1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 24 * Copyright (c) 2011, 2016 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * DVA-based Adjustable Replacement Cache 31 * 32 * While much of the theory of operation used here is 33 * based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slows the flow of new data 52 * into the cache until we can make space available. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory pressure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefore exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefore choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() interface 80 * uses method 1, while the internal ARC algorithms for 81 * adjusting the cache use method 2. We therefore provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * ARC list locks. 84 * 85 * Buffers do not have their own mutexes, rather they rely on the 86 * hash table mutexes for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexes). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each ARC state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an ARC list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the active state mutex must be held before the ghost state mutex. 101 * 102 * Note that the majority of the performance stats are manipulated 103 * with atomic operations. 104 * 105 * The L2ARC uses the l2ad_mtx on each vdev for the following: 106 * 107 * - L2ARC buflist creation 108 * - L2ARC buflist eviction 109 * - L2ARC write completion, which walks L2ARC buflists 110 * - ARC header destruction, as it removes from L2ARC buflists 111 * - ARC header release, as it removes from L2ARC buflists 112 */ 113 114 /* 115 * ARC operation: 116 * 117 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 118 * This structure can point either to a block that is still in the cache or to 119 * one that is only accessible in an L2 ARC device, or it can provide 120 * information about a block that was recently evicted. If a block is 121 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 122 * information to retrieve it from the L2ARC device. This information is 123 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 124 * that is in this state cannot access the data directly. 125 * 126 * Blocks that are actively being referenced or have not been evicted 127 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 128 * the arc_buf_hdr_t that will point to the data block in memory. A block can 129 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 130 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 131 * also in the arc_buf_hdr_t's private physical data block pointer (b_pdata). 132 * 133 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 134 * ability to store the physical data (b_pdata) associated with the DVA of the 135 * arc_buf_hdr_t. Since the b_pdata is a copy of the on-disk physical block, 136 * it will match its on-disk compression characteristics. This behavior can be 137 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 138 * compressed ARC functionality is disabled, the b_pdata will point to an 139 * uncompressed version of the on-disk data. 140 * 141 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 142 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 143 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 144 * consumer. The ARC will provide references to this data and will keep it 145 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 146 * data block and will evict any arc_buf_t that is no longer referenced. The 147 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 148 * "overhead_size" kstat. 149 * 150 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 151 * compressed form. The typical case is that consumers will want uncompressed 152 * data, and when that happens a new data buffer is allocated where the data is 153 * decompressed for them to use. Currently the only consumer who wants 154 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 155 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 156 * with the arc_buf_hdr_t. 157 * 158 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 159 * first one is owned by a compressed send consumer (and therefore references 160 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 161 * used by any other consumer (and has its own uncompressed copy of the data 162 * buffer). 163 * 164 * arc_buf_hdr_t 165 * +-----------+ 166 * | fields | 167 * | common to | 168 * | L1- and | 169 * | L2ARC | 170 * +-----------+ 171 * | l2arc_buf_hdr_t 172 * | | 173 * +-----------+ 174 * | l1arc_buf_hdr_t 175 * | | arc_buf_t 176 * | b_buf +------------>+-----------+ arc_buf_t 177 * | b_pdata +-+ |b_next +---->+-----------+ 178 * +-----------+ | |-----------| |b_next +-->NULL 179 * | |b_comp = T | +-----------+ 180 * | |b_data +-+ |b_comp = F | 181 * | +-----------+ | |b_data +-+ 182 * +->+------+ | +-----------+ | 183 * compressed | | | | 184 * data | |<--------------+ | uncompressed 185 * +------+ compressed, | data 186 * shared +-->+------+ 187 * data | | 188 * | | 189 * +------+ 190 * 191 * When a consumer reads a block, the ARC must first look to see if the 192 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 193 * arc_buf_t and either copies uncompressed data into a new data buffer from an 194 * existing uncompressed arc_buf_t, decompresses the hdr's b_pdata buffer into a 195 * new data buffer, or shares the hdr's b_pdata buffer, depending on whether the 196 * hdr is compressed and the desired compression characteristics of the 197 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 198 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 199 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 200 * be anywhere in the hdr's list. 201 * 202 * The diagram below shows an example of an uncompressed ARC hdr that is 203 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 204 * the last element in the buf list): 205 * 206 * arc_buf_hdr_t 207 * +-----------+ 208 * | | 209 * | | 210 * | | 211 * +-----------+ 212 * l2arc_buf_hdr_t| | 213 * | | 214 * +-----------+ 215 * l1arc_buf_hdr_t| | 216 * | | arc_buf_t (shared) 217 * | b_buf +------------>+---------+ arc_buf_t 218 * | | |b_next +---->+---------+ 219 * | b_pdata +-+ |---------| |b_next +-->NULL 220 * +-----------+ | | | +---------+ 221 * | |b_data +-+ | | 222 * | +---------+ | |b_data +-+ 223 * +->+------+ | +---------+ | 224 * | | | | 225 * uncompressed | | | | 226 * data +------+ | | 227 * ^ +->+------+ | 228 * | uncompressed | | | 229 * | data | | | 230 * | +------+ | 231 * +---------------------------------+ 232 * 233 * Writing to the ARC requires that the ARC first discard the hdr's b_pdata 234 * since the physical block is about to be rewritten. The new data contents 235 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 236 * it may compress the data before writing it to disk. The ARC will be called 237 * with the transformed data and will bcopy the transformed on-disk block into 238 * a newly allocated b_pdata. Writes are always done into buffers which have 239 * either been loaned (and hence are new and don't have other readers) or 240 * buffers which have been released (and hence have their own hdr, if there 241 * were originally other readers of the buf's original hdr). This ensures that 242 * the ARC only needs to update a single buf and its hdr after a write occurs. 243 * 244 * When the L2ARC is in use, it will also take advantage of the b_pdata. The 245 * L2ARC will always write the contents of b_pdata to the L2ARC. This means 246 * that when compressed ARC is enabled that the L2ARC blocks are identical 247 * to the on-disk block in the main data pool. This provides a significant 248 * advantage since the ARC can leverage the bp's checksum when reading from the 249 * L2ARC to determine if the contents are valid. However, if the compressed 250 * ARC is disabled, then the L2ARC's block must be transformed to look 251 * like the physical block in the main data pool before comparing the 252 * checksum and determining its validity. 253 */ 254 255 #include <sys/spa.h> 256 #include <sys/zio.h> 257 #include <sys/spa_impl.h> 258 #include <sys/zio_compress.h> 259 #include <sys/zio_checksum.h> 260 #include <sys/zfs_context.h> 261 #include <sys/arc.h> 262 #include <sys/refcount.h> 263 #include <sys/vdev.h> 264 #include <sys/vdev_impl.h> 265 #include <sys/dsl_pool.h> 266 #include <sys/multilist.h> 267 #ifdef _KERNEL 268 #include <sys/vmsystm.h> 269 #include <vm/anon.h> 270 #include <sys/fs/swapnode.h> 271 #include <sys/dnlc.h> 272 #endif 273 #include <sys/callb.h> 274 #include <sys/kstat.h> 275 #include <zfs_fletcher.h> 276 277 #ifndef _KERNEL 278 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 279 boolean_t arc_watch = B_FALSE; 280 int arc_procfd; 281 #endif 282 283 static kmutex_t arc_reclaim_lock; 284 static kcondvar_t arc_reclaim_thread_cv; 285 static boolean_t arc_reclaim_thread_exit; 286 static kcondvar_t arc_reclaim_waiters_cv; 287 288 uint_t arc_reduce_dnlc_percent = 3; 289 290 /* 291 * The number of headers to evict in arc_evict_state_impl() before 292 * dropping the sublist lock and evicting from another sublist. A lower 293 * value means we're more likely to evict the "correct" header (i.e. the 294 * oldest header in the arc state), but comes with higher overhead 295 * (i.e. more invocations of arc_evict_state_impl()). 296 */ 297 int zfs_arc_evict_batch_limit = 10; 298 299 /* 300 * The number of sublists used for each of the arc state lists. If this 301 * is not set to a suitable value by the user, it will be configured to 302 * the number of CPUs on the system in arc_init(). 303 */ 304 int zfs_arc_num_sublists_per_state = 0; 305 306 /* number of seconds before growing cache again */ 307 static int arc_grow_retry = 60; 308 309 /* shift of arc_c for calculating overflow limit in arc_get_data_buf */ 310 int zfs_arc_overflow_shift = 8; 311 312 /* shift of arc_c for calculating both min and max arc_p */ 313 static int arc_p_min_shift = 4; 314 315 /* log2(fraction of arc to reclaim) */ 316 static int arc_shrink_shift = 7; 317 318 /* 319 * log2(fraction of ARC which must be free to allow growing). 320 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 321 * when reading a new block into the ARC, we will evict an equal-sized block 322 * from the ARC. 323 * 324 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 325 * we will still not allow it to grow. 326 */ 327 int arc_no_grow_shift = 5; 328 329 330 /* 331 * minimum lifespan of a prefetch block in clock ticks 332 * (initialized in arc_init()) 333 */ 334 static int arc_min_prefetch_lifespan; 335 336 /* 337 * If this percent of memory is free, don't throttle. 338 */ 339 int arc_lotsfree_percent = 10; 340 341 static int arc_dead; 342 343 /* 344 * The arc has filled available memory and has now warmed up. 345 */ 346 static boolean_t arc_warm; 347 348 /* 349 * log2 fraction of the zio arena to keep free. 350 */ 351 int arc_zio_arena_free_shift = 2; 352 353 /* 354 * These tunables are for performance analysis. 355 */ 356 uint64_t zfs_arc_max; 357 uint64_t zfs_arc_min; 358 uint64_t zfs_arc_meta_limit = 0; 359 uint64_t zfs_arc_meta_min = 0; 360 int zfs_arc_grow_retry = 0; 361 int zfs_arc_shrink_shift = 0; 362 int zfs_arc_p_min_shift = 0; 363 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 364 365 boolean_t zfs_compressed_arc_enabled = B_TRUE; 366 367 /* 368 * Note that buffers can be in one of 6 states: 369 * ARC_anon - anonymous (discussed below) 370 * ARC_mru - recently used, currently cached 371 * ARC_mru_ghost - recentely used, no longer in cache 372 * ARC_mfu - frequently used, currently cached 373 * ARC_mfu_ghost - frequently used, no longer in cache 374 * ARC_l2c_only - exists in L2ARC but not other states 375 * When there are no active references to the buffer, they are 376 * are linked onto a list in one of these arc states. These are 377 * the only buffers that can be evicted or deleted. Within each 378 * state there are multiple lists, one for meta-data and one for 379 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 380 * etc.) is tracked separately so that it can be managed more 381 * explicitly: favored over data, limited explicitly. 382 * 383 * Anonymous buffers are buffers that are not associated with 384 * a DVA. These are buffers that hold dirty block copies 385 * before they are written to stable storage. By definition, 386 * they are "ref'd" and are considered part of arc_mru 387 * that cannot be freed. Generally, they will aquire a DVA 388 * as they are written and migrate onto the arc_mru list. 389 * 390 * The ARC_l2c_only state is for buffers that are in the second 391 * level ARC but no longer in any of the ARC_m* lists. The second 392 * level ARC itself may also contain buffers that are in any of 393 * the ARC_m* states - meaning that a buffer can exist in two 394 * places. The reason for the ARC_l2c_only state is to keep the 395 * buffer header in the hash table, so that reads that hit the 396 * second level ARC benefit from these fast lookups. 397 */ 398 399 typedef struct arc_state { 400 /* 401 * list of evictable buffers 402 */ 403 multilist_t arcs_list[ARC_BUFC_NUMTYPES]; 404 /* 405 * total amount of evictable data in this state 406 */ 407 refcount_t arcs_esize[ARC_BUFC_NUMTYPES]; 408 /* 409 * total amount of data in this state; this includes: evictable, 410 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA. 411 */ 412 refcount_t arcs_size; 413 } arc_state_t; 414 415 /* The 6 states: */ 416 static arc_state_t ARC_anon; 417 static arc_state_t ARC_mru; 418 static arc_state_t ARC_mru_ghost; 419 static arc_state_t ARC_mfu; 420 static arc_state_t ARC_mfu_ghost; 421 static arc_state_t ARC_l2c_only; 422 423 typedef struct arc_stats { 424 kstat_named_t arcstat_hits; 425 kstat_named_t arcstat_misses; 426 kstat_named_t arcstat_demand_data_hits; 427 kstat_named_t arcstat_demand_data_misses; 428 kstat_named_t arcstat_demand_metadata_hits; 429 kstat_named_t arcstat_demand_metadata_misses; 430 kstat_named_t arcstat_prefetch_data_hits; 431 kstat_named_t arcstat_prefetch_data_misses; 432 kstat_named_t arcstat_prefetch_metadata_hits; 433 kstat_named_t arcstat_prefetch_metadata_misses; 434 kstat_named_t arcstat_mru_hits; 435 kstat_named_t arcstat_mru_ghost_hits; 436 kstat_named_t arcstat_mfu_hits; 437 kstat_named_t arcstat_mfu_ghost_hits; 438 kstat_named_t arcstat_deleted; 439 /* 440 * Number of buffers that could not be evicted because the hash lock 441 * was held by another thread. The lock may not necessarily be held 442 * by something using the same buffer, since hash locks are shared 443 * by multiple buffers. 444 */ 445 kstat_named_t arcstat_mutex_miss; 446 /* 447 * Number of buffers skipped because they have I/O in progress, are 448 * indrect prefetch buffers that have not lived long enough, or are 449 * not from the spa we're trying to evict from. 450 */ 451 kstat_named_t arcstat_evict_skip; 452 /* 453 * Number of times arc_evict_state() was unable to evict enough 454 * buffers to reach it's target amount. 455 */ 456 kstat_named_t arcstat_evict_not_enough; 457 kstat_named_t arcstat_evict_l2_cached; 458 kstat_named_t arcstat_evict_l2_eligible; 459 kstat_named_t arcstat_evict_l2_ineligible; 460 kstat_named_t arcstat_evict_l2_skip; 461 kstat_named_t arcstat_hash_elements; 462 kstat_named_t arcstat_hash_elements_max; 463 kstat_named_t arcstat_hash_collisions; 464 kstat_named_t arcstat_hash_chains; 465 kstat_named_t arcstat_hash_chain_max; 466 kstat_named_t arcstat_p; 467 kstat_named_t arcstat_c; 468 kstat_named_t arcstat_c_min; 469 kstat_named_t arcstat_c_max; 470 kstat_named_t arcstat_size; 471 /* 472 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pdata. 473 * Note that the compressed bytes may match the uncompressed bytes 474 * if the block is either not compressed or compressed arc is disabled. 475 */ 476 kstat_named_t arcstat_compressed_size; 477 /* 478 * Uncompressed size of the data stored in b_pdata. If compressed 479 * arc is disabled then this value will be identical to the stat 480 * above. 481 */ 482 kstat_named_t arcstat_uncompressed_size; 483 /* 484 * Number of bytes stored in all the arc_buf_t's. This is classified 485 * as "overhead" since this data is typically short-lived and will 486 * be evicted from the arc when it becomes unreferenced unless the 487 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level 488 * values have been set (see comment in dbuf.c for more information). 489 */ 490 kstat_named_t arcstat_overhead_size; 491 /* 492 * Number of bytes consumed by internal ARC structures necessary 493 * for tracking purposes; these structures are not actually 494 * backed by ARC buffers. This includes arc_buf_hdr_t structures 495 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only 496 * caches), and arc_buf_t structures (allocated via arc_buf_t 497 * cache). 498 */ 499 kstat_named_t arcstat_hdr_size; 500 /* 501 * Number of bytes consumed by ARC buffers of type equal to 502 * ARC_BUFC_DATA. This is generally consumed by buffers backing 503 * on disk user data (e.g. plain file contents). 504 */ 505 kstat_named_t arcstat_data_size; 506 /* 507 * Number of bytes consumed by ARC buffers of type equal to 508 * ARC_BUFC_METADATA. This is generally consumed by buffers 509 * backing on disk data that is used for internal ZFS 510 * structures (e.g. ZAP, dnode, indirect blocks, etc). 511 */ 512 kstat_named_t arcstat_metadata_size; 513 /* 514 * Number of bytes consumed by various buffers and structures 515 * not actually backed with ARC buffers. This includes bonus 516 * buffers (allocated directly via zio_buf_* functions), 517 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t 518 * cache), and dnode_t structures (allocated via dnode_t cache). 519 */ 520 kstat_named_t arcstat_other_size; 521 /* 522 * Total number of bytes consumed by ARC buffers residing in the 523 * arc_anon state. This includes *all* buffers in the arc_anon 524 * state; e.g. data, metadata, evictable, and unevictable buffers 525 * are all included in this value. 526 */ 527 kstat_named_t arcstat_anon_size; 528 /* 529 * Number of bytes consumed by ARC buffers that meet the 530 * following criteria: backing buffers of type ARC_BUFC_DATA, 531 * residing in the arc_anon state, and are eligible for eviction 532 * (e.g. have no outstanding holds on the buffer). 533 */ 534 kstat_named_t arcstat_anon_evictable_data; 535 /* 536 * Number of bytes consumed by ARC buffers that meet the 537 * following criteria: backing buffers of type ARC_BUFC_METADATA, 538 * residing in the arc_anon state, and are eligible for eviction 539 * (e.g. have no outstanding holds on the buffer). 540 */ 541 kstat_named_t arcstat_anon_evictable_metadata; 542 /* 543 * Total number of bytes consumed by ARC buffers residing in the 544 * arc_mru state. This includes *all* buffers in the arc_mru 545 * state; e.g. data, metadata, evictable, and unevictable buffers 546 * are all included in this value. 547 */ 548 kstat_named_t arcstat_mru_size; 549 /* 550 * Number of bytes consumed by ARC buffers that meet the 551 * following criteria: backing buffers of type ARC_BUFC_DATA, 552 * residing in the arc_mru state, and are eligible for eviction 553 * (e.g. have no outstanding holds on the buffer). 554 */ 555 kstat_named_t arcstat_mru_evictable_data; 556 /* 557 * Number of bytes consumed by ARC buffers that meet the 558 * following criteria: backing buffers of type ARC_BUFC_METADATA, 559 * residing in the arc_mru state, and are eligible for eviction 560 * (e.g. have no outstanding holds on the buffer). 561 */ 562 kstat_named_t arcstat_mru_evictable_metadata; 563 /* 564 * Total number of bytes that *would have been* consumed by ARC 565 * buffers in the arc_mru_ghost state. The key thing to note 566 * here, is the fact that this size doesn't actually indicate 567 * RAM consumption. The ghost lists only consist of headers and 568 * don't actually have ARC buffers linked off of these headers. 569 * Thus, *if* the headers had associated ARC buffers, these 570 * buffers *would have* consumed this number of bytes. 571 */ 572 kstat_named_t arcstat_mru_ghost_size; 573 /* 574 * Number of bytes that *would have been* consumed by ARC 575 * buffers that are eligible for eviction, of type 576 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state. 577 */ 578 kstat_named_t arcstat_mru_ghost_evictable_data; 579 /* 580 * Number of bytes that *would have been* consumed by ARC 581 * buffers that are eligible for eviction, of type 582 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 583 */ 584 kstat_named_t arcstat_mru_ghost_evictable_metadata; 585 /* 586 * Total number of bytes consumed by ARC buffers residing in the 587 * arc_mfu state. This includes *all* buffers in the arc_mfu 588 * state; e.g. data, metadata, evictable, and unevictable buffers 589 * are all included in this value. 590 */ 591 kstat_named_t arcstat_mfu_size; 592 /* 593 * Number of bytes consumed by ARC buffers that are eligible for 594 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu 595 * state. 596 */ 597 kstat_named_t arcstat_mfu_evictable_data; 598 /* 599 * Number of bytes consumed by ARC buffers that are eligible for 600 * eviction, of type ARC_BUFC_METADATA, and reside in the 601 * arc_mfu state. 602 */ 603 kstat_named_t arcstat_mfu_evictable_metadata; 604 /* 605 * Total number of bytes that *would have been* consumed by ARC 606 * buffers in the arc_mfu_ghost state. See the comment above 607 * arcstat_mru_ghost_size for more details. 608 */ 609 kstat_named_t arcstat_mfu_ghost_size; 610 /* 611 * Number of bytes that *would have been* consumed by ARC 612 * buffers that are eligible for eviction, of type 613 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state. 614 */ 615 kstat_named_t arcstat_mfu_ghost_evictable_data; 616 /* 617 * Number of bytes that *would have been* consumed by ARC 618 * buffers that are eligible for eviction, of type 619 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 620 */ 621 kstat_named_t arcstat_mfu_ghost_evictable_metadata; 622 kstat_named_t arcstat_l2_hits; 623 kstat_named_t arcstat_l2_misses; 624 kstat_named_t arcstat_l2_feeds; 625 kstat_named_t arcstat_l2_rw_clash; 626 kstat_named_t arcstat_l2_read_bytes; 627 kstat_named_t arcstat_l2_write_bytes; 628 kstat_named_t arcstat_l2_writes_sent; 629 kstat_named_t arcstat_l2_writes_done; 630 kstat_named_t arcstat_l2_writes_error; 631 kstat_named_t arcstat_l2_writes_lock_retry; 632 kstat_named_t arcstat_l2_evict_lock_retry; 633 kstat_named_t arcstat_l2_evict_reading; 634 kstat_named_t arcstat_l2_evict_l1cached; 635 kstat_named_t arcstat_l2_free_on_write; 636 kstat_named_t arcstat_l2_abort_lowmem; 637 kstat_named_t arcstat_l2_cksum_bad; 638 kstat_named_t arcstat_l2_io_error; 639 kstat_named_t arcstat_l2_size; 640 kstat_named_t arcstat_l2_asize; 641 kstat_named_t arcstat_l2_hdr_size; 642 kstat_named_t arcstat_memory_throttle_count; 643 kstat_named_t arcstat_meta_used; 644 kstat_named_t arcstat_meta_limit; 645 kstat_named_t arcstat_meta_max; 646 kstat_named_t arcstat_meta_min; 647 kstat_named_t arcstat_sync_wait_for_async; 648 kstat_named_t arcstat_demand_hit_predictive_prefetch; 649 } arc_stats_t; 650 651 static arc_stats_t arc_stats = { 652 { "hits", KSTAT_DATA_UINT64 }, 653 { "misses", KSTAT_DATA_UINT64 }, 654 { "demand_data_hits", KSTAT_DATA_UINT64 }, 655 { "demand_data_misses", KSTAT_DATA_UINT64 }, 656 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 657 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 658 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 659 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 660 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 661 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 662 { "mru_hits", KSTAT_DATA_UINT64 }, 663 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 664 { "mfu_hits", KSTAT_DATA_UINT64 }, 665 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 666 { "deleted", KSTAT_DATA_UINT64 }, 667 { "mutex_miss", KSTAT_DATA_UINT64 }, 668 { "evict_skip", KSTAT_DATA_UINT64 }, 669 { "evict_not_enough", KSTAT_DATA_UINT64 }, 670 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 671 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 672 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 673 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 674 { "hash_elements", KSTAT_DATA_UINT64 }, 675 { "hash_elements_max", KSTAT_DATA_UINT64 }, 676 { "hash_collisions", KSTAT_DATA_UINT64 }, 677 { "hash_chains", KSTAT_DATA_UINT64 }, 678 { "hash_chain_max", KSTAT_DATA_UINT64 }, 679 { "p", KSTAT_DATA_UINT64 }, 680 { "c", KSTAT_DATA_UINT64 }, 681 { "c_min", KSTAT_DATA_UINT64 }, 682 { "c_max", KSTAT_DATA_UINT64 }, 683 { "size", KSTAT_DATA_UINT64 }, 684 { "compressed_size", KSTAT_DATA_UINT64 }, 685 { "uncompressed_size", KSTAT_DATA_UINT64 }, 686 { "overhead_size", KSTAT_DATA_UINT64 }, 687 { "hdr_size", KSTAT_DATA_UINT64 }, 688 { "data_size", KSTAT_DATA_UINT64 }, 689 { "metadata_size", KSTAT_DATA_UINT64 }, 690 { "other_size", KSTAT_DATA_UINT64 }, 691 { "anon_size", KSTAT_DATA_UINT64 }, 692 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 693 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 694 { "mru_size", KSTAT_DATA_UINT64 }, 695 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 696 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 697 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 698 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 699 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 700 { "mfu_size", KSTAT_DATA_UINT64 }, 701 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 702 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 703 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 704 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 705 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 706 { "l2_hits", KSTAT_DATA_UINT64 }, 707 { "l2_misses", KSTAT_DATA_UINT64 }, 708 { "l2_feeds", KSTAT_DATA_UINT64 }, 709 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 710 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 711 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 712 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 713 { "l2_writes_done", KSTAT_DATA_UINT64 }, 714 { "l2_writes_error", KSTAT_DATA_UINT64 }, 715 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 716 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 717 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 718 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 719 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 720 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 721 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 722 { "l2_io_error", KSTAT_DATA_UINT64 }, 723 { "l2_size", KSTAT_DATA_UINT64 }, 724 { "l2_asize", KSTAT_DATA_UINT64 }, 725 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 726 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 727 { "arc_meta_used", KSTAT_DATA_UINT64 }, 728 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 729 { "arc_meta_max", KSTAT_DATA_UINT64 }, 730 { "arc_meta_min", KSTAT_DATA_UINT64 }, 731 { "sync_wait_for_async", KSTAT_DATA_UINT64 }, 732 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 733 }; 734 735 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 736 737 #define ARCSTAT_INCR(stat, val) \ 738 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 739 740 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 741 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 742 743 #define ARCSTAT_MAX(stat, val) { \ 744 uint64_t m; \ 745 while ((val) > (m = arc_stats.stat.value.ui64) && \ 746 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 747 continue; \ 748 } 749 750 #define ARCSTAT_MAXSTAT(stat) \ 751 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 752 753 /* 754 * We define a macro to allow ARC hits/misses to be easily broken down by 755 * two separate conditions, giving a total of four different subtypes for 756 * each of hits and misses (so eight statistics total). 757 */ 758 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 759 if (cond1) { \ 760 if (cond2) { \ 761 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 762 } else { \ 763 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 764 } \ 765 } else { \ 766 if (cond2) { \ 767 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 768 } else { \ 769 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 770 } \ 771 } 772 773 kstat_t *arc_ksp; 774 static arc_state_t *arc_anon; 775 static arc_state_t *arc_mru; 776 static arc_state_t *arc_mru_ghost; 777 static arc_state_t *arc_mfu; 778 static arc_state_t *arc_mfu_ghost; 779 static arc_state_t *arc_l2c_only; 780 781 /* 782 * There are several ARC variables that are critical to export as kstats -- 783 * but we don't want to have to grovel around in the kstat whenever we wish to 784 * manipulate them. For these variables, we therefore define them to be in 785 * terms of the statistic variable. This assures that we are not introducing 786 * the possibility of inconsistency by having shadow copies of the variables, 787 * while still allowing the code to be readable. 788 */ 789 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 790 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 791 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 792 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 793 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 794 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 795 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 796 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ 797 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 798 799 /* compressed size of entire arc */ 800 #define arc_compressed_size ARCSTAT(arcstat_compressed_size) 801 /* uncompressed size of entire arc */ 802 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size) 803 /* number of bytes in the arc from arc_buf_t's */ 804 #define arc_overhead_size ARCSTAT(arcstat_overhead_size) 805 806 static int arc_no_grow; /* Don't try to grow cache size */ 807 static uint64_t arc_tempreserve; 808 static uint64_t arc_loaned_bytes; 809 810 typedef struct arc_callback arc_callback_t; 811 812 struct arc_callback { 813 void *acb_private; 814 arc_done_func_t *acb_done; 815 arc_buf_t *acb_buf; 816 boolean_t acb_compressed; 817 zio_t *acb_zio_dummy; 818 arc_callback_t *acb_next; 819 }; 820 821 typedef struct arc_write_callback arc_write_callback_t; 822 823 struct arc_write_callback { 824 void *awcb_private; 825 arc_done_func_t *awcb_ready; 826 arc_done_func_t *awcb_children_ready; 827 arc_done_func_t *awcb_physdone; 828 arc_done_func_t *awcb_done; 829 arc_buf_t *awcb_buf; 830 }; 831 832 /* 833 * ARC buffers are separated into multiple structs as a memory saving measure: 834 * - Common fields struct, always defined, and embedded within it: 835 * - L2-only fields, always allocated but undefined when not in L2ARC 836 * - L1-only fields, only allocated when in L1ARC 837 * 838 * Buffer in L1 Buffer only in L2 839 * +------------------------+ +------------------------+ 840 * | arc_buf_hdr_t | | arc_buf_hdr_t | 841 * | | | | 842 * | | | | 843 * | | | | 844 * +------------------------+ +------------------------+ 845 * | l2arc_buf_hdr_t | | l2arc_buf_hdr_t | 846 * | (undefined if L1-only) | | | 847 * +------------------------+ +------------------------+ 848 * | l1arc_buf_hdr_t | 849 * | | 850 * | | 851 * | | 852 * | | 853 * +------------------------+ 854 * 855 * Because it's possible for the L2ARC to become extremely large, we can wind 856 * up eating a lot of memory in L2ARC buffer headers, so the size of a header 857 * is minimized by only allocating the fields necessary for an L1-cached buffer 858 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and 859 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple 860 * words in pointers. arc_hdr_realloc() is used to switch a header between 861 * these two allocation states. 862 */ 863 typedef struct l1arc_buf_hdr { 864 kmutex_t b_freeze_lock; 865 zio_cksum_t *b_freeze_cksum; 866 #ifdef ZFS_DEBUG 867 /* 868 * Used for debugging with kmem_flags - by allocating and freeing 869 * b_thawed when the buffer is thawed, we get a record of the stack 870 * trace that thawed it. 871 */ 872 void *b_thawed; 873 #endif 874 875 arc_buf_t *b_buf; 876 uint32_t b_bufcnt; 877 /* for waiting on writes to complete */ 878 kcondvar_t b_cv; 879 uint8_t b_byteswap; 880 881 /* protected by arc state mutex */ 882 arc_state_t *b_state; 883 multilist_node_t b_arc_node; 884 885 /* updated atomically */ 886 clock_t b_arc_access; 887 888 /* self protecting */ 889 refcount_t b_refcnt; 890 891 arc_callback_t *b_acb; 892 void *b_pdata; 893 } l1arc_buf_hdr_t; 894 895 typedef struct l2arc_dev l2arc_dev_t; 896 897 typedef struct l2arc_buf_hdr { 898 /* protected by arc_buf_hdr mutex */ 899 l2arc_dev_t *b_dev; /* L2ARC device */ 900 uint64_t b_daddr; /* disk address, offset byte */ 901 902 list_node_t b_l2node; 903 } l2arc_buf_hdr_t; 904 905 struct arc_buf_hdr { 906 /* protected by hash lock */ 907 dva_t b_dva; 908 uint64_t b_birth; 909 910 arc_buf_contents_t b_type; 911 arc_buf_hdr_t *b_hash_next; 912 arc_flags_t b_flags; 913 914 /* 915 * This field stores the size of the data buffer after 916 * compression, and is set in the arc's zio completion handlers. 917 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes). 918 * 919 * While the block pointers can store up to 32MB in their psize 920 * field, we can only store up to 32MB minus 512B. This is due 921 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e. 922 * a field of zeros represents 512B in the bp). We can't use a 923 * bias of 1 since we need to reserve a psize of zero, here, to 924 * represent holes and embedded blocks. 925 * 926 * This isn't a problem in practice, since the maximum size of a 927 * buffer is limited to 16MB, so we never need to store 32MB in 928 * this field. Even in the upstream illumos code base, the 929 * maximum size of a buffer is limited to 16MB. 930 */ 931 uint16_t b_psize; 932 933 /* 934 * This field stores the size of the data buffer before 935 * compression, and cannot change once set. It is in units 936 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes) 937 */ 938 uint16_t b_lsize; /* immutable */ 939 uint64_t b_spa; /* immutable */ 940 941 /* L2ARC fields. Undefined when not in L2ARC. */ 942 l2arc_buf_hdr_t b_l2hdr; 943 /* L1ARC fields. Undefined when in l2arc_only state */ 944 l1arc_buf_hdr_t b_l1hdr; 945 }; 946 947 #define GHOST_STATE(state) \ 948 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 949 (state) == arc_l2c_only) 950 951 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 952 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 953 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 954 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 955 #define HDR_COMPRESSION_ENABLED(hdr) \ 956 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 957 958 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 959 #define HDR_L2_READING(hdr) \ 960 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 961 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 962 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 963 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 964 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 965 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 966 967 #define HDR_ISTYPE_METADATA(hdr) \ 968 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 969 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 970 971 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 972 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 973 974 /* For storing compression mode in b_flags */ 975 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 976 977 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 978 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 979 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 980 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 981 982 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 983 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 984 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 985 986 /* 987 * Other sizes 988 */ 989 990 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 991 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 992 993 /* 994 * Hash table routines 995 */ 996 997 #define HT_LOCK_PAD 64 998 999 struct ht_lock { 1000 kmutex_t ht_lock; 1001 #ifdef _KERNEL 1002 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 1003 #endif 1004 }; 1005 1006 #define BUF_LOCKS 256 1007 typedef struct buf_hash_table { 1008 uint64_t ht_mask; 1009 arc_buf_hdr_t **ht_table; 1010 struct ht_lock ht_locks[BUF_LOCKS]; 1011 } buf_hash_table_t; 1012 1013 static buf_hash_table_t buf_hash_table; 1014 1015 #define BUF_HASH_INDEX(spa, dva, birth) \ 1016 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 1017 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 1018 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 1019 #define HDR_LOCK(hdr) \ 1020 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 1021 1022 uint64_t zfs_crc64_table[256]; 1023 1024 /* 1025 * Level 2 ARC 1026 */ 1027 1028 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 1029 #define L2ARC_HEADROOM 2 /* num of writes */ 1030 /* 1031 * If we discover during ARC scan any buffers to be compressed, we boost 1032 * our headroom for the next scanning cycle by this percentage multiple. 1033 */ 1034 #define L2ARC_HEADROOM_BOOST 200 1035 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 1036 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 1037 1038 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 1039 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 1040 1041 /* L2ARC Performance Tunables */ 1042 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 1043 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 1044 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 1045 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 1046 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 1047 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 1048 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 1049 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 1050 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 1051 1052 /* 1053 * L2ARC Internals 1054 */ 1055 struct l2arc_dev { 1056 vdev_t *l2ad_vdev; /* vdev */ 1057 spa_t *l2ad_spa; /* spa */ 1058 uint64_t l2ad_hand; /* next write location */ 1059 uint64_t l2ad_start; /* first addr on device */ 1060 uint64_t l2ad_end; /* last addr on device */ 1061 boolean_t l2ad_first; /* first sweep through */ 1062 boolean_t l2ad_writing; /* currently writing */ 1063 kmutex_t l2ad_mtx; /* lock for buffer list */ 1064 list_t l2ad_buflist; /* buffer list */ 1065 list_node_t l2ad_node; /* device list node */ 1066 refcount_t l2ad_alloc; /* allocated bytes */ 1067 }; 1068 1069 static list_t L2ARC_dev_list; /* device list */ 1070 static list_t *l2arc_dev_list; /* device list pointer */ 1071 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 1072 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 1073 static list_t L2ARC_free_on_write; /* free after write buf list */ 1074 static list_t *l2arc_free_on_write; /* free after write list ptr */ 1075 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 1076 static uint64_t l2arc_ndev; /* number of devices */ 1077 1078 typedef struct l2arc_read_callback { 1079 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 1080 blkptr_t l2rcb_bp; /* original blkptr */ 1081 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 1082 int l2rcb_flags; /* original flags */ 1083 } l2arc_read_callback_t; 1084 1085 typedef struct l2arc_write_callback { 1086 l2arc_dev_t *l2wcb_dev; /* device info */ 1087 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 1088 } l2arc_write_callback_t; 1089 1090 typedef struct l2arc_data_free { 1091 /* protected by l2arc_free_on_write_mtx */ 1092 void *l2df_data; 1093 size_t l2df_size; 1094 arc_buf_contents_t l2df_type; 1095 list_node_t l2df_list_node; 1096 } l2arc_data_free_t; 1097 1098 static kmutex_t l2arc_feed_thr_lock; 1099 static kcondvar_t l2arc_feed_thr_cv; 1100 static uint8_t l2arc_thread_exit; 1101 1102 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 1103 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 1104 static void arc_hdr_free_pdata(arc_buf_hdr_t *hdr); 1105 static void arc_hdr_alloc_pdata(arc_buf_hdr_t *); 1106 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 1107 static boolean_t arc_is_overflowing(); 1108 static void arc_buf_watch(arc_buf_t *); 1109 1110 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 1111 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 1112 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 1113 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 1114 1115 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 1116 static void l2arc_read_done(zio_t *); 1117 1118 static uint64_t 1119 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 1120 { 1121 uint8_t *vdva = (uint8_t *)dva; 1122 uint64_t crc = -1ULL; 1123 int i; 1124 1125 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 1126 1127 for (i = 0; i < sizeof (dva_t); i++) 1128 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 1129 1130 crc ^= (spa>>8) ^ birth; 1131 1132 return (crc); 1133 } 1134 1135 #define HDR_EMPTY(hdr) \ 1136 ((hdr)->b_dva.dva_word[0] == 0 && \ 1137 (hdr)->b_dva.dva_word[1] == 0) 1138 1139 #define HDR_EQUAL(spa, dva, birth, hdr) \ 1140 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 1141 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 1142 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 1143 1144 static void 1145 buf_discard_identity(arc_buf_hdr_t *hdr) 1146 { 1147 hdr->b_dva.dva_word[0] = 0; 1148 hdr->b_dva.dva_word[1] = 0; 1149 hdr->b_birth = 0; 1150 } 1151 1152 static arc_buf_hdr_t * 1153 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 1154 { 1155 const dva_t *dva = BP_IDENTITY(bp); 1156 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 1157 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1158 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1159 arc_buf_hdr_t *hdr; 1160 1161 mutex_enter(hash_lock); 1162 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1163 hdr = hdr->b_hash_next) { 1164 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1165 *lockp = hash_lock; 1166 return (hdr); 1167 } 1168 } 1169 mutex_exit(hash_lock); 1170 *lockp = NULL; 1171 return (NULL); 1172 } 1173 1174 /* 1175 * Insert an entry into the hash table. If there is already an element 1176 * equal to elem in the hash table, then the already existing element 1177 * will be returned and the new element will not be inserted. 1178 * Otherwise returns NULL. 1179 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1180 */ 1181 static arc_buf_hdr_t * 1182 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1183 { 1184 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1185 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1186 arc_buf_hdr_t *fhdr; 1187 uint32_t i; 1188 1189 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1190 ASSERT(hdr->b_birth != 0); 1191 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1192 1193 if (lockp != NULL) { 1194 *lockp = hash_lock; 1195 mutex_enter(hash_lock); 1196 } else { 1197 ASSERT(MUTEX_HELD(hash_lock)); 1198 } 1199 1200 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1201 fhdr = fhdr->b_hash_next, i++) { 1202 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1203 return (fhdr); 1204 } 1205 1206 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1207 buf_hash_table.ht_table[idx] = hdr; 1208 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1209 1210 /* collect some hash table performance data */ 1211 if (i > 0) { 1212 ARCSTAT_BUMP(arcstat_hash_collisions); 1213 if (i == 1) 1214 ARCSTAT_BUMP(arcstat_hash_chains); 1215 1216 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1217 } 1218 1219 ARCSTAT_BUMP(arcstat_hash_elements); 1220 ARCSTAT_MAXSTAT(arcstat_hash_elements); 1221 1222 return (NULL); 1223 } 1224 1225 static void 1226 buf_hash_remove(arc_buf_hdr_t *hdr) 1227 { 1228 arc_buf_hdr_t *fhdr, **hdrp; 1229 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1230 1231 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1232 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1233 1234 hdrp = &buf_hash_table.ht_table[idx]; 1235 while ((fhdr = *hdrp) != hdr) { 1236 ASSERT3P(fhdr, !=, NULL); 1237 hdrp = &fhdr->b_hash_next; 1238 } 1239 *hdrp = hdr->b_hash_next; 1240 hdr->b_hash_next = NULL; 1241 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1242 1243 /* collect some hash table performance data */ 1244 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 1245 1246 if (buf_hash_table.ht_table[idx] && 1247 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1248 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1249 } 1250 1251 /* 1252 * Global data structures and functions for the buf kmem cache. 1253 */ 1254 static kmem_cache_t *hdr_full_cache; 1255 static kmem_cache_t *hdr_l2only_cache; 1256 static kmem_cache_t *buf_cache; 1257 1258 static void 1259 buf_fini(void) 1260 { 1261 int i; 1262 1263 kmem_free(buf_hash_table.ht_table, 1264 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1265 for (i = 0; i < BUF_LOCKS; i++) 1266 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 1267 kmem_cache_destroy(hdr_full_cache); 1268 kmem_cache_destroy(hdr_l2only_cache); 1269 kmem_cache_destroy(buf_cache); 1270 } 1271 1272 /* 1273 * Constructor callback - called when the cache is empty 1274 * and a new buf is requested. 1275 */ 1276 /* ARGSUSED */ 1277 static int 1278 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1279 { 1280 arc_buf_hdr_t *hdr = vbuf; 1281 1282 bzero(hdr, HDR_FULL_SIZE); 1283 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1284 refcount_create(&hdr->b_l1hdr.b_refcnt); 1285 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1286 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1287 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1288 1289 return (0); 1290 } 1291 1292 /* ARGSUSED */ 1293 static int 1294 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1295 { 1296 arc_buf_hdr_t *hdr = vbuf; 1297 1298 bzero(hdr, HDR_L2ONLY_SIZE); 1299 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1300 1301 return (0); 1302 } 1303 1304 /* ARGSUSED */ 1305 static int 1306 buf_cons(void *vbuf, void *unused, int kmflag) 1307 { 1308 arc_buf_t *buf = vbuf; 1309 1310 bzero(buf, sizeof (arc_buf_t)); 1311 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1312 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1313 1314 return (0); 1315 } 1316 1317 /* 1318 * Destructor callback - called when a cached buf is 1319 * no longer required. 1320 */ 1321 /* ARGSUSED */ 1322 static void 1323 hdr_full_dest(void *vbuf, void *unused) 1324 { 1325 arc_buf_hdr_t *hdr = vbuf; 1326 1327 ASSERT(HDR_EMPTY(hdr)); 1328 cv_destroy(&hdr->b_l1hdr.b_cv); 1329 refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1330 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1331 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1332 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1333 } 1334 1335 /* ARGSUSED */ 1336 static void 1337 hdr_l2only_dest(void *vbuf, void *unused) 1338 { 1339 arc_buf_hdr_t *hdr = vbuf; 1340 1341 ASSERT(HDR_EMPTY(hdr)); 1342 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1343 } 1344 1345 /* ARGSUSED */ 1346 static void 1347 buf_dest(void *vbuf, void *unused) 1348 { 1349 arc_buf_t *buf = vbuf; 1350 1351 mutex_destroy(&buf->b_evict_lock); 1352 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1353 } 1354 1355 /* 1356 * Reclaim callback -- invoked when memory is low. 1357 */ 1358 /* ARGSUSED */ 1359 static void 1360 hdr_recl(void *unused) 1361 { 1362 dprintf("hdr_recl called\n"); 1363 /* 1364 * umem calls the reclaim func when we destroy the buf cache, 1365 * which is after we do arc_fini(). 1366 */ 1367 if (!arc_dead) 1368 cv_signal(&arc_reclaim_thread_cv); 1369 } 1370 1371 static void 1372 buf_init(void) 1373 { 1374 uint64_t *ct; 1375 uint64_t hsize = 1ULL << 12; 1376 int i, j; 1377 1378 /* 1379 * The hash table is big enough to fill all of physical memory 1380 * with an average block size of zfs_arc_average_blocksize (default 8K). 1381 * By default, the table will take up 1382 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1383 */ 1384 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 1385 hsize <<= 1; 1386 retry: 1387 buf_hash_table.ht_mask = hsize - 1; 1388 buf_hash_table.ht_table = 1389 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1390 if (buf_hash_table.ht_table == NULL) { 1391 ASSERT(hsize > (1ULL << 8)); 1392 hsize >>= 1; 1393 goto retry; 1394 } 1395 1396 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1397 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0); 1398 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1399 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl, 1400 NULL, NULL, 0); 1401 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1402 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1403 1404 for (i = 0; i < 256; i++) 1405 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1406 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1407 1408 for (i = 0; i < BUF_LOCKS; i++) { 1409 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1410 NULL, MUTEX_DEFAULT, NULL); 1411 } 1412 } 1413 1414 /* 1415 * This is the size that the buf occupies in memory. If the buf is compressed, 1416 * it will correspond to the compressed size. You should use this method of 1417 * getting the buf size unless you explicitly need the logical size. 1418 */ 1419 int32_t 1420 arc_buf_size(arc_buf_t *buf) 1421 { 1422 return (ARC_BUF_COMPRESSED(buf) ? 1423 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1424 } 1425 1426 int32_t 1427 arc_buf_lsize(arc_buf_t *buf) 1428 { 1429 return (HDR_GET_LSIZE(buf->b_hdr)); 1430 } 1431 1432 enum zio_compress 1433 arc_get_compression(arc_buf_t *buf) 1434 { 1435 return (ARC_BUF_COMPRESSED(buf) ? 1436 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1437 } 1438 1439 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1440 1441 static inline boolean_t 1442 arc_buf_is_shared(arc_buf_t *buf) 1443 { 1444 boolean_t shared = (buf->b_data != NULL && 1445 buf->b_data == buf->b_hdr->b_l1hdr.b_pdata); 1446 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1447 IMPLY(shared, ARC_BUF_SHARED(buf)); 1448 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1449 1450 /* 1451 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1452 * already being shared" requirement prevents us from doing that. 1453 */ 1454 1455 return (shared); 1456 } 1457 1458 /* 1459 * Free the checksum associated with this header. If there is no checksum, this 1460 * is a no-op. 1461 */ 1462 static inline void 1463 arc_cksum_free(arc_buf_hdr_t *hdr) 1464 { 1465 ASSERT(HDR_HAS_L1HDR(hdr)); 1466 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1467 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1468 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1469 hdr->b_l1hdr.b_freeze_cksum = NULL; 1470 } 1471 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1472 } 1473 1474 /* 1475 * Return true iff at least one of the bufs on hdr is not compressed. 1476 */ 1477 static boolean_t 1478 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1479 { 1480 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1481 if (!ARC_BUF_COMPRESSED(b)) { 1482 return (B_TRUE); 1483 } 1484 } 1485 return (B_FALSE); 1486 } 1487 1488 /* 1489 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1490 * matches the checksum that is stored in the hdr. If there is no checksum, 1491 * or if the buf is compressed, this is a no-op. 1492 */ 1493 static void 1494 arc_cksum_verify(arc_buf_t *buf) 1495 { 1496 arc_buf_hdr_t *hdr = buf->b_hdr; 1497 zio_cksum_t zc; 1498 1499 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1500 return; 1501 1502 if (ARC_BUF_COMPRESSED(buf)) { 1503 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL || 1504 arc_hdr_has_uncompressed_buf(hdr)); 1505 return; 1506 } 1507 1508 ASSERT(HDR_HAS_L1HDR(hdr)); 1509 1510 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1511 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1512 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1513 return; 1514 } 1515 1516 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1517 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1518 panic("buffer modified while frozen!"); 1519 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1520 } 1521 1522 static boolean_t 1523 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1524 { 1525 enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp); 1526 boolean_t valid_cksum; 1527 1528 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1529 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1530 1531 /* 1532 * We rely on the blkptr's checksum to determine if the block 1533 * is valid or not. When compressed arc is enabled, the l2arc 1534 * writes the block to the l2arc just as it appears in the pool. 1535 * This allows us to use the blkptr's checksum to validate the 1536 * data that we just read off of the l2arc without having to store 1537 * a separate checksum in the arc_buf_hdr_t. However, if compressed 1538 * arc is disabled, then the data written to the l2arc is always 1539 * uncompressed and won't match the block as it exists in the main 1540 * pool. When this is the case, we must first compress it if it is 1541 * compressed on the main pool before we can validate the checksum. 1542 */ 1543 if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) { 1544 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1545 uint64_t lsize = HDR_GET_LSIZE(hdr); 1546 uint64_t csize; 1547 1548 void *cbuf = zio_buf_alloc(HDR_GET_PSIZE(hdr)); 1549 csize = zio_compress_data(compress, zio->io_data, cbuf, lsize); 1550 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr)); 1551 if (csize < HDR_GET_PSIZE(hdr)) { 1552 /* 1553 * Compressed blocks are always a multiple of the 1554 * smallest ashift in the pool. Ideally, we would 1555 * like to round up the csize to the next 1556 * spa_min_ashift but that value may have changed 1557 * since the block was last written. Instead, 1558 * we rely on the fact that the hdr's psize 1559 * was set to the psize of the block when it was 1560 * last written. We set the csize to that value 1561 * and zero out any part that should not contain 1562 * data. 1563 */ 1564 bzero((char *)cbuf + csize, HDR_GET_PSIZE(hdr) - csize); 1565 csize = HDR_GET_PSIZE(hdr); 1566 } 1567 zio_push_transform(zio, cbuf, csize, HDR_GET_PSIZE(hdr), NULL); 1568 } 1569 1570 /* 1571 * Block pointers always store the checksum for the logical data. 1572 * If the block pointer has the gang bit set, then the checksum 1573 * it represents is for the reconstituted data and not for an 1574 * individual gang member. The zio pipeline, however, must be able to 1575 * determine the checksum of each of the gang constituents so it 1576 * treats the checksum comparison differently than what we need 1577 * for l2arc blocks. This prevents us from using the 1578 * zio_checksum_error() interface directly. Instead we must call the 1579 * zio_checksum_error_impl() so that we can ensure the checksum is 1580 * generated using the correct checksum algorithm and accounts for the 1581 * logical I/O size and not just a gang fragment. 1582 */ 1583 valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1584 BP_GET_CHECKSUM(zio->io_bp), zio->io_data, zio->io_size, 1585 zio->io_offset, NULL) == 0); 1586 zio_pop_transforms(zio); 1587 return (valid_cksum); 1588 } 1589 1590 /* 1591 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1592 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1593 * isn't modified later on. If buf is compressed or there is already a checksum 1594 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1595 */ 1596 static void 1597 arc_cksum_compute(arc_buf_t *buf) 1598 { 1599 arc_buf_hdr_t *hdr = buf->b_hdr; 1600 1601 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1602 return; 1603 1604 ASSERT(HDR_HAS_L1HDR(hdr)); 1605 1606 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1607 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1608 ASSERT(arc_hdr_has_uncompressed_buf(hdr)); 1609 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1610 return; 1611 } else if (ARC_BUF_COMPRESSED(buf)) { 1612 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1613 return; 1614 } 1615 1616 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1617 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1618 KM_SLEEP); 1619 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1620 hdr->b_l1hdr.b_freeze_cksum); 1621 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1622 arc_buf_watch(buf); 1623 } 1624 1625 #ifndef _KERNEL 1626 typedef struct procctl { 1627 long cmd; 1628 prwatch_t prwatch; 1629 } procctl_t; 1630 #endif 1631 1632 /* ARGSUSED */ 1633 static void 1634 arc_buf_unwatch(arc_buf_t *buf) 1635 { 1636 #ifndef _KERNEL 1637 if (arc_watch) { 1638 int result; 1639 procctl_t ctl; 1640 ctl.cmd = PCWATCH; 1641 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1642 ctl.prwatch.pr_size = 0; 1643 ctl.prwatch.pr_wflags = 0; 1644 result = write(arc_procfd, &ctl, sizeof (ctl)); 1645 ASSERT3U(result, ==, sizeof (ctl)); 1646 } 1647 #endif 1648 } 1649 1650 /* ARGSUSED */ 1651 static void 1652 arc_buf_watch(arc_buf_t *buf) 1653 { 1654 #ifndef _KERNEL 1655 if (arc_watch) { 1656 int result; 1657 procctl_t ctl; 1658 ctl.cmd = PCWATCH; 1659 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1660 ctl.prwatch.pr_size = arc_buf_size(buf); 1661 ctl.prwatch.pr_wflags = WA_WRITE; 1662 result = write(arc_procfd, &ctl, sizeof (ctl)); 1663 ASSERT3U(result, ==, sizeof (ctl)); 1664 } 1665 #endif 1666 } 1667 1668 static arc_buf_contents_t 1669 arc_buf_type(arc_buf_hdr_t *hdr) 1670 { 1671 arc_buf_contents_t type; 1672 if (HDR_ISTYPE_METADATA(hdr)) { 1673 type = ARC_BUFC_METADATA; 1674 } else { 1675 type = ARC_BUFC_DATA; 1676 } 1677 VERIFY3U(hdr->b_type, ==, type); 1678 return (type); 1679 } 1680 1681 boolean_t 1682 arc_is_metadata(arc_buf_t *buf) 1683 { 1684 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1685 } 1686 1687 static uint32_t 1688 arc_bufc_to_flags(arc_buf_contents_t type) 1689 { 1690 switch (type) { 1691 case ARC_BUFC_DATA: 1692 /* metadata field is 0 if buffer contains normal data */ 1693 return (0); 1694 case ARC_BUFC_METADATA: 1695 return (ARC_FLAG_BUFC_METADATA); 1696 default: 1697 break; 1698 } 1699 panic("undefined ARC buffer type!"); 1700 return ((uint32_t)-1); 1701 } 1702 1703 void 1704 arc_buf_thaw(arc_buf_t *buf) 1705 { 1706 arc_buf_hdr_t *hdr = buf->b_hdr; 1707 1708 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1709 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1710 1711 arc_cksum_verify(buf); 1712 1713 /* 1714 * Compressed buffers do not manipulate the b_freeze_cksum or 1715 * allocate b_thawed. 1716 */ 1717 if (ARC_BUF_COMPRESSED(buf)) { 1718 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL || 1719 arc_hdr_has_uncompressed_buf(hdr)); 1720 return; 1721 } 1722 1723 ASSERT(HDR_HAS_L1HDR(hdr)); 1724 arc_cksum_free(hdr); 1725 1726 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1727 #ifdef ZFS_DEBUG 1728 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1729 if (hdr->b_l1hdr.b_thawed != NULL) 1730 kmem_free(hdr->b_l1hdr.b_thawed, 1); 1731 hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP); 1732 } 1733 #endif 1734 1735 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1736 1737 arc_buf_unwatch(buf); 1738 } 1739 1740 void 1741 arc_buf_freeze(arc_buf_t *buf) 1742 { 1743 arc_buf_hdr_t *hdr = buf->b_hdr; 1744 kmutex_t *hash_lock; 1745 1746 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1747 return; 1748 1749 if (ARC_BUF_COMPRESSED(buf)) { 1750 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL || 1751 arc_hdr_has_uncompressed_buf(hdr)); 1752 return; 1753 } 1754 1755 hash_lock = HDR_LOCK(hdr); 1756 mutex_enter(hash_lock); 1757 1758 ASSERT(HDR_HAS_L1HDR(hdr)); 1759 ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL || 1760 hdr->b_l1hdr.b_state == arc_anon); 1761 arc_cksum_compute(buf); 1762 mutex_exit(hash_lock); 1763 } 1764 1765 /* 1766 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1767 * the following functions should be used to ensure that the flags are 1768 * updated in a thread-safe way. When manipulating the flags either 1769 * the hash_lock must be held or the hdr must be undiscoverable. This 1770 * ensures that we're not racing with any other threads when updating 1771 * the flags. 1772 */ 1773 static inline void 1774 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1775 { 1776 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1777 hdr->b_flags |= flags; 1778 } 1779 1780 static inline void 1781 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1782 { 1783 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1784 hdr->b_flags &= ~flags; 1785 } 1786 1787 /* 1788 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1789 * done in a special way since we have to clear and set bits 1790 * at the same time. Consumers that wish to set the compression bits 1791 * must use this function to ensure that the flags are updated in 1792 * thread-safe manner. 1793 */ 1794 static void 1795 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1796 { 1797 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1798 1799 /* 1800 * Holes and embedded blocks will always have a psize = 0 so 1801 * we ignore the compression of the blkptr and set the 1802 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF. 1803 * Holes and embedded blocks remain anonymous so we don't 1804 * want to uncompress them. Mark them as uncompressed. 1805 */ 1806 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1807 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1808 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 1809 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1810 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1811 } else { 1812 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1813 HDR_SET_COMPRESS(hdr, cmp); 1814 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1815 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1816 } 1817 } 1818 1819 /* 1820 * Looks for another buf on the same hdr which has the data decompressed, copies 1821 * from it, and returns true. If no such buf exists, returns false. 1822 */ 1823 static boolean_t 1824 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1825 { 1826 arc_buf_hdr_t *hdr = buf->b_hdr; 1827 boolean_t copied = B_FALSE; 1828 1829 ASSERT(HDR_HAS_L1HDR(hdr)); 1830 ASSERT3P(buf->b_data, !=, NULL); 1831 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1832 1833 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1834 from = from->b_next) { 1835 /* can't use our own data buffer */ 1836 if (from == buf) { 1837 continue; 1838 } 1839 1840 if (!ARC_BUF_COMPRESSED(from)) { 1841 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1842 copied = B_TRUE; 1843 break; 1844 } 1845 } 1846 1847 /* 1848 * There were no decompressed bufs, so there should not be a 1849 * checksum on the hdr either. 1850 */ 1851 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1852 1853 return (copied); 1854 } 1855 1856 /* 1857 * Given a buf that has a data buffer attached to it, this function will 1858 * efficiently fill the buf with data of the specified compression setting from 1859 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1860 * are already sharing a data buf, no copy is performed. 1861 * 1862 * If the buf is marked as compressed but uncompressed data was requested, this 1863 * will allocate a new data buffer for the buf, remove that flag, and fill the 1864 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1865 * uncompressed data, and (since we haven't added support for it yet) if you 1866 * want compressed data your buf must already be marked as compressed and have 1867 * the correct-sized data buffer. 1868 */ 1869 static int 1870 arc_buf_fill(arc_buf_t *buf, boolean_t compressed) 1871 { 1872 arc_buf_hdr_t *hdr = buf->b_hdr; 1873 boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF); 1874 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 1875 1876 ASSERT3P(buf->b_data, !=, NULL); 1877 IMPLY(compressed, hdr_compressed); 1878 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 1879 1880 if (hdr_compressed == compressed) { 1881 if (!arc_buf_is_shared(buf)) { 1882 bcopy(hdr->b_l1hdr.b_pdata, buf->b_data, 1883 arc_buf_size(buf)); 1884 } 1885 } else { 1886 ASSERT(hdr_compressed); 1887 ASSERT(!compressed); 1888 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 1889 1890 /* 1891 * If the buf is sharing its data with the hdr, unlink it and 1892 * allocate a new data buffer for the buf. 1893 */ 1894 if (arc_buf_is_shared(buf)) { 1895 ASSERT(ARC_BUF_COMPRESSED(buf)); 1896 1897 /* We need to give the buf it's own b_data */ 1898 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 1899 buf->b_data = 1900 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 1901 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 1902 1903 /* Previously overhead was 0; just add new overhead */ 1904 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 1905 } else if (ARC_BUF_COMPRESSED(buf)) { 1906 /* We need to reallocate the buf's b_data */ 1907 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 1908 buf); 1909 buf->b_data = 1910 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 1911 1912 /* We increased the size of b_data; update overhead */ 1913 ARCSTAT_INCR(arcstat_overhead_size, 1914 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 1915 } 1916 1917 /* 1918 * Regardless of the buf's previous compression settings, it 1919 * should not be compressed at the end of this function. 1920 */ 1921 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1922 1923 /* 1924 * Try copying the data from another buf which already has a 1925 * decompressed version. If that's not possible, it's time to 1926 * bite the bullet and decompress the data from the hdr. 1927 */ 1928 if (arc_buf_try_copy_decompressed_data(buf)) { 1929 /* Skip byteswapping and checksumming (already done) */ 1930 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL); 1931 return (0); 1932 } else { 1933 int error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1934 hdr->b_l1hdr.b_pdata, buf->b_data, 1935 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 1936 1937 /* 1938 * Absent hardware errors or software bugs, this should 1939 * be impossible, but log it anyway so we can debug it. 1940 */ 1941 if (error != 0) { 1942 zfs_dbgmsg( 1943 "hdr %p, compress %d, psize %d, lsize %d", 1944 hdr, HDR_GET_COMPRESS(hdr), 1945 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 1946 return (SET_ERROR(EIO)); 1947 } 1948 } 1949 } 1950 1951 /* Byteswap the buf's data if necessary */ 1952 if (bswap != DMU_BSWAP_NUMFUNCS) { 1953 ASSERT(!HDR_SHARED_DATA(hdr)); 1954 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 1955 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 1956 } 1957 1958 /* Compute the hdr's checksum if necessary */ 1959 arc_cksum_compute(buf); 1960 1961 return (0); 1962 } 1963 1964 int 1965 arc_decompress(arc_buf_t *buf) 1966 { 1967 return (arc_buf_fill(buf, B_FALSE)); 1968 } 1969 1970 /* 1971 * Return the size of the block, b_pdata, that is stored in the arc_buf_hdr_t. 1972 */ 1973 static uint64_t 1974 arc_hdr_size(arc_buf_hdr_t *hdr) 1975 { 1976 uint64_t size; 1977 1978 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1979 HDR_GET_PSIZE(hdr) > 0) { 1980 size = HDR_GET_PSIZE(hdr); 1981 } else { 1982 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1983 size = HDR_GET_LSIZE(hdr); 1984 } 1985 return (size); 1986 } 1987 1988 /* 1989 * Increment the amount of evictable space in the arc_state_t's refcount. 1990 * We account for the space used by the hdr and the arc buf individually 1991 * so that we can add and remove them from the refcount individually. 1992 */ 1993 static void 1994 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 1995 { 1996 arc_buf_contents_t type = arc_buf_type(hdr); 1997 1998 ASSERT(HDR_HAS_L1HDR(hdr)); 1999 2000 if (GHOST_STATE(state)) { 2001 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2002 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2003 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2004 (void) refcount_add_many(&state->arcs_esize[type], 2005 HDR_GET_LSIZE(hdr), hdr); 2006 return; 2007 } 2008 2009 ASSERT(!GHOST_STATE(state)); 2010 if (hdr->b_l1hdr.b_pdata != NULL) { 2011 (void) refcount_add_many(&state->arcs_esize[type], 2012 arc_hdr_size(hdr), hdr); 2013 } 2014 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2015 buf = buf->b_next) { 2016 if (arc_buf_is_shared(buf)) 2017 continue; 2018 (void) refcount_add_many(&state->arcs_esize[type], 2019 arc_buf_size(buf), buf); 2020 } 2021 } 2022 2023 /* 2024 * Decrement the amount of evictable space in the arc_state_t's refcount. 2025 * We account for the space used by the hdr and the arc buf individually 2026 * so that we can add and remove them from the refcount individually. 2027 */ 2028 static void 2029 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2030 { 2031 arc_buf_contents_t type = arc_buf_type(hdr); 2032 2033 ASSERT(HDR_HAS_L1HDR(hdr)); 2034 2035 if (GHOST_STATE(state)) { 2036 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2037 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2038 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2039 (void) refcount_remove_many(&state->arcs_esize[type], 2040 HDR_GET_LSIZE(hdr), hdr); 2041 return; 2042 } 2043 2044 ASSERT(!GHOST_STATE(state)); 2045 if (hdr->b_l1hdr.b_pdata != NULL) { 2046 (void) refcount_remove_many(&state->arcs_esize[type], 2047 arc_hdr_size(hdr), hdr); 2048 } 2049 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2050 buf = buf->b_next) { 2051 if (arc_buf_is_shared(buf)) 2052 continue; 2053 (void) refcount_remove_many(&state->arcs_esize[type], 2054 arc_buf_size(buf), buf); 2055 } 2056 } 2057 2058 /* 2059 * Add a reference to this hdr indicating that someone is actively 2060 * referencing that memory. When the refcount transitions from 0 to 1, 2061 * we remove it from the respective arc_state_t list to indicate that 2062 * it is not evictable. 2063 */ 2064 static void 2065 add_reference(arc_buf_hdr_t *hdr, void *tag) 2066 { 2067 ASSERT(HDR_HAS_L1HDR(hdr)); 2068 if (!MUTEX_HELD(HDR_LOCK(hdr))) { 2069 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2070 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2071 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2072 } 2073 2074 arc_state_t *state = hdr->b_l1hdr.b_state; 2075 2076 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2077 (state != arc_anon)) { 2078 /* We don't use the L2-only state list. */ 2079 if (state != arc_l2c_only) { 2080 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], 2081 hdr); 2082 arc_evictable_space_decrement(hdr, state); 2083 } 2084 /* remove the prefetch flag if we get a reference */ 2085 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2086 } 2087 } 2088 2089 /* 2090 * Remove a reference from this hdr. When the reference transitions from 2091 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2092 * list making it eligible for eviction. 2093 */ 2094 static int 2095 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2096 { 2097 int cnt; 2098 arc_state_t *state = hdr->b_l1hdr.b_state; 2099 2100 ASSERT(HDR_HAS_L1HDR(hdr)); 2101 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2102 ASSERT(!GHOST_STATE(state)); 2103 2104 /* 2105 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2106 * check to prevent usage of the arc_l2c_only list. 2107 */ 2108 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2109 (state != arc_anon)) { 2110 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr); 2111 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2112 arc_evictable_space_increment(hdr, state); 2113 } 2114 return (cnt); 2115 } 2116 2117 /* 2118 * Move the supplied buffer to the indicated state. The hash lock 2119 * for the buffer must be held by the caller. 2120 */ 2121 static void 2122 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2123 kmutex_t *hash_lock) 2124 { 2125 arc_state_t *old_state; 2126 int64_t refcnt; 2127 uint32_t bufcnt; 2128 boolean_t update_old, update_new; 2129 arc_buf_contents_t buftype = arc_buf_type(hdr); 2130 2131 /* 2132 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2133 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2134 * L1 hdr doesn't always exist when we change state to arc_anon before 2135 * destroying a header, in which case reallocating to add the L1 hdr is 2136 * pointless. 2137 */ 2138 if (HDR_HAS_L1HDR(hdr)) { 2139 old_state = hdr->b_l1hdr.b_state; 2140 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt); 2141 bufcnt = hdr->b_l1hdr.b_bufcnt; 2142 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pdata != NULL); 2143 } else { 2144 old_state = arc_l2c_only; 2145 refcnt = 0; 2146 bufcnt = 0; 2147 update_old = B_FALSE; 2148 } 2149 update_new = update_old; 2150 2151 ASSERT(MUTEX_HELD(hash_lock)); 2152 ASSERT3P(new_state, !=, old_state); 2153 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2154 ASSERT(old_state != arc_anon || bufcnt <= 1); 2155 2156 /* 2157 * If this buffer is evictable, transfer it from the 2158 * old state list to the new state list. 2159 */ 2160 if (refcnt == 0) { 2161 if (old_state != arc_anon && old_state != arc_l2c_only) { 2162 ASSERT(HDR_HAS_L1HDR(hdr)); 2163 multilist_remove(&old_state->arcs_list[buftype], hdr); 2164 2165 if (GHOST_STATE(old_state)) { 2166 ASSERT0(bufcnt); 2167 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2168 update_old = B_TRUE; 2169 } 2170 arc_evictable_space_decrement(hdr, old_state); 2171 } 2172 if (new_state != arc_anon && new_state != arc_l2c_only) { 2173 2174 /* 2175 * An L1 header always exists here, since if we're 2176 * moving to some L1-cached state (i.e. not l2c_only or 2177 * anonymous), we realloc the header to add an L1hdr 2178 * beforehand. 2179 */ 2180 ASSERT(HDR_HAS_L1HDR(hdr)); 2181 multilist_insert(&new_state->arcs_list[buftype], hdr); 2182 2183 if (GHOST_STATE(new_state)) { 2184 ASSERT0(bufcnt); 2185 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2186 update_new = B_TRUE; 2187 } 2188 arc_evictable_space_increment(hdr, new_state); 2189 } 2190 } 2191 2192 ASSERT(!HDR_EMPTY(hdr)); 2193 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2194 buf_hash_remove(hdr); 2195 2196 /* adjust state sizes (ignore arc_l2c_only) */ 2197 2198 if (update_new && new_state != arc_l2c_only) { 2199 ASSERT(HDR_HAS_L1HDR(hdr)); 2200 if (GHOST_STATE(new_state)) { 2201 ASSERT0(bufcnt); 2202 2203 /* 2204 * When moving a header to a ghost state, we first 2205 * remove all arc buffers. Thus, we'll have a 2206 * bufcnt of zero, and no arc buffer to use for 2207 * the reference. As a result, we use the arc 2208 * header pointer for the reference. 2209 */ 2210 (void) refcount_add_many(&new_state->arcs_size, 2211 HDR_GET_LSIZE(hdr), hdr); 2212 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2213 } else { 2214 uint32_t buffers = 0; 2215 2216 /* 2217 * Each individual buffer holds a unique reference, 2218 * thus we must remove each of these references one 2219 * at a time. 2220 */ 2221 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2222 buf = buf->b_next) { 2223 ASSERT3U(bufcnt, !=, 0); 2224 buffers++; 2225 2226 /* 2227 * When the arc_buf_t is sharing the data 2228 * block with the hdr, the owner of the 2229 * reference belongs to the hdr. Only 2230 * add to the refcount if the arc_buf_t is 2231 * not shared. 2232 */ 2233 if (arc_buf_is_shared(buf)) 2234 continue; 2235 2236 (void) refcount_add_many(&new_state->arcs_size, 2237 arc_buf_size(buf), buf); 2238 } 2239 ASSERT3U(bufcnt, ==, buffers); 2240 2241 if (hdr->b_l1hdr.b_pdata != NULL) { 2242 (void) refcount_add_many(&new_state->arcs_size, 2243 arc_hdr_size(hdr), hdr); 2244 } else { 2245 ASSERT(GHOST_STATE(old_state)); 2246 } 2247 } 2248 } 2249 2250 if (update_old && old_state != arc_l2c_only) { 2251 ASSERT(HDR_HAS_L1HDR(hdr)); 2252 if (GHOST_STATE(old_state)) { 2253 ASSERT0(bufcnt); 2254 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2255 2256 /* 2257 * When moving a header off of a ghost state, 2258 * the header will not contain any arc buffers. 2259 * We use the arc header pointer for the reference 2260 * which is exactly what we did when we put the 2261 * header on the ghost state. 2262 */ 2263 2264 (void) refcount_remove_many(&old_state->arcs_size, 2265 HDR_GET_LSIZE(hdr), hdr); 2266 } else { 2267 uint32_t buffers = 0; 2268 2269 /* 2270 * Each individual buffer holds a unique reference, 2271 * thus we must remove each of these references one 2272 * at a time. 2273 */ 2274 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2275 buf = buf->b_next) { 2276 ASSERT3U(bufcnt, !=, 0); 2277 buffers++; 2278 2279 /* 2280 * When the arc_buf_t is sharing the data 2281 * block with the hdr, the owner of the 2282 * reference belongs to the hdr. Only 2283 * add to the refcount if the arc_buf_t is 2284 * not shared. 2285 */ 2286 if (arc_buf_is_shared(buf)) 2287 continue; 2288 2289 (void) refcount_remove_many( 2290 &old_state->arcs_size, arc_buf_size(buf), 2291 buf); 2292 } 2293 ASSERT3U(bufcnt, ==, buffers); 2294 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 2295 (void) refcount_remove_many( 2296 &old_state->arcs_size, arc_hdr_size(hdr), hdr); 2297 } 2298 } 2299 2300 if (HDR_HAS_L1HDR(hdr)) 2301 hdr->b_l1hdr.b_state = new_state; 2302 2303 /* 2304 * L2 headers should never be on the L2 state list since they don't 2305 * have L1 headers allocated. 2306 */ 2307 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2308 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2309 } 2310 2311 void 2312 arc_space_consume(uint64_t space, arc_space_type_t type) 2313 { 2314 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2315 2316 switch (type) { 2317 case ARC_SPACE_DATA: 2318 ARCSTAT_INCR(arcstat_data_size, space); 2319 break; 2320 case ARC_SPACE_META: 2321 ARCSTAT_INCR(arcstat_metadata_size, space); 2322 break; 2323 case ARC_SPACE_OTHER: 2324 ARCSTAT_INCR(arcstat_other_size, space); 2325 break; 2326 case ARC_SPACE_HDRS: 2327 ARCSTAT_INCR(arcstat_hdr_size, space); 2328 break; 2329 case ARC_SPACE_L2HDRS: 2330 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 2331 break; 2332 } 2333 2334 if (type != ARC_SPACE_DATA) 2335 ARCSTAT_INCR(arcstat_meta_used, space); 2336 2337 atomic_add_64(&arc_size, space); 2338 } 2339 2340 void 2341 arc_space_return(uint64_t space, arc_space_type_t type) 2342 { 2343 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2344 2345 switch (type) { 2346 case ARC_SPACE_DATA: 2347 ARCSTAT_INCR(arcstat_data_size, -space); 2348 break; 2349 case ARC_SPACE_META: 2350 ARCSTAT_INCR(arcstat_metadata_size, -space); 2351 break; 2352 case ARC_SPACE_OTHER: 2353 ARCSTAT_INCR(arcstat_other_size, -space); 2354 break; 2355 case ARC_SPACE_HDRS: 2356 ARCSTAT_INCR(arcstat_hdr_size, -space); 2357 break; 2358 case ARC_SPACE_L2HDRS: 2359 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 2360 break; 2361 } 2362 2363 if (type != ARC_SPACE_DATA) { 2364 ASSERT(arc_meta_used >= space); 2365 if (arc_meta_max < arc_meta_used) 2366 arc_meta_max = arc_meta_used; 2367 ARCSTAT_INCR(arcstat_meta_used, -space); 2368 } 2369 2370 ASSERT(arc_size >= space); 2371 atomic_add_64(&arc_size, -space); 2372 } 2373 2374 /* 2375 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2376 * with the hdr's b_pdata. 2377 */ 2378 static boolean_t 2379 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2380 { 2381 /* 2382 * The criteria for sharing a hdr's data are: 2383 * 1. the hdr's compression matches the buf's compression 2384 * 2. the hdr doesn't need to be byteswapped 2385 * 3. the hdr isn't already being shared 2386 * 4. the buf is either compressed or it is the last buf in the hdr list 2387 * 2388 * Criterion #4 maintains the invariant that shared uncompressed 2389 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2390 * might ask, "if a compressed buf is allocated first, won't that be the 2391 * last thing in the list?", but in that case it's impossible to create 2392 * a shared uncompressed buf anyway (because the hdr must be compressed 2393 * to have the compressed buf). You might also think that #3 is 2394 * sufficient to make this guarantee, however it's possible 2395 * (specifically in the rare L2ARC write race mentioned in 2396 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2397 * is sharable, but wasn't at the time of its allocation. Rather than 2398 * allow a new shared uncompressed buf to be created and then shuffle 2399 * the list around to make it the last element, this simply disallows 2400 * sharing if the new buf isn't the first to be added. 2401 */ 2402 ASSERT3P(buf->b_hdr, ==, hdr); 2403 boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF; 2404 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2405 return (buf_compressed == hdr_compressed && 2406 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2407 !HDR_SHARED_DATA(hdr) && 2408 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2409 } 2410 2411 /* 2412 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2413 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2414 * copy was made successfully, or an error code otherwise. 2415 */ 2416 static int 2417 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed, 2418 boolean_t fill, arc_buf_t **ret) 2419 { 2420 arc_buf_t *buf; 2421 2422 ASSERT(HDR_HAS_L1HDR(hdr)); 2423 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2424 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2425 hdr->b_type == ARC_BUFC_METADATA); 2426 ASSERT3P(ret, !=, NULL); 2427 ASSERT3P(*ret, ==, NULL); 2428 2429 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2430 buf->b_hdr = hdr; 2431 buf->b_data = NULL; 2432 buf->b_next = hdr->b_l1hdr.b_buf; 2433 buf->b_flags = 0; 2434 2435 add_reference(hdr, tag); 2436 2437 /* 2438 * We're about to change the hdr's b_flags. We must either 2439 * hold the hash_lock or be undiscoverable. 2440 */ 2441 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2442 2443 /* 2444 * Only honor requests for compressed bufs if the hdr is actually 2445 * compressed. 2446 */ 2447 if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) 2448 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2449 2450 /* 2451 * If the hdr's data can be shared then we share the data buffer and 2452 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2453 * sharing it's b_pdata with the arc_buf_t. Otherwise, we allocate a new 2454 * buffer to store the buf's data. 2455 * 2456 * There is one additional restriction here because we're sharing 2457 * hdr -> buf instead of the usual buf -> hdr: the hdr can't be actively 2458 * involved in an L2ARC write, because if this buf is used by an 2459 * arc_write() then the hdr's data buffer will be released when the 2460 * write completes, even though the L2ARC write might still be using it. 2461 */ 2462 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr); 2463 2464 /* Set up b_data and sharing */ 2465 if (can_share) { 2466 buf->b_data = hdr->b_l1hdr.b_pdata; 2467 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2468 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2469 } else { 2470 buf->b_data = 2471 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2472 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2473 } 2474 VERIFY3P(buf->b_data, !=, NULL); 2475 2476 hdr->b_l1hdr.b_buf = buf; 2477 hdr->b_l1hdr.b_bufcnt += 1; 2478 2479 /* 2480 * If the user wants the data from the hdr, we need to either copy or 2481 * decompress the data. 2482 */ 2483 if (fill) { 2484 return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0)); 2485 } 2486 2487 return (0); 2488 } 2489 2490 static char *arc_onloan_tag = "onloan"; 2491 2492 static inline void 2493 arc_loaned_bytes_update(int64_t delta) 2494 { 2495 atomic_add_64(&arc_loaned_bytes, delta); 2496 2497 /* assert that it did not wrap around */ 2498 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2499 } 2500 2501 /* 2502 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2503 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2504 * buffers must be returned to the arc before they can be used by the DMU or 2505 * freed. 2506 */ 2507 arc_buf_t * 2508 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2509 { 2510 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2511 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2512 2513 arc_loaned_bytes_update(size); 2514 2515 return (buf); 2516 } 2517 2518 arc_buf_t * 2519 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2520 enum zio_compress compression_type) 2521 { 2522 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2523 psize, lsize, compression_type); 2524 2525 arc_loaned_bytes_update(psize); 2526 2527 return (buf); 2528 } 2529 2530 2531 /* 2532 * Return a loaned arc buffer to the arc. 2533 */ 2534 void 2535 arc_return_buf(arc_buf_t *buf, void *tag) 2536 { 2537 arc_buf_hdr_t *hdr = buf->b_hdr; 2538 2539 ASSERT3P(buf->b_data, !=, NULL); 2540 ASSERT(HDR_HAS_L1HDR(hdr)); 2541 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2542 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2543 2544 arc_loaned_bytes_update(-arc_buf_size(buf)); 2545 } 2546 2547 /* Detach an arc_buf from a dbuf (tag) */ 2548 void 2549 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2550 { 2551 arc_buf_hdr_t *hdr = buf->b_hdr; 2552 2553 ASSERT3P(buf->b_data, !=, NULL); 2554 ASSERT(HDR_HAS_L1HDR(hdr)); 2555 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2556 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2557 2558 arc_loaned_bytes_update(arc_buf_size(buf)); 2559 } 2560 2561 static void 2562 l2arc_free_data_on_write(void *data, size_t size, arc_buf_contents_t type) 2563 { 2564 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2565 2566 df->l2df_data = data; 2567 df->l2df_size = size; 2568 df->l2df_type = type; 2569 mutex_enter(&l2arc_free_on_write_mtx); 2570 list_insert_head(l2arc_free_on_write, df); 2571 mutex_exit(&l2arc_free_on_write_mtx); 2572 } 2573 2574 static void 2575 arc_hdr_free_on_write(arc_buf_hdr_t *hdr) 2576 { 2577 arc_state_t *state = hdr->b_l1hdr.b_state; 2578 arc_buf_contents_t type = arc_buf_type(hdr); 2579 uint64_t size = arc_hdr_size(hdr); 2580 2581 /* protected by hash lock, if in the hash table */ 2582 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2583 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2584 ASSERT(state != arc_anon && state != arc_l2c_only); 2585 2586 (void) refcount_remove_many(&state->arcs_esize[type], 2587 size, hdr); 2588 } 2589 (void) refcount_remove_many(&state->arcs_size, size, hdr); 2590 2591 l2arc_free_data_on_write(hdr->b_l1hdr.b_pdata, size, type); 2592 } 2593 2594 /* 2595 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2596 * data buffer, we transfer the refcount ownership to the hdr and update 2597 * the appropriate kstats. 2598 */ 2599 static void 2600 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2601 { 2602 arc_state_t *state = hdr->b_l1hdr.b_state; 2603 2604 ASSERT(arc_can_share(hdr, buf)); 2605 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2606 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2607 2608 /* 2609 * Start sharing the data buffer. We transfer the 2610 * refcount ownership to the hdr since it always owns 2611 * the refcount whenever an arc_buf_t is shared. 2612 */ 2613 refcount_transfer_ownership(&state->arcs_size, buf, hdr); 2614 hdr->b_l1hdr.b_pdata = buf->b_data; 2615 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2616 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2617 2618 /* 2619 * Since we've transferred ownership to the hdr we need 2620 * to increment its compressed and uncompressed kstats and 2621 * decrement the overhead size. 2622 */ 2623 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2624 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2625 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 2626 } 2627 2628 static void 2629 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2630 { 2631 arc_state_t *state = hdr->b_l1hdr.b_state; 2632 2633 ASSERT(arc_buf_is_shared(buf)); 2634 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 2635 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2636 2637 /* 2638 * We are no longer sharing this buffer so we need 2639 * to transfer its ownership to the rightful owner. 2640 */ 2641 refcount_transfer_ownership(&state->arcs_size, hdr, buf); 2642 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2643 hdr->b_l1hdr.b_pdata = NULL; 2644 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2645 2646 /* 2647 * Since the buffer is no longer shared between 2648 * the arc buf and the hdr, count it as overhead. 2649 */ 2650 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2651 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2652 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2653 } 2654 2655 /* 2656 * Remove an arc_buf_t from the hdr's buf list and return the last 2657 * arc_buf_t on the list. If no buffers remain on the list then return 2658 * NULL. 2659 */ 2660 static arc_buf_t * 2661 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2662 { 2663 ASSERT(HDR_HAS_L1HDR(hdr)); 2664 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2665 2666 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 2667 arc_buf_t *lastbuf = NULL; 2668 2669 /* 2670 * Remove the buf from the hdr list and locate the last 2671 * remaining buffer on the list. 2672 */ 2673 while (*bufp != NULL) { 2674 if (*bufp == buf) 2675 *bufp = buf->b_next; 2676 2677 /* 2678 * If we've removed a buffer in the middle of 2679 * the list then update the lastbuf and update 2680 * bufp. 2681 */ 2682 if (*bufp != NULL) { 2683 lastbuf = *bufp; 2684 bufp = &(*bufp)->b_next; 2685 } 2686 } 2687 buf->b_next = NULL; 2688 ASSERT3P(lastbuf, !=, buf); 2689 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 2690 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 2691 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 2692 2693 return (lastbuf); 2694 } 2695 2696 /* 2697 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's 2698 * list and free it. 2699 */ 2700 static void 2701 arc_buf_destroy_impl(arc_buf_t *buf) 2702 { 2703 arc_buf_hdr_t *hdr = buf->b_hdr; 2704 2705 /* 2706 * Free up the data associated with the buf but only if we're not 2707 * sharing this with the hdr. If we are sharing it with the hdr, the 2708 * hdr is responsible for doing the free. 2709 */ 2710 if (buf->b_data != NULL) { 2711 /* 2712 * We're about to change the hdr's b_flags. We must either 2713 * hold the hash_lock or be undiscoverable. 2714 */ 2715 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2716 2717 arc_cksum_verify(buf); 2718 arc_buf_unwatch(buf); 2719 2720 if (arc_buf_is_shared(buf)) { 2721 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2722 } else { 2723 uint64_t size = arc_buf_size(buf); 2724 arc_free_data_buf(hdr, buf->b_data, size, buf); 2725 ARCSTAT_INCR(arcstat_overhead_size, -size); 2726 } 2727 buf->b_data = NULL; 2728 2729 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 2730 hdr->b_l1hdr.b_bufcnt -= 1; 2731 } 2732 2733 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 2734 2735 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 2736 /* 2737 * If the current arc_buf_t is sharing its data buffer with the 2738 * hdr, then reassign the hdr's b_pdata to share it with the new 2739 * buffer at the end of the list. The shared buffer is always 2740 * the last one on the hdr's buffer list. 2741 * 2742 * There is an equivalent case for compressed bufs, but since 2743 * they aren't guaranteed to be the last buf in the list and 2744 * that is an exceedingly rare case, we just allow that space be 2745 * wasted temporarily. 2746 */ 2747 if (lastbuf != NULL) { 2748 /* Only one buf can be shared at once */ 2749 VERIFY(!arc_buf_is_shared(lastbuf)); 2750 /* hdr is uncompressed so can't have compressed buf */ 2751 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 2752 2753 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 2754 arc_hdr_free_pdata(hdr); 2755 2756 /* 2757 * We must setup a new shared block between the 2758 * last buffer and the hdr. The data would have 2759 * been allocated by the arc buf so we need to transfer 2760 * ownership to the hdr since it's now being shared. 2761 */ 2762 arc_share_buf(hdr, lastbuf); 2763 } 2764 } else if (HDR_SHARED_DATA(hdr)) { 2765 /* 2766 * Uncompressed shared buffers are always at the end 2767 * of the list. Compressed buffers don't have the 2768 * same requirements. This makes it hard to 2769 * simply assert that the lastbuf is shared so 2770 * we rely on the hdr's compression flags to determine 2771 * if we have a compressed, shared buffer. 2772 */ 2773 ASSERT3P(lastbuf, !=, NULL); 2774 ASSERT(arc_buf_is_shared(lastbuf) || 2775 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF); 2776 } 2777 2778 /* 2779 * Free the checksum if we're removing the last uncompressed buf from 2780 * this hdr. 2781 */ 2782 if (!arc_hdr_has_uncompressed_buf(hdr)) { 2783 arc_cksum_free(hdr); 2784 } 2785 2786 /* clean up the buf */ 2787 buf->b_hdr = NULL; 2788 kmem_cache_free(buf_cache, buf); 2789 } 2790 2791 static void 2792 arc_hdr_alloc_pdata(arc_buf_hdr_t *hdr) 2793 { 2794 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2795 ASSERT(HDR_HAS_L1HDR(hdr)); 2796 ASSERT(!HDR_SHARED_DATA(hdr)); 2797 2798 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2799 hdr->b_l1hdr.b_pdata = arc_get_data_buf(hdr, arc_hdr_size(hdr), hdr); 2800 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 2801 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 2802 2803 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2804 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2805 } 2806 2807 static void 2808 arc_hdr_free_pdata(arc_buf_hdr_t *hdr) 2809 { 2810 ASSERT(HDR_HAS_L1HDR(hdr)); 2811 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 2812 2813 /* 2814 * If the hdr is currently being written to the l2arc then 2815 * we defer freeing the data by adding it to the l2arc_free_on_write 2816 * list. The l2arc will free the data once it's finished 2817 * writing it to the l2arc device. 2818 */ 2819 if (HDR_L2_WRITING(hdr)) { 2820 arc_hdr_free_on_write(hdr); 2821 ARCSTAT_BUMP(arcstat_l2_free_on_write); 2822 } else { 2823 arc_free_data_buf(hdr, hdr->b_l1hdr.b_pdata, 2824 arc_hdr_size(hdr), hdr); 2825 } 2826 hdr->b_l1hdr.b_pdata = NULL; 2827 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 2828 2829 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2830 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2831 } 2832 2833 static arc_buf_hdr_t * 2834 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 2835 enum zio_compress compression_type, arc_buf_contents_t type) 2836 { 2837 arc_buf_hdr_t *hdr; 2838 2839 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 2840 2841 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 2842 ASSERT(HDR_EMPTY(hdr)); 2843 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 2844 ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL); 2845 HDR_SET_PSIZE(hdr, psize); 2846 HDR_SET_LSIZE(hdr, lsize); 2847 hdr->b_spa = spa; 2848 hdr->b_type = type; 2849 hdr->b_flags = 0; 2850 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 2851 arc_hdr_set_compress(hdr, compression_type); 2852 2853 hdr->b_l1hdr.b_state = arc_anon; 2854 hdr->b_l1hdr.b_arc_access = 0; 2855 hdr->b_l1hdr.b_bufcnt = 0; 2856 hdr->b_l1hdr.b_buf = NULL; 2857 2858 /* 2859 * Allocate the hdr's buffer. This will contain either 2860 * the compressed or uncompressed data depending on the block 2861 * it references and compressed arc enablement. 2862 */ 2863 arc_hdr_alloc_pdata(hdr); 2864 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2865 2866 return (hdr); 2867 } 2868 2869 /* 2870 * Transition between the two allocation states for the arc_buf_hdr struct. 2871 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 2872 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 2873 * version is used when a cache buffer is only in the L2ARC in order to reduce 2874 * memory usage. 2875 */ 2876 static arc_buf_hdr_t * 2877 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 2878 { 2879 ASSERT(HDR_HAS_L2HDR(hdr)); 2880 2881 arc_buf_hdr_t *nhdr; 2882 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 2883 2884 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 2885 (old == hdr_l2only_cache && new == hdr_full_cache)); 2886 2887 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 2888 2889 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 2890 buf_hash_remove(hdr); 2891 2892 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 2893 2894 if (new == hdr_full_cache) { 2895 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 2896 /* 2897 * arc_access and arc_change_state need to be aware that a 2898 * header has just come out of L2ARC, so we set its state to 2899 * l2c_only even though it's about to change. 2900 */ 2901 nhdr->b_l1hdr.b_state = arc_l2c_only; 2902 2903 /* Verify previous threads set to NULL before freeing */ 2904 ASSERT3P(nhdr->b_l1hdr.b_pdata, ==, NULL); 2905 } else { 2906 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2907 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2908 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 2909 2910 /* 2911 * If we've reached here, We must have been called from 2912 * arc_evict_hdr(), as such we should have already been 2913 * removed from any ghost list we were previously on 2914 * (which protects us from racing with arc_evict_state), 2915 * thus no locking is needed during this check. 2916 */ 2917 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 2918 2919 /* 2920 * A buffer must not be moved into the arc_l2c_only 2921 * state if it's not finished being written out to the 2922 * l2arc device. Otherwise, the b_l1hdr.b_pdata field 2923 * might try to be accessed, even though it was removed. 2924 */ 2925 VERIFY(!HDR_L2_WRITING(hdr)); 2926 VERIFY3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2927 2928 #ifdef ZFS_DEBUG 2929 if (hdr->b_l1hdr.b_thawed != NULL) { 2930 kmem_free(hdr->b_l1hdr.b_thawed, 1); 2931 hdr->b_l1hdr.b_thawed = NULL; 2932 } 2933 #endif 2934 2935 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 2936 } 2937 /* 2938 * The header has been reallocated so we need to re-insert it into any 2939 * lists it was on. 2940 */ 2941 (void) buf_hash_insert(nhdr, NULL); 2942 2943 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 2944 2945 mutex_enter(&dev->l2ad_mtx); 2946 2947 /* 2948 * We must place the realloc'ed header back into the list at 2949 * the same spot. Otherwise, if it's placed earlier in the list, 2950 * l2arc_write_buffers() could find it during the function's 2951 * write phase, and try to write it out to the l2arc. 2952 */ 2953 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 2954 list_remove(&dev->l2ad_buflist, hdr); 2955 2956 mutex_exit(&dev->l2ad_mtx); 2957 2958 /* 2959 * Since we're using the pointer address as the tag when 2960 * incrementing and decrementing the l2ad_alloc refcount, we 2961 * must remove the old pointer (that we're about to destroy) and 2962 * add the new pointer to the refcount. Otherwise we'd remove 2963 * the wrong pointer address when calling arc_hdr_destroy() later. 2964 */ 2965 2966 (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 2967 (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr); 2968 2969 buf_discard_identity(hdr); 2970 kmem_cache_free(old, hdr); 2971 2972 return (nhdr); 2973 } 2974 2975 /* 2976 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 2977 * The buf is returned thawed since we expect the consumer to modify it. 2978 */ 2979 arc_buf_t * 2980 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 2981 { 2982 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 2983 ZIO_COMPRESS_OFF, type); 2984 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr))); 2985 2986 arc_buf_t *buf = NULL; 2987 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf)); 2988 arc_buf_thaw(buf); 2989 2990 return (buf); 2991 } 2992 2993 /* 2994 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 2995 * for bufs containing metadata. 2996 */ 2997 arc_buf_t * 2998 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 2999 enum zio_compress compression_type) 3000 { 3001 ASSERT3U(lsize, >, 0); 3002 ASSERT3U(lsize, >=, psize); 3003 ASSERT(compression_type > ZIO_COMPRESS_OFF); 3004 ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS); 3005 3006 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3007 compression_type, ARC_BUFC_DATA); 3008 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr))); 3009 3010 arc_buf_t *buf = NULL; 3011 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf)); 3012 arc_buf_thaw(buf); 3013 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3014 3015 return (buf); 3016 } 3017 3018 static void 3019 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3020 { 3021 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3022 l2arc_dev_t *dev = l2hdr->b_dev; 3023 uint64_t asize = arc_hdr_size(hdr); 3024 3025 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3026 ASSERT(HDR_HAS_L2HDR(hdr)); 3027 3028 list_remove(&dev->l2ad_buflist, hdr); 3029 3030 ARCSTAT_INCR(arcstat_l2_asize, -asize); 3031 ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr)); 3032 3033 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3034 3035 (void) refcount_remove_many(&dev->l2ad_alloc, asize, hdr); 3036 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3037 } 3038 3039 static void 3040 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3041 { 3042 if (HDR_HAS_L1HDR(hdr)) { 3043 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3044 hdr->b_l1hdr.b_bufcnt > 0); 3045 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3046 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3047 } 3048 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3049 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3050 3051 if (!HDR_EMPTY(hdr)) 3052 buf_discard_identity(hdr); 3053 3054 if (HDR_HAS_L2HDR(hdr)) { 3055 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3056 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3057 3058 if (!buflist_held) 3059 mutex_enter(&dev->l2ad_mtx); 3060 3061 /* 3062 * Even though we checked this conditional above, we 3063 * need to check this again now that we have the 3064 * l2ad_mtx. This is because we could be racing with 3065 * another thread calling l2arc_evict() which might have 3066 * destroyed this header's L2 portion as we were waiting 3067 * to acquire the l2ad_mtx. If that happens, we don't 3068 * want to re-destroy the header's L2 portion. 3069 */ 3070 if (HDR_HAS_L2HDR(hdr)) 3071 arc_hdr_l2hdr_destroy(hdr); 3072 3073 if (!buflist_held) 3074 mutex_exit(&dev->l2ad_mtx); 3075 } 3076 3077 if (HDR_HAS_L1HDR(hdr)) { 3078 arc_cksum_free(hdr); 3079 3080 while (hdr->b_l1hdr.b_buf != NULL) 3081 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3082 3083 #ifdef ZFS_DEBUG 3084 if (hdr->b_l1hdr.b_thawed != NULL) { 3085 kmem_free(hdr->b_l1hdr.b_thawed, 1); 3086 hdr->b_l1hdr.b_thawed = NULL; 3087 } 3088 #endif 3089 3090 if (hdr->b_l1hdr.b_pdata != NULL) { 3091 arc_hdr_free_pdata(hdr); 3092 } 3093 } 3094 3095 ASSERT3P(hdr->b_hash_next, ==, NULL); 3096 if (HDR_HAS_L1HDR(hdr)) { 3097 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3098 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3099 kmem_cache_free(hdr_full_cache, hdr); 3100 } else { 3101 kmem_cache_free(hdr_l2only_cache, hdr); 3102 } 3103 } 3104 3105 void 3106 arc_buf_destroy(arc_buf_t *buf, void* tag) 3107 { 3108 arc_buf_hdr_t *hdr = buf->b_hdr; 3109 kmutex_t *hash_lock = HDR_LOCK(hdr); 3110 3111 if (hdr->b_l1hdr.b_state == arc_anon) { 3112 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3113 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3114 VERIFY0(remove_reference(hdr, NULL, tag)); 3115 arc_hdr_destroy(hdr); 3116 return; 3117 } 3118 3119 mutex_enter(hash_lock); 3120 ASSERT3P(hdr, ==, buf->b_hdr); 3121 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3122 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3123 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3124 ASSERT3P(buf->b_data, !=, NULL); 3125 3126 (void) remove_reference(hdr, hash_lock, tag); 3127 arc_buf_destroy_impl(buf); 3128 mutex_exit(hash_lock); 3129 } 3130 3131 /* 3132 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3133 * state of the header is dependent on it's state prior to entering this 3134 * function. The following transitions are possible: 3135 * 3136 * - arc_mru -> arc_mru_ghost 3137 * - arc_mfu -> arc_mfu_ghost 3138 * - arc_mru_ghost -> arc_l2c_only 3139 * - arc_mru_ghost -> deleted 3140 * - arc_mfu_ghost -> arc_l2c_only 3141 * - arc_mfu_ghost -> deleted 3142 */ 3143 static int64_t 3144 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3145 { 3146 arc_state_t *evicted_state, *state; 3147 int64_t bytes_evicted = 0; 3148 3149 ASSERT(MUTEX_HELD(hash_lock)); 3150 ASSERT(HDR_HAS_L1HDR(hdr)); 3151 3152 state = hdr->b_l1hdr.b_state; 3153 if (GHOST_STATE(state)) { 3154 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3155 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3156 3157 /* 3158 * l2arc_write_buffers() relies on a header's L1 portion 3159 * (i.e. its b_pdata field) during its write phase. 3160 * Thus, we cannot push a header onto the arc_l2c_only 3161 * state (removing it's L1 piece) until the header is 3162 * done being written to the l2arc. 3163 */ 3164 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3165 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3166 return (bytes_evicted); 3167 } 3168 3169 ARCSTAT_BUMP(arcstat_deleted); 3170 bytes_evicted += HDR_GET_LSIZE(hdr); 3171 3172 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3173 3174 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 3175 if (HDR_HAS_L2HDR(hdr)) { 3176 /* 3177 * This buffer is cached on the 2nd Level ARC; 3178 * don't destroy the header. 3179 */ 3180 arc_change_state(arc_l2c_only, hdr, hash_lock); 3181 /* 3182 * dropping from L1+L2 cached to L2-only, 3183 * realloc to remove the L1 header. 3184 */ 3185 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3186 hdr_l2only_cache); 3187 } else { 3188 arc_change_state(arc_anon, hdr, hash_lock); 3189 arc_hdr_destroy(hdr); 3190 } 3191 return (bytes_evicted); 3192 } 3193 3194 ASSERT(state == arc_mru || state == arc_mfu); 3195 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3196 3197 /* prefetch buffers have a minimum lifespan */ 3198 if (HDR_IO_IN_PROGRESS(hdr) || 3199 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3200 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3201 arc_min_prefetch_lifespan)) { 3202 ARCSTAT_BUMP(arcstat_evict_skip); 3203 return (bytes_evicted); 3204 } 3205 3206 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 3207 while (hdr->b_l1hdr.b_buf) { 3208 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3209 if (!mutex_tryenter(&buf->b_evict_lock)) { 3210 ARCSTAT_BUMP(arcstat_mutex_miss); 3211 break; 3212 } 3213 if (buf->b_data != NULL) 3214 bytes_evicted += HDR_GET_LSIZE(hdr); 3215 mutex_exit(&buf->b_evict_lock); 3216 arc_buf_destroy_impl(buf); 3217 } 3218 3219 if (HDR_HAS_L2HDR(hdr)) { 3220 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3221 } else { 3222 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3223 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3224 HDR_GET_LSIZE(hdr)); 3225 } else { 3226 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3227 HDR_GET_LSIZE(hdr)); 3228 } 3229 } 3230 3231 if (hdr->b_l1hdr.b_bufcnt == 0) { 3232 arc_cksum_free(hdr); 3233 3234 bytes_evicted += arc_hdr_size(hdr); 3235 3236 /* 3237 * If this hdr is being evicted and has a compressed 3238 * buffer then we discard it here before we change states. 3239 * This ensures that the accounting is updated correctly 3240 * in arc_free_data_buf(). 3241 */ 3242 arc_hdr_free_pdata(hdr); 3243 3244 arc_change_state(evicted_state, hdr, hash_lock); 3245 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3246 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 3247 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3248 } 3249 3250 return (bytes_evicted); 3251 } 3252 3253 static uint64_t 3254 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 3255 uint64_t spa, int64_t bytes) 3256 { 3257 multilist_sublist_t *mls; 3258 uint64_t bytes_evicted = 0; 3259 arc_buf_hdr_t *hdr; 3260 kmutex_t *hash_lock; 3261 int evict_count = 0; 3262 3263 ASSERT3P(marker, !=, NULL); 3264 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3265 3266 mls = multilist_sublist_lock(ml, idx); 3267 3268 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 3269 hdr = multilist_sublist_prev(mls, marker)) { 3270 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 3271 (evict_count >= zfs_arc_evict_batch_limit)) 3272 break; 3273 3274 /* 3275 * To keep our iteration location, move the marker 3276 * forward. Since we're not holding hdr's hash lock, we 3277 * must be very careful and not remove 'hdr' from the 3278 * sublist. Otherwise, other consumers might mistake the 3279 * 'hdr' as not being on a sublist when they call the 3280 * multilist_link_active() function (they all rely on 3281 * the hash lock protecting concurrent insertions and 3282 * removals). multilist_sublist_move_forward() was 3283 * specifically implemented to ensure this is the case 3284 * (only 'marker' will be removed and re-inserted). 3285 */ 3286 multilist_sublist_move_forward(mls, marker); 3287 3288 /* 3289 * The only case where the b_spa field should ever be 3290 * zero, is the marker headers inserted by 3291 * arc_evict_state(). It's possible for multiple threads 3292 * to be calling arc_evict_state() concurrently (e.g. 3293 * dsl_pool_close() and zio_inject_fault()), so we must 3294 * skip any markers we see from these other threads. 3295 */ 3296 if (hdr->b_spa == 0) 3297 continue; 3298 3299 /* we're only interested in evicting buffers of a certain spa */ 3300 if (spa != 0 && hdr->b_spa != spa) { 3301 ARCSTAT_BUMP(arcstat_evict_skip); 3302 continue; 3303 } 3304 3305 hash_lock = HDR_LOCK(hdr); 3306 3307 /* 3308 * We aren't calling this function from any code path 3309 * that would already be holding a hash lock, so we're 3310 * asserting on this assumption to be defensive in case 3311 * this ever changes. Without this check, it would be 3312 * possible to incorrectly increment arcstat_mutex_miss 3313 * below (e.g. if the code changed such that we called 3314 * this function with a hash lock held). 3315 */ 3316 ASSERT(!MUTEX_HELD(hash_lock)); 3317 3318 if (mutex_tryenter(hash_lock)) { 3319 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 3320 mutex_exit(hash_lock); 3321 3322 bytes_evicted += evicted; 3323 3324 /* 3325 * If evicted is zero, arc_evict_hdr() must have 3326 * decided to skip this header, don't increment 3327 * evict_count in this case. 3328 */ 3329 if (evicted != 0) 3330 evict_count++; 3331 3332 /* 3333 * If arc_size isn't overflowing, signal any 3334 * threads that might happen to be waiting. 3335 * 3336 * For each header evicted, we wake up a single 3337 * thread. If we used cv_broadcast, we could 3338 * wake up "too many" threads causing arc_size 3339 * to significantly overflow arc_c; since 3340 * arc_get_data_buf() doesn't check for overflow 3341 * when it's woken up (it doesn't because it's 3342 * possible for the ARC to be overflowing while 3343 * full of un-evictable buffers, and the 3344 * function should proceed in this case). 3345 * 3346 * If threads are left sleeping, due to not 3347 * using cv_broadcast, they will be woken up 3348 * just before arc_reclaim_thread() sleeps. 3349 */ 3350 mutex_enter(&arc_reclaim_lock); 3351 if (!arc_is_overflowing()) 3352 cv_signal(&arc_reclaim_waiters_cv); 3353 mutex_exit(&arc_reclaim_lock); 3354 } else { 3355 ARCSTAT_BUMP(arcstat_mutex_miss); 3356 } 3357 } 3358 3359 multilist_sublist_unlock(mls); 3360 3361 return (bytes_evicted); 3362 } 3363 3364 /* 3365 * Evict buffers from the given arc state, until we've removed the 3366 * specified number of bytes. Move the removed buffers to the 3367 * appropriate evict state. 3368 * 3369 * This function makes a "best effort". It skips over any buffers 3370 * it can't get a hash_lock on, and so, may not catch all candidates. 3371 * It may also return without evicting as much space as requested. 3372 * 3373 * If bytes is specified using the special value ARC_EVICT_ALL, this 3374 * will evict all available (i.e. unlocked and evictable) buffers from 3375 * the given arc state; which is used by arc_flush(). 3376 */ 3377 static uint64_t 3378 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 3379 arc_buf_contents_t type) 3380 { 3381 uint64_t total_evicted = 0; 3382 multilist_t *ml = &state->arcs_list[type]; 3383 int num_sublists; 3384 arc_buf_hdr_t **markers; 3385 3386 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3387 3388 num_sublists = multilist_get_num_sublists(ml); 3389 3390 /* 3391 * If we've tried to evict from each sublist, made some 3392 * progress, but still have not hit the target number of bytes 3393 * to evict, we want to keep trying. The markers allow us to 3394 * pick up where we left off for each individual sublist, rather 3395 * than starting from the tail each time. 3396 */ 3397 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 3398 for (int i = 0; i < num_sublists; i++) { 3399 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 3400 3401 /* 3402 * A b_spa of 0 is used to indicate that this header is 3403 * a marker. This fact is used in arc_adjust_type() and 3404 * arc_evict_state_impl(). 3405 */ 3406 markers[i]->b_spa = 0; 3407 3408 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 3409 multilist_sublist_insert_tail(mls, markers[i]); 3410 multilist_sublist_unlock(mls); 3411 } 3412 3413 /* 3414 * While we haven't hit our target number of bytes to evict, or 3415 * we're evicting all available buffers. 3416 */ 3417 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 3418 /* 3419 * Start eviction using a randomly selected sublist, 3420 * this is to try and evenly balance eviction across all 3421 * sublists. Always starting at the same sublist 3422 * (e.g. index 0) would cause evictions to favor certain 3423 * sublists over others. 3424 */ 3425 int sublist_idx = multilist_get_random_index(ml); 3426 uint64_t scan_evicted = 0; 3427 3428 for (int i = 0; i < num_sublists; i++) { 3429 uint64_t bytes_remaining; 3430 uint64_t bytes_evicted; 3431 3432 if (bytes == ARC_EVICT_ALL) 3433 bytes_remaining = ARC_EVICT_ALL; 3434 else if (total_evicted < bytes) 3435 bytes_remaining = bytes - total_evicted; 3436 else 3437 break; 3438 3439 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 3440 markers[sublist_idx], spa, bytes_remaining); 3441 3442 scan_evicted += bytes_evicted; 3443 total_evicted += bytes_evicted; 3444 3445 /* we've reached the end, wrap to the beginning */ 3446 if (++sublist_idx >= num_sublists) 3447 sublist_idx = 0; 3448 } 3449 3450 /* 3451 * If we didn't evict anything during this scan, we have 3452 * no reason to believe we'll evict more during another 3453 * scan, so break the loop. 3454 */ 3455 if (scan_evicted == 0) { 3456 /* This isn't possible, let's make that obvious */ 3457 ASSERT3S(bytes, !=, 0); 3458 3459 /* 3460 * When bytes is ARC_EVICT_ALL, the only way to 3461 * break the loop is when scan_evicted is zero. 3462 * In that case, we actually have evicted enough, 3463 * so we don't want to increment the kstat. 3464 */ 3465 if (bytes != ARC_EVICT_ALL) { 3466 ASSERT3S(total_evicted, <, bytes); 3467 ARCSTAT_BUMP(arcstat_evict_not_enough); 3468 } 3469 3470 break; 3471 } 3472 } 3473 3474 for (int i = 0; i < num_sublists; i++) { 3475 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 3476 multilist_sublist_remove(mls, markers[i]); 3477 multilist_sublist_unlock(mls); 3478 3479 kmem_cache_free(hdr_full_cache, markers[i]); 3480 } 3481 kmem_free(markers, sizeof (*markers) * num_sublists); 3482 3483 return (total_evicted); 3484 } 3485 3486 /* 3487 * Flush all "evictable" data of the given type from the arc state 3488 * specified. This will not evict any "active" buffers (i.e. referenced). 3489 * 3490 * When 'retry' is set to B_FALSE, the function will make a single pass 3491 * over the state and evict any buffers that it can. Since it doesn't 3492 * continually retry the eviction, it might end up leaving some buffers 3493 * in the ARC due to lock misses. 3494 * 3495 * When 'retry' is set to B_TRUE, the function will continually retry the 3496 * eviction until *all* evictable buffers have been removed from the 3497 * state. As a result, if concurrent insertions into the state are 3498 * allowed (e.g. if the ARC isn't shutting down), this function might 3499 * wind up in an infinite loop, continually trying to evict buffers. 3500 */ 3501 static uint64_t 3502 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 3503 boolean_t retry) 3504 { 3505 uint64_t evicted = 0; 3506 3507 while (refcount_count(&state->arcs_esize[type]) != 0) { 3508 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 3509 3510 if (!retry) 3511 break; 3512 } 3513 3514 return (evicted); 3515 } 3516 3517 /* 3518 * Evict the specified number of bytes from the state specified, 3519 * restricting eviction to the spa and type given. This function 3520 * prevents us from trying to evict more from a state's list than 3521 * is "evictable", and to skip evicting altogether when passed a 3522 * negative value for "bytes". In contrast, arc_evict_state() will 3523 * evict everything it can, when passed a negative value for "bytes". 3524 */ 3525 static uint64_t 3526 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 3527 arc_buf_contents_t type) 3528 { 3529 int64_t delta; 3530 3531 if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) { 3532 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes); 3533 return (arc_evict_state(state, spa, delta, type)); 3534 } 3535 3536 return (0); 3537 } 3538 3539 /* 3540 * Evict metadata buffers from the cache, such that arc_meta_used is 3541 * capped by the arc_meta_limit tunable. 3542 */ 3543 static uint64_t 3544 arc_adjust_meta(void) 3545 { 3546 uint64_t total_evicted = 0; 3547 int64_t target; 3548 3549 /* 3550 * If we're over the meta limit, we want to evict enough 3551 * metadata to get back under the meta limit. We don't want to 3552 * evict so much that we drop the MRU below arc_p, though. If 3553 * we're over the meta limit more than we're over arc_p, we 3554 * evict some from the MRU here, and some from the MFU below. 3555 */ 3556 target = MIN((int64_t)(arc_meta_used - arc_meta_limit), 3557 (int64_t)(refcount_count(&arc_anon->arcs_size) + 3558 refcount_count(&arc_mru->arcs_size) - arc_p)); 3559 3560 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3561 3562 /* 3563 * Similar to the above, we want to evict enough bytes to get us 3564 * below the meta limit, but not so much as to drop us below the 3565 * space allotted to the MFU (which is defined as arc_c - arc_p). 3566 */ 3567 target = MIN((int64_t)(arc_meta_used - arc_meta_limit), 3568 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p))); 3569 3570 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3571 3572 return (total_evicted); 3573 } 3574 3575 /* 3576 * Return the type of the oldest buffer in the given arc state 3577 * 3578 * This function will select a random sublist of type ARC_BUFC_DATA and 3579 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 3580 * is compared, and the type which contains the "older" buffer will be 3581 * returned. 3582 */ 3583 static arc_buf_contents_t 3584 arc_adjust_type(arc_state_t *state) 3585 { 3586 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA]; 3587 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA]; 3588 int data_idx = multilist_get_random_index(data_ml); 3589 int meta_idx = multilist_get_random_index(meta_ml); 3590 multilist_sublist_t *data_mls; 3591 multilist_sublist_t *meta_mls; 3592 arc_buf_contents_t type; 3593 arc_buf_hdr_t *data_hdr; 3594 arc_buf_hdr_t *meta_hdr; 3595 3596 /* 3597 * We keep the sublist lock until we're finished, to prevent 3598 * the headers from being destroyed via arc_evict_state(). 3599 */ 3600 data_mls = multilist_sublist_lock(data_ml, data_idx); 3601 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 3602 3603 /* 3604 * These two loops are to ensure we skip any markers that 3605 * might be at the tail of the lists due to arc_evict_state(). 3606 */ 3607 3608 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 3609 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 3610 if (data_hdr->b_spa != 0) 3611 break; 3612 } 3613 3614 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 3615 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 3616 if (meta_hdr->b_spa != 0) 3617 break; 3618 } 3619 3620 if (data_hdr == NULL && meta_hdr == NULL) { 3621 type = ARC_BUFC_DATA; 3622 } else if (data_hdr == NULL) { 3623 ASSERT3P(meta_hdr, !=, NULL); 3624 type = ARC_BUFC_METADATA; 3625 } else if (meta_hdr == NULL) { 3626 ASSERT3P(data_hdr, !=, NULL); 3627 type = ARC_BUFC_DATA; 3628 } else { 3629 ASSERT3P(data_hdr, !=, NULL); 3630 ASSERT3P(meta_hdr, !=, NULL); 3631 3632 /* The headers can't be on the sublist without an L1 header */ 3633 ASSERT(HDR_HAS_L1HDR(data_hdr)); 3634 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 3635 3636 if (data_hdr->b_l1hdr.b_arc_access < 3637 meta_hdr->b_l1hdr.b_arc_access) { 3638 type = ARC_BUFC_DATA; 3639 } else { 3640 type = ARC_BUFC_METADATA; 3641 } 3642 } 3643 3644 multilist_sublist_unlock(meta_mls); 3645 multilist_sublist_unlock(data_mls); 3646 3647 return (type); 3648 } 3649 3650 /* 3651 * Evict buffers from the cache, such that arc_size is capped by arc_c. 3652 */ 3653 static uint64_t 3654 arc_adjust(void) 3655 { 3656 uint64_t total_evicted = 0; 3657 uint64_t bytes; 3658 int64_t target; 3659 3660 /* 3661 * If we're over arc_meta_limit, we want to correct that before 3662 * potentially evicting data buffers below. 3663 */ 3664 total_evicted += arc_adjust_meta(); 3665 3666 /* 3667 * Adjust MRU size 3668 * 3669 * If we're over the target cache size, we want to evict enough 3670 * from the list to get back to our target size. We don't want 3671 * to evict too much from the MRU, such that it drops below 3672 * arc_p. So, if we're over our target cache size more than 3673 * the MRU is over arc_p, we'll evict enough to get back to 3674 * arc_p here, and then evict more from the MFU below. 3675 */ 3676 target = MIN((int64_t)(arc_size - arc_c), 3677 (int64_t)(refcount_count(&arc_anon->arcs_size) + 3678 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p)); 3679 3680 /* 3681 * If we're below arc_meta_min, always prefer to evict data. 3682 * Otherwise, try to satisfy the requested number of bytes to 3683 * evict from the type which contains older buffers; in an 3684 * effort to keep newer buffers in the cache regardless of their 3685 * type. If we cannot satisfy the number of bytes from this 3686 * type, spill over into the next type. 3687 */ 3688 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA && 3689 arc_meta_used > arc_meta_min) { 3690 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3691 total_evicted += bytes; 3692 3693 /* 3694 * If we couldn't evict our target number of bytes from 3695 * metadata, we try to get the rest from data. 3696 */ 3697 target -= bytes; 3698 3699 total_evicted += 3700 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 3701 } else { 3702 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 3703 total_evicted += bytes; 3704 3705 /* 3706 * If we couldn't evict our target number of bytes from 3707 * data, we try to get the rest from metadata. 3708 */ 3709 target -= bytes; 3710 3711 total_evicted += 3712 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3713 } 3714 3715 /* 3716 * Adjust MFU size 3717 * 3718 * Now that we've tried to evict enough from the MRU to get its 3719 * size back to arc_p, if we're still above the target cache 3720 * size, we evict the rest from the MFU. 3721 */ 3722 target = arc_size - arc_c; 3723 3724 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA && 3725 arc_meta_used > arc_meta_min) { 3726 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3727 total_evicted += bytes; 3728 3729 /* 3730 * If we couldn't evict our target number of bytes from 3731 * metadata, we try to get the rest from data. 3732 */ 3733 target -= bytes; 3734 3735 total_evicted += 3736 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 3737 } else { 3738 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 3739 total_evicted += bytes; 3740 3741 /* 3742 * If we couldn't evict our target number of bytes from 3743 * data, we try to get the rest from data. 3744 */ 3745 target -= bytes; 3746 3747 total_evicted += 3748 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3749 } 3750 3751 /* 3752 * Adjust ghost lists 3753 * 3754 * In addition to the above, the ARC also defines target values 3755 * for the ghost lists. The sum of the mru list and mru ghost 3756 * list should never exceed the target size of the cache, and 3757 * the sum of the mru list, mfu list, mru ghost list, and mfu 3758 * ghost list should never exceed twice the target size of the 3759 * cache. The following logic enforces these limits on the ghost 3760 * caches, and evicts from them as needed. 3761 */ 3762 target = refcount_count(&arc_mru->arcs_size) + 3763 refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 3764 3765 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 3766 total_evicted += bytes; 3767 3768 target -= bytes; 3769 3770 total_evicted += 3771 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 3772 3773 /* 3774 * We assume the sum of the mru list and mfu list is less than 3775 * or equal to arc_c (we enforced this above), which means we 3776 * can use the simpler of the two equations below: 3777 * 3778 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 3779 * mru ghost + mfu ghost <= arc_c 3780 */ 3781 target = refcount_count(&arc_mru_ghost->arcs_size) + 3782 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 3783 3784 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 3785 total_evicted += bytes; 3786 3787 target -= bytes; 3788 3789 total_evicted += 3790 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 3791 3792 return (total_evicted); 3793 } 3794 3795 void 3796 arc_flush(spa_t *spa, boolean_t retry) 3797 { 3798 uint64_t guid = 0; 3799 3800 /* 3801 * If retry is B_TRUE, a spa must not be specified since we have 3802 * no good way to determine if all of a spa's buffers have been 3803 * evicted from an arc state. 3804 */ 3805 ASSERT(!retry || spa == 0); 3806 3807 if (spa != NULL) 3808 guid = spa_load_guid(spa); 3809 3810 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 3811 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 3812 3813 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 3814 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 3815 3816 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 3817 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 3818 3819 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 3820 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 3821 } 3822 3823 void 3824 arc_shrink(int64_t to_free) 3825 { 3826 if (arc_c > arc_c_min) { 3827 3828 if (arc_c > arc_c_min + to_free) 3829 atomic_add_64(&arc_c, -to_free); 3830 else 3831 arc_c = arc_c_min; 3832 3833 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 3834 if (arc_c > arc_size) 3835 arc_c = MAX(arc_size, arc_c_min); 3836 if (arc_p > arc_c) 3837 arc_p = (arc_c >> 1); 3838 ASSERT(arc_c >= arc_c_min); 3839 ASSERT((int64_t)arc_p >= 0); 3840 } 3841 3842 if (arc_size > arc_c) 3843 (void) arc_adjust(); 3844 } 3845 3846 typedef enum free_memory_reason_t { 3847 FMR_UNKNOWN, 3848 FMR_NEEDFREE, 3849 FMR_LOTSFREE, 3850 FMR_SWAPFS_MINFREE, 3851 FMR_PAGES_PP_MAXIMUM, 3852 FMR_HEAP_ARENA, 3853 FMR_ZIO_ARENA, 3854 } free_memory_reason_t; 3855 3856 int64_t last_free_memory; 3857 free_memory_reason_t last_free_reason; 3858 3859 /* 3860 * Additional reserve of pages for pp_reserve. 3861 */ 3862 int64_t arc_pages_pp_reserve = 64; 3863 3864 /* 3865 * Additional reserve of pages for swapfs. 3866 */ 3867 int64_t arc_swapfs_reserve = 64; 3868 3869 /* 3870 * Return the amount of memory that can be consumed before reclaim will be 3871 * needed. Positive if there is sufficient free memory, negative indicates 3872 * the amount of memory that needs to be freed up. 3873 */ 3874 static int64_t 3875 arc_available_memory(void) 3876 { 3877 int64_t lowest = INT64_MAX; 3878 int64_t n; 3879 free_memory_reason_t r = FMR_UNKNOWN; 3880 3881 #ifdef _KERNEL 3882 if (needfree > 0) { 3883 n = PAGESIZE * (-needfree); 3884 if (n < lowest) { 3885 lowest = n; 3886 r = FMR_NEEDFREE; 3887 } 3888 } 3889 3890 /* 3891 * check that we're out of range of the pageout scanner. It starts to 3892 * schedule paging if freemem is less than lotsfree and needfree. 3893 * lotsfree is the high-water mark for pageout, and needfree is the 3894 * number of needed free pages. We add extra pages here to make sure 3895 * the scanner doesn't start up while we're freeing memory. 3896 */ 3897 n = PAGESIZE * (freemem - lotsfree - needfree - desfree); 3898 if (n < lowest) { 3899 lowest = n; 3900 r = FMR_LOTSFREE; 3901 } 3902 3903 /* 3904 * check to make sure that swapfs has enough space so that anon 3905 * reservations can still succeed. anon_resvmem() checks that the 3906 * availrmem is greater than swapfs_minfree, and the number of reserved 3907 * swap pages. We also add a bit of extra here just to prevent 3908 * circumstances from getting really dire. 3909 */ 3910 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve - 3911 desfree - arc_swapfs_reserve); 3912 if (n < lowest) { 3913 lowest = n; 3914 r = FMR_SWAPFS_MINFREE; 3915 } 3916 3917 3918 /* 3919 * Check that we have enough availrmem that memory locking (e.g., via 3920 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 3921 * stores the number of pages that cannot be locked; when availrmem 3922 * drops below pages_pp_maximum, page locking mechanisms such as 3923 * page_pp_lock() will fail.) 3924 */ 3925 n = PAGESIZE * (availrmem - pages_pp_maximum - 3926 arc_pages_pp_reserve); 3927 if (n < lowest) { 3928 lowest = n; 3929 r = FMR_PAGES_PP_MAXIMUM; 3930 } 3931 3932 #if defined(__i386) 3933 /* 3934 * If we're on an i386 platform, it's possible that we'll exhaust the 3935 * kernel heap space before we ever run out of available physical 3936 * memory. Most checks of the size of the heap_area compare against 3937 * tune.t_minarmem, which is the minimum available real memory that we 3938 * can have in the system. However, this is generally fixed at 25 pages 3939 * which is so low that it's useless. In this comparison, we seek to 3940 * calculate the total heap-size, and reclaim if more than 3/4ths of the 3941 * heap is allocated. (Or, in the calculation, if less than 1/4th is 3942 * free) 3943 */ 3944 n = (int64_t)vmem_size(heap_arena, VMEM_FREE) - 3945 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2); 3946 if (n < lowest) { 3947 lowest = n; 3948 r = FMR_HEAP_ARENA; 3949 } 3950 #endif 3951 3952 /* 3953 * If zio data pages are being allocated out of a separate heap segment, 3954 * then enforce that the size of available vmem for this arena remains 3955 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free. 3956 * 3957 * Note that reducing the arc_zio_arena_free_shift keeps more virtual 3958 * memory (in the zio_arena) free, which can avoid memory 3959 * fragmentation issues. 3960 */ 3961 if (zio_arena != NULL) { 3962 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) - 3963 (vmem_size(zio_arena, VMEM_ALLOC) >> 3964 arc_zio_arena_free_shift); 3965 if (n < lowest) { 3966 lowest = n; 3967 r = FMR_ZIO_ARENA; 3968 } 3969 } 3970 #else 3971 /* Every 100 calls, free a small amount */ 3972 if (spa_get_random(100) == 0) 3973 lowest = -1024; 3974 #endif 3975 3976 last_free_memory = lowest; 3977 last_free_reason = r; 3978 3979 return (lowest); 3980 } 3981 3982 3983 /* 3984 * Determine if the system is under memory pressure and is asking 3985 * to reclaim memory. A return value of B_TRUE indicates that the system 3986 * is under memory pressure and that the arc should adjust accordingly. 3987 */ 3988 static boolean_t 3989 arc_reclaim_needed(void) 3990 { 3991 return (arc_available_memory() < 0); 3992 } 3993 3994 static void 3995 arc_kmem_reap_now(void) 3996 { 3997 size_t i; 3998 kmem_cache_t *prev_cache = NULL; 3999 kmem_cache_t *prev_data_cache = NULL; 4000 extern kmem_cache_t *zio_buf_cache[]; 4001 extern kmem_cache_t *zio_data_buf_cache[]; 4002 extern kmem_cache_t *range_seg_cache; 4003 4004 #ifdef _KERNEL 4005 if (arc_meta_used >= arc_meta_limit) { 4006 /* 4007 * We are exceeding our meta-data cache limit. 4008 * Purge some DNLC entries to release holds on meta-data. 4009 */ 4010 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 4011 } 4012 #if defined(__i386) 4013 /* 4014 * Reclaim unused memory from all kmem caches. 4015 */ 4016 kmem_reap(); 4017 #endif 4018 #endif 4019 4020 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4021 if (zio_buf_cache[i] != prev_cache) { 4022 prev_cache = zio_buf_cache[i]; 4023 kmem_cache_reap_now(zio_buf_cache[i]); 4024 } 4025 if (zio_data_buf_cache[i] != prev_data_cache) { 4026 prev_data_cache = zio_data_buf_cache[i]; 4027 kmem_cache_reap_now(zio_data_buf_cache[i]); 4028 } 4029 } 4030 kmem_cache_reap_now(buf_cache); 4031 kmem_cache_reap_now(hdr_full_cache); 4032 kmem_cache_reap_now(hdr_l2only_cache); 4033 kmem_cache_reap_now(range_seg_cache); 4034 4035 if (zio_arena != NULL) { 4036 /* 4037 * Ask the vmem arena to reclaim unused memory from its 4038 * quantum caches. 4039 */ 4040 vmem_qcache_reap(zio_arena); 4041 } 4042 } 4043 4044 /* 4045 * Threads can block in arc_get_data_buf() waiting for this thread to evict 4046 * enough data and signal them to proceed. When this happens, the threads in 4047 * arc_get_data_buf() are sleeping while holding the hash lock for their 4048 * particular arc header. Thus, we must be careful to never sleep on a 4049 * hash lock in this thread. This is to prevent the following deadlock: 4050 * 4051 * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L", 4052 * waiting for the reclaim thread to signal it. 4053 * 4054 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter, 4055 * fails, and goes to sleep forever. 4056 * 4057 * This possible deadlock is avoided by always acquiring a hash lock 4058 * using mutex_tryenter() from arc_reclaim_thread(). 4059 */ 4060 static void 4061 arc_reclaim_thread(void) 4062 { 4063 hrtime_t growtime = 0; 4064 callb_cpr_t cpr; 4065 4066 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG); 4067 4068 mutex_enter(&arc_reclaim_lock); 4069 while (!arc_reclaim_thread_exit) { 4070 uint64_t evicted = 0; 4071 4072 /* 4073 * This is necessary in order for the mdb ::arc dcmd to 4074 * show up to date information. Since the ::arc command 4075 * does not call the kstat's update function, without 4076 * this call, the command may show stale stats for the 4077 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4078 * with this change, the data might be up to 1 second 4079 * out of date; but that should suffice. The arc_state_t 4080 * structures can be queried directly if more accurate 4081 * information is needed. 4082 */ 4083 if (arc_ksp != NULL) 4084 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4085 4086 mutex_exit(&arc_reclaim_lock); 4087 4088 /* 4089 * We call arc_adjust() before (possibly) calling 4090 * arc_kmem_reap_now(), so that we can wake up 4091 * arc_get_data_buf() sooner. 4092 */ 4093 evicted = arc_adjust(); 4094 4095 int64_t free_memory = arc_available_memory(); 4096 if (free_memory < 0) { 4097 4098 arc_no_grow = B_TRUE; 4099 arc_warm = B_TRUE; 4100 4101 /* 4102 * Wait at least zfs_grow_retry (default 60) seconds 4103 * before considering growing. 4104 */ 4105 growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4106 4107 arc_kmem_reap_now(); 4108 4109 /* 4110 * If we are still low on memory, shrink the ARC 4111 * so that we have arc_shrink_min free space. 4112 */ 4113 free_memory = arc_available_memory(); 4114 4115 int64_t to_free = 4116 (arc_c >> arc_shrink_shift) - free_memory; 4117 if (to_free > 0) { 4118 #ifdef _KERNEL 4119 to_free = MAX(to_free, ptob(needfree)); 4120 #endif 4121 arc_shrink(to_free); 4122 } 4123 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4124 arc_no_grow = B_TRUE; 4125 } else if (gethrtime() >= growtime) { 4126 arc_no_grow = B_FALSE; 4127 } 4128 4129 mutex_enter(&arc_reclaim_lock); 4130 4131 /* 4132 * If evicted is zero, we couldn't evict anything via 4133 * arc_adjust(). This could be due to hash lock 4134 * collisions, but more likely due to the majority of 4135 * arc buffers being unevictable. Therefore, even if 4136 * arc_size is above arc_c, another pass is unlikely to 4137 * be helpful and could potentially cause us to enter an 4138 * infinite loop. 4139 */ 4140 if (arc_size <= arc_c || evicted == 0) { 4141 /* 4142 * We're either no longer overflowing, or we 4143 * can't evict anything more, so we should wake 4144 * up any threads before we go to sleep. 4145 */ 4146 cv_broadcast(&arc_reclaim_waiters_cv); 4147 4148 /* 4149 * Block until signaled, or after one second (we 4150 * might need to perform arc_kmem_reap_now() 4151 * even if we aren't being signalled) 4152 */ 4153 CALLB_CPR_SAFE_BEGIN(&cpr); 4154 (void) cv_timedwait_hires(&arc_reclaim_thread_cv, 4155 &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 4156 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock); 4157 } 4158 } 4159 4160 arc_reclaim_thread_exit = B_FALSE; 4161 cv_broadcast(&arc_reclaim_thread_cv); 4162 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */ 4163 thread_exit(); 4164 } 4165 4166 /* 4167 * Adapt arc info given the number of bytes we are trying to add and 4168 * the state that we are comming from. This function is only called 4169 * when we are adding new content to the cache. 4170 */ 4171 static void 4172 arc_adapt(int bytes, arc_state_t *state) 4173 { 4174 int mult; 4175 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 4176 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size); 4177 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size); 4178 4179 if (state == arc_l2c_only) 4180 return; 4181 4182 ASSERT(bytes > 0); 4183 /* 4184 * Adapt the target size of the MRU list: 4185 * - if we just hit in the MRU ghost list, then increase 4186 * the target size of the MRU list. 4187 * - if we just hit in the MFU ghost list, then increase 4188 * the target size of the MFU list by decreasing the 4189 * target size of the MRU list. 4190 */ 4191 if (state == arc_mru_ghost) { 4192 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 4193 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 4194 4195 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 4196 } else if (state == arc_mfu_ghost) { 4197 uint64_t delta; 4198 4199 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 4200 mult = MIN(mult, 10); 4201 4202 delta = MIN(bytes * mult, arc_p); 4203 arc_p = MAX(arc_p_min, arc_p - delta); 4204 } 4205 ASSERT((int64_t)arc_p >= 0); 4206 4207 if (arc_reclaim_needed()) { 4208 cv_signal(&arc_reclaim_thread_cv); 4209 return; 4210 } 4211 4212 if (arc_no_grow) 4213 return; 4214 4215 if (arc_c >= arc_c_max) 4216 return; 4217 4218 /* 4219 * If we're within (2 * maxblocksize) bytes of the target 4220 * cache size, increment the target cache size 4221 */ 4222 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 4223 atomic_add_64(&arc_c, (int64_t)bytes); 4224 if (arc_c > arc_c_max) 4225 arc_c = arc_c_max; 4226 else if (state == arc_anon) 4227 atomic_add_64(&arc_p, (int64_t)bytes); 4228 if (arc_p > arc_c) 4229 arc_p = arc_c; 4230 } 4231 ASSERT((int64_t)arc_p >= 0); 4232 } 4233 4234 /* 4235 * Check if arc_size has grown past our upper threshold, determined by 4236 * zfs_arc_overflow_shift. 4237 */ 4238 static boolean_t 4239 arc_is_overflowing(void) 4240 { 4241 /* Always allow at least one block of overflow */ 4242 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE, 4243 arc_c >> zfs_arc_overflow_shift); 4244 4245 return (arc_size >= arc_c + overflow); 4246 } 4247 4248 /* 4249 * Allocate a block and return it to the caller. If we are hitting the 4250 * hard limit for the cache size, we must sleep, waiting for the eviction 4251 * thread to catch up. If we're past the target size but below the hard 4252 * limit, we'll only signal the reclaim thread and continue on. 4253 */ 4254 static void * 4255 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4256 { 4257 void *datap = NULL; 4258 arc_state_t *state = hdr->b_l1hdr.b_state; 4259 arc_buf_contents_t type = arc_buf_type(hdr); 4260 4261 arc_adapt(size, state); 4262 4263 /* 4264 * If arc_size is currently overflowing, and has grown past our 4265 * upper limit, we must be adding data faster than the evict 4266 * thread can evict. Thus, to ensure we don't compound the 4267 * problem by adding more data and forcing arc_size to grow even 4268 * further past it's target size, we halt and wait for the 4269 * eviction thread to catch up. 4270 * 4271 * It's also possible that the reclaim thread is unable to evict 4272 * enough buffers to get arc_size below the overflow limit (e.g. 4273 * due to buffers being un-evictable, or hash lock collisions). 4274 * In this case, we want to proceed regardless if we're 4275 * overflowing; thus we don't use a while loop here. 4276 */ 4277 if (arc_is_overflowing()) { 4278 mutex_enter(&arc_reclaim_lock); 4279 4280 /* 4281 * Now that we've acquired the lock, we may no longer be 4282 * over the overflow limit, lets check. 4283 * 4284 * We're ignoring the case of spurious wake ups. If that 4285 * were to happen, it'd let this thread consume an ARC 4286 * buffer before it should have (i.e. before we're under 4287 * the overflow limit and were signalled by the reclaim 4288 * thread). As long as that is a rare occurrence, it 4289 * shouldn't cause any harm. 4290 */ 4291 if (arc_is_overflowing()) { 4292 cv_signal(&arc_reclaim_thread_cv); 4293 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock); 4294 } 4295 4296 mutex_exit(&arc_reclaim_lock); 4297 } 4298 4299 VERIFY3U(hdr->b_type, ==, type); 4300 if (type == ARC_BUFC_METADATA) { 4301 datap = zio_buf_alloc(size); 4302 arc_space_consume(size, ARC_SPACE_META); 4303 } else { 4304 ASSERT(type == ARC_BUFC_DATA); 4305 datap = zio_data_buf_alloc(size); 4306 arc_space_consume(size, ARC_SPACE_DATA); 4307 } 4308 4309 /* 4310 * Update the state size. Note that ghost states have a 4311 * "ghost size" and so don't need to be updated. 4312 */ 4313 if (!GHOST_STATE(state)) { 4314 4315 (void) refcount_add_many(&state->arcs_size, size, tag); 4316 4317 /* 4318 * If this is reached via arc_read, the link is 4319 * protected by the hash lock. If reached via 4320 * arc_buf_alloc, the header should not be accessed by 4321 * any other thread. And, if reached via arc_read_done, 4322 * the hash lock will protect it if it's found in the 4323 * hash table; otherwise no other thread should be 4324 * trying to [add|remove]_reference it. 4325 */ 4326 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 4327 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4328 (void) refcount_add_many(&state->arcs_esize[type], 4329 size, tag); 4330 } 4331 4332 /* 4333 * If we are growing the cache, and we are adding anonymous 4334 * data, and we have outgrown arc_p, update arc_p 4335 */ 4336 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon && 4337 (refcount_count(&arc_anon->arcs_size) + 4338 refcount_count(&arc_mru->arcs_size) > arc_p)) 4339 arc_p = MIN(arc_c, arc_p + size); 4340 } 4341 return (datap); 4342 } 4343 4344 /* 4345 * Free the arc data buffer. 4346 */ 4347 static void 4348 arc_free_data_buf(arc_buf_hdr_t *hdr, void *data, uint64_t size, void *tag) 4349 { 4350 arc_state_t *state = hdr->b_l1hdr.b_state; 4351 arc_buf_contents_t type = arc_buf_type(hdr); 4352 4353 /* protected by hash lock, if in the hash table */ 4354 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 4355 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4356 ASSERT(state != arc_anon && state != arc_l2c_only); 4357 4358 (void) refcount_remove_many(&state->arcs_esize[type], 4359 size, tag); 4360 } 4361 (void) refcount_remove_many(&state->arcs_size, size, tag); 4362 4363 VERIFY3U(hdr->b_type, ==, type); 4364 if (type == ARC_BUFC_METADATA) { 4365 zio_buf_free(data, size); 4366 arc_space_return(size, ARC_SPACE_META); 4367 } else { 4368 ASSERT(type == ARC_BUFC_DATA); 4369 zio_data_buf_free(data, size); 4370 arc_space_return(size, ARC_SPACE_DATA); 4371 } 4372 } 4373 4374 /* 4375 * This routine is called whenever a buffer is accessed. 4376 * NOTE: the hash lock is dropped in this function. 4377 */ 4378 static void 4379 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 4380 { 4381 clock_t now; 4382 4383 ASSERT(MUTEX_HELD(hash_lock)); 4384 ASSERT(HDR_HAS_L1HDR(hdr)); 4385 4386 if (hdr->b_l1hdr.b_state == arc_anon) { 4387 /* 4388 * This buffer is not in the cache, and does not 4389 * appear in our "ghost" list. Add the new buffer 4390 * to the MRU state. 4391 */ 4392 4393 ASSERT0(hdr->b_l1hdr.b_arc_access); 4394 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4395 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 4396 arc_change_state(arc_mru, hdr, hash_lock); 4397 4398 } else if (hdr->b_l1hdr.b_state == arc_mru) { 4399 now = ddi_get_lbolt(); 4400 4401 /* 4402 * If this buffer is here because of a prefetch, then either: 4403 * - clear the flag if this is a "referencing" read 4404 * (any subsequent access will bump this into the MFU state). 4405 * or 4406 * - move the buffer to the head of the list if this is 4407 * another prefetch (to make it less likely to be evicted). 4408 */ 4409 if (HDR_PREFETCH(hdr)) { 4410 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 4411 /* link protected by hash lock */ 4412 ASSERT(multilist_link_active( 4413 &hdr->b_l1hdr.b_arc_node)); 4414 } else { 4415 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 4416 ARCSTAT_BUMP(arcstat_mru_hits); 4417 } 4418 hdr->b_l1hdr.b_arc_access = now; 4419 return; 4420 } 4421 4422 /* 4423 * This buffer has been "accessed" only once so far, 4424 * but it is still in the cache. Move it to the MFU 4425 * state. 4426 */ 4427 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) { 4428 /* 4429 * More than 125ms have passed since we 4430 * instantiated this buffer. Move it to the 4431 * most frequently used state. 4432 */ 4433 hdr->b_l1hdr.b_arc_access = now; 4434 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4435 arc_change_state(arc_mfu, hdr, hash_lock); 4436 } 4437 ARCSTAT_BUMP(arcstat_mru_hits); 4438 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 4439 arc_state_t *new_state; 4440 /* 4441 * This buffer has been "accessed" recently, but 4442 * was evicted from the cache. Move it to the 4443 * MFU state. 4444 */ 4445 4446 if (HDR_PREFETCH(hdr)) { 4447 new_state = arc_mru; 4448 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) 4449 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 4450 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 4451 } else { 4452 new_state = arc_mfu; 4453 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4454 } 4455 4456 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4457 arc_change_state(new_state, hdr, hash_lock); 4458 4459 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 4460 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 4461 /* 4462 * This buffer has been accessed more than once and is 4463 * still in the cache. Keep it in the MFU state. 4464 * 4465 * NOTE: an add_reference() that occurred when we did 4466 * the arc_read() will have kicked this off the list. 4467 * If it was a prefetch, we will explicitly move it to 4468 * the head of the list now. 4469 */ 4470 if ((HDR_PREFETCH(hdr)) != 0) { 4471 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4472 /* link protected by hash_lock */ 4473 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 4474 } 4475 ARCSTAT_BUMP(arcstat_mfu_hits); 4476 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4477 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 4478 arc_state_t *new_state = arc_mfu; 4479 /* 4480 * This buffer has been accessed more than once but has 4481 * been evicted from the cache. Move it back to the 4482 * MFU state. 4483 */ 4484 4485 if (HDR_PREFETCH(hdr)) { 4486 /* 4487 * This is a prefetch access... 4488 * move this block back to the MRU state. 4489 */ 4490 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 4491 new_state = arc_mru; 4492 } 4493 4494 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4495 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4496 arc_change_state(new_state, hdr, hash_lock); 4497 4498 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 4499 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 4500 /* 4501 * This buffer is on the 2nd Level ARC. 4502 */ 4503 4504 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4505 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4506 arc_change_state(arc_mfu, hdr, hash_lock); 4507 } else { 4508 ASSERT(!"invalid arc state"); 4509 } 4510 } 4511 4512 /* a generic arc_done_func_t which you can use */ 4513 /* ARGSUSED */ 4514 void 4515 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 4516 { 4517 if (zio == NULL || zio->io_error == 0) 4518 bcopy(buf->b_data, arg, arc_buf_size(buf)); 4519 arc_buf_destroy(buf, arg); 4520 } 4521 4522 /* a generic arc_done_func_t */ 4523 void 4524 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 4525 { 4526 arc_buf_t **bufp = arg; 4527 if (zio && zio->io_error) { 4528 arc_buf_destroy(buf, arg); 4529 *bufp = NULL; 4530 } else { 4531 *bufp = buf; 4532 ASSERT(buf->b_data); 4533 } 4534 } 4535 4536 static void 4537 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 4538 { 4539 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 4540 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 4541 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 4542 } else { 4543 if (HDR_COMPRESSION_ENABLED(hdr)) { 4544 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, 4545 BP_GET_COMPRESS(bp)); 4546 } 4547 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 4548 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 4549 } 4550 } 4551 4552 static void 4553 arc_read_done(zio_t *zio) 4554 { 4555 arc_buf_hdr_t *hdr = zio->io_private; 4556 kmutex_t *hash_lock = NULL; 4557 arc_callback_t *callback_list; 4558 arc_callback_t *acb; 4559 boolean_t freeable = B_FALSE; 4560 boolean_t no_zio_error = (zio->io_error == 0); 4561 4562 /* 4563 * The hdr was inserted into hash-table and removed from lists 4564 * prior to starting I/O. We should find this header, since 4565 * it's in the hash table, and it should be legit since it's 4566 * not possible to evict it during the I/O. The only possible 4567 * reason for it not to be found is if we were freed during the 4568 * read. 4569 */ 4570 if (HDR_IN_HASH_TABLE(hdr)) { 4571 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 4572 ASSERT3U(hdr->b_dva.dva_word[0], ==, 4573 BP_IDENTITY(zio->io_bp)->dva_word[0]); 4574 ASSERT3U(hdr->b_dva.dva_word[1], ==, 4575 BP_IDENTITY(zio->io_bp)->dva_word[1]); 4576 4577 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 4578 &hash_lock); 4579 4580 ASSERT((found == hdr && 4581 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 4582 (found == hdr && HDR_L2_READING(hdr))); 4583 ASSERT3P(hash_lock, !=, NULL); 4584 } 4585 4586 if (no_zio_error) { 4587 /* byteswap if necessary */ 4588 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 4589 if (BP_GET_LEVEL(zio->io_bp) > 0) { 4590 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 4591 } else { 4592 hdr->b_l1hdr.b_byteswap = 4593 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 4594 } 4595 } else { 4596 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 4597 } 4598 } 4599 4600 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 4601 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 4602 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 4603 4604 callback_list = hdr->b_l1hdr.b_acb; 4605 ASSERT3P(callback_list, !=, NULL); 4606 4607 if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) { 4608 /* 4609 * Only call arc_access on anonymous buffers. This is because 4610 * if we've issued an I/O for an evicted buffer, we've already 4611 * called arc_access (to prevent any simultaneous readers from 4612 * getting confused). 4613 */ 4614 arc_access(hdr, hash_lock); 4615 } 4616 4617 /* 4618 * If a read request has a callback (i.e. acb_done is not NULL), then we 4619 * make a buf containing the data according to the parameters which were 4620 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 4621 * aren't needlessly decompressing the data multiple times. 4622 */ 4623 int callback_cnt = 0; 4624 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 4625 if (!acb->acb_done) 4626 continue; 4627 4628 /* This is a demand read since prefetches don't use callbacks */ 4629 callback_cnt++; 4630 4631 int error = arc_buf_alloc_impl(hdr, acb->acb_private, 4632 acb->acb_compressed, no_zio_error, &acb->acb_buf); 4633 if (no_zio_error) { 4634 zio->io_error = error; 4635 } 4636 } 4637 hdr->b_l1hdr.b_acb = NULL; 4638 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 4639 if (callback_cnt == 0) { 4640 ASSERT(HDR_PREFETCH(hdr)); 4641 ASSERT0(hdr->b_l1hdr.b_bufcnt); 4642 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 4643 } 4644 4645 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 4646 callback_list != NULL); 4647 4648 if (no_zio_error) { 4649 arc_hdr_verify(hdr, zio->io_bp); 4650 } else { 4651 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 4652 if (hdr->b_l1hdr.b_state != arc_anon) 4653 arc_change_state(arc_anon, hdr, hash_lock); 4654 if (HDR_IN_HASH_TABLE(hdr)) 4655 buf_hash_remove(hdr); 4656 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 4657 } 4658 4659 /* 4660 * Broadcast before we drop the hash_lock to avoid the possibility 4661 * that the hdr (and hence the cv) might be freed before we get to 4662 * the cv_broadcast(). 4663 */ 4664 cv_broadcast(&hdr->b_l1hdr.b_cv); 4665 4666 if (hash_lock != NULL) { 4667 mutex_exit(hash_lock); 4668 } else { 4669 /* 4670 * This block was freed while we waited for the read to 4671 * complete. It has been removed from the hash table and 4672 * moved to the anonymous state (so that it won't show up 4673 * in the cache). 4674 */ 4675 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 4676 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 4677 } 4678 4679 /* execute each callback and free its structure */ 4680 while ((acb = callback_list) != NULL) { 4681 if (acb->acb_done) 4682 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 4683 4684 if (acb->acb_zio_dummy != NULL) { 4685 acb->acb_zio_dummy->io_error = zio->io_error; 4686 zio_nowait(acb->acb_zio_dummy); 4687 } 4688 4689 callback_list = acb->acb_next; 4690 kmem_free(acb, sizeof (arc_callback_t)); 4691 } 4692 4693 if (freeable) 4694 arc_hdr_destroy(hdr); 4695 } 4696 4697 /* 4698 * "Read" the block at the specified DVA (in bp) via the 4699 * cache. If the block is found in the cache, invoke the provided 4700 * callback immediately and return. Note that the `zio' parameter 4701 * in the callback will be NULL in this case, since no IO was 4702 * required. If the block is not in the cache pass the read request 4703 * on to the spa with a substitute callback function, so that the 4704 * requested block will be added to the cache. 4705 * 4706 * If a read request arrives for a block that has a read in-progress, 4707 * either wait for the in-progress read to complete (and return the 4708 * results); or, if this is a read with a "done" func, add a record 4709 * to the read to invoke the "done" func when the read completes, 4710 * and return; or just return. 4711 * 4712 * arc_read_done() will invoke all the requested "done" functions 4713 * for readers of this block. 4714 */ 4715 int 4716 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 4717 void *private, zio_priority_t priority, int zio_flags, 4718 arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 4719 { 4720 arc_buf_hdr_t *hdr = NULL; 4721 kmutex_t *hash_lock = NULL; 4722 zio_t *rzio; 4723 uint64_t guid = spa_load_guid(spa); 4724 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0; 4725 4726 ASSERT(!BP_IS_EMBEDDED(bp) || 4727 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 4728 4729 top: 4730 if (!BP_IS_EMBEDDED(bp)) { 4731 /* 4732 * Embedded BP's have no DVA and require no I/O to "read". 4733 * Create an anonymous arc buf to back it. 4734 */ 4735 hdr = buf_hash_find(guid, bp, &hash_lock); 4736 } 4737 4738 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pdata != NULL) { 4739 arc_buf_t *buf = NULL; 4740 *arc_flags |= ARC_FLAG_CACHED; 4741 4742 if (HDR_IO_IN_PROGRESS(hdr)) { 4743 4744 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 4745 priority == ZIO_PRIORITY_SYNC_READ) { 4746 /* 4747 * This sync read must wait for an 4748 * in-progress async read (e.g. a predictive 4749 * prefetch). Async reads are queued 4750 * separately at the vdev_queue layer, so 4751 * this is a form of priority inversion. 4752 * Ideally, we would "inherit" the demand 4753 * i/o's priority by moving the i/o from 4754 * the async queue to the synchronous queue, 4755 * but there is currently no mechanism to do 4756 * so. Track this so that we can evaluate 4757 * the magnitude of this potential performance 4758 * problem. 4759 * 4760 * Note that if the prefetch i/o is already 4761 * active (has been issued to the device), 4762 * the prefetch improved performance, because 4763 * we issued it sooner than we would have 4764 * without the prefetch. 4765 */ 4766 DTRACE_PROBE1(arc__sync__wait__for__async, 4767 arc_buf_hdr_t *, hdr); 4768 ARCSTAT_BUMP(arcstat_sync_wait_for_async); 4769 } 4770 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 4771 arc_hdr_clear_flags(hdr, 4772 ARC_FLAG_PREDICTIVE_PREFETCH); 4773 } 4774 4775 if (*arc_flags & ARC_FLAG_WAIT) { 4776 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 4777 mutex_exit(hash_lock); 4778 goto top; 4779 } 4780 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 4781 4782 if (done) { 4783 arc_callback_t *acb = NULL; 4784 4785 acb = kmem_zalloc(sizeof (arc_callback_t), 4786 KM_SLEEP); 4787 acb->acb_done = done; 4788 acb->acb_private = private; 4789 acb->acb_compressed = compressed_read; 4790 if (pio != NULL) 4791 acb->acb_zio_dummy = zio_null(pio, 4792 spa, NULL, NULL, NULL, zio_flags); 4793 4794 ASSERT3P(acb->acb_done, !=, NULL); 4795 acb->acb_next = hdr->b_l1hdr.b_acb; 4796 hdr->b_l1hdr.b_acb = acb; 4797 mutex_exit(hash_lock); 4798 return (0); 4799 } 4800 mutex_exit(hash_lock); 4801 return (0); 4802 } 4803 4804 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 4805 hdr->b_l1hdr.b_state == arc_mfu); 4806 4807 if (done) { 4808 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 4809 /* 4810 * This is a demand read which does not have to 4811 * wait for i/o because we did a predictive 4812 * prefetch i/o for it, which has completed. 4813 */ 4814 DTRACE_PROBE1( 4815 arc__demand__hit__predictive__prefetch, 4816 arc_buf_hdr_t *, hdr); 4817 ARCSTAT_BUMP( 4818 arcstat_demand_hit_predictive_prefetch); 4819 arc_hdr_clear_flags(hdr, 4820 ARC_FLAG_PREDICTIVE_PREFETCH); 4821 } 4822 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp)); 4823 4824 /* Get a buf with the desired data in it. */ 4825 VERIFY0(arc_buf_alloc_impl(hdr, private, 4826 compressed_read, B_TRUE, &buf)); 4827 } else if (*arc_flags & ARC_FLAG_PREFETCH && 4828 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 4829 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 4830 } 4831 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 4832 arc_access(hdr, hash_lock); 4833 if (*arc_flags & ARC_FLAG_L2CACHE) 4834 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 4835 mutex_exit(hash_lock); 4836 ARCSTAT_BUMP(arcstat_hits); 4837 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 4838 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 4839 data, metadata, hits); 4840 4841 if (done) 4842 done(NULL, buf, private); 4843 } else { 4844 uint64_t lsize = BP_GET_LSIZE(bp); 4845 uint64_t psize = BP_GET_PSIZE(bp); 4846 arc_callback_t *acb; 4847 vdev_t *vd = NULL; 4848 uint64_t addr = 0; 4849 boolean_t devw = B_FALSE; 4850 uint64_t size; 4851 4852 if (hdr == NULL) { 4853 /* this block is not in the cache */ 4854 arc_buf_hdr_t *exists = NULL; 4855 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 4856 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 4857 BP_GET_COMPRESS(bp), type); 4858 4859 if (!BP_IS_EMBEDDED(bp)) { 4860 hdr->b_dva = *BP_IDENTITY(bp); 4861 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 4862 exists = buf_hash_insert(hdr, &hash_lock); 4863 } 4864 if (exists != NULL) { 4865 /* somebody beat us to the hash insert */ 4866 mutex_exit(hash_lock); 4867 buf_discard_identity(hdr); 4868 arc_hdr_destroy(hdr); 4869 goto top; /* restart the IO request */ 4870 } 4871 } else { 4872 /* 4873 * This block is in the ghost cache. If it was L2-only 4874 * (and thus didn't have an L1 hdr), we realloc the 4875 * header to add an L1 hdr. 4876 */ 4877 if (!HDR_HAS_L1HDR(hdr)) { 4878 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 4879 hdr_full_cache); 4880 } 4881 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 4882 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state)); 4883 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 4884 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4885 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 4886 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 4887 4888 /* 4889 * This is a delicate dance that we play here. 4890 * This hdr is in the ghost list so we access it 4891 * to move it out of the ghost list before we 4892 * initiate the read. If it's a prefetch then 4893 * it won't have a callback so we'll remove the 4894 * reference that arc_buf_alloc_impl() created. We 4895 * do this after we've called arc_access() to 4896 * avoid hitting an assert in remove_reference(). 4897 */ 4898 arc_access(hdr, hash_lock); 4899 arc_hdr_alloc_pdata(hdr); 4900 } 4901 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 4902 size = arc_hdr_size(hdr); 4903 4904 /* 4905 * If compression is enabled on the hdr, then will do 4906 * RAW I/O and will store the compressed data in the hdr's 4907 * data block. Otherwise, the hdr's data block will contain 4908 * the uncompressed data. 4909 */ 4910 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) { 4911 zio_flags |= ZIO_FLAG_RAW; 4912 } 4913 4914 if (*arc_flags & ARC_FLAG_PREFETCH) 4915 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 4916 if (*arc_flags & ARC_FLAG_L2CACHE) 4917 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 4918 if (BP_GET_LEVEL(bp) > 0) 4919 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 4920 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 4921 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 4922 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 4923 4924 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 4925 acb->acb_done = done; 4926 acb->acb_private = private; 4927 acb->acb_compressed = compressed_read; 4928 4929 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 4930 hdr->b_l1hdr.b_acb = acb; 4931 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 4932 4933 if (HDR_HAS_L2HDR(hdr) && 4934 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 4935 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 4936 addr = hdr->b_l2hdr.b_daddr; 4937 /* 4938 * Lock out device removal. 4939 */ 4940 if (vdev_is_dead(vd) || 4941 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 4942 vd = NULL; 4943 } 4944 4945 if (priority == ZIO_PRIORITY_ASYNC_READ) 4946 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 4947 else 4948 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 4949 4950 if (hash_lock != NULL) 4951 mutex_exit(hash_lock); 4952 4953 /* 4954 * At this point, we have a level 1 cache miss. Try again in 4955 * L2ARC if possible. 4956 */ 4957 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 4958 4959 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 4960 uint64_t, lsize, zbookmark_phys_t *, zb); 4961 ARCSTAT_BUMP(arcstat_misses); 4962 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 4963 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 4964 data, metadata, misses); 4965 4966 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 4967 /* 4968 * Read from the L2ARC if the following are true: 4969 * 1. The L2ARC vdev was previously cached. 4970 * 2. This buffer still has L2ARC metadata. 4971 * 3. This buffer isn't currently writing to the L2ARC. 4972 * 4. The L2ARC entry wasn't evicted, which may 4973 * also have invalidated the vdev. 4974 * 5. This isn't prefetch and l2arc_noprefetch is set. 4975 */ 4976 if (HDR_HAS_L2HDR(hdr) && 4977 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 4978 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 4979 l2arc_read_callback_t *cb; 4980 4981 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 4982 ARCSTAT_BUMP(arcstat_l2_hits); 4983 4984 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 4985 KM_SLEEP); 4986 cb->l2rcb_hdr = hdr; 4987 cb->l2rcb_bp = *bp; 4988 cb->l2rcb_zb = *zb; 4989 cb->l2rcb_flags = zio_flags; 4990 4991 ASSERT(addr >= VDEV_LABEL_START_SIZE && 4992 addr + lsize < vd->vdev_psize - 4993 VDEV_LABEL_END_SIZE); 4994 4995 /* 4996 * l2arc read. The SCL_L2ARC lock will be 4997 * released by l2arc_read_done(). 4998 * Issue a null zio if the underlying buffer 4999 * was squashed to zero size by compression. 5000 */ 5001 ASSERT3U(HDR_GET_COMPRESS(hdr), !=, 5002 ZIO_COMPRESS_EMPTY); 5003 rzio = zio_read_phys(pio, vd, addr, 5004 size, hdr->b_l1hdr.b_pdata, 5005 ZIO_CHECKSUM_OFF, 5006 l2arc_read_done, cb, priority, 5007 zio_flags | ZIO_FLAG_DONT_CACHE | 5008 ZIO_FLAG_CANFAIL | 5009 ZIO_FLAG_DONT_PROPAGATE | 5010 ZIO_FLAG_DONT_RETRY, B_FALSE); 5011 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 5012 zio_t *, rzio); 5013 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 5014 5015 if (*arc_flags & ARC_FLAG_NOWAIT) { 5016 zio_nowait(rzio); 5017 return (0); 5018 } 5019 5020 ASSERT(*arc_flags & ARC_FLAG_WAIT); 5021 if (zio_wait(rzio) == 0) 5022 return (0); 5023 5024 /* l2arc read error; goto zio_read() */ 5025 } else { 5026 DTRACE_PROBE1(l2arc__miss, 5027 arc_buf_hdr_t *, hdr); 5028 ARCSTAT_BUMP(arcstat_l2_misses); 5029 if (HDR_L2_WRITING(hdr)) 5030 ARCSTAT_BUMP(arcstat_l2_rw_clash); 5031 spa_config_exit(spa, SCL_L2ARC, vd); 5032 } 5033 } else { 5034 if (vd != NULL) 5035 spa_config_exit(spa, SCL_L2ARC, vd); 5036 if (l2arc_ndev != 0) { 5037 DTRACE_PROBE1(l2arc__miss, 5038 arc_buf_hdr_t *, hdr); 5039 ARCSTAT_BUMP(arcstat_l2_misses); 5040 } 5041 } 5042 5043 rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pdata, size, 5044 arc_read_done, hdr, priority, zio_flags, zb); 5045 5046 if (*arc_flags & ARC_FLAG_WAIT) 5047 return (zio_wait(rzio)); 5048 5049 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5050 zio_nowait(rzio); 5051 } 5052 return (0); 5053 } 5054 5055 /* 5056 * Notify the arc that a block was freed, and thus will never be used again. 5057 */ 5058 void 5059 arc_freed(spa_t *spa, const blkptr_t *bp) 5060 { 5061 arc_buf_hdr_t *hdr; 5062 kmutex_t *hash_lock; 5063 uint64_t guid = spa_load_guid(spa); 5064 5065 ASSERT(!BP_IS_EMBEDDED(bp)); 5066 5067 hdr = buf_hash_find(guid, bp, &hash_lock); 5068 if (hdr == NULL) 5069 return; 5070 5071 /* 5072 * We might be trying to free a block that is still doing I/O 5073 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 5074 * dmu_sync-ed block). If this block is being prefetched, then it 5075 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 5076 * until the I/O completes. A block may also have a reference if it is 5077 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 5078 * have written the new block to its final resting place on disk but 5079 * without the dedup flag set. This would have left the hdr in the MRU 5080 * state and discoverable. When the txg finally syncs it detects that 5081 * the block was overridden in open context and issues an override I/O. 5082 * Since this is a dedup block, the override I/O will determine if the 5083 * block is already in the DDT. If so, then it will replace the io_bp 5084 * with the bp from the DDT and allow the I/O to finish. When the I/O 5085 * reaches the done callback, dbuf_write_override_done, it will 5086 * check to see if the io_bp and io_bp_override are identical. 5087 * If they are not, then it indicates that the bp was replaced with 5088 * the bp in the DDT and the override bp is freed. This allows 5089 * us to arrive here with a reference on a block that is being 5090 * freed. So if we have an I/O in progress, or a reference to 5091 * this hdr, then we don't destroy the hdr. 5092 */ 5093 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 5094 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 5095 arc_change_state(arc_anon, hdr, hash_lock); 5096 arc_hdr_destroy(hdr); 5097 mutex_exit(hash_lock); 5098 } else { 5099 mutex_exit(hash_lock); 5100 } 5101 5102 } 5103 5104 /* 5105 * Release this buffer from the cache, making it an anonymous buffer. This 5106 * must be done after a read and prior to modifying the buffer contents. 5107 * If the buffer has more than one reference, we must make 5108 * a new hdr for the buffer. 5109 */ 5110 void 5111 arc_release(arc_buf_t *buf, void *tag) 5112 { 5113 arc_buf_hdr_t *hdr = buf->b_hdr; 5114 5115 /* 5116 * It would be nice to assert that if it's DMU metadata (level > 5117 * 0 || it's the dnode file), then it must be syncing context. 5118 * But we don't know that information at this level. 5119 */ 5120 5121 mutex_enter(&buf->b_evict_lock); 5122 5123 ASSERT(HDR_HAS_L1HDR(hdr)); 5124 5125 /* 5126 * We don't grab the hash lock prior to this check, because if 5127 * the buffer's header is in the arc_anon state, it won't be 5128 * linked into the hash table. 5129 */ 5130 if (hdr->b_l1hdr.b_state == arc_anon) { 5131 mutex_exit(&buf->b_evict_lock); 5132 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5133 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 5134 ASSERT(!HDR_HAS_L2HDR(hdr)); 5135 ASSERT(HDR_EMPTY(hdr)); 5136 5137 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 5138 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 5139 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 5140 5141 hdr->b_l1hdr.b_arc_access = 0; 5142 5143 /* 5144 * If the buf is being overridden then it may already 5145 * have a hdr that is not empty. 5146 */ 5147 buf_discard_identity(hdr); 5148 arc_buf_thaw(buf); 5149 5150 return; 5151 } 5152 5153 kmutex_t *hash_lock = HDR_LOCK(hdr); 5154 mutex_enter(hash_lock); 5155 5156 /* 5157 * This assignment is only valid as long as the hash_lock is 5158 * held, we must be careful not to reference state or the 5159 * b_state field after dropping the lock. 5160 */ 5161 arc_state_t *state = hdr->b_l1hdr.b_state; 5162 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 5163 ASSERT3P(state, !=, arc_anon); 5164 5165 /* this buffer is not on any list */ 5166 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 5167 5168 if (HDR_HAS_L2HDR(hdr)) { 5169 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 5170 5171 /* 5172 * We have to recheck this conditional again now that 5173 * we're holding the l2ad_mtx to prevent a race with 5174 * another thread which might be concurrently calling 5175 * l2arc_evict(). In that case, l2arc_evict() might have 5176 * destroyed the header's L2 portion as we were waiting 5177 * to acquire the l2ad_mtx. 5178 */ 5179 if (HDR_HAS_L2HDR(hdr)) 5180 arc_hdr_l2hdr_destroy(hdr); 5181 5182 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 5183 } 5184 5185 /* 5186 * Do we have more than one buf? 5187 */ 5188 if (hdr->b_l1hdr.b_bufcnt > 1) { 5189 arc_buf_hdr_t *nhdr; 5190 uint64_t spa = hdr->b_spa; 5191 uint64_t psize = HDR_GET_PSIZE(hdr); 5192 uint64_t lsize = HDR_GET_LSIZE(hdr); 5193 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 5194 arc_buf_contents_t type = arc_buf_type(hdr); 5195 VERIFY3U(hdr->b_type, ==, type); 5196 5197 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 5198 (void) remove_reference(hdr, hash_lock, tag); 5199 5200 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 5201 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 5202 ASSERT(ARC_BUF_LAST(buf)); 5203 } 5204 5205 /* 5206 * Pull the data off of this hdr and attach it to 5207 * a new anonymous hdr. Also find the last buffer 5208 * in the hdr's buffer list. 5209 */ 5210 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 5211 ASSERT3P(lastbuf, !=, NULL); 5212 5213 /* 5214 * If the current arc_buf_t and the hdr are sharing their data 5215 * buffer, then we must stop sharing that block. 5216 */ 5217 if (arc_buf_is_shared(buf)) { 5218 VERIFY(!arc_buf_is_shared(lastbuf)); 5219 5220 /* 5221 * First, sever the block sharing relationship between 5222 * buf and the arc_buf_hdr_t. 5223 */ 5224 arc_unshare_buf(hdr, buf); 5225 5226 /* 5227 * Now we need to recreate the hdr's b_pdata. Since we 5228 * have lastbuf handy, we try to share with it, but if 5229 * we can't then we allocate a new b_pdata and copy the 5230 * data from buf into it. 5231 */ 5232 if (arc_can_share(hdr, lastbuf)) { 5233 arc_share_buf(hdr, lastbuf); 5234 } else { 5235 arc_hdr_alloc_pdata(hdr); 5236 bcopy(buf->b_data, hdr->b_l1hdr.b_pdata, psize); 5237 } 5238 VERIFY3P(lastbuf->b_data, !=, NULL); 5239 } else if (HDR_SHARED_DATA(hdr)) { 5240 /* 5241 * Uncompressed shared buffers are always at the end 5242 * of the list. Compressed buffers don't have the 5243 * same requirements. This makes it hard to 5244 * simply assert that the lastbuf is shared so 5245 * we rely on the hdr's compression flags to determine 5246 * if we have a compressed, shared buffer. 5247 */ 5248 ASSERT(arc_buf_is_shared(lastbuf) || 5249 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF); 5250 ASSERT(!ARC_BUF_SHARED(buf)); 5251 } 5252 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 5253 ASSERT3P(state, !=, arc_l2c_only); 5254 5255 (void) refcount_remove_many(&state->arcs_size, 5256 arc_buf_size(buf), buf); 5257 5258 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 5259 ASSERT3P(state, !=, arc_l2c_only); 5260 (void) refcount_remove_many(&state->arcs_esize[type], 5261 arc_buf_size(buf), buf); 5262 } 5263 5264 hdr->b_l1hdr.b_bufcnt -= 1; 5265 arc_cksum_verify(buf); 5266 arc_buf_unwatch(buf); 5267 5268 mutex_exit(hash_lock); 5269 5270 /* 5271 * Allocate a new hdr. The new hdr will contain a b_pdata 5272 * buffer which will be freed in arc_write(). 5273 */ 5274 nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type); 5275 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 5276 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 5277 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt)); 5278 VERIFY3U(nhdr->b_type, ==, type); 5279 ASSERT(!HDR_SHARED_DATA(nhdr)); 5280 5281 nhdr->b_l1hdr.b_buf = buf; 5282 nhdr->b_l1hdr.b_bufcnt = 1; 5283 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 5284 buf->b_hdr = nhdr; 5285 5286 mutex_exit(&buf->b_evict_lock); 5287 (void) refcount_add_many(&arc_anon->arcs_size, 5288 arc_buf_size(buf), buf); 5289 } else { 5290 mutex_exit(&buf->b_evict_lock); 5291 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 5292 /* protected by hash lock, or hdr is on arc_anon */ 5293 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 5294 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5295 arc_change_state(arc_anon, hdr, hash_lock); 5296 hdr->b_l1hdr.b_arc_access = 0; 5297 mutex_exit(hash_lock); 5298 5299 buf_discard_identity(hdr); 5300 arc_buf_thaw(buf); 5301 } 5302 } 5303 5304 int 5305 arc_released(arc_buf_t *buf) 5306 { 5307 int released; 5308 5309 mutex_enter(&buf->b_evict_lock); 5310 released = (buf->b_data != NULL && 5311 buf->b_hdr->b_l1hdr.b_state == arc_anon); 5312 mutex_exit(&buf->b_evict_lock); 5313 return (released); 5314 } 5315 5316 #ifdef ZFS_DEBUG 5317 int 5318 arc_referenced(arc_buf_t *buf) 5319 { 5320 int referenced; 5321 5322 mutex_enter(&buf->b_evict_lock); 5323 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 5324 mutex_exit(&buf->b_evict_lock); 5325 return (referenced); 5326 } 5327 #endif 5328 5329 static void 5330 arc_write_ready(zio_t *zio) 5331 { 5332 arc_write_callback_t *callback = zio->io_private; 5333 arc_buf_t *buf = callback->awcb_buf; 5334 arc_buf_hdr_t *hdr = buf->b_hdr; 5335 uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp); 5336 5337 ASSERT(HDR_HAS_L1HDR(hdr)); 5338 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 5339 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 5340 5341 /* 5342 * If we're reexecuting this zio because the pool suspended, then 5343 * cleanup any state that was previously set the first time the 5344 * callback was invoked. 5345 */ 5346 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 5347 arc_cksum_free(hdr); 5348 arc_buf_unwatch(buf); 5349 if (hdr->b_l1hdr.b_pdata != NULL) { 5350 if (arc_buf_is_shared(buf)) { 5351 arc_unshare_buf(hdr, buf); 5352 } else { 5353 arc_hdr_free_pdata(hdr); 5354 } 5355 } 5356 } 5357 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 5358 ASSERT(!HDR_SHARED_DATA(hdr)); 5359 ASSERT(!arc_buf_is_shared(buf)); 5360 5361 callback->awcb_ready(zio, buf, callback->awcb_private); 5362 5363 if (HDR_IO_IN_PROGRESS(hdr)) 5364 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 5365 5366 arc_cksum_compute(buf); 5367 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5368 5369 enum zio_compress compress; 5370 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 5371 compress = ZIO_COMPRESS_OFF; 5372 } else { 5373 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp)); 5374 compress = BP_GET_COMPRESS(zio->io_bp); 5375 } 5376 HDR_SET_PSIZE(hdr, psize); 5377 arc_hdr_set_compress(hdr, compress); 5378 5379 /* 5380 * If the hdr is compressed, then copy the compressed 5381 * zio contents into arc_buf_hdr_t. Otherwise, copy the original 5382 * data buf into the hdr. Ideally, we would like to always copy the 5383 * io_data into b_pdata but the user may have disabled compressed 5384 * arc thus the on-disk block may or may not match what we maintain 5385 * in the hdr's b_pdata field. 5386 */ 5387 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 5388 !ARC_BUF_COMPRESSED(buf)) { 5389 ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=, ZIO_COMPRESS_OFF); 5390 ASSERT3U(psize, >, 0); 5391 arc_hdr_alloc_pdata(hdr); 5392 bcopy(zio->io_data, hdr->b_l1hdr.b_pdata, psize); 5393 } else { 5394 ASSERT3P(buf->b_data, ==, zio->io_orig_data); 5395 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 5396 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 5397 5398 /* 5399 * This hdr is not compressed so we're able to share 5400 * the arc_buf_t data buffer with the hdr. 5401 */ 5402 arc_share_buf(hdr, buf); 5403 ASSERT0(bcmp(zio->io_orig_data, hdr->b_l1hdr.b_pdata, 5404 HDR_GET_LSIZE(hdr))); 5405 } 5406 arc_hdr_verify(hdr, zio->io_bp); 5407 } 5408 5409 static void 5410 arc_write_children_ready(zio_t *zio) 5411 { 5412 arc_write_callback_t *callback = zio->io_private; 5413 arc_buf_t *buf = callback->awcb_buf; 5414 5415 callback->awcb_children_ready(zio, buf, callback->awcb_private); 5416 } 5417 5418 /* 5419 * The SPA calls this callback for each physical write that happens on behalf 5420 * of a logical write. See the comment in dbuf_write_physdone() for details. 5421 */ 5422 static void 5423 arc_write_physdone(zio_t *zio) 5424 { 5425 arc_write_callback_t *cb = zio->io_private; 5426 if (cb->awcb_physdone != NULL) 5427 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 5428 } 5429 5430 static void 5431 arc_write_done(zio_t *zio) 5432 { 5433 arc_write_callback_t *callback = zio->io_private; 5434 arc_buf_t *buf = callback->awcb_buf; 5435 arc_buf_hdr_t *hdr = buf->b_hdr; 5436 5437 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5438 5439 if (zio->io_error == 0) { 5440 arc_hdr_verify(hdr, zio->io_bp); 5441 5442 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 5443 buf_discard_identity(hdr); 5444 } else { 5445 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 5446 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 5447 } 5448 } else { 5449 ASSERT(HDR_EMPTY(hdr)); 5450 } 5451 5452 /* 5453 * If the block to be written was all-zero or compressed enough to be 5454 * embedded in the BP, no write was performed so there will be no 5455 * dva/birth/checksum. The buffer must therefore remain anonymous 5456 * (and uncached). 5457 */ 5458 if (!HDR_EMPTY(hdr)) { 5459 arc_buf_hdr_t *exists; 5460 kmutex_t *hash_lock; 5461 5462 ASSERT3U(zio->io_error, ==, 0); 5463 5464 arc_cksum_verify(buf); 5465 5466 exists = buf_hash_insert(hdr, &hash_lock); 5467 if (exists != NULL) { 5468 /* 5469 * This can only happen if we overwrite for 5470 * sync-to-convergence, because we remove 5471 * buffers from the hash table when we arc_free(). 5472 */ 5473 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 5474 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 5475 panic("bad overwrite, hdr=%p exists=%p", 5476 (void *)hdr, (void *)exists); 5477 ASSERT(refcount_is_zero( 5478 &exists->b_l1hdr.b_refcnt)); 5479 arc_change_state(arc_anon, exists, hash_lock); 5480 mutex_exit(hash_lock); 5481 arc_hdr_destroy(exists); 5482 exists = buf_hash_insert(hdr, &hash_lock); 5483 ASSERT3P(exists, ==, NULL); 5484 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 5485 /* nopwrite */ 5486 ASSERT(zio->io_prop.zp_nopwrite); 5487 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 5488 panic("bad nopwrite, hdr=%p exists=%p", 5489 (void *)hdr, (void *)exists); 5490 } else { 5491 /* Dedup */ 5492 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 5493 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 5494 ASSERT(BP_GET_DEDUP(zio->io_bp)); 5495 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 5496 } 5497 } 5498 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5499 /* if it's not anon, we are doing a scrub */ 5500 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 5501 arc_access(hdr, hash_lock); 5502 mutex_exit(hash_lock); 5503 } else { 5504 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5505 } 5506 5507 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5508 callback->awcb_done(zio, buf, callback->awcb_private); 5509 5510 kmem_free(callback, sizeof (arc_write_callback_t)); 5511 } 5512 5513 zio_t * 5514 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 5515 boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready, 5516 arc_done_func_t *children_ready, arc_done_func_t *physdone, 5517 arc_done_func_t *done, void *private, zio_priority_t priority, 5518 int zio_flags, const zbookmark_phys_t *zb) 5519 { 5520 arc_buf_hdr_t *hdr = buf->b_hdr; 5521 arc_write_callback_t *callback; 5522 zio_t *zio; 5523 5524 ASSERT3P(ready, !=, NULL); 5525 ASSERT3P(done, !=, NULL); 5526 ASSERT(!HDR_IO_ERROR(hdr)); 5527 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5528 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5529 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 5530 if (l2arc) 5531 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5532 if (ARC_BUF_COMPRESSED(buf)) { 5533 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_OFF); 5534 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 5535 zio_flags |= ZIO_FLAG_RAW; 5536 } 5537 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 5538 callback->awcb_ready = ready; 5539 callback->awcb_children_ready = children_ready; 5540 callback->awcb_physdone = physdone; 5541 callback->awcb_done = done; 5542 callback->awcb_private = private; 5543 callback->awcb_buf = buf; 5544 5545 /* 5546 * The hdr's b_pdata is now stale, free it now. A new data block 5547 * will be allocated when the zio pipeline calls arc_write_ready(). 5548 */ 5549 if (hdr->b_l1hdr.b_pdata != NULL) { 5550 /* 5551 * If the buf is currently sharing the data block with 5552 * the hdr then we need to break that relationship here. 5553 * The hdr will remain with a NULL data pointer and the 5554 * buf will take sole ownership of the block. 5555 */ 5556 if (arc_buf_is_shared(buf)) { 5557 arc_unshare_buf(hdr, buf); 5558 } else { 5559 arc_hdr_free_pdata(hdr); 5560 } 5561 VERIFY3P(buf->b_data, !=, NULL); 5562 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 5563 } 5564 ASSERT(!arc_buf_is_shared(buf)); 5565 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 5566 5567 zio = zio_write(pio, spa, txg, bp, buf->b_data, 5568 HDR_GET_LSIZE(hdr), arc_buf_size(buf), zp, arc_write_ready, 5569 (children_ready != NULL) ? arc_write_children_ready : NULL, 5570 arc_write_physdone, arc_write_done, callback, 5571 priority, zio_flags, zb); 5572 5573 return (zio); 5574 } 5575 5576 static int 5577 arc_memory_throttle(uint64_t reserve, uint64_t txg) 5578 { 5579 #ifdef _KERNEL 5580 uint64_t available_memory = ptob(freemem); 5581 static uint64_t page_load = 0; 5582 static uint64_t last_txg = 0; 5583 5584 #if defined(__i386) 5585 available_memory = 5586 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 5587 #endif 5588 5589 if (freemem > physmem * arc_lotsfree_percent / 100) 5590 return (0); 5591 5592 if (txg > last_txg) { 5593 last_txg = txg; 5594 page_load = 0; 5595 } 5596 /* 5597 * If we are in pageout, we know that memory is already tight, 5598 * the arc is already going to be evicting, so we just want to 5599 * continue to let page writes occur as quickly as possible. 5600 */ 5601 if (curproc == proc_pageout) { 5602 if (page_load > MAX(ptob(minfree), available_memory) / 4) 5603 return (SET_ERROR(ERESTART)); 5604 /* Note: reserve is inflated, so we deflate */ 5605 page_load += reserve / 8; 5606 return (0); 5607 } else if (page_load > 0 && arc_reclaim_needed()) { 5608 /* memory is low, delay before restarting */ 5609 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 5610 return (SET_ERROR(EAGAIN)); 5611 } 5612 page_load = 0; 5613 #endif 5614 return (0); 5615 } 5616 5617 void 5618 arc_tempreserve_clear(uint64_t reserve) 5619 { 5620 atomic_add_64(&arc_tempreserve, -reserve); 5621 ASSERT((int64_t)arc_tempreserve >= 0); 5622 } 5623 5624 int 5625 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 5626 { 5627 int error; 5628 uint64_t anon_size; 5629 5630 if (reserve > arc_c/4 && !arc_no_grow) 5631 arc_c = MIN(arc_c_max, reserve * 4); 5632 if (reserve > arc_c) 5633 return (SET_ERROR(ENOMEM)); 5634 5635 /* 5636 * Don't count loaned bufs as in flight dirty data to prevent long 5637 * network delays from blocking transactions that are ready to be 5638 * assigned to a txg. 5639 */ 5640 5641 /* assert that it has not wrapped around */ 5642 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 5643 5644 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) - 5645 arc_loaned_bytes), 0); 5646 5647 /* 5648 * Writes will, almost always, require additional memory allocations 5649 * in order to compress/encrypt/etc the data. We therefore need to 5650 * make sure that there is sufficient available memory for this. 5651 */ 5652 error = arc_memory_throttle(reserve, txg); 5653 if (error != 0) 5654 return (error); 5655 5656 /* 5657 * Throttle writes when the amount of dirty data in the cache 5658 * gets too large. We try to keep the cache less than half full 5659 * of dirty blocks so that our sync times don't grow too large. 5660 * Note: if two requests come in concurrently, we might let them 5661 * both succeed, when one of them should fail. Not a huge deal. 5662 */ 5663 5664 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 5665 anon_size > arc_c / 4) { 5666 uint64_t meta_esize = 5667 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 5668 uint64_t data_esize = 5669 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 5670 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 5671 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 5672 arc_tempreserve >> 10, meta_esize >> 10, 5673 data_esize >> 10, reserve >> 10, arc_c >> 10); 5674 return (SET_ERROR(ERESTART)); 5675 } 5676 atomic_add_64(&arc_tempreserve, reserve); 5677 return (0); 5678 } 5679 5680 static void 5681 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 5682 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 5683 { 5684 size->value.ui64 = refcount_count(&state->arcs_size); 5685 evict_data->value.ui64 = 5686 refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 5687 evict_metadata->value.ui64 = 5688 refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 5689 } 5690 5691 static int 5692 arc_kstat_update(kstat_t *ksp, int rw) 5693 { 5694 arc_stats_t *as = ksp->ks_data; 5695 5696 if (rw == KSTAT_WRITE) { 5697 return (EACCES); 5698 } else { 5699 arc_kstat_update_state(arc_anon, 5700 &as->arcstat_anon_size, 5701 &as->arcstat_anon_evictable_data, 5702 &as->arcstat_anon_evictable_metadata); 5703 arc_kstat_update_state(arc_mru, 5704 &as->arcstat_mru_size, 5705 &as->arcstat_mru_evictable_data, 5706 &as->arcstat_mru_evictable_metadata); 5707 arc_kstat_update_state(arc_mru_ghost, 5708 &as->arcstat_mru_ghost_size, 5709 &as->arcstat_mru_ghost_evictable_data, 5710 &as->arcstat_mru_ghost_evictable_metadata); 5711 arc_kstat_update_state(arc_mfu, 5712 &as->arcstat_mfu_size, 5713 &as->arcstat_mfu_evictable_data, 5714 &as->arcstat_mfu_evictable_metadata); 5715 arc_kstat_update_state(arc_mfu_ghost, 5716 &as->arcstat_mfu_ghost_size, 5717 &as->arcstat_mfu_ghost_evictable_data, 5718 &as->arcstat_mfu_ghost_evictable_metadata); 5719 } 5720 5721 return (0); 5722 } 5723 5724 /* 5725 * This function *must* return indices evenly distributed between all 5726 * sublists of the multilist. This is needed due to how the ARC eviction 5727 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 5728 * distributed between all sublists and uses this assumption when 5729 * deciding which sublist to evict from and how much to evict from it. 5730 */ 5731 unsigned int 5732 arc_state_multilist_index_func(multilist_t *ml, void *obj) 5733 { 5734 arc_buf_hdr_t *hdr = obj; 5735 5736 /* 5737 * We rely on b_dva to generate evenly distributed index 5738 * numbers using buf_hash below. So, as an added precaution, 5739 * let's make sure we never add empty buffers to the arc lists. 5740 */ 5741 ASSERT(!HDR_EMPTY(hdr)); 5742 5743 /* 5744 * The assumption here, is the hash value for a given 5745 * arc_buf_hdr_t will remain constant throughout it's lifetime 5746 * (i.e. it's b_spa, b_dva, and b_birth fields don't change). 5747 * Thus, we don't need to store the header's sublist index 5748 * on insertion, as this index can be recalculated on removal. 5749 * 5750 * Also, the low order bits of the hash value are thought to be 5751 * distributed evenly. Otherwise, in the case that the multilist 5752 * has a power of two number of sublists, each sublists' usage 5753 * would not be evenly distributed. 5754 */ 5755 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 5756 multilist_get_num_sublists(ml)); 5757 } 5758 5759 static void 5760 arc_state_init(void) 5761 { 5762 arc_anon = &ARC_anon; 5763 arc_mru = &ARC_mru; 5764 arc_mru_ghost = &ARC_mru_ghost; 5765 arc_mfu = &ARC_mfu; 5766 arc_mfu_ghost = &ARC_mfu_ghost; 5767 arc_l2c_only = &ARC_l2c_only; 5768 5769 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 5770 sizeof (arc_buf_hdr_t), 5771 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5772 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5773 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 5774 sizeof (arc_buf_hdr_t), 5775 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5776 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5777 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 5778 sizeof (arc_buf_hdr_t), 5779 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5780 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5781 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 5782 sizeof (arc_buf_hdr_t), 5783 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5784 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5785 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 5786 sizeof (arc_buf_hdr_t), 5787 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5788 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5789 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 5790 sizeof (arc_buf_hdr_t), 5791 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5792 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5793 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 5794 sizeof (arc_buf_hdr_t), 5795 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5796 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5797 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 5798 sizeof (arc_buf_hdr_t), 5799 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5800 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5801 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 5802 sizeof (arc_buf_hdr_t), 5803 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5804 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5805 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 5806 sizeof (arc_buf_hdr_t), 5807 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5808 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5809 5810 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 5811 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 5812 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 5813 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 5814 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 5815 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 5816 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 5817 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 5818 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 5819 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 5820 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 5821 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 5822 5823 refcount_create(&arc_anon->arcs_size); 5824 refcount_create(&arc_mru->arcs_size); 5825 refcount_create(&arc_mru_ghost->arcs_size); 5826 refcount_create(&arc_mfu->arcs_size); 5827 refcount_create(&arc_mfu_ghost->arcs_size); 5828 refcount_create(&arc_l2c_only->arcs_size); 5829 } 5830 5831 static void 5832 arc_state_fini(void) 5833 { 5834 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 5835 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 5836 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 5837 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 5838 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 5839 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 5840 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 5841 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 5842 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 5843 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 5844 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 5845 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 5846 5847 refcount_destroy(&arc_anon->arcs_size); 5848 refcount_destroy(&arc_mru->arcs_size); 5849 refcount_destroy(&arc_mru_ghost->arcs_size); 5850 refcount_destroy(&arc_mfu->arcs_size); 5851 refcount_destroy(&arc_mfu_ghost->arcs_size); 5852 refcount_destroy(&arc_l2c_only->arcs_size); 5853 5854 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 5855 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 5856 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 5857 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 5858 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 5859 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 5860 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 5861 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 5862 } 5863 5864 uint64_t 5865 arc_max_bytes(void) 5866 { 5867 return (arc_c_max); 5868 } 5869 5870 void 5871 arc_init(void) 5872 { 5873 /* 5874 * allmem is "all memory that we could possibly use". 5875 */ 5876 #ifdef _KERNEL 5877 uint64_t allmem = ptob(physmem - swapfs_minfree); 5878 #else 5879 uint64_t allmem = (physmem * PAGESIZE) / 2; 5880 #endif 5881 5882 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 5883 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL); 5884 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL); 5885 5886 /* Convert seconds to clock ticks */ 5887 arc_min_prefetch_lifespan = 1 * hz; 5888 5889 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 5890 arc_c_min = MAX(allmem / 32, 64 << 20); 5891 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 5892 if (allmem >= 1 << 30) 5893 arc_c_max = allmem - (1 << 30); 5894 else 5895 arc_c_max = arc_c_min; 5896 arc_c_max = MAX(allmem * 3 / 4, arc_c_max); 5897 5898 /* 5899 * In userland, there's only the memory pressure that we artificially 5900 * create (see arc_available_memory()). Don't let arc_c get too 5901 * small, because it can cause transactions to be larger than 5902 * arc_c, causing arc_tempreserve_space() to fail. 5903 */ 5904 #ifndef _KERNEL 5905 arc_c_min = arc_c_max / 2; 5906 #endif 5907 5908 /* 5909 * Allow the tunables to override our calculations if they are 5910 * reasonable (ie. over 64MB) 5911 */ 5912 if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) { 5913 arc_c_max = zfs_arc_max; 5914 arc_c_min = MIN(arc_c_min, arc_c_max); 5915 } 5916 if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max) 5917 arc_c_min = zfs_arc_min; 5918 5919 arc_c = arc_c_max; 5920 arc_p = (arc_c >> 1); 5921 arc_size = 0; 5922 5923 /* limit meta-data to 1/4 of the arc capacity */ 5924 arc_meta_limit = arc_c_max / 4; 5925 5926 #ifdef _KERNEL 5927 /* 5928 * Metadata is stored in the kernel's heap. Don't let us 5929 * use more than half the heap for the ARC. 5930 */ 5931 arc_meta_limit = MIN(arc_meta_limit, 5932 vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2); 5933 #endif 5934 5935 /* Allow the tunable to override if it is reasonable */ 5936 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 5937 arc_meta_limit = zfs_arc_meta_limit; 5938 5939 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 5940 arc_c_min = arc_meta_limit / 2; 5941 5942 if (zfs_arc_meta_min > 0) { 5943 arc_meta_min = zfs_arc_meta_min; 5944 } else { 5945 arc_meta_min = arc_c_min / 2; 5946 } 5947 5948 if (zfs_arc_grow_retry > 0) 5949 arc_grow_retry = zfs_arc_grow_retry; 5950 5951 if (zfs_arc_shrink_shift > 0) 5952 arc_shrink_shift = zfs_arc_shrink_shift; 5953 5954 /* 5955 * Ensure that arc_no_grow_shift is less than arc_shrink_shift. 5956 */ 5957 if (arc_no_grow_shift >= arc_shrink_shift) 5958 arc_no_grow_shift = arc_shrink_shift - 1; 5959 5960 if (zfs_arc_p_min_shift > 0) 5961 arc_p_min_shift = zfs_arc_p_min_shift; 5962 5963 if (zfs_arc_num_sublists_per_state < 1) 5964 zfs_arc_num_sublists_per_state = MAX(boot_ncpus, 1); 5965 5966 /* if kmem_flags are set, lets try to use less memory */ 5967 if (kmem_debugging()) 5968 arc_c = arc_c / 2; 5969 if (arc_c < arc_c_min) 5970 arc_c = arc_c_min; 5971 5972 arc_state_init(); 5973 buf_init(); 5974 5975 arc_reclaim_thread_exit = B_FALSE; 5976 5977 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 5978 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 5979 5980 if (arc_ksp != NULL) { 5981 arc_ksp->ks_data = &arc_stats; 5982 arc_ksp->ks_update = arc_kstat_update; 5983 kstat_install(arc_ksp); 5984 } 5985 5986 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 5987 TS_RUN, minclsyspri); 5988 5989 arc_dead = B_FALSE; 5990 arc_warm = B_FALSE; 5991 5992 /* 5993 * Calculate maximum amount of dirty data per pool. 5994 * 5995 * If it has been set by /etc/system, take that. 5996 * Otherwise, use a percentage of physical memory defined by 5997 * zfs_dirty_data_max_percent (default 10%) with a cap at 5998 * zfs_dirty_data_max_max (default 4GB). 5999 */ 6000 if (zfs_dirty_data_max == 0) { 6001 zfs_dirty_data_max = physmem * PAGESIZE * 6002 zfs_dirty_data_max_percent / 100; 6003 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 6004 zfs_dirty_data_max_max); 6005 } 6006 } 6007 6008 void 6009 arc_fini(void) 6010 { 6011 mutex_enter(&arc_reclaim_lock); 6012 arc_reclaim_thread_exit = B_TRUE; 6013 /* 6014 * The reclaim thread will set arc_reclaim_thread_exit back to 6015 * B_FALSE when it is finished exiting; we're waiting for that. 6016 */ 6017 while (arc_reclaim_thread_exit) { 6018 cv_signal(&arc_reclaim_thread_cv); 6019 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock); 6020 } 6021 mutex_exit(&arc_reclaim_lock); 6022 6023 /* Use B_TRUE to ensure *all* buffers are evicted */ 6024 arc_flush(NULL, B_TRUE); 6025 6026 arc_dead = B_TRUE; 6027 6028 if (arc_ksp != NULL) { 6029 kstat_delete(arc_ksp); 6030 arc_ksp = NULL; 6031 } 6032 6033 mutex_destroy(&arc_reclaim_lock); 6034 cv_destroy(&arc_reclaim_thread_cv); 6035 cv_destroy(&arc_reclaim_waiters_cv); 6036 6037 arc_state_fini(); 6038 buf_fini(); 6039 6040 ASSERT0(arc_loaned_bytes); 6041 } 6042 6043 /* 6044 * Level 2 ARC 6045 * 6046 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 6047 * It uses dedicated storage devices to hold cached data, which are populated 6048 * using large infrequent writes. The main role of this cache is to boost 6049 * the performance of random read workloads. The intended L2ARC devices 6050 * include short-stroked disks, solid state disks, and other media with 6051 * substantially faster read latency than disk. 6052 * 6053 * +-----------------------+ 6054 * | ARC | 6055 * +-----------------------+ 6056 * | ^ ^ 6057 * | | | 6058 * l2arc_feed_thread() arc_read() 6059 * | | | 6060 * | l2arc read | 6061 * V | | 6062 * +---------------+ | 6063 * | L2ARC | | 6064 * +---------------+ | 6065 * | ^ | 6066 * l2arc_write() | | 6067 * | | | 6068 * V | | 6069 * +-------+ +-------+ 6070 * | vdev | | vdev | 6071 * | cache | | cache | 6072 * +-------+ +-------+ 6073 * +=========+ .-----. 6074 * : L2ARC : |-_____-| 6075 * : devices : | Disks | 6076 * +=========+ `-_____-' 6077 * 6078 * Read requests are satisfied from the following sources, in order: 6079 * 6080 * 1) ARC 6081 * 2) vdev cache of L2ARC devices 6082 * 3) L2ARC devices 6083 * 4) vdev cache of disks 6084 * 5) disks 6085 * 6086 * Some L2ARC device types exhibit extremely slow write performance. 6087 * To accommodate for this there are some significant differences between 6088 * the L2ARC and traditional cache design: 6089 * 6090 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 6091 * the ARC behave as usual, freeing buffers and placing headers on ghost 6092 * lists. The ARC does not send buffers to the L2ARC during eviction as 6093 * this would add inflated write latencies for all ARC memory pressure. 6094 * 6095 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 6096 * It does this by periodically scanning buffers from the eviction-end of 6097 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 6098 * not already there. It scans until a headroom of buffers is satisfied, 6099 * which itself is a buffer for ARC eviction. If a compressible buffer is 6100 * found during scanning and selected for writing to an L2ARC device, we 6101 * temporarily boost scanning headroom during the next scan cycle to make 6102 * sure we adapt to compression effects (which might significantly reduce 6103 * the data volume we write to L2ARC). The thread that does this is 6104 * l2arc_feed_thread(), illustrated below; example sizes are included to 6105 * provide a better sense of ratio than this diagram: 6106 * 6107 * head --> tail 6108 * +---------------------+----------+ 6109 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 6110 * +---------------------+----------+ | o L2ARC eligible 6111 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 6112 * +---------------------+----------+ | 6113 * 15.9 Gbytes ^ 32 Mbytes | 6114 * headroom | 6115 * l2arc_feed_thread() 6116 * | 6117 * l2arc write hand <--[oooo]--' 6118 * | 8 Mbyte 6119 * | write max 6120 * V 6121 * +==============================+ 6122 * L2ARC dev |####|#|###|###| |####| ... | 6123 * +==============================+ 6124 * 32 Gbytes 6125 * 6126 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 6127 * evicted, then the L2ARC has cached a buffer much sooner than it probably 6128 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 6129 * safe to say that this is an uncommon case, since buffers at the end of 6130 * the ARC lists have moved there due to inactivity. 6131 * 6132 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 6133 * then the L2ARC simply misses copying some buffers. This serves as a 6134 * pressure valve to prevent heavy read workloads from both stalling the ARC 6135 * with waits and clogging the L2ARC with writes. This also helps prevent 6136 * the potential for the L2ARC to churn if it attempts to cache content too 6137 * quickly, such as during backups of the entire pool. 6138 * 6139 * 5. After system boot and before the ARC has filled main memory, there are 6140 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 6141 * lists can remain mostly static. Instead of searching from tail of these 6142 * lists as pictured, the l2arc_feed_thread() will search from the list heads 6143 * for eligible buffers, greatly increasing its chance of finding them. 6144 * 6145 * The L2ARC device write speed is also boosted during this time so that 6146 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 6147 * there are no L2ARC reads, and no fear of degrading read performance 6148 * through increased writes. 6149 * 6150 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 6151 * the vdev queue can aggregate them into larger and fewer writes. Each 6152 * device is written to in a rotor fashion, sweeping writes through 6153 * available space then repeating. 6154 * 6155 * 7. The L2ARC does not store dirty content. It never needs to flush 6156 * write buffers back to disk based storage. 6157 * 6158 * 8. If an ARC buffer is written (and dirtied) which also exists in the 6159 * L2ARC, the now stale L2ARC buffer is immediately dropped. 6160 * 6161 * The performance of the L2ARC can be tweaked by a number of tunables, which 6162 * may be necessary for different workloads: 6163 * 6164 * l2arc_write_max max write bytes per interval 6165 * l2arc_write_boost extra write bytes during device warmup 6166 * l2arc_noprefetch skip caching prefetched buffers 6167 * l2arc_headroom number of max device writes to precache 6168 * l2arc_headroom_boost when we find compressed buffers during ARC 6169 * scanning, we multiply headroom by this 6170 * percentage factor for the next scan cycle, 6171 * since more compressed buffers are likely to 6172 * be present 6173 * l2arc_feed_secs seconds between L2ARC writing 6174 * 6175 * Tunables may be removed or added as future performance improvements are 6176 * integrated, and also may become zpool properties. 6177 * 6178 * There are three key functions that control how the L2ARC warms up: 6179 * 6180 * l2arc_write_eligible() check if a buffer is eligible to cache 6181 * l2arc_write_size() calculate how much to write 6182 * l2arc_write_interval() calculate sleep delay between writes 6183 * 6184 * These three functions determine what to write, how much, and how quickly 6185 * to send writes. 6186 */ 6187 6188 static boolean_t 6189 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 6190 { 6191 /* 6192 * A buffer is *not* eligible for the L2ARC if it: 6193 * 1. belongs to a different spa. 6194 * 2. is already cached on the L2ARC. 6195 * 3. has an I/O in progress (it may be an incomplete read). 6196 * 4. is flagged not eligible (zfs property). 6197 */ 6198 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 6199 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 6200 return (B_FALSE); 6201 6202 return (B_TRUE); 6203 } 6204 6205 static uint64_t 6206 l2arc_write_size(void) 6207 { 6208 uint64_t size; 6209 6210 /* 6211 * Make sure our globals have meaningful values in case the user 6212 * altered them. 6213 */ 6214 size = l2arc_write_max; 6215 if (size == 0) { 6216 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 6217 "be greater than zero, resetting it to the default (%d)", 6218 L2ARC_WRITE_SIZE); 6219 size = l2arc_write_max = L2ARC_WRITE_SIZE; 6220 } 6221 6222 if (arc_warm == B_FALSE) 6223 size += l2arc_write_boost; 6224 6225 return (size); 6226 6227 } 6228 6229 static clock_t 6230 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 6231 { 6232 clock_t interval, next, now; 6233 6234 /* 6235 * If the ARC lists are busy, increase our write rate; if the 6236 * lists are stale, idle back. This is achieved by checking 6237 * how much we previously wrote - if it was more than half of 6238 * what we wanted, schedule the next write much sooner. 6239 */ 6240 if (l2arc_feed_again && wrote > (wanted / 2)) 6241 interval = (hz * l2arc_feed_min_ms) / 1000; 6242 else 6243 interval = hz * l2arc_feed_secs; 6244 6245 now = ddi_get_lbolt(); 6246 next = MAX(now, MIN(now + interval, began + interval)); 6247 6248 return (next); 6249 } 6250 6251 /* 6252 * Cycle through L2ARC devices. This is how L2ARC load balances. 6253 * If a device is returned, this also returns holding the spa config lock. 6254 */ 6255 static l2arc_dev_t * 6256 l2arc_dev_get_next(void) 6257 { 6258 l2arc_dev_t *first, *next = NULL; 6259 6260 /* 6261 * Lock out the removal of spas (spa_namespace_lock), then removal 6262 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 6263 * both locks will be dropped and a spa config lock held instead. 6264 */ 6265 mutex_enter(&spa_namespace_lock); 6266 mutex_enter(&l2arc_dev_mtx); 6267 6268 /* if there are no vdevs, there is nothing to do */ 6269 if (l2arc_ndev == 0) 6270 goto out; 6271 6272 first = NULL; 6273 next = l2arc_dev_last; 6274 do { 6275 /* loop around the list looking for a non-faulted vdev */ 6276 if (next == NULL) { 6277 next = list_head(l2arc_dev_list); 6278 } else { 6279 next = list_next(l2arc_dev_list, next); 6280 if (next == NULL) 6281 next = list_head(l2arc_dev_list); 6282 } 6283 6284 /* if we have come back to the start, bail out */ 6285 if (first == NULL) 6286 first = next; 6287 else if (next == first) 6288 break; 6289 6290 } while (vdev_is_dead(next->l2ad_vdev)); 6291 6292 /* if we were unable to find any usable vdevs, return NULL */ 6293 if (vdev_is_dead(next->l2ad_vdev)) 6294 next = NULL; 6295 6296 l2arc_dev_last = next; 6297 6298 out: 6299 mutex_exit(&l2arc_dev_mtx); 6300 6301 /* 6302 * Grab the config lock to prevent the 'next' device from being 6303 * removed while we are writing to it. 6304 */ 6305 if (next != NULL) 6306 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 6307 mutex_exit(&spa_namespace_lock); 6308 6309 return (next); 6310 } 6311 6312 /* 6313 * Free buffers that were tagged for destruction. 6314 */ 6315 static void 6316 l2arc_do_free_on_write() 6317 { 6318 list_t *buflist; 6319 l2arc_data_free_t *df, *df_prev; 6320 6321 mutex_enter(&l2arc_free_on_write_mtx); 6322 buflist = l2arc_free_on_write; 6323 6324 for (df = list_tail(buflist); df; df = df_prev) { 6325 df_prev = list_prev(buflist, df); 6326 ASSERT3P(df->l2df_data, !=, NULL); 6327 if (df->l2df_type == ARC_BUFC_METADATA) { 6328 zio_buf_free(df->l2df_data, df->l2df_size); 6329 } else { 6330 ASSERT(df->l2df_type == ARC_BUFC_DATA); 6331 zio_data_buf_free(df->l2df_data, df->l2df_size); 6332 } 6333 list_remove(buflist, df); 6334 kmem_free(df, sizeof (l2arc_data_free_t)); 6335 } 6336 6337 mutex_exit(&l2arc_free_on_write_mtx); 6338 } 6339 6340 /* 6341 * A write to a cache device has completed. Update all headers to allow 6342 * reads from these buffers to begin. 6343 */ 6344 static void 6345 l2arc_write_done(zio_t *zio) 6346 { 6347 l2arc_write_callback_t *cb; 6348 l2arc_dev_t *dev; 6349 list_t *buflist; 6350 arc_buf_hdr_t *head, *hdr, *hdr_prev; 6351 kmutex_t *hash_lock; 6352 int64_t bytes_dropped = 0; 6353 6354 cb = zio->io_private; 6355 ASSERT3P(cb, !=, NULL); 6356 dev = cb->l2wcb_dev; 6357 ASSERT3P(dev, !=, NULL); 6358 head = cb->l2wcb_head; 6359 ASSERT3P(head, !=, NULL); 6360 buflist = &dev->l2ad_buflist; 6361 ASSERT3P(buflist, !=, NULL); 6362 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 6363 l2arc_write_callback_t *, cb); 6364 6365 if (zio->io_error != 0) 6366 ARCSTAT_BUMP(arcstat_l2_writes_error); 6367 6368 /* 6369 * All writes completed, or an error was hit. 6370 */ 6371 top: 6372 mutex_enter(&dev->l2ad_mtx); 6373 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 6374 hdr_prev = list_prev(buflist, hdr); 6375 6376 hash_lock = HDR_LOCK(hdr); 6377 6378 /* 6379 * We cannot use mutex_enter or else we can deadlock 6380 * with l2arc_write_buffers (due to swapping the order 6381 * the hash lock and l2ad_mtx are taken). 6382 */ 6383 if (!mutex_tryenter(hash_lock)) { 6384 /* 6385 * Missed the hash lock. We must retry so we 6386 * don't leave the ARC_FLAG_L2_WRITING bit set. 6387 */ 6388 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 6389 6390 /* 6391 * We don't want to rescan the headers we've 6392 * already marked as having been written out, so 6393 * we reinsert the head node so we can pick up 6394 * where we left off. 6395 */ 6396 list_remove(buflist, head); 6397 list_insert_after(buflist, hdr, head); 6398 6399 mutex_exit(&dev->l2ad_mtx); 6400 6401 /* 6402 * We wait for the hash lock to become available 6403 * to try and prevent busy waiting, and increase 6404 * the chance we'll be able to acquire the lock 6405 * the next time around. 6406 */ 6407 mutex_enter(hash_lock); 6408 mutex_exit(hash_lock); 6409 goto top; 6410 } 6411 6412 /* 6413 * We could not have been moved into the arc_l2c_only 6414 * state while in-flight due to our ARC_FLAG_L2_WRITING 6415 * bit being set. Let's just ensure that's being enforced. 6416 */ 6417 ASSERT(HDR_HAS_L1HDR(hdr)); 6418 6419 if (zio->io_error != 0) { 6420 /* 6421 * Error - drop L2ARC entry. 6422 */ 6423 list_remove(buflist, hdr); 6424 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 6425 6426 ARCSTAT_INCR(arcstat_l2_asize, -arc_hdr_size(hdr)); 6427 ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr)); 6428 6429 bytes_dropped += arc_hdr_size(hdr); 6430 (void) refcount_remove_many(&dev->l2ad_alloc, 6431 arc_hdr_size(hdr), hdr); 6432 } 6433 6434 /* 6435 * Allow ARC to begin reads and ghost list evictions to 6436 * this L2ARC entry. 6437 */ 6438 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 6439 6440 mutex_exit(hash_lock); 6441 } 6442 6443 atomic_inc_64(&l2arc_writes_done); 6444 list_remove(buflist, head); 6445 ASSERT(!HDR_HAS_L1HDR(head)); 6446 kmem_cache_free(hdr_l2only_cache, head); 6447 mutex_exit(&dev->l2ad_mtx); 6448 6449 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 6450 6451 l2arc_do_free_on_write(); 6452 6453 kmem_free(cb, sizeof (l2arc_write_callback_t)); 6454 } 6455 6456 /* 6457 * A read to a cache device completed. Validate buffer contents before 6458 * handing over to the regular ARC routines. 6459 */ 6460 static void 6461 l2arc_read_done(zio_t *zio) 6462 { 6463 l2arc_read_callback_t *cb; 6464 arc_buf_hdr_t *hdr; 6465 kmutex_t *hash_lock; 6466 boolean_t valid_cksum; 6467 6468 ASSERT3P(zio->io_vd, !=, NULL); 6469 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 6470 6471 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 6472 6473 cb = zio->io_private; 6474 ASSERT3P(cb, !=, NULL); 6475 hdr = cb->l2rcb_hdr; 6476 ASSERT3P(hdr, !=, NULL); 6477 6478 hash_lock = HDR_LOCK(hdr); 6479 mutex_enter(hash_lock); 6480 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6481 6482 ASSERT3P(zio->io_data, !=, NULL); 6483 6484 /* 6485 * Check this survived the L2ARC journey. 6486 */ 6487 ASSERT3P(zio->io_data, ==, hdr->b_l1hdr.b_pdata); 6488 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 6489 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 6490 6491 valid_cksum = arc_cksum_is_equal(hdr, zio); 6492 if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 6493 mutex_exit(hash_lock); 6494 zio->io_private = hdr; 6495 arc_read_done(zio); 6496 } else { 6497 mutex_exit(hash_lock); 6498 /* 6499 * Buffer didn't survive caching. Increment stats and 6500 * reissue to the original storage device. 6501 */ 6502 if (zio->io_error != 0) { 6503 ARCSTAT_BUMP(arcstat_l2_io_error); 6504 } else { 6505 zio->io_error = SET_ERROR(EIO); 6506 } 6507 if (!valid_cksum) 6508 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 6509 6510 /* 6511 * If there's no waiter, issue an async i/o to the primary 6512 * storage now. If there *is* a waiter, the caller must 6513 * issue the i/o in a context where it's OK to block. 6514 */ 6515 if (zio->io_waiter == NULL) { 6516 zio_t *pio = zio_unique_parent(zio); 6517 6518 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 6519 6520 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp, 6521 hdr->b_l1hdr.b_pdata, zio->io_size, arc_read_done, 6522 hdr, zio->io_priority, cb->l2rcb_flags, 6523 &cb->l2rcb_zb)); 6524 } 6525 } 6526 6527 kmem_free(cb, sizeof (l2arc_read_callback_t)); 6528 } 6529 6530 /* 6531 * This is the list priority from which the L2ARC will search for pages to 6532 * cache. This is used within loops (0..3) to cycle through lists in the 6533 * desired order. This order can have a significant effect on cache 6534 * performance. 6535 * 6536 * Currently the metadata lists are hit first, MFU then MRU, followed by 6537 * the data lists. This function returns a locked list, and also returns 6538 * the lock pointer. 6539 */ 6540 static multilist_sublist_t * 6541 l2arc_sublist_lock(int list_num) 6542 { 6543 multilist_t *ml = NULL; 6544 unsigned int idx; 6545 6546 ASSERT(list_num >= 0 && list_num <= 3); 6547 6548 switch (list_num) { 6549 case 0: 6550 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 6551 break; 6552 case 1: 6553 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 6554 break; 6555 case 2: 6556 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 6557 break; 6558 case 3: 6559 ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; 6560 break; 6561 } 6562 6563 /* 6564 * Return a randomly-selected sublist. This is acceptable 6565 * because the caller feeds only a little bit of data for each 6566 * call (8MB). Subsequent calls will result in different 6567 * sublists being selected. 6568 */ 6569 idx = multilist_get_random_index(ml); 6570 return (multilist_sublist_lock(ml, idx)); 6571 } 6572 6573 /* 6574 * Evict buffers from the device write hand to the distance specified in 6575 * bytes. This distance may span populated buffers, it may span nothing. 6576 * This is clearing a region on the L2ARC device ready for writing. 6577 * If the 'all' boolean is set, every buffer is evicted. 6578 */ 6579 static void 6580 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 6581 { 6582 list_t *buflist; 6583 arc_buf_hdr_t *hdr, *hdr_prev; 6584 kmutex_t *hash_lock; 6585 uint64_t taddr; 6586 6587 buflist = &dev->l2ad_buflist; 6588 6589 if (!all && dev->l2ad_first) { 6590 /* 6591 * This is the first sweep through the device. There is 6592 * nothing to evict. 6593 */ 6594 return; 6595 } 6596 6597 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 6598 /* 6599 * When nearing the end of the device, evict to the end 6600 * before the device write hand jumps to the start. 6601 */ 6602 taddr = dev->l2ad_end; 6603 } else { 6604 taddr = dev->l2ad_hand + distance; 6605 } 6606 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 6607 uint64_t, taddr, boolean_t, all); 6608 6609 top: 6610 mutex_enter(&dev->l2ad_mtx); 6611 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 6612 hdr_prev = list_prev(buflist, hdr); 6613 6614 hash_lock = HDR_LOCK(hdr); 6615 6616 /* 6617 * We cannot use mutex_enter or else we can deadlock 6618 * with l2arc_write_buffers (due to swapping the order 6619 * the hash lock and l2ad_mtx are taken). 6620 */ 6621 if (!mutex_tryenter(hash_lock)) { 6622 /* 6623 * Missed the hash lock. Retry. 6624 */ 6625 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 6626 mutex_exit(&dev->l2ad_mtx); 6627 mutex_enter(hash_lock); 6628 mutex_exit(hash_lock); 6629 goto top; 6630 } 6631 6632 if (HDR_L2_WRITE_HEAD(hdr)) { 6633 /* 6634 * We hit a write head node. Leave it for 6635 * l2arc_write_done(). 6636 */ 6637 list_remove(buflist, hdr); 6638 mutex_exit(hash_lock); 6639 continue; 6640 } 6641 6642 if (!all && HDR_HAS_L2HDR(hdr) && 6643 (hdr->b_l2hdr.b_daddr > taddr || 6644 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 6645 /* 6646 * We've evicted to the target address, 6647 * or the end of the device. 6648 */ 6649 mutex_exit(hash_lock); 6650 break; 6651 } 6652 6653 ASSERT(HDR_HAS_L2HDR(hdr)); 6654 if (!HDR_HAS_L1HDR(hdr)) { 6655 ASSERT(!HDR_L2_READING(hdr)); 6656 /* 6657 * This doesn't exist in the ARC. Destroy. 6658 * arc_hdr_destroy() will call list_remove() 6659 * and decrement arcstat_l2_size. 6660 */ 6661 arc_change_state(arc_anon, hdr, hash_lock); 6662 arc_hdr_destroy(hdr); 6663 } else { 6664 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 6665 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 6666 /* 6667 * Invalidate issued or about to be issued 6668 * reads, since we may be about to write 6669 * over this location. 6670 */ 6671 if (HDR_L2_READING(hdr)) { 6672 ARCSTAT_BUMP(arcstat_l2_evict_reading); 6673 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 6674 } 6675 6676 /* Ensure this header has finished being written */ 6677 ASSERT(!HDR_L2_WRITING(hdr)); 6678 6679 arc_hdr_l2hdr_destroy(hdr); 6680 } 6681 mutex_exit(hash_lock); 6682 } 6683 mutex_exit(&dev->l2ad_mtx); 6684 } 6685 6686 /* 6687 * Find and write ARC buffers to the L2ARC device. 6688 * 6689 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 6690 * for reading until they have completed writing. 6691 * The headroom_boost is an in-out parameter used to maintain headroom boost 6692 * state between calls to this function. 6693 * 6694 * Returns the number of bytes actually written (which may be smaller than 6695 * the delta by which the device hand has changed due to alignment). 6696 */ 6697 static uint64_t 6698 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 6699 { 6700 arc_buf_hdr_t *hdr, *hdr_prev, *head; 6701 uint64_t write_asize, write_psize, write_sz, headroom; 6702 boolean_t full; 6703 l2arc_write_callback_t *cb; 6704 zio_t *pio, *wzio; 6705 uint64_t guid = spa_load_guid(spa); 6706 6707 ASSERT3P(dev->l2ad_vdev, !=, NULL); 6708 6709 pio = NULL; 6710 write_sz = write_asize = write_psize = 0; 6711 full = B_FALSE; 6712 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 6713 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 6714 6715 /* 6716 * Copy buffers for L2ARC writing. 6717 */ 6718 for (int try = 0; try <= 3; try++) { 6719 multilist_sublist_t *mls = l2arc_sublist_lock(try); 6720 uint64_t passed_sz = 0; 6721 6722 /* 6723 * L2ARC fast warmup. 6724 * 6725 * Until the ARC is warm and starts to evict, read from the 6726 * head of the ARC lists rather than the tail. 6727 */ 6728 if (arc_warm == B_FALSE) 6729 hdr = multilist_sublist_head(mls); 6730 else 6731 hdr = multilist_sublist_tail(mls); 6732 6733 headroom = target_sz * l2arc_headroom; 6734 if (zfs_compressed_arc_enabled) 6735 headroom = (headroom * l2arc_headroom_boost) / 100; 6736 6737 for (; hdr; hdr = hdr_prev) { 6738 kmutex_t *hash_lock; 6739 6740 if (arc_warm == B_FALSE) 6741 hdr_prev = multilist_sublist_next(mls, hdr); 6742 else 6743 hdr_prev = multilist_sublist_prev(mls, hdr); 6744 6745 hash_lock = HDR_LOCK(hdr); 6746 if (!mutex_tryenter(hash_lock)) { 6747 /* 6748 * Skip this buffer rather than waiting. 6749 */ 6750 continue; 6751 } 6752 6753 passed_sz += HDR_GET_LSIZE(hdr); 6754 if (passed_sz > headroom) { 6755 /* 6756 * Searched too far. 6757 */ 6758 mutex_exit(hash_lock); 6759 break; 6760 } 6761 6762 if (!l2arc_write_eligible(guid, hdr)) { 6763 mutex_exit(hash_lock); 6764 continue; 6765 } 6766 6767 if ((write_asize + HDR_GET_LSIZE(hdr)) > target_sz) { 6768 full = B_TRUE; 6769 mutex_exit(hash_lock); 6770 break; 6771 } 6772 6773 if (pio == NULL) { 6774 /* 6775 * Insert a dummy header on the buflist so 6776 * l2arc_write_done() can find where the 6777 * write buffers begin without searching. 6778 */ 6779 mutex_enter(&dev->l2ad_mtx); 6780 list_insert_head(&dev->l2ad_buflist, head); 6781 mutex_exit(&dev->l2ad_mtx); 6782 6783 cb = kmem_alloc( 6784 sizeof (l2arc_write_callback_t), KM_SLEEP); 6785 cb->l2wcb_dev = dev; 6786 cb->l2wcb_head = head; 6787 pio = zio_root(spa, l2arc_write_done, cb, 6788 ZIO_FLAG_CANFAIL); 6789 } 6790 6791 hdr->b_l2hdr.b_dev = dev; 6792 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 6793 arc_hdr_set_flags(hdr, 6794 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR); 6795 6796 mutex_enter(&dev->l2ad_mtx); 6797 list_insert_head(&dev->l2ad_buflist, hdr); 6798 mutex_exit(&dev->l2ad_mtx); 6799 6800 /* 6801 * We rely on the L1 portion of the header below, so 6802 * it's invalid for this header to have been evicted out 6803 * of the ghost cache, prior to being written out. The 6804 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 6805 */ 6806 ASSERT(HDR_HAS_L1HDR(hdr)); 6807 6808 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 6809 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 6810 ASSERT3U(arc_hdr_size(hdr), >, 0); 6811 uint64_t size = arc_hdr_size(hdr); 6812 6813 (void) refcount_add_many(&dev->l2ad_alloc, size, hdr); 6814 6815 /* 6816 * Normally the L2ARC can use the hdr's data, but if 6817 * we're sharing data between the hdr and one of its 6818 * bufs, L2ARC needs its own copy of the data so that 6819 * the ZIO below can't race with the buf consumer. To 6820 * ensure that this copy will be available for the 6821 * lifetime of the ZIO and be cleaned up afterwards, we 6822 * add it to the l2arc_free_on_write queue. 6823 */ 6824 void *to_write; 6825 if (!HDR_SHARED_DATA(hdr)) { 6826 to_write = hdr->b_l1hdr.b_pdata; 6827 } else { 6828 arc_buf_contents_t type = arc_buf_type(hdr); 6829 if (type == ARC_BUFC_METADATA) { 6830 to_write = zio_buf_alloc(size); 6831 } else { 6832 ASSERT3U(type, ==, ARC_BUFC_DATA); 6833 to_write = zio_data_buf_alloc(size); 6834 } 6835 6836 bcopy(hdr->b_l1hdr.b_pdata, to_write, size); 6837 l2arc_free_data_on_write(to_write, size, type); 6838 } 6839 wzio = zio_write_phys(pio, dev->l2ad_vdev, 6840 hdr->b_l2hdr.b_daddr, size, to_write, 6841 ZIO_CHECKSUM_OFF, NULL, hdr, 6842 ZIO_PRIORITY_ASYNC_WRITE, 6843 ZIO_FLAG_CANFAIL, B_FALSE); 6844 6845 write_sz += HDR_GET_LSIZE(hdr); 6846 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 6847 zio_t *, wzio); 6848 6849 write_asize += size; 6850 /* 6851 * Keep the clock hand suitably device-aligned. 6852 */ 6853 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 6854 size); 6855 write_psize += asize; 6856 dev->l2ad_hand += asize; 6857 6858 mutex_exit(hash_lock); 6859 6860 (void) zio_nowait(wzio); 6861 } 6862 6863 multilist_sublist_unlock(mls); 6864 6865 if (full == B_TRUE) 6866 break; 6867 } 6868 6869 /* No buffers selected for writing? */ 6870 if (pio == NULL) { 6871 ASSERT0(write_sz); 6872 ASSERT(!HDR_HAS_L1HDR(head)); 6873 kmem_cache_free(hdr_l2only_cache, head); 6874 return (0); 6875 } 6876 6877 ASSERT3U(write_asize, <=, target_sz); 6878 ARCSTAT_BUMP(arcstat_l2_writes_sent); 6879 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize); 6880 ARCSTAT_INCR(arcstat_l2_size, write_sz); 6881 ARCSTAT_INCR(arcstat_l2_asize, write_asize); 6882 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0); 6883 6884 /* 6885 * Bump device hand to the device start if it is approaching the end. 6886 * l2arc_evict() will already have evicted ahead for this case. 6887 */ 6888 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 6889 dev->l2ad_hand = dev->l2ad_start; 6890 dev->l2ad_first = B_FALSE; 6891 } 6892 6893 dev->l2ad_writing = B_TRUE; 6894 (void) zio_wait(pio); 6895 dev->l2ad_writing = B_FALSE; 6896 6897 return (write_asize); 6898 } 6899 6900 /* 6901 * This thread feeds the L2ARC at regular intervals. This is the beating 6902 * heart of the L2ARC. 6903 */ 6904 static void 6905 l2arc_feed_thread(void) 6906 { 6907 callb_cpr_t cpr; 6908 l2arc_dev_t *dev; 6909 spa_t *spa; 6910 uint64_t size, wrote; 6911 clock_t begin, next = ddi_get_lbolt(); 6912 6913 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 6914 6915 mutex_enter(&l2arc_feed_thr_lock); 6916 6917 while (l2arc_thread_exit == 0) { 6918 CALLB_CPR_SAFE_BEGIN(&cpr); 6919 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 6920 next); 6921 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 6922 next = ddi_get_lbolt() + hz; 6923 6924 /* 6925 * Quick check for L2ARC devices. 6926 */ 6927 mutex_enter(&l2arc_dev_mtx); 6928 if (l2arc_ndev == 0) { 6929 mutex_exit(&l2arc_dev_mtx); 6930 continue; 6931 } 6932 mutex_exit(&l2arc_dev_mtx); 6933 begin = ddi_get_lbolt(); 6934 6935 /* 6936 * This selects the next l2arc device to write to, and in 6937 * doing so the next spa to feed from: dev->l2ad_spa. This 6938 * will return NULL if there are now no l2arc devices or if 6939 * they are all faulted. 6940 * 6941 * If a device is returned, its spa's config lock is also 6942 * held to prevent device removal. l2arc_dev_get_next() 6943 * will grab and release l2arc_dev_mtx. 6944 */ 6945 if ((dev = l2arc_dev_get_next()) == NULL) 6946 continue; 6947 6948 spa = dev->l2ad_spa; 6949 ASSERT3P(spa, !=, NULL); 6950 6951 /* 6952 * If the pool is read-only then force the feed thread to 6953 * sleep a little longer. 6954 */ 6955 if (!spa_writeable(spa)) { 6956 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 6957 spa_config_exit(spa, SCL_L2ARC, dev); 6958 continue; 6959 } 6960 6961 /* 6962 * Avoid contributing to memory pressure. 6963 */ 6964 if (arc_reclaim_needed()) { 6965 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 6966 spa_config_exit(spa, SCL_L2ARC, dev); 6967 continue; 6968 } 6969 6970 ARCSTAT_BUMP(arcstat_l2_feeds); 6971 6972 size = l2arc_write_size(); 6973 6974 /* 6975 * Evict L2ARC buffers that will be overwritten. 6976 */ 6977 l2arc_evict(dev, size, B_FALSE); 6978 6979 /* 6980 * Write ARC buffers. 6981 */ 6982 wrote = l2arc_write_buffers(spa, dev, size); 6983 6984 /* 6985 * Calculate interval between writes. 6986 */ 6987 next = l2arc_write_interval(begin, size, wrote); 6988 spa_config_exit(spa, SCL_L2ARC, dev); 6989 } 6990 6991 l2arc_thread_exit = 0; 6992 cv_broadcast(&l2arc_feed_thr_cv); 6993 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 6994 thread_exit(); 6995 } 6996 6997 boolean_t 6998 l2arc_vdev_present(vdev_t *vd) 6999 { 7000 l2arc_dev_t *dev; 7001 7002 mutex_enter(&l2arc_dev_mtx); 7003 for (dev = list_head(l2arc_dev_list); dev != NULL; 7004 dev = list_next(l2arc_dev_list, dev)) { 7005 if (dev->l2ad_vdev == vd) 7006 break; 7007 } 7008 mutex_exit(&l2arc_dev_mtx); 7009 7010 return (dev != NULL); 7011 } 7012 7013 /* 7014 * Add a vdev for use by the L2ARC. By this point the spa has already 7015 * validated the vdev and opened it. 7016 */ 7017 void 7018 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 7019 { 7020 l2arc_dev_t *adddev; 7021 7022 ASSERT(!l2arc_vdev_present(vd)); 7023 7024 /* 7025 * Create a new l2arc device entry. 7026 */ 7027 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 7028 adddev->l2ad_spa = spa; 7029 adddev->l2ad_vdev = vd; 7030 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 7031 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 7032 adddev->l2ad_hand = adddev->l2ad_start; 7033 adddev->l2ad_first = B_TRUE; 7034 adddev->l2ad_writing = B_FALSE; 7035 7036 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 7037 /* 7038 * This is a list of all ARC buffers that are still valid on the 7039 * device. 7040 */ 7041 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 7042 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 7043 7044 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 7045 refcount_create(&adddev->l2ad_alloc); 7046 7047 /* 7048 * Add device to global list 7049 */ 7050 mutex_enter(&l2arc_dev_mtx); 7051 list_insert_head(l2arc_dev_list, adddev); 7052 atomic_inc_64(&l2arc_ndev); 7053 mutex_exit(&l2arc_dev_mtx); 7054 } 7055 7056 /* 7057 * Remove a vdev from the L2ARC. 7058 */ 7059 void 7060 l2arc_remove_vdev(vdev_t *vd) 7061 { 7062 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 7063 7064 /* 7065 * Find the device by vdev 7066 */ 7067 mutex_enter(&l2arc_dev_mtx); 7068 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 7069 nextdev = list_next(l2arc_dev_list, dev); 7070 if (vd == dev->l2ad_vdev) { 7071 remdev = dev; 7072 break; 7073 } 7074 } 7075 ASSERT3P(remdev, !=, NULL); 7076 7077 /* 7078 * Remove device from global list 7079 */ 7080 list_remove(l2arc_dev_list, remdev); 7081 l2arc_dev_last = NULL; /* may have been invalidated */ 7082 atomic_dec_64(&l2arc_ndev); 7083 mutex_exit(&l2arc_dev_mtx); 7084 7085 /* 7086 * Clear all buflists and ARC references. L2ARC device flush. 7087 */ 7088 l2arc_evict(remdev, 0, B_TRUE); 7089 list_destroy(&remdev->l2ad_buflist); 7090 mutex_destroy(&remdev->l2ad_mtx); 7091 refcount_destroy(&remdev->l2ad_alloc); 7092 kmem_free(remdev, sizeof (l2arc_dev_t)); 7093 } 7094 7095 void 7096 l2arc_init(void) 7097 { 7098 l2arc_thread_exit = 0; 7099 l2arc_ndev = 0; 7100 l2arc_writes_sent = 0; 7101 l2arc_writes_done = 0; 7102 7103 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 7104 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 7105 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 7106 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 7107 7108 l2arc_dev_list = &L2ARC_dev_list; 7109 l2arc_free_on_write = &L2ARC_free_on_write; 7110 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 7111 offsetof(l2arc_dev_t, l2ad_node)); 7112 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 7113 offsetof(l2arc_data_free_t, l2df_list_node)); 7114 } 7115 7116 void 7117 l2arc_fini(void) 7118 { 7119 /* 7120 * This is called from dmu_fini(), which is called from spa_fini(); 7121 * Because of this, we can assume that all l2arc devices have 7122 * already been removed when the pools themselves were removed. 7123 */ 7124 7125 l2arc_do_free_on_write(); 7126 7127 mutex_destroy(&l2arc_feed_thr_lock); 7128 cv_destroy(&l2arc_feed_thr_cv); 7129 mutex_destroy(&l2arc_dev_mtx); 7130 mutex_destroy(&l2arc_free_on_write_mtx); 7131 7132 list_destroy(l2arc_dev_list); 7133 list_destroy(l2arc_free_on_write); 7134 } 7135 7136 void 7137 l2arc_start(void) 7138 { 7139 if (!(spa_mode_global & FWRITE)) 7140 return; 7141 7142 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 7143 TS_RUN, minclsyspri); 7144 } 7145 7146 void 7147 l2arc_stop(void) 7148 { 7149 if (!(spa_mode_global & FWRITE)) 7150 return; 7151 7152 mutex_enter(&l2arc_feed_thr_lock); 7153 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 7154 l2arc_thread_exit = 1; 7155 while (l2arc_thread_exit != 0) 7156 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 7157 mutex_exit(&l2arc_feed_thr_lock); 7158 } 7159