1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * DVA-based Adjustable Relpacement Cache 31 * 32 * While much of the theory of operation and algorithms used here 33 * are based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slowes the flow of new data 52 * into the cache until we can make space avaiable. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory preasure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefor exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefor choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() inerface 80 * uses method 1, while the internal arc algorithms for 81 * adjusting the cache use method 2. We therefor provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * arc list locks. 84 * 85 * Buffers do not have their own mutexs, rather they rely on the 86 * hash table mutexs for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexs). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each arc state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an arc list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the "top" state mutex must be held before the "bot" state mutex. 101 * 102 * Note that the majority of the performance stats are manipulated 103 * with atomic operations. 104 */ 105 106 #include <sys/spa.h> 107 #include <sys/zio.h> 108 #include <sys/zfs_context.h> 109 #include <sys/arc.h> 110 #include <sys/refcount.h> 111 #ifdef _KERNEL 112 #include <sys/vmsystm.h> 113 #include <vm/anon.h> 114 #include <sys/fs/swapnode.h> 115 #endif 116 #include <sys/callb.h> 117 118 static kmutex_t arc_reclaim_thr_lock; 119 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 120 static uint8_t arc_thread_exit; 121 122 typedef enum arc_reclaim_strategy { 123 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 124 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 125 } arc_reclaim_strategy_t; 126 127 /* number of seconds before growing cache again */ 128 static int arc_grow_retry = 60; 129 130 static kmutex_t arc_reclaim_lock; 131 static int arc_dead; 132 133 /* 134 * Note that buffers can be on one of 5 states: 135 * ARC_anon - anonymous (discussed below) 136 * ARC_mru_top - recently used, currently cached 137 * ARC_mru_bot - recentely used, no longer in cache 138 * ARC_mfu_top - frequently used, currently cached 139 * ARC_mfu_bot - frequently used, no longer in cache 140 * When there are no active references to the buffer, they 141 * are linked onto one of the lists in arc. These are the 142 * only buffers that can be evicted or deleted. 143 * 144 * Anonymous buffers are buffers that are not associated with 145 * a DVA. These are buffers that hold dirty block copies 146 * before they are written to stable storage. By definition, 147 * they are "ref'd" and are considered part of arc_mru_top 148 * that cannot be freed. Generally, they will aquire a DVA 149 * as they are written and migrate onto the arc_mru_top list. 150 */ 151 152 typedef struct arc_state { 153 list_t list; /* linked list of evictable buffer in state */ 154 uint64_t lsize; /* total size of buffers in the linked list */ 155 uint64_t size; /* total size of all buffers in this state */ 156 uint64_t hits; 157 kmutex_t mtx; 158 } arc_state_t; 159 160 /* The 5 states: */ 161 static arc_state_t ARC_anon; 162 static arc_state_t ARC_mru_top; 163 static arc_state_t ARC_mru_bot; 164 static arc_state_t ARC_mfu_top; 165 static arc_state_t ARC_mfu_bot; 166 167 static struct arc { 168 arc_state_t *anon; 169 arc_state_t *mru_top; 170 arc_state_t *mru_bot; 171 arc_state_t *mfu_top; 172 arc_state_t *mfu_bot; 173 uint64_t size; /* Actual total arc size */ 174 uint64_t p; /* Target size (in bytes) of mru_top */ 175 uint64_t c; /* Target size of cache (in bytes) */ 176 uint64_t c_min; /* Minimum target cache size */ 177 uint64_t c_max; /* Maximum target cache size */ 178 uint64_t incr; /* Size by which to increment arc.c */ 179 int64_t size_check; 180 181 /* performance stats */ 182 uint64_t hits; 183 uint64_t misses; 184 uint64_t deleted; 185 uint64_t skipped; 186 uint64_t hash_elements; 187 uint64_t hash_elements_max; 188 uint64_t hash_collisions; 189 uint64_t hash_chains; 190 uint32_t hash_chain_max; 191 192 int no_grow; /* Don't try to grow cache size */ 193 } arc; 194 195 /* Default amount to grow arc.incr */ 196 static int64_t arc_incr_size = 1024; 197 198 /* > 0 ==> time to increment arc.c */ 199 static int64_t arc_size_check_default = -1000; 200 201 static uint64_t arc_tempreserve; 202 203 typedef struct arc_callback arc_callback_t; 204 205 struct arc_callback { 206 arc_done_func_t *acb_done; 207 void *acb_private; 208 arc_byteswap_func_t *acb_byteswap; 209 arc_buf_t *acb_buf; 210 zio_t *acb_zio_dummy; 211 arc_callback_t *acb_next; 212 }; 213 214 struct arc_buf_hdr { 215 /* immutable */ 216 uint64_t b_size; 217 spa_t *b_spa; 218 219 /* protected by hash lock */ 220 dva_t b_dva; 221 uint64_t b_birth; 222 uint64_t b_cksum0; 223 224 arc_buf_hdr_t *b_hash_next; 225 arc_buf_t *b_buf; 226 uint32_t b_flags; 227 228 kcondvar_t b_cv; 229 arc_callback_t *b_acb; 230 231 /* protected by arc state mutex */ 232 arc_state_t *b_state; 233 list_node_t b_arc_node; 234 235 /* updated atomically */ 236 clock_t b_arc_access; 237 238 /* self protecting */ 239 refcount_t b_refcnt; 240 }; 241 242 /* 243 * Private ARC flags. These flags are private ARC only flags that will show up 244 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 245 * be passed in as arc_flags in things like arc_read. However, these flags 246 * should never be passed and should only be set by ARC code. When adding new 247 * public flags, make sure not to smash the private ones. 248 */ 249 250 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 251 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 252 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 253 254 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 255 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 256 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 257 258 /* 259 * Hash table routines 260 */ 261 262 #define HT_LOCK_PAD 64 263 264 struct ht_lock { 265 kmutex_t ht_lock; 266 #ifdef _KERNEL 267 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 268 #endif 269 }; 270 271 #define BUF_LOCKS 256 272 typedef struct buf_hash_table { 273 uint64_t ht_mask; 274 arc_buf_hdr_t **ht_table; 275 struct ht_lock ht_locks[BUF_LOCKS]; 276 } buf_hash_table_t; 277 278 static buf_hash_table_t buf_hash_table; 279 280 #define BUF_HASH_INDEX(spa, dva, birth) \ 281 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 282 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 283 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 284 #define HDR_LOCK(buf) \ 285 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 286 287 uint64_t zfs_crc64_table[256]; 288 289 static uint64_t 290 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth) 291 { 292 uintptr_t spav = (uintptr_t)spa; 293 uint8_t *vdva = (uint8_t *)dva; 294 uint64_t crc = -1ULL; 295 int i; 296 297 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 298 299 for (i = 0; i < sizeof (dva_t); i++) 300 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 301 302 crc ^= (spav>>8) ^ birth; 303 304 return (crc); 305 } 306 307 #define BUF_EMPTY(buf) \ 308 ((buf)->b_dva.dva_word[0] == 0 && \ 309 (buf)->b_dva.dva_word[1] == 0 && \ 310 (buf)->b_birth == 0) 311 312 #define BUF_EQUAL(spa, dva, birth, buf) \ 313 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 314 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 315 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 316 317 static arc_buf_hdr_t * 318 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp) 319 { 320 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 321 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 322 arc_buf_hdr_t *buf; 323 324 mutex_enter(hash_lock); 325 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 326 buf = buf->b_hash_next) { 327 if (BUF_EQUAL(spa, dva, birth, buf)) { 328 *lockp = hash_lock; 329 return (buf); 330 } 331 } 332 mutex_exit(hash_lock); 333 *lockp = NULL; 334 return (NULL); 335 } 336 337 /* 338 * Insert an entry into the hash table. If there is already an element 339 * equal to elem in the hash table, then the already existing element 340 * will be returned and the new element will not be inserted. 341 * Otherwise returns NULL. 342 */ 343 static arc_buf_hdr_t *fbufs[4]; /* XXX to find 6341326 */ 344 static kthread_t *fbufs_lastthread; 345 static arc_buf_hdr_t * 346 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 347 { 348 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 349 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 350 arc_buf_hdr_t *fbuf; 351 uint32_t max, i; 352 353 fbufs_lastthread = curthread; 354 *lockp = hash_lock; 355 mutex_enter(hash_lock); 356 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 357 fbuf = fbuf->b_hash_next, i++) { 358 if (i < sizeof (fbufs) / sizeof (fbufs[0])) 359 fbufs[i] = fbuf; 360 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 361 return (fbuf); 362 } 363 364 buf->b_hash_next = buf_hash_table.ht_table[idx]; 365 buf_hash_table.ht_table[idx] = buf; 366 367 /* collect some hash table performance data */ 368 if (i > 0) { 369 atomic_add_64(&arc.hash_collisions, 1); 370 if (i == 1) 371 atomic_add_64(&arc.hash_chains, 1); 372 } 373 while (i > (max = arc.hash_chain_max) && 374 max != atomic_cas_32(&arc.hash_chain_max, max, i)) { 375 continue; 376 } 377 atomic_add_64(&arc.hash_elements, 1); 378 if (arc.hash_elements > arc.hash_elements_max) 379 atomic_add_64(&arc.hash_elements_max, 1); 380 381 return (NULL); 382 } 383 384 static void 385 buf_hash_remove(arc_buf_hdr_t *buf) 386 { 387 arc_buf_hdr_t *fbuf, **bufp; 388 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 389 390 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 391 392 bufp = &buf_hash_table.ht_table[idx]; 393 while ((fbuf = *bufp) != buf) { 394 ASSERT(fbuf != NULL); 395 bufp = &fbuf->b_hash_next; 396 } 397 *bufp = buf->b_hash_next; 398 buf->b_hash_next = NULL; 399 400 /* collect some hash table performance data */ 401 atomic_add_64(&arc.hash_elements, -1); 402 if (buf_hash_table.ht_table[idx] && 403 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 404 atomic_add_64(&arc.hash_chains, -1); 405 } 406 407 /* 408 * Global data structures and functions for the buf kmem cache. 409 */ 410 static kmem_cache_t *hdr_cache; 411 static kmem_cache_t *buf_cache; 412 413 static void 414 buf_fini(void) 415 { 416 int i; 417 418 kmem_free(buf_hash_table.ht_table, 419 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 420 for (i = 0; i < BUF_LOCKS; i++) 421 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 422 kmem_cache_destroy(hdr_cache); 423 kmem_cache_destroy(buf_cache); 424 } 425 426 /* 427 * Constructor callback - called when the cache is empty 428 * and a new buf is requested. 429 */ 430 /* ARGSUSED */ 431 static int 432 hdr_cons(void *vbuf, void *unused, int kmflag) 433 { 434 arc_buf_hdr_t *buf = vbuf; 435 436 bzero(buf, sizeof (arc_buf_hdr_t)); 437 refcount_create(&buf->b_refcnt); 438 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 439 return (0); 440 } 441 442 /* 443 * Destructor callback - called when a cached buf is 444 * no longer required. 445 */ 446 /* ARGSUSED */ 447 static void 448 hdr_dest(void *vbuf, void *unused) 449 { 450 arc_buf_hdr_t *buf = vbuf; 451 452 refcount_destroy(&buf->b_refcnt); 453 cv_destroy(&buf->b_cv); 454 } 455 456 void arc_kmem_reclaim(void); 457 458 /* 459 * Reclaim callback -- invoked when memory is low. 460 */ 461 /* ARGSUSED */ 462 static void 463 hdr_recl(void *unused) 464 { 465 dprintf("hdr_recl called\n"); 466 arc_kmem_reclaim(); 467 } 468 469 static void 470 buf_init(void) 471 { 472 uint64_t *ct; 473 uint64_t hsize = 1ULL << 10; 474 int i, j; 475 476 /* 477 * The hash table is big enough to fill all of physical memory 478 * with an average 4k block size. The table will take up 479 * totalmem*sizeof(void*)/4k bytes (eg. 2MB/GB with 8-byte 480 * pointers). 481 */ 482 while (hsize * 4096 < physmem * PAGESIZE) 483 hsize <<= 1; 484 485 buf_hash_table.ht_mask = hsize - 1; 486 buf_hash_table.ht_table = kmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 487 488 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 489 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 490 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 491 0, NULL, NULL, NULL, NULL, NULL, 0); 492 493 for (i = 0; i < 256; i++) 494 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 495 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 496 497 for (i = 0; i < BUF_LOCKS; i++) { 498 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 499 NULL, MUTEX_DEFAULT, NULL); 500 } 501 } 502 503 #define ARC_MINTIME (hz>>4) /* 62 ms */ 504 505 #define ARC_TAG (void *)0x05201962 506 507 static void 508 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 509 { 510 ASSERT(MUTEX_HELD(hash_lock)); 511 512 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 513 (ab->b_state != arc.anon)) { 514 515 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 516 mutex_enter(&ab->b_state->mtx); 517 ASSERT(!refcount_is_zero(&ab->b_refcnt)); 518 ASSERT(list_link_active(&ab->b_arc_node)); 519 list_remove(&ab->b_state->list, ab); 520 ASSERT3U(ab->b_state->lsize, >=, ab->b_size); 521 ab->b_state->lsize -= ab->b_size; 522 mutex_exit(&ab->b_state->mtx); 523 } 524 } 525 526 static int 527 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 528 { 529 int cnt; 530 531 ASSERT(MUTEX_HELD(hash_lock)); 532 533 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 534 (ab->b_state != arc.anon)) { 535 536 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 537 mutex_enter(&ab->b_state->mtx); 538 ASSERT(!list_link_active(&ab->b_arc_node)); 539 list_insert_head(&ab->b_state->list, ab); 540 ASSERT(ab->b_buf != NULL); 541 ab->b_state->lsize += ab->b_size; 542 mutex_exit(&ab->b_state->mtx); 543 } 544 return (cnt); 545 } 546 547 /* 548 * Move the supplied buffer to the indicated state. The mutex 549 * for the buffer must be held by the caller. 550 */ 551 static void 552 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, 553 kmutex_t *hash_lock) 554 { 555 arc_buf_t *buf; 556 557 ASSERT(MUTEX_HELD(hash_lock)); 558 559 /* 560 * If this buffer is evictable, transfer it from the 561 * old state list to the new state list. 562 */ 563 if (refcount_is_zero(&ab->b_refcnt)) { 564 if (ab->b_state != arc.anon) { 565 int drop_mutex = FALSE; 566 567 if (!MUTEX_HELD(&ab->b_state->mtx)) { 568 mutex_enter(&ab->b_state->mtx); 569 drop_mutex = TRUE; 570 } 571 ASSERT(list_link_active(&ab->b_arc_node)); 572 list_remove(&ab->b_state->list, ab); 573 ASSERT3U(ab->b_state->lsize, >=, ab->b_size); 574 ab->b_state->lsize -= ab->b_size; 575 if (drop_mutex) 576 mutex_exit(&ab->b_state->mtx); 577 } 578 if (new_state != arc.anon) { 579 int drop_mutex = FALSE; 580 581 if (!MUTEX_HELD(&new_state->mtx)) { 582 mutex_enter(&new_state->mtx); 583 drop_mutex = TRUE; 584 } 585 list_insert_head(&new_state->list, ab); 586 ASSERT(ab->b_buf != NULL); 587 new_state->lsize += ab->b_size; 588 if (drop_mutex) 589 mutex_exit(&new_state->mtx); 590 } 591 } 592 593 ASSERT(!BUF_EMPTY(ab)); 594 if (new_state == arc.anon && ab->b_state != arc.anon) { 595 buf_hash_remove(ab); 596 } 597 598 /* 599 * If this buffer isn't being transferred to the MRU-top 600 * state, it's safe to clear its prefetch flag 601 */ 602 if ((new_state != arc.mru_top) && (new_state != arc.mru_bot)) { 603 ab->b_flags &= ~ARC_PREFETCH; 604 } 605 606 buf = ab->b_buf; 607 if (buf == NULL) { 608 ASSERT3U(ab->b_state->size, >=, ab->b_size); 609 atomic_add_64(&ab->b_state->size, -ab->b_size); 610 /* we should only be here if we are deleting state */ 611 ASSERT(new_state == arc.anon && 612 (ab->b_state == arc.mru_bot || ab->b_state == arc.mfu_bot)); 613 } else while (buf) { 614 ASSERT3U(ab->b_state->size, >=, ab->b_size); 615 atomic_add_64(&ab->b_state->size, -ab->b_size); 616 atomic_add_64(&new_state->size, ab->b_size); 617 buf = buf->b_next; 618 } 619 ab->b_state = new_state; 620 } 621 622 arc_buf_t * 623 arc_buf_alloc(spa_t *spa, int size, void *tag) 624 { 625 arc_buf_hdr_t *hdr; 626 arc_buf_t *buf; 627 628 ASSERT3U(size, >, 0); 629 hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 630 ASSERT(BUF_EMPTY(hdr)); 631 hdr->b_size = size; 632 hdr->b_spa = spa; 633 hdr->b_state = arc.anon; 634 hdr->b_arc_access = 0; 635 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 636 buf->b_hdr = hdr; 637 buf->b_next = NULL; 638 buf->b_data = zio_buf_alloc(size); 639 hdr->b_buf = buf; 640 hdr->b_flags = 0; 641 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 642 (void) refcount_add(&hdr->b_refcnt, tag); 643 644 atomic_add_64(&arc.size, size); 645 atomic_add_64(&arc.anon->size, size); 646 647 return (buf); 648 } 649 650 static void 651 arc_hdr_free(arc_buf_hdr_t *hdr) 652 { 653 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 654 ASSERT3P(hdr->b_state, ==, arc.anon); 655 656 if (!BUF_EMPTY(hdr)) { 657 /* 658 * We can be called with an arc state lock held, 659 * so we can't hold a hash lock here. 660 * ASSERT(not in hash table) 661 */ 662 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 663 bzero(&hdr->b_dva, sizeof (dva_t)); 664 hdr->b_birth = 0; 665 hdr->b_cksum0 = 0; 666 } 667 if (hdr->b_buf) { 668 arc_buf_t *buf = hdr->b_buf; 669 670 ASSERT3U(hdr->b_size, >, 0); 671 zio_buf_free(buf->b_data, hdr->b_size); 672 atomic_add_64(&arc.size, -hdr->b_size); 673 ASSERT3U(arc.anon->size, >=, hdr->b_size); 674 atomic_add_64(&arc.anon->size, -hdr->b_size); 675 ASSERT3P(buf->b_next, ==, NULL); 676 kmem_cache_free(buf_cache, buf); 677 hdr->b_buf = NULL; 678 } 679 ASSERT(!list_link_active(&hdr->b_arc_node)); 680 ASSERT3P(hdr->b_hash_next, ==, NULL); 681 ASSERT3P(hdr->b_acb, ==, NULL); 682 kmem_cache_free(hdr_cache, hdr); 683 } 684 685 void 686 arc_buf_free(arc_buf_t *buf, void *tag) 687 { 688 arc_buf_hdr_t *hdr = buf->b_hdr; 689 kmutex_t *hash_lock = HDR_LOCK(hdr); 690 int freeable; 691 692 mutex_enter(hash_lock); 693 if (remove_reference(hdr, hash_lock, tag) > 0) { 694 arc_buf_t **bufp = &hdr->b_buf; 695 arc_state_t *state = hdr->b_state; 696 uint64_t size = hdr->b_size; 697 698 ASSERT(hdr->b_state != arc.anon || HDR_IO_ERROR(hdr)); 699 while (*bufp != buf) { 700 ASSERT(*bufp); 701 bufp = &(*bufp)->b_next; 702 } 703 *bufp = buf->b_next; 704 mutex_exit(hash_lock); 705 zio_buf_free(buf->b_data, size); 706 atomic_add_64(&arc.size, -size); 707 kmem_cache_free(buf_cache, buf); 708 ASSERT3U(state->size, >=, size); 709 atomic_add_64(&state->size, -size); 710 return; 711 } 712 713 /* don't free buffers that are in the middle of an async write */ 714 freeable = (hdr->b_state == arc.anon && hdr->b_acb == NULL); 715 mutex_exit(hash_lock); 716 717 if (freeable) 718 arc_hdr_free(hdr); 719 } 720 721 int 722 arc_buf_size(arc_buf_t *buf) 723 { 724 return (buf->b_hdr->b_size); 725 } 726 727 /* 728 * Evict buffers from list until we've removed the specified number of 729 * bytes. Move the removed buffers to the appropriate evict state. 730 */ 731 static uint64_t 732 arc_evict_state(arc_state_t *state, int64_t bytes) 733 { 734 arc_state_t *evicted_state; 735 uint64_t bytes_evicted = 0; 736 arc_buf_hdr_t *ab, *ab_prev; 737 kmutex_t *hash_lock; 738 739 ASSERT(state == arc.mru_top || state == arc.mfu_top); 740 741 if (state == arc.mru_top) 742 evicted_state = arc.mru_bot; 743 else 744 evicted_state = arc.mfu_bot; 745 746 mutex_enter(&state->mtx); 747 mutex_enter(&evicted_state->mtx); 748 749 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 750 ab_prev = list_prev(&state->list, ab); 751 hash_lock = HDR_LOCK(ab); 752 if (mutex_tryenter(hash_lock)) { 753 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 754 arc_change_state(evicted_state, ab, hash_lock); 755 zio_buf_free(ab->b_buf->b_data, ab->b_size); 756 atomic_add_64(&arc.size, -ab->b_size); 757 ASSERT3P(ab->b_buf->b_next, ==, NULL); 758 kmem_cache_free(buf_cache, ab->b_buf); 759 ab->b_buf = NULL; 760 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 761 bytes_evicted += ab->b_size; 762 mutex_exit(hash_lock); 763 if (bytes_evicted >= bytes) 764 break; 765 } else { 766 atomic_add_64(&arc.skipped, 1); 767 } 768 } 769 mutex_exit(&evicted_state->mtx); 770 mutex_exit(&state->mtx); 771 772 if (bytes_evicted < bytes) 773 dprintf("only evicted %lld bytes from %x", 774 (longlong_t)bytes_evicted, state); 775 776 return (bytes_evicted); 777 } 778 779 /* 780 * Remove buffers from list until we've removed the specified number of 781 * bytes. Destroy the buffers that are removed. 782 */ 783 static void 784 arc_delete_state(arc_state_t *state, int64_t bytes) 785 { 786 uint_t bufs_skipped = 0; 787 uint64_t bytes_deleted = 0; 788 arc_buf_hdr_t *ab, *ab_prev; 789 kmutex_t *hash_lock; 790 791 top: 792 mutex_enter(&state->mtx); 793 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 794 ab_prev = list_prev(&state->list, ab); 795 hash_lock = HDR_LOCK(ab); 796 if (mutex_tryenter(hash_lock)) { 797 arc_change_state(arc.anon, ab, hash_lock); 798 mutex_exit(hash_lock); 799 atomic_add_64(&arc.deleted, 1); 800 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 801 bytes_deleted += ab->b_size; 802 arc_hdr_free(ab); 803 if (bytes >= 0 && bytes_deleted >= bytes) 804 break; 805 } else { 806 if (bytes < 0) { 807 mutex_exit(&state->mtx); 808 mutex_enter(hash_lock); 809 mutex_exit(hash_lock); 810 goto top; 811 } 812 bufs_skipped += 1; 813 } 814 } 815 mutex_exit(&state->mtx); 816 817 if (bufs_skipped) { 818 atomic_add_64(&arc.skipped, bufs_skipped); 819 ASSERT(bytes >= 0); 820 } 821 822 if (bytes_deleted < bytes) 823 dprintf("only deleted %lld bytes from %p", 824 (longlong_t)bytes_deleted, state); 825 } 826 827 static void 828 arc_adjust(void) 829 { 830 int64_t top_sz, mru_over, arc_over; 831 832 top_sz = arc.anon->size + arc.mru_top->size; 833 834 if (top_sz > arc.p && arc.mru_top->lsize > 0) { 835 int64_t toevict = MIN(arc.mru_top->lsize, top_sz-arc.p); 836 (void) arc_evict_state(arc.mru_top, toevict); 837 top_sz = arc.anon->size + arc.mru_top->size; 838 } 839 840 mru_over = top_sz + arc.mru_bot->size - arc.c; 841 842 if (mru_over > 0) { 843 if (arc.mru_bot->lsize > 0) { 844 int64_t todelete = MIN(arc.mru_bot->lsize, mru_over); 845 arc_delete_state(arc.mru_bot, todelete); 846 } 847 } 848 849 if ((arc_over = arc.size - arc.c) > 0) { 850 int64_t table_over; 851 852 if (arc.mfu_top->lsize > 0) { 853 int64_t toevict = MIN(arc.mfu_top->lsize, arc_over); 854 (void) arc_evict_state(arc.mfu_top, toevict); 855 } 856 857 table_over = arc.size + arc.mru_bot->lsize + arc.mfu_bot->lsize 858 - arc.c*2; 859 860 if (table_over > 0 && arc.mfu_bot->lsize > 0) { 861 int64_t todelete = MIN(arc.mfu_bot->lsize, table_over); 862 arc_delete_state(arc.mfu_bot, todelete); 863 } 864 } 865 } 866 867 /* 868 * Flush all *evictable* data from the cache. 869 * NOTE: this will not touch "active" (i.e. referenced) data. 870 */ 871 void 872 arc_flush(void) 873 { 874 arc_delete_state(arc.mru_top, -1); 875 arc_delete_state(arc.mfu_top, -1); 876 877 arc_delete_state(arc.mru_bot, -1); 878 arc_delete_state(arc.mfu_bot, -1); 879 } 880 881 void 882 arc_kmem_reclaim(void) 883 { 884 /* Remove 6.25% */ 885 /* 886 * We need arc_reclaim_lock because we don't want multiple 887 * threads trying to reclaim concurrently. 888 */ 889 890 /* 891 * umem calls the reclaim func when we destroy the buf cache, 892 * which is after we do arc_fini(). So we set a flag to prevent 893 * accessing the destroyed mutexes and lists. 894 */ 895 if (arc_dead) 896 return; 897 898 mutex_enter(&arc_reclaim_lock); 899 900 atomic_add_64(&arc.c, -(arc.c >> 4)); 901 if (arc.c < arc.c_min) 902 arc.c = arc.c_min; 903 atomic_add_64(&arc.p, -(arc.p >> 4)); 904 905 arc_adjust(); 906 907 /* Cool it for a while */ 908 arc.incr = 0; 909 arc.size_check = arc_size_check_default << 3; 910 911 mutex_exit(&arc_reclaim_lock); 912 } 913 914 static int 915 arc_reclaim_needed(void) 916 { 917 uint64_t extra; 918 919 #ifdef _KERNEL 920 /* 921 * take 'desfree' extra pages, so we reclaim sooner, rather than later 922 */ 923 extra = desfree; 924 925 /* 926 * check that we're out of range of the pageout scanner. It starts to 927 * schedule paging if freemem is less than lotsfree and needfree. 928 * lotsfree is the high-water mark for pageout, and needfree is the 929 * number of needed free pages. We add extra pages here to make sure 930 * the scanner doesn't start up while we're freeing memory. 931 */ 932 if (freemem < lotsfree + needfree + extra) 933 return (1); 934 935 /* 936 * check to make sure that swapfs has enough space so that anon 937 * reservations can still succeeed. anon_resvmem() checks that the 938 * availrmem is greater than swapfs_minfree, and the number of reserved 939 * swap pages. We also add a bit of extra here just to prevent 940 * circumstances from getting really dire. 941 */ 942 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 943 return (1); 944 945 /* 946 * If we're on an i386 platform, it's possible that we'll exhaust the 947 * kernel heap space before we ever run out of available physical 948 * memory. Most checks of the size of the heap_area compare against 949 * tune.t_minarmem, which is the minimum available real memory that we 950 * can have in the system. However, this is generally fixed at 25 pages 951 * which is so low that it's useless. In this comparison, we seek to 952 * calculate the total heap-size, and reclaim if more than 3/4ths of the 953 * heap is allocated. (Or, in the caclulation, if less than 1/4th is 954 * free) 955 */ 956 #if defined(__i386) 957 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 958 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 959 return (1); 960 #endif 961 962 #else 963 if (spa_get_random(100) == 0) 964 return (1); 965 #endif 966 return (0); 967 } 968 969 static void 970 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 971 { 972 size_t i; 973 kmem_cache_t *prev_cache = NULL; 974 extern kmem_cache_t *zio_buf_cache[]; 975 976 /* 977 * an agressive reclamation will shrink the cache size as well as reap 978 * free kmem buffers. The arc_kmem_reclaim function is called when the 979 * header-cache is reaped, so we only reap the header cache if we're 980 * performing an agressive reclaim. If we're not, just clean the kmem 981 * buffer caches. 982 */ 983 if (strat == ARC_RECLAIM_AGGR) 984 kmem_cache_reap_now(hdr_cache); 985 986 kmem_cache_reap_now(buf_cache); 987 988 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 989 if (zio_buf_cache[i] != prev_cache) { 990 prev_cache = zio_buf_cache[i]; 991 kmem_cache_reap_now(zio_buf_cache[i]); 992 } 993 } 994 } 995 996 static void 997 arc_reclaim_thread(void) 998 { 999 clock_t growtime = 0; 1000 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 1001 callb_cpr_t cpr; 1002 1003 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 1004 1005 mutex_enter(&arc_reclaim_thr_lock); 1006 while (arc_thread_exit == 0) { 1007 if (arc_reclaim_needed()) { 1008 1009 if (arc.no_grow) { 1010 if (last_reclaim == ARC_RECLAIM_CONS) { 1011 last_reclaim = ARC_RECLAIM_AGGR; 1012 } else { 1013 last_reclaim = ARC_RECLAIM_CONS; 1014 } 1015 } else { 1016 arc.no_grow = TRUE; 1017 last_reclaim = ARC_RECLAIM_AGGR; 1018 membar_producer(); 1019 } 1020 1021 /* reset the growth delay for every reclaim */ 1022 growtime = lbolt + (arc_grow_retry * hz); 1023 1024 arc_kmem_reap_now(last_reclaim); 1025 1026 } else if ((growtime > 0) && ((growtime - lbolt) <= 0)) { 1027 arc.no_grow = FALSE; 1028 } 1029 1030 /* block until needed, or one second, whichever is shorter */ 1031 CALLB_CPR_SAFE_BEGIN(&cpr); 1032 (void) cv_timedwait(&arc_reclaim_thr_cv, 1033 &arc_reclaim_thr_lock, (lbolt + hz)); 1034 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 1035 } 1036 1037 arc_thread_exit = 0; 1038 cv_broadcast(&arc_reclaim_thr_cv); 1039 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 1040 thread_exit(); 1041 } 1042 1043 static void 1044 arc_try_grow(int64_t bytes) 1045 { 1046 /* 1047 * If we're within (2 * maxblocksize) bytes of the target 1048 * cache size, increment the target cache size 1049 */ 1050 atomic_add_64((uint64_t *)&arc.size_check, 1); 1051 1052 if (arc_reclaim_needed()) { 1053 cv_signal(&arc_reclaim_thr_cv); 1054 return; 1055 } 1056 1057 if (arc.no_grow) 1058 return; 1059 1060 /* 1061 * return true if we successfully grow, or if there's enough space that 1062 * we don't have to grow. Above, we return false if we can't grow, or 1063 * if we shouldn't because a reclaim is in progress. 1064 */ 1065 if ((arc.c - arc.size) <= (2ULL << SPA_MAXBLOCKSHIFT)) { 1066 if (arc.size_check > 0) { 1067 arc.size_check = arc_size_check_default; 1068 atomic_add_64(&arc.incr, arc_incr_size); 1069 } 1070 atomic_add_64(&arc.c, MIN(bytes, arc.incr)); 1071 if (arc.c > arc.c_max) 1072 arc.c = arc.c_max; 1073 else 1074 atomic_add_64(&arc.p, MIN(bytes, arc.incr)); 1075 } else if (arc.size > arc.c) { 1076 if (arc.size_check > 0) { 1077 arc.size_check = arc_size_check_default; 1078 atomic_add_64(&arc.incr, arc_incr_size); 1079 } 1080 atomic_add_64(&arc.c, MIN(bytes, arc.incr)); 1081 if (arc.c > arc.c_max) 1082 arc.c = arc.c_max; 1083 else 1084 atomic_add_64(&arc.p, MIN(bytes, arc.incr)); 1085 } 1086 } 1087 1088 /* 1089 * check if the cache has reached its limits and eviction is required prior to 1090 * insert. In this situation, we want to evict if no_grow is set Otherwise, the 1091 * cache is either big enough that we can insert, or a arc_try_grow will result 1092 * in more space being made available. 1093 */ 1094 1095 static int 1096 arc_evict_needed() 1097 { 1098 1099 if (arc_reclaim_needed()) 1100 return (1); 1101 1102 if (arc.no_grow || (arc.c > arc.c_max) || (arc.size > arc.c)) 1103 return (1); 1104 1105 return (0); 1106 } 1107 1108 /* 1109 * The state, supplied as the first argument, is going to have something 1110 * inserted on its behalf. So, determine which cache must be victimized to 1111 * satisfy an insertion for this state. We have the following cases: 1112 * 1113 * 1. Insert for MRU, p > sizeof(arc.anon + arc.mru_top) -> 1114 * In this situation if we're out of space, but the resident size of the MFU is 1115 * under the limit, victimize the MFU cache to satisfy this insertion request. 1116 * 1117 * 2. Insert for MRU, p <= sizeof(arc.anon + arc.mru_top) -> 1118 * Here, we've used up all of the available space for the MRU, so we need to 1119 * evict from our own cache instead. Evict from the set of resident MRU 1120 * entries. 1121 * 1122 * 3. Insert for MFU (c - p) > sizeof(arc.mfu_top) -> 1123 * c minus p represents the MFU space in the cache, since p is the size of the 1124 * cache that is dedicated to the MRU. In this situation there's still space on 1125 * the MFU side, so the MRU side needs to be victimized. 1126 * 1127 * 4. Insert for MFU (c - p) < sizeof(arc.mfu_top) -> 1128 * MFU's resident set is consuming more space than it has been allotted. In 1129 * this situation, we must victimize our own cache, the MFU, for this insertion. 1130 */ 1131 static void 1132 arc_evict_for_state(arc_state_t *state, uint64_t bytes) 1133 { 1134 uint64_t mru_used; 1135 uint64_t mfu_space; 1136 uint64_t evicted; 1137 1138 ASSERT(state == arc.mru_top || state == arc.mfu_top); 1139 1140 if (state == arc.mru_top) { 1141 mru_used = arc.anon->size + arc.mru_top->size; 1142 if (arc.p > mru_used) { 1143 /* case 1 */ 1144 evicted = arc_evict_state(arc.mfu_top, bytes); 1145 if (evicted < bytes) { 1146 arc_adjust(); 1147 } 1148 } else { 1149 /* case 2 */ 1150 evicted = arc_evict_state(arc.mru_top, bytes); 1151 if (evicted < bytes) { 1152 arc_adjust(); 1153 } 1154 } 1155 } else { 1156 /* MFU_top case */ 1157 mfu_space = arc.c - arc.p; 1158 if (mfu_space > arc.mfu_top->size) { 1159 /* case 3 */ 1160 evicted = arc_evict_state(arc.mru_top, bytes); 1161 if (evicted < bytes) { 1162 arc_adjust(); 1163 } 1164 } else { 1165 /* case 4 */ 1166 evicted = arc_evict_state(arc.mfu_top, bytes); 1167 if (evicted < bytes) { 1168 arc_adjust(); 1169 } 1170 } 1171 } 1172 } 1173 1174 /* 1175 * This routine is called whenever a buffer is accessed. 1176 */ 1177 static void 1178 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 1179 { 1180 int blksz, mult; 1181 1182 ASSERT(MUTEX_HELD(hash_lock)); 1183 1184 blksz = buf->b_size; 1185 1186 if (buf->b_state == arc.anon) { 1187 /* 1188 * This buffer is not in the cache, and does not 1189 * appear in our "ghost" list. Add the new buffer 1190 * to the MRU state. 1191 */ 1192 1193 arc_try_grow(blksz); 1194 if (arc_evict_needed()) { 1195 arc_evict_for_state(arc.mru_top, blksz); 1196 } 1197 1198 ASSERT(buf->b_arc_access == 0); 1199 buf->b_arc_access = lbolt; 1200 DTRACE_PROBE1(new_state__mru_top, arc_buf_hdr_t *, 1201 buf); 1202 arc_change_state(arc.mru_top, buf, hash_lock); 1203 1204 /* 1205 * If we are using less than 2/3 of our total target 1206 * cache size, bump up the target size for the MRU 1207 * list. 1208 */ 1209 if (arc.size < arc.c*2/3) { 1210 arc.p = arc.anon->size + arc.mru_top->size + arc.c/6; 1211 } 1212 1213 } else if (buf->b_state == arc.mru_top) { 1214 /* 1215 * If this buffer is in the MRU-top state and has the prefetch 1216 * flag, the first read was actually part of a prefetch. In 1217 * this situation, we simply want to clear the flag and return. 1218 * A subsequent access should bump this into the MFU state. 1219 */ 1220 if ((buf->b_flags & ARC_PREFETCH) != 0) { 1221 buf->b_flags &= ~ARC_PREFETCH; 1222 atomic_add_64(&arc.mru_top->hits, 1); 1223 return; 1224 } 1225 1226 /* 1227 * This buffer has been "accessed" only once so far, 1228 * but it is still in the cache. Move it to the MFU 1229 * state. 1230 */ 1231 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 1232 /* 1233 * More than 125ms have passed since we 1234 * instantiated this buffer. Move it to the 1235 * most frequently used state. 1236 */ 1237 buf->b_arc_access = lbolt; 1238 DTRACE_PROBE1(new_state__mfu_top, 1239 arc_buf_hdr_t *, buf); 1240 arc_change_state(arc.mfu_top, buf, hash_lock); 1241 } 1242 atomic_add_64(&arc.mru_top->hits, 1); 1243 } else if (buf->b_state == arc.mru_bot) { 1244 arc_state_t *new_state; 1245 /* 1246 * This buffer has been "accessed" recently, but 1247 * was evicted from the cache. Move it to the 1248 * MFU state. 1249 */ 1250 1251 if (buf->b_flags & ARC_PREFETCH) { 1252 new_state = arc.mru_top; 1253 DTRACE_PROBE1(new_state__mru_top, 1254 arc_buf_hdr_t *, buf); 1255 } else { 1256 new_state = arc.mfu_top; 1257 DTRACE_PROBE1(new_state__mfu_top, 1258 arc_buf_hdr_t *, buf); 1259 } 1260 1261 arc_try_grow(blksz); 1262 if (arc_evict_needed()) { 1263 arc_evict_for_state(new_state, blksz); 1264 } 1265 1266 /* Bump up the target size of the MRU list */ 1267 mult = ((arc.mru_bot->size >= arc.mfu_bot->size) ? 1268 1 : (arc.mfu_bot->size/arc.mru_bot->size)); 1269 arc.p = MIN(arc.c, arc.p + blksz * mult); 1270 1271 buf->b_arc_access = lbolt; 1272 arc_change_state(new_state, buf, hash_lock); 1273 1274 atomic_add_64(&arc.mru_bot->hits, 1); 1275 } else if (buf->b_state == arc.mfu_top) { 1276 /* 1277 * This buffer has been accessed more than once and is 1278 * still in the cache. Keep it in the MFU state. 1279 * 1280 * NOTE: the add_reference() that occurred when we did 1281 * the arc_read() should have kicked this off the list, 1282 * so even if it was a prefetch, it will be put back at 1283 * the head of the list when we remove_reference(). 1284 */ 1285 atomic_add_64(&arc.mfu_top->hits, 1); 1286 } else if (buf->b_state == arc.mfu_bot) { 1287 /* 1288 * This buffer has been accessed more than once but has 1289 * been evicted from the cache. Move it back to the 1290 * MFU state. 1291 */ 1292 1293 arc_try_grow(blksz); 1294 if (arc_evict_needed()) { 1295 arc_evict_for_state(arc.mfu_top, blksz); 1296 } 1297 1298 /* Bump up the target size for the MFU list */ 1299 mult = ((arc.mfu_bot->size >= arc.mru_bot->size) ? 1300 1 : (arc.mru_bot->size/arc.mfu_bot->size)); 1301 arc.p = MAX(0, (int64_t)arc.p - blksz * mult); 1302 1303 buf->b_arc_access = lbolt; 1304 DTRACE_PROBE1(new_state__mfu_top, 1305 arc_buf_hdr_t *, buf); 1306 arc_change_state(arc.mfu_top, buf, hash_lock); 1307 1308 atomic_add_64(&arc.mfu_bot->hits, 1); 1309 } else { 1310 ASSERT(!"invalid arc state"); 1311 } 1312 1313 } 1314 1315 /* a generic arc_done_func_t which you can use */ 1316 /* ARGSUSED */ 1317 void 1318 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 1319 { 1320 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 1321 arc_buf_free(buf, arg); 1322 } 1323 1324 /* a generic arc_done_func_t which you can use */ 1325 void 1326 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 1327 { 1328 arc_buf_t **bufp = arg; 1329 if (zio && zio->io_error) { 1330 arc_buf_free(buf, arg); 1331 *bufp = NULL; 1332 } else { 1333 *bufp = buf; 1334 } 1335 } 1336 1337 static void 1338 arc_read_done(zio_t *zio) 1339 { 1340 arc_buf_hdr_t *hdr; 1341 arc_buf_t *buf; 1342 arc_buf_t *abuf; /* buffer we're assigning to callback */ 1343 kmutex_t *hash_lock; 1344 arc_callback_t *callback_list, *acb; 1345 int freeable = FALSE; 1346 1347 buf = zio->io_private; 1348 hdr = buf->b_hdr; 1349 1350 if (!HDR_FREED_IN_READ(hdr)) { 1351 arc_buf_hdr_t *found; 1352 1353 found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth, 1354 &hash_lock); 1355 1356 /* 1357 * Buffer was inserted into hash-table and removed from lists 1358 * prior to starting I/O. We should find this header, since 1359 * it's in the hash table, and it should be legit since it's 1360 * not possible to evict it during the I/O. 1361 */ 1362 1363 ASSERT(found); 1364 ASSERT(DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))); 1365 } 1366 1367 /* byteswap if necessary */ 1368 callback_list = hdr->b_acb; 1369 ASSERT(callback_list != NULL); 1370 if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap) 1371 callback_list->acb_byteswap(buf->b_data, hdr->b_size); 1372 1373 /* create copies of the data buffer for the callers */ 1374 abuf = buf; 1375 for (acb = callback_list; acb; acb = acb->acb_next) { 1376 if (acb->acb_done) { 1377 if (abuf == NULL) { 1378 abuf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1379 abuf->b_data = zio_buf_alloc(hdr->b_size); 1380 atomic_add_64(&arc.size, hdr->b_size); 1381 bcopy(buf->b_data, abuf->b_data, hdr->b_size); 1382 abuf->b_hdr = hdr; 1383 abuf->b_next = hdr->b_buf; 1384 hdr->b_buf = abuf; 1385 atomic_add_64(&hdr->b_state->size, hdr->b_size); 1386 } 1387 acb->acb_buf = abuf; 1388 abuf = NULL; 1389 } else { 1390 /* 1391 * The caller did not provide a callback function. 1392 * In this case, we should just remove the reference. 1393 */ 1394 if (HDR_FREED_IN_READ(hdr)) { 1395 ASSERT3P(hdr->b_state, ==, arc.anon); 1396 (void) refcount_remove(&hdr->b_refcnt, 1397 acb->acb_private); 1398 } else { 1399 (void) remove_reference(hdr, hash_lock, 1400 acb->acb_private); 1401 } 1402 } 1403 } 1404 hdr->b_acb = NULL; 1405 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 1406 1407 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 1408 1409 if (zio->io_error != 0) { 1410 hdr->b_flags |= ARC_IO_ERROR; 1411 if (hdr->b_state != arc.anon) 1412 arc_change_state(arc.anon, hdr, hash_lock); 1413 freeable = refcount_is_zero(&hdr->b_refcnt); 1414 } 1415 1416 if (!HDR_FREED_IN_READ(hdr)) { 1417 /* 1418 * Only call arc_access on anonymous buffers. This is because 1419 * if we've issued an I/O for an evicted buffer, we've already 1420 * called arc_access (to prevent any simultaneous readers from 1421 * getting confused). 1422 */ 1423 if (zio->io_error == 0 && hdr->b_state == arc.anon) 1424 arc_access(hdr, hash_lock); 1425 mutex_exit(hash_lock); 1426 } else { 1427 /* 1428 * This block was freed while we waited for the read to 1429 * complete. It has been removed from the hash table and 1430 * moved to the anonymous state (so that it won't show up 1431 * in the cache). 1432 */ 1433 ASSERT3P(hdr->b_state, ==, arc.anon); 1434 freeable = refcount_is_zero(&hdr->b_refcnt); 1435 } 1436 1437 cv_broadcast(&hdr->b_cv); 1438 1439 /* execute each callback and free its structure */ 1440 while ((acb = callback_list) != NULL) { 1441 if (acb->acb_done) 1442 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 1443 1444 if (acb->acb_zio_dummy != NULL) { 1445 acb->acb_zio_dummy->io_error = zio->io_error; 1446 zio_nowait(acb->acb_zio_dummy); 1447 } 1448 1449 callback_list = acb->acb_next; 1450 kmem_free(acb, sizeof (arc_callback_t)); 1451 } 1452 1453 if (freeable) 1454 arc_hdr_free(hdr); 1455 } 1456 1457 /* 1458 * "Read" the block block at the specified DVA (in bp) via the 1459 * cache. If the block is found in the cache, invoke the provided 1460 * callback immediately and return. Note that the `zio' parameter 1461 * in the callback will be NULL in this case, since no IO was 1462 * required. If the block is not in the cache pass the read request 1463 * on to the spa with a substitute callback function, so that the 1464 * requested block will be added to the cache. 1465 * 1466 * If a read request arrives for a block that has a read in-progress, 1467 * either wait for the in-progress read to complete (and return the 1468 * results); or, if this is a read with a "done" func, add a record 1469 * to the read to invoke the "done" func when the read completes, 1470 * and return; or just return. 1471 * 1472 * arc_read_done() will invoke all the requested "done" functions 1473 * for readers of this block. 1474 */ 1475 int 1476 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap, 1477 arc_done_func_t *done, void *private, int priority, int flags, 1478 uint32_t arc_flags) 1479 { 1480 arc_buf_hdr_t *hdr; 1481 arc_buf_t *buf; 1482 kmutex_t *hash_lock; 1483 zio_t *rzio; 1484 1485 top: 1486 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 1487 if (hdr && hdr->b_buf) { 1488 1489 ASSERT((hdr->b_state == arc.mru_top) || 1490 (hdr->b_state == arc.mfu_top) || 1491 ((hdr->b_state == arc.anon) && 1492 (HDR_IO_IN_PROGRESS(hdr)))); 1493 1494 if (HDR_IO_IN_PROGRESS(hdr)) { 1495 1496 if ((arc_flags & ARC_NOWAIT) && done) { 1497 arc_callback_t *acb = NULL; 1498 1499 acb = kmem_zalloc(sizeof (arc_callback_t), 1500 KM_SLEEP); 1501 acb->acb_done = done; 1502 acb->acb_private = private; 1503 acb->acb_byteswap = swap; 1504 if (pio != NULL) 1505 acb->acb_zio_dummy = zio_null(pio, 1506 spa, NULL, NULL, flags); 1507 1508 ASSERT(acb->acb_done != NULL); 1509 acb->acb_next = hdr->b_acb; 1510 hdr->b_acb = acb; 1511 add_reference(hdr, hash_lock, private); 1512 mutex_exit(hash_lock); 1513 return (0); 1514 } else if (arc_flags & ARC_WAIT) { 1515 cv_wait(&hdr->b_cv, hash_lock); 1516 mutex_exit(hash_lock); 1517 goto top; 1518 } 1519 1520 mutex_exit(hash_lock); 1521 return (0); 1522 } 1523 1524 /* 1525 * If there is already a reference on this block, create 1526 * a new copy of the data so that we will be guaranteed 1527 * that arc_release() will always succeed. 1528 */ 1529 1530 if (done) 1531 add_reference(hdr, hash_lock, private); 1532 if (done && refcount_count(&hdr->b_refcnt) > 1) { 1533 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1534 buf->b_data = zio_buf_alloc(hdr->b_size); 1535 ASSERT3U(refcount_count(&hdr->b_refcnt), >, 1); 1536 atomic_add_64(&arc.size, hdr->b_size); 1537 bcopy(hdr->b_buf->b_data, buf->b_data, hdr->b_size); 1538 buf->b_hdr = hdr; 1539 buf->b_next = hdr->b_buf; 1540 hdr->b_buf = buf; 1541 atomic_add_64(&hdr->b_state->size, hdr->b_size); 1542 } else { 1543 buf = hdr->b_buf; 1544 } 1545 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1546 arc_access(hdr, hash_lock); 1547 mutex_exit(hash_lock); 1548 atomic_add_64(&arc.hits, 1); 1549 if (done) 1550 done(NULL, buf, private); 1551 } else { 1552 uint64_t size = BP_GET_LSIZE(bp); 1553 arc_callback_t *acb; 1554 1555 if (hdr == NULL) { 1556 /* this block is not in the cache */ 1557 arc_buf_hdr_t *exists; 1558 1559 buf = arc_buf_alloc(spa, size, private); 1560 hdr = buf->b_hdr; 1561 hdr->b_dva = *BP_IDENTITY(bp); 1562 hdr->b_birth = bp->blk_birth; 1563 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 1564 exists = buf_hash_insert(hdr, &hash_lock); 1565 if (exists) { 1566 /* somebody beat us to the hash insert */ 1567 mutex_exit(hash_lock); 1568 bzero(&hdr->b_dva, sizeof (dva_t)); 1569 hdr->b_birth = 0; 1570 hdr->b_cksum0 = 0; 1571 arc_buf_free(buf, private); 1572 goto top; /* restart the IO request */ 1573 } 1574 1575 } else { 1576 /* this block is in the ghost cache */ 1577 ASSERT((hdr->b_state == arc.mru_bot) || 1578 (hdr->b_state == arc.mfu_bot)); 1579 add_reference(hdr, hash_lock, private); 1580 1581 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1582 buf->b_data = zio_buf_alloc(hdr->b_size); 1583 atomic_add_64(&arc.size, hdr->b_size); 1584 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1585 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 1586 buf->b_hdr = hdr; 1587 buf->b_next = NULL; 1588 hdr->b_buf = buf; 1589 } 1590 1591 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 1592 acb->acb_done = done; 1593 acb->acb_private = private; 1594 acb->acb_byteswap = swap; 1595 1596 ASSERT(hdr->b_acb == NULL); 1597 hdr->b_acb = acb; 1598 1599 /* 1600 * If this DVA is part of a prefetch, mark the buf 1601 * header with the prefetch flag 1602 */ 1603 if (arc_flags & ARC_PREFETCH) 1604 hdr->b_flags |= ARC_PREFETCH; 1605 hdr->b_flags |= ARC_IO_IN_PROGRESS; 1606 1607 /* 1608 * If the buffer has been evicted, migrate it to a present state 1609 * before issuing the I/O. Once we drop the hash-table lock, 1610 * the header will be marked as I/O in progress and have an 1611 * attached buffer. At this point, anybody who finds this 1612 * buffer ought to notice that it's legit but has a pending I/O. 1613 */ 1614 1615 if ((hdr->b_state == arc.mru_bot) || 1616 (hdr->b_state == arc.mfu_bot)) 1617 arc_access(hdr, hash_lock); 1618 1619 mutex_exit(hash_lock); 1620 1621 ASSERT3U(hdr->b_size, ==, size); 1622 DTRACE_PROBE2(arc__miss, blkptr_t *, bp, 1623 uint64_t, size); 1624 atomic_add_64(&arc.misses, 1); 1625 rzio = zio_read(pio, spa, bp, buf->b_data, size, 1626 arc_read_done, buf, priority, flags); 1627 1628 if (arc_flags & ARC_WAIT) 1629 return (zio_wait(rzio)); 1630 1631 ASSERT(arc_flags & ARC_NOWAIT); 1632 zio_nowait(rzio); 1633 } 1634 return (0); 1635 } 1636 1637 /* 1638 * arc_read() variant to support pool traversal. If the block is already 1639 * in the ARC, make a copy of it; otherwise, the caller will do the I/O. 1640 * The idea is that we don't want pool traversal filling up memory, but 1641 * if the ARC already has the data anyway, we shouldn't pay for the I/O. 1642 */ 1643 int 1644 arc_tryread(spa_t *spa, blkptr_t *bp, void *data) 1645 { 1646 arc_buf_hdr_t *hdr; 1647 kmutex_t *hash_mtx; 1648 int rc = 0; 1649 1650 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx); 1651 1652 if (hdr && hdr->b_buf && !HDR_IO_IN_PROGRESS(hdr)) 1653 bcopy(hdr->b_buf->b_data, data, hdr->b_size); 1654 else 1655 rc = ENOENT; 1656 1657 if (hash_mtx) 1658 mutex_exit(hash_mtx); 1659 1660 return (rc); 1661 } 1662 1663 /* 1664 * Release this buffer from the cache. This must be done 1665 * after a read and prior to modifying the buffer contents. 1666 * If the buffer has more than one reference, we must make 1667 * make a new hdr for the buffer. 1668 */ 1669 void 1670 arc_release(arc_buf_t *buf, void *tag) 1671 { 1672 arc_buf_hdr_t *hdr = buf->b_hdr; 1673 kmutex_t *hash_lock = HDR_LOCK(hdr); 1674 1675 /* this buffer is not on any list */ 1676 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 1677 1678 if (hdr->b_state == arc.anon) { 1679 /* this buffer is already released */ 1680 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 1681 ASSERT(BUF_EMPTY(hdr)); 1682 return; 1683 } 1684 1685 mutex_enter(hash_lock); 1686 1687 if (refcount_count(&hdr->b_refcnt) > 1) { 1688 arc_buf_hdr_t *nhdr; 1689 arc_buf_t **bufp; 1690 uint64_t blksz = hdr->b_size; 1691 spa_t *spa = hdr->b_spa; 1692 1693 /* 1694 * Pull the data off of this buf and attach it to 1695 * a new anonymous buf. 1696 */ 1697 bufp = &hdr->b_buf; 1698 while (*bufp != buf) { 1699 ASSERT(*bufp); 1700 bufp = &(*bufp)->b_next; 1701 } 1702 *bufp = (*bufp)->b_next; 1703 (void) refcount_remove(&hdr->b_refcnt, tag); 1704 ASSERT3U(hdr->b_state->size, >=, hdr->b_size); 1705 atomic_add_64(&hdr->b_state->size, -hdr->b_size); 1706 mutex_exit(hash_lock); 1707 1708 nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 1709 nhdr->b_size = blksz; 1710 nhdr->b_spa = spa; 1711 nhdr->b_buf = buf; 1712 nhdr->b_state = arc.anon; 1713 nhdr->b_arc_access = 0; 1714 nhdr->b_flags = 0; 1715 buf->b_hdr = nhdr; 1716 buf->b_next = NULL; 1717 (void) refcount_add(&nhdr->b_refcnt, tag); 1718 atomic_add_64(&arc.anon->size, blksz); 1719 1720 hdr = nhdr; 1721 } else { 1722 ASSERT(!list_link_active(&hdr->b_arc_node)); 1723 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1724 arc_change_state(arc.anon, hdr, hash_lock); 1725 hdr->b_arc_access = 0; 1726 mutex_exit(hash_lock); 1727 bzero(&hdr->b_dva, sizeof (dva_t)); 1728 hdr->b_birth = 0; 1729 hdr->b_cksum0 = 0; 1730 } 1731 } 1732 1733 int 1734 arc_released(arc_buf_t *buf) 1735 { 1736 return (buf->b_hdr->b_state == arc.anon); 1737 } 1738 1739 static void 1740 arc_write_done(zio_t *zio) 1741 { 1742 arc_buf_t *buf; 1743 arc_buf_hdr_t *hdr; 1744 arc_callback_t *acb; 1745 1746 buf = zio->io_private; 1747 hdr = buf->b_hdr; 1748 acb = hdr->b_acb; 1749 hdr->b_acb = NULL; 1750 1751 /* this buffer is on no lists and is not in the hash table */ 1752 ASSERT3P(hdr->b_state, ==, arc.anon); 1753 1754 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 1755 hdr->b_birth = zio->io_bp->blk_birth; 1756 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 1757 /* clear the "in-write" flag */ 1758 hdr->b_hash_next = NULL; 1759 /* This write may be all-zero */ 1760 if (!BUF_EMPTY(hdr)) { 1761 arc_buf_hdr_t *exists; 1762 kmutex_t *hash_lock; 1763 1764 exists = buf_hash_insert(hdr, &hash_lock); 1765 if (exists) { 1766 /* 1767 * This can only happen if we overwrite for 1768 * sync-to-convergence, because we remove 1769 * buffers from the hash table when we arc_free(). 1770 */ 1771 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 1772 BP_IDENTITY(zio->io_bp))); 1773 ASSERT3U(zio->io_bp_orig.blk_birth, ==, 1774 zio->io_bp->blk_birth); 1775 1776 ASSERT(refcount_is_zero(&exists->b_refcnt)); 1777 arc_change_state(arc.anon, exists, hash_lock); 1778 mutex_exit(hash_lock); 1779 arc_hdr_free(exists); 1780 exists = buf_hash_insert(hdr, &hash_lock); 1781 ASSERT3P(exists, ==, NULL); 1782 } 1783 arc_access(hdr, hash_lock); 1784 mutex_exit(hash_lock); 1785 } 1786 if (acb && acb->acb_done) { 1787 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 1788 acb->acb_done(zio, buf, acb->acb_private); 1789 } 1790 1791 if (acb) 1792 kmem_free(acb, sizeof (arc_callback_t)); 1793 } 1794 1795 int 1796 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, 1797 uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 1798 arc_done_func_t *done, void *private, int priority, int flags, 1799 uint32_t arc_flags) 1800 { 1801 arc_buf_hdr_t *hdr = buf->b_hdr; 1802 arc_callback_t *acb; 1803 zio_t *rzio; 1804 1805 /* this is a private buffer - no locking required */ 1806 ASSERT3P(hdr->b_state, ==, arc.anon); 1807 ASSERT(BUF_EMPTY(hdr)); 1808 ASSERT(!HDR_IO_ERROR(hdr)); 1809 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 1810 acb->acb_done = done; 1811 acb->acb_private = private; 1812 acb->acb_byteswap = (arc_byteswap_func_t *)-1; 1813 hdr->b_acb = acb; 1814 rzio = zio_write(pio, spa, checksum, compress, txg, bp, 1815 buf->b_data, hdr->b_size, arc_write_done, buf, priority, flags); 1816 1817 if (arc_flags & ARC_WAIT) 1818 return (zio_wait(rzio)); 1819 1820 ASSERT(arc_flags & ARC_NOWAIT); 1821 zio_nowait(rzio); 1822 1823 return (0); 1824 } 1825 1826 int 1827 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 1828 zio_done_func_t *done, void *private, uint32_t arc_flags) 1829 { 1830 arc_buf_hdr_t *ab; 1831 kmutex_t *hash_lock; 1832 zio_t *zio; 1833 1834 /* 1835 * If this buffer is in the cache, release it, so it 1836 * can be re-used. 1837 */ 1838 ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 1839 if (ab != NULL) { 1840 /* 1841 * The checksum of blocks to free is not always 1842 * preserved (eg. on the deadlist). However, if it is 1843 * nonzero, it should match what we have in the cache. 1844 */ 1845 ASSERT(bp->blk_cksum.zc_word[0] == 0 || 1846 ab->b_cksum0 == bp->blk_cksum.zc_word[0]); 1847 arc_change_state(arc.anon, ab, hash_lock); 1848 if (refcount_is_zero(&ab->b_refcnt)) { 1849 mutex_exit(hash_lock); 1850 arc_hdr_free(ab); 1851 atomic_add_64(&arc.deleted, 1); 1852 } else { 1853 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 1); 1854 if (HDR_IO_IN_PROGRESS(ab)) 1855 ab->b_flags |= ARC_FREED_IN_READ; 1856 ab->b_arc_access = 0; 1857 bzero(&ab->b_dva, sizeof (dva_t)); 1858 ab->b_birth = 0; 1859 ab->b_cksum0 = 0; 1860 mutex_exit(hash_lock); 1861 } 1862 } 1863 1864 zio = zio_free(pio, spa, txg, bp, done, private); 1865 1866 if (arc_flags & ARC_WAIT) 1867 return (zio_wait(zio)); 1868 1869 ASSERT(arc_flags & ARC_NOWAIT); 1870 zio_nowait(zio); 1871 1872 return (0); 1873 } 1874 1875 void 1876 arc_tempreserve_clear(uint64_t tempreserve) 1877 { 1878 atomic_add_64(&arc_tempreserve, -tempreserve); 1879 ASSERT((int64_t)arc_tempreserve >= 0); 1880 } 1881 1882 int 1883 arc_tempreserve_space(uint64_t tempreserve) 1884 { 1885 #ifdef ZFS_DEBUG 1886 /* 1887 * Once in a while, fail for no reason. Everything should cope. 1888 */ 1889 if (spa_get_random(10000) == 0) { 1890 dprintf("forcing random failure\n"); 1891 return (ERESTART); 1892 } 1893 #endif 1894 if (tempreserve > arc.c/4 && !arc.no_grow) 1895 arc.c = MIN(arc.c_max, tempreserve * 4); 1896 if (tempreserve > arc.c) 1897 return (ENOMEM); 1898 1899 /* 1900 * Throttle writes when the amount of dirty data in the cache 1901 * gets too large. We try to keep the cache less than half full 1902 * of dirty blocks so that our sync times don't grow too large. 1903 * Note: if two requests come in concurrently, we might let them 1904 * both succeed, when one of them should fail. Not a huge deal. 1905 * 1906 * XXX The limit should be adjusted dynamically to keep the time 1907 * to sync a dataset fixed (around 1-5 seconds?). 1908 */ 1909 1910 if (tempreserve + arc_tempreserve + arc.anon->size > arc.c / 2 && 1911 arc_tempreserve + arc.anon->size > arc.c / 4) { 1912 dprintf("failing, arc_tempreserve=%lluK anon=%lluK " 1913 "tempreserve=%lluK arc.c=%lluK\n", 1914 arc_tempreserve>>10, arc.anon->lsize>>10, 1915 tempreserve>>10, arc.c>>10); 1916 return (ERESTART); 1917 } 1918 atomic_add_64(&arc_tempreserve, tempreserve); 1919 return (0); 1920 } 1921 1922 void 1923 arc_init(void) 1924 { 1925 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 1926 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 1927 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 1928 1929 /* Start out with 1/8 of all memory */ 1930 arc.c = physmem * PAGESIZE / 8; 1931 1932 #ifdef _KERNEL 1933 /* 1934 * On architectures where the physical memory can be larger 1935 * than the addressable space (intel in 32-bit mode), we may 1936 * need to limit the cache to 1/8 of VM size. 1937 */ 1938 arc.c = MIN(arc.c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 1939 #endif 1940 1941 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 1942 arc.c_min = MAX(arc.c / 4, 64<<20); 1943 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 1944 if (arc.c * 8 >= 1<<30) 1945 arc.c_max = (arc.c * 8) - (1<<30); 1946 else 1947 arc.c_max = arc.c_min; 1948 arc.c_max = MAX(arc.c * 6, arc.c_max); 1949 arc.c = arc.c_max; 1950 arc.p = (arc.c >> 1); 1951 1952 /* if kmem_flags are set, lets try to use less memory */ 1953 if (kmem_debugging()) 1954 arc.c = arc.c / 2; 1955 if (arc.c < arc.c_min) 1956 arc.c = arc.c_min; 1957 1958 arc.anon = &ARC_anon; 1959 arc.mru_top = &ARC_mru_top; 1960 arc.mru_bot = &ARC_mru_bot; 1961 arc.mfu_top = &ARC_mfu_top; 1962 arc.mfu_bot = &ARC_mfu_bot; 1963 1964 list_create(&arc.mru_top->list, sizeof (arc_buf_hdr_t), 1965 offsetof(arc_buf_hdr_t, b_arc_node)); 1966 list_create(&arc.mru_bot->list, sizeof (arc_buf_hdr_t), 1967 offsetof(arc_buf_hdr_t, b_arc_node)); 1968 list_create(&arc.mfu_top->list, sizeof (arc_buf_hdr_t), 1969 offsetof(arc_buf_hdr_t, b_arc_node)); 1970 list_create(&arc.mfu_bot->list, sizeof (arc_buf_hdr_t), 1971 offsetof(arc_buf_hdr_t, b_arc_node)); 1972 1973 buf_init(); 1974 1975 arc_thread_exit = 0; 1976 1977 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 1978 TS_RUN, minclsyspri); 1979 } 1980 1981 void 1982 arc_fini(void) 1983 { 1984 mutex_enter(&arc_reclaim_thr_lock); 1985 arc_thread_exit = 1; 1986 while (arc_thread_exit != 0) 1987 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 1988 mutex_exit(&arc_reclaim_thr_lock); 1989 1990 arc_flush(); 1991 1992 arc_dead = TRUE; 1993 1994 mutex_destroy(&arc_reclaim_lock); 1995 mutex_destroy(&arc_reclaim_thr_lock); 1996 cv_destroy(&arc_reclaim_thr_cv); 1997 1998 list_destroy(&arc.mru_top->list); 1999 list_destroy(&arc.mru_bot->list); 2000 list_destroy(&arc.mfu_top->list); 2001 list_destroy(&arc.mfu_bot->list); 2002 2003 buf_fini(); 2004 } 2005