compression flags to determine 5409 * if we have a compressed, shared buffer. 5410 */ 5411 ASSERT(arc_buf_is_shared(lastbuf) || 5412 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF); 5413 ASSERT(!ARC_BUF_SHARED(buf)); 5414 } 5415 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 5416 ASSERT3P(state, !=, arc_l2c_only); 5417 5418 (void) refcount_remove_many(&state->arcs_size, 5419 arc_buf_size(buf), buf); 5420 5421 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 5422 ASSERT3P(state, !=, arc_l2c_only); 5423 (void) refcount_remove_many(&state->arcs_esize[type], 5424 arc_buf_size(buf), buf); 5425 } 5426 5427 hdr->b_l1hdr.b_bufcnt -= 1; 5428 arc_cksum_verify(buf); 5429 arc_buf_unwatch(buf); 5430 5431 mutex_exit(hash_lock); 5432 5433 /* 5434 * Allocate a new hdr. The new hdr will contain a b_pabd 5435 * buffer which will be freed in arc_write(). 5436 */ 5437 nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type); 5438 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 5439 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 5440 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt)); 5441 VERIFY3U(nhdr->b_type, ==, type); 5442 ASSERT(!HDR_SHARED_DATA(nhdr)); 5443 5444 nhdr->b_l1hdr.b_buf = buf; 5445 nhdr->b_l1hdr.b_bufcnt = 1; 5446 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 5447 buf->b_hdr = nhdr; 5448 5449 mutex_exit(&buf->b_evict_lock); 5450 (void) refcount_add_many(&arc_anon->arcs_size, 5451 arc_buf_size(buf), buf); 5452 } else { 5453 mutex_exit(&buf->b_evict_lock); 5454 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 5455 /* protected by hash lock, or hdr is on arc_anon */ 5456 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 5457 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5458 arc_change_state(arc_anon, hdr, hash_lock); 5459 hdr->b_l1hdr.b_arc_access = 0; 5460 mutex_exit(hash_lock); 5461 5462 buf_discard_identity(hdr); 5463 arc_buf_thaw(buf); 5464 } 5465 } 5466 5467 int 5468 arc_released(arc_buf_t *buf) 5469 { 5470 int released; 5471 5472 mutex_enter(&buf->b_evict_lock); 5473 released = (buf->b_data != NULL && 5474 buf->b_hdr->b_l1hdr.b_state == arc_anon); 5475 mutex_exit(&buf->b_evict_lock); 5476 return (released); 5477 } 5478 5479 #ifdef ZFS_DEBUG 5480 int 5481 arc_referenced(arc_buf_t *buf) 5482 { 5483 int referenced; 5484 5485 mutex_enter(&buf->b_evict_lock); 5486 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 5487 mutex_exit(&buf->b_evict_lock); 5488 return (referenced); 5489 } 5490 #endif 5491 5492 static void 5493 arc_write_ready(zio_t *zio) 5494 { 5495 arc_write_callback_t *callback = zio->io_private; 5496 arc_buf_t *buf = callback->awcb_buf; 5497 arc_buf_hdr_t *hdr = buf->b_hdr; 5498 uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp); 5499 5500 ASSERT(HDR_HAS_L1HDR(hdr)); 5501 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 5502 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 5503 5504 /* 5505 * If we're reexecuting this zio because the pool suspended, then 5506 * cleanup any state that was previously set the first time the 5507 * callback was invoked. 5508 */ 5509 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 5510 arc_cksum_free(hdr); 5511 arc_buf_unwatch(buf); 5512 if (hdr->b_l1hdr.b_pabd != NULL) { 5513 if (arc_buf_is_shared(buf)) { 5514 arc_unshare_buf(hdr, buf); 5515 } else { 5516 arc_hdr_free_pabd(hdr); 5517 } 5518 } 5519 } 5520 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 5521 ASSERT(!HDR_SHARED_DATA(hdr)); 5522 ASSERT(!arc_buf_is_shared(buf)); 5523 5524 callback->awcb_ready(zio, buf, callback->awcb_private); 5525 5526 if (HDR_IO_IN_PROGRESS(hdr)) 5527 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 5528 5529 arc_cksum_compute(buf); 5530 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5531 5532 enum zio_compress compress; 5533 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 5534 compress = ZIO_COMPRESS_OFF; 5535 } else { 5536 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp)); 5537 compress = BP_GET_COMPRESS(zio->io_bp); 5538 } 5539 HDR_SET_PSIZE(hdr, psize); 5540 arc_hdr_set_compress(hdr, compress); 5541 5542 5543 /* 5544 * Fill the hdr with data. If the hdr is compressed, the data we want 5545 * is available from the zio, otherwise we can take it from the buf. 5546 * 5547 * We might be able to share the buf's data with the hdr here. However, 5548 * doing so would cause the ARC to be full of linear ABDs if we write a 5549 * lot of shareable data. As a compromise, we check whether scattered 5550 * ABDs are allowed, and assume that if they are then the user wants 5551 * the ARC to be primarily filled with them regardless of the data being 5552 * written. Therefore, if they're allowed then we allocate one and copy 5553 * the data into it; otherwise, we share the data directly if we can. 5554 */ 5555 if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) { 5556 arc_hdr_alloc_pabd(hdr); 5557 5558 /* 5559 * Ideally, we would always copy the io_abd into b_pabd, but the 5560 * user may have disabled compressed ARC, thus we must check the 5561 * hdr's compression setting rather than the io_bp's. 5562 */ 5563 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) { 5564 ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=, 5565 ZIO_COMPRESS_OFF); 5566 ASSERT3U(psize, >, 0); 5567 5568 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 5569 } else { 5570 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 5571 5572 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 5573 arc_buf_size(buf)); 5574 } 5575 } else { 5576 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 5577 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 5578 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 5579 5580 arc_share_buf(hdr, buf); 5581 } 5582 5583 arc_hdr_verify(hdr, zio->io_bp); 5584 } 5585 5586 static void 5587 arc_write_children_ready(zio_t *zio) 5588 { 5589 arc_write_callback_t *callback = zio->io_private; 5590 arc_buf_t *buf = callback->awcb_buf; 5591 5592 callback->awcb_children_ready(zio, buf, callback->awcb_private); 5593 } 5594 5595 /* 5596 * The SPA calls this callback for each physical write that happens on behalf 5597 * of a logical write. See the comment in dbuf_write_physdone() for details. 5598 */ 5599 static void 5600 arc_write_physdone(zio_t *zio) 5601 { 5602 arc_write_callback_t *cb = zio->io_private; 5603 if (cb->awcb_physdone != NULL) 5604 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 5605 } 5606 5607 static void 5608 arc_write_done(zio_t *zio) 5609 { 5610 arc_write_callback_t *callback = zio->io_private; 5611 arc_buf_t *buf = callback->awcb_buf; 5612 arc_buf_hdr_t *hdr = buf->b_hdr; 5613 5614 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5615 5616 if (zio->io_error == 0) { 5617 arc_hdr_verify(hdr, zio->io_bp); 5618 5619 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 5620 buf_discard_identity(hdr); 5621 } else { 5622 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 5623 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 5624 } 5625 } else { 5626 ASSERT(HDR_EMPTY(hdr)); 5627 } 5628 5629 /* 5630 * If the block to be written was all-zero or compressed enough to be 5631 * embedded in the BP, no write was performed so there will be no 5632 * dva/birth/checksum. The buffer must therefore remain anonymous 5633 * (and uncached). 5634 */ 5635 if (!HDR_EMPTY(hdr)) { 5636 arc_buf_hdr_t *exists; 5637 kmutex_t *hash_lock; 5638 5639 ASSERT3U(zio->io_error, ==, 0); 5640 5641 arc_cksum_verify(buf); 5642 5643 exists = buf_hash_insert(hdr, &hash_lock); 5644 if (exists != NULL) { 5645 /* 5646 * This can only happen if we overwrite for 5647 * sync-to-convergence, because we remove 5648 * buffers from the hash table when we arc_free(). 5649 */ 5650 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 5651 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 5652 panic("bad overwrite, hdr=%p exists=%p", 5653 (void *)hdr, (void *)exists); 5654 ASSERT(refcount_is_zero( 5655 &exists->b_l1hdr.b_refcnt)); 5656 arc_change_state(arc_anon, exists, hash_lock); 5657 mutex_exit(hash_lock); 5658 arc_hdr_destroy(exists); 5659 exists = buf_hash_insert(hdr, &hash_lock); 5660 ASSERT3P(exists, ==, NULL); 5661 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 5662 /* nopwrite */ 5663 ASSERT(zio->io_prop.zp_nopwrite); 5664 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 5665 panic("bad nopwrite, hdr=%p exists=%p", 5666 (void *)hdr, (void *)exists); 5667 } else { 5668 /* Dedup */ 5669 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 5670 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 5671 ASSERT(BP_GET_DEDUP(zio->io_bp)); 5672 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 5673 } 5674 } 5675 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5676 /* if it's not anon, we are doing a scrub */ 5677 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 5678 arc_access(hdr, hash_lock); 5679 mutex_exit(hash_lock); 5680 } else { 5681 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5682 } 5683 5684 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5685 callback->awcb_done(zio, buf, callback->awcb_private); 5686 5687 abd_put(zio->io_abd); 5688 kmem_free(callback, sizeof (arc_write_callback_t)); 5689 } 5690 5691 zio_t * 5692 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 5693 boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready, 5694 arc_done_func_t *children_ready, arc_done_func_t *physdone, 5695 arc_done_func_t *done, void *private, zio_priority_t priority, 5696 int zio_flags, const zbookmark_phys_t *zb) 5697 { 5698 arc_buf_hdr_t *hdr = buf->b_hdr; 5699 arc_write_callback_t *callback; 5700 zio_t *zio; 5701 zio_prop_t localprop = *zp; 5702 5703 ASSERT3P(ready, !=, NULL); 5704 ASSERT3P(done, !=, NULL); 5705 ASSERT(!HDR_IO_ERROR(hdr)); 5706 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5707 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5708 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 5709 if (l2arc) 5710 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5711 if (ARC_BUF_COMPRESSED(buf)) { 5712 /* 5713 * We're writing a pre-compressed buffer. Make the 5714 * compression algorithm requested by the zio_prop_t match 5715 * the pre-compressed buffer's compression algorithm. 5716 */ 5717 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 5718 5719 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 5720 zio_flags |= ZIO_FLAG_RAW; 5721 } 5722 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 5723 callback->awcb_ready = ready; 5724 callback->awcb_children_ready = children_ready; 5725 callback->awcb_physdone = physdone; 5726 callback->awcb_done = done; 5727 callback->awcb_private = private; 5728 callback->awcb_buf = buf; 5729 5730 /* 5731 * The hdr's b_pabd is now stale, free it now. A new data block 5732 * will be allocated when the zio pipeline calls arc_write_ready(). 5733 */ 5734 if (hdr->b_l1hdr.b_pabd != NULL) { 5735 /* 5736 * If the buf is currently sharing the data block with 5737 * the hdr then we need to break that relationship here. 5738 * The hdr will remain with a NULL data pointer and the 5739 * buf will take sole ownership of the block. 5740 */ 5741 if (arc_buf_is_shared(buf)) { 5742 arc_unshare_buf(hdr, buf); 5743 } else { 5744 arc_hdr_free_pabd(hdr); 5745 } 5746 VERIFY3P(buf->b_data, !=, NULL); 5747 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 5748 } 5749 ASSERT(!arc_buf_is_shared(buf)); 5750 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 5751 5752 zio = zio_write(pio, spa, txg, bp, 5753 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 5754 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 5755 (children_ready != NULL) ? arc_write_children_ready : NULL, 5756 arc_write_physdone, arc_write_done, callback, 5757 priority, zio_flags, zb); 5758 5759 return (zio); 5760 } 5761 5762 static int 5763 arc_memory_throttle(uint64_t reserve, uint64_t txg) 5764 { 5765 #ifdef _KERNEL 5766 uint64_t available_memory = ptob(freemem); 5767 static uint64_t page_load = 0; 5768 static uint64_t last_txg = 0; 5769 5770 #if defined(__i386) 5771 available_memory = 5772 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 5773 #endif 5774 5775 if (freemem > physmem * arc_lotsfree_percent / 100) 5776 return (0); 5777 5778 if (txg > last_txg) { 5779 last_txg = txg; 5780 page_load = 0; 5781 } 5782 /* 5783 * If we are in pageout, we know that memory is already tight, 5784 * the arc is already going to be evicting, so we just want to 5785 * continue to let page writes occur as quickly as possible. 5786 */ 5787 if (curproc == proc_pageout) { 5788 if (page_load > MAX(ptob(minfree), available_memory) / 4) 5789 return (SET_ERROR(ERESTART)); 5790 /* Note: reserve is inflated, so we deflate */ 5791 page_load += reserve / 8; 5792 return (0); 5793 } else if (page_load > 0 && arc_reclaim_needed()) { 5794 /* memory is low, delay before restarting */ 5795 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 5796 return (SET_ERROR(EAGAIN)); 5797 } 5798 page_load = 0; 5799 #endif 5800 return (0); 5801 } 5802 5803 void 5804 arc_tempreserve_clear(uint64_t reserve) 5805 { 5806 atomic_add_64(&arc_tempreserve, -reserve); 5807 ASSERT((int64_t)arc_tempreserve >= 0); 5808 } 5809 5810 int 5811 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 5812 { 5813 int error; 5814 uint64_t anon_size; 5815 5816 if (reserve > arc_c/4 && !arc_no_grow) 5817 arc_c = MIN(arc_c_max, reserve * 4); 5818 if (reserve > arc_c) 5819 return (SET_ERROR(ENOMEM)); 5820 5821 /* 5822 * Don't count loaned bufs as in flight dirty data to prevent long 5823 * network delays from blocking transactions that are ready to be 5824 * assigned to a txg. 5825 */ 5826 5827 /* assert that it has not wrapped around */ 5828 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 5829 5830 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) - 5831 arc_loaned_bytes), 0); 5832 5833 /* 5834 * Writes will, almost always, require additional memory allocations 5835 * in order to compress/encrypt/etc the data. We therefore need to 5836 * make sure that there is sufficient available memory for this. 5837 */ 5838 error = arc_memory_throttle(reserve, txg); 5839 if (error != 0) 5840 return (error); 5841 5842 /* 5843 * Throttle writes when the amount of dirty data in the cache 5844 * gets too large. We try to keep the cache less than half full 5845 * of dirty blocks so that our sync times don't grow too large. 5846 * Note: if two requests come in concurrently, we might let them 5847 * both succeed, when one of them should fail. Not a huge deal. 5848 */ 5849 5850 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 5851 anon_size > arc_c / 4) { 5852 uint64_t meta_esize = 5853 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 5854 uint64_t data_esize = 5855 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 5856 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 5857 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 5858 arc_tempreserve >> 10, meta_esize >> 10, 5859 data_esize >> 10, reserve >> 10, arc_c >> 10); 5860 return (SET_ERROR(ERESTART)); 5861 } 5862 atomic_add_64(&arc_tempreserve, reserve); 5863 return (0); 5864 } 5865 5866 static void 5867 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 5868 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 5869 { 5870 size->value.ui64 = refcount_count(&state->arcs_size); 5871 evict_data->value.ui64 = 5872 refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 5873 evict_metadata->value.ui64 = 5874 refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 5875 } 5876 5877 static int 5878 arc_kstat_update(kstat_t *ksp, int rw) 5879 { 5880 arc_stats_t *as = ksp->ks_data; 5881 5882 if (rw == KSTAT_WRITE) { 5883 return (EACCES); 5884 } else { 5885 arc_kstat_update_state(arc_anon, 5886 &as->arcstat_anon_size, 5887 &as->arcstat_anon_evictable_data, 5888 &as->arcstat_anon_evictable_metadata); 5889 arc_kstat_update_state(arc_mru, 5890 &as->arcstat_mru_size, 5891 &as->arcstat_mru_evictable_data, 5892 &as->arcstat_mru_evictable_metadata); 5893 arc_kstat_update_state(arc_mru_ghost, 5894 &as->arcstat_mru_ghost_size, 5895 &as->arcstat_mru_ghost_evictable_data, 5896 &as->arcstat_mru_ghost_evictable_metadata); 5897 arc_kstat_update_state(arc_mfu, 5898 &as->arcstat_mfu_size, 5899 &as->arcstat_mfu_evictable_data, 5900 &as->arcstat_mfu_evictable_metadata); 5901 arc_kstat_update_state(arc_mfu_ghost, 5902 &as->arcstat_mfu_ghost_size, 5903 &as->arcstat_mfu_ghost_evictable_data, 5904 &as->arcstat_mfu_ghost_evictable_metadata); 5905 5906 ARCSTAT(arcstat_size) = aggsum_value(&arc_size); 5907 ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used); 5908 ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size); 5909 ARCSTAT(arcstat_metadata_size) = 5910 aggsum_value(&astat_metadata_size); 5911 ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size); 5912 ARCSTAT(arcstat_other_size) = aggsum_value(&astat_other_size); 5913 ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size); 5914 } 5915 5916 return (0); 5917 } 5918 5919 /* 5920 * This function *must* return indices evenly distributed between all 5921 * sublists of the multilist. This is needed due to how the ARC eviction 5922 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 5923 * distributed between all sublists and uses this assumption when 5924 * deciding which sublist to evict from and how much to evict from it. 5925 */ 5926 unsigned int 5927 arc_state_multilist_index_func(multilist_t *ml, void *obj) 5928 { 5929 arc_buf_hdr_t *hdr = obj; 5930 5931 /* 5932 * We rely on b_dva to generate evenly distributed index 5933 * numbers using buf_hash below. So, as an added precaution, 5934 * let's make sure we never add empty buffers to the arc lists. 5935 */ 5936 ASSERT(!HDR_EMPTY(hdr)); 5937 5938 /* 5939 * The assumption here, is the hash value for a given 5940 * arc_buf_hdr_t will remain constant throughout it's lifetime 5941 * (i.e. it's b_spa, b_dva, and b_birth fields don't change). 5942 * Thus, we don't need to store the header's sublist index 5943 * on insertion, as this index can be recalculated on removal. 5944 * 5945 * Also, the low order bits of the hash value are thought to be 5946 * distributed evenly. Otherwise, in the case that the multilist 5947 * has a power of two number of sublists, each sublists' usage 5948 * would not be evenly distributed. 5949 */ 5950 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 5951 multilist_get_num_sublists(ml)); 5952 } 5953 5954 static void 5955 arc_state_init(void) 5956 { 5957 arc_anon = &ARC_anon; 5958 arc_mru = &ARC_mru; 5959 arc_mru_ghost = &ARC_mru_ghost; 5960 arc_mfu = &ARC_mfu; 5961 arc_mfu_ghost = &ARC_mfu_ghost; 5962 arc_l2c_only = &ARC_l2c_only; 5963 5964 arc_mru->arcs_list[ARC_BUFC_METADATA] = 5965 multilist_create(sizeof (arc_buf_hdr_t), 5966 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5967 arc_state_multilist_index_func); 5968 arc_mru->arcs_list[ARC_BUFC_DATA] = 5969 multilist_create(sizeof (arc_buf_hdr_t), 5970 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5971 arc_state_multilist_index_func); 5972 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] = 5973 multilist_create(sizeof (arc_buf_hdr_t), 5974 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5975 arc_state_multilist_index_func); 5976 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] = 5977 multilist_create(sizeof (arc_buf_hdr_t), 5978 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5979 arc_state_multilist_index_func); 5980 arc_mfu->arcs_list[ARC_BUFC_METADATA] = 5981 multilist_create(sizeof (arc_buf_hdr_t), 5982 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5983 arc_state_multilist_index_func); 5984 arc_mfu->arcs_list[ARC_BUFC_DATA] = 5985 multilist_create(sizeof (arc_buf_hdr_t), 5986 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5987 arc_state_multilist_index_func); 5988 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] = 5989 multilist_create(sizeof (arc_buf_hdr_t), 5990 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5991 arc_state_multilist_index_func); 5992 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] = 5993 multilist_create(sizeof (arc_buf_hdr_t), 5994 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5995 arc_state_multilist_index_func); 5996 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] = 5997 multilist_create(sizeof (arc_buf_hdr_t), 5998 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5999 arc_state_multilist_index_func); 6000 arc_l2c_only->arcs_list[ARC_BUFC_DATA] = 6001 multilist_create(sizeof (arc_buf_hdr_t), 6002 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6003 arc_state_multilist_index_func); 6004 6005 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 6006 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 6007 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 6008 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 6009 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 6010 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 6011 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 6012 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 6013 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 6014 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 6015 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 6016 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 6017 6018 refcount_create(&arc_anon->arcs_size); 6019 refcount_create(&arc_mru->arcs_size); 6020 refcount_create(&arc_mru_ghost->arcs_size); 6021 refcount_create(&arc_mfu->arcs_size); 6022 refcount_create(&arc_mfu_ghost->arcs_size); 6023 refcount_create(&arc_l2c_only->arcs_size); 6024 6025 aggsum_init(&arc_meta_used, 0); 6026 aggsum_init(&arc_size, 0); 6027 aggsum_init(&astat_data_size, 0); 6028 aggsum_init(&astat_metadata_size, 0); 6029 aggsum_init(&astat_hdr_size, 0); 6030 aggsum_init(&astat_other_size, 0); 6031 aggsum_init(&astat_l2_hdr_size, 0); 6032 } 6033 6034 static void 6035 arc_state_fini(void) 6036 { 6037 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 6038 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 6039 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 6040 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 6041 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 6042 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 6043 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 6044 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 6045 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 6046 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 6047 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 6048 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 6049 6050 refcount_destroy(&arc_anon->arcs_size); 6051 refcount_destroy(&arc_mru->arcs_size); 6052 refcount_destroy(&arc_mru_ghost->arcs_size); 6053 refcount_destroy(&arc_mfu->arcs_size); 6054 refcount_destroy(&arc_mfu_ghost->arcs_size); 6055 refcount_destroy(&arc_l2c_only->arcs_size); 6056 6057 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]); 6058 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 6059 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]); 6060 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 6061 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]); 6062 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 6063 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]); 6064 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 6065 } 6066 6067 uint64_t 6068 arc_max_bytes(void) 6069 { 6070 return (arc_c_max); 6071 } 6072 6073 void 6074 arc_init(void) 6075 { 6076 /* 6077 * allmem is "all memory that we could possibly use". 6078 */ 6079 #ifdef _KERNEL 6080 uint64_t allmem = ptob(physmem - swapfs_minfree); 6081 #else 6082 uint64_t allmem = (physmem * PAGESIZE) / 2; 6083 #endif 6084 6085 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 6086 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL); 6087 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL); 6088 6089 /* Convert seconds to clock ticks */ 6090 arc_min_prefetch_lifespan = 1 * hz; 6091 6092 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 6093 arc_c_min = MAX(allmem / 32, 64 << 20); 6094 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 6095 if (allmem >= 1 << 30) 6096 arc_c_max = allmem - (1 << 30); 6097 else 6098 arc_c_max = arc_c_min; 6099 arc_c_max = MAX(allmem * 3 / 4, arc_c_max); 6100 6101 /* 6102 * In userland, there's only the memory pressure that we artificially 6103 * create (see arc_available_memory()). Don't let arc_c get too 6104 * small, because it can cause transactions to be larger than 6105 * arc_c, causing arc_tempreserve_space() to fail. 6106 */ 6107 #ifndef _KERNEL 6108 arc_c_min = arc_c_max / 2; 6109 #endif 6110 6111 /* 6112 * Allow the tunables to override our calculations if they are 6113 * reasonable (ie. over 64MB) 6114 */ 6115 if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) { 6116 arc_c_max = zfs_arc_max; 6117 arc_c_min = MIN(arc_c_min, arc_c_max); 6118 } 6119 if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max) 6120 arc_c_min = zfs_arc_min; 6121 6122 arc_c = arc_c_max; 6123 arc_p = (arc_c >> 1); 6124 6125 /* limit meta-data to 1/4 of the arc capacity */ 6126 arc_meta_limit = arc_c_max / 4; 6127 6128 #ifdef _KERNEL 6129 /* 6130 * Metadata is stored in the kernel's heap. Don't let us 6131 * use more than half the heap for the ARC. 6132 */ 6133 arc_meta_limit = MIN(arc_meta_limit, 6134 vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2); 6135 #endif 6136 6137 /* Allow the tunable to override if it is reasonable */ 6138 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 6139 arc_meta_limit = zfs_arc_meta_limit; 6140 6141 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 6142 arc_c_min = arc_meta_limit / 2; 6143 6144 if (zfs_arc_meta_min > 0) { 6145 arc_meta_min = zfs_arc_meta_min; 6146 } else { 6147 arc_meta_min = arc_c_min / 2; 6148 } 6149 6150 if (zfs_arc_grow_retry > 0) 6151 arc_grow_retry = zfs_arc_grow_retry; 6152 6153 if (zfs_arc_shrink_shift > 0) 6154 arc_shrink_shift = zfs_arc_shrink_shift; 6155 6156 /* 6157 * Ensure that arc_no_grow_shift is less than arc_shrink_shift. 6158 */ 6159 if (arc_no_grow_shift >= arc_shrink_shift) 6160 arc_no_grow_shift = arc_shrink_shift - 1; 6161 6162 if (zfs_arc_p_min_shift > 0) 6163 arc_p_min_shift = zfs_arc_p_min_shift; 6164 6165 /* if kmem_flags are set, lets try to use less memory */ 6166 if (kmem_debugging()) 6167 arc_c = arc_c / 2; 6168 if (arc_c < arc_c_min) 6169 arc_c = arc_c_min; 6170 6171 arc_state_init(); 6172 buf_init(); 6173 6174 arc_reclaim_thread_exit = B_FALSE; 6175 6176 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 6177 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 6178 6179 if (arc_ksp != NULL) { 6180 arc_ksp->ks_data = &arc_stats; 6181 arc_ksp->ks_update = arc_kstat_update; 6182 kstat_install(arc_ksp); 6183 } 6184 6185 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 6186 TS_RUN, minclsyspri); 6187 6188 arc_dead = B_FALSE; 6189 arc_warm = B_FALSE; 6190 6191 /* 6192 * Calculate maximum amount of dirty data per pool. 6193 * 6194 * If it has been set by /etc/system, take that. 6195 * Otherwise, use a percentage of physical memory defined by 6196 * zfs_dirty_data_max_percent (default 10%) with a cap at 6197 * zfs_dirty_data_max_max (default 4GB). 6198 */ 6199 if (zfs_dirty_data_max == 0) { 6200 zfs_dirty_data_max = physmem * PAGESIZE * 6201 zfs_dirty_data_max_percent / 100; 6202 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 6203 zfs_dirty_data_max_max); 6204 } 6205 } 6206 6207 void 6208 arc_fini(void) 6209 { 6210 mutex_enter(&arc_reclaim_lock); 6211 arc_reclaim_thread_exit = B_TRUE; 6212 /* 6213 * The reclaim thread will set arc_reclaim_thread_exit back to 6214 * B_FALSE when it is finished exiting; we're waiting for that. 6215 */ 6216 while (arc_reclaim_thread_exit) { 6217 cv_signal(&arc_reclaim_thread_cv); 6218 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock); 6219 } 6220 mutex_exit(&arc_reclaim_lock); 6221 6222 /* Use B_TRUE to ensure *all* buffers are evicted */ 6223 arc_flush(NULL, B_TRUE); 6224 6225 arc_dead = B_TRUE; 6226 6227 if (arc_ksp != NULL) { 6228 kstat_delete(arc_ksp); 6229 arc_ksp = NULL; 6230 } 6231 6232 mutex_destroy(&arc_reclaim_lock); 6233 cv_destroy(&arc_reclaim_thread_cv); 6234 cv_destroy(&arc_reclaim_waiters_cv); 6235 6236 arc_state_fini(); 6237 buf_fini(); 6238 6239 ASSERT0(arc_loaned_bytes); 6240 } 6241 6242 /* 6243 * Level 2 ARC 6244 * 6245 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 6246 * It uses dedicated storage devices to hold cached data, which are populated 6247 * using large infrequent writes. The main role of this cache is to boost 6248 * the performance of random read workloads. The intended L2ARC devices 6249 * include short-stroked disks, solid state disks, and other media with 6250 * substantially faster read latency than disk. 6251 * 6252 * +-----------------------+ 6253 * | ARC | 6254 * +-----------------------+ 6255 * | ^ ^ 6256 * | | | 6257 * l2arc_feed_thread() arc_read() 6258 * | | | 6259 * | l2arc read | 6260 * V | | 6261 * +---------------+ | 6262 * | L2ARC | | 6263 * +---------------+ | 6264 * | ^ | 6265 * l2arc_write() | | 6266 * | | | 6267 * V | | 6268 * +-------+ +-------+ 6269 * | vdev | | vdev | 6270 * | cache | | cache | 6271 * +-------+ +-------+ 6272 * +=========+ .-----. 6273 * : L2ARC : |-_____-| 6274 * : devices : | Disks | 6275 * +=========+ `-_____-' 6276 * 6277 * Read requests are satisfied from the following sources, in order: 6278 * 6279 * 1) ARC 6280 * 2) vdev cache of L2ARC devices 6281 * 3) L2ARC devices 6282 * 4) vdev cache of disks 6283 * 5) disks 6284 * 6285 * Some L2ARC device types exhibit extremely slow write performance. 6286 * To accommodate for this there are some significant differences between 6287 * the L2ARC and traditional cache design: 6288 * 6289 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 6290 * the ARC behave as usual, freeing buffers and placing headers on ghost 6291 * lists. The ARC does not send buffers to the L2ARC during eviction as 6292 * this would add inflated write latencies for all ARC memory pressure. 6293 * 6294 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 6295 * It does this by periodically scanning buffers from the eviction-end of 6296 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 6297 * not already there. It scans until a headroom of buffers is satisfied, 6298 * which itself is a buffer for ARC eviction. If a compressible buffer is 6299 * found during scanning and selected for writing to an L2ARC device, we 6300 * temporarily boost scanning headroom during the next scan cycle to make 6301 * sure we adapt to compression effects (which might significantly reduce 6302 * the data volume we write to L2ARC). The thread that does this is 6303 * l2arc_feed_thread(), illustrated below; example sizes are included to 6304 * provide a better sense of ratio than this diagram: 6305 * 6306 * head --> tail 6307 * +---------------------+----------+ 6308 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 6309 * +---------------------+----------+ | o L2ARC eligible 6310 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 6311 * +---------------------+----------+ | 6312 * 15.9 Gbytes ^ 32 Mbytes | 6313 * headroom | 6314 * l2arc_feed_thread() 6315 * | 6316 * l2arc write hand <--[oooo]--' 6317 * | 8 Mbyte 6318 * | write max 6319 * V 6320 * +==============================+ 6321 * L2ARC dev |####|#|###|###| |####| ... | 6322 * +==============================+ 6323 * 32 Gbytes 6324 * 6325 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 6326 * evicted, then the L2ARC has cached a buffer much sooner than it probably 6327 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 6328 * safe to say that this is an uncommon case, since buffers at the end of 6329 * the ARC lists have moved there due to inactivity. 6330 * 6331 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 6332 * then the L2ARC simply misses copying some buffers. This serves as a 6333 * pressure valve to prevent heavy read workloads from both stalling the ARC 6334 * with waits and clogging the L2ARC with writes. This also helps prevent 6335 * the potential for the L2ARC to churn if it attempts to cache content too 6336 * quickly, such as during backups of the entire pool. 6337 * 6338 * 5. After system boot and before the ARC has filled main memory, there are 6339 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 6340 * lists can remain mostly static. Instead of searching from tail of these 6341 * lists as pictured, the l2arc_feed_thread() will search from the list heads 6342 * for eligible buffers, greatly increasing its chance of finding them. 6343 * 6344 * The L2ARC device write speed is also boosted during this time so that 6345 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 6346 * there are no L2ARC reads, and no fear of degrading read performance 6347 * through increased writes. 6348 * 6349 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 6350 * the vdev queue can aggregate them into larger and fewer writes. Each 6351 * device is written to in a rotor fashion, sweeping writes through 6352 * available space then repeating. 6353 * 6354 * 7. The L2ARC does not store dirty content. It never needs to flush 6355 * write buffers back to disk based storage. 6356 * 6357 * 8. If an ARC buffer is written (and dirtied) which also exists in the 6358 * L2ARC, the now stale L2ARC buffer is immediately dropped. 6359 * 6360 * The performance of the L2ARC can be tweaked by a number of tunables, which 6361 * may be necessary for different workloads: 6362 * 6363 * l2arc_write_max max write bytes per interval 6364 * l2arc_write_boost extra write bytes during device warmup 6365 * l2arc_noprefetch skip caching prefetched buffers 6366 * l2arc_headroom number of max device writes to precache 6367 * l2arc_headroom_boost when we find compressed buffers during ARC 6368 * scanning, we multiply headroom by this 6369 * percentage factor for the next scan cycle, 6370 * since more compressed buffers are likely to 6371 * be present 6372 * l2arc_feed_secs seconds between L2ARC writing 6373 * 6374 * Tunables may be removed or added as future performance improvements are 6375 * integrated, and also may become zpool properties. 6376 * 6377 * There are three key functions that control how the L2ARC warms up: 6378 * 6379 * l2arc_write_eligible() check if a buffer is eligible to cache 6380 * l2arc_write_size() calculate how much to write 6381 * l2arc_write_interval() calculate sleep delay between writes 6382 * 6383 * These three functions determine what to write, how much, and how quickly 6384 * to send writes. 6385 */ 6386 6387 static boolean_t 6388 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 6389 { 6390 /* 6391 * A buffer is *not* eligible for the L2ARC if it: 6392 * 1. belongs to a different spa. 6393 * 2. is already cached on the L2ARC. 6394 * 3. has an I/O in progress (it may be an incomplete read). 6395 * 4. is flagged not eligible (zfs property). 6396 */ 6397 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 6398 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 6399 return (B_FALSE); 6400 6401 return (B_TRUE); 6402 } 6403 6404 static uint64_t 6405 l2arc_write_size(void) 6406 { 6407 uint64_t size; 6408 6409 /* 6410 * Make sure our globals have meaningful values in case the user 6411 * altered them. 6412 */ 6413 size = l2arc_write_max; 6414 if (size == 0) { 6415 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 6416 "be greater than zero, resetting it to the default (%d)", 6417 L2ARC_WRITE_SIZE); 6418 size = l2arc_write_max = L2ARC_WRITE_SIZE; 6419 } 6420 6421 if (arc_warm == B_FALSE) 6422 size += l2arc_write_boost; 6423 6424 return (size); 6425 6426 } 6427 6428 static clock_t 6429 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 6430 { 6431 clock_t interval, next, now; 6432 6433 /* 6434 * If the ARC lists are busy, increase our write rate; if the 6435 * lists are stale, idle back. This is achieved by checking 6436 * how much we previously wrote - if it was more than half of 6437 * what we wanted, schedule the next write much sooner. 6438 */ 6439 if (l2arc_feed_again && wrote > (wanted / 2)) 6440 interval = (hz * l2arc_feed_min_ms) / 1000; 6441 else 6442 interval = hz * l2arc_feed_secs; 6443 6444 now = ddi_get_lbolt(); 6445 next = MAX(now, MIN(now + interval, began + interval)); 6446 6447 return (next); 6448 } 6449 6450 /* 6451 * Cycle through L2ARC devices. This is how L2ARC load balances. 6452 * If a device is returned, this also returns holding the spa config lock. 6453 */ 6454 static l2arc_dev_t * 6455 l2arc_dev_get_next(void) 6456 { 6457 l2arc_dev_t *first, *next = NULL; 6458 6459 /* 6460 * Lock out the removal of spas (spa_namespace_lock), then removal 6461 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 6462 * both locks will be dropped and a spa config lock held instead. 6463 */ 6464 mutex_enter(&spa_namespace_lock); 6465 mutex_enter(&l2arc_dev_mtx); 6466 6467 /* if there are no vdevs, there is nothing to do */ 6468 if (l2arc_ndev == 0) 6469 goto out; 6470 6471 first = NULL; 6472 next = l2arc_dev_last; 6473 do { 6474 /* loop around the list looking for a non-faulted vdev */ 6475 if (next == NULL) { 6476 next = list_head(l2arc_dev_list); 6477 } else { 6478 next = list_next(l2arc_dev_list, next); 6479 if (next == NULL) 6480 next = list_head(l2arc_dev_list); 6481 } 6482 6483 /* if we have come back to the start, bail out */ 6484 if (first == NULL) 6485 first = next; 6486 else if (next == first) 6487 break; 6488 6489 } while (vdev_is_dead(next->l2ad_vdev)); 6490 6491 /* if we were unable to find any usable vdevs, return NULL */ 6492 if (vdev_is_dead(next->l2ad_vdev)) 6493 next = NULL; 6494 6495 l2arc_dev_last = next; 6496 6497 out: 6498 mutex_exit(&l2arc_dev_mtx); 6499 6500 /* 6501 * Grab the config lock to prevent the 'next' device from being 6502 * removed while we are writing to it. 6503 */ 6504 if (next != NULL) 6505 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 6506 mutex_exit(&spa_namespace_lock); 6507 6508 return (next); 6509 } 6510 6511 /* 6512 * Free buffers that were tagged for destruction. 6513 */ 6514 static void 6515 l2arc_do_free_on_write() 6516 { 6517 list_t *buflist; 6518 l2arc_data_free_t *df, *df_prev; 6519 6520 mutex_enter(&l2arc_free_on_write_mtx); 6521 buflist = l2arc_free_on_write; 6522 6523 for (df = list_tail(buflist); df; df = df_prev) { 6524 df_prev = list_prev(buflist, df); 6525 ASSERT3P(df->l2df_abd, !=, NULL); 6526 abd_free(df->l2df_abd); 6527 list_remove(buflist, df); 6528 kmem_free(df, sizeof (l2arc_data_free_t)); 6529 } 6530 6531 mutex_exit(&l2arc_free_on_write_mtx); 6532 } 6533 6534 /* 6535 * A write to a cache device has completed. Update all headers to allow 6536 * reads from these buffers to begin. 6537 */ 6538 static void 6539 l2arc_write_done(zio_t *zio) 6540 { 6541 l2arc_write_callback_t *cb; 6542 l2arc_dev_t *dev; 6543 list_t *buflist; 6544 arc_buf_hdr_t *head, *hdr, *hdr_prev; 6545 kmutex_t *hash_lock; 6546 int64_t bytes_dropped = 0; 6547 6548 cb = zio->io_private; 6549 ASSERT3P(cb, !=, NULL); 6550 dev = cb->l2wcb_dev; 6551 ASSERT3P(dev, !=, NULL); 6552 head = cb->l2wcb_head; 6553 ASSERT3P(head, !=, NULL); 6554 buflist = &dev->l2ad_buflist; 6555 ASSERT3P(buflist, !=, NULL); 6556 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 6557 l2arc_write_callback_t *, cb); 6558 6559 if (zio->io_error != 0) 6560 ARCSTAT_BUMP(arcstat_l2_writes_error); 6561 6562 /* 6563 * All writes completed, or an error was hit. 6564 */ 6565 top: 6566 mutex_enter(&dev->l2ad_mtx); 6567 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 6568 hdr_prev = list_prev(buflist, hdr); 6569 6570 hash_lock = HDR_LOCK(hdr); 6571 6572 /* 6573 * We cannot use mutex_enter or else we can deadlock 6574 * with l2arc_write_buffers (due to swapping the order 6575 * the hash lock and l2ad_mtx are taken). 6576 */ 6577 if (!mutex_tryenter(hash_lock)) { 6578 /* 6579 * Missed the hash lock. We must retry so we 6580 * don't leave the ARC_FLAG_L2_WRITING bit set. 6581 */ 6582 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 6583 6584 /* 6585 * We don't want to rescan the headers we've 6586 * already marked as having been written out, so 6587 * we reinsert the head node so we can pick up 6588 * where we left off. 6589 */ 6590 list_remove(buflist, head); 6591 list_insert_after(buflist, hdr, head); 6592 6593 mutex_exit(&dev->l2ad_mtx); 6594 6595 /* 6596 * We wait for the hash lock to become available 6597 * to try and prevent busy waiting, and increase 6598 * the chance we'll be able to acquire the lock 6599 * the next time around. 6600 */ 6601 mutex_enter(hash_lock); 6602 mutex_exit(hash_lock); 6603 goto top; 6604 } 6605 6606 /* 6607 * We could not have been moved into the arc_l2c_only 6608 * state while in-flight due to our ARC_FLAG_L2_WRITING 6609 * bit being set. Let's just ensure that's being enforced. 6610 */ 6611 ASSERT(HDR_HAS_L1HDR(hdr)); 6612 6613 if (zio->io_error != 0) { 6614 /* 6615 * Error - drop L2ARC entry. 6616 */ 6617 list_remove(buflist, hdr); 6618 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 6619 6620 ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr)); 6621 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr)); 6622 6623 bytes_dropped += arc_hdr_size(hdr); 6624 (void) refcount_remove_many(&dev->l2ad_alloc, 6625 arc_hdr_size(hdr), hdr); 6626 } 6627 6628 /* 6629 * Allow ARC to begin reads and ghost list evictions to 6630 * this L2ARC entry. 6631 */ 6632 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 6633 6634 mutex_exit(hash_lock); 6635 } 6636 6637 atomic_inc_64(&l2arc_writes_done); 6638 list_remove(buflist, head); 6639 ASSERT(!HDR_HAS_L1HDR(head)); 6640 kmem_cache_free(hdr_l2only_cache, head); 6641 mutex_exit(&dev->l2ad_mtx); 6642 6643 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 6644 6645 l2arc_do_free_on_write(); 6646 6647 kmem_free(cb, sizeof (l2arc_write_callback_t)); 6648 } 6649 6650 /* 6651 * A read to a cache device completed. Validate buffer contents before 6652 * handing over to the regular ARC routines. 6653 */ 6654 static void 6655 l2arc_read_done(zio_t *zio) 6656 { 6657 l2arc_read_callback_t *cb; 6658 arc_buf_hdr_t *hdr; 6659 kmutex_t *hash_lock; 6660 boolean_t valid_cksum; 6661 6662 ASSERT3P(zio->io_vd, !=, NULL); 6663 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 6664 6665 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 6666 6667 cb = zio->io_private; 6668 ASSERT3P(cb, !=, NULL); 6669 hdr = cb->l2rcb_hdr; 6670 ASSERT3P(hdr, !=, NULL); 6671 6672 hash_lock = HDR_LOCK(hdr); 6673 mutex_enter(hash_lock); 6674 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6675 6676 /* 6677 * If the data was read into a temporary buffer, 6678 * move it and free the buffer. 6679 */ 6680 if (cb->l2rcb_abd != NULL) { 6681 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 6682 if (zio->io_error == 0) { 6683 abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd, 6684 arc_hdr_size(hdr)); 6685 } 6686 6687 /* 6688 * The following must be done regardless of whether 6689 * there was an error: 6690 * - free the temporary buffer 6691 * - point zio to the real ARC buffer 6692 * - set zio size accordingly 6693 * These are required because zio is either re-used for 6694 * an I/O of the block in the case of the error 6695 * or the zio is passed to arc_read_done() and it 6696 * needs real data. 6697 */ 6698 abd_free(cb->l2rcb_abd); 6699 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 6700 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 6701 } 6702 6703 ASSERT3P(zio->io_abd, !=, NULL); 6704 6705 /* 6706 * Check this survived the L2ARC journey. 6707 */ 6708 ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd); 6709 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 6710 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 6711 6712 valid_cksum = arc_cksum_is_equal(hdr, zio); 6713 if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 6714 mutex_exit(hash_lock); 6715 zio->io_private = hdr; 6716 arc_read_done(zio); 6717 } else { 6718 mutex_exit(hash_lock); 6719 /* 6720 * Buffer didn't survive caching. Increment stats and 6721 * reissue to the original storage device. 6722 */ 6723 if (zio->io_error != 0) { 6724 ARCSTAT_BUMP(arcstat_l2_io_error); 6725 } else { 6726 zio->io_error = SET_ERROR(EIO); 6727 } 6728 if (!valid_cksum) 6729 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 6730 6731 /* 6732 * If there's no waiter, issue an async i/o to the primary 6733 * storage now. If there *is* a waiter, the caller must 6734 * issue the i/o in a context where it's OK to block. 6735 */ 6736 if (zio->io_waiter == NULL) { 6737 zio_t *pio = zio_unique_parent(zio); 6738 6739 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 6740 6741 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp, 6742 hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done, 6743 hdr, zio->io_priority, cb->l2rcb_flags, 6744 &cb->l2rcb_zb)); 6745 } 6746 } 6747 6748 kmem_free(cb, sizeof (l2arc_read_callback_t)); 6749 } 6750 6751 /* 6752 * This is the list priority from which the L2ARC will search for pages to 6753 * cache. This is used within loops (0..3) to cycle through lists in the 6754 * desired order. This order can have a significant effect on cache 6755 * performance. 6756 * 6757 * Currently the metadata lists are hit first, MFU then MRU, followed by 6758 * the data lists. This function returns a locked list, and also returns 6759 * the lock pointer. 6760 */ 6761 static multilist_sublist_t * 6762 l2arc_sublist_lock(int list_num) 6763 { 6764 multilist_t *ml = NULL; 6765 unsigned int idx; 6766 6767 ASSERT(list_num >= 0 && list_num <= 3); 6768 6769 switch (list_num) { 6770 case 0: 6771 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA]; 6772 break; 6773 case 1: 6774 ml = arc_mru->arcs_list[ARC_BUFC_METADATA]; 6775 break; 6776 case 2: 6777 ml = arc_mfu->arcs_list[ARC_BUFC_DATA]; 6778 break; 6779 case 3: 6780 ml = arc_mru->arcs_list[ARC_BUFC_DATA]; 6781 break; 6782 } 6783 6784 /* 6785 * Return a randomly-selected sublist. This is acceptable 6786 * because the caller feeds only a little bit of data for each 6787 * call (8MB). Subsequent calls will result in different 6788 * sublists being selected. 6789 */ 6790 idx = multilist_get_random_index(ml); 6791 return (multilist_sublist_lock(ml, idx)); 6792 } 6793 6794 /* 6795 * Evict buffers from the device write hand to the distance specified in 6796 * bytes. This distance may span populated buffers, it may span nothing. 6797 * This is clearing a region on the L2ARC device ready for writing. 6798 * If the 'all' boolean is set, every buffer is evicted. 6799 */ 6800 static void 6801 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 6802 { 6803 list_t *buflist; 6804 arc_buf_hdr_t *hdr, *hdr_prev; 6805 kmutex_t *hash_lock; 6806 uint64_t taddr; 6807 6808 buflist = &dev->l2ad_buflist; 6809 6810 if (!all && dev->l2ad_first) { 6811 /* 6812 * This is the first sweep through the device. There is 6813 * nothing to evict. 6814 */ 6815 return; 6816 } 6817 6818 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 6819 /* 6820 * When nearing the end of the device, evict to the end 6821 * before the device write hand jumps to the start. 6822 */ 6823 taddr = dev->l2ad_end; 6824 } else { 6825 taddr = dev->l2ad_hand + distance; 6826 } 6827 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 6828 uint64_t, taddr, boolean_t, all); 6829 6830 top: 6831 mutex_enter(&dev->l2ad_mtx); 6832 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 6833 hdr_prev = list_prev(buflist, hdr); 6834 6835 hash_lock = HDR_LOCK(hdr); 6836 6837 /* 6838 * We cannot use mutex_enter or else we can deadlock 6839 * with l2arc_write_buffers (due to swapping the order 6840 * the hash lock and l2ad_mtx are taken). 6841 */ 6842 if (!mutex_tryenter(hash_lock)) { 6843 /* 6844 * Missed the hash lock. Retry. 6845 */ 6846 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 6847 mutex_exit(&dev->l2ad_mtx); 6848 mutex_enter(hash_lock); 6849 mutex_exit(hash_lock); 6850 goto top; 6851 } 6852 6853 /* 6854 * A header can't be on this list if it doesn't have L2 header. 6855 */ 6856 ASSERT(HDR_HAS_L2HDR(hdr)); 6857 6858 /* Ensure this header has finished being written. */ 6859 ASSERT(!HDR_L2_WRITING(hdr)); 6860 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 6861 6862 if (!all && (hdr->b_l2hdr.b_daddr >= taddr || 6863 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 6864 /* 6865 * We've evicted to the target address, 6866 * or the end of the device. 6867 */ 6868 mutex_exit(hash_lock); 6869 break; 6870 } 6871 6872 if (!HDR_HAS_L1HDR(hdr)) { 6873 ASSERT(!HDR_L2_READING(hdr)); 6874 /* 6875 * This doesn't exist in the ARC. Destroy. 6876 * arc_hdr_destroy() will call list_remove() 6877 * and decrement arcstat_l2_lsize. 6878 */ 6879 arc_change_state(arc_anon, hdr, hash_lock); 6880 arc_hdr_destroy(hdr); 6881 } else { 6882 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 6883 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 6884 /* 6885 * Invalidate issued or about to be issued 6886 * reads, since we may be about to write 6887 * over this location. 6888 */ 6889 if (HDR_L2_READING(hdr)) { 6890 ARCSTAT_BUMP(arcstat_l2_evict_reading); 6891 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 6892 } 6893 6894 arc_hdr_l2hdr_destroy(hdr); 6895 } 6896 mutex_exit(hash_lock); 6897 } 6898 mutex_exit(&dev->l2ad_mtx); 6899 } 6900 6901 /* 6902 * Find and write ARC buffers to the L2ARC device. 6903 * 6904 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 6905 * for reading until they have completed writing. 6906 * The headroom_boost is an in-out parameter used to maintain headroom boost 6907 * state between calls to this function. 6908 * 6909 * Returns the number of bytes actually written (which may be smaller than 6910 * the delta by which the device hand has changed due to alignment). 6911 */ 6912 static uint64_t 6913 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 6914 { 6915 arc_buf_hdr_t *hdr, *hdr_prev, *head; 6916 uint64_t write_asize, write_psize, write_lsize, headroom; 6917 boolean_t full; 6918 l2arc_write_callback_t *cb; 6919 zio_t *pio, *wzio; 6920 uint64_t guid = spa_load_guid(spa); 6921 6922 ASSERT3P(dev->l2ad_vdev, !=, NULL); 6923 6924 pio = NULL; 6925 write_lsize = write_asize = write_psize = 0; 6926 full = B_FALSE; 6927 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 6928 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 6929 6930 /* 6931 * Copy buffers for L2ARC writing. 6932 */ 6933 for (int try = 0; try <= 3; try++) { 6934 multilist_sublist_t *mls = l2arc_sublist_lock(try); 6935 uint64_t passed_sz = 0; 6936 6937 /* 6938 * L2ARC fast warmup. 6939 * 6940 * Until the ARC is warm and starts to evict, read from the 6941 * head of the ARC lists rather than the tail. 6942 */ 6943 if (arc_warm == B_FALSE) 6944 hdr = multilist_sublist_head(mls); 6945 else 6946 hdr = multilist_sublist_tail(mls); 6947 6948 headroom = target_sz * l2arc_headroom; 6949 if (zfs_compressed_arc_enabled) 6950 headroom = (headroom * l2arc_headroom_boost) / 100; 6951 6952 for (; hdr; hdr = hdr_prev) { 6953 kmutex_t *hash_lock; 6954 6955 if (arc_warm == B_FALSE) 6956 hdr_prev = multilist_sublist_next(mls, hdr); 6957 else 6958 hdr_prev = multilist_sublist_prev(mls, hdr); 6959 6960 hash_lock = HDR_LOCK(hdr); 6961 if (!mutex_tryenter(hash_lock)) { 6962 /* 6963 * Skip this buffer rather than waiting. 6964 */ 6965 continue; 6966 } 6967 6968 passed_sz += HDR_GET_LSIZE(hdr); 6969 if (passed_sz > headroom) { 6970 /* 6971 * Searched too far. 6972 */ 6973 mutex_exit(hash_lock); 6974 break; 6975 } 6976 6977 if (!l2arc_write_eligible(guid, hdr)) { 6978 mutex_exit(hash_lock); 6979 continue; 6980 } 6981 6982 /* 6983 * We rely on the L1 portion of the header below, so 6984 * it's invalid for this header to have been evicted out 6985 * of the ghost cache, prior to being written out. The 6986 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 6987 */ 6988 ASSERT(HDR_HAS_L1HDR(hdr)); 6989 6990 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 6991 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 6992 ASSERT3U(arc_hdr_size(hdr), >, 0); 6993 uint64_t psize = arc_hdr_size(hdr); 6994 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 6995 psize); 6996 6997 if ((write_asize + asize) > target_sz) { 6998 full = B_TRUE; 6999 mutex_exit(hash_lock); 7000 break; 7001 } 7002 7003 if (pio == NULL) { 7004 /* 7005 * Insert a dummy header on the buflist so 7006 * l2arc_write_done() can find where the 7007 * write buffers begin without searching. 7008 */ 7009 mutex_enter(&dev->l2ad_mtx); 7010 list_insert_head(&dev->l2ad_buflist, head); 7011 mutex_exit(&dev->l2ad_mtx); 7012 7013 cb = kmem_alloc( 7014 sizeof (l2arc_write_callback_t), KM_SLEEP); 7015 cb->l2wcb_dev = dev; 7016 cb->l2wcb_head = head; 7017 pio = zio_root(spa, l2arc_write_done, cb, 7018 ZIO_FLAG_CANFAIL); 7019 } 7020 7021 hdr->b_l2hdr.b_dev = dev; 7022 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 7023 arc_hdr_set_flags(hdr, 7024 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR); 7025 7026 mutex_enter(&dev->l2ad_mtx); 7027 list_insert_head(&dev->l2ad_buflist, hdr); 7028 mutex_exit(&dev->l2ad_mtx); 7029 7030 (void) refcount_add_many(&dev->l2ad_alloc, psize, hdr); 7031 7032 /* 7033 * Normally the L2ARC can use the hdr's data, but if 7034 * we're sharing data between the hdr and one of its 7035 * bufs, L2ARC needs its own copy of the data so that 7036 * the ZIO below can't race with the buf consumer. 7037 * Another case where we need to create a copy of the 7038 * data is when the buffer size is not device-aligned 7039 * and we need to pad the block to make it such. 7040 * That also keeps the clock hand suitably aligned. 7041 * 7042 * To ensure that the copy will be available for the 7043 * lifetime of the ZIO and be cleaned up afterwards, we 7044 * add it to the l2arc_free_on_write queue. 7045 */ 7046 abd_t *to_write; 7047 if (!HDR_SHARED_DATA(hdr) && psize == asize) { 7048 to_write = hdr->b_l1hdr.b_pabd; 7049 } else { 7050 to_write = abd_alloc_for_io(asize, 7051 HDR_ISTYPE_METADATA(hdr)); 7052 abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize); 7053 if (asize != psize) { 7054 abd_zero_off(to_write, psize, 7055 asize - psize); 7056 } 7057 l2arc_free_abd_on_write(to_write, asize, 7058 arc_buf_type(hdr)); 7059 } 7060 wzio = zio_write_phys(pio, dev->l2ad_vdev, 7061 hdr->b_l2hdr.b_daddr, asize, to_write, 7062 ZIO_CHECKSUM_OFF, NULL, hdr, 7063 ZIO_PRIORITY_ASYNC_WRITE, 7064 ZIO_FLAG_CANFAIL, B_FALSE); 7065 7066 write_lsize += HDR_GET_LSIZE(hdr); 7067 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 7068 zio_t *, wzio); 7069 7070 write_psize += psize; 7071 write_asize += asize; 7072 dev->l2ad_hand += asize; 7073 7074 mutex_exit(hash_lock); 7075 7076 (void) zio_nowait(wzio); 7077 } 7078 7079 multilist_sublist_unlock(mls); 7080 7081 if (full == B_TRUE) 7082 break; 7083 } 7084 7085 /* No buffers selected for writing? */ 7086 if (pio == NULL) { 7087 ASSERT0(write_lsize); 7088 ASSERT(!HDR_HAS_L1HDR(head)); 7089 kmem_cache_free(hdr_l2only_cache, head); 7090 return (0); 7091 } 7092 7093 ASSERT3U(write_asize, <=, target_sz); 7094 ARCSTAT_BUMP(arcstat_l2_writes_sent); 7095 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 7096 ARCSTAT_INCR(arcstat_l2_lsize, write_lsize); 7097 ARCSTAT_INCR(arcstat_l2_psize, write_psize); 7098 vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0); 7099 7100 /* 7101 * Bump device hand to the device start if it is approaching the end. 7102 * l2arc_evict() will already have evicted ahead for this case. 7103 */ 7104 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 7105 dev->l2ad_hand = dev->l2ad_start; 7106 dev->l2ad_first = B_FALSE; 7107 } 7108 7109 dev->l2ad_writing = B_TRUE; 7110 (void) zio_wait(pio); 7111 dev->l2ad_writing = B_FALSE; 7112 7113 return (write_asize); 7114 } 7115 7116 /* 7117 * This thread feeds the L2ARC at regular intervals. This is the beating 7118 * heart of the L2ARC. 7119 */ 7120 /* ARGSUSED */ 7121 static void 7122 l2arc_feed_thread(void *unused) 7123 { 7124 callb_cpr_t cpr; 7125 l2arc_dev_t *dev; 7126 spa_t *spa; 7127 uint64_t size, wrote; 7128 clock_t begin, next = ddi_get_lbolt(); 7129 7130 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 7131 7132 mutex_enter(&l2arc_feed_thr_lock); 7133 7134 while (l2arc_thread_exit == 0) { 7135 CALLB_CPR_SAFE_BEGIN(&cpr); 7136 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 7137 next); 7138 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 7139 next = ddi_get_lbolt() + hz; 7140 7141 /* 7142 * Quick check for L2ARC devices. 7143 */ 7144 mutex_enter(&l2arc_dev_mtx); 7145 if (l2arc_ndev == 0) { 7146 mutex_exit(&l2arc_dev_mtx); 7147 continue; 7148 } 7149 mutex_exit(&l2arc_dev_mtx); 7150 begin = ddi_get_lbolt(); 7151 7152 /* 7153 * This selects the next l2arc device to write to, and in 7154 * doing so the next spa to feed from: dev->l2ad_spa. This 7155 * will return NULL if there are now no l2arc devices or if 7156 * they are all faulted. 7157 * 7158 * If a device is returned, its spa's config lock is also 7159 * held to prevent device removal. l2arc_dev_get_next() 7160 * will grab and release l2arc_dev_mtx. 7161 */ 7162 if ((dev = l2arc_dev_get_next()) == NULL) 7163 continue; 7164 7165 spa = dev->l2ad_spa; 7166 ASSERT3P(spa, !=, NULL); 7167 7168 /* 7169 * If the pool is read-only then force the feed thread to 7170 * sleep a little longer. 7171 */ 7172 if (!spa_writeable(spa)) { 7173 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 7174 spa_config_exit(spa, SCL_L2ARC, dev); 7175 continue; 7176 } 7177 7178 /* 7179 * Avoid contributing to memory pressure. 7180 */ 7181 if (arc_reclaim_needed()) { 7182 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 7183 spa_config_exit(spa, SCL_L2ARC, dev); 7184 continue; 7185 } 7186 7187 ARCSTAT_BUMP(arcstat_l2_feeds); 7188 7189 size = l2arc_write_size(); 7190 7191 /* 7192 * Evict L2ARC buffers that will be overwritten. 7193 */ 7194 l2arc_evict(dev, size, B_FALSE); 7195 7196 /* 7197 * Write ARC buffers. 7198 */ 7199 wrote = l2arc_write_buffers(spa, dev, size); 7200 7201 /* 7202 * Calculate interval between writes. 7203 */ 7204 next = l2arc_write_interval(begin, size, wrote); 7205 spa_config_exit(spa, SCL_L2ARC, dev); 7206 } 7207 7208 l2arc_thread_exit = 0; 7209 cv_broadcast(&l2arc_feed_thr_cv); 7210 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 7211 thread_exit(); 7212 } 7213 7214 boolean_t 7215 l2arc_vdev_present(vdev_t *vd) 7216 { 7217 l2arc_dev_t *dev; 7218 7219 mutex_enter(&l2arc_dev_mtx); 7220 for (dev = list_head(l2arc_dev_list); dev != NULL; 7221 dev = list_next(l2arc_dev_list, dev)) { 7222 if (dev->l2ad_vdev == vd) 7223 break; 7224 } 7225 mutex_exit(&l2arc_dev_mtx); 7226 7227 return (dev != NULL); 7228 } 7229 7230 /* 7231 * Add a vdev for use by the L2ARC. By this point the spa has already 7232 * validated the vdev and opened it. 7233 */ 7234 void 7235 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 7236 { 7237 l2arc_dev_t *adddev; 7238 7239 ASSERT(!l2arc_vdev_present(vd)); 7240 7241 /* 7242 * Create a new l2arc device entry. 7243 */ 7244 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 7245 adddev->l2ad_spa = spa; 7246 adddev->l2ad_vdev = vd; 7247 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 7248 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 7249 adddev->l2ad_hand = adddev->l2ad_start; 7250 adddev->l2ad_first = B_TRUE; 7251 adddev->l2ad_writing = B_FALSE; 7252 7253 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 7254 /* 7255 * This is a list of all ARC buffers that are still valid on the 7256 * device. 7257 */ 7258 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 7259 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 7260 7261 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 7262 refcount_create(&adddev->l2ad_alloc); 7263 7264 /* 7265 * Add device to global list 7266 */ 7267 mutex_enter(&l2arc_dev_mtx); 7268 list_insert_head(l2arc_dev_list, adddev); 7269 atomic_inc_64(&l2arc_ndev); 7270 mutex_exit(&l2arc_dev_mtx); 7271 } 7272 7273 /* 7274 * Remove a vdev from the L2ARC. 7275 */ 7276 void 7277 l2arc_remove_vdev(vdev_t *vd) 7278 { 7279 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 7280 7281 /* 7282 * Find the device by vdev 7283 */ 7284 mutex_enter(&l2arc_dev_mtx); 7285 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 7286 nextdev = list_next(l2arc_dev_list, dev); 7287 if (vd == dev->l2ad_vdev) { 7288 remdev = dev; 7289 break; 7290 } 7291 } 7292 ASSERT3P(remdev, !=, NULL); 7293 7294 /* 7295 * Remove device from global list 7296 */ 7297 list_remove(l2arc_dev_list, remdev); 7298 l2arc_dev_last = NULL; /* may have been invalidated */ 7299 atomic_dec_64(&l2arc_ndev); 7300 mutex_exit(&l2arc_dev_mtx); 7301 7302 /* 7303 * Clear all buflists and ARC references. L2ARC device flush. 7304 */ 7305 l2arc_evict(remdev, 0, B_TRUE); 7306 list_destroy(&remdev->l2ad_buflist); 7307 mutex_destroy(&remdev->l2ad_mtx); 7308 refcount_destroy(&remdev->l2ad_alloc); 7309 kmem_free(remdev, sizeof (l2arc_dev_t)); 7310 } 7311 7312 void 7313 l2arc_init(void) 7314 { 7315 l2arc_thread_exit = 0; 7316 l2arc_ndev = 0; 7317 l2arc_writes_sent = 0; 7318 l2arc_writes_done = 0; 7319 7320 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 7321 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 7322 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 7323 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 7324 7325 l2arc_dev_list = &L2ARC_dev_list; 7326 l2arc_free_on_write = &L2ARC_free_on_write; 7327 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 7328 offsetof(l2arc_dev_t, l2ad_node)); 7329 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 7330 offsetof(l2arc_data_free_t, l2df_list_node)); 7331 } 7332 7333 void 7334 l2arc_fini(void) 7335 { 7336 /* 7337 * This is called from dmu_fini(), which is called from spa_fini(); 7338 * Because of this, we can assume that all l2arc devices have 7339 * already been removed when the pools themselves were removed. 7340 */ 7341 7342 l2arc_do_free_on_write(); 7343 7344 mutex_destroy(&l2arc_feed_thr_lock); 7345 cv_destroy(&l2arc_feed_thr_cv); 7346 mutex_destroy(&l2arc_dev_mtx); 7347 mutex_destroy(&l2arc_free_on_write_mtx); 7348 7349 list_destroy(l2arc_dev_list); 7350 list_destroy(l2arc_free_on_write); 7351 } 7352 7353 void 7354 l2arc_start(void) 7355 { 7356 if (!(spa_mode_global & FWRITE)) 7357 return; 7358 7359 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 7360 TS_RUN, minclsyspri); 7361 } 7362 7363 void 7364 l2arc_stop(void) 7365 { 7366 if (!(spa_mode_global & FWRITE)) 7367 return; 7368 7369 mutex_enter(&l2arc_feed_thr_lock); 7370 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 7371 l2arc_thread_exit = 1; 7372 while (l2arc_thread_exit != 0) 7373 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 7374 mutex_exit(&l2arc_feed_thr_lock); 7375 } 7376