1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * DVA-based Adjustable Replacement Cache 31 * 32 * While much of the theory of operation used here is 33 * based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slows the flow of new data 52 * into the cache until we can make space available. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory pressure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefore exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefore choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() interface 80 * uses method 1, while the internal ARC algorithms for 81 * adjusting the cache use method 2. We therefore provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * ARC list locks. 84 * 85 * Buffers do not have their own mutexes, rather they rely on the 86 * hash table mutexes for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexes). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each ARC state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an ARC list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the active state mutex must be held before the ghost state mutex. 101 * 102 * Note that the majority of the performance stats are manipulated 103 * with atomic operations. 104 * 105 * The L2ARC uses the l2ad_mtx on each vdev for the following: 106 * 107 * - L2ARC buflist creation 108 * - L2ARC buflist eviction 109 * - L2ARC write completion, which walks L2ARC buflists 110 * - ARC header destruction, as it removes from L2ARC buflists 111 * - ARC header release, as it removes from L2ARC buflists 112 */ 113 114 /* 115 * ARC operation: 116 * 117 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 118 * This structure can point either to a block that is still in the cache or to 119 * one that is only accessible in an L2 ARC device, or it can provide 120 * information about a block that was recently evicted. If a block is 121 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 122 * information to retrieve it from the L2ARC device. This information is 123 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 124 * that is in this state cannot access the data directly. 125 * 126 * Blocks that are actively being referenced or have not been evicted 127 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 128 * the arc_buf_hdr_t that will point to the data block in memory. A block can 129 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 130 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 131 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 132 * 133 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 134 * ability to store the physical data (b_pabd) associated with the DVA of the 135 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 136 * it will match its on-disk compression characteristics. This behavior can be 137 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 138 * compressed ARC functionality is disabled, the b_pabd will point to an 139 * uncompressed version of the on-disk data. 140 * 141 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 142 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 143 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 144 * consumer. The ARC will provide references to this data and will keep it 145 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 146 * data block and will evict any arc_buf_t that is no longer referenced. The 147 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 148 * "overhead_size" kstat. 149 * 150 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 151 * compressed form. The typical case is that consumers will want uncompressed 152 * data, and when that happens a new data buffer is allocated where the data is 153 * decompressed for them to use. Currently the only consumer who wants 154 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 155 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 156 * with the arc_buf_hdr_t. 157 * 158 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 159 * first one is owned by a compressed send consumer (and therefore references 160 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 161 * used by any other consumer (and has its own uncompressed copy of the data 162 * buffer). 163 * 164 * arc_buf_hdr_t 165 * +-----------+ 166 * | fields | 167 * | common to | 168 * | L1- and | 169 * | L2ARC | 170 * +-----------+ 171 * | l2arc_buf_hdr_t 172 * | | 173 * +-----------+ 174 * | l1arc_buf_hdr_t 175 * | | arc_buf_t 176 * | b_buf +------------>+-----------+ arc_buf_t 177 * | b_pabd +-+ |b_next +---->+-----------+ 178 * +-----------+ | |-----------| |b_next +-->NULL 179 * | |b_comp = T | +-----------+ 180 * | |b_data +-+ |b_comp = F | 181 * | +-----------+ | |b_data +-+ 182 * +->+------+ | +-----------+ | 183 * compressed | | | | 184 * data | |<--------------+ | uncompressed 185 * +------+ compressed, | data 186 * shared +-->+------+ 187 * data | | 188 * | | 189 * +------+ 190 * 191 * When a consumer reads a block, the ARC must first look to see if the 192 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 193 * arc_buf_t and either copies uncompressed data into a new data buffer from an 194 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 195 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 196 * hdr is compressed and the desired compression characteristics of the 197 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 198 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 199 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 200 * be anywhere in the hdr's list. 201 * 202 * The diagram below shows an example of an uncompressed ARC hdr that is 203 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 204 * the last element in the buf list): 205 * 206 * arc_buf_hdr_t 207 * +-----------+ 208 * | | 209 * | | 210 * | | 211 * +-----------+ 212 * l2arc_buf_hdr_t| | 213 * | | 214 * +-----------+ 215 * l1arc_buf_hdr_t| | 216 * | | arc_buf_t (shared) 217 * | b_buf +------------>+---------+ arc_buf_t 218 * | | |b_next +---->+---------+ 219 * | b_pabd +-+ |---------| |b_next +-->NULL 220 * +-----------+ | | | +---------+ 221 * | |b_data +-+ | | 222 * | +---------+ | |b_data +-+ 223 * +->+------+ | +---------+ | 224 * | | | | 225 * uncompressed | | | | 226 * data +------+ | | 227 * ^ +->+------+ | 228 * | uncompressed | | | 229 * | data | | | 230 * | +------+ | 231 * +---------------------------------+ 232 * 233 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 234 * since the physical block is about to be rewritten. The new data contents 235 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 236 * it may compress the data before writing it to disk. The ARC will be called 237 * with the transformed data and will bcopy the transformed on-disk block into 238 * a newly allocated b_pabd. Writes are always done into buffers which have 239 * either been loaned (and hence are new and don't have other readers) or 240 * buffers which have been released (and hence have their own hdr, if there 241 * were originally other readers of the buf's original hdr). This ensures that 242 * the ARC only needs to update a single buf and its hdr after a write occurs. 243 * 244 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 245 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 246 * that when compressed ARC is enabled that the L2ARC blocks are identical 247 * to the on-disk block in the main data pool. This provides a significant 248 * advantage since the ARC can leverage the bp's checksum when reading from the 249 * L2ARC to determine if the contents are valid. However, if the compressed 250 * ARC is disabled, then the L2ARC's block must be transformed to look 251 * like the physical block in the main data pool before comparing the 252 * checksum and determining its validity. 253 */ 254 255 #include <sys/spa.h> 256 #include <sys/zio.h> 257 #include <sys/spa_impl.h> 258 #include <sys/zio_compress.h> 259 #include <sys/zio_checksum.h> 260 #include <sys/zfs_context.h> 261 #include <sys/arc.h> 262 #include <sys/refcount.h> 263 #include <sys/vdev.h> 264 #include <sys/vdev_impl.h> 265 #include <sys/dsl_pool.h> 266 #include <sys/zio_checksum.h> 267 #include <sys/multilist.h> 268 #include <sys/abd.h> 269 #ifdef _KERNEL 270 #include <sys/vmsystm.h> 271 #include <vm/anon.h> 272 #include <sys/fs/swapnode.h> 273 #include <sys/dnlc.h> 274 #endif 275 #include <sys/callb.h> 276 #include <sys/kstat.h> 277 #include <zfs_fletcher.h> 278 279 #ifndef _KERNEL 280 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 281 boolean_t arc_watch = B_FALSE; 282 int arc_procfd; 283 #endif 284 285 static kmutex_t arc_reclaim_lock; 286 static kcondvar_t arc_reclaim_thread_cv; 287 static boolean_t arc_reclaim_thread_exit; 288 static kcondvar_t arc_reclaim_waiters_cv; 289 290 uint_t arc_reduce_dnlc_percent = 3; 291 292 /* 293 * The number of headers to evict in arc_evict_state_impl() before 294 * dropping the sublist lock and evicting from another sublist. A lower 295 * value means we're more likely to evict the "correct" header (i.e. the 296 * oldest header in the arc state), but comes with higher overhead 297 * (i.e. more invocations of arc_evict_state_impl()). 298 */ 299 int zfs_arc_evict_batch_limit = 10; 300 301 /* number of seconds before growing cache again */ 302 static int arc_grow_retry = 60; 303 304 /* number of milliseconds before attempting a kmem-cache-reap */ 305 static int arc_kmem_cache_reap_retry_ms = 1000; 306 307 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 308 int zfs_arc_overflow_shift = 8; 309 310 /* shift of arc_c for calculating both min and max arc_p */ 311 static int arc_p_min_shift = 4; 312 313 /* log2(fraction of arc to reclaim) */ 314 static int arc_shrink_shift = 7; 315 316 /* 317 * log2(fraction of ARC which must be free to allow growing). 318 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 319 * when reading a new block into the ARC, we will evict an equal-sized block 320 * from the ARC. 321 * 322 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 323 * we will still not allow it to grow. 324 */ 325 int arc_no_grow_shift = 5; 326 327 328 /* 329 * minimum lifespan of a prefetch block in clock ticks 330 * (initialized in arc_init()) 331 */ 332 static int arc_min_prefetch_lifespan; 333 334 /* 335 * If this percent of memory is free, don't throttle. 336 */ 337 int arc_lotsfree_percent = 10; 338 339 static int arc_dead; 340 341 /* 342 * The arc has filled available memory and has now warmed up. 343 */ 344 static boolean_t arc_warm; 345 346 /* 347 * log2 fraction of the zio arena to keep free. 348 */ 349 int arc_zio_arena_free_shift = 2; 350 351 /* 352 * These tunables are for performance analysis. 353 */ 354 uint64_t zfs_arc_max; 355 uint64_t zfs_arc_min; 356 uint64_t zfs_arc_meta_limit = 0; 357 uint64_t zfs_arc_meta_min = 0; 358 int zfs_arc_grow_retry = 0; 359 int zfs_arc_shrink_shift = 0; 360 int zfs_arc_p_min_shift = 0; 361 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 362 363 boolean_t zfs_compressed_arc_enabled = B_TRUE; 364 365 /* 366 * Note that buffers can be in one of 6 states: 367 * ARC_anon - anonymous (discussed below) 368 * ARC_mru - recently used, currently cached 369 * ARC_mru_ghost - recentely used, no longer in cache 370 * ARC_mfu - frequently used, currently cached 371 * ARC_mfu_ghost - frequently used, no longer in cache 372 * ARC_l2c_only - exists in L2ARC but not other states 373 * When there are no active references to the buffer, they are 374 * are linked onto a list in one of these arc states. These are 375 * the only buffers that can be evicted or deleted. Within each 376 * state there are multiple lists, one for meta-data and one for 377 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 378 * etc.) is tracked separately so that it can be managed more 379 * explicitly: favored over data, limited explicitly. 380 * 381 * Anonymous buffers are buffers that are not associated with 382 * a DVA. These are buffers that hold dirty block copies 383 * before they are written to stable storage. By definition, 384 * they are "ref'd" and are considered part of arc_mru 385 * that cannot be freed. Generally, they will aquire a DVA 386 * as they are written and migrate onto the arc_mru list. 387 * 388 * The ARC_l2c_only state is for buffers that are in the second 389 * level ARC but no longer in any of the ARC_m* lists. The second 390 * level ARC itself may also contain buffers that are in any of 391 * the ARC_m* states - meaning that a buffer can exist in two 392 * places. The reason for the ARC_l2c_only state is to keep the 393 * buffer header in the hash table, so that reads that hit the 394 * second level ARC benefit from these fast lookups. 395 */ 396 397 typedef struct arc_state { 398 /* 399 * list of evictable buffers 400 */ 401 multilist_t *arcs_list[ARC_BUFC_NUMTYPES]; 402 /* 403 * total amount of evictable data in this state 404 */ 405 refcount_t arcs_esize[ARC_BUFC_NUMTYPES]; 406 /* 407 * total amount of data in this state; this includes: evictable, 408 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA. 409 */ 410 refcount_t arcs_size; 411 } arc_state_t; 412 413 /* The 6 states: */ 414 static arc_state_t ARC_anon; 415 static arc_state_t ARC_mru; 416 static arc_state_t ARC_mru_ghost; 417 static arc_state_t ARC_mfu; 418 static arc_state_t ARC_mfu_ghost; 419 static arc_state_t ARC_l2c_only; 420 421 typedef struct arc_stats { 422 kstat_named_t arcstat_hits; 423 kstat_named_t arcstat_misses; 424 kstat_named_t arcstat_demand_data_hits; 425 kstat_named_t arcstat_demand_data_misses; 426 kstat_named_t arcstat_demand_metadata_hits; 427 kstat_named_t arcstat_demand_metadata_misses; 428 kstat_named_t arcstat_prefetch_data_hits; 429 kstat_named_t arcstat_prefetch_data_misses; 430 kstat_named_t arcstat_prefetch_metadata_hits; 431 kstat_named_t arcstat_prefetch_metadata_misses; 432 kstat_named_t arcstat_mru_hits; 433 kstat_named_t arcstat_mru_ghost_hits; 434 kstat_named_t arcstat_mfu_hits; 435 kstat_named_t arcstat_mfu_ghost_hits; 436 kstat_named_t arcstat_deleted; 437 /* 438 * Number of buffers that could not be evicted because the hash lock 439 * was held by another thread. The lock may not necessarily be held 440 * by something using the same buffer, since hash locks are shared 441 * by multiple buffers. 442 */ 443 kstat_named_t arcstat_mutex_miss; 444 /* 445 * Number of buffers skipped because they have I/O in progress, are 446 * indrect prefetch buffers that have not lived long enough, or are 447 * not from the spa we're trying to evict from. 448 */ 449 kstat_named_t arcstat_evict_skip; 450 /* 451 * Number of times arc_evict_state() was unable to evict enough 452 * buffers to reach it's target amount. 453 */ 454 kstat_named_t arcstat_evict_not_enough; 455 kstat_named_t arcstat_evict_l2_cached; 456 kstat_named_t arcstat_evict_l2_eligible; 457 kstat_named_t arcstat_evict_l2_ineligible; 458 kstat_named_t arcstat_evict_l2_skip; 459 kstat_named_t arcstat_hash_elements; 460 kstat_named_t arcstat_hash_elements_max; 461 kstat_named_t arcstat_hash_collisions; 462 kstat_named_t arcstat_hash_chains; 463 kstat_named_t arcstat_hash_chain_max; 464 kstat_named_t arcstat_p; 465 kstat_named_t arcstat_c; 466 kstat_named_t arcstat_c_min; 467 kstat_named_t arcstat_c_max; 468 kstat_named_t arcstat_size; 469 /* 470 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd. 471 * Note that the compressed bytes may match the uncompressed bytes 472 * if the block is either not compressed or compressed arc is disabled. 473 */ 474 kstat_named_t arcstat_compressed_size; 475 /* 476 * Uncompressed size of the data stored in b_pabd. If compressed 477 * arc is disabled then this value will be identical to the stat 478 * above. 479 */ 480 kstat_named_t arcstat_uncompressed_size; 481 /* 482 * Number of bytes stored in all the arc_buf_t's. This is classified 483 * as "overhead" since this data is typically short-lived and will 484 * be evicted from the arc when it becomes unreferenced unless the 485 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level 486 * values have been set (see comment in dbuf.c for more information). 487 */ 488 kstat_named_t arcstat_overhead_size; 489 /* 490 * Number of bytes consumed by internal ARC structures necessary 491 * for tracking purposes; these structures are not actually 492 * backed by ARC buffers. This includes arc_buf_hdr_t structures 493 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only 494 * caches), and arc_buf_t structures (allocated via arc_buf_t 495 * cache). 496 */ 497 kstat_named_t arcstat_hdr_size; 498 /* 499 * Number of bytes consumed by ARC buffers of type equal to 500 * ARC_BUFC_DATA. This is generally consumed by buffers backing 501 * on disk user data (e.g. plain file contents). 502 */ 503 kstat_named_t arcstat_data_size; 504 /* 505 * Number of bytes consumed by ARC buffers of type equal to 506 * ARC_BUFC_METADATA. This is generally consumed by buffers 507 * backing on disk data that is used for internal ZFS 508 * structures (e.g. ZAP, dnode, indirect blocks, etc). 509 */ 510 kstat_named_t arcstat_metadata_size; 511 /* 512 * Number of bytes consumed by various buffers and structures 513 * not actually backed with ARC buffers. This includes bonus 514 * buffers (allocated directly via zio_buf_* functions), 515 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t 516 * cache), and dnode_t structures (allocated via dnode_t cache). 517 */ 518 kstat_named_t arcstat_other_size; 519 /* 520 * Total number of bytes consumed by ARC buffers residing in the 521 * arc_anon state. This includes *all* buffers in the arc_anon 522 * state; e.g. data, metadata, evictable, and unevictable buffers 523 * are all included in this value. 524 */ 525 kstat_named_t arcstat_anon_size; 526 /* 527 * Number of bytes consumed by ARC buffers that meet the 528 * following criteria: backing buffers of type ARC_BUFC_DATA, 529 * residing in the arc_anon state, and are eligible for eviction 530 * (e.g. have no outstanding holds on the buffer). 531 */ 532 kstat_named_t arcstat_anon_evictable_data; 533 /* 534 * Number of bytes consumed by ARC buffers that meet the 535 * following criteria: backing buffers of type ARC_BUFC_METADATA, 536 * residing in the arc_anon state, and are eligible for eviction 537 * (e.g. have no outstanding holds on the buffer). 538 */ 539 kstat_named_t arcstat_anon_evictable_metadata; 540 /* 541 * Total number of bytes consumed by ARC buffers residing in the 542 * arc_mru state. This includes *all* buffers in the arc_mru 543 * state; e.g. data, metadata, evictable, and unevictable buffers 544 * are all included in this value. 545 */ 546 kstat_named_t arcstat_mru_size; 547 /* 548 * Number of bytes consumed by ARC buffers that meet the 549 * following criteria: backing buffers of type ARC_BUFC_DATA, 550 * residing in the arc_mru state, and are eligible for eviction 551 * (e.g. have no outstanding holds on the buffer). 552 */ 553 kstat_named_t arcstat_mru_evictable_data; 554 /* 555 * Number of bytes consumed by ARC buffers that meet the 556 * following criteria: backing buffers of type ARC_BUFC_METADATA, 557 * residing in the arc_mru state, and are eligible for eviction 558 * (e.g. have no outstanding holds on the buffer). 559 */ 560 kstat_named_t arcstat_mru_evictable_metadata; 561 /* 562 * Total number of bytes that *would have been* consumed by ARC 563 * buffers in the arc_mru_ghost state. The key thing to note 564 * here, is the fact that this size doesn't actually indicate 565 * RAM consumption. The ghost lists only consist of headers and 566 * don't actually have ARC buffers linked off of these headers. 567 * Thus, *if* the headers had associated ARC buffers, these 568 * buffers *would have* consumed this number of bytes. 569 */ 570 kstat_named_t arcstat_mru_ghost_size; 571 /* 572 * Number of bytes that *would have been* consumed by ARC 573 * buffers that are eligible for eviction, of type 574 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state. 575 */ 576 kstat_named_t arcstat_mru_ghost_evictable_data; 577 /* 578 * Number of bytes that *would have been* consumed by ARC 579 * buffers that are eligible for eviction, of type 580 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 581 */ 582 kstat_named_t arcstat_mru_ghost_evictable_metadata; 583 /* 584 * Total number of bytes consumed by ARC buffers residing in the 585 * arc_mfu state. This includes *all* buffers in the arc_mfu 586 * state; e.g. data, metadata, evictable, and unevictable buffers 587 * are all included in this value. 588 */ 589 kstat_named_t arcstat_mfu_size; 590 /* 591 * Number of bytes consumed by ARC buffers that are eligible for 592 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu 593 * state. 594 */ 595 kstat_named_t arcstat_mfu_evictable_data; 596 /* 597 * Number of bytes consumed by ARC buffers that are eligible for 598 * eviction, of type ARC_BUFC_METADATA, and reside in the 599 * arc_mfu state. 600 */ 601 kstat_named_t arcstat_mfu_evictable_metadata; 602 /* 603 * Total number of bytes that *would have been* consumed by ARC 604 * buffers in the arc_mfu_ghost state. See the comment above 605 * arcstat_mru_ghost_size for more details. 606 */ 607 kstat_named_t arcstat_mfu_ghost_size; 608 /* 609 * Number of bytes that *would have been* consumed by ARC 610 * buffers that are eligible for eviction, of type 611 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state. 612 */ 613 kstat_named_t arcstat_mfu_ghost_evictable_data; 614 /* 615 * Number of bytes that *would have been* consumed by ARC 616 * buffers that are eligible for eviction, of type 617 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 618 */ 619 kstat_named_t arcstat_mfu_ghost_evictable_metadata; 620 kstat_named_t arcstat_l2_hits; 621 kstat_named_t arcstat_l2_misses; 622 kstat_named_t arcstat_l2_feeds; 623 kstat_named_t arcstat_l2_rw_clash; 624 kstat_named_t arcstat_l2_read_bytes; 625 kstat_named_t arcstat_l2_write_bytes; 626 kstat_named_t arcstat_l2_writes_sent; 627 kstat_named_t arcstat_l2_writes_done; 628 kstat_named_t arcstat_l2_writes_error; 629 kstat_named_t arcstat_l2_writes_lock_retry; 630 kstat_named_t arcstat_l2_evict_lock_retry; 631 kstat_named_t arcstat_l2_evict_reading; 632 kstat_named_t arcstat_l2_evict_l1cached; 633 kstat_named_t arcstat_l2_free_on_write; 634 kstat_named_t arcstat_l2_abort_lowmem; 635 kstat_named_t arcstat_l2_cksum_bad; 636 kstat_named_t arcstat_l2_io_error; 637 kstat_named_t arcstat_l2_lsize; 638 kstat_named_t arcstat_l2_psize; 639 kstat_named_t arcstat_l2_hdr_size; 640 kstat_named_t arcstat_memory_throttle_count; 641 kstat_named_t arcstat_meta_used; 642 kstat_named_t arcstat_meta_limit; 643 kstat_named_t arcstat_meta_max; 644 kstat_named_t arcstat_meta_min; 645 kstat_named_t arcstat_sync_wait_for_async; 646 kstat_named_t arcstat_demand_hit_predictive_prefetch; 647 } arc_stats_t; 648 649 static arc_stats_t arc_stats = { 650 { "hits", KSTAT_DATA_UINT64 }, 651 { "misses", KSTAT_DATA_UINT64 }, 652 { "demand_data_hits", KSTAT_DATA_UINT64 }, 653 { "demand_data_misses", KSTAT_DATA_UINT64 }, 654 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 655 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 656 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 657 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 658 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 659 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 660 { "mru_hits", KSTAT_DATA_UINT64 }, 661 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 662 { "mfu_hits", KSTAT_DATA_UINT64 }, 663 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 664 { "deleted", KSTAT_DATA_UINT64 }, 665 { "mutex_miss", KSTAT_DATA_UINT64 }, 666 { "evict_skip", KSTAT_DATA_UINT64 }, 667 { "evict_not_enough", KSTAT_DATA_UINT64 }, 668 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 669 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 670 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 671 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 672 { "hash_elements", KSTAT_DATA_UINT64 }, 673 { "hash_elements_max", KSTAT_DATA_UINT64 }, 674 { "hash_collisions", KSTAT_DATA_UINT64 }, 675 { "hash_chains", KSTAT_DATA_UINT64 }, 676 { "hash_chain_max", KSTAT_DATA_UINT64 }, 677 { "p", KSTAT_DATA_UINT64 }, 678 { "c", KSTAT_DATA_UINT64 }, 679 { "c_min", KSTAT_DATA_UINT64 }, 680 { "c_max", KSTAT_DATA_UINT64 }, 681 { "size", KSTAT_DATA_UINT64 }, 682 { "compressed_size", KSTAT_DATA_UINT64 }, 683 { "uncompressed_size", KSTAT_DATA_UINT64 }, 684 { "overhead_size", KSTAT_DATA_UINT64 }, 685 { "hdr_size", KSTAT_DATA_UINT64 }, 686 { "data_size", KSTAT_DATA_UINT64 }, 687 { "metadata_size", KSTAT_DATA_UINT64 }, 688 { "other_size", KSTAT_DATA_UINT64 }, 689 { "anon_size", KSTAT_DATA_UINT64 }, 690 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 691 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 692 { "mru_size", KSTAT_DATA_UINT64 }, 693 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 694 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 695 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 696 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 697 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 698 { "mfu_size", KSTAT_DATA_UINT64 }, 699 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 700 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 701 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 702 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 703 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 704 { "l2_hits", KSTAT_DATA_UINT64 }, 705 { "l2_misses", KSTAT_DATA_UINT64 }, 706 { "l2_feeds", KSTAT_DATA_UINT64 }, 707 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 708 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 709 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 710 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 711 { "l2_writes_done", KSTAT_DATA_UINT64 }, 712 { "l2_writes_error", KSTAT_DATA_UINT64 }, 713 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 714 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 715 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 716 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 717 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 718 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 719 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 720 { "l2_io_error", KSTAT_DATA_UINT64 }, 721 { "l2_size", KSTAT_DATA_UINT64 }, 722 { "l2_asize", KSTAT_DATA_UINT64 }, 723 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 724 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 725 { "arc_meta_used", KSTAT_DATA_UINT64 }, 726 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 727 { "arc_meta_max", KSTAT_DATA_UINT64 }, 728 { "arc_meta_min", KSTAT_DATA_UINT64 }, 729 { "sync_wait_for_async", KSTAT_DATA_UINT64 }, 730 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 731 }; 732 733 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 734 735 #define ARCSTAT_INCR(stat, val) \ 736 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 737 738 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 739 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 740 741 #define ARCSTAT_MAX(stat, val) { \ 742 uint64_t m; \ 743 while ((val) > (m = arc_stats.stat.value.ui64) && \ 744 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 745 continue; \ 746 } 747 748 #define ARCSTAT_MAXSTAT(stat) \ 749 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 750 751 /* 752 * We define a macro to allow ARC hits/misses to be easily broken down by 753 * two separate conditions, giving a total of four different subtypes for 754 * each of hits and misses (so eight statistics total). 755 */ 756 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 757 if (cond1) { \ 758 if (cond2) { \ 759 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 760 } else { \ 761 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 762 } \ 763 } else { \ 764 if (cond2) { \ 765 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 766 } else { \ 767 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 768 } \ 769 } 770 771 kstat_t *arc_ksp; 772 static arc_state_t *arc_anon; 773 static arc_state_t *arc_mru; 774 static arc_state_t *arc_mru_ghost; 775 static arc_state_t *arc_mfu; 776 static arc_state_t *arc_mfu_ghost; 777 static arc_state_t *arc_l2c_only; 778 779 /* 780 * There are several ARC variables that are critical to export as kstats -- 781 * but we don't want to have to grovel around in the kstat whenever we wish to 782 * manipulate them. For these variables, we therefore define them to be in 783 * terms of the statistic variable. This assures that we are not introducing 784 * the possibility of inconsistency by having shadow copies of the variables, 785 * while still allowing the code to be readable. 786 */ 787 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 788 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 789 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 790 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 791 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 792 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 793 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 794 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ 795 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 796 797 /* compressed size of entire arc */ 798 #define arc_compressed_size ARCSTAT(arcstat_compressed_size) 799 /* uncompressed size of entire arc */ 800 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size) 801 /* number of bytes in the arc from arc_buf_t's */ 802 #define arc_overhead_size ARCSTAT(arcstat_overhead_size) 803 804 static int arc_no_grow; /* Don't try to grow cache size */ 805 static uint64_t arc_tempreserve; 806 static uint64_t arc_loaned_bytes; 807 808 typedef struct arc_callback arc_callback_t; 809 810 struct arc_callback { 811 void *acb_private; 812 arc_done_func_t *acb_done; 813 arc_buf_t *acb_buf; 814 boolean_t acb_compressed; 815 zio_t *acb_zio_dummy; 816 arc_callback_t *acb_next; 817 }; 818 819 typedef struct arc_write_callback arc_write_callback_t; 820 821 struct arc_write_callback { 822 void *awcb_private; 823 arc_done_func_t *awcb_ready; 824 arc_done_func_t *awcb_children_ready; 825 arc_done_func_t *awcb_physdone; 826 arc_done_func_t *awcb_done; 827 arc_buf_t *awcb_buf; 828 }; 829 830 /* 831 * ARC buffers are separated into multiple structs as a memory saving measure: 832 * - Common fields struct, always defined, and embedded within it: 833 * - L2-only fields, always allocated but undefined when not in L2ARC 834 * - L1-only fields, only allocated when in L1ARC 835 * 836 * Buffer in L1 Buffer only in L2 837 * +------------------------+ +------------------------+ 838 * | arc_buf_hdr_t | | arc_buf_hdr_t | 839 * | | | | 840 * | | | | 841 * | | | | 842 * +------------------------+ +------------------------+ 843 * | l2arc_buf_hdr_t | | l2arc_buf_hdr_t | 844 * | (undefined if L1-only) | | | 845 * +------------------------+ +------------------------+ 846 * | l1arc_buf_hdr_t | 847 * | | 848 * | | 849 * | | 850 * | | 851 * +------------------------+ 852 * 853 * Because it's possible for the L2ARC to become extremely large, we can wind 854 * up eating a lot of memory in L2ARC buffer headers, so the size of a header 855 * is minimized by only allocating the fields necessary for an L1-cached buffer 856 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and 857 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple 858 * words in pointers. arc_hdr_realloc() is used to switch a header between 859 * these two allocation states. 860 */ 861 typedef struct l1arc_buf_hdr { 862 kmutex_t b_freeze_lock; 863 zio_cksum_t *b_freeze_cksum; 864 #ifdef ZFS_DEBUG 865 /* 866 * Used for debugging with kmem_flags - by allocating and freeing 867 * b_thawed when the buffer is thawed, we get a record of the stack 868 * trace that thawed it. 869 */ 870 void *b_thawed; 871 #endif 872 873 arc_buf_t *b_buf; 874 uint32_t b_bufcnt; 875 /* for waiting on writes to complete */ 876 kcondvar_t b_cv; 877 uint8_t b_byteswap; 878 879 /* protected by arc state mutex */ 880 arc_state_t *b_state; 881 multilist_node_t b_arc_node; 882 883 /* updated atomically */ 884 clock_t b_arc_access; 885 886 /* self protecting */ 887 refcount_t b_refcnt; 888 889 arc_callback_t *b_acb; 890 abd_t *b_pabd; 891 } l1arc_buf_hdr_t; 892 893 typedef struct l2arc_dev l2arc_dev_t; 894 895 typedef struct l2arc_buf_hdr { 896 /* protected by arc_buf_hdr mutex */ 897 l2arc_dev_t *b_dev; /* L2ARC device */ 898 uint64_t b_daddr; /* disk address, offset byte */ 899 900 list_node_t b_l2node; 901 } l2arc_buf_hdr_t; 902 903 struct arc_buf_hdr { 904 /* protected by hash lock */ 905 dva_t b_dva; 906 uint64_t b_birth; 907 908 arc_buf_contents_t b_type; 909 arc_buf_hdr_t *b_hash_next; 910 arc_flags_t b_flags; 911 912 /* 913 * This field stores the size of the data buffer after 914 * compression, and is set in the arc's zio completion handlers. 915 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes). 916 * 917 * While the block pointers can store up to 32MB in their psize 918 * field, we can only store up to 32MB minus 512B. This is due 919 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e. 920 * a field of zeros represents 512B in the bp). We can't use a 921 * bias of 1 since we need to reserve a psize of zero, here, to 922 * represent holes and embedded blocks. 923 * 924 * This isn't a problem in practice, since the maximum size of a 925 * buffer is limited to 16MB, so we never need to store 32MB in 926 * this field. Even in the upstream illumos code base, the 927 * maximum size of a buffer is limited to 16MB. 928 */ 929 uint16_t b_psize; 930 931 /* 932 * This field stores the size of the data buffer before 933 * compression, and cannot change once set. It is in units 934 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes) 935 */ 936 uint16_t b_lsize; /* immutable */ 937 uint64_t b_spa; /* immutable */ 938 939 /* L2ARC fields. Undefined when not in L2ARC. */ 940 l2arc_buf_hdr_t b_l2hdr; 941 /* L1ARC fields. Undefined when in l2arc_only state */ 942 l1arc_buf_hdr_t b_l1hdr; 943 }; 944 945 #define GHOST_STATE(state) \ 946 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 947 (state) == arc_l2c_only) 948 949 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 950 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 951 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 952 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 953 #define HDR_COMPRESSION_ENABLED(hdr) \ 954 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 955 956 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 957 #define HDR_L2_READING(hdr) \ 958 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 959 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 960 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 961 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 962 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 963 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 964 965 #define HDR_ISTYPE_METADATA(hdr) \ 966 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 967 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 968 969 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 970 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 971 972 /* For storing compression mode in b_flags */ 973 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 974 975 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 976 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 977 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 978 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 979 980 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 981 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 982 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 983 984 /* 985 * Other sizes 986 */ 987 988 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 989 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 990 991 /* 992 * Hash table routines 993 */ 994 995 #define HT_LOCK_PAD 64 996 997 struct ht_lock { 998 kmutex_t ht_lock; 999 #ifdef _KERNEL 1000 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 1001 #endif 1002 }; 1003 1004 #define BUF_LOCKS 256 1005 typedef struct buf_hash_table { 1006 uint64_t ht_mask; 1007 arc_buf_hdr_t **ht_table; 1008 struct ht_lock ht_locks[BUF_LOCKS]; 1009 } buf_hash_table_t; 1010 1011 static buf_hash_table_t buf_hash_table; 1012 1013 #define BUF_HASH_INDEX(spa, dva, birth) \ 1014 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 1015 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 1016 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 1017 #define HDR_LOCK(hdr) \ 1018 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 1019 1020 uint64_t zfs_crc64_table[256]; 1021 1022 /* 1023 * Level 2 ARC 1024 */ 1025 1026 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 1027 #define L2ARC_HEADROOM 2 /* num of writes */ 1028 /* 1029 * If we discover during ARC scan any buffers to be compressed, we boost 1030 * our headroom for the next scanning cycle by this percentage multiple. 1031 */ 1032 #define L2ARC_HEADROOM_BOOST 200 1033 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 1034 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 1035 1036 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 1037 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 1038 1039 /* L2ARC Performance Tunables */ 1040 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 1041 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 1042 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 1043 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 1044 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 1045 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 1046 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 1047 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 1048 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 1049 1050 /* 1051 * L2ARC Internals 1052 */ 1053 struct l2arc_dev { 1054 vdev_t *l2ad_vdev; /* vdev */ 1055 spa_t *l2ad_spa; /* spa */ 1056 uint64_t l2ad_hand; /* next write location */ 1057 uint64_t l2ad_start; /* first addr on device */ 1058 uint64_t l2ad_end; /* last addr on device */ 1059 boolean_t l2ad_first; /* first sweep through */ 1060 boolean_t l2ad_writing; /* currently writing */ 1061 kmutex_t l2ad_mtx; /* lock for buffer list */ 1062 list_t l2ad_buflist; /* buffer list */ 1063 list_node_t l2ad_node; /* device list node */ 1064 refcount_t l2ad_alloc; /* allocated bytes */ 1065 }; 1066 1067 static list_t L2ARC_dev_list; /* device list */ 1068 static list_t *l2arc_dev_list; /* device list pointer */ 1069 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 1070 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 1071 static list_t L2ARC_free_on_write; /* free after write buf list */ 1072 static list_t *l2arc_free_on_write; /* free after write list ptr */ 1073 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 1074 static uint64_t l2arc_ndev; /* number of devices */ 1075 1076 typedef struct l2arc_read_callback { 1077 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 1078 blkptr_t l2rcb_bp; /* original blkptr */ 1079 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 1080 int l2rcb_flags; /* original flags */ 1081 abd_t *l2rcb_abd; /* temporary buffer */ 1082 } l2arc_read_callback_t; 1083 1084 typedef struct l2arc_write_callback { 1085 l2arc_dev_t *l2wcb_dev; /* device info */ 1086 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 1087 } l2arc_write_callback_t; 1088 1089 typedef struct l2arc_data_free { 1090 /* protected by l2arc_free_on_write_mtx */ 1091 abd_t *l2df_abd; 1092 size_t l2df_size; 1093 arc_buf_contents_t l2df_type; 1094 list_node_t l2df_list_node; 1095 } l2arc_data_free_t; 1096 1097 static kmutex_t l2arc_feed_thr_lock; 1098 static kcondvar_t l2arc_feed_thr_cv; 1099 static uint8_t l2arc_thread_exit; 1100 1101 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *); 1102 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 1103 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *); 1104 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 1105 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 1106 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 1107 static void arc_hdr_free_pabd(arc_buf_hdr_t *); 1108 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *); 1109 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 1110 static boolean_t arc_is_overflowing(); 1111 static void arc_buf_watch(arc_buf_t *); 1112 1113 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 1114 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 1115 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 1116 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 1117 1118 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 1119 static void l2arc_read_done(zio_t *); 1120 1121 static uint64_t 1122 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 1123 { 1124 uint8_t *vdva = (uint8_t *)dva; 1125 uint64_t crc = -1ULL; 1126 int i; 1127 1128 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 1129 1130 for (i = 0; i < sizeof (dva_t); i++) 1131 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 1132 1133 crc ^= (spa>>8) ^ birth; 1134 1135 return (crc); 1136 } 1137 1138 #define HDR_EMPTY(hdr) \ 1139 ((hdr)->b_dva.dva_word[0] == 0 && \ 1140 (hdr)->b_dva.dva_word[1] == 0) 1141 1142 #define HDR_EQUAL(spa, dva, birth, hdr) \ 1143 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 1144 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 1145 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 1146 1147 static void 1148 buf_discard_identity(arc_buf_hdr_t *hdr) 1149 { 1150 hdr->b_dva.dva_word[0] = 0; 1151 hdr->b_dva.dva_word[1] = 0; 1152 hdr->b_birth = 0; 1153 } 1154 1155 static arc_buf_hdr_t * 1156 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 1157 { 1158 const dva_t *dva = BP_IDENTITY(bp); 1159 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 1160 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1161 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1162 arc_buf_hdr_t *hdr; 1163 1164 mutex_enter(hash_lock); 1165 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1166 hdr = hdr->b_hash_next) { 1167 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1168 *lockp = hash_lock; 1169 return (hdr); 1170 } 1171 } 1172 mutex_exit(hash_lock); 1173 *lockp = NULL; 1174 return (NULL); 1175 } 1176 1177 /* 1178 * Insert an entry into the hash table. If there is already an element 1179 * equal to elem in the hash table, then the already existing element 1180 * will be returned and the new element will not be inserted. 1181 * Otherwise returns NULL. 1182 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1183 */ 1184 static arc_buf_hdr_t * 1185 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1186 { 1187 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1188 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1189 arc_buf_hdr_t *fhdr; 1190 uint32_t i; 1191 1192 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1193 ASSERT(hdr->b_birth != 0); 1194 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1195 1196 if (lockp != NULL) { 1197 *lockp = hash_lock; 1198 mutex_enter(hash_lock); 1199 } else { 1200 ASSERT(MUTEX_HELD(hash_lock)); 1201 } 1202 1203 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1204 fhdr = fhdr->b_hash_next, i++) { 1205 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1206 return (fhdr); 1207 } 1208 1209 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1210 buf_hash_table.ht_table[idx] = hdr; 1211 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1212 1213 /* collect some hash table performance data */ 1214 if (i > 0) { 1215 ARCSTAT_BUMP(arcstat_hash_collisions); 1216 if (i == 1) 1217 ARCSTAT_BUMP(arcstat_hash_chains); 1218 1219 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1220 } 1221 1222 ARCSTAT_BUMP(arcstat_hash_elements); 1223 ARCSTAT_MAXSTAT(arcstat_hash_elements); 1224 1225 return (NULL); 1226 } 1227 1228 static void 1229 buf_hash_remove(arc_buf_hdr_t *hdr) 1230 { 1231 arc_buf_hdr_t *fhdr, **hdrp; 1232 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1233 1234 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1235 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1236 1237 hdrp = &buf_hash_table.ht_table[idx]; 1238 while ((fhdr = *hdrp) != hdr) { 1239 ASSERT3P(fhdr, !=, NULL); 1240 hdrp = &fhdr->b_hash_next; 1241 } 1242 *hdrp = hdr->b_hash_next; 1243 hdr->b_hash_next = NULL; 1244 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1245 1246 /* collect some hash table performance data */ 1247 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 1248 1249 if (buf_hash_table.ht_table[idx] && 1250 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1251 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1252 } 1253 1254 /* 1255 * Global data structures and functions for the buf kmem cache. 1256 */ 1257 static kmem_cache_t *hdr_full_cache; 1258 static kmem_cache_t *hdr_l2only_cache; 1259 static kmem_cache_t *buf_cache; 1260 1261 static void 1262 buf_fini(void) 1263 { 1264 int i; 1265 1266 kmem_free(buf_hash_table.ht_table, 1267 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1268 for (i = 0; i < BUF_LOCKS; i++) 1269 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 1270 kmem_cache_destroy(hdr_full_cache); 1271 kmem_cache_destroy(hdr_l2only_cache); 1272 kmem_cache_destroy(buf_cache); 1273 } 1274 1275 /* 1276 * Constructor callback - called when the cache is empty 1277 * and a new buf is requested. 1278 */ 1279 /* ARGSUSED */ 1280 static int 1281 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1282 { 1283 arc_buf_hdr_t *hdr = vbuf; 1284 1285 bzero(hdr, HDR_FULL_SIZE); 1286 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1287 refcount_create(&hdr->b_l1hdr.b_refcnt); 1288 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1289 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1290 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1291 1292 return (0); 1293 } 1294 1295 /* ARGSUSED */ 1296 static int 1297 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1298 { 1299 arc_buf_hdr_t *hdr = vbuf; 1300 1301 bzero(hdr, HDR_L2ONLY_SIZE); 1302 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1303 1304 return (0); 1305 } 1306 1307 /* ARGSUSED */ 1308 static int 1309 buf_cons(void *vbuf, void *unused, int kmflag) 1310 { 1311 arc_buf_t *buf = vbuf; 1312 1313 bzero(buf, sizeof (arc_buf_t)); 1314 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1315 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1316 1317 return (0); 1318 } 1319 1320 /* 1321 * Destructor callback - called when a cached buf is 1322 * no longer required. 1323 */ 1324 /* ARGSUSED */ 1325 static void 1326 hdr_full_dest(void *vbuf, void *unused) 1327 { 1328 arc_buf_hdr_t *hdr = vbuf; 1329 1330 ASSERT(HDR_EMPTY(hdr)); 1331 cv_destroy(&hdr->b_l1hdr.b_cv); 1332 refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1333 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1334 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1335 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1336 } 1337 1338 /* ARGSUSED */ 1339 static void 1340 hdr_l2only_dest(void *vbuf, void *unused) 1341 { 1342 arc_buf_hdr_t *hdr = vbuf; 1343 1344 ASSERT(HDR_EMPTY(hdr)); 1345 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1346 } 1347 1348 /* ARGSUSED */ 1349 static void 1350 buf_dest(void *vbuf, void *unused) 1351 { 1352 arc_buf_t *buf = vbuf; 1353 1354 mutex_destroy(&buf->b_evict_lock); 1355 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1356 } 1357 1358 /* 1359 * Reclaim callback -- invoked when memory is low. 1360 */ 1361 /* ARGSUSED */ 1362 static void 1363 hdr_recl(void *unused) 1364 { 1365 dprintf("hdr_recl called\n"); 1366 /* 1367 * umem calls the reclaim func when we destroy the buf cache, 1368 * which is after we do arc_fini(). 1369 */ 1370 if (!arc_dead) 1371 cv_signal(&arc_reclaim_thread_cv); 1372 } 1373 1374 static void 1375 buf_init(void) 1376 { 1377 uint64_t *ct; 1378 uint64_t hsize = 1ULL << 12; 1379 int i, j; 1380 1381 /* 1382 * The hash table is big enough to fill all of physical memory 1383 * with an average block size of zfs_arc_average_blocksize (default 8K). 1384 * By default, the table will take up 1385 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1386 */ 1387 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 1388 hsize <<= 1; 1389 retry: 1390 buf_hash_table.ht_mask = hsize - 1; 1391 buf_hash_table.ht_table = 1392 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1393 if (buf_hash_table.ht_table == NULL) { 1394 ASSERT(hsize > (1ULL << 8)); 1395 hsize >>= 1; 1396 goto retry; 1397 } 1398 1399 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1400 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0); 1401 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1402 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl, 1403 NULL, NULL, 0); 1404 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1405 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1406 1407 for (i = 0; i < 256; i++) 1408 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1409 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1410 1411 for (i = 0; i < BUF_LOCKS; i++) { 1412 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1413 NULL, MUTEX_DEFAULT, NULL); 1414 } 1415 } 1416 1417 /* 1418 * This is the size that the buf occupies in memory. If the buf is compressed, 1419 * it will correspond to the compressed size. You should use this method of 1420 * getting the buf size unless you explicitly need the logical size. 1421 */ 1422 int32_t 1423 arc_buf_size(arc_buf_t *buf) 1424 { 1425 return (ARC_BUF_COMPRESSED(buf) ? 1426 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1427 } 1428 1429 int32_t 1430 arc_buf_lsize(arc_buf_t *buf) 1431 { 1432 return (HDR_GET_LSIZE(buf->b_hdr)); 1433 } 1434 1435 enum zio_compress 1436 arc_get_compression(arc_buf_t *buf) 1437 { 1438 return (ARC_BUF_COMPRESSED(buf) ? 1439 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1440 } 1441 1442 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1443 1444 static inline boolean_t 1445 arc_buf_is_shared(arc_buf_t *buf) 1446 { 1447 boolean_t shared = (buf->b_data != NULL && 1448 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1449 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1450 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1451 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1452 IMPLY(shared, ARC_BUF_SHARED(buf)); 1453 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1454 1455 /* 1456 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1457 * already being shared" requirement prevents us from doing that. 1458 */ 1459 1460 return (shared); 1461 } 1462 1463 /* 1464 * Free the checksum associated with this header. If there is no checksum, this 1465 * is a no-op. 1466 */ 1467 static inline void 1468 arc_cksum_free(arc_buf_hdr_t *hdr) 1469 { 1470 ASSERT(HDR_HAS_L1HDR(hdr)); 1471 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1472 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1473 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1474 hdr->b_l1hdr.b_freeze_cksum = NULL; 1475 } 1476 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1477 } 1478 1479 /* 1480 * Return true iff at least one of the bufs on hdr is not compressed. 1481 */ 1482 static boolean_t 1483 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1484 { 1485 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1486 if (!ARC_BUF_COMPRESSED(b)) { 1487 return (B_TRUE); 1488 } 1489 } 1490 return (B_FALSE); 1491 } 1492 1493 /* 1494 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1495 * matches the checksum that is stored in the hdr. If there is no checksum, 1496 * or if the buf is compressed, this is a no-op. 1497 */ 1498 static void 1499 arc_cksum_verify(arc_buf_t *buf) 1500 { 1501 arc_buf_hdr_t *hdr = buf->b_hdr; 1502 zio_cksum_t zc; 1503 1504 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1505 return; 1506 1507 if (ARC_BUF_COMPRESSED(buf)) { 1508 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL || 1509 arc_hdr_has_uncompressed_buf(hdr)); 1510 return; 1511 } 1512 1513 ASSERT(HDR_HAS_L1HDR(hdr)); 1514 1515 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1516 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1517 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1518 return; 1519 } 1520 1521 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1522 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1523 panic("buffer modified while frozen!"); 1524 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1525 } 1526 1527 static boolean_t 1528 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1529 { 1530 enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp); 1531 boolean_t valid_cksum; 1532 1533 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1534 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1535 1536 /* 1537 * We rely on the blkptr's checksum to determine if the block 1538 * is valid or not. When compressed arc is enabled, the l2arc 1539 * writes the block to the l2arc just as it appears in the pool. 1540 * This allows us to use the blkptr's checksum to validate the 1541 * data that we just read off of the l2arc without having to store 1542 * a separate checksum in the arc_buf_hdr_t. However, if compressed 1543 * arc is disabled, then the data written to the l2arc is always 1544 * uncompressed and won't match the block as it exists in the main 1545 * pool. When this is the case, we must first compress it if it is 1546 * compressed on the main pool before we can validate the checksum. 1547 */ 1548 if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) { 1549 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1550 uint64_t lsize = HDR_GET_LSIZE(hdr); 1551 uint64_t csize; 1552 1553 abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE); 1554 csize = zio_compress_data(compress, zio->io_abd, 1555 abd_to_buf(cdata), lsize); 1556 1557 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr)); 1558 if (csize < HDR_GET_PSIZE(hdr)) { 1559 /* 1560 * Compressed blocks are always a multiple of the 1561 * smallest ashift in the pool. Ideally, we would 1562 * like to round up the csize to the next 1563 * spa_min_ashift but that value may have changed 1564 * since the block was last written. Instead, 1565 * we rely on the fact that the hdr's psize 1566 * was set to the psize of the block when it was 1567 * last written. We set the csize to that value 1568 * and zero out any part that should not contain 1569 * data. 1570 */ 1571 abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize); 1572 csize = HDR_GET_PSIZE(hdr); 1573 } 1574 zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL); 1575 } 1576 1577 /* 1578 * Block pointers always store the checksum for the logical data. 1579 * If the block pointer has the gang bit set, then the checksum 1580 * it represents is for the reconstituted data and not for an 1581 * individual gang member. The zio pipeline, however, must be able to 1582 * determine the checksum of each of the gang constituents so it 1583 * treats the checksum comparison differently than what we need 1584 * for l2arc blocks. This prevents us from using the 1585 * zio_checksum_error() interface directly. Instead we must call the 1586 * zio_checksum_error_impl() so that we can ensure the checksum is 1587 * generated using the correct checksum algorithm and accounts for the 1588 * logical I/O size and not just a gang fragment. 1589 */ 1590 valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1591 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1592 zio->io_offset, NULL) == 0); 1593 zio_pop_transforms(zio); 1594 return (valid_cksum); 1595 } 1596 1597 /* 1598 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1599 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1600 * isn't modified later on. If buf is compressed or there is already a checksum 1601 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1602 */ 1603 static void 1604 arc_cksum_compute(arc_buf_t *buf) 1605 { 1606 arc_buf_hdr_t *hdr = buf->b_hdr; 1607 1608 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1609 return; 1610 1611 ASSERT(HDR_HAS_L1HDR(hdr)); 1612 1613 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1614 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1615 ASSERT(arc_hdr_has_uncompressed_buf(hdr)); 1616 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1617 return; 1618 } else if (ARC_BUF_COMPRESSED(buf)) { 1619 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1620 return; 1621 } 1622 1623 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1624 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1625 KM_SLEEP); 1626 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1627 hdr->b_l1hdr.b_freeze_cksum); 1628 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1629 arc_buf_watch(buf); 1630 } 1631 1632 #ifndef _KERNEL 1633 typedef struct procctl { 1634 long cmd; 1635 prwatch_t prwatch; 1636 } procctl_t; 1637 #endif 1638 1639 /* ARGSUSED */ 1640 static void 1641 arc_buf_unwatch(arc_buf_t *buf) 1642 { 1643 #ifndef _KERNEL 1644 if (arc_watch) { 1645 int result; 1646 procctl_t ctl; 1647 ctl.cmd = PCWATCH; 1648 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1649 ctl.prwatch.pr_size = 0; 1650 ctl.prwatch.pr_wflags = 0; 1651 result = write(arc_procfd, &ctl, sizeof (ctl)); 1652 ASSERT3U(result, ==, sizeof (ctl)); 1653 } 1654 #endif 1655 } 1656 1657 /* ARGSUSED */ 1658 static void 1659 arc_buf_watch(arc_buf_t *buf) 1660 { 1661 #ifndef _KERNEL 1662 if (arc_watch) { 1663 int result; 1664 procctl_t ctl; 1665 ctl.cmd = PCWATCH; 1666 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1667 ctl.prwatch.pr_size = arc_buf_size(buf); 1668 ctl.prwatch.pr_wflags = WA_WRITE; 1669 result = write(arc_procfd, &ctl, sizeof (ctl)); 1670 ASSERT3U(result, ==, sizeof (ctl)); 1671 } 1672 #endif 1673 } 1674 1675 static arc_buf_contents_t 1676 arc_buf_type(arc_buf_hdr_t *hdr) 1677 { 1678 arc_buf_contents_t type; 1679 if (HDR_ISTYPE_METADATA(hdr)) { 1680 type = ARC_BUFC_METADATA; 1681 } else { 1682 type = ARC_BUFC_DATA; 1683 } 1684 VERIFY3U(hdr->b_type, ==, type); 1685 return (type); 1686 } 1687 1688 boolean_t 1689 arc_is_metadata(arc_buf_t *buf) 1690 { 1691 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1692 } 1693 1694 static uint32_t 1695 arc_bufc_to_flags(arc_buf_contents_t type) 1696 { 1697 switch (type) { 1698 case ARC_BUFC_DATA: 1699 /* metadata field is 0 if buffer contains normal data */ 1700 return (0); 1701 case ARC_BUFC_METADATA: 1702 return (ARC_FLAG_BUFC_METADATA); 1703 default: 1704 break; 1705 } 1706 panic("undefined ARC buffer type!"); 1707 return ((uint32_t)-1); 1708 } 1709 1710 void 1711 arc_buf_thaw(arc_buf_t *buf) 1712 { 1713 arc_buf_hdr_t *hdr = buf->b_hdr; 1714 1715 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1716 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1717 1718 arc_cksum_verify(buf); 1719 1720 /* 1721 * Compressed buffers do not manipulate the b_freeze_cksum or 1722 * allocate b_thawed. 1723 */ 1724 if (ARC_BUF_COMPRESSED(buf)) { 1725 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL || 1726 arc_hdr_has_uncompressed_buf(hdr)); 1727 return; 1728 } 1729 1730 ASSERT(HDR_HAS_L1HDR(hdr)); 1731 arc_cksum_free(hdr); 1732 1733 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1734 #ifdef ZFS_DEBUG 1735 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1736 if (hdr->b_l1hdr.b_thawed != NULL) 1737 kmem_free(hdr->b_l1hdr.b_thawed, 1); 1738 hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP); 1739 } 1740 #endif 1741 1742 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1743 1744 arc_buf_unwatch(buf); 1745 } 1746 1747 void 1748 arc_buf_freeze(arc_buf_t *buf) 1749 { 1750 arc_buf_hdr_t *hdr = buf->b_hdr; 1751 kmutex_t *hash_lock; 1752 1753 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1754 return; 1755 1756 if (ARC_BUF_COMPRESSED(buf)) { 1757 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL || 1758 arc_hdr_has_uncompressed_buf(hdr)); 1759 return; 1760 } 1761 1762 hash_lock = HDR_LOCK(hdr); 1763 mutex_enter(hash_lock); 1764 1765 ASSERT(HDR_HAS_L1HDR(hdr)); 1766 ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL || 1767 hdr->b_l1hdr.b_state == arc_anon); 1768 arc_cksum_compute(buf); 1769 mutex_exit(hash_lock); 1770 } 1771 1772 /* 1773 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1774 * the following functions should be used to ensure that the flags are 1775 * updated in a thread-safe way. When manipulating the flags either 1776 * the hash_lock must be held or the hdr must be undiscoverable. This 1777 * ensures that we're not racing with any other threads when updating 1778 * the flags. 1779 */ 1780 static inline void 1781 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1782 { 1783 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1784 hdr->b_flags |= flags; 1785 } 1786 1787 static inline void 1788 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1789 { 1790 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1791 hdr->b_flags &= ~flags; 1792 } 1793 1794 /* 1795 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1796 * done in a special way since we have to clear and set bits 1797 * at the same time. Consumers that wish to set the compression bits 1798 * must use this function to ensure that the flags are updated in 1799 * thread-safe manner. 1800 */ 1801 static void 1802 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1803 { 1804 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1805 1806 /* 1807 * Holes and embedded blocks will always have a psize = 0 so 1808 * we ignore the compression of the blkptr and set the 1809 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF. 1810 * Holes and embedded blocks remain anonymous so we don't 1811 * want to uncompress them. Mark them as uncompressed. 1812 */ 1813 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1814 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1815 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 1816 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1817 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1818 } else { 1819 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1820 HDR_SET_COMPRESS(hdr, cmp); 1821 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1822 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1823 } 1824 } 1825 1826 /* 1827 * Looks for another buf on the same hdr which has the data decompressed, copies 1828 * from it, and returns true. If no such buf exists, returns false. 1829 */ 1830 static boolean_t 1831 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1832 { 1833 arc_buf_hdr_t *hdr = buf->b_hdr; 1834 boolean_t copied = B_FALSE; 1835 1836 ASSERT(HDR_HAS_L1HDR(hdr)); 1837 ASSERT3P(buf->b_data, !=, NULL); 1838 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1839 1840 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1841 from = from->b_next) { 1842 /* can't use our own data buffer */ 1843 if (from == buf) { 1844 continue; 1845 } 1846 1847 if (!ARC_BUF_COMPRESSED(from)) { 1848 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1849 copied = B_TRUE; 1850 break; 1851 } 1852 } 1853 1854 /* 1855 * There were no decompressed bufs, so there should not be a 1856 * checksum on the hdr either. 1857 */ 1858 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1859 1860 return (copied); 1861 } 1862 1863 /* 1864 * Given a buf that has a data buffer attached to it, this function will 1865 * efficiently fill the buf with data of the specified compression setting from 1866 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1867 * are already sharing a data buf, no copy is performed. 1868 * 1869 * If the buf is marked as compressed but uncompressed data was requested, this 1870 * will allocate a new data buffer for the buf, remove that flag, and fill the 1871 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1872 * uncompressed data, and (since we haven't added support for it yet) if you 1873 * want compressed data your buf must already be marked as compressed and have 1874 * the correct-sized data buffer. 1875 */ 1876 static int 1877 arc_buf_fill(arc_buf_t *buf, boolean_t compressed) 1878 { 1879 arc_buf_hdr_t *hdr = buf->b_hdr; 1880 boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF); 1881 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 1882 1883 ASSERT3P(buf->b_data, !=, NULL); 1884 IMPLY(compressed, hdr_compressed); 1885 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 1886 1887 if (hdr_compressed == compressed) { 1888 if (!arc_buf_is_shared(buf)) { 1889 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 1890 arc_buf_size(buf)); 1891 } 1892 } else { 1893 ASSERT(hdr_compressed); 1894 ASSERT(!compressed); 1895 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 1896 1897 /* 1898 * If the buf is sharing its data with the hdr, unlink it and 1899 * allocate a new data buffer for the buf. 1900 */ 1901 if (arc_buf_is_shared(buf)) { 1902 ASSERT(ARC_BUF_COMPRESSED(buf)); 1903 1904 /* We need to give the buf it's own b_data */ 1905 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 1906 buf->b_data = 1907 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 1908 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 1909 1910 /* Previously overhead was 0; just add new overhead */ 1911 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 1912 } else if (ARC_BUF_COMPRESSED(buf)) { 1913 /* We need to reallocate the buf's b_data */ 1914 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 1915 buf); 1916 buf->b_data = 1917 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 1918 1919 /* We increased the size of b_data; update overhead */ 1920 ARCSTAT_INCR(arcstat_overhead_size, 1921 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 1922 } 1923 1924 /* 1925 * Regardless of the buf's previous compression settings, it 1926 * should not be compressed at the end of this function. 1927 */ 1928 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1929 1930 /* 1931 * Try copying the data from another buf which already has a 1932 * decompressed version. If that's not possible, it's time to 1933 * bite the bullet and decompress the data from the hdr. 1934 */ 1935 if (arc_buf_try_copy_decompressed_data(buf)) { 1936 /* Skip byteswapping and checksumming (already done) */ 1937 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL); 1938 return (0); 1939 } else { 1940 int error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1941 hdr->b_l1hdr.b_pabd, buf->b_data, 1942 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 1943 1944 /* 1945 * Absent hardware errors or software bugs, this should 1946 * be impossible, but log it anyway so we can debug it. 1947 */ 1948 if (error != 0) { 1949 zfs_dbgmsg( 1950 "hdr %p, compress %d, psize %d, lsize %d", 1951 hdr, HDR_GET_COMPRESS(hdr), 1952 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 1953 return (SET_ERROR(EIO)); 1954 } 1955 } 1956 } 1957 1958 /* Byteswap the buf's data if necessary */ 1959 if (bswap != DMU_BSWAP_NUMFUNCS) { 1960 ASSERT(!HDR_SHARED_DATA(hdr)); 1961 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 1962 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 1963 } 1964 1965 /* Compute the hdr's checksum if necessary */ 1966 arc_cksum_compute(buf); 1967 1968 return (0); 1969 } 1970 1971 int 1972 arc_decompress(arc_buf_t *buf) 1973 { 1974 return (arc_buf_fill(buf, B_FALSE)); 1975 } 1976 1977 /* 1978 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1979 */ 1980 static uint64_t 1981 arc_hdr_size(arc_buf_hdr_t *hdr) 1982 { 1983 uint64_t size; 1984 1985 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1986 HDR_GET_PSIZE(hdr) > 0) { 1987 size = HDR_GET_PSIZE(hdr); 1988 } else { 1989 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1990 size = HDR_GET_LSIZE(hdr); 1991 } 1992 return (size); 1993 } 1994 1995 /* 1996 * Increment the amount of evictable space in the arc_state_t's refcount. 1997 * We account for the space used by the hdr and the arc buf individually 1998 * so that we can add and remove them from the refcount individually. 1999 */ 2000 static void 2001 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2002 { 2003 arc_buf_contents_t type = arc_buf_type(hdr); 2004 2005 ASSERT(HDR_HAS_L1HDR(hdr)); 2006 2007 if (GHOST_STATE(state)) { 2008 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2009 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2010 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2011 (void) refcount_add_many(&state->arcs_esize[type], 2012 HDR_GET_LSIZE(hdr), hdr); 2013 return; 2014 } 2015 2016 ASSERT(!GHOST_STATE(state)); 2017 if (hdr->b_l1hdr.b_pabd != NULL) { 2018 (void) refcount_add_many(&state->arcs_esize[type], 2019 arc_hdr_size(hdr), hdr); 2020 } 2021 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2022 buf = buf->b_next) { 2023 if (arc_buf_is_shared(buf)) 2024 continue; 2025 (void) refcount_add_many(&state->arcs_esize[type], 2026 arc_buf_size(buf), buf); 2027 } 2028 } 2029 2030 /* 2031 * Decrement the amount of evictable space in the arc_state_t's refcount. 2032 * We account for the space used by the hdr and the arc buf individually 2033 * so that we can add and remove them from the refcount individually. 2034 */ 2035 static void 2036 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2037 { 2038 arc_buf_contents_t type = arc_buf_type(hdr); 2039 2040 ASSERT(HDR_HAS_L1HDR(hdr)); 2041 2042 if (GHOST_STATE(state)) { 2043 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2044 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2045 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2046 (void) refcount_remove_many(&state->arcs_esize[type], 2047 HDR_GET_LSIZE(hdr), hdr); 2048 return; 2049 } 2050 2051 ASSERT(!GHOST_STATE(state)); 2052 if (hdr->b_l1hdr.b_pabd != NULL) { 2053 (void) refcount_remove_many(&state->arcs_esize[type], 2054 arc_hdr_size(hdr), hdr); 2055 } 2056 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2057 buf = buf->b_next) { 2058 if (arc_buf_is_shared(buf)) 2059 continue; 2060 (void) refcount_remove_many(&state->arcs_esize[type], 2061 arc_buf_size(buf), buf); 2062 } 2063 } 2064 2065 /* 2066 * Add a reference to this hdr indicating that someone is actively 2067 * referencing that memory. When the refcount transitions from 0 to 1, 2068 * we remove it from the respective arc_state_t list to indicate that 2069 * it is not evictable. 2070 */ 2071 static void 2072 add_reference(arc_buf_hdr_t *hdr, void *tag) 2073 { 2074 ASSERT(HDR_HAS_L1HDR(hdr)); 2075 if (!MUTEX_HELD(HDR_LOCK(hdr))) { 2076 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2077 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2078 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2079 } 2080 2081 arc_state_t *state = hdr->b_l1hdr.b_state; 2082 2083 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2084 (state != arc_anon)) { 2085 /* We don't use the L2-only state list. */ 2086 if (state != arc_l2c_only) { 2087 multilist_remove(state->arcs_list[arc_buf_type(hdr)], 2088 hdr); 2089 arc_evictable_space_decrement(hdr, state); 2090 } 2091 /* remove the prefetch flag if we get a reference */ 2092 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2093 } 2094 } 2095 2096 /* 2097 * Remove a reference from this hdr. When the reference transitions from 2098 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2099 * list making it eligible for eviction. 2100 */ 2101 static int 2102 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2103 { 2104 int cnt; 2105 arc_state_t *state = hdr->b_l1hdr.b_state; 2106 2107 ASSERT(HDR_HAS_L1HDR(hdr)); 2108 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2109 ASSERT(!GHOST_STATE(state)); 2110 2111 /* 2112 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2113 * check to prevent usage of the arc_l2c_only list. 2114 */ 2115 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2116 (state != arc_anon)) { 2117 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr); 2118 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2119 arc_evictable_space_increment(hdr, state); 2120 } 2121 return (cnt); 2122 } 2123 2124 /* 2125 * Move the supplied buffer to the indicated state. The hash lock 2126 * for the buffer must be held by the caller. 2127 */ 2128 static void 2129 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2130 kmutex_t *hash_lock) 2131 { 2132 arc_state_t *old_state; 2133 int64_t refcnt; 2134 uint32_t bufcnt; 2135 boolean_t update_old, update_new; 2136 arc_buf_contents_t buftype = arc_buf_type(hdr); 2137 2138 /* 2139 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2140 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2141 * L1 hdr doesn't always exist when we change state to arc_anon before 2142 * destroying a header, in which case reallocating to add the L1 hdr is 2143 * pointless. 2144 */ 2145 if (HDR_HAS_L1HDR(hdr)) { 2146 old_state = hdr->b_l1hdr.b_state; 2147 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt); 2148 bufcnt = hdr->b_l1hdr.b_bufcnt; 2149 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL); 2150 } else { 2151 old_state = arc_l2c_only; 2152 refcnt = 0; 2153 bufcnt = 0; 2154 update_old = B_FALSE; 2155 } 2156 update_new = update_old; 2157 2158 ASSERT(MUTEX_HELD(hash_lock)); 2159 ASSERT3P(new_state, !=, old_state); 2160 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2161 ASSERT(old_state != arc_anon || bufcnt <= 1); 2162 2163 /* 2164 * If this buffer is evictable, transfer it from the 2165 * old state list to the new state list. 2166 */ 2167 if (refcnt == 0) { 2168 if (old_state != arc_anon && old_state != arc_l2c_only) { 2169 ASSERT(HDR_HAS_L1HDR(hdr)); 2170 multilist_remove(old_state->arcs_list[buftype], hdr); 2171 2172 if (GHOST_STATE(old_state)) { 2173 ASSERT0(bufcnt); 2174 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2175 update_old = B_TRUE; 2176 } 2177 arc_evictable_space_decrement(hdr, old_state); 2178 } 2179 if (new_state != arc_anon && new_state != arc_l2c_only) { 2180 2181 /* 2182 * An L1 header always exists here, since if we're 2183 * moving to some L1-cached state (i.e. not l2c_only or 2184 * anonymous), we realloc the header to add an L1hdr 2185 * beforehand. 2186 */ 2187 ASSERT(HDR_HAS_L1HDR(hdr)); 2188 multilist_insert(new_state->arcs_list[buftype], hdr); 2189 2190 if (GHOST_STATE(new_state)) { 2191 ASSERT0(bufcnt); 2192 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2193 update_new = B_TRUE; 2194 } 2195 arc_evictable_space_increment(hdr, new_state); 2196 } 2197 } 2198 2199 ASSERT(!HDR_EMPTY(hdr)); 2200 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2201 buf_hash_remove(hdr); 2202 2203 /* adjust state sizes (ignore arc_l2c_only) */ 2204 2205 if (update_new && new_state != arc_l2c_only) { 2206 ASSERT(HDR_HAS_L1HDR(hdr)); 2207 if (GHOST_STATE(new_state)) { 2208 ASSERT0(bufcnt); 2209 2210 /* 2211 * When moving a header to a ghost state, we first 2212 * remove all arc buffers. Thus, we'll have a 2213 * bufcnt of zero, and no arc buffer to use for 2214 * the reference. As a result, we use the arc 2215 * header pointer for the reference. 2216 */ 2217 (void) refcount_add_many(&new_state->arcs_size, 2218 HDR_GET_LSIZE(hdr), hdr); 2219 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2220 } else { 2221 uint32_t buffers = 0; 2222 2223 /* 2224 * Each individual buffer holds a unique reference, 2225 * thus we must remove each of these references one 2226 * at a time. 2227 */ 2228 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2229 buf = buf->b_next) { 2230 ASSERT3U(bufcnt, !=, 0); 2231 buffers++; 2232 2233 /* 2234 * When the arc_buf_t is sharing the data 2235 * block with the hdr, the owner of the 2236 * reference belongs to the hdr. Only 2237 * add to the refcount if the arc_buf_t is 2238 * not shared. 2239 */ 2240 if (arc_buf_is_shared(buf)) 2241 continue; 2242 2243 (void) refcount_add_many(&new_state->arcs_size, 2244 arc_buf_size(buf), buf); 2245 } 2246 ASSERT3U(bufcnt, ==, buffers); 2247 2248 if (hdr->b_l1hdr.b_pabd != NULL) { 2249 (void) refcount_add_many(&new_state->arcs_size, 2250 arc_hdr_size(hdr), hdr); 2251 } else { 2252 ASSERT(GHOST_STATE(old_state)); 2253 } 2254 } 2255 } 2256 2257 if (update_old && old_state != arc_l2c_only) { 2258 ASSERT(HDR_HAS_L1HDR(hdr)); 2259 if (GHOST_STATE(old_state)) { 2260 ASSERT0(bufcnt); 2261 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2262 2263 /* 2264 * When moving a header off of a ghost state, 2265 * the header will not contain any arc buffers. 2266 * We use the arc header pointer for the reference 2267 * which is exactly what we did when we put the 2268 * header on the ghost state. 2269 */ 2270 2271 (void) refcount_remove_many(&old_state->arcs_size, 2272 HDR_GET_LSIZE(hdr), hdr); 2273 } else { 2274 uint32_t buffers = 0; 2275 2276 /* 2277 * Each individual buffer holds a unique reference, 2278 * thus we must remove each of these references one 2279 * at a time. 2280 */ 2281 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2282 buf = buf->b_next) { 2283 ASSERT3U(bufcnt, !=, 0); 2284 buffers++; 2285 2286 /* 2287 * When the arc_buf_t is sharing the data 2288 * block with the hdr, the owner of the 2289 * reference belongs to the hdr. Only 2290 * add to the refcount if the arc_buf_t is 2291 * not shared. 2292 */ 2293 if (arc_buf_is_shared(buf)) 2294 continue; 2295 2296 (void) refcount_remove_many( 2297 &old_state->arcs_size, arc_buf_size(buf), 2298 buf); 2299 } 2300 ASSERT3U(bufcnt, ==, buffers); 2301 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2302 (void) refcount_remove_many( 2303 &old_state->arcs_size, arc_hdr_size(hdr), hdr); 2304 } 2305 } 2306 2307 if (HDR_HAS_L1HDR(hdr)) 2308 hdr->b_l1hdr.b_state = new_state; 2309 2310 /* 2311 * L2 headers should never be on the L2 state list since they don't 2312 * have L1 headers allocated. 2313 */ 2314 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2315 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2316 } 2317 2318 void 2319 arc_space_consume(uint64_t space, arc_space_type_t type) 2320 { 2321 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2322 2323 switch (type) { 2324 case ARC_SPACE_DATA: 2325 ARCSTAT_INCR(arcstat_data_size, space); 2326 break; 2327 case ARC_SPACE_META: 2328 ARCSTAT_INCR(arcstat_metadata_size, space); 2329 break; 2330 case ARC_SPACE_OTHER: 2331 ARCSTAT_INCR(arcstat_other_size, space); 2332 break; 2333 case ARC_SPACE_HDRS: 2334 ARCSTAT_INCR(arcstat_hdr_size, space); 2335 break; 2336 case ARC_SPACE_L2HDRS: 2337 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 2338 break; 2339 } 2340 2341 if (type != ARC_SPACE_DATA) 2342 ARCSTAT_INCR(arcstat_meta_used, space); 2343 2344 atomic_add_64(&arc_size, space); 2345 } 2346 2347 void 2348 arc_space_return(uint64_t space, arc_space_type_t type) 2349 { 2350 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2351 2352 switch (type) { 2353 case ARC_SPACE_DATA: 2354 ARCSTAT_INCR(arcstat_data_size, -space); 2355 break; 2356 case ARC_SPACE_META: 2357 ARCSTAT_INCR(arcstat_metadata_size, -space); 2358 break; 2359 case ARC_SPACE_OTHER: 2360 ARCSTAT_INCR(arcstat_other_size, -space); 2361 break; 2362 case ARC_SPACE_HDRS: 2363 ARCSTAT_INCR(arcstat_hdr_size, -space); 2364 break; 2365 case ARC_SPACE_L2HDRS: 2366 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 2367 break; 2368 } 2369 2370 if (type != ARC_SPACE_DATA) { 2371 ASSERT(arc_meta_used >= space); 2372 if (arc_meta_max < arc_meta_used) 2373 arc_meta_max = arc_meta_used; 2374 ARCSTAT_INCR(arcstat_meta_used, -space); 2375 } 2376 2377 ASSERT(arc_size >= space); 2378 atomic_add_64(&arc_size, -space); 2379 } 2380 2381 /* 2382 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2383 * with the hdr's b_pabd. 2384 */ 2385 static boolean_t 2386 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2387 { 2388 /* 2389 * The criteria for sharing a hdr's data are: 2390 * 1. the hdr's compression matches the buf's compression 2391 * 2. the hdr doesn't need to be byteswapped 2392 * 3. the hdr isn't already being shared 2393 * 4. the buf is either compressed or it is the last buf in the hdr list 2394 * 2395 * Criterion #4 maintains the invariant that shared uncompressed 2396 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2397 * might ask, "if a compressed buf is allocated first, won't that be the 2398 * last thing in the list?", but in that case it's impossible to create 2399 * a shared uncompressed buf anyway (because the hdr must be compressed 2400 * to have the compressed buf). You might also think that #3 is 2401 * sufficient to make this guarantee, however it's possible 2402 * (specifically in the rare L2ARC write race mentioned in 2403 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2404 * is sharable, but wasn't at the time of its allocation. Rather than 2405 * allow a new shared uncompressed buf to be created and then shuffle 2406 * the list around to make it the last element, this simply disallows 2407 * sharing if the new buf isn't the first to be added. 2408 */ 2409 ASSERT3P(buf->b_hdr, ==, hdr); 2410 boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF; 2411 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2412 return (buf_compressed == hdr_compressed && 2413 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2414 !HDR_SHARED_DATA(hdr) && 2415 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2416 } 2417 2418 /* 2419 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2420 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2421 * copy was made successfully, or an error code otherwise. 2422 */ 2423 static int 2424 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed, 2425 boolean_t fill, arc_buf_t **ret) 2426 { 2427 arc_buf_t *buf; 2428 2429 ASSERT(HDR_HAS_L1HDR(hdr)); 2430 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2431 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2432 hdr->b_type == ARC_BUFC_METADATA); 2433 ASSERT3P(ret, !=, NULL); 2434 ASSERT3P(*ret, ==, NULL); 2435 2436 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2437 buf->b_hdr = hdr; 2438 buf->b_data = NULL; 2439 buf->b_next = hdr->b_l1hdr.b_buf; 2440 buf->b_flags = 0; 2441 2442 add_reference(hdr, tag); 2443 2444 /* 2445 * We're about to change the hdr's b_flags. We must either 2446 * hold the hash_lock or be undiscoverable. 2447 */ 2448 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2449 2450 /* 2451 * Only honor requests for compressed bufs if the hdr is actually 2452 * compressed. 2453 */ 2454 if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) 2455 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2456 2457 /* 2458 * If the hdr's data can be shared then we share the data buffer and 2459 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2460 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2461 * buffer to store the buf's data. 2462 * 2463 * There are two additional restrictions here because we're sharing 2464 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2465 * actively involved in an L2ARC write, because if this buf is used by 2466 * an arc_write() then the hdr's data buffer will be released when the 2467 * write completes, even though the L2ARC write might still be using it. 2468 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2469 * need to be ABD-aware. 2470 */ 2471 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) && 2472 abd_is_linear(hdr->b_l1hdr.b_pabd); 2473 2474 /* Set up b_data and sharing */ 2475 if (can_share) { 2476 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2477 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2478 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2479 } else { 2480 buf->b_data = 2481 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2482 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2483 } 2484 VERIFY3P(buf->b_data, !=, NULL); 2485 2486 hdr->b_l1hdr.b_buf = buf; 2487 hdr->b_l1hdr.b_bufcnt += 1; 2488 2489 /* 2490 * If the user wants the data from the hdr, we need to either copy or 2491 * decompress the data. 2492 */ 2493 if (fill) { 2494 return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0)); 2495 } 2496 2497 return (0); 2498 } 2499 2500 static char *arc_onloan_tag = "onloan"; 2501 2502 static inline void 2503 arc_loaned_bytes_update(int64_t delta) 2504 { 2505 atomic_add_64(&arc_loaned_bytes, delta); 2506 2507 /* assert that it did not wrap around */ 2508 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2509 } 2510 2511 /* 2512 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2513 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2514 * buffers must be returned to the arc before they can be used by the DMU or 2515 * freed. 2516 */ 2517 arc_buf_t * 2518 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2519 { 2520 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2521 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2522 2523 arc_loaned_bytes_update(size); 2524 2525 return (buf); 2526 } 2527 2528 arc_buf_t * 2529 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2530 enum zio_compress compression_type) 2531 { 2532 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2533 psize, lsize, compression_type); 2534 2535 arc_loaned_bytes_update(psize); 2536 2537 return (buf); 2538 } 2539 2540 2541 /* 2542 * Return a loaned arc buffer to the arc. 2543 */ 2544 void 2545 arc_return_buf(arc_buf_t *buf, void *tag) 2546 { 2547 arc_buf_hdr_t *hdr = buf->b_hdr; 2548 2549 ASSERT3P(buf->b_data, !=, NULL); 2550 ASSERT(HDR_HAS_L1HDR(hdr)); 2551 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2552 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2553 2554 arc_loaned_bytes_update(-arc_buf_size(buf)); 2555 } 2556 2557 /* Detach an arc_buf from a dbuf (tag) */ 2558 void 2559 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2560 { 2561 arc_buf_hdr_t *hdr = buf->b_hdr; 2562 2563 ASSERT3P(buf->b_data, !=, NULL); 2564 ASSERT(HDR_HAS_L1HDR(hdr)); 2565 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2566 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2567 2568 arc_loaned_bytes_update(arc_buf_size(buf)); 2569 } 2570 2571 static void 2572 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2573 { 2574 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2575 2576 df->l2df_abd = abd; 2577 df->l2df_size = size; 2578 df->l2df_type = type; 2579 mutex_enter(&l2arc_free_on_write_mtx); 2580 list_insert_head(l2arc_free_on_write, df); 2581 mutex_exit(&l2arc_free_on_write_mtx); 2582 } 2583 2584 static void 2585 arc_hdr_free_on_write(arc_buf_hdr_t *hdr) 2586 { 2587 arc_state_t *state = hdr->b_l1hdr.b_state; 2588 arc_buf_contents_t type = arc_buf_type(hdr); 2589 uint64_t size = arc_hdr_size(hdr); 2590 2591 /* protected by hash lock, if in the hash table */ 2592 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2593 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2594 ASSERT(state != arc_anon && state != arc_l2c_only); 2595 2596 (void) refcount_remove_many(&state->arcs_esize[type], 2597 size, hdr); 2598 } 2599 (void) refcount_remove_many(&state->arcs_size, size, hdr); 2600 if (type == ARC_BUFC_METADATA) { 2601 arc_space_return(size, ARC_SPACE_META); 2602 } else { 2603 ASSERT(type == ARC_BUFC_DATA); 2604 arc_space_return(size, ARC_SPACE_DATA); 2605 } 2606 2607 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2608 } 2609 2610 /* 2611 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2612 * data buffer, we transfer the refcount ownership to the hdr and update 2613 * the appropriate kstats. 2614 */ 2615 static void 2616 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2617 { 2618 arc_state_t *state = hdr->b_l1hdr.b_state; 2619 2620 ASSERT(arc_can_share(hdr, buf)); 2621 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2622 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2623 2624 /* 2625 * Start sharing the data buffer. We transfer the 2626 * refcount ownership to the hdr since it always owns 2627 * the refcount whenever an arc_buf_t is shared. 2628 */ 2629 refcount_transfer_ownership(&state->arcs_size, buf, hdr); 2630 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2631 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 2632 HDR_ISTYPE_METADATA(hdr)); 2633 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2634 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2635 2636 /* 2637 * Since we've transferred ownership to the hdr we need 2638 * to increment its compressed and uncompressed kstats and 2639 * decrement the overhead size. 2640 */ 2641 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2642 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2643 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 2644 } 2645 2646 static void 2647 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2648 { 2649 arc_state_t *state = hdr->b_l1hdr.b_state; 2650 2651 ASSERT(arc_buf_is_shared(buf)); 2652 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2653 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2654 2655 /* 2656 * We are no longer sharing this buffer so we need 2657 * to transfer its ownership to the rightful owner. 2658 */ 2659 refcount_transfer_ownership(&state->arcs_size, hdr, buf); 2660 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2661 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 2662 abd_put(hdr->b_l1hdr.b_pabd); 2663 hdr->b_l1hdr.b_pabd = NULL; 2664 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2665 2666 /* 2667 * Since the buffer is no longer shared between 2668 * the arc buf and the hdr, count it as overhead. 2669 */ 2670 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2671 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2672 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2673 } 2674 2675 /* 2676 * Remove an arc_buf_t from the hdr's buf list and return the last 2677 * arc_buf_t on the list. If no buffers remain on the list then return 2678 * NULL. 2679 */ 2680 static arc_buf_t * 2681 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2682 { 2683 ASSERT(HDR_HAS_L1HDR(hdr)); 2684 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2685 2686 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 2687 arc_buf_t *lastbuf = NULL; 2688 2689 /* 2690 * Remove the buf from the hdr list and locate the last 2691 * remaining buffer on the list. 2692 */ 2693 while (*bufp != NULL) { 2694 if (*bufp == buf) 2695 *bufp = buf->b_next; 2696 2697 /* 2698 * If we've removed a buffer in the middle of 2699 * the list then update the lastbuf and update 2700 * bufp. 2701 */ 2702 if (*bufp != NULL) { 2703 lastbuf = *bufp; 2704 bufp = &(*bufp)->b_next; 2705 } 2706 } 2707 buf->b_next = NULL; 2708 ASSERT3P(lastbuf, !=, buf); 2709 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 2710 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 2711 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 2712 2713 return (lastbuf); 2714 } 2715 2716 /* 2717 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's 2718 * list and free it. 2719 */ 2720 static void 2721 arc_buf_destroy_impl(arc_buf_t *buf) 2722 { 2723 arc_buf_hdr_t *hdr = buf->b_hdr; 2724 2725 /* 2726 * Free up the data associated with the buf but only if we're not 2727 * sharing this with the hdr. If we are sharing it with the hdr, the 2728 * hdr is responsible for doing the free. 2729 */ 2730 if (buf->b_data != NULL) { 2731 /* 2732 * We're about to change the hdr's b_flags. We must either 2733 * hold the hash_lock or be undiscoverable. 2734 */ 2735 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2736 2737 arc_cksum_verify(buf); 2738 arc_buf_unwatch(buf); 2739 2740 if (arc_buf_is_shared(buf)) { 2741 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2742 } else { 2743 uint64_t size = arc_buf_size(buf); 2744 arc_free_data_buf(hdr, buf->b_data, size, buf); 2745 ARCSTAT_INCR(arcstat_overhead_size, -size); 2746 } 2747 buf->b_data = NULL; 2748 2749 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 2750 hdr->b_l1hdr.b_bufcnt -= 1; 2751 } 2752 2753 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 2754 2755 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 2756 /* 2757 * If the current arc_buf_t is sharing its data buffer with the 2758 * hdr, then reassign the hdr's b_pabd to share it with the new 2759 * buffer at the end of the list. The shared buffer is always 2760 * the last one on the hdr's buffer list. 2761 * 2762 * There is an equivalent case for compressed bufs, but since 2763 * they aren't guaranteed to be the last buf in the list and 2764 * that is an exceedingly rare case, we just allow that space be 2765 * wasted temporarily. 2766 */ 2767 if (lastbuf != NULL) { 2768 /* Only one buf can be shared at once */ 2769 VERIFY(!arc_buf_is_shared(lastbuf)); 2770 /* hdr is uncompressed so can't have compressed buf */ 2771 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 2772 2773 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2774 arc_hdr_free_pabd(hdr); 2775 2776 /* 2777 * We must setup a new shared block between the 2778 * last buffer and the hdr. The data would have 2779 * been allocated by the arc buf so we need to transfer 2780 * ownership to the hdr since it's now being shared. 2781 */ 2782 arc_share_buf(hdr, lastbuf); 2783 } 2784 } else if (HDR_SHARED_DATA(hdr)) { 2785 /* 2786 * Uncompressed shared buffers are always at the end 2787 * of the list. Compressed buffers don't have the 2788 * same requirements. This makes it hard to 2789 * simply assert that the lastbuf is shared so 2790 * we rely on the hdr's compression flags to determine 2791 * if we have a compressed, shared buffer. 2792 */ 2793 ASSERT3P(lastbuf, !=, NULL); 2794 ASSERT(arc_buf_is_shared(lastbuf) || 2795 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF); 2796 } 2797 2798 /* 2799 * Free the checksum if we're removing the last uncompressed buf from 2800 * this hdr. 2801 */ 2802 if (!arc_hdr_has_uncompressed_buf(hdr)) { 2803 arc_cksum_free(hdr); 2804 } 2805 2806 /* clean up the buf */ 2807 buf->b_hdr = NULL; 2808 kmem_cache_free(buf_cache, buf); 2809 } 2810 2811 static void 2812 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr) 2813 { 2814 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2815 ASSERT(HDR_HAS_L1HDR(hdr)); 2816 ASSERT(!HDR_SHARED_DATA(hdr)); 2817 2818 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2819 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr); 2820 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 2821 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2822 2823 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2824 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2825 } 2826 2827 static void 2828 arc_hdr_free_pabd(arc_buf_hdr_t *hdr) 2829 { 2830 ASSERT(HDR_HAS_L1HDR(hdr)); 2831 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2832 2833 /* 2834 * If the hdr is currently being written to the l2arc then 2835 * we defer freeing the data by adding it to the l2arc_free_on_write 2836 * list. The l2arc will free the data once it's finished 2837 * writing it to the l2arc device. 2838 */ 2839 if (HDR_L2_WRITING(hdr)) { 2840 arc_hdr_free_on_write(hdr); 2841 ARCSTAT_BUMP(arcstat_l2_free_on_write); 2842 } else { 2843 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 2844 arc_hdr_size(hdr), hdr); 2845 } 2846 hdr->b_l1hdr.b_pabd = NULL; 2847 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 2848 2849 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2850 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2851 } 2852 2853 static arc_buf_hdr_t * 2854 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 2855 enum zio_compress compression_type, arc_buf_contents_t type) 2856 { 2857 arc_buf_hdr_t *hdr; 2858 2859 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 2860 2861 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 2862 ASSERT(HDR_EMPTY(hdr)); 2863 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 2864 ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL); 2865 HDR_SET_PSIZE(hdr, psize); 2866 HDR_SET_LSIZE(hdr, lsize); 2867 hdr->b_spa = spa; 2868 hdr->b_type = type; 2869 hdr->b_flags = 0; 2870 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 2871 arc_hdr_set_compress(hdr, compression_type); 2872 2873 hdr->b_l1hdr.b_state = arc_anon; 2874 hdr->b_l1hdr.b_arc_access = 0; 2875 hdr->b_l1hdr.b_bufcnt = 0; 2876 hdr->b_l1hdr.b_buf = NULL; 2877 2878 /* 2879 * Allocate the hdr's buffer. This will contain either 2880 * the compressed or uncompressed data depending on the block 2881 * it references and compressed arc enablement. 2882 */ 2883 arc_hdr_alloc_pabd(hdr); 2884 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2885 2886 return (hdr); 2887 } 2888 2889 /* 2890 * Transition between the two allocation states for the arc_buf_hdr struct. 2891 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 2892 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 2893 * version is used when a cache buffer is only in the L2ARC in order to reduce 2894 * memory usage. 2895 */ 2896 static arc_buf_hdr_t * 2897 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 2898 { 2899 ASSERT(HDR_HAS_L2HDR(hdr)); 2900 2901 arc_buf_hdr_t *nhdr; 2902 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 2903 2904 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 2905 (old == hdr_l2only_cache && new == hdr_full_cache)); 2906 2907 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 2908 2909 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 2910 buf_hash_remove(hdr); 2911 2912 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 2913 2914 if (new == hdr_full_cache) { 2915 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 2916 /* 2917 * arc_access and arc_change_state need to be aware that a 2918 * header has just come out of L2ARC, so we set its state to 2919 * l2c_only even though it's about to change. 2920 */ 2921 nhdr->b_l1hdr.b_state = arc_l2c_only; 2922 2923 /* Verify previous threads set to NULL before freeing */ 2924 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 2925 } else { 2926 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2927 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2928 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 2929 2930 /* 2931 * If we've reached here, We must have been called from 2932 * arc_evict_hdr(), as such we should have already been 2933 * removed from any ghost list we were previously on 2934 * (which protects us from racing with arc_evict_state), 2935 * thus no locking is needed during this check. 2936 */ 2937 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 2938 2939 /* 2940 * A buffer must not be moved into the arc_l2c_only 2941 * state if it's not finished being written out to the 2942 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 2943 * might try to be accessed, even though it was removed. 2944 */ 2945 VERIFY(!HDR_L2_WRITING(hdr)); 2946 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2947 2948 #ifdef ZFS_DEBUG 2949 if (hdr->b_l1hdr.b_thawed != NULL) { 2950 kmem_free(hdr->b_l1hdr.b_thawed, 1); 2951 hdr->b_l1hdr.b_thawed = NULL; 2952 } 2953 #endif 2954 2955 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 2956 } 2957 /* 2958 * The header has been reallocated so we need to re-insert it into any 2959 * lists it was on. 2960 */ 2961 (void) buf_hash_insert(nhdr, NULL); 2962 2963 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 2964 2965 mutex_enter(&dev->l2ad_mtx); 2966 2967 /* 2968 * We must place the realloc'ed header back into the list at 2969 * the same spot. Otherwise, if it's placed earlier in the list, 2970 * l2arc_write_buffers() could find it during the function's 2971 * write phase, and try to write it out to the l2arc. 2972 */ 2973 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 2974 list_remove(&dev->l2ad_buflist, hdr); 2975 2976 mutex_exit(&dev->l2ad_mtx); 2977 2978 /* 2979 * Since we're using the pointer address as the tag when 2980 * incrementing and decrementing the l2ad_alloc refcount, we 2981 * must remove the old pointer (that we're about to destroy) and 2982 * add the new pointer to the refcount. Otherwise we'd remove 2983 * the wrong pointer address when calling arc_hdr_destroy() later. 2984 */ 2985 2986 (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 2987 (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr); 2988 2989 buf_discard_identity(hdr); 2990 kmem_cache_free(old, hdr); 2991 2992 return (nhdr); 2993 } 2994 2995 /* 2996 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 2997 * The buf is returned thawed since we expect the consumer to modify it. 2998 */ 2999 arc_buf_t * 3000 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3001 { 3002 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3003 ZIO_COMPRESS_OFF, type); 3004 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr))); 3005 3006 arc_buf_t *buf = NULL; 3007 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf)); 3008 arc_buf_thaw(buf); 3009 3010 return (buf); 3011 } 3012 3013 /* 3014 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3015 * for bufs containing metadata. 3016 */ 3017 arc_buf_t * 3018 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3019 enum zio_compress compression_type) 3020 { 3021 ASSERT3U(lsize, >, 0); 3022 ASSERT3U(lsize, >=, psize); 3023 ASSERT(compression_type > ZIO_COMPRESS_OFF); 3024 ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS); 3025 3026 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3027 compression_type, ARC_BUFC_DATA); 3028 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr))); 3029 3030 arc_buf_t *buf = NULL; 3031 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf)); 3032 arc_buf_thaw(buf); 3033 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3034 3035 if (!arc_buf_is_shared(buf)) { 3036 /* 3037 * To ensure that the hdr has the correct data in it if we call 3038 * arc_decompress() on this buf before it's been written to 3039 * disk, it's easiest if we just set up sharing between the 3040 * buf and the hdr. 3041 */ 3042 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd)); 3043 arc_hdr_free_pabd(hdr); 3044 arc_share_buf(hdr, buf); 3045 } 3046 3047 return (buf); 3048 } 3049 3050 static void 3051 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3052 { 3053 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3054 l2arc_dev_t *dev = l2hdr->b_dev; 3055 uint64_t psize = arc_hdr_size(hdr); 3056 3057 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3058 ASSERT(HDR_HAS_L2HDR(hdr)); 3059 3060 list_remove(&dev->l2ad_buflist, hdr); 3061 3062 ARCSTAT_INCR(arcstat_l2_psize, -psize); 3063 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr)); 3064 3065 vdev_space_update(dev->l2ad_vdev, -psize, 0, 0); 3066 3067 (void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr); 3068 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3069 } 3070 3071 static void 3072 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3073 { 3074 if (HDR_HAS_L1HDR(hdr)) { 3075 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3076 hdr->b_l1hdr.b_bufcnt > 0); 3077 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3078 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3079 } 3080 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3081 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3082 3083 if (!HDR_EMPTY(hdr)) 3084 buf_discard_identity(hdr); 3085 3086 if (HDR_HAS_L2HDR(hdr)) { 3087 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3088 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3089 3090 if (!buflist_held) 3091 mutex_enter(&dev->l2ad_mtx); 3092 3093 /* 3094 * Even though we checked this conditional above, we 3095 * need to check this again now that we have the 3096 * l2ad_mtx. This is because we could be racing with 3097 * another thread calling l2arc_evict() which might have 3098 * destroyed this header's L2 portion as we were waiting 3099 * to acquire the l2ad_mtx. If that happens, we don't 3100 * want to re-destroy the header's L2 portion. 3101 */ 3102 if (HDR_HAS_L2HDR(hdr)) 3103 arc_hdr_l2hdr_destroy(hdr); 3104 3105 if (!buflist_held) 3106 mutex_exit(&dev->l2ad_mtx); 3107 } 3108 3109 if (HDR_HAS_L1HDR(hdr)) { 3110 arc_cksum_free(hdr); 3111 3112 while (hdr->b_l1hdr.b_buf != NULL) 3113 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3114 3115 #ifdef ZFS_DEBUG 3116 if (hdr->b_l1hdr.b_thawed != NULL) { 3117 kmem_free(hdr->b_l1hdr.b_thawed, 1); 3118 hdr->b_l1hdr.b_thawed = NULL; 3119 } 3120 #endif 3121 3122 if (hdr->b_l1hdr.b_pabd != NULL) { 3123 arc_hdr_free_pabd(hdr); 3124 } 3125 } 3126 3127 ASSERT3P(hdr->b_hash_next, ==, NULL); 3128 if (HDR_HAS_L1HDR(hdr)) { 3129 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3130 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3131 kmem_cache_free(hdr_full_cache, hdr); 3132 } else { 3133 kmem_cache_free(hdr_l2only_cache, hdr); 3134 } 3135 } 3136 3137 void 3138 arc_buf_destroy(arc_buf_t *buf, void* tag) 3139 { 3140 arc_buf_hdr_t *hdr = buf->b_hdr; 3141 kmutex_t *hash_lock = HDR_LOCK(hdr); 3142 3143 if (hdr->b_l1hdr.b_state == arc_anon) { 3144 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3145 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3146 VERIFY0(remove_reference(hdr, NULL, tag)); 3147 arc_hdr_destroy(hdr); 3148 return; 3149 } 3150 3151 mutex_enter(hash_lock); 3152 ASSERT3P(hdr, ==, buf->b_hdr); 3153 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3154 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3155 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3156 ASSERT3P(buf->b_data, !=, NULL); 3157 3158 (void) remove_reference(hdr, hash_lock, tag); 3159 arc_buf_destroy_impl(buf); 3160 mutex_exit(hash_lock); 3161 } 3162 3163 /* 3164 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3165 * state of the header is dependent on it's state prior to entering this 3166 * function. The following transitions are possible: 3167 * 3168 * - arc_mru -> arc_mru_ghost 3169 * - arc_mfu -> arc_mfu_ghost 3170 * - arc_mru_ghost -> arc_l2c_only 3171 * - arc_mru_ghost -> deleted 3172 * - arc_mfu_ghost -> arc_l2c_only 3173 * - arc_mfu_ghost -> deleted 3174 */ 3175 static int64_t 3176 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3177 { 3178 arc_state_t *evicted_state, *state; 3179 int64_t bytes_evicted = 0; 3180 3181 ASSERT(MUTEX_HELD(hash_lock)); 3182 ASSERT(HDR_HAS_L1HDR(hdr)); 3183 3184 state = hdr->b_l1hdr.b_state; 3185 if (GHOST_STATE(state)) { 3186 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3187 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3188 3189 /* 3190 * l2arc_write_buffers() relies on a header's L1 portion 3191 * (i.e. its b_pabd field) during it's write phase. 3192 * Thus, we cannot push a header onto the arc_l2c_only 3193 * state (removing it's L1 piece) until the header is 3194 * done being written to the l2arc. 3195 */ 3196 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3197 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3198 return (bytes_evicted); 3199 } 3200 3201 ARCSTAT_BUMP(arcstat_deleted); 3202 bytes_evicted += HDR_GET_LSIZE(hdr); 3203 3204 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3205 3206 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3207 if (HDR_HAS_L2HDR(hdr)) { 3208 /* 3209 * This buffer is cached on the 2nd Level ARC; 3210 * don't destroy the header. 3211 */ 3212 arc_change_state(arc_l2c_only, hdr, hash_lock); 3213 /* 3214 * dropping from L1+L2 cached to L2-only, 3215 * realloc to remove the L1 header. 3216 */ 3217 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3218 hdr_l2only_cache); 3219 } else { 3220 arc_change_state(arc_anon, hdr, hash_lock); 3221 arc_hdr_destroy(hdr); 3222 } 3223 return (bytes_evicted); 3224 } 3225 3226 ASSERT(state == arc_mru || state == arc_mfu); 3227 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3228 3229 /* prefetch buffers have a minimum lifespan */ 3230 if (HDR_IO_IN_PROGRESS(hdr) || 3231 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3232 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3233 arc_min_prefetch_lifespan)) { 3234 ARCSTAT_BUMP(arcstat_evict_skip); 3235 return (bytes_evicted); 3236 } 3237 3238 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 3239 while (hdr->b_l1hdr.b_buf) { 3240 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3241 if (!mutex_tryenter(&buf->b_evict_lock)) { 3242 ARCSTAT_BUMP(arcstat_mutex_miss); 3243 break; 3244 } 3245 if (buf->b_data != NULL) 3246 bytes_evicted += HDR_GET_LSIZE(hdr); 3247 mutex_exit(&buf->b_evict_lock); 3248 arc_buf_destroy_impl(buf); 3249 } 3250 3251 if (HDR_HAS_L2HDR(hdr)) { 3252 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3253 } else { 3254 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3255 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3256 HDR_GET_LSIZE(hdr)); 3257 } else { 3258 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3259 HDR_GET_LSIZE(hdr)); 3260 } 3261 } 3262 3263 if (hdr->b_l1hdr.b_bufcnt == 0) { 3264 arc_cksum_free(hdr); 3265 3266 bytes_evicted += arc_hdr_size(hdr); 3267 3268 /* 3269 * If this hdr is being evicted and has a compressed 3270 * buffer then we discard it here before we change states. 3271 * This ensures that the accounting is updated correctly 3272 * in arc_free_data_impl(). 3273 */ 3274 arc_hdr_free_pabd(hdr); 3275 3276 arc_change_state(evicted_state, hdr, hash_lock); 3277 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3278 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 3279 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3280 } 3281 3282 return (bytes_evicted); 3283 } 3284 3285 static uint64_t 3286 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 3287 uint64_t spa, int64_t bytes) 3288 { 3289 multilist_sublist_t *mls; 3290 uint64_t bytes_evicted = 0; 3291 arc_buf_hdr_t *hdr; 3292 kmutex_t *hash_lock; 3293 int evict_count = 0; 3294 3295 ASSERT3P(marker, !=, NULL); 3296 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3297 3298 mls = multilist_sublist_lock(ml, idx); 3299 3300 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 3301 hdr = multilist_sublist_prev(mls, marker)) { 3302 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 3303 (evict_count >= zfs_arc_evict_batch_limit)) 3304 break; 3305 3306 /* 3307 * To keep our iteration location, move the marker 3308 * forward. Since we're not holding hdr's hash lock, we 3309 * must be very careful and not remove 'hdr' from the 3310 * sublist. Otherwise, other consumers might mistake the 3311 * 'hdr' as not being on a sublist when they call the 3312 * multilist_link_active() function (they all rely on 3313 * the hash lock protecting concurrent insertions and 3314 * removals). multilist_sublist_move_forward() was 3315 * specifically implemented to ensure this is the case 3316 * (only 'marker' will be removed and re-inserted). 3317 */ 3318 multilist_sublist_move_forward(mls, marker); 3319 3320 /* 3321 * The only case where the b_spa field should ever be 3322 * zero, is the marker headers inserted by 3323 * arc_evict_state(). It's possible for multiple threads 3324 * to be calling arc_evict_state() concurrently (e.g. 3325 * dsl_pool_close() and zio_inject_fault()), so we must 3326 * skip any markers we see from these other threads. 3327 */ 3328 if (hdr->b_spa == 0) 3329 continue; 3330 3331 /* we're only interested in evicting buffers of a certain spa */ 3332 if (spa != 0 && hdr->b_spa != spa) { 3333 ARCSTAT_BUMP(arcstat_evict_skip); 3334 continue; 3335 } 3336 3337 hash_lock = HDR_LOCK(hdr); 3338 3339 /* 3340 * We aren't calling this function from any code path 3341 * that would already be holding a hash lock, so we're 3342 * asserting on this assumption to be defensive in case 3343 * this ever changes. Without this check, it would be 3344 * possible to incorrectly increment arcstat_mutex_miss 3345 * below (e.g. if the code changed such that we called 3346 * this function with a hash lock held). 3347 */ 3348 ASSERT(!MUTEX_HELD(hash_lock)); 3349 3350 if (mutex_tryenter(hash_lock)) { 3351 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 3352 mutex_exit(hash_lock); 3353 3354 bytes_evicted += evicted; 3355 3356 /* 3357 * If evicted is zero, arc_evict_hdr() must have 3358 * decided to skip this header, don't increment 3359 * evict_count in this case. 3360 */ 3361 if (evicted != 0) 3362 evict_count++; 3363 3364 /* 3365 * If arc_size isn't overflowing, signal any 3366 * threads that might happen to be waiting. 3367 * 3368 * For each header evicted, we wake up a single 3369 * thread. If we used cv_broadcast, we could 3370 * wake up "too many" threads causing arc_size 3371 * to significantly overflow arc_c; since 3372 * arc_get_data_impl() doesn't check for overflow 3373 * when it's woken up (it doesn't because it's 3374 * possible for the ARC to be overflowing while 3375 * full of un-evictable buffers, and the 3376 * function should proceed in this case). 3377 * 3378 * If threads are left sleeping, due to not 3379 * using cv_broadcast, they will be woken up 3380 * just before arc_reclaim_thread() sleeps. 3381 */ 3382 mutex_enter(&arc_reclaim_lock); 3383 if (!arc_is_overflowing()) 3384 cv_signal(&arc_reclaim_waiters_cv); 3385 mutex_exit(&arc_reclaim_lock); 3386 } else { 3387 ARCSTAT_BUMP(arcstat_mutex_miss); 3388 } 3389 } 3390 3391 multilist_sublist_unlock(mls); 3392 3393 return (bytes_evicted); 3394 } 3395 3396 /* 3397 * Evict buffers from the given arc state, until we've removed the 3398 * specified number of bytes. Move the removed buffers to the 3399 * appropriate evict state. 3400 * 3401 * This function makes a "best effort". It skips over any buffers 3402 * it can't get a hash_lock on, and so, may not catch all candidates. 3403 * It may also return without evicting as much space as requested. 3404 * 3405 * If bytes is specified using the special value ARC_EVICT_ALL, this 3406 * will evict all available (i.e. unlocked and evictable) buffers from 3407 * the given arc state; which is used by arc_flush(). 3408 */ 3409 static uint64_t 3410 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 3411 arc_buf_contents_t type) 3412 { 3413 uint64_t total_evicted = 0; 3414 multilist_t *ml = state->arcs_list[type]; 3415 int num_sublists; 3416 arc_buf_hdr_t **markers; 3417 3418 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3419 3420 num_sublists = multilist_get_num_sublists(ml); 3421 3422 /* 3423 * If we've tried to evict from each sublist, made some 3424 * progress, but still have not hit the target number of bytes 3425 * to evict, we want to keep trying. The markers allow us to 3426 * pick up where we left off for each individual sublist, rather 3427 * than starting from the tail each time. 3428 */ 3429 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 3430 for (int i = 0; i < num_sublists; i++) { 3431 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 3432 3433 /* 3434 * A b_spa of 0 is used to indicate that this header is 3435 * a marker. This fact is used in arc_adjust_type() and 3436 * arc_evict_state_impl(). 3437 */ 3438 markers[i]->b_spa = 0; 3439 3440 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 3441 multilist_sublist_insert_tail(mls, markers[i]); 3442 multilist_sublist_unlock(mls); 3443 } 3444 3445 /* 3446 * While we haven't hit our target number of bytes to evict, or 3447 * we're evicting all available buffers. 3448 */ 3449 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 3450 /* 3451 * Start eviction using a randomly selected sublist, 3452 * this is to try and evenly balance eviction across all 3453 * sublists. Always starting at the same sublist 3454 * (e.g. index 0) would cause evictions to favor certain 3455 * sublists over others. 3456 */ 3457 int sublist_idx = multilist_get_random_index(ml); 3458 uint64_t scan_evicted = 0; 3459 3460 for (int i = 0; i < num_sublists; i++) { 3461 uint64_t bytes_remaining; 3462 uint64_t bytes_evicted; 3463 3464 if (bytes == ARC_EVICT_ALL) 3465 bytes_remaining = ARC_EVICT_ALL; 3466 else if (total_evicted < bytes) 3467 bytes_remaining = bytes - total_evicted; 3468 else 3469 break; 3470 3471 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 3472 markers[sublist_idx], spa, bytes_remaining); 3473 3474 scan_evicted += bytes_evicted; 3475 total_evicted += bytes_evicted; 3476 3477 /* we've reached the end, wrap to the beginning */ 3478 if (++sublist_idx >= num_sublists) 3479 sublist_idx = 0; 3480 } 3481 3482 /* 3483 * If we didn't evict anything during this scan, we have 3484 * no reason to believe we'll evict more during another 3485 * scan, so break the loop. 3486 */ 3487 if (scan_evicted == 0) { 3488 /* This isn't possible, let's make that obvious */ 3489 ASSERT3S(bytes, !=, 0); 3490 3491 /* 3492 * When bytes is ARC_EVICT_ALL, the only way to 3493 * break the loop is when scan_evicted is zero. 3494 * In that case, we actually have evicted enough, 3495 * so we don't want to increment the kstat. 3496 */ 3497 if (bytes != ARC_EVICT_ALL) { 3498 ASSERT3S(total_evicted, <, bytes); 3499 ARCSTAT_BUMP(arcstat_evict_not_enough); 3500 } 3501 3502 break; 3503 } 3504 } 3505 3506 for (int i = 0; i < num_sublists; i++) { 3507 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 3508 multilist_sublist_remove(mls, markers[i]); 3509 multilist_sublist_unlock(mls); 3510 3511 kmem_cache_free(hdr_full_cache, markers[i]); 3512 } 3513 kmem_free(markers, sizeof (*markers) * num_sublists); 3514 3515 return (total_evicted); 3516 } 3517 3518 /* 3519 * Flush all "evictable" data of the given type from the arc state 3520 * specified. This will not evict any "active" buffers (i.e. referenced). 3521 * 3522 * When 'retry' is set to B_FALSE, the function will make a single pass 3523 * over the state and evict any buffers that it can. Since it doesn't 3524 * continually retry the eviction, it might end up leaving some buffers 3525 * in the ARC due to lock misses. 3526 * 3527 * When 'retry' is set to B_TRUE, the function will continually retry the 3528 * eviction until *all* evictable buffers have been removed from the 3529 * state. As a result, if concurrent insertions into the state are 3530 * allowed (e.g. if the ARC isn't shutting down), this function might 3531 * wind up in an infinite loop, continually trying to evict buffers. 3532 */ 3533 static uint64_t 3534 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 3535 boolean_t retry) 3536 { 3537 uint64_t evicted = 0; 3538 3539 while (refcount_count(&state->arcs_esize[type]) != 0) { 3540 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 3541 3542 if (!retry) 3543 break; 3544 } 3545 3546 return (evicted); 3547 } 3548 3549 /* 3550 * Evict the specified number of bytes from the state specified, 3551 * restricting eviction to the spa and type given. This function 3552 * prevents us from trying to evict more from a state's list than 3553 * is "evictable", and to skip evicting altogether when passed a 3554 * negative value for "bytes". In contrast, arc_evict_state() will 3555 * evict everything it can, when passed a negative value for "bytes". 3556 */ 3557 static uint64_t 3558 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 3559 arc_buf_contents_t type) 3560 { 3561 int64_t delta; 3562 3563 if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) { 3564 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes); 3565 return (arc_evict_state(state, spa, delta, type)); 3566 } 3567 3568 return (0); 3569 } 3570 3571 /* 3572 * Evict metadata buffers from the cache, such that arc_meta_used is 3573 * capped by the arc_meta_limit tunable. 3574 */ 3575 static uint64_t 3576 arc_adjust_meta(void) 3577 { 3578 uint64_t total_evicted = 0; 3579 int64_t target; 3580 3581 /* 3582 * If we're over the meta limit, we want to evict enough 3583 * metadata to get back under the meta limit. We don't want to 3584 * evict so much that we drop the MRU below arc_p, though. If 3585 * we're over the meta limit more than we're over arc_p, we 3586 * evict some from the MRU here, and some from the MFU below. 3587 */ 3588 target = MIN((int64_t)(arc_meta_used - arc_meta_limit), 3589 (int64_t)(refcount_count(&arc_anon->arcs_size) + 3590 refcount_count(&arc_mru->arcs_size) - arc_p)); 3591 3592 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3593 3594 /* 3595 * Similar to the above, we want to evict enough bytes to get us 3596 * below the meta limit, but not so much as to drop us below the 3597 * space allotted to the MFU (which is defined as arc_c - arc_p). 3598 */ 3599 target = MIN((int64_t)(arc_meta_used - arc_meta_limit), 3600 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p))); 3601 3602 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3603 3604 return (total_evicted); 3605 } 3606 3607 /* 3608 * Return the type of the oldest buffer in the given arc state 3609 * 3610 * This function will select a random sublist of type ARC_BUFC_DATA and 3611 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 3612 * is compared, and the type which contains the "older" buffer will be 3613 * returned. 3614 */ 3615 static arc_buf_contents_t 3616 arc_adjust_type(arc_state_t *state) 3617 { 3618 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA]; 3619 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA]; 3620 int data_idx = multilist_get_random_index(data_ml); 3621 int meta_idx = multilist_get_random_index(meta_ml); 3622 multilist_sublist_t *data_mls; 3623 multilist_sublist_t *meta_mls; 3624 arc_buf_contents_t type; 3625 arc_buf_hdr_t *data_hdr; 3626 arc_buf_hdr_t *meta_hdr; 3627 3628 /* 3629 * We keep the sublist lock until we're finished, to prevent 3630 * the headers from being destroyed via arc_evict_state(). 3631 */ 3632 data_mls = multilist_sublist_lock(data_ml, data_idx); 3633 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 3634 3635 /* 3636 * These two loops are to ensure we skip any markers that 3637 * might be at the tail of the lists due to arc_evict_state(). 3638 */ 3639 3640 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 3641 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 3642 if (data_hdr->b_spa != 0) 3643 break; 3644 } 3645 3646 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 3647 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 3648 if (meta_hdr->b_spa != 0) 3649 break; 3650 } 3651 3652 if (data_hdr == NULL && meta_hdr == NULL) { 3653 type = ARC_BUFC_DATA; 3654 } else if (data_hdr == NULL) { 3655 ASSERT3P(meta_hdr, !=, NULL); 3656 type = ARC_BUFC_METADATA; 3657 } else if (meta_hdr == NULL) { 3658 ASSERT3P(data_hdr, !=, NULL); 3659 type = ARC_BUFC_DATA; 3660 } else { 3661 ASSERT3P(data_hdr, !=, NULL); 3662 ASSERT3P(meta_hdr, !=, NULL); 3663 3664 /* The headers can't be on the sublist without an L1 header */ 3665 ASSERT(HDR_HAS_L1HDR(data_hdr)); 3666 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 3667 3668 if (data_hdr->b_l1hdr.b_arc_access < 3669 meta_hdr->b_l1hdr.b_arc_access) { 3670 type = ARC_BUFC_DATA; 3671 } else { 3672 type = ARC_BUFC_METADATA; 3673 } 3674 } 3675 3676 multilist_sublist_unlock(meta_mls); 3677 multilist_sublist_unlock(data_mls); 3678 3679 return (type); 3680 } 3681 3682 /* 3683 * Evict buffers from the cache, such that arc_size is capped by arc_c. 3684 */ 3685 static uint64_t 3686 arc_adjust(void) 3687 { 3688 uint64_t total_evicted = 0; 3689 uint64_t bytes; 3690 int64_t target; 3691 3692 /* 3693 * If we're over arc_meta_limit, we want to correct that before 3694 * potentially evicting data buffers below. 3695 */ 3696 total_evicted += arc_adjust_meta(); 3697 3698 /* 3699 * Adjust MRU size 3700 * 3701 * If we're over the target cache size, we want to evict enough 3702 * from the list to get back to our target size. We don't want 3703 * to evict too much from the MRU, such that it drops below 3704 * arc_p. So, if we're over our target cache size more than 3705 * the MRU is over arc_p, we'll evict enough to get back to 3706 * arc_p here, and then evict more from the MFU below. 3707 */ 3708 target = MIN((int64_t)(arc_size - arc_c), 3709 (int64_t)(refcount_count(&arc_anon->arcs_size) + 3710 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p)); 3711 3712 /* 3713 * If we're below arc_meta_min, always prefer to evict data. 3714 * Otherwise, try to satisfy the requested number of bytes to 3715 * evict from the type which contains older buffers; in an 3716 * effort to keep newer buffers in the cache regardless of their 3717 * type. If we cannot satisfy the number of bytes from this 3718 * type, spill over into the next type. 3719 */ 3720 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA && 3721 arc_meta_used > arc_meta_min) { 3722 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3723 total_evicted += bytes; 3724 3725 /* 3726 * If we couldn't evict our target number of bytes from 3727 * metadata, we try to get the rest from data. 3728 */ 3729 target -= bytes; 3730 3731 total_evicted += 3732 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 3733 } else { 3734 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 3735 total_evicted += bytes; 3736 3737 /* 3738 * If we couldn't evict our target number of bytes from 3739 * data, we try to get the rest from metadata. 3740 */ 3741 target -= bytes; 3742 3743 total_evicted += 3744 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3745 } 3746 3747 /* 3748 * Adjust MFU size 3749 * 3750 * Now that we've tried to evict enough from the MRU to get its 3751 * size back to arc_p, if we're still above the target cache 3752 * size, we evict the rest from the MFU. 3753 */ 3754 target = arc_size - arc_c; 3755 3756 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA && 3757 arc_meta_used > arc_meta_min) { 3758 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3759 total_evicted += bytes; 3760 3761 /* 3762 * If we couldn't evict our target number of bytes from 3763 * metadata, we try to get the rest from data. 3764 */ 3765 target -= bytes; 3766 3767 total_evicted += 3768 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 3769 } else { 3770 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 3771 total_evicted += bytes; 3772 3773 /* 3774 * If we couldn't evict our target number of bytes from 3775 * data, we try to get the rest from data. 3776 */ 3777 target -= bytes; 3778 3779 total_evicted += 3780 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3781 } 3782 3783 /* 3784 * Adjust ghost lists 3785 * 3786 * In addition to the above, the ARC also defines target values 3787 * for the ghost lists. The sum of the mru list and mru ghost 3788 * list should never exceed the target size of the cache, and 3789 * the sum of the mru list, mfu list, mru ghost list, and mfu 3790 * ghost list should never exceed twice the target size of the 3791 * cache. The following logic enforces these limits on the ghost 3792 * caches, and evicts from them as needed. 3793 */ 3794 target = refcount_count(&arc_mru->arcs_size) + 3795 refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 3796 3797 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 3798 total_evicted += bytes; 3799 3800 target -= bytes; 3801 3802 total_evicted += 3803 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 3804 3805 /* 3806 * We assume the sum of the mru list and mfu list is less than 3807 * or equal to arc_c (we enforced this above), which means we 3808 * can use the simpler of the two equations below: 3809 * 3810 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 3811 * mru ghost + mfu ghost <= arc_c 3812 */ 3813 target = refcount_count(&arc_mru_ghost->arcs_size) + 3814 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 3815 3816 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 3817 total_evicted += bytes; 3818 3819 target -= bytes; 3820 3821 total_evicted += 3822 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 3823 3824 return (total_evicted); 3825 } 3826 3827 void 3828 arc_flush(spa_t *spa, boolean_t retry) 3829 { 3830 uint64_t guid = 0; 3831 3832 /* 3833 * If retry is B_TRUE, a spa must not be specified since we have 3834 * no good way to determine if all of a spa's buffers have been 3835 * evicted from an arc state. 3836 */ 3837 ASSERT(!retry || spa == 0); 3838 3839 if (spa != NULL) 3840 guid = spa_load_guid(spa); 3841 3842 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 3843 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 3844 3845 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 3846 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 3847 3848 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 3849 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 3850 3851 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 3852 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 3853 } 3854 3855 void 3856 arc_shrink(int64_t to_free) 3857 { 3858 if (arc_c > arc_c_min) { 3859 3860 if (arc_c > arc_c_min + to_free) 3861 atomic_add_64(&arc_c, -to_free); 3862 else 3863 arc_c = arc_c_min; 3864 3865 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 3866 if (arc_c > arc_size) 3867 arc_c = MAX(arc_size, arc_c_min); 3868 if (arc_p > arc_c) 3869 arc_p = (arc_c >> 1); 3870 ASSERT(arc_c >= arc_c_min); 3871 ASSERT((int64_t)arc_p >= 0); 3872 } 3873 3874 if (arc_size > arc_c) 3875 (void) arc_adjust(); 3876 } 3877 3878 typedef enum free_memory_reason_t { 3879 FMR_UNKNOWN, 3880 FMR_NEEDFREE, 3881 FMR_LOTSFREE, 3882 FMR_SWAPFS_MINFREE, 3883 FMR_PAGES_PP_MAXIMUM, 3884 FMR_HEAP_ARENA, 3885 FMR_ZIO_ARENA, 3886 } free_memory_reason_t; 3887 3888 int64_t last_free_memory; 3889 free_memory_reason_t last_free_reason; 3890 3891 /* 3892 * Additional reserve of pages for pp_reserve. 3893 */ 3894 int64_t arc_pages_pp_reserve = 64; 3895 3896 /* 3897 * Additional reserve of pages for swapfs. 3898 */ 3899 int64_t arc_swapfs_reserve = 64; 3900 3901 /* 3902 * Return the amount of memory that can be consumed before reclaim will be 3903 * needed. Positive if there is sufficient free memory, negative indicates 3904 * the amount of memory that needs to be freed up. 3905 */ 3906 static int64_t 3907 arc_available_memory(void) 3908 { 3909 int64_t lowest = INT64_MAX; 3910 int64_t n; 3911 free_memory_reason_t r = FMR_UNKNOWN; 3912 3913 #ifdef _KERNEL 3914 if (needfree > 0) { 3915 n = PAGESIZE * (-needfree); 3916 if (n < lowest) { 3917 lowest = n; 3918 r = FMR_NEEDFREE; 3919 } 3920 } 3921 3922 /* 3923 * check that we're out of range of the pageout scanner. It starts to 3924 * schedule paging if freemem is less than lotsfree and needfree. 3925 * lotsfree is the high-water mark for pageout, and needfree is the 3926 * number of needed free pages. We add extra pages here to make sure 3927 * the scanner doesn't start up while we're freeing memory. 3928 */ 3929 n = PAGESIZE * (freemem - lotsfree - needfree - desfree); 3930 if (n < lowest) { 3931 lowest = n; 3932 r = FMR_LOTSFREE; 3933 } 3934 3935 /* 3936 * check to make sure that swapfs has enough space so that anon 3937 * reservations can still succeed. anon_resvmem() checks that the 3938 * availrmem is greater than swapfs_minfree, and the number of reserved 3939 * swap pages. We also add a bit of extra here just to prevent 3940 * circumstances from getting really dire. 3941 */ 3942 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve - 3943 desfree - arc_swapfs_reserve); 3944 if (n < lowest) { 3945 lowest = n; 3946 r = FMR_SWAPFS_MINFREE; 3947 } 3948 3949 3950 /* 3951 * Check that we have enough availrmem that memory locking (e.g., via 3952 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 3953 * stores the number of pages that cannot be locked; when availrmem 3954 * drops below pages_pp_maximum, page locking mechanisms such as 3955 * page_pp_lock() will fail.) 3956 */ 3957 n = PAGESIZE * (availrmem - pages_pp_maximum - 3958 arc_pages_pp_reserve); 3959 if (n < lowest) { 3960 lowest = n; 3961 r = FMR_PAGES_PP_MAXIMUM; 3962 } 3963 3964 #if defined(__i386) 3965 /* 3966 * If we're on an i386 platform, it's possible that we'll exhaust the 3967 * kernel heap space before we ever run out of available physical 3968 * memory. Most checks of the size of the heap_area compare against 3969 * tune.t_minarmem, which is the minimum available real memory that we 3970 * can have in the system. However, this is generally fixed at 25 pages 3971 * which is so low that it's useless. In this comparison, we seek to 3972 * calculate the total heap-size, and reclaim if more than 3/4ths of the 3973 * heap is allocated. (Or, in the calculation, if less than 1/4th is 3974 * free) 3975 */ 3976 n = (int64_t)vmem_size(heap_arena, VMEM_FREE) - 3977 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2); 3978 if (n < lowest) { 3979 lowest = n; 3980 r = FMR_HEAP_ARENA; 3981 } 3982 #endif 3983 3984 /* 3985 * If zio data pages are being allocated out of a separate heap segment, 3986 * then enforce that the size of available vmem for this arena remains 3987 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free. 3988 * 3989 * Note that reducing the arc_zio_arena_free_shift keeps more virtual 3990 * memory (in the zio_arena) free, which can avoid memory 3991 * fragmentation issues. 3992 */ 3993 if (zio_arena != NULL) { 3994 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) - 3995 (vmem_size(zio_arena, VMEM_ALLOC) >> 3996 arc_zio_arena_free_shift); 3997 if (n < lowest) { 3998 lowest = n; 3999 r = FMR_ZIO_ARENA; 4000 } 4001 } 4002 #else 4003 /* Every 100 calls, free a small amount */ 4004 if (spa_get_random(100) == 0) 4005 lowest = -1024; 4006 #endif 4007 4008 last_free_memory = lowest; 4009 last_free_reason = r; 4010 4011 return (lowest); 4012 } 4013 4014 4015 /* 4016 * Determine if the system is under memory pressure and is asking 4017 * to reclaim memory. A return value of B_TRUE indicates that the system 4018 * is under memory pressure and that the arc should adjust accordingly. 4019 */ 4020 static boolean_t 4021 arc_reclaim_needed(void) 4022 { 4023 return (arc_available_memory() < 0); 4024 } 4025 4026 static void 4027 arc_kmem_reap_now(void) 4028 { 4029 size_t i; 4030 kmem_cache_t *prev_cache = NULL; 4031 kmem_cache_t *prev_data_cache = NULL; 4032 extern kmem_cache_t *zio_buf_cache[]; 4033 extern kmem_cache_t *zio_data_buf_cache[]; 4034 extern kmem_cache_t *range_seg_cache; 4035 extern kmem_cache_t *abd_chunk_cache; 4036 4037 #ifdef _KERNEL 4038 if (arc_meta_used >= arc_meta_limit) { 4039 /* 4040 * We are exceeding our meta-data cache limit. 4041 * Purge some DNLC entries to release holds on meta-data. 4042 */ 4043 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 4044 } 4045 #if defined(__i386) 4046 /* 4047 * Reclaim unused memory from all kmem caches. 4048 */ 4049 kmem_reap(); 4050 #endif 4051 #endif 4052 4053 /* 4054 * If a kmem reap is already active, don't schedule more. We must 4055 * check for this because kmem_cache_reap_soon() won't actually 4056 * block on the cache being reaped (this is to prevent callers from 4057 * becoming implicitly blocked by a system-wide kmem reap -- which, 4058 * on a system with many, many full magazines, can take minutes). 4059 */ 4060 if (kmem_cache_reap_active()) 4061 return; 4062 4063 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4064 if (zio_buf_cache[i] != prev_cache) { 4065 prev_cache = zio_buf_cache[i]; 4066 kmem_cache_reap_soon(zio_buf_cache[i]); 4067 } 4068 if (zio_data_buf_cache[i] != prev_data_cache) { 4069 prev_data_cache = zio_data_buf_cache[i]; 4070 kmem_cache_reap_soon(zio_data_buf_cache[i]); 4071 } 4072 } 4073 kmem_cache_reap_soon(abd_chunk_cache); 4074 kmem_cache_reap_soon(buf_cache); 4075 kmem_cache_reap_soon(hdr_full_cache); 4076 kmem_cache_reap_soon(hdr_l2only_cache); 4077 kmem_cache_reap_soon(range_seg_cache); 4078 4079 if (zio_arena != NULL) { 4080 /* 4081 * Ask the vmem arena to reclaim unused memory from its 4082 * quantum caches. 4083 */ 4084 vmem_qcache_reap(zio_arena); 4085 } 4086 } 4087 4088 /* 4089 * Threads can block in arc_get_data_impl() waiting for this thread to evict 4090 * enough data and signal them to proceed. When this happens, the threads in 4091 * arc_get_data_impl() are sleeping while holding the hash lock for their 4092 * particular arc header. Thus, we must be careful to never sleep on a 4093 * hash lock in this thread. This is to prevent the following deadlock: 4094 * 4095 * - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L", 4096 * waiting for the reclaim thread to signal it. 4097 * 4098 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter, 4099 * fails, and goes to sleep forever. 4100 * 4101 * This possible deadlock is avoided by always acquiring a hash lock 4102 * using mutex_tryenter() from arc_reclaim_thread(). 4103 */ 4104 /* ARGSUSED */ 4105 static void 4106 arc_reclaim_thread(void *unused) 4107 { 4108 hrtime_t growtime = 0; 4109 hrtime_t kmem_reap_time = 0; 4110 callb_cpr_t cpr; 4111 4112 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG); 4113 4114 mutex_enter(&arc_reclaim_lock); 4115 while (!arc_reclaim_thread_exit) { 4116 uint64_t evicted = 0; 4117 4118 /* 4119 * This is necessary in order for the mdb ::arc dcmd to 4120 * show up to date information. Since the ::arc command 4121 * does not call the kstat's update function, without 4122 * this call, the command may show stale stats for the 4123 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4124 * with this change, the data might be up to 1 second 4125 * out of date; but that should suffice. The arc_state_t 4126 * structures can be queried directly if more accurate 4127 * information is needed. 4128 */ 4129 if (arc_ksp != NULL) 4130 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4131 4132 mutex_exit(&arc_reclaim_lock); 4133 4134 /* 4135 * We call arc_adjust() before (possibly) calling 4136 * arc_kmem_reap_now(), so that we can wake up 4137 * arc_get_data_impl() sooner. 4138 */ 4139 evicted = arc_adjust(); 4140 4141 int64_t free_memory = arc_available_memory(); 4142 if (free_memory < 0) { 4143 hrtime_t curtime = gethrtime(); 4144 arc_no_grow = B_TRUE; 4145 arc_warm = B_TRUE; 4146 4147 /* 4148 * Wait at least zfs_grow_retry (default 60) seconds 4149 * before considering growing. 4150 */ 4151 growtime = curtime + SEC2NSEC(arc_grow_retry); 4152 4153 /* 4154 * Wait at least arc_kmem_cache_reap_retry_ms 4155 * between arc_kmem_reap_now() calls. Without 4156 * this check it is possible to end up in a 4157 * situation where we spend lots of time 4158 * reaping caches, while we're near arc_c_min. 4159 */ 4160 if (curtime >= kmem_reap_time) { 4161 arc_kmem_reap_now(); 4162 kmem_reap_time = gethrtime() + 4163 MSEC2NSEC(arc_kmem_cache_reap_retry_ms); 4164 } 4165 4166 /* 4167 * If we are still low on memory, shrink the ARC 4168 * so that we have arc_shrink_min free space. 4169 */ 4170 free_memory = arc_available_memory(); 4171 4172 int64_t to_free = 4173 (arc_c >> arc_shrink_shift) - free_memory; 4174 if (to_free > 0) { 4175 #ifdef _KERNEL 4176 to_free = MAX(to_free, ptob(needfree)); 4177 #endif 4178 arc_shrink(to_free); 4179 } 4180 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4181 arc_no_grow = B_TRUE; 4182 } else if (gethrtime() >= growtime) { 4183 arc_no_grow = B_FALSE; 4184 } 4185 4186 mutex_enter(&arc_reclaim_lock); 4187 4188 /* 4189 * If evicted is zero, we couldn't evict anything via 4190 * arc_adjust(). This could be due to hash lock 4191 * collisions, but more likely due to the majority of 4192 * arc buffers being unevictable. Therefore, even if 4193 * arc_size is above arc_c, another pass is unlikely to 4194 * be helpful and could potentially cause us to enter an 4195 * infinite loop. 4196 */ 4197 if (arc_size <= arc_c || evicted == 0) { 4198 /* 4199 * We're either no longer overflowing, or we 4200 * can't evict anything more, so we should wake 4201 * up any threads before we go to sleep. 4202 */ 4203 cv_broadcast(&arc_reclaim_waiters_cv); 4204 4205 /* 4206 * Block until signaled, or after one second (we 4207 * might need to perform arc_kmem_reap_now() 4208 * even if we aren't being signalled) 4209 */ 4210 CALLB_CPR_SAFE_BEGIN(&cpr); 4211 (void) cv_timedwait_hires(&arc_reclaim_thread_cv, 4212 &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 4213 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock); 4214 } 4215 } 4216 4217 arc_reclaim_thread_exit = B_FALSE; 4218 cv_broadcast(&arc_reclaim_thread_cv); 4219 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */ 4220 thread_exit(); 4221 } 4222 4223 /* 4224 * Adapt arc info given the number of bytes we are trying to add and 4225 * the state that we are comming from. This function is only called 4226 * when we are adding new content to the cache. 4227 */ 4228 static void 4229 arc_adapt(int bytes, arc_state_t *state) 4230 { 4231 int mult; 4232 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 4233 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size); 4234 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size); 4235 4236 if (state == arc_l2c_only) 4237 return; 4238 4239 ASSERT(bytes > 0); 4240 /* 4241 * Adapt the target size of the MRU list: 4242 * - if we just hit in the MRU ghost list, then increase 4243 * the target size of the MRU list. 4244 * - if we just hit in the MFU ghost list, then increase 4245 * the target size of the MFU list by decreasing the 4246 * target size of the MRU list. 4247 */ 4248 if (state == arc_mru_ghost) { 4249 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 4250 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 4251 4252 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 4253 } else if (state == arc_mfu_ghost) { 4254 uint64_t delta; 4255 4256 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 4257 mult = MIN(mult, 10); 4258 4259 delta = MIN(bytes * mult, arc_p); 4260 arc_p = MAX(arc_p_min, arc_p - delta); 4261 } 4262 ASSERT((int64_t)arc_p >= 0); 4263 4264 if (arc_reclaim_needed()) { 4265 cv_signal(&arc_reclaim_thread_cv); 4266 return; 4267 } 4268 4269 if (arc_no_grow) 4270 return; 4271 4272 if (arc_c >= arc_c_max) 4273 return; 4274 4275 /* 4276 * If we're within (2 * maxblocksize) bytes of the target 4277 * cache size, increment the target cache size 4278 */ 4279 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 4280 atomic_add_64(&arc_c, (int64_t)bytes); 4281 if (arc_c > arc_c_max) 4282 arc_c = arc_c_max; 4283 else if (state == arc_anon) 4284 atomic_add_64(&arc_p, (int64_t)bytes); 4285 if (arc_p > arc_c) 4286 arc_p = arc_c; 4287 } 4288 ASSERT((int64_t)arc_p >= 0); 4289 } 4290 4291 /* 4292 * Check if arc_size has grown past our upper threshold, determined by 4293 * zfs_arc_overflow_shift. 4294 */ 4295 static boolean_t 4296 arc_is_overflowing(void) 4297 { 4298 /* Always allow at least one block of overflow */ 4299 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE, 4300 arc_c >> zfs_arc_overflow_shift); 4301 4302 return (arc_size >= arc_c + overflow); 4303 } 4304 4305 static abd_t * 4306 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4307 { 4308 arc_buf_contents_t type = arc_buf_type(hdr); 4309 4310 arc_get_data_impl(hdr, size, tag); 4311 if (type == ARC_BUFC_METADATA) { 4312 return (abd_alloc(size, B_TRUE)); 4313 } else { 4314 ASSERT(type == ARC_BUFC_DATA); 4315 return (abd_alloc(size, B_FALSE)); 4316 } 4317 } 4318 4319 static void * 4320 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4321 { 4322 arc_buf_contents_t type = arc_buf_type(hdr); 4323 4324 arc_get_data_impl(hdr, size, tag); 4325 if (type == ARC_BUFC_METADATA) { 4326 return (zio_buf_alloc(size)); 4327 } else { 4328 ASSERT(type == ARC_BUFC_DATA); 4329 return (zio_data_buf_alloc(size)); 4330 } 4331 } 4332 4333 /* 4334 * Allocate a block and return it to the caller. If we are hitting the 4335 * hard limit for the cache size, we must sleep, waiting for the eviction 4336 * thread to catch up. If we're past the target size but below the hard 4337 * limit, we'll only signal the reclaim thread and continue on. 4338 */ 4339 static void 4340 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4341 { 4342 arc_state_t *state = hdr->b_l1hdr.b_state; 4343 arc_buf_contents_t type = arc_buf_type(hdr); 4344 4345 arc_adapt(size, state); 4346 4347 /* 4348 * If arc_size is currently overflowing, and has grown past our 4349 * upper limit, we must be adding data faster than the evict 4350 * thread can evict. Thus, to ensure we don't compound the 4351 * problem by adding more data and forcing arc_size to grow even 4352 * further past it's target size, we halt and wait for the 4353 * eviction thread to catch up. 4354 * 4355 * It's also possible that the reclaim thread is unable to evict 4356 * enough buffers to get arc_size below the overflow limit (e.g. 4357 * due to buffers being un-evictable, or hash lock collisions). 4358 * In this case, we want to proceed regardless if we're 4359 * overflowing; thus we don't use a while loop here. 4360 */ 4361 if (arc_is_overflowing()) { 4362 mutex_enter(&arc_reclaim_lock); 4363 4364 /* 4365 * Now that we've acquired the lock, we may no longer be 4366 * over the overflow limit, lets check. 4367 * 4368 * We're ignoring the case of spurious wake ups. If that 4369 * were to happen, it'd let this thread consume an ARC 4370 * buffer before it should have (i.e. before we're under 4371 * the overflow limit and were signalled by the reclaim 4372 * thread). As long as that is a rare occurrence, it 4373 * shouldn't cause any harm. 4374 */ 4375 if (arc_is_overflowing()) { 4376 cv_signal(&arc_reclaim_thread_cv); 4377 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock); 4378 } 4379 4380 mutex_exit(&arc_reclaim_lock); 4381 } 4382 4383 VERIFY3U(hdr->b_type, ==, type); 4384 if (type == ARC_BUFC_METADATA) { 4385 arc_space_consume(size, ARC_SPACE_META); 4386 } else { 4387 arc_space_consume(size, ARC_SPACE_DATA); 4388 } 4389 4390 /* 4391 * Update the state size. Note that ghost states have a 4392 * "ghost size" and so don't need to be updated. 4393 */ 4394 if (!GHOST_STATE(state)) { 4395 4396 (void) refcount_add_many(&state->arcs_size, size, tag); 4397 4398 /* 4399 * If this is reached via arc_read, the link is 4400 * protected by the hash lock. If reached via 4401 * arc_buf_alloc, the header should not be accessed by 4402 * any other thread. And, if reached via arc_read_done, 4403 * the hash lock will protect it if it's found in the 4404 * hash table; otherwise no other thread should be 4405 * trying to [add|remove]_reference it. 4406 */ 4407 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 4408 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4409 (void) refcount_add_many(&state->arcs_esize[type], 4410 size, tag); 4411 } 4412 4413 /* 4414 * If we are growing the cache, and we are adding anonymous 4415 * data, and we have outgrown arc_p, update arc_p 4416 */ 4417 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon && 4418 (refcount_count(&arc_anon->arcs_size) + 4419 refcount_count(&arc_mru->arcs_size) > arc_p)) 4420 arc_p = MIN(arc_c, arc_p + size); 4421 } 4422 } 4423 4424 static void 4425 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 4426 { 4427 arc_free_data_impl(hdr, size, tag); 4428 abd_free(abd); 4429 } 4430 4431 static void 4432 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 4433 { 4434 arc_buf_contents_t type = arc_buf_type(hdr); 4435 4436 arc_free_data_impl(hdr, size, tag); 4437 if (type == ARC_BUFC_METADATA) { 4438 zio_buf_free(buf, size); 4439 } else { 4440 ASSERT(type == ARC_BUFC_DATA); 4441 zio_data_buf_free(buf, size); 4442 } 4443 } 4444 4445 /* 4446 * Free the arc data buffer. 4447 */ 4448 static void 4449 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4450 { 4451 arc_state_t *state = hdr->b_l1hdr.b_state; 4452 arc_buf_contents_t type = arc_buf_type(hdr); 4453 4454 /* protected by hash lock, if in the hash table */ 4455 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 4456 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4457 ASSERT(state != arc_anon && state != arc_l2c_only); 4458 4459 (void) refcount_remove_many(&state->arcs_esize[type], 4460 size, tag); 4461 } 4462 (void) refcount_remove_many(&state->arcs_size, size, tag); 4463 4464 VERIFY3U(hdr->b_type, ==, type); 4465 if (type == ARC_BUFC_METADATA) { 4466 arc_space_return(size, ARC_SPACE_META); 4467 } else { 4468 ASSERT(type == ARC_BUFC_DATA); 4469 arc_space_return(size, ARC_SPACE_DATA); 4470 } 4471 } 4472 4473 /* 4474 * This routine is called whenever a buffer is accessed. 4475 * NOTE: the hash lock is dropped in this function. 4476 */ 4477 static void 4478 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 4479 { 4480 clock_t now; 4481 4482 ASSERT(MUTEX_HELD(hash_lock)); 4483 ASSERT(HDR_HAS_L1HDR(hdr)); 4484 4485 if (hdr->b_l1hdr.b_state == arc_anon) { 4486 /* 4487 * This buffer is not in the cache, and does not 4488 * appear in our "ghost" list. Add the new buffer 4489 * to the MRU state. 4490 */ 4491 4492 ASSERT0(hdr->b_l1hdr.b_arc_access); 4493 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4494 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 4495 arc_change_state(arc_mru, hdr, hash_lock); 4496 4497 } else if (hdr->b_l1hdr.b_state == arc_mru) { 4498 now = ddi_get_lbolt(); 4499 4500 /* 4501 * If this buffer is here because of a prefetch, then either: 4502 * - clear the flag if this is a "referencing" read 4503 * (any subsequent access will bump this into the MFU state). 4504 * or 4505 * - move the buffer to the head of the list if this is 4506 * another prefetch (to make it less likely to be evicted). 4507 */ 4508 if (HDR_PREFETCH(hdr)) { 4509 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 4510 /* link protected by hash lock */ 4511 ASSERT(multilist_link_active( 4512 &hdr->b_l1hdr.b_arc_node)); 4513 } else { 4514 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 4515 ARCSTAT_BUMP(arcstat_mru_hits); 4516 } 4517 hdr->b_l1hdr.b_arc_access = now; 4518 return; 4519 } 4520 4521 /* 4522 * This buffer has been "accessed" only once so far, 4523 * but it is still in the cache. Move it to the MFU 4524 * state. 4525 */ 4526 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) { 4527 /* 4528 * More than 125ms have passed since we 4529 * instantiated this buffer. Move it to the 4530 * most frequently used state. 4531 */ 4532 hdr->b_l1hdr.b_arc_access = now; 4533 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4534 arc_change_state(arc_mfu, hdr, hash_lock); 4535 } 4536 ARCSTAT_BUMP(arcstat_mru_hits); 4537 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 4538 arc_state_t *new_state; 4539 /* 4540 * This buffer has been "accessed" recently, but 4541 * was evicted from the cache. Move it to the 4542 * MFU state. 4543 */ 4544 4545 if (HDR_PREFETCH(hdr)) { 4546 new_state = arc_mru; 4547 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) 4548 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 4549 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 4550 } else { 4551 new_state = arc_mfu; 4552 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4553 } 4554 4555 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4556 arc_change_state(new_state, hdr, hash_lock); 4557 4558 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 4559 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 4560 /* 4561 * This buffer has been accessed more than once and is 4562 * still in the cache. Keep it in the MFU state. 4563 * 4564 * NOTE: an add_reference() that occurred when we did 4565 * the arc_read() will have kicked this off the list. 4566 * If it was a prefetch, we will explicitly move it to 4567 * the head of the list now. 4568 */ 4569 if ((HDR_PREFETCH(hdr)) != 0) { 4570 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4571 /* link protected by hash_lock */ 4572 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 4573 } 4574 ARCSTAT_BUMP(arcstat_mfu_hits); 4575 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4576 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 4577 arc_state_t *new_state = arc_mfu; 4578 /* 4579 * This buffer has been accessed more than once but has 4580 * been evicted from the cache. Move it back to the 4581 * MFU state. 4582 */ 4583 4584 if (HDR_PREFETCH(hdr)) { 4585 /* 4586 * This is a prefetch access... 4587 * move this block back to the MRU state. 4588 */ 4589 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 4590 new_state = arc_mru; 4591 } 4592 4593 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4594 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4595 arc_change_state(new_state, hdr, hash_lock); 4596 4597 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 4598 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 4599 /* 4600 * This buffer is on the 2nd Level ARC. 4601 */ 4602 4603 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4604 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4605 arc_change_state(arc_mfu, hdr, hash_lock); 4606 } else { 4607 ASSERT(!"invalid arc state"); 4608 } 4609 } 4610 4611 /* a generic arc_done_func_t which you can use */ 4612 /* ARGSUSED */ 4613 void 4614 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 4615 { 4616 if (zio == NULL || zio->io_error == 0) 4617 bcopy(buf->b_data, arg, arc_buf_size(buf)); 4618 arc_buf_destroy(buf, arg); 4619 } 4620 4621 /* a generic arc_done_func_t */ 4622 void 4623 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 4624 { 4625 arc_buf_t **bufp = arg; 4626 if (zio && zio->io_error) { 4627 arc_buf_destroy(buf, arg); 4628 *bufp = NULL; 4629 } else { 4630 *bufp = buf; 4631 ASSERT(buf->b_data); 4632 } 4633 } 4634 4635 static void 4636 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 4637 { 4638 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 4639 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 4640 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 4641 } else { 4642 if (HDR_COMPRESSION_ENABLED(hdr)) { 4643 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, 4644 BP_GET_COMPRESS(bp)); 4645 } 4646 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 4647 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 4648 } 4649 } 4650 4651 static void 4652 arc_read_done(zio_t *zio) 4653 { 4654 arc_buf_hdr_t *hdr = zio->io_private; 4655 kmutex_t *hash_lock = NULL; 4656 arc_callback_t *callback_list; 4657 arc_callback_t *acb; 4658 boolean_t freeable = B_FALSE; 4659 boolean_t no_zio_error = (zio->io_error == 0); 4660 4661 /* 4662 * The hdr was inserted into hash-table and removed from lists 4663 * prior to starting I/O. We should find this header, since 4664 * it's in the hash table, and it should be legit since it's 4665 * not possible to evict it during the I/O. The only possible 4666 * reason for it not to be found is if we were freed during the 4667 * read. 4668 */ 4669 if (HDR_IN_HASH_TABLE(hdr)) { 4670 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 4671 ASSERT3U(hdr->b_dva.dva_word[0], ==, 4672 BP_IDENTITY(zio->io_bp)->dva_word[0]); 4673 ASSERT3U(hdr->b_dva.dva_word[1], ==, 4674 BP_IDENTITY(zio->io_bp)->dva_word[1]); 4675 4676 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 4677 &hash_lock); 4678 4679 ASSERT((found == hdr && 4680 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 4681 (found == hdr && HDR_L2_READING(hdr))); 4682 ASSERT3P(hash_lock, !=, NULL); 4683 } 4684 4685 if (no_zio_error) { 4686 /* byteswap if necessary */ 4687 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 4688 if (BP_GET_LEVEL(zio->io_bp) > 0) { 4689 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 4690 } else { 4691 hdr->b_l1hdr.b_byteswap = 4692 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 4693 } 4694 } else { 4695 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 4696 } 4697 } 4698 4699 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 4700 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 4701 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 4702 4703 callback_list = hdr->b_l1hdr.b_acb; 4704 ASSERT3P(callback_list, !=, NULL); 4705 4706 if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) { 4707 /* 4708 * Only call arc_access on anonymous buffers. This is because 4709 * if we've issued an I/O for an evicted buffer, we've already 4710 * called arc_access (to prevent any simultaneous readers from 4711 * getting confused). 4712 */ 4713 arc_access(hdr, hash_lock); 4714 } 4715 4716 /* 4717 * If a read request has a callback (i.e. acb_done is not NULL), then we 4718 * make a buf containing the data according to the parameters which were 4719 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 4720 * aren't needlessly decompressing the data multiple times. 4721 */ 4722 int callback_cnt = 0; 4723 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 4724 if (!acb->acb_done) 4725 continue; 4726 4727 /* This is a demand read since prefetches don't use callbacks */ 4728 callback_cnt++; 4729 4730 int error = arc_buf_alloc_impl(hdr, acb->acb_private, 4731 acb->acb_compressed, no_zio_error, &acb->acb_buf); 4732 if (no_zio_error) { 4733 zio->io_error = error; 4734 } 4735 } 4736 hdr->b_l1hdr.b_acb = NULL; 4737 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 4738 if (callback_cnt == 0) { 4739 ASSERT(HDR_PREFETCH(hdr)); 4740 ASSERT0(hdr->b_l1hdr.b_bufcnt); 4741 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 4742 } 4743 4744 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 4745 callback_list != NULL); 4746 4747 if (no_zio_error) { 4748 arc_hdr_verify(hdr, zio->io_bp); 4749 } else { 4750 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 4751 if (hdr->b_l1hdr.b_state != arc_anon) 4752 arc_change_state(arc_anon, hdr, hash_lock); 4753 if (HDR_IN_HASH_TABLE(hdr)) 4754 buf_hash_remove(hdr); 4755 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 4756 } 4757 4758 /* 4759 * Broadcast before we drop the hash_lock to avoid the possibility 4760 * that the hdr (and hence the cv) might be freed before we get to 4761 * the cv_broadcast(). 4762 */ 4763 cv_broadcast(&hdr->b_l1hdr.b_cv); 4764 4765 if (hash_lock != NULL) { 4766 mutex_exit(hash_lock); 4767 } else { 4768 /* 4769 * This block was freed while we waited for the read to 4770 * complete. It has been removed from the hash table and 4771 * moved to the anonymous state (so that it won't show up 4772 * in the cache). 4773 */ 4774 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 4775 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 4776 } 4777 4778 /* execute each callback and free its structure */ 4779 while ((acb = callback_list) != NULL) { 4780 if (acb->acb_done) 4781 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 4782 4783 if (acb->acb_zio_dummy != NULL) { 4784 acb->acb_zio_dummy->io_error = zio->io_error; 4785 zio_nowait(acb->acb_zio_dummy); 4786 } 4787 4788 callback_list = acb->acb_next; 4789 kmem_free(acb, sizeof (arc_callback_t)); 4790 } 4791 4792 if (freeable) 4793 arc_hdr_destroy(hdr); 4794 } 4795 4796 /* 4797 * "Read" the block at the specified DVA (in bp) via the 4798 * cache. If the block is found in the cache, invoke the provided 4799 * callback immediately and return. Note that the `zio' parameter 4800 * in the callback will be NULL in this case, since no IO was 4801 * required. If the block is not in the cache pass the read request 4802 * on to the spa with a substitute callback function, so that the 4803 * requested block will be added to the cache. 4804 * 4805 * If a read request arrives for a block that has a read in-progress, 4806 * either wait for the in-progress read to complete (and return the 4807 * results); or, if this is a read with a "done" func, add a record 4808 * to the read to invoke the "done" func when the read completes, 4809 * and return; or just return. 4810 * 4811 * arc_read_done() will invoke all the requested "done" functions 4812 * for readers of this block. 4813 */ 4814 int 4815 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 4816 void *private, zio_priority_t priority, int zio_flags, 4817 arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 4818 { 4819 arc_buf_hdr_t *hdr = NULL; 4820 kmutex_t *hash_lock = NULL; 4821 zio_t *rzio; 4822 uint64_t guid = spa_load_guid(spa); 4823 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0; 4824 4825 ASSERT(!BP_IS_EMBEDDED(bp) || 4826 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 4827 4828 top: 4829 if (!BP_IS_EMBEDDED(bp)) { 4830 /* 4831 * Embedded BP's have no DVA and require no I/O to "read". 4832 * Create an anonymous arc buf to back it. 4833 */ 4834 hdr = buf_hash_find(guid, bp, &hash_lock); 4835 } 4836 4837 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) { 4838 arc_buf_t *buf = NULL; 4839 *arc_flags |= ARC_FLAG_CACHED; 4840 4841 if (HDR_IO_IN_PROGRESS(hdr)) { 4842 4843 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 4844 priority == ZIO_PRIORITY_SYNC_READ) { 4845 /* 4846 * This sync read must wait for an 4847 * in-progress async read (e.g. a predictive 4848 * prefetch). Async reads are queued 4849 * separately at the vdev_queue layer, so 4850 * this is a form of priority inversion. 4851 * Ideally, we would "inherit" the demand 4852 * i/o's priority by moving the i/o from 4853 * the async queue to the synchronous queue, 4854 * but there is currently no mechanism to do 4855 * so. Track this so that we can evaluate 4856 * the magnitude of this potential performance 4857 * problem. 4858 * 4859 * Note that if the prefetch i/o is already 4860 * active (has been issued to the device), 4861 * the prefetch improved performance, because 4862 * we issued it sooner than we would have 4863 * without the prefetch. 4864 */ 4865 DTRACE_PROBE1(arc__sync__wait__for__async, 4866 arc_buf_hdr_t *, hdr); 4867 ARCSTAT_BUMP(arcstat_sync_wait_for_async); 4868 } 4869 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 4870 arc_hdr_clear_flags(hdr, 4871 ARC_FLAG_PREDICTIVE_PREFETCH); 4872 } 4873 4874 if (*arc_flags & ARC_FLAG_WAIT) { 4875 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 4876 mutex_exit(hash_lock); 4877 goto top; 4878 } 4879 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 4880 4881 if (done) { 4882 arc_callback_t *acb = NULL; 4883 4884 acb = kmem_zalloc(sizeof (arc_callback_t), 4885 KM_SLEEP); 4886 acb->acb_done = done; 4887 acb->acb_private = private; 4888 acb->acb_compressed = compressed_read; 4889 if (pio != NULL) 4890 acb->acb_zio_dummy = zio_null(pio, 4891 spa, NULL, NULL, NULL, zio_flags); 4892 4893 ASSERT3P(acb->acb_done, !=, NULL); 4894 acb->acb_next = hdr->b_l1hdr.b_acb; 4895 hdr->b_l1hdr.b_acb = acb; 4896 mutex_exit(hash_lock); 4897 return (0); 4898 } 4899 mutex_exit(hash_lock); 4900 return (0); 4901 } 4902 4903 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 4904 hdr->b_l1hdr.b_state == arc_mfu); 4905 4906 if (done) { 4907 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 4908 /* 4909 * This is a demand read which does not have to 4910 * wait for i/o because we did a predictive 4911 * prefetch i/o for it, which has completed. 4912 */ 4913 DTRACE_PROBE1( 4914 arc__demand__hit__predictive__prefetch, 4915 arc_buf_hdr_t *, hdr); 4916 ARCSTAT_BUMP( 4917 arcstat_demand_hit_predictive_prefetch); 4918 arc_hdr_clear_flags(hdr, 4919 ARC_FLAG_PREDICTIVE_PREFETCH); 4920 } 4921 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp)); 4922 4923 /* Get a buf with the desired data in it. */ 4924 VERIFY0(arc_buf_alloc_impl(hdr, private, 4925 compressed_read, B_TRUE, &buf)); 4926 } else if (*arc_flags & ARC_FLAG_PREFETCH && 4927 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 4928 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 4929 } 4930 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 4931 arc_access(hdr, hash_lock); 4932 if (*arc_flags & ARC_FLAG_L2CACHE) 4933 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 4934 mutex_exit(hash_lock); 4935 ARCSTAT_BUMP(arcstat_hits); 4936 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 4937 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 4938 data, metadata, hits); 4939 4940 if (done) 4941 done(NULL, buf, private); 4942 } else { 4943 uint64_t lsize = BP_GET_LSIZE(bp); 4944 uint64_t psize = BP_GET_PSIZE(bp); 4945 arc_callback_t *acb; 4946 vdev_t *vd = NULL; 4947 uint64_t addr = 0; 4948 boolean_t devw = B_FALSE; 4949 uint64_t size; 4950 4951 if (hdr == NULL) { 4952 /* this block is not in the cache */ 4953 arc_buf_hdr_t *exists = NULL; 4954 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 4955 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 4956 BP_GET_COMPRESS(bp), type); 4957 4958 if (!BP_IS_EMBEDDED(bp)) { 4959 hdr->b_dva = *BP_IDENTITY(bp); 4960 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 4961 exists = buf_hash_insert(hdr, &hash_lock); 4962 } 4963 if (exists != NULL) { 4964 /* somebody beat us to the hash insert */ 4965 mutex_exit(hash_lock); 4966 buf_discard_identity(hdr); 4967 arc_hdr_destroy(hdr); 4968 goto top; /* restart the IO request */ 4969 } 4970 } else { 4971 /* 4972 * This block is in the ghost cache. If it was L2-only 4973 * (and thus didn't have an L1 hdr), we realloc the 4974 * header to add an L1 hdr. 4975 */ 4976 if (!HDR_HAS_L1HDR(hdr)) { 4977 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 4978 hdr_full_cache); 4979 } 4980 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 4981 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state)); 4982 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 4983 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4984 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 4985 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 4986 4987 /* 4988 * This is a delicate dance that we play here. 4989 * This hdr is in the ghost list so we access it 4990 * to move it out of the ghost list before we 4991 * initiate the read. If it's a prefetch then 4992 * it won't have a callback so we'll remove the 4993 * reference that arc_buf_alloc_impl() created. We 4994 * do this after we've called arc_access() to 4995 * avoid hitting an assert in remove_reference(). 4996 */ 4997 arc_access(hdr, hash_lock); 4998 arc_hdr_alloc_pabd(hdr); 4999 } 5000 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 5001 size = arc_hdr_size(hdr); 5002 5003 /* 5004 * If compression is enabled on the hdr, then will do 5005 * RAW I/O and will store the compressed data in the hdr's 5006 * data block. Otherwise, the hdr's data block will contain 5007 * the uncompressed data. 5008 */ 5009 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) { 5010 zio_flags |= ZIO_FLAG_RAW; 5011 } 5012 5013 if (*arc_flags & ARC_FLAG_PREFETCH) 5014 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5015 if (*arc_flags & ARC_FLAG_L2CACHE) 5016 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5017 if (BP_GET_LEVEL(bp) > 0) 5018 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 5019 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 5020 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 5021 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 5022 5023 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 5024 acb->acb_done = done; 5025 acb->acb_private = private; 5026 acb->acb_compressed = compressed_read; 5027 5028 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5029 hdr->b_l1hdr.b_acb = acb; 5030 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5031 5032 if (HDR_HAS_L2HDR(hdr) && 5033 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 5034 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 5035 addr = hdr->b_l2hdr.b_daddr; 5036 /* 5037 * Lock out L2ARC device removal. 5038 */ 5039 if (vdev_is_dead(vd) || 5040 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 5041 vd = NULL; 5042 } 5043 5044 if (priority == ZIO_PRIORITY_ASYNC_READ) 5045 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5046 else 5047 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5048 5049 if (hash_lock != NULL) 5050 mutex_exit(hash_lock); 5051 5052 /* 5053 * At this point, we have a level 1 cache miss. Try again in 5054 * L2ARC if possible. 5055 */ 5056 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 5057 5058 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 5059 uint64_t, lsize, zbookmark_phys_t *, zb); 5060 ARCSTAT_BUMP(arcstat_misses); 5061 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5062 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 5063 data, metadata, misses); 5064 5065 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 5066 /* 5067 * Read from the L2ARC if the following are true: 5068 * 1. The L2ARC vdev was previously cached. 5069 * 2. This buffer still has L2ARC metadata. 5070 * 3. This buffer isn't currently writing to the L2ARC. 5071 * 4. The L2ARC entry wasn't evicted, which may 5072 * also have invalidated the vdev. 5073 * 5. This isn't prefetch and l2arc_noprefetch is set. 5074 */ 5075 if (HDR_HAS_L2HDR(hdr) && 5076 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 5077 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 5078 l2arc_read_callback_t *cb; 5079 abd_t *abd; 5080 uint64_t asize; 5081 5082 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 5083 ARCSTAT_BUMP(arcstat_l2_hits); 5084 5085 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 5086 KM_SLEEP); 5087 cb->l2rcb_hdr = hdr; 5088 cb->l2rcb_bp = *bp; 5089 cb->l2rcb_zb = *zb; 5090 cb->l2rcb_flags = zio_flags; 5091 5092 asize = vdev_psize_to_asize(vd, size); 5093 if (asize != size) { 5094 abd = abd_alloc_for_io(asize, 5095 HDR_ISTYPE_METADATA(hdr)); 5096 cb->l2rcb_abd = abd; 5097 } else { 5098 abd = hdr->b_l1hdr.b_pabd; 5099 } 5100 5101 ASSERT(addr >= VDEV_LABEL_START_SIZE && 5102 addr + asize <= vd->vdev_psize - 5103 VDEV_LABEL_END_SIZE); 5104 5105 /* 5106 * l2arc read. The SCL_L2ARC lock will be 5107 * released by l2arc_read_done(). 5108 * Issue a null zio if the underlying buffer 5109 * was squashed to zero size by compression. 5110 */ 5111 ASSERT3U(HDR_GET_COMPRESS(hdr), !=, 5112 ZIO_COMPRESS_EMPTY); 5113 rzio = zio_read_phys(pio, vd, addr, 5114 asize, abd, 5115 ZIO_CHECKSUM_OFF, 5116 l2arc_read_done, cb, priority, 5117 zio_flags | ZIO_FLAG_DONT_CACHE | 5118 ZIO_FLAG_CANFAIL | 5119 ZIO_FLAG_DONT_PROPAGATE | 5120 ZIO_FLAG_DONT_RETRY, B_FALSE); 5121 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 5122 zio_t *, rzio); 5123 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 5124 5125 if (*arc_flags & ARC_FLAG_NOWAIT) { 5126 zio_nowait(rzio); 5127 return (0); 5128 } 5129 5130 ASSERT(*arc_flags & ARC_FLAG_WAIT); 5131 if (zio_wait(rzio) == 0) 5132 return (0); 5133 5134 /* l2arc read error; goto zio_read() */ 5135 } else { 5136 DTRACE_PROBE1(l2arc__miss, 5137 arc_buf_hdr_t *, hdr); 5138 ARCSTAT_BUMP(arcstat_l2_misses); 5139 if (HDR_L2_WRITING(hdr)) 5140 ARCSTAT_BUMP(arcstat_l2_rw_clash); 5141 spa_config_exit(spa, SCL_L2ARC, vd); 5142 } 5143 } else { 5144 if (vd != NULL) 5145 spa_config_exit(spa, SCL_L2ARC, vd); 5146 if (l2arc_ndev != 0) { 5147 DTRACE_PROBE1(l2arc__miss, 5148 arc_buf_hdr_t *, hdr); 5149 ARCSTAT_BUMP(arcstat_l2_misses); 5150 } 5151 } 5152 5153 rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size, 5154 arc_read_done, hdr, priority, zio_flags, zb); 5155 5156 if (*arc_flags & ARC_FLAG_WAIT) 5157 return (zio_wait(rzio)); 5158 5159 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5160 zio_nowait(rzio); 5161 } 5162 return (0); 5163 } 5164 5165 /* 5166 * Notify the arc that a block was freed, and thus will never be used again. 5167 */ 5168 void 5169 arc_freed(spa_t *spa, const blkptr_t *bp) 5170 { 5171 arc_buf_hdr_t *hdr; 5172 kmutex_t *hash_lock; 5173 uint64_t guid = spa_load_guid(spa); 5174 5175 ASSERT(!BP_IS_EMBEDDED(bp)); 5176 5177 hdr = buf_hash_find(guid, bp, &hash_lock); 5178 if (hdr == NULL) 5179 return; 5180 5181 /* 5182 * We might be trying to free a block that is still doing I/O 5183 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 5184 * dmu_sync-ed block). If this block is being prefetched, then it 5185 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 5186 * until the I/O completes. A block may also have a reference if it is 5187 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 5188 * have written the new block to its final resting place on disk but 5189 * without the dedup flag set. This would have left the hdr in the MRU 5190 * state and discoverable. When the txg finally syncs it detects that 5191 * the block was overridden in open context and issues an override I/O. 5192 * Since this is a dedup block, the override I/O will determine if the 5193 * block is already in the DDT. If so, then it will replace the io_bp 5194 * with the bp from the DDT and allow the I/O to finish. When the I/O 5195 * reaches the done callback, dbuf_write_override_done, it will 5196 * check to see if the io_bp and io_bp_override are identical. 5197 * If they are not, then it indicates that the bp was replaced with 5198 * the bp in the DDT and the override bp is freed. This allows 5199 * us to arrive here with a reference on a block that is being 5200 * freed. So if we have an I/O in progress, or a reference to 5201 * this hdr, then we don't destroy the hdr. 5202 */ 5203 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 5204 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 5205 arc_change_state(arc_anon, hdr, hash_lock); 5206 arc_hdr_destroy(hdr); 5207 mutex_exit(hash_lock); 5208 } else { 5209 mutex_exit(hash_lock); 5210 } 5211 5212 } 5213 5214 /* 5215 * Release this buffer from the cache, making it an anonymous buffer. This 5216 * must be done after a read and prior to modifying the buffer contents. 5217 * If the buffer has more than one reference, we must make 5218 * a new hdr for the buffer. 5219 */ 5220 void 5221 arc_release(arc_buf_t *buf, void *tag) 5222 { 5223 arc_buf_hdr_t *hdr = buf->b_hdr; 5224 5225 /* 5226 * It would be nice to assert that if it's DMU metadata (level > 5227 * 0 || it's the dnode file), then it must be syncing context. 5228 * But we don't know that information at this level. 5229 */ 5230 5231 mutex_enter(&buf->b_evict_lock); 5232 5233 ASSERT(HDR_HAS_L1HDR(hdr)); 5234 5235 /* 5236 * We don't grab the hash lock prior to this check, because if 5237 * the buffer's header is in the arc_anon state, it won't be 5238 * linked into the hash table. 5239 */ 5240 if (hdr->b_l1hdr.b_state == arc_anon) { 5241 mutex_exit(&buf->b_evict_lock); 5242 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5243 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 5244 ASSERT(!HDR_HAS_L2HDR(hdr)); 5245 ASSERT(HDR_EMPTY(hdr)); 5246 5247 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 5248 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 5249 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 5250 5251 hdr->b_l1hdr.b_arc_access = 0; 5252 5253 /* 5254 * If the buf is being overridden then it may already 5255 * have a hdr that is not empty. 5256 */ 5257 buf_discard_identity(hdr); 5258 arc_buf_thaw(buf); 5259 5260 return; 5261 } 5262 5263 kmutex_t *hash_lock = HDR_LOCK(hdr); 5264 mutex_enter(hash_lock); 5265 5266 /* 5267 * This assignment is only valid as long as the hash_lock is 5268 * held, we must be careful not to reference state or the 5269 * b_state field after dropping the lock. 5270 */ 5271 arc_state_t *state = hdr->b_l1hdr.b_state; 5272 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 5273 ASSERT3P(state, !=, arc_anon); 5274 5275 /* this buffer is not on any list */ 5276 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 5277 5278 if (HDR_HAS_L2HDR(hdr)) { 5279 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 5280 5281 /* 5282 * We have to recheck this conditional again now that 5283 * we're holding the l2ad_mtx to prevent a race with 5284 * another thread which might be concurrently calling 5285 * l2arc_evict(). In that case, l2arc_evict() might have 5286 * destroyed the header's L2 portion as we were waiting 5287 * to acquire the l2ad_mtx. 5288 */ 5289 if (HDR_HAS_L2HDR(hdr)) 5290 arc_hdr_l2hdr_destroy(hdr); 5291 5292 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 5293 } 5294 5295 /* 5296 * Do we have more than one buf? 5297 */ 5298 if (hdr->b_l1hdr.b_bufcnt > 1) { 5299 arc_buf_hdr_t *nhdr; 5300 uint64_t spa = hdr->b_spa; 5301 uint64_t psize = HDR_GET_PSIZE(hdr); 5302 uint64_t lsize = HDR_GET_LSIZE(hdr); 5303 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 5304 arc_buf_contents_t type = arc_buf_type(hdr); 5305 VERIFY3U(hdr->b_type, ==, type); 5306 5307 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 5308 (void) remove_reference(hdr, hash_lock, tag); 5309 5310 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 5311 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 5312 ASSERT(ARC_BUF_LAST(buf)); 5313 } 5314 5315 /* 5316 * Pull the data off of this hdr and attach it to 5317 * a new anonymous hdr. Also find the last buffer 5318 * in the hdr's buffer list. 5319 */ 5320 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 5321 ASSERT3P(lastbuf, !=, NULL); 5322 5323 /* 5324 * If the current arc_buf_t and the hdr are sharing their data 5325 * buffer, then we must stop sharing that block. 5326 */ 5327 if (arc_buf_is_shared(buf)) { 5328 VERIFY(!arc_buf_is_shared(lastbuf)); 5329 5330 /* 5331 * First, sever the block sharing relationship between 5332 * buf and the arc_buf_hdr_t. 5333 */ 5334 arc_unshare_buf(hdr, buf); 5335 5336 /* 5337 * Now we need to recreate the hdr's b_pabd. Since we 5338 * have lastbuf handy, we try to share with it, but if 5339 * we can't then we allocate a new b_pabd and copy the 5340 * data from buf into it. 5341 */ 5342 if (arc_can_share(hdr, lastbuf)) { 5343 arc_share_buf(hdr, lastbuf); 5344 } else { 5345 arc_hdr_alloc_pabd(hdr); 5346 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 5347 buf->b_data, psize); 5348 } 5349 VERIFY3P(lastbuf->b_data, !=, NULL); 5350 } else if (HDR_SHARED_DATA(hdr)) { 5351 /* 5352 * Uncompressed shared buffers are always at the end 5353 * of the list. Compressed buffers don't have the 5354 * same requirements. This makes it hard to 5355 * simply assert that the lastbuf is shared so 5356 * we rely on the hdr's compression flags to determine 5357 * if we have a compressed, shared buffer. 5358 */ 5359 ASSERT(arc_buf_is_shared(lastbuf) || 5360 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF); 5361 ASSERT(!ARC_BUF_SHARED(buf)); 5362 } 5363 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 5364 ASSERT3P(state, !=, arc_l2c_only); 5365 5366 (void) refcount_remove_many(&state->arcs_size, 5367 arc_buf_size(buf), buf); 5368 5369 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 5370 ASSERT3P(state, !=, arc_l2c_only); 5371 (void) refcount_remove_many(&state->arcs_esize[type], 5372 arc_buf_size(buf), buf); 5373 } 5374 5375 hdr->b_l1hdr.b_bufcnt -= 1; 5376 arc_cksum_verify(buf); 5377 arc_buf_unwatch(buf); 5378 5379 mutex_exit(hash_lock); 5380 5381 /* 5382 * Allocate a new hdr. The new hdr will contain a b_pabd 5383 * buffer which will be freed in arc_write(). 5384 */ 5385 nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type); 5386 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 5387 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 5388 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt)); 5389 VERIFY3U(nhdr->b_type, ==, type); 5390 ASSERT(!HDR_SHARED_DATA(nhdr)); 5391 5392 nhdr->b_l1hdr.b_buf = buf; 5393 nhdr->b_l1hdr.b_bufcnt = 1; 5394 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 5395 buf->b_hdr = nhdr; 5396 5397 mutex_exit(&buf->b_evict_lock); 5398 (void) refcount_add_many(&arc_anon->arcs_size, 5399 arc_buf_size(buf), buf); 5400 } else { 5401 mutex_exit(&buf->b_evict_lock); 5402 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 5403 /* protected by hash lock, or hdr is on arc_anon */ 5404 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 5405 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5406 arc_change_state(arc_anon, hdr, hash_lock); 5407 hdr->b_l1hdr.b_arc_access = 0; 5408 mutex_exit(hash_lock); 5409 5410 buf_discard_identity(hdr); 5411 arc_buf_thaw(buf); 5412 } 5413 } 5414 5415 int 5416 arc_released(arc_buf_t *buf) 5417 { 5418 int released; 5419 5420 mutex_enter(&buf->b_evict_lock); 5421 released = (buf->b_data != NULL && 5422 buf->b_hdr->b_l1hdr.b_state == arc_anon); 5423 mutex_exit(&buf->b_evict_lock); 5424 return (released); 5425 } 5426 5427 #ifdef ZFS_DEBUG 5428 int 5429 arc_referenced(arc_buf_t *buf) 5430 { 5431 int referenced; 5432 5433 mutex_enter(&buf->b_evict_lock); 5434 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 5435 mutex_exit(&buf->b_evict_lock); 5436 return (referenced); 5437 } 5438 #endif 5439 5440 static void 5441 arc_write_ready(zio_t *zio) 5442 { 5443 arc_write_callback_t *callback = zio->io_private; 5444 arc_buf_t *buf = callback->awcb_buf; 5445 arc_buf_hdr_t *hdr = buf->b_hdr; 5446 uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp); 5447 5448 ASSERT(HDR_HAS_L1HDR(hdr)); 5449 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 5450 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 5451 5452 /* 5453 * If we're reexecuting this zio because the pool suspended, then 5454 * cleanup any state that was previously set the first time the 5455 * callback was invoked. 5456 */ 5457 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 5458 arc_cksum_free(hdr); 5459 arc_buf_unwatch(buf); 5460 if (hdr->b_l1hdr.b_pabd != NULL) { 5461 if (arc_buf_is_shared(buf)) { 5462 arc_unshare_buf(hdr, buf); 5463 } else { 5464 arc_hdr_free_pabd(hdr); 5465 } 5466 } 5467 } 5468 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 5469 ASSERT(!HDR_SHARED_DATA(hdr)); 5470 ASSERT(!arc_buf_is_shared(buf)); 5471 5472 callback->awcb_ready(zio, buf, callback->awcb_private); 5473 5474 if (HDR_IO_IN_PROGRESS(hdr)) 5475 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 5476 5477 arc_cksum_compute(buf); 5478 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5479 5480 enum zio_compress compress; 5481 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 5482 compress = ZIO_COMPRESS_OFF; 5483 } else { 5484 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp)); 5485 compress = BP_GET_COMPRESS(zio->io_bp); 5486 } 5487 HDR_SET_PSIZE(hdr, psize); 5488 arc_hdr_set_compress(hdr, compress); 5489 5490 5491 /* 5492 * Fill the hdr with data. If the hdr is compressed, the data we want 5493 * is available from the zio, otherwise we can take it from the buf. 5494 * 5495 * We might be able to share the buf's data with the hdr here. However, 5496 * doing so would cause the ARC to be full of linear ABDs if we write a 5497 * lot of shareable data. As a compromise, we check whether scattered 5498 * ABDs are allowed, and assume that if they are then the user wants 5499 * the ARC to be primarily filled with them regardless of the data being 5500 * written. Therefore, if they're allowed then we allocate one and copy 5501 * the data into it; otherwise, we share the data directly if we can. 5502 */ 5503 if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) { 5504 arc_hdr_alloc_pabd(hdr); 5505 5506 /* 5507 * Ideally, we would always copy the io_abd into b_pabd, but the 5508 * user may have disabled compressed ARC, thus we must check the 5509 * hdr's compression setting rather than the io_bp's. 5510 */ 5511 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) { 5512 ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=, 5513 ZIO_COMPRESS_OFF); 5514 ASSERT3U(psize, >, 0); 5515 5516 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 5517 } else { 5518 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 5519 5520 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 5521 arc_buf_size(buf)); 5522 } 5523 } else { 5524 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 5525 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 5526 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 5527 5528 arc_share_buf(hdr, buf); 5529 } 5530 5531 arc_hdr_verify(hdr, zio->io_bp); 5532 } 5533 5534 static void 5535 arc_write_children_ready(zio_t *zio) 5536 { 5537 arc_write_callback_t *callback = zio->io_private; 5538 arc_buf_t *buf = callback->awcb_buf; 5539 5540 callback->awcb_children_ready(zio, buf, callback->awcb_private); 5541 } 5542 5543 /* 5544 * The SPA calls this callback for each physical write that happens on behalf 5545 * of a logical write. See the comment in dbuf_write_physdone() for details. 5546 */ 5547 static void 5548 arc_write_physdone(zio_t *zio) 5549 { 5550 arc_write_callback_t *cb = zio->io_private; 5551 if (cb->awcb_physdone != NULL) 5552 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 5553 } 5554 5555 static void 5556 arc_write_done(zio_t *zio) 5557 { 5558 arc_write_callback_t *callback = zio->io_private; 5559 arc_buf_t *buf = callback->awcb_buf; 5560 arc_buf_hdr_t *hdr = buf->b_hdr; 5561 5562 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5563 5564 if (zio->io_error == 0) { 5565 arc_hdr_verify(hdr, zio->io_bp); 5566 5567 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 5568 buf_discard_identity(hdr); 5569 } else { 5570 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 5571 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 5572 } 5573 } else { 5574 ASSERT(HDR_EMPTY(hdr)); 5575 } 5576 5577 /* 5578 * If the block to be written was all-zero or compressed enough to be 5579 * embedded in the BP, no write was performed so there will be no 5580 * dva/birth/checksum. The buffer must therefore remain anonymous 5581 * (and uncached). 5582 */ 5583 if (!HDR_EMPTY(hdr)) { 5584 arc_buf_hdr_t *exists; 5585 kmutex_t *hash_lock; 5586 5587 ASSERT3U(zio->io_error, ==, 0); 5588 5589 arc_cksum_verify(buf); 5590 5591 exists = buf_hash_insert(hdr, &hash_lock); 5592 if (exists != NULL) { 5593 /* 5594 * This can only happen if we overwrite for 5595 * sync-to-convergence, because we remove 5596 * buffers from the hash table when we arc_free(). 5597 */ 5598 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 5599 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 5600 panic("bad overwrite, hdr=%p exists=%p", 5601 (void *)hdr, (void *)exists); 5602 ASSERT(refcount_is_zero( 5603 &exists->b_l1hdr.b_refcnt)); 5604 arc_change_state(arc_anon, exists, hash_lock); 5605 mutex_exit(hash_lock); 5606 arc_hdr_destroy(exists); 5607 exists = buf_hash_insert(hdr, &hash_lock); 5608 ASSERT3P(exists, ==, NULL); 5609 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 5610 /* nopwrite */ 5611 ASSERT(zio->io_prop.zp_nopwrite); 5612 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 5613 panic("bad nopwrite, hdr=%p exists=%p", 5614 (void *)hdr, (void *)exists); 5615 } else { 5616 /* Dedup */ 5617 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 5618 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 5619 ASSERT(BP_GET_DEDUP(zio->io_bp)); 5620 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 5621 } 5622 } 5623 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5624 /* if it's not anon, we are doing a scrub */ 5625 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 5626 arc_access(hdr, hash_lock); 5627 mutex_exit(hash_lock); 5628 } else { 5629 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5630 } 5631 5632 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5633 callback->awcb_done(zio, buf, callback->awcb_private); 5634 5635 abd_put(zio->io_abd); 5636 kmem_free(callback, sizeof (arc_write_callback_t)); 5637 } 5638 5639 zio_t * 5640 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 5641 boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready, 5642 arc_done_func_t *children_ready, arc_done_func_t *physdone, 5643 arc_done_func_t *done, void *private, zio_priority_t priority, 5644 int zio_flags, const zbookmark_phys_t *zb) 5645 { 5646 arc_buf_hdr_t *hdr = buf->b_hdr; 5647 arc_write_callback_t *callback; 5648 zio_t *zio; 5649 zio_prop_t localprop = *zp; 5650 5651 ASSERT3P(ready, !=, NULL); 5652 ASSERT3P(done, !=, NULL); 5653 ASSERT(!HDR_IO_ERROR(hdr)); 5654 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5655 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5656 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 5657 if (l2arc) 5658 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5659 if (ARC_BUF_COMPRESSED(buf)) { 5660 /* 5661 * We're writing a pre-compressed buffer. Make the 5662 * compression algorithm requested by the zio_prop_t match 5663 * the pre-compressed buffer's compression algorithm. 5664 */ 5665 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 5666 5667 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 5668 zio_flags |= ZIO_FLAG_RAW; 5669 } 5670 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 5671 callback->awcb_ready = ready; 5672 callback->awcb_children_ready = children_ready; 5673 callback->awcb_physdone = physdone; 5674 callback->awcb_done = done; 5675 callback->awcb_private = private; 5676 callback->awcb_buf = buf; 5677 5678 /* 5679 * The hdr's b_pabd is now stale, free it now. A new data block 5680 * will be allocated when the zio pipeline calls arc_write_ready(). 5681 */ 5682 if (hdr->b_l1hdr.b_pabd != NULL) { 5683 /* 5684 * If the buf is currently sharing the data block with 5685 * the hdr then we need to break that relationship here. 5686 * The hdr will remain with a NULL data pointer and the 5687 * buf will take sole ownership of the block. 5688 */ 5689 if (arc_buf_is_shared(buf)) { 5690 arc_unshare_buf(hdr, buf); 5691 } else { 5692 arc_hdr_free_pabd(hdr); 5693 } 5694 VERIFY3P(buf->b_data, !=, NULL); 5695 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 5696 } 5697 ASSERT(!arc_buf_is_shared(buf)); 5698 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 5699 5700 zio = zio_write(pio, spa, txg, bp, 5701 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 5702 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 5703 (children_ready != NULL) ? arc_write_children_ready : NULL, 5704 arc_write_physdone, arc_write_done, callback, 5705 priority, zio_flags, zb); 5706 5707 return (zio); 5708 } 5709 5710 static int 5711 arc_memory_throttle(uint64_t reserve, uint64_t txg) 5712 { 5713 #ifdef _KERNEL 5714 uint64_t available_memory = ptob(freemem); 5715 static uint64_t page_load = 0; 5716 static uint64_t last_txg = 0; 5717 5718 #if defined(__i386) 5719 available_memory = 5720 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 5721 #endif 5722 5723 if (freemem > physmem * arc_lotsfree_percent / 100) 5724 return (0); 5725 5726 if (txg > last_txg) { 5727 last_txg = txg; 5728 page_load = 0; 5729 } 5730 /* 5731 * If we are in pageout, we know that memory is already tight, 5732 * the arc is already going to be evicting, so we just want to 5733 * continue to let page writes occur as quickly as possible. 5734 */ 5735 if (curproc == proc_pageout) { 5736 if (page_load > MAX(ptob(minfree), available_memory) / 4) 5737 return (SET_ERROR(ERESTART)); 5738 /* Note: reserve is inflated, so we deflate */ 5739 page_load += reserve / 8; 5740 return (0); 5741 } else if (page_load > 0 && arc_reclaim_needed()) { 5742 /* memory is low, delay before restarting */ 5743 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 5744 return (SET_ERROR(EAGAIN)); 5745 } 5746 page_load = 0; 5747 #endif 5748 return (0); 5749 } 5750 5751 void 5752 arc_tempreserve_clear(uint64_t reserve) 5753 { 5754 atomic_add_64(&arc_tempreserve, -reserve); 5755 ASSERT((int64_t)arc_tempreserve >= 0); 5756 } 5757 5758 int 5759 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 5760 { 5761 int error; 5762 uint64_t anon_size; 5763 5764 if (reserve > arc_c/4 && !arc_no_grow) 5765 arc_c = MIN(arc_c_max, reserve * 4); 5766 if (reserve > arc_c) 5767 return (SET_ERROR(ENOMEM)); 5768 5769 /* 5770 * Don't count loaned bufs as in flight dirty data to prevent long 5771 * network delays from blocking transactions that are ready to be 5772 * assigned to a txg. 5773 */ 5774 5775 /* assert that it has not wrapped around */ 5776 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 5777 5778 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) - 5779 arc_loaned_bytes), 0); 5780 5781 /* 5782 * Writes will, almost always, require additional memory allocations 5783 * in order to compress/encrypt/etc the data. We therefore need to 5784 * make sure that there is sufficient available memory for this. 5785 */ 5786 error = arc_memory_throttle(reserve, txg); 5787 if (error != 0) 5788 return (error); 5789 5790 /* 5791 * Throttle writes when the amount of dirty data in the cache 5792 * gets too large. We try to keep the cache less than half full 5793 * of dirty blocks so that our sync times don't grow too large. 5794 * Note: if two requests come in concurrently, we might let them 5795 * both succeed, when one of them should fail. Not a huge deal. 5796 */ 5797 5798 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 5799 anon_size > arc_c / 4) { 5800 uint64_t meta_esize = 5801 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 5802 uint64_t data_esize = 5803 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 5804 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 5805 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 5806 arc_tempreserve >> 10, meta_esize >> 10, 5807 data_esize >> 10, reserve >> 10, arc_c >> 10); 5808 return (SET_ERROR(ERESTART)); 5809 } 5810 atomic_add_64(&arc_tempreserve, reserve); 5811 return (0); 5812 } 5813 5814 static void 5815 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 5816 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 5817 { 5818 size->value.ui64 = refcount_count(&state->arcs_size); 5819 evict_data->value.ui64 = 5820 refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 5821 evict_metadata->value.ui64 = 5822 refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 5823 } 5824 5825 static int 5826 arc_kstat_update(kstat_t *ksp, int rw) 5827 { 5828 arc_stats_t *as = ksp->ks_data; 5829 5830 if (rw == KSTAT_WRITE) { 5831 return (EACCES); 5832 } else { 5833 arc_kstat_update_state(arc_anon, 5834 &as->arcstat_anon_size, 5835 &as->arcstat_anon_evictable_data, 5836 &as->arcstat_anon_evictable_metadata); 5837 arc_kstat_update_state(arc_mru, 5838 &as->arcstat_mru_size, 5839 &as->arcstat_mru_evictable_data, 5840 &as->arcstat_mru_evictable_metadata); 5841 arc_kstat_update_state(arc_mru_ghost, 5842 &as->arcstat_mru_ghost_size, 5843 &as->arcstat_mru_ghost_evictable_data, 5844 &as->arcstat_mru_ghost_evictable_metadata); 5845 arc_kstat_update_state(arc_mfu, 5846 &as->arcstat_mfu_size, 5847 &as->arcstat_mfu_evictable_data, 5848 &as->arcstat_mfu_evictable_metadata); 5849 arc_kstat_update_state(arc_mfu_ghost, 5850 &as->arcstat_mfu_ghost_size, 5851 &as->arcstat_mfu_ghost_evictable_data, 5852 &as->arcstat_mfu_ghost_evictable_metadata); 5853 } 5854 5855 return (0); 5856 } 5857 5858 /* 5859 * This function *must* return indices evenly distributed between all 5860 * sublists of the multilist. This is needed due to how the ARC eviction 5861 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 5862 * distributed between all sublists and uses this assumption when 5863 * deciding which sublist to evict from and how much to evict from it. 5864 */ 5865 unsigned int 5866 arc_state_multilist_index_func(multilist_t *ml, void *obj) 5867 { 5868 arc_buf_hdr_t *hdr = obj; 5869 5870 /* 5871 * We rely on b_dva to generate evenly distributed index 5872 * numbers using buf_hash below. So, as an added precaution, 5873 * let's make sure we never add empty buffers to the arc lists. 5874 */ 5875 ASSERT(!HDR_EMPTY(hdr)); 5876 5877 /* 5878 * The assumption here, is the hash value for a given 5879 * arc_buf_hdr_t will remain constant throughout it's lifetime 5880 * (i.e. it's b_spa, b_dva, and b_birth fields don't change). 5881 * Thus, we don't need to store the header's sublist index 5882 * on insertion, as this index can be recalculated on removal. 5883 * 5884 * Also, the low order bits of the hash value are thought to be 5885 * distributed evenly. Otherwise, in the case that the multilist 5886 * has a power of two number of sublists, each sublists' usage 5887 * would not be evenly distributed. 5888 */ 5889 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 5890 multilist_get_num_sublists(ml)); 5891 } 5892 5893 static void 5894 arc_state_init(void) 5895 { 5896 arc_anon = &ARC_anon; 5897 arc_mru = &ARC_mru; 5898 arc_mru_ghost = &ARC_mru_ghost; 5899 arc_mfu = &ARC_mfu; 5900 arc_mfu_ghost = &ARC_mfu_ghost; 5901 arc_l2c_only = &ARC_l2c_only; 5902 5903 arc_mru->arcs_list[ARC_BUFC_METADATA] = 5904 multilist_create(sizeof (arc_buf_hdr_t), 5905 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5906 arc_state_multilist_index_func); 5907 arc_mru->arcs_list[ARC_BUFC_DATA] = 5908 multilist_create(sizeof (arc_buf_hdr_t), 5909 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5910 arc_state_multilist_index_func); 5911 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] = 5912 multilist_create(sizeof (arc_buf_hdr_t), 5913 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5914 arc_state_multilist_index_func); 5915 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] = 5916 multilist_create(sizeof (arc_buf_hdr_t), 5917 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5918 arc_state_multilist_index_func); 5919 arc_mfu->arcs_list[ARC_BUFC_METADATA] = 5920 multilist_create(sizeof (arc_buf_hdr_t), 5921 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5922 arc_state_multilist_index_func); 5923 arc_mfu->arcs_list[ARC_BUFC_DATA] = 5924 multilist_create(sizeof (arc_buf_hdr_t), 5925 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5926 arc_state_multilist_index_func); 5927 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] = 5928 multilist_create(sizeof (arc_buf_hdr_t), 5929 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5930 arc_state_multilist_index_func); 5931 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] = 5932 multilist_create(sizeof (arc_buf_hdr_t), 5933 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5934 arc_state_multilist_index_func); 5935 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] = 5936 multilist_create(sizeof (arc_buf_hdr_t), 5937 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5938 arc_state_multilist_index_func); 5939 arc_l2c_only->arcs_list[ARC_BUFC_DATA] = 5940 multilist_create(sizeof (arc_buf_hdr_t), 5941 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5942 arc_state_multilist_index_func); 5943 5944 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 5945 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 5946 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 5947 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 5948 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 5949 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 5950 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 5951 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 5952 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 5953 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 5954 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 5955 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 5956 5957 refcount_create(&arc_anon->arcs_size); 5958 refcount_create(&arc_mru->arcs_size); 5959 refcount_create(&arc_mru_ghost->arcs_size); 5960 refcount_create(&arc_mfu->arcs_size); 5961 refcount_create(&arc_mfu_ghost->arcs_size); 5962 refcount_create(&arc_l2c_only->arcs_size); 5963 } 5964 5965 static void 5966 arc_state_fini(void) 5967 { 5968 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 5969 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 5970 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 5971 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 5972 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 5973 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 5974 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 5975 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 5976 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 5977 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 5978 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 5979 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 5980 5981 refcount_destroy(&arc_anon->arcs_size); 5982 refcount_destroy(&arc_mru->arcs_size); 5983 refcount_destroy(&arc_mru_ghost->arcs_size); 5984 refcount_destroy(&arc_mfu->arcs_size); 5985 refcount_destroy(&arc_mfu_ghost->arcs_size); 5986 refcount_destroy(&arc_l2c_only->arcs_size); 5987 5988 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]); 5989 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 5990 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]); 5991 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 5992 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]); 5993 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 5994 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]); 5995 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 5996 } 5997 5998 uint64_t 5999 arc_max_bytes(void) 6000 { 6001 return (arc_c_max); 6002 } 6003 6004 void 6005 arc_init(void) 6006 { 6007 /* 6008 * allmem is "all memory that we could possibly use". 6009 */ 6010 #ifdef _KERNEL 6011 uint64_t allmem = ptob(physmem - swapfs_minfree); 6012 #else 6013 uint64_t allmem = (physmem * PAGESIZE) / 2; 6014 #endif 6015 6016 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 6017 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL); 6018 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL); 6019 6020 /* Convert seconds to clock ticks */ 6021 arc_min_prefetch_lifespan = 1 * hz; 6022 6023 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 6024 arc_c_min = MAX(allmem / 32, 64 << 20); 6025 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 6026 if (allmem >= 1 << 30) 6027 arc_c_max = allmem - (1 << 30); 6028 else 6029 arc_c_max = arc_c_min; 6030 arc_c_max = MAX(allmem * 3 / 4, arc_c_max); 6031 6032 /* 6033 * In userland, there's only the memory pressure that we artificially 6034 * create (see arc_available_memory()). Don't let arc_c get too 6035 * small, because it can cause transactions to be larger than 6036 * arc_c, causing arc_tempreserve_space() to fail. 6037 */ 6038 #ifndef _KERNEL 6039 arc_c_min = arc_c_max / 2; 6040 #endif 6041 6042 /* 6043 * Allow the tunables to override our calculations if they are 6044 * reasonable (ie. over 64MB) 6045 */ 6046 if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) { 6047 arc_c_max = zfs_arc_max; 6048 arc_c_min = MIN(arc_c_min, arc_c_max); 6049 } 6050 if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max) 6051 arc_c_min = zfs_arc_min; 6052 6053 arc_c = arc_c_max; 6054 arc_p = (arc_c >> 1); 6055 arc_size = 0; 6056 6057 /* limit meta-data to 1/4 of the arc capacity */ 6058 arc_meta_limit = arc_c_max / 4; 6059 6060 #ifdef _KERNEL 6061 /* 6062 * Metadata is stored in the kernel's heap. Don't let us 6063 * use more than half the heap for the ARC. 6064 */ 6065 arc_meta_limit = MIN(arc_meta_limit, 6066 vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2); 6067 #endif 6068 6069 /* Allow the tunable to override if it is reasonable */ 6070 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 6071 arc_meta_limit = zfs_arc_meta_limit; 6072 6073 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 6074 arc_c_min = arc_meta_limit / 2; 6075 6076 if (zfs_arc_meta_min > 0) { 6077 arc_meta_min = zfs_arc_meta_min; 6078 } else { 6079 arc_meta_min = arc_c_min / 2; 6080 } 6081 6082 if (zfs_arc_grow_retry > 0) 6083 arc_grow_retry = zfs_arc_grow_retry; 6084 6085 if (zfs_arc_shrink_shift > 0) 6086 arc_shrink_shift = zfs_arc_shrink_shift; 6087 6088 /* 6089 * Ensure that arc_no_grow_shift is less than arc_shrink_shift. 6090 */ 6091 if (arc_no_grow_shift >= arc_shrink_shift) 6092 arc_no_grow_shift = arc_shrink_shift - 1; 6093 6094 if (zfs_arc_p_min_shift > 0) 6095 arc_p_min_shift = zfs_arc_p_min_shift; 6096 6097 /* if kmem_flags are set, lets try to use less memory */ 6098 if (kmem_debugging()) 6099 arc_c = arc_c / 2; 6100 if (arc_c < arc_c_min) 6101 arc_c = arc_c_min; 6102 6103 arc_state_init(); 6104 buf_init(); 6105 6106 arc_reclaim_thread_exit = B_FALSE; 6107 6108 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 6109 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 6110 6111 if (arc_ksp != NULL) { 6112 arc_ksp->ks_data = &arc_stats; 6113 arc_ksp->ks_update = arc_kstat_update; 6114 kstat_install(arc_ksp); 6115 } 6116 6117 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 6118 TS_RUN, minclsyspri); 6119 6120 arc_dead = B_FALSE; 6121 arc_warm = B_FALSE; 6122 6123 /* 6124 * Calculate maximum amount of dirty data per pool. 6125 * 6126 * If it has been set by /etc/system, take that. 6127 * Otherwise, use a percentage of physical memory defined by 6128 * zfs_dirty_data_max_percent (default 10%) with a cap at 6129 * zfs_dirty_data_max_max (default 4GB). 6130 */ 6131 if (zfs_dirty_data_max == 0) { 6132 zfs_dirty_data_max = physmem * PAGESIZE * 6133 zfs_dirty_data_max_percent / 100; 6134 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 6135 zfs_dirty_data_max_max); 6136 } 6137 } 6138 6139 void 6140 arc_fini(void) 6141 { 6142 mutex_enter(&arc_reclaim_lock); 6143 arc_reclaim_thread_exit = B_TRUE; 6144 /* 6145 * The reclaim thread will set arc_reclaim_thread_exit back to 6146 * B_FALSE when it is finished exiting; we're waiting for that. 6147 */ 6148 while (arc_reclaim_thread_exit) { 6149 cv_signal(&arc_reclaim_thread_cv); 6150 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock); 6151 } 6152 mutex_exit(&arc_reclaim_lock); 6153 6154 /* Use B_TRUE to ensure *all* buffers are evicted */ 6155 arc_flush(NULL, B_TRUE); 6156 6157 arc_dead = B_TRUE; 6158 6159 if (arc_ksp != NULL) { 6160 kstat_delete(arc_ksp); 6161 arc_ksp = NULL; 6162 } 6163 6164 mutex_destroy(&arc_reclaim_lock); 6165 cv_destroy(&arc_reclaim_thread_cv); 6166 cv_destroy(&arc_reclaim_waiters_cv); 6167 6168 arc_state_fini(); 6169 buf_fini(); 6170 6171 ASSERT0(arc_loaned_bytes); 6172 } 6173 6174 /* 6175 * Level 2 ARC 6176 * 6177 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 6178 * It uses dedicated storage devices to hold cached data, which are populated 6179 * using large infrequent writes. The main role of this cache is to boost 6180 * the performance of random read workloads. The intended L2ARC devices 6181 * include short-stroked disks, solid state disks, and other media with 6182 * substantially faster read latency than disk. 6183 * 6184 * +-----------------------+ 6185 * | ARC | 6186 * +-----------------------+ 6187 * | ^ ^ 6188 * | | | 6189 * l2arc_feed_thread() arc_read() 6190 * | | | 6191 * | l2arc read | 6192 * V | | 6193 * +---------------+ | 6194 * | L2ARC | | 6195 * +---------------+ | 6196 * | ^ | 6197 * l2arc_write() | | 6198 * | | | 6199 * V | | 6200 * +-------+ +-------+ 6201 * | vdev | | vdev | 6202 * | cache | | cache | 6203 * +-------+ +-------+ 6204 * +=========+ .-----. 6205 * : L2ARC : |-_____-| 6206 * : devices : | Disks | 6207 * +=========+ `-_____-' 6208 * 6209 * Read requests are satisfied from the following sources, in order: 6210 * 6211 * 1) ARC 6212 * 2) vdev cache of L2ARC devices 6213 * 3) L2ARC devices 6214 * 4) vdev cache of disks 6215 * 5) disks 6216 * 6217 * Some L2ARC device types exhibit extremely slow write performance. 6218 * To accommodate for this there are some significant differences between 6219 * the L2ARC and traditional cache design: 6220 * 6221 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 6222 * the ARC behave as usual, freeing buffers and placing headers on ghost 6223 * lists. The ARC does not send buffers to the L2ARC during eviction as 6224 * this would add inflated write latencies for all ARC memory pressure. 6225 * 6226 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 6227 * It does this by periodically scanning buffers from the eviction-end of 6228 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 6229 * not already there. It scans until a headroom of buffers is satisfied, 6230 * which itself is a buffer for ARC eviction. If a compressible buffer is 6231 * found during scanning and selected for writing to an L2ARC device, we 6232 * temporarily boost scanning headroom during the next scan cycle to make 6233 * sure we adapt to compression effects (which might significantly reduce 6234 * the data volume we write to L2ARC). The thread that does this is 6235 * l2arc_feed_thread(), illustrated below; example sizes are included to 6236 * provide a better sense of ratio than this diagram: 6237 * 6238 * head --> tail 6239 * +---------------------+----------+ 6240 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 6241 * +---------------------+----------+ | o L2ARC eligible 6242 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 6243 * +---------------------+----------+ | 6244 * 15.9 Gbytes ^ 32 Mbytes | 6245 * headroom | 6246 * l2arc_feed_thread() 6247 * | 6248 * l2arc write hand <--[oooo]--' 6249 * | 8 Mbyte 6250 * | write max 6251 * V 6252 * +==============================+ 6253 * L2ARC dev |####|#|###|###| |####| ... | 6254 * +==============================+ 6255 * 32 Gbytes 6256 * 6257 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 6258 * evicted, then the L2ARC has cached a buffer much sooner than it probably 6259 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 6260 * safe to say that this is an uncommon case, since buffers at the end of 6261 * the ARC lists have moved there due to inactivity. 6262 * 6263 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 6264 * then the L2ARC simply misses copying some buffers. This serves as a 6265 * pressure valve to prevent heavy read workloads from both stalling the ARC 6266 * with waits and clogging the L2ARC with writes. This also helps prevent 6267 * the potential for the L2ARC to churn if it attempts to cache content too 6268 * quickly, such as during backups of the entire pool. 6269 * 6270 * 5. After system boot and before the ARC has filled main memory, there are 6271 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 6272 * lists can remain mostly static. Instead of searching from tail of these 6273 * lists as pictured, the l2arc_feed_thread() will search from the list heads 6274 * for eligible buffers, greatly increasing its chance of finding them. 6275 * 6276 * The L2ARC device write speed is also boosted during this time so that 6277 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 6278 * there are no L2ARC reads, and no fear of degrading read performance 6279 * through increased writes. 6280 * 6281 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 6282 * the vdev queue can aggregate them into larger and fewer writes. Each 6283 * device is written to in a rotor fashion, sweeping writes through 6284 * available space then repeating. 6285 * 6286 * 7. The L2ARC does not store dirty content. It never needs to flush 6287 * write buffers back to disk based storage. 6288 * 6289 * 8. If an ARC buffer is written (and dirtied) which also exists in the 6290 * L2ARC, the now stale L2ARC buffer is immediately dropped. 6291 * 6292 * The performance of the L2ARC can be tweaked by a number of tunables, which 6293 * may be necessary for different workloads: 6294 * 6295 * l2arc_write_max max write bytes per interval 6296 * l2arc_write_boost extra write bytes during device warmup 6297 * l2arc_noprefetch skip caching prefetched buffers 6298 * l2arc_headroom number of max device writes to precache 6299 * l2arc_headroom_boost when we find compressed buffers during ARC 6300 * scanning, we multiply headroom by this 6301 * percentage factor for the next scan cycle, 6302 * since more compressed buffers are likely to 6303 * be present 6304 * l2arc_feed_secs seconds between L2ARC writing 6305 * 6306 * Tunables may be removed or added as future performance improvements are 6307 * integrated, and also may become zpool properties. 6308 * 6309 * There are three key functions that control how the L2ARC warms up: 6310 * 6311 * l2arc_write_eligible() check if a buffer is eligible to cache 6312 * l2arc_write_size() calculate how much to write 6313 * l2arc_write_interval() calculate sleep delay between writes 6314 * 6315 * These three functions determine what to write, how much, and how quickly 6316 * to send writes. 6317 */ 6318 6319 static boolean_t 6320 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 6321 { 6322 /* 6323 * A buffer is *not* eligible for the L2ARC if it: 6324 * 1. belongs to a different spa. 6325 * 2. is already cached on the L2ARC. 6326 * 3. has an I/O in progress (it may be an incomplete read). 6327 * 4. is flagged not eligible (zfs property). 6328 */ 6329 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 6330 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 6331 return (B_FALSE); 6332 6333 return (B_TRUE); 6334 } 6335 6336 static uint64_t 6337 l2arc_write_size(void) 6338 { 6339 uint64_t size; 6340 6341 /* 6342 * Make sure our globals have meaningful values in case the user 6343 * altered them. 6344 */ 6345 size = l2arc_write_max; 6346 if (size == 0) { 6347 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 6348 "be greater than zero, resetting it to the default (%d)", 6349 L2ARC_WRITE_SIZE); 6350 size = l2arc_write_max = L2ARC_WRITE_SIZE; 6351 } 6352 6353 if (arc_warm == B_FALSE) 6354 size += l2arc_write_boost; 6355 6356 return (size); 6357 6358 } 6359 6360 static clock_t 6361 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 6362 { 6363 clock_t interval, next, now; 6364 6365 /* 6366 * If the ARC lists are busy, increase our write rate; if the 6367 * lists are stale, idle back. This is achieved by checking 6368 * how much we previously wrote - if it was more than half of 6369 * what we wanted, schedule the next write much sooner. 6370 */ 6371 if (l2arc_feed_again && wrote > (wanted / 2)) 6372 interval = (hz * l2arc_feed_min_ms) / 1000; 6373 else 6374 interval = hz * l2arc_feed_secs; 6375 6376 now = ddi_get_lbolt(); 6377 next = MAX(now, MIN(now + interval, began + interval)); 6378 6379 return (next); 6380 } 6381 6382 /* 6383 * Cycle through L2ARC devices. This is how L2ARC load balances. 6384 * If a device is returned, this also returns holding the spa config lock. 6385 */ 6386 static l2arc_dev_t * 6387 l2arc_dev_get_next(void) 6388 { 6389 l2arc_dev_t *first, *next = NULL; 6390 6391 /* 6392 * Lock out the removal of spas (spa_namespace_lock), then removal 6393 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 6394 * both locks will be dropped and a spa config lock held instead. 6395 */ 6396 mutex_enter(&spa_namespace_lock); 6397 mutex_enter(&l2arc_dev_mtx); 6398 6399 /* if there are no vdevs, there is nothing to do */ 6400 if (l2arc_ndev == 0) 6401 goto out; 6402 6403 first = NULL; 6404 next = l2arc_dev_last; 6405 do { 6406 /* loop around the list looking for a non-faulted vdev */ 6407 if (next == NULL) { 6408 next = list_head(l2arc_dev_list); 6409 } else { 6410 next = list_next(l2arc_dev_list, next); 6411 if (next == NULL) 6412 next = list_head(l2arc_dev_list); 6413 } 6414 6415 /* if we have come back to the start, bail out */ 6416 if (first == NULL) 6417 first = next; 6418 else if (next == first) 6419 break; 6420 6421 } while (vdev_is_dead(next->l2ad_vdev)); 6422 6423 /* if we were unable to find any usable vdevs, return NULL */ 6424 if (vdev_is_dead(next->l2ad_vdev)) 6425 next = NULL; 6426 6427 l2arc_dev_last = next; 6428 6429 out: 6430 mutex_exit(&l2arc_dev_mtx); 6431 6432 /* 6433 * Grab the config lock to prevent the 'next' device from being 6434 * removed while we are writing to it. 6435 */ 6436 if (next != NULL) 6437 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 6438 mutex_exit(&spa_namespace_lock); 6439 6440 return (next); 6441 } 6442 6443 /* 6444 * Free buffers that were tagged for destruction. 6445 */ 6446 static void 6447 l2arc_do_free_on_write() 6448 { 6449 list_t *buflist; 6450 l2arc_data_free_t *df, *df_prev; 6451 6452 mutex_enter(&l2arc_free_on_write_mtx); 6453 buflist = l2arc_free_on_write; 6454 6455 for (df = list_tail(buflist); df; df = df_prev) { 6456 df_prev = list_prev(buflist, df); 6457 ASSERT3P(df->l2df_abd, !=, NULL); 6458 abd_free(df->l2df_abd); 6459 list_remove(buflist, df); 6460 kmem_free(df, sizeof (l2arc_data_free_t)); 6461 } 6462 6463 mutex_exit(&l2arc_free_on_write_mtx); 6464 } 6465 6466 /* 6467 * A write to a cache device has completed. Update all headers to allow 6468 * reads from these buffers to begin. 6469 */ 6470 static void 6471 l2arc_write_done(zio_t *zio) 6472 { 6473 l2arc_write_callback_t *cb; 6474 l2arc_dev_t *dev; 6475 list_t *buflist; 6476 arc_buf_hdr_t *head, *hdr, *hdr_prev; 6477 kmutex_t *hash_lock; 6478 int64_t bytes_dropped = 0; 6479 6480 cb = zio->io_private; 6481 ASSERT3P(cb, !=, NULL); 6482 dev = cb->l2wcb_dev; 6483 ASSERT3P(dev, !=, NULL); 6484 head = cb->l2wcb_head; 6485 ASSERT3P(head, !=, NULL); 6486 buflist = &dev->l2ad_buflist; 6487 ASSERT3P(buflist, !=, NULL); 6488 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 6489 l2arc_write_callback_t *, cb); 6490 6491 if (zio->io_error != 0) 6492 ARCSTAT_BUMP(arcstat_l2_writes_error); 6493 6494 /* 6495 * All writes completed, or an error was hit. 6496 */ 6497 top: 6498 mutex_enter(&dev->l2ad_mtx); 6499 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 6500 hdr_prev = list_prev(buflist, hdr); 6501 6502 hash_lock = HDR_LOCK(hdr); 6503 6504 /* 6505 * We cannot use mutex_enter or else we can deadlock 6506 * with l2arc_write_buffers (due to swapping the order 6507 * the hash lock and l2ad_mtx are taken). 6508 */ 6509 if (!mutex_tryenter(hash_lock)) { 6510 /* 6511 * Missed the hash lock. We must retry so we 6512 * don't leave the ARC_FLAG_L2_WRITING bit set. 6513 */ 6514 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 6515 6516 /* 6517 * We don't want to rescan the headers we've 6518 * already marked as having been written out, so 6519 * we reinsert the head node so we can pick up 6520 * where we left off. 6521 */ 6522 list_remove(buflist, head); 6523 list_insert_after(buflist, hdr, head); 6524 6525 mutex_exit(&dev->l2ad_mtx); 6526 6527 /* 6528 * We wait for the hash lock to become available 6529 * to try and prevent busy waiting, and increase 6530 * the chance we'll be able to acquire the lock 6531 * the next time around. 6532 */ 6533 mutex_enter(hash_lock); 6534 mutex_exit(hash_lock); 6535 goto top; 6536 } 6537 6538 /* 6539 * We could not have been moved into the arc_l2c_only 6540 * state while in-flight due to our ARC_FLAG_L2_WRITING 6541 * bit being set. Let's just ensure that's being enforced. 6542 */ 6543 ASSERT(HDR_HAS_L1HDR(hdr)); 6544 6545 if (zio->io_error != 0) { 6546 /* 6547 * Error - drop L2ARC entry. 6548 */ 6549 list_remove(buflist, hdr); 6550 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 6551 6552 ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr)); 6553 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr)); 6554 6555 bytes_dropped += arc_hdr_size(hdr); 6556 (void) refcount_remove_many(&dev->l2ad_alloc, 6557 arc_hdr_size(hdr), hdr); 6558 } 6559 6560 /* 6561 * Allow ARC to begin reads and ghost list evictions to 6562 * this L2ARC entry. 6563 */ 6564 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 6565 6566 mutex_exit(hash_lock); 6567 } 6568 6569 atomic_inc_64(&l2arc_writes_done); 6570 list_remove(buflist, head); 6571 ASSERT(!HDR_HAS_L1HDR(head)); 6572 kmem_cache_free(hdr_l2only_cache, head); 6573 mutex_exit(&dev->l2ad_mtx); 6574 6575 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 6576 6577 l2arc_do_free_on_write(); 6578 6579 kmem_free(cb, sizeof (l2arc_write_callback_t)); 6580 } 6581 6582 /* 6583 * A read to a cache device completed. Validate buffer contents before 6584 * handing over to the regular ARC routines. 6585 */ 6586 static void 6587 l2arc_read_done(zio_t *zio) 6588 { 6589 l2arc_read_callback_t *cb; 6590 arc_buf_hdr_t *hdr; 6591 kmutex_t *hash_lock; 6592 boolean_t valid_cksum; 6593 6594 ASSERT3P(zio->io_vd, !=, NULL); 6595 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 6596 6597 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 6598 6599 cb = zio->io_private; 6600 ASSERT3P(cb, !=, NULL); 6601 hdr = cb->l2rcb_hdr; 6602 ASSERT3P(hdr, !=, NULL); 6603 6604 hash_lock = HDR_LOCK(hdr); 6605 mutex_enter(hash_lock); 6606 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6607 6608 /* 6609 * If the data was read into a temporary buffer, 6610 * move it and free the buffer. 6611 */ 6612 if (cb->l2rcb_abd != NULL) { 6613 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 6614 if (zio->io_error == 0) { 6615 abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd, 6616 arc_hdr_size(hdr)); 6617 } 6618 6619 /* 6620 * The following must be done regardless of whether 6621 * there was an error: 6622 * - free the temporary buffer 6623 * - point zio to the real ARC buffer 6624 * - set zio size accordingly 6625 * These are required because zio is either re-used for 6626 * an I/O of the block in the case of the error 6627 * or the zio is passed to arc_read_done() and it 6628 * needs real data. 6629 */ 6630 abd_free(cb->l2rcb_abd); 6631 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 6632 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 6633 } 6634 6635 ASSERT3P(zio->io_abd, !=, NULL); 6636 6637 /* 6638 * Check this survived the L2ARC journey. 6639 */ 6640 ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd); 6641 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 6642 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 6643 6644 valid_cksum = arc_cksum_is_equal(hdr, zio); 6645 if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 6646 mutex_exit(hash_lock); 6647 zio->io_private = hdr; 6648 arc_read_done(zio); 6649 } else { 6650 mutex_exit(hash_lock); 6651 /* 6652 * Buffer didn't survive caching. Increment stats and 6653 * reissue to the original storage device. 6654 */ 6655 if (zio->io_error != 0) { 6656 ARCSTAT_BUMP(arcstat_l2_io_error); 6657 } else { 6658 zio->io_error = SET_ERROR(EIO); 6659 } 6660 if (!valid_cksum) 6661 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 6662 6663 /* 6664 * If there's no waiter, issue an async i/o to the primary 6665 * storage now. If there *is* a waiter, the caller must 6666 * issue the i/o in a context where it's OK to block. 6667 */ 6668 if (zio->io_waiter == NULL) { 6669 zio_t *pio = zio_unique_parent(zio); 6670 6671 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 6672 6673 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp, 6674 hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done, 6675 hdr, zio->io_priority, cb->l2rcb_flags, 6676 &cb->l2rcb_zb)); 6677 } 6678 } 6679 6680 kmem_free(cb, sizeof (l2arc_read_callback_t)); 6681 } 6682 6683 /* 6684 * This is the list priority from which the L2ARC will search for pages to 6685 * cache. This is used within loops (0..3) to cycle through lists in the 6686 * desired order. This order can have a significant effect on cache 6687 * performance. 6688 * 6689 * Currently the metadata lists are hit first, MFU then MRU, followed by 6690 * the data lists. This function returns a locked list, and also returns 6691 * the lock pointer. 6692 */ 6693 static multilist_sublist_t * 6694 l2arc_sublist_lock(int list_num) 6695 { 6696 multilist_t *ml = NULL; 6697 unsigned int idx; 6698 6699 ASSERT(list_num >= 0 && list_num <= 3); 6700 6701 switch (list_num) { 6702 case 0: 6703 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA]; 6704 break; 6705 case 1: 6706 ml = arc_mru->arcs_list[ARC_BUFC_METADATA]; 6707 break; 6708 case 2: 6709 ml = arc_mfu->arcs_list[ARC_BUFC_DATA]; 6710 break; 6711 case 3: 6712 ml = arc_mru->arcs_list[ARC_BUFC_DATA]; 6713 break; 6714 } 6715 6716 /* 6717 * Return a randomly-selected sublist. This is acceptable 6718 * because the caller feeds only a little bit of data for each 6719 * call (8MB). Subsequent calls will result in different 6720 * sublists being selected. 6721 */ 6722 idx = multilist_get_random_index(ml); 6723 return (multilist_sublist_lock(ml, idx)); 6724 } 6725 6726 /* 6727 * Evict buffers from the device write hand to the distance specified in 6728 * bytes. This distance may span populated buffers, it may span nothing. 6729 * This is clearing a region on the L2ARC device ready for writing. 6730 * If the 'all' boolean is set, every buffer is evicted. 6731 */ 6732 static void 6733 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 6734 { 6735 list_t *buflist; 6736 arc_buf_hdr_t *hdr, *hdr_prev; 6737 kmutex_t *hash_lock; 6738 uint64_t taddr; 6739 6740 buflist = &dev->l2ad_buflist; 6741 6742 if (!all && dev->l2ad_first) { 6743 /* 6744 * This is the first sweep through the device. There is 6745 * nothing to evict. 6746 */ 6747 return; 6748 } 6749 6750 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 6751 /* 6752 * When nearing the end of the device, evict to the end 6753 * before the device write hand jumps to the start. 6754 */ 6755 taddr = dev->l2ad_end; 6756 } else { 6757 taddr = dev->l2ad_hand + distance; 6758 } 6759 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 6760 uint64_t, taddr, boolean_t, all); 6761 6762 top: 6763 mutex_enter(&dev->l2ad_mtx); 6764 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 6765 hdr_prev = list_prev(buflist, hdr); 6766 6767 hash_lock = HDR_LOCK(hdr); 6768 6769 /* 6770 * We cannot use mutex_enter or else we can deadlock 6771 * with l2arc_write_buffers (due to swapping the order 6772 * the hash lock and l2ad_mtx are taken). 6773 */ 6774 if (!mutex_tryenter(hash_lock)) { 6775 /* 6776 * Missed the hash lock. Retry. 6777 */ 6778 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 6779 mutex_exit(&dev->l2ad_mtx); 6780 mutex_enter(hash_lock); 6781 mutex_exit(hash_lock); 6782 goto top; 6783 } 6784 6785 /* 6786 * A header can't be on this list if it doesn't have L2 header. 6787 */ 6788 ASSERT(HDR_HAS_L2HDR(hdr)); 6789 6790 /* Ensure this header has finished being written. */ 6791 ASSERT(!HDR_L2_WRITING(hdr)); 6792 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 6793 6794 if (!all && (hdr->b_l2hdr.b_daddr >= taddr || 6795 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 6796 /* 6797 * We've evicted to the target address, 6798 * or the end of the device. 6799 */ 6800 mutex_exit(hash_lock); 6801 break; 6802 } 6803 6804 if (!HDR_HAS_L1HDR(hdr)) { 6805 ASSERT(!HDR_L2_READING(hdr)); 6806 /* 6807 * This doesn't exist in the ARC. Destroy. 6808 * arc_hdr_destroy() will call list_remove() 6809 * and decrement arcstat_l2_lsize. 6810 */ 6811 arc_change_state(arc_anon, hdr, hash_lock); 6812 arc_hdr_destroy(hdr); 6813 } else { 6814 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 6815 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 6816 /* 6817 * Invalidate issued or about to be issued 6818 * reads, since we may be about to write 6819 * over this location. 6820 */ 6821 if (HDR_L2_READING(hdr)) { 6822 ARCSTAT_BUMP(arcstat_l2_evict_reading); 6823 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 6824 } 6825 6826 arc_hdr_l2hdr_destroy(hdr); 6827 } 6828 mutex_exit(hash_lock); 6829 } 6830 mutex_exit(&dev->l2ad_mtx); 6831 } 6832 6833 /* 6834 * Find and write ARC buffers to the L2ARC device. 6835 * 6836 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 6837 * for reading until they have completed writing. 6838 * The headroom_boost is an in-out parameter used to maintain headroom boost 6839 * state between calls to this function. 6840 * 6841 * Returns the number of bytes actually written (which may be smaller than 6842 * the delta by which the device hand has changed due to alignment). 6843 */ 6844 static uint64_t 6845 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 6846 { 6847 arc_buf_hdr_t *hdr, *hdr_prev, *head; 6848 uint64_t write_asize, write_psize, write_lsize, headroom; 6849 boolean_t full; 6850 l2arc_write_callback_t *cb; 6851 zio_t *pio, *wzio; 6852 uint64_t guid = spa_load_guid(spa); 6853 6854 ASSERT3P(dev->l2ad_vdev, !=, NULL); 6855 6856 pio = NULL; 6857 write_lsize = write_asize = write_psize = 0; 6858 full = B_FALSE; 6859 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 6860 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 6861 6862 /* 6863 * Copy buffers for L2ARC writing. 6864 */ 6865 for (int try = 0; try <= 3; try++) { 6866 multilist_sublist_t *mls = l2arc_sublist_lock(try); 6867 uint64_t passed_sz = 0; 6868 6869 /* 6870 * L2ARC fast warmup. 6871 * 6872 * Until the ARC is warm and starts to evict, read from the 6873 * head of the ARC lists rather than the tail. 6874 */ 6875 if (arc_warm == B_FALSE) 6876 hdr = multilist_sublist_head(mls); 6877 else 6878 hdr = multilist_sublist_tail(mls); 6879 6880 headroom = target_sz * l2arc_headroom; 6881 if (zfs_compressed_arc_enabled) 6882 headroom = (headroom * l2arc_headroom_boost) / 100; 6883 6884 for (; hdr; hdr = hdr_prev) { 6885 kmutex_t *hash_lock; 6886 6887 if (arc_warm == B_FALSE) 6888 hdr_prev = multilist_sublist_next(mls, hdr); 6889 else 6890 hdr_prev = multilist_sublist_prev(mls, hdr); 6891 6892 hash_lock = HDR_LOCK(hdr); 6893 if (!mutex_tryenter(hash_lock)) { 6894 /* 6895 * Skip this buffer rather than waiting. 6896 */ 6897 continue; 6898 } 6899 6900 passed_sz += HDR_GET_LSIZE(hdr); 6901 if (passed_sz > headroom) { 6902 /* 6903 * Searched too far. 6904 */ 6905 mutex_exit(hash_lock); 6906 break; 6907 } 6908 6909 if (!l2arc_write_eligible(guid, hdr)) { 6910 mutex_exit(hash_lock); 6911 continue; 6912 } 6913 6914 /* 6915 * We rely on the L1 portion of the header below, so 6916 * it's invalid for this header to have been evicted out 6917 * of the ghost cache, prior to being written out. The 6918 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 6919 */ 6920 ASSERT(HDR_HAS_L1HDR(hdr)); 6921 6922 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 6923 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 6924 ASSERT3U(arc_hdr_size(hdr), >, 0); 6925 uint64_t psize = arc_hdr_size(hdr); 6926 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 6927 psize); 6928 6929 if ((write_asize + asize) > target_sz) { 6930 full = B_TRUE; 6931 mutex_exit(hash_lock); 6932 break; 6933 } 6934 6935 if (pio == NULL) { 6936 /* 6937 * Insert a dummy header on the buflist so 6938 * l2arc_write_done() can find where the 6939 * write buffers begin without searching. 6940 */ 6941 mutex_enter(&dev->l2ad_mtx); 6942 list_insert_head(&dev->l2ad_buflist, head); 6943 mutex_exit(&dev->l2ad_mtx); 6944 6945 cb = kmem_alloc( 6946 sizeof (l2arc_write_callback_t), KM_SLEEP); 6947 cb->l2wcb_dev = dev; 6948 cb->l2wcb_head = head; 6949 pio = zio_root(spa, l2arc_write_done, cb, 6950 ZIO_FLAG_CANFAIL); 6951 } 6952 6953 hdr->b_l2hdr.b_dev = dev; 6954 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 6955 arc_hdr_set_flags(hdr, 6956 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR); 6957 6958 mutex_enter(&dev->l2ad_mtx); 6959 list_insert_head(&dev->l2ad_buflist, hdr); 6960 mutex_exit(&dev->l2ad_mtx); 6961 6962 (void) refcount_add_many(&dev->l2ad_alloc, psize, hdr); 6963 6964 /* 6965 * Normally the L2ARC can use the hdr's data, but if 6966 * we're sharing data between the hdr and one of its 6967 * bufs, L2ARC needs its own copy of the data so that 6968 * the ZIO below can't race with the buf consumer. 6969 * Another case where we need to create a copy of the 6970 * data is when the buffer size is not device-aligned 6971 * and we need to pad the block to make it such. 6972 * That also keeps the clock hand suitably aligned. 6973 * 6974 * To ensure that the copy will be available for the 6975 * lifetime of the ZIO and be cleaned up afterwards, we 6976 * add it to the l2arc_free_on_write queue. 6977 */ 6978 abd_t *to_write; 6979 if (!HDR_SHARED_DATA(hdr) && psize == asize) { 6980 to_write = hdr->b_l1hdr.b_pabd; 6981 } else { 6982 to_write = abd_alloc_for_io(asize, 6983 HDR_ISTYPE_METADATA(hdr)); 6984 abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize); 6985 if (asize != psize) { 6986 abd_zero_off(to_write, psize, 6987 asize - psize); 6988 } 6989 l2arc_free_abd_on_write(to_write, asize, 6990 arc_buf_type(hdr)); 6991 } 6992 wzio = zio_write_phys(pio, dev->l2ad_vdev, 6993 hdr->b_l2hdr.b_daddr, asize, to_write, 6994 ZIO_CHECKSUM_OFF, NULL, hdr, 6995 ZIO_PRIORITY_ASYNC_WRITE, 6996 ZIO_FLAG_CANFAIL, B_FALSE); 6997 6998 write_lsize += HDR_GET_LSIZE(hdr); 6999 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 7000 zio_t *, wzio); 7001 7002 write_psize += psize; 7003 write_asize += asize; 7004 dev->l2ad_hand += asize; 7005 7006 mutex_exit(hash_lock); 7007 7008 (void) zio_nowait(wzio); 7009 } 7010 7011 multilist_sublist_unlock(mls); 7012 7013 if (full == B_TRUE) 7014 break; 7015 } 7016 7017 /* No buffers selected for writing? */ 7018 if (pio == NULL) { 7019 ASSERT0(write_lsize); 7020 ASSERT(!HDR_HAS_L1HDR(head)); 7021 kmem_cache_free(hdr_l2only_cache, head); 7022 return (0); 7023 } 7024 7025 ASSERT3U(write_asize, <=, target_sz); 7026 ARCSTAT_BUMP(arcstat_l2_writes_sent); 7027 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 7028 ARCSTAT_INCR(arcstat_l2_lsize, write_lsize); 7029 ARCSTAT_INCR(arcstat_l2_psize, write_psize); 7030 vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0); 7031 7032 /* 7033 * Bump device hand to the device start if it is approaching the end. 7034 * l2arc_evict() will already have evicted ahead for this case. 7035 */ 7036 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 7037 dev->l2ad_hand = dev->l2ad_start; 7038 dev->l2ad_first = B_FALSE; 7039 } 7040 7041 dev->l2ad_writing = B_TRUE; 7042 (void) zio_wait(pio); 7043 dev->l2ad_writing = B_FALSE; 7044 7045 return (write_asize); 7046 } 7047 7048 /* 7049 * This thread feeds the L2ARC at regular intervals. This is the beating 7050 * heart of the L2ARC. 7051 */ 7052 /* ARGSUSED */ 7053 static void 7054 l2arc_feed_thread(void *unused) 7055 { 7056 callb_cpr_t cpr; 7057 l2arc_dev_t *dev; 7058 spa_t *spa; 7059 uint64_t size, wrote; 7060 clock_t begin, next = ddi_get_lbolt(); 7061 7062 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 7063 7064 mutex_enter(&l2arc_feed_thr_lock); 7065 7066 while (l2arc_thread_exit == 0) { 7067 CALLB_CPR_SAFE_BEGIN(&cpr); 7068 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 7069 next); 7070 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 7071 next = ddi_get_lbolt() + hz; 7072 7073 /* 7074 * Quick check for L2ARC devices. 7075 */ 7076 mutex_enter(&l2arc_dev_mtx); 7077 if (l2arc_ndev == 0) { 7078 mutex_exit(&l2arc_dev_mtx); 7079 continue; 7080 } 7081 mutex_exit(&l2arc_dev_mtx); 7082 begin = ddi_get_lbolt(); 7083 7084 /* 7085 * This selects the next l2arc device to write to, and in 7086 * doing so the next spa to feed from: dev->l2ad_spa. This 7087 * will return NULL if there are now no l2arc devices or if 7088 * they are all faulted. 7089 * 7090 * If a device is returned, its spa's config lock is also 7091 * held to prevent device removal. l2arc_dev_get_next() 7092 * will grab and release l2arc_dev_mtx. 7093 */ 7094 if ((dev = l2arc_dev_get_next()) == NULL) 7095 continue; 7096 7097 spa = dev->l2ad_spa; 7098 ASSERT3P(spa, !=, NULL); 7099 7100 /* 7101 * If the pool is read-only then force the feed thread to 7102 * sleep a little longer. 7103 */ 7104 if (!spa_writeable(spa)) { 7105 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 7106 spa_config_exit(spa, SCL_L2ARC, dev); 7107 continue; 7108 } 7109 7110 /* 7111 * Avoid contributing to memory pressure. 7112 */ 7113 if (arc_reclaim_needed()) { 7114 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 7115 spa_config_exit(spa, SCL_L2ARC, dev); 7116 continue; 7117 } 7118 7119 ARCSTAT_BUMP(arcstat_l2_feeds); 7120 7121 size = l2arc_write_size(); 7122 7123 /* 7124 * Evict L2ARC buffers that will be overwritten. 7125 */ 7126 l2arc_evict(dev, size, B_FALSE); 7127 7128 /* 7129 * Write ARC buffers. 7130 */ 7131 wrote = l2arc_write_buffers(spa, dev, size); 7132 7133 /* 7134 * Calculate interval between writes. 7135 */ 7136 next = l2arc_write_interval(begin, size, wrote); 7137 spa_config_exit(spa, SCL_L2ARC, dev); 7138 } 7139 7140 l2arc_thread_exit = 0; 7141 cv_broadcast(&l2arc_feed_thr_cv); 7142 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 7143 thread_exit(); 7144 } 7145 7146 boolean_t 7147 l2arc_vdev_present(vdev_t *vd) 7148 { 7149 l2arc_dev_t *dev; 7150 7151 mutex_enter(&l2arc_dev_mtx); 7152 for (dev = list_head(l2arc_dev_list); dev != NULL; 7153 dev = list_next(l2arc_dev_list, dev)) { 7154 if (dev->l2ad_vdev == vd) 7155 break; 7156 } 7157 mutex_exit(&l2arc_dev_mtx); 7158 7159 return (dev != NULL); 7160 } 7161 7162 /* 7163 * Add a vdev for use by the L2ARC. By this point the spa has already 7164 * validated the vdev and opened it. 7165 */ 7166 void 7167 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 7168 { 7169 l2arc_dev_t *adddev; 7170 7171 ASSERT(!l2arc_vdev_present(vd)); 7172 7173 /* 7174 * Create a new l2arc device entry. 7175 */ 7176 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 7177 adddev->l2ad_spa = spa; 7178 adddev->l2ad_vdev = vd; 7179 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 7180 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 7181 adddev->l2ad_hand = adddev->l2ad_start; 7182 adddev->l2ad_first = B_TRUE; 7183 adddev->l2ad_writing = B_FALSE; 7184 7185 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 7186 /* 7187 * This is a list of all ARC buffers that are still valid on the 7188 * device. 7189 */ 7190 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 7191 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 7192 7193 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 7194 refcount_create(&adddev->l2ad_alloc); 7195 7196 /* 7197 * Add device to global list 7198 */ 7199 mutex_enter(&l2arc_dev_mtx); 7200 list_insert_head(l2arc_dev_list, adddev); 7201 atomic_inc_64(&l2arc_ndev); 7202 mutex_exit(&l2arc_dev_mtx); 7203 } 7204 7205 /* 7206 * Remove a vdev from the L2ARC. 7207 */ 7208 void 7209 l2arc_remove_vdev(vdev_t *vd) 7210 { 7211 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 7212 7213 /* 7214 * Find the device by vdev 7215 */ 7216 mutex_enter(&l2arc_dev_mtx); 7217 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 7218 nextdev = list_next(l2arc_dev_list, dev); 7219 if (vd == dev->l2ad_vdev) { 7220 remdev = dev; 7221 break; 7222 } 7223 } 7224 ASSERT3P(remdev, !=, NULL); 7225 7226 /* 7227 * Remove device from global list 7228 */ 7229 list_remove(l2arc_dev_list, remdev); 7230 l2arc_dev_last = NULL; /* may have been invalidated */ 7231 atomic_dec_64(&l2arc_ndev); 7232 mutex_exit(&l2arc_dev_mtx); 7233 7234 /* 7235 * Clear all buflists and ARC references. L2ARC device flush. 7236 */ 7237 l2arc_evict(remdev, 0, B_TRUE); 7238 list_destroy(&remdev->l2ad_buflist); 7239 mutex_destroy(&remdev->l2ad_mtx); 7240 refcount_destroy(&remdev->l2ad_alloc); 7241 kmem_free(remdev, sizeof (l2arc_dev_t)); 7242 } 7243 7244 void 7245 l2arc_init(void) 7246 { 7247 l2arc_thread_exit = 0; 7248 l2arc_ndev = 0; 7249 l2arc_writes_sent = 0; 7250 l2arc_writes_done = 0; 7251 7252 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 7253 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 7254 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 7255 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 7256 7257 l2arc_dev_list = &L2ARC_dev_list; 7258 l2arc_free_on_write = &L2ARC_free_on_write; 7259 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 7260 offsetof(l2arc_dev_t, l2ad_node)); 7261 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 7262 offsetof(l2arc_data_free_t, l2df_list_node)); 7263 } 7264 7265 void 7266 l2arc_fini(void) 7267 { 7268 /* 7269 * This is called from dmu_fini(), which is called from spa_fini(); 7270 * Because of this, we can assume that all l2arc devices have 7271 * already been removed when the pools themselves were removed. 7272 */ 7273 7274 l2arc_do_free_on_write(); 7275 7276 mutex_destroy(&l2arc_feed_thr_lock); 7277 cv_destroy(&l2arc_feed_thr_cv); 7278 mutex_destroy(&l2arc_dev_mtx); 7279 mutex_destroy(&l2arc_free_on_write_mtx); 7280 7281 list_destroy(l2arc_dev_list); 7282 list_destroy(l2arc_free_on_write); 7283 } 7284 7285 void 7286 l2arc_start(void) 7287 { 7288 if (!(spa_mode_global & FWRITE)) 7289 return; 7290 7291 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 7292 TS_RUN, minclsyspri); 7293 } 7294 7295 void 7296 l2arc_stop(void) 7297 { 7298 if (!(spa_mode_global & FWRITE)) 7299 return; 7300 7301 mutex_enter(&l2arc_feed_thr_lock); 7302 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 7303 l2arc_thread_exit = 1; 7304 while (l2arc_thread_exit != 0) 7305 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 7306 mutex_exit(&l2arc_feed_thr_lock); 7307 } 7308