1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * DVA-based Adjustable Replacement Cache 31 * 32 * While much of the theory of operation used here is 33 * based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slows the flow of new data 52 * into the cache until we can make space available. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory pressure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefore exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefore choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() interface 80 * uses method 1, while the internal ARC algorithms for 81 * adjusting the cache use method 2. We therefore provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * ARC list locks. 84 * 85 * Buffers do not have their own mutexes, rather they rely on the 86 * hash table mutexes for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexes). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each ARC state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an ARC list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the active state mutex must be held before the ghost state mutex. 101 * 102 * Note that the majority of the performance stats are manipulated 103 * with atomic operations. 104 * 105 * The L2ARC uses the l2ad_mtx on each vdev for the following: 106 * 107 * - L2ARC buflist creation 108 * - L2ARC buflist eviction 109 * - L2ARC write completion, which walks L2ARC buflists 110 * - ARC header destruction, as it removes from L2ARC buflists 111 * - ARC header release, as it removes from L2ARC buflists 112 */ 113 114 /* 115 * ARC operation: 116 * 117 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 118 * This structure can point either to a block that is still in the cache or to 119 * one that is only accessible in an L2 ARC device, or it can provide 120 * information about a block that was recently evicted. If a block is 121 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 122 * information to retrieve it from the L2ARC device. This information is 123 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 124 * that is in this state cannot access the data directly. 125 * 126 * Blocks that are actively being referenced or have not been evicted 127 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 128 * the arc_buf_hdr_t that will point to the data block in memory. A block can 129 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 130 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 131 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 132 * 133 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 134 * ability to store the physical data (b_pabd) associated with the DVA of the 135 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 136 * it will match its on-disk compression characteristics. This behavior can be 137 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 138 * compressed ARC functionality is disabled, the b_pabd will point to an 139 * uncompressed version of the on-disk data. 140 * 141 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 142 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 143 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 144 * consumer. The ARC will provide references to this data and will keep it 145 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 146 * data block and will evict any arc_buf_t that is no longer referenced. The 147 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 148 * "overhead_size" kstat. 149 * 150 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 151 * compressed form. The typical case is that consumers will want uncompressed 152 * data, and when that happens a new data buffer is allocated where the data is 153 * decompressed for them to use. Currently the only consumer who wants 154 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 155 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 156 * with the arc_buf_hdr_t. 157 * 158 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 159 * first one is owned by a compressed send consumer (and therefore references 160 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 161 * used by any other consumer (and has its own uncompressed copy of the data 162 * buffer). 163 * 164 * arc_buf_hdr_t 165 * +-----------+ 166 * | fields | 167 * | common to | 168 * | L1- and | 169 * | L2ARC | 170 * +-----------+ 171 * | l2arc_buf_hdr_t 172 * | | 173 * +-----------+ 174 * | l1arc_buf_hdr_t 175 * | | arc_buf_t 176 * | b_buf +------------>+-----------+ arc_buf_t 177 * | b_pabd +-+ |b_next +---->+-----------+ 178 * +-----------+ | |-----------| |b_next +-->NULL 179 * | |b_comp = T | +-----------+ 180 * | |b_data +-+ |b_comp = F | 181 * | +-----------+ | |b_data +-+ 182 * +->+------+ | +-----------+ | 183 * compressed | | | | 184 * data | |<--------------+ | uncompressed 185 * +------+ compressed, | data 186 * shared +-->+------+ 187 * data | | 188 * | | 189 * +------+ 190 * 191 * When a consumer reads a block, the ARC must first look to see if the 192 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 193 * arc_buf_t and either copies uncompressed data into a new data buffer from an 194 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 195 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 196 * hdr is compressed and the desired compression characteristics of the 197 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 198 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 199 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 200 * be anywhere in the hdr's list. 201 * 202 * The diagram below shows an example of an uncompressed ARC hdr that is 203 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 204 * the last element in the buf list): 205 * 206 * arc_buf_hdr_t 207 * +-----------+ 208 * | | 209 * | | 210 * | | 211 * +-----------+ 212 * l2arc_buf_hdr_t| | 213 * | | 214 * +-----------+ 215 * l1arc_buf_hdr_t| | 216 * | | arc_buf_t (shared) 217 * | b_buf +------------>+---------+ arc_buf_t 218 * | | |b_next +---->+---------+ 219 * | b_pabd +-+ |---------| |b_next +-->NULL 220 * +-----------+ | | | +---------+ 221 * | |b_data +-+ | | 222 * | +---------+ | |b_data +-+ 223 * +->+------+ | +---------+ | 224 * | | | | 225 * uncompressed | | | | 226 * data +------+ | | 227 * ^ +->+------+ | 228 * | uncompressed | | | 229 * | data | | | 230 * | +------+ | 231 * +---------------------------------+ 232 * 233 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 234 * since the physical block is about to be rewritten. The new data contents 235 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 236 * it may compress the data before writing it to disk. The ARC will be called 237 * with the transformed data and will bcopy the transformed on-disk block into 238 * a newly allocated b_pabd. Writes are always done into buffers which have 239 * either been loaned (and hence are new and don't have other readers) or 240 * buffers which have been released (and hence have their own hdr, if there 241 * were originally other readers of the buf's original hdr). This ensures that 242 * the ARC only needs to update a single buf and its hdr after a write occurs. 243 * 244 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 245 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 246 * that when compressed ARC is enabled that the L2ARC blocks are identical 247 * to the on-disk block in the main data pool. This provides a significant 248 * advantage since the ARC can leverage the bp's checksum when reading from the 249 * L2ARC to determine if the contents are valid. However, if the compressed 250 * ARC is disabled, then the L2ARC's block must be transformed to look 251 * like the physical block in the main data pool before comparing the 252 * checksum and determining its validity. 253 */ 254 255 #include <sys/spa.h> 256 #include <sys/zio.h> 257 #include <sys/spa_impl.h> 258 #include <sys/zio_compress.h> 259 #include <sys/zio_checksum.h> 260 #include <sys/zfs_context.h> 261 #include <sys/arc.h> 262 #include <sys/refcount.h> 263 #include <sys/vdev.h> 264 #include <sys/vdev_impl.h> 265 #include <sys/dsl_pool.h> 266 #include <sys/zio_checksum.h> 267 #include <sys/multilist.h> 268 #include <sys/abd.h> 269 #ifdef _KERNEL 270 #include <sys/vmsystm.h> 271 #include <vm/anon.h> 272 #include <sys/fs/swapnode.h> 273 #include <sys/dnlc.h> 274 #endif 275 #include <sys/callb.h> 276 #include <sys/kstat.h> 277 #include <zfs_fletcher.h> 278 279 #ifndef _KERNEL 280 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 281 boolean_t arc_watch = B_FALSE; 282 int arc_procfd; 283 #endif 284 285 static kmutex_t arc_reclaim_lock; 286 static kcondvar_t arc_reclaim_thread_cv; 287 static boolean_t arc_reclaim_thread_exit; 288 static kcondvar_t arc_reclaim_waiters_cv; 289 290 uint_t arc_reduce_dnlc_percent = 3; 291 292 /* 293 * The number of headers to evict in arc_evict_state_impl() before 294 * dropping the sublist lock and evicting from another sublist. A lower 295 * value means we're more likely to evict the "correct" header (i.e. the 296 * oldest header in the arc state), but comes with higher overhead 297 * (i.e. more invocations of arc_evict_state_impl()). 298 */ 299 int zfs_arc_evict_batch_limit = 10; 300 301 /* number of seconds before growing cache again */ 302 static int arc_grow_retry = 60; 303 304 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 305 int zfs_arc_overflow_shift = 8; 306 307 /* shift of arc_c for calculating both min and max arc_p */ 308 static int arc_p_min_shift = 4; 309 310 /* log2(fraction of arc to reclaim) */ 311 static int arc_shrink_shift = 7; 312 313 /* 314 * log2(fraction of ARC which must be free to allow growing). 315 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 316 * when reading a new block into the ARC, we will evict an equal-sized block 317 * from the ARC. 318 * 319 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 320 * we will still not allow it to grow. 321 */ 322 int arc_no_grow_shift = 5; 323 324 325 /* 326 * minimum lifespan of a prefetch block in clock ticks 327 * (initialized in arc_init()) 328 */ 329 static int arc_min_prefetch_lifespan; 330 331 /* 332 * If this percent of memory is free, don't throttle. 333 */ 334 int arc_lotsfree_percent = 10; 335 336 static int arc_dead; 337 338 /* 339 * The arc has filled available memory and has now warmed up. 340 */ 341 static boolean_t arc_warm; 342 343 /* 344 * log2 fraction of the zio arena to keep free. 345 */ 346 int arc_zio_arena_free_shift = 2; 347 348 /* 349 * These tunables are for performance analysis. 350 */ 351 uint64_t zfs_arc_max; 352 uint64_t zfs_arc_min; 353 uint64_t zfs_arc_meta_limit = 0; 354 uint64_t zfs_arc_meta_min = 0; 355 int zfs_arc_grow_retry = 0; 356 int zfs_arc_shrink_shift = 0; 357 int zfs_arc_p_min_shift = 0; 358 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 359 360 boolean_t zfs_compressed_arc_enabled = B_TRUE; 361 362 /* 363 * Note that buffers can be in one of 6 states: 364 * ARC_anon - anonymous (discussed below) 365 * ARC_mru - recently used, currently cached 366 * ARC_mru_ghost - recentely used, no longer in cache 367 * ARC_mfu - frequently used, currently cached 368 * ARC_mfu_ghost - frequently used, no longer in cache 369 * ARC_l2c_only - exists in L2ARC but not other states 370 * When there are no active references to the buffer, they are 371 * are linked onto a list in one of these arc states. These are 372 * the only buffers that can be evicted or deleted. Within each 373 * state there are multiple lists, one for meta-data and one for 374 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 375 * etc.) is tracked separately so that it can be managed more 376 * explicitly: favored over data, limited explicitly. 377 * 378 * Anonymous buffers are buffers that are not associated with 379 * a DVA. These are buffers that hold dirty block copies 380 * before they are written to stable storage. By definition, 381 * they are "ref'd" and are considered part of arc_mru 382 * that cannot be freed. Generally, they will aquire a DVA 383 * as they are written and migrate onto the arc_mru list. 384 * 385 * The ARC_l2c_only state is for buffers that are in the second 386 * level ARC but no longer in any of the ARC_m* lists. The second 387 * level ARC itself may also contain buffers that are in any of 388 * the ARC_m* states - meaning that a buffer can exist in two 389 * places. The reason for the ARC_l2c_only state is to keep the 390 * buffer header in the hash table, so that reads that hit the 391 * second level ARC benefit from these fast lookups. 392 */ 393 394 typedef struct arc_state { 395 /* 396 * list of evictable buffers 397 */ 398 multilist_t *arcs_list[ARC_BUFC_NUMTYPES]; 399 /* 400 * total amount of evictable data in this state 401 */ 402 refcount_t arcs_esize[ARC_BUFC_NUMTYPES]; 403 /* 404 * total amount of data in this state; this includes: evictable, 405 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA. 406 */ 407 refcount_t arcs_size; 408 } arc_state_t; 409 410 /* The 6 states: */ 411 static arc_state_t ARC_anon; 412 static arc_state_t ARC_mru; 413 static arc_state_t ARC_mru_ghost; 414 static arc_state_t ARC_mfu; 415 static arc_state_t ARC_mfu_ghost; 416 static arc_state_t ARC_l2c_only; 417 418 typedef struct arc_stats { 419 kstat_named_t arcstat_hits; 420 kstat_named_t arcstat_misses; 421 kstat_named_t arcstat_demand_data_hits; 422 kstat_named_t arcstat_demand_data_misses; 423 kstat_named_t arcstat_demand_metadata_hits; 424 kstat_named_t arcstat_demand_metadata_misses; 425 kstat_named_t arcstat_prefetch_data_hits; 426 kstat_named_t arcstat_prefetch_data_misses; 427 kstat_named_t arcstat_prefetch_metadata_hits; 428 kstat_named_t arcstat_prefetch_metadata_misses; 429 kstat_named_t arcstat_mru_hits; 430 kstat_named_t arcstat_mru_ghost_hits; 431 kstat_named_t arcstat_mfu_hits; 432 kstat_named_t arcstat_mfu_ghost_hits; 433 kstat_named_t arcstat_deleted; 434 /* 435 * Number of buffers that could not be evicted because the hash lock 436 * was held by another thread. The lock may not necessarily be held 437 * by something using the same buffer, since hash locks are shared 438 * by multiple buffers. 439 */ 440 kstat_named_t arcstat_mutex_miss; 441 /* 442 * Number of buffers skipped because they have I/O in progress, are 443 * indrect prefetch buffers that have not lived long enough, or are 444 * not from the spa we're trying to evict from. 445 */ 446 kstat_named_t arcstat_evict_skip; 447 /* 448 * Number of times arc_evict_state() was unable to evict enough 449 * buffers to reach it's target amount. 450 */ 451 kstat_named_t arcstat_evict_not_enough; 452 kstat_named_t arcstat_evict_l2_cached; 453 kstat_named_t arcstat_evict_l2_eligible; 454 kstat_named_t arcstat_evict_l2_ineligible; 455 kstat_named_t arcstat_evict_l2_skip; 456 kstat_named_t arcstat_hash_elements; 457 kstat_named_t arcstat_hash_elements_max; 458 kstat_named_t arcstat_hash_collisions; 459 kstat_named_t arcstat_hash_chains; 460 kstat_named_t arcstat_hash_chain_max; 461 kstat_named_t arcstat_p; 462 kstat_named_t arcstat_c; 463 kstat_named_t arcstat_c_min; 464 kstat_named_t arcstat_c_max; 465 kstat_named_t arcstat_size; 466 /* 467 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd. 468 * Note that the compressed bytes may match the uncompressed bytes 469 * if the block is either not compressed or compressed arc is disabled. 470 */ 471 kstat_named_t arcstat_compressed_size; 472 /* 473 * Uncompressed size of the data stored in b_pabd. If compressed 474 * arc is disabled then this value will be identical to the stat 475 * above. 476 */ 477 kstat_named_t arcstat_uncompressed_size; 478 /* 479 * Number of bytes stored in all the arc_buf_t's. This is classified 480 * as "overhead" since this data is typically short-lived and will 481 * be evicted from the arc when it becomes unreferenced unless the 482 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level 483 * values have been set (see comment in dbuf.c for more information). 484 */ 485 kstat_named_t arcstat_overhead_size; 486 /* 487 * Number of bytes consumed by internal ARC structures necessary 488 * for tracking purposes; these structures are not actually 489 * backed by ARC buffers. This includes arc_buf_hdr_t structures 490 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only 491 * caches), and arc_buf_t structures (allocated via arc_buf_t 492 * cache). 493 */ 494 kstat_named_t arcstat_hdr_size; 495 /* 496 * Number of bytes consumed by ARC buffers of type equal to 497 * ARC_BUFC_DATA. This is generally consumed by buffers backing 498 * on disk user data (e.g. plain file contents). 499 */ 500 kstat_named_t arcstat_data_size; 501 /* 502 * Number of bytes consumed by ARC buffers of type equal to 503 * ARC_BUFC_METADATA. This is generally consumed by buffers 504 * backing on disk data that is used for internal ZFS 505 * structures (e.g. ZAP, dnode, indirect blocks, etc). 506 */ 507 kstat_named_t arcstat_metadata_size; 508 /* 509 * Number of bytes consumed by various buffers and structures 510 * not actually backed with ARC buffers. This includes bonus 511 * buffers (allocated directly via zio_buf_* functions), 512 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t 513 * cache), and dnode_t structures (allocated via dnode_t cache). 514 */ 515 kstat_named_t arcstat_other_size; 516 /* 517 * Total number of bytes consumed by ARC buffers residing in the 518 * arc_anon state. This includes *all* buffers in the arc_anon 519 * state; e.g. data, metadata, evictable, and unevictable buffers 520 * are all included in this value. 521 */ 522 kstat_named_t arcstat_anon_size; 523 /* 524 * Number of bytes consumed by ARC buffers that meet the 525 * following criteria: backing buffers of type ARC_BUFC_DATA, 526 * residing in the arc_anon state, and are eligible for eviction 527 * (e.g. have no outstanding holds on the buffer). 528 */ 529 kstat_named_t arcstat_anon_evictable_data; 530 /* 531 * Number of bytes consumed by ARC buffers that meet the 532 * following criteria: backing buffers of type ARC_BUFC_METADATA, 533 * residing in the arc_anon state, and are eligible for eviction 534 * (e.g. have no outstanding holds on the buffer). 535 */ 536 kstat_named_t arcstat_anon_evictable_metadata; 537 /* 538 * Total number of bytes consumed by ARC buffers residing in the 539 * arc_mru state. This includes *all* buffers in the arc_mru 540 * state; e.g. data, metadata, evictable, and unevictable buffers 541 * are all included in this value. 542 */ 543 kstat_named_t arcstat_mru_size; 544 /* 545 * Number of bytes consumed by ARC buffers that meet the 546 * following criteria: backing buffers of type ARC_BUFC_DATA, 547 * residing in the arc_mru state, and are eligible for eviction 548 * (e.g. have no outstanding holds on the buffer). 549 */ 550 kstat_named_t arcstat_mru_evictable_data; 551 /* 552 * Number of bytes consumed by ARC buffers that meet the 553 * following criteria: backing buffers of type ARC_BUFC_METADATA, 554 * residing in the arc_mru state, and are eligible for eviction 555 * (e.g. have no outstanding holds on the buffer). 556 */ 557 kstat_named_t arcstat_mru_evictable_metadata; 558 /* 559 * Total number of bytes that *would have been* consumed by ARC 560 * buffers in the arc_mru_ghost state. The key thing to note 561 * here, is the fact that this size doesn't actually indicate 562 * RAM consumption. The ghost lists only consist of headers and 563 * don't actually have ARC buffers linked off of these headers. 564 * Thus, *if* the headers had associated ARC buffers, these 565 * buffers *would have* consumed this number of bytes. 566 */ 567 kstat_named_t arcstat_mru_ghost_size; 568 /* 569 * Number of bytes that *would have been* consumed by ARC 570 * buffers that are eligible for eviction, of type 571 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state. 572 */ 573 kstat_named_t arcstat_mru_ghost_evictable_data; 574 /* 575 * Number of bytes that *would have been* consumed by ARC 576 * buffers that are eligible for eviction, of type 577 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 578 */ 579 kstat_named_t arcstat_mru_ghost_evictable_metadata; 580 /* 581 * Total number of bytes consumed by ARC buffers residing in the 582 * arc_mfu state. This includes *all* buffers in the arc_mfu 583 * state; e.g. data, metadata, evictable, and unevictable buffers 584 * are all included in this value. 585 */ 586 kstat_named_t arcstat_mfu_size; 587 /* 588 * Number of bytes consumed by ARC buffers that are eligible for 589 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu 590 * state. 591 */ 592 kstat_named_t arcstat_mfu_evictable_data; 593 /* 594 * Number of bytes consumed by ARC buffers that are eligible for 595 * eviction, of type ARC_BUFC_METADATA, and reside in the 596 * arc_mfu state. 597 */ 598 kstat_named_t arcstat_mfu_evictable_metadata; 599 /* 600 * Total number of bytes that *would have been* consumed by ARC 601 * buffers in the arc_mfu_ghost state. See the comment above 602 * arcstat_mru_ghost_size for more details. 603 */ 604 kstat_named_t arcstat_mfu_ghost_size; 605 /* 606 * Number of bytes that *would have been* consumed by ARC 607 * buffers that are eligible for eviction, of type 608 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state. 609 */ 610 kstat_named_t arcstat_mfu_ghost_evictable_data; 611 /* 612 * Number of bytes that *would have been* consumed by ARC 613 * buffers that are eligible for eviction, of type 614 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 615 */ 616 kstat_named_t arcstat_mfu_ghost_evictable_metadata; 617 kstat_named_t arcstat_l2_hits; 618 kstat_named_t arcstat_l2_misses; 619 kstat_named_t arcstat_l2_feeds; 620 kstat_named_t arcstat_l2_rw_clash; 621 kstat_named_t arcstat_l2_read_bytes; 622 kstat_named_t arcstat_l2_write_bytes; 623 kstat_named_t arcstat_l2_writes_sent; 624 kstat_named_t arcstat_l2_writes_done; 625 kstat_named_t arcstat_l2_writes_error; 626 kstat_named_t arcstat_l2_writes_lock_retry; 627 kstat_named_t arcstat_l2_evict_lock_retry; 628 kstat_named_t arcstat_l2_evict_reading; 629 kstat_named_t arcstat_l2_evict_l1cached; 630 kstat_named_t arcstat_l2_free_on_write; 631 kstat_named_t arcstat_l2_abort_lowmem; 632 kstat_named_t arcstat_l2_cksum_bad; 633 kstat_named_t arcstat_l2_io_error; 634 kstat_named_t arcstat_l2_size; 635 kstat_named_t arcstat_l2_asize; 636 kstat_named_t arcstat_l2_hdr_size; 637 kstat_named_t arcstat_memory_throttle_count; 638 kstat_named_t arcstat_meta_used; 639 kstat_named_t arcstat_meta_limit; 640 kstat_named_t arcstat_meta_max; 641 kstat_named_t arcstat_meta_min; 642 kstat_named_t arcstat_sync_wait_for_async; 643 kstat_named_t arcstat_demand_hit_predictive_prefetch; 644 } arc_stats_t; 645 646 static arc_stats_t arc_stats = { 647 { "hits", KSTAT_DATA_UINT64 }, 648 { "misses", KSTAT_DATA_UINT64 }, 649 { "demand_data_hits", KSTAT_DATA_UINT64 }, 650 { "demand_data_misses", KSTAT_DATA_UINT64 }, 651 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 652 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 653 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 654 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 655 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 656 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 657 { "mru_hits", KSTAT_DATA_UINT64 }, 658 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 659 { "mfu_hits", KSTAT_DATA_UINT64 }, 660 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 661 { "deleted", KSTAT_DATA_UINT64 }, 662 { "mutex_miss", KSTAT_DATA_UINT64 }, 663 { "evict_skip", KSTAT_DATA_UINT64 }, 664 { "evict_not_enough", KSTAT_DATA_UINT64 }, 665 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 666 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 667 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 668 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 669 { "hash_elements", KSTAT_DATA_UINT64 }, 670 { "hash_elements_max", KSTAT_DATA_UINT64 }, 671 { "hash_collisions", KSTAT_DATA_UINT64 }, 672 { "hash_chains", KSTAT_DATA_UINT64 }, 673 { "hash_chain_max", KSTAT_DATA_UINT64 }, 674 { "p", KSTAT_DATA_UINT64 }, 675 { "c", KSTAT_DATA_UINT64 }, 676 { "c_min", KSTAT_DATA_UINT64 }, 677 { "c_max", KSTAT_DATA_UINT64 }, 678 { "size", KSTAT_DATA_UINT64 }, 679 { "compressed_size", KSTAT_DATA_UINT64 }, 680 { "uncompressed_size", KSTAT_DATA_UINT64 }, 681 { "overhead_size", KSTAT_DATA_UINT64 }, 682 { "hdr_size", KSTAT_DATA_UINT64 }, 683 { "data_size", KSTAT_DATA_UINT64 }, 684 { "metadata_size", KSTAT_DATA_UINT64 }, 685 { "other_size", KSTAT_DATA_UINT64 }, 686 { "anon_size", KSTAT_DATA_UINT64 }, 687 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 688 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 689 { "mru_size", KSTAT_DATA_UINT64 }, 690 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 691 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 692 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 693 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 694 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 695 { "mfu_size", KSTAT_DATA_UINT64 }, 696 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 697 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 698 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 699 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 700 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 701 { "l2_hits", KSTAT_DATA_UINT64 }, 702 { "l2_misses", KSTAT_DATA_UINT64 }, 703 { "l2_feeds", KSTAT_DATA_UINT64 }, 704 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 705 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 706 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 707 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 708 { "l2_writes_done", KSTAT_DATA_UINT64 }, 709 { "l2_writes_error", KSTAT_DATA_UINT64 }, 710 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 711 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 712 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 713 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 714 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 715 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 716 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 717 { "l2_io_error", KSTAT_DATA_UINT64 }, 718 { "l2_size", KSTAT_DATA_UINT64 }, 719 { "l2_asize", KSTAT_DATA_UINT64 }, 720 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 721 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 722 { "arc_meta_used", KSTAT_DATA_UINT64 }, 723 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 724 { "arc_meta_max", KSTAT_DATA_UINT64 }, 725 { "arc_meta_min", KSTAT_DATA_UINT64 }, 726 { "sync_wait_for_async", KSTAT_DATA_UINT64 }, 727 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 728 }; 729 730 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 731 732 #define ARCSTAT_INCR(stat, val) \ 733 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 734 735 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 736 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 737 738 #define ARCSTAT_MAX(stat, val) { \ 739 uint64_t m; \ 740 while ((val) > (m = arc_stats.stat.value.ui64) && \ 741 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 742 continue; \ 743 } 744 745 #define ARCSTAT_MAXSTAT(stat) \ 746 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 747 748 /* 749 * We define a macro to allow ARC hits/misses to be easily broken down by 750 * two separate conditions, giving a total of four different subtypes for 751 * each of hits and misses (so eight statistics total). 752 */ 753 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 754 if (cond1) { \ 755 if (cond2) { \ 756 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 757 } else { \ 758 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 759 } \ 760 } else { \ 761 if (cond2) { \ 762 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 763 } else { \ 764 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 765 } \ 766 } 767 768 kstat_t *arc_ksp; 769 static arc_state_t *arc_anon; 770 static arc_state_t *arc_mru; 771 static arc_state_t *arc_mru_ghost; 772 static arc_state_t *arc_mfu; 773 static arc_state_t *arc_mfu_ghost; 774 static arc_state_t *arc_l2c_only; 775 776 /* 777 * There are several ARC variables that are critical to export as kstats -- 778 * but we don't want to have to grovel around in the kstat whenever we wish to 779 * manipulate them. For these variables, we therefore define them to be in 780 * terms of the statistic variable. This assures that we are not introducing 781 * the possibility of inconsistency by having shadow copies of the variables, 782 * while still allowing the code to be readable. 783 */ 784 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 785 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 786 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 787 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 788 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 789 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 790 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 791 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ 792 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 793 794 /* compressed size of entire arc */ 795 #define arc_compressed_size ARCSTAT(arcstat_compressed_size) 796 /* uncompressed size of entire arc */ 797 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size) 798 /* number of bytes in the arc from arc_buf_t's */ 799 #define arc_overhead_size ARCSTAT(arcstat_overhead_size) 800 801 static int arc_no_grow; /* Don't try to grow cache size */ 802 static uint64_t arc_tempreserve; 803 static uint64_t arc_loaned_bytes; 804 805 typedef struct arc_callback arc_callback_t; 806 807 struct arc_callback { 808 void *acb_private; 809 arc_done_func_t *acb_done; 810 arc_buf_t *acb_buf; 811 boolean_t acb_compressed; 812 zio_t *acb_zio_dummy; 813 arc_callback_t *acb_next; 814 }; 815 816 typedef struct arc_write_callback arc_write_callback_t; 817 818 struct arc_write_callback { 819 void *awcb_private; 820 arc_done_func_t *awcb_ready; 821 arc_done_func_t *awcb_children_ready; 822 arc_done_func_t *awcb_physdone; 823 arc_done_func_t *awcb_done; 824 arc_buf_t *awcb_buf; 825 }; 826 827 /* 828 * ARC buffers are separated into multiple structs as a memory saving measure: 829 * - Common fields struct, always defined, and embedded within it: 830 * - L2-only fields, always allocated but undefined when not in L2ARC 831 * - L1-only fields, only allocated when in L1ARC 832 * 833 * Buffer in L1 Buffer only in L2 834 * +------------------------+ +------------------------+ 835 * | arc_buf_hdr_t | | arc_buf_hdr_t | 836 * | | | | 837 * | | | | 838 * | | | | 839 * +------------------------+ +------------------------+ 840 * | l2arc_buf_hdr_t | | l2arc_buf_hdr_t | 841 * | (undefined if L1-only) | | | 842 * +------------------------+ +------------------------+ 843 * | l1arc_buf_hdr_t | 844 * | | 845 * | | 846 * | | 847 * | | 848 * +------------------------+ 849 * 850 * Because it's possible for the L2ARC to become extremely large, we can wind 851 * up eating a lot of memory in L2ARC buffer headers, so the size of a header 852 * is minimized by only allocating the fields necessary for an L1-cached buffer 853 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and 854 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple 855 * words in pointers. arc_hdr_realloc() is used to switch a header between 856 * these two allocation states. 857 */ 858 typedef struct l1arc_buf_hdr { 859 kmutex_t b_freeze_lock; 860 zio_cksum_t *b_freeze_cksum; 861 #ifdef ZFS_DEBUG 862 /* 863 * Used for debugging with kmem_flags - by allocating and freeing 864 * b_thawed when the buffer is thawed, we get a record of the stack 865 * trace that thawed it. 866 */ 867 void *b_thawed; 868 #endif 869 870 arc_buf_t *b_buf; 871 uint32_t b_bufcnt; 872 /* for waiting on writes to complete */ 873 kcondvar_t b_cv; 874 uint8_t b_byteswap; 875 876 /* protected by arc state mutex */ 877 arc_state_t *b_state; 878 multilist_node_t b_arc_node; 879 880 /* updated atomically */ 881 clock_t b_arc_access; 882 883 /* self protecting */ 884 refcount_t b_refcnt; 885 886 arc_callback_t *b_acb; 887 abd_t *b_pabd; 888 } l1arc_buf_hdr_t; 889 890 typedef struct l2arc_dev l2arc_dev_t; 891 892 typedef struct l2arc_buf_hdr { 893 /* protected by arc_buf_hdr mutex */ 894 l2arc_dev_t *b_dev; /* L2ARC device */ 895 uint64_t b_daddr; /* disk address, offset byte */ 896 897 list_node_t b_l2node; 898 } l2arc_buf_hdr_t; 899 900 struct arc_buf_hdr { 901 /* protected by hash lock */ 902 dva_t b_dva; 903 uint64_t b_birth; 904 905 arc_buf_contents_t b_type; 906 arc_buf_hdr_t *b_hash_next; 907 arc_flags_t b_flags; 908 909 /* 910 * This field stores the size of the data buffer after 911 * compression, and is set in the arc's zio completion handlers. 912 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes). 913 * 914 * While the block pointers can store up to 32MB in their psize 915 * field, we can only store up to 32MB minus 512B. This is due 916 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e. 917 * a field of zeros represents 512B in the bp). We can't use a 918 * bias of 1 since we need to reserve a psize of zero, here, to 919 * represent holes and embedded blocks. 920 * 921 * This isn't a problem in practice, since the maximum size of a 922 * buffer is limited to 16MB, so we never need to store 32MB in 923 * this field. Even in the upstream illumos code base, the 924 * maximum size of a buffer is limited to 16MB. 925 */ 926 uint16_t b_psize; 927 928 /* 929 * This field stores the size of the data buffer before 930 * compression, and cannot change once set. It is in units 931 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes) 932 */ 933 uint16_t b_lsize; /* immutable */ 934 uint64_t b_spa; /* immutable */ 935 936 /* L2ARC fields. Undefined when not in L2ARC. */ 937 l2arc_buf_hdr_t b_l2hdr; 938 /* L1ARC fields. Undefined when in l2arc_only state */ 939 l1arc_buf_hdr_t b_l1hdr; 940 }; 941 942 #define GHOST_STATE(state) \ 943 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 944 (state) == arc_l2c_only) 945 946 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 947 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 948 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 949 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 950 #define HDR_COMPRESSION_ENABLED(hdr) \ 951 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 952 953 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 954 #define HDR_L2_READING(hdr) \ 955 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 956 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 957 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 958 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 959 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 960 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 961 962 #define HDR_ISTYPE_METADATA(hdr) \ 963 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 964 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 965 966 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 967 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 968 969 /* For storing compression mode in b_flags */ 970 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 971 972 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 973 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 974 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 975 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 976 977 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 978 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 979 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 980 981 /* 982 * Other sizes 983 */ 984 985 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 986 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 987 988 /* 989 * Hash table routines 990 */ 991 992 #define HT_LOCK_PAD 64 993 994 struct ht_lock { 995 kmutex_t ht_lock; 996 #ifdef _KERNEL 997 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 998 #endif 999 }; 1000 1001 #define BUF_LOCKS 256 1002 typedef struct buf_hash_table { 1003 uint64_t ht_mask; 1004 arc_buf_hdr_t **ht_table; 1005 struct ht_lock ht_locks[BUF_LOCKS]; 1006 } buf_hash_table_t; 1007 1008 static buf_hash_table_t buf_hash_table; 1009 1010 #define BUF_HASH_INDEX(spa, dva, birth) \ 1011 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 1012 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 1013 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 1014 #define HDR_LOCK(hdr) \ 1015 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 1016 1017 uint64_t zfs_crc64_table[256]; 1018 1019 /* 1020 * Level 2 ARC 1021 */ 1022 1023 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 1024 #define L2ARC_HEADROOM 2 /* num of writes */ 1025 /* 1026 * If we discover during ARC scan any buffers to be compressed, we boost 1027 * our headroom for the next scanning cycle by this percentage multiple. 1028 */ 1029 #define L2ARC_HEADROOM_BOOST 200 1030 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 1031 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 1032 1033 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 1034 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 1035 1036 /* L2ARC Performance Tunables */ 1037 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 1038 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 1039 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 1040 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 1041 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 1042 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 1043 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 1044 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 1045 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 1046 1047 /* 1048 * L2ARC Internals 1049 */ 1050 struct l2arc_dev { 1051 vdev_t *l2ad_vdev; /* vdev */ 1052 spa_t *l2ad_spa; /* spa */ 1053 uint64_t l2ad_hand; /* next write location */ 1054 uint64_t l2ad_start; /* first addr on device */ 1055 uint64_t l2ad_end; /* last addr on device */ 1056 boolean_t l2ad_first; /* first sweep through */ 1057 boolean_t l2ad_writing; /* currently writing */ 1058 kmutex_t l2ad_mtx; /* lock for buffer list */ 1059 list_t l2ad_buflist; /* buffer list */ 1060 list_node_t l2ad_node; /* device list node */ 1061 refcount_t l2ad_alloc; /* allocated bytes */ 1062 }; 1063 1064 static list_t L2ARC_dev_list; /* device list */ 1065 static list_t *l2arc_dev_list; /* device list pointer */ 1066 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 1067 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 1068 static list_t L2ARC_free_on_write; /* free after write buf list */ 1069 static list_t *l2arc_free_on_write; /* free after write list ptr */ 1070 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 1071 static uint64_t l2arc_ndev; /* number of devices */ 1072 1073 typedef struct l2arc_read_callback { 1074 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 1075 blkptr_t l2rcb_bp; /* original blkptr */ 1076 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 1077 int l2rcb_flags; /* original flags */ 1078 } l2arc_read_callback_t; 1079 1080 typedef struct l2arc_write_callback { 1081 l2arc_dev_t *l2wcb_dev; /* device info */ 1082 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 1083 } l2arc_write_callback_t; 1084 1085 typedef struct l2arc_data_free { 1086 /* protected by l2arc_free_on_write_mtx */ 1087 abd_t *l2df_abd; 1088 size_t l2df_size; 1089 arc_buf_contents_t l2df_type; 1090 list_node_t l2df_list_node; 1091 } l2arc_data_free_t; 1092 1093 static kmutex_t l2arc_feed_thr_lock; 1094 static kcondvar_t l2arc_feed_thr_cv; 1095 static uint8_t l2arc_thread_exit; 1096 1097 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *); 1098 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 1099 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *); 1100 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 1101 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 1102 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 1103 static void arc_hdr_free_pabd(arc_buf_hdr_t *); 1104 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *); 1105 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 1106 static boolean_t arc_is_overflowing(); 1107 static void arc_buf_watch(arc_buf_t *); 1108 1109 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 1110 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 1111 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 1112 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 1113 1114 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 1115 static void l2arc_read_done(zio_t *); 1116 1117 static uint64_t 1118 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 1119 { 1120 uint8_t *vdva = (uint8_t *)dva; 1121 uint64_t crc = -1ULL; 1122 int i; 1123 1124 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 1125 1126 for (i = 0; i < sizeof (dva_t); i++) 1127 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 1128 1129 crc ^= (spa>>8) ^ birth; 1130 1131 return (crc); 1132 } 1133 1134 #define HDR_EMPTY(hdr) \ 1135 ((hdr)->b_dva.dva_word[0] == 0 && \ 1136 (hdr)->b_dva.dva_word[1] == 0) 1137 1138 #define HDR_EQUAL(spa, dva, birth, hdr) \ 1139 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 1140 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 1141 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 1142 1143 static void 1144 buf_discard_identity(arc_buf_hdr_t *hdr) 1145 { 1146 hdr->b_dva.dva_word[0] = 0; 1147 hdr->b_dva.dva_word[1] = 0; 1148 hdr->b_birth = 0; 1149 } 1150 1151 static arc_buf_hdr_t * 1152 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 1153 { 1154 const dva_t *dva = BP_IDENTITY(bp); 1155 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 1156 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1157 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1158 arc_buf_hdr_t *hdr; 1159 1160 mutex_enter(hash_lock); 1161 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1162 hdr = hdr->b_hash_next) { 1163 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1164 *lockp = hash_lock; 1165 return (hdr); 1166 } 1167 } 1168 mutex_exit(hash_lock); 1169 *lockp = NULL; 1170 return (NULL); 1171 } 1172 1173 /* 1174 * Insert an entry into the hash table. If there is already an element 1175 * equal to elem in the hash table, then the already existing element 1176 * will be returned and the new element will not be inserted. 1177 * Otherwise returns NULL. 1178 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1179 */ 1180 static arc_buf_hdr_t * 1181 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1182 { 1183 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1184 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1185 arc_buf_hdr_t *fhdr; 1186 uint32_t i; 1187 1188 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1189 ASSERT(hdr->b_birth != 0); 1190 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1191 1192 if (lockp != NULL) { 1193 *lockp = hash_lock; 1194 mutex_enter(hash_lock); 1195 } else { 1196 ASSERT(MUTEX_HELD(hash_lock)); 1197 } 1198 1199 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1200 fhdr = fhdr->b_hash_next, i++) { 1201 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1202 return (fhdr); 1203 } 1204 1205 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1206 buf_hash_table.ht_table[idx] = hdr; 1207 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1208 1209 /* collect some hash table performance data */ 1210 if (i > 0) { 1211 ARCSTAT_BUMP(arcstat_hash_collisions); 1212 if (i == 1) 1213 ARCSTAT_BUMP(arcstat_hash_chains); 1214 1215 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1216 } 1217 1218 ARCSTAT_BUMP(arcstat_hash_elements); 1219 ARCSTAT_MAXSTAT(arcstat_hash_elements); 1220 1221 return (NULL); 1222 } 1223 1224 static void 1225 buf_hash_remove(arc_buf_hdr_t *hdr) 1226 { 1227 arc_buf_hdr_t *fhdr, **hdrp; 1228 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1229 1230 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1231 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1232 1233 hdrp = &buf_hash_table.ht_table[idx]; 1234 while ((fhdr = *hdrp) != hdr) { 1235 ASSERT3P(fhdr, !=, NULL); 1236 hdrp = &fhdr->b_hash_next; 1237 } 1238 *hdrp = hdr->b_hash_next; 1239 hdr->b_hash_next = NULL; 1240 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1241 1242 /* collect some hash table performance data */ 1243 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 1244 1245 if (buf_hash_table.ht_table[idx] && 1246 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1247 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1248 } 1249 1250 /* 1251 * Global data structures and functions for the buf kmem cache. 1252 */ 1253 static kmem_cache_t *hdr_full_cache; 1254 static kmem_cache_t *hdr_l2only_cache; 1255 static kmem_cache_t *buf_cache; 1256 1257 static void 1258 buf_fini(void) 1259 { 1260 int i; 1261 1262 kmem_free(buf_hash_table.ht_table, 1263 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1264 for (i = 0; i < BUF_LOCKS; i++) 1265 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 1266 kmem_cache_destroy(hdr_full_cache); 1267 kmem_cache_destroy(hdr_l2only_cache); 1268 kmem_cache_destroy(buf_cache); 1269 } 1270 1271 /* 1272 * Constructor callback - called when the cache is empty 1273 * and a new buf is requested. 1274 */ 1275 /* ARGSUSED */ 1276 static int 1277 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1278 { 1279 arc_buf_hdr_t *hdr = vbuf; 1280 1281 bzero(hdr, HDR_FULL_SIZE); 1282 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1283 refcount_create(&hdr->b_l1hdr.b_refcnt); 1284 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1285 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1286 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1287 1288 return (0); 1289 } 1290 1291 /* ARGSUSED */ 1292 static int 1293 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1294 { 1295 arc_buf_hdr_t *hdr = vbuf; 1296 1297 bzero(hdr, HDR_L2ONLY_SIZE); 1298 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1299 1300 return (0); 1301 } 1302 1303 /* ARGSUSED */ 1304 static int 1305 buf_cons(void *vbuf, void *unused, int kmflag) 1306 { 1307 arc_buf_t *buf = vbuf; 1308 1309 bzero(buf, sizeof (arc_buf_t)); 1310 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1311 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1312 1313 return (0); 1314 } 1315 1316 /* 1317 * Destructor callback - called when a cached buf is 1318 * no longer required. 1319 */ 1320 /* ARGSUSED */ 1321 static void 1322 hdr_full_dest(void *vbuf, void *unused) 1323 { 1324 arc_buf_hdr_t *hdr = vbuf; 1325 1326 ASSERT(HDR_EMPTY(hdr)); 1327 cv_destroy(&hdr->b_l1hdr.b_cv); 1328 refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1329 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1330 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1331 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1332 } 1333 1334 /* ARGSUSED */ 1335 static void 1336 hdr_l2only_dest(void *vbuf, void *unused) 1337 { 1338 arc_buf_hdr_t *hdr = vbuf; 1339 1340 ASSERT(HDR_EMPTY(hdr)); 1341 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1342 } 1343 1344 /* ARGSUSED */ 1345 static void 1346 buf_dest(void *vbuf, void *unused) 1347 { 1348 arc_buf_t *buf = vbuf; 1349 1350 mutex_destroy(&buf->b_evict_lock); 1351 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1352 } 1353 1354 /* 1355 * Reclaim callback -- invoked when memory is low. 1356 */ 1357 /* ARGSUSED */ 1358 static void 1359 hdr_recl(void *unused) 1360 { 1361 dprintf("hdr_recl called\n"); 1362 /* 1363 * umem calls the reclaim func when we destroy the buf cache, 1364 * which is after we do arc_fini(). 1365 */ 1366 if (!arc_dead) 1367 cv_signal(&arc_reclaim_thread_cv); 1368 } 1369 1370 static void 1371 buf_init(void) 1372 { 1373 uint64_t *ct; 1374 uint64_t hsize = 1ULL << 12; 1375 int i, j; 1376 1377 /* 1378 * The hash table is big enough to fill all of physical memory 1379 * with an average block size of zfs_arc_average_blocksize (default 8K). 1380 * By default, the table will take up 1381 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1382 */ 1383 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 1384 hsize <<= 1; 1385 retry: 1386 buf_hash_table.ht_mask = hsize - 1; 1387 buf_hash_table.ht_table = 1388 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1389 if (buf_hash_table.ht_table == NULL) { 1390 ASSERT(hsize > (1ULL << 8)); 1391 hsize >>= 1; 1392 goto retry; 1393 } 1394 1395 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1396 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0); 1397 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1398 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl, 1399 NULL, NULL, 0); 1400 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1401 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1402 1403 for (i = 0; i < 256; i++) 1404 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1405 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1406 1407 for (i = 0; i < BUF_LOCKS; i++) { 1408 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1409 NULL, MUTEX_DEFAULT, NULL); 1410 } 1411 } 1412 1413 /* 1414 * This is the size that the buf occupies in memory. If the buf is compressed, 1415 * it will correspond to the compressed size. You should use this method of 1416 * getting the buf size unless you explicitly need the logical size. 1417 */ 1418 int32_t 1419 arc_buf_size(arc_buf_t *buf) 1420 { 1421 return (ARC_BUF_COMPRESSED(buf) ? 1422 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1423 } 1424 1425 int32_t 1426 arc_buf_lsize(arc_buf_t *buf) 1427 { 1428 return (HDR_GET_LSIZE(buf->b_hdr)); 1429 } 1430 1431 enum zio_compress 1432 arc_get_compression(arc_buf_t *buf) 1433 { 1434 return (ARC_BUF_COMPRESSED(buf) ? 1435 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1436 } 1437 1438 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1439 1440 static inline boolean_t 1441 arc_buf_is_shared(arc_buf_t *buf) 1442 { 1443 boolean_t shared = (buf->b_data != NULL && 1444 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1445 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1446 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1447 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1448 IMPLY(shared, ARC_BUF_SHARED(buf)); 1449 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1450 1451 /* 1452 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1453 * already being shared" requirement prevents us from doing that. 1454 */ 1455 1456 return (shared); 1457 } 1458 1459 /* 1460 * Free the checksum associated with this header. If there is no checksum, this 1461 * is a no-op. 1462 */ 1463 static inline void 1464 arc_cksum_free(arc_buf_hdr_t *hdr) 1465 { 1466 ASSERT(HDR_HAS_L1HDR(hdr)); 1467 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1468 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1469 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1470 hdr->b_l1hdr.b_freeze_cksum = NULL; 1471 } 1472 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1473 } 1474 1475 /* 1476 * Return true iff at least one of the bufs on hdr is not compressed. 1477 */ 1478 static boolean_t 1479 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1480 { 1481 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1482 if (!ARC_BUF_COMPRESSED(b)) { 1483 return (B_TRUE); 1484 } 1485 } 1486 return (B_FALSE); 1487 } 1488 1489 /* 1490 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1491 * matches the checksum that is stored in the hdr. If there is no checksum, 1492 * or if the buf is compressed, this is a no-op. 1493 */ 1494 static void 1495 arc_cksum_verify(arc_buf_t *buf) 1496 { 1497 arc_buf_hdr_t *hdr = buf->b_hdr; 1498 zio_cksum_t zc; 1499 1500 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1501 return; 1502 1503 if (ARC_BUF_COMPRESSED(buf)) { 1504 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL || 1505 arc_hdr_has_uncompressed_buf(hdr)); 1506 return; 1507 } 1508 1509 ASSERT(HDR_HAS_L1HDR(hdr)); 1510 1511 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1512 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1513 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1514 return; 1515 } 1516 1517 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1518 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1519 panic("buffer modified while frozen!"); 1520 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1521 } 1522 1523 static boolean_t 1524 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1525 { 1526 enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp); 1527 boolean_t valid_cksum; 1528 1529 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1530 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1531 1532 /* 1533 * We rely on the blkptr's checksum to determine if the block 1534 * is valid or not. When compressed arc is enabled, the l2arc 1535 * writes the block to the l2arc just as it appears in the pool. 1536 * This allows us to use the blkptr's checksum to validate the 1537 * data that we just read off of the l2arc without having to store 1538 * a separate checksum in the arc_buf_hdr_t. However, if compressed 1539 * arc is disabled, then the data written to the l2arc is always 1540 * uncompressed and won't match the block as it exists in the main 1541 * pool. When this is the case, we must first compress it if it is 1542 * compressed on the main pool before we can validate the checksum. 1543 */ 1544 if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) { 1545 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1546 uint64_t lsize = HDR_GET_LSIZE(hdr); 1547 uint64_t csize; 1548 1549 void *cbuf = zio_buf_alloc(HDR_GET_PSIZE(hdr)); 1550 csize = zio_compress_data(compress, zio->io_abd, cbuf, lsize); 1551 1552 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr)); 1553 if (csize < HDR_GET_PSIZE(hdr)) { 1554 /* 1555 * Compressed blocks are always a multiple of the 1556 * smallest ashift in the pool. Ideally, we would 1557 * like to round up the csize to the next 1558 * spa_min_ashift but that value may have changed 1559 * since the block was last written. Instead, 1560 * we rely on the fact that the hdr's psize 1561 * was set to the psize of the block when it was 1562 * last written. We set the csize to that value 1563 * and zero out any part that should not contain 1564 * data. 1565 */ 1566 bzero((char *)cbuf + csize, HDR_GET_PSIZE(hdr) - csize); 1567 csize = HDR_GET_PSIZE(hdr); 1568 } 1569 zio_push_transform(zio, cbuf, csize, HDR_GET_PSIZE(hdr), NULL); 1570 } 1571 1572 /* 1573 * Block pointers always store the checksum for the logical data. 1574 * If the block pointer has the gang bit set, then the checksum 1575 * it represents is for the reconstituted data and not for an 1576 * individual gang member. The zio pipeline, however, must be able to 1577 * determine the checksum of each of the gang constituents so it 1578 * treats the checksum comparison differently than what we need 1579 * for l2arc blocks. This prevents us from using the 1580 * zio_checksum_error() interface directly. Instead we must call the 1581 * zio_checksum_error_impl() so that we can ensure the checksum is 1582 * generated using the correct checksum algorithm and accounts for the 1583 * logical I/O size and not just a gang fragment. 1584 */ 1585 valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1586 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1587 zio->io_offset, NULL) == 0); 1588 zio_pop_transforms(zio); 1589 return (valid_cksum); 1590 } 1591 1592 /* 1593 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1594 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1595 * isn't modified later on. If buf is compressed or there is already a checksum 1596 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1597 */ 1598 static void 1599 arc_cksum_compute(arc_buf_t *buf) 1600 { 1601 arc_buf_hdr_t *hdr = buf->b_hdr; 1602 1603 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1604 return; 1605 1606 ASSERT(HDR_HAS_L1HDR(hdr)); 1607 1608 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1609 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1610 ASSERT(arc_hdr_has_uncompressed_buf(hdr)); 1611 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1612 return; 1613 } else if (ARC_BUF_COMPRESSED(buf)) { 1614 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1615 return; 1616 } 1617 1618 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1619 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1620 KM_SLEEP); 1621 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1622 hdr->b_l1hdr.b_freeze_cksum); 1623 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1624 arc_buf_watch(buf); 1625 } 1626 1627 #ifndef _KERNEL 1628 typedef struct procctl { 1629 long cmd; 1630 prwatch_t prwatch; 1631 } procctl_t; 1632 #endif 1633 1634 /* ARGSUSED */ 1635 static void 1636 arc_buf_unwatch(arc_buf_t *buf) 1637 { 1638 #ifndef _KERNEL 1639 if (arc_watch) { 1640 int result; 1641 procctl_t ctl; 1642 ctl.cmd = PCWATCH; 1643 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1644 ctl.prwatch.pr_size = 0; 1645 ctl.prwatch.pr_wflags = 0; 1646 result = write(arc_procfd, &ctl, sizeof (ctl)); 1647 ASSERT3U(result, ==, sizeof (ctl)); 1648 } 1649 #endif 1650 } 1651 1652 /* ARGSUSED */ 1653 static void 1654 arc_buf_watch(arc_buf_t *buf) 1655 { 1656 #ifndef _KERNEL 1657 if (arc_watch) { 1658 int result; 1659 procctl_t ctl; 1660 ctl.cmd = PCWATCH; 1661 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1662 ctl.prwatch.pr_size = arc_buf_size(buf); 1663 ctl.prwatch.pr_wflags = WA_WRITE; 1664 result = write(arc_procfd, &ctl, sizeof (ctl)); 1665 ASSERT3U(result, ==, sizeof (ctl)); 1666 } 1667 #endif 1668 } 1669 1670 static arc_buf_contents_t 1671 arc_buf_type(arc_buf_hdr_t *hdr) 1672 { 1673 arc_buf_contents_t type; 1674 if (HDR_ISTYPE_METADATA(hdr)) { 1675 type = ARC_BUFC_METADATA; 1676 } else { 1677 type = ARC_BUFC_DATA; 1678 } 1679 VERIFY3U(hdr->b_type, ==, type); 1680 return (type); 1681 } 1682 1683 boolean_t 1684 arc_is_metadata(arc_buf_t *buf) 1685 { 1686 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1687 } 1688 1689 static uint32_t 1690 arc_bufc_to_flags(arc_buf_contents_t type) 1691 { 1692 switch (type) { 1693 case ARC_BUFC_DATA: 1694 /* metadata field is 0 if buffer contains normal data */ 1695 return (0); 1696 case ARC_BUFC_METADATA: 1697 return (ARC_FLAG_BUFC_METADATA); 1698 default: 1699 break; 1700 } 1701 panic("undefined ARC buffer type!"); 1702 return ((uint32_t)-1); 1703 } 1704 1705 void 1706 arc_buf_thaw(arc_buf_t *buf) 1707 { 1708 arc_buf_hdr_t *hdr = buf->b_hdr; 1709 1710 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1711 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1712 1713 arc_cksum_verify(buf); 1714 1715 /* 1716 * Compressed buffers do not manipulate the b_freeze_cksum or 1717 * allocate b_thawed. 1718 */ 1719 if (ARC_BUF_COMPRESSED(buf)) { 1720 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL || 1721 arc_hdr_has_uncompressed_buf(hdr)); 1722 return; 1723 } 1724 1725 ASSERT(HDR_HAS_L1HDR(hdr)); 1726 arc_cksum_free(hdr); 1727 1728 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1729 #ifdef ZFS_DEBUG 1730 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1731 if (hdr->b_l1hdr.b_thawed != NULL) 1732 kmem_free(hdr->b_l1hdr.b_thawed, 1); 1733 hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP); 1734 } 1735 #endif 1736 1737 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1738 1739 arc_buf_unwatch(buf); 1740 } 1741 1742 void 1743 arc_buf_freeze(arc_buf_t *buf) 1744 { 1745 arc_buf_hdr_t *hdr = buf->b_hdr; 1746 kmutex_t *hash_lock; 1747 1748 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1749 return; 1750 1751 if (ARC_BUF_COMPRESSED(buf)) { 1752 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL || 1753 arc_hdr_has_uncompressed_buf(hdr)); 1754 return; 1755 } 1756 1757 hash_lock = HDR_LOCK(hdr); 1758 mutex_enter(hash_lock); 1759 1760 ASSERT(HDR_HAS_L1HDR(hdr)); 1761 ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL || 1762 hdr->b_l1hdr.b_state == arc_anon); 1763 arc_cksum_compute(buf); 1764 mutex_exit(hash_lock); 1765 } 1766 1767 /* 1768 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1769 * the following functions should be used to ensure that the flags are 1770 * updated in a thread-safe way. When manipulating the flags either 1771 * the hash_lock must be held or the hdr must be undiscoverable. This 1772 * ensures that we're not racing with any other threads when updating 1773 * the flags. 1774 */ 1775 static inline void 1776 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1777 { 1778 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1779 hdr->b_flags |= flags; 1780 } 1781 1782 static inline void 1783 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1784 { 1785 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1786 hdr->b_flags &= ~flags; 1787 } 1788 1789 /* 1790 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1791 * done in a special way since we have to clear and set bits 1792 * at the same time. Consumers that wish to set the compression bits 1793 * must use this function to ensure that the flags are updated in 1794 * thread-safe manner. 1795 */ 1796 static void 1797 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1798 { 1799 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1800 1801 /* 1802 * Holes and embedded blocks will always have a psize = 0 so 1803 * we ignore the compression of the blkptr and set the 1804 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF. 1805 * Holes and embedded blocks remain anonymous so we don't 1806 * want to uncompress them. Mark them as uncompressed. 1807 */ 1808 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1809 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1810 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 1811 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1812 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1813 } else { 1814 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1815 HDR_SET_COMPRESS(hdr, cmp); 1816 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1817 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1818 } 1819 } 1820 1821 /* 1822 * Looks for another buf on the same hdr which has the data decompressed, copies 1823 * from it, and returns true. If no such buf exists, returns false. 1824 */ 1825 static boolean_t 1826 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1827 { 1828 arc_buf_hdr_t *hdr = buf->b_hdr; 1829 boolean_t copied = B_FALSE; 1830 1831 ASSERT(HDR_HAS_L1HDR(hdr)); 1832 ASSERT3P(buf->b_data, !=, NULL); 1833 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1834 1835 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1836 from = from->b_next) { 1837 /* can't use our own data buffer */ 1838 if (from == buf) { 1839 continue; 1840 } 1841 1842 if (!ARC_BUF_COMPRESSED(from)) { 1843 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1844 copied = B_TRUE; 1845 break; 1846 } 1847 } 1848 1849 /* 1850 * There were no decompressed bufs, so there should not be a 1851 * checksum on the hdr either. 1852 */ 1853 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1854 1855 return (copied); 1856 } 1857 1858 /* 1859 * Given a buf that has a data buffer attached to it, this function will 1860 * efficiently fill the buf with data of the specified compression setting from 1861 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1862 * are already sharing a data buf, no copy is performed. 1863 * 1864 * If the buf is marked as compressed but uncompressed data was requested, this 1865 * will allocate a new data buffer for the buf, remove that flag, and fill the 1866 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1867 * uncompressed data, and (since we haven't added support for it yet) if you 1868 * want compressed data your buf must already be marked as compressed and have 1869 * the correct-sized data buffer. 1870 */ 1871 static int 1872 arc_buf_fill(arc_buf_t *buf, boolean_t compressed) 1873 { 1874 arc_buf_hdr_t *hdr = buf->b_hdr; 1875 boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF); 1876 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 1877 1878 ASSERT3P(buf->b_data, !=, NULL); 1879 IMPLY(compressed, hdr_compressed); 1880 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 1881 1882 if (hdr_compressed == compressed) { 1883 if (!arc_buf_is_shared(buf)) { 1884 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 1885 arc_buf_size(buf)); 1886 } 1887 } else { 1888 ASSERT(hdr_compressed); 1889 ASSERT(!compressed); 1890 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 1891 1892 /* 1893 * If the buf is sharing its data with the hdr, unlink it and 1894 * allocate a new data buffer for the buf. 1895 */ 1896 if (arc_buf_is_shared(buf)) { 1897 ASSERT(ARC_BUF_COMPRESSED(buf)); 1898 1899 /* We need to give the buf it's own b_data */ 1900 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 1901 buf->b_data = 1902 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 1903 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 1904 1905 /* Previously overhead was 0; just add new overhead */ 1906 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 1907 } else if (ARC_BUF_COMPRESSED(buf)) { 1908 /* We need to reallocate the buf's b_data */ 1909 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 1910 buf); 1911 buf->b_data = 1912 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 1913 1914 /* We increased the size of b_data; update overhead */ 1915 ARCSTAT_INCR(arcstat_overhead_size, 1916 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 1917 } 1918 1919 /* 1920 * Regardless of the buf's previous compression settings, it 1921 * should not be compressed at the end of this function. 1922 */ 1923 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1924 1925 /* 1926 * Try copying the data from another buf which already has a 1927 * decompressed version. If that's not possible, it's time to 1928 * bite the bullet and decompress the data from the hdr. 1929 */ 1930 if (arc_buf_try_copy_decompressed_data(buf)) { 1931 /* Skip byteswapping and checksumming (already done) */ 1932 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL); 1933 return (0); 1934 } else { 1935 int error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1936 hdr->b_l1hdr.b_pabd, buf->b_data, 1937 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 1938 1939 /* 1940 * Absent hardware errors or software bugs, this should 1941 * be impossible, but log it anyway so we can debug it. 1942 */ 1943 if (error != 0) { 1944 zfs_dbgmsg( 1945 "hdr %p, compress %d, psize %d, lsize %d", 1946 hdr, HDR_GET_COMPRESS(hdr), 1947 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 1948 return (SET_ERROR(EIO)); 1949 } 1950 } 1951 } 1952 1953 /* Byteswap the buf's data if necessary */ 1954 if (bswap != DMU_BSWAP_NUMFUNCS) { 1955 ASSERT(!HDR_SHARED_DATA(hdr)); 1956 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 1957 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 1958 } 1959 1960 /* Compute the hdr's checksum if necessary */ 1961 arc_cksum_compute(buf); 1962 1963 return (0); 1964 } 1965 1966 int 1967 arc_decompress(arc_buf_t *buf) 1968 { 1969 return (arc_buf_fill(buf, B_FALSE)); 1970 } 1971 1972 /* 1973 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1974 */ 1975 static uint64_t 1976 arc_hdr_size(arc_buf_hdr_t *hdr) 1977 { 1978 uint64_t size; 1979 1980 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1981 HDR_GET_PSIZE(hdr) > 0) { 1982 size = HDR_GET_PSIZE(hdr); 1983 } else { 1984 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1985 size = HDR_GET_LSIZE(hdr); 1986 } 1987 return (size); 1988 } 1989 1990 /* 1991 * Increment the amount of evictable space in the arc_state_t's refcount. 1992 * We account for the space used by the hdr and the arc buf individually 1993 * so that we can add and remove them from the refcount individually. 1994 */ 1995 static void 1996 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 1997 { 1998 arc_buf_contents_t type = arc_buf_type(hdr); 1999 2000 ASSERT(HDR_HAS_L1HDR(hdr)); 2001 2002 if (GHOST_STATE(state)) { 2003 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2004 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2005 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2006 (void) refcount_add_many(&state->arcs_esize[type], 2007 HDR_GET_LSIZE(hdr), hdr); 2008 return; 2009 } 2010 2011 ASSERT(!GHOST_STATE(state)); 2012 if (hdr->b_l1hdr.b_pabd != NULL) { 2013 (void) refcount_add_many(&state->arcs_esize[type], 2014 arc_hdr_size(hdr), hdr); 2015 } 2016 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2017 buf = buf->b_next) { 2018 if (arc_buf_is_shared(buf)) 2019 continue; 2020 (void) refcount_add_many(&state->arcs_esize[type], 2021 arc_buf_size(buf), buf); 2022 } 2023 } 2024 2025 /* 2026 * Decrement the amount of evictable space in the arc_state_t's refcount. 2027 * We account for the space used by the hdr and the arc buf individually 2028 * so that we can add and remove them from the refcount individually. 2029 */ 2030 static void 2031 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2032 { 2033 arc_buf_contents_t type = arc_buf_type(hdr); 2034 2035 ASSERT(HDR_HAS_L1HDR(hdr)); 2036 2037 if (GHOST_STATE(state)) { 2038 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2039 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2040 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2041 (void) refcount_remove_many(&state->arcs_esize[type], 2042 HDR_GET_LSIZE(hdr), hdr); 2043 return; 2044 } 2045 2046 ASSERT(!GHOST_STATE(state)); 2047 if (hdr->b_l1hdr.b_pabd != NULL) { 2048 (void) refcount_remove_many(&state->arcs_esize[type], 2049 arc_hdr_size(hdr), hdr); 2050 } 2051 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2052 buf = buf->b_next) { 2053 if (arc_buf_is_shared(buf)) 2054 continue; 2055 (void) refcount_remove_many(&state->arcs_esize[type], 2056 arc_buf_size(buf), buf); 2057 } 2058 } 2059 2060 /* 2061 * Add a reference to this hdr indicating that someone is actively 2062 * referencing that memory. When the refcount transitions from 0 to 1, 2063 * we remove it from the respective arc_state_t list to indicate that 2064 * it is not evictable. 2065 */ 2066 static void 2067 add_reference(arc_buf_hdr_t *hdr, void *tag) 2068 { 2069 ASSERT(HDR_HAS_L1HDR(hdr)); 2070 if (!MUTEX_HELD(HDR_LOCK(hdr))) { 2071 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2072 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2073 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2074 } 2075 2076 arc_state_t *state = hdr->b_l1hdr.b_state; 2077 2078 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2079 (state != arc_anon)) { 2080 /* We don't use the L2-only state list. */ 2081 if (state != arc_l2c_only) { 2082 multilist_remove(state->arcs_list[arc_buf_type(hdr)], 2083 hdr); 2084 arc_evictable_space_decrement(hdr, state); 2085 } 2086 /* remove the prefetch flag if we get a reference */ 2087 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2088 } 2089 } 2090 2091 /* 2092 * Remove a reference from this hdr. When the reference transitions from 2093 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2094 * list making it eligible for eviction. 2095 */ 2096 static int 2097 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2098 { 2099 int cnt; 2100 arc_state_t *state = hdr->b_l1hdr.b_state; 2101 2102 ASSERT(HDR_HAS_L1HDR(hdr)); 2103 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2104 ASSERT(!GHOST_STATE(state)); 2105 2106 /* 2107 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2108 * check to prevent usage of the arc_l2c_only list. 2109 */ 2110 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2111 (state != arc_anon)) { 2112 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr); 2113 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2114 arc_evictable_space_increment(hdr, state); 2115 } 2116 return (cnt); 2117 } 2118 2119 /* 2120 * Move the supplied buffer to the indicated state. The hash lock 2121 * for the buffer must be held by the caller. 2122 */ 2123 static void 2124 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2125 kmutex_t *hash_lock) 2126 { 2127 arc_state_t *old_state; 2128 int64_t refcnt; 2129 uint32_t bufcnt; 2130 boolean_t update_old, update_new; 2131 arc_buf_contents_t buftype = arc_buf_type(hdr); 2132 2133 /* 2134 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2135 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2136 * L1 hdr doesn't always exist when we change state to arc_anon before 2137 * destroying a header, in which case reallocating to add the L1 hdr is 2138 * pointless. 2139 */ 2140 if (HDR_HAS_L1HDR(hdr)) { 2141 old_state = hdr->b_l1hdr.b_state; 2142 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt); 2143 bufcnt = hdr->b_l1hdr.b_bufcnt; 2144 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL); 2145 } else { 2146 old_state = arc_l2c_only; 2147 refcnt = 0; 2148 bufcnt = 0; 2149 update_old = B_FALSE; 2150 } 2151 update_new = update_old; 2152 2153 ASSERT(MUTEX_HELD(hash_lock)); 2154 ASSERT3P(new_state, !=, old_state); 2155 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2156 ASSERT(old_state != arc_anon || bufcnt <= 1); 2157 2158 /* 2159 * If this buffer is evictable, transfer it from the 2160 * old state list to the new state list. 2161 */ 2162 if (refcnt == 0) { 2163 if (old_state != arc_anon && old_state != arc_l2c_only) { 2164 ASSERT(HDR_HAS_L1HDR(hdr)); 2165 multilist_remove(old_state->arcs_list[buftype], hdr); 2166 2167 if (GHOST_STATE(old_state)) { 2168 ASSERT0(bufcnt); 2169 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2170 update_old = B_TRUE; 2171 } 2172 arc_evictable_space_decrement(hdr, old_state); 2173 } 2174 if (new_state != arc_anon && new_state != arc_l2c_only) { 2175 2176 /* 2177 * An L1 header always exists here, since if we're 2178 * moving to some L1-cached state (i.e. not l2c_only or 2179 * anonymous), we realloc the header to add an L1hdr 2180 * beforehand. 2181 */ 2182 ASSERT(HDR_HAS_L1HDR(hdr)); 2183 multilist_insert(new_state->arcs_list[buftype], hdr); 2184 2185 if (GHOST_STATE(new_state)) { 2186 ASSERT0(bufcnt); 2187 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2188 update_new = B_TRUE; 2189 } 2190 arc_evictable_space_increment(hdr, new_state); 2191 } 2192 } 2193 2194 ASSERT(!HDR_EMPTY(hdr)); 2195 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2196 buf_hash_remove(hdr); 2197 2198 /* adjust state sizes (ignore arc_l2c_only) */ 2199 2200 if (update_new && new_state != arc_l2c_only) { 2201 ASSERT(HDR_HAS_L1HDR(hdr)); 2202 if (GHOST_STATE(new_state)) { 2203 ASSERT0(bufcnt); 2204 2205 /* 2206 * When moving a header to a ghost state, we first 2207 * remove all arc buffers. Thus, we'll have a 2208 * bufcnt of zero, and no arc buffer to use for 2209 * the reference. As a result, we use the arc 2210 * header pointer for the reference. 2211 */ 2212 (void) refcount_add_many(&new_state->arcs_size, 2213 HDR_GET_LSIZE(hdr), hdr); 2214 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2215 } else { 2216 uint32_t buffers = 0; 2217 2218 /* 2219 * Each individual buffer holds a unique reference, 2220 * thus we must remove each of these references one 2221 * at a time. 2222 */ 2223 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2224 buf = buf->b_next) { 2225 ASSERT3U(bufcnt, !=, 0); 2226 buffers++; 2227 2228 /* 2229 * When the arc_buf_t is sharing the data 2230 * block with the hdr, the owner of the 2231 * reference belongs to the hdr. Only 2232 * add to the refcount if the arc_buf_t is 2233 * not shared. 2234 */ 2235 if (arc_buf_is_shared(buf)) 2236 continue; 2237 2238 (void) refcount_add_many(&new_state->arcs_size, 2239 arc_buf_size(buf), buf); 2240 } 2241 ASSERT3U(bufcnt, ==, buffers); 2242 2243 if (hdr->b_l1hdr.b_pabd != NULL) { 2244 (void) refcount_add_many(&new_state->arcs_size, 2245 arc_hdr_size(hdr), hdr); 2246 } else { 2247 ASSERT(GHOST_STATE(old_state)); 2248 } 2249 } 2250 } 2251 2252 if (update_old && old_state != arc_l2c_only) { 2253 ASSERT(HDR_HAS_L1HDR(hdr)); 2254 if (GHOST_STATE(old_state)) { 2255 ASSERT0(bufcnt); 2256 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2257 2258 /* 2259 * When moving a header off of a ghost state, 2260 * the header will not contain any arc buffers. 2261 * We use the arc header pointer for the reference 2262 * which is exactly what we did when we put the 2263 * header on the ghost state. 2264 */ 2265 2266 (void) refcount_remove_many(&old_state->arcs_size, 2267 HDR_GET_LSIZE(hdr), hdr); 2268 } else { 2269 uint32_t buffers = 0; 2270 2271 /* 2272 * Each individual buffer holds a unique reference, 2273 * thus we must remove each of these references one 2274 * at a time. 2275 */ 2276 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2277 buf = buf->b_next) { 2278 ASSERT3U(bufcnt, !=, 0); 2279 buffers++; 2280 2281 /* 2282 * When the arc_buf_t is sharing the data 2283 * block with the hdr, the owner of the 2284 * reference belongs to the hdr. Only 2285 * add to the refcount if the arc_buf_t is 2286 * not shared. 2287 */ 2288 if (arc_buf_is_shared(buf)) 2289 continue; 2290 2291 (void) refcount_remove_many( 2292 &old_state->arcs_size, arc_buf_size(buf), 2293 buf); 2294 } 2295 ASSERT3U(bufcnt, ==, buffers); 2296 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2297 (void) refcount_remove_many( 2298 &old_state->arcs_size, arc_hdr_size(hdr), hdr); 2299 } 2300 } 2301 2302 if (HDR_HAS_L1HDR(hdr)) 2303 hdr->b_l1hdr.b_state = new_state; 2304 2305 /* 2306 * L2 headers should never be on the L2 state list since they don't 2307 * have L1 headers allocated. 2308 */ 2309 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2310 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2311 } 2312 2313 void 2314 arc_space_consume(uint64_t space, arc_space_type_t type) 2315 { 2316 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2317 2318 switch (type) { 2319 case ARC_SPACE_DATA: 2320 ARCSTAT_INCR(arcstat_data_size, space); 2321 break; 2322 case ARC_SPACE_META: 2323 ARCSTAT_INCR(arcstat_metadata_size, space); 2324 break; 2325 case ARC_SPACE_OTHER: 2326 ARCSTAT_INCR(arcstat_other_size, space); 2327 break; 2328 case ARC_SPACE_HDRS: 2329 ARCSTAT_INCR(arcstat_hdr_size, space); 2330 break; 2331 case ARC_SPACE_L2HDRS: 2332 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 2333 break; 2334 } 2335 2336 if (type != ARC_SPACE_DATA) 2337 ARCSTAT_INCR(arcstat_meta_used, space); 2338 2339 atomic_add_64(&arc_size, space); 2340 } 2341 2342 void 2343 arc_space_return(uint64_t space, arc_space_type_t type) 2344 { 2345 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2346 2347 switch (type) { 2348 case ARC_SPACE_DATA: 2349 ARCSTAT_INCR(arcstat_data_size, -space); 2350 break; 2351 case ARC_SPACE_META: 2352 ARCSTAT_INCR(arcstat_metadata_size, -space); 2353 break; 2354 case ARC_SPACE_OTHER: 2355 ARCSTAT_INCR(arcstat_other_size, -space); 2356 break; 2357 case ARC_SPACE_HDRS: 2358 ARCSTAT_INCR(arcstat_hdr_size, -space); 2359 break; 2360 case ARC_SPACE_L2HDRS: 2361 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 2362 break; 2363 } 2364 2365 if (type != ARC_SPACE_DATA) { 2366 ASSERT(arc_meta_used >= space); 2367 if (arc_meta_max < arc_meta_used) 2368 arc_meta_max = arc_meta_used; 2369 ARCSTAT_INCR(arcstat_meta_used, -space); 2370 } 2371 2372 ASSERT(arc_size >= space); 2373 atomic_add_64(&arc_size, -space); 2374 } 2375 2376 /* 2377 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2378 * with the hdr's b_pabd. 2379 */ 2380 static boolean_t 2381 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2382 { 2383 /* 2384 * The criteria for sharing a hdr's data are: 2385 * 1. the hdr's compression matches the buf's compression 2386 * 2. the hdr doesn't need to be byteswapped 2387 * 3. the hdr isn't already being shared 2388 * 4. the buf is either compressed or it is the last buf in the hdr list 2389 * 2390 * Criterion #4 maintains the invariant that shared uncompressed 2391 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2392 * might ask, "if a compressed buf is allocated first, won't that be the 2393 * last thing in the list?", but in that case it's impossible to create 2394 * a shared uncompressed buf anyway (because the hdr must be compressed 2395 * to have the compressed buf). You might also think that #3 is 2396 * sufficient to make this guarantee, however it's possible 2397 * (specifically in the rare L2ARC write race mentioned in 2398 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2399 * is sharable, but wasn't at the time of its allocation. Rather than 2400 * allow a new shared uncompressed buf to be created and then shuffle 2401 * the list around to make it the last element, this simply disallows 2402 * sharing if the new buf isn't the first to be added. 2403 */ 2404 ASSERT3P(buf->b_hdr, ==, hdr); 2405 boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF; 2406 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2407 return (buf_compressed == hdr_compressed && 2408 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2409 !HDR_SHARED_DATA(hdr) && 2410 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2411 } 2412 2413 /* 2414 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2415 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2416 * copy was made successfully, or an error code otherwise. 2417 */ 2418 static int 2419 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed, 2420 boolean_t fill, arc_buf_t **ret) 2421 { 2422 arc_buf_t *buf; 2423 2424 ASSERT(HDR_HAS_L1HDR(hdr)); 2425 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2426 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2427 hdr->b_type == ARC_BUFC_METADATA); 2428 ASSERT3P(ret, !=, NULL); 2429 ASSERT3P(*ret, ==, NULL); 2430 2431 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2432 buf->b_hdr = hdr; 2433 buf->b_data = NULL; 2434 buf->b_next = hdr->b_l1hdr.b_buf; 2435 buf->b_flags = 0; 2436 2437 add_reference(hdr, tag); 2438 2439 /* 2440 * We're about to change the hdr's b_flags. We must either 2441 * hold the hash_lock or be undiscoverable. 2442 */ 2443 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2444 2445 /* 2446 * Only honor requests for compressed bufs if the hdr is actually 2447 * compressed. 2448 */ 2449 if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) 2450 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2451 2452 /* 2453 * If the hdr's data can be shared then we share the data buffer and 2454 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2455 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2456 * buffer to store the buf's data. 2457 * 2458 * There are two additional restrictions here because we're sharing 2459 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2460 * actively involved in an L2ARC write, because if this buf is used by 2461 * an arc_write() then the hdr's data buffer will be released when the 2462 * write completes, even though the L2ARC write might still be using it. 2463 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2464 * need to be ABD-aware. 2465 */ 2466 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) && 2467 abd_is_linear(hdr->b_l1hdr.b_pabd); 2468 2469 /* Set up b_data and sharing */ 2470 if (can_share) { 2471 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2472 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2473 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2474 } else { 2475 buf->b_data = 2476 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2477 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2478 } 2479 VERIFY3P(buf->b_data, !=, NULL); 2480 2481 hdr->b_l1hdr.b_buf = buf; 2482 hdr->b_l1hdr.b_bufcnt += 1; 2483 2484 /* 2485 * If the user wants the data from the hdr, we need to either copy or 2486 * decompress the data. 2487 */ 2488 if (fill) { 2489 return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0)); 2490 } 2491 2492 return (0); 2493 } 2494 2495 static char *arc_onloan_tag = "onloan"; 2496 2497 static inline void 2498 arc_loaned_bytes_update(int64_t delta) 2499 { 2500 atomic_add_64(&arc_loaned_bytes, delta); 2501 2502 /* assert that it did not wrap around */ 2503 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2504 } 2505 2506 /* 2507 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2508 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2509 * buffers must be returned to the arc before they can be used by the DMU or 2510 * freed. 2511 */ 2512 arc_buf_t * 2513 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2514 { 2515 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2516 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2517 2518 arc_loaned_bytes_update(size); 2519 2520 return (buf); 2521 } 2522 2523 arc_buf_t * 2524 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2525 enum zio_compress compression_type) 2526 { 2527 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2528 psize, lsize, compression_type); 2529 2530 arc_loaned_bytes_update(psize); 2531 2532 return (buf); 2533 } 2534 2535 2536 /* 2537 * Return a loaned arc buffer to the arc. 2538 */ 2539 void 2540 arc_return_buf(arc_buf_t *buf, void *tag) 2541 { 2542 arc_buf_hdr_t *hdr = buf->b_hdr; 2543 2544 ASSERT3P(buf->b_data, !=, NULL); 2545 ASSERT(HDR_HAS_L1HDR(hdr)); 2546 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2547 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2548 2549 arc_loaned_bytes_update(-arc_buf_size(buf)); 2550 } 2551 2552 /* Detach an arc_buf from a dbuf (tag) */ 2553 void 2554 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2555 { 2556 arc_buf_hdr_t *hdr = buf->b_hdr; 2557 2558 ASSERT3P(buf->b_data, !=, NULL); 2559 ASSERT(HDR_HAS_L1HDR(hdr)); 2560 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2561 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2562 2563 arc_loaned_bytes_update(arc_buf_size(buf)); 2564 } 2565 2566 static void 2567 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2568 { 2569 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2570 2571 df->l2df_abd = abd; 2572 df->l2df_size = size; 2573 df->l2df_type = type; 2574 mutex_enter(&l2arc_free_on_write_mtx); 2575 list_insert_head(l2arc_free_on_write, df); 2576 mutex_exit(&l2arc_free_on_write_mtx); 2577 } 2578 2579 static void 2580 arc_hdr_free_on_write(arc_buf_hdr_t *hdr) 2581 { 2582 arc_state_t *state = hdr->b_l1hdr.b_state; 2583 arc_buf_contents_t type = arc_buf_type(hdr); 2584 uint64_t size = arc_hdr_size(hdr); 2585 2586 /* protected by hash lock, if in the hash table */ 2587 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2588 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2589 ASSERT(state != arc_anon && state != arc_l2c_only); 2590 2591 (void) refcount_remove_many(&state->arcs_esize[type], 2592 size, hdr); 2593 } 2594 (void) refcount_remove_many(&state->arcs_size, size, hdr); 2595 if (type == ARC_BUFC_METADATA) { 2596 arc_space_return(size, ARC_SPACE_META); 2597 } else { 2598 ASSERT(type == ARC_BUFC_DATA); 2599 arc_space_return(size, ARC_SPACE_DATA); 2600 } 2601 2602 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2603 } 2604 2605 /* 2606 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2607 * data buffer, we transfer the refcount ownership to the hdr and update 2608 * the appropriate kstats. 2609 */ 2610 static void 2611 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2612 { 2613 arc_state_t *state = hdr->b_l1hdr.b_state; 2614 2615 ASSERT(arc_can_share(hdr, buf)); 2616 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2617 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2618 2619 /* 2620 * Start sharing the data buffer. We transfer the 2621 * refcount ownership to the hdr since it always owns 2622 * the refcount whenever an arc_buf_t is shared. 2623 */ 2624 refcount_transfer_ownership(&state->arcs_size, buf, hdr); 2625 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2626 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 2627 HDR_ISTYPE_METADATA(hdr)); 2628 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2629 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2630 2631 /* 2632 * Since we've transferred ownership to the hdr we need 2633 * to increment its compressed and uncompressed kstats and 2634 * decrement the overhead size. 2635 */ 2636 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2637 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2638 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 2639 } 2640 2641 static void 2642 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2643 { 2644 arc_state_t *state = hdr->b_l1hdr.b_state; 2645 2646 ASSERT(arc_buf_is_shared(buf)); 2647 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2648 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2649 2650 /* 2651 * We are no longer sharing this buffer so we need 2652 * to transfer its ownership to the rightful owner. 2653 */ 2654 refcount_transfer_ownership(&state->arcs_size, hdr, buf); 2655 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2656 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 2657 abd_put(hdr->b_l1hdr.b_pabd); 2658 hdr->b_l1hdr.b_pabd = NULL; 2659 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2660 2661 /* 2662 * Since the buffer is no longer shared between 2663 * the arc buf and the hdr, count it as overhead. 2664 */ 2665 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2666 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2667 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2668 } 2669 2670 /* 2671 * Remove an arc_buf_t from the hdr's buf list and return the last 2672 * arc_buf_t on the list. If no buffers remain on the list then return 2673 * NULL. 2674 */ 2675 static arc_buf_t * 2676 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2677 { 2678 ASSERT(HDR_HAS_L1HDR(hdr)); 2679 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2680 2681 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 2682 arc_buf_t *lastbuf = NULL; 2683 2684 /* 2685 * Remove the buf from the hdr list and locate the last 2686 * remaining buffer on the list. 2687 */ 2688 while (*bufp != NULL) { 2689 if (*bufp == buf) 2690 *bufp = buf->b_next; 2691 2692 /* 2693 * If we've removed a buffer in the middle of 2694 * the list then update the lastbuf and update 2695 * bufp. 2696 */ 2697 if (*bufp != NULL) { 2698 lastbuf = *bufp; 2699 bufp = &(*bufp)->b_next; 2700 } 2701 } 2702 buf->b_next = NULL; 2703 ASSERT3P(lastbuf, !=, buf); 2704 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 2705 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 2706 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 2707 2708 return (lastbuf); 2709 } 2710 2711 /* 2712 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's 2713 * list and free it. 2714 */ 2715 static void 2716 arc_buf_destroy_impl(arc_buf_t *buf) 2717 { 2718 arc_buf_hdr_t *hdr = buf->b_hdr; 2719 2720 /* 2721 * Free up the data associated with the buf but only if we're not 2722 * sharing this with the hdr. If we are sharing it with the hdr, the 2723 * hdr is responsible for doing the free. 2724 */ 2725 if (buf->b_data != NULL) { 2726 /* 2727 * We're about to change the hdr's b_flags. We must either 2728 * hold the hash_lock or be undiscoverable. 2729 */ 2730 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2731 2732 arc_cksum_verify(buf); 2733 arc_buf_unwatch(buf); 2734 2735 if (arc_buf_is_shared(buf)) { 2736 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2737 } else { 2738 uint64_t size = arc_buf_size(buf); 2739 arc_free_data_buf(hdr, buf->b_data, size, buf); 2740 ARCSTAT_INCR(arcstat_overhead_size, -size); 2741 } 2742 buf->b_data = NULL; 2743 2744 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 2745 hdr->b_l1hdr.b_bufcnt -= 1; 2746 } 2747 2748 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 2749 2750 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 2751 /* 2752 * If the current arc_buf_t is sharing its data buffer with the 2753 * hdr, then reassign the hdr's b_pabd to share it with the new 2754 * buffer at the end of the list. The shared buffer is always 2755 * the last one on the hdr's buffer list. 2756 * 2757 * There is an equivalent case for compressed bufs, but since 2758 * they aren't guaranteed to be the last buf in the list and 2759 * that is an exceedingly rare case, we just allow that space be 2760 * wasted temporarily. 2761 */ 2762 if (lastbuf != NULL) { 2763 /* Only one buf can be shared at once */ 2764 VERIFY(!arc_buf_is_shared(lastbuf)); 2765 /* hdr is uncompressed so can't have compressed buf */ 2766 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 2767 2768 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2769 arc_hdr_free_pabd(hdr); 2770 2771 /* 2772 * We must setup a new shared block between the 2773 * last buffer and the hdr. The data would have 2774 * been allocated by the arc buf so we need to transfer 2775 * ownership to the hdr since it's now being shared. 2776 */ 2777 arc_share_buf(hdr, lastbuf); 2778 } 2779 } else if (HDR_SHARED_DATA(hdr)) { 2780 /* 2781 * Uncompressed shared buffers are always at the end 2782 * of the list. Compressed buffers don't have the 2783 * same requirements. This makes it hard to 2784 * simply assert that the lastbuf is shared so 2785 * we rely on the hdr's compression flags to determine 2786 * if we have a compressed, shared buffer. 2787 */ 2788 ASSERT3P(lastbuf, !=, NULL); 2789 ASSERT(arc_buf_is_shared(lastbuf) || 2790 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF); 2791 } 2792 2793 /* 2794 * Free the checksum if we're removing the last uncompressed buf from 2795 * this hdr. 2796 */ 2797 if (!arc_hdr_has_uncompressed_buf(hdr)) { 2798 arc_cksum_free(hdr); 2799 } 2800 2801 /* clean up the buf */ 2802 buf->b_hdr = NULL; 2803 kmem_cache_free(buf_cache, buf); 2804 } 2805 2806 static void 2807 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr) 2808 { 2809 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2810 ASSERT(HDR_HAS_L1HDR(hdr)); 2811 ASSERT(!HDR_SHARED_DATA(hdr)); 2812 2813 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2814 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr); 2815 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 2816 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2817 2818 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2819 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2820 } 2821 2822 static void 2823 arc_hdr_free_pabd(arc_buf_hdr_t *hdr) 2824 { 2825 ASSERT(HDR_HAS_L1HDR(hdr)); 2826 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2827 2828 /* 2829 * If the hdr is currently being written to the l2arc then 2830 * we defer freeing the data by adding it to the l2arc_free_on_write 2831 * list. The l2arc will free the data once it's finished 2832 * writing it to the l2arc device. 2833 */ 2834 if (HDR_L2_WRITING(hdr)) { 2835 arc_hdr_free_on_write(hdr); 2836 ARCSTAT_BUMP(arcstat_l2_free_on_write); 2837 } else { 2838 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 2839 arc_hdr_size(hdr), hdr); 2840 } 2841 hdr->b_l1hdr.b_pabd = NULL; 2842 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 2843 2844 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2845 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2846 } 2847 2848 static arc_buf_hdr_t * 2849 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 2850 enum zio_compress compression_type, arc_buf_contents_t type) 2851 { 2852 arc_buf_hdr_t *hdr; 2853 2854 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 2855 2856 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 2857 ASSERT(HDR_EMPTY(hdr)); 2858 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 2859 ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL); 2860 HDR_SET_PSIZE(hdr, psize); 2861 HDR_SET_LSIZE(hdr, lsize); 2862 hdr->b_spa = spa; 2863 hdr->b_type = type; 2864 hdr->b_flags = 0; 2865 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 2866 arc_hdr_set_compress(hdr, compression_type); 2867 2868 hdr->b_l1hdr.b_state = arc_anon; 2869 hdr->b_l1hdr.b_arc_access = 0; 2870 hdr->b_l1hdr.b_bufcnt = 0; 2871 hdr->b_l1hdr.b_buf = NULL; 2872 2873 /* 2874 * Allocate the hdr's buffer. This will contain either 2875 * the compressed or uncompressed data depending on the block 2876 * it references and compressed arc enablement. 2877 */ 2878 arc_hdr_alloc_pabd(hdr); 2879 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2880 2881 return (hdr); 2882 } 2883 2884 /* 2885 * Transition between the two allocation states for the arc_buf_hdr struct. 2886 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 2887 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 2888 * version is used when a cache buffer is only in the L2ARC in order to reduce 2889 * memory usage. 2890 */ 2891 static arc_buf_hdr_t * 2892 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 2893 { 2894 ASSERT(HDR_HAS_L2HDR(hdr)); 2895 2896 arc_buf_hdr_t *nhdr; 2897 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 2898 2899 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 2900 (old == hdr_l2only_cache && new == hdr_full_cache)); 2901 2902 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 2903 2904 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 2905 buf_hash_remove(hdr); 2906 2907 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 2908 2909 if (new == hdr_full_cache) { 2910 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 2911 /* 2912 * arc_access and arc_change_state need to be aware that a 2913 * header has just come out of L2ARC, so we set its state to 2914 * l2c_only even though it's about to change. 2915 */ 2916 nhdr->b_l1hdr.b_state = arc_l2c_only; 2917 2918 /* Verify previous threads set to NULL before freeing */ 2919 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 2920 } else { 2921 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2922 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2923 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 2924 2925 /* 2926 * If we've reached here, We must have been called from 2927 * arc_evict_hdr(), as such we should have already been 2928 * removed from any ghost list we were previously on 2929 * (which protects us from racing with arc_evict_state), 2930 * thus no locking is needed during this check. 2931 */ 2932 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 2933 2934 /* 2935 * A buffer must not be moved into the arc_l2c_only 2936 * state if it's not finished being written out to the 2937 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 2938 * might try to be accessed, even though it was removed. 2939 */ 2940 VERIFY(!HDR_L2_WRITING(hdr)); 2941 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2942 2943 #ifdef ZFS_DEBUG 2944 if (hdr->b_l1hdr.b_thawed != NULL) { 2945 kmem_free(hdr->b_l1hdr.b_thawed, 1); 2946 hdr->b_l1hdr.b_thawed = NULL; 2947 } 2948 #endif 2949 2950 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 2951 } 2952 /* 2953 * The header has been reallocated so we need to re-insert it into any 2954 * lists it was on. 2955 */ 2956 (void) buf_hash_insert(nhdr, NULL); 2957 2958 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 2959 2960 mutex_enter(&dev->l2ad_mtx); 2961 2962 /* 2963 * We must place the realloc'ed header back into the list at 2964 * the same spot. Otherwise, if it's placed earlier in the list, 2965 * l2arc_write_buffers() could find it during the function's 2966 * write phase, and try to write it out to the l2arc. 2967 */ 2968 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 2969 list_remove(&dev->l2ad_buflist, hdr); 2970 2971 mutex_exit(&dev->l2ad_mtx); 2972 2973 /* 2974 * Since we're using the pointer address as the tag when 2975 * incrementing and decrementing the l2ad_alloc refcount, we 2976 * must remove the old pointer (that we're about to destroy) and 2977 * add the new pointer to the refcount. Otherwise we'd remove 2978 * the wrong pointer address when calling arc_hdr_destroy() later. 2979 */ 2980 2981 (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 2982 (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr); 2983 2984 buf_discard_identity(hdr); 2985 kmem_cache_free(old, hdr); 2986 2987 return (nhdr); 2988 } 2989 2990 /* 2991 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 2992 * The buf is returned thawed since we expect the consumer to modify it. 2993 */ 2994 arc_buf_t * 2995 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 2996 { 2997 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 2998 ZIO_COMPRESS_OFF, type); 2999 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr))); 3000 3001 arc_buf_t *buf = NULL; 3002 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf)); 3003 arc_buf_thaw(buf); 3004 3005 return (buf); 3006 } 3007 3008 /* 3009 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3010 * for bufs containing metadata. 3011 */ 3012 arc_buf_t * 3013 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3014 enum zio_compress compression_type) 3015 { 3016 ASSERT3U(lsize, >, 0); 3017 ASSERT3U(lsize, >=, psize); 3018 ASSERT(compression_type > ZIO_COMPRESS_OFF); 3019 ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS); 3020 3021 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3022 compression_type, ARC_BUFC_DATA); 3023 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr))); 3024 3025 arc_buf_t *buf = NULL; 3026 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf)); 3027 arc_buf_thaw(buf); 3028 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3029 3030 if (!arc_buf_is_shared(buf)) { 3031 /* 3032 * To ensure that the hdr has the correct data in it if we call 3033 * arc_decompress() on this buf before it's been written to 3034 * disk, it's easiest if we just set up sharing between the 3035 * buf and the hdr. 3036 */ 3037 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd)); 3038 arc_hdr_free_pabd(hdr); 3039 arc_share_buf(hdr, buf); 3040 } 3041 3042 return (buf); 3043 } 3044 3045 static void 3046 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3047 { 3048 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3049 l2arc_dev_t *dev = l2hdr->b_dev; 3050 uint64_t asize = arc_hdr_size(hdr); 3051 3052 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3053 ASSERT(HDR_HAS_L2HDR(hdr)); 3054 3055 list_remove(&dev->l2ad_buflist, hdr); 3056 3057 ARCSTAT_INCR(arcstat_l2_asize, -asize); 3058 ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr)); 3059 3060 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3061 3062 (void) refcount_remove_many(&dev->l2ad_alloc, asize, hdr); 3063 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3064 } 3065 3066 static void 3067 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3068 { 3069 if (HDR_HAS_L1HDR(hdr)) { 3070 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3071 hdr->b_l1hdr.b_bufcnt > 0); 3072 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3073 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3074 } 3075 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3076 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3077 3078 if (!HDR_EMPTY(hdr)) 3079 buf_discard_identity(hdr); 3080 3081 if (HDR_HAS_L2HDR(hdr)) { 3082 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3083 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3084 3085 if (!buflist_held) 3086 mutex_enter(&dev->l2ad_mtx); 3087 3088 /* 3089 * Even though we checked this conditional above, we 3090 * need to check this again now that we have the 3091 * l2ad_mtx. This is because we could be racing with 3092 * another thread calling l2arc_evict() which might have 3093 * destroyed this header's L2 portion as we were waiting 3094 * to acquire the l2ad_mtx. If that happens, we don't 3095 * want to re-destroy the header's L2 portion. 3096 */ 3097 if (HDR_HAS_L2HDR(hdr)) 3098 arc_hdr_l2hdr_destroy(hdr); 3099 3100 if (!buflist_held) 3101 mutex_exit(&dev->l2ad_mtx); 3102 } 3103 3104 if (HDR_HAS_L1HDR(hdr)) { 3105 arc_cksum_free(hdr); 3106 3107 while (hdr->b_l1hdr.b_buf != NULL) 3108 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3109 3110 #ifdef ZFS_DEBUG 3111 if (hdr->b_l1hdr.b_thawed != NULL) { 3112 kmem_free(hdr->b_l1hdr.b_thawed, 1); 3113 hdr->b_l1hdr.b_thawed = NULL; 3114 } 3115 #endif 3116 3117 if (hdr->b_l1hdr.b_pabd != NULL) { 3118 arc_hdr_free_pabd(hdr); 3119 } 3120 } 3121 3122 ASSERT3P(hdr->b_hash_next, ==, NULL); 3123 if (HDR_HAS_L1HDR(hdr)) { 3124 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3125 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3126 kmem_cache_free(hdr_full_cache, hdr); 3127 } else { 3128 kmem_cache_free(hdr_l2only_cache, hdr); 3129 } 3130 } 3131 3132 void 3133 arc_buf_destroy(arc_buf_t *buf, void* tag) 3134 { 3135 arc_buf_hdr_t *hdr = buf->b_hdr; 3136 kmutex_t *hash_lock = HDR_LOCK(hdr); 3137 3138 if (hdr->b_l1hdr.b_state == arc_anon) { 3139 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3140 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3141 VERIFY0(remove_reference(hdr, NULL, tag)); 3142 arc_hdr_destroy(hdr); 3143 return; 3144 } 3145 3146 mutex_enter(hash_lock); 3147 ASSERT3P(hdr, ==, buf->b_hdr); 3148 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3149 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3150 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3151 ASSERT3P(buf->b_data, !=, NULL); 3152 3153 (void) remove_reference(hdr, hash_lock, tag); 3154 arc_buf_destroy_impl(buf); 3155 mutex_exit(hash_lock); 3156 } 3157 3158 /* 3159 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3160 * state of the header is dependent on it's state prior to entering this 3161 * function. The following transitions are possible: 3162 * 3163 * - arc_mru -> arc_mru_ghost 3164 * - arc_mfu -> arc_mfu_ghost 3165 * - arc_mru_ghost -> arc_l2c_only 3166 * - arc_mru_ghost -> deleted 3167 * - arc_mfu_ghost -> arc_l2c_only 3168 * - arc_mfu_ghost -> deleted 3169 */ 3170 static int64_t 3171 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3172 { 3173 arc_state_t *evicted_state, *state; 3174 int64_t bytes_evicted = 0; 3175 3176 ASSERT(MUTEX_HELD(hash_lock)); 3177 ASSERT(HDR_HAS_L1HDR(hdr)); 3178 3179 state = hdr->b_l1hdr.b_state; 3180 if (GHOST_STATE(state)) { 3181 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3182 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3183 3184 /* 3185 * l2arc_write_buffers() relies on a header's L1 portion 3186 * (i.e. its b_pabd field) during it's write phase. 3187 * Thus, we cannot push a header onto the arc_l2c_only 3188 * state (removing it's L1 piece) until the header is 3189 * done being written to the l2arc. 3190 */ 3191 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3192 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3193 return (bytes_evicted); 3194 } 3195 3196 ARCSTAT_BUMP(arcstat_deleted); 3197 bytes_evicted += HDR_GET_LSIZE(hdr); 3198 3199 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3200 3201 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3202 if (HDR_HAS_L2HDR(hdr)) { 3203 /* 3204 * This buffer is cached on the 2nd Level ARC; 3205 * don't destroy the header. 3206 */ 3207 arc_change_state(arc_l2c_only, hdr, hash_lock); 3208 /* 3209 * dropping from L1+L2 cached to L2-only, 3210 * realloc to remove the L1 header. 3211 */ 3212 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3213 hdr_l2only_cache); 3214 } else { 3215 arc_change_state(arc_anon, hdr, hash_lock); 3216 arc_hdr_destroy(hdr); 3217 } 3218 return (bytes_evicted); 3219 } 3220 3221 ASSERT(state == arc_mru || state == arc_mfu); 3222 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3223 3224 /* prefetch buffers have a minimum lifespan */ 3225 if (HDR_IO_IN_PROGRESS(hdr) || 3226 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3227 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3228 arc_min_prefetch_lifespan)) { 3229 ARCSTAT_BUMP(arcstat_evict_skip); 3230 return (bytes_evicted); 3231 } 3232 3233 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 3234 while (hdr->b_l1hdr.b_buf) { 3235 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3236 if (!mutex_tryenter(&buf->b_evict_lock)) { 3237 ARCSTAT_BUMP(arcstat_mutex_miss); 3238 break; 3239 } 3240 if (buf->b_data != NULL) 3241 bytes_evicted += HDR_GET_LSIZE(hdr); 3242 mutex_exit(&buf->b_evict_lock); 3243 arc_buf_destroy_impl(buf); 3244 } 3245 3246 if (HDR_HAS_L2HDR(hdr)) { 3247 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3248 } else { 3249 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3250 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3251 HDR_GET_LSIZE(hdr)); 3252 } else { 3253 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3254 HDR_GET_LSIZE(hdr)); 3255 } 3256 } 3257 3258 if (hdr->b_l1hdr.b_bufcnt == 0) { 3259 arc_cksum_free(hdr); 3260 3261 bytes_evicted += arc_hdr_size(hdr); 3262 3263 /* 3264 * If this hdr is being evicted and has a compressed 3265 * buffer then we discard it here before we change states. 3266 * This ensures that the accounting is updated correctly 3267 * in arc_free_data_impl(). 3268 */ 3269 arc_hdr_free_pabd(hdr); 3270 3271 arc_change_state(evicted_state, hdr, hash_lock); 3272 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3273 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 3274 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3275 } 3276 3277 return (bytes_evicted); 3278 } 3279 3280 static uint64_t 3281 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 3282 uint64_t spa, int64_t bytes) 3283 { 3284 multilist_sublist_t *mls; 3285 uint64_t bytes_evicted = 0; 3286 arc_buf_hdr_t *hdr; 3287 kmutex_t *hash_lock; 3288 int evict_count = 0; 3289 3290 ASSERT3P(marker, !=, NULL); 3291 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3292 3293 mls = multilist_sublist_lock(ml, idx); 3294 3295 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 3296 hdr = multilist_sublist_prev(mls, marker)) { 3297 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 3298 (evict_count >= zfs_arc_evict_batch_limit)) 3299 break; 3300 3301 /* 3302 * To keep our iteration location, move the marker 3303 * forward. Since we're not holding hdr's hash lock, we 3304 * must be very careful and not remove 'hdr' from the 3305 * sublist. Otherwise, other consumers might mistake the 3306 * 'hdr' as not being on a sublist when they call the 3307 * multilist_link_active() function (they all rely on 3308 * the hash lock protecting concurrent insertions and 3309 * removals). multilist_sublist_move_forward() was 3310 * specifically implemented to ensure this is the case 3311 * (only 'marker' will be removed and re-inserted). 3312 */ 3313 multilist_sublist_move_forward(mls, marker); 3314 3315 /* 3316 * The only case where the b_spa field should ever be 3317 * zero, is the marker headers inserted by 3318 * arc_evict_state(). It's possible for multiple threads 3319 * to be calling arc_evict_state() concurrently (e.g. 3320 * dsl_pool_close() and zio_inject_fault()), so we must 3321 * skip any markers we see from these other threads. 3322 */ 3323 if (hdr->b_spa == 0) 3324 continue; 3325 3326 /* we're only interested in evicting buffers of a certain spa */ 3327 if (spa != 0 && hdr->b_spa != spa) { 3328 ARCSTAT_BUMP(arcstat_evict_skip); 3329 continue; 3330 } 3331 3332 hash_lock = HDR_LOCK(hdr); 3333 3334 /* 3335 * We aren't calling this function from any code path 3336 * that would already be holding a hash lock, so we're 3337 * asserting on this assumption to be defensive in case 3338 * this ever changes. Without this check, it would be 3339 * possible to incorrectly increment arcstat_mutex_miss 3340 * below (e.g. if the code changed such that we called 3341 * this function with a hash lock held). 3342 */ 3343 ASSERT(!MUTEX_HELD(hash_lock)); 3344 3345 if (mutex_tryenter(hash_lock)) { 3346 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 3347 mutex_exit(hash_lock); 3348 3349 bytes_evicted += evicted; 3350 3351 /* 3352 * If evicted is zero, arc_evict_hdr() must have 3353 * decided to skip this header, don't increment 3354 * evict_count in this case. 3355 */ 3356 if (evicted != 0) 3357 evict_count++; 3358 3359 /* 3360 * If arc_size isn't overflowing, signal any 3361 * threads that might happen to be waiting. 3362 * 3363 * For each header evicted, we wake up a single 3364 * thread. If we used cv_broadcast, we could 3365 * wake up "too many" threads causing arc_size 3366 * to significantly overflow arc_c; since 3367 * arc_get_data_impl() doesn't check for overflow 3368 * when it's woken up (it doesn't because it's 3369 * possible for the ARC to be overflowing while 3370 * full of un-evictable buffers, and the 3371 * function should proceed in this case). 3372 * 3373 * If threads are left sleeping, due to not 3374 * using cv_broadcast, they will be woken up 3375 * just before arc_reclaim_thread() sleeps. 3376 */ 3377 mutex_enter(&arc_reclaim_lock); 3378 if (!arc_is_overflowing()) 3379 cv_signal(&arc_reclaim_waiters_cv); 3380 mutex_exit(&arc_reclaim_lock); 3381 } else { 3382 ARCSTAT_BUMP(arcstat_mutex_miss); 3383 } 3384 } 3385 3386 multilist_sublist_unlock(mls); 3387 3388 return (bytes_evicted); 3389 } 3390 3391 /* 3392 * Evict buffers from the given arc state, until we've removed the 3393 * specified number of bytes. Move the removed buffers to the 3394 * appropriate evict state. 3395 * 3396 * This function makes a "best effort". It skips over any buffers 3397 * it can't get a hash_lock on, and so, may not catch all candidates. 3398 * It may also return without evicting as much space as requested. 3399 * 3400 * If bytes is specified using the special value ARC_EVICT_ALL, this 3401 * will evict all available (i.e. unlocked and evictable) buffers from 3402 * the given arc state; which is used by arc_flush(). 3403 */ 3404 static uint64_t 3405 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 3406 arc_buf_contents_t type) 3407 { 3408 uint64_t total_evicted = 0; 3409 multilist_t *ml = state->arcs_list[type]; 3410 int num_sublists; 3411 arc_buf_hdr_t **markers; 3412 3413 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3414 3415 num_sublists = multilist_get_num_sublists(ml); 3416 3417 /* 3418 * If we've tried to evict from each sublist, made some 3419 * progress, but still have not hit the target number of bytes 3420 * to evict, we want to keep trying. The markers allow us to 3421 * pick up where we left off for each individual sublist, rather 3422 * than starting from the tail each time. 3423 */ 3424 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 3425 for (int i = 0; i < num_sublists; i++) { 3426 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 3427 3428 /* 3429 * A b_spa of 0 is used to indicate that this header is 3430 * a marker. This fact is used in arc_adjust_type() and 3431 * arc_evict_state_impl(). 3432 */ 3433 markers[i]->b_spa = 0; 3434 3435 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 3436 multilist_sublist_insert_tail(mls, markers[i]); 3437 multilist_sublist_unlock(mls); 3438 } 3439 3440 /* 3441 * While we haven't hit our target number of bytes to evict, or 3442 * we're evicting all available buffers. 3443 */ 3444 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 3445 /* 3446 * Start eviction using a randomly selected sublist, 3447 * this is to try and evenly balance eviction across all 3448 * sublists. Always starting at the same sublist 3449 * (e.g. index 0) would cause evictions to favor certain 3450 * sublists over others. 3451 */ 3452 int sublist_idx = multilist_get_random_index(ml); 3453 uint64_t scan_evicted = 0; 3454 3455 for (int i = 0; i < num_sublists; i++) { 3456 uint64_t bytes_remaining; 3457 uint64_t bytes_evicted; 3458 3459 if (bytes == ARC_EVICT_ALL) 3460 bytes_remaining = ARC_EVICT_ALL; 3461 else if (total_evicted < bytes) 3462 bytes_remaining = bytes - total_evicted; 3463 else 3464 break; 3465 3466 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 3467 markers[sublist_idx], spa, bytes_remaining); 3468 3469 scan_evicted += bytes_evicted; 3470 total_evicted += bytes_evicted; 3471 3472 /* we've reached the end, wrap to the beginning */ 3473 if (++sublist_idx >= num_sublists) 3474 sublist_idx = 0; 3475 } 3476 3477 /* 3478 * If we didn't evict anything during this scan, we have 3479 * no reason to believe we'll evict more during another 3480 * scan, so break the loop. 3481 */ 3482 if (scan_evicted == 0) { 3483 /* This isn't possible, let's make that obvious */ 3484 ASSERT3S(bytes, !=, 0); 3485 3486 /* 3487 * When bytes is ARC_EVICT_ALL, the only way to 3488 * break the loop is when scan_evicted is zero. 3489 * In that case, we actually have evicted enough, 3490 * so we don't want to increment the kstat. 3491 */ 3492 if (bytes != ARC_EVICT_ALL) { 3493 ASSERT3S(total_evicted, <, bytes); 3494 ARCSTAT_BUMP(arcstat_evict_not_enough); 3495 } 3496 3497 break; 3498 } 3499 } 3500 3501 for (int i = 0; i < num_sublists; i++) { 3502 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 3503 multilist_sublist_remove(mls, markers[i]); 3504 multilist_sublist_unlock(mls); 3505 3506 kmem_cache_free(hdr_full_cache, markers[i]); 3507 } 3508 kmem_free(markers, sizeof (*markers) * num_sublists); 3509 3510 return (total_evicted); 3511 } 3512 3513 /* 3514 * Flush all "evictable" data of the given type from the arc state 3515 * specified. This will not evict any "active" buffers (i.e. referenced). 3516 * 3517 * When 'retry' is set to B_FALSE, the function will make a single pass 3518 * over the state and evict any buffers that it can. Since it doesn't 3519 * continually retry the eviction, it might end up leaving some buffers 3520 * in the ARC due to lock misses. 3521 * 3522 * When 'retry' is set to B_TRUE, the function will continually retry the 3523 * eviction until *all* evictable buffers have been removed from the 3524 * state. As a result, if concurrent insertions into the state are 3525 * allowed (e.g. if the ARC isn't shutting down), this function might 3526 * wind up in an infinite loop, continually trying to evict buffers. 3527 */ 3528 static uint64_t 3529 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 3530 boolean_t retry) 3531 { 3532 uint64_t evicted = 0; 3533 3534 while (refcount_count(&state->arcs_esize[type]) != 0) { 3535 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 3536 3537 if (!retry) 3538 break; 3539 } 3540 3541 return (evicted); 3542 } 3543 3544 /* 3545 * Evict the specified number of bytes from the state specified, 3546 * restricting eviction to the spa and type given. This function 3547 * prevents us from trying to evict more from a state's list than 3548 * is "evictable", and to skip evicting altogether when passed a 3549 * negative value for "bytes". In contrast, arc_evict_state() will 3550 * evict everything it can, when passed a negative value for "bytes". 3551 */ 3552 static uint64_t 3553 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 3554 arc_buf_contents_t type) 3555 { 3556 int64_t delta; 3557 3558 if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) { 3559 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes); 3560 return (arc_evict_state(state, spa, delta, type)); 3561 } 3562 3563 return (0); 3564 } 3565 3566 /* 3567 * Evict metadata buffers from the cache, such that arc_meta_used is 3568 * capped by the arc_meta_limit tunable. 3569 */ 3570 static uint64_t 3571 arc_adjust_meta(void) 3572 { 3573 uint64_t total_evicted = 0; 3574 int64_t target; 3575 3576 /* 3577 * If we're over the meta limit, we want to evict enough 3578 * metadata to get back under the meta limit. We don't want to 3579 * evict so much that we drop the MRU below arc_p, though. If 3580 * we're over the meta limit more than we're over arc_p, we 3581 * evict some from the MRU here, and some from the MFU below. 3582 */ 3583 target = MIN((int64_t)(arc_meta_used - arc_meta_limit), 3584 (int64_t)(refcount_count(&arc_anon->arcs_size) + 3585 refcount_count(&arc_mru->arcs_size) - arc_p)); 3586 3587 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3588 3589 /* 3590 * Similar to the above, we want to evict enough bytes to get us 3591 * below the meta limit, but not so much as to drop us below the 3592 * space allotted to the MFU (which is defined as arc_c - arc_p). 3593 */ 3594 target = MIN((int64_t)(arc_meta_used - arc_meta_limit), 3595 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p))); 3596 3597 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3598 3599 return (total_evicted); 3600 } 3601 3602 /* 3603 * Return the type of the oldest buffer in the given arc state 3604 * 3605 * This function will select a random sublist of type ARC_BUFC_DATA and 3606 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 3607 * is compared, and the type which contains the "older" buffer will be 3608 * returned. 3609 */ 3610 static arc_buf_contents_t 3611 arc_adjust_type(arc_state_t *state) 3612 { 3613 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA]; 3614 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA]; 3615 int data_idx = multilist_get_random_index(data_ml); 3616 int meta_idx = multilist_get_random_index(meta_ml); 3617 multilist_sublist_t *data_mls; 3618 multilist_sublist_t *meta_mls; 3619 arc_buf_contents_t type; 3620 arc_buf_hdr_t *data_hdr; 3621 arc_buf_hdr_t *meta_hdr; 3622 3623 /* 3624 * We keep the sublist lock until we're finished, to prevent 3625 * the headers from being destroyed via arc_evict_state(). 3626 */ 3627 data_mls = multilist_sublist_lock(data_ml, data_idx); 3628 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 3629 3630 /* 3631 * These two loops are to ensure we skip any markers that 3632 * might be at the tail of the lists due to arc_evict_state(). 3633 */ 3634 3635 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 3636 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 3637 if (data_hdr->b_spa != 0) 3638 break; 3639 } 3640 3641 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 3642 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 3643 if (meta_hdr->b_spa != 0) 3644 break; 3645 } 3646 3647 if (data_hdr == NULL && meta_hdr == NULL) { 3648 type = ARC_BUFC_DATA; 3649 } else if (data_hdr == NULL) { 3650 ASSERT3P(meta_hdr, !=, NULL); 3651 type = ARC_BUFC_METADATA; 3652 } else if (meta_hdr == NULL) { 3653 ASSERT3P(data_hdr, !=, NULL); 3654 type = ARC_BUFC_DATA; 3655 } else { 3656 ASSERT3P(data_hdr, !=, NULL); 3657 ASSERT3P(meta_hdr, !=, NULL); 3658 3659 /* The headers can't be on the sublist without an L1 header */ 3660 ASSERT(HDR_HAS_L1HDR(data_hdr)); 3661 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 3662 3663 if (data_hdr->b_l1hdr.b_arc_access < 3664 meta_hdr->b_l1hdr.b_arc_access) { 3665 type = ARC_BUFC_DATA; 3666 } else { 3667 type = ARC_BUFC_METADATA; 3668 } 3669 } 3670 3671 multilist_sublist_unlock(meta_mls); 3672 multilist_sublist_unlock(data_mls); 3673 3674 return (type); 3675 } 3676 3677 /* 3678 * Evict buffers from the cache, such that arc_size is capped by arc_c. 3679 */ 3680 static uint64_t 3681 arc_adjust(void) 3682 { 3683 uint64_t total_evicted = 0; 3684 uint64_t bytes; 3685 int64_t target; 3686 3687 /* 3688 * If we're over arc_meta_limit, we want to correct that before 3689 * potentially evicting data buffers below. 3690 */ 3691 total_evicted += arc_adjust_meta(); 3692 3693 /* 3694 * Adjust MRU size 3695 * 3696 * If we're over the target cache size, we want to evict enough 3697 * from the list to get back to our target size. We don't want 3698 * to evict too much from the MRU, such that it drops below 3699 * arc_p. So, if we're over our target cache size more than 3700 * the MRU is over arc_p, we'll evict enough to get back to 3701 * arc_p here, and then evict more from the MFU below. 3702 */ 3703 target = MIN((int64_t)(arc_size - arc_c), 3704 (int64_t)(refcount_count(&arc_anon->arcs_size) + 3705 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p)); 3706 3707 /* 3708 * If we're below arc_meta_min, always prefer to evict data. 3709 * Otherwise, try to satisfy the requested number of bytes to 3710 * evict from the type which contains older buffers; in an 3711 * effort to keep newer buffers in the cache regardless of their 3712 * type. If we cannot satisfy the number of bytes from this 3713 * type, spill over into the next type. 3714 */ 3715 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA && 3716 arc_meta_used > arc_meta_min) { 3717 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3718 total_evicted += bytes; 3719 3720 /* 3721 * If we couldn't evict our target number of bytes from 3722 * metadata, we try to get the rest from data. 3723 */ 3724 target -= bytes; 3725 3726 total_evicted += 3727 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 3728 } else { 3729 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 3730 total_evicted += bytes; 3731 3732 /* 3733 * If we couldn't evict our target number of bytes from 3734 * data, we try to get the rest from metadata. 3735 */ 3736 target -= bytes; 3737 3738 total_evicted += 3739 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3740 } 3741 3742 /* 3743 * Adjust MFU size 3744 * 3745 * Now that we've tried to evict enough from the MRU to get its 3746 * size back to arc_p, if we're still above the target cache 3747 * size, we evict the rest from the MFU. 3748 */ 3749 target = arc_size - arc_c; 3750 3751 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA && 3752 arc_meta_used > arc_meta_min) { 3753 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3754 total_evicted += bytes; 3755 3756 /* 3757 * If we couldn't evict our target number of bytes from 3758 * metadata, we try to get the rest from data. 3759 */ 3760 target -= bytes; 3761 3762 total_evicted += 3763 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 3764 } else { 3765 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 3766 total_evicted += bytes; 3767 3768 /* 3769 * If we couldn't evict our target number of bytes from 3770 * data, we try to get the rest from data. 3771 */ 3772 target -= bytes; 3773 3774 total_evicted += 3775 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3776 } 3777 3778 /* 3779 * Adjust ghost lists 3780 * 3781 * In addition to the above, the ARC also defines target values 3782 * for the ghost lists. The sum of the mru list and mru ghost 3783 * list should never exceed the target size of the cache, and 3784 * the sum of the mru list, mfu list, mru ghost list, and mfu 3785 * ghost list should never exceed twice the target size of the 3786 * cache. The following logic enforces these limits on the ghost 3787 * caches, and evicts from them as needed. 3788 */ 3789 target = refcount_count(&arc_mru->arcs_size) + 3790 refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 3791 3792 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 3793 total_evicted += bytes; 3794 3795 target -= bytes; 3796 3797 total_evicted += 3798 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 3799 3800 /* 3801 * We assume the sum of the mru list and mfu list is less than 3802 * or equal to arc_c (we enforced this above), which means we 3803 * can use the simpler of the two equations below: 3804 * 3805 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 3806 * mru ghost + mfu ghost <= arc_c 3807 */ 3808 target = refcount_count(&arc_mru_ghost->arcs_size) + 3809 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 3810 3811 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 3812 total_evicted += bytes; 3813 3814 target -= bytes; 3815 3816 total_evicted += 3817 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 3818 3819 return (total_evicted); 3820 } 3821 3822 void 3823 arc_flush(spa_t *spa, boolean_t retry) 3824 { 3825 uint64_t guid = 0; 3826 3827 /* 3828 * If retry is B_TRUE, a spa must not be specified since we have 3829 * no good way to determine if all of a spa's buffers have been 3830 * evicted from an arc state. 3831 */ 3832 ASSERT(!retry || spa == 0); 3833 3834 if (spa != NULL) 3835 guid = spa_load_guid(spa); 3836 3837 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 3838 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 3839 3840 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 3841 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 3842 3843 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 3844 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 3845 3846 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 3847 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 3848 } 3849 3850 void 3851 arc_shrink(int64_t to_free) 3852 { 3853 if (arc_c > arc_c_min) { 3854 3855 if (arc_c > arc_c_min + to_free) 3856 atomic_add_64(&arc_c, -to_free); 3857 else 3858 arc_c = arc_c_min; 3859 3860 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 3861 if (arc_c > arc_size) 3862 arc_c = MAX(arc_size, arc_c_min); 3863 if (arc_p > arc_c) 3864 arc_p = (arc_c >> 1); 3865 ASSERT(arc_c >= arc_c_min); 3866 ASSERT((int64_t)arc_p >= 0); 3867 } 3868 3869 if (arc_size > arc_c) 3870 (void) arc_adjust(); 3871 } 3872 3873 typedef enum free_memory_reason_t { 3874 FMR_UNKNOWN, 3875 FMR_NEEDFREE, 3876 FMR_LOTSFREE, 3877 FMR_SWAPFS_MINFREE, 3878 FMR_PAGES_PP_MAXIMUM, 3879 FMR_HEAP_ARENA, 3880 FMR_ZIO_ARENA, 3881 } free_memory_reason_t; 3882 3883 int64_t last_free_memory; 3884 free_memory_reason_t last_free_reason; 3885 3886 /* 3887 * Additional reserve of pages for pp_reserve. 3888 */ 3889 int64_t arc_pages_pp_reserve = 64; 3890 3891 /* 3892 * Additional reserve of pages for swapfs. 3893 */ 3894 int64_t arc_swapfs_reserve = 64; 3895 3896 /* 3897 * Return the amount of memory that can be consumed before reclaim will be 3898 * needed. Positive if there is sufficient free memory, negative indicates 3899 * the amount of memory that needs to be freed up. 3900 */ 3901 static int64_t 3902 arc_available_memory(void) 3903 { 3904 int64_t lowest = INT64_MAX; 3905 int64_t n; 3906 free_memory_reason_t r = FMR_UNKNOWN; 3907 3908 #ifdef _KERNEL 3909 if (needfree > 0) { 3910 n = PAGESIZE * (-needfree); 3911 if (n < lowest) { 3912 lowest = n; 3913 r = FMR_NEEDFREE; 3914 } 3915 } 3916 3917 /* 3918 * check that we're out of range of the pageout scanner. It starts to 3919 * schedule paging if freemem is less than lotsfree and needfree. 3920 * lotsfree is the high-water mark for pageout, and needfree is the 3921 * number of needed free pages. We add extra pages here to make sure 3922 * the scanner doesn't start up while we're freeing memory. 3923 */ 3924 n = PAGESIZE * (freemem - lotsfree - needfree - desfree); 3925 if (n < lowest) { 3926 lowest = n; 3927 r = FMR_LOTSFREE; 3928 } 3929 3930 /* 3931 * check to make sure that swapfs has enough space so that anon 3932 * reservations can still succeed. anon_resvmem() checks that the 3933 * availrmem is greater than swapfs_minfree, and the number of reserved 3934 * swap pages. We also add a bit of extra here just to prevent 3935 * circumstances from getting really dire. 3936 */ 3937 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve - 3938 desfree - arc_swapfs_reserve); 3939 if (n < lowest) { 3940 lowest = n; 3941 r = FMR_SWAPFS_MINFREE; 3942 } 3943 3944 3945 /* 3946 * Check that we have enough availrmem that memory locking (e.g., via 3947 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 3948 * stores the number of pages that cannot be locked; when availrmem 3949 * drops below pages_pp_maximum, page locking mechanisms such as 3950 * page_pp_lock() will fail.) 3951 */ 3952 n = PAGESIZE * (availrmem - pages_pp_maximum - 3953 arc_pages_pp_reserve); 3954 if (n < lowest) { 3955 lowest = n; 3956 r = FMR_PAGES_PP_MAXIMUM; 3957 } 3958 3959 #if defined(__i386) 3960 /* 3961 * If we're on an i386 platform, it's possible that we'll exhaust the 3962 * kernel heap space before we ever run out of available physical 3963 * memory. Most checks of the size of the heap_area compare against 3964 * tune.t_minarmem, which is the minimum available real memory that we 3965 * can have in the system. However, this is generally fixed at 25 pages 3966 * which is so low that it's useless. In this comparison, we seek to 3967 * calculate the total heap-size, and reclaim if more than 3/4ths of the 3968 * heap is allocated. (Or, in the calculation, if less than 1/4th is 3969 * free) 3970 */ 3971 n = (int64_t)vmem_size(heap_arena, VMEM_FREE) - 3972 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2); 3973 if (n < lowest) { 3974 lowest = n; 3975 r = FMR_HEAP_ARENA; 3976 } 3977 #endif 3978 3979 /* 3980 * If zio data pages are being allocated out of a separate heap segment, 3981 * then enforce that the size of available vmem for this arena remains 3982 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free. 3983 * 3984 * Note that reducing the arc_zio_arena_free_shift keeps more virtual 3985 * memory (in the zio_arena) free, which can avoid memory 3986 * fragmentation issues. 3987 */ 3988 if (zio_arena != NULL) { 3989 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) - 3990 (vmem_size(zio_arena, VMEM_ALLOC) >> 3991 arc_zio_arena_free_shift); 3992 if (n < lowest) { 3993 lowest = n; 3994 r = FMR_ZIO_ARENA; 3995 } 3996 } 3997 #else 3998 /* Every 100 calls, free a small amount */ 3999 if (spa_get_random(100) == 0) 4000 lowest = -1024; 4001 #endif 4002 4003 last_free_memory = lowest; 4004 last_free_reason = r; 4005 4006 return (lowest); 4007 } 4008 4009 4010 /* 4011 * Determine if the system is under memory pressure and is asking 4012 * to reclaim memory. A return value of B_TRUE indicates that the system 4013 * is under memory pressure and that the arc should adjust accordingly. 4014 */ 4015 static boolean_t 4016 arc_reclaim_needed(void) 4017 { 4018 return (arc_available_memory() < 0); 4019 } 4020 4021 static void 4022 arc_kmem_reap_now(void) 4023 { 4024 size_t i; 4025 kmem_cache_t *prev_cache = NULL; 4026 kmem_cache_t *prev_data_cache = NULL; 4027 extern kmem_cache_t *zio_buf_cache[]; 4028 extern kmem_cache_t *zio_data_buf_cache[]; 4029 extern kmem_cache_t *range_seg_cache; 4030 extern kmem_cache_t *abd_chunk_cache; 4031 4032 #ifdef _KERNEL 4033 if (arc_meta_used >= arc_meta_limit) { 4034 /* 4035 * We are exceeding our meta-data cache limit. 4036 * Purge some DNLC entries to release holds on meta-data. 4037 */ 4038 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 4039 } 4040 #if defined(__i386) 4041 /* 4042 * Reclaim unused memory from all kmem caches. 4043 */ 4044 kmem_reap(); 4045 #endif 4046 #endif 4047 4048 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4049 if (zio_buf_cache[i] != prev_cache) { 4050 prev_cache = zio_buf_cache[i]; 4051 kmem_cache_reap_now(zio_buf_cache[i]); 4052 } 4053 if (zio_data_buf_cache[i] != prev_data_cache) { 4054 prev_data_cache = zio_data_buf_cache[i]; 4055 kmem_cache_reap_now(zio_data_buf_cache[i]); 4056 } 4057 } 4058 kmem_cache_reap_now(abd_chunk_cache); 4059 kmem_cache_reap_now(buf_cache); 4060 kmem_cache_reap_now(hdr_full_cache); 4061 kmem_cache_reap_now(hdr_l2only_cache); 4062 kmem_cache_reap_now(range_seg_cache); 4063 4064 if (zio_arena != NULL) { 4065 /* 4066 * Ask the vmem arena to reclaim unused memory from its 4067 * quantum caches. 4068 */ 4069 vmem_qcache_reap(zio_arena); 4070 } 4071 } 4072 4073 /* 4074 * Threads can block in arc_get_data_impl() waiting for this thread to evict 4075 * enough data and signal them to proceed. When this happens, the threads in 4076 * arc_get_data_impl() are sleeping while holding the hash lock for their 4077 * particular arc header. Thus, we must be careful to never sleep on a 4078 * hash lock in this thread. This is to prevent the following deadlock: 4079 * 4080 * - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L", 4081 * waiting for the reclaim thread to signal it. 4082 * 4083 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter, 4084 * fails, and goes to sleep forever. 4085 * 4086 * This possible deadlock is avoided by always acquiring a hash lock 4087 * using mutex_tryenter() from arc_reclaim_thread(). 4088 */ 4089 static void 4090 arc_reclaim_thread(void) 4091 { 4092 hrtime_t growtime = 0; 4093 callb_cpr_t cpr; 4094 4095 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG); 4096 4097 mutex_enter(&arc_reclaim_lock); 4098 while (!arc_reclaim_thread_exit) { 4099 uint64_t evicted = 0; 4100 4101 /* 4102 * This is necessary in order for the mdb ::arc dcmd to 4103 * show up to date information. Since the ::arc command 4104 * does not call the kstat's update function, without 4105 * this call, the command may show stale stats for the 4106 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4107 * with this change, the data might be up to 1 second 4108 * out of date; but that should suffice. The arc_state_t 4109 * structures can be queried directly if more accurate 4110 * information is needed. 4111 */ 4112 if (arc_ksp != NULL) 4113 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4114 4115 mutex_exit(&arc_reclaim_lock); 4116 4117 /* 4118 * We call arc_adjust() before (possibly) calling 4119 * arc_kmem_reap_now(), so that we can wake up 4120 * arc_get_data_impl() sooner. 4121 */ 4122 evicted = arc_adjust(); 4123 4124 int64_t free_memory = arc_available_memory(); 4125 if (free_memory < 0) { 4126 4127 arc_no_grow = B_TRUE; 4128 arc_warm = B_TRUE; 4129 4130 /* 4131 * Wait at least zfs_grow_retry (default 60) seconds 4132 * before considering growing. 4133 */ 4134 growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4135 4136 arc_kmem_reap_now(); 4137 4138 /* 4139 * If we are still low on memory, shrink the ARC 4140 * so that we have arc_shrink_min free space. 4141 */ 4142 free_memory = arc_available_memory(); 4143 4144 int64_t to_free = 4145 (arc_c >> arc_shrink_shift) - free_memory; 4146 if (to_free > 0) { 4147 #ifdef _KERNEL 4148 to_free = MAX(to_free, ptob(needfree)); 4149 #endif 4150 arc_shrink(to_free); 4151 } 4152 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4153 arc_no_grow = B_TRUE; 4154 } else if (gethrtime() >= growtime) { 4155 arc_no_grow = B_FALSE; 4156 } 4157 4158 mutex_enter(&arc_reclaim_lock); 4159 4160 /* 4161 * If evicted is zero, we couldn't evict anything via 4162 * arc_adjust(). This could be due to hash lock 4163 * collisions, but more likely due to the majority of 4164 * arc buffers being unevictable. Therefore, even if 4165 * arc_size is above arc_c, another pass is unlikely to 4166 * be helpful and could potentially cause us to enter an 4167 * infinite loop. 4168 */ 4169 if (arc_size <= arc_c || evicted == 0) { 4170 /* 4171 * We're either no longer overflowing, or we 4172 * can't evict anything more, so we should wake 4173 * up any threads before we go to sleep. 4174 */ 4175 cv_broadcast(&arc_reclaim_waiters_cv); 4176 4177 /* 4178 * Block until signaled, or after one second (we 4179 * might need to perform arc_kmem_reap_now() 4180 * even if we aren't being signalled) 4181 */ 4182 CALLB_CPR_SAFE_BEGIN(&cpr); 4183 (void) cv_timedwait_hires(&arc_reclaim_thread_cv, 4184 &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 4185 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock); 4186 } 4187 } 4188 4189 arc_reclaim_thread_exit = B_FALSE; 4190 cv_broadcast(&arc_reclaim_thread_cv); 4191 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */ 4192 thread_exit(); 4193 } 4194 4195 /* 4196 * Adapt arc info given the number of bytes we are trying to add and 4197 * the state that we are comming from. This function is only called 4198 * when we are adding new content to the cache. 4199 */ 4200 static void 4201 arc_adapt(int bytes, arc_state_t *state) 4202 { 4203 int mult; 4204 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 4205 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size); 4206 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size); 4207 4208 if (state == arc_l2c_only) 4209 return; 4210 4211 ASSERT(bytes > 0); 4212 /* 4213 * Adapt the target size of the MRU list: 4214 * - if we just hit in the MRU ghost list, then increase 4215 * the target size of the MRU list. 4216 * - if we just hit in the MFU ghost list, then increase 4217 * the target size of the MFU list by decreasing the 4218 * target size of the MRU list. 4219 */ 4220 if (state == arc_mru_ghost) { 4221 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 4222 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 4223 4224 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 4225 } else if (state == arc_mfu_ghost) { 4226 uint64_t delta; 4227 4228 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 4229 mult = MIN(mult, 10); 4230 4231 delta = MIN(bytes * mult, arc_p); 4232 arc_p = MAX(arc_p_min, arc_p - delta); 4233 } 4234 ASSERT((int64_t)arc_p >= 0); 4235 4236 if (arc_reclaim_needed()) { 4237 cv_signal(&arc_reclaim_thread_cv); 4238 return; 4239 } 4240 4241 if (arc_no_grow) 4242 return; 4243 4244 if (arc_c >= arc_c_max) 4245 return; 4246 4247 /* 4248 * If we're within (2 * maxblocksize) bytes of the target 4249 * cache size, increment the target cache size 4250 */ 4251 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 4252 atomic_add_64(&arc_c, (int64_t)bytes); 4253 if (arc_c > arc_c_max) 4254 arc_c = arc_c_max; 4255 else if (state == arc_anon) 4256 atomic_add_64(&arc_p, (int64_t)bytes); 4257 if (arc_p > arc_c) 4258 arc_p = arc_c; 4259 } 4260 ASSERT((int64_t)arc_p >= 0); 4261 } 4262 4263 /* 4264 * Check if arc_size has grown past our upper threshold, determined by 4265 * zfs_arc_overflow_shift. 4266 */ 4267 static boolean_t 4268 arc_is_overflowing(void) 4269 { 4270 /* Always allow at least one block of overflow */ 4271 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE, 4272 arc_c >> zfs_arc_overflow_shift); 4273 4274 return (arc_size >= arc_c + overflow); 4275 } 4276 4277 static abd_t * 4278 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4279 { 4280 arc_buf_contents_t type = arc_buf_type(hdr); 4281 4282 arc_get_data_impl(hdr, size, tag); 4283 if (type == ARC_BUFC_METADATA) { 4284 return (abd_alloc(size, B_TRUE)); 4285 } else { 4286 ASSERT(type == ARC_BUFC_DATA); 4287 return (abd_alloc(size, B_FALSE)); 4288 } 4289 } 4290 4291 static void * 4292 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4293 { 4294 arc_buf_contents_t type = arc_buf_type(hdr); 4295 4296 arc_get_data_impl(hdr, size, tag); 4297 if (type == ARC_BUFC_METADATA) { 4298 return (zio_buf_alloc(size)); 4299 } else { 4300 ASSERT(type == ARC_BUFC_DATA); 4301 return (zio_data_buf_alloc(size)); 4302 } 4303 } 4304 4305 /* 4306 * Allocate a block and return it to the caller. If we are hitting the 4307 * hard limit for the cache size, we must sleep, waiting for the eviction 4308 * thread to catch up. If we're past the target size but below the hard 4309 * limit, we'll only signal the reclaim thread and continue on. 4310 */ 4311 static void 4312 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4313 { 4314 arc_state_t *state = hdr->b_l1hdr.b_state; 4315 arc_buf_contents_t type = arc_buf_type(hdr); 4316 4317 arc_adapt(size, state); 4318 4319 /* 4320 * If arc_size is currently overflowing, and has grown past our 4321 * upper limit, we must be adding data faster than the evict 4322 * thread can evict. Thus, to ensure we don't compound the 4323 * problem by adding more data and forcing arc_size to grow even 4324 * further past it's target size, we halt and wait for the 4325 * eviction thread to catch up. 4326 * 4327 * It's also possible that the reclaim thread is unable to evict 4328 * enough buffers to get arc_size below the overflow limit (e.g. 4329 * due to buffers being un-evictable, or hash lock collisions). 4330 * In this case, we want to proceed regardless if we're 4331 * overflowing; thus we don't use a while loop here. 4332 */ 4333 if (arc_is_overflowing()) { 4334 mutex_enter(&arc_reclaim_lock); 4335 4336 /* 4337 * Now that we've acquired the lock, we may no longer be 4338 * over the overflow limit, lets check. 4339 * 4340 * We're ignoring the case of spurious wake ups. If that 4341 * were to happen, it'd let this thread consume an ARC 4342 * buffer before it should have (i.e. before we're under 4343 * the overflow limit and were signalled by the reclaim 4344 * thread). As long as that is a rare occurrence, it 4345 * shouldn't cause any harm. 4346 */ 4347 if (arc_is_overflowing()) { 4348 cv_signal(&arc_reclaim_thread_cv); 4349 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock); 4350 } 4351 4352 mutex_exit(&arc_reclaim_lock); 4353 } 4354 4355 VERIFY3U(hdr->b_type, ==, type); 4356 if (type == ARC_BUFC_METADATA) { 4357 arc_space_consume(size, ARC_SPACE_META); 4358 } else { 4359 arc_space_consume(size, ARC_SPACE_DATA); 4360 } 4361 4362 /* 4363 * Update the state size. Note that ghost states have a 4364 * "ghost size" and so don't need to be updated. 4365 */ 4366 if (!GHOST_STATE(state)) { 4367 4368 (void) refcount_add_many(&state->arcs_size, size, tag); 4369 4370 /* 4371 * If this is reached via arc_read, the link is 4372 * protected by the hash lock. If reached via 4373 * arc_buf_alloc, the header should not be accessed by 4374 * any other thread. And, if reached via arc_read_done, 4375 * the hash lock will protect it if it's found in the 4376 * hash table; otherwise no other thread should be 4377 * trying to [add|remove]_reference it. 4378 */ 4379 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 4380 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4381 (void) refcount_add_many(&state->arcs_esize[type], 4382 size, tag); 4383 } 4384 4385 /* 4386 * If we are growing the cache, and we are adding anonymous 4387 * data, and we have outgrown arc_p, update arc_p 4388 */ 4389 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon && 4390 (refcount_count(&arc_anon->arcs_size) + 4391 refcount_count(&arc_mru->arcs_size) > arc_p)) 4392 arc_p = MIN(arc_c, arc_p + size); 4393 } 4394 } 4395 4396 static void 4397 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 4398 { 4399 arc_free_data_impl(hdr, size, tag); 4400 abd_free(abd); 4401 } 4402 4403 static void 4404 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 4405 { 4406 arc_buf_contents_t type = arc_buf_type(hdr); 4407 4408 arc_free_data_impl(hdr, size, tag); 4409 if (type == ARC_BUFC_METADATA) { 4410 zio_buf_free(buf, size); 4411 } else { 4412 ASSERT(type == ARC_BUFC_DATA); 4413 zio_data_buf_free(buf, size); 4414 } 4415 } 4416 4417 /* 4418 * Free the arc data buffer. 4419 */ 4420 static void 4421 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4422 { 4423 arc_state_t *state = hdr->b_l1hdr.b_state; 4424 arc_buf_contents_t type = arc_buf_type(hdr); 4425 4426 /* protected by hash lock, if in the hash table */ 4427 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 4428 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4429 ASSERT(state != arc_anon && state != arc_l2c_only); 4430 4431 (void) refcount_remove_many(&state->arcs_esize[type], 4432 size, tag); 4433 } 4434 (void) refcount_remove_many(&state->arcs_size, size, tag); 4435 4436 VERIFY3U(hdr->b_type, ==, type); 4437 if (type == ARC_BUFC_METADATA) { 4438 arc_space_return(size, ARC_SPACE_META); 4439 } else { 4440 ASSERT(type == ARC_BUFC_DATA); 4441 arc_space_return(size, ARC_SPACE_DATA); 4442 } 4443 } 4444 4445 /* 4446 * This routine is called whenever a buffer is accessed. 4447 * NOTE: the hash lock is dropped in this function. 4448 */ 4449 static void 4450 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 4451 { 4452 clock_t now; 4453 4454 ASSERT(MUTEX_HELD(hash_lock)); 4455 ASSERT(HDR_HAS_L1HDR(hdr)); 4456 4457 if (hdr->b_l1hdr.b_state == arc_anon) { 4458 /* 4459 * This buffer is not in the cache, and does not 4460 * appear in our "ghost" list. Add the new buffer 4461 * to the MRU state. 4462 */ 4463 4464 ASSERT0(hdr->b_l1hdr.b_arc_access); 4465 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4466 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 4467 arc_change_state(arc_mru, hdr, hash_lock); 4468 4469 } else if (hdr->b_l1hdr.b_state == arc_mru) { 4470 now = ddi_get_lbolt(); 4471 4472 /* 4473 * If this buffer is here because of a prefetch, then either: 4474 * - clear the flag if this is a "referencing" read 4475 * (any subsequent access will bump this into the MFU state). 4476 * or 4477 * - move the buffer to the head of the list if this is 4478 * another prefetch (to make it less likely to be evicted). 4479 */ 4480 if (HDR_PREFETCH(hdr)) { 4481 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 4482 /* link protected by hash lock */ 4483 ASSERT(multilist_link_active( 4484 &hdr->b_l1hdr.b_arc_node)); 4485 } else { 4486 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 4487 ARCSTAT_BUMP(arcstat_mru_hits); 4488 } 4489 hdr->b_l1hdr.b_arc_access = now; 4490 return; 4491 } 4492 4493 /* 4494 * This buffer has been "accessed" only once so far, 4495 * but it is still in the cache. Move it to the MFU 4496 * state. 4497 */ 4498 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) { 4499 /* 4500 * More than 125ms have passed since we 4501 * instantiated this buffer. Move it to the 4502 * most frequently used state. 4503 */ 4504 hdr->b_l1hdr.b_arc_access = now; 4505 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4506 arc_change_state(arc_mfu, hdr, hash_lock); 4507 } 4508 ARCSTAT_BUMP(arcstat_mru_hits); 4509 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 4510 arc_state_t *new_state; 4511 /* 4512 * This buffer has been "accessed" recently, but 4513 * was evicted from the cache. Move it to the 4514 * MFU state. 4515 */ 4516 4517 if (HDR_PREFETCH(hdr)) { 4518 new_state = arc_mru; 4519 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) 4520 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 4521 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 4522 } else { 4523 new_state = arc_mfu; 4524 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4525 } 4526 4527 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4528 arc_change_state(new_state, hdr, hash_lock); 4529 4530 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 4531 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 4532 /* 4533 * This buffer has been accessed more than once and is 4534 * still in the cache. Keep it in the MFU state. 4535 * 4536 * NOTE: an add_reference() that occurred when we did 4537 * the arc_read() will have kicked this off the list. 4538 * If it was a prefetch, we will explicitly move it to 4539 * the head of the list now. 4540 */ 4541 if ((HDR_PREFETCH(hdr)) != 0) { 4542 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4543 /* link protected by hash_lock */ 4544 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 4545 } 4546 ARCSTAT_BUMP(arcstat_mfu_hits); 4547 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4548 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 4549 arc_state_t *new_state = arc_mfu; 4550 /* 4551 * This buffer has been accessed more than once but has 4552 * been evicted from the cache. Move it back to the 4553 * MFU state. 4554 */ 4555 4556 if (HDR_PREFETCH(hdr)) { 4557 /* 4558 * This is a prefetch access... 4559 * move this block back to the MRU state. 4560 */ 4561 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 4562 new_state = arc_mru; 4563 } 4564 4565 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4566 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4567 arc_change_state(new_state, hdr, hash_lock); 4568 4569 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 4570 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 4571 /* 4572 * This buffer is on the 2nd Level ARC. 4573 */ 4574 4575 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4576 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4577 arc_change_state(arc_mfu, hdr, hash_lock); 4578 } else { 4579 ASSERT(!"invalid arc state"); 4580 } 4581 } 4582 4583 /* a generic arc_done_func_t which you can use */ 4584 /* ARGSUSED */ 4585 void 4586 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 4587 { 4588 if (zio == NULL || zio->io_error == 0) 4589 bcopy(buf->b_data, arg, arc_buf_size(buf)); 4590 arc_buf_destroy(buf, arg); 4591 } 4592 4593 /* a generic arc_done_func_t */ 4594 void 4595 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 4596 { 4597 arc_buf_t **bufp = arg; 4598 if (zio && zio->io_error) { 4599 arc_buf_destroy(buf, arg); 4600 *bufp = NULL; 4601 } else { 4602 *bufp = buf; 4603 ASSERT(buf->b_data); 4604 } 4605 } 4606 4607 static void 4608 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 4609 { 4610 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 4611 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 4612 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 4613 } else { 4614 if (HDR_COMPRESSION_ENABLED(hdr)) { 4615 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, 4616 BP_GET_COMPRESS(bp)); 4617 } 4618 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 4619 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 4620 } 4621 } 4622 4623 static void 4624 arc_read_done(zio_t *zio) 4625 { 4626 arc_buf_hdr_t *hdr = zio->io_private; 4627 kmutex_t *hash_lock = NULL; 4628 arc_callback_t *callback_list; 4629 arc_callback_t *acb; 4630 boolean_t freeable = B_FALSE; 4631 boolean_t no_zio_error = (zio->io_error == 0); 4632 4633 /* 4634 * The hdr was inserted into hash-table and removed from lists 4635 * prior to starting I/O. We should find this header, since 4636 * it's in the hash table, and it should be legit since it's 4637 * not possible to evict it during the I/O. The only possible 4638 * reason for it not to be found is if we were freed during the 4639 * read. 4640 */ 4641 if (HDR_IN_HASH_TABLE(hdr)) { 4642 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 4643 ASSERT3U(hdr->b_dva.dva_word[0], ==, 4644 BP_IDENTITY(zio->io_bp)->dva_word[0]); 4645 ASSERT3U(hdr->b_dva.dva_word[1], ==, 4646 BP_IDENTITY(zio->io_bp)->dva_word[1]); 4647 4648 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 4649 &hash_lock); 4650 4651 ASSERT((found == hdr && 4652 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 4653 (found == hdr && HDR_L2_READING(hdr))); 4654 ASSERT3P(hash_lock, !=, NULL); 4655 } 4656 4657 if (no_zio_error) { 4658 /* byteswap if necessary */ 4659 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 4660 if (BP_GET_LEVEL(zio->io_bp) > 0) { 4661 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 4662 } else { 4663 hdr->b_l1hdr.b_byteswap = 4664 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 4665 } 4666 } else { 4667 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 4668 } 4669 } 4670 4671 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 4672 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 4673 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 4674 4675 callback_list = hdr->b_l1hdr.b_acb; 4676 ASSERT3P(callback_list, !=, NULL); 4677 4678 if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) { 4679 /* 4680 * Only call arc_access on anonymous buffers. This is because 4681 * if we've issued an I/O for an evicted buffer, we've already 4682 * called arc_access (to prevent any simultaneous readers from 4683 * getting confused). 4684 */ 4685 arc_access(hdr, hash_lock); 4686 } 4687 4688 /* 4689 * If a read request has a callback (i.e. acb_done is not NULL), then we 4690 * make a buf containing the data according to the parameters which were 4691 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 4692 * aren't needlessly decompressing the data multiple times. 4693 */ 4694 int callback_cnt = 0; 4695 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 4696 if (!acb->acb_done) 4697 continue; 4698 4699 /* This is a demand read since prefetches don't use callbacks */ 4700 callback_cnt++; 4701 4702 int error = arc_buf_alloc_impl(hdr, acb->acb_private, 4703 acb->acb_compressed, no_zio_error, &acb->acb_buf); 4704 if (no_zio_error) { 4705 zio->io_error = error; 4706 } 4707 } 4708 hdr->b_l1hdr.b_acb = NULL; 4709 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 4710 if (callback_cnt == 0) { 4711 ASSERT(HDR_PREFETCH(hdr)); 4712 ASSERT0(hdr->b_l1hdr.b_bufcnt); 4713 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 4714 } 4715 4716 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 4717 callback_list != NULL); 4718 4719 if (no_zio_error) { 4720 arc_hdr_verify(hdr, zio->io_bp); 4721 } else { 4722 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 4723 if (hdr->b_l1hdr.b_state != arc_anon) 4724 arc_change_state(arc_anon, hdr, hash_lock); 4725 if (HDR_IN_HASH_TABLE(hdr)) 4726 buf_hash_remove(hdr); 4727 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 4728 } 4729 4730 /* 4731 * Broadcast before we drop the hash_lock to avoid the possibility 4732 * that the hdr (and hence the cv) might be freed before we get to 4733 * the cv_broadcast(). 4734 */ 4735 cv_broadcast(&hdr->b_l1hdr.b_cv); 4736 4737 if (hash_lock != NULL) { 4738 mutex_exit(hash_lock); 4739 } else { 4740 /* 4741 * This block was freed while we waited for the read to 4742 * complete. It has been removed from the hash table and 4743 * moved to the anonymous state (so that it won't show up 4744 * in the cache). 4745 */ 4746 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 4747 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 4748 } 4749 4750 /* execute each callback and free its structure */ 4751 while ((acb = callback_list) != NULL) { 4752 if (acb->acb_done) 4753 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 4754 4755 if (acb->acb_zio_dummy != NULL) { 4756 acb->acb_zio_dummy->io_error = zio->io_error; 4757 zio_nowait(acb->acb_zio_dummy); 4758 } 4759 4760 callback_list = acb->acb_next; 4761 kmem_free(acb, sizeof (arc_callback_t)); 4762 } 4763 4764 if (freeable) 4765 arc_hdr_destroy(hdr); 4766 } 4767 4768 /* 4769 * "Read" the block at the specified DVA (in bp) via the 4770 * cache. If the block is found in the cache, invoke the provided 4771 * callback immediately and return. Note that the `zio' parameter 4772 * in the callback will be NULL in this case, since no IO was 4773 * required. If the block is not in the cache pass the read request 4774 * on to the spa with a substitute callback function, so that the 4775 * requested block will be added to the cache. 4776 * 4777 * If a read request arrives for a block that has a read in-progress, 4778 * either wait for the in-progress read to complete (and return the 4779 * results); or, if this is a read with a "done" func, add a record 4780 * to the read to invoke the "done" func when the read completes, 4781 * and return; or just return. 4782 * 4783 * arc_read_done() will invoke all the requested "done" functions 4784 * for readers of this block. 4785 */ 4786 int 4787 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 4788 void *private, zio_priority_t priority, int zio_flags, 4789 arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 4790 { 4791 arc_buf_hdr_t *hdr = NULL; 4792 kmutex_t *hash_lock = NULL; 4793 zio_t *rzio; 4794 uint64_t guid = spa_load_guid(spa); 4795 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0; 4796 4797 ASSERT(!BP_IS_EMBEDDED(bp) || 4798 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 4799 4800 top: 4801 if (!BP_IS_EMBEDDED(bp)) { 4802 /* 4803 * Embedded BP's have no DVA and require no I/O to "read". 4804 * Create an anonymous arc buf to back it. 4805 */ 4806 hdr = buf_hash_find(guid, bp, &hash_lock); 4807 } 4808 4809 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) { 4810 arc_buf_t *buf = NULL; 4811 *arc_flags |= ARC_FLAG_CACHED; 4812 4813 if (HDR_IO_IN_PROGRESS(hdr)) { 4814 4815 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 4816 priority == ZIO_PRIORITY_SYNC_READ) { 4817 /* 4818 * This sync read must wait for an 4819 * in-progress async read (e.g. a predictive 4820 * prefetch). Async reads are queued 4821 * separately at the vdev_queue layer, so 4822 * this is a form of priority inversion. 4823 * Ideally, we would "inherit" the demand 4824 * i/o's priority by moving the i/o from 4825 * the async queue to the synchronous queue, 4826 * but there is currently no mechanism to do 4827 * so. Track this so that we can evaluate 4828 * the magnitude of this potential performance 4829 * problem. 4830 * 4831 * Note that if the prefetch i/o is already 4832 * active (has been issued to the device), 4833 * the prefetch improved performance, because 4834 * we issued it sooner than we would have 4835 * without the prefetch. 4836 */ 4837 DTRACE_PROBE1(arc__sync__wait__for__async, 4838 arc_buf_hdr_t *, hdr); 4839 ARCSTAT_BUMP(arcstat_sync_wait_for_async); 4840 } 4841 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 4842 arc_hdr_clear_flags(hdr, 4843 ARC_FLAG_PREDICTIVE_PREFETCH); 4844 } 4845 4846 if (*arc_flags & ARC_FLAG_WAIT) { 4847 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 4848 mutex_exit(hash_lock); 4849 goto top; 4850 } 4851 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 4852 4853 if (done) { 4854 arc_callback_t *acb = NULL; 4855 4856 acb = kmem_zalloc(sizeof (arc_callback_t), 4857 KM_SLEEP); 4858 acb->acb_done = done; 4859 acb->acb_private = private; 4860 acb->acb_compressed = compressed_read; 4861 if (pio != NULL) 4862 acb->acb_zio_dummy = zio_null(pio, 4863 spa, NULL, NULL, NULL, zio_flags); 4864 4865 ASSERT3P(acb->acb_done, !=, NULL); 4866 acb->acb_next = hdr->b_l1hdr.b_acb; 4867 hdr->b_l1hdr.b_acb = acb; 4868 mutex_exit(hash_lock); 4869 return (0); 4870 } 4871 mutex_exit(hash_lock); 4872 return (0); 4873 } 4874 4875 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 4876 hdr->b_l1hdr.b_state == arc_mfu); 4877 4878 if (done) { 4879 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 4880 /* 4881 * This is a demand read which does not have to 4882 * wait for i/o because we did a predictive 4883 * prefetch i/o for it, which has completed. 4884 */ 4885 DTRACE_PROBE1( 4886 arc__demand__hit__predictive__prefetch, 4887 arc_buf_hdr_t *, hdr); 4888 ARCSTAT_BUMP( 4889 arcstat_demand_hit_predictive_prefetch); 4890 arc_hdr_clear_flags(hdr, 4891 ARC_FLAG_PREDICTIVE_PREFETCH); 4892 } 4893 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp)); 4894 4895 /* Get a buf with the desired data in it. */ 4896 VERIFY0(arc_buf_alloc_impl(hdr, private, 4897 compressed_read, B_TRUE, &buf)); 4898 } else if (*arc_flags & ARC_FLAG_PREFETCH && 4899 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 4900 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 4901 } 4902 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 4903 arc_access(hdr, hash_lock); 4904 if (*arc_flags & ARC_FLAG_L2CACHE) 4905 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 4906 mutex_exit(hash_lock); 4907 ARCSTAT_BUMP(arcstat_hits); 4908 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 4909 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 4910 data, metadata, hits); 4911 4912 if (done) 4913 done(NULL, buf, private); 4914 } else { 4915 uint64_t lsize = BP_GET_LSIZE(bp); 4916 uint64_t psize = BP_GET_PSIZE(bp); 4917 arc_callback_t *acb; 4918 vdev_t *vd = NULL; 4919 uint64_t addr = 0; 4920 boolean_t devw = B_FALSE; 4921 uint64_t size; 4922 4923 if (hdr == NULL) { 4924 /* this block is not in the cache */ 4925 arc_buf_hdr_t *exists = NULL; 4926 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 4927 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 4928 BP_GET_COMPRESS(bp), type); 4929 4930 if (!BP_IS_EMBEDDED(bp)) { 4931 hdr->b_dva = *BP_IDENTITY(bp); 4932 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 4933 exists = buf_hash_insert(hdr, &hash_lock); 4934 } 4935 if (exists != NULL) { 4936 /* somebody beat us to the hash insert */ 4937 mutex_exit(hash_lock); 4938 buf_discard_identity(hdr); 4939 arc_hdr_destroy(hdr); 4940 goto top; /* restart the IO request */ 4941 } 4942 } else { 4943 /* 4944 * This block is in the ghost cache. If it was L2-only 4945 * (and thus didn't have an L1 hdr), we realloc the 4946 * header to add an L1 hdr. 4947 */ 4948 if (!HDR_HAS_L1HDR(hdr)) { 4949 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 4950 hdr_full_cache); 4951 } 4952 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 4953 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state)); 4954 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 4955 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4956 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 4957 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 4958 4959 /* 4960 * This is a delicate dance that we play here. 4961 * This hdr is in the ghost list so we access it 4962 * to move it out of the ghost list before we 4963 * initiate the read. If it's a prefetch then 4964 * it won't have a callback so we'll remove the 4965 * reference that arc_buf_alloc_impl() created. We 4966 * do this after we've called arc_access() to 4967 * avoid hitting an assert in remove_reference(). 4968 */ 4969 arc_access(hdr, hash_lock); 4970 arc_hdr_alloc_pabd(hdr); 4971 } 4972 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 4973 size = arc_hdr_size(hdr); 4974 4975 /* 4976 * If compression is enabled on the hdr, then will do 4977 * RAW I/O and will store the compressed data in the hdr's 4978 * data block. Otherwise, the hdr's data block will contain 4979 * the uncompressed data. 4980 */ 4981 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) { 4982 zio_flags |= ZIO_FLAG_RAW; 4983 } 4984 4985 if (*arc_flags & ARC_FLAG_PREFETCH) 4986 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 4987 if (*arc_flags & ARC_FLAG_L2CACHE) 4988 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 4989 if (BP_GET_LEVEL(bp) > 0) 4990 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 4991 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 4992 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 4993 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 4994 4995 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 4996 acb->acb_done = done; 4997 acb->acb_private = private; 4998 acb->acb_compressed = compressed_read; 4999 5000 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5001 hdr->b_l1hdr.b_acb = acb; 5002 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5003 5004 if (HDR_HAS_L2HDR(hdr) && 5005 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 5006 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 5007 addr = hdr->b_l2hdr.b_daddr; 5008 /* 5009 * Lock out device removal. 5010 */ 5011 if (vdev_is_dead(vd) || 5012 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 5013 vd = NULL; 5014 } 5015 5016 if (priority == ZIO_PRIORITY_ASYNC_READ) 5017 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5018 else 5019 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5020 5021 if (hash_lock != NULL) 5022 mutex_exit(hash_lock); 5023 5024 /* 5025 * At this point, we have a level 1 cache miss. Try again in 5026 * L2ARC if possible. 5027 */ 5028 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 5029 5030 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 5031 uint64_t, lsize, zbookmark_phys_t *, zb); 5032 ARCSTAT_BUMP(arcstat_misses); 5033 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5034 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 5035 data, metadata, misses); 5036 5037 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 5038 /* 5039 * Read from the L2ARC if the following are true: 5040 * 1. The L2ARC vdev was previously cached. 5041 * 2. This buffer still has L2ARC metadata. 5042 * 3. This buffer isn't currently writing to the L2ARC. 5043 * 4. The L2ARC entry wasn't evicted, which may 5044 * also have invalidated the vdev. 5045 * 5. This isn't prefetch and l2arc_noprefetch is set. 5046 */ 5047 if (HDR_HAS_L2HDR(hdr) && 5048 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 5049 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 5050 l2arc_read_callback_t *cb; 5051 5052 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 5053 ARCSTAT_BUMP(arcstat_l2_hits); 5054 5055 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 5056 KM_SLEEP); 5057 cb->l2rcb_hdr = hdr; 5058 cb->l2rcb_bp = *bp; 5059 cb->l2rcb_zb = *zb; 5060 cb->l2rcb_flags = zio_flags; 5061 5062 ASSERT(addr >= VDEV_LABEL_START_SIZE && 5063 addr + lsize < vd->vdev_psize - 5064 VDEV_LABEL_END_SIZE); 5065 5066 /* 5067 * l2arc read. The SCL_L2ARC lock will be 5068 * released by l2arc_read_done(). 5069 * Issue a null zio if the underlying buffer 5070 * was squashed to zero size by compression. 5071 */ 5072 ASSERT3U(HDR_GET_COMPRESS(hdr), !=, 5073 ZIO_COMPRESS_EMPTY); 5074 rzio = zio_read_phys(pio, vd, addr, 5075 size, hdr->b_l1hdr.b_pabd, 5076 ZIO_CHECKSUM_OFF, 5077 l2arc_read_done, cb, priority, 5078 zio_flags | ZIO_FLAG_DONT_CACHE | 5079 ZIO_FLAG_CANFAIL | 5080 ZIO_FLAG_DONT_PROPAGATE | 5081 ZIO_FLAG_DONT_RETRY, B_FALSE); 5082 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 5083 zio_t *, rzio); 5084 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 5085 5086 if (*arc_flags & ARC_FLAG_NOWAIT) { 5087 zio_nowait(rzio); 5088 return (0); 5089 } 5090 5091 ASSERT(*arc_flags & ARC_FLAG_WAIT); 5092 if (zio_wait(rzio) == 0) 5093 return (0); 5094 5095 /* l2arc read error; goto zio_read() */ 5096 } else { 5097 DTRACE_PROBE1(l2arc__miss, 5098 arc_buf_hdr_t *, hdr); 5099 ARCSTAT_BUMP(arcstat_l2_misses); 5100 if (HDR_L2_WRITING(hdr)) 5101 ARCSTAT_BUMP(arcstat_l2_rw_clash); 5102 spa_config_exit(spa, SCL_L2ARC, vd); 5103 } 5104 } else { 5105 if (vd != NULL) 5106 spa_config_exit(spa, SCL_L2ARC, vd); 5107 if (l2arc_ndev != 0) { 5108 DTRACE_PROBE1(l2arc__miss, 5109 arc_buf_hdr_t *, hdr); 5110 ARCSTAT_BUMP(arcstat_l2_misses); 5111 } 5112 } 5113 5114 rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size, 5115 arc_read_done, hdr, priority, zio_flags, zb); 5116 5117 if (*arc_flags & ARC_FLAG_WAIT) 5118 return (zio_wait(rzio)); 5119 5120 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5121 zio_nowait(rzio); 5122 } 5123 return (0); 5124 } 5125 5126 /* 5127 * Notify the arc that a block was freed, and thus will never be used again. 5128 */ 5129 void 5130 arc_freed(spa_t *spa, const blkptr_t *bp) 5131 { 5132 arc_buf_hdr_t *hdr; 5133 kmutex_t *hash_lock; 5134 uint64_t guid = spa_load_guid(spa); 5135 5136 ASSERT(!BP_IS_EMBEDDED(bp)); 5137 5138 hdr = buf_hash_find(guid, bp, &hash_lock); 5139 if (hdr == NULL) 5140 return; 5141 5142 /* 5143 * We might be trying to free a block that is still doing I/O 5144 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 5145 * dmu_sync-ed block). If this block is being prefetched, then it 5146 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 5147 * until the I/O completes. A block may also have a reference if it is 5148 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 5149 * have written the new block to its final resting place on disk but 5150 * without the dedup flag set. This would have left the hdr in the MRU 5151 * state and discoverable. When the txg finally syncs it detects that 5152 * the block was overridden in open context and issues an override I/O. 5153 * Since this is a dedup block, the override I/O will determine if the 5154 * block is already in the DDT. If so, then it will replace the io_bp 5155 * with the bp from the DDT and allow the I/O to finish. When the I/O 5156 * reaches the done callback, dbuf_write_override_done, it will 5157 * check to see if the io_bp and io_bp_override are identical. 5158 * If they are not, then it indicates that the bp was replaced with 5159 * the bp in the DDT and the override bp is freed. This allows 5160 * us to arrive here with a reference on a block that is being 5161 * freed. So if we have an I/O in progress, or a reference to 5162 * this hdr, then we don't destroy the hdr. 5163 */ 5164 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 5165 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 5166 arc_change_state(arc_anon, hdr, hash_lock); 5167 arc_hdr_destroy(hdr); 5168 mutex_exit(hash_lock); 5169 } else { 5170 mutex_exit(hash_lock); 5171 } 5172 5173 } 5174 5175 /* 5176 * Release this buffer from the cache, making it an anonymous buffer. This 5177 * must be done after a read and prior to modifying the buffer contents. 5178 * If the buffer has more than one reference, we must make 5179 * a new hdr for the buffer. 5180 */ 5181 void 5182 arc_release(arc_buf_t *buf, void *tag) 5183 { 5184 arc_buf_hdr_t *hdr = buf->b_hdr; 5185 5186 /* 5187 * It would be nice to assert that if it's DMU metadata (level > 5188 * 0 || it's the dnode file), then it must be syncing context. 5189 * But we don't know that information at this level. 5190 */ 5191 5192 mutex_enter(&buf->b_evict_lock); 5193 5194 ASSERT(HDR_HAS_L1HDR(hdr)); 5195 5196 /* 5197 * We don't grab the hash lock prior to this check, because if 5198 * the buffer's header is in the arc_anon state, it won't be 5199 * linked into the hash table. 5200 */ 5201 if (hdr->b_l1hdr.b_state == arc_anon) { 5202 mutex_exit(&buf->b_evict_lock); 5203 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5204 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 5205 ASSERT(!HDR_HAS_L2HDR(hdr)); 5206 ASSERT(HDR_EMPTY(hdr)); 5207 5208 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 5209 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 5210 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 5211 5212 hdr->b_l1hdr.b_arc_access = 0; 5213 5214 /* 5215 * If the buf is being overridden then it may already 5216 * have a hdr that is not empty. 5217 */ 5218 buf_discard_identity(hdr); 5219 arc_buf_thaw(buf); 5220 5221 return; 5222 } 5223 5224 kmutex_t *hash_lock = HDR_LOCK(hdr); 5225 mutex_enter(hash_lock); 5226 5227 /* 5228 * This assignment is only valid as long as the hash_lock is 5229 * held, we must be careful not to reference state or the 5230 * b_state field after dropping the lock. 5231 */ 5232 arc_state_t *state = hdr->b_l1hdr.b_state; 5233 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 5234 ASSERT3P(state, !=, arc_anon); 5235 5236 /* this buffer is not on any list */ 5237 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 5238 5239 if (HDR_HAS_L2HDR(hdr)) { 5240 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 5241 5242 /* 5243 * We have to recheck this conditional again now that 5244 * we're holding the l2ad_mtx to prevent a race with 5245 * another thread which might be concurrently calling 5246 * l2arc_evict(). In that case, l2arc_evict() might have 5247 * destroyed the header's L2 portion as we were waiting 5248 * to acquire the l2ad_mtx. 5249 */ 5250 if (HDR_HAS_L2HDR(hdr)) 5251 arc_hdr_l2hdr_destroy(hdr); 5252 5253 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 5254 } 5255 5256 /* 5257 * Do we have more than one buf? 5258 */ 5259 if (hdr->b_l1hdr.b_bufcnt > 1) { 5260 arc_buf_hdr_t *nhdr; 5261 uint64_t spa = hdr->b_spa; 5262 uint64_t psize = HDR_GET_PSIZE(hdr); 5263 uint64_t lsize = HDR_GET_LSIZE(hdr); 5264 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 5265 arc_buf_contents_t type = arc_buf_type(hdr); 5266 VERIFY3U(hdr->b_type, ==, type); 5267 5268 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 5269 (void) remove_reference(hdr, hash_lock, tag); 5270 5271 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 5272 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 5273 ASSERT(ARC_BUF_LAST(buf)); 5274 } 5275 5276 /* 5277 * Pull the data off of this hdr and attach it to 5278 * a new anonymous hdr. Also find the last buffer 5279 * in the hdr's buffer list. 5280 */ 5281 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 5282 ASSERT3P(lastbuf, !=, NULL); 5283 5284 /* 5285 * If the current arc_buf_t and the hdr are sharing their data 5286 * buffer, then we must stop sharing that block. 5287 */ 5288 if (arc_buf_is_shared(buf)) { 5289 VERIFY(!arc_buf_is_shared(lastbuf)); 5290 5291 /* 5292 * First, sever the block sharing relationship between 5293 * buf and the arc_buf_hdr_t. 5294 */ 5295 arc_unshare_buf(hdr, buf); 5296 5297 /* 5298 * Now we need to recreate the hdr's b_pabd. Since we 5299 * have lastbuf handy, we try to share with it, but if 5300 * we can't then we allocate a new b_pabd and copy the 5301 * data from buf into it. 5302 */ 5303 if (arc_can_share(hdr, lastbuf)) { 5304 arc_share_buf(hdr, lastbuf); 5305 } else { 5306 arc_hdr_alloc_pabd(hdr); 5307 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 5308 buf->b_data, psize); 5309 } 5310 VERIFY3P(lastbuf->b_data, !=, NULL); 5311 } else if (HDR_SHARED_DATA(hdr)) { 5312 /* 5313 * Uncompressed shared buffers are always at the end 5314 * of the list. Compressed buffers don't have the 5315 * same requirements. This makes it hard to 5316 * simply assert that the lastbuf is shared so 5317 * we rely on the hdr's compression flags to determine 5318 * if we have a compressed, shared buffer. 5319 */ 5320 ASSERT(arc_buf_is_shared(lastbuf) || 5321 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF); 5322 ASSERT(!ARC_BUF_SHARED(buf)); 5323 } 5324 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 5325 ASSERT3P(state, !=, arc_l2c_only); 5326 5327 (void) refcount_remove_many(&state->arcs_size, 5328 arc_buf_size(buf), buf); 5329 5330 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 5331 ASSERT3P(state, !=, arc_l2c_only); 5332 (void) refcount_remove_many(&state->arcs_esize[type], 5333 arc_buf_size(buf), buf); 5334 } 5335 5336 hdr->b_l1hdr.b_bufcnt -= 1; 5337 arc_cksum_verify(buf); 5338 arc_buf_unwatch(buf); 5339 5340 mutex_exit(hash_lock); 5341 5342 /* 5343 * Allocate a new hdr. The new hdr will contain a b_pabd 5344 * buffer which will be freed in arc_write(). 5345 */ 5346 nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type); 5347 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 5348 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 5349 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt)); 5350 VERIFY3U(nhdr->b_type, ==, type); 5351 ASSERT(!HDR_SHARED_DATA(nhdr)); 5352 5353 nhdr->b_l1hdr.b_buf = buf; 5354 nhdr->b_l1hdr.b_bufcnt = 1; 5355 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 5356 buf->b_hdr = nhdr; 5357 5358 mutex_exit(&buf->b_evict_lock); 5359 (void) refcount_add_many(&arc_anon->arcs_size, 5360 arc_buf_size(buf), buf); 5361 } else { 5362 mutex_exit(&buf->b_evict_lock); 5363 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 5364 /* protected by hash lock, or hdr is on arc_anon */ 5365 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 5366 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5367 arc_change_state(arc_anon, hdr, hash_lock); 5368 hdr->b_l1hdr.b_arc_access = 0; 5369 mutex_exit(hash_lock); 5370 5371 buf_discard_identity(hdr); 5372 arc_buf_thaw(buf); 5373 } 5374 } 5375 5376 int 5377 arc_released(arc_buf_t *buf) 5378 { 5379 int released; 5380 5381 mutex_enter(&buf->b_evict_lock); 5382 released = (buf->b_data != NULL && 5383 buf->b_hdr->b_l1hdr.b_state == arc_anon); 5384 mutex_exit(&buf->b_evict_lock); 5385 return (released); 5386 } 5387 5388 #ifdef ZFS_DEBUG 5389 int 5390 arc_referenced(arc_buf_t *buf) 5391 { 5392 int referenced; 5393 5394 mutex_enter(&buf->b_evict_lock); 5395 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 5396 mutex_exit(&buf->b_evict_lock); 5397 return (referenced); 5398 } 5399 #endif 5400 5401 static void 5402 arc_write_ready(zio_t *zio) 5403 { 5404 arc_write_callback_t *callback = zio->io_private; 5405 arc_buf_t *buf = callback->awcb_buf; 5406 arc_buf_hdr_t *hdr = buf->b_hdr; 5407 uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp); 5408 5409 ASSERT(HDR_HAS_L1HDR(hdr)); 5410 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 5411 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 5412 5413 /* 5414 * If we're reexecuting this zio because the pool suspended, then 5415 * cleanup any state that was previously set the first time the 5416 * callback was invoked. 5417 */ 5418 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 5419 arc_cksum_free(hdr); 5420 arc_buf_unwatch(buf); 5421 if (hdr->b_l1hdr.b_pabd != NULL) { 5422 if (arc_buf_is_shared(buf)) { 5423 arc_unshare_buf(hdr, buf); 5424 } else { 5425 arc_hdr_free_pabd(hdr); 5426 } 5427 } 5428 } 5429 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 5430 ASSERT(!HDR_SHARED_DATA(hdr)); 5431 ASSERT(!arc_buf_is_shared(buf)); 5432 5433 callback->awcb_ready(zio, buf, callback->awcb_private); 5434 5435 if (HDR_IO_IN_PROGRESS(hdr)) 5436 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 5437 5438 arc_cksum_compute(buf); 5439 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5440 5441 enum zio_compress compress; 5442 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 5443 compress = ZIO_COMPRESS_OFF; 5444 } else { 5445 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp)); 5446 compress = BP_GET_COMPRESS(zio->io_bp); 5447 } 5448 HDR_SET_PSIZE(hdr, psize); 5449 arc_hdr_set_compress(hdr, compress); 5450 5451 5452 /* 5453 * Fill the hdr with data. If the hdr is compressed, the data we want 5454 * is available from the zio, otherwise we can take it from the buf. 5455 * 5456 * We might be able to share the buf's data with the hdr here. However, 5457 * doing so would cause the ARC to be full of linear ABDs if we write a 5458 * lot of shareable data. As a compromise, we check whether scattered 5459 * ABDs are allowed, and assume that if they are then the user wants 5460 * the ARC to be primarily filled with them regardless of the data being 5461 * written. Therefore, if they're allowed then we allocate one and copy 5462 * the data into it; otherwise, we share the data directly if we can. 5463 */ 5464 if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) { 5465 arc_hdr_alloc_pabd(hdr); 5466 5467 /* 5468 * Ideally, we would always copy the io_abd into b_pabd, but the 5469 * user may have disabled compressed ARC, thus we must check the 5470 * hdr's compression setting rather than the io_bp's. 5471 */ 5472 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) { 5473 ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=, 5474 ZIO_COMPRESS_OFF); 5475 ASSERT3U(psize, >, 0); 5476 5477 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 5478 } else { 5479 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 5480 5481 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 5482 arc_buf_size(buf)); 5483 } 5484 } else { 5485 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 5486 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 5487 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 5488 5489 arc_share_buf(hdr, buf); 5490 } 5491 5492 arc_hdr_verify(hdr, zio->io_bp); 5493 } 5494 5495 static void 5496 arc_write_children_ready(zio_t *zio) 5497 { 5498 arc_write_callback_t *callback = zio->io_private; 5499 arc_buf_t *buf = callback->awcb_buf; 5500 5501 callback->awcb_children_ready(zio, buf, callback->awcb_private); 5502 } 5503 5504 /* 5505 * The SPA calls this callback for each physical write that happens on behalf 5506 * of a logical write. See the comment in dbuf_write_physdone() for details. 5507 */ 5508 static void 5509 arc_write_physdone(zio_t *zio) 5510 { 5511 arc_write_callback_t *cb = zio->io_private; 5512 if (cb->awcb_physdone != NULL) 5513 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 5514 } 5515 5516 static void 5517 arc_write_done(zio_t *zio) 5518 { 5519 arc_write_callback_t *callback = zio->io_private; 5520 arc_buf_t *buf = callback->awcb_buf; 5521 arc_buf_hdr_t *hdr = buf->b_hdr; 5522 5523 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5524 5525 if (zio->io_error == 0) { 5526 arc_hdr_verify(hdr, zio->io_bp); 5527 5528 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 5529 buf_discard_identity(hdr); 5530 } else { 5531 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 5532 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 5533 } 5534 } else { 5535 ASSERT(HDR_EMPTY(hdr)); 5536 } 5537 5538 /* 5539 * If the block to be written was all-zero or compressed enough to be 5540 * embedded in the BP, no write was performed so there will be no 5541 * dva/birth/checksum. The buffer must therefore remain anonymous 5542 * (and uncached). 5543 */ 5544 if (!HDR_EMPTY(hdr)) { 5545 arc_buf_hdr_t *exists; 5546 kmutex_t *hash_lock; 5547 5548 ASSERT3U(zio->io_error, ==, 0); 5549 5550 arc_cksum_verify(buf); 5551 5552 exists = buf_hash_insert(hdr, &hash_lock); 5553 if (exists != NULL) { 5554 /* 5555 * This can only happen if we overwrite for 5556 * sync-to-convergence, because we remove 5557 * buffers from the hash table when we arc_free(). 5558 */ 5559 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 5560 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 5561 panic("bad overwrite, hdr=%p exists=%p", 5562 (void *)hdr, (void *)exists); 5563 ASSERT(refcount_is_zero( 5564 &exists->b_l1hdr.b_refcnt)); 5565 arc_change_state(arc_anon, exists, hash_lock); 5566 mutex_exit(hash_lock); 5567 arc_hdr_destroy(exists); 5568 exists = buf_hash_insert(hdr, &hash_lock); 5569 ASSERT3P(exists, ==, NULL); 5570 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 5571 /* nopwrite */ 5572 ASSERT(zio->io_prop.zp_nopwrite); 5573 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 5574 panic("bad nopwrite, hdr=%p exists=%p", 5575 (void *)hdr, (void *)exists); 5576 } else { 5577 /* Dedup */ 5578 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 5579 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 5580 ASSERT(BP_GET_DEDUP(zio->io_bp)); 5581 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 5582 } 5583 } 5584 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5585 /* if it's not anon, we are doing a scrub */ 5586 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 5587 arc_access(hdr, hash_lock); 5588 mutex_exit(hash_lock); 5589 } else { 5590 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5591 } 5592 5593 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5594 callback->awcb_done(zio, buf, callback->awcb_private); 5595 5596 abd_put(zio->io_abd); 5597 kmem_free(callback, sizeof (arc_write_callback_t)); 5598 } 5599 5600 zio_t * 5601 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 5602 boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready, 5603 arc_done_func_t *children_ready, arc_done_func_t *physdone, 5604 arc_done_func_t *done, void *private, zio_priority_t priority, 5605 int zio_flags, const zbookmark_phys_t *zb) 5606 { 5607 arc_buf_hdr_t *hdr = buf->b_hdr; 5608 arc_write_callback_t *callback; 5609 zio_t *zio; 5610 5611 ASSERT3P(ready, !=, NULL); 5612 ASSERT3P(done, !=, NULL); 5613 ASSERT(!HDR_IO_ERROR(hdr)); 5614 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5615 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5616 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 5617 if (l2arc) 5618 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5619 if (ARC_BUF_COMPRESSED(buf)) { 5620 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_OFF); 5621 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 5622 zio_flags |= ZIO_FLAG_RAW; 5623 } 5624 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 5625 callback->awcb_ready = ready; 5626 callback->awcb_children_ready = children_ready; 5627 callback->awcb_physdone = physdone; 5628 callback->awcb_done = done; 5629 callback->awcb_private = private; 5630 callback->awcb_buf = buf; 5631 5632 /* 5633 * The hdr's b_pabd is now stale, free it now. A new data block 5634 * will be allocated when the zio pipeline calls arc_write_ready(). 5635 */ 5636 if (hdr->b_l1hdr.b_pabd != NULL) { 5637 /* 5638 * If the buf is currently sharing the data block with 5639 * the hdr then we need to break that relationship here. 5640 * The hdr will remain with a NULL data pointer and the 5641 * buf will take sole ownership of the block. 5642 */ 5643 if (arc_buf_is_shared(buf)) { 5644 arc_unshare_buf(hdr, buf); 5645 } else { 5646 arc_hdr_free_pabd(hdr); 5647 } 5648 VERIFY3P(buf->b_data, !=, NULL); 5649 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 5650 } 5651 ASSERT(!arc_buf_is_shared(buf)); 5652 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 5653 5654 zio = zio_write(pio, spa, txg, bp, 5655 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 5656 HDR_GET_LSIZE(hdr), arc_buf_size(buf), zp, arc_write_ready, 5657 (children_ready != NULL) ? arc_write_children_ready : NULL, 5658 arc_write_physdone, arc_write_done, callback, 5659 priority, zio_flags, zb); 5660 5661 return (zio); 5662 } 5663 5664 static int 5665 arc_memory_throttle(uint64_t reserve, uint64_t txg) 5666 { 5667 #ifdef _KERNEL 5668 uint64_t available_memory = ptob(freemem); 5669 static uint64_t page_load = 0; 5670 static uint64_t last_txg = 0; 5671 5672 #if defined(__i386) 5673 available_memory = 5674 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 5675 #endif 5676 5677 if (freemem > physmem * arc_lotsfree_percent / 100) 5678 return (0); 5679 5680 if (txg > last_txg) { 5681 last_txg = txg; 5682 page_load = 0; 5683 } 5684 /* 5685 * If we are in pageout, we know that memory is already tight, 5686 * the arc is already going to be evicting, so we just want to 5687 * continue to let page writes occur as quickly as possible. 5688 */ 5689 if (curproc == proc_pageout) { 5690 if (page_load > MAX(ptob(minfree), available_memory) / 4) 5691 return (SET_ERROR(ERESTART)); 5692 /* Note: reserve is inflated, so we deflate */ 5693 page_load += reserve / 8; 5694 return (0); 5695 } else if (page_load > 0 && arc_reclaim_needed()) { 5696 /* memory is low, delay before restarting */ 5697 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 5698 return (SET_ERROR(EAGAIN)); 5699 } 5700 page_load = 0; 5701 #endif 5702 return (0); 5703 } 5704 5705 void 5706 arc_tempreserve_clear(uint64_t reserve) 5707 { 5708 atomic_add_64(&arc_tempreserve, -reserve); 5709 ASSERT((int64_t)arc_tempreserve >= 0); 5710 } 5711 5712 int 5713 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 5714 { 5715 int error; 5716 uint64_t anon_size; 5717 5718 if (reserve > arc_c/4 && !arc_no_grow) 5719 arc_c = MIN(arc_c_max, reserve * 4); 5720 if (reserve > arc_c) 5721 return (SET_ERROR(ENOMEM)); 5722 5723 /* 5724 * Don't count loaned bufs as in flight dirty data to prevent long 5725 * network delays from blocking transactions that are ready to be 5726 * assigned to a txg. 5727 */ 5728 5729 /* assert that it has not wrapped around */ 5730 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 5731 5732 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) - 5733 arc_loaned_bytes), 0); 5734 5735 /* 5736 * Writes will, almost always, require additional memory allocations 5737 * in order to compress/encrypt/etc the data. We therefore need to 5738 * make sure that there is sufficient available memory for this. 5739 */ 5740 error = arc_memory_throttle(reserve, txg); 5741 if (error != 0) 5742 return (error); 5743 5744 /* 5745 * Throttle writes when the amount of dirty data in the cache 5746 * gets too large. We try to keep the cache less than half full 5747 * of dirty blocks so that our sync times don't grow too large. 5748 * Note: if two requests come in concurrently, we might let them 5749 * both succeed, when one of them should fail. Not a huge deal. 5750 */ 5751 5752 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 5753 anon_size > arc_c / 4) { 5754 uint64_t meta_esize = 5755 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 5756 uint64_t data_esize = 5757 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 5758 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 5759 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 5760 arc_tempreserve >> 10, meta_esize >> 10, 5761 data_esize >> 10, reserve >> 10, arc_c >> 10); 5762 return (SET_ERROR(ERESTART)); 5763 } 5764 atomic_add_64(&arc_tempreserve, reserve); 5765 return (0); 5766 } 5767 5768 static void 5769 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 5770 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 5771 { 5772 size->value.ui64 = refcount_count(&state->arcs_size); 5773 evict_data->value.ui64 = 5774 refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 5775 evict_metadata->value.ui64 = 5776 refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 5777 } 5778 5779 static int 5780 arc_kstat_update(kstat_t *ksp, int rw) 5781 { 5782 arc_stats_t *as = ksp->ks_data; 5783 5784 if (rw == KSTAT_WRITE) { 5785 return (EACCES); 5786 } else { 5787 arc_kstat_update_state(arc_anon, 5788 &as->arcstat_anon_size, 5789 &as->arcstat_anon_evictable_data, 5790 &as->arcstat_anon_evictable_metadata); 5791 arc_kstat_update_state(arc_mru, 5792 &as->arcstat_mru_size, 5793 &as->arcstat_mru_evictable_data, 5794 &as->arcstat_mru_evictable_metadata); 5795 arc_kstat_update_state(arc_mru_ghost, 5796 &as->arcstat_mru_ghost_size, 5797 &as->arcstat_mru_ghost_evictable_data, 5798 &as->arcstat_mru_ghost_evictable_metadata); 5799 arc_kstat_update_state(arc_mfu, 5800 &as->arcstat_mfu_size, 5801 &as->arcstat_mfu_evictable_data, 5802 &as->arcstat_mfu_evictable_metadata); 5803 arc_kstat_update_state(arc_mfu_ghost, 5804 &as->arcstat_mfu_ghost_size, 5805 &as->arcstat_mfu_ghost_evictable_data, 5806 &as->arcstat_mfu_ghost_evictable_metadata); 5807 } 5808 5809 return (0); 5810 } 5811 5812 /* 5813 * This function *must* return indices evenly distributed between all 5814 * sublists of the multilist. This is needed due to how the ARC eviction 5815 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 5816 * distributed between all sublists and uses this assumption when 5817 * deciding which sublist to evict from and how much to evict from it. 5818 */ 5819 unsigned int 5820 arc_state_multilist_index_func(multilist_t *ml, void *obj) 5821 { 5822 arc_buf_hdr_t *hdr = obj; 5823 5824 /* 5825 * We rely on b_dva to generate evenly distributed index 5826 * numbers using buf_hash below. So, as an added precaution, 5827 * let's make sure we never add empty buffers to the arc lists. 5828 */ 5829 ASSERT(!HDR_EMPTY(hdr)); 5830 5831 /* 5832 * The assumption here, is the hash value for a given 5833 * arc_buf_hdr_t will remain constant throughout it's lifetime 5834 * (i.e. it's b_spa, b_dva, and b_birth fields don't change). 5835 * Thus, we don't need to store the header's sublist index 5836 * on insertion, as this index can be recalculated on removal. 5837 * 5838 * Also, the low order bits of the hash value are thought to be 5839 * distributed evenly. Otherwise, in the case that the multilist 5840 * has a power of two number of sublists, each sublists' usage 5841 * would not be evenly distributed. 5842 */ 5843 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 5844 multilist_get_num_sublists(ml)); 5845 } 5846 5847 static void 5848 arc_state_init(void) 5849 { 5850 arc_anon = &ARC_anon; 5851 arc_mru = &ARC_mru; 5852 arc_mru_ghost = &ARC_mru_ghost; 5853 arc_mfu = &ARC_mfu; 5854 arc_mfu_ghost = &ARC_mfu_ghost; 5855 arc_l2c_only = &ARC_l2c_only; 5856 5857 arc_mru->arcs_list[ARC_BUFC_METADATA] = 5858 multilist_create(sizeof (arc_buf_hdr_t), 5859 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5860 arc_state_multilist_index_func); 5861 arc_mru->arcs_list[ARC_BUFC_DATA] = 5862 multilist_create(sizeof (arc_buf_hdr_t), 5863 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5864 arc_state_multilist_index_func); 5865 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] = 5866 multilist_create(sizeof (arc_buf_hdr_t), 5867 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5868 arc_state_multilist_index_func); 5869 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] = 5870 multilist_create(sizeof (arc_buf_hdr_t), 5871 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5872 arc_state_multilist_index_func); 5873 arc_mfu->arcs_list[ARC_BUFC_METADATA] = 5874 multilist_create(sizeof (arc_buf_hdr_t), 5875 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5876 arc_state_multilist_index_func); 5877 arc_mfu->arcs_list[ARC_BUFC_DATA] = 5878 multilist_create(sizeof (arc_buf_hdr_t), 5879 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5880 arc_state_multilist_index_func); 5881 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] = 5882 multilist_create(sizeof (arc_buf_hdr_t), 5883 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5884 arc_state_multilist_index_func); 5885 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] = 5886 multilist_create(sizeof (arc_buf_hdr_t), 5887 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5888 arc_state_multilist_index_func); 5889 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] = 5890 multilist_create(sizeof (arc_buf_hdr_t), 5891 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5892 arc_state_multilist_index_func); 5893 arc_l2c_only->arcs_list[ARC_BUFC_DATA] = 5894 multilist_create(sizeof (arc_buf_hdr_t), 5895 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5896 arc_state_multilist_index_func); 5897 5898 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 5899 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 5900 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 5901 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 5902 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 5903 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 5904 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 5905 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 5906 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 5907 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 5908 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 5909 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 5910 5911 refcount_create(&arc_anon->arcs_size); 5912 refcount_create(&arc_mru->arcs_size); 5913 refcount_create(&arc_mru_ghost->arcs_size); 5914 refcount_create(&arc_mfu->arcs_size); 5915 refcount_create(&arc_mfu_ghost->arcs_size); 5916 refcount_create(&arc_l2c_only->arcs_size); 5917 } 5918 5919 static void 5920 arc_state_fini(void) 5921 { 5922 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 5923 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 5924 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 5925 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 5926 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 5927 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 5928 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 5929 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 5930 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 5931 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 5932 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 5933 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 5934 5935 refcount_destroy(&arc_anon->arcs_size); 5936 refcount_destroy(&arc_mru->arcs_size); 5937 refcount_destroy(&arc_mru_ghost->arcs_size); 5938 refcount_destroy(&arc_mfu->arcs_size); 5939 refcount_destroy(&arc_mfu_ghost->arcs_size); 5940 refcount_destroy(&arc_l2c_only->arcs_size); 5941 5942 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]); 5943 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 5944 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]); 5945 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 5946 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]); 5947 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 5948 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]); 5949 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 5950 } 5951 5952 uint64_t 5953 arc_max_bytes(void) 5954 { 5955 return (arc_c_max); 5956 } 5957 5958 void 5959 arc_init(void) 5960 { 5961 /* 5962 * allmem is "all memory that we could possibly use". 5963 */ 5964 #ifdef _KERNEL 5965 uint64_t allmem = ptob(physmem - swapfs_minfree); 5966 #else 5967 uint64_t allmem = (physmem * PAGESIZE) / 2; 5968 #endif 5969 5970 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 5971 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL); 5972 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL); 5973 5974 /* Convert seconds to clock ticks */ 5975 arc_min_prefetch_lifespan = 1 * hz; 5976 5977 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 5978 arc_c_min = MAX(allmem / 32, 64 << 20); 5979 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 5980 if (allmem >= 1 << 30) 5981 arc_c_max = allmem - (1 << 30); 5982 else 5983 arc_c_max = arc_c_min; 5984 arc_c_max = MAX(allmem * 3 / 4, arc_c_max); 5985 5986 /* 5987 * In userland, there's only the memory pressure that we artificially 5988 * create (see arc_available_memory()). Don't let arc_c get too 5989 * small, because it can cause transactions to be larger than 5990 * arc_c, causing arc_tempreserve_space() to fail. 5991 */ 5992 #ifndef _KERNEL 5993 arc_c_min = arc_c_max / 2; 5994 #endif 5995 5996 /* 5997 * Allow the tunables to override our calculations if they are 5998 * reasonable (ie. over 64MB) 5999 */ 6000 if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) { 6001 arc_c_max = zfs_arc_max; 6002 arc_c_min = MIN(arc_c_min, arc_c_max); 6003 } 6004 if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max) 6005 arc_c_min = zfs_arc_min; 6006 6007 arc_c = arc_c_max; 6008 arc_p = (arc_c >> 1); 6009 arc_size = 0; 6010 6011 /* limit meta-data to 1/4 of the arc capacity */ 6012 arc_meta_limit = arc_c_max / 4; 6013 6014 #ifdef _KERNEL 6015 /* 6016 * Metadata is stored in the kernel's heap. Don't let us 6017 * use more than half the heap for the ARC. 6018 */ 6019 arc_meta_limit = MIN(arc_meta_limit, 6020 vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2); 6021 #endif 6022 6023 /* Allow the tunable to override if it is reasonable */ 6024 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 6025 arc_meta_limit = zfs_arc_meta_limit; 6026 6027 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 6028 arc_c_min = arc_meta_limit / 2; 6029 6030 if (zfs_arc_meta_min > 0) { 6031 arc_meta_min = zfs_arc_meta_min; 6032 } else { 6033 arc_meta_min = arc_c_min / 2; 6034 } 6035 6036 if (zfs_arc_grow_retry > 0) 6037 arc_grow_retry = zfs_arc_grow_retry; 6038 6039 if (zfs_arc_shrink_shift > 0) 6040 arc_shrink_shift = zfs_arc_shrink_shift; 6041 6042 /* 6043 * Ensure that arc_no_grow_shift is less than arc_shrink_shift. 6044 */ 6045 if (arc_no_grow_shift >= arc_shrink_shift) 6046 arc_no_grow_shift = arc_shrink_shift - 1; 6047 6048 if (zfs_arc_p_min_shift > 0) 6049 arc_p_min_shift = zfs_arc_p_min_shift; 6050 6051 /* if kmem_flags are set, lets try to use less memory */ 6052 if (kmem_debugging()) 6053 arc_c = arc_c / 2; 6054 if (arc_c < arc_c_min) 6055 arc_c = arc_c_min; 6056 6057 arc_state_init(); 6058 buf_init(); 6059 6060 arc_reclaim_thread_exit = B_FALSE; 6061 6062 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 6063 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 6064 6065 if (arc_ksp != NULL) { 6066 arc_ksp->ks_data = &arc_stats; 6067 arc_ksp->ks_update = arc_kstat_update; 6068 kstat_install(arc_ksp); 6069 } 6070 6071 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 6072 TS_RUN, minclsyspri); 6073 6074 arc_dead = B_FALSE; 6075 arc_warm = B_FALSE; 6076 6077 /* 6078 * Calculate maximum amount of dirty data per pool. 6079 * 6080 * If it has been set by /etc/system, take that. 6081 * Otherwise, use a percentage of physical memory defined by 6082 * zfs_dirty_data_max_percent (default 10%) with a cap at 6083 * zfs_dirty_data_max_max (default 4GB). 6084 */ 6085 if (zfs_dirty_data_max == 0) { 6086 zfs_dirty_data_max = physmem * PAGESIZE * 6087 zfs_dirty_data_max_percent / 100; 6088 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 6089 zfs_dirty_data_max_max); 6090 } 6091 } 6092 6093 void 6094 arc_fini(void) 6095 { 6096 mutex_enter(&arc_reclaim_lock); 6097 arc_reclaim_thread_exit = B_TRUE; 6098 /* 6099 * The reclaim thread will set arc_reclaim_thread_exit back to 6100 * B_FALSE when it is finished exiting; we're waiting for that. 6101 */ 6102 while (arc_reclaim_thread_exit) { 6103 cv_signal(&arc_reclaim_thread_cv); 6104 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock); 6105 } 6106 mutex_exit(&arc_reclaim_lock); 6107 6108 /* Use B_TRUE to ensure *all* buffers are evicted */ 6109 arc_flush(NULL, B_TRUE); 6110 6111 arc_dead = B_TRUE; 6112 6113 if (arc_ksp != NULL) { 6114 kstat_delete(arc_ksp); 6115 arc_ksp = NULL; 6116 } 6117 6118 mutex_destroy(&arc_reclaim_lock); 6119 cv_destroy(&arc_reclaim_thread_cv); 6120 cv_destroy(&arc_reclaim_waiters_cv); 6121 6122 arc_state_fini(); 6123 buf_fini(); 6124 6125 ASSERT0(arc_loaned_bytes); 6126 } 6127 6128 /* 6129 * Level 2 ARC 6130 * 6131 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 6132 * It uses dedicated storage devices to hold cached data, which are populated 6133 * using large infrequent writes. The main role of this cache is to boost 6134 * the performance of random read workloads. The intended L2ARC devices 6135 * include short-stroked disks, solid state disks, and other media with 6136 * substantially faster read latency than disk. 6137 * 6138 * +-----------------------+ 6139 * | ARC | 6140 * +-----------------------+ 6141 * | ^ ^ 6142 * | | | 6143 * l2arc_feed_thread() arc_read() 6144 * | | | 6145 * | l2arc read | 6146 * V | | 6147 * +---------------+ | 6148 * | L2ARC | | 6149 * +---------------+ | 6150 * | ^ | 6151 * l2arc_write() | | 6152 * | | | 6153 * V | | 6154 * +-------+ +-------+ 6155 * | vdev | | vdev | 6156 * | cache | | cache | 6157 * +-------+ +-------+ 6158 * +=========+ .-----. 6159 * : L2ARC : |-_____-| 6160 * : devices : | Disks | 6161 * +=========+ `-_____-' 6162 * 6163 * Read requests are satisfied from the following sources, in order: 6164 * 6165 * 1) ARC 6166 * 2) vdev cache of L2ARC devices 6167 * 3) L2ARC devices 6168 * 4) vdev cache of disks 6169 * 5) disks 6170 * 6171 * Some L2ARC device types exhibit extremely slow write performance. 6172 * To accommodate for this there are some significant differences between 6173 * the L2ARC and traditional cache design: 6174 * 6175 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 6176 * the ARC behave as usual, freeing buffers and placing headers on ghost 6177 * lists. The ARC does not send buffers to the L2ARC during eviction as 6178 * this would add inflated write latencies for all ARC memory pressure. 6179 * 6180 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 6181 * It does this by periodically scanning buffers from the eviction-end of 6182 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 6183 * not already there. It scans until a headroom of buffers is satisfied, 6184 * which itself is a buffer for ARC eviction. If a compressible buffer is 6185 * found during scanning and selected for writing to an L2ARC device, we 6186 * temporarily boost scanning headroom during the next scan cycle to make 6187 * sure we adapt to compression effects (which might significantly reduce 6188 * the data volume we write to L2ARC). The thread that does this is 6189 * l2arc_feed_thread(), illustrated below; example sizes are included to 6190 * provide a better sense of ratio than this diagram: 6191 * 6192 * head --> tail 6193 * +---------------------+----------+ 6194 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 6195 * +---------------------+----------+ | o L2ARC eligible 6196 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 6197 * +---------------------+----------+ | 6198 * 15.9 Gbytes ^ 32 Mbytes | 6199 * headroom | 6200 * l2arc_feed_thread() 6201 * | 6202 * l2arc write hand <--[oooo]--' 6203 * | 8 Mbyte 6204 * | write max 6205 * V 6206 * +==============================+ 6207 * L2ARC dev |####|#|###|###| |####| ... | 6208 * +==============================+ 6209 * 32 Gbytes 6210 * 6211 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 6212 * evicted, then the L2ARC has cached a buffer much sooner than it probably 6213 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 6214 * safe to say that this is an uncommon case, since buffers at the end of 6215 * the ARC lists have moved there due to inactivity. 6216 * 6217 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 6218 * then the L2ARC simply misses copying some buffers. This serves as a 6219 * pressure valve to prevent heavy read workloads from both stalling the ARC 6220 * with waits and clogging the L2ARC with writes. This also helps prevent 6221 * the potential for the L2ARC to churn if it attempts to cache content too 6222 * quickly, such as during backups of the entire pool. 6223 * 6224 * 5. After system boot and before the ARC has filled main memory, there are 6225 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 6226 * lists can remain mostly static. Instead of searching from tail of these 6227 * lists as pictured, the l2arc_feed_thread() will search from the list heads 6228 * for eligible buffers, greatly increasing its chance of finding them. 6229 * 6230 * The L2ARC device write speed is also boosted during this time so that 6231 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 6232 * there are no L2ARC reads, and no fear of degrading read performance 6233 * through increased writes. 6234 * 6235 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 6236 * the vdev queue can aggregate them into larger and fewer writes. Each 6237 * device is written to in a rotor fashion, sweeping writes through 6238 * available space then repeating. 6239 * 6240 * 7. The L2ARC does not store dirty content. It never needs to flush 6241 * write buffers back to disk based storage. 6242 * 6243 * 8. If an ARC buffer is written (and dirtied) which also exists in the 6244 * L2ARC, the now stale L2ARC buffer is immediately dropped. 6245 * 6246 * The performance of the L2ARC can be tweaked by a number of tunables, which 6247 * may be necessary for different workloads: 6248 * 6249 * l2arc_write_max max write bytes per interval 6250 * l2arc_write_boost extra write bytes during device warmup 6251 * l2arc_noprefetch skip caching prefetched buffers 6252 * l2arc_headroom number of max device writes to precache 6253 * l2arc_headroom_boost when we find compressed buffers during ARC 6254 * scanning, we multiply headroom by this 6255 * percentage factor for the next scan cycle, 6256 * since more compressed buffers are likely to 6257 * be present 6258 * l2arc_feed_secs seconds between L2ARC writing 6259 * 6260 * Tunables may be removed or added as future performance improvements are 6261 * integrated, and also may become zpool properties. 6262 * 6263 * There are three key functions that control how the L2ARC warms up: 6264 * 6265 * l2arc_write_eligible() check if a buffer is eligible to cache 6266 * l2arc_write_size() calculate how much to write 6267 * l2arc_write_interval() calculate sleep delay between writes 6268 * 6269 * These three functions determine what to write, how much, and how quickly 6270 * to send writes. 6271 */ 6272 6273 static boolean_t 6274 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 6275 { 6276 /* 6277 * A buffer is *not* eligible for the L2ARC if it: 6278 * 1. belongs to a different spa. 6279 * 2. is already cached on the L2ARC. 6280 * 3. has an I/O in progress (it may be an incomplete read). 6281 * 4. is flagged not eligible (zfs property). 6282 */ 6283 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 6284 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 6285 return (B_FALSE); 6286 6287 return (B_TRUE); 6288 } 6289 6290 static uint64_t 6291 l2arc_write_size(void) 6292 { 6293 uint64_t size; 6294 6295 /* 6296 * Make sure our globals have meaningful values in case the user 6297 * altered them. 6298 */ 6299 size = l2arc_write_max; 6300 if (size == 0) { 6301 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 6302 "be greater than zero, resetting it to the default (%d)", 6303 L2ARC_WRITE_SIZE); 6304 size = l2arc_write_max = L2ARC_WRITE_SIZE; 6305 } 6306 6307 if (arc_warm == B_FALSE) 6308 size += l2arc_write_boost; 6309 6310 return (size); 6311 6312 } 6313 6314 static clock_t 6315 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 6316 { 6317 clock_t interval, next, now; 6318 6319 /* 6320 * If the ARC lists are busy, increase our write rate; if the 6321 * lists are stale, idle back. This is achieved by checking 6322 * how much we previously wrote - if it was more than half of 6323 * what we wanted, schedule the next write much sooner. 6324 */ 6325 if (l2arc_feed_again && wrote > (wanted / 2)) 6326 interval = (hz * l2arc_feed_min_ms) / 1000; 6327 else 6328 interval = hz * l2arc_feed_secs; 6329 6330 now = ddi_get_lbolt(); 6331 next = MAX(now, MIN(now + interval, began + interval)); 6332 6333 return (next); 6334 } 6335 6336 /* 6337 * Cycle through L2ARC devices. This is how L2ARC load balances. 6338 * If a device is returned, this also returns holding the spa config lock. 6339 */ 6340 static l2arc_dev_t * 6341 l2arc_dev_get_next(void) 6342 { 6343 l2arc_dev_t *first, *next = NULL; 6344 6345 /* 6346 * Lock out the removal of spas (spa_namespace_lock), then removal 6347 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 6348 * both locks will be dropped and a spa config lock held instead. 6349 */ 6350 mutex_enter(&spa_namespace_lock); 6351 mutex_enter(&l2arc_dev_mtx); 6352 6353 /* if there are no vdevs, there is nothing to do */ 6354 if (l2arc_ndev == 0) 6355 goto out; 6356 6357 first = NULL; 6358 next = l2arc_dev_last; 6359 do { 6360 /* loop around the list looking for a non-faulted vdev */ 6361 if (next == NULL) { 6362 next = list_head(l2arc_dev_list); 6363 } else { 6364 next = list_next(l2arc_dev_list, next); 6365 if (next == NULL) 6366 next = list_head(l2arc_dev_list); 6367 } 6368 6369 /* if we have come back to the start, bail out */ 6370 if (first == NULL) 6371 first = next; 6372 else if (next == first) 6373 break; 6374 6375 } while (vdev_is_dead(next->l2ad_vdev)); 6376 6377 /* if we were unable to find any usable vdevs, return NULL */ 6378 if (vdev_is_dead(next->l2ad_vdev)) 6379 next = NULL; 6380 6381 l2arc_dev_last = next; 6382 6383 out: 6384 mutex_exit(&l2arc_dev_mtx); 6385 6386 /* 6387 * Grab the config lock to prevent the 'next' device from being 6388 * removed while we are writing to it. 6389 */ 6390 if (next != NULL) 6391 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 6392 mutex_exit(&spa_namespace_lock); 6393 6394 return (next); 6395 } 6396 6397 /* 6398 * Free buffers that were tagged for destruction. 6399 */ 6400 static void 6401 l2arc_do_free_on_write() 6402 { 6403 list_t *buflist; 6404 l2arc_data_free_t *df, *df_prev; 6405 6406 mutex_enter(&l2arc_free_on_write_mtx); 6407 buflist = l2arc_free_on_write; 6408 6409 for (df = list_tail(buflist); df; df = df_prev) { 6410 df_prev = list_prev(buflist, df); 6411 ASSERT3P(df->l2df_abd, !=, NULL); 6412 abd_free(df->l2df_abd); 6413 list_remove(buflist, df); 6414 kmem_free(df, sizeof (l2arc_data_free_t)); 6415 } 6416 6417 mutex_exit(&l2arc_free_on_write_mtx); 6418 } 6419 6420 /* 6421 * A write to a cache device has completed. Update all headers to allow 6422 * reads from these buffers to begin. 6423 */ 6424 static void 6425 l2arc_write_done(zio_t *zio) 6426 { 6427 l2arc_write_callback_t *cb; 6428 l2arc_dev_t *dev; 6429 list_t *buflist; 6430 arc_buf_hdr_t *head, *hdr, *hdr_prev; 6431 kmutex_t *hash_lock; 6432 int64_t bytes_dropped = 0; 6433 6434 cb = zio->io_private; 6435 ASSERT3P(cb, !=, NULL); 6436 dev = cb->l2wcb_dev; 6437 ASSERT3P(dev, !=, NULL); 6438 head = cb->l2wcb_head; 6439 ASSERT3P(head, !=, NULL); 6440 buflist = &dev->l2ad_buflist; 6441 ASSERT3P(buflist, !=, NULL); 6442 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 6443 l2arc_write_callback_t *, cb); 6444 6445 if (zio->io_error != 0) 6446 ARCSTAT_BUMP(arcstat_l2_writes_error); 6447 6448 /* 6449 * All writes completed, or an error was hit. 6450 */ 6451 top: 6452 mutex_enter(&dev->l2ad_mtx); 6453 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 6454 hdr_prev = list_prev(buflist, hdr); 6455 6456 hash_lock = HDR_LOCK(hdr); 6457 6458 /* 6459 * We cannot use mutex_enter or else we can deadlock 6460 * with l2arc_write_buffers (due to swapping the order 6461 * the hash lock and l2ad_mtx are taken). 6462 */ 6463 if (!mutex_tryenter(hash_lock)) { 6464 /* 6465 * Missed the hash lock. We must retry so we 6466 * don't leave the ARC_FLAG_L2_WRITING bit set. 6467 */ 6468 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 6469 6470 /* 6471 * We don't want to rescan the headers we've 6472 * already marked as having been written out, so 6473 * we reinsert the head node so we can pick up 6474 * where we left off. 6475 */ 6476 list_remove(buflist, head); 6477 list_insert_after(buflist, hdr, head); 6478 6479 mutex_exit(&dev->l2ad_mtx); 6480 6481 /* 6482 * We wait for the hash lock to become available 6483 * to try and prevent busy waiting, and increase 6484 * the chance we'll be able to acquire the lock 6485 * the next time around. 6486 */ 6487 mutex_enter(hash_lock); 6488 mutex_exit(hash_lock); 6489 goto top; 6490 } 6491 6492 /* 6493 * We could not have been moved into the arc_l2c_only 6494 * state while in-flight due to our ARC_FLAG_L2_WRITING 6495 * bit being set. Let's just ensure that's being enforced. 6496 */ 6497 ASSERT(HDR_HAS_L1HDR(hdr)); 6498 6499 if (zio->io_error != 0) { 6500 /* 6501 * Error - drop L2ARC entry. 6502 */ 6503 list_remove(buflist, hdr); 6504 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 6505 6506 ARCSTAT_INCR(arcstat_l2_asize, -arc_hdr_size(hdr)); 6507 ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr)); 6508 6509 bytes_dropped += arc_hdr_size(hdr); 6510 (void) refcount_remove_many(&dev->l2ad_alloc, 6511 arc_hdr_size(hdr), hdr); 6512 } 6513 6514 /* 6515 * Allow ARC to begin reads and ghost list evictions to 6516 * this L2ARC entry. 6517 */ 6518 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 6519 6520 mutex_exit(hash_lock); 6521 } 6522 6523 atomic_inc_64(&l2arc_writes_done); 6524 list_remove(buflist, head); 6525 ASSERT(!HDR_HAS_L1HDR(head)); 6526 kmem_cache_free(hdr_l2only_cache, head); 6527 mutex_exit(&dev->l2ad_mtx); 6528 6529 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 6530 6531 l2arc_do_free_on_write(); 6532 6533 kmem_free(cb, sizeof (l2arc_write_callback_t)); 6534 } 6535 6536 /* 6537 * A read to a cache device completed. Validate buffer contents before 6538 * handing over to the regular ARC routines. 6539 */ 6540 static void 6541 l2arc_read_done(zio_t *zio) 6542 { 6543 l2arc_read_callback_t *cb; 6544 arc_buf_hdr_t *hdr; 6545 kmutex_t *hash_lock; 6546 boolean_t valid_cksum; 6547 6548 ASSERT3P(zio->io_vd, !=, NULL); 6549 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 6550 6551 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 6552 6553 cb = zio->io_private; 6554 ASSERT3P(cb, !=, NULL); 6555 hdr = cb->l2rcb_hdr; 6556 ASSERT3P(hdr, !=, NULL); 6557 6558 hash_lock = HDR_LOCK(hdr); 6559 mutex_enter(hash_lock); 6560 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6561 6562 ASSERT3P(zio->io_abd, !=, NULL); 6563 6564 /* 6565 * Check this survived the L2ARC journey. 6566 */ 6567 ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd); 6568 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 6569 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 6570 6571 valid_cksum = arc_cksum_is_equal(hdr, zio); 6572 if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 6573 mutex_exit(hash_lock); 6574 zio->io_private = hdr; 6575 arc_read_done(zio); 6576 } else { 6577 mutex_exit(hash_lock); 6578 /* 6579 * Buffer didn't survive caching. Increment stats and 6580 * reissue to the original storage device. 6581 */ 6582 if (zio->io_error != 0) { 6583 ARCSTAT_BUMP(arcstat_l2_io_error); 6584 } else { 6585 zio->io_error = SET_ERROR(EIO); 6586 } 6587 if (!valid_cksum) 6588 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 6589 6590 /* 6591 * If there's no waiter, issue an async i/o to the primary 6592 * storage now. If there *is* a waiter, the caller must 6593 * issue the i/o in a context where it's OK to block. 6594 */ 6595 if (zio->io_waiter == NULL) { 6596 zio_t *pio = zio_unique_parent(zio); 6597 6598 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 6599 6600 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp, 6601 hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done, 6602 hdr, zio->io_priority, cb->l2rcb_flags, 6603 &cb->l2rcb_zb)); 6604 } 6605 } 6606 6607 kmem_free(cb, sizeof (l2arc_read_callback_t)); 6608 } 6609 6610 /* 6611 * This is the list priority from which the L2ARC will search for pages to 6612 * cache. This is used within loops (0..3) to cycle through lists in the 6613 * desired order. This order can have a significant effect on cache 6614 * performance. 6615 * 6616 * Currently the metadata lists are hit first, MFU then MRU, followed by 6617 * the data lists. This function returns a locked list, and also returns 6618 * the lock pointer. 6619 */ 6620 static multilist_sublist_t * 6621 l2arc_sublist_lock(int list_num) 6622 { 6623 multilist_t *ml = NULL; 6624 unsigned int idx; 6625 6626 ASSERT(list_num >= 0 && list_num <= 3); 6627 6628 switch (list_num) { 6629 case 0: 6630 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA]; 6631 break; 6632 case 1: 6633 ml = arc_mru->arcs_list[ARC_BUFC_METADATA]; 6634 break; 6635 case 2: 6636 ml = arc_mfu->arcs_list[ARC_BUFC_DATA]; 6637 break; 6638 case 3: 6639 ml = arc_mru->arcs_list[ARC_BUFC_DATA]; 6640 break; 6641 } 6642 6643 /* 6644 * Return a randomly-selected sublist. This is acceptable 6645 * because the caller feeds only a little bit of data for each 6646 * call (8MB). Subsequent calls will result in different 6647 * sublists being selected. 6648 */ 6649 idx = multilist_get_random_index(ml); 6650 return (multilist_sublist_lock(ml, idx)); 6651 } 6652 6653 /* 6654 * Evict buffers from the device write hand to the distance specified in 6655 * bytes. This distance may span populated buffers, it may span nothing. 6656 * This is clearing a region on the L2ARC device ready for writing. 6657 * If the 'all' boolean is set, every buffer is evicted. 6658 */ 6659 static void 6660 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 6661 { 6662 list_t *buflist; 6663 arc_buf_hdr_t *hdr, *hdr_prev; 6664 kmutex_t *hash_lock; 6665 uint64_t taddr; 6666 6667 buflist = &dev->l2ad_buflist; 6668 6669 if (!all && dev->l2ad_first) { 6670 /* 6671 * This is the first sweep through the device. There is 6672 * nothing to evict. 6673 */ 6674 return; 6675 } 6676 6677 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 6678 /* 6679 * When nearing the end of the device, evict to the end 6680 * before the device write hand jumps to the start. 6681 */ 6682 taddr = dev->l2ad_end; 6683 } else { 6684 taddr = dev->l2ad_hand + distance; 6685 } 6686 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 6687 uint64_t, taddr, boolean_t, all); 6688 6689 top: 6690 mutex_enter(&dev->l2ad_mtx); 6691 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 6692 hdr_prev = list_prev(buflist, hdr); 6693 6694 hash_lock = HDR_LOCK(hdr); 6695 6696 /* 6697 * We cannot use mutex_enter or else we can deadlock 6698 * with l2arc_write_buffers (due to swapping the order 6699 * the hash lock and l2ad_mtx are taken). 6700 */ 6701 if (!mutex_tryenter(hash_lock)) { 6702 /* 6703 * Missed the hash lock. Retry. 6704 */ 6705 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 6706 mutex_exit(&dev->l2ad_mtx); 6707 mutex_enter(hash_lock); 6708 mutex_exit(hash_lock); 6709 goto top; 6710 } 6711 6712 if (HDR_L2_WRITE_HEAD(hdr)) { 6713 /* 6714 * We hit a write head node. Leave it for 6715 * l2arc_write_done(). 6716 */ 6717 list_remove(buflist, hdr); 6718 mutex_exit(hash_lock); 6719 continue; 6720 } 6721 6722 if (!all && HDR_HAS_L2HDR(hdr) && 6723 (hdr->b_l2hdr.b_daddr > taddr || 6724 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 6725 /* 6726 * We've evicted to the target address, 6727 * or the end of the device. 6728 */ 6729 mutex_exit(hash_lock); 6730 break; 6731 } 6732 6733 ASSERT(HDR_HAS_L2HDR(hdr)); 6734 if (!HDR_HAS_L1HDR(hdr)) { 6735 ASSERT(!HDR_L2_READING(hdr)); 6736 /* 6737 * This doesn't exist in the ARC. Destroy. 6738 * arc_hdr_destroy() will call list_remove() 6739 * and decrement arcstat_l2_size. 6740 */ 6741 arc_change_state(arc_anon, hdr, hash_lock); 6742 arc_hdr_destroy(hdr); 6743 } else { 6744 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 6745 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 6746 /* 6747 * Invalidate issued or about to be issued 6748 * reads, since we may be about to write 6749 * over this location. 6750 */ 6751 if (HDR_L2_READING(hdr)) { 6752 ARCSTAT_BUMP(arcstat_l2_evict_reading); 6753 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 6754 } 6755 6756 /* Ensure this header has finished being written */ 6757 ASSERT(!HDR_L2_WRITING(hdr)); 6758 6759 arc_hdr_l2hdr_destroy(hdr); 6760 } 6761 mutex_exit(hash_lock); 6762 } 6763 mutex_exit(&dev->l2ad_mtx); 6764 } 6765 6766 /* 6767 * Find and write ARC buffers to the L2ARC device. 6768 * 6769 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 6770 * for reading until they have completed writing. 6771 * The headroom_boost is an in-out parameter used to maintain headroom boost 6772 * state between calls to this function. 6773 * 6774 * Returns the number of bytes actually written (which may be smaller than 6775 * the delta by which the device hand has changed due to alignment). 6776 */ 6777 static uint64_t 6778 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 6779 { 6780 arc_buf_hdr_t *hdr, *hdr_prev, *head; 6781 uint64_t write_asize, write_psize, write_sz, headroom; 6782 boolean_t full; 6783 l2arc_write_callback_t *cb; 6784 zio_t *pio, *wzio; 6785 uint64_t guid = spa_load_guid(spa); 6786 6787 ASSERT3P(dev->l2ad_vdev, !=, NULL); 6788 6789 pio = NULL; 6790 write_sz = write_asize = write_psize = 0; 6791 full = B_FALSE; 6792 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 6793 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 6794 6795 /* 6796 * Copy buffers for L2ARC writing. 6797 */ 6798 for (int try = 0; try <= 3; try++) { 6799 multilist_sublist_t *mls = l2arc_sublist_lock(try); 6800 uint64_t passed_sz = 0; 6801 6802 /* 6803 * L2ARC fast warmup. 6804 * 6805 * Until the ARC is warm and starts to evict, read from the 6806 * head of the ARC lists rather than the tail. 6807 */ 6808 if (arc_warm == B_FALSE) 6809 hdr = multilist_sublist_head(mls); 6810 else 6811 hdr = multilist_sublist_tail(mls); 6812 6813 headroom = target_sz * l2arc_headroom; 6814 if (zfs_compressed_arc_enabled) 6815 headroom = (headroom * l2arc_headroom_boost) / 100; 6816 6817 for (; hdr; hdr = hdr_prev) { 6818 kmutex_t *hash_lock; 6819 6820 if (arc_warm == B_FALSE) 6821 hdr_prev = multilist_sublist_next(mls, hdr); 6822 else 6823 hdr_prev = multilist_sublist_prev(mls, hdr); 6824 6825 hash_lock = HDR_LOCK(hdr); 6826 if (!mutex_tryenter(hash_lock)) { 6827 /* 6828 * Skip this buffer rather than waiting. 6829 */ 6830 continue; 6831 } 6832 6833 passed_sz += HDR_GET_LSIZE(hdr); 6834 if (passed_sz > headroom) { 6835 /* 6836 * Searched too far. 6837 */ 6838 mutex_exit(hash_lock); 6839 break; 6840 } 6841 6842 if (!l2arc_write_eligible(guid, hdr)) { 6843 mutex_exit(hash_lock); 6844 continue; 6845 } 6846 6847 if ((write_asize + HDR_GET_LSIZE(hdr)) > target_sz) { 6848 full = B_TRUE; 6849 mutex_exit(hash_lock); 6850 break; 6851 } 6852 6853 if (pio == NULL) { 6854 /* 6855 * Insert a dummy header on the buflist so 6856 * l2arc_write_done() can find where the 6857 * write buffers begin without searching. 6858 */ 6859 mutex_enter(&dev->l2ad_mtx); 6860 list_insert_head(&dev->l2ad_buflist, head); 6861 mutex_exit(&dev->l2ad_mtx); 6862 6863 cb = kmem_alloc( 6864 sizeof (l2arc_write_callback_t), KM_SLEEP); 6865 cb->l2wcb_dev = dev; 6866 cb->l2wcb_head = head; 6867 pio = zio_root(spa, l2arc_write_done, cb, 6868 ZIO_FLAG_CANFAIL); 6869 } 6870 6871 hdr->b_l2hdr.b_dev = dev; 6872 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 6873 arc_hdr_set_flags(hdr, 6874 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR); 6875 6876 mutex_enter(&dev->l2ad_mtx); 6877 list_insert_head(&dev->l2ad_buflist, hdr); 6878 mutex_exit(&dev->l2ad_mtx); 6879 6880 /* 6881 * We rely on the L1 portion of the header below, so 6882 * it's invalid for this header to have been evicted out 6883 * of the ghost cache, prior to being written out. The 6884 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 6885 */ 6886 ASSERT(HDR_HAS_L1HDR(hdr)); 6887 6888 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 6889 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 6890 ASSERT3U(arc_hdr_size(hdr), >, 0); 6891 uint64_t size = arc_hdr_size(hdr); 6892 6893 (void) refcount_add_many(&dev->l2ad_alloc, size, hdr); 6894 6895 /* 6896 * Normally the L2ARC can use the hdr's data, but if 6897 * we're sharing data between the hdr and one of its 6898 * bufs, L2ARC needs its own copy of the data so that 6899 * the ZIO below can't race with the buf consumer. To 6900 * ensure that this copy will be available for the 6901 * lifetime of the ZIO and be cleaned up afterwards, we 6902 * add it to the l2arc_free_on_write queue. 6903 */ 6904 abd_t *to_write; 6905 if (!HDR_SHARED_DATA(hdr)) { 6906 to_write = hdr->b_l1hdr.b_pabd; 6907 } else { 6908 to_write = abd_alloc_for_io(size, 6909 HDR_ISTYPE_METADATA(hdr)); 6910 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 6911 l2arc_free_abd_on_write(to_write, size, 6912 arc_buf_type(hdr)); 6913 } 6914 wzio = zio_write_phys(pio, dev->l2ad_vdev, 6915 hdr->b_l2hdr.b_daddr, size, to_write, 6916 ZIO_CHECKSUM_OFF, NULL, hdr, 6917 ZIO_PRIORITY_ASYNC_WRITE, 6918 ZIO_FLAG_CANFAIL, B_FALSE); 6919 6920 write_sz += HDR_GET_LSIZE(hdr); 6921 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 6922 zio_t *, wzio); 6923 6924 write_asize += size; 6925 /* 6926 * Keep the clock hand suitably device-aligned. 6927 */ 6928 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 6929 size); 6930 write_psize += asize; 6931 dev->l2ad_hand += asize; 6932 6933 mutex_exit(hash_lock); 6934 6935 (void) zio_nowait(wzio); 6936 } 6937 6938 multilist_sublist_unlock(mls); 6939 6940 if (full == B_TRUE) 6941 break; 6942 } 6943 6944 /* No buffers selected for writing? */ 6945 if (pio == NULL) { 6946 ASSERT0(write_sz); 6947 ASSERT(!HDR_HAS_L1HDR(head)); 6948 kmem_cache_free(hdr_l2only_cache, head); 6949 return (0); 6950 } 6951 6952 ASSERT3U(write_asize, <=, target_sz); 6953 ARCSTAT_BUMP(arcstat_l2_writes_sent); 6954 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize); 6955 ARCSTAT_INCR(arcstat_l2_size, write_sz); 6956 ARCSTAT_INCR(arcstat_l2_asize, write_asize); 6957 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0); 6958 6959 /* 6960 * Bump device hand to the device start if it is approaching the end. 6961 * l2arc_evict() will already have evicted ahead for this case. 6962 */ 6963 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 6964 dev->l2ad_hand = dev->l2ad_start; 6965 dev->l2ad_first = B_FALSE; 6966 } 6967 6968 dev->l2ad_writing = B_TRUE; 6969 (void) zio_wait(pio); 6970 dev->l2ad_writing = B_FALSE; 6971 6972 return (write_asize); 6973 } 6974 6975 /* 6976 * This thread feeds the L2ARC at regular intervals. This is the beating 6977 * heart of the L2ARC. 6978 */ 6979 static void 6980 l2arc_feed_thread(void) 6981 { 6982 callb_cpr_t cpr; 6983 l2arc_dev_t *dev; 6984 spa_t *spa; 6985 uint64_t size, wrote; 6986 clock_t begin, next = ddi_get_lbolt(); 6987 6988 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 6989 6990 mutex_enter(&l2arc_feed_thr_lock); 6991 6992 while (l2arc_thread_exit == 0) { 6993 CALLB_CPR_SAFE_BEGIN(&cpr); 6994 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 6995 next); 6996 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 6997 next = ddi_get_lbolt() + hz; 6998 6999 /* 7000 * Quick check for L2ARC devices. 7001 */ 7002 mutex_enter(&l2arc_dev_mtx); 7003 if (l2arc_ndev == 0) { 7004 mutex_exit(&l2arc_dev_mtx); 7005 continue; 7006 } 7007 mutex_exit(&l2arc_dev_mtx); 7008 begin = ddi_get_lbolt(); 7009 7010 /* 7011 * This selects the next l2arc device to write to, and in 7012 * doing so the next spa to feed from: dev->l2ad_spa. This 7013 * will return NULL if there are now no l2arc devices or if 7014 * they are all faulted. 7015 * 7016 * If a device is returned, its spa's config lock is also 7017 * held to prevent device removal. l2arc_dev_get_next() 7018 * will grab and release l2arc_dev_mtx. 7019 */ 7020 if ((dev = l2arc_dev_get_next()) == NULL) 7021 continue; 7022 7023 spa = dev->l2ad_spa; 7024 ASSERT3P(spa, !=, NULL); 7025 7026 /* 7027 * If the pool is read-only then force the feed thread to 7028 * sleep a little longer. 7029 */ 7030 if (!spa_writeable(spa)) { 7031 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 7032 spa_config_exit(spa, SCL_L2ARC, dev); 7033 continue; 7034 } 7035 7036 /* 7037 * Avoid contributing to memory pressure. 7038 */ 7039 if (arc_reclaim_needed()) { 7040 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 7041 spa_config_exit(spa, SCL_L2ARC, dev); 7042 continue; 7043 } 7044 7045 ARCSTAT_BUMP(arcstat_l2_feeds); 7046 7047 size = l2arc_write_size(); 7048 7049 /* 7050 * Evict L2ARC buffers that will be overwritten. 7051 */ 7052 l2arc_evict(dev, size, B_FALSE); 7053 7054 /* 7055 * Write ARC buffers. 7056 */ 7057 wrote = l2arc_write_buffers(spa, dev, size); 7058 7059 /* 7060 * Calculate interval between writes. 7061 */ 7062 next = l2arc_write_interval(begin, size, wrote); 7063 spa_config_exit(spa, SCL_L2ARC, dev); 7064 } 7065 7066 l2arc_thread_exit = 0; 7067 cv_broadcast(&l2arc_feed_thr_cv); 7068 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 7069 thread_exit(); 7070 } 7071 7072 boolean_t 7073 l2arc_vdev_present(vdev_t *vd) 7074 { 7075 l2arc_dev_t *dev; 7076 7077 mutex_enter(&l2arc_dev_mtx); 7078 for (dev = list_head(l2arc_dev_list); dev != NULL; 7079 dev = list_next(l2arc_dev_list, dev)) { 7080 if (dev->l2ad_vdev == vd) 7081 break; 7082 } 7083 mutex_exit(&l2arc_dev_mtx); 7084 7085 return (dev != NULL); 7086 } 7087 7088 /* 7089 * Add a vdev for use by the L2ARC. By this point the spa has already 7090 * validated the vdev and opened it. 7091 */ 7092 void 7093 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 7094 { 7095 l2arc_dev_t *adddev; 7096 7097 ASSERT(!l2arc_vdev_present(vd)); 7098 7099 /* 7100 * Create a new l2arc device entry. 7101 */ 7102 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 7103 adddev->l2ad_spa = spa; 7104 adddev->l2ad_vdev = vd; 7105 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 7106 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 7107 adddev->l2ad_hand = adddev->l2ad_start; 7108 adddev->l2ad_first = B_TRUE; 7109 adddev->l2ad_writing = B_FALSE; 7110 7111 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 7112 /* 7113 * This is a list of all ARC buffers that are still valid on the 7114 * device. 7115 */ 7116 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 7117 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 7118 7119 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 7120 refcount_create(&adddev->l2ad_alloc); 7121 7122 /* 7123 * Add device to global list 7124 */ 7125 mutex_enter(&l2arc_dev_mtx); 7126 list_insert_head(l2arc_dev_list, adddev); 7127 atomic_inc_64(&l2arc_ndev); 7128 mutex_exit(&l2arc_dev_mtx); 7129 } 7130 7131 /* 7132 * Remove a vdev from the L2ARC. 7133 */ 7134 void 7135 l2arc_remove_vdev(vdev_t *vd) 7136 { 7137 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 7138 7139 /* 7140 * Find the device by vdev 7141 */ 7142 mutex_enter(&l2arc_dev_mtx); 7143 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 7144 nextdev = list_next(l2arc_dev_list, dev); 7145 if (vd == dev->l2ad_vdev) { 7146 remdev = dev; 7147 break; 7148 } 7149 } 7150 ASSERT3P(remdev, !=, NULL); 7151 7152 /* 7153 * Remove device from global list 7154 */ 7155 list_remove(l2arc_dev_list, remdev); 7156 l2arc_dev_last = NULL; /* may have been invalidated */ 7157 atomic_dec_64(&l2arc_ndev); 7158 mutex_exit(&l2arc_dev_mtx); 7159 7160 /* 7161 * Clear all buflists and ARC references. L2ARC device flush. 7162 */ 7163 l2arc_evict(remdev, 0, B_TRUE); 7164 list_destroy(&remdev->l2ad_buflist); 7165 mutex_destroy(&remdev->l2ad_mtx); 7166 refcount_destroy(&remdev->l2ad_alloc); 7167 kmem_free(remdev, sizeof (l2arc_dev_t)); 7168 } 7169 7170 void 7171 l2arc_init(void) 7172 { 7173 l2arc_thread_exit = 0; 7174 l2arc_ndev = 0; 7175 l2arc_writes_sent = 0; 7176 l2arc_writes_done = 0; 7177 7178 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 7179 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 7180 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 7181 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 7182 7183 l2arc_dev_list = &L2ARC_dev_list; 7184 l2arc_free_on_write = &L2ARC_free_on_write; 7185 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 7186 offsetof(l2arc_dev_t, l2ad_node)); 7187 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 7188 offsetof(l2arc_data_free_t, l2df_list_node)); 7189 } 7190 7191 void 7192 l2arc_fini(void) 7193 { 7194 /* 7195 * This is called from dmu_fini(), which is called from spa_fini(); 7196 * Because of this, we can assume that all l2arc devices have 7197 * already been removed when the pools themselves were removed. 7198 */ 7199 7200 l2arc_do_free_on_write(); 7201 7202 mutex_destroy(&l2arc_feed_thr_lock); 7203 cv_destroy(&l2arc_feed_thr_cv); 7204 mutex_destroy(&l2arc_dev_mtx); 7205 mutex_destroy(&l2arc_free_on_write_mtx); 7206 7207 list_destroy(l2arc_dev_list); 7208 list_destroy(l2arc_free_on_write); 7209 } 7210 7211 void 7212 l2arc_start(void) 7213 { 7214 if (!(spa_mode_global & FWRITE)) 7215 return; 7216 7217 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 7218 TS_RUN, minclsyspri); 7219 } 7220 7221 void 7222 l2arc_stop(void) 7223 { 7224 if (!(spa_mode_global & FWRITE)) 7225 return; 7226 7227 mutex_enter(&l2arc_feed_thr_lock); 7228 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 7229 l2arc_thread_exit = 1; 7230 while (l2arc_thread_exit != 0) 7231 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 7232 mutex_exit(&l2arc_feed_thr_lock); 7233 } 7234