1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2019, Joyent, Inc. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2011, 2019, Delphix. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2020, The FreeBSD Foundation [1] 30 * 31 * [1] Portions of this software were developed by Allan Jude 32 * under sponsorship from the FreeBSD Foundation. 33 */ 34 35 /* 36 * DVA-based Adjustable Replacement Cache 37 * 38 * While much of the theory of operation used here is 39 * based on the self-tuning, low overhead replacement cache 40 * presented by Megiddo and Modha at FAST 2003, there are some 41 * significant differences: 42 * 43 * 1. The Megiddo and Modha model assumes any page is evictable. 44 * Pages in its cache cannot be "locked" into memory. This makes 45 * the eviction algorithm simple: evict the last page in the list. 46 * This also make the performance characteristics easy to reason 47 * about. Our cache is not so simple. At any given moment, some 48 * subset of the blocks in the cache are un-evictable because we 49 * have handed out a reference to them. Blocks are only evictable 50 * when there are no external references active. This makes 51 * eviction far more problematic: we choose to evict the evictable 52 * blocks that are the "lowest" in the list. 53 * 54 * There are times when it is not possible to evict the requested 55 * space. In these circumstances we are unable to adjust the cache 56 * size. To prevent the cache growing unbounded at these times we 57 * implement a "cache throttle" that slows the flow of new data 58 * into the cache until we can make space available. 59 * 60 * 2. The Megiddo and Modha model assumes a fixed cache size. 61 * Pages are evicted when the cache is full and there is a cache 62 * miss. Our model has a variable sized cache. It grows with 63 * high use, but also tries to react to memory pressure from the 64 * operating system: decreasing its size when system memory is 65 * tight. 66 * 67 * 3. The Megiddo and Modha model assumes a fixed page size. All 68 * elements of the cache are therefore exactly the same size. So 69 * when adjusting the cache size following a cache miss, its simply 70 * a matter of choosing a single page to evict. In our model, we 71 * have variable sized cache blocks (rangeing from 512 bytes to 72 * 128K bytes). We therefore choose a set of blocks to evict to make 73 * space for a cache miss that approximates as closely as possible 74 * the space used by the new block. 75 * 76 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 77 * by N. Megiddo & D. Modha, FAST 2003 78 */ 79 80 /* 81 * The locking model: 82 * 83 * A new reference to a cache buffer can be obtained in two 84 * ways: 1) via a hash table lookup using the DVA as a key, 85 * or 2) via one of the ARC lists. The arc_read() interface 86 * uses method 1, while the internal ARC algorithms for 87 * adjusting the cache use method 2. We therefore provide two 88 * types of locks: 1) the hash table lock array, and 2) the 89 * ARC list locks. 90 * 91 * Buffers do not have their own mutexes, rather they rely on the 92 * hash table mutexes for the bulk of their protection (i.e. most 93 * fields in the arc_buf_hdr_t are protected by these mutexes). 94 * 95 * buf_hash_find() returns the appropriate mutex (held) when it 96 * locates the requested buffer in the hash table. It returns 97 * NULL for the mutex if the buffer was not in the table. 98 * 99 * buf_hash_remove() expects the appropriate hash mutex to be 100 * already held before it is invoked. 101 * 102 * Each ARC state also has a mutex which is used to protect the 103 * buffer list associated with the state. When attempting to 104 * obtain a hash table lock while holding an ARC list lock you 105 * must use: mutex_tryenter() to avoid deadlock. Also note that 106 * the active state mutex must be held before the ghost state mutex. 107 * 108 * Note that the majority of the performance stats are manipulated 109 * with atomic operations. 110 * 111 * The L2ARC uses the l2ad_mtx on each vdev for the following: 112 * 113 * - L2ARC buflist creation 114 * - L2ARC buflist eviction 115 * - L2ARC write completion, which walks L2ARC buflists 116 * - ARC header destruction, as it removes from L2ARC buflists 117 * - ARC header release, as it removes from L2ARC buflists 118 */ 119 120 /* 121 * ARC operation: 122 * 123 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 124 * This structure can point either to a block that is still in the cache or to 125 * one that is only accessible in an L2 ARC device, or it can provide 126 * information about a block that was recently evicted. If a block is 127 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 128 * information to retrieve it from the L2ARC device. This information is 129 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 130 * that is in this state cannot access the data directly. 131 * 132 * Blocks that are actively being referenced or have not been evicted 133 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 134 * the arc_buf_hdr_t that will point to the data block in memory. A block can 135 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 136 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 137 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 138 * 139 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 140 * ability to store the physical data (b_pabd) associated with the DVA of the 141 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 142 * it will match its on-disk compression characteristics. This behavior can be 143 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 144 * compressed ARC functionality is disabled, the b_pabd will point to an 145 * uncompressed version of the on-disk data. 146 * 147 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 148 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 149 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 150 * consumer. The ARC will provide references to this data and will keep it 151 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 152 * data block and will evict any arc_buf_t that is no longer referenced. The 153 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 154 * "overhead_size" kstat. 155 * 156 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 157 * compressed form. The typical case is that consumers will want uncompressed 158 * data, and when that happens a new data buffer is allocated where the data is 159 * decompressed for them to use. Currently the only consumer who wants 160 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 161 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 162 * with the arc_buf_hdr_t. 163 * 164 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 165 * first one is owned by a compressed send consumer (and therefore references 166 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 167 * used by any other consumer (and has its own uncompressed copy of the data 168 * buffer). 169 * 170 * arc_buf_hdr_t 171 * +-----------+ 172 * | fields | 173 * | common to | 174 * | L1- and | 175 * | L2ARC | 176 * +-----------+ 177 * | l2arc_buf_hdr_t 178 * | | 179 * +-----------+ 180 * | l1arc_buf_hdr_t 181 * | | arc_buf_t 182 * | b_buf +------------>+-----------+ arc_buf_t 183 * | b_pabd +-+ |b_next +---->+-----------+ 184 * +-----------+ | |-----------| |b_next +-->NULL 185 * | |b_comp = T | +-----------+ 186 * | |b_data +-+ |b_comp = F | 187 * | +-----------+ | |b_data +-+ 188 * +->+------+ | +-----------+ | 189 * compressed | | | | 190 * data | |<--------------+ | uncompressed 191 * +------+ compressed, | data 192 * shared +-->+------+ 193 * data | | 194 * | | 195 * +------+ 196 * 197 * When a consumer reads a block, the ARC must first look to see if the 198 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 199 * arc_buf_t and either copies uncompressed data into a new data buffer from an 200 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 201 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 202 * hdr is compressed and the desired compression characteristics of the 203 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 204 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 205 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 206 * be anywhere in the hdr's list. 207 * 208 * The diagram below shows an example of an uncompressed ARC hdr that is 209 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 210 * the last element in the buf list): 211 * 212 * arc_buf_hdr_t 213 * +-----------+ 214 * | | 215 * | | 216 * | | 217 * +-----------+ 218 * l2arc_buf_hdr_t| | 219 * | | 220 * +-----------+ 221 * l1arc_buf_hdr_t| | 222 * | | arc_buf_t (shared) 223 * | b_buf +------------>+---------+ arc_buf_t 224 * | | |b_next +---->+---------+ 225 * | b_pabd +-+ |---------| |b_next +-->NULL 226 * +-----------+ | | | +---------+ 227 * | |b_data +-+ | | 228 * | +---------+ | |b_data +-+ 229 * +->+------+ | +---------+ | 230 * | | | | 231 * uncompressed | | | | 232 * data +------+ | | 233 * ^ +->+------+ | 234 * | uncompressed | | | 235 * | data | | | 236 * | +------+ | 237 * +---------------------------------+ 238 * 239 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 240 * since the physical block is about to be rewritten. The new data contents 241 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 242 * it may compress the data before writing it to disk. The ARC will be called 243 * with the transformed data and will bcopy the transformed on-disk block into 244 * a newly allocated b_pabd. Writes are always done into buffers which have 245 * either been loaned (and hence are new and don't have other readers) or 246 * buffers which have been released (and hence have their own hdr, if there 247 * were originally other readers of the buf's original hdr). This ensures that 248 * the ARC only needs to update a single buf and its hdr after a write occurs. 249 * 250 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 251 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 252 * that when compressed ARC is enabled that the L2ARC blocks are identical 253 * to the on-disk block in the main data pool. This provides a significant 254 * advantage since the ARC can leverage the bp's checksum when reading from the 255 * L2ARC to determine if the contents are valid. However, if the compressed 256 * ARC is disabled, then the L2ARC's block must be transformed to look 257 * like the physical block in the main data pool before comparing the 258 * checksum and determining its validity. 259 * 260 * The L1ARC has a slightly different system for storing encrypted data. 261 * Raw (encrypted + possibly compressed) data has a few subtle differences from 262 * data that is just compressed. The biggest difference is that it is not 263 * possible to decrypt encrypted data (or visa versa) if the keys aren't loaded. 264 * The other difference is that encryption cannot be treated as a suggestion. 265 * If a caller would prefer compressed data, but they actually wind up with 266 * uncompressed data the worst thing that could happen is there might be a 267 * performance hit. If the caller requests encrypted data, however, we must be 268 * sure they actually get it or else secret information could be leaked. Raw 269 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 270 * may have both an encrypted version and a decrypted version of its data at 271 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 272 * copied out of this header. To avoid complications with b_pabd, raw buffers 273 * cannot be shared. 274 */ 275 276 #include <sys/spa.h> 277 #include <sys/zio.h> 278 #include <sys/spa_impl.h> 279 #include <sys/zio_compress.h> 280 #include <sys/zio_checksum.h> 281 #include <sys/zfs_context.h> 282 #include <sys/arc.h> 283 #include <sys/refcount.h> 284 #include <sys/vdev.h> 285 #include <sys/vdev_impl.h> 286 #include <sys/dsl_pool.h> 287 #include <sys/zio_checksum.h> 288 #include <sys/multilist.h> 289 #include <sys/abd.h> 290 #include <sys/zil.h> 291 #include <sys/fm/fs/zfs.h> 292 #ifdef _KERNEL 293 #include <sys/vmsystm.h> 294 #include <vm/anon.h> 295 #include <sys/fs/swapnode.h> 296 #include <sys/dnlc.h> 297 #endif 298 #include <sys/callb.h> 299 #include <sys/kstat.h> 300 #include <sys/zthr.h> 301 #include <zfs_fletcher.h> 302 #include <sys/arc_impl.h> 303 #include <sys/aggsum.h> 304 #include <sys/cityhash.h> 305 #include <sys/param.h> 306 307 #ifndef _KERNEL 308 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 309 boolean_t arc_watch = B_FALSE; 310 int arc_procfd; 311 #endif 312 313 /* 314 * This thread's job is to keep enough free memory in the system, by 315 * calling arc_kmem_reap_now() plus arc_shrink(), which improves 316 * arc_available_memory(). 317 */ 318 static zthr_t *arc_reap_zthr; 319 320 /* 321 * This thread's job is to keep arc_size under arc_c, by calling 322 * arc_adjust(), which improves arc_is_overflowing(). 323 */ 324 static zthr_t *arc_adjust_zthr; 325 326 static kmutex_t arc_adjust_lock; 327 static kcondvar_t arc_adjust_waiters_cv; 328 static boolean_t arc_adjust_needed = B_FALSE; 329 330 uint_t arc_reduce_dnlc_percent = 3; 331 332 /* 333 * The number of headers to evict in arc_evict_state_impl() before 334 * dropping the sublist lock and evicting from another sublist. A lower 335 * value means we're more likely to evict the "correct" header (i.e. the 336 * oldest header in the arc state), but comes with higher overhead 337 * (i.e. more invocations of arc_evict_state_impl()). 338 */ 339 int zfs_arc_evict_batch_limit = 10; 340 341 /* number of seconds before growing cache again */ 342 int arc_grow_retry = 60; 343 344 /* 345 * Minimum time between calls to arc_kmem_reap_soon(). Note that this will 346 * be converted to ticks, so with the default hz=100, a setting of 15 ms 347 * will actually wait 2 ticks, or 20ms. 348 */ 349 int arc_kmem_cache_reap_retry_ms = 1000; 350 351 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 352 int zfs_arc_overflow_shift = 8; 353 354 /* shift of arc_c for calculating both min and max arc_p */ 355 int arc_p_min_shift = 4; 356 357 /* log2(fraction of arc to reclaim) */ 358 int arc_shrink_shift = 7; 359 360 /* 361 * log2(fraction of ARC which must be free to allow growing). 362 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 363 * when reading a new block into the ARC, we will evict an equal-sized block 364 * from the ARC. 365 * 366 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 367 * we will still not allow it to grow. 368 */ 369 int arc_no_grow_shift = 5; 370 371 372 /* 373 * minimum lifespan of a prefetch block in clock ticks 374 * (initialized in arc_init()) 375 */ 376 static int zfs_arc_min_prefetch_ms = 1; 377 static int zfs_arc_min_prescient_prefetch_ms = 6; 378 379 /* 380 * If this percent of memory is free, don't throttle. 381 */ 382 int arc_lotsfree_percent = 10; 383 384 static boolean_t arc_initialized; 385 386 /* 387 * The arc has filled available memory and has now warmed up. 388 */ 389 static boolean_t arc_warm; 390 391 /* 392 * log2 fraction of the zio arena to keep free. 393 */ 394 int arc_zio_arena_free_shift = 2; 395 396 /* 397 * These tunables are for performance analysis. 398 */ 399 uint64_t zfs_arc_max; 400 uint64_t zfs_arc_min; 401 uint64_t zfs_arc_meta_limit = 0; 402 uint64_t zfs_arc_meta_min = 0; 403 int zfs_arc_grow_retry = 0; 404 int zfs_arc_shrink_shift = 0; 405 int zfs_arc_p_min_shift = 0; 406 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 407 408 /* 409 * ARC dirty data constraints for arc_tempreserve_space() throttle 410 */ 411 uint_t zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */ 412 uint_t zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */ 413 uint_t zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */ 414 415 boolean_t zfs_compressed_arc_enabled = B_TRUE; 416 417 /* The 6 states: */ 418 static arc_state_t ARC_anon; 419 static arc_state_t ARC_mru; 420 static arc_state_t ARC_mru_ghost; 421 static arc_state_t ARC_mfu; 422 static arc_state_t ARC_mfu_ghost; 423 static arc_state_t ARC_l2c_only; 424 425 arc_stats_t arc_stats = { 426 { "hits", KSTAT_DATA_UINT64 }, 427 { "misses", KSTAT_DATA_UINT64 }, 428 { "demand_data_hits", KSTAT_DATA_UINT64 }, 429 { "demand_data_misses", KSTAT_DATA_UINT64 }, 430 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 431 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 432 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 433 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 434 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 435 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 436 { "mru_hits", KSTAT_DATA_UINT64 }, 437 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 438 { "mfu_hits", KSTAT_DATA_UINT64 }, 439 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 440 { "deleted", KSTAT_DATA_UINT64 }, 441 { "mutex_miss", KSTAT_DATA_UINT64 }, 442 { "access_skip", KSTAT_DATA_UINT64 }, 443 { "evict_skip", KSTAT_DATA_UINT64 }, 444 { "evict_not_enough", KSTAT_DATA_UINT64 }, 445 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 446 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 447 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 }, 448 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 }, 449 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 450 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 451 { "hash_elements", KSTAT_DATA_UINT64 }, 452 { "hash_elements_max", KSTAT_DATA_UINT64 }, 453 { "hash_collisions", KSTAT_DATA_UINT64 }, 454 { "hash_chains", KSTAT_DATA_UINT64 }, 455 { "hash_chain_max", KSTAT_DATA_UINT64 }, 456 { "p", KSTAT_DATA_UINT64 }, 457 { "c", KSTAT_DATA_UINT64 }, 458 { "c_min", KSTAT_DATA_UINT64 }, 459 { "c_max", KSTAT_DATA_UINT64 }, 460 { "size", KSTAT_DATA_UINT64 }, 461 { "compressed_size", KSTAT_DATA_UINT64 }, 462 { "uncompressed_size", KSTAT_DATA_UINT64 }, 463 { "overhead_size", KSTAT_DATA_UINT64 }, 464 { "hdr_size", KSTAT_DATA_UINT64 }, 465 { "data_size", KSTAT_DATA_UINT64 }, 466 { "metadata_size", KSTAT_DATA_UINT64 }, 467 { "other_size", KSTAT_DATA_UINT64 }, 468 { "anon_size", KSTAT_DATA_UINT64 }, 469 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 470 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 471 { "mru_size", KSTAT_DATA_UINT64 }, 472 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 473 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 474 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 475 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 476 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 477 { "mfu_size", KSTAT_DATA_UINT64 }, 478 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 479 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 480 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 481 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 482 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 483 { "l2_hits", KSTAT_DATA_UINT64 }, 484 { "l2_misses", KSTAT_DATA_UINT64 }, 485 { "l2_prefetch_asize", KSTAT_DATA_UINT64 }, 486 { "l2_mru_asize", KSTAT_DATA_UINT64 }, 487 { "l2_mfu_asize", KSTAT_DATA_UINT64 }, 488 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 }, 489 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 }, 490 { "l2_feeds", KSTAT_DATA_UINT64 }, 491 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 492 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 493 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 494 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 495 { "l2_writes_done", KSTAT_DATA_UINT64 }, 496 { "l2_writes_error", KSTAT_DATA_UINT64 }, 497 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 498 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 499 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 500 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 501 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 502 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 503 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 504 { "l2_io_error", KSTAT_DATA_UINT64 }, 505 { "l2_size", KSTAT_DATA_UINT64 }, 506 { "l2_asize", KSTAT_DATA_UINT64 }, 507 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 508 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 509 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 510 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 511 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 512 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 513 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 514 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 515 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 516 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 517 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 518 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 519 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 520 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 521 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 522 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 523 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 524 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 525 { "arc_meta_used", KSTAT_DATA_UINT64 }, 526 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 527 { "arc_meta_max", KSTAT_DATA_UINT64 }, 528 { "arc_meta_min", KSTAT_DATA_UINT64 }, 529 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 530 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 531 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 532 }; 533 534 #define ARCSTAT_MAX(stat, val) { \ 535 uint64_t m; \ 536 while ((val) > (m = arc_stats.stat.value.ui64) && \ 537 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 538 continue; \ 539 } 540 541 #define ARCSTAT_MAXSTAT(stat) \ 542 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 543 544 /* 545 * We define a macro to allow ARC hits/misses to be easily broken down by 546 * two separate conditions, giving a total of four different subtypes for 547 * each of hits and misses (so eight statistics total). 548 */ 549 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 550 if (cond1) { \ 551 if (cond2) { \ 552 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 553 } else { \ 554 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 555 } \ 556 } else { \ 557 if (cond2) { \ 558 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 559 } else { \ 560 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 561 } \ 562 } 563 564 /* 565 * This macro allows us to use kstats as floating averages. Each time we 566 * update this kstat, we first factor it and the update value by 567 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 568 * average. This macro assumes that integer loads and stores are atomic, but 569 * is not safe for multiple writers updating the kstat in parallel (only the 570 * last writer's update will remain). 571 */ 572 #define ARCSTAT_F_AVG_FACTOR 3 573 #define ARCSTAT_F_AVG(stat, value) \ 574 do { \ 575 uint64_t x = ARCSTAT(stat); \ 576 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 577 (value) / ARCSTAT_F_AVG_FACTOR; \ 578 ARCSTAT(stat) = x; \ 579 _NOTE(CONSTCOND) \ 580 } while (0) 581 582 kstat_t *arc_ksp; 583 static arc_state_t *arc_anon; 584 static arc_state_t *arc_mru; 585 static arc_state_t *arc_mru_ghost; 586 static arc_state_t *arc_mfu; 587 static arc_state_t *arc_mfu_ghost; 588 static arc_state_t *arc_l2c_only; 589 590 /* 591 * There are also some ARC variables that we want to export, but that are 592 * updated so often that having the canonical representation be the statistic 593 * variable causes a performance bottleneck. We want to use aggsum_t's for these 594 * instead, but still be able to export the kstat in the same way as before. 595 * The solution is to always use the aggsum version, except in the kstat update 596 * callback. 597 */ 598 aggsum_t arc_size; 599 aggsum_t arc_meta_used; 600 aggsum_t astat_data_size; 601 aggsum_t astat_metadata_size; 602 aggsum_t astat_hdr_size; 603 aggsum_t astat_other_size; 604 aggsum_t astat_l2_hdr_size; 605 606 static int arc_no_grow; /* Don't try to grow cache size */ 607 static hrtime_t arc_growtime; 608 static uint64_t arc_tempreserve; 609 static uint64_t arc_loaned_bytes; 610 611 #define GHOST_STATE(state) \ 612 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 613 (state) == arc_l2c_only) 614 615 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 616 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 617 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 618 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 619 #define HDR_PRESCIENT_PREFETCH(hdr) \ 620 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 621 #define HDR_COMPRESSION_ENABLED(hdr) \ 622 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 623 624 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 625 #define HDR_L2_READING(hdr) \ 626 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 627 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 628 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 629 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 630 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 631 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 632 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 633 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 634 635 #define HDR_ISTYPE_METADATA(hdr) \ 636 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 637 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 638 639 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 640 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 641 #define HDR_HAS_RABD(hdr) \ 642 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 643 (hdr)->b_crypt_hdr.b_rabd != NULL) 644 #define HDR_ENCRYPTED(hdr) \ 645 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 646 #define HDR_AUTHENTICATED(hdr) \ 647 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 648 649 /* For storing compression mode in b_flags */ 650 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 651 652 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 653 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 654 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 655 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 656 657 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 658 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 659 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 660 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 661 662 /* 663 * Other sizes 664 */ 665 666 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 667 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr)) 668 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 669 670 /* 671 * Hash table routines 672 */ 673 674 #define HT_LOCK_PAD 64 675 676 struct ht_lock { 677 kmutex_t ht_lock; 678 #ifdef _KERNEL 679 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 680 #endif 681 }; 682 683 #define BUF_LOCKS 256 684 typedef struct buf_hash_table { 685 uint64_t ht_mask; 686 arc_buf_hdr_t **ht_table; 687 struct ht_lock ht_locks[BUF_LOCKS]; 688 } buf_hash_table_t; 689 690 static buf_hash_table_t buf_hash_table; 691 692 #define BUF_HASH_INDEX(spa, dva, birth) \ 693 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 694 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 695 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 696 #define HDR_LOCK(hdr) \ 697 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 698 699 uint64_t zfs_crc64_table[256]; 700 701 /* 702 * Level 2 ARC 703 */ 704 705 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 706 #define L2ARC_HEADROOM 2 /* num of writes */ 707 /* 708 * If we discover during ARC scan any buffers to be compressed, we boost 709 * our headroom for the next scanning cycle by this percentage multiple. 710 */ 711 #define L2ARC_HEADROOM_BOOST 200 712 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 713 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 714 715 /* 716 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 717 * and each of the state has two types: data and metadata. 718 */ 719 #define L2ARC_FEED_TYPES 4 720 721 722 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 723 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 724 725 /* L2ARC Performance Tunables */ 726 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 727 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 728 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 729 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 730 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 731 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 732 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 733 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 734 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 735 int l2arc_meta_percent = 33; /* limit on headers size */ 736 737 /* 738 * L2ARC Internals 739 */ 740 static list_t L2ARC_dev_list; /* device list */ 741 static list_t *l2arc_dev_list; /* device list pointer */ 742 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 743 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 744 static list_t L2ARC_free_on_write; /* free after write buf list */ 745 static list_t *l2arc_free_on_write; /* free after write list ptr */ 746 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 747 static uint64_t l2arc_ndev; /* number of devices */ 748 749 typedef struct l2arc_read_callback { 750 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 751 blkptr_t l2rcb_bp; /* original blkptr */ 752 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 753 int l2rcb_flags; /* original flags */ 754 abd_t *l2rcb_abd; /* temporary buffer */ 755 } l2arc_read_callback_t; 756 757 typedef struct l2arc_data_free { 758 /* protected by l2arc_free_on_write_mtx */ 759 abd_t *l2df_abd; 760 size_t l2df_size; 761 arc_buf_contents_t l2df_type; 762 list_node_t l2df_list_node; 763 } l2arc_data_free_t; 764 765 static kmutex_t l2arc_feed_thr_lock; 766 static kcondvar_t l2arc_feed_thr_cv; 767 static uint8_t l2arc_thread_exit; 768 769 static kmutex_t l2arc_rebuild_thr_lock; 770 static kcondvar_t l2arc_rebuild_thr_cv; 771 772 enum arc_hdr_alloc_flags { 773 ARC_HDR_ALLOC_RDATA = 0x1, 774 ARC_HDR_DO_ADAPT = 0x2, 775 }; 776 777 778 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 779 typedef enum arc_fill_flags { 780 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 781 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 782 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 783 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 784 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 785 } arc_fill_flags_t; 786 787 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 788 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 789 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 790 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 791 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 792 static void arc_hdr_free_pabd(arc_buf_hdr_t *, boolean_t); 793 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *, int); 794 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 795 static boolean_t arc_is_overflowing(); 796 static void arc_buf_watch(arc_buf_t *); 797 static l2arc_dev_t *l2arc_vdev_get(vdev_t *vd); 798 799 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 800 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 801 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 802 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 803 804 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 805 static void l2arc_read_done(zio_t *); 806 static void l2arc_do_free_on_write(void); 807 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 808 boolean_t state_only); 809 810 #define l2arc_hdr_arcstats_increment(hdr) \ 811 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE) 812 #define l2arc_hdr_arcstats_decrement(hdr) \ 813 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE) 814 #define l2arc_hdr_arcstats_increment_state(hdr) \ 815 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE) 816 #define l2arc_hdr_arcstats_decrement_state(hdr) \ 817 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE) 818 819 /* 820 * The arc_all_memory function is a ZoL enhancement that lives in their OSL 821 * code. In user-space code, which is used primarily for testing, we return 822 * half of all memory. 823 */ 824 uint64_t 825 arc_all_memory(void) 826 { 827 #ifdef _KERNEL 828 return (ptob(physmem)); 829 #else 830 return ((sysconf(_SC_PAGESIZE) * sysconf(_SC_PHYS_PAGES)) / 2); 831 #endif 832 } 833 834 /* 835 * We use Cityhash for this. It's fast, and has good hash properties without 836 * requiring any large static buffers. 837 */ 838 static uint64_t 839 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 840 { 841 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 842 } 843 844 #define HDR_EMPTY(hdr) \ 845 ((hdr)->b_dva.dva_word[0] == 0 && \ 846 (hdr)->b_dva.dva_word[1] == 0) 847 848 #define HDR_EMPTY_OR_LOCKED(hdr) \ 849 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 850 851 #define HDR_EQUAL(spa, dva, birth, hdr) \ 852 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 853 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 854 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 855 856 static void 857 buf_discard_identity(arc_buf_hdr_t *hdr) 858 { 859 hdr->b_dva.dva_word[0] = 0; 860 hdr->b_dva.dva_word[1] = 0; 861 hdr->b_birth = 0; 862 } 863 864 static arc_buf_hdr_t * 865 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 866 { 867 const dva_t *dva = BP_IDENTITY(bp); 868 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 869 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 870 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 871 arc_buf_hdr_t *hdr; 872 873 mutex_enter(hash_lock); 874 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 875 hdr = hdr->b_hash_next) { 876 if (HDR_EQUAL(spa, dva, birth, hdr)) { 877 *lockp = hash_lock; 878 return (hdr); 879 } 880 } 881 mutex_exit(hash_lock); 882 *lockp = NULL; 883 return (NULL); 884 } 885 886 /* 887 * Insert an entry into the hash table. If there is already an element 888 * equal to elem in the hash table, then the already existing element 889 * will be returned and the new element will not be inserted. 890 * Otherwise returns NULL. 891 * If lockp == NULL, the caller is assumed to already hold the hash lock. 892 */ 893 static arc_buf_hdr_t * 894 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 895 { 896 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 897 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 898 arc_buf_hdr_t *fhdr; 899 uint32_t i; 900 901 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 902 ASSERT(hdr->b_birth != 0); 903 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 904 905 if (lockp != NULL) { 906 *lockp = hash_lock; 907 mutex_enter(hash_lock); 908 } else { 909 ASSERT(MUTEX_HELD(hash_lock)); 910 } 911 912 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 913 fhdr = fhdr->b_hash_next, i++) { 914 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 915 return (fhdr); 916 } 917 918 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 919 buf_hash_table.ht_table[idx] = hdr; 920 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 921 922 /* collect some hash table performance data */ 923 if (i > 0) { 924 ARCSTAT_BUMP(arcstat_hash_collisions); 925 if (i == 1) 926 ARCSTAT_BUMP(arcstat_hash_chains); 927 928 ARCSTAT_MAX(arcstat_hash_chain_max, i); 929 } 930 931 ARCSTAT_BUMP(arcstat_hash_elements); 932 ARCSTAT_MAXSTAT(arcstat_hash_elements); 933 934 return (NULL); 935 } 936 937 static void 938 buf_hash_remove(arc_buf_hdr_t *hdr) 939 { 940 arc_buf_hdr_t *fhdr, **hdrp; 941 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 942 943 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 944 ASSERT(HDR_IN_HASH_TABLE(hdr)); 945 946 hdrp = &buf_hash_table.ht_table[idx]; 947 while ((fhdr = *hdrp) != hdr) { 948 ASSERT3P(fhdr, !=, NULL); 949 hdrp = &fhdr->b_hash_next; 950 } 951 *hdrp = hdr->b_hash_next; 952 hdr->b_hash_next = NULL; 953 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 954 955 /* collect some hash table performance data */ 956 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 957 958 if (buf_hash_table.ht_table[idx] && 959 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 960 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 961 } 962 963 /* 964 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 965 * metadata and data are cached from ARC into L2ARC. 966 */ 967 int l2arc_mfuonly = 0; 968 969 /* 970 * Global data structures and functions for the buf kmem cache. 971 */ 972 973 static kmem_cache_t *hdr_full_cache; 974 static kmem_cache_t *hdr_full_crypt_cache; 975 static kmem_cache_t *hdr_l2only_cache; 976 static kmem_cache_t *buf_cache; 977 978 static void 979 buf_fini(void) 980 { 981 int i; 982 983 kmem_free(buf_hash_table.ht_table, 984 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 985 for (i = 0; i < BUF_LOCKS; i++) 986 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 987 kmem_cache_destroy(hdr_full_cache); 988 kmem_cache_destroy(hdr_full_crypt_cache); 989 kmem_cache_destroy(hdr_l2only_cache); 990 kmem_cache_destroy(buf_cache); 991 } 992 993 /* 994 * Constructor callback - called when the cache is empty 995 * and a new buf is requested. 996 */ 997 /* ARGSUSED */ 998 static int 999 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1000 { 1001 arc_buf_hdr_t *hdr = vbuf; 1002 1003 bzero(hdr, HDR_FULL_SIZE); 1004 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1005 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1006 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1007 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1008 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1009 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1010 1011 return (0); 1012 } 1013 1014 /* ARGSUSED */ 1015 static int 1016 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag) 1017 { 1018 arc_buf_hdr_t *hdr = vbuf; 1019 1020 (void) hdr_full_cons(vbuf, unused, kmflag); 1021 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr)); 1022 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1023 1024 return (0); 1025 } 1026 1027 /* ARGSUSED */ 1028 static int 1029 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1030 { 1031 arc_buf_hdr_t *hdr = vbuf; 1032 1033 bzero(hdr, HDR_L2ONLY_SIZE); 1034 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1035 1036 return (0); 1037 } 1038 1039 /* ARGSUSED */ 1040 static int 1041 buf_cons(void *vbuf, void *unused, int kmflag) 1042 { 1043 arc_buf_t *buf = vbuf; 1044 1045 bzero(buf, sizeof (arc_buf_t)); 1046 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1047 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1048 1049 return (0); 1050 } 1051 1052 /* 1053 * Destructor callback - called when a cached buf is 1054 * no longer required. 1055 */ 1056 /* ARGSUSED */ 1057 static void 1058 hdr_full_dest(void *vbuf, void *unused) 1059 { 1060 arc_buf_hdr_t *hdr = vbuf; 1061 1062 ASSERT(HDR_EMPTY(hdr)); 1063 cv_destroy(&hdr->b_l1hdr.b_cv); 1064 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1065 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1066 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1067 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1068 } 1069 1070 /* ARGSUSED */ 1071 static void 1072 hdr_full_crypt_dest(void *vbuf, void *unused) 1073 { 1074 arc_buf_hdr_t *hdr = vbuf; 1075 1076 hdr_full_dest(hdr, unused); 1077 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1078 } 1079 1080 /* ARGSUSED */ 1081 static void 1082 hdr_l2only_dest(void *vbuf, void *unused) 1083 { 1084 arc_buf_hdr_t *hdr = vbuf; 1085 1086 ASSERT(HDR_EMPTY(hdr)); 1087 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1088 } 1089 1090 /* ARGSUSED */ 1091 static void 1092 buf_dest(void *vbuf, void *unused) 1093 { 1094 arc_buf_t *buf = vbuf; 1095 1096 mutex_destroy(&buf->b_evict_lock); 1097 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1098 } 1099 1100 /* 1101 * Reclaim callback -- invoked when memory is low. 1102 */ 1103 /* ARGSUSED */ 1104 static void 1105 hdr_recl(void *unused) 1106 { 1107 dprintf("hdr_recl called\n"); 1108 /* 1109 * umem calls the reclaim func when we destroy the buf cache, 1110 * which is after we do arc_fini(). 1111 */ 1112 if (arc_initialized) 1113 zthr_wakeup(arc_reap_zthr); 1114 } 1115 1116 static void 1117 buf_init(void) 1118 { 1119 uint64_t *ct; 1120 uint64_t hsize = 1ULL << 12; 1121 int i, j; 1122 1123 /* 1124 * The hash table is big enough to fill all of physical memory 1125 * with an average block size of zfs_arc_average_blocksize (default 8K). 1126 * By default, the table will take up 1127 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1128 */ 1129 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 1130 hsize <<= 1; 1131 retry: 1132 buf_hash_table.ht_mask = hsize - 1; 1133 buf_hash_table.ht_table = 1134 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1135 if (buf_hash_table.ht_table == NULL) { 1136 ASSERT(hsize > (1ULL << 8)); 1137 hsize >>= 1; 1138 goto retry; 1139 } 1140 1141 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1142 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0); 1143 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt", 1144 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest, 1145 hdr_recl, NULL, NULL, 0); 1146 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1147 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl, 1148 NULL, NULL, 0); 1149 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1150 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1151 1152 for (i = 0; i < 256; i++) 1153 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1154 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1155 1156 for (i = 0; i < BUF_LOCKS; i++) { 1157 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1158 NULL, MUTEX_DEFAULT, NULL); 1159 } 1160 } 1161 1162 /* 1163 * This is the size that the buf occupies in memory. If the buf is compressed, 1164 * it will correspond to the compressed size. You should use this method of 1165 * getting the buf size unless you explicitly need the logical size. 1166 */ 1167 int32_t 1168 arc_buf_size(arc_buf_t *buf) 1169 { 1170 return (ARC_BUF_COMPRESSED(buf) ? 1171 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1172 } 1173 1174 int32_t 1175 arc_buf_lsize(arc_buf_t *buf) 1176 { 1177 return (HDR_GET_LSIZE(buf->b_hdr)); 1178 } 1179 1180 /* 1181 * This function will return B_TRUE if the buffer is encrypted in memory. 1182 * This buffer can be decrypted by calling arc_untransform(). 1183 */ 1184 boolean_t 1185 arc_is_encrypted(arc_buf_t *buf) 1186 { 1187 return (ARC_BUF_ENCRYPTED(buf) != 0); 1188 } 1189 1190 /* 1191 * Returns B_TRUE if the buffer represents data that has not had its MAC 1192 * verified yet. 1193 */ 1194 boolean_t 1195 arc_is_unauthenticated(arc_buf_t *buf) 1196 { 1197 return (HDR_NOAUTH(buf->b_hdr) != 0); 1198 } 1199 1200 void 1201 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1202 uint8_t *iv, uint8_t *mac) 1203 { 1204 arc_buf_hdr_t *hdr = buf->b_hdr; 1205 1206 ASSERT(HDR_PROTECTED(hdr)); 1207 1208 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 1209 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 1210 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 1211 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1212 /* CONSTCOND */ 1213 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1214 } 1215 1216 /* 1217 * Indicates how this buffer is compressed in memory. If it is not compressed 1218 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1219 * arc_untransform() as long as it is also unencrypted. 1220 */ 1221 enum zio_compress 1222 arc_get_compression(arc_buf_t *buf) 1223 { 1224 return (ARC_BUF_COMPRESSED(buf) ? 1225 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1226 } 1227 1228 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1229 1230 /* 1231 * Return the compression algorithm used to store this data in the ARC. If ARC 1232 * compression is enabled or this is an encrypted block, this will be the same 1233 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1234 */ 1235 static inline enum zio_compress 1236 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1237 { 1238 return (HDR_COMPRESSION_ENABLED(hdr) ? 1239 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1240 } 1241 1242 static inline boolean_t 1243 arc_buf_is_shared(arc_buf_t *buf) 1244 { 1245 boolean_t shared = (buf->b_data != NULL && 1246 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1247 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1248 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1249 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1250 IMPLY(shared, ARC_BUF_SHARED(buf)); 1251 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1252 1253 /* 1254 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1255 * already being shared" requirement prevents us from doing that. 1256 */ 1257 1258 return (shared); 1259 } 1260 1261 /* 1262 * Free the checksum associated with this header. If there is no checksum, this 1263 * is a no-op. 1264 */ 1265 static inline void 1266 arc_cksum_free(arc_buf_hdr_t *hdr) 1267 { 1268 ASSERT(HDR_HAS_L1HDR(hdr)); 1269 1270 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1271 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1272 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1273 hdr->b_l1hdr.b_freeze_cksum = NULL; 1274 } 1275 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1276 } 1277 1278 /* 1279 * Return true iff at least one of the bufs on hdr is not compressed. 1280 * Encrypted buffers count as compressed. 1281 */ 1282 static boolean_t 1283 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1284 { 1285 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1286 1287 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1288 if (!ARC_BUF_COMPRESSED(b)) { 1289 return (B_TRUE); 1290 } 1291 } 1292 return (B_FALSE); 1293 } 1294 1295 /* 1296 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1297 * matches the checksum that is stored in the hdr. If there is no checksum, 1298 * or if the buf is compressed, this is a no-op. 1299 */ 1300 static void 1301 arc_cksum_verify(arc_buf_t *buf) 1302 { 1303 arc_buf_hdr_t *hdr = buf->b_hdr; 1304 zio_cksum_t zc; 1305 1306 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1307 return; 1308 1309 if (ARC_BUF_COMPRESSED(buf)) 1310 return; 1311 1312 ASSERT(HDR_HAS_L1HDR(hdr)); 1313 1314 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1315 1316 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1317 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1318 return; 1319 } 1320 1321 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1322 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1323 panic("buffer modified while frozen!"); 1324 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1325 } 1326 1327 /* 1328 * This function makes the assumption that data stored in the L2ARC 1329 * will be transformed exactly as it is in the main pool. Because of 1330 * this we can verify the checksum against the reading process's bp. 1331 */ 1332 static boolean_t 1333 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1334 { 1335 enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp); 1336 boolean_t valid_cksum; 1337 1338 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1339 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1340 1341 /* 1342 * We rely on the blkptr's checksum to determine if the block 1343 * is valid or not. When compressed arc is enabled, the l2arc 1344 * writes the block to the l2arc just as it appears in the pool. 1345 * This allows us to use the blkptr's checksum to validate the 1346 * data that we just read off of the l2arc without having to store 1347 * a separate checksum in the arc_buf_hdr_t. However, if compressed 1348 * arc is disabled, then the data written to the l2arc is always 1349 * uncompressed and won't match the block as it exists in the main 1350 * pool. When this is the case, we must first compress it if it is 1351 * compressed on the main pool before we can validate the checksum. 1352 */ 1353 if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) { 1354 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1355 uint64_t lsize = HDR_GET_LSIZE(hdr); 1356 uint64_t csize; 1357 1358 abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE); 1359 csize = zio_compress_data(compress, zio->io_abd, 1360 abd_to_buf(cdata), lsize); 1361 1362 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr)); 1363 if (csize < HDR_GET_PSIZE(hdr)) { 1364 /* 1365 * Compressed blocks are always a multiple of the 1366 * smallest ashift in the pool. Ideally, we would 1367 * like to round up the csize to the next 1368 * spa_min_ashift but that value may have changed 1369 * since the block was last written. Instead, 1370 * we rely on the fact that the hdr's psize 1371 * was set to the psize of the block when it was 1372 * last written. We set the csize to that value 1373 * and zero out any part that should not contain 1374 * data. 1375 */ 1376 abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize); 1377 csize = HDR_GET_PSIZE(hdr); 1378 } 1379 zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL); 1380 } 1381 1382 /* 1383 * Block pointers always store the checksum for the logical data. 1384 * If the block pointer has the gang bit set, then the checksum 1385 * it represents is for the reconstituted data and not for an 1386 * individual gang member. The zio pipeline, however, must be able to 1387 * determine the checksum of each of the gang constituents so it 1388 * treats the checksum comparison differently than what we need 1389 * for l2arc blocks. This prevents us from using the 1390 * zio_checksum_error() interface directly. Instead we must call the 1391 * zio_checksum_error_impl() so that we can ensure the checksum is 1392 * generated using the correct checksum algorithm and accounts for the 1393 * logical I/O size and not just a gang fragment. 1394 */ 1395 valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1396 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1397 zio->io_offset, NULL) == 0); 1398 zio_pop_transforms(zio); 1399 return (valid_cksum); 1400 } 1401 1402 /* 1403 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1404 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1405 * isn't modified later on. If buf is compressed or there is already a checksum 1406 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1407 */ 1408 static void 1409 arc_cksum_compute(arc_buf_t *buf) 1410 { 1411 arc_buf_hdr_t *hdr = buf->b_hdr; 1412 1413 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1414 return; 1415 1416 ASSERT(HDR_HAS_L1HDR(hdr)); 1417 1418 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1419 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1420 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1421 return; 1422 } 1423 1424 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1425 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1426 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1427 KM_SLEEP); 1428 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1429 hdr->b_l1hdr.b_freeze_cksum); 1430 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1431 arc_buf_watch(buf); 1432 } 1433 1434 #ifndef _KERNEL 1435 typedef struct procctl { 1436 long cmd; 1437 prwatch_t prwatch; 1438 } procctl_t; 1439 #endif 1440 1441 /* ARGSUSED */ 1442 static void 1443 arc_buf_unwatch(arc_buf_t *buf) 1444 { 1445 #ifndef _KERNEL 1446 if (arc_watch) { 1447 int result; 1448 procctl_t ctl; 1449 ctl.cmd = PCWATCH; 1450 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1451 ctl.prwatch.pr_size = 0; 1452 ctl.prwatch.pr_wflags = 0; 1453 result = write(arc_procfd, &ctl, sizeof (ctl)); 1454 ASSERT3U(result, ==, sizeof (ctl)); 1455 } 1456 #endif 1457 } 1458 1459 /* ARGSUSED */ 1460 static void 1461 arc_buf_watch(arc_buf_t *buf) 1462 { 1463 #ifndef _KERNEL 1464 if (arc_watch) { 1465 int result; 1466 procctl_t ctl; 1467 ctl.cmd = PCWATCH; 1468 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1469 ctl.prwatch.pr_size = arc_buf_size(buf); 1470 ctl.prwatch.pr_wflags = WA_WRITE; 1471 result = write(arc_procfd, &ctl, sizeof (ctl)); 1472 ASSERT3U(result, ==, sizeof (ctl)); 1473 } 1474 #endif 1475 } 1476 1477 static arc_buf_contents_t 1478 arc_buf_type(arc_buf_hdr_t *hdr) 1479 { 1480 arc_buf_contents_t type; 1481 if (HDR_ISTYPE_METADATA(hdr)) { 1482 type = ARC_BUFC_METADATA; 1483 } else { 1484 type = ARC_BUFC_DATA; 1485 } 1486 VERIFY3U(hdr->b_type, ==, type); 1487 return (type); 1488 } 1489 1490 boolean_t 1491 arc_is_metadata(arc_buf_t *buf) 1492 { 1493 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1494 } 1495 1496 static uint32_t 1497 arc_bufc_to_flags(arc_buf_contents_t type) 1498 { 1499 switch (type) { 1500 case ARC_BUFC_DATA: 1501 /* metadata field is 0 if buffer contains normal data */ 1502 return (0); 1503 case ARC_BUFC_METADATA: 1504 return (ARC_FLAG_BUFC_METADATA); 1505 default: 1506 break; 1507 } 1508 panic("undefined ARC buffer type!"); 1509 return ((uint32_t)-1); 1510 } 1511 1512 void 1513 arc_buf_thaw(arc_buf_t *buf) 1514 { 1515 arc_buf_hdr_t *hdr = buf->b_hdr; 1516 1517 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1518 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1519 1520 arc_cksum_verify(buf); 1521 1522 /* 1523 * Compressed buffers do not manipulate the b_freeze_cksum. 1524 */ 1525 if (ARC_BUF_COMPRESSED(buf)) 1526 return; 1527 1528 ASSERT(HDR_HAS_L1HDR(hdr)); 1529 arc_cksum_free(hdr); 1530 1531 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1532 #ifdef ZFS_DEBUG 1533 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1534 if (hdr->b_l1hdr.b_thawed != NULL) 1535 kmem_free(hdr->b_l1hdr.b_thawed, 1); 1536 hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP); 1537 } 1538 #endif 1539 1540 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1541 1542 arc_buf_unwatch(buf); 1543 } 1544 1545 void 1546 arc_buf_freeze(arc_buf_t *buf) 1547 { 1548 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1549 return; 1550 1551 if (ARC_BUF_COMPRESSED(buf)) 1552 return; 1553 1554 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1555 arc_cksum_compute(buf); 1556 } 1557 1558 /* 1559 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1560 * the following functions should be used to ensure that the flags are 1561 * updated in a thread-safe way. When manipulating the flags either 1562 * the hash_lock must be held or the hdr must be undiscoverable. This 1563 * ensures that we're not racing with any other threads when updating 1564 * the flags. 1565 */ 1566 static inline void 1567 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1568 { 1569 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1570 hdr->b_flags |= flags; 1571 } 1572 1573 static inline void 1574 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1575 { 1576 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1577 hdr->b_flags &= ~flags; 1578 } 1579 1580 /* 1581 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1582 * done in a special way since we have to clear and set bits 1583 * at the same time. Consumers that wish to set the compression bits 1584 * must use this function to ensure that the flags are updated in 1585 * thread-safe manner. 1586 */ 1587 static void 1588 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1589 { 1590 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1591 1592 /* 1593 * Holes and embedded blocks will always have a psize = 0 so 1594 * we ignore the compression of the blkptr and set the 1595 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF. 1596 * Holes and embedded blocks remain anonymous so we don't 1597 * want to uncompress them. Mark them as uncompressed. 1598 */ 1599 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1600 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1601 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1602 } else { 1603 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1604 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1605 } 1606 1607 HDR_SET_COMPRESS(hdr, cmp); 1608 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1609 } 1610 1611 /* 1612 * Looks for another buf on the same hdr which has the data decompressed, copies 1613 * from it, and returns true. If no such buf exists, returns false. 1614 */ 1615 static boolean_t 1616 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1617 { 1618 arc_buf_hdr_t *hdr = buf->b_hdr; 1619 boolean_t copied = B_FALSE; 1620 1621 ASSERT(HDR_HAS_L1HDR(hdr)); 1622 ASSERT3P(buf->b_data, !=, NULL); 1623 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1624 1625 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1626 from = from->b_next) { 1627 /* can't use our own data buffer */ 1628 if (from == buf) { 1629 continue; 1630 } 1631 1632 if (!ARC_BUF_COMPRESSED(from)) { 1633 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1634 copied = B_TRUE; 1635 break; 1636 } 1637 } 1638 1639 /* 1640 * Note: With encryption support, the following assertion is no longer 1641 * necessarily valid. If we receive two back to back raw snapshots 1642 * (send -w), the second receive can use a hdr with a cksum already 1643 * calculated. This happens via: 1644 * dmu_recv_stream() -> receive_read_record() -> arc_loan_raw_buf() 1645 * The rsend/send_mixed_raw test case exercises this code path. 1646 * 1647 * There were no decompressed bufs, so there should not be a 1648 * checksum on the hdr either. 1649 * EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1650 */ 1651 1652 return (copied); 1653 } 1654 1655 /* 1656 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1657 */ 1658 static uint64_t 1659 arc_hdr_size(arc_buf_hdr_t *hdr) 1660 { 1661 uint64_t size; 1662 1663 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1664 HDR_GET_PSIZE(hdr) > 0) { 1665 size = HDR_GET_PSIZE(hdr); 1666 } else { 1667 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1668 size = HDR_GET_LSIZE(hdr); 1669 } 1670 return (size); 1671 } 1672 1673 static int 1674 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1675 { 1676 int ret; 1677 uint64_t csize; 1678 uint64_t lsize = HDR_GET_LSIZE(hdr); 1679 uint64_t psize = HDR_GET_PSIZE(hdr); 1680 void *tmpbuf = NULL; 1681 abd_t *abd = hdr->b_l1hdr.b_pabd; 1682 1683 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1684 ASSERT(HDR_AUTHENTICATED(hdr)); 1685 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1686 1687 /* 1688 * The MAC is calculated on the compressed data that is stored on disk. 1689 * However, if compressed arc is disabled we will only have the 1690 * decompressed data available to us now. Compress it into a temporary 1691 * abd so we can verify the MAC. The performance overhead of this will 1692 * be relatively low, since most objects in an encrypted objset will 1693 * be encrypted (instead of authenticated) anyway. 1694 */ 1695 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1696 !HDR_COMPRESSION_ENABLED(hdr)) { 1697 tmpbuf = zio_buf_alloc(lsize); 1698 abd = abd_get_from_buf(tmpbuf, lsize); 1699 abd_take_ownership_of_buf(abd, B_TRUE); 1700 1701 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1702 hdr->b_l1hdr.b_pabd, tmpbuf, lsize); 1703 ASSERT3U(csize, <=, psize); 1704 abd_zero_off(abd, csize, psize - csize); 1705 } 1706 1707 /* 1708 * Authentication is best effort. We authenticate whenever the key is 1709 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1710 */ 1711 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1712 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1713 ASSERT3U(lsize, ==, psize); 1714 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1715 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1716 } else { 1717 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1718 hdr->b_crypt_hdr.b_mac); 1719 } 1720 1721 if (ret == 0) 1722 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1723 else if (ret != ENOENT) 1724 goto error; 1725 1726 if (tmpbuf != NULL) 1727 abd_free(abd); 1728 1729 return (0); 1730 1731 error: 1732 if (tmpbuf != NULL) 1733 abd_free(abd); 1734 1735 return (ret); 1736 } 1737 1738 /* 1739 * This function will take a header that only has raw encrypted data in 1740 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1741 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1742 * also decompress the data. 1743 */ 1744 static int 1745 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1746 { 1747 int ret; 1748 abd_t *cabd = NULL; 1749 void *tmp = NULL; 1750 boolean_t no_crypt = B_FALSE; 1751 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1752 1753 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1754 ASSERT(HDR_ENCRYPTED(hdr)); 1755 1756 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT); 1757 1758 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1759 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1760 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1761 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1762 if (ret != 0) 1763 goto error; 1764 1765 if (no_crypt) { 1766 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1767 HDR_GET_PSIZE(hdr)); 1768 } 1769 1770 /* 1771 * If this header has disabled arc compression but the b_pabd is 1772 * compressed after decrypting it, we need to decompress the newly 1773 * decrypted data. 1774 */ 1775 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1776 !HDR_COMPRESSION_ENABLED(hdr)) { 1777 /* 1778 * We want to make sure that we are correctly honoring the 1779 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1780 * and then loan a buffer from it, rather than allocating a 1781 * linear buffer and wrapping it in an abd later. 1782 */ 1783 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, B_TRUE); 1784 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 1785 1786 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1787 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 1788 HDR_GET_LSIZE(hdr)); 1789 if (ret != 0) { 1790 abd_return_buf(cabd, tmp, arc_hdr_size(hdr)); 1791 goto error; 1792 } 1793 1794 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 1795 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1796 arc_hdr_size(hdr), hdr); 1797 hdr->b_l1hdr.b_pabd = cabd; 1798 } 1799 1800 return (0); 1801 1802 error: 1803 arc_hdr_free_pabd(hdr, B_FALSE); 1804 if (cabd != NULL) 1805 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1806 1807 return (ret); 1808 } 1809 1810 /* 1811 * This function is called during arc_buf_fill() to prepare the header's 1812 * abd plaintext pointer for use. This involves authenticated protected 1813 * data and decrypting encrypted data into the plaintext abd. 1814 */ 1815 static int 1816 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1817 const zbookmark_phys_t *zb, boolean_t noauth) 1818 { 1819 int ret; 1820 1821 ASSERT(HDR_PROTECTED(hdr)); 1822 1823 if (hash_lock != NULL) 1824 mutex_enter(hash_lock); 1825 1826 if (HDR_NOAUTH(hdr) && !noauth) { 1827 /* 1828 * The caller requested authenticated data but our data has 1829 * not been authenticated yet. Verify the MAC now if we can. 1830 */ 1831 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1832 if (ret != 0) 1833 goto error; 1834 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1835 /* 1836 * If we only have the encrypted version of the data, but the 1837 * unencrypted version was requested we take this opportunity 1838 * to store the decrypted version in the header for future use. 1839 */ 1840 ret = arc_hdr_decrypt(hdr, spa, zb); 1841 if (ret != 0) 1842 goto error; 1843 } 1844 1845 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1846 1847 if (hash_lock != NULL) 1848 mutex_exit(hash_lock); 1849 1850 return (0); 1851 1852 error: 1853 if (hash_lock != NULL) 1854 mutex_exit(hash_lock); 1855 1856 return (ret); 1857 } 1858 1859 /* 1860 * This function is used by the dbuf code to decrypt bonus buffers in place. 1861 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1862 * block, so we use the hash lock here to protect against concurrent calls to 1863 * arc_buf_fill(). 1864 */ 1865 /* ARGSUSED */ 1866 static void 1867 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock) 1868 { 1869 arc_buf_hdr_t *hdr = buf->b_hdr; 1870 1871 ASSERT(HDR_ENCRYPTED(hdr)); 1872 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1873 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1874 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1875 1876 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1877 arc_buf_size(buf)); 1878 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1879 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1880 hdr->b_crypt_hdr.b_ebufcnt -= 1; 1881 } 1882 1883 /* 1884 * Given a buf that has a data buffer attached to it, this function will 1885 * efficiently fill the buf with data of the specified compression setting from 1886 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1887 * are already sharing a data buf, no copy is performed. 1888 * 1889 * If the buf is marked as compressed but uncompressed data was requested, this 1890 * will allocate a new data buffer for the buf, remove that flag, and fill the 1891 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1892 * uncompressed data, and (since we haven't added support for it yet) if you 1893 * want compressed data your buf must already be marked as compressed and have 1894 * the correct-sized data buffer. 1895 */ 1896 static int 1897 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 1898 arc_fill_flags_t flags) 1899 { 1900 int error = 0; 1901 arc_buf_hdr_t *hdr = buf->b_hdr; 1902 boolean_t hdr_compressed = 1903 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 1904 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 1905 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 1906 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 1907 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 1908 1909 ASSERT3P(buf->b_data, !=, NULL); 1910 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 1911 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 1912 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 1913 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 1914 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 1915 IMPLY(encrypted, !ARC_BUF_SHARED(buf)); 1916 1917 /* 1918 * If the caller wanted encrypted data we just need to copy it from 1919 * b_rabd and potentially byteswap it. We won't be able to do any 1920 * further transforms on it. 1921 */ 1922 if (encrypted) { 1923 ASSERT(HDR_HAS_RABD(hdr)); 1924 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 1925 HDR_GET_PSIZE(hdr)); 1926 goto byteswap; 1927 } 1928 1929 /* 1930 * Adjust encrypted and authenticated headers to accomodate 1931 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 1932 * allowed to fail decryption due to keys not being loaded 1933 * without being marked as an IO error. 1934 */ 1935 if (HDR_PROTECTED(hdr)) { 1936 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 1937 zb, !!(flags & ARC_FILL_NOAUTH)); 1938 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 1939 return (error); 1940 } else if (error != 0) { 1941 if (hash_lock != NULL) 1942 mutex_enter(hash_lock); 1943 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 1944 if (hash_lock != NULL) 1945 mutex_exit(hash_lock); 1946 return (error); 1947 } 1948 } 1949 1950 /* 1951 * There is a special case here for dnode blocks which are 1952 * decrypting their bonus buffers. These blocks may request to 1953 * be decrypted in-place. This is necessary because there may 1954 * be many dnodes pointing into this buffer and there is 1955 * currently no method to synchronize replacing the backing 1956 * b_data buffer and updating all of the pointers. Here we use 1957 * the hash lock to ensure there are no races. If the need 1958 * arises for other types to be decrypted in-place, they must 1959 * add handling here as well. 1960 */ 1961 if ((flags & ARC_FILL_IN_PLACE) != 0) { 1962 ASSERT(!hdr_compressed); 1963 ASSERT(!compressed); 1964 ASSERT(!encrypted); 1965 1966 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 1967 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1968 1969 if (hash_lock != NULL) 1970 mutex_enter(hash_lock); 1971 arc_buf_untransform_in_place(buf, hash_lock); 1972 if (hash_lock != NULL) 1973 mutex_exit(hash_lock); 1974 1975 /* Compute the hdr's checksum if necessary */ 1976 arc_cksum_compute(buf); 1977 } 1978 1979 return (0); 1980 } 1981 1982 if (hdr_compressed == compressed) { 1983 if (!arc_buf_is_shared(buf)) { 1984 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 1985 arc_buf_size(buf)); 1986 } 1987 } else { 1988 ASSERT(hdr_compressed); 1989 ASSERT(!compressed); 1990 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 1991 1992 /* 1993 * If the buf is sharing its data with the hdr, unlink it and 1994 * allocate a new data buffer for the buf. 1995 */ 1996 if (arc_buf_is_shared(buf)) { 1997 ASSERT(ARC_BUF_COMPRESSED(buf)); 1998 1999 /* We need to give the buf its own b_data */ 2000 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2001 buf->b_data = 2002 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2003 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2004 2005 /* Previously overhead was 0; just add new overhead */ 2006 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2007 } else if (ARC_BUF_COMPRESSED(buf)) { 2008 /* We need to reallocate the buf's b_data */ 2009 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 2010 buf); 2011 buf->b_data = 2012 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2013 2014 /* We increased the size of b_data; update overhead */ 2015 ARCSTAT_INCR(arcstat_overhead_size, 2016 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 2017 } 2018 2019 /* 2020 * Regardless of the buf's previous compression settings, it 2021 * should not be compressed at the end of this function. 2022 */ 2023 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2024 2025 /* 2026 * Try copying the data from another buf which already has a 2027 * decompressed version. If that's not possible, it's time to 2028 * bite the bullet and decompress the data from the hdr. 2029 */ 2030 if (arc_buf_try_copy_decompressed_data(buf)) { 2031 /* Skip byteswapping and checksumming (already done) */ 2032 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL); 2033 return (0); 2034 } else { 2035 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2036 hdr->b_l1hdr.b_pabd, buf->b_data, 2037 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2038 2039 /* 2040 * Absent hardware errors or software bugs, this should 2041 * be impossible, but log it anyway so we can debug it. 2042 */ 2043 if (error != 0) { 2044 zfs_dbgmsg( 2045 "hdr %p, compress %d, psize %d, lsize %d", 2046 hdr, arc_hdr_get_compress(hdr), 2047 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2048 if (hash_lock != NULL) 2049 mutex_enter(hash_lock); 2050 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2051 if (hash_lock != NULL) 2052 mutex_exit(hash_lock); 2053 return (SET_ERROR(EIO)); 2054 } 2055 } 2056 } 2057 2058 byteswap: 2059 /* Byteswap the buf's data if necessary */ 2060 if (bswap != DMU_BSWAP_NUMFUNCS) { 2061 ASSERT(!HDR_SHARED_DATA(hdr)); 2062 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2063 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2064 } 2065 2066 /* Compute the hdr's checksum if necessary */ 2067 arc_cksum_compute(buf); 2068 2069 return (0); 2070 } 2071 2072 /* 2073 * If this function is being called to decrypt an encrypted buffer or verify an 2074 * authenticated one, the key must be loaded and a mapping must be made 2075 * available in the keystore via spa_keystore_create_mapping() or one of its 2076 * callers. 2077 */ 2078 int 2079 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2080 boolean_t in_place) 2081 { 2082 int ret; 2083 arc_fill_flags_t flags = 0; 2084 2085 if (in_place) 2086 flags |= ARC_FILL_IN_PLACE; 2087 2088 ret = arc_buf_fill(buf, spa, zb, flags); 2089 if (ret == ECKSUM) { 2090 /* 2091 * Convert authentication and decryption errors to EIO 2092 * (and generate an ereport) before leaving the ARC. 2093 */ 2094 ret = SET_ERROR(EIO); 2095 spa_log_error(spa, zb); 2096 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2097 spa, NULL, zb, NULL, 0, 0); 2098 } 2099 2100 return (ret); 2101 } 2102 2103 /* 2104 * Increment the amount of evictable space in the arc_state_t's refcount. 2105 * We account for the space used by the hdr and the arc buf individually 2106 * so that we can add and remove them from the refcount individually. 2107 */ 2108 static void 2109 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2110 { 2111 arc_buf_contents_t type = arc_buf_type(hdr); 2112 2113 ASSERT(HDR_HAS_L1HDR(hdr)); 2114 2115 if (GHOST_STATE(state)) { 2116 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2117 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2118 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2119 ASSERT(!HDR_HAS_RABD(hdr)); 2120 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2121 HDR_GET_LSIZE(hdr), hdr); 2122 return; 2123 } 2124 2125 ASSERT(!GHOST_STATE(state)); 2126 if (hdr->b_l1hdr.b_pabd != NULL) { 2127 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2128 arc_hdr_size(hdr), hdr); 2129 } 2130 if (HDR_HAS_RABD(hdr)) { 2131 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2132 HDR_GET_PSIZE(hdr), hdr); 2133 } 2134 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2135 buf = buf->b_next) { 2136 if (arc_buf_is_shared(buf)) 2137 continue; 2138 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2139 arc_buf_size(buf), buf); 2140 } 2141 } 2142 2143 /* 2144 * Decrement the amount of evictable space in the arc_state_t's refcount. 2145 * We account for the space used by the hdr and the arc buf individually 2146 * so that we can add and remove them from the refcount individually. 2147 */ 2148 static void 2149 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2150 { 2151 arc_buf_contents_t type = arc_buf_type(hdr); 2152 2153 ASSERT(HDR_HAS_L1HDR(hdr)); 2154 2155 if (GHOST_STATE(state)) { 2156 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2157 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2158 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2159 ASSERT(!HDR_HAS_RABD(hdr)); 2160 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2161 HDR_GET_LSIZE(hdr), hdr); 2162 return; 2163 } 2164 2165 ASSERT(!GHOST_STATE(state)); 2166 if (hdr->b_l1hdr.b_pabd != NULL) { 2167 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2168 arc_hdr_size(hdr), hdr); 2169 } 2170 if (HDR_HAS_RABD(hdr)) { 2171 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2172 HDR_GET_PSIZE(hdr), hdr); 2173 } 2174 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2175 buf = buf->b_next) { 2176 if (arc_buf_is_shared(buf)) 2177 continue; 2178 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2179 arc_buf_size(buf), buf); 2180 } 2181 } 2182 2183 /* 2184 * Add a reference to this hdr indicating that someone is actively 2185 * referencing that memory. When the refcount transitions from 0 to 1, 2186 * we remove it from the respective arc_state_t list to indicate that 2187 * it is not evictable. 2188 */ 2189 static void 2190 add_reference(arc_buf_hdr_t *hdr, void *tag) 2191 { 2192 ASSERT(HDR_HAS_L1HDR(hdr)); 2193 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2194 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2195 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2196 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2197 } 2198 2199 arc_state_t *state = hdr->b_l1hdr.b_state; 2200 2201 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2202 (state != arc_anon)) { 2203 /* We don't use the L2-only state list. */ 2204 if (state != arc_l2c_only) { 2205 multilist_remove(state->arcs_list[arc_buf_type(hdr)], 2206 hdr); 2207 arc_evictable_space_decrement(hdr, state); 2208 } 2209 /* remove the prefetch flag if we get a reference */ 2210 if (HDR_HAS_L2HDR(hdr)) 2211 l2arc_hdr_arcstats_decrement_state(hdr); 2212 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2213 if (HDR_HAS_L2HDR(hdr)) 2214 l2arc_hdr_arcstats_increment_state(hdr); 2215 } 2216 } 2217 2218 /* 2219 * Remove a reference from this hdr. When the reference transitions from 2220 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2221 * list making it eligible for eviction. 2222 */ 2223 static int 2224 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2225 { 2226 int cnt; 2227 arc_state_t *state = hdr->b_l1hdr.b_state; 2228 2229 ASSERT(HDR_HAS_L1HDR(hdr)); 2230 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2231 ASSERT(!GHOST_STATE(state)); 2232 2233 /* 2234 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2235 * check to prevent usage of the arc_l2c_only list. 2236 */ 2237 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2238 (state != arc_anon)) { 2239 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr); 2240 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2241 arc_evictable_space_increment(hdr, state); 2242 } 2243 return (cnt); 2244 } 2245 2246 /* 2247 * Move the supplied buffer to the indicated state. The hash lock 2248 * for the buffer must be held by the caller. 2249 */ 2250 static void 2251 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2252 kmutex_t *hash_lock) 2253 { 2254 arc_state_t *old_state; 2255 int64_t refcnt; 2256 uint32_t bufcnt; 2257 boolean_t update_old, update_new; 2258 arc_buf_contents_t buftype = arc_buf_type(hdr); 2259 2260 /* 2261 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2262 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2263 * L1 hdr doesn't always exist when we change state to arc_anon before 2264 * destroying a header, in which case reallocating to add the L1 hdr is 2265 * pointless. 2266 */ 2267 if (HDR_HAS_L1HDR(hdr)) { 2268 old_state = hdr->b_l1hdr.b_state; 2269 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2270 bufcnt = hdr->b_l1hdr.b_bufcnt; 2271 2272 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL || 2273 HDR_HAS_RABD(hdr)); 2274 } else { 2275 old_state = arc_l2c_only; 2276 refcnt = 0; 2277 bufcnt = 0; 2278 update_old = B_FALSE; 2279 } 2280 update_new = update_old; 2281 2282 ASSERT(MUTEX_HELD(hash_lock)); 2283 ASSERT3P(new_state, !=, old_state); 2284 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2285 ASSERT(old_state != arc_anon || bufcnt <= 1); 2286 2287 /* 2288 * If this buffer is evictable, transfer it from the 2289 * old state list to the new state list. 2290 */ 2291 if (refcnt == 0) { 2292 if (old_state != arc_anon && old_state != arc_l2c_only) { 2293 ASSERT(HDR_HAS_L1HDR(hdr)); 2294 multilist_remove(old_state->arcs_list[buftype], hdr); 2295 2296 if (GHOST_STATE(old_state)) { 2297 ASSERT0(bufcnt); 2298 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2299 update_old = B_TRUE; 2300 } 2301 arc_evictable_space_decrement(hdr, old_state); 2302 } 2303 if (new_state != arc_anon && new_state != arc_l2c_only) { 2304 2305 /* 2306 * An L1 header always exists here, since if we're 2307 * moving to some L1-cached state (i.e. not l2c_only or 2308 * anonymous), we realloc the header to add an L1hdr 2309 * beforehand. 2310 */ 2311 ASSERT(HDR_HAS_L1HDR(hdr)); 2312 multilist_insert(new_state->arcs_list[buftype], hdr); 2313 2314 if (GHOST_STATE(new_state)) { 2315 ASSERT0(bufcnt); 2316 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2317 update_new = B_TRUE; 2318 } 2319 arc_evictable_space_increment(hdr, new_state); 2320 } 2321 } 2322 2323 ASSERT(!HDR_EMPTY(hdr)); 2324 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2325 buf_hash_remove(hdr); 2326 2327 /* adjust state sizes (ignore arc_l2c_only) */ 2328 2329 if (update_new && new_state != arc_l2c_only) { 2330 ASSERT(HDR_HAS_L1HDR(hdr)); 2331 if (GHOST_STATE(new_state)) { 2332 ASSERT0(bufcnt); 2333 2334 /* 2335 * When moving a header to a ghost state, we first 2336 * remove all arc buffers. Thus, we'll have a 2337 * bufcnt of zero, and no arc buffer to use for 2338 * the reference. As a result, we use the arc 2339 * header pointer for the reference. 2340 */ 2341 (void) zfs_refcount_add_many(&new_state->arcs_size, 2342 HDR_GET_LSIZE(hdr), hdr); 2343 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2344 ASSERT(!HDR_HAS_RABD(hdr)); 2345 } else { 2346 uint32_t buffers = 0; 2347 2348 /* 2349 * Each individual buffer holds a unique reference, 2350 * thus we must remove each of these references one 2351 * at a time. 2352 */ 2353 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2354 buf = buf->b_next) { 2355 ASSERT3U(bufcnt, !=, 0); 2356 buffers++; 2357 2358 /* 2359 * When the arc_buf_t is sharing the data 2360 * block with the hdr, the owner of the 2361 * reference belongs to the hdr. Only 2362 * add to the refcount if the arc_buf_t is 2363 * not shared. 2364 */ 2365 if (arc_buf_is_shared(buf)) 2366 continue; 2367 2368 (void) zfs_refcount_add_many( 2369 &new_state->arcs_size, 2370 arc_buf_size(buf), buf); 2371 } 2372 ASSERT3U(bufcnt, ==, buffers); 2373 2374 if (hdr->b_l1hdr.b_pabd != NULL) { 2375 (void) zfs_refcount_add_many( 2376 &new_state->arcs_size, 2377 arc_hdr_size(hdr), hdr); 2378 } 2379 2380 if (HDR_HAS_RABD(hdr)) { 2381 (void) zfs_refcount_add_many( 2382 &new_state->arcs_size, 2383 HDR_GET_PSIZE(hdr), hdr); 2384 } 2385 } 2386 } 2387 2388 if (update_old && old_state != arc_l2c_only) { 2389 ASSERT(HDR_HAS_L1HDR(hdr)); 2390 if (GHOST_STATE(old_state)) { 2391 ASSERT0(bufcnt); 2392 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2393 ASSERT(!HDR_HAS_RABD(hdr)); 2394 2395 /* 2396 * When moving a header off of a ghost state, 2397 * the header will not contain any arc buffers. 2398 * We use the arc header pointer for the reference 2399 * which is exactly what we did when we put the 2400 * header on the ghost state. 2401 */ 2402 2403 (void) zfs_refcount_remove_many(&old_state->arcs_size, 2404 HDR_GET_LSIZE(hdr), hdr); 2405 } else { 2406 uint32_t buffers = 0; 2407 2408 /* 2409 * Each individual buffer holds a unique reference, 2410 * thus we must remove each of these references one 2411 * at a time. 2412 */ 2413 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2414 buf = buf->b_next) { 2415 ASSERT3U(bufcnt, !=, 0); 2416 buffers++; 2417 2418 /* 2419 * When the arc_buf_t is sharing the data 2420 * block with the hdr, the owner of the 2421 * reference belongs to the hdr. Only 2422 * add to the refcount if the arc_buf_t is 2423 * not shared. 2424 */ 2425 if (arc_buf_is_shared(buf)) 2426 continue; 2427 2428 (void) zfs_refcount_remove_many( 2429 &old_state->arcs_size, arc_buf_size(buf), 2430 buf); 2431 } 2432 ASSERT3U(bufcnt, ==, buffers); 2433 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2434 HDR_HAS_RABD(hdr)); 2435 2436 if (hdr->b_l1hdr.b_pabd != NULL) { 2437 (void) zfs_refcount_remove_many( 2438 &old_state->arcs_size, arc_hdr_size(hdr), 2439 hdr); 2440 } 2441 2442 if (HDR_HAS_RABD(hdr)) { 2443 (void) zfs_refcount_remove_many( 2444 &old_state->arcs_size, HDR_GET_PSIZE(hdr), 2445 hdr); 2446 } 2447 } 2448 } 2449 2450 if (HDR_HAS_L1HDR(hdr)) { 2451 hdr->b_l1hdr.b_state = new_state; 2452 2453 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) { 2454 l2arc_hdr_arcstats_decrement_state(hdr); 2455 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state; 2456 l2arc_hdr_arcstats_increment_state(hdr); 2457 } 2458 } 2459 2460 /* 2461 * L2 headers should never be on the L2 state list since they don't 2462 * have L1 headers allocated. 2463 */ 2464 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2465 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2466 } 2467 2468 void 2469 arc_space_consume(uint64_t space, arc_space_type_t type) 2470 { 2471 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2472 2473 switch (type) { 2474 case ARC_SPACE_DATA: 2475 aggsum_add(&astat_data_size, space); 2476 break; 2477 case ARC_SPACE_META: 2478 aggsum_add(&astat_metadata_size, space); 2479 break; 2480 case ARC_SPACE_OTHER: 2481 aggsum_add(&astat_other_size, space); 2482 break; 2483 case ARC_SPACE_HDRS: 2484 aggsum_add(&astat_hdr_size, space); 2485 break; 2486 case ARC_SPACE_L2HDRS: 2487 aggsum_add(&astat_l2_hdr_size, space); 2488 break; 2489 } 2490 2491 if (type != ARC_SPACE_DATA) 2492 aggsum_add(&arc_meta_used, space); 2493 2494 aggsum_add(&arc_size, space); 2495 } 2496 2497 void 2498 arc_space_return(uint64_t space, arc_space_type_t type) 2499 { 2500 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2501 2502 switch (type) { 2503 case ARC_SPACE_DATA: 2504 aggsum_add(&astat_data_size, -space); 2505 break; 2506 case ARC_SPACE_META: 2507 aggsum_add(&astat_metadata_size, -space); 2508 break; 2509 case ARC_SPACE_OTHER: 2510 aggsum_add(&astat_other_size, -space); 2511 break; 2512 case ARC_SPACE_HDRS: 2513 aggsum_add(&astat_hdr_size, -space); 2514 break; 2515 case ARC_SPACE_L2HDRS: 2516 aggsum_add(&astat_l2_hdr_size, -space); 2517 break; 2518 } 2519 2520 if (type != ARC_SPACE_DATA) { 2521 ASSERT(aggsum_compare(&arc_meta_used, space) >= 0); 2522 /* 2523 * We use the upper bound here rather than the precise value 2524 * because the arc_meta_max value doesn't need to be 2525 * precise. It's only consumed by humans via arcstats. 2526 */ 2527 if (arc_meta_max < aggsum_upper_bound(&arc_meta_used)) 2528 arc_meta_max = aggsum_upper_bound(&arc_meta_used); 2529 aggsum_add(&arc_meta_used, -space); 2530 } 2531 2532 ASSERT(aggsum_compare(&arc_size, space) >= 0); 2533 aggsum_add(&arc_size, -space); 2534 } 2535 2536 /* 2537 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2538 * with the hdr's b_pabd. 2539 */ 2540 static boolean_t 2541 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2542 { 2543 /* 2544 * The criteria for sharing a hdr's data are: 2545 * 1. the buffer is not encrypted 2546 * 2. the hdr's compression matches the buf's compression 2547 * 3. the hdr doesn't need to be byteswapped 2548 * 4. the hdr isn't already being shared 2549 * 5. the buf is either compressed or it is the last buf in the hdr list 2550 * 2551 * Criterion #5 maintains the invariant that shared uncompressed 2552 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2553 * might ask, "if a compressed buf is allocated first, won't that be the 2554 * last thing in the list?", but in that case it's impossible to create 2555 * a shared uncompressed buf anyway (because the hdr must be compressed 2556 * to have the compressed buf). You might also think that #3 is 2557 * sufficient to make this guarantee, however it's possible 2558 * (specifically in the rare L2ARC write race mentioned in 2559 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2560 * is sharable, but wasn't at the time of its allocation. Rather than 2561 * allow a new shared uncompressed buf to be created and then shuffle 2562 * the list around to make it the last element, this simply disallows 2563 * sharing if the new buf isn't the first to be added. 2564 */ 2565 ASSERT3P(buf->b_hdr, ==, hdr); 2566 boolean_t hdr_compressed = arc_hdr_get_compress(hdr) != 2567 ZIO_COMPRESS_OFF; 2568 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2569 return (!ARC_BUF_ENCRYPTED(buf) && 2570 buf_compressed == hdr_compressed && 2571 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2572 !HDR_SHARED_DATA(hdr) && 2573 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2574 } 2575 2576 /* 2577 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2578 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2579 * copy was made successfully, or an error code otherwise. 2580 */ 2581 static int 2582 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2583 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth, 2584 boolean_t fill, arc_buf_t **ret) 2585 { 2586 arc_buf_t *buf; 2587 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2588 2589 ASSERT(HDR_HAS_L1HDR(hdr)); 2590 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2591 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2592 hdr->b_type == ARC_BUFC_METADATA); 2593 ASSERT3P(ret, !=, NULL); 2594 ASSERT3P(*ret, ==, NULL); 2595 IMPLY(encrypted, compressed); 2596 2597 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2598 buf->b_hdr = hdr; 2599 buf->b_data = NULL; 2600 buf->b_next = hdr->b_l1hdr.b_buf; 2601 buf->b_flags = 0; 2602 2603 add_reference(hdr, tag); 2604 2605 /* 2606 * We're about to change the hdr's b_flags. We must either 2607 * hold the hash_lock or be undiscoverable. 2608 */ 2609 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2610 2611 /* 2612 * Only honor requests for compressed bufs if the hdr is actually 2613 * compressed. This must be overriden if the buffer is encrypted since 2614 * encrypted buffers cannot be decompressed. 2615 */ 2616 if (encrypted) { 2617 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2618 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2619 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2620 } else if (compressed && 2621 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2622 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2623 flags |= ARC_FILL_COMPRESSED; 2624 } 2625 2626 if (noauth) { 2627 ASSERT0(encrypted); 2628 flags |= ARC_FILL_NOAUTH; 2629 } 2630 2631 /* 2632 * If the hdr's data can be shared then we share the data buffer and 2633 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2634 * allocate a new buffer to store the buf's data. 2635 * 2636 * There are two additional restrictions here because we're sharing 2637 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2638 * actively involved in an L2ARC write, because if this buf is used by 2639 * an arc_write() then the hdr's data buffer will be released when the 2640 * write completes, even though the L2ARC write might still be using it. 2641 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2642 * need to be ABD-aware. 2643 */ 2644 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) && 2645 hdr->b_l1hdr.b_pabd != NULL && abd_is_linear(hdr->b_l1hdr.b_pabd); 2646 2647 /* Set up b_data and sharing */ 2648 if (can_share) { 2649 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2650 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2651 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2652 } else { 2653 buf->b_data = 2654 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2655 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2656 } 2657 VERIFY3P(buf->b_data, !=, NULL); 2658 2659 hdr->b_l1hdr.b_buf = buf; 2660 hdr->b_l1hdr.b_bufcnt += 1; 2661 if (encrypted) 2662 hdr->b_crypt_hdr.b_ebufcnt += 1; 2663 2664 /* 2665 * If the user wants the data from the hdr, we need to either copy or 2666 * decompress the data. 2667 */ 2668 if (fill) { 2669 ASSERT3P(zb, !=, NULL); 2670 return (arc_buf_fill(buf, spa, zb, flags)); 2671 } 2672 2673 return (0); 2674 } 2675 2676 static char *arc_onloan_tag = "onloan"; 2677 2678 static inline void 2679 arc_loaned_bytes_update(int64_t delta) 2680 { 2681 atomic_add_64(&arc_loaned_bytes, delta); 2682 2683 /* assert that it did not wrap around */ 2684 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2685 } 2686 2687 /* 2688 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2689 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2690 * buffers must be returned to the arc before they can be used by the DMU or 2691 * freed. 2692 */ 2693 arc_buf_t * 2694 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2695 { 2696 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2697 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2698 2699 arc_loaned_bytes_update(arc_buf_size(buf)); 2700 2701 return (buf); 2702 } 2703 2704 arc_buf_t * 2705 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2706 enum zio_compress compression_type) 2707 { 2708 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2709 psize, lsize, compression_type); 2710 2711 arc_loaned_bytes_update(arc_buf_size(buf)); 2712 2713 return (buf); 2714 } 2715 2716 arc_buf_t * 2717 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2718 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2719 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2720 enum zio_compress compression_type) 2721 { 2722 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2723 byteorder, salt, iv, mac, ot, psize, lsize, compression_type); 2724 2725 atomic_add_64(&arc_loaned_bytes, psize); 2726 return (buf); 2727 } 2728 2729 /* 2730 * Performance tuning of L2ARC persistence: 2731 * 2732 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 2733 * an L2ARC device (either at pool import or later) will attempt 2734 * to rebuild L2ARC buffer contents. 2735 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 2736 * whether log blocks are written to the L2ARC device. If the L2ARC 2737 * device is less than 1GB, the amount of data l2arc_evict() 2738 * evicts is significant compared to the amount of restored L2ARC 2739 * data. In this case do not write log blocks in L2ARC in order 2740 * not to waste space. 2741 */ 2742 int l2arc_rebuild_enabled = B_TRUE; 2743 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 2744 2745 /* L2ARC persistence rebuild control routines. */ 2746 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 2747 static void l2arc_dev_rebuild_start(l2arc_dev_t *dev); 2748 static int l2arc_rebuild(l2arc_dev_t *dev); 2749 2750 /* L2ARC persistence read I/O routines. */ 2751 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 2752 static int l2arc_log_blk_read(l2arc_dev_t *dev, 2753 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 2754 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 2755 zio_t *this_io, zio_t **next_io); 2756 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 2757 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 2758 static void l2arc_log_blk_fetch_abort(zio_t *zio); 2759 2760 /* L2ARC persistence block restoration routines. */ 2761 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 2762 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize); 2763 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 2764 l2arc_dev_t *dev); 2765 2766 /* L2ARC persistence write I/O routines. */ 2767 static void l2arc_dev_hdr_update(l2arc_dev_t *dev); 2768 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 2769 l2arc_write_callback_t *cb); 2770 2771 /* L2ARC persistence auxilliary routines. */ 2772 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 2773 const l2arc_log_blkptr_t *lbp); 2774 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 2775 const arc_buf_hdr_t *ab); 2776 boolean_t l2arc_range_check_overlap(uint64_t bottom, 2777 uint64_t top, uint64_t check); 2778 static void l2arc_blk_fetch_done(zio_t *zio); 2779 static inline uint64_t 2780 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 2781 2782 /* 2783 * Return a loaned arc buffer to the arc. 2784 */ 2785 void 2786 arc_return_buf(arc_buf_t *buf, void *tag) 2787 { 2788 arc_buf_hdr_t *hdr = buf->b_hdr; 2789 2790 ASSERT3P(buf->b_data, !=, NULL); 2791 ASSERT(HDR_HAS_L1HDR(hdr)); 2792 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2793 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2794 2795 arc_loaned_bytes_update(-arc_buf_size(buf)); 2796 } 2797 2798 /* Detach an arc_buf from a dbuf (tag) */ 2799 void 2800 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2801 { 2802 arc_buf_hdr_t *hdr = buf->b_hdr; 2803 2804 ASSERT3P(buf->b_data, !=, NULL); 2805 ASSERT(HDR_HAS_L1HDR(hdr)); 2806 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2807 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2808 2809 arc_loaned_bytes_update(arc_buf_size(buf)); 2810 } 2811 2812 static void 2813 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2814 { 2815 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2816 2817 df->l2df_abd = abd; 2818 df->l2df_size = size; 2819 df->l2df_type = type; 2820 mutex_enter(&l2arc_free_on_write_mtx); 2821 list_insert_head(l2arc_free_on_write, df); 2822 mutex_exit(&l2arc_free_on_write_mtx); 2823 } 2824 2825 static void 2826 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2827 { 2828 arc_state_t *state = hdr->b_l1hdr.b_state; 2829 arc_buf_contents_t type = arc_buf_type(hdr); 2830 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2831 2832 /* protected by hash lock, if in the hash table */ 2833 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2834 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2835 ASSERT(state != arc_anon && state != arc_l2c_only); 2836 2837 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2838 size, hdr); 2839 } 2840 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr); 2841 if (type == ARC_BUFC_METADATA) { 2842 arc_space_return(size, ARC_SPACE_META); 2843 } else { 2844 ASSERT(type == ARC_BUFC_DATA); 2845 arc_space_return(size, ARC_SPACE_DATA); 2846 } 2847 2848 if (free_rdata) { 2849 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2850 } else { 2851 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2852 } 2853 } 2854 2855 /* 2856 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2857 * data buffer, we transfer the refcount ownership to the hdr and update 2858 * the appropriate kstats. 2859 */ 2860 static void 2861 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2862 { 2863 /* LINTED */ 2864 arc_state_t *state = hdr->b_l1hdr.b_state; 2865 2866 ASSERT(arc_can_share(hdr, buf)); 2867 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2868 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2869 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2870 2871 /* 2872 * Start sharing the data buffer. We transfer the 2873 * refcount ownership to the hdr since it always owns 2874 * the refcount whenever an arc_buf_t is shared. 2875 */ 2876 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 2877 arc_hdr_size(hdr), buf, hdr); 2878 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2879 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 2880 HDR_ISTYPE_METADATA(hdr)); 2881 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2882 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2883 2884 /* 2885 * Since we've transferred ownership to the hdr we need 2886 * to increment its compressed and uncompressed kstats and 2887 * decrement the overhead size. 2888 */ 2889 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2890 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2891 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 2892 } 2893 2894 static void 2895 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2896 { 2897 /* LINTED */ 2898 arc_state_t *state = hdr->b_l1hdr.b_state; 2899 2900 ASSERT(arc_buf_is_shared(buf)); 2901 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2902 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2903 2904 /* 2905 * We are no longer sharing this buffer so we need 2906 * to transfer its ownership to the rightful owner. 2907 */ 2908 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 2909 arc_hdr_size(hdr), hdr, buf); 2910 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2911 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 2912 abd_put(hdr->b_l1hdr.b_pabd); 2913 hdr->b_l1hdr.b_pabd = NULL; 2914 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2915 2916 /* 2917 * Since the buffer is no longer shared between 2918 * the arc buf and the hdr, count it as overhead. 2919 */ 2920 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2921 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2922 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2923 } 2924 2925 /* 2926 * Remove an arc_buf_t from the hdr's buf list and return the last 2927 * arc_buf_t on the list. If no buffers remain on the list then return 2928 * NULL. 2929 */ 2930 static arc_buf_t * 2931 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2932 { 2933 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 2934 arc_buf_t *lastbuf = NULL; 2935 2936 ASSERT(HDR_HAS_L1HDR(hdr)); 2937 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2938 2939 /* 2940 * Remove the buf from the hdr list and locate the last 2941 * remaining buffer on the list. 2942 */ 2943 while (*bufp != NULL) { 2944 if (*bufp == buf) 2945 *bufp = buf->b_next; 2946 2947 /* 2948 * If we've removed a buffer in the middle of 2949 * the list then update the lastbuf and update 2950 * bufp. 2951 */ 2952 if (*bufp != NULL) { 2953 lastbuf = *bufp; 2954 bufp = &(*bufp)->b_next; 2955 } 2956 } 2957 buf->b_next = NULL; 2958 ASSERT3P(lastbuf, !=, buf); 2959 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 2960 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 2961 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 2962 2963 return (lastbuf); 2964 } 2965 2966 /* 2967 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's 2968 * list and free it. 2969 */ 2970 static void 2971 arc_buf_destroy_impl(arc_buf_t *buf) 2972 { 2973 arc_buf_hdr_t *hdr = buf->b_hdr; 2974 2975 /* 2976 * Free up the data associated with the buf but only if we're not 2977 * sharing this with the hdr. If we are sharing it with the hdr, the 2978 * hdr is responsible for doing the free. 2979 */ 2980 if (buf->b_data != NULL) { 2981 /* 2982 * We're about to change the hdr's b_flags. We must either 2983 * hold the hash_lock or be undiscoverable. 2984 */ 2985 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2986 2987 arc_cksum_verify(buf); 2988 arc_buf_unwatch(buf); 2989 2990 if (arc_buf_is_shared(buf)) { 2991 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2992 } else { 2993 uint64_t size = arc_buf_size(buf); 2994 arc_free_data_buf(hdr, buf->b_data, size, buf); 2995 ARCSTAT_INCR(arcstat_overhead_size, -size); 2996 } 2997 buf->b_data = NULL; 2998 2999 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3000 hdr->b_l1hdr.b_bufcnt -= 1; 3001 3002 if (ARC_BUF_ENCRYPTED(buf)) { 3003 hdr->b_crypt_hdr.b_ebufcnt -= 1; 3004 3005 /* 3006 * If we have no more encrypted buffers and we've 3007 * already gotten a copy of the decrypted data we can 3008 * free b_rabd to save some space. 3009 */ 3010 if (hdr->b_crypt_hdr.b_ebufcnt == 0 && 3011 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL && 3012 !HDR_IO_IN_PROGRESS(hdr)) { 3013 arc_hdr_free_pabd(hdr, B_TRUE); 3014 } 3015 } 3016 } 3017 3018 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 3019 3020 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 3021 /* 3022 * If the current arc_buf_t is sharing its data buffer with the 3023 * hdr, then reassign the hdr's b_pabd to share it with the new 3024 * buffer at the end of the list. The shared buffer is always 3025 * the last one on the hdr's buffer list. 3026 * 3027 * There is an equivalent case for compressed bufs, but since 3028 * they aren't guaranteed to be the last buf in the list and 3029 * that is an exceedingly rare case, we just allow that space be 3030 * wasted temporarily. We must also be careful not to share 3031 * encrypted buffers, since they cannot be shared. 3032 */ 3033 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 3034 /* Only one buf can be shared at once */ 3035 VERIFY(!arc_buf_is_shared(lastbuf)); 3036 /* hdr is uncompressed so can't have compressed buf */ 3037 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 3038 3039 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3040 arc_hdr_free_pabd(hdr, B_FALSE); 3041 3042 /* 3043 * We must setup a new shared block between the 3044 * last buffer and the hdr. The data would have 3045 * been allocated by the arc buf so we need to transfer 3046 * ownership to the hdr since it's now being shared. 3047 */ 3048 arc_share_buf(hdr, lastbuf); 3049 } 3050 } else if (HDR_SHARED_DATA(hdr)) { 3051 /* 3052 * Uncompressed shared buffers are always at the end 3053 * of the list. Compressed buffers don't have the 3054 * same requirements. This makes it hard to 3055 * simply assert that the lastbuf is shared so 3056 * we rely on the hdr's compression flags to determine 3057 * if we have a compressed, shared buffer. 3058 */ 3059 ASSERT3P(lastbuf, !=, NULL); 3060 ASSERT(arc_buf_is_shared(lastbuf) || 3061 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3062 } 3063 3064 /* 3065 * Free the checksum if we're removing the last uncompressed buf from 3066 * this hdr. 3067 */ 3068 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3069 arc_cksum_free(hdr); 3070 } 3071 3072 /* clean up the buf */ 3073 buf->b_hdr = NULL; 3074 kmem_cache_free(buf_cache, buf); 3075 } 3076 3077 static void 3078 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr, int alloc_flags) 3079 { 3080 uint64_t size; 3081 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3082 boolean_t do_adapt = ((alloc_flags & ARC_HDR_DO_ADAPT) != 0); 3083 3084 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3085 ASSERT(HDR_HAS_L1HDR(hdr)); 3086 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3087 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3088 3089 if (alloc_rdata) { 3090 size = HDR_GET_PSIZE(hdr); 3091 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3092 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3093 do_adapt); 3094 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3095 } else { 3096 size = arc_hdr_size(hdr); 3097 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3098 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3099 do_adapt); 3100 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3101 } 3102 3103 ARCSTAT_INCR(arcstat_compressed_size, size); 3104 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3105 } 3106 3107 static void 3108 arc_hdr_free_pabd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3109 { 3110 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3111 3112 ASSERT(HDR_HAS_L1HDR(hdr)); 3113 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3114 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3115 3116 3117 /* 3118 * If the hdr is currently being written to the l2arc then 3119 * we defer freeing the data by adding it to the l2arc_free_on_write 3120 * list. The l2arc will free the data once it's finished 3121 * writing it to the l2arc device. 3122 */ 3123 if (HDR_L2_WRITING(hdr)) { 3124 arc_hdr_free_on_write(hdr, free_rdata); 3125 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3126 } else if (free_rdata) { 3127 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3128 } else { 3129 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 3130 size, hdr); 3131 } 3132 3133 if (free_rdata) { 3134 hdr->b_crypt_hdr.b_rabd = NULL; 3135 } else { 3136 hdr->b_l1hdr.b_pabd = NULL; 3137 } 3138 3139 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3140 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3141 3142 ARCSTAT_INCR(arcstat_compressed_size, -size); 3143 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3144 } 3145 3146 static arc_buf_hdr_t * 3147 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3148 boolean_t protected, enum zio_compress compression_type, 3149 arc_buf_contents_t type, boolean_t alloc_rdata) 3150 { 3151 arc_buf_hdr_t *hdr; 3152 int flags = ARC_HDR_DO_ADAPT; 3153 3154 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3155 if (protected) { 3156 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE); 3157 } else { 3158 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3159 } 3160 flags |= alloc_rdata ? ARC_HDR_ALLOC_RDATA : 0; 3161 ASSERT(HDR_EMPTY(hdr)); 3162 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3163 ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL); 3164 HDR_SET_PSIZE(hdr, psize); 3165 HDR_SET_LSIZE(hdr, lsize); 3166 hdr->b_spa = spa; 3167 hdr->b_type = type; 3168 hdr->b_flags = 0; 3169 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3170 arc_hdr_set_compress(hdr, compression_type); 3171 if (protected) 3172 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3173 3174 hdr->b_l1hdr.b_state = arc_anon; 3175 hdr->b_l1hdr.b_arc_access = 0; 3176 hdr->b_l1hdr.b_bufcnt = 0; 3177 hdr->b_l1hdr.b_buf = NULL; 3178 3179 /* 3180 * Allocate the hdr's buffer. This will contain either 3181 * the compressed or uncompressed data depending on the block 3182 * it references and compressed arc enablement. 3183 */ 3184 arc_hdr_alloc_pabd(hdr, flags); 3185 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3186 3187 return (hdr); 3188 } 3189 3190 /* 3191 * Transition between the two allocation states for the arc_buf_hdr struct. 3192 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3193 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3194 * version is used when a cache buffer is only in the L2ARC in order to reduce 3195 * memory usage. 3196 */ 3197 static arc_buf_hdr_t * 3198 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3199 { 3200 ASSERT(HDR_HAS_L2HDR(hdr)); 3201 3202 arc_buf_hdr_t *nhdr; 3203 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3204 3205 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3206 (old == hdr_l2only_cache && new == hdr_full_cache)); 3207 3208 /* 3209 * if the caller wanted a new full header and the header is to be 3210 * encrypted we will actually allocate the header from the full crypt 3211 * cache instead. The same applies to freeing from the old cache. 3212 */ 3213 if (HDR_PROTECTED(hdr) && new == hdr_full_cache) 3214 new = hdr_full_crypt_cache; 3215 if (HDR_PROTECTED(hdr) && old == hdr_full_cache) 3216 old = hdr_full_crypt_cache; 3217 3218 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3219 3220 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3221 buf_hash_remove(hdr); 3222 3223 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 3224 3225 if (new == hdr_full_cache || new == hdr_full_crypt_cache) { 3226 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3227 /* 3228 * arc_access and arc_change_state need to be aware that a 3229 * header has just come out of L2ARC, so we set its state to 3230 * l2c_only even though it's about to change. 3231 */ 3232 nhdr->b_l1hdr.b_state = arc_l2c_only; 3233 3234 /* Verify previous threads set to NULL before freeing */ 3235 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3236 ASSERT(!HDR_HAS_RABD(hdr)); 3237 } else { 3238 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3239 ASSERT0(hdr->b_l1hdr.b_bufcnt); 3240 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3241 3242 /* 3243 * If we've reached here, We must have been called from 3244 * arc_evict_hdr(), as such we should have already been 3245 * removed from any ghost list we were previously on 3246 * (which protects us from racing with arc_evict_state), 3247 * thus no locking is needed during this check. 3248 */ 3249 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3250 3251 /* 3252 * A buffer must not be moved into the arc_l2c_only 3253 * state if it's not finished being written out to the 3254 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3255 * might try to be accessed, even though it was removed. 3256 */ 3257 VERIFY(!HDR_L2_WRITING(hdr)); 3258 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3259 ASSERT(!HDR_HAS_RABD(hdr)); 3260 3261 #ifdef ZFS_DEBUG 3262 if (hdr->b_l1hdr.b_thawed != NULL) { 3263 kmem_free(hdr->b_l1hdr.b_thawed, 1); 3264 hdr->b_l1hdr.b_thawed = NULL; 3265 } 3266 #endif 3267 3268 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3269 } 3270 /* 3271 * The header has been reallocated so we need to re-insert it into any 3272 * lists it was on. 3273 */ 3274 (void) buf_hash_insert(nhdr, NULL); 3275 3276 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3277 3278 mutex_enter(&dev->l2ad_mtx); 3279 3280 /* 3281 * We must place the realloc'ed header back into the list at 3282 * the same spot. Otherwise, if it's placed earlier in the list, 3283 * l2arc_write_buffers() could find it during the function's 3284 * write phase, and try to write it out to the l2arc. 3285 */ 3286 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3287 list_remove(&dev->l2ad_buflist, hdr); 3288 3289 mutex_exit(&dev->l2ad_mtx); 3290 3291 /* 3292 * Since we're using the pointer address as the tag when 3293 * incrementing and decrementing the l2ad_alloc refcount, we 3294 * must remove the old pointer (that we're about to destroy) and 3295 * add the new pointer to the refcount. Otherwise we'd remove 3296 * the wrong pointer address when calling arc_hdr_destroy() later. 3297 */ 3298 3299 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3300 hdr); 3301 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), 3302 nhdr); 3303 3304 buf_discard_identity(hdr); 3305 kmem_cache_free(old, hdr); 3306 3307 return (nhdr); 3308 } 3309 3310 /* 3311 * This function allows an L1 header to be reallocated as a crypt 3312 * header and vice versa. If we are going to a crypt header, the 3313 * new fields will be zeroed out. 3314 */ 3315 static arc_buf_hdr_t * 3316 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt) 3317 { 3318 arc_buf_hdr_t *nhdr; 3319 arc_buf_t *buf; 3320 kmem_cache_t *ncache, *ocache; 3321 3322 ASSERT(HDR_HAS_L1HDR(hdr)); 3323 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt); 3324 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3325 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3326 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node)); 3327 ASSERT3P(hdr->b_hash_next, ==, NULL); 3328 3329 if (need_crypt) { 3330 ncache = hdr_full_crypt_cache; 3331 ocache = hdr_full_cache; 3332 } else { 3333 ncache = hdr_full_cache; 3334 ocache = hdr_full_crypt_cache; 3335 } 3336 3337 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE); 3338 3339 /* 3340 * Copy all members that aren't locks or condvars to the new header. 3341 * No lists are pointing to us (as we asserted above), so we don't 3342 * need to worry about the list nodes. 3343 */ 3344 nhdr->b_dva = hdr->b_dva; 3345 nhdr->b_birth = hdr->b_birth; 3346 nhdr->b_type = hdr->b_type; 3347 nhdr->b_flags = hdr->b_flags; 3348 nhdr->b_psize = hdr->b_psize; 3349 nhdr->b_lsize = hdr->b_lsize; 3350 nhdr->b_spa = hdr->b_spa; 3351 nhdr->b_l2hdr.b_dev = hdr->b_l2hdr.b_dev; 3352 nhdr->b_l2hdr.b_daddr = hdr->b_l2hdr.b_daddr; 3353 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum; 3354 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt; 3355 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap; 3356 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state; 3357 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access; 3358 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb; 3359 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd; 3360 #ifdef ZFS_DEBUG 3361 if (hdr->b_l1hdr.b_thawed != NULL) { 3362 nhdr->b_l1hdr.b_thawed = hdr->b_l1hdr.b_thawed; 3363 hdr->b_l1hdr.b_thawed = NULL; 3364 } 3365 #endif 3366 3367 /* 3368 * This refcount_add() exists only to ensure that the individual 3369 * arc buffers always point to a header that is referenced, avoiding 3370 * a small race condition that could trigger ASSERTs. 3371 */ 3372 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG); 3373 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf; 3374 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { 3375 mutex_enter(&buf->b_evict_lock); 3376 buf->b_hdr = nhdr; 3377 mutex_exit(&buf->b_evict_lock); 3378 } 3379 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt); 3380 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG); 3381 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3382 3383 if (need_crypt) { 3384 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED); 3385 } else { 3386 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED); 3387 } 3388 3389 /* unset all members of the original hdr */ 3390 bzero(&hdr->b_dva, sizeof (dva_t)); 3391 hdr->b_birth = 0; 3392 hdr->b_type = ARC_BUFC_INVALID; 3393 hdr->b_flags = 0; 3394 hdr->b_psize = 0; 3395 hdr->b_lsize = 0; 3396 hdr->b_spa = 0; 3397 hdr->b_l2hdr.b_dev = NULL; 3398 hdr->b_l2hdr.b_daddr = 0; 3399 hdr->b_l1hdr.b_freeze_cksum = NULL; 3400 hdr->b_l1hdr.b_buf = NULL; 3401 hdr->b_l1hdr.b_bufcnt = 0; 3402 hdr->b_l1hdr.b_byteswap = 0; 3403 hdr->b_l1hdr.b_state = NULL; 3404 hdr->b_l1hdr.b_arc_access = 0; 3405 hdr->b_l1hdr.b_acb = NULL; 3406 hdr->b_l1hdr.b_pabd = NULL; 3407 3408 if (ocache == hdr_full_crypt_cache) { 3409 ASSERT(!HDR_HAS_RABD(hdr)); 3410 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE; 3411 hdr->b_crypt_hdr.b_ebufcnt = 0; 3412 hdr->b_crypt_hdr.b_dsobj = 0; 3413 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3414 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3415 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3416 } 3417 3418 buf_discard_identity(hdr); 3419 kmem_cache_free(ocache, hdr); 3420 3421 return (nhdr); 3422 } 3423 3424 /* 3425 * This function is used by the send / receive code to convert a newly 3426 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3427 * is also used to allow the root objset block to be uupdated without altering 3428 * its embedded MACs. Both block types will always be uncompressed so we do not 3429 * have to worry about compression type or psize. 3430 */ 3431 void 3432 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3433 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3434 const uint8_t *mac) 3435 { 3436 arc_buf_hdr_t *hdr = buf->b_hdr; 3437 3438 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3439 ASSERT(HDR_HAS_L1HDR(hdr)); 3440 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3441 3442 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3443 if (!HDR_PROTECTED(hdr)) 3444 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE); 3445 hdr->b_crypt_hdr.b_dsobj = dsobj; 3446 hdr->b_crypt_hdr.b_ot = ot; 3447 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3448 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3449 if (!arc_hdr_has_uncompressed_buf(hdr)) 3450 arc_cksum_free(hdr); 3451 3452 if (salt != NULL) 3453 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3454 if (iv != NULL) 3455 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3456 if (mac != NULL) 3457 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3458 } 3459 3460 /* 3461 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3462 * The buf is returned thawed since we expect the consumer to modify it. 3463 */ 3464 arc_buf_t * 3465 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3466 { 3467 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3468 B_FALSE, ZIO_COMPRESS_OFF, type, B_FALSE); 3469 3470 arc_buf_t *buf = NULL; 3471 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3472 B_FALSE, B_FALSE, &buf)); 3473 arc_buf_thaw(buf); 3474 3475 return (buf); 3476 } 3477 3478 /* 3479 * Allocates an ARC buf header that's in an evicted & L2-cached state. 3480 * This is used during l2arc reconstruction to make empty ARC buffers 3481 * which circumvent the regular disk->arc->l2arc path and instead come 3482 * into being in the reverse order, i.e. l2arc->arc. 3483 */ 3484 arc_buf_hdr_t * 3485 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 3486 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, 3487 enum zio_compress compress, boolean_t protected, 3488 boolean_t prefetch, arc_state_type_t arcs_state) 3489 { 3490 arc_buf_hdr_t *hdr; 3491 3492 ASSERT(size != 0); 3493 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 3494 hdr->b_birth = birth; 3495 hdr->b_type = type; 3496 hdr->b_flags = 0; 3497 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 3498 HDR_SET_LSIZE(hdr, size); 3499 HDR_SET_PSIZE(hdr, psize); 3500 arc_hdr_set_compress(hdr, compress); 3501 if (protected) 3502 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3503 if (prefetch) 3504 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 3505 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 3506 3507 hdr->b_dva = dva; 3508 3509 hdr->b_l2hdr.b_dev = dev; 3510 hdr->b_l2hdr.b_daddr = daddr; 3511 hdr->b_l2hdr.b_arcs_state = arcs_state; 3512 3513 return (hdr); 3514 } 3515 3516 /* 3517 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3518 * for bufs containing metadata. 3519 */ 3520 arc_buf_t * 3521 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3522 enum zio_compress compression_type) 3523 { 3524 ASSERT3U(lsize, >, 0); 3525 ASSERT3U(lsize, >=, psize); 3526 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3527 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3528 3529 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3530 B_FALSE, compression_type, ARC_BUFC_DATA, B_FALSE); 3531 3532 arc_buf_t *buf = NULL; 3533 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3534 B_TRUE, B_FALSE, B_FALSE, &buf)); 3535 arc_buf_thaw(buf); 3536 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3537 3538 if (!arc_buf_is_shared(buf)) { 3539 /* 3540 * To ensure that the hdr has the correct data in it if we call 3541 * arc_untransform() on this buf before it's been written to 3542 * disk, it's easiest if we just set up sharing between the 3543 * buf and the hdr. 3544 */ 3545 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd)); 3546 arc_hdr_free_pabd(hdr, B_FALSE); 3547 arc_share_buf(hdr, buf); 3548 } 3549 3550 return (buf); 3551 } 3552 3553 arc_buf_t * 3554 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder, 3555 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 3556 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3557 enum zio_compress compression_type) 3558 { 3559 arc_buf_hdr_t *hdr; 3560 arc_buf_t *buf; 3561 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3562 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3563 3564 ASSERT3U(lsize, >, 0); 3565 ASSERT3U(lsize, >=, psize); 3566 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3567 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3568 3569 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3570 compression_type, type, B_TRUE); 3571 3572 hdr->b_crypt_hdr.b_dsobj = dsobj; 3573 hdr->b_crypt_hdr.b_ot = ot; 3574 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3575 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3576 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3577 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3578 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3579 3580 /* 3581 * This buffer will be considered encrypted even if the ot is not an 3582 * encrypted type. It will become authenticated instead in 3583 * arc_write_ready(). 3584 */ 3585 buf = NULL; 3586 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3587 B_FALSE, B_FALSE, &buf)); 3588 arc_buf_thaw(buf); 3589 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3590 3591 return (buf); 3592 } 3593 3594 static void 3595 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 3596 boolean_t state_only) 3597 { 3598 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3599 l2arc_dev_t *dev = l2hdr->b_dev; 3600 uint64_t lsize = HDR_GET_LSIZE(hdr); 3601 uint64_t psize = HDR_GET_PSIZE(hdr); 3602 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3603 arc_buf_contents_t type = hdr->b_type; 3604 int64_t lsize_s; 3605 int64_t psize_s; 3606 int64_t asize_s; 3607 3608 if (incr) { 3609 lsize_s = lsize; 3610 psize_s = psize; 3611 asize_s = asize; 3612 } else { 3613 lsize_s = -lsize; 3614 psize_s = -psize; 3615 asize_s = -asize; 3616 } 3617 3618 /* If the buffer is a prefetch, count it as such. */ 3619 if (HDR_PREFETCH(hdr)) { 3620 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s); 3621 } else { 3622 /* 3623 * We use the value stored in the L2 header upon initial 3624 * caching in L2ARC. This value will be updated in case 3625 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC 3626 * metadata (log entry) cannot currently be updated. Having 3627 * the ARC state in the L2 header solves the problem of a 3628 * possibly absent L1 header (apparent in buffers restored 3629 * from persistent L2ARC). 3630 */ 3631 switch (hdr->b_l2hdr.b_arcs_state) { 3632 case ARC_STATE_MRU_GHOST: 3633 case ARC_STATE_MRU: 3634 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s); 3635 break; 3636 case ARC_STATE_MFU_GHOST: 3637 case ARC_STATE_MFU: 3638 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s); 3639 break; 3640 default: 3641 break; 3642 } 3643 } 3644 3645 if (state_only) 3646 return; 3647 3648 ARCSTAT_INCR(arcstat_l2_psize, psize_s); 3649 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s); 3650 3651 switch (type) { 3652 case ARC_BUFC_DATA: 3653 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s); 3654 break; 3655 case ARC_BUFC_METADATA: 3656 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s); 3657 break; 3658 default: 3659 break; 3660 } 3661 } 3662 3663 3664 static void 3665 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3666 { 3667 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3668 l2arc_dev_t *dev = l2hdr->b_dev; 3669 uint64_t psize = HDR_GET_PSIZE(hdr); 3670 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3671 3672 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3673 ASSERT(HDR_HAS_L2HDR(hdr)); 3674 3675 list_remove(&dev->l2ad_buflist, hdr); 3676 3677 l2arc_hdr_arcstats_decrement(hdr); 3678 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3679 3680 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3681 hdr); 3682 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3683 } 3684 3685 static void 3686 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3687 { 3688 if (HDR_HAS_L1HDR(hdr)) { 3689 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3690 hdr->b_l1hdr.b_bufcnt > 0); 3691 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3692 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3693 } 3694 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3695 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3696 3697 if (HDR_HAS_L2HDR(hdr)) { 3698 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3699 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3700 3701 if (!buflist_held) 3702 mutex_enter(&dev->l2ad_mtx); 3703 3704 /* 3705 * Even though we checked this conditional above, we 3706 * need to check this again now that we have the 3707 * l2ad_mtx. This is because we could be racing with 3708 * another thread calling l2arc_evict() which might have 3709 * destroyed this header's L2 portion as we were waiting 3710 * to acquire the l2ad_mtx. If that happens, we don't 3711 * want to re-destroy the header's L2 portion. 3712 */ 3713 if (HDR_HAS_L2HDR(hdr)) 3714 arc_hdr_l2hdr_destroy(hdr); 3715 3716 if (!buflist_held) 3717 mutex_exit(&dev->l2ad_mtx); 3718 } 3719 3720 /* 3721 * The header's identity can only be safely discarded once it is no 3722 * longer discoverable. This requires removing it from the hash table 3723 * and the l2arc header list. After this point the hash lock can not 3724 * be used to protect the header. 3725 */ 3726 if (!HDR_EMPTY(hdr)) 3727 buf_discard_identity(hdr); 3728 3729 if (HDR_HAS_L1HDR(hdr)) { 3730 arc_cksum_free(hdr); 3731 3732 while (hdr->b_l1hdr.b_buf != NULL) 3733 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3734 3735 #ifdef ZFS_DEBUG 3736 if (hdr->b_l1hdr.b_thawed != NULL) { 3737 kmem_free(hdr->b_l1hdr.b_thawed, 1); 3738 hdr->b_l1hdr.b_thawed = NULL; 3739 } 3740 #endif 3741 3742 if (hdr->b_l1hdr.b_pabd != NULL) 3743 arc_hdr_free_pabd(hdr, B_FALSE); 3744 3745 if (HDR_HAS_RABD(hdr)) 3746 arc_hdr_free_pabd(hdr, B_TRUE); 3747 } 3748 3749 ASSERT3P(hdr->b_hash_next, ==, NULL); 3750 if (HDR_HAS_L1HDR(hdr)) { 3751 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3752 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3753 3754 if (!HDR_PROTECTED(hdr)) { 3755 kmem_cache_free(hdr_full_cache, hdr); 3756 } else { 3757 kmem_cache_free(hdr_full_crypt_cache, hdr); 3758 } 3759 } else { 3760 kmem_cache_free(hdr_l2only_cache, hdr); 3761 } 3762 } 3763 3764 void 3765 arc_buf_destroy(arc_buf_t *buf, void* tag) 3766 { 3767 arc_buf_hdr_t *hdr = buf->b_hdr; 3768 3769 if (hdr->b_l1hdr.b_state == arc_anon) { 3770 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3771 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3772 VERIFY0(remove_reference(hdr, NULL, tag)); 3773 arc_hdr_destroy(hdr); 3774 return; 3775 } 3776 3777 kmutex_t *hash_lock = HDR_LOCK(hdr); 3778 mutex_enter(hash_lock); 3779 3780 ASSERT3P(hdr, ==, buf->b_hdr); 3781 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3782 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3783 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3784 ASSERT3P(buf->b_data, !=, NULL); 3785 3786 (void) remove_reference(hdr, hash_lock, tag); 3787 arc_buf_destroy_impl(buf); 3788 mutex_exit(hash_lock); 3789 } 3790 3791 /* 3792 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3793 * state of the header is dependent on its state prior to entering this 3794 * function. The following transitions are possible: 3795 * 3796 * - arc_mru -> arc_mru_ghost 3797 * - arc_mfu -> arc_mfu_ghost 3798 * - arc_mru_ghost -> arc_l2c_only 3799 * - arc_mru_ghost -> deleted 3800 * - arc_mfu_ghost -> arc_l2c_only 3801 * - arc_mfu_ghost -> deleted 3802 */ 3803 static int64_t 3804 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3805 { 3806 arc_state_t *evicted_state, *state; 3807 int64_t bytes_evicted = 0; 3808 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3809 zfs_arc_min_prescient_prefetch_ms : zfs_arc_min_prefetch_ms; 3810 3811 ASSERT(MUTEX_HELD(hash_lock)); 3812 ASSERT(HDR_HAS_L1HDR(hdr)); 3813 3814 state = hdr->b_l1hdr.b_state; 3815 if (GHOST_STATE(state)) { 3816 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3817 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3818 3819 /* 3820 * l2arc_write_buffers() relies on a header's L1 portion 3821 * (i.e. its b_pabd field) during its write phase. 3822 * Thus, we cannot push a header onto the arc_l2c_only 3823 * state (removing its L1 piece) until the header is 3824 * done being written to the l2arc. 3825 */ 3826 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3827 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3828 return (bytes_evicted); 3829 } 3830 3831 ARCSTAT_BUMP(arcstat_deleted); 3832 bytes_evicted += HDR_GET_LSIZE(hdr); 3833 3834 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3835 3836 if (HDR_HAS_L2HDR(hdr)) { 3837 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3838 ASSERT(!HDR_HAS_RABD(hdr)); 3839 /* 3840 * This buffer is cached on the 2nd Level ARC; 3841 * don't destroy the header. 3842 */ 3843 arc_change_state(arc_l2c_only, hdr, hash_lock); 3844 /* 3845 * dropping from L1+L2 cached to L2-only, 3846 * realloc to remove the L1 header. 3847 */ 3848 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3849 hdr_l2only_cache); 3850 } else { 3851 arc_change_state(arc_anon, hdr, hash_lock); 3852 arc_hdr_destroy(hdr); 3853 } 3854 return (bytes_evicted); 3855 } 3856 3857 ASSERT(state == arc_mru || state == arc_mfu); 3858 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3859 3860 /* prefetch buffers have a minimum lifespan */ 3861 if (HDR_IO_IN_PROGRESS(hdr) || 3862 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3863 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < min_lifetime * hz)) { 3864 ARCSTAT_BUMP(arcstat_evict_skip); 3865 return (bytes_evicted); 3866 } 3867 3868 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3869 while (hdr->b_l1hdr.b_buf) { 3870 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3871 if (!mutex_tryenter(&buf->b_evict_lock)) { 3872 ARCSTAT_BUMP(arcstat_mutex_miss); 3873 break; 3874 } 3875 if (buf->b_data != NULL) 3876 bytes_evicted += HDR_GET_LSIZE(hdr); 3877 mutex_exit(&buf->b_evict_lock); 3878 arc_buf_destroy_impl(buf); 3879 } 3880 3881 if (HDR_HAS_L2HDR(hdr)) { 3882 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3883 } else { 3884 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3885 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3886 HDR_GET_LSIZE(hdr)); 3887 3888 switch (state->arcs_state) { 3889 case ARC_STATE_MRU: 3890 ARCSTAT_INCR( 3891 arcstat_evict_l2_eligible_mru, 3892 HDR_GET_LSIZE(hdr)); 3893 break; 3894 case ARC_STATE_MFU: 3895 ARCSTAT_INCR( 3896 arcstat_evict_l2_eligible_mfu, 3897 HDR_GET_LSIZE(hdr)); 3898 break; 3899 default: 3900 break; 3901 } 3902 } else { 3903 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3904 HDR_GET_LSIZE(hdr)); 3905 } 3906 } 3907 3908 if (hdr->b_l1hdr.b_bufcnt == 0) { 3909 arc_cksum_free(hdr); 3910 3911 bytes_evicted += arc_hdr_size(hdr); 3912 3913 /* 3914 * If this hdr is being evicted and has a compressed 3915 * buffer then we discard it here before we change states. 3916 * This ensures that the accounting is updated correctly 3917 * in arc_free_data_impl(). 3918 */ 3919 if (hdr->b_l1hdr.b_pabd != NULL) 3920 arc_hdr_free_pabd(hdr, B_FALSE); 3921 3922 if (HDR_HAS_RABD(hdr)) 3923 arc_hdr_free_pabd(hdr, B_TRUE); 3924 3925 arc_change_state(evicted_state, hdr, hash_lock); 3926 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3927 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 3928 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3929 } 3930 3931 return (bytes_evicted); 3932 } 3933 3934 static uint64_t 3935 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 3936 uint64_t spa, int64_t bytes) 3937 { 3938 multilist_sublist_t *mls; 3939 uint64_t bytes_evicted = 0; 3940 arc_buf_hdr_t *hdr; 3941 kmutex_t *hash_lock; 3942 int evict_count = 0; 3943 3944 ASSERT3P(marker, !=, NULL); 3945 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3946 3947 mls = multilist_sublist_lock(ml, idx); 3948 3949 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 3950 hdr = multilist_sublist_prev(mls, marker)) { 3951 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 3952 (evict_count >= zfs_arc_evict_batch_limit)) 3953 break; 3954 3955 /* 3956 * To keep our iteration location, move the marker 3957 * forward. Since we're not holding hdr's hash lock, we 3958 * must be very careful and not remove 'hdr' from the 3959 * sublist. Otherwise, other consumers might mistake the 3960 * 'hdr' as not being on a sublist when they call the 3961 * multilist_link_active() function (they all rely on 3962 * the hash lock protecting concurrent insertions and 3963 * removals). multilist_sublist_move_forward() was 3964 * specifically implemented to ensure this is the case 3965 * (only 'marker' will be removed and re-inserted). 3966 */ 3967 multilist_sublist_move_forward(mls, marker); 3968 3969 /* 3970 * The only case where the b_spa field should ever be 3971 * zero, is the marker headers inserted by 3972 * arc_evict_state(). It's possible for multiple threads 3973 * to be calling arc_evict_state() concurrently (e.g. 3974 * dsl_pool_close() and zio_inject_fault()), so we must 3975 * skip any markers we see from these other threads. 3976 */ 3977 if (hdr->b_spa == 0) 3978 continue; 3979 3980 /* we're only interested in evicting buffers of a certain spa */ 3981 if (spa != 0 && hdr->b_spa != spa) { 3982 ARCSTAT_BUMP(arcstat_evict_skip); 3983 continue; 3984 } 3985 3986 hash_lock = HDR_LOCK(hdr); 3987 3988 /* 3989 * We aren't calling this function from any code path 3990 * that would already be holding a hash lock, so we're 3991 * asserting on this assumption to be defensive in case 3992 * this ever changes. Without this check, it would be 3993 * possible to incorrectly increment arcstat_mutex_miss 3994 * below (e.g. if the code changed such that we called 3995 * this function with a hash lock held). 3996 */ 3997 ASSERT(!MUTEX_HELD(hash_lock)); 3998 3999 if (mutex_tryenter(hash_lock)) { 4000 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 4001 mutex_exit(hash_lock); 4002 4003 bytes_evicted += evicted; 4004 4005 /* 4006 * If evicted is zero, arc_evict_hdr() must have 4007 * decided to skip this header, don't increment 4008 * evict_count in this case. 4009 */ 4010 if (evicted != 0) 4011 evict_count++; 4012 4013 /* 4014 * If arc_size isn't overflowing, signal any 4015 * threads that might happen to be waiting. 4016 * 4017 * For each header evicted, we wake up a single 4018 * thread. If we used cv_broadcast, we could 4019 * wake up "too many" threads causing arc_size 4020 * to significantly overflow arc_c; since 4021 * arc_get_data_impl() doesn't check for overflow 4022 * when it's woken up (it doesn't because it's 4023 * possible for the ARC to be overflowing while 4024 * full of un-evictable buffers, and the 4025 * function should proceed in this case). 4026 * 4027 * If threads are left sleeping, due to not 4028 * using cv_broadcast here, they will be woken 4029 * up via cv_broadcast in arc_adjust_cb() just 4030 * before arc_adjust_zthr sleeps. 4031 */ 4032 mutex_enter(&arc_adjust_lock); 4033 if (!arc_is_overflowing()) 4034 cv_signal(&arc_adjust_waiters_cv); 4035 mutex_exit(&arc_adjust_lock); 4036 } else { 4037 ARCSTAT_BUMP(arcstat_mutex_miss); 4038 } 4039 } 4040 4041 multilist_sublist_unlock(mls); 4042 4043 return (bytes_evicted); 4044 } 4045 4046 /* 4047 * Evict buffers from the given arc state, until we've removed the 4048 * specified number of bytes. Move the removed buffers to the 4049 * appropriate evict state. 4050 * 4051 * This function makes a "best effort". It skips over any buffers 4052 * it can't get a hash_lock on, and so, may not catch all candidates. 4053 * It may also return without evicting as much space as requested. 4054 * 4055 * If bytes is specified using the special value ARC_EVICT_ALL, this 4056 * will evict all available (i.e. unlocked and evictable) buffers from 4057 * the given arc state; which is used by arc_flush(). 4058 */ 4059 static uint64_t 4060 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 4061 arc_buf_contents_t type) 4062 { 4063 uint64_t total_evicted = 0; 4064 multilist_t *ml = state->arcs_list[type]; 4065 int num_sublists; 4066 arc_buf_hdr_t **markers; 4067 4068 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 4069 4070 num_sublists = multilist_get_num_sublists(ml); 4071 4072 /* 4073 * If we've tried to evict from each sublist, made some 4074 * progress, but still have not hit the target number of bytes 4075 * to evict, we want to keep trying. The markers allow us to 4076 * pick up where we left off for each individual sublist, rather 4077 * than starting from the tail each time. 4078 */ 4079 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 4080 for (int i = 0; i < num_sublists; i++) { 4081 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4082 4083 /* 4084 * A b_spa of 0 is used to indicate that this header is 4085 * a marker. This fact is used in arc_adjust_type() and 4086 * arc_evict_state_impl(). 4087 */ 4088 markers[i]->b_spa = 0; 4089 4090 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4091 multilist_sublist_insert_tail(mls, markers[i]); 4092 multilist_sublist_unlock(mls); 4093 } 4094 4095 /* 4096 * While we haven't hit our target number of bytes to evict, or 4097 * we're evicting all available buffers. 4098 */ 4099 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 4100 /* 4101 * Start eviction using a randomly selected sublist, 4102 * this is to try and evenly balance eviction across all 4103 * sublists. Always starting at the same sublist 4104 * (e.g. index 0) would cause evictions to favor certain 4105 * sublists over others. 4106 */ 4107 int sublist_idx = multilist_get_random_index(ml); 4108 uint64_t scan_evicted = 0; 4109 4110 for (int i = 0; i < num_sublists; i++) { 4111 uint64_t bytes_remaining; 4112 uint64_t bytes_evicted; 4113 4114 if (bytes == ARC_EVICT_ALL) 4115 bytes_remaining = ARC_EVICT_ALL; 4116 else if (total_evicted < bytes) 4117 bytes_remaining = bytes - total_evicted; 4118 else 4119 break; 4120 4121 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4122 markers[sublist_idx], spa, bytes_remaining); 4123 4124 scan_evicted += bytes_evicted; 4125 total_evicted += bytes_evicted; 4126 4127 /* we've reached the end, wrap to the beginning */ 4128 if (++sublist_idx >= num_sublists) 4129 sublist_idx = 0; 4130 } 4131 4132 /* 4133 * If we didn't evict anything during this scan, we have 4134 * no reason to believe we'll evict more during another 4135 * scan, so break the loop. 4136 */ 4137 if (scan_evicted == 0) { 4138 /* This isn't possible, let's make that obvious */ 4139 ASSERT3S(bytes, !=, 0); 4140 4141 /* 4142 * When bytes is ARC_EVICT_ALL, the only way to 4143 * break the loop is when scan_evicted is zero. 4144 * In that case, we actually have evicted enough, 4145 * so we don't want to increment the kstat. 4146 */ 4147 if (bytes != ARC_EVICT_ALL) { 4148 ASSERT3S(total_evicted, <, bytes); 4149 ARCSTAT_BUMP(arcstat_evict_not_enough); 4150 } 4151 4152 break; 4153 } 4154 } 4155 4156 for (int i = 0; i < num_sublists; i++) { 4157 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4158 multilist_sublist_remove(mls, markers[i]); 4159 multilist_sublist_unlock(mls); 4160 4161 kmem_cache_free(hdr_full_cache, markers[i]); 4162 } 4163 kmem_free(markers, sizeof (*markers) * num_sublists); 4164 4165 return (total_evicted); 4166 } 4167 4168 /* 4169 * Flush all "evictable" data of the given type from the arc state 4170 * specified. This will not evict any "active" buffers (i.e. referenced). 4171 * 4172 * When 'retry' is set to B_FALSE, the function will make a single pass 4173 * over the state and evict any buffers that it can. Since it doesn't 4174 * continually retry the eviction, it might end up leaving some buffers 4175 * in the ARC due to lock misses. 4176 * 4177 * When 'retry' is set to B_TRUE, the function will continually retry the 4178 * eviction until *all* evictable buffers have been removed from the 4179 * state. As a result, if concurrent insertions into the state are 4180 * allowed (e.g. if the ARC isn't shutting down), this function might 4181 * wind up in an infinite loop, continually trying to evict buffers. 4182 */ 4183 static uint64_t 4184 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4185 boolean_t retry) 4186 { 4187 uint64_t evicted = 0; 4188 4189 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4190 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 4191 4192 if (!retry) 4193 break; 4194 } 4195 4196 return (evicted); 4197 } 4198 4199 /* 4200 * Evict the specified number of bytes from the state specified, 4201 * restricting eviction to the spa and type given. This function 4202 * prevents us from trying to evict more from a state's list than 4203 * is "evictable", and to skip evicting altogether when passed a 4204 * negative value for "bytes". In contrast, arc_evict_state() will 4205 * evict everything it can, when passed a negative value for "bytes". 4206 */ 4207 static uint64_t 4208 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 4209 arc_buf_contents_t type) 4210 { 4211 int64_t delta; 4212 4213 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4214 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4215 bytes); 4216 return (arc_evict_state(state, spa, delta, type)); 4217 } 4218 4219 return (0); 4220 } 4221 4222 /* 4223 * Evict metadata buffers from the cache, such that arc_meta_used is 4224 * capped by the arc_meta_limit tunable. 4225 */ 4226 static uint64_t 4227 arc_adjust_meta(uint64_t meta_used) 4228 { 4229 uint64_t total_evicted = 0; 4230 int64_t target; 4231 4232 /* 4233 * If we're over the meta limit, we want to evict enough 4234 * metadata to get back under the meta limit. We don't want to 4235 * evict so much that we drop the MRU below arc_p, though. If 4236 * we're over the meta limit more than we're over arc_p, we 4237 * evict some from the MRU here, and some from the MFU below. 4238 */ 4239 target = MIN((int64_t)(meta_used - arc_meta_limit), 4240 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4241 zfs_refcount_count(&arc_mru->arcs_size) - arc_p)); 4242 4243 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4244 4245 /* 4246 * Similar to the above, we want to evict enough bytes to get us 4247 * below the meta limit, but not so much as to drop us below the 4248 * space allotted to the MFU (which is defined as arc_c - arc_p). 4249 */ 4250 target = MIN((int64_t)(meta_used - arc_meta_limit), 4251 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) - 4252 (arc_c - arc_p))); 4253 4254 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4255 4256 return (total_evicted); 4257 } 4258 4259 /* 4260 * Return the type of the oldest buffer in the given arc state 4261 * 4262 * This function will select a random sublist of type ARC_BUFC_DATA and 4263 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 4264 * is compared, and the type which contains the "older" buffer will be 4265 * returned. 4266 */ 4267 static arc_buf_contents_t 4268 arc_adjust_type(arc_state_t *state) 4269 { 4270 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA]; 4271 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA]; 4272 int data_idx = multilist_get_random_index(data_ml); 4273 int meta_idx = multilist_get_random_index(meta_ml); 4274 multilist_sublist_t *data_mls; 4275 multilist_sublist_t *meta_mls; 4276 arc_buf_contents_t type; 4277 arc_buf_hdr_t *data_hdr; 4278 arc_buf_hdr_t *meta_hdr; 4279 4280 /* 4281 * We keep the sublist lock until we're finished, to prevent 4282 * the headers from being destroyed via arc_evict_state(). 4283 */ 4284 data_mls = multilist_sublist_lock(data_ml, data_idx); 4285 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 4286 4287 /* 4288 * These two loops are to ensure we skip any markers that 4289 * might be at the tail of the lists due to arc_evict_state(). 4290 */ 4291 4292 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 4293 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 4294 if (data_hdr->b_spa != 0) 4295 break; 4296 } 4297 4298 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 4299 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 4300 if (meta_hdr->b_spa != 0) 4301 break; 4302 } 4303 4304 if (data_hdr == NULL && meta_hdr == NULL) { 4305 type = ARC_BUFC_DATA; 4306 } else if (data_hdr == NULL) { 4307 ASSERT3P(meta_hdr, !=, NULL); 4308 type = ARC_BUFC_METADATA; 4309 } else if (meta_hdr == NULL) { 4310 ASSERT3P(data_hdr, !=, NULL); 4311 type = ARC_BUFC_DATA; 4312 } else { 4313 ASSERT3P(data_hdr, !=, NULL); 4314 ASSERT3P(meta_hdr, !=, NULL); 4315 4316 /* The headers can't be on the sublist without an L1 header */ 4317 ASSERT(HDR_HAS_L1HDR(data_hdr)); 4318 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 4319 4320 if (data_hdr->b_l1hdr.b_arc_access < 4321 meta_hdr->b_l1hdr.b_arc_access) { 4322 type = ARC_BUFC_DATA; 4323 } else { 4324 type = ARC_BUFC_METADATA; 4325 } 4326 } 4327 4328 multilist_sublist_unlock(meta_mls); 4329 multilist_sublist_unlock(data_mls); 4330 4331 return (type); 4332 } 4333 4334 /* 4335 * Evict buffers from the cache, such that arc_size is capped by arc_c. 4336 */ 4337 static uint64_t 4338 arc_adjust(void) 4339 { 4340 uint64_t total_evicted = 0; 4341 uint64_t bytes; 4342 int64_t target; 4343 uint64_t asize = aggsum_value(&arc_size); 4344 uint64_t ameta = aggsum_value(&arc_meta_used); 4345 4346 /* 4347 * If we're over arc_meta_limit, we want to correct that before 4348 * potentially evicting data buffers below. 4349 */ 4350 total_evicted += arc_adjust_meta(ameta); 4351 4352 /* 4353 * Adjust MRU size 4354 * 4355 * If we're over the target cache size, we want to evict enough 4356 * from the list to get back to our target size. We don't want 4357 * to evict too much from the MRU, such that it drops below 4358 * arc_p. So, if we're over our target cache size more than 4359 * the MRU is over arc_p, we'll evict enough to get back to 4360 * arc_p here, and then evict more from the MFU below. 4361 */ 4362 target = MIN((int64_t)(asize - arc_c), 4363 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4364 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 4365 4366 /* 4367 * If we're below arc_meta_min, always prefer to evict data. 4368 * Otherwise, try to satisfy the requested number of bytes to 4369 * evict from the type which contains older buffers; in an 4370 * effort to keep newer buffers in the cache regardless of their 4371 * type. If we cannot satisfy the number of bytes from this 4372 * type, spill over into the next type. 4373 */ 4374 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA && 4375 ameta > arc_meta_min) { 4376 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4377 total_evicted += bytes; 4378 4379 /* 4380 * If we couldn't evict our target number of bytes from 4381 * metadata, we try to get the rest from data. 4382 */ 4383 target -= bytes; 4384 4385 total_evicted += 4386 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4387 } else { 4388 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4389 total_evicted += bytes; 4390 4391 /* 4392 * If we couldn't evict our target number of bytes from 4393 * data, we try to get the rest from metadata. 4394 */ 4395 target -= bytes; 4396 4397 total_evicted += 4398 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4399 } 4400 4401 /* 4402 * Adjust MFU size 4403 * 4404 * Now that we've tried to evict enough from the MRU to get its 4405 * size back to arc_p, if we're still above the target cache 4406 * size, we evict the rest from the MFU. 4407 */ 4408 target = asize - arc_c; 4409 4410 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA && 4411 ameta > arc_meta_min) { 4412 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4413 total_evicted += bytes; 4414 4415 /* 4416 * If we couldn't evict our target number of bytes from 4417 * metadata, we try to get the rest from data. 4418 */ 4419 target -= bytes; 4420 4421 total_evicted += 4422 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4423 } else { 4424 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4425 total_evicted += bytes; 4426 4427 /* 4428 * If we couldn't evict our target number of bytes from 4429 * data, we try to get the rest from data. 4430 */ 4431 target -= bytes; 4432 4433 total_evicted += 4434 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4435 } 4436 4437 /* 4438 * Adjust ghost lists 4439 * 4440 * In addition to the above, the ARC also defines target values 4441 * for the ghost lists. The sum of the mru list and mru ghost 4442 * list should never exceed the target size of the cache, and 4443 * the sum of the mru list, mfu list, mru ghost list, and mfu 4444 * ghost list should never exceed twice the target size of the 4445 * cache. The following logic enforces these limits on the ghost 4446 * caches, and evicts from them as needed. 4447 */ 4448 target = zfs_refcount_count(&arc_mru->arcs_size) + 4449 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 4450 4451 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 4452 total_evicted += bytes; 4453 4454 target -= bytes; 4455 4456 total_evicted += 4457 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 4458 4459 /* 4460 * We assume the sum of the mru list and mfu list is less than 4461 * or equal to arc_c (we enforced this above), which means we 4462 * can use the simpler of the two equations below: 4463 * 4464 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 4465 * mru ghost + mfu ghost <= arc_c 4466 */ 4467 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) + 4468 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 4469 4470 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 4471 total_evicted += bytes; 4472 4473 target -= bytes; 4474 4475 total_evicted += 4476 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 4477 4478 return (total_evicted); 4479 } 4480 4481 void 4482 arc_flush(spa_t *spa, boolean_t retry) 4483 { 4484 uint64_t guid = 0; 4485 4486 /* 4487 * If retry is B_TRUE, a spa must not be specified since we have 4488 * no good way to determine if all of a spa's buffers have been 4489 * evicted from an arc state. 4490 */ 4491 ASSERT(!retry || spa == 0); 4492 4493 if (spa != NULL) 4494 guid = spa_load_guid(spa); 4495 4496 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4497 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4498 4499 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4500 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4501 4502 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4503 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4504 4505 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4506 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4507 } 4508 4509 static void 4510 arc_reduce_target_size(int64_t to_free) 4511 { 4512 uint64_t asize = aggsum_value(&arc_size); 4513 if (arc_c > arc_c_min) { 4514 4515 if (arc_c > arc_c_min + to_free) 4516 atomic_add_64(&arc_c, -to_free); 4517 else 4518 arc_c = arc_c_min; 4519 4520 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 4521 if (asize < arc_c) 4522 arc_c = MAX(asize, arc_c_min); 4523 if (arc_p > arc_c) 4524 arc_p = (arc_c >> 1); 4525 ASSERT(arc_c >= arc_c_min); 4526 ASSERT((int64_t)arc_p >= 0); 4527 } 4528 4529 if (asize > arc_c) { 4530 /* See comment in arc_adjust_cb_check() on why lock+flag */ 4531 mutex_enter(&arc_adjust_lock); 4532 arc_adjust_needed = B_TRUE; 4533 mutex_exit(&arc_adjust_lock); 4534 zthr_wakeup(arc_adjust_zthr); 4535 } 4536 } 4537 4538 typedef enum free_memory_reason_t { 4539 FMR_UNKNOWN, 4540 FMR_NEEDFREE, 4541 FMR_LOTSFREE, 4542 FMR_SWAPFS_MINFREE, 4543 FMR_PAGES_PP_MAXIMUM, 4544 FMR_HEAP_ARENA, 4545 FMR_ZIO_ARENA, 4546 } free_memory_reason_t; 4547 4548 int64_t last_free_memory; 4549 free_memory_reason_t last_free_reason; 4550 4551 /* 4552 * Additional reserve of pages for pp_reserve. 4553 */ 4554 int64_t arc_pages_pp_reserve = 64; 4555 4556 /* 4557 * Additional reserve of pages for swapfs. 4558 */ 4559 int64_t arc_swapfs_reserve = 64; 4560 4561 /* 4562 * Return the amount of memory that can be consumed before reclaim will be 4563 * needed. Positive if there is sufficient free memory, negative indicates 4564 * the amount of memory that needs to be freed up. 4565 */ 4566 static int64_t 4567 arc_available_memory(void) 4568 { 4569 int64_t lowest = INT64_MAX; 4570 int64_t n; 4571 free_memory_reason_t r = FMR_UNKNOWN; 4572 4573 #ifdef _KERNEL 4574 if (needfree > 0) { 4575 n = PAGESIZE * (-needfree); 4576 if (n < lowest) { 4577 lowest = n; 4578 r = FMR_NEEDFREE; 4579 } 4580 } 4581 4582 /* 4583 * check that we're out of range of the pageout scanner. It starts to 4584 * schedule paging if freemem is less than lotsfree and needfree. 4585 * lotsfree is the high-water mark for pageout, and needfree is the 4586 * number of needed free pages. We add extra pages here to make sure 4587 * the scanner doesn't start up while we're freeing memory. 4588 */ 4589 n = PAGESIZE * (freemem - lotsfree - needfree - desfree); 4590 if (n < lowest) { 4591 lowest = n; 4592 r = FMR_LOTSFREE; 4593 } 4594 4595 /* 4596 * check to make sure that swapfs has enough space so that anon 4597 * reservations can still succeed. anon_resvmem() checks that the 4598 * availrmem is greater than swapfs_minfree, and the number of reserved 4599 * swap pages. We also add a bit of extra here just to prevent 4600 * circumstances from getting really dire. 4601 */ 4602 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve - 4603 desfree - arc_swapfs_reserve); 4604 if (n < lowest) { 4605 lowest = n; 4606 r = FMR_SWAPFS_MINFREE; 4607 } 4608 4609 4610 /* 4611 * Check that we have enough availrmem that memory locking (e.g., via 4612 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 4613 * stores the number of pages that cannot be locked; when availrmem 4614 * drops below pages_pp_maximum, page locking mechanisms such as 4615 * page_pp_lock() will fail.) 4616 */ 4617 n = PAGESIZE * (availrmem - pages_pp_maximum - 4618 arc_pages_pp_reserve); 4619 if (n < lowest) { 4620 lowest = n; 4621 r = FMR_PAGES_PP_MAXIMUM; 4622 } 4623 4624 4625 /* 4626 * If zio data pages are being allocated out of a separate heap segment, 4627 * then enforce that the size of available vmem for this arena remains 4628 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free. 4629 * 4630 * Note that reducing the arc_zio_arena_free_shift keeps more virtual 4631 * memory (in the zio_arena) free, which can avoid memory 4632 * fragmentation issues. 4633 */ 4634 if (zio_arena != NULL) { 4635 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) - 4636 (vmem_size(zio_arena, VMEM_ALLOC) >> 4637 arc_zio_arena_free_shift); 4638 if (n < lowest) { 4639 lowest = n; 4640 r = FMR_ZIO_ARENA; 4641 } 4642 } 4643 #else 4644 /* Every 100 calls, free a small amount */ 4645 if (spa_get_random(100) == 0) 4646 lowest = -1024; 4647 #endif 4648 4649 last_free_memory = lowest; 4650 last_free_reason = r; 4651 4652 return (lowest); 4653 } 4654 4655 4656 /* 4657 * Determine if the system is under memory pressure and is asking 4658 * to reclaim memory. A return value of B_TRUE indicates that the system 4659 * is under memory pressure and that the arc should adjust accordingly. 4660 */ 4661 static boolean_t 4662 arc_reclaim_needed(void) 4663 { 4664 return (arc_available_memory() < 0); 4665 } 4666 4667 static void 4668 arc_kmem_reap_soon(void) 4669 { 4670 size_t i; 4671 kmem_cache_t *prev_cache = NULL; 4672 kmem_cache_t *prev_data_cache = NULL; 4673 extern kmem_cache_t *zio_buf_cache[]; 4674 extern kmem_cache_t *zio_data_buf_cache[]; 4675 extern kmem_cache_t *zfs_btree_leaf_cache; 4676 extern kmem_cache_t *abd_chunk_cache; 4677 4678 #ifdef _KERNEL 4679 if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) { 4680 /* 4681 * We are exceeding our meta-data cache limit. 4682 * Purge some DNLC entries to release holds on meta-data. 4683 */ 4684 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 4685 } 4686 #endif 4687 4688 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4689 if (zio_buf_cache[i] != prev_cache) { 4690 prev_cache = zio_buf_cache[i]; 4691 kmem_cache_reap_soon(zio_buf_cache[i]); 4692 } 4693 if (zio_data_buf_cache[i] != prev_data_cache) { 4694 prev_data_cache = zio_data_buf_cache[i]; 4695 kmem_cache_reap_soon(zio_data_buf_cache[i]); 4696 } 4697 } 4698 kmem_cache_reap_soon(abd_chunk_cache); 4699 kmem_cache_reap_soon(buf_cache); 4700 kmem_cache_reap_soon(hdr_full_cache); 4701 kmem_cache_reap_soon(hdr_l2only_cache); 4702 kmem_cache_reap_soon(zfs_btree_leaf_cache); 4703 4704 if (zio_arena != NULL) { 4705 /* 4706 * Ask the vmem arena to reclaim unused memory from its 4707 * quantum caches. 4708 */ 4709 vmem_qcache_reap(zio_arena); 4710 } 4711 } 4712 4713 /* ARGSUSED */ 4714 static boolean_t 4715 arc_adjust_cb_check(void *arg, zthr_t *zthr) 4716 { 4717 /* 4718 * This is necessary in order for the mdb ::arc dcmd to 4719 * show up to date information. Since the ::arc command 4720 * does not call the kstat's update function, without 4721 * this call, the command may show stale stats for the 4722 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4723 * with this change, the data might be up to 1 second 4724 * out of date(the arc_adjust_zthr has a maximum sleep 4725 * time of 1 second); but that should suffice. The 4726 * arc_state_t structures can be queried directly if more 4727 * accurate information is needed. 4728 */ 4729 if (arc_ksp != NULL) 4730 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4731 4732 /* 4733 * We have to rely on arc_get_data_impl() to tell us when to adjust, 4734 * rather than checking if we are overflowing here, so that we are 4735 * sure to not leave arc_get_data_impl() waiting on 4736 * arc_adjust_waiters_cv. If we have become "not overflowing" since 4737 * arc_get_data_impl() checked, we need to wake it up. We could 4738 * broadcast the CV here, but arc_get_data_impl() may have not yet 4739 * gone to sleep. We would need to use a mutex to ensure that this 4740 * function doesn't broadcast until arc_get_data_impl() has gone to 4741 * sleep (e.g. the arc_adjust_lock). However, the lock ordering of 4742 * such a lock would necessarily be incorrect with respect to the 4743 * zthr_lock, which is held before this function is called, and is 4744 * held by arc_get_data_impl() when it calls zthr_wakeup(). 4745 */ 4746 return (arc_adjust_needed); 4747 } 4748 4749 /* 4750 * Keep arc_size under arc_c by running arc_adjust which evicts data 4751 * from the ARC. 4752 */ 4753 /* ARGSUSED */ 4754 static void 4755 arc_adjust_cb(void *arg, zthr_t *zthr) 4756 { 4757 uint64_t evicted = 0; 4758 4759 /* Evict from cache */ 4760 evicted = arc_adjust(); 4761 4762 /* 4763 * If evicted is zero, we couldn't evict anything 4764 * via arc_adjust(). This could be due to hash lock 4765 * collisions, but more likely due to the majority of 4766 * arc buffers being unevictable. Therefore, even if 4767 * arc_size is above arc_c, another pass is unlikely to 4768 * be helpful and could potentially cause us to enter an 4769 * infinite loop. Additionally, zthr_iscancelled() is 4770 * checked here so that if the arc is shutting down, the 4771 * broadcast will wake any remaining arc adjust waiters. 4772 */ 4773 mutex_enter(&arc_adjust_lock); 4774 arc_adjust_needed = !zthr_iscancelled(arc_adjust_zthr) && 4775 evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0; 4776 if (!arc_adjust_needed) { 4777 /* 4778 * We're either no longer overflowing, or we 4779 * can't evict anything more, so we should wake 4780 * up any waiters. 4781 */ 4782 cv_broadcast(&arc_adjust_waiters_cv); 4783 } 4784 mutex_exit(&arc_adjust_lock); 4785 } 4786 4787 /* ARGSUSED */ 4788 static boolean_t 4789 arc_reap_cb_check(void *arg, zthr_t *zthr) 4790 { 4791 int64_t free_memory = arc_available_memory(); 4792 4793 /* 4794 * If a kmem reap is already active, don't schedule more. We must 4795 * check for this because kmem_cache_reap_soon() won't actually 4796 * block on the cache being reaped (this is to prevent callers from 4797 * becoming implicitly blocked by a system-wide kmem reap -- which, 4798 * on a system with many, many full magazines, can take minutes). 4799 */ 4800 if (!kmem_cache_reap_active() && 4801 free_memory < 0) { 4802 arc_no_grow = B_TRUE; 4803 arc_warm = B_TRUE; 4804 /* 4805 * Wait at least zfs_grow_retry (default 60) seconds 4806 * before considering growing. 4807 */ 4808 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4809 return (B_TRUE); 4810 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4811 arc_no_grow = B_TRUE; 4812 } else if (gethrtime() >= arc_growtime) { 4813 arc_no_grow = B_FALSE; 4814 } 4815 4816 return (B_FALSE); 4817 } 4818 4819 /* 4820 * Keep enough free memory in the system by reaping the ARC's kmem 4821 * caches. To cause more slabs to be reapable, we may reduce the 4822 * target size of the cache (arc_c), causing the arc_adjust_cb() 4823 * to free more buffers. 4824 */ 4825 /* ARGSUSED */ 4826 static void 4827 arc_reap_cb(void *arg, zthr_t *zthr) 4828 { 4829 int64_t free_memory; 4830 4831 /* 4832 * Kick off asynchronous kmem_reap()'s of all our caches. 4833 */ 4834 arc_kmem_reap_soon(); 4835 4836 /* 4837 * Wait at least arc_kmem_cache_reap_retry_ms between 4838 * arc_kmem_reap_soon() calls. Without this check it is possible to 4839 * end up in a situation where we spend lots of time reaping 4840 * caches, while we're near arc_c_min. Waiting here also gives the 4841 * subsequent free memory check a chance of finding that the 4842 * asynchronous reap has already freed enough memory, and we don't 4843 * need to call arc_reduce_target_size(). 4844 */ 4845 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 4846 4847 /* 4848 * Reduce the target size as needed to maintain the amount of free 4849 * memory in the system at a fraction of the arc_size (1/128th by 4850 * default). If oversubscribed (free_memory < 0) then reduce the 4851 * target arc_size by the deficit amount plus the fractional 4852 * amount. If free memory is positive but less then the fractional 4853 * amount, reduce by what is needed to hit the fractional amount. 4854 */ 4855 free_memory = arc_available_memory(); 4856 4857 int64_t to_free = 4858 (arc_c >> arc_shrink_shift) - free_memory; 4859 if (to_free > 0) { 4860 #ifdef _KERNEL 4861 to_free = MAX(to_free, ptob(needfree)); 4862 #endif 4863 arc_reduce_target_size(to_free); 4864 } 4865 } 4866 4867 /* 4868 * Adapt arc info given the number of bytes we are trying to add and 4869 * the state that we are coming from. This function is only called 4870 * when we are adding new content to the cache. 4871 */ 4872 static void 4873 arc_adapt(int bytes, arc_state_t *state) 4874 { 4875 int mult; 4876 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 4877 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size); 4878 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size); 4879 4880 ASSERT(bytes > 0); 4881 /* 4882 * Adapt the target size of the MRU list: 4883 * - if we just hit in the MRU ghost list, then increase 4884 * the target size of the MRU list. 4885 * - if we just hit in the MFU ghost list, then increase 4886 * the target size of the MFU list by decreasing the 4887 * target size of the MRU list. 4888 */ 4889 if (state == arc_mru_ghost) { 4890 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 4891 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 4892 4893 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 4894 } else if (state == arc_mfu_ghost) { 4895 uint64_t delta; 4896 4897 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 4898 mult = MIN(mult, 10); 4899 4900 delta = MIN(bytes * mult, arc_p); 4901 arc_p = MAX(arc_p_min, arc_p - delta); 4902 } 4903 ASSERT((int64_t)arc_p >= 0); 4904 4905 /* 4906 * Wake reap thread if we do not have any available memory 4907 */ 4908 if (arc_reclaim_needed()) { 4909 zthr_wakeup(arc_reap_zthr); 4910 return; 4911 } 4912 4913 4914 if (arc_no_grow) 4915 return; 4916 4917 if (arc_c >= arc_c_max) 4918 return; 4919 4920 /* 4921 * If we're within (2 * maxblocksize) bytes of the target 4922 * cache size, increment the target cache size 4923 */ 4924 if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) > 4925 0) { 4926 atomic_add_64(&arc_c, (int64_t)bytes); 4927 if (arc_c > arc_c_max) 4928 arc_c = arc_c_max; 4929 else if (state == arc_anon) 4930 atomic_add_64(&arc_p, (int64_t)bytes); 4931 if (arc_p > arc_c) 4932 arc_p = arc_c; 4933 } 4934 ASSERT((int64_t)arc_p >= 0); 4935 } 4936 4937 /* 4938 * Check if arc_size has grown past our upper threshold, determined by 4939 * zfs_arc_overflow_shift. 4940 */ 4941 static boolean_t 4942 arc_is_overflowing(void) 4943 { 4944 /* Always allow at least one block of overflow */ 4945 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE, 4946 arc_c >> zfs_arc_overflow_shift); 4947 4948 /* 4949 * We just compare the lower bound here for performance reasons. Our 4950 * primary goals are to make sure that the arc never grows without 4951 * bound, and that it can reach its maximum size. This check 4952 * accomplishes both goals. The maximum amount we could run over by is 4953 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 4954 * in the ARC. In practice, that's in the tens of MB, which is low 4955 * enough to be safe. 4956 */ 4957 return (aggsum_lower_bound(&arc_size) >= arc_c + overflow); 4958 } 4959 4960 static abd_t * 4961 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 4962 boolean_t do_adapt) 4963 { 4964 arc_buf_contents_t type = arc_buf_type(hdr); 4965 4966 arc_get_data_impl(hdr, size, tag, do_adapt); 4967 if (type == ARC_BUFC_METADATA) { 4968 return (abd_alloc(size, B_TRUE)); 4969 } else { 4970 ASSERT(type == ARC_BUFC_DATA); 4971 return (abd_alloc(size, B_FALSE)); 4972 } 4973 } 4974 4975 static void * 4976 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4977 { 4978 arc_buf_contents_t type = arc_buf_type(hdr); 4979 4980 arc_get_data_impl(hdr, size, tag, B_TRUE); 4981 if (type == ARC_BUFC_METADATA) { 4982 return (zio_buf_alloc(size)); 4983 } else { 4984 ASSERT(type == ARC_BUFC_DATA); 4985 return (zio_data_buf_alloc(size)); 4986 } 4987 } 4988 4989 /* 4990 * Allocate a block and return it to the caller. If we are hitting the 4991 * hard limit for the cache size, we must sleep, waiting for the eviction 4992 * thread to catch up. If we're past the target size but below the hard 4993 * limit, we'll only signal the reclaim thread and continue on. 4994 */ 4995 static void 4996 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 4997 boolean_t do_adapt) 4998 { 4999 arc_state_t *state = hdr->b_l1hdr.b_state; 5000 arc_buf_contents_t type = arc_buf_type(hdr); 5001 5002 if (do_adapt) 5003 arc_adapt(size, state); 5004 5005 /* 5006 * If arc_size is currently overflowing, and has grown past our 5007 * upper limit, we must be adding data faster than the evict 5008 * thread can evict. Thus, to ensure we don't compound the 5009 * problem by adding more data and forcing arc_size to grow even 5010 * further past its target size, we halt and wait for the 5011 * eviction thread to catch up. 5012 * 5013 * It's also possible that the reclaim thread is unable to evict 5014 * enough buffers to get arc_size below the overflow limit (e.g. 5015 * due to buffers being un-evictable, or hash lock collisions). 5016 * In this case, we want to proceed regardless if we're 5017 * overflowing; thus we don't use a while loop here. 5018 */ 5019 if (arc_is_overflowing()) { 5020 mutex_enter(&arc_adjust_lock); 5021 5022 /* 5023 * Now that we've acquired the lock, we may no longer be 5024 * over the overflow limit, lets check. 5025 * 5026 * We're ignoring the case of spurious wake ups. If that 5027 * were to happen, it'd let this thread consume an ARC 5028 * buffer before it should have (i.e. before we're under 5029 * the overflow limit and were signalled by the reclaim 5030 * thread). As long as that is a rare occurrence, it 5031 * shouldn't cause any harm. 5032 */ 5033 if (arc_is_overflowing()) { 5034 arc_adjust_needed = B_TRUE; 5035 zthr_wakeup(arc_adjust_zthr); 5036 (void) cv_wait(&arc_adjust_waiters_cv, 5037 &arc_adjust_lock); 5038 } 5039 mutex_exit(&arc_adjust_lock); 5040 } 5041 5042 VERIFY3U(hdr->b_type, ==, type); 5043 if (type == ARC_BUFC_METADATA) { 5044 arc_space_consume(size, ARC_SPACE_META); 5045 } else { 5046 arc_space_consume(size, ARC_SPACE_DATA); 5047 } 5048 5049 /* 5050 * Update the state size. Note that ghost states have a 5051 * "ghost size" and so don't need to be updated. 5052 */ 5053 if (!GHOST_STATE(state)) { 5054 5055 (void) zfs_refcount_add_many(&state->arcs_size, size, tag); 5056 5057 /* 5058 * If this is reached via arc_read, the link is 5059 * protected by the hash lock. If reached via 5060 * arc_buf_alloc, the header should not be accessed by 5061 * any other thread. And, if reached via arc_read_done, 5062 * the hash lock will protect it if it's found in the 5063 * hash table; otherwise no other thread should be 5064 * trying to [add|remove]_reference it. 5065 */ 5066 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5067 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5068 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5069 size, tag); 5070 } 5071 5072 /* 5073 * If we are growing the cache, and we are adding anonymous 5074 * data, and we have outgrown arc_p, update arc_p 5075 */ 5076 if (aggsum_compare(&arc_size, arc_c) < 0 && 5077 hdr->b_l1hdr.b_state == arc_anon && 5078 (zfs_refcount_count(&arc_anon->arcs_size) + 5079 zfs_refcount_count(&arc_mru->arcs_size) > arc_p)) 5080 arc_p = MIN(arc_c, arc_p + size); 5081 } 5082 } 5083 5084 static void 5085 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 5086 { 5087 arc_free_data_impl(hdr, size, tag); 5088 abd_free(abd); 5089 } 5090 5091 static void 5092 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 5093 { 5094 arc_buf_contents_t type = arc_buf_type(hdr); 5095 5096 arc_free_data_impl(hdr, size, tag); 5097 if (type == ARC_BUFC_METADATA) { 5098 zio_buf_free(buf, size); 5099 } else { 5100 ASSERT(type == ARC_BUFC_DATA); 5101 zio_data_buf_free(buf, size); 5102 } 5103 } 5104 5105 /* 5106 * Free the arc data buffer. 5107 */ 5108 static void 5109 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5110 { 5111 arc_state_t *state = hdr->b_l1hdr.b_state; 5112 arc_buf_contents_t type = arc_buf_type(hdr); 5113 5114 /* protected by hash lock, if in the hash table */ 5115 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5116 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5117 ASSERT(state != arc_anon && state != arc_l2c_only); 5118 5119 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5120 size, tag); 5121 } 5122 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag); 5123 5124 VERIFY3U(hdr->b_type, ==, type); 5125 if (type == ARC_BUFC_METADATA) { 5126 arc_space_return(size, ARC_SPACE_META); 5127 } else { 5128 ASSERT(type == ARC_BUFC_DATA); 5129 arc_space_return(size, ARC_SPACE_DATA); 5130 } 5131 } 5132 5133 /* 5134 * This routine is called whenever a buffer is accessed. 5135 * NOTE: the hash lock is dropped in this function. 5136 */ 5137 static void 5138 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 5139 { 5140 clock_t now; 5141 5142 ASSERT(MUTEX_HELD(hash_lock)); 5143 ASSERT(HDR_HAS_L1HDR(hdr)); 5144 5145 if (hdr->b_l1hdr.b_state == arc_anon) { 5146 /* 5147 * This buffer is not in the cache, and does not 5148 * appear in our "ghost" list. Add the new buffer 5149 * to the MRU state. 5150 */ 5151 5152 ASSERT0(hdr->b_l1hdr.b_arc_access); 5153 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5154 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5155 arc_change_state(arc_mru, hdr, hash_lock); 5156 5157 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5158 now = ddi_get_lbolt(); 5159 5160 /* 5161 * If this buffer is here because of a prefetch, then either: 5162 * - clear the flag if this is a "referencing" read 5163 * (any subsequent access will bump this into the MFU state). 5164 * or 5165 * - move the buffer to the head of the list if this is 5166 * another prefetch (to make it less likely to be evicted). 5167 */ 5168 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5169 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5170 /* link protected by hash lock */ 5171 ASSERT(multilist_link_active( 5172 &hdr->b_l1hdr.b_arc_node)); 5173 } else { 5174 if (HDR_HAS_L2HDR(hdr)) 5175 l2arc_hdr_arcstats_decrement_state(hdr); 5176 arc_hdr_clear_flags(hdr, 5177 ARC_FLAG_PREFETCH | 5178 ARC_FLAG_PRESCIENT_PREFETCH); 5179 ARCSTAT_BUMP(arcstat_mru_hits); 5180 if (HDR_HAS_L2HDR(hdr)) 5181 l2arc_hdr_arcstats_increment_state(hdr); 5182 } 5183 hdr->b_l1hdr.b_arc_access = now; 5184 return; 5185 } 5186 5187 /* 5188 * This buffer has been "accessed" only once so far, 5189 * but it is still in the cache. Move it to the MFU 5190 * state. 5191 */ 5192 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) { 5193 /* 5194 * More than 125ms have passed since we 5195 * instantiated this buffer. Move it to the 5196 * most frequently used state. 5197 */ 5198 hdr->b_l1hdr.b_arc_access = now; 5199 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5200 arc_change_state(arc_mfu, hdr, hash_lock); 5201 } 5202 ARCSTAT_BUMP(arcstat_mru_hits); 5203 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5204 arc_state_t *new_state; 5205 /* 5206 * This buffer has been "accessed" recently, but 5207 * was evicted from the cache. Move it to the 5208 * MFU state. 5209 */ 5210 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5211 new_state = arc_mru; 5212 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) { 5213 if (HDR_HAS_L2HDR(hdr)) 5214 l2arc_hdr_arcstats_decrement_state(hdr); 5215 arc_hdr_clear_flags(hdr, 5216 ARC_FLAG_PREFETCH | 5217 ARC_FLAG_PRESCIENT_PREFETCH); 5218 if (HDR_HAS_L2HDR(hdr)) 5219 l2arc_hdr_arcstats_increment_state(hdr); 5220 } 5221 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5222 } else { 5223 new_state = arc_mfu; 5224 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5225 } 5226 5227 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5228 arc_change_state(new_state, hdr, hash_lock); 5229 5230 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5231 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5232 /* 5233 * This buffer has been accessed more than once and is 5234 * still in the cache. Keep it in the MFU state. 5235 * 5236 * NOTE: an add_reference() that occurred when we did 5237 * the arc_read() will have kicked this off the list. 5238 * If it was a prefetch, we will explicitly move it to 5239 * the head of the list now. 5240 */ 5241 ARCSTAT_BUMP(arcstat_mfu_hits); 5242 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5243 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5244 arc_state_t *new_state = arc_mfu; 5245 /* 5246 * This buffer has been accessed more than once but has 5247 * been evicted from the cache. Move it back to the 5248 * MFU state. 5249 */ 5250 5251 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5252 /* 5253 * This is a prefetch access... 5254 * move this block back to the MRU state. 5255 */ 5256 new_state = arc_mru; 5257 } 5258 5259 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5260 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5261 arc_change_state(new_state, hdr, hash_lock); 5262 5263 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5264 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5265 /* 5266 * This buffer is on the 2nd Level ARC. 5267 */ 5268 5269 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5270 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5271 arc_change_state(arc_mfu, hdr, hash_lock); 5272 } else { 5273 ASSERT(!"invalid arc state"); 5274 } 5275 } 5276 5277 /* 5278 * This routine is called by dbuf_hold() to update the arc_access() state 5279 * which otherwise would be skipped for entries in the dbuf cache. 5280 */ 5281 void 5282 arc_buf_access(arc_buf_t *buf) 5283 { 5284 mutex_enter(&buf->b_evict_lock); 5285 arc_buf_hdr_t *hdr = buf->b_hdr; 5286 5287 /* 5288 * Avoid taking the hash_lock when possible as an optimization. 5289 * The header must be checked again under the hash_lock in order 5290 * to handle the case where it is concurrently being released. 5291 */ 5292 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5293 mutex_exit(&buf->b_evict_lock); 5294 return; 5295 } 5296 5297 kmutex_t *hash_lock = HDR_LOCK(hdr); 5298 mutex_enter(hash_lock); 5299 5300 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5301 mutex_exit(hash_lock); 5302 mutex_exit(&buf->b_evict_lock); 5303 ARCSTAT_BUMP(arcstat_access_skip); 5304 return; 5305 } 5306 5307 mutex_exit(&buf->b_evict_lock); 5308 5309 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5310 hdr->b_l1hdr.b_state == arc_mfu); 5311 5312 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5313 arc_access(hdr, hash_lock); 5314 mutex_exit(hash_lock); 5315 5316 ARCSTAT_BUMP(arcstat_hits); 5317 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5318 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5319 } 5320 5321 /* a generic arc_read_done_func_t which you can use */ 5322 /* ARGSUSED */ 5323 void 5324 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5325 arc_buf_t *buf, void *arg) 5326 { 5327 if (buf == NULL) 5328 return; 5329 5330 bcopy(buf->b_data, arg, arc_buf_size(buf)); 5331 arc_buf_destroy(buf, arg); 5332 } 5333 5334 /* a generic arc_read_done_func_t */ 5335 void 5336 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5337 arc_buf_t *buf, void *arg) 5338 { 5339 arc_buf_t **bufp = arg; 5340 5341 if (buf == NULL) { 5342 ASSERT(zio == NULL || zio->io_error != 0); 5343 *bufp = NULL; 5344 } else { 5345 ASSERT(zio == NULL || zio->io_error == 0); 5346 *bufp = buf; 5347 ASSERT(buf->b_data != NULL); 5348 } 5349 } 5350 5351 static void 5352 arc_hdr_verify(arc_buf_hdr_t *hdr, const blkptr_t *bp) 5353 { 5354 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5355 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5356 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5357 } else { 5358 if (HDR_COMPRESSION_ENABLED(hdr)) { 5359 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5360 BP_GET_COMPRESS(bp)); 5361 } 5362 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5363 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5364 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5365 } 5366 } 5367 5368 /* 5369 * XXX this should be changed to return an error, and callers 5370 * re-read from disk on failure (on nondebug bits). 5371 */ 5372 static void 5373 arc_hdr_verify_checksum(spa_t *spa, arc_buf_hdr_t *hdr, const blkptr_t *bp) 5374 { 5375 arc_hdr_verify(hdr, bp); 5376 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 5377 return; 5378 int err = 0; 5379 abd_t *abd = NULL; 5380 if (BP_IS_ENCRYPTED(bp)) { 5381 if (HDR_HAS_RABD(hdr)) { 5382 abd = hdr->b_crypt_hdr.b_rabd; 5383 } 5384 } else if (HDR_COMPRESSION_ENABLED(hdr)) { 5385 abd = hdr->b_l1hdr.b_pabd; 5386 } 5387 if (abd != NULL) { 5388 /* 5389 * The offset is only used for labels, which are not 5390 * cached in the ARC, so it doesn't matter what we 5391 * pass for the offset parameter. 5392 */ 5393 int psize = HDR_GET_PSIZE(hdr); 5394 err = zio_checksum_error_impl(spa, bp, 5395 BP_GET_CHECKSUM(bp), abd, psize, 0, NULL); 5396 if (err != 0) { 5397 /* 5398 * Use abd_copy_to_buf() rather than 5399 * abd_borrow_buf_copy() so that we are sure to 5400 * include the buf in crash dumps. 5401 */ 5402 void *buf = kmem_alloc(psize, KM_SLEEP); 5403 abd_copy_to_buf(buf, abd, psize); 5404 panic("checksum of cached data doesn't match BP " 5405 "err=%u hdr=%p bp=%p abd=%p buf=%p", 5406 err, (void *)hdr, (void *)bp, (void *)abd, buf); 5407 } 5408 } 5409 } 5410 5411 static void 5412 arc_read_done(zio_t *zio) 5413 { 5414 blkptr_t *bp = zio->io_bp; 5415 arc_buf_hdr_t *hdr = zio->io_private; 5416 kmutex_t *hash_lock = NULL; 5417 arc_callback_t *callback_list; 5418 arc_callback_t *acb; 5419 boolean_t freeable = B_FALSE; 5420 5421 /* 5422 * The hdr was inserted into hash-table and removed from lists 5423 * prior to starting I/O. We should find this header, since 5424 * it's in the hash table, and it should be legit since it's 5425 * not possible to evict it during the I/O. The only possible 5426 * reason for it not to be found is if we were freed during the 5427 * read. 5428 */ 5429 if (HDR_IN_HASH_TABLE(hdr)) { 5430 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 5431 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5432 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5433 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5434 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5435 5436 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 5437 &hash_lock); 5438 5439 ASSERT((found == hdr && 5440 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5441 (found == hdr && HDR_L2_READING(hdr))); 5442 ASSERT3P(hash_lock, !=, NULL); 5443 } 5444 5445 if (BP_IS_PROTECTED(bp)) { 5446 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5447 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5448 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5449 hdr->b_crypt_hdr.b_iv); 5450 5451 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5452 void *tmpbuf; 5453 5454 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5455 sizeof (zil_chain_t)); 5456 zio_crypt_decode_mac_zil(tmpbuf, 5457 hdr->b_crypt_hdr.b_mac); 5458 abd_return_buf(zio->io_abd, tmpbuf, 5459 sizeof (zil_chain_t)); 5460 } else { 5461 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 5462 } 5463 } 5464 5465 if (zio->io_error == 0) { 5466 /* byteswap if necessary */ 5467 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5468 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5469 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5470 } else { 5471 hdr->b_l1hdr.b_byteswap = 5472 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5473 } 5474 } else { 5475 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5476 } 5477 } 5478 5479 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5480 5481 callback_list = hdr->b_l1hdr.b_acb; 5482 ASSERT3P(callback_list, !=, NULL); 5483 5484 if (hash_lock && zio->io_error == 0 && 5485 hdr->b_l1hdr.b_state == arc_anon) { 5486 /* 5487 * Only call arc_access on anonymous buffers. This is because 5488 * if we've issued an I/O for an evicted buffer, we've already 5489 * called arc_access (to prevent any simultaneous readers from 5490 * getting confused). 5491 */ 5492 arc_access(hdr, hash_lock); 5493 } 5494 5495 /* 5496 * If a read request has a callback (i.e. acb_done is not NULL), then we 5497 * make a buf containing the data according to the parameters which were 5498 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5499 * aren't needlessly decompressing the data multiple times. 5500 */ 5501 int callback_cnt = 0; 5502 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5503 if (!acb->acb_done) 5504 continue; 5505 5506 callback_cnt++; 5507 5508 if (zio->io_error != 0) 5509 continue; 5510 5511 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5512 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5513 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5514 &acb->acb_buf); 5515 5516 /* 5517 * Assert non-speculative zios didn't fail because an 5518 * encryption key wasn't loaded 5519 */ 5520 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5521 error != EACCES); 5522 5523 /* 5524 * If we failed to decrypt, report an error now (as the zio 5525 * layer would have done if it had done the transforms). 5526 */ 5527 if (error == ECKSUM) { 5528 ASSERT(BP_IS_PROTECTED(bp)); 5529 error = SET_ERROR(EIO); 5530 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5531 spa_log_error(zio->io_spa, &acb->acb_zb); 5532 (void) zfs_ereport_post( 5533 FM_EREPORT_ZFS_AUTHENTICATION, 5534 zio->io_spa, NULL, &acb->acb_zb, zio, 0, 0); 5535 } 5536 } 5537 5538 if (error != 0) { 5539 /* 5540 * Decompression failed. Set io_error 5541 * so that when we call acb_done (below), 5542 * we will indicate that the read failed. 5543 * Note that in the unusual case where one 5544 * callback is compressed and another 5545 * uncompressed, we will mark all of them 5546 * as failed, even though the uncompressed 5547 * one can't actually fail. In this case, 5548 * the hdr will not be anonymous, because 5549 * if there are multiple callbacks, it's 5550 * because multiple threads found the same 5551 * arc buf in the hash table. 5552 */ 5553 zio->io_error = error; 5554 } 5555 } 5556 5557 /* 5558 * If there are multiple callbacks, we must have the hash lock, 5559 * because the only way for multiple threads to find this hdr is 5560 * in the hash table. This ensures that if there are multiple 5561 * callbacks, the hdr is not anonymous. If it were anonymous, 5562 * we couldn't use arc_buf_destroy() in the error case below. 5563 */ 5564 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5565 5566 hdr->b_l1hdr.b_acb = NULL; 5567 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5568 if (callback_cnt == 0) 5569 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 5570 5571 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 5572 callback_list != NULL); 5573 5574 if (zio->io_error == 0) { 5575 arc_hdr_verify(hdr, zio->io_bp); 5576 } else { 5577 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5578 if (hdr->b_l1hdr.b_state != arc_anon) 5579 arc_change_state(arc_anon, hdr, hash_lock); 5580 if (HDR_IN_HASH_TABLE(hdr)) 5581 buf_hash_remove(hdr); 5582 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5583 } 5584 5585 /* 5586 * Broadcast before we drop the hash_lock to avoid the possibility 5587 * that the hdr (and hence the cv) might be freed before we get to 5588 * the cv_broadcast(). 5589 */ 5590 cv_broadcast(&hdr->b_l1hdr.b_cv); 5591 5592 if (hash_lock != NULL) { 5593 mutex_exit(hash_lock); 5594 } else { 5595 /* 5596 * This block was freed while we waited for the read to 5597 * complete. It has been removed from the hash table and 5598 * moved to the anonymous state (so that it won't show up 5599 * in the cache). 5600 */ 5601 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 5602 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5603 } 5604 5605 /* execute each callback and free its structure */ 5606 while ((acb = callback_list) != NULL) { 5607 5608 if (acb->acb_done != NULL) { 5609 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5610 /* 5611 * If arc_buf_alloc_impl() fails during 5612 * decompression, the buf will still be 5613 * allocated, and needs to be freed here. 5614 */ 5615 arc_buf_destroy(acb->acb_buf, acb->acb_private); 5616 acb->acb_buf = NULL; 5617 } 5618 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5619 acb->acb_buf, acb->acb_private); 5620 } 5621 5622 if (acb->acb_zio_dummy != NULL) { 5623 acb->acb_zio_dummy->io_error = zio->io_error; 5624 zio_nowait(acb->acb_zio_dummy); 5625 } 5626 5627 callback_list = acb->acb_next; 5628 kmem_free(acb, sizeof (arc_callback_t)); 5629 } 5630 5631 if (freeable) 5632 arc_hdr_destroy(hdr); 5633 } 5634 5635 /* 5636 * "Read" the block at the specified DVA (in bp) via the 5637 * cache. If the block is found in the cache, invoke the provided 5638 * callback immediately and return. Note that the `zio' parameter 5639 * in the callback will be NULL in this case, since no IO was 5640 * required. If the block is not in the cache pass the read request 5641 * on to the spa with a substitute callback function, so that the 5642 * requested block will be added to the cache. 5643 * 5644 * If a read request arrives for a block that has a read in-progress, 5645 * either wait for the in-progress read to complete (and return the 5646 * results); or, if this is a read with a "done" func, add a record 5647 * to the read to invoke the "done" func when the read completes, 5648 * and return; or just return. 5649 * 5650 * arc_read_done() will invoke all the requested "done" functions 5651 * for readers of this block. 5652 */ 5653 int 5654 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_read_done_func_t *done, 5655 void *private, zio_priority_t priority, int zio_flags, 5656 arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5657 { 5658 arc_buf_hdr_t *hdr = NULL; 5659 kmutex_t *hash_lock = NULL; 5660 zio_t *rzio; 5661 uint64_t guid = spa_load_guid(spa); 5662 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5663 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5664 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5665 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5666 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5667 int rc = 0; 5668 5669 ASSERT(!BP_IS_EMBEDDED(bp) || 5670 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5671 5672 top: 5673 if (!BP_IS_EMBEDDED(bp)) { 5674 /* 5675 * Embedded BP's have no DVA and require no I/O to "read". 5676 * Create an anonymous arc buf to back it. 5677 */ 5678 hdr = buf_hash_find(guid, bp, &hash_lock); 5679 } 5680 5681 /* 5682 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5683 * we maintain encrypted data seperately from compressed / uncompressed 5684 * data. If the user is requesting raw encrypted data and we don't have 5685 * that in the header we will read from disk to guarantee that we can 5686 * get it even if the encryption keys aren't loaded. 5687 */ 5688 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5689 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5690 arc_buf_t *buf = NULL; 5691 *arc_flags |= ARC_FLAG_CACHED; 5692 5693 if (HDR_IO_IN_PROGRESS(hdr)) { 5694 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5695 5696 ASSERT3P(head_zio, !=, NULL); 5697 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5698 priority == ZIO_PRIORITY_SYNC_READ) { 5699 /* 5700 * This is a sync read that needs to wait for 5701 * an in-flight async read. Request that the 5702 * zio have its priority upgraded. 5703 */ 5704 zio_change_priority(head_zio, priority); 5705 DTRACE_PROBE1(arc__async__upgrade__sync, 5706 arc_buf_hdr_t *, hdr); 5707 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5708 } 5709 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5710 arc_hdr_clear_flags(hdr, 5711 ARC_FLAG_PREDICTIVE_PREFETCH); 5712 } 5713 5714 if (*arc_flags & ARC_FLAG_WAIT) { 5715 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5716 mutex_exit(hash_lock); 5717 goto top; 5718 } 5719 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5720 5721 if (done) { 5722 arc_callback_t *acb = NULL; 5723 5724 acb = kmem_zalloc(sizeof (arc_callback_t), 5725 KM_SLEEP); 5726 acb->acb_done = done; 5727 acb->acb_private = private; 5728 acb->acb_compressed = compressed_read; 5729 acb->acb_encrypted = encrypted_read; 5730 acb->acb_noauth = noauth_read; 5731 acb->acb_zb = *zb; 5732 if (pio != NULL) 5733 acb->acb_zio_dummy = zio_null(pio, 5734 spa, NULL, NULL, NULL, zio_flags); 5735 5736 ASSERT3P(acb->acb_done, !=, NULL); 5737 acb->acb_zio_head = head_zio; 5738 acb->acb_next = hdr->b_l1hdr.b_acb; 5739 hdr->b_l1hdr.b_acb = acb; 5740 mutex_exit(hash_lock); 5741 return (0); 5742 } 5743 mutex_exit(hash_lock); 5744 return (0); 5745 } 5746 5747 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5748 hdr->b_l1hdr.b_state == arc_mfu); 5749 5750 if (done) { 5751 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5752 /* 5753 * This is a demand read which does not have to 5754 * wait for i/o because we did a predictive 5755 * prefetch i/o for it, which has completed. 5756 */ 5757 DTRACE_PROBE1( 5758 arc__demand__hit__predictive__prefetch, 5759 arc_buf_hdr_t *, hdr); 5760 ARCSTAT_BUMP( 5761 arcstat_demand_hit_predictive_prefetch); 5762 arc_hdr_clear_flags(hdr, 5763 ARC_FLAG_PREDICTIVE_PREFETCH); 5764 } 5765 5766 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 5767 ARCSTAT_BUMP( 5768 arcstat_demand_hit_prescient_prefetch); 5769 arc_hdr_clear_flags(hdr, 5770 ARC_FLAG_PRESCIENT_PREFETCH); 5771 } 5772 5773 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp)); 5774 5775 arc_hdr_verify_checksum(spa, hdr, bp); 5776 5777 /* Get a buf with the desired data in it. */ 5778 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 5779 encrypted_read, compressed_read, noauth_read, 5780 B_TRUE, &buf); 5781 if (rc == ECKSUM) { 5782 /* 5783 * Convert authentication and decryption errors 5784 * to EIO (and generate an ereport if needed) 5785 * before leaving the ARC. 5786 */ 5787 rc = SET_ERROR(EIO); 5788 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5789 spa_log_error(spa, zb); 5790 (void) zfs_ereport_post( 5791 FM_EREPORT_ZFS_AUTHENTICATION, 5792 spa, NULL, zb, NULL, 0, 0); 5793 } 5794 } 5795 if (rc != 0) { 5796 (void) remove_reference(hdr, hash_lock, 5797 private); 5798 arc_buf_destroy_impl(buf); 5799 buf = NULL; 5800 } 5801 /* assert any errors weren't due to unloaded keys */ 5802 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 5803 rc != EACCES); 5804 } else if (*arc_flags & ARC_FLAG_PREFETCH && 5805 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 5806 if (HDR_HAS_L2HDR(hdr)) 5807 l2arc_hdr_arcstats_decrement_state(hdr); 5808 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5809 if (HDR_HAS_L2HDR(hdr)) 5810 l2arc_hdr_arcstats_increment_state(hdr); 5811 } 5812 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5813 arc_access(hdr, hash_lock); 5814 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 5815 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 5816 if (*arc_flags & ARC_FLAG_L2CACHE) 5817 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5818 mutex_exit(hash_lock); 5819 ARCSTAT_BUMP(arcstat_hits); 5820 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5821 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 5822 data, metadata, hits); 5823 5824 if (done) 5825 done(NULL, zb, bp, buf, private); 5826 } else { 5827 uint64_t lsize = BP_GET_LSIZE(bp); 5828 uint64_t psize = BP_GET_PSIZE(bp); 5829 arc_callback_t *acb; 5830 vdev_t *vd = NULL; 5831 uint64_t addr = 0; 5832 boolean_t devw = B_FALSE; 5833 uint64_t size; 5834 abd_t *hdr_abd; 5835 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 5836 5837 if (hdr == NULL) { 5838 /* this block is not in the cache */ 5839 arc_buf_hdr_t *exists = NULL; 5840 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 5841 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 5842 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), type, 5843 encrypted_read); 5844 5845 if (!BP_IS_EMBEDDED(bp)) { 5846 hdr->b_dva = *BP_IDENTITY(bp); 5847 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 5848 exists = buf_hash_insert(hdr, &hash_lock); 5849 } 5850 if (exists != NULL) { 5851 /* somebody beat us to the hash insert */ 5852 mutex_exit(hash_lock); 5853 buf_discard_identity(hdr); 5854 arc_hdr_destroy(hdr); 5855 goto top; /* restart the IO request */ 5856 } 5857 } else { 5858 /* 5859 * This block is in the ghost cache or encrypted data 5860 * was requested and we didn't have it. If it was 5861 * L2-only (and thus didn't have an L1 hdr), 5862 * we realloc the header to add an L1 hdr. 5863 */ 5864 if (!HDR_HAS_L1HDR(hdr)) { 5865 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 5866 hdr_full_cache); 5867 } 5868 5869 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 5870 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 5871 ASSERT(!HDR_HAS_RABD(hdr)); 5872 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5873 ASSERT0(zfs_refcount_count( 5874 &hdr->b_l1hdr.b_refcnt)); 5875 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 5876 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 5877 } else if (HDR_IO_IN_PROGRESS(hdr)) { 5878 /* 5879 * If this header already had an IO in progress 5880 * and we are performing another IO to fetch 5881 * encrypted data we must wait until the first 5882 * IO completes so as not to confuse 5883 * arc_read_done(). This should be very rare 5884 * and so the performance impact shouldn't 5885 * matter. 5886 */ 5887 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5888 mutex_exit(hash_lock); 5889 goto top; 5890 } 5891 5892 /* 5893 * This is a delicate dance that we play here. 5894 * This hdr might be in the ghost list so we access 5895 * it to move it out of the ghost list before we 5896 * initiate the read. If it's a prefetch then 5897 * it won't have a callback so we'll remove the 5898 * reference that arc_buf_alloc_impl() created. We 5899 * do this after we've called arc_access() to 5900 * avoid hitting an assert in remove_reference(). 5901 */ 5902 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state); 5903 arc_access(hdr, hash_lock); 5904 arc_hdr_alloc_pabd(hdr, alloc_flags); 5905 } 5906 5907 if (encrypted_read) { 5908 ASSERT(HDR_HAS_RABD(hdr)); 5909 size = HDR_GET_PSIZE(hdr); 5910 hdr_abd = hdr->b_crypt_hdr.b_rabd; 5911 zio_flags |= ZIO_FLAG_RAW; 5912 } else { 5913 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 5914 size = arc_hdr_size(hdr); 5915 hdr_abd = hdr->b_l1hdr.b_pabd; 5916 5917 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 5918 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 5919 } 5920 5921 /* 5922 * For authenticated bp's, we do not ask the ZIO layer 5923 * to authenticate them since this will cause the entire 5924 * IO to fail if the key isn't loaded. Instead, we 5925 * defer authentication until arc_buf_fill(), which will 5926 * verify the data when the key is available. 5927 */ 5928 if (BP_IS_AUTHENTICATED(bp)) 5929 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 5930 } 5931 5932 if (*arc_flags & ARC_FLAG_PREFETCH && 5933 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 5934 if (HDR_HAS_L2HDR(hdr)) 5935 l2arc_hdr_arcstats_decrement_state(hdr); 5936 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5937 if (HDR_HAS_L2HDR(hdr)) 5938 l2arc_hdr_arcstats_increment_state(hdr); 5939 } 5940 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 5941 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 5942 5943 if (*arc_flags & ARC_FLAG_L2CACHE) 5944 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5945 if (BP_IS_AUTHENTICATED(bp)) 5946 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 5947 if (BP_GET_LEVEL(bp) > 0) 5948 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 5949 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 5950 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 5951 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 5952 5953 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 5954 acb->acb_done = done; 5955 acb->acb_private = private; 5956 acb->acb_compressed = compressed_read; 5957 acb->acb_encrypted = encrypted_read; 5958 acb->acb_noauth = noauth_read; 5959 acb->acb_zb = *zb; 5960 5961 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5962 hdr->b_l1hdr.b_acb = acb; 5963 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5964 5965 if (HDR_HAS_L2HDR(hdr) && 5966 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 5967 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 5968 addr = hdr->b_l2hdr.b_daddr; 5969 /* 5970 * Lock out L2ARC device removal. 5971 */ 5972 if (vdev_is_dead(vd) || 5973 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 5974 vd = NULL; 5975 } 5976 5977 /* 5978 * We count both async reads and scrub IOs as asynchronous so 5979 * that both can be upgraded in the event of a cache hit while 5980 * the read IO is still in-flight. 5981 */ 5982 if (priority == ZIO_PRIORITY_ASYNC_READ || 5983 priority == ZIO_PRIORITY_SCRUB) 5984 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5985 else 5986 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5987 5988 /* 5989 * At this point, we have a level 1 cache miss. Try again in 5990 * L2ARC if possible. 5991 */ 5992 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 5993 5994 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 5995 uint64_t, lsize, zbookmark_phys_t *, zb); 5996 ARCSTAT_BUMP(arcstat_misses); 5997 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5998 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 5999 data, metadata, misses); 6000 6001 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 6002 /* 6003 * Read from the L2ARC if the following are true: 6004 * 1. The L2ARC vdev was previously cached. 6005 * 2. This buffer still has L2ARC metadata. 6006 * 3. This buffer isn't currently writing to the L2ARC. 6007 * 4. The L2ARC entry wasn't evicted, which may 6008 * also have invalidated the vdev. 6009 * 5. This isn't prefetch or l2arc_noprefetch is 0. 6010 */ 6011 if (HDR_HAS_L2HDR(hdr) && 6012 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 6013 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 6014 l2arc_read_callback_t *cb; 6015 abd_t *abd; 6016 uint64_t asize; 6017 6018 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 6019 ARCSTAT_BUMP(arcstat_l2_hits); 6020 6021 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 6022 KM_SLEEP); 6023 cb->l2rcb_hdr = hdr; 6024 cb->l2rcb_bp = *bp; 6025 cb->l2rcb_zb = *zb; 6026 cb->l2rcb_flags = zio_flags; 6027 6028 /* 6029 * When Compressed ARC is disabled, but the 6030 * L2ARC block is compressed, arc_hdr_size() 6031 * will have returned LSIZE rather than PSIZE. 6032 */ 6033 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 6034 !HDR_COMPRESSION_ENABLED(hdr) && 6035 HDR_GET_PSIZE(hdr) != 0) { 6036 size = HDR_GET_PSIZE(hdr); 6037 } 6038 6039 asize = vdev_psize_to_asize(vd, size); 6040 if (asize != size) { 6041 abd = abd_alloc_for_io(asize, 6042 HDR_ISTYPE_METADATA(hdr)); 6043 cb->l2rcb_abd = abd; 6044 } else { 6045 abd = hdr_abd; 6046 } 6047 6048 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6049 addr + asize <= vd->vdev_psize - 6050 VDEV_LABEL_END_SIZE); 6051 6052 /* 6053 * l2arc read. The SCL_L2ARC lock will be 6054 * released by l2arc_read_done(). 6055 * Issue a null zio if the underlying buffer 6056 * was squashed to zero size by compression. 6057 */ 6058 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6059 ZIO_COMPRESS_EMPTY); 6060 rzio = zio_read_phys(pio, vd, addr, 6061 asize, abd, 6062 ZIO_CHECKSUM_OFF, 6063 l2arc_read_done, cb, priority, 6064 zio_flags | ZIO_FLAG_DONT_CACHE | 6065 ZIO_FLAG_CANFAIL | 6066 ZIO_FLAG_DONT_PROPAGATE | 6067 ZIO_FLAG_DONT_RETRY, B_FALSE); 6068 acb->acb_zio_head = rzio; 6069 6070 if (hash_lock != NULL) 6071 mutex_exit(hash_lock); 6072 6073 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6074 zio_t *, rzio); 6075 ARCSTAT_INCR(arcstat_l2_read_bytes, 6076 HDR_GET_PSIZE(hdr)); 6077 6078 if (*arc_flags & ARC_FLAG_NOWAIT) { 6079 zio_nowait(rzio); 6080 return (0); 6081 } 6082 6083 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6084 if (zio_wait(rzio) == 0) 6085 return (0); 6086 6087 /* l2arc read error; goto zio_read() */ 6088 if (hash_lock != NULL) 6089 mutex_enter(hash_lock); 6090 } else { 6091 DTRACE_PROBE1(l2arc__miss, 6092 arc_buf_hdr_t *, hdr); 6093 ARCSTAT_BUMP(arcstat_l2_misses); 6094 if (HDR_L2_WRITING(hdr)) 6095 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6096 spa_config_exit(spa, SCL_L2ARC, vd); 6097 } 6098 } else { 6099 if (vd != NULL) 6100 spa_config_exit(spa, SCL_L2ARC, vd); 6101 if (l2arc_ndev != 0) { 6102 DTRACE_PROBE1(l2arc__miss, 6103 arc_buf_hdr_t *, hdr); 6104 ARCSTAT_BUMP(arcstat_l2_misses); 6105 } 6106 } 6107 6108 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6109 arc_read_done, hdr, priority, zio_flags, zb); 6110 acb->acb_zio_head = rzio; 6111 6112 if (hash_lock != NULL) 6113 mutex_exit(hash_lock); 6114 6115 if (*arc_flags & ARC_FLAG_WAIT) 6116 return (zio_wait(rzio)); 6117 6118 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6119 zio_nowait(rzio); 6120 } 6121 return (rc); 6122 } 6123 6124 /* 6125 * Notify the arc that a block was freed, and thus will never be used again. 6126 */ 6127 void 6128 arc_freed(spa_t *spa, const blkptr_t *bp) 6129 { 6130 arc_buf_hdr_t *hdr; 6131 kmutex_t *hash_lock; 6132 uint64_t guid = spa_load_guid(spa); 6133 6134 ASSERT(!BP_IS_EMBEDDED(bp)); 6135 6136 hdr = buf_hash_find(guid, bp, &hash_lock); 6137 if (hdr == NULL) 6138 return; 6139 6140 /* 6141 * We might be trying to free a block that is still doing I/O 6142 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 6143 * dmu_sync-ed block). If this block is being prefetched, then it 6144 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 6145 * until the I/O completes. A block may also have a reference if it is 6146 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6147 * have written the new block to its final resting place on disk but 6148 * without the dedup flag set. This would have left the hdr in the MRU 6149 * state and discoverable. When the txg finally syncs it detects that 6150 * the block was overridden in open context and issues an override I/O. 6151 * Since this is a dedup block, the override I/O will determine if the 6152 * block is already in the DDT. If so, then it will replace the io_bp 6153 * with the bp from the DDT and allow the I/O to finish. When the I/O 6154 * reaches the done callback, dbuf_write_override_done, it will 6155 * check to see if the io_bp and io_bp_override are identical. 6156 * If they are not, then it indicates that the bp was replaced with 6157 * the bp in the DDT and the override bp is freed. This allows 6158 * us to arrive here with a reference on a block that is being 6159 * freed. So if we have an I/O in progress, or a reference to 6160 * this hdr, then we don't destroy the hdr. 6161 */ 6162 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 6163 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 6164 arc_change_state(arc_anon, hdr, hash_lock); 6165 arc_hdr_destroy(hdr); 6166 mutex_exit(hash_lock); 6167 } else { 6168 mutex_exit(hash_lock); 6169 } 6170 6171 } 6172 6173 /* 6174 * Release this buffer from the cache, making it an anonymous buffer. This 6175 * must be done after a read and prior to modifying the buffer contents. 6176 * If the buffer has more than one reference, we must make 6177 * a new hdr for the buffer. 6178 */ 6179 void 6180 arc_release(arc_buf_t *buf, void *tag) 6181 { 6182 arc_buf_hdr_t *hdr = buf->b_hdr; 6183 6184 /* 6185 * It would be nice to assert that if its DMU metadata (level > 6186 * 0 || it's the dnode file), then it must be syncing context. 6187 * But we don't know that information at this level. 6188 */ 6189 6190 mutex_enter(&buf->b_evict_lock); 6191 6192 ASSERT(HDR_HAS_L1HDR(hdr)); 6193 6194 /* 6195 * We don't grab the hash lock prior to this check, because if 6196 * the buffer's header is in the arc_anon state, it won't be 6197 * linked into the hash table. 6198 */ 6199 if (hdr->b_l1hdr.b_state == arc_anon) { 6200 mutex_exit(&buf->b_evict_lock); 6201 /* 6202 * If we are called from dmu_convert_mdn_block_to_raw(), 6203 * a write might be in progress. This is OK because 6204 * the caller won't change the content of this buffer, 6205 * only the flags (via arc_convert_to_raw()). 6206 */ 6207 /* ASSERT(!HDR_IO_IN_PROGRESS(hdr)); */ 6208 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6209 ASSERT(!HDR_HAS_L2HDR(hdr)); 6210 ASSERT(HDR_EMPTY(hdr)); 6211 6212 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6213 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6214 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 6215 6216 hdr->b_l1hdr.b_arc_access = 0; 6217 6218 /* 6219 * If the buf is being overridden then it may already 6220 * have a hdr that is not empty. 6221 */ 6222 buf_discard_identity(hdr); 6223 arc_buf_thaw(buf); 6224 6225 return; 6226 } 6227 6228 kmutex_t *hash_lock = HDR_LOCK(hdr); 6229 mutex_enter(hash_lock); 6230 6231 /* 6232 * This assignment is only valid as long as the hash_lock is 6233 * held, we must be careful not to reference state or the 6234 * b_state field after dropping the lock. 6235 */ 6236 arc_state_t *state = hdr->b_l1hdr.b_state; 6237 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6238 ASSERT3P(state, !=, arc_anon); 6239 6240 /* this buffer is not on any list */ 6241 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6242 6243 if (HDR_HAS_L2HDR(hdr)) { 6244 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6245 6246 /* 6247 * We have to recheck this conditional again now that 6248 * we're holding the l2ad_mtx to prevent a race with 6249 * another thread which might be concurrently calling 6250 * l2arc_evict(). In that case, l2arc_evict() might have 6251 * destroyed the header's L2 portion as we were waiting 6252 * to acquire the l2ad_mtx. 6253 */ 6254 if (HDR_HAS_L2HDR(hdr)) 6255 arc_hdr_l2hdr_destroy(hdr); 6256 6257 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6258 } 6259 6260 /* 6261 * Do we have more than one buf? 6262 */ 6263 if (hdr->b_l1hdr.b_bufcnt > 1) { 6264 arc_buf_hdr_t *nhdr; 6265 uint64_t spa = hdr->b_spa; 6266 uint64_t psize = HDR_GET_PSIZE(hdr); 6267 uint64_t lsize = HDR_GET_LSIZE(hdr); 6268 boolean_t protected = HDR_PROTECTED(hdr); 6269 enum zio_compress compress = arc_hdr_get_compress(hdr); 6270 arc_buf_contents_t type = arc_buf_type(hdr); 6271 VERIFY3U(hdr->b_type, ==, type); 6272 6273 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6274 (void) remove_reference(hdr, hash_lock, tag); 6275 6276 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 6277 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6278 ASSERT(ARC_BUF_LAST(buf)); 6279 } 6280 6281 /* 6282 * Pull the data off of this hdr and attach it to 6283 * a new anonymous hdr. Also find the last buffer 6284 * in the hdr's buffer list. 6285 */ 6286 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6287 ASSERT3P(lastbuf, !=, NULL); 6288 6289 /* 6290 * If the current arc_buf_t and the hdr are sharing their data 6291 * buffer, then we must stop sharing that block. 6292 */ 6293 if (arc_buf_is_shared(buf)) { 6294 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6295 VERIFY(!arc_buf_is_shared(lastbuf)); 6296 6297 /* 6298 * First, sever the block sharing relationship between 6299 * buf and the arc_buf_hdr_t. 6300 */ 6301 arc_unshare_buf(hdr, buf); 6302 6303 /* 6304 * Now we need to recreate the hdr's b_pabd. Since we 6305 * have lastbuf handy, we try to share with it, but if 6306 * we can't then we allocate a new b_pabd and copy the 6307 * data from buf into it. 6308 */ 6309 if (arc_can_share(hdr, lastbuf)) { 6310 arc_share_buf(hdr, lastbuf); 6311 } else { 6312 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT); 6313 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6314 buf->b_data, psize); 6315 } 6316 VERIFY3P(lastbuf->b_data, !=, NULL); 6317 } else if (HDR_SHARED_DATA(hdr)) { 6318 /* 6319 * Uncompressed shared buffers are always at the end 6320 * of the list. Compressed buffers don't have the 6321 * same requirements. This makes it hard to 6322 * simply assert that the lastbuf is shared so 6323 * we rely on the hdr's compression flags to determine 6324 * if we have a compressed, shared buffer. 6325 */ 6326 ASSERT(arc_buf_is_shared(lastbuf) || 6327 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6328 ASSERT(!ARC_BUF_SHARED(buf)); 6329 } 6330 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6331 ASSERT3P(state, !=, arc_l2c_only); 6332 6333 (void) zfs_refcount_remove_many(&state->arcs_size, 6334 arc_buf_size(buf), buf); 6335 6336 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6337 ASSERT3P(state, !=, arc_l2c_only); 6338 (void) zfs_refcount_remove_many( 6339 &state->arcs_esize[type], 6340 arc_buf_size(buf), buf); 6341 } 6342 6343 hdr->b_l1hdr.b_bufcnt -= 1; 6344 if (ARC_BUF_ENCRYPTED(buf)) 6345 hdr->b_crypt_hdr.b_ebufcnt -= 1; 6346 6347 arc_cksum_verify(buf); 6348 arc_buf_unwatch(buf); 6349 6350 /* if this is the last uncompressed buf free the checksum */ 6351 if (!arc_hdr_has_uncompressed_buf(hdr)) 6352 arc_cksum_free(hdr); 6353 6354 mutex_exit(hash_lock); 6355 6356 /* 6357 * Allocate a new hdr. The new hdr will contain a b_pabd 6358 * buffer which will be freed in arc_write(). 6359 */ 6360 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6361 compress, type, HDR_HAS_RABD(hdr)); 6362 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6363 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 6364 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6365 VERIFY3U(nhdr->b_type, ==, type); 6366 ASSERT(!HDR_SHARED_DATA(nhdr)); 6367 6368 nhdr->b_l1hdr.b_buf = buf; 6369 nhdr->b_l1hdr.b_bufcnt = 1; 6370 if (ARC_BUF_ENCRYPTED(buf)) 6371 nhdr->b_crypt_hdr.b_ebufcnt = 1; 6372 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6373 buf->b_hdr = nhdr; 6374 6375 mutex_exit(&buf->b_evict_lock); 6376 (void) zfs_refcount_add_many(&arc_anon->arcs_size, 6377 arc_buf_size(buf), buf); 6378 } else { 6379 mutex_exit(&buf->b_evict_lock); 6380 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6381 /* protected by hash lock, or hdr is on arc_anon */ 6382 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6383 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6384 arc_change_state(arc_anon, hdr, hash_lock); 6385 hdr->b_l1hdr.b_arc_access = 0; 6386 6387 mutex_exit(hash_lock); 6388 buf_discard_identity(hdr); 6389 arc_buf_thaw(buf); 6390 } 6391 } 6392 6393 int 6394 arc_released(arc_buf_t *buf) 6395 { 6396 int released; 6397 6398 mutex_enter(&buf->b_evict_lock); 6399 released = (buf->b_data != NULL && 6400 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6401 mutex_exit(&buf->b_evict_lock); 6402 return (released); 6403 } 6404 6405 #ifdef ZFS_DEBUG 6406 int 6407 arc_referenced(arc_buf_t *buf) 6408 { 6409 int referenced; 6410 6411 mutex_enter(&buf->b_evict_lock); 6412 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6413 mutex_exit(&buf->b_evict_lock); 6414 return (referenced); 6415 } 6416 #endif 6417 6418 static void 6419 arc_write_ready(zio_t *zio) 6420 { 6421 arc_write_callback_t *callback = zio->io_private; 6422 arc_buf_t *buf = callback->awcb_buf; 6423 arc_buf_hdr_t *hdr = buf->b_hdr; 6424 blkptr_t *bp = zio->io_bp; 6425 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6426 6427 ASSERT(HDR_HAS_L1HDR(hdr)); 6428 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6429 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 6430 6431 /* 6432 * If we're reexecuting this zio because the pool suspended, then 6433 * cleanup any state that was previously set the first time the 6434 * callback was invoked. 6435 */ 6436 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6437 arc_cksum_free(hdr); 6438 arc_buf_unwatch(buf); 6439 if (hdr->b_l1hdr.b_pabd != NULL) { 6440 if (arc_buf_is_shared(buf)) { 6441 arc_unshare_buf(hdr, buf); 6442 } else { 6443 arc_hdr_free_pabd(hdr, B_FALSE); 6444 } 6445 } 6446 6447 if (HDR_HAS_RABD(hdr)) 6448 arc_hdr_free_pabd(hdr, B_TRUE); 6449 } 6450 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6451 ASSERT(!HDR_HAS_RABD(hdr)); 6452 ASSERT(!HDR_SHARED_DATA(hdr)); 6453 ASSERT(!arc_buf_is_shared(buf)); 6454 6455 callback->awcb_ready(zio, buf, callback->awcb_private); 6456 6457 if (HDR_IO_IN_PROGRESS(hdr)) 6458 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6459 6460 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6461 6462 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr)) 6463 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp)); 6464 6465 if (BP_IS_PROTECTED(bp)) { 6466 /* ZIL blocks are written through zio_rewrite */ 6467 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6468 ASSERT(HDR_PROTECTED(hdr)); 6469 6470 if (BP_SHOULD_BYTESWAP(bp)) { 6471 if (BP_GET_LEVEL(bp) > 0) { 6472 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6473 } else { 6474 hdr->b_l1hdr.b_byteswap = 6475 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6476 } 6477 } else { 6478 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6479 } 6480 6481 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6482 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6483 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6484 hdr->b_crypt_hdr.b_iv); 6485 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6486 } 6487 6488 /* 6489 * If this block was written for raw encryption but the zio layer 6490 * ended up only authenticating it, adjust the buffer flags now. 6491 */ 6492 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6493 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6494 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6495 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6496 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6497 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6498 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6499 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6500 } 6501 6502 /* this must be done after the buffer flags are adjusted */ 6503 arc_cksum_compute(buf); 6504 6505 enum zio_compress compress; 6506 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6507 compress = ZIO_COMPRESS_OFF; 6508 } else { 6509 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6510 compress = BP_GET_COMPRESS(bp); 6511 } 6512 HDR_SET_PSIZE(hdr, psize); 6513 arc_hdr_set_compress(hdr, compress); 6514 6515 if (zio->io_error != 0 || psize == 0) 6516 goto out; 6517 6518 /* 6519 * Fill the hdr with data. If the buffer is encrypted we have no choice 6520 * but to copy the data into b_rabd. If the hdr is compressed, the data 6521 * we want is available from the zio, otherwise we can take it from 6522 * the buf. 6523 * 6524 * We might be able to share the buf's data with the hdr here. However, 6525 * doing so would cause the ARC to be full of linear ABDs if we write a 6526 * lot of shareable data. As a compromise, we check whether scattered 6527 * ABDs are allowed, and assume that if they are then the user wants 6528 * the ARC to be primarily filled with them regardless of the data being 6529 * written. Therefore, if they're allowed then we allocate one and copy 6530 * the data into it; otherwise, we share the data directly if we can. 6531 */ 6532 if (ARC_BUF_ENCRYPTED(buf)) { 6533 ASSERT3U(psize, >, 0); 6534 ASSERT(ARC_BUF_COMPRESSED(buf)); 6535 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6536 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6537 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) { 6538 /* 6539 * Ideally, we would always copy the io_abd into b_pabd, but the 6540 * user may have disabled compressed ARC, thus we must check the 6541 * hdr's compression setting rather than the io_bp's. 6542 */ 6543 if (BP_IS_ENCRYPTED(bp)) { 6544 ASSERT3U(psize, >, 0); 6545 arc_hdr_alloc_pabd(hdr, 6546 ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6547 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6548 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6549 !ARC_BUF_COMPRESSED(buf)) { 6550 ASSERT3U(psize, >, 0); 6551 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT); 6552 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6553 } else { 6554 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6555 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT); 6556 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6557 arc_buf_size(buf)); 6558 } 6559 } else { 6560 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6561 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6562 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6563 arc_share_buf(hdr, buf); 6564 } 6565 6566 out: 6567 arc_hdr_verify(hdr, bp); 6568 } 6569 6570 static void 6571 arc_write_children_ready(zio_t *zio) 6572 { 6573 arc_write_callback_t *callback = zio->io_private; 6574 arc_buf_t *buf = callback->awcb_buf; 6575 6576 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6577 } 6578 6579 /* 6580 * The SPA calls this callback for each physical write that happens on behalf 6581 * of a logical write. See the comment in dbuf_write_physdone() for details. 6582 */ 6583 static void 6584 arc_write_physdone(zio_t *zio) 6585 { 6586 arc_write_callback_t *cb = zio->io_private; 6587 if (cb->awcb_physdone != NULL) 6588 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 6589 } 6590 6591 static void 6592 arc_write_done(zio_t *zio) 6593 { 6594 arc_write_callback_t *callback = zio->io_private; 6595 arc_buf_t *buf = callback->awcb_buf; 6596 arc_buf_hdr_t *hdr = buf->b_hdr; 6597 6598 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6599 6600 if (zio->io_error == 0) { 6601 arc_hdr_verify(hdr, zio->io_bp); 6602 6603 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6604 buf_discard_identity(hdr); 6605 } else { 6606 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6607 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 6608 } 6609 } else { 6610 ASSERT(HDR_EMPTY(hdr)); 6611 } 6612 6613 /* 6614 * If the block to be written was all-zero or compressed enough to be 6615 * embedded in the BP, no write was performed so there will be no 6616 * dva/birth/checksum. The buffer must therefore remain anonymous 6617 * (and uncached). 6618 */ 6619 if (!HDR_EMPTY(hdr)) { 6620 arc_buf_hdr_t *exists; 6621 kmutex_t *hash_lock; 6622 6623 ASSERT3U(zio->io_error, ==, 0); 6624 6625 arc_cksum_verify(buf); 6626 6627 exists = buf_hash_insert(hdr, &hash_lock); 6628 if (exists != NULL) { 6629 /* 6630 * This can only happen if we overwrite for 6631 * sync-to-convergence, because we remove 6632 * buffers from the hash table when we arc_free(). 6633 */ 6634 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 6635 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6636 panic("bad overwrite, hdr=%p exists=%p", 6637 (void *)hdr, (void *)exists); 6638 ASSERT(zfs_refcount_is_zero( 6639 &exists->b_l1hdr.b_refcnt)); 6640 arc_change_state(arc_anon, exists, hash_lock); 6641 arc_hdr_destroy(exists); 6642 mutex_exit(hash_lock); 6643 exists = buf_hash_insert(hdr, &hash_lock); 6644 ASSERT3P(exists, ==, NULL); 6645 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 6646 /* nopwrite */ 6647 ASSERT(zio->io_prop.zp_nopwrite); 6648 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6649 panic("bad nopwrite, hdr=%p exists=%p", 6650 (void *)hdr, (void *)exists); 6651 } else { 6652 /* Dedup */ 6653 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 6654 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 6655 ASSERT(BP_GET_DEDUP(zio->io_bp)); 6656 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 6657 } 6658 } 6659 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6660 /* if it's not anon, we are doing a scrub */ 6661 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 6662 arc_access(hdr, hash_lock); 6663 mutex_exit(hash_lock); 6664 } else { 6665 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6666 } 6667 6668 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 6669 callback->awcb_done(zio, buf, callback->awcb_private); 6670 6671 abd_put(zio->io_abd); 6672 kmem_free(callback, sizeof (arc_write_callback_t)); 6673 } 6674 6675 zio_t * 6676 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 6677 boolean_t l2arc, const zio_prop_t *zp, arc_write_done_func_t *ready, 6678 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone, 6679 arc_write_done_func_t *done, void *private, zio_priority_t priority, 6680 int zio_flags, const zbookmark_phys_t *zb) 6681 { 6682 arc_buf_hdr_t *hdr = buf->b_hdr; 6683 arc_write_callback_t *callback; 6684 zio_t *zio; 6685 zio_prop_t localprop = *zp; 6686 6687 ASSERT3P(ready, !=, NULL); 6688 ASSERT3P(done, !=, NULL); 6689 ASSERT(!HDR_IO_ERROR(hdr)); 6690 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6691 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6692 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 6693 if (l2arc) 6694 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6695 6696 if (ARC_BUF_ENCRYPTED(buf)) { 6697 ASSERT(ARC_BUF_COMPRESSED(buf)); 6698 localprop.zp_encrypt = B_TRUE; 6699 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6700 /* CONSTCOND */ 6701 localprop.zp_byteorder = 6702 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 6703 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 6704 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt, 6705 ZIO_DATA_SALT_LEN); 6706 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv, 6707 ZIO_DATA_IV_LEN); 6708 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac, 6709 ZIO_DATA_MAC_LEN); 6710 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 6711 localprop.zp_nopwrite = B_FALSE; 6712 localprop.zp_copies = 6713 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 6714 } 6715 zio_flags |= ZIO_FLAG_RAW; 6716 } else if (ARC_BUF_COMPRESSED(buf)) { 6717 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 6718 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6719 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6720 } 6721 6722 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 6723 callback->awcb_ready = ready; 6724 callback->awcb_children_ready = children_ready; 6725 callback->awcb_physdone = physdone; 6726 callback->awcb_done = done; 6727 callback->awcb_private = private; 6728 callback->awcb_buf = buf; 6729 6730 /* 6731 * The hdr's b_pabd is now stale, free it now. A new data block 6732 * will be allocated when the zio pipeline calls arc_write_ready(). 6733 */ 6734 if (hdr->b_l1hdr.b_pabd != NULL) { 6735 /* 6736 * If the buf is currently sharing the data block with 6737 * the hdr then we need to break that relationship here. 6738 * The hdr will remain with a NULL data pointer and the 6739 * buf will take sole ownership of the block. 6740 */ 6741 if (arc_buf_is_shared(buf)) { 6742 arc_unshare_buf(hdr, buf); 6743 } else { 6744 arc_hdr_free_pabd(hdr, B_FALSE); 6745 } 6746 VERIFY3P(buf->b_data, !=, NULL); 6747 } 6748 6749 if (HDR_HAS_RABD(hdr)) 6750 arc_hdr_free_pabd(hdr, B_TRUE); 6751 6752 if (!(zio_flags & ZIO_FLAG_RAW)) 6753 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 6754 6755 ASSERT(!arc_buf_is_shared(buf)); 6756 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6757 6758 zio = zio_write(pio, spa, txg, bp, 6759 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 6760 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 6761 (children_ready != NULL) ? arc_write_children_ready : NULL, 6762 arc_write_physdone, arc_write_done, callback, 6763 priority, zio_flags, zb); 6764 6765 return (zio); 6766 } 6767 6768 static int 6769 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg) 6770 { 6771 #ifdef _KERNEL 6772 uint64_t available_memory = ptob(freemem); 6773 6774 6775 if (freemem > physmem * arc_lotsfree_percent / 100) 6776 return (0); 6777 6778 if (txg > spa->spa_lowmem_last_txg) { 6779 spa->spa_lowmem_last_txg = txg; 6780 spa->spa_lowmem_page_load = 0; 6781 } 6782 /* 6783 * If we are in pageout, we know that memory is already tight, 6784 * the arc is already going to be evicting, so we just want to 6785 * continue to let page writes occur as quickly as possible. 6786 */ 6787 if (curproc == proc_pageout) { 6788 if (spa->spa_lowmem_page_load > 6789 MAX(ptob(minfree), available_memory) / 4) 6790 return (SET_ERROR(ERESTART)); 6791 /* Note: reserve is inflated, so we deflate */ 6792 atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8); 6793 return (0); 6794 } else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) { 6795 /* memory is low, delay before restarting */ 6796 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 6797 return (SET_ERROR(EAGAIN)); 6798 } 6799 spa->spa_lowmem_page_load = 0; 6800 #endif /* _KERNEL */ 6801 return (0); 6802 } 6803 6804 void 6805 arc_tempreserve_clear(uint64_t reserve) 6806 { 6807 atomic_add_64(&arc_tempreserve, -reserve); 6808 ASSERT((int64_t)arc_tempreserve >= 0); 6809 } 6810 6811 int 6812 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 6813 { 6814 int error; 6815 uint64_t anon_size; 6816 6817 if (reserve > arc_c/4 && !arc_no_grow) 6818 arc_c = MIN(arc_c_max, reserve * 4); 6819 if (reserve > arc_c) 6820 return (SET_ERROR(ENOMEM)); 6821 6822 /* 6823 * Don't count loaned bufs as in flight dirty data to prevent long 6824 * network delays from blocking transactions that are ready to be 6825 * assigned to a txg. 6826 */ 6827 6828 /* assert that it has not wrapped around */ 6829 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 6830 6831 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) - 6832 arc_loaned_bytes), 0); 6833 6834 /* 6835 * Writes will, almost always, require additional memory allocations 6836 * in order to compress/encrypt/etc the data. We therefore need to 6837 * make sure that there is sufficient available memory for this. 6838 */ 6839 error = arc_memory_throttle(spa, reserve, txg); 6840 if (error != 0) 6841 return (error); 6842 6843 /* 6844 * Throttle writes when the amount of dirty data in the cache 6845 * gets too large. We try to keep the cache less than half full 6846 * of dirty blocks so that our sync times don't grow too large. 6847 * 6848 * In the case of one pool being built on another pool, we want 6849 * to make sure we don't end up throttling the lower (backing) 6850 * pool when the upper pool is the majority contributor to dirty 6851 * data. To insure we make forward progress during throttling, we 6852 * also check the current pool's net dirty data and only throttle 6853 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 6854 * data in the cache. 6855 * 6856 * Note: if two requests come in concurrently, we might let them 6857 * both succeed, when one of them should fail. Not a huge deal. 6858 */ 6859 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 6860 uint64_t spa_dirty_anon = spa_dirty_data(spa); 6861 6862 if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 && 6863 anon_size > arc_c * zfs_arc_anon_limit_percent / 100 && 6864 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 6865 uint64_t meta_esize = 6866 zfs_refcount_count( 6867 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 6868 uint64_t data_esize = 6869 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 6870 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 6871 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 6872 arc_tempreserve >> 10, meta_esize >> 10, 6873 data_esize >> 10, reserve >> 10, arc_c >> 10); 6874 return (SET_ERROR(ERESTART)); 6875 } 6876 atomic_add_64(&arc_tempreserve, reserve); 6877 return (0); 6878 } 6879 6880 static void 6881 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 6882 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 6883 { 6884 size->value.ui64 = zfs_refcount_count(&state->arcs_size); 6885 evict_data->value.ui64 = 6886 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 6887 evict_metadata->value.ui64 = 6888 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 6889 } 6890 6891 static int 6892 arc_kstat_update(kstat_t *ksp, int rw) 6893 { 6894 arc_stats_t *as = ksp->ks_data; 6895 6896 if (rw == KSTAT_WRITE) { 6897 return (EACCES); 6898 } else { 6899 arc_kstat_update_state(arc_anon, 6900 &as->arcstat_anon_size, 6901 &as->arcstat_anon_evictable_data, 6902 &as->arcstat_anon_evictable_metadata); 6903 arc_kstat_update_state(arc_mru, 6904 &as->arcstat_mru_size, 6905 &as->arcstat_mru_evictable_data, 6906 &as->arcstat_mru_evictable_metadata); 6907 arc_kstat_update_state(arc_mru_ghost, 6908 &as->arcstat_mru_ghost_size, 6909 &as->arcstat_mru_ghost_evictable_data, 6910 &as->arcstat_mru_ghost_evictable_metadata); 6911 arc_kstat_update_state(arc_mfu, 6912 &as->arcstat_mfu_size, 6913 &as->arcstat_mfu_evictable_data, 6914 &as->arcstat_mfu_evictable_metadata); 6915 arc_kstat_update_state(arc_mfu_ghost, 6916 &as->arcstat_mfu_ghost_size, 6917 &as->arcstat_mfu_ghost_evictable_data, 6918 &as->arcstat_mfu_ghost_evictable_metadata); 6919 6920 ARCSTAT(arcstat_size) = aggsum_value(&arc_size); 6921 ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used); 6922 ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size); 6923 ARCSTAT(arcstat_metadata_size) = 6924 aggsum_value(&astat_metadata_size); 6925 ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size); 6926 ARCSTAT(arcstat_other_size) = aggsum_value(&astat_other_size); 6927 ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size); 6928 } 6929 6930 return (0); 6931 } 6932 6933 /* 6934 * This function *must* return indices evenly distributed between all 6935 * sublists of the multilist. This is needed due to how the ARC eviction 6936 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 6937 * distributed between all sublists and uses this assumption when 6938 * deciding which sublist to evict from and how much to evict from it. 6939 */ 6940 unsigned int 6941 arc_state_multilist_index_func(multilist_t *ml, void *obj) 6942 { 6943 arc_buf_hdr_t *hdr = obj; 6944 6945 /* 6946 * We rely on b_dva to generate evenly distributed index 6947 * numbers using buf_hash below. So, as an added precaution, 6948 * let's make sure we never add empty buffers to the arc lists. 6949 */ 6950 ASSERT(!HDR_EMPTY(hdr)); 6951 6952 /* 6953 * The assumption here, is the hash value for a given 6954 * arc_buf_hdr_t will remain constant throughout its lifetime 6955 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 6956 * Thus, we don't need to store the header's sublist index 6957 * on insertion, as this index can be recalculated on removal. 6958 * 6959 * Also, the low order bits of the hash value are thought to be 6960 * distributed evenly. Otherwise, in the case that the multilist 6961 * has a power of two number of sublists, each sublists' usage 6962 * would not be evenly distributed. 6963 */ 6964 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 6965 multilist_get_num_sublists(ml)); 6966 } 6967 6968 static void 6969 arc_state_init(void) 6970 { 6971 arc_anon = &ARC_anon; 6972 arc_mru = &ARC_mru; 6973 arc_mru_ghost = &ARC_mru_ghost; 6974 arc_mfu = &ARC_mfu; 6975 arc_mfu_ghost = &ARC_mfu_ghost; 6976 arc_l2c_only = &ARC_l2c_only; 6977 6978 arc_mru->arcs_list[ARC_BUFC_METADATA] = 6979 multilist_create(sizeof (arc_buf_hdr_t), 6980 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6981 arc_state_multilist_index_func); 6982 arc_mru->arcs_list[ARC_BUFC_DATA] = 6983 multilist_create(sizeof (arc_buf_hdr_t), 6984 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6985 arc_state_multilist_index_func); 6986 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] = 6987 multilist_create(sizeof (arc_buf_hdr_t), 6988 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6989 arc_state_multilist_index_func); 6990 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] = 6991 multilist_create(sizeof (arc_buf_hdr_t), 6992 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6993 arc_state_multilist_index_func); 6994 arc_mfu->arcs_list[ARC_BUFC_METADATA] = 6995 multilist_create(sizeof (arc_buf_hdr_t), 6996 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6997 arc_state_multilist_index_func); 6998 arc_mfu->arcs_list[ARC_BUFC_DATA] = 6999 multilist_create(sizeof (arc_buf_hdr_t), 7000 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7001 arc_state_multilist_index_func); 7002 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] = 7003 multilist_create(sizeof (arc_buf_hdr_t), 7004 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7005 arc_state_multilist_index_func); 7006 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] = 7007 multilist_create(sizeof (arc_buf_hdr_t), 7008 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7009 arc_state_multilist_index_func); 7010 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] = 7011 multilist_create(sizeof (arc_buf_hdr_t), 7012 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7013 arc_state_multilist_index_func); 7014 arc_l2c_only->arcs_list[ARC_BUFC_DATA] = 7015 multilist_create(sizeof (arc_buf_hdr_t), 7016 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7017 arc_state_multilist_index_func); 7018 7019 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7020 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7021 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7022 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7023 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7024 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7025 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7026 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7027 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7028 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7029 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7030 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7031 7032 zfs_refcount_create(&arc_anon->arcs_size); 7033 zfs_refcount_create(&arc_mru->arcs_size); 7034 zfs_refcount_create(&arc_mru_ghost->arcs_size); 7035 zfs_refcount_create(&arc_mfu->arcs_size); 7036 zfs_refcount_create(&arc_mfu_ghost->arcs_size); 7037 zfs_refcount_create(&arc_l2c_only->arcs_size); 7038 7039 aggsum_init(&arc_meta_used, 0); 7040 aggsum_init(&arc_size, 0); 7041 aggsum_init(&astat_data_size, 0); 7042 aggsum_init(&astat_metadata_size, 0); 7043 aggsum_init(&astat_hdr_size, 0); 7044 aggsum_init(&astat_other_size, 0); 7045 aggsum_init(&astat_l2_hdr_size, 0); 7046 7047 arc_anon->arcs_state = ARC_STATE_ANON; 7048 arc_mru->arcs_state = ARC_STATE_MRU; 7049 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7050 arc_mfu->arcs_state = ARC_STATE_MFU; 7051 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7052 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7053 } 7054 7055 static void 7056 arc_state_fini(void) 7057 { 7058 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7059 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7060 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7061 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7062 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7063 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7064 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7065 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7066 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7067 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7068 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7069 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7070 7071 zfs_refcount_destroy(&arc_anon->arcs_size); 7072 zfs_refcount_destroy(&arc_mru->arcs_size); 7073 zfs_refcount_destroy(&arc_mru_ghost->arcs_size); 7074 zfs_refcount_destroy(&arc_mfu->arcs_size); 7075 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size); 7076 zfs_refcount_destroy(&arc_l2c_only->arcs_size); 7077 7078 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]); 7079 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7080 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7081 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7082 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]); 7083 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7084 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]); 7085 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7086 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7087 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7088 7089 aggsum_fini(&arc_meta_used); 7090 aggsum_fini(&arc_size); 7091 aggsum_fini(&astat_data_size); 7092 aggsum_fini(&astat_metadata_size); 7093 aggsum_fini(&astat_hdr_size); 7094 aggsum_fini(&astat_other_size); 7095 aggsum_fini(&astat_l2_hdr_size); 7096 7097 } 7098 7099 uint64_t 7100 arc_max_bytes(void) 7101 { 7102 return (arc_c_max); 7103 } 7104 7105 void 7106 arc_init(void) 7107 { 7108 /* 7109 * allmem is "all memory that we could possibly use". 7110 */ 7111 #ifdef _KERNEL 7112 uint64_t allmem = ptob(physmem - swapfs_minfree); 7113 #else 7114 uint64_t allmem = (physmem * PAGESIZE) / 2; 7115 #endif 7116 mutex_init(&arc_adjust_lock, NULL, MUTEX_DEFAULT, NULL); 7117 cv_init(&arc_adjust_waiters_cv, NULL, CV_DEFAULT, NULL); 7118 7119 /* 7120 * Set the minimum cache size to 1/64 of all memory, with a hard 7121 * minimum of 64MB. 7122 */ 7123 arc_c_min = MAX(allmem / 64, 64 << 20); 7124 /* 7125 * In a system with a lot of physical memory this will still result in 7126 * an ARC size floor that is quite large in absolute terms. Cap the 7127 * growth of the value at 2GB. 7128 */ 7129 arc_c_min = MIN(arc_c_min, 2 << 30); 7130 7131 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 7132 if (allmem >= 1 << 30) 7133 arc_c_max = allmem - (1 << 30); 7134 else 7135 arc_c_max = arc_c_min; 7136 arc_c_max = MAX(allmem * 3 / 4, arc_c_max); 7137 7138 /* 7139 * In userland, there's only the memory pressure that we artificially 7140 * create (see arc_available_memory()). Don't let arc_c get too 7141 * small, because it can cause transactions to be larger than 7142 * arc_c, causing arc_tempreserve_space() to fail. 7143 */ 7144 #ifndef _KERNEL 7145 arc_c_min = arc_c_max / 2; 7146 #endif 7147 7148 /* 7149 * Allow the tunables to override our calculations if they are 7150 * reasonable (ie. over 64MB) 7151 */ 7152 if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) { 7153 arc_c_max = zfs_arc_max; 7154 arc_c_min = MIN(arc_c_min, arc_c_max); 7155 } 7156 if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max) 7157 arc_c_min = zfs_arc_min; 7158 7159 arc_c = arc_c_max; 7160 arc_p = (arc_c >> 1); 7161 7162 /* limit meta-data to 1/4 of the arc capacity */ 7163 arc_meta_limit = arc_c_max / 4; 7164 7165 #ifdef _KERNEL 7166 /* 7167 * Metadata is stored in the kernel's heap. Don't let us 7168 * use more than half the heap for the ARC. 7169 */ 7170 arc_meta_limit = MIN(arc_meta_limit, 7171 vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2); 7172 #endif 7173 7174 /* Allow the tunable to override if it is reasonable */ 7175 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 7176 arc_meta_limit = zfs_arc_meta_limit; 7177 7178 if (zfs_arc_meta_min > 0) { 7179 arc_meta_min = zfs_arc_meta_min; 7180 } else { 7181 arc_meta_min = arc_c_min / 2; 7182 } 7183 7184 if (zfs_arc_grow_retry > 0) 7185 arc_grow_retry = zfs_arc_grow_retry; 7186 7187 if (zfs_arc_shrink_shift > 0) 7188 arc_shrink_shift = zfs_arc_shrink_shift; 7189 7190 /* 7191 * Ensure that arc_no_grow_shift is less than arc_shrink_shift. 7192 */ 7193 if (arc_no_grow_shift >= arc_shrink_shift) 7194 arc_no_grow_shift = arc_shrink_shift - 1; 7195 7196 if (zfs_arc_p_min_shift > 0) 7197 arc_p_min_shift = zfs_arc_p_min_shift; 7198 7199 /* if kmem_flags are set, lets try to use less memory */ 7200 if (kmem_debugging()) 7201 arc_c = arc_c / 2; 7202 if (arc_c < arc_c_min) 7203 arc_c = arc_c_min; 7204 7205 arc_state_init(); 7206 7207 /* 7208 * The arc must be "uninitialized", so that hdr_recl() (which is 7209 * registered by buf_init()) will not access arc_reap_zthr before 7210 * it is created. 7211 */ 7212 ASSERT(!arc_initialized); 7213 buf_init(); 7214 7215 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 7216 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 7217 7218 if (arc_ksp != NULL) { 7219 arc_ksp->ks_data = &arc_stats; 7220 arc_ksp->ks_update = arc_kstat_update; 7221 kstat_install(arc_ksp); 7222 } 7223 7224 arc_adjust_zthr = zthr_create(arc_adjust_cb_check, 7225 arc_adjust_cb, NULL); 7226 arc_reap_zthr = zthr_create_timer(arc_reap_cb_check, 7227 arc_reap_cb, NULL, SEC2NSEC(1)); 7228 7229 arc_initialized = B_TRUE; 7230 arc_warm = B_FALSE; 7231 7232 /* 7233 * Calculate maximum amount of dirty data per pool. 7234 * 7235 * If it has been set by /etc/system, take that. 7236 * Otherwise, use a percentage of physical memory defined by 7237 * zfs_dirty_data_max_percent (default 10%) with a cap at 7238 * zfs_dirty_data_max_max (default 4GB). 7239 */ 7240 if (zfs_dirty_data_max == 0) { 7241 zfs_dirty_data_max = physmem * PAGESIZE * 7242 zfs_dirty_data_max_percent / 100; 7243 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 7244 zfs_dirty_data_max_max); 7245 } 7246 } 7247 7248 void 7249 arc_fini(void) 7250 { 7251 /* Use B_TRUE to ensure *all* buffers are evicted */ 7252 arc_flush(NULL, B_TRUE); 7253 7254 arc_initialized = B_FALSE; 7255 7256 if (arc_ksp != NULL) { 7257 kstat_delete(arc_ksp); 7258 arc_ksp = NULL; 7259 } 7260 7261 (void) zthr_cancel(arc_adjust_zthr); 7262 zthr_destroy(arc_adjust_zthr); 7263 7264 (void) zthr_cancel(arc_reap_zthr); 7265 zthr_destroy(arc_reap_zthr); 7266 7267 mutex_destroy(&arc_adjust_lock); 7268 cv_destroy(&arc_adjust_waiters_cv); 7269 7270 /* 7271 * buf_fini() must proceed arc_state_fini() because buf_fin() may 7272 * trigger the release of kmem magazines, which can callback to 7273 * arc_space_return() which accesses aggsums freed in act_state_fini(). 7274 */ 7275 buf_fini(); 7276 arc_state_fini(); 7277 7278 ASSERT0(arc_loaned_bytes); 7279 } 7280 7281 /* 7282 * Level 2 ARC 7283 * 7284 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 7285 * It uses dedicated storage devices to hold cached data, which are populated 7286 * using large infrequent writes. The main role of this cache is to boost 7287 * the performance of random read workloads. The intended L2ARC devices 7288 * include short-stroked disks, solid state disks, and other media with 7289 * substantially faster read latency than disk. 7290 * 7291 * +-----------------------+ 7292 * | ARC | 7293 * +-----------------------+ 7294 * | ^ ^ 7295 * | | | 7296 * l2arc_feed_thread() arc_read() 7297 * | | | 7298 * | l2arc read | 7299 * V | | 7300 * +---------------+ | 7301 * | L2ARC | | 7302 * +---------------+ | 7303 * | ^ | 7304 * l2arc_write() | | 7305 * | | | 7306 * V | | 7307 * +-------+ +-------+ 7308 * | vdev | | vdev | 7309 * | cache | | cache | 7310 * +-------+ +-------+ 7311 * +=========+ .-----. 7312 * : L2ARC : |-_____-| 7313 * : devices : | Disks | 7314 * +=========+ `-_____-' 7315 * 7316 * Read requests are satisfied from the following sources, in order: 7317 * 7318 * 1) ARC 7319 * 2) vdev cache of L2ARC devices 7320 * 3) L2ARC devices 7321 * 4) vdev cache of disks 7322 * 5) disks 7323 * 7324 * Some L2ARC device types exhibit extremely slow write performance. 7325 * To accommodate for this there are some significant differences between 7326 * the L2ARC and traditional cache design: 7327 * 7328 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 7329 * the ARC behave as usual, freeing buffers and placing headers on ghost 7330 * lists. The ARC does not send buffers to the L2ARC during eviction as 7331 * this would add inflated write latencies for all ARC memory pressure. 7332 * 7333 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 7334 * It does this by periodically scanning buffers from the eviction-end of 7335 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 7336 * not already there. It scans until a headroom of buffers is satisfied, 7337 * which itself is a buffer for ARC eviction. If a compressible buffer is 7338 * found during scanning and selected for writing to an L2ARC device, we 7339 * temporarily boost scanning headroom during the next scan cycle to make 7340 * sure we adapt to compression effects (which might significantly reduce 7341 * the data volume we write to L2ARC). The thread that does this is 7342 * l2arc_feed_thread(), illustrated below; example sizes are included to 7343 * provide a better sense of ratio than this diagram: 7344 * 7345 * head --> tail 7346 * +---------------------+----------+ 7347 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 7348 * +---------------------+----------+ | o L2ARC eligible 7349 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 7350 * +---------------------+----------+ | 7351 * 15.9 Gbytes ^ 32 Mbytes | 7352 * headroom | 7353 * l2arc_feed_thread() 7354 * | 7355 * l2arc write hand <--[oooo]--' 7356 * | 8 Mbyte 7357 * | write max 7358 * V 7359 * +==============================+ 7360 * L2ARC dev |####|#|###|###| |####| ... | 7361 * +==============================+ 7362 * 32 Gbytes 7363 * 7364 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 7365 * evicted, then the L2ARC has cached a buffer much sooner than it probably 7366 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 7367 * safe to say that this is an uncommon case, since buffers at the end of 7368 * the ARC lists have moved there due to inactivity. 7369 * 7370 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 7371 * then the L2ARC simply misses copying some buffers. This serves as a 7372 * pressure valve to prevent heavy read workloads from both stalling the ARC 7373 * with waits and clogging the L2ARC with writes. This also helps prevent 7374 * the potential for the L2ARC to churn if it attempts to cache content too 7375 * quickly, such as during backups of the entire pool. 7376 * 7377 * 5. After system boot and before the ARC has filled main memory, there are 7378 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 7379 * lists can remain mostly static. Instead of searching from tail of these 7380 * lists as pictured, the l2arc_feed_thread() will search from the list heads 7381 * for eligible buffers, greatly increasing its chance of finding them. 7382 * 7383 * The L2ARC device write speed is also boosted during this time so that 7384 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 7385 * there are no L2ARC reads, and no fear of degrading read performance 7386 * through increased writes. 7387 * 7388 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 7389 * the vdev queue can aggregate them into larger and fewer writes. Each 7390 * device is written to in a rotor fashion, sweeping writes through 7391 * available space then repeating. 7392 * 7393 * 7. The L2ARC does not store dirty content. It never needs to flush 7394 * write buffers back to disk based storage. 7395 * 7396 * 8. If an ARC buffer is written (and dirtied) which also exists in the 7397 * L2ARC, the now stale L2ARC buffer is immediately dropped. 7398 * 7399 * The performance of the L2ARC can be tweaked by a number of tunables, which 7400 * may be necessary for different workloads: 7401 * 7402 * l2arc_write_max max write bytes per interval 7403 * l2arc_write_boost extra write bytes during device warmup 7404 * l2arc_noprefetch skip caching prefetched buffers 7405 * l2arc_headroom number of max device writes to precache 7406 * l2arc_headroom_boost when we find compressed buffers during ARC 7407 * scanning, we multiply headroom by this 7408 * percentage factor for the next scan cycle, 7409 * since more compressed buffers are likely to 7410 * be present 7411 * l2arc_feed_secs seconds between L2ARC writing 7412 * 7413 * Tunables may be removed or added as future performance improvements are 7414 * integrated, and also may become zpool properties. 7415 * 7416 * There are three key functions that control how the L2ARC warms up: 7417 * 7418 * l2arc_write_eligible() check if a buffer is eligible to cache 7419 * l2arc_write_size() calculate how much to write 7420 * l2arc_write_interval() calculate sleep delay between writes 7421 * 7422 * These three functions determine what to write, how much, and how quickly 7423 * to send writes. 7424 * 7425 * L2ARC persistence: 7426 * 7427 * When writing buffers to L2ARC, we periodically add some metadata to 7428 * make sure we can pick them up after reboot, thus dramatically reducing 7429 * the impact that any downtime has on the performance of storage systems 7430 * with large caches. 7431 * 7432 * The implementation works fairly simply by integrating the following two 7433 * modifications: 7434 * 7435 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 7436 * which is an additional piece of metadata which describes what's been 7437 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 7438 * main ARC buffers. There are 2 linked-lists of log blocks headed by 7439 * dh_start_lbps[2]. We alternate which chain we append to, so they are 7440 * time-wise and offset-wise interleaved, but that is an optimization rather 7441 * than for correctness. The log block also includes a pointer to the 7442 * previous block in its chain. 7443 * 7444 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 7445 * for our header bookkeeping purposes. This contains a device header, 7446 * which contains our top-level reference structures. We update it each 7447 * time we write a new log block, so that we're able to locate it in the 7448 * L2ARC device. If this write results in an inconsistent device header 7449 * (e.g. due to power failure), we detect this by verifying the header's 7450 * checksum and simply fail to reconstruct the L2ARC after reboot. 7451 * 7452 * Implementation diagram: 7453 * 7454 * +=== L2ARC device (not to scale) ======================================+ 7455 * | ___two newest log block pointers__.__________ | 7456 * | / \dh_start_lbps[1] | 7457 * | / \ \dh_start_lbps[0]| 7458 * |.___/__. V V | 7459 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 7460 * || hdr| ^ /^ /^ / / | 7461 * |+------+ ...--\-------/ \-----/--\------/ / | 7462 * | \--------------/ \--------------/ | 7463 * +======================================================================+ 7464 * 7465 * As can be seen on the diagram, rather than using a simple linked list, 7466 * we use a pair of linked lists with alternating elements. This is a 7467 * performance enhancement due to the fact that we only find out the 7468 * address of the next log block access once the current block has been 7469 * completely read in. Obviously, this hurts performance, because we'd be 7470 * keeping the device's I/O queue at only a 1 operation deep, thus 7471 * incurring a large amount of I/O round-trip latency. Having two lists 7472 * allows us to fetch two log blocks ahead of where we are currently 7473 * rebuilding L2ARC buffers. 7474 * 7475 * On-device data structures: 7476 * 7477 * L2ARC device header: l2arc_dev_hdr_phys_t 7478 * L2ARC log block: l2arc_log_blk_phys_t 7479 * 7480 * L2ARC reconstruction: 7481 * 7482 * When writing data, we simply write in the standard rotary fashion, 7483 * evicting buffers as we go and simply writing new data over them (writing 7484 * a new log block every now and then). This obviously means that once we 7485 * loop around the end of the device, we will start cutting into an already 7486 * committed log block (and its referenced data buffers), like so: 7487 * 7488 * current write head__ __old tail 7489 * \ / 7490 * V V 7491 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 7492 * ^ ^^^^^^^^^___________________________________ 7493 * | \ 7494 * <<nextwrite>> may overwrite this blk and/or its bufs --' 7495 * 7496 * When importing the pool, we detect this situation and use it to stop 7497 * our scanning process (see l2arc_rebuild). 7498 * 7499 * There is one significant caveat to consider when rebuilding ARC contents 7500 * from an L2ARC device: what about invalidated buffers? Given the above 7501 * construction, we cannot update blocks which we've already written to amend 7502 * them to remove buffers which were invalidated. Thus, during reconstruction, 7503 * we might be populating the cache with buffers for data that's not on the 7504 * main pool anymore, or may have been overwritten! 7505 * 7506 * As it turns out, this isn't a problem. Every arc_read request includes 7507 * both the DVA and, crucially, the birth TXG of the BP the caller is 7508 * looking for. So even if the cache were populated by completely rotten 7509 * blocks for data that had been long deleted and/or overwritten, we'll 7510 * never actually return bad data from the cache, since the DVA with the 7511 * birth TXG uniquely identify a block in space and time - once created, 7512 * a block is immutable on disk. The worst thing we have done is wasted 7513 * some time and memory at l2arc rebuild to reconstruct outdated ARC 7514 * entries that will get dropped from the l2arc as it is being updated 7515 * with new blocks. 7516 * 7517 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 7518 * hand are not restored. This is done by saving the offset (in bytes) 7519 * l2arc_evict() has evicted to in the L2ARC device header and taking it 7520 * into account when restoring buffers. 7521 */ 7522 7523 static boolean_t 7524 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 7525 { 7526 /* 7527 * A buffer is *not* eligible for the L2ARC if it: 7528 * 1. belongs to a different spa. 7529 * 2. is already cached on the L2ARC. 7530 * 3. has an I/O in progress (it may be an incomplete read). 7531 * 4. is flagged not eligible (zfs property). 7532 * 5. is a prefetch and l2arc_noprefetch is set. 7533 */ 7534 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 7535 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr) || 7536 (l2arc_noprefetch && HDR_PREFETCH(hdr))) 7537 return (B_FALSE); 7538 7539 return (B_TRUE); 7540 } 7541 7542 static uint64_t 7543 l2arc_write_size(l2arc_dev_t *dev) 7544 { 7545 uint64_t size, dev_size; 7546 7547 /* 7548 * Make sure our globals have meaningful values in case the user 7549 * altered them. 7550 */ 7551 size = l2arc_write_max; 7552 if (size == 0) { 7553 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 7554 "be greater than zero, resetting it to the default (%d)", 7555 L2ARC_WRITE_SIZE); 7556 size = l2arc_write_max = L2ARC_WRITE_SIZE; 7557 } 7558 7559 if (arc_warm == B_FALSE) 7560 size += l2arc_write_boost; 7561 7562 /* 7563 * Make sure the write size does not exceed the size of the cache 7564 * device. This is important in l2arc_evict(), otherwise infinite 7565 * iteration can occur. 7566 */ 7567 dev_size = dev->l2ad_end - dev->l2ad_start; 7568 if ((size + l2arc_log_blk_overhead(size, dev)) >= dev_size) { 7569 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " 7570 "plus the overhead of log blocks (persistent L2ARC, " 7571 "%" PRIu64 " bytes) exceeds the size of the cache device " 7572 "(guid %" PRIu64 "), resetting them to the default (%d)", 7573 l2arc_log_blk_overhead(size, dev), 7574 dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE); 7575 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE; 7576 7577 if (arc_warm == B_FALSE) 7578 size += l2arc_write_boost; 7579 } 7580 7581 return (size); 7582 7583 } 7584 7585 static clock_t 7586 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 7587 { 7588 clock_t interval, next, now; 7589 7590 /* 7591 * If the ARC lists are busy, increase our write rate; if the 7592 * lists are stale, idle back. This is achieved by checking 7593 * how much we previously wrote - if it was more than half of 7594 * what we wanted, schedule the next write much sooner. 7595 */ 7596 if (l2arc_feed_again && wrote > (wanted / 2)) 7597 interval = (hz * l2arc_feed_min_ms) / 1000; 7598 else 7599 interval = hz * l2arc_feed_secs; 7600 7601 now = ddi_get_lbolt(); 7602 next = MAX(now, MIN(now + interval, began + interval)); 7603 7604 return (next); 7605 } 7606 7607 /* 7608 * Cycle through L2ARC devices. This is how L2ARC load balances. 7609 * If a device is returned, this also returns holding the spa config lock. 7610 */ 7611 static l2arc_dev_t * 7612 l2arc_dev_get_next(void) 7613 { 7614 l2arc_dev_t *first, *next = NULL; 7615 7616 /* 7617 * Lock out the removal of spas (spa_namespace_lock), then removal 7618 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 7619 * both locks will be dropped and a spa config lock held instead. 7620 */ 7621 mutex_enter(&spa_namespace_lock); 7622 mutex_enter(&l2arc_dev_mtx); 7623 7624 /* if there are no vdevs, there is nothing to do */ 7625 if (l2arc_ndev == 0) 7626 goto out; 7627 7628 first = NULL; 7629 next = l2arc_dev_last; 7630 do { 7631 /* loop around the list looking for a non-faulted vdev */ 7632 if (next == NULL) { 7633 next = list_head(l2arc_dev_list); 7634 } else { 7635 next = list_next(l2arc_dev_list, next); 7636 if (next == NULL) 7637 next = list_head(l2arc_dev_list); 7638 } 7639 7640 /* if we have come back to the start, bail out */ 7641 if (first == NULL) 7642 first = next; 7643 else if (next == first) 7644 break; 7645 7646 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild); 7647 7648 /* if we were unable to find any usable vdevs, return NULL */ 7649 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild) 7650 next = NULL; 7651 7652 l2arc_dev_last = next; 7653 7654 out: 7655 mutex_exit(&l2arc_dev_mtx); 7656 7657 /* 7658 * Grab the config lock to prevent the 'next' device from being 7659 * removed while we are writing to it. 7660 */ 7661 if (next != NULL) 7662 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 7663 mutex_exit(&spa_namespace_lock); 7664 7665 return (next); 7666 } 7667 7668 /* 7669 * Free buffers that were tagged for destruction. 7670 */ 7671 static void 7672 l2arc_do_free_on_write() 7673 { 7674 list_t *buflist; 7675 l2arc_data_free_t *df, *df_prev; 7676 7677 mutex_enter(&l2arc_free_on_write_mtx); 7678 buflist = l2arc_free_on_write; 7679 7680 for (df = list_tail(buflist); df; df = df_prev) { 7681 df_prev = list_prev(buflist, df); 7682 ASSERT3P(df->l2df_abd, !=, NULL); 7683 abd_free(df->l2df_abd); 7684 list_remove(buflist, df); 7685 kmem_free(df, sizeof (l2arc_data_free_t)); 7686 } 7687 7688 mutex_exit(&l2arc_free_on_write_mtx); 7689 } 7690 7691 /* 7692 * A write to a cache device has completed. Update all headers to allow 7693 * reads from these buffers to begin. 7694 */ 7695 static void 7696 l2arc_write_done(zio_t *zio) 7697 { 7698 l2arc_write_callback_t *cb; 7699 l2arc_lb_abd_buf_t *abd_buf; 7700 l2arc_lb_ptr_buf_t *lb_ptr_buf; 7701 l2arc_dev_t *dev; 7702 l2arc_dev_hdr_phys_t *l2dhdr; 7703 list_t *buflist; 7704 arc_buf_hdr_t *head, *hdr, *hdr_prev; 7705 kmutex_t *hash_lock; 7706 int64_t bytes_dropped = 0; 7707 7708 cb = zio->io_private; 7709 ASSERT3P(cb, !=, NULL); 7710 dev = cb->l2wcb_dev; 7711 l2dhdr = dev->l2ad_dev_hdr; 7712 ASSERT3P(dev, !=, NULL); 7713 head = cb->l2wcb_head; 7714 ASSERT3P(head, !=, NULL); 7715 buflist = &dev->l2ad_buflist; 7716 ASSERT3P(buflist, !=, NULL); 7717 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 7718 l2arc_write_callback_t *, cb); 7719 7720 /* 7721 * All writes completed, or an error was hit. 7722 */ 7723 top: 7724 mutex_enter(&dev->l2ad_mtx); 7725 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 7726 hdr_prev = list_prev(buflist, hdr); 7727 7728 hash_lock = HDR_LOCK(hdr); 7729 7730 /* 7731 * We cannot use mutex_enter or else we can deadlock 7732 * with l2arc_write_buffers (due to swapping the order 7733 * the hash lock and l2ad_mtx are taken). 7734 */ 7735 if (!mutex_tryenter(hash_lock)) { 7736 /* 7737 * Missed the hash lock. We must retry so we 7738 * don't leave the ARC_FLAG_L2_WRITING bit set. 7739 */ 7740 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 7741 7742 /* 7743 * We don't want to rescan the headers we've 7744 * already marked as having been written out, so 7745 * we reinsert the head node so we can pick up 7746 * where we left off. 7747 */ 7748 list_remove(buflist, head); 7749 list_insert_after(buflist, hdr, head); 7750 7751 mutex_exit(&dev->l2ad_mtx); 7752 7753 /* 7754 * We wait for the hash lock to become available 7755 * to try and prevent busy waiting, and increase 7756 * the chance we'll be able to acquire the lock 7757 * the next time around. 7758 */ 7759 mutex_enter(hash_lock); 7760 mutex_exit(hash_lock); 7761 goto top; 7762 } 7763 7764 /* 7765 * We could not have been moved into the arc_l2c_only 7766 * state while in-flight due to our ARC_FLAG_L2_WRITING 7767 * bit being set. Let's just ensure that's being enforced. 7768 */ 7769 ASSERT(HDR_HAS_L1HDR(hdr)); 7770 7771 if (zio->io_error != 0) { 7772 /* 7773 * Error - drop L2ARC entry. 7774 */ 7775 list_remove(buflist, hdr); 7776 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 7777 7778 uint64_t psize = HDR_GET_PSIZE(hdr); 7779 l2arc_hdr_arcstats_decrement(hdr); 7780 7781 bytes_dropped += 7782 vdev_psize_to_asize(dev->l2ad_vdev, psize); 7783 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 7784 arc_hdr_size(hdr), hdr); 7785 } 7786 7787 /* 7788 * Allow ARC to begin reads and ghost list evictions to 7789 * this L2ARC entry. 7790 */ 7791 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 7792 7793 mutex_exit(hash_lock); 7794 } 7795 7796 /* 7797 * Free the allocated abd buffers for writing the log blocks. 7798 * If the zio failed reclaim the allocated space and remove the 7799 * pointers to these log blocks from the log block pointer list 7800 * of the L2ARC device. 7801 */ 7802 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 7803 abd_free(abd_buf->abd); 7804 zio_buf_free(abd_buf, sizeof (*abd_buf)); 7805 if (zio->io_error != 0) { 7806 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 7807 /* 7808 * L2BLK_GET_PSIZE returns aligned size for log 7809 * blocks. 7810 */ 7811 uint64_t asize = 7812 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 7813 bytes_dropped += asize; 7814 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 7815 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 7816 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 7817 lb_ptr_buf); 7818 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 7819 kmem_free(lb_ptr_buf->lb_ptr, 7820 sizeof (l2arc_log_blkptr_t)); 7821 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 7822 } 7823 } 7824 list_destroy(&cb->l2wcb_abd_list); 7825 7826 if (zio->io_error != 0) { 7827 ARCSTAT_BUMP(arcstat_l2_writes_error); 7828 7829 /* 7830 * Restore the lbps array in the header to its previous state. 7831 * If the list of log block pointers is empty, zero out the 7832 * log block pointers in the device header. 7833 */ 7834 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 7835 for (int i = 0; i < 2; i++) { 7836 if (lb_ptr_buf == NULL) { 7837 /* 7838 * If the list is empty zero out the device 7839 * header. Otherwise zero out the second log 7840 * block pointer in the header. 7841 */ 7842 if (i == 0) { 7843 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 7844 } else { 7845 bzero(&l2dhdr->dh_start_lbps[i], 7846 sizeof (l2arc_log_blkptr_t)); 7847 } 7848 break; 7849 } 7850 bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i], 7851 sizeof (l2arc_log_blkptr_t)); 7852 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 7853 lb_ptr_buf); 7854 } 7855 } 7856 7857 atomic_inc_64(&l2arc_writes_done); 7858 list_remove(buflist, head); 7859 ASSERT(!HDR_HAS_L1HDR(head)); 7860 kmem_cache_free(hdr_l2only_cache, head); 7861 mutex_exit(&dev->l2ad_mtx); 7862 7863 ASSERT(dev->l2ad_vdev != NULL); 7864 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 7865 7866 l2arc_do_free_on_write(); 7867 7868 kmem_free(cb, sizeof (l2arc_write_callback_t)); 7869 } 7870 7871 static int 7872 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 7873 { 7874 int ret; 7875 spa_t *spa = zio->io_spa; 7876 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 7877 blkptr_t *bp = zio->io_bp; 7878 uint8_t salt[ZIO_DATA_SALT_LEN]; 7879 uint8_t iv[ZIO_DATA_IV_LEN]; 7880 uint8_t mac[ZIO_DATA_MAC_LEN]; 7881 boolean_t no_crypt = B_FALSE; 7882 7883 /* 7884 * ZIL data is never be written to the L2ARC, so we don't need 7885 * special handling for its unique MAC storage. 7886 */ 7887 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 7888 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 7889 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 7890 7891 /* 7892 * If the data was encrypted, decrypt it now. Note that 7893 * we must check the bp here and not the hdr, since the 7894 * hdr does not have its encryption parameters updated 7895 * until arc_read_done(). 7896 */ 7897 if (BP_IS_ENCRYPTED(bp)) { 7898 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 7899 B_TRUE); 7900 7901 zio_crypt_decode_params_bp(bp, salt, iv); 7902 zio_crypt_decode_mac_bp(bp, mac); 7903 7904 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 7905 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 7906 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 7907 hdr->b_l1hdr.b_pabd, &no_crypt); 7908 if (ret != 0) { 7909 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 7910 goto error; 7911 } 7912 7913 /* 7914 * If we actually performed decryption, replace b_pabd 7915 * with the decrypted data. Otherwise we can just throw 7916 * our decryption buffer away. 7917 */ 7918 if (!no_crypt) { 7919 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 7920 arc_hdr_size(hdr), hdr); 7921 hdr->b_l1hdr.b_pabd = eabd; 7922 zio->io_abd = eabd; 7923 } else { 7924 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 7925 } 7926 } 7927 7928 /* 7929 * If the L2ARC block was compressed, but ARC compression 7930 * is disabled we decompress the data into a new buffer and 7931 * replace the existing data. 7932 */ 7933 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 7934 !HDR_COMPRESSION_ENABLED(hdr)) { 7935 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 7936 B_TRUE); 7937 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 7938 7939 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 7940 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 7941 HDR_GET_LSIZE(hdr)); 7942 if (ret != 0) { 7943 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 7944 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 7945 goto error; 7946 } 7947 7948 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 7949 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 7950 arc_hdr_size(hdr), hdr); 7951 hdr->b_l1hdr.b_pabd = cabd; 7952 zio->io_abd = cabd; 7953 zio->io_size = HDR_GET_LSIZE(hdr); 7954 } 7955 7956 return (0); 7957 7958 error: 7959 return (ret); 7960 } 7961 7962 7963 /* 7964 * A read to a cache device completed. Validate buffer contents before 7965 * handing over to the regular ARC routines. 7966 */ 7967 static void 7968 l2arc_read_done(zio_t *zio) 7969 { 7970 int tfm_error = 0; 7971 l2arc_read_callback_t *cb = zio->io_private; 7972 arc_buf_hdr_t *hdr; 7973 kmutex_t *hash_lock; 7974 boolean_t valid_cksum; 7975 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 7976 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 7977 7978 ASSERT3P(zio->io_vd, !=, NULL); 7979 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 7980 7981 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 7982 7983 ASSERT3P(cb, !=, NULL); 7984 hdr = cb->l2rcb_hdr; 7985 ASSERT3P(hdr, !=, NULL); 7986 7987 hash_lock = HDR_LOCK(hdr); 7988 mutex_enter(hash_lock); 7989 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 7990 7991 /* 7992 * If the data was read into a temporary buffer, 7993 * move it and free the buffer. 7994 */ 7995 if (cb->l2rcb_abd != NULL) { 7996 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 7997 if (zio->io_error == 0) { 7998 if (using_rdata) { 7999 abd_copy(hdr->b_crypt_hdr.b_rabd, 8000 cb->l2rcb_abd, arc_hdr_size(hdr)); 8001 } else { 8002 abd_copy(hdr->b_l1hdr.b_pabd, 8003 cb->l2rcb_abd, arc_hdr_size(hdr)); 8004 } 8005 } 8006 8007 /* 8008 * The following must be done regardless of whether 8009 * there was an error: 8010 * - free the temporary buffer 8011 * - point zio to the real ARC buffer 8012 * - set zio size accordingly 8013 * These are required because zio is either re-used for 8014 * an I/O of the block in the case of the error 8015 * or the zio is passed to arc_read_done() and it 8016 * needs real data. 8017 */ 8018 abd_free(cb->l2rcb_abd); 8019 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8020 8021 if (using_rdata) { 8022 ASSERT(HDR_HAS_RABD(hdr)); 8023 zio->io_abd = zio->io_orig_abd = 8024 hdr->b_crypt_hdr.b_rabd; 8025 } else { 8026 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8027 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8028 } 8029 } 8030 8031 ASSERT3P(zio->io_abd, !=, NULL); 8032 8033 /* 8034 * Check this survived the L2ARC journey. 8035 */ 8036 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8037 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8038 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8039 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8040 8041 valid_cksum = arc_cksum_is_equal(hdr, zio); 8042 8043 /* 8044 * b_rabd will always match the data as it exists on disk if it is 8045 * being used. Therefore if we are reading into b_rabd we do not 8046 * attempt to untransform the data. 8047 */ 8048 if (valid_cksum && !using_rdata) 8049 tfm_error = l2arc_untransform(zio, cb); 8050 8051 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8052 !HDR_L2_EVICTED(hdr)) { 8053 mutex_exit(hash_lock); 8054 zio->io_private = hdr; 8055 arc_read_done(zio); 8056 } else { 8057 /* 8058 * Buffer didn't survive caching. Increment stats and 8059 * reissue to the original storage device. 8060 */ 8061 if (zio->io_error != 0) { 8062 ARCSTAT_BUMP(arcstat_l2_io_error); 8063 } else { 8064 zio->io_error = SET_ERROR(EIO); 8065 } 8066 if (!valid_cksum || tfm_error != 0) 8067 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8068 8069 /* 8070 * If there's no waiter, issue an async i/o to the primary 8071 * storage now. If there *is* a waiter, the caller must 8072 * issue the i/o in a context where it's OK to block. 8073 */ 8074 if (zio->io_waiter == NULL) { 8075 zio_t *pio = zio_unique_parent(zio); 8076 void *abd = (using_rdata) ? 8077 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8078 8079 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8080 8081 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8082 abd, zio->io_size, arc_read_done, 8083 hdr, zio->io_priority, cb->l2rcb_flags, 8084 &cb->l2rcb_zb); 8085 8086 /* 8087 * Original ZIO will be freed, so we need to update 8088 * ARC header with the new ZIO pointer to be used 8089 * by zio_change_priority() in arc_read(). 8090 */ 8091 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8092 acb != NULL; acb = acb->acb_next) 8093 acb->acb_zio_head = zio; 8094 8095 mutex_exit(hash_lock); 8096 zio_nowait(zio); 8097 } else { 8098 mutex_exit(hash_lock); 8099 } 8100 } 8101 8102 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8103 } 8104 8105 /* 8106 * This is the list priority from which the L2ARC will search for pages to 8107 * cache. This is used within loops (0..3) to cycle through lists in the 8108 * desired order. This order can have a significant effect on cache 8109 * performance. 8110 * 8111 * Currently the metadata lists are hit first, MFU then MRU, followed by 8112 * the data lists. This function returns a locked list, and also returns 8113 * the lock pointer. 8114 */ 8115 static multilist_sublist_t * 8116 l2arc_sublist_lock(int list_num) 8117 { 8118 multilist_t *ml = NULL; 8119 unsigned int idx; 8120 8121 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 8122 8123 switch (list_num) { 8124 case 0: 8125 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA]; 8126 break; 8127 case 1: 8128 ml = arc_mru->arcs_list[ARC_BUFC_METADATA]; 8129 break; 8130 case 2: 8131 ml = arc_mfu->arcs_list[ARC_BUFC_DATA]; 8132 break; 8133 case 3: 8134 ml = arc_mru->arcs_list[ARC_BUFC_DATA]; 8135 break; 8136 default: 8137 return (NULL); 8138 } 8139 8140 /* 8141 * Return a randomly-selected sublist. This is acceptable 8142 * because the caller feeds only a little bit of data for each 8143 * call (8MB). Subsequent calls will result in different 8144 * sublists being selected. 8145 */ 8146 idx = multilist_get_random_index(ml); 8147 return (multilist_sublist_lock(ml, idx)); 8148 } 8149 8150 /* 8151 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 8152 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 8153 * overhead in processing to make sure there is enough headroom available 8154 * when writing buffers. 8155 */ 8156 static inline uint64_t 8157 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 8158 { 8159 if (dev->l2ad_log_entries == 0) { 8160 return (0); 8161 } else { 8162 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 8163 8164 uint64_t log_blocks = (log_entries + 8165 dev->l2ad_log_entries - 1) / 8166 dev->l2ad_log_entries; 8167 8168 return (vdev_psize_to_asize(dev->l2ad_vdev, 8169 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 8170 } 8171 } 8172 8173 /* 8174 * Evict buffers from the device write hand to the distance specified in 8175 * bytes. This distance may span populated buffers, it may span nothing. 8176 * This is clearing a region on the L2ARC device ready for writing. 8177 * If the 'all' boolean is set, every buffer is evicted. 8178 */ 8179 static void 8180 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 8181 { 8182 list_t *buflist; 8183 arc_buf_hdr_t *hdr, *hdr_prev; 8184 kmutex_t *hash_lock; 8185 uint64_t taddr; 8186 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 8187 boolean_t rerun; 8188 8189 buflist = &dev->l2ad_buflist; 8190 8191 /* 8192 * We need to add in the worst case scenario of log block overhead. 8193 */ 8194 distance += l2arc_log_blk_overhead(distance, dev); 8195 8196 top: 8197 rerun = B_FALSE; 8198 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) { 8199 /* 8200 * When there is no space to accommodate upcoming writes, 8201 * evict to the end. Then bump the write and evict hands 8202 * to the start and iterate. This iteration does not 8203 * happen indefinitely as we make sure in 8204 * l2arc_write_size() that when the write hand is reset, 8205 * the write size does not exceed the end of the device. 8206 */ 8207 rerun = B_TRUE; 8208 taddr = dev->l2ad_end; 8209 } else { 8210 taddr = dev->l2ad_hand + distance; 8211 } 8212 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 8213 uint64_t, taddr, boolean_t, all); 8214 8215 /* 8216 * This check has to be placed after deciding whether to iterate 8217 * (rerun). 8218 */ 8219 if (!all && dev->l2ad_first) { 8220 /* 8221 * This is the first sweep through the device. There is 8222 * nothing to evict. 8223 */ 8224 goto out; 8225 } 8226 8227 /* 8228 * When rebuilding L2ARC we retrieve the evict hand from the header of 8229 * the device. Of note, l2arc_evict() does not actually delete buffers 8230 * from the cache device, but keeping track of the evict hand will be 8231 * useful when TRIM is implemented. 8232 */ 8233 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 8234 8235 retry: 8236 mutex_enter(&dev->l2ad_mtx); 8237 /* 8238 * We have to account for evicted log blocks. Run vdev_space_update() 8239 * on log blocks whose offset (in bytes) is before the evicted offset 8240 * (in bytes) by searching in the list of pointers to log blocks 8241 * present in the L2ARC device. 8242 */ 8243 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 8244 lb_ptr_buf = lb_ptr_buf_prev) { 8245 8246 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 8247 8248 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 8249 uint64_t asize = L2BLK_GET_PSIZE( 8250 (lb_ptr_buf->lb_ptr)->lbp_prop); 8251 8252 /* 8253 * We don't worry about log blocks left behind (ie 8254 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 8255 * will never write more than l2arc_evict() evicts. 8256 */ 8257 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 8258 break; 8259 } else { 8260 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 8261 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8262 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8263 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8264 lb_ptr_buf); 8265 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8266 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 8267 kmem_free(lb_ptr_buf->lb_ptr, 8268 sizeof (l2arc_log_blkptr_t)); 8269 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8270 } 8271 } 8272 8273 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 8274 hdr_prev = list_prev(buflist, hdr); 8275 8276 ASSERT(!HDR_EMPTY(hdr)); 8277 hash_lock = HDR_LOCK(hdr); 8278 8279 /* 8280 * We cannot use mutex_enter or else we can deadlock 8281 * with l2arc_write_buffers (due to swapping the order 8282 * the hash lock and l2ad_mtx are taken). 8283 */ 8284 if (!mutex_tryenter(hash_lock)) { 8285 /* 8286 * Missed the hash lock. Retry. 8287 */ 8288 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 8289 mutex_exit(&dev->l2ad_mtx); 8290 mutex_enter(hash_lock); 8291 mutex_exit(hash_lock); 8292 goto retry; 8293 } 8294 8295 /* 8296 * A header can't be on this list if it doesn't have L2 header. 8297 */ 8298 ASSERT(HDR_HAS_L2HDR(hdr)); 8299 8300 /* Ensure this header has finished being written. */ 8301 ASSERT(!HDR_L2_WRITING(hdr)); 8302 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 8303 8304 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 8305 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 8306 /* 8307 * We've evicted to the target address, 8308 * or the end of the device. 8309 */ 8310 mutex_exit(hash_lock); 8311 break; 8312 } 8313 8314 if (!HDR_HAS_L1HDR(hdr)) { 8315 ASSERT(!HDR_L2_READING(hdr)); 8316 /* 8317 * This doesn't exist in the ARC. Destroy. 8318 * arc_hdr_destroy() will call list_remove() 8319 * and decrement arcstat_l2_lsize. 8320 */ 8321 arc_change_state(arc_anon, hdr, hash_lock); 8322 arc_hdr_destroy(hdr); 8323 } else { 8324 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 8325 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 8326 /* 8327 * Invalidate issued or about to be issued 8328 * reads, since we may be about to write 8329 * over this location. 8330 */ 8331 if (HDR_L2_READING(hdr)) { 8332 ARCSTAT_BUMP(arcstat_l2_evict_reading); 8333 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 8334 } 8335 8336 arc_hdr_l2hdr_destroy(hdr); 8337 } 8338 mutex_exit(hash_lock); 8339 } 8340 mutex_exit(&dev->l2ad_mtx); 8341 8342 out: 8343 /* 8344 * We need to check if we evict all buffers, otherwise we may iterate 8345 * unnecessarily. 8346 */ 8347 if (!all && rerun) { 8348 /* 8349 * Bump device hand to the device start if it is approaching the 8350 * end. l2arc_evict() has already evicted ahead for this case. 8351 */ 8352 dev->l2ad_hand = dev->l2ad_start; 8353 dev->l2ad_evict = dev->l2ad_start; 8354 dev->l2ad_first = B_FALSE; 8355 goto top; 8356 } 8357 8358 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end); 8359 if (!dev->l2ad_first) 8360 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict); 8361 } 8362 8363 /* 8364 * Handle any abd transforms that might be required for writing to the L2ARC. 8365 * If successful, this function will always return an abd with the data 8366 * transformed as it is on disk in a new abd of asize bytes. 8367 */ 8368 static int 8369 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 8370 abd_t **abd_out) 8371 { 8372 int ret; 8373 void *tmp = NULL; 8374 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 8375 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 8376 uint64_t psize = HDR_GET_PSIZE(hdr); 8377 uint64_t size = arc_hdr_size(hdr); 8378 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 8379 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 8380 dsl_crypto_key_t *dck = NULL; 8381 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 8382 boolean_t no_crypt = B_FALSE; 8383 8384 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8385 !HDR_COMPRESSION_ENABLED(hdr)) || 8386 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 8387 ASSERT3U(psize, <=, asize); 8388 8389 /* 8390 * If this data simply needs its own buffer, we simply allocate it 8391 * and copy the data. This may be done to eliminate a dependency on a 8392 * shared buffer or to reallocate the buffer to match asize. 8393 */ 8394 if (HDR_HAS_RABD(hdr) && asize != psize) { 8395 ASSERT3U(asize, >=, psize); 8396 to_write = abd_alloc_for_io(asize, ismd); 8397 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 8398 if (psize != asize) 8399 abd_zero_off(to_write, psize, asize - psize); 8400 goto out; 8401 } 8402 8403 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 8404 !HDR_ENCRYPTED(hdr)) { 8405 ASSERT3U(size, ==, psize); 8406 to_write = abd_alloc_for_io(asize, ismd); 8407 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 8408 if (size != asize) 8409 abd_zero_off(to_write, size, asize - size); 8410 goto out; 8411 } 8412 8413 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 8414 cabd = abd_alloc_for_io(asize, ismd); 8415 tmp = abd_borrow_buf(cabd, asize); 8416 8417 psize = zio_compress_data(compress, to_write, tmp, size); 8418 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr)); 8419 if (psize < asize) 8420 bzero((char *)tmp + psize, asize - psize); 8421 psize = HDR_GET_PSIZE(hdr); 8422 abd_return_buf_copy(cabd, tmp, asize); 8423 to_write = cabd; 8424 } 8425 8426 if (HDR_ENCRYPTED(hdr)) { 8427 eabd = abd_alloc_for_io(asize, ismd); 8428 8429 /* 8430 * If the dataset was disowned before the buffer 8431 * made it to this point, the key to re-encrypt 8432 * it won't be available. In this case we simply 8433 * won't write the buffer to the L2ARC. 8434 */ 8435 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 8436 FTAG, &dck); 8437 if (ret != 0) 8438 goto error; 8439 8440 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 8441 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 8442 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 8443 &no_crypt); 8444 if (ret != 0) 8445 goto error; 8446 8447 if (no_crypt) 8448 abd_copy(eabd, to_write, psize); 8449 8450 if (psize != asize) 8451 abd_zero_off(eabd, psize, asize - psize); 8452 8453 /* assert that the MAC we got here matches the one we saved */ 8454 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 8455 spa_keystore_dsl_key_rele(spa, dck, FTAG); 8456 8457 if (to_write == cabd) 8458 abd_free(cabd); 8459 8460 to_write = eabd; 8461 } 8462 8463 out: 8464 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 8465 *abd_out = to_write; 8466 return (0); 8467 8468 error: 8469 if (dck != NULL) 8470 spa_keystore_dsl_key_rele(spa, dck, FTAG); 8471 if (cabd != NULL) 8472 abd_free(cabd); 8473 if (eabd != NULL) 8474 abd_free(eabd); 8475 8476 *abd_out = NULL; 8477 return (ret); 8478 } 8479 8480 static void 8481 l2arc_blk_fetch_done(zio_t *zio) 8482 { 8483 l2arc_read_callback_t *cb; 8484 8485 cb = zio->io_private; 8486 if (cb->l2rcb_abd != NULL) 8487 abd_put(cb->l2rcb_abd); 8488 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8489 } 8490 8491 /* 8492 * Find and write ARC buffers to the L2ARC device. 8493 * 8494 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 8495 * for reading until they have completed writing. 8496 * The headroom_boost is an in-out parameter used to maintain headroom boost 8497 * state between calls to this function. 8498 * 8499 * Returns the number of bytes actually written (which may be smaller than 8500 * the delta by which the device hand has changed due to alignment and the 8501 * writing of log blocks). 8502 */ 8503 static uint64_t 8504 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 8505 { 8506 arc_buf_hdr_t *hdr, *hdr_prev, *head; 8507 uint64_t write_asize, write_psize, write_lsize, headroom; 8508 boolean_t full; 8509 l2arc_write_callback_t *cb = NULL; 8510 zio_t *pio, *wzio; 8511 uint64_t guid = spa_load_guid(spa); 8512 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 8513 8514 ASSERT3P(dev->l2ad_vdev, !=, NULL); 8515 8516 pio = NULL; 8517 write_lsize = write_asize = write_psize = 0; 8518 full = B_FALSE; 8519 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 8520 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 8521 8522 /* 8523 * Copy buffers for L2ARC writing. 8524 */ 8525 for (int try = 0; try < L2ARC_FEED_TYPES; try++) { 8526 /* 8527 * If try == 1 or 3, we cache MRU metadata and data 8528 * respectively. 8529 */ 8530 if (l2arc_mfuonly) { 8531 if (try == 1 || try == 3) 8532 continue; 8533 } 8534 8535 multilist_sublist_t *mls = l2arc_sublist_lock(try); 8536 uint64_t passed_sz = 0; 8537 8538 VERIFY3P(mls, !=, NULL); 8539 8540 /* 8541 * L2ARC fast warmup. 8542 * 8543 * Until the ARC is warm and starts to evict, read from the 8544 * head of the ARC lists rather than the tail. 8545 */ 8546 if (arc_warm == B_FALSE) 8547 hdr = multilist_sublist_head(mls); 8548 else 8549 hdr = multilist_sublist_tail(mls); 8550 8551 headroom = target_sz * l2arc_headroom; 8552 if (zfs_compressed_arc_enabled) 8553 headroom = (headroom * l2arc_headroom_boost) / 100; 8554 8555 for (; hdr; hdr = hdr_prev) { 8556 kmutex_t *hash_lock; 8557 abd_t *to_write = NULL; 8558 8559 if (arc_warm == B_FALSE) 8560 hdr_prev = multilist_sublist_next(mls, hdr); 8561 else 8562 hdr_prev = multilist_sublist_prev(mls, hdr); 8563 8564 hash_lock = HDR_LOCK(hdr); 8565 if (!mutex_tryenter(hash_lock)) { 8566 /* 8567 * Skip this buffer rather than waiting. 8568 */ 8569 continue; 8570 } 8571 8572 passed_sz += HDR_GET_LSIZE(hdr); 8573 if (l2arc_headroom != 0 && passed_sz > headroom) { 8574 /* 8575 * Searched too far. 8576 */ 8577 mutex_exit(hash_lock); 8578 break; 8579 } 8580 8581 if (!l2arc_write_eligible(guid, hdr)) { 8582 mutex_exit(hash_lock); 8583 continue; 8584 } 8585 8586 ASSERT(HDR_HAS_L1HDR(hdr)); 8587 8588 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 8589 ASSERT3U(arc_hdr_size(hdr), >, 0); 8590 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 8591 HDR_HAS_RABD(hdr)); 8592 uint64_t psize = HDR_GET_PSIZE(hdr); 8593 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 8594 psize); 8595 8596 if ((write_asize + asize) > target_sz) { 8597 full = B_TRUE; 8598 mutex_exit(hash_lock); 8599 break; 8600 } 8601 8602 /* 8603 * We rely on the L1 portion of the header below, so 8604 * it's invalid for this header to have been evicted out 8605 * of the ghost cache, prior to being written out. The 8606 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 8607 */ 8608 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING); 8609 8610 /* 8611 * If this header has b_rabd, we can use this since it 8612 * must always match the data exactly as it exists on 8613 * disk. Otherwise, the L2ARC can normally use the 8614 * hdr's data, but if we're sharing data between the 8615 * hdr and one of its bufs, L2ARC needs its own copy of 8616 * the data so that the ZIO below can't race with the 8617 * buf consumer. To ensure that this copy will be 8618 * available for the lifetime of the ZIO and be cleaned 8619 * up afterwards, we add it to the l2arc_free_on_write 8620 * queue. If we need to apply any transforms to the 8621 * data (compression, encryption) we will also need the 8622 * extra buffer. 8623 */ 8624 if (HDR_HAS_RABD(hdr) && psize == asize) { 8625 to_write = hdr->b_crypt_hdr.b_rabd; 8626 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 8627 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 8628 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 8629 psize == asize) { 8630 to_write = hdr->b_l1hdr.b_pabd; 8631 } else { 8632 int ret; 8633 arc_buf_contents_t type = arc_buf_type(hdr); 8634 8635 ret = l2arc_apply_transforms(spa, hdr, asize, 8636 &to_write); 8637 if (ret != 0) { 8638 arc_hdr_clear_flags(hdr, 8639 ARC_FLAG_L2_WRITING); 8640 mutex_exit(hash_lock); 8641 continue; 8642 } 8643 8644 l2arc_free_abd_on_write(to_write, asize, type); 8645 } 8646 8647 if (pio == NULL) { 8648 /* 8649 * Insert a dummy header on the buflist so 8650 * l2arc_write_done() can find where the 8651 * write buffers begin without searching. 8652 */ 8653 mutex_enter(&dev->l2ad_mtx); 8654 list_insert_head(&dev->l2ad_buflist, head); 8655 mutex_exit(&dev->l2ad_mtx); 8656 8657 cb = kmem_alloc( 8658 sizeof (l2arc_write_callback_t), KM_SLEEP); 8659 cb->l2wcb_dev = dev; 8660 cb->l2wcb_head = head; 8661 /* 8662 * Create a list to save allocated abd buffers 8663 * for l2arc_log_blk_commit(). 8664 */ 8665 list_create(&cb->l2wcb_abd_list, 8666 sizeof (l2arc_lb_abd_buf_t), 8667 offsetof(l2arc_lb_abd_buf_t, node)); 8668 pio = zio_root(spa, l2arc_write_done, cb, 8669 ZIO_FLAG_CANFAIL); 8670 } 8671 8672 hdr->b_l2hdr.b_dev = dev; 8673 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 8674 hdr->b_l2hdr.b_arcs_state = 8675 hdr->b_l1hdr.b_state->arcs_state; 8676 arc_hdr_set_flags(hdr, 8677 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR); 8678 8679 mutex_enter(&dev->l2ad_mtx); 8680 list_insert_head(&dev->l2ad_buflist, hdr); 8681 mutex_exit(&dev->l2ad_mtx); 8682 8683 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 8684 arc_hdr_size(hdr), hdr); 8685 8686 wzio = zio_write_phys(pio, dev->l2ad_vdev, 8687 hdr->b_l2hdr.b_daddr, asize, to_write, 8688 ZIO_CHECKSUM_OFF, NULL, hdr, 8689 ZIO_PRIORITY_ASYNC_WRITE, 8690 ZIO_FLAG_CANFAIL, B_FALSE); 8691 8692 write_lsize += HDR_GET_LSIZE(hdr); 8693 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 8694 zio_t *, wzio); 8695 8696 write_psize += psize; 8697 write_asize += asize; 8698 dev->l2ad_hand += asize; 8699 l2arc_hdr_arcstats_increment(hdr); 8700 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 8701 8702 mutex_exit(hash_lock); 8703 8704 /* 8705 * Append buf info to current log and commit if full. 8706 * arcstat_l2_{size,asize} kstats are updated 8707 * internally. 8708 */ 8709 if (l2arc_log_blk_insert(dev, hdr)) 8710 l2arc_log_blk_commit(dev, pio, cb); 8711 8712 (void) zio_nowait(wzio); 8713 } 8714 8715 multilist_sublist_unlock(mls); 8716 8717 if (full == B_TRUE) 8718 break; 8719 } 8720 8721 /* No buffers selected for writing? */ 8722 if (pio == NULL) { 8723 ASSERT0(write_lsize); 8724 ASSERT(!HDR_HAS_L1HDR(head)); 8725 kmem_cache_free(hdr_l2only_cache, head); 8726 8727 /* 8728 * Although we did not write any buffers l2ad_evict may 8729 * have advanced. 8730 */ 8731 if (dev->l2ad_evict != l2dhdr->dh_evict) 8732 l2arc_dev_hdr_update(dev); 8733 8734 return (0); 8735 } 8736 8737 if (!dev->l2ad_first) 8738 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 8739 8740 ASSERT3U(write_asize, <=, target_sz); 8741 ARCSTAT_BUMP(arcstat_l2_writes_sent); 8742 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 8743 8744 dev->l2ad_writing = B_TRUE; 8745 (void) zio_wait(pio); 8746 dev->l2ad_writing = B_FALSE; 8747 8748 /* 8749 * Update the device header after the zio completes as 8750 * l2arc_write_done() may have updated the memory holding the log block 8751 * pointers in the device header. 8752 */ 8753 l2arc_dev_hdr_update(dev); 8754 8755 return (write_asize); 8756 } 8757 8758 static boolean_t 8759 l2arc_hdr_limit_reached(void) 8760 { 8761 int64_t s = aggsum_upper_bound(&astat_l2_hdr_size); 8762 8763 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) || 8764 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 8765 } 8766 8767 /* 8768 * This thread feeds the L2ARC at regular intervals. This is the beating 8769 * heart of the L2ARC. 8770 */ 8771 /* ARGSUSED */ 8772 static void 8773 l2arc_feed_thread(void *unused) 8774 { 8775 callb_cpr_t cpr; 8776 l2arc_dev_t *dev; 8777 spa_t *spa; 8778 uint64_t size, wrote; 8779 clock_t begin, next = ddi_get_lbolt(); 8780 8781 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 8782 8783 mutex_enter(&l2arc_feed_thr_lock); 8784 8785 while (l2arc_thread_exit == 0) { 8786 CALLB_CPR_SAFE_BEGIN(&cpr); 8787 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 8788 next); 8789 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 8790 next = ddi_get_lbolt() + hz; 8791 8792 /* 8793 * Quick check for L2ARC devices. 8794 */ 8795 mutex_enter(&l2arc_dev_mtx); 8796 if (l2arc_ndev == 0) { 8797 mutex_exit(&l2arc_dev_mtx); 8798 continue; 8799 } 8800 mutex_exit(&l2arc_dev_mtx); 8801 begin = ddi_get_lbolt(); 8802 8803 /* 8804 * This selects the next l2arc device to write to, and in 8805 * doing so the next spa to feed from: dev->l2ad_spa. This 8806 * will return NULL if there are now no l2arc devices or if 8807 * they are all faulted. 8808 * 8809 * If a device is returned, its spa's config lock is also 8810 * held to prevent device removal. l2arc_dev_get_next() 8811 * will grab and release l2arc_dev_mtx. 8812 */ 8813 if ((dev = l2arc_dev_get_next()) == NULL) 8814 continue; 8815 8816 spa = dev->l2ad_spa; 8817 ASSERT3P(spa, !=, NULL); 8818 8819 /* 8820 * If the pool is read-only then force the feed thread to 8821 * sleep a little longer. 8822 */ 8823 if (!spa_writeable(spa)) { 8824 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 8825 spa_config_exit(spa, SCL_L2ARC, dev); 8826 continue; 8827 } 8828 8829 /* 8830 * Avoid contributing to memory pressure. 8831 */ 8832 if (l2arc_hdr_limit_reached()) { 8833 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 8834 spa_config_exit(spa, SCL_L2ARC, dev); 8835 continue; 8836 } 8837 8838 ARCSTAT_BUMP(arcstat_l2_feeds); 8839 8840 size = l2arc_write_size(dev); 8841 8842 /* 8843 * Evict L2ARC buffers that will be overwritten. 8844 */ 8845 l2arc_evict(dev, size, B_FALSE); 8846 8847 /* 8848 * Write ARC buffers. 8849 */ 8850 wrote = l2arc_write_buffers(spa, dev, size); 8851 8852 /* 8853 * Calculate interval between writes. 8854 */ 8855 next = l2arc_write_interval(begin, size, wrote); 8856 spa_config_exit(spa, SCL_L2ARC, dev); 8857 } 8858 8859 l2arc_thread_exit = 0; 8860 cv_broadcast(&l2arc_feed_thr_cv); 8861 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 8862 thread_exit(); 8863 } 8864 8865 boolean_t 8866 l2arc_vdev_present(vdev_t *vd) 8867 { 8868 return (l2arc_vdev_get(vd) != NULL); 8869 } 8870 8871 /* 8872 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 8873 * the vdev_t isn't an L2ARC device. 8874 */ 8875 static l2arc_dev_t * 8876 l2arc_vdev_get(vdev_t *vd) 8877 { 8878 l2arc_dev_t *dev; 8879 8880 mutex_enter(&l2arc_dev_mtx); 8881 for (dev = list_head(l2arc_dev_list); dev != NULL; 8882 dev = list_next(l2arc_dev_list, dev)) { 8883 if (dev->l2ad_vdev == vd) 8884 break; 8885 } 8886 mutex_exit(&l2arc_dev_mtx); 8887 8888 return (dev); 8889 } 8890 8891 /* 8892 * Add a vdev for use by the L2ARC. By this point the spa has already 8893 * validated the vdev and opened it. 8894 */ 8895 void 8896 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 8897 { 8898 l2arc_dev_t *adddev; 8899 uint64_t l2dhdr_asize; 8900 8901 ASSERT(!l2arc_vdev_present(vd)); 8902 8903 /* 8904 * Create a new l2arc device entry. 8905 */ 8906 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 8907 adddev->l2ad_spa = spa; 8908 adddev->l2ad_vdev = vd; 8909 /* leave extra size for an l2arc device header */ 8910 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 8911 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 8912 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 8913 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 8914 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 8915 adddev->l2ad_hand = adddev->l2ad_start; 8916 adddev->l2ad_evict = adddev->l2ad_start; 8917 adddev->l2ad_first = B_TRUE; 8918 adddev->l2ad_writing = B_FALSE; 8919 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 8920 8921 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 8922 /* 8923 * This is a list of all ARC buffers that are still valid on the 8924 * device. 8925 */ 8926 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 8927 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 8928 8929 /* 8930 * This is a list of pointers to log blocks that are still present 8931 * on the device. 8932 */ 8933 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 8934 offsetof(l2arc_lb_ptr_buf_t, node)); 8935 8936 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 8937 zfs_refcount_create(&adddev->l2ad_alloc); 8938 zfs_refcount_create(&adddev->l2ad_lb_asize); 8939 zfs_refcount_create(&adddev->l2ad_lb_count); 8940 8941 /* 8942 * Add device to global list 8943 */ 8944 mutex_enter(&l2arc_dev_mtx); 8945 list_insert_head(l2arc_dev_list, adddev); 8946 atomic_inc_64(&l2arc_ndev); 8947 mutex_exit(&l2arc_dev_mtx); 8948 8949 /* 8950 * Decide if vdev is eligible for L2ARC rebuild 8951 */ 8952 l2arc_rebuild_vdev(adddev->l2ad_vdev, B_FALSE); 8953 } 8954 8955 void 8956 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 8957 { 8958 l2arc_dev_t *dev = NULL; 8959 l2arc_dev_hdr_phys_t *l2dhdr; 8960 uint64_t l2dhdr_asize; 8961 spa_t *spa; 8962 8963 dev = l2arc_vdev_get(vd); 8964 ASSERT3P(dev, !=, NULL); 8965 spa = dev->l2ad_spa; 8966 l2dhdr = dev->l2ad_dev_hdr; 8967 l2dhdr_asize = dev->l2ad_dev_hdr_asize; 8968 8969 /* 8970 * The L2ARC has to hold at least the payload of one log block for 8971 * them to be restored (persistent L2ARC). The payload of a log block 8972 * depends on the amount of its log entries. We always write log blocks 8973 * with 1022 entries. How many of them are committed or restored depends 8974 * on the size of the L2ARC device. Thus the maximum payload of 8975 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 8976 * is less than that, we reduce the amount of committed and restored 8977 * log entries per block so as to enable persistence. 8978 */ 8979 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 8980 dev->l2ad_log_entries = 0; 8981 } else { 8982 dev->l2ad_log_entries = MIN((dev->l2ad_end - 8983 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 8984 L2ARC_LOG_BLK_MAX_ENTRIES); 8985 } 8986 8987 /* 8988 * Read the device header, if an error is returned do not rebuild L2ARC. 8989 */ 8990 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) { 8991 /* 8992 * If we are onlining a cache device (vdev_reopen) that was 8993 * still present (l2arc_vdev_present()) and rebuild is enabled, 8994 * we should evict all ARC buffers and pointers to log blocks 8995 * and reclaim their space before restoring its contents to 8996 * L2ARC. 8997 */ 8998 if (reopen) { 8999 if (!l2arc_rebuild_enabled) { 9000 return; 9001 } else { 9002 l2arc_evict(dev, 0, B_TRUE); 9003 /* start a new log block */ 9004 dev->l2ad_log_ent_idx = 0; 9005 dev->l2ad_log_blk_payload_asize = 0; 9006 dev->l2ad_log_blk_payload_start = 0; 9007 } 9008 } 9009 /* 9010 * Just mark the device as pending for a rebuild. We won't 9011 * be starting a rebuild in line here as it would block pool 9012 * import. Instead spa_load_impl will hand that off to an 9013 * async task which will call l2arc_spa_rebuild_start. 9014 */ 9015 dev->l2ad_rebuild = B_TRUE; 9016 } else if (spa_writeable(spa)) { 9017 /* 9018 * In this case create a new header. We zero out the memory 9019 * holding the header to reset dh_start_lbps. 9020 */ 9021 bzero(l2dhdr, l2dhdr_asize); 9022 l2arc_dev_hdr_update(dev); 9023 } 9024 } 9025 9026 /* 9027 * Remove a vdev from the L2ARC. 9028 */ 9029 void 9030 l2arc_remove_vdev(vdev_t *vd) 9031 { 9032 l2arc_dev_t *remdev = NULL; 9033 9034 /* 9035 * Find the device by vdev 9036 */ 9037 remdev = l2arc_vdev_get(vd); 9038 ASSERT3P(remdev, !=, NULL); 9039 9040 /* 9041 * Cancel any ongoing or scheduled rebuild. 9042 */ 9043 mutex_enter(&l2arc_rebuild_thr_lock); 9044 if (remdev->l2ad_rebuild_began == B_TRUE) { 9045 remdev->l2ad_rebuild_cancel = B_TRUE; 9046 while (remdev->l2ad_rebuild == B_TRUE) 9047 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 9048 } 9049 mutex_exit(&l2arc_rebuild_thr_lock); 9050 9051 /* 9052 * Remove device from global list 9053 */ 9054 mutex_enter(&l2arc_dev_mtx); 9055 list_remove(l2arc_dev_list, remdev); 9056 l2arc_dev_last = NULL; /* may have been invalidated */ 9057 atomic_dec_64(&l2arc_ndev); 9058 mutex_exit(&l2arc_dev_mtx); 9059 9060 /* 9061 * Clear all buflists and ARC references. L2ARC device flush. 9062 */ 9063 l2arc_evict(remdev, 0, B_TRUE); 9064 list_destroy(&remdev->l2ad_buflist); 9065 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 9066 list_destroy(&remdev->l2ad_lbptr_list); 9067 mutex_destroy(&remdev->l2ad_mtx); 9068 zfs_refcount_destroy(&remdev->l2ad_alloc); 9069 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 9070 zfs_refcount_destroy(&remdev->l2ad_lb_count); 9071 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 9072 kmem_free(remdev, sizeof (l2arc_dev_t)); 9073 } 9074 9075 void 9076 l2arc_init(void) 9077 { 9078 l2arc_thread_exit = 0; 9079 l2arc_ndev = 0; 9080 l2arc_writes_sent = 0; 9081 l2arc_writes_done = 0; 9082 9083 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9084 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 9085 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9086 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 9087 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 9088 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 9089 9090 l2arc_dev_list = &L2ARC_dev_list; 9091 l2arc_free_on_write = &L2ARC_free_on_write; 9092 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 9093 offsetof(l2arc_dev_t, l2ad_node)); 9094 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 9095 offsetof(l2arc_data_free_t, l2df_list_node)); 9096 } 9097 9098 void 9099 l2arc_fini(void) 9100 { 9101 /* 9102 * This is called from dmu_fini(), which is called from spa_fini(); 9103 * Because of this, we can assume that all l2arc devices have 9104 * already been removed when the pools themselves were removed. 9105 */ 9106 9107 l2arc_do_free_on_write(); 9108 9109 mutex_destroy(&l2arc_feed_thr_lock); 9110 cv_destroy(&l2arc_feed_thr_cv); 9111 mutex_destroy(&l2arc_rebuild_thr_lock); 9112 cv_destroy(&l2arc_rebuild_thr_cv); 9113 mutex_destroy(&l2arc_dev_mtx); 9114 mutex_destroy(&l2arc_free_on_write_mtx); 9115 9116 list_destroy(l2arc_dev_list); 9117 list_destroy(l2arc_free_on_write); 9118 } 9119 9120 void 9121 l2arc_start(void) 9122 { 9123 if (!(spa_mode_global & FWRITE)) 9124 return; 9125 9126 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 9127 TS_RUN, minclsyspri); 9128 } 9129 9130 void 9131 l2arc_stop(void) 9132 { 9133 if (!(spa_mode_global & FWRITE)) 9134 return; 9135 9136 mutex_enter(&l2arc_feed_thr_lock); 9137 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 9138 l2arc_thread_exit = 1; 9139 while (l2arc_thread_exit != 0) 9140 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 9141 mutex_exit(&l2arc_feed_thr_lock); 9142 } 9143 9144 /* 9145 * Punches out rebuild threads for the L2ARC devices in a spa. This should 9146 * be called after pool import from the spa async thread, since starting 9147 * these threads directly from spa_import() will make them part of the 9148 * "zpool import" context and delay process exit (and thus pool import). 9149 */ 9150 void 9151 l2arc_spa_rebuild_start(spa_t *spa) 9152 { 9153 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 9154 9155 /* 9156 * Locate the spa's l2arc devices and kick off rebuild threads. 9157 */ 9158 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 9159 l2arc_dev_t *dev = 9160 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 9161 if (dev == NULL) { 9162 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 9163 continue; 9164 } 9165 mutex_enter(&l2arc_rebuild_thr_lock); 9166 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 9167 dev->l2ad_rebuild_began = B_TRUE; 9168 (void) thread_create(NULL, 0, 9169 (void (*)(void *))l2arc_dev_rebuild_start, 9170 dev, 0, &p0, TS_RUN, minclsyspri); 9171 } 9172 mutex_exit(&l2arc_rebuild_thr_lock); 9173 } 9174 } 9175 9176 /* 9177 * Main entry point for L2ARC rebuilding. 9178 */ 9179 static void 9180 l2arc_dev_rebuild_start(l2arc_dev_t *dev) 9181 { 9182 VERIFY(!dev->l2ad_rebuild_cancel); 9183 VERIFY(dev->l2ad_rebuild); 9184 (void) l2arc_rebuild(dev); 9185 mutex_enter(&l2arc_rebuild_thr_lock); 9186 dev->l2ad_rebuild_began = B_FALSE; 9187 dev->l2ad_rebuild = B_FALSE; 9188 mutex_exit(&l2arc_rebuild_thr_lock); 9189 9190 thread_exit(); 9191 } 9192 9193 /* 9194 * This function implements the actual L2ARC metadata rebuild. It: 9195 * starts reading the log block chain and restores each block's contents 9196 * to memory (reconstructing arc_buf_hdr_t's). 9197 * 9198 * Operation stops under any of the following conditions: 9199 * 9200 * 1) We reach the end of the log block chain. 9201 * 2) We encounter *any* error condition (cksum errors, io errors) 9202 */ 9203 static int 9204 l2arc_rebuild(l2arc_dev_t *dev) 9205 { 9206 vdev_t *vd = dev->l2ad_vdev; 9207 spa_t *spa = vd->vdev_spa; 9208 int err = 0; 9209 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9210 l2arc_log_blk_phys_t *this_lb, *next_lb; 9211 zio_t *this_io = NULL, *next_io = NULL; 9212 l2arc_log_blkptr_t lbps[2]; 9213 l2arc_lb_ptr_buf_t *lb_ptr_buf; 9214 boolean_t lock_held; 9215 9216 this_lb = kmem_zalloc(sizeof (*this_lb), KM_SLEEP); 9217 next_lb = kmem_zalloc(sizeof (*next_lb), KM_SLEEP); 9218 9219 /* 9220 * We prevent device removal while issuing reads to the device, 9221 * then during the rebuilding phases we drop this lock again so 9222 * that a spa_unload or device remove can be initiated - this is 9223 * safe, because the spa will signal us to stop before removing 9224 * our device and wait for us to stop. 9225 */ 9226 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 9227 lock_held = B_TRUE; 9228 9229 /* 9230 * Retrieve the persistent L2ARC device state. 9231 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9232 */ 9233 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 9234 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 9235 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 9236 dev->l2ad_start); 9237 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 9238 9239 /* 9240 * In case the zfs module parameter l2arc_rebuild_enabled is false 9241 * we do not start the rebuild process. 9242 */ 9243 if (!l2arc_rebuild_enabled) 9244 goto out; 9245 9246 /* Prepare the rebuild process */ 9247 bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps)); 9248 9249 /* Start the rebuild process */ 9250 for (;;) { 9251 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 9252 break; 9253 9254 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 9255 this_lb, next_lb, this_io, &next_io)) != 0) 9256 goto out; 9257 9258 /* 9259 * Our memory pressure valve. If the system is running low 9260 * on memory, rather than swamping memory with new ARC buf 9261 * hdrs, we opt not to rebuild the L2ARC. At this point, 9262 * however, we have already set up our L2ARC dev to chain in 9263 * new metadata log blocks, so the user may choose to offline/ 9264 * online the L2ARC dev at a later time (or re-import the pool) 9265 * to reconstruct it (when there's less memory pressure). 9266 */ 9267 if (l2arc_hdr_limit_reached()) { 9268 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 9269 cmn_err(CE_NOTE, "System running low on memory, " 9270 "aborting L2ARC rebuild."); 9271 err = SET_ERROR(ENOMEM); 9272 goto out; 9273 } 9274 9275 spa_config_exit(spa, SCL_L2ARC, vd); 9276 lock_held = B_FALSE; 9277 9278 /* 9279 * Now that we know that the next_lb checks out alright, we 9280 * can start reconstruction from this log block. 9281 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9282 */ 9283 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 9284 l2arc_log_blk_restore(dev, this_lb, asize); 9285 9286 /* 9287 * log block restored, include its pointer in the list of 9288 * pointers to log blocks present in the L2ARC device. 9289 */ 9290 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 9291 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 9292 KM_SLEEP); 9293 bcopy(&lbps[0], lb_ptr_buf->lb_ptr, 9294 sizeof (l2arc_log_blkptr_t)); 9295 mutex_enter(&dev->l2ad_mtx); 9296 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 9297 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 9298 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 9299 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 9300 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 9301 mutex_exit(&dev->l2ad_mtx); 9302 vdev_space_update(vd, asize, 0, 0); 9303 9304 /* BEGIN CSTYLED */ 9305 /* 9306 * Protection against loops of log blocks: 9307 * 9308 * l2ad_hand l2ad_evict 9309 * V V 9310 * l2ad_start |=======================================| l2ad_end 9311 * -----|||----|||---|||----||| 9312 * (3) (2) (1) (0) 9313 * ---|||---|||----|||---||| 9314 * (7) (6) (5) (4) 9315 * 9316 * In this situation the pointer of log block (4) passes 9317 * l2arc_log_blkptr_valid() but the log block should not be 9318 * restored as it is overwritten by the payload of log block 9319 * (0). Only log blocks (0)-(3) should be restored. We check 9320 * whether l2ad_evict lies in between the payload starting 9321 * offset of the next log block (lbps[1].lbp_payload_start) 9322 * and the payload starting offset of the present log block 9323 * (lbps[0].lbp_payload_start). If true and this isn't the 9324 * first pass, we are looping from the beginning and we should 9325 * stop. 9326 */ 9327 /* END CSTYLED */ 9328 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 9329 lbps[0].lbp_payload_start, dev->l2ad_evict) && 9330 !dev->l2ad_first) 9331 goto out; 9332 9333 for (;;) { 9334 mutex_enter(&l2arc_rebuild_thr_lock); 9335 if (dev->l2ad_rebuild_cancel) { 9336 dev->l2ad_rebuild = B_FALSE; 9337 cv_signal(&l2arc_rebuild_thr_cv); 9338 mutex_exit(&l2arc_rebuild_thr_lock); 9339 err = SET_ERROR(ECANCELED); 9340 goto out; 9341 } 9342 mutex_exit(&l2arc_rebuild_thr_lock); 9343 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 9344 RW_READER)) { 9345 lock_held = B_TRUE; 9346 break; 9347 } 9348 /* 9349 * L2ARC config lock held by somebody in writer, 9350 * possibly due to them trying to remove us. They'll 9351 * likely to want us to shut down, so after a little 9352 * delay, we check l2ad_rebuild_cancel and retry 9353 * the lock again. 9354 */ 9355 delay(1); 9356 } 9357 9358 /* 9359 * Continue with the next log block. 9360 */ 9361 lbps[0] = lbps[1]; 9362 lbps[1] = this_lb->lb_prev_lbp; 9363 PTR_SWAP(this_lb, next_lb); 9364 this_io = next_io; 9365 next_io = NULL; 9366 } 9367 9368 if (this_io != NULL) 9369 l2arc_log_blk_fetch_abort(this_io); 9370 out: 9371 if (next_io != NULL) 9372 l2arc_log_blk_fetch_abort(next_io); 9373 kmem_free(this_lb, sizeof (*this_lb)); 9374 kmem_free(next_lb, sizeof (*next_lb)); 9375 9376 if (!l2arc_rebuild_enabled) { 9377 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9378 "disabled"); 9379 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 9380 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 9381 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9382 "successful, restored %llu blocks", 9383 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9384 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 9385 /* 9386 * No error but also nothing restored, meaning the lbps array 9387 * in the device header points to invalid/non-present log 9388 * blocks. Reset the header. 9389 */ 9390 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9391 "no valid log blocks"); 9392 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 9393 l2arc_dev_hdr_update(dev); 9394 } else if (err == ECANCELED) { 9395 /* 9396 * In case the rebuild was canceled do not log to spa history 9397 * log as the pool may be in the process of being removed. 9398 */ 9399 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 9400 zfs_refcount_count(&dev->l2ad_lb_count)); 9401 } else if (err != 0) { 9402 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9403 "aborted, restored %llu blocks", 9404 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9405 } 9406 9407 if (lock_held) 9408 spa_config_exit(spa, SCL_L2ARC, vd); 9409 9410 return (err); 9411 } 9412 9413 /* 9414 * Attempts to read the device header on the provided L2ARC device and writes 9415 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 9416 * error code is returned. 9417 */ 9418 static int 9419 l2arc_dev_hdr_read(l2arc_dev_t *dev) 9420 { 9421 int err; 9422 uint64_t guid; 9423 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9424 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9425 abd_t *abd; 9426 9427 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 9428 9429 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 9430 9431 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 9432 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 9433 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 9434 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 9435 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 9436 ZIO_FLAG_SPECULATIVE, B_FALSE)); 9437 9438 abd_put(abd); 9439 9440 if (err != 0) { 9441 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 9442 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 9443 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid); 9444 return (err); 9445 } 9446 9447 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 9448 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 9449 9450 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 9451 l2dhdr->dh_spa_guid != guid || 9452 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 9453 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 9454 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 9455 l2dhdr->dh_end != dev->l2ad_end || 9456 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 9457 l2dhdr->dh_evict)) { 9458 /* 9459 * Attempt to rebuild a device containing no actual dev hdr 9460 * or containing a header from some other pool or from another 9461 * version of persistent L2ARC. 9462 */ 9463 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 9464 return (SET_ERROR(ENOTSUP)); 9465 } 9466 9467 return (0); 9468 } 9469 9470 /* 9471 * Reads L2ARC log blocks from storage and validates their contents. 9472 * 9473 * This function implements a simple fetcher to make sure that while 9474 * we're processing one buffer the L2ARC is already fetching the next 9475 * one in the chain. 9476 * 9477 * The arguments this_lp and next_lp point to the current and next log block 9478 * address in the block chain. Similarly, this_lb and next_lb hold the 9479 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 9480 * 9481 * The `this_io' and `next_io' arguments are used for block fetching. 9482 * When issuing the first blk IO during rebuild, you should pass NULL for 9483 * `this_io'. This function will then issue a sync IO to read the block and 9484 * also issue an async IO to fetch the next block in the block chain. The 9485 * fetched IO is returned in `next_io'. On subsequent calls to this 9486 * function, pass the value returned in `next_io' from the previous call 9487 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 9488 * Prior to the call, you should initialize your `next_io' pointer to be 9489 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 9490 * 9491 * On success, this function returns 0, otherwise it returns an appropriate 9492 * error code. On error the fetching IO is aborted and cleared before 9493 * returning from this function. Therefore, if we return `success', the 9494 * caller can assume that we have taken care of cleanup of fetch IOs. 9495 */ 9496 static int 9497 l2arc_log_blk_read(l2arc_dev_t *dev, 9498 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 9499 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 9500 zio_t *this_io, zio_t **next_io) 9501 { 9502 int err = 0; 9503 zio_cksum_t cksum; 9504 abd_t *abd = NULL; 9505 uint64_t asize; 9506 9507 ASSERT(this_lbp != NULL && next_lbp != NULL); 9508 ASSERT(this_lb != NULL && next_lb != NULL); 9509 ASSERT(next_io != NULL && *next_io == NULL); 9510 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 9511 9512 /* 9513 * Check to see if we have issued the IO for this log block in a 9514 * previous run. If not, this is the first call, so issue it now. 9515 */ 9516 if (this_io == NULL) { 9517 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 9518 this_lb); 9519 } 9520 9521 /* 9522 * Peek to see if we can start issuing the next IO immediately. 9523 */ 9524 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 9525 /* 9526 * Start issuing IO for the next log block early - this 9527 * should help keep the L2ARC device busy while we 9528 * decompress and restore this log block. 9529 */ 9530 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 9531 next_lb); 9532 } 9533 9534 /* Wait for the IO to read this log block to complete */ 9535 if ((err = zio_wait(this_io)) != 0) { 9536 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 9537 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 9538 "offset: %llu, vdev guid: %llu", err, this_lbp->lbp_daddr, 9539 dev->l2ad_vdev->vdev_guid); 9540 goto cleanup; 9541 } 9542 9543 /* 9544 * Make sure the buffer checks out. 9545 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9546 */ 9547 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 9548 fletcher_4_native(this_lb, asize, NULL, &cksum); 9549 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 9550 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 9551 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 9552 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 9553 this_lbp->lbp_daddr, dev->l2ad_vdev->vdev_guid, 9554 dev->l2ad_hand, dev->l2ad_evict); 9555 err = SET_ERROR(ECKSUM); 9556 goto cleanup; 9557 } 9558 9559 /* Now we can take our time decoding this buffer */ 9560 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 9561 case ZIO_COMPRESS_OFF: 9562 break; 9563 case ZIO_COMPRESS_LZ4: 9564 abd = abd_alloc_for_io(asize, B_TRUE); 9565 abd_copy_from_buf_off(abd, this_lb, 0, asize); 9566 if ((err = zio_decompress_data( 9567 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 9568 abd, this_lb, asize, sizeof (*this_lb))) != 0) { 9569 err = SET_ERROR(EINVAL); 9570 goto cleanup; 9571 } 9572 break; 9573 default: 9574 err = SET_ERROR(EINVAL); 9575 goto cleanup; 9576 } 9577 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 9578 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 9579 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 9580 err = SET_ERROR(EINVAL); 9581 goto cleanup; 9582 } 9583 cleanup: 9584 /* Abort an in-flight fetch I/O in case of error */ 9585 if (err != 0 && *next_io != NULL) { 9586 l2arc_log_blk_fetch_abort(*next_io); 9587 *next_io = NULL; 9588 } 9589 if (abd != NULL) 9590 abd_free(abd); 9591 return (err); 9592 } 9593 9594 /* 9595 * Restores the payload of a log block to ARC. This creates empty ARC hdr 9596 * entries which only contain an l2arc hdr, essentially restoring the 9597 * buffers to their L2ARC evicted state. This function also updates space 9598 * usage on the L2ARC vdev to make sure it tracks restored buffers. 9599 */ 9600 static void 9601 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 9602 uint64_t lb_asize) 9603 { 9604 uint64_t size = 0, asize = 0; 9605 uint64_t log_entries = dev->l2ad_log_entries; 9606 9607 /* 9608 * Usually arc_adapt() is called only for data, not headers, but 9609 * since we may allocate significant amount of memory here, let ARC 9610 * grow its arc_c. 9611 */ 9612 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only); 9613 9614 for (int i = log_entries - 1; i >= 0; i--) { 9615 /* 9616 * Restore goes in the reverse temporal direction to preserve 9617 * correct temporal ordering of buffers in the l2ad_buflist. 9618 * l2arc_hdr_restore also does a list_insert_tail instead of 9619 * list_insert_head on the l2ad_buflist: 9620 * 9621 * LIST l2ad_buflist LIST 9622 * HEAD <------ (time) ------ TAIL 9623 * direction +-----+-----+-----+-----+-----+ direction 9624 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 9625 * fill +-----+-----+-----+-----+-----+ 9626 * ^ ^ 9627 * | | 9628 * | | 9629 * l2arc_feed_thread l2arc_rebuild 9630 * will place new bufs here restores bufs here 9631 * 9632 * During l2arc_rebuild() the device is not used by 9633 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 9634 */ 9635 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 9636 asize += vdev_psize_to_asize(dev->l2ad_vdev, 9637 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 9638 l2arc_hdr_restore(&lb->lb_entries[i], dev); 9639 } 9640 9641 /* 9642 * Record rebuild stats: 9643 * size Logical size of restored buffers in the L2ARC 9644 * asize Aligned size of restored buffers in the L2ARC 9645 */ 9646 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 9647 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 9648 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 9649 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 9650 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 9651 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 9652 } 9653 9654 /* 9655 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 9656 * into a state indicating that it has been evicted to L2ARC. 9657 */ 9658 static void 9659 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 9660 { 9661 arc_buf_hdr_t *hdr, *exists; 9662 kmutex_t *hash_lock; 9663 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 9664 uint64_t asize; 9665 9666 /* 9667 * Do all the allocation before grabbing any locks, this lets us 9668 * sleep if memory is full and we don't have to deal with failed 9669 * allocations. 9670 */ 9671 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 9672 dev, le->le_dva, le->le_daddr, 9673 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, 9674 L2BLK_GET_COMPRESS((le)->le_prop), 9675 L2BLK_GET_PROTECTED((le)->le_prop), 9676 L2BLK_GET_PREFETCH((le)->le_prop), 9677 L2BLK_GET_STATE((le)->le_prop)); 9678 asize = vdev_psize_to_asize(dev->l2ad_vdev, 9679 L2BLK_GET_PSIZE((le)->le_prop)); 9680 9681 /* 9682 * vdev_space_update() has to be called before arc_hdr_destroy() to 9683 * avoid underflow since the latter also calls vdev_space_update(). 9684 */ 9685 l2arc_hdr_arcstats_increment(hdr); 9686 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9687 9688 mutex_enter(&dev->l2ad_mtx); 9689 list_insert_tail(&dev->l2ad_buflist, hdr); 9690 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 9691 mutex_exit(&dev->l2ad_mtx); 9692 9693 exists = buf_hash_insert(hdr, &hash_lock); 9694 if (exists) { 9695 /* Buffer was already cached, no need to restore it. */ 9696 arc_hdr_destroy(hdr); 9697 /* 9698 * If the buffer is already cached, check whether it has 9699 * L2ARC metadata. If not, enter them and update the flag. 9700 * This is important is case of onlining a cache device, since 9701 * we previously evicted all L2ARC metadata from ARC. 9702 */ 9703 if (!HDR_HAS_L2HDR(exists)) { 9704 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 9705 exists->b_l2hdr.b_dev = dev; 9706 exists->b_l2hdr.b_daddr = le->le_daddr; 9707 exists->b_l2hdr.b_arcs_state = 9708 L2BLK_GET_STATE((le)->le_prop); 9709 mutex_enter(&dev->l2ad_mtx); 9710 list_insert_tail(&dev->l2ad_buflist, exists); 9711 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9712 arc_hdr_size(exists), exists); 9713 mutex_exit(&dev->l2ad_mtx); 9714 l2arc_hdr_arcstats_increment(exists); 9715 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9716 } 9717 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 9718 } 9719 9720 mutex_exit(hash_lock); 9721 } 9722 9723 /* 9724 * Starts an asynchronous read IO to read a log block. This is used in log 9725 * block reconstruction to start reading the next block before we are done 9726 * decoding and reconstructing the current block, to keep the l2arc device 9727 * nice and hot with read IO to process. 9728 * The returned zio will contain newly allocated memory buffers for the IO 9729 * data which should then be freed by the caller once the zio is no longer 9730 * needed (i.e. due to it having completed). If you wish to abort this 9731 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 9732 * care of disposing of the allocated buffers correctly. 9733 */ 9734 static zio_t * 9735 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 9736 l2arc_log_blk_phys_t *lb) 9737 { 9738 uint32_t asize; 9739 zio_t *pio; 9740 l2arc_read_callback_t *cb; 9741 9742 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 9743 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 9744 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 9745 9746 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 9747 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 9748 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 9749 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 9750 ZIO_FLAG_DONT_RETRY); 9751 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 9752 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 9753 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 9754 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 9755 9756 return (pio); 9757 } 9758 9759 /* 9760 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 9761 * buffers allocated for it. 9762 */ 9763 static void 9764 l2arc_log_blk_fetch_abort(zio_t *zio) 9765 { 9766 (void) zio_wait(zio); 9767 } 9768 9769 /* 9770 * Creates a zio to update the device header on an l2arc device. 9771 */ 9772 static void 9773 l2arc_dev_hdr_update(l2arc_dev_t *dev) 9774 { 9775 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9776 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9777 abd_t *abd; 9778 int err; 9779 9780 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 9781 9782 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 9783 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 9784 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 9785 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 9786 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 9787 l2dhdr->dh_evict = dev->l2ad_evict; 9788 l2dhdr->dh_start = dev->l2ad_start; 9789 l2dhdr->dh_end = dev->l2ad_end; 9790 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 9791 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 9792 l2dhdr->dh_flags = 0; 9793 if (dev->l2ad_first) 9794 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 9795 9796 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 9797 9798 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 9799 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 9800 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 9801 9802 abd_put(abd); 9803 9804 if (err != 0) { 9805 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 9806 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid); 9807 } 9808 } 9809 9810 /* 9811 * Commits a log block to the L2ARC device. This routine is invoked from 9812 * l2arc_write_buffers when the log block fills up. 9813 * This function allocates some memory to temporarily hold the serialized 9814 * buffer to be written. This is then released in l2arc_write_done. 9815 */ 9816 static void 9817 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 9818 { 9819 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 9820 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9821 uint64_t psize, asize; 9822 zio_t *wzio; 9823 l2arc_lb_abd_buf_t *abd_buf; 9824 uint8_t *tmpbuf; 9825 l2arc_lb_ptr_buf_t *lb_ptr_buf; 9826 9827 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 9828 9829 tmpbuf = zio_buf_alloc(sizeof (*lb)); 9830 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 9831 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 9832 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 9833 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 9834 9835 /* link the buffer into the block chain */ 9836 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 9837 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 9838 9839 /* 9840 * l2arc_log_blk_commit() may be called multiple times during a single 9841 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 9842 * so we can free them in l2arc_write_done() later on. 9843 */ 9844 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 9845 9846 /* try to compress the buffer */ 9847 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 9848 abd_buf->abd, tmpbuf, sizeof (*lb)); 9849 9850 /* a log block is never entirely zero */ 9851 ASSERT(psize != 0); 9852 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 9853 ASSERT(asize <= sizeof (*lb)); 9854 9855 /* 9856 * Update the start log block pointer in the device header to point 9857 * to the log block we're about to write. 9858 */ 9859 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 9860 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 9861 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 9862 dev->l2ad_log_blk_payload_asize; 9863 l2dhdr->dh_start_lbps[0].lbp_payload_start = 9864 dev->l2ad_log_blk_payload_start; 9865 _NOTE(CONSTCOND) 9866 L2BLK_SET_LSIZE( 9867 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 9868 L2BLK_SET_PSIZE( 9869 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 9870 L2BLK_SET_CHECKSUM( 9871 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 9872 ZIO_CHECKSUM_FLETCHER_4); 9873 if (asize < sizeof (*lb)) { 9874 /* compression succeeded */ 9875 bzero(tmpbuf + psize, asize - psize); 9876 L2BLK_SET_COMPRESS( 9877 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 9878 ZIO_COMPRESS_LZ4); 9879 } else { 9880 /* compression failed */ 9881 bcopy(lb, tmpbuf, sizeof (*lb)); 9882 L2BLK_SET_COMPRESS( 9883 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 9884 ZIO_COMPRESS_OFF); 9885 } 9886 9887 /* checksum what we're about to write */ 9888 fletcher_4_native(tmpbuf, asize, NULL, 9889 &l2dhdr->dh_start_lbps[0].lbp_cksum); 9890 9891 abd_put(abd_buf->abd); 9892 9893 /* perform the write itself */ 9894 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb)); 9895 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE); 9896 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 9897 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 9898 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 9899 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 9900 (void) zio_nowait(wzio); 9901 9902 dev->l2ad_hand += asize; 9903 /* 9904 * Include the committed log block's pointer in the list of pointers 9905 * to log blocks present in the L2ARC device. 9906 */ 9907 bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr, 9908 sizeof (l2arc_log_blkptr_t)); 9909 mutex_enter(&dev->l2ad_mtx); 9910 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 9911 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 9912 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 9913 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 9914 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 9915 mutex_exit(&dev->l2ad_mtx); 9916 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9917 9918 /* bump the kstats */ 9919 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 9920 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 9921 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 9922 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 9923 dev->l2ad_log_blk_payload_asize / asize); 9924 9925 /* start a new log block */ 9926 dev->l2ad_log_ent_idx = 0; 9927 dev->l2ad_log_blk_payload_asize = 0; 9928 dev->l2ad_log_blk_payload_start = 0; 9929 } 9930 9931 /* 9932 * Validates an L2ARC log block address to make sure that it can be read 9933 * from the provided L2ARC device. 9934 */ 9935 boolean_t 9936 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 9937 { 9938 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 9939 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 9940 uint64_t end = lbp->lbp_daddr + asize - 1; 9941 uint64_t start = lbp->lbp_payload_start; 9942 boolean_t evicted = B_FALSE; 9943 9944 /* BEGIN CSTYLED */ 9945 /* 9946 * A log block is valid if all of the following conditions are true: 9947 * - it fits entirely (including its payload) between l2ad_start and 9948 * l2ad_end 9949 * - it has a valid size 9950 * - neither the log block itself nor part of its payload was evicted 9951 * by l2arc_evict(): 9952 * 9953 * l2ad_hand l2ad_evict 9954 * | | lbp_daddr 9955 * | start | | end 9956 * | | | | | 9957 * V V V V V 9958 * l2ad_start ============================================ l2ad_end 9959 * --------------------------|||| 9960 * ^ ^ 9961 * | log block 9962 * payload 9963 */ 9964 /* END CSTYLED */ 9965 evicted = 9966 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 9967 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 9968 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 9969 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 9970 9971 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 9972 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 9973 (!evicted || dev->l2ad_first)); 9974 } 9975 9976 /* 9977 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 9978 * the device. The buffer being inserted must be present in L2ARC. 9979 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 9980 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 9981 */ 9982 static boolean_t 9983 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 9984 { 9985 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 9986 l2arc_log_ent_phys_t *le; 9987 9988 if (dev->l2ad_log_entries == 0) 9989 return (B_FALSE); 9990 9991 int index = dev->l2ad_log_ent_idx++; 9992 9993 ASSERT3S(index, <, dev->l2ad_log_entries); 9994 ASSERT(HDR_HAS_L2HDR(hdr)); 9995 9996 le = &lb->lb_entries[index]; 9997 bzero(le, sizeof (*le)); 9998 le->le_dva = hdr->b_dva; 9999 le->le_birth = hdr->b_birth; 10000 le->le_daddr = hdr->b_l2hdr.b_daddr; 10001 if (index == 0) 10002 dev->l2ad_log_blk_payload_start = le->le_daddr; 10003 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 10004 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 10005 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 10006 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 10007 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 10008 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 10009 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state); 10010 10011 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 10012 HDR_GET_PSIZE(hdr)); 10013 10014 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 10015 } 10016 10017 /* 10018 * Checks whether a given L2ARC device address sits in a time-sequential 10019 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 10020 * just do a range comparison, we need to handle the situation in which the 10021 * range wraps around the end of the L2ARC device. Arguments: 10022 * bottom -- Lower end of the range to check (written to earlier). 10023 * top -- Upper end of the range to check (written to later). 10024 * check -- The address for which we want to determine if it sits in 10025 * between the top and bottom. 10026 * 10027 * The 3-way conditional below represents the following cases: 10028 * 10029 * bottom < top : Sequentially ordered case: 10030 * <check>--------+-------------------+ 10031 * | (overlap here?) | 10032 * L2ARC dev V V 10033 * |---------------<bottom>============<top>--------------| 10034 * 10035 * bottom > top: Looped-around case: 10036 * <check>--------+------------------+ 10037 * | (overlap here?) | 10038 * L2ARC dev V V 10039 * |===============<top>---------------<bottom>===========| 10040 * ^ ^ 10041 * | (or here?) | 10042 * +---------------+---------<check> 10043 * 10044 * top == bottom : Just a single address comparison. 10045 */ 10046 boolean_t 10047 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 10048 { 10049 if (bottom < top) 10050 return (bottom <= check && check <= top); 10051 else if (bottom > top) 10052 return (check <= top || bottom <= check); 10053 else 10054 return (check == top); 10055 } 10056