1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2012 by Delphix. All rights reserved. 25 */ 26 27 /* 28 * DVA-based Adjustable Replacement Cache 29 * 30 * While much of the theory of operation used here is 31 * based on the self-tuning, low overhead replacement cache 32 * presented by Megiddo and Modha at FAST 2003, there are some 33 * significant differences: 34 * 35 * 1. The Megiddo and Modha model assumes any page is evictable. 36 * Pages in its cache cannot be "locked" into memory. This makes 37 * the eviction algorithm simple: evict the last page in the list. 38 * This also make the performance characteristics easy to reason 39 * about. Our cache is not so simple. At any given moment, some 40 * subset of the blocks in the cache are un-evictable because we 41 * have handed out a reference to them. Blocks are only evictable 42 * when there are no external references active. This makes 43 * eviction far more problematic: we choose to evict the evictable 44 * blocks that are the "lowest" in the list. 45 * 46 * There are times when it is not possible to evict the requested 47 * space. In these circumstances we are unable to adjust the cache 48 * size. To prevent the cache growing unbounded at these times we 49 * implement a "cache throttle" that slows the flow of new data 50 * into the cache until we can make space available. 51 * 52 * 2. The Megiddo and Modha model assumes a fixed cache size. 53 * Pages are evicted when the cache is full and there is a cache 54 * miss. Our model has a variable sized cache. It grows with 55 * high use, but also tries to react to memory pressure from the 56 * operating system: decreasing its size when system memory is 57 * tight. 58 * 59 * 3. The Megiddo and Modha model assumes a fixed page size. All 60 * elements of the cache are therefor exactly the same size. So 61 * when adjusting the cache size following a cache miss, its simply 62 * a matter of choosing a single page to evict. In our model, we 63 * have variable sized cache blocks (rangeing from 512 bytes to 64 * 128K bytes). We therefor choose a set of blocks to evict to make 65 * space for a cache miss that approximates as closely as possible 66 * the space used by the new block. 67 * 68 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 69 * by N. Megiddo & D. Modha, FAST 2003 70 */ 71 72 /* 73 * The locking model: 74 * 75 * A new reference to a cache buffer can be obtained in two 76 * ways: 1) via a hash table lookup using the DVA as a key, 77 * or 2) via one of the ARC lists. The arc_read() interface 78 * uses method 1, while the internal arc algorithms for 79 * adjusting the cache use method 2. We therefor provide two 80 * types of locks: 1) the hash table lock array, and 2) the 81 * arc list locks. 82 * 83 * Buffers do not have their own mutexs, rather they rely on the 84 * hash table mutexs for the bulk of their protection (i.e. most 85 * fields in the arc_buf_hdr_t are protected by these mutexs). 86 * 87 * buf_hash_find() returns the appropriate mutex (held) when it 88 * locates the requested buffer in the hash table. It returns 89 * NULL for the mutex if the buffer was not in the table. 90 * 91 * buf_hash_remove() expects the appropriate hash mutex to be 92 * already held before it is invoked. 93 * 94 * Each arc state also has a mutex which is used to protect the 95 * buffer list associated with the state. When attempting to 96 * obtain a hash table lock while holding an arc list lock you 97 * must use: mutex_tryenter() to avoid deadlock. Also note that 98 * the active state mutex must be held before the ghost state mutex. 99 * 100 * Arc buffers may have an associated eviction callback function. 101 * This function will be invoked prior to removing the buffer (e.g. 102 * in arc_do_user_evicts()). Note however that the data associated 103 * with the buffer may be evicted prior to the callback. The callback 104 * must be made with *no locks held* (to prevent deadlock). Additionally, 105 * the users of callbacks must ensure that their private data is 106 * protected from simultaneous callbacks from arc_buf_evict() 107 * and arc_do_user_evicts(). 108 * 109 * Note that the majority of the performance stats are manipulated 110 * with atomic operations. 111 * 112 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 113 * 114 * - L2ARC buflist creation 115 * - L2ARC buflist eviction 116 * - L2ARC write completion, which walks L2ARC buflists 117 * - ARC header destruction, as it removes from L2ARC buflists 118 * - ARC header release, as it removes from L2ARC buflists 119 */ 120 121 #include <sys/spa.h> 122 #include <sys/zio.h> 123 #include <sys/zfs_context.h> 124 #include <sys/arc.h> 125 #include <sys/refcount.h> 126 #include <sys/vdev.h> 127 #include <sys/vdev_impl.h> 128 #ifdef _KERNEL 129 #include <sys/vmsystm.h> 130 #include <vm/anon.h> 131 #include <sys/fs/swapnode.h> 132 #include <sys/dnlc.h> 133 #endif 134 #include <sys/callb.h> 135 #include <sys/kstat.h> 136 #include <zfs_fletcher.h> 137 138 static kmutex_t arc_reclaim_thr_lock; 139 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 140 static uint8_t arc_thread_exit; 141 142 extern int zfs_write_limit_shift; 143 extern uint64_t zfs_write_limit_max; 144 extern kmutex_t zfs_write_limit_lock; 145 146 #define ARC_REDUCE_DNLC_PERCENT 3 147 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 148 149 typedef enum arc_reclaim_strategy { 150 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 151 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 152 } arc_reclaim_strategy_t; 153 154 /* number of seconds before growing cache again */ 155 static int arc_grow_retry = 60; 156 157 /* shift of arc_c for calculating both min and max arc_p */ 158 static int arc_p_min_shift = 4; 159 160 /* log2(fraction of arc to reclaim) */ 161 static int arc_shrink_shift = 5; 162 163 /* 164 * minimum lifespan of a prefetch block in clock ticks 165 * (initialized in arc_init()) 166 */ 167 static int arc_min_prefetch_lifespan; 168 169 static int arc_dead; 170 171 /* 172 * The arc has filled available memory and has now warmed up. 173 */ 174 static boolean_t arc_warm; 175 176 /* 177 * These tunables are for performance analysis. 178 */ 179 uint64_t zfs_arc_max; 180 uint64_t zfs_arc_min; 181 uint64_t zfs_arc_meta_limit = 0; 182 int zfs_arc_grow_retry = 0; 183 int zfs_arc_shrink_shift = 0; 184 int zfs_arc_p_min_shift = 0; 185 186 /* 187 * Note that buffers can be in one of 6 states: 188 * ARC_anon - anonymous (discussed below) 189 * ARC_mru - recently used, currently cached 190 * ARC_mru_ghost - recentely used, no longer in cache 191 * ARC_mfu - frequently used, currently cached 192 * ARC_mfu_ghost - frequently used, no longer in cache 193 * ARC_l2c_only - exists in L2ARC but not other states 194 * When there are no active references to the buffer, they are 195 * are linked onto a list in one of these arc states. These are 196 * the only buffers that can be evicted or deleted. Within each 197 * state there are multiple lists, one for meta-data and one for 198 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 199 * etc.) is tracked separately so that it can be managed more 200 * explicitly: favored over data, limited explicitly. 201 * 202 * Anonymous buffers are buffers that are not associated with 203 * a DVA. These are buffers that hold dirty block copies 204 * before they are written to stable storage. By definition, 205 * they are "ref'd" and are considered part of arc_mru 206 * that cannot be freed. Generally, they will aquire a DVA 207 * as they are written and migrate onto the arc_mru list. 208 * 209 * The ARC_l2c_only state is for buffers that are in the second 210 * level ARC but no longer in any of the ARC_m* lists. The second 211 * level ARC itself may also contain buffers that are in any of 212 * the ARC_m* states - meaning that a buffer can exist in two 213 * places. The reason for the ARC_l2c_only state is to keep the 214 * buffer header in the hash table, so that reads that hit the 215 * second level ARC benefit from these fast lookups. 216 */ 217 218 typedef struct arc_state { 219 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 220 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 221 uint64_t arcs_size; /* total amount of data in this state */ 222 kmutex_t arcs_mtx; 223 } arc_state_t; 224 225 /* The 6 states: */ 226 static arc_state_t ARC_anon; 227 static arc_state_t ARC_mru; 228 static arc_state_t ARC_mru_ghost; 229 static arc_state_t ARC_mfu; 230 static arc_state_t ARC_mfu_ghost; 231 static arc_state_t ARC_l2c_only; 232 233 typedef struct arc_stats { 234 kstat_named_t arcstat_hits; 235 kstat_named_t arcstat_misses; 236 kstat_named_t arcstat_demand_data_hits; 237 kstat_named_t arcstat_demand_data_misses; 238 kstat_named_t arcstat_demand_metadata_hits; 239 kstat_named_t arcstat_demand_metadata_misses; 240 kstat_named_t arcstat_prefetch_data_hits; 241 kstat_named_t arcstat_prefetch_data_misses; 242 kstat_named_t arcstat_prefetch_metadata_hits; 243 kstat_named_t arcstat_prefetch_metadata_misses; 244 kstat_named_t arcstat_mru_hits; 245 kstat_named_t arcstat_mru_ghost_hits; 246 kstat_named_t arcstat_mfu_hits; 247 kstat_named_t arcstat_mfu_ghost_hits; 248 kstat_named_t arcstat_deleted; 249 kstat_named_t arcstat_recycle_miss; 250 kstat_named_t arcstat_mutex_miss; 251 kstat_named_t arcstat_evict_skip; 252 kstat_named_t arcstat_evict_l2_cached; 253 kstat_named_t arcstat_evict_l2_eligible; 254 kstat_named_t arcstat_evict_l2_ineligible; 255 kstat_named_t arcstat_hash_elements; 256 kstat_named_t arcstat_hash_elements_max; 257 kstat_named_t arcstat_hash_collisions; 258 kstat_named_t arcstat_hash_chains; 259 kstat_named_t arcstat_hash_chain_max; 260 kstat_named_t arcstat_p; 261 kstat_named_t arcstat_c; 262 kstat_named_t arcstat_c_min; 263 kstat_named_t arcstat_c_max; 264 kstat_named_t arcstat_size; 265 kstat_named_t arcstat_hdr_size; 266 kstat_named_t arcstat_data_size; 267 kstat_named_t arcstat_other_size; 268 kstat_named_t arcstat_l2_hits; 269 kstat_named_t arcstat_l2_misses; 270 kstat_named_t arcstat_l2_feeds; 271 kstat_named_t arcstat_l2_rw_clash; 272 kstat_named_t arcstat_l2_read_bytes; 273 kstat_named_t arcstat_l2_write_bytes; 274 kstat_named_t arcstat_l2_writes_sent; 275 kstat_named_t arcstat_l2_writes_done; 276 kstat_named_t arcstat_l2_writes_error; 277 kstat_named_t arcstat_l2_writes_hdr_miss; 278 kstat_named_t arcstat_l2_evict_lock_retry; 279 kstat_named_t arcstat_l2_evict_reading; 280 kstat_named_t arcstat_l2_free_on_write; 281 kstat_named_t arcstat_l2_abort_lowmem; 282 kstat_named_t arcstat_l2_cksum_bad; 283 kstat_named_t arcstat_l2_io_error; 284 kstat_named_t arcstat_l2_size; 285 kstat_named_t arcstat_l2_hdr_size; 286 kstat_named_t arcstat_memory_throttle_count; 287 } arc_stats_t; 288 289 static arc_stats_t arc_stats = { 290 { "hits", KSTAT_DATA_UINT64 }, 291 { "misses", KSTAT_DATA_UINT64 }, 292 { "demand_data_hits", KSTAT_DATA_UINT64 }, 293 { "demand_data_misses", KSTAT_DATA_UINT64 }, 294 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 295 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 296 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 297 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 298 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 299 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 300 { "mru_hits", KSTAT_DATA_UINT64 }, 301 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 302 { "mfu_hits", KSTAT_DATA_UINT64 }, 303 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 304 { "deleted", KSTAT_DATA_UINT64 }, 305 { "recycle_miss", KSTAT_DATA_UINT64 }, 306 { "mutex_miss", KSTAT_DATA_UINT64 }, 307 { "evict_skip", KSTAT_DATA_UINT64 }, 308 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 309 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 310 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 311 { "hash_elements", KSTAT_DATA_UINT64 }, 312 { "hash_elements_max", KSTAT_DATA_UINT64 }, 313 { "hash_collisions", KSTAT_DATA_UINT64 }, 314 { "hash_chains", KSTAT_DATA_UINT64 }, 315 { "hash_chain_max", KSTAT_DATA_UINT64 }, 316 { "p", KSTAT_DATA_UINT64 }, 317 { "c", KSTAT_DATA_UINT64 }, 318 { "c_min", KSTAT_DATA_UINT64 }, 319 { "c_max", KSTAT_DATA_UINT64 }, 320 { "size", KSTAT_DATA_UINT64 }, 321 { "hdr_size", KSTAT_DATA_UINT64 }, 322 { "data_size", KSTAT_DATA_UINT64 }, 323 { "other_size", KSTAT_DATA_UINT64 }, 324 { "l2_hits", KSTAT_DATA_UINT64 }, 325 { "l2_misses", KSTAT_DATA_UINT64 }, 326 { "l2_feeds", KSTAT_DATA_UINT64 }, 327 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 328 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 329 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 330 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 331 { "l2_writes_done", KSTAT_DATA_UINT64 }, 332 { "l2_writes_error", KSTAT_DATA_UINT64 }, 333 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 334 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 335 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 336 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 337 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 338 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 339 { "l2_io_error", KSTAT_DATA_UINT64 }, 340 { "l2_size", KSTAT_DATA_UINT64 }, 341 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 342 { "memory_throttle_count", KSTAT_DATA_UINT64 } 343 }; 344 345 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 346 347 #define ARCSTAT_INCR(stat, val) \ 348 atomic_add_64(&arc_stats.stat.value.ui64, (val)); 349 350 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 351 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 352 353 #define ARCSTAT_MAX(stat, val) { \ 354 uint64_t m; \ 355 while ((val) > (m = arc_stats.stat.value.ui64) && \ 356 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 357 continue; \ 358 } 359 360 #define ARCSTAT_MAXSTAT(stat) \ 361 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 362 363 /* 364 * We define a macro to allow ARC hits/misses to be easily broken down by 365 * two separate conditions, giving a total of four different subtypes for 366 * each of hits and misses (so eight statistics total). 367 */ 368 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 369 if (cond1) { \ 370 if (cond2) { \ 371 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 372 } else { \ 373 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 374 } \ 375 } else { \ 376 if (cond2) { \ 377 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 378 } else { \ 379 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 380 } \ 381 } 382 383 kstat_t *arc_ksp; 384 static arc_state_t *arc_anon; 385 static arc_state_t *arc_mru; 386 static arc_state_t *arc_mru_ghost; 387 static arc_state_t *arc_mfu; 388 static arc_state_t *arc_mfu_ghost; 389 static arc_state_t *arc_l2c_only; 390 391 /* 392 * There are several ARC variables that are critical to export as kstats -- 393 * but we don't want to have to grovel around in the kstat whenever we wish to 394 * manipulate them. For these variables, we therefore define them to be in 395 * terms of the statistic variable. This assures that we are not introducing 396 * the possibility of inconsistency by having shadow copies of the variables, 397 * while still allowing the code to be readable. 398 */ 399 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 400 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 401 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 402 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 403 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 404 405 static int arc_no_grow; /* Don't try to grow cache size */ 406 static uint64_t arc_tempreserve; 407 static uint64_t arc_loaned_bytes; 408 static uint64_t arc_meta_used; 409 static uint64_t arc_meta_limit; 410 static uint64_t arc_meta_max = 0; 411 412 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 413 414 typedef struct arc_callback arc_callback_t; 415 416 struct arc_callback { 417 void *acb_private; 418 arc_done_func_t *acb_done; 419 arc_buf_t *acb_buf; 420 zio_t *acb_zio_dummy; 421 arc_callback_t *acb_next; 422 }; 423 424 typedef struct arc_write_callback arc_write_callback_t; 425 426 struct arc_write_callback { 427 void *awcb_private; 428 arc_done_func_t *awcb_ready; 429 arc_done_func_t *awcb_done; 430 arc_buf_t *awcb_buf; 431 }; 432 433 struct arc_buf_hdr { 434 /* protected by hash lock */ 435 dva_t b_dva; 436 uint64_t b_birth; 437 uint64_t b_cksum0; 438 439 kmutex_t b_freeze_lock; 440 zio_cksum_t *b_freeze_cksum; 441 void *b_thawed; 442 443 arc_buf_hdr_t *b_hash_next; 444 arc_buf_t *b_buf; 445 uint32_t b_flags; 446 uint32_t b_datacnt; 447 448 arc_callback_t *b_acb; 449 kcondvar_t b_cv; 450 451 /* immutable */ 452 arc_buf_contents_t b_type; 453 uint64_t b_size; 454 uint64_t b_spa; 455 456 /* protected by arc state mutex */ 457 arc_state_t *b_state; 458 list_node_t b_arc_node; 459 460 /* updated atomically */ 461 clock_t b_arc_access; 462 463 /* self protecting */ 464 refcount_t b_refcnt; 465 466 l2arc_buf_hdr_t *b_l2hdr; 467 list_node_t b_l2node; 468 }; 469 470 static arc_buf_t *arc_eviction_list; 471 static kmutex_t arc_eviction_mtx; 472 static arc_buf_hdr_t arc_eviction_hdr; 473 static void arc_get_data_buf(arc_buf_t *buf); 474 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 475 static int arc_evict_needed(arc_buf_contents_t type); 476 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 477 478 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); 479 480 #define GHOST_STATE(state) \ 481 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 482 (state) == arc_l2c_only) 483 484 /* 485 * Private ARC flags. These flags are private ARC only flags that will show up 486 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 487 * be passed in as arc_flags in things like arc_read. However, these flags 488 * should never be passed and should only be set by ARC code. When adding new 489 * public flags, make sure not to smash the private ones. 490 */ 491 492 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 493 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 494 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 495 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 496 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 497 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 498 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 499 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 500 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 501 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 502 503 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 504 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 505 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 506 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 507 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 508 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 509 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 510 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 511 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 512 (hdr)->b_l2hdr != NULL) 513 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 514 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 515 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 516 517 /* 518 * Other sizes 519 */ 520 521 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 522 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 523 524 /* 525 * Hash table routines 526 */ 527 528 #define HT_LOCK_PAD 64 529 530 struct ht_lock { 531 kmutex_t ht_lock; 532 #ifdef _KERNEL 533 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 534 #endif 535 }; 536 537 #define BUF_LOCKS 256 538 typedef struct buf_hash_table { 539 uint64_t ht_mask; 540 arc_buf_hdr_t **ht_table; 541 struct ht_lock ht_locks[BUF_LOCKS]; 542 } buf_hash_table_t; 543 544 static buf_hash_table_t buf_hash_table; 545 546 #define BUF_HASH_INDEX(spa, dva, birth) \ 547 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 548 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 549 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 550 #define HDR_LOCK(hdr) \ 551 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 552 553 uint64_t zfs_crc64_table[256]; 554 555 /* 556 * Level 2 ARC 557 */ 558 559 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 560 #define L2ARC_HEADROOM 2 /* num of writes */ 561 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 562 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 563 564 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 565 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 566 567 /* 568 * L2ARC Performance Tunables 569 */ 570 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 571 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 572 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 573 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 574 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 575 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 576 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 577 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 578 579 /* 580 * L2ARC Internals 581 */ 582 typedef struct l2arc_dev { 583 vdev_t *l2ad_vdev; /* vdev */ 584 spa_t *l2ad_spa; /* spa */ 585 uint64_t l2ad_hand; /* next write location */ 586 uint64_t l2ad_write; /* desired write size, bytes */ 587 uint64_t l2ad_boost; /* warmup write boost, bytes */ 588 uint64_t l2ad_start; /* first addr on device */ 589 uint64_t l2ad_end; /* last addr on device */ 590 uint64_t l2ad_evict; /* last addr eviction reached */ 591 boolean_t l2ad_first; /* first sweep through */ 592 boolean_t l2ad_writing; /* currently writing */ 593 list_t *l2ad_buflist; /* buffer list */ 594 list_node_t l2ad_node; /* device list node */ 595 } l2arc_dev_t; 596 597 static list_t L2ARC_dev_list; /* device list */ 598 static list_t *l2arc_dev_list; /* device list pointer */ 599 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 600 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 601 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 602 static list_t L2ARC_free_on_write; /* free after write buf list */ 603 static list_t *l2arc_free_on_write; /* free after write list ptr */ 604 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 605 static uint64_t l2arc_ndev; /* number of devices */ 606 607 typedef struct l2arc_read_callback { 608 arc_buf_t *l2rcb_buf; /* read buffer */ 609 spa_t *l2rcb_spa; /* spa */ 610 blkptr_t l2rcb_bp; /* original blkptr */ 611 zbookmark_t l2rcb_zb; /* original bookmark */ 612 int l2rcb_flags; /* original flags */ 613 } l2arc_read_callback_t; 614 615 typedef struct l2arc_write_callback { 616 l2arc_dev_t *l2wcb_dev; /* device info */ 617 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 618 } l2arc_write_callback_t; 619 620 struct l2arc_buf_hdr { 621 /* protected by arc_buf_hdr mutex */ 622 l2arc_dev_t *b_dev; /* L2ARC device */ 623 uint64_t b_daddr; /* disk address, offset byte */ 624 }; 625 626 typedef struct l2arc_data_free { 627 /* protected by l2arc_free_on_write_mtx */ 628 void *l2df_data; 629 size_t l2df_size; 630 void (*l2df_func)(void *, size_t); 631 list_node_t l2df_list_node; 632 } l2arc_data_free_t; 633 634 static kmutex_t l2arc_feed_thr_lock; 635 static kcondvar_t l2arc_feed_thr_cv; 636 static uint8_t l2arc_thread_exit; 637 638 static void l2arc_read_done(zio_t *zio); 639 static void l2arc_hdr_stat_add(void); 640 static void l2arc_hdr_stat_remove(void); 641 642 static uint64_t 643 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 644 { 645 uint8_t *vdva = (uint8_t *)dva; 646 uint64_t crc = -1ULL; 647 int i; 648 649 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 650 651 for (i = 0; i < sizeof (dva_t); i++) 652 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 653 654 crc ^= (spa>>8) ^ birth; 655 656 return (crc); 657 } 658 659 #define BUF_EMPTY(buf) \ 660 ((buf)->b_dva.dva_word[0] == 0 && \ 661 (buf)->b_dva.dva_word[1] == 0 && \ 662 (buf)->b_birth == 0) 663 664 #define BUF_EQUAL(spa, dva, birth, buf) \ 665 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 666 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 667 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 668 669 static void 670 buf_discard_identity(arc_buf_hdr_t *hdr) 671 { 672 hdr->b_dva.dva_word[0] = 0; 673 hdr->b_dva.dva_word[1] = 0; 674 hdr->b_birth = 0; 675 hdr->b_cksum0 = 0; 676 } 677 678 static arc_buf_hdr_t * 679 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp) 680 { 681 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 682 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 683 arc_buf_hdr_t *buf; 684 685 mutex_enter(hash_lock); 686 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 687 buf = buf->b_hash_next) { 688 if (BUF_EQUAL(spa, dva, birth, buf)) { 689 *lockp = hash_lock; 690 return (buf); 691 } 692 } 693 mutex_exit(hash_lock); 694 *lockp = NULL; 695 return (NULL); 696 } 697 698 /* 699 * Insert an entry into the hash table. If there is already an element 700 * equal to elem in the hash table, then the already existing element 701 * will be returned and the new element will not be inserted. 702 * Otherwise returns NULL. 703 */ 704 static arc_buf_hdr_t * 705 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 706 { 707 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 708 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 709 arc_buf_hdr_t *fbuf; 710 uint32_t i; 711 712 ASSERT(!HDR_IN_HASH_TABLE(buf)); 713 *lockp = hash_lock; 714 mutex_enter(hash_lock); 715 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 716 fbuf = fbuf->b_hash_next, i++) { 717 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 718 return (fbuf); 719 } 720 721 buf->b_hash_next = buf_hash_table.ht_table[idx]; 722 buf_hash_table.ht_table[idx] = buf; 723 buf->b_flags |= ARC_IN_HASH_TABLE; 724 725 /* collect some hash table performance data */ 726 if (i > 0) { 727 ARCSTAT_BUMP(arcstat_hash_collisions); 728 if (i == 1) 729 ARCSTAT_BUMP(arcstat_hash_chains); 730 731 ARCSTAT_MAX(arcstat_hash_chain_max, i); 732 } 733 734 ARCSTAT_BUMP(arcstat_hash_elements); 735 ARCSTAT_MAXSTAT(arcstat_hash_elements); 736 737 return (NULL); 738 } 739 740 static void 741 buf_hash_remove(arc_buf_hdr_t *buf) 742 { 743 arc_buf_hdr_t *fbuf, **bufp; 744 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 745 746 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 747 ASSERT(HDR_IN_HASH_TABLE(buf)); 748 749 bufp = &buf_hash_table.ht_table[idx]; 750 while ((fbuf = *bufp) != buf) { 751 ASSERT(fbuf != NULL); 752 bufp = &fbuf->b_hash_next; 753 } 754 *bufp = buf->b_hash_next; 755 buf->b_hash_next = NULL; 756 buf->b_flags &= ~ARC_IN_HASH_TABLE; 757 758 /* collect some hash table performance data */ 759 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 760 761 if (buf_hash_table.ht_table[idx] && 762 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 763 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 764 } 765 766 /* 767 * Global data structures and functions for the buf kmem cache. 768 */ 769 static kmem_cache_t *hdr_cache; 770 static kmem_cache_t *buf_cache; 771 772 static void 773 buf_fini(void) 774 { 775 int i; 776 777 kmem_free(buf_hash_table.ht_table, 778 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 779 for (i = 0; i < BUF_LOCKS; i++) 780 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 781 kmem_cache_destroy(hdr_cache); 782 kmem_cache_destroy(buf_cache); 783 } 784 785 /* 786 * Constructor callback - called when the cache is empty 787 * and a new buf is requested. 788 */ 789 /* ARGSUSED */ 790 static int 791 hdr_cons(void *vbuf, void *unused, int kmflag) 792 { 793 arc_buf_hdr_t *buf = vbuf; 794 795 bzero(buf, sizeof (arc_buf_hdr_t)); 796 refcount_create(&buf->b_refcnt); 797 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 798 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 799 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 800 801 return (0); 802 } 803 804 /* ARGSUSED */ 805 static int 806 buf_cons(void *vbuf, void *unused, int kmflag) 807 { 808 arc_buf_t *buf = vbuf; 809 810 bzero(buf, sizeof (arc_buf_t)); 811 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 812 rw_init(&buf->b_data_lock, NULL, RW_DEFAULT, NULL); 813 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 814 815 return (0); 816 } 817 818 /* 819 * Destructor callback - called when a cached buf is 820 * no longer required. 821 */ 822 /* ARGSUSED */ 823 static void 824 hdr_dest(void *vbuf, void *unused) 825 { 826 arc_buf_hdr_t *buf = vbuf; 827 828 ASSERT(BUF_EMPTY(buf)); 829 refcount_destroy(&buf->b_refcnt); 830 cv_destroy(&buf->b_cv); 831 mutex_destroy(&buf->b_freeze_lock); 832 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 833 } 834 835 /* ARGSUSED */ 836 static void 837 buf_dest(void *vbuf, void *unused) 838 { 839 arc_buf_t *buf = vbuf; 840 841 mutex_destroy(&buf->b_evict_lock); 842 rw_destroy(&buf->b_data_lock); 843 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 844 } 845 846 /* 847 * Reclaim callback -- invoked when memory is low. 848 */ 849 /* ARGSUSED */ 850 static void 851 hdr_recl(void *unused) 852 { 853 dprintf("hdr_recl called\n"); 854 /* 855 * umem calls the reclaim func when we destroy the buf cache, 856 * which is after we do arc_fini(). 857 */ 858 if (!arc_dead) 859 cv_signal(&arc_reclaim_thr_cv); 860 } 861 862 static void 863 buf_init(void) 864 { 865 uint64_t *ct; 866 uint64_t hsize = 1ULL << 12; 867 int i, j; 868 869 /* 870 * The hash table is big enough to fill all of physical memory 871 * with an average 64K block size. The table will take up 872 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 873 */ 874 while (hsize * 65536 < physmem * PAGESIZE) 875 hsize <<= 1; 876 retry: 877 buf_hash_table.ht_mask = hsize - 1; 878 buf_hash_table.ht_table = 879 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 880 if (buf_hash_table.ht_table == NULL) { 881 ASSERT(hsize > (1ULL << 8)); 882 hsize >>= 1; 883 goto retry; 884 } 885 886 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 887 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 888 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 889 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 890 891 for (i = 0; i < 256; i++) 892 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 893 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 894 895 for (i = 0; i < BUF_LOCKS; i++) { 896 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 897 NULL, MUTEX_DEFAULT, NULL); 898 } 899 } 900 901 #define ARC_MINTIME (hz>>4) /* 62 ms */ 902 903 static void 904 arc_cksum_verify(arc_buf_t *buf) 905 { 906 zio_cksum_t zc; 907 908 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 909 return; 910 911 mutex_enter(&buf->b_hdr->b_freeze_lock); 912 if (buf->b_hdr->b_freeze_cksum == NULL || 913 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 914 mutex_exit(&buf->b_hdr->b_freeze_lock); 915 return; 916 } 917 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 918 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 919 panic("buffer modified while frozen!"); 920 mutex_exit(&buf->b_hdr->b_freeze_lock); 921 } 922 923 static int 924 arc_cksum_equal(arc_buf_t *buf) 925 { 926 zio_cksum_t zc; 927 int equal; 928 929 mutex_enter(&buf->b_hdr->b_freeze_lock); 930 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 931 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 932 mutex_exit(&buf->b_hdr->b_freeze_lock); 933 934 return (equal); 935 } 936 937 static void 938 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 939 { 940 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 941 return; 942 943 mutex_enter(&buf->b_hdr->b_freeze_lock); 944 if (buf->b_hdr->b_freeze_cksum != NULL) { 945 mutex_exit(&buf->b_hdr->b_freeze_lock); 946 return; 947 } 948 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 949 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 950 buf->b_hdr->b_freeze_cksum); 951 mutex_exit(&buf->b_hdr->b_freeze_lock); 952 } 953 954 void 955 arc_buf_thaw(arc_buf_t *buf) 956 { 957 if (zfs_flags & ZFS_DEBUG_MODIFY) { 958 if (buf->b_hdr->b_state != arc_anon) 959 panic("modifying non-anon buffer!"); 960 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 961 panic("modifying buffer while i/o in progress!"); 962 arc_cksum_verify(buf); 963 } 964 965 mutex_enter(&buf->b_hdr->b_freeze_lock); 966 if (buf->b_hdr->b_freeze_cksum != NULL) { 967 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 968 buf->b_hdr->b_freeze_cksum = NULL; 969 } 970 971 if (zfs_flags & ZFS_DEBUG_MODIFY) { 972 if (buf->b_hdr->b_thawed) 973 kmem_free(buf->b_hdr->b_thawed, 1); 974 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP); 975 } 976 977 mutex_exit(&buf->b_hdr->b_freeze_lock); 978 } 979 980 void 981 arc_buf_freeze(arc_buf_t *buf) 982 { 983 kmutex_t *hash_lock; 984 985 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 986 return; 987 988 hash_lock = HDR_LOCK(buf->b_hdr); 989 mutex_enter(hash_lock); 990 991 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 992 buf->b_hdr->b_state == arc_anon); 993 arc_cksum_compute(buf, B_FALSE); 994 mutex_exit(hash_lock); 995 } 996 997 static void 998 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 999 { 1000 ASSERT(MUTEX_HELD(hash_lock)); 1001 1002 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 1003 (ab->b_state != arc_anon)) { 1004 uint64_t delta = ab->b_size * ab->b_datacnt; 1005 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 1006 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 1007 1008 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 1009 mutex_enter(&ab->b_state->arcs_mtx); 1010 ASSERT(list_link_active(&ab->b_arc_node)); 1011 list_remove(list, ab); 1012 if (GHOST_STATE(ab->b_state)) { 1013 ASSERT3U(ab->b_datacnt, ==, 0); 1014 ASSERT3P(ab->b_buf, ==, NULL); 1015 delta = ab->b_size; 1016 } 1017 ASSERT(delta > 0); 1018 ASSERT3U(*size, >=, delta); 1019 atomic_add_64(size, -delta); 1020 mutex_exit(&ab->b_state->arcs_mtx); 1021 /* remove the prefetch flag if we get a reference */ 1022 if (ab->b_flags & ARC_PREFETCH) 1023 ab->b_flags &= ~ARC_PREFETCH; 1024 } 1025 } 1026 1027 static int 1028 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1029 { 1030 int cnt; 1031 arc_state_t *state = ab->b_state; 1032 1033 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1034 ASSERT(!GHOST_STATE(state)); 1035 1036 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1037 (state != arc_anon)) { 1038 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1039 1040 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1041 mutex_enter(&state->arcs_mtx); 1042 ASSERT(!list_link_active(&ab->b_arc_node)); 1043 list_insert_head(&state->arcs_list[ab->b_type], ab); 1044 ASSERT(ab->b_datacnt > 0); 1045 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1046 mutex_exit(&state->arcs_mtx); 1047 } 1048 return (cnt); 1049 } 1050 1051 /* 1052 * Move the supplied buffer to the indicated state. The mutex 1053 * for the buffer must be held by the caller. 1054 */ 1055 static void 1056 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1057 { 1058 arc_state_t *old_state = ab->b_state; 1059 int64_t refcnt = refcount_count(&ab->b_refcnt); 1060 uint64_t from_delta, to_delta; 1061 1062 ASSERT(MUTEX_HELD(hash_lock)); 1063 ASSERT(new_state != old_state); 1064 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1065 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1066 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon); 1067 1068 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1069 1070 /* 1071 * If this buffer is evictable, transfer it from the 1072 * old state list to the new state list. 1073 */ 1074 if (refcnt == 0) { 1075 if (old_state != arc_anon) { 1076 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1077 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1078 1079 if (use_mutex) 1080 mutex_enter(&old_state->arcs_mtx); 1081 1082 ASSERT(list_link_active(&ab->b_arc_node)); 1083 list_remove(&old_state->arcs_list[ab->b_type], ab); 1084 1085 /* 1086 * If prefetching out of the ghost cache, 1087 * we will have a non-zero datacnt. 1088 */ 1089 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1090 /* ghost elements have a ghost size */ 1091 ASSERT(ab->b_buf == NULL); 1092 from_delta = ab->b_size; 1093 } 1094 ASSERT3U(*size, >=, from_delta); 1095 atomic_add_64(size, -from_delta); 1096 1097 if (use_mutex) 1098 mutex_exit(&old_state->arcs_mtx); 1099 } 1100 if (new_state != arc_anon) { 1101 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1102 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1103 1104 if (use_mutex) 1105 mutex_enter(&new_state->arcs_mtx); 1106 1107 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1108 1109 /* ghost elements have a ghost size */ 1110 if (GHOST_STATE(new_state)) { 1111 ASSERT(ab->b_datacnt == 0); 1112 ASSERT(ab->b_buf == NULL); 1113 to_delta = ab->b_size; 1114 } 1115 atomic_add_64(size, to_delta); 1116 1117 if (use_mutex) 1118 mutex_exit(&new_state->arcs_mtx); 1119 } 1120 } 1121 1122 ASSERT(!BUF_EMPTY(ab)); 1123 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab)) 1124 buf_hash_remove(ab); 1125 1126 /* adjust state sizes */ 1127 if (to_delta) 1128 atomic_add_64(&new_state->arcs_size, to_delta); 1129 if (from_delta) { 1130 ASSERT3U(old_state->arcs_size, >=, from_delta); 1131 atomic_add_64(&old_state->arcs_size, -from_delta); 1132 } 1133 ab->b_state = new_state; 1134 1135 /* adjust l2arc hdr stats */ 1136 if (new_state == arc_l2c_only) 1137 l2arc_hdr_stat_add(); 1138 else if (old_state == arc_l2c_only) 1139 l2arc_hdr_stat_remove(); 1140 } 1141 1142 void 1143 arc_space_consume(uint64_t space, arc_space_type_t type) 1144 { 1145 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1146 1147 switch (type) { 1148 case ARC_SPACE_DATA: 1149 ARCSTAT_INCR(arcstat_data_size, space); 1150 break; 1151 case ARC_SPACE_OTHER: 1152 ARCSTAT_INCR(arcstat_other_size, space); 1153 break; 1154 case ARC_SPACE_HDRS: 1155 ARCSTAT_INCR(arcstat_hdr_size, space); 1156 break; 1157 case ARC_SPACE_L2HDRS: 1158 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1159 break; 1160 } 1161 1162 atomic_add_64(&arc_meta_used, space); 1163 atomic_add_64(&arc_size, space); 1164 } 1165 1166 void 1167 arc_space_return(uint64_t space, arc_space_type_t type) 1168 { 1169 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1170 1171 switch (type) { 1172 case ARC_SPACE_DATA: 1173 ARCSTAT_INCR(arcstat_data_size, -space); 1174 break; 1175 case ARC_SPACE_OTHER: 1176 ARCSTAT_INCR(arcstat_other_size, -space); 1177 break; 1178 case ARC_SPACE_HDRS: 1179 ARCSTAT_INCR(arcstat_hdr_size, -space); 1180 break; 1181 case ARC_SPACE_L2HDRS: 1182 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1183 break; 1184 } 1185 1186 ASSERT(arc_meta_used >= space); 1187 if (arc_meta_max < arc_meta_used) 1188 arc_meta_max = arc_meta_used; 1189 atomic_add_64(&arc_meta_used, -space); 1190 ASSERT(arc_size >= space); 1191 atomic_add_64(&arc_size, -space); 1192 } 1193 1194 void * 1195 arc_data_buf_alloc(uint64_t size) 1196 { 1197 if (arc_evict_needed(ARC_BUFC_DATA)) 1198 cv_signal(&arc_reclaim_thr_cv); 1199 atomic_add_64(&arc_size, size); 1200 return (zio_data_buf_alloc(size)); 1201 } 1202 1203 void 1204 arc_data_buf_free(void *buf, uint64_t size) 1205 { 1206 zio_data_buf_free(buf, size); 1207 ASSERT(arc_size >= size); 1208 atomic_add_64(&arc_size, -size); 1209 } 1210 1211 arc_buf_t * 1212 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1213 { 1214 arc_buf_hdr_t *hdr; 1215 arc_buf_t *buf; 1216 1217 ASSERT3U(size, >, 0); 1218 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1219 ASSERT(BUF_EMPTY(hdr)); 1220 hdr->b_size = size; 1221 hdr->b_type = type; 1222 hdr->b_spa = spa_load_guid(spa); 1223 hdr->b_state = arc_anon; 1224 hdr->b_arc_access = 0; 1225 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1226 buf->b_hdr = hdr; 1227 buf->b_data = NULL; 1228 buf->b_efunc = NULL; 1229 buf->b_private = NULL; 1230 buf->b_next = NULL; 1231 hdr->b_buf = buf; 1232 arc_get_data_buf(buf); 1233 hdr->b_datacnt = 1; 1234 hdr->b_flags = 0; 1235 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1236 (void) refcount_add(&hdr->b_refcnt, tag); 1237 1238 return (buf); 1239 } 1240 1241 static char *arc_onloan_tag = "onloan"; 1242 1243 /* 1244 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1245 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1246 * buffers must be returned to the arc before they can be used by the DMU or 1247 * freed. 1248 */ 1249 arc_buf_t * 1250 arc_loan_buf(spa_t *spa, int size) 1251 { 1252 arc_buf_t *buf; 1253 1254 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1255 1256 atomic_add_64(&arc_loaned_bytes, size); 1257 return (buf); 1258 } 1259 1260 /* 1261 * Return a loaned arc buffer to the arc. 1262 */ 1263 void 1264 arc_return_buf(arc_buf_t *buf, void *tag) 1265 { 1266 arc_buf_hdr_t *hdr = buf->b_hdr; 1267 1268 ASSERT(buf->b_data != NULL); 1269 (void) refcount_add(&hdr->b_refcnt, tag); 1270 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); 1271 1272 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1273 } 1274 1275 /* Detach an arc_buf from a dbuf (tag) */ 1276 void 1277 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1278 { 1279 arc_buf_hdr_t *hdr; 1280 1281 ASSERT(buf->b_data != NULL); 1282 hdr = buf->b_hdr; 1283 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); 1284 (void) refcount_remove(&hdr->b_refcnt, tag); 1285 buf->b_efunc = NULL; 1286 buf->b_private = NULL; 1287 1288 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1289 } 1290 1291 static arc_buf_t * 1292 arc_buf_clone(arc_buf_t *from) 1293 { 1294 arc_buf_t *buf; 1295 arc_buf_hdr_t *hdr = from->b_hdr; 1296 uint64_t size = hdr->b_size; 1297 1298 ASSERT(hdr->b_state != arc_anon); 1299 1300 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1301 buf->b_hdr = hdr; 1302 buf->b_data = NULL; 1303 buf->b_efunc = NULL; 1304 buf->b_private = NULL; 1305 buf->b_next = hdr->b_buf; 1306 hdr->b_buf = buf; 1307 arc_get_data_buf(buf); 1308 bcopy(from->b_data, buf->b_data, size); 1309 hdr->b_datacnt += 1; 1310 return (buf); 1311 } 1312 1313 void 1314 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1315 { 1316 arc_buf_hdr_t *hdr; 1317 kmutex_t *hash_lock; 1318 1319 /* 1320 * Check to see if this buffer is evicted. Callers 1321 * must verify b_data != NULL to know if the add_ref 1322 * was successful. 1323 */ 1324 mutex_enter(&buf->b_evict_lock); 1325 if (buf->b_data == NULL) { 1326 mutex_exit(&buf->b_evict_lock); 1327 return; 1328 } 1329 hash_lock = HDR_LOCK(buf->b_hdr); 1330 mutex_enter(hash_lock); 1331 hdr = buf->b_hdr; 1332 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1333 mutex_exit(&buf->b_evict_lock); 1334 1335 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1336 add_reference(hdr, hash_lock, tag); 1337 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1338 arc_access(hdr, hash_lock); 1339 mutex_exit(hash_lock); 1340 ARCSTAT_BUMP(arcstat_hits); 1341 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1342 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1343 data, metadata, hits); 1344 } 1345 1346 /* 1347 * Free the arc data buffer. If it is an l2arc write in progress, 1348 * the buffer is placed on l2arc_free_on_write to be freed later. 1349 */ 1350 static void 1351 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t), 1352 void *data, size_t size) 1353 { 1354 if (HDR_L2_WRITING(hdr)) { 1355 l2arc_data_free_t *df; 1356 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1357 df->l2df_data = data; 1358 df->l2df_size = size; 1359 df->l2df_func = free_func; 1360 mutex_enter(&l2arc_free_on_write_mtx); 1361 list_insert_head(l2arc_free_on_write, df); 1362 mutex_exit(&l2arc_free_on_write_mtx); 1363 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1364 } else { 1365 free_func(data, size); 1366 } 1367 } 1368 1369 static void 1370 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1371 { 1372 arc_buf_t **bufp; 1373 1374 /* free up data associated with the buf */ 1375 if (buf->b_data) { 1376 arc_state_t *state = buf->b_hdr->b_state; 1377 uint64_t size = buf->b_hdr->b_size; 1378 arc_buf_contents_t type = buf->b_hdr->b_type; 1379 1380 arc_cksum_verify(buf); 1381 1382 if (!recycle) { 1383 if (type == ARC_BUFC_METADATA) { 1384 arc_buf_data_free(buf->b_hdr, zio_buf_free, 1385 buf->b_data, size); 1386 arc_space_return(size, ARC_SPACE_DATA); 1387 } else { 1388 ASSERT(type == ARC_BUFC_DATA); 1389 arc_buf_data_free(buf->b_hdr, 1390 zio_data_buf_free, buf->b_data, size); 1391 ARCSTAT_INCR(arcstat_data_size, -size); 1392 atomic_add_64(&arc_size, -size); 1393 } 1394 } 1395 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1396 uint64_t *cnt = &state->arcs_lsize[type]; 1397 1398 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1399 ASSERT(state != arc_anon); 1400 1401 ASSERT3U(*cnt, >=, size); 1402 atomic_add_64(cnt, -size); 1403 } 1404 ASSERT3U(state->arcs_size, >=, size); 1405 atomic_add_64(&state->arcs_size, -size); 1406 buf->b_data = NULL; 1407 ASSERT(buf->b_hdr->b_datacnt > 0); 1408 buf->b_hdr->b_datacnt -= 1; 1409 } 1410 1411 /* only remove the buf if requested */ 1412 if (!all) 1413 return; 1414 1415 /* remove the buf from the hdr list */ 1416 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1417 continue; 1418 *bufp = buf->b_next; 1419 buf->b_next = NULL; 1420 1421 ASSERT(buf->b_efunc == NULL); 1422 1423 /* clean up the buf */ 1424 buf->b_hdr = NULL; 1425 kmem_cache_free(buf_cache, buf); 1426 } 1427 1428 static void 1429 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1430 { 1431 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1432 ASSERT3P(hdr->b_state, ==, arc_anon); 1433 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1434 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1435 1436 if (l2hdr != NULL) { 1437 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); 1438 /* 1439 * To prevent arc_free() and l2arc_evict() from 1440 * attempting to free the same buffer at the same time, 1441 * a FREE_IN_PROGRESS flag is given to arc_free() to 1442 * give it priority. l2arc_evict() can't destroy this 1443 * header while we are waiting on l2arc_buflist_mtx. 1444 * 1445 * The hdr may be removed from l2ad_buflist before we 1446 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1447 */ 1448 if (!buflist_held) { 1449 mutex_enter(&l2arc_buflist_mtx); 1450 l2hdr = hdr->b_l2hdr; 1451 } 1452 1453 if (l2hdr != NULL) { 1454 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 1455 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1456 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 1457 if (hdr->b_state == arc_l2c_only) 1458 l2arc_hdr_stat_remove(); 1459 hdr->b_l2hdr = NULL; 1460 } 1461 1462 if (!buflist_held) 1463 mutex_exit(&l2arc_buflist_mtx); 1464 } 1465 1466 if (!BUF_EMPTY(hdr)) { 1467 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1468 buf_discard_identity(hdr); 1469 } 1470 while (hdr->b_buf) { 1471 arc_buf_t *buf = hdr->b_buf; 1472 1473 if (buf->b_efunc) { 1474 mutex_enter(&arc_eviction_mtx); 1475 mutex_enter(&buf->b_evict_lock); 1476 ASSERT(buf->b_hdr != NULL); 1477 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1478 hdr->b_buf = buf->b_next; 1479 buf->b_hdr = &arc_eviction_hdr; 1480 buf->b_next = arc_eviction_list; 1481 arc_eviction_list = buf; 1482 mutex_exit(&buf->b_evict_lock); 1483 mutex_exit(&arc_eviction_mtx); 1484 } else { 1485 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1486 } 1487 } 1488 if (hdr->b_freeze_cksum != NULL) { 1489 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1490 hdr->b_freeze_cksum = NULL; 1491 } 1492 if (hdr->b_thawed) { 1493 kmem_free(hdr->b_thawed, 1); 1494 hdr->b_thawed = NULL; 1495 } 1496 1497 ASSERT(!list_link_active(&hdr->b_arc_node)); 1498 ASSERT3P(hdr->b_hash_next, ==, NULL); 1499 ASSERT3P(hdr->b_acb, ==, NULL); 1500 kmem_cache_free(hdr_cache, hdr); 1501 } 1502 1503 void 1504 arc_buf_free(arc_buf_t *buf, void *tag) 1505 { 1506 arc_buf_hdr_t *hdr = buf->b_hdr; 1507 int hashed = hdr->b_state != arc_anon; 1508 1509 ASSERT(buf->b_efunc == NULL); 1510 ASSERT(buf->b_data != NULL); 1511 1512 if (hashed) { 1513 kmutex_t *hash_lock = HDR_LOCK(hdr); 1514 1515 mutex_enter(hash_lock); 1516 hdr = buf->b_hdr; 1517 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1518 1519 (void) remove_reference(hdr, hash_lock, tag); 1520 if (hdr->b_datacnt > 1) { 1521 arc_buf_destroy(buf, FALSE, TRUE); 1522 } else { 1523 ASSERT(buf == hdr->b_buf); 1524 ASSERT(buf->b_efunc == NULL); 1525 hdr->b_flags |= ARC_BUF_AVAILABLE; 1526 } 1527 mutex_exit(hash_lock); 1528 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1529 int destroy_hdr; 1530 /* 1531 * We are in the middle of an async write. Don't destroy 1532 * this buffer unless the write completes before we finish 1533 * decrementing the reference count. 1534 */ 1535 mutex_enter(&arc_eviction_mtx); 1536 (void) remove_reference(hdr, NULL, tag); 1537 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1538 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1539 mutex_exit(&arc_eviction_mtx); 1540 if (destroy_hdr) 1541 arc_hdr_destroy(hdr); 1542 } else { 1543 if (remove_reference(hdr, NULL, tag) > 0) 1544 arc_buf_destroy(buf, FALSE, TRUE); 1545 else 1546 arc_hdr_destroy(hdr); 1547 } 1548 } 1549 1550 int 1551 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1552 { 1553 arc_buf_hdr_t *hdr = buf->b_hdr; 1554 kmutex_t *hash_lock = HDR_LOCK(hdr); 1555 int no_callback = (buf->b_efunc == NULL); 1556 1557 if (hdr->b_state == arc_anon) { 1558 ASSERT(hdr->b_datacnt == 1); 1559 arc_buf_free(buf, tag); 1560 return (no_callback); 1561 } 1562 1563 mutex_enter(hash_lock); 1564 hdr = buf->b_hdr; 1565 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1566 ASSERT(hdr->b_state != arc_anon); 1567 ASSERT(buf->b_data != NULL); 1568 1569 (void) remove_reference(hdr, hash_lock, tag); 1570 if (hdr->b_datacnt > 1) { 1571 if (no_callback) 1572 arc_buf_destroy(buf, FALSE, TRUE); 1573 } else if (no_callback) { 1574 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1575 ASSERT(buf->b_efunc == NULL); 1576 hdr->b_flags |= ARC_BUF_AVAILABLE; 1577 } 1578 ASSERT(no_callback || hdr->b_datacnt > 1 || 1579 refcount_is_zero(&hdr->b_refcnt)); 1580 mutex_exit(hash_lock); 1581 return (no_callback); 1582 } 1583 1584 int 1585 arc_buf_size(arc_buf_t *buf) 1586 { 1587 return (buf->b_hdr->b_size); 1588 } 1589 1590 /* 1591 * Evict buffers from list until we've removed the specified number of 1592 * bytes. Move the removed buffers to the appropriate evict state. 1593 * If the recycle flag is set, then attempt to "recycle" a buffer: 1594 * - look for a buffer to evict that is `bytes' long. 1595 * - return the data block from this buffer rather than freeing it. 1596 * This flag is used by callers that are trying to make space for a 1597 * new buffer in a full arc cache. 1598 * 1599 * This function makes a "best effort". It skips over any buffers 1600 * it can't get a hash_lock on, and so may not catch all candidates. 1601 * It may also return without evicting as much space as requested. 1602 */ 1603 static void * 1604 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1605 arc_buf_contents_t type) 1606 { 1607 arc_state_t *evicted_state; 1608 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1609 arc_buf_hdr_t *ab, *ab_prev = NULL; 1610 list_t *list = &state->arcs_list[type]; 1611 kmutex_t *hash_lock; 1612 boolean_t have_lock; 1613 void *stolen = NULL; 1614 1615 ASSERT(state == arc_mru || state == arc_mfu); 1616 1617 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1618 1619 mutex_enter(&state->arcs_mtx); 1620 mutex_enter(&evicted_state->arcs_mtx); 1621 1622 for (ab = list_tail(list); ab; ab = ab_prev) { 1623 ab_prev = list_prev(list, ab); 1624 /* prefetch buffers have a minimum lifespan */ 1625 if (HDR_IO_IN_PROGRESS(ab) || 1626 (spa && ab->b_spa != spa) || 1627 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1628 ddi_get_lbolt() - ab->b_arc_access < 1629 arc_min_prefetch_lifespan)) { 1630 skipped++; 1631 continue; 1632 } 1633 /* "lookahead" for better eviction candidate */ 1634 if (recycle && ab->b_size != bytes && 1635 ab_prev && ab_prev->b_size == bytes) 1636 continue; 1637 hash_lock = HDR_LOCK(ab); 1638 have_lock = MUTEX_HELD(hash_lock); 1639 if (have_lock || mutex_tryenter(hash_lock)) { 1640 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1641 ASSERT(ab->b_datacnt > 0); 1642 while (ab->b_buf) { 1643 arc_buf_t *buf = ab->b_buf; 1644 if (!mutex_tryenter(&buf->b_evict_lock)) { 1645 missed += 1; 1646 break; 1647 } 1648 if (buf->b_data) { 1649 bytes_evicted += ab->b_size; 1650 if (recycle && ab->b_type == type && 1651 ab->b_size == bytes && 1652 !HDR_L2_WRITING(ab)) { 1653 stolen = buf->b_data; 1654 recycle = FALSE; 1655 } 1656 } 1657 if (buf->b_efunc) { 1658 mutex_enter(&arc_eviction_mtx); 1659 arc_buf_destroy(buf, 1660 buf->b_data == stolen, FALSE); 1661 ab->b_buf = buf->b_next; 1662 buf->b_hdr = &arc_eviction_hdr; 1663 buf->b_next = arc_eviction_list; 1664 arc_eviction_list = buf; 1665 mutex_exit(&arc_eviction_mtx); 1666 mutex_exit(&buf->b_evict_lock); 1667 } else { 1668 mutex_exit(&buf->b_evict_lock); 1669 arc_buf_destroy(buf, 1670 buf->b_data == stolen, TRUE); 1671 } 1672 } 1673 1674 if (ab->b_l2hdr) { 1675 ARCSTAT_INCR(arcstat_evict_l2_cached, 1676 ab->b_size); 1677 } else { 1678 if (l2arc_write_eligible(ab->b_spa, ab)) { 1679 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1680 ab->b_size); 1681 } else { 1682 ARCSTAT_INCR( 1683 arcstat_evict_l2_ineligible, 1684 ab->b_size); 1685 } 1686 } 1687 1688 if (ab->b_datacnt == 0) { 1689 arc_change_state(evicted_state, ab, hash_lock); 1690 ASSERT(HDR_IN_HASH_TABLE(ab)); 1691 ab->b_flags |= ARC_IN_HASH_TABLE; 1692 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1693 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1694 } 1695 if (!have_lock) 1696 mutex_exit(hash_lock); 1697 if (bytes >= 0 && bytes_evicted >= bytes) 1698 break; 1699 } else { 1700 missed += 1; 1701 } 1702 } 1703 1704 mutex_exit(&evicted_state->arcs_mtx); 1705 mutex_exit(&state->arcs_mtx); 1706 1707 if (bytes_evicted < bytes) 1708 dprintf("only evicted %lld bytes from %x", 1709 (longlong_t)bytes_evicted, state); 1710 1711 if (skipped) 1712 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1713 1714 if (missed) 1715 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1716 1717 /* 1718 * We have just evicted some date into the ghost state, make 1719 * sure we also adjust the ghost state size if necessary. 1720 */ 1721 if (arc_no_grow && 1722 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { 1723 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + 1724 arc_mru_ghost->arcs_size - arc_c; 1725 1726 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { 1727 int64_t todelete = 1728 MIN(arc_mru_ghost->arcs_lsize[type], mru_over); 1729 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1730 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { 1731 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], 1732 arc_mru_ghost->arcs_size + 1733 arc_mfu_ghost->arcs_size - arc_c); 1734 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1735 } 1736 } 1737 1738 return (stolen); 1739 } 1740 1741 /* 1742 * Remove buffers from list until we've removed the specified number of 1743 * bytes. Destroy the buffers that are removed. 1744 */ 1745 static void 1746 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1747 { 1748 arc_buf_hdr_t *ab, *ab_prev; 1749 arc_buf_hdr_t marker = { 0 }; 1750 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1751 kmutex_t *hash_lock; 1752 uint64_t bytes_deleted = 0; 1753 uint64_t bufs_skipped = 0; 1754 1755 ASSERT(GHOST_STATE(state)); 1756 top: 1757 mutex_enter(&state->arcs_mtx); 1758 for (ab = list_tail(list); ab; ab = ab_prev) { 1759 ab_prev = list_prev(list, ab); 1760 if (spa && ab->b_spa != spa) 1761 continue; 1762 1763 /* ignore markers */ 1764 if (ab->b_spa == 0) 1765 continue; 1766 1767 hash_lock = HDR_LOCK(ab); 1768 /* caller may be trying to modify this buffer, skip it */ 1769 if (MUTEX_HELD(hash_lock)) 1770 continue; 1771 if (mutex_tryenter(hash_lock)) { 1772 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1773 ASSERT(ab->b_buf == NULL); 1774 ARCSTAT_BUMP(arcstat_deleted); 1775 bytes_deleted += ab->b_size; 1776 1777 if (ab->b_l2hdr != NULL) { 1778 /* 1779 * This buffer is cached on the 2nd Level ARC; 1780 * don't destroy the header. 1781 */ 1782 arc_change_state(arc_l2c_only, ab, hash_lock); 1783 mutex_exit(hash_lock); 1784 } else { 1785 arc_change_state(arc_anon, ab, hash_lock); 1786 mutex_exit(hash_lock); 1787 arc_hdr_destroy(ab); 1788 } 1789 1790 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1791 if (bytes >= 0 && bytes_deleted >= bytes) 1792 break; 1793 } else if (bytes < 0) { 1794 /* 1795 * Insert a list marker and then wait for the 1796 * hash lock to become available. Once its 1797 * available, restart from where we left off. 1798 */ 1799 list_insert_after(list, ab, &marker); 1800 mutex_exit(&state->arcs_mtx); 1801 mutex_enter(hash_lock); 1802 mutex_exit(hash_lock); 1803 mutex_enter(&state->arcs_mtx); 1804 ab_prev = list_prev(list, &marker); 1805 list_remove(list, &marker); 1806 } else 1807 bufs_skipped += 1; 1808 } 1809 mutex_exit(&state->arcs_mtx); 1810 1811 if (list == &state->arcs_list[ARC_BUFC_DATA] && 1812 (bytes < 0 || bytes_deleted < bytes)) { 1813 list = &state->arcs_list[ARC_BUFC_METADATA]; 1814 goto top; 1815 } 1816 1817 if (bufs_skipped) { 1818 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 1819 ASSERT(bytes >= 0); 1820 } 1821 1822 if (bytes_deleted < bytes) 1823 dprintf("only deleted %lld bytes from %p", 1824 (longlong_t)bytes_deleted, state); 1825 } 1826 1827 static void 1828 arc_adjust(void) 1829 { 1830 int64_t adjustment, delta; 1831 1832 /* 1833 * Adjust MRU size 1834 */ 1835 1836 adjustment = MIN((int64_t)(arc_size - arc_c), 1837 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - 1838 arc_p)); 1839 1840 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 1841 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 1842 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 1843 adjustment -= delta; 1844 } 1845 1846 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1847 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 1848 (void) arc_evict(arc_mru, NULL, delta, FALSE, 1849 ARC_BUFC_METADATA); 1850 } 1851 1852 /* 1853 * Adjust MFU size 1854 */ 1855 1856 adjustment = arc_size - arc_c; 1857 1858 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 1859 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 1860 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 1861 adjustment -= delta; 1862 } 1863 1864 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1865 int64_t delta = MIN(adjustment, 1866 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 1867 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 1868 ARC_BUFC_METADATA); 1869 } 1870 1871 /* 1872 * Adjust ghost lists 1873 */ 1874 1875 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 1876 1877 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 1878 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 1879 arc_evict_ghost(arc_mru_ghost, NULL, delta); 1880 } 1881 1882 adjustment = 1883 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 1884 1885 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 1886 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 1887 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 1888 } 1889 } 1890 1891 static void 1892 arc_do_user_evicts(void) 1893 { 1894 mutex_enter(&arc_eviction_mtx); 1895 while (arc_eviction_list != NULL) { 1896 arc_buf_t *buf = arc_eviction_list; 1897 arc_eviction_list = buf->b_next; 1898 mutex_enter(&buf->b_evict_lock); 1899 buf->b_hdr = NULL; 1900 mutex_exit(&buf->b_evict_lock); 1901 mutex_exit(&arc_eviction_mtx); 1902 1903 if (buf->b_efunc != NULL) 1904 VERIFY(buf->b_efunc(buf) == 0); 1905 1906 buf->b_efunc = NULL; 1907 buf->b_private = NULL; 1908 kmem_cache_free(buf_cache, buf); 1909 mutex_enter(&arc_eviction_mtx); 1910 } 1911 mutex_exit(&arc_eviction_mtx); 1912 } 1913 1914 /* 1915 * Flush all *evictable* data from the cache for the given spa. 1916 * NOTE: this will not touch "active" (i.e. referenced) data. 1917 */ 1918 void 1919 arc_flush(spa_t *spa) 1920 { 1921 uint64_t guid = 0; 1922 1923 if (spa) 1924 guid = spa_load_guid(spa); 1925 1926 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 1927 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 1928 if (spa) 1929 break; 1930 } 1931 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 1932 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 1933 if (spa) 1934 break; 1935 } 1936 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 1937 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 1938 if (spa) 1939 break; 1940 } 1941 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 1942 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 1943 if (spa) 1944 break; 1945 } 1946 1947 arc_evict_ghost(arc_mru_ghost, guid, -1); 1948 arc_evict_ghost(arc_mfu_ghost, guid, -1); 1949 1950 mutex_enter(&arc_reclaim_thr_lock); 1951 arc_do_user_evicts(); 1952 mutex_exit(&arc_reclaim_thr_lock); 1953 ASSERT(spa || arc_eviction_list == NULL); 1954 } 1955 1956 void 1957 arc_shrink(void) 1958 { 1959 if (arc_c > arc_c_min) { 1960 uint64_t to_free; 1961 1962 #ifdef _KERNEL 1963 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 1964 #else 1965 to_free = arc_c >> arc_shrink_shift; 1966 #endif 1967 if (arc_c > arc_c_min + to_free) 1968 atomic_add_64(&arc_c, -to_free); 1969 else 1970 arc_c = arc_c_min; 1971 1972 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 1973 if (arc_c > arc_size) 1974 arc_c = MAX(arc_size, arc_c_min); 1975 if (arc_p > arc_c) 1976 arc_p = (arc_c >> 1); 1977 ASSERT(arc_c >= arc_c_min); 1978 ASSERT((int64_t)arc_p >= 0); 1979 } 1980 1981 if (arc_size > arc_c) 1982 arc_adjust(); 1983 } 1984 1985 /* 1986 * Determine if the system is under memory pressure and is asking 1987 * to reclaim memory. A return value of 1 indicates that the system 1988 * is under memory pressure and that the arc should adjust accordingly. 1989 */ 1990 static int 1991 arc_reclaim_needed(void) 1992 { 1993 uint64_t extra; 1994 1995 #ifdef _KERNEL 1996 1997 if (needfree) 1998 return (1); 1999 2000 /* 2001 * take 'desfree' extra pages, so we reclaim sooner, rather than later 2002 */ 2003 extra = desfree; 2004 2005 /* 2006 * check that we're out of range of the pageout scanner. It starts to 2007 * schedule paging if freemem is less than lotsfree and needfree. 2008 * lotsfree is the high-water mark for pageout, and needfree is the 2009 * number of needed free pages. We add extra pages here to make sure 2010 * the scanner doesn't start up while we're freeing memory. 2011 */ 2012 if (freemem < lotsfree + needfree + extra) 2013 return (1); 2014 2015 /* 2016 * check to make sure that swapfs has enough space so that anon 2017 * reservations can still succeed. anon_resvmem() checks that the 2018 * availrmem is greater than swapfs_minfree, and the number of reserved 2019 * swap pages. We also add a bit of extra here just to prevent 2020 * circumstances from getting really dire. 2021 */ 2022 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 2023 return (1); 2024 2025 #if defined(__i386) 2026 /* 2027 * If we're on an i386 platform, it's possible that we'll exhaust the 2028 * kernel heap space before we ever run out of available physical 2029 * memory. Most checks of the size of the heap_area compare against 2030 * tune.t_minarmem, which is the minimum available real memory that we 2031 * can have in the system. However, this is generally fixed at 25 pages 2032 * which is so low that it's useless. In this comparison, we seek to 2033 * calculate the total heap-size, and reclaim if more than 3/4ths of the 2034 * heap is allocated. (Or, in the calculation, if less than 1/4th is 2035 * free) 2036 */ 2037 if (vmem_size(heap_arena, VMEM_FREE) < 2038 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2)) 2039 return (1); 2040 #endif 2041 2042 /* 2043 * If zio data pages are being allocated out of a separate heap segment, 2044 * then enforce that the size of available vmem for this arena remains 2045 * above about 1/16th free. 2046 * 2047 * Note: The 1/16th arena free requirement was put in place 2048 * to aggressively evict memory from the arc in order to avoid 2049 * memory fragmentation issues. 2050 */ 2051 if (zio_arena != NULL && 2052 vmem_size(zio_arena, VMEM_FREE) < 2053 (vmem_size(zio_arena, VMEM_ALLOC) >> 4)) 2054 return (1); 2055 #else 2056 if (spa_get_random(100) == 0) 2057 return (1); 2058 #endif 2059 return (0); 2060 } 2061 2062 static void 2063 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 2064 { 2065 size_t i; 2066 kmem_cache_t *prev_cache = NULL; 2067 kmem_cache_t *prev_data_cache = NULL; 2068 extern kmem_cache_t *zio_buf_cache[]; 2069 extern kmem_cache_t *zio_data_buf_cache[]; 2070 2071 #ifdef _KERNEL 2072 if (arc_meta_used >= arc_meta_limit) { 2073 /* 2074 * We are exceeding our meta-data cache limit. 2075 * Purge some DNLC entries to release holds on meta-data. 2076 */ 2077 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 2078 } 2079 #if defined(__i386) 2080 /* 2081 * Reclaim unused memory from all kmem caches. 2082 */ 2083 kmem_reap(); 2084 #endif 2085 #endif 2086 2087 /* 2088 * An aggressive reclamation will shrink the cache size as well as 2089 * reap free buffers from the arc kmem caches. 2090 */ 2091 if (strat == ARC_RECLAIM_AGGR) 2092 arc_shrink(); 2093 2094 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2095 if (zio_buf_cache[i] != prev_cache) { 2096 prev_cache = zio_buf_cache[i]; 2097 kmem_cache_reap_now(zio_buf_cache[i]); 2098 } 2099 if (zio_data_buf_cache[i] != prev_data_cache) { 2100 prev_data_cache = zio_data_buf_cache[i]; 2101 kmem_cache_reap_now(zio_data_buf_cache[i]); 2102 } 2103 } 2104 kmem_cache_reap_now(buf_cache); 2105 kmem_cache_reap_now(hdr_cache); 2106 2107 /* 2108 * Ask the vmem areana to reclaim unused memory from its 2109 * quantum caches. 2110 */ 2111 if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR) 2112 vmem_qcache_reap(zio_arena); 2113 } 2114 2115 static void 2116 arc_reclaim_thread(void) 2117 { 2118 clock_t growtime = 0; 2119 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 2120 callb_cpr_t cpr; 2121 2122 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2123 2124 mutex_enter(&arc_reclaim_thr_lock); 2125 while (arc_thread_exit == 0) { 2126 if (arc_reclaim_needed()) { 2127 2128 if (arc_no_grow) { 2129 if (last_reclaim == ARC_RECLAIM_CONS) { 2130 last_reclaim = ARC_RECLAIM_AGGR; 2131 } else { 2132 last_reclaim = ARC_RECLAIM_CONS; 2133 } 2134 } else { 2135 arc_no_grow = TRUE; 2136 last_reclaim = ARC_RECLAIM_AGGR; 2137 membar_producer(); 2138 } 2139 2140 /* reset the growth delay for every reclaim */ 2141 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 2142 2143 arc_kmem_reap_now(last_reclaim); 2144 arc_warm = B_TRUE; 2145 2146 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) { 2147 arc_no_grow = FALSE; 2148 } 2149 2150 arc_adjust(); 2151 2152 if (arc_eviction_list != NULL) 2153 arc_do_user_evicts(); 2154 2155 /* block until needed, or one second, whichever is shorter */ 2156 CALLB_CPR_SAFE_BEGIN(&cpr); 2157 (void) cv_timedwait(&arc_reclaim_thr_cv, 2158 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz)); 2159 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2160 } 2161 2162 arc_thread_exit = 0; 2163 cv_broadcast(&arc_reclaim_thr_cv); 2164 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2165 thread_exit(); 2166 } 2167 2168 /* 2169 * Adapt arc info given the number of bytes we are trying to add and 2170 * the state that we are comming from. This function is only called 2171 * when we are adding new content to the cache. 2172 */ 2173 static void 2174 arc_adapt(int bytes, arc_state_t *state) 2175 { 2176 int mult; 2177 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2178 2179 if (state == arc_l2c_only) 2180 return; 2181 2182 ASSERT(bytes > 0); 2183 /* 2184 * Adapt the target size of the MRU list: 2185 * - if we just hit in the MRU ghost list, then increase 2186 * the target size of the MRU list. 2187 * - if we just hit in the MFU ghost list, then increase 2188 * the target size of the MFU list by decreasing the 2189 * target size of the MRU list. 2190 */ 2191 if (state == arc_mru_ghost) { 2192 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2193 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2194 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 2195 2196 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2197 } else if (state == arc_mfu_ghost) { 2198 uint64_t delta; 2199 2200 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2201 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2202 mult = MIN(mult, 10); 2203 2204 delta = MIN(bytes * mult, arc_p); 2205 arc_p = MAX(arc_p_min, arc_p - delta); 2206 } 2207 ASSERT((int64_t)arc_p >= 0); 2208 2209 if (arc_reclaim_needed()) { 2210 cv_signal(&arc_reclaim_thr_cv); 2211 return; 2212 } 2213 2214 if (arc_no_grow) 2215 return; 2216 2217 if (arc_c >= arc_c_max) 2218 return; 2219 2220 /* 2221 * If we're within (2 * maxblocksize) bytes of the target 2222 * cache size, increment the target cache size 2223 */ 2224 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2225 atomic_add_64(&arc_c, (int64_t)bytes); 2226 if (arc_c > arc_c_max) 2227 arc_c = arc_c_max; 2228 else if (state == arc_anon) 2229 atomic_add_64(&arc_p, (int64_t)bytes); 2230 if (arc_p > arc_c) 2231 arc_p = arc_c; 2232 } 2233 ASSERT((int64_t)arc_p >= 0); 2234 } 2235 2236 /* 2237 * Check if the cache has reached its limits and eviction is required 2238 * prior to insert. 2239 */ 2240 static int 2241 arc_evict_needed(arc_buf_contents_t type) 2242 { 2243 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2244 return (1); 2245 2246 if (arc_reclaim_needed()) 2247 return (1); 2248 2249 return (arc_size > arc_c); 2250 } 2251 2252 /* 2253 * The buffer, supplied as the first argument, needs a data block. 2254 * So, if we are at cache max, determine which cache should be victimized. 2255 * We have the following cases: 2256 * 2257 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2258 * In this situation if we're out of space, but the resident size of the MFU is 2259 * under the limit, victimize the MFU cache to satisfy this insertion request. 2260 * 2261 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2262 * Here, we've used up all of the available space for the MRU, so we need to 2263 * evict from our own cache instead. Evict from the set of resident MRU 2264 * entries. 2265 * 2266 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2267 * c minus p represents the MFU space in the cache, since p is the size of the 2268 * cache that is dedicated to the MRU. In this situation there's still space on 2269 * the MFU side, so the MRU side needs to be victimized. 2270 * 2271 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2272 * MFU's resident set is consuming more space than it has been allotted. In 2273 * this situation, we must victimize our own cache, the MFU, for this insertion. 2274 */ 2275 static void 2276 arc_get_data_buf(arc_buf_t *buf) 2277 { 2278 arc_state_t *state = buf->b_hdr->b_state; 2279 uint64_t size = buf->b_hdr->b_size; 2280 arc_buf_contents_t type = buf->b_hdr->b_type; 2281 2282 arc_adapt(size, state); 2283 2284 /* 2285 * We have not yet reached cache maximum size, 2286 * just allocate a new buffer. 2287 */ 2288 if (!arc_evict_needed(type)) { 2289 if (type == ARC_BUFC_METADATA) { 2290 buf->b_data = zio_buf_alloc(size); 2291 arc_space_consume(size, ARC_SPACE_DATA); 2292 } else { 2293 ASSERT(type == ARC_BUFC_DATA); 2294 buf->b_data = zio_data_buf_alloc(size); 2295 ARCSTAT_INCR(arcstat_data_size, size); 2296 atomic_add_64(&arc_size, size); 2297 } 2298 goto out; 2299 } 2300 2301 /* 2302 * If we are prefetching from the mfu ghost list, this buffer 2303 * will end up on the mru list; so steal space from there. 2304 */ 2305 if (state == arc_mfu_ghost) 2306 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2307 else if (state == arc_mru_ghost) 2308 state = arc_mru; 2309 2310 if (state == arc_mru || state == arc_anon) { 2311 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2312 state = (arc_mfu->arcs_lsize[type] >= size && 2313 arc_p > mru_used) ? arc_mfu : arc_mru; 2314 } else { 2315 /* MFU cases */ 2316 uint64_t mfu_space = arc_c - arc_p; 2317 state = (arc_mru->arcs_lsize[type] >= size && 2318 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2319 } 2320 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2321 if (type == ARC_BUFC_METADATA) { 2322 buf->b_data = zio_buf_alloc(size); 2323 arc_space_consume(size, ARC_SPACE_DATA); 2324 } else { 2325 ASSERT(type == ARC_BUFC_DATA); 2326 buf->b_data = zio_data_buf_alloc(size); 2327 ARCSTAT_INCR(arcstat_data_size, size); 2328 atomic_add_64(&arc_size, size); 2329 } 2330 ARCSTAT_BUMP(arcstat_recycle_miss); 2331 } 2332 ASSERT(buf->b_data != NULL); 2333 out: 2334 /* 2335 * Update the state size. Note that ghost states have a 2336 * "ghost size" and so don't need to be updated. 2337 */ 2338 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2339 arc_buf_hdr_t *hdr = buf->b_hdr; 2340 2341 atomic_add_64(&hdr->b_state->arcs_size, size); 2342 if (list_link_active(&hdr->b_arc_node)) { 2343 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2344 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2345 } 2346 /* 2347 * If we are growing the cache, and we are adding anonymous 2348 * data, and we have outgrown arc_p, update arc_p 2349 */ 2350 if (arc_size < arc_c && hdr->b_state == arc_anon && 2351 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2352 arc_p = MIN(arc_c, arc_p + size); 2353 } 2354 } 2355 2356 /* 2357 * This routine is called whenever a buffer is accessed. 2358 * NOTE: the hash lock is dropped in this function. 2359 */ 2360 static void 2361 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2362 { 2363 clock_t now; 2364 2365 ASSERT(MUTEX_HELD(hash_lock)); 2366 2367 if (buf->b_state == arc_anon) { 2368 /* 2369 * This buffer is not in the cache, and does not 2370 * appear in our "ghost" list. Add the new buffer 2371 * to the MRU state. 2372 */ 2373 2374 ASSERT(buf->b_arc_access == 0); 2375 buf->b_arc_access = ddi_get_lbolt(); 2376 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2377 arc_change_state(arc_mru, buf, hash_lock); 2378 2379 } else if (buf->b_state == arc_mru) { 2380 now = ddi_get_lbolt(); 2381 2382 /* 2383 * If this buffer is here because of a prefetch, then either: 2384 * - clear the flag if this is a "referencing" read 2385 * (any subsequent access will bump this into the MFU state). 2386 * or 2387 * - move the buffer to the head of the list if this is 2388 * another prefetch (to make it less likely to be evicted). 2389 */ 2390 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2391 if (refcount_count(&buf->b_refcnt) == 0) { 2392 ASSERT(list_link_active(&buf->b_arc_node)); 2393 } else { 2394 buf->b_flags &= ~ARC_PREFETCH; 2395 ARCSTAT_BUMP(arcstat_mru_hits); 2396 } 2397 buf->b_arc_access = now; 2398 return; 2399 } 2400 2401 /* 2402 * This buffer has been "accessed" only once so far, 2403 * but it is still in the cache. Move it to the MFU 2404 * state. 2405 */ 2406 if (now > buf->b_arc_access + ARC_MINTIME) { 2407 /* 2408 * More than 125ms have passed since we 2409 * instantiated this buffer. Move it to the 2410 * most frequently used state. 2411 */ 2412 buf->b_arc_access = now; 2413 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2414 arc_change_state(arc_mfu, buf, hash_lock); 2415 } 2416 ARCSTAT_BUMP(arcstat_mru_hits); 2417 } else if (buf->b_state == arc_mru_ghost) { 2418 arc_state_t *new_state; 2419 /* 2420 * This buffer has been "accessed" recently, but 2421 * was evicted from the cache. Move it to the 2422 * MFU state. 2423 */ 2424 2425 if (buf->b_flags & ARC_PREFETCH) { 2426 new_state = arc_mru; 2427 if (refcount_count(&buf->b_refcnt) > 0) 2428 buf->b_flags &= ~ARC_PREFETCH; 2429 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2430 } else { 2431 new_state = arc_mfu; 2432 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2433 } 2434 2435 buf->b_arc_access = ddi_get_lbolt(); 2436 arc_change_state(new_state, buf, hash_lock); 2437 2438 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2439 } else if (buf->b_state == arc_mfu) { 2440 /* 2441 * This buffer has been accessed more than once and is 2442 * still in the cache. Keep it in the MFU state. 2443 * 2444 * NOTE: an add_reference() that occurred when we did 2445 * the arc_read() will have kicked this off the list. 2446 * If it was a prefetch, we will explicitly move it to 2447 * the head of the list now. 2448 */ 2449 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2450 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2451 ASSERT(list_link_active(&buf->b_arc_node)); 2452 } 2453 ARCSTAT_BUMP(arcstat_mfu_hits); 2454 buf->b_arc_access = ddi_get_lbolt(); 2455 } else if (buf->b_state == arc_mfu_ghost) { 2456 arc_state_t *new_state = arc_mfu; 2457 /* 2458 * This buffer has been accessed more than once but has 2459 * been evicted from the cache. Move it back to the 2460 * MFU state. 2461 */ 2462 2463 if (buf->b_flags & ARC_PREFETCH) { 2464 /* 2465 * This is a prefetch access... 2466 * move this block back to the MRU state. 2467 */ 2468 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 2469 new_state = arc_mru; 2470 } 2471 2472 buf->b_arc_access = ddi_get_lbolt(); 2473 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2474 arc_change_state(new_state, buf, hash_lock); 2475 2476 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2477 } else if (buf->b_state == arc_l2c_only) { 2478 /* 2479 * This buffer is on the 2nd Level ARC. 2480 */ 2481 2482 buf->b_arc_access = ddi_get_lbolt(); 2483 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2484 arc_change_state(arc_mfu, buf, hash_lock); 2485 } else { 2486 ASSERT(!"invalid arc state"); 2487 } 2488 } 2489 2490 /* a generic arc_done_func_t which you can use */ 2491 /* ARGSUSED */ 2492 void 2493 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2494 { 2495 if (zio == NULL || zio->io_error == 0) 2496 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2497 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2498 } 2499 2500 /* a generic arc_done_func_t */ 2501 void 2502 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2503 { 2504 arc_buf_t **bufp = arg; 2505 if (zio && zio->io_error) { 2506 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2507 *bufp = NULL; 2508 } else { 2509 *bufp = buf; 2510 ASSERT(buf->b_data); 2511 } 2512 } 2513 2514 static void 2515 arc_read_done(zio_t *zio) 2516 { 2517 arc_buf_hdr_t *hdr, *found; 2518 arc_buf_t *buf; 2519 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2520 kmutex_t *hash_lock; 2521 arc_callback_t *callback_list, *acb; 2522 int freeable = FALSE; 2523 2524 buf = zio->io_private; 2525 hdr = buf->b_hdr; 2526 2527 /* 2528 * The hdr was inserted into hash-table and removed from lists 2529 * prior to starting I/O. We should find this header, since 2530 * it's in the hash table, and it should be legit since it's 2531 * not possible to evict it during the I/O. The only possible 2532 * reason for it not to be found is if we were freed during the 2533 * read. 2534 */ 2535 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth, 2536 &hash_lock); 2537 2538 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 2539 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2540 (found == hdr && HDR_L2_READING(hdr))); 2541 2542 hdr->b_flags &= ~ARC_L2_EVICTED; 2543 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2544 hdr->b_flags &= ~ARC_L2CACHE; 2545 2546 /* byteswap if necessary */ 2547 callback_list = hdr->b_acb; 2548 ASSERT(callback_list != NULL); 2549 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2550 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2551 byteswap_uint64_array : 2552 dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap; 2553 func(buf->b_data, hdr->b_size); 2554 } 2555 2556 arc_cksum_compute(buf, B_FALSE); 2557 2558 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { 2559 /* 2560 * Only call arc_access on anonymous buffers. This is because 2561 * if we've issued an I/O for an evicted buffer, we've already 2562 * called arc_access (to prevent any simultaneous readers from 2563 * getting confused). 2564 */ 2565 arc_access(hdr, hash_lock); 2566 } 2567 2568 /* create copies of the data buffer for the callers */ 2569 abuf = buf; 2570 for (acb = callback_list; acb; acb = acb->acb_next) { 2571 if (acb->acb_done) { 2572 if (abuf == NULL) 2573 abuf = arc_buf_clone(buf); 2574 acb->acb_buf = abuf; 2575 abuf = NULL; 2576 } 2577 } 2578 hdr->b_acb = NULL; 2579 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2580 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2581 if (abuf == buf) { 2582 ASSERT(buf->b_efunc == NULL); 2583 ASSERT(hdr->b_datacnt == 1); 2584 hdr->b_flags |= ARC_BUF_AVAILABLE; 2585 } 2586 2587 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2588 2589 if (zio->io_error != 0) { 2590 hdr->b_flags |= ARC_IO_ERROR; 2591 if (hdr->b_state != arc_anon) 2592 arc_change_state(arc_anon, hdr, hash_lock); 2593 if (HDR_IN_HASH_TABLE(hdr)) 2594 buf_hash_remove(hdr); 2595 freeable = refcount_is_zero(&hdr->b_refcnt); 2596 } 2597 2598 /* 2599 * Broadcast before we drop the hash_lock to avoid the possibility 2600 * that the hdr (and hence the cv) might be freed before we get to 2601 * the cv_broadcast(). 2602 */ 2603 cv_broadcast(&hdr->b_cv); 2604 2605 if (hash_lock) { 2606 mutex_exit(hash_lock); 2607 } else { 2608 /* 2609 * This block was freed while we waited for the read to 2610 * complete. It has been removed from the hash table and 2611 * moved to the anonymous state (so that it won't show up 2612 * in the cache). 2613 */ 2614 ASSERT3P(hdr->b_state, ==, arc_anon); 2615 freeable = refcount_is_zero(&hdr->b_refcnt); 2616 } 2617 2618 /* execute each callback and free its structure */ 2619 while ((acb = callback_list) != NULL) { 2620 if (acb->acb_done) 2621 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2622 2623 if (acb->acb_zio_dummy != NULL) { 2624 acb->acb_zio_dummy->io_error = zio->io_error; 2625 zio_nowait(acb->acb_zio_dummy); 2626 } 2627 2628 callback_list = acb->acb_next; 2629 kmem_free(acb, sizeof (arc_callback_t)); 2630 } 2631 2632 if (freeable) 2633 arc_hdr_destroy(hdr); 2634 } 2635 2636 /* 2637 * "Read" the block block at the specified DVA (in bp) via the 2638 * cache. If the block is found in the cache, invoke the provided 2639 * callback immediately and return. Note that the `zio' parameter 2640 * in the callback will be NULL in this case, since no IO was 2641 * required. If the block is not in the cache pass the read request 2642 * on to the spa with a substitute callback function, so that the 2643 * requested block will be added to the cache. 2644 * 2645 * If a read request arrives for a block that has a read in-progress, 2646 * either wait for the in-progress read to complete (and return the 2647 * results); or, if this is a read with a "done" func, add a record 2648 * to the read to invoke the "done" func when the read completes, 2649 * and return; or just return. 2650 * 2651 * arc_read_done() will invoke all the requested "done" functions 2652 * for readers of this block. 2653 * 2654 * Normal callers should use arc_read and pass the arc buffer and offset 2655 * for the bp. But if you know you don't need locking, you can use 2656 * arc_read_bp. 2657 */ 2658 int 2659 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf, 2660 arc_done_func_t *done, void *private, int priority, int zio_flags, 2661 uint32_t *arc_flags, const zbookmark_t *zb) 2662 { 2663 int err; 2664 2665 if (pbuf == NULL) { 2666 /* 2667 * XXX This happens from traverse callback funcs, for 2668 * the objset_phys_t block. 2669 */ 2670 return (arc_read_nolock(pio, spa, bp, done, private, priority, 2671 zio_flags, arc_flags, zb)); 2672 } 2673 2674 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt)); 2675 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size); 2676 rw_enter(&pbuf->b_data_lock, RW_READER); 2677 2678 err = arc_read_nolock(pio, spa, bp, done, private, priority, 2679 zio_flags, arc_flags, zb); 2680 rw_exit(&pbuf->b_data_lock); 2681 2682 return (err); 2683 } 2684 2685 int 2686 arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp, 2687 arc_done_func_t *done, void *private, int priority, int zio_flags, 2688 uint32_t *arc_flags, const zbookmark_t *zb) 2689 { 2690 arc_buf_hdr_t *hdr; 2691 arc_buf_t *buf; 2692 kmutex_t *hash_lock; 2693 zio_t *rzio; 2694 uint64_t guid = spa_load_guid(spa); 2695 2696 top: 2697 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp), 2698 &hash_lock); 2699 if (hdr && hdr->b_datacnt > 0) { 2700 2701 *arc_flags |= ARC_CACHED; 2702 2703 if (HDR_IO_IN_PROGRESS(hdr)) { 2704 2705 if (*arc_flags & ARC_WAIT) { 2706 cv_wait(&hdr->b_cv, hash_lock); 2707 mutex_exit(hash_lock); 2708 goto top; 2709 } 2710 ASSERT(*arc_flags & ARC_NOWAIT); 2711 2712 if (done) { 2713 arc_callback_t *acb = NULL; 2714 2715 acb = kmem_zalloc(sizeof (arc_callback_t), 2716 KM_SLEEP); 2717 acb->acb_done = done; 2718 acb->acb_private = private; 2719 if (pio != NULL) 2720 acb->acb_zio_dummy = zio_null(pio, 2721 spa, NULL, NULL, NULL, zio_flags); 2722 2723 ASSERT(acb->acb_done != NULL); 2724 acb->acb_next = hdr->b_acb; 2725 hdr->b_acb = acb; 2726 add_reference(hdr, hash_lock, private); 2727 mutex_exit(hash_lock); 2728 return (0); 2729 } 2730 mutex_exit(hash_lock); 2731 return (0); 2732 } 2733 2734 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2735 2736 if (done) { 2737 add_reference(hdr, hash_lock, private); 2738 /* 2739 * If this block is already in use, create a new 2740 * copy of the data so that we will be guaranteed 2741 * that arc_release() will always succeed. 2742 */ 2743 buf = hdr->b_buf; 2744 ASSERT(buf); 2745 ASSERT(buf->b_data); 2746 if (HDR_BUF_AVAILABLE(hdr)) { 2747 ASSERT(buf->b_efunc == NULL); 2748 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2749 } else { 2750 buf = arc_buf_clone(buf); 2751 } 2752 2753 } else if (*arc_flags & ARC_PREFETCH && 2754 refcount_count(&hdr->b_refcnt) == 0) { 2755 hdr->b_flags |= ARC_PREFETCH; 2756 } 2757 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2758 arc_access(hdr, hash_lock); 2759 if (*arc_flags & ARC_L2CACHE) 2760 hdr->b_flags |= ARC_L2CACHE; 2761 mutex_exit(hash_lock); 2762 ARCSTAT_BUMP(arcstat_hits); 2763 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2764 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2765 data, metadata, hits); 2766 2767 if (done) 2768 done(NULL, buf, private); 2769 } else { 2770 uint64_t size = BP_GET_LSIZE(bp); 2771 arc_callback_t *acb; 2772 vdev_t *vd = NULL; 2773 uint64_t addr; 2774 boolean_t devw = B_FALSE; 2775 2776 if (hdr == NULL) { 2777 /* this block is not in the cache */ 2778 arc_buf_hdr_t *exists; 2779 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2780 buf = arc_buf_alloc(spa, size, private, type); 2781 hdr = buf->b_hdr; 2782 hdr->b_dva = *BP_IDENTITY(bp); 2783 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 2784 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 2785 exists = buf_hash_insert(hdr, &hash_lock); 2786 if (exists) { 2787 /* somebody beat us to the hash insert */ 2788 mutex_exit(hash_lock); 2789 buf_discard_identity(hdr); 2790 (void) arc_buf_remove_ref(buf, private); 2791 goto top; /* restart the IO request */ 2792 } 2793 /* if this is a prefetch, we don't have a reference */ 2794 if (*arc_flags & ARC_PREFETCH) { 2795 (void) remove_reference(hdr, hash_lock, 2796 private); 2797 hdr->b_flags |= ARC_PREFETCH; 2798 } 2799 if (*arc_flags & ARC_L2CACHE) 2800 hdr->b_flags |= ARC_L2CACHE; 2801 if (BP_GET_LEVEL(bp) > 0) 2802 hdr->b_flags |= ARC_INDIRECT; 2803 } else { 2804 /* this block is in the ghost cache */ 2805 ASSERT(GHOST_STATE(hdr->b_state)); 2806 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2807 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 2808 ASSERT(hdr->b_buf == NULL); 2809 2810 /* if this is a prefetch, we don't have a reference */ 2811 if (*arc_flags & ARC_PREFETCH) 2812 hdr->b_flags |= ARC_PREFETCH; 2813 else 2814 add_reference(hdr, hash_lock, private); 2815 if (*arc_flags & ARC_L2CACHE) 2816 hdr->b_flags |= ARC_L2CACHE; 2817 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2818 buf->b_hdr = hdr; 2819 buf->b_data = NULL; 2820 buf->b_efunc = NULL; 2821 buf->b_private = NULL; 2822 buf->b_next = NULL; 2823 hdr->b_buf = buf; 2824 ASSERT(hdr->b_datacnt == 0); 2825 hdr->b_datacnt = 1; 2826 arc_get_data_buf(buf); 2827 arc_access(hdr, hash_lock); 2828 } 2829 2830 ASSERT(!GHOST_STATE(hdr->b_state)); 2831 2832 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2833 acb->acb_done = done; 2834 acb->acb_private = private; 2835 2836 ASSERT(hdr->b_acb == NULL); 2837 hdr->b_acb = acb; 2838 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2839 2840 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL && 2841 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 2842 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 2843 addr = hdr->b_l2hdr->b_daddr; 2844 /* 2845 * Lock out device removal. 2846 */ 2847 if (vdev_is_dead(vd) || 2848 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 2849 vd = NULL; 2850 } 2851 2852 mutex_exit(hash_lock); 2853 2854 ASSERT3U(hdr->b_size, ==, size); 2855 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 2856 uint64_t, size, zbookmark_t *, zb); 2857 ARCSTAT_BUMP(arcstat_misses); 2858 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2859 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2860 data, metadata, misses); 2861 2862 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 2863 /* 2864 * Read from the L2ARC if the following are true: 2865 * 1. The L2ARC vdev was previously cached. 2866 * 2. This buffer still has L2ARC metadata. 2867 * 3. This buffer isn't currently writing to the L2ARC. 2868 * 4. The L2ARC entry wasn't evicted, which may 2869 * also have invalidated the vdev. 2870 * 5. This isn't prefetch and l2arc_noprefetch is set. 2871 */ 2872 if (hdr->b_l2hdr != NULL && 2873 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 2874 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 2875 l2arc_read_callback_t *cb; 2876 2877 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 2878 ARCSTAT_BUMP(arcstat_l2_hits); 2879 2880 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 2881 KM_SLEEP); 2882 cb->l2rcb_buf = buf; 2883 cb->l2rcb_spa = spa; 2884 cb->l2rcb_bp = *bp; 2885 cb->l2rcb_zb = *zb; 2886 cb->l2rcb_flags = zio_flags; 2887 2888 /* 2889 * l2arc read. The SCL_L2ARC lock will be 2890 * released by l2arc_read_done(). 2891 */ 2892 rzio = zio_read_phys(pio, vd, addr, size, 2893 buf->b_data, ZIO_CHECKSUM_OFF, 2894 l2arc_read_done, cb, priority, zio_flags | 2895 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 2896 ZIO_FLAG_DONT_PROPAGATE | 2897 ZIO_FLAG_DONT_RETRY, B_FALSE); 2898 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 2899 zio_t *, rzio); 2900 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 2901 2902 if (*arc_flags & ARC_NOWAIT) { 2903 zio_nowait(rzio); 2904 return (0); 2905 } 2906 2907 ASSERT(*arc_flags & ARC_WAIT); 2908 if (zio_wait(rzio) == 0) 2909 return (0); 2910 2911 /* l2arc read error; goto zio_read() */ 2912 } else { 2913 DTRACE_PROBE1(l2arc__miss, 2914 arc_buf_hdr_t *, hdr); 2915 ARCSTAT_BUMP(arcstat_l2_misses); 2916 if (HDR_L2_WRITING(hdr)) 2917 ARCSTAT_BUMP(arcstat_l2_rw_clash); 2918 spa_config_exit(spa, SCL_L2ARC, vd); 2919 } 2920 } else { 2921 if (vd != NULL) 2922 spa_config_exit(spa, SCL_L2ARC, vd); 2923 if (l2arc_ndev != 0) { 2924 DTRACE_PROBE1(l2arc__miss, 2925 arc_buf_hdr_t *, hdr); 2926 ARCSTAT_BUMP(arcstat_l2_misses); 2927 } 2928 } 2929 2930 rzio = zio_read(pio, spa, bp, buf->b_data, size, 2931 arc_read_done, buf, priority, zio_flags, zb); 2932 2933 if (*arc_flags & ARC_WAIT) 2934 return (zio_wait(rzio)); 2935 2936 ASSERT(*arc_flags & ARC_NOWAIT); 2937 zio_nowait(rzio); 2938 } 2939 return (0); 2940 } 2941 2942 void 2943 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2944 { 2945 ASSERT(buf->b_hdr != NULL); 2946 ASSERT(buf->b_hdr->b_state != arc_anon); 2947 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2948 ASSERT(buf->b_efunc == NULL); 2949 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 2950 2951 buf->b_efunc = func; 2952 buf->b_private = private; 2953 } 2954 2955 /* 2956 * This is used by the DMU to let the ARC know that a buffer is 2957 * being evicted, so the ARC should clean up. If this arc buf 2958 * is not yet in the evicted state, it will be put there. 2959 */ 2960 int 2961 arc_buf_evict(arc_buf_t *buf) 2962 { 2963 arc_buf_hdr_t *hdr; 2964 kmutex_t *hash_lock; 2965 arc_buf_t **bufp; 2966 2967 mutex_enter(&buf->b_evict_lock); 2968 hdr = buf->b_hdr; 2969 if (hdr == NULL) { 2970 /* 2971 * We are in arc_do_user_evicts(). 2972 */ 2973 ASSERT(buf->b_data == NULL); 2974 mutex_exit(&buf->b_evict_lock); 2975 return (0); 2976 } else if (buf->b_data == NULL) { 2977 arc_buf_t copy = *buf; /* structure assignment */ 2978 /* 2979 * We are on the eviction list; process this buffer now 2980 * but let arc_do_user_evicts() do the reaping. 2981 */ 2982 buf->b_efunc = NULL; 2983 mutex_exit(&buf->b_evict_lock); 2984 VERIFY(copy.b_efunc(©) == 0); 2985 return (1); 2986 } 2987 hash_lock = HDR_LOCK(hdr); 2988 mutex_enter(hash_lock); 2989 hdr = buf->b_hdr; 2990 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 2991 2992 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2993 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2994 2995 /* 2996 * Pull this buffer off of the hdr 2997 */ 2998 bufp = &hdr->b_buf; 2999 while (*bufp != buf) 3000 bufp = &(*bufp)->b_next; 3001 *bufp = buf->b_next; 3002 3003 ASSERT(buf->b_data != NULL); 3004 arc_buf_destroy(buf, FALSE, FALSE); 3005 3006 if (hdr->b_datacnt == 0) { 3007 arc_state_t *old_state = hdr->b_state; 3008 arc_state_t *evicted_state; 3009 3010 ASSERT(hdr->b_buf == NULL); 3011 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 3012 3013 evicted_state = 3014 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3015 3016 mutex_enter(&old_state->arcs_mtx); 3017 mutex_enter(&evicted_state->arcs_mtx); 3018 3019 arc_change_state(evicted_state, hdr, hash_lock); 3020 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3021 hdr->b_flags |= ARC_IN_HASH_TABLE; 3022 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3023 3024 mutex_exit(&evicted_state->arcs_mtx); 3025 mutex_exit(&old_state->arcs_mtx); 3026 } 3027 mutex_exit(hash_lock); 3028 mutex_exit(&buf->b_evict_lock); 3029 3030 VERIFY(buf->b_efunc(buf) == 0); 3031 buf->b_efunc = NULL; 3032 buf->b_private = NULL; 3033 buf->b_hdr = NULL; 3034 buf->b_next = NULL; 3035 kmem_cache_free(buf_cache, buf); 3036 return (1); 3037 } 3038 3039 /* 3040 * Release this buffer from the cache. This must be done 3041 * after a read and prior to modifying the buffer contents. 3042 * If the buffer has more than one reference, we must make 3043 * a new hdr for the buffer. 3044 */ 3045 void 3046 arc_release(arc_buf_t *buf, void *tag) 3047 { 3048 arc_buf_hdr_t *hdr; 3049 kmutex_t *hash_lock = NULL; 3050 l2arc_buf_hdr_t *l2hdr; 3051 uint64_t buf_size; 3052 3053 /* 3054 * It would be nice to assert that if it's DMU metadata (level > 3055 * 0 || it's the dnode file), then it must be syncing context. 3056 * But we don't know that information at this level. 3057 */ 3058 3059 mutex_enter(&buf->b_evict_lock); 3060 hdr = buf->b_hdr; 3061 3062 /* this buffer is not on any list */ 3063 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 3064 3065 if (hdr->b_state == arc_anon) { 3066 /* this buffer is already released */ 3067 ASSERT(buf->b_efunc == NULL); 3068 } else { 3069 hash_lock = HDR_LOCK(hdr); 3070 mutex_enter(hash_lock); 3071 hdr = buf->b_hdr; 3072 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3073 } 3074 3075 l2hdr = hdr->b_l2hdr; 3076 if (l2hdr) { 3077 mutex_enter(&l2arc_buflist_mtx); 3078 hdr->b_l2hdr = NULL; 3079 buf_size = hdr->b_size; 3080 } 3081 3082 /* 3083 * Do we have more than one buf? 3084 */ 3085 if (hdr->b_datacnt > 1) { 3086 arc_buf_hdr_t *nhdr; 3087 arc_buf_t **bufp; 3088 uint64_t blksz = hdr->b_size; 3089 uint64_t spa = hdr->b_spa; 3090 arc_buf_contents_t type = hdr->b_type; 3091 uint32_t flags = hdr->b_flags; 3092 3093 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3094 /* 3095 * Pull the data off of this hdr and attach it to 3096 * a new anonymous hdr. 3097 */ 3098 (void) remove_reference(hdr, hash_lock, tag); 3099 bufp = &hdr->b_buf; 3100 while (*bufp != buf) 3101 bufp = &(*bufp)->b_next; 3102 *bufp = buf->b_next; 3103 buf->b_next = NULL; 3104 3105 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3106 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3107 if (refcount_is_zero(&hdr->b_refcnt)) { 3108 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3109 ASSERT3U(*size, >=, hdr->b_size); 3110 atomic_add_64(size, -hdr->b_size); 3111 } 3112 hdr->b_datacnt -= 1; 3113 arc_cksum_verify(buf); 3114 3115 mutex_exit(hash_lock); 3116 3117 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3118 nhdr->b_size = blksz; 3119 nhdr->b_spa = spa; 3120 nhdr->b_type = type; 3121 nhdr->b_buf = buf; 3122 nhdr->b_state = arc_anon; 3123 nhdr->b_arc_access = 0; 3124 nhdr->b_flags = flags & ARC_L2_WRITING; 3125 nhdr->b_l2hdr = NULL; 3126 nhdr->b_datacnt = 1; 3127 nhdr->b_freeze_cksum = NULL; 3128 (void) refcount_add(&nhdr->b_refcnt, tag); 3129 buf->b_hdr = nhdr; 3130 mutex_exit(&buf->b_evict_lock); 3131 atomic_add_64(&arc_anon->arcs_size, blksz); 3132 } else { 3133 mutex_exit(&buf->b_evict_lock); 3134 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3135 ASSERT(!list_link_active(&hdr->b_arc_node)); 3136 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3137 if (hdr->b_state != arc_anon) 3138 arc_change_state(arc_anon, hdr, hash_lock); 3139 hdr->b_arc_access = 0; 3140 if (hash_lock) 3141 mutex_exit(hash_lock); 3142 3143 buf_discard_identity(hdr); 3144 arc_buf_thaw(buf); 3145 } 3146 buf->b_efunc = NULL; 3147 buf->b_private = NULL; 3148 3149 if (l2hdr) { 3150 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3151 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3152 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3153 mutex_exit(&l2arc_buflist_mtx); 3154 } 3155 } 3156 3157 /* 3158 * Release this buffer. If it does not match the provided BP, fill it 3159 * with that block's contents. 3160 */ 3161 /* ARGSUSED */ 3162 int 3163 arc_release_bp(arc_buf_t *buf, void *tag, blkptr_t *bp, spa_t *spa, 3164 zbookmark_t *zb) 3165 { 3166 arc_release(buf, tag); 3167 return (0); 3168 } 3169 3170 int 3171 arc_released(arc_buf_t *buf) 3172 { 3173 int released; 3174 3175 mutex_enter(&buf->b_evict_lock); 3176 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3177 mutex_exit(&buf->b_evict_lock); 3178 return (released); 3179 } 3180 3181 int 3182 arc_has_callback(arc_buf_t *buf) 3183 { 3184 int callback; 3185 3186 mutex_enter(&buf->b_evict_lock); 3187 callback = (buf->b_efunc != NULL); 3188 mutex_exit(&buf->b_evict_lock); 3189 return (callback); 3190 } 3191 3192 #ifdef ZFS_DEBUG 3193 int 3194 arc_referenced(arc_buf_t *buf) 3195 { 3196 int referenced; 3197 3198 mutex_enter(&buf->b_evict_lock); 3199 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3200 mutex_exit(&buf->b_evict_lock); 3201 return (referenced); 3202 } 3203 #endif 3204 3205 static void 3206 arc_write_ready(zio_t *zio) 3207 { 3208 arc_write_callback_t *callback = zio->io_private; 3209 arc_buf_t *buf = callback->awcb_buf; 3210 arc_buf_hdr_t *hdr = buf->b_hdr; 3211 3212 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3213 callback->awcb_ready(zio, buf, callback->awcb_private); 3214 3215 /* 3216 * If the IO is already in progress, then this is a re-write 3217 * attempt, so we need to thaw and re-compute the cksum. 3218 * It is the responsibility of the callback to handle the 3219 * accounting for any re-write attempt. 3220 */ 3221 if (HDR_IO_IN_PROGRESS(hdr)) { 3222 mutex_enter(&hdr->b_freeze_lock); 3223 if (hdr->b_freeze_cksum != NULL) { 3224 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3225 hdr->b_freeze_cksum = NULL; 3226 } 3227 mutex_exit(&hdr->b_freeze_lock); 3228 } 3229 arc_cksum_compute(buf, B_FALSE); 3230 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3231 } 3232 3233 static void 3234 arc_write_done(zio_t *zio) 3235 { 3236 arc_write_callback_t *callback = zio->io_private; 3237 arc_buf_t *buf = callback->awcb_buf; 3238 arc_buf_hdr_t *hdr = buf->b_hdr; 3239 3240 ASSERT(hdr->b_acb == NULL); 3241 3242 if (zio->io_error == 0) { 3243 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3244 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 3245 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3246 } else { 3247 ASSERT(BUF_EMPTY(hdr)); 3248 } 3249 3250 /* 3251 * If the block to be written was all-zero, we may have 3252 * compressed it away. In this case no write was performed 3253 * so there will be no dva/birth/checksum. The buffer must 3254 * therefore remain anonymous (and uncached). 3255 */ 3256 if (!BUF_EMPTY(hdr)) { 3257 arc_buf_hdr_t *exists; 3258 kmutex_t *hash_lock; 3259 3260 ASSERT(zio->io_error == 0); 3261 3262 arc_cksum_verify(buf); 3263 3264 exists = buf_hash_insert(hdr, &hash_lock); 3265 if (exists) { 3266 /* 3267 * This can only happen if we overwrite for 3268 * sync-to-convergence, because we remove 3269 * buffers from the hash table when we arc_free(). 3270 */ 3271 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 3272 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3273 panic("bad overwrite, hdr=%p exists=%p", 3274 (void *)hdr, (void *)exists); 3275 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3276 arc_change_state(arc_anon, exists, hash_lock); 3277 mutex_exit(hash_lock); 3278 arc_hdr_destroy(exists); 3279 exists = buf_hash_insert(hdr, &hash_lock); 3280 ASSERT3P(exists, ==, NULL); 3281 } else { 3282 /* Dedup */ 3283 ASSERT(hdr->b_datacnt == 1); 3284 ASSERT(hdr->b_state == arc_anon); 3285 ASSERT(BP_GET_DEDUP(zio->io_bp)); 3286 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 3287 } 3288 } 3289 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3290 /* if it's not anon, we are doing a scrub */ 3291 if (!exists && hdr->b_state == arc_anon) 3292 arc_access(hdr, hash_lock); 3293 mutex_exit(hash_lock); 3294 } else { 3295 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3296 } 3297 3298 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3299 callback->awcb_done(zio, buf, callback->awcb_private); 3300 3301 kmem_free(callback, sizeof (arc_write_callback_t)); 3302 } 3303 3304 zio_t * 3305 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 3306 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp, 3307 arc_done_func_t *ready, arc_done_func_t *done, void *private, 3308 int priority, int zio_flags, const zbookmark_t *zb) 3309 { 3310 arc_buf_hdr_t *hdr = buf->b_hdr; 3311 arc_write_callback_t *callback; 3312 zio_t *zio; 3313 3314 ASSERT(ready != NULL); 3315 ASSERT(done != NULL); 3316 ASSERT(!HDR_IO_ERROR(hdr)); 3317 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3318 ASSERT(hdr->b_acb == NULL); 3319 if (l2arc) 3320 hdr->b_flags |= ARC_L2CACHE; 3321 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3322 callback->awcb_ready = ready; 3323 callback->awcb_done = done; 3324 callback->awcb_private = private; 3325 callback->awcb_buf = buf; 3326 3327 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 3328 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb); 3329 3330 return (zio); 3331 } 3332 3333 static int 3334 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg) 3335 { 3336 #ifdef _KERNEL 3337 uint64_t available_memory = ptob(freemem); 3338 static uint64_t page_load = 0; 3339 static uint64_t last_txg = 0; 3340 3341 #if defined(__i386) 3342 available_memory = 3343 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3344 #endif 3345 if (available_memory >= zfs_write_limit_max) 3346 return (0); 3347 3348 if (txg > last_txg) { 3349 last_txg = txg; 3350 page_load = 0; 3351 } 3352 /* 3353 * If we are in pageout, we know that memory is already tight, 3354 * the arc is already going to be evicting, so we just want to 3355 * continue to let page writes occur as quickly as possible. 3356 */ 3357 if (curproc == proc_pageout) { 3358 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3359 return (ERESTART); 3360 /* Note: reserve is inflated, so we deflate */ 3361 page_load += reserve / 8; 3362 return (0); 3363 } else if (page_load > 0 && arc_reclaim_needed()) { 3364 /* memory is low, delay before restarting */ 3365 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3366 return (EAGAIN); 3367 } 3368 page_load = 0; 3369 3370 if (arc_size > arc_c_min) { 3371 uint64_t evictable_memory = 3372 arc_mru->arcs_lsize[ARC_BUFC_DATA] + 3373 arc_mru->arcs_lsize[ARC_BUFC_METADATA] + 3374 arc_mfu->arcs_lsize[ARC_BUFC_DATA] + 3375 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]; 3376 available_memory += MIN(evictable_memory, arc_size - arc_c_min); 3377 } 3378 3379 if (inflight_data > available_memory / 4) { 3380 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3381 return (ERESTART); 3382 } 3383 #endif 3384 return (0); 3385 } 3386 3387 void 3388 arc_tempreserve_clear(uint64_t reserve) 3389 { 3390 atomic_add_64(&arc_tempreserve, -reserve); 3391 ASSERT((int64_t)arc_tempreserve >= 0); 3392 } 3393 3394 int 3395 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3396 { 3397 int error; 3398 uint64_t anon_size; 3399 3400 #ifdef ZFS_DEBUG 3401 /* 3402 * Once in a while, fail for no reason. Everything should cope. 3403 */ 3404 if (spa_get_random(10000) == 0) { 3405 dprintf("forcing random failure\n"); 3406 return (ERESTART); 3407 } 3408 #endif 3409 if (reserve > arc_c/4 && !arc_no_grow) 3410 arc_c = MIN(arc_c_max, reserve * 4); 3411 if (reserve > arc_c) 3412 return (ENOMEM); 3413 3414 /* 3415 * Don't count loaned bufs as in flight dirty data to prevent long 3416 * network delays from blocking transactions that are ready to be 3417 * assigned to a txg. 3418 */ 3419 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3420 3421 /* 3422 * Writes will, almost always, require additional memory allocations 3423 * in order to compress/encrypt/etc the data. We therefor need to 3424 * make sure that there is sufficient available memory for this. 3425 */ 3426 if (error = arc_memory_throttle(reserve, anon_size, txg)) 3427 return (error); 3428 3429 /* 3430 * Throttle writes when the amount of dirty data in the cache 3431 * gets too large. We try to keep the cache less than half full 3432 * of dirty blocks so that our sync times don't grow too large. 3433 * Note: if two requests come in concurrently, we might let them 3434 * both succeed, when one of them should fail. Not a huge deal. 3435 */ 3436 3437 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3438 anon_size > arc_c / 4) { 3439 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3440 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3441 arc_tempreserve>>10, 3442 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3443 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3444 reserve>>10, arc_c>>10); 3445 return (ERESTART); 3446 } 3447 atomic_add_64(&arc_tempreserve, reserve); 3448 return (0); 3449 } 3450 3451 void 3452 arc_init(void) 3453 { 3454 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3455 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3456 3457 /* Convert seconds to clock ticks */ 3458 arc_min_prefetch_lifespan = 1 * hz; 3459 3460 /* Start out with 1/8 of all memory */ 3461 arc_c = physmem * PAGESIZE / 8; 3462 3463 #ifdef _KERNEL 3464 /* 3465 * On architectures where the physical memory can be larger 3466 * than the addressable space (intel in 32-bit mode), we may 3467 * need to limit the cache to 1/8 of VM size. 3468 */ 3469 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3470 #endif 3471 3472 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3473 arc_c_min = MAX(arc_c / 4, 64<<20); 3474 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3475 if (arc_c * 8 >= 1<<30) 3476 arc_c_max = (arc_c * 8) - (1<<30); 3477 else 3478 arc_c_max = arc_c_min; 3479 arc_c_max = MAX(arc_c * 6, arc_c_max); 3480 3481 /* 3482 * Allow the tunables to override our calculations if they are 3483 * reasonable (ie. over 64MB) 3484 */ 3485 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3486 arc_c_max = zfs_arc_max; 3487 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3488 arc_c_min = zfs_arc_min; 3489 3490 arc_c = arc_c_max; 3491 arc_p = (arc_c >> 1); 3492 3493 /* limit meta-data to 1/4 of the arc capacity */ 3494 arc_meta_limit = arc_c_max / 4; 3495 3496 /* Allow the tunable to override if it is reasonable */ 3497 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3498 arc_meta_limit = zfs_arc_meta_limit; 3499 3500 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3501 arc_c_min = arc_meta_limit / 2; 3502 3503 if (zfs_arc_grow_retry > 0) 3504 arc_grow_retry = zfs_arc_grow_retry; 3505 3506 if (zfs_arc_shrink_shift > 0) 3507 arc_shrink_shift = zfs_arc_shrink_shift; 3508 3509 if (zfs_arc_p_min_shift > 0) 3510 arc_p_min_shift = zfs_arc_p_min_shift; 3511 3512 /* if kmem_flags are set, lets try to use less memory */ 3513 if (kmem_debugging()) 3514 arc_c = arc_c / 2; 3515 if (arc_c < arc_c_min) 3516 arc_c = arc_c_min; 3517 3518 arc_anon = &ARC_anon; 3519 arc_mru = &ARC_mru; 3520 arc_mru_ghost = &ARC_mru_ghost; 3521 arc_mfu = &ARC_mfu; 3522 arc_mfu_ghost = &ARC_mfu_ghost; 3523 arc_l2c_only = &ARC_l2c_only; 3524 arc_size = 0; 3525 3526 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3527 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3528 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3529 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3530 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3531 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3532 3533 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3534 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3535 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3536 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3537 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3538 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3539 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3540 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3541 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3542 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3543 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3544 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3545 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3546 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3547 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3548 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3549 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3550 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3551 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3552 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3553 3554 buf_init(); 3555 3556 arc_thread_exit = 0; 3557 arc_eviction_list = NULL; 3558 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3559 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3560 3561 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3562 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3563 3564 if (arc_ksp != NULL) { 3565 arc_ksp->ks_data = &arc_stats; 3566 kstat_install(arc_ksp); 3567 } 3568 3569 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3570 TS_RUN, minclsyspri); 3571 3572 arc_dead = FALSE; 3573 arc_warm = B_FALSE; 3574 3575 if (zfs_write_limit_max == 0) 3576 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; 3577 else 3578 zfs_write_limit_shift = 0; 3579 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL); 3580 } 3581 3582 void 3583 arc_fini(void) 3584 { 3585 mutex_enter(&arc_reclaim_thr_lock); 3586 arc_thread_exit = 1; 3587 while (arc_thread_exit != 0) 3588 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3589 mutex_exit(&arc_reclaim_thr_lock); 3590 3591 arc_flush(NULL); 3592 3593 arc_dead = TRUE; 3594 3595 if (arc_ksp != NULL) { 3596 kstat_delete(arc_ksp); 3597 arc_ksp = NULL; 3598 } 3599 3600 mutex_destroy(&arc_eviction_mtx); 3601 mutex_destroy(&arc_reclaim_thr_lock); 3602 cv_destroy(&arc_reclaim_thr_cv); 3603 3604 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3605 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3606 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3607 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3608 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3609 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3610 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3611 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3612 3613 mutex_destroy(&arc_anon->arcs_mtx); 3614 mutex_destroy(&arc_mru->arcs_mtx); 3615 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3616 mutex_destroy(&arc_mfu->arcs_mtx); 3617 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3618 mutex_destroy(&arc_l2c_only->arcs_mtx); 3619 3620 mutex_destroy(&zfs_write_limit_lock); 3621 3622 buf_fini(); 3623 3624 ASSERT(arc_loaned_bytes == 0); 3625 } 3626 3627 /* 3628 * Level 2 ARC 3629 * 3630 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3631 * It uses dedicated storage devices to hold cached data, which are populated 3632 * using large infrequent writes. The main role of this cache is to boost 3633 * the performance of random read workloads. The intended L2ARC devices 3634 * include short-stroked disks, solid state disks, and other media with 3635 * substantially faster read latency than disk. 3636 * 3637 * +-----------------------+ 3638 * | ARC | 3639 * +-----------------------+ 3640 * | ^ ^ 3641 * | | | 3642 * l2arc_feed_thread() arc_read() 3643 * | | | 3644 * | l2arc read | 3645 * V | | 3646 * +---------------+ | 3647 * | L2ARC | | 3648 * +---------------+ | 3649 * | ^ | 3650 * l2arc_write() | | 3651 * | | | 3652 * V | | 3653 * +-------+ +-------+ 3654 * | vdev | | vdev | 3655 * | cache | | cache | 3656 * +-------+ +-------+ 3657 * +=========+ .-----. 3658 * : L2ARC : |-_____-| 3659 * : devices : | Disks | 3660 * +=========+ `-_____-' 3661 * 3662 * Read requests are satisfied from the following sources, in order: 3663 * 3664 * 1) ARC 3665 * 2) vdev cache of L2ARC devices 3666 * 3) L2ARC devices 3667 * 4) vdev cache of disks 3668 * 5) disks 3669 * 3670 * Some L2ARC device types exhibit extremely slow write performance. 3671 * To accommodate for this there are some significant differences between 3672 * the L2ARC and traditional cache design: 3673 * 3674 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3675 * the ARC behave as usual, freeing buffers and placing headers on ghost 3676 * lists. The ARC does not send buffers to the L2ARC during eviction as 3677 * this would add inflated write latencies for all ARC memory pressure. 3678 * 3679 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3680 * It does this by periodically scanning buffers from the eviction-end of 3681 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3682 * not already there. It scans until a headroom of buffers is satisfied, 3683 * which itself is a buffer for ARC eviction. The thread that does this is 3684 * l2arc_feed_thread(), illustrated below; example sizes are included to 3685 * provide a better sense of ratio than this diagram: 3686 * 3687 * head --> tail 3688 * +---------------------+----------+ 3689 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3690 * +---------------------+----------+ | o L2ARC eligible 3691 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3692 * +---------------------+----------+ | 3693 * 15.9 Gbytes ^ 32 Mbytes | 3694 * headroom | 3695 * l2arc_feed_thread() 3696 * | 3697 * l2arc write hand <--[oooo]--' 3698 * | 8 Mbyte 3699 * | write max 3700 * V 3701 * +==============================+ 3702 * L2ARC dev |####|#|###|###| |####| ... | 3703 * +==============================+ 3704 * 32 Gbytes 3705 * 3706 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3707 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3708 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3709 * safe to say that this is an uncommon case, since buffers at the end of 3710 * the ARC lists have moved there due to inactivity. 3711 * 3712 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3713 * then the L2ARC simply misses copying some buffers. This serves as a 3714 * pressure valve to prevent heavy read workloads from both stalling the ARC 3715 * with waits and clogging the L2ARC with writes. This also helps prevent 3716 * the potential for the L2ARC to churn if it attempts to cache content too 3717 * quickly, such as during backups of the entire pool. 3718 * 3719 * 5. After system boot and before the ARC has filled main memory, there are 3720 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 3721 * lists can remain mostly static. Instead of searching from tail of these 3722 * lists as pictured, the l2arc_feed_thread() will search from the list heads 3723 * for eligible buffers, greatly increasing its chance of finding them. 3724 * 3725 * The L2ARC device write speed is also boosted during this time so that 3726 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 3727 * there are no L2ARC reads, and no fear of degrading read performance 3728 * through increased writes. 3729 * 3730 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3731 * the vdev queue can aggregate them into larger and fewer writes. Each 3732 * device is written to in a rotor fashion, sweeping writes through 3733 * available space then repeating. 3734 * 3735 * 7. The L2ARC does not store dirty content. It never needs to flush 3736 * write buffers back to disk based storage. 3737 * 3738 * 8. If an ARC buffer is written (and dirtied) which also exists in the 3739 * L2ARC, the now stale L2ARC buffer is immediately dropped. 3740 * 3741 * The performance of the L2ARC can be tweaked by a number of tunables, which 3742 * may be necessary for different workloads: 3743 * 3744 * l2arc_write_max max write bytes per interval 3745 * l2arc_write_boost extra write bytes during device warmup 3746 * l2arc_noprefetch skip caching prefetched buffers 3747 * l2arc_headroom number of max device writes to precache 3748 * l2arc_feed_secs seconds between L2ARC writing 3749 * 3750 * Tunables may be removed or added as future performance improvements are 3751 * integrated, and also may become zpool properties. 3752 * 3753 * There are three key functions that control how the L2ARC warms up: 3754 * 3755 * l2arc_write_eligible() check if a buffer is eligible to cache 3756 * l2arc_write_size() calculate how much to write 3757 * l2arc_write_interval() calculate sleep delay between writes 3758 * 3759 * These three functions determine what to write, how much, and how quickly 3760 * to send writes. 3761 */ 3762 3763 static boolean_t 3764 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 3765 { 3766 /* 3767 * A buffer is *not* eligible for the L2ARC if it: 3768 * 1. belongs to a different spa. 3769 * 2. is already cached on the L2ARC. 3770 * 3. has an I/O in progress (it may be an incomplete read). 3771 * 4. is flagged not eligible (zfs property). 3772 */ 3773 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || 3774 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 3775 return (B_FALSE); 3776 3777 return (B_TRUE); 3778 } 3779 3780 static uint64_t 3781 l2arc_write_size(l2arc_dev_t *dev) 3782 { 3783 uint64_t size; 3784 3785 size = dev->l2ad_write; 3786 3787 if (arc_warm == B_FALSE) 3788 size += dev->l2ad_boost; 3789 3790 return (size); 3791 3792 } 3793 3794 static clock_t 3795 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 3796 { 3797 clock_t interval, next, now; 3798 3799 /* 3800 * If the ARC lists are busy, increase our write rate; if the 3801 * lists are stale, idle back. This is achieved by checking 3802 * how much we previously wrote - if it was more than half of 3803 * what we wanted, schedule the next write much sooner. 3804 */ 3805 if (l2arc_feed_again && wrote > (wanted / 2)) 3806 interval = (hz * l2arc_feed_min_ms) / 1000; 3807 else 3808 interval = hz * l2arc_feed_secs; 3809 3810 now = ddi_get_lbolt(); 3811 next = MAX(now, MIN(now + interval, began + interval)); 3812 3813 return (next); 3814 } 3815 3816 static void 3817 l2arc_hdr_stat_add(void) 3818 { 3819 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 3820 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 3821 } 3822 3823 static void 3824 l2arc_hdr_stat_remove(void) 3825 { 3826 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 3827 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 3828 } 3829 3830 /* 3831 * Cycle through L2ARC devices. This is how L2ARC load balances. 3832 * If a device is returned, this also returns holding the spa config lock. 3833 */ 3834 static l2arc_dev_t * 3835 l2arc_dev_get_next(void) 3836 { 3837 l2arc_dev_t *first, *next = NULL; 3838 3839 /* 3840 * Lock out the removal of spas (spa_namespace_lock), then removal 3841 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 3842 * both locks will be dropped and a spa config lock held instead. 3843 */ 3844 mutex_enter(&spa_namespace_lock); 3845 mutex_enter(&l2arc_dev_mtx); 3846 3847 /* if there are no vdevs, there is nothing to do */ 3848 if (l2arc_ndev == 0) 3849 goto out; 3850 3851 first = NULL; 3852 next = l2arc_dev_last; 3853 do { 3854 /* loop around the list looking for a non-faulted vdev */ 3855 if (next == NULL) { 3856 next = list_head(l2arc_dev_list); 3857 } else { 3858 next = list_next(l2arc_dev_list, next); 3859 if (next == NULL) 3860 next = list_head(l2arc_dev_list); 3861 } 3862 3863 /* if we have come back to the start, bail out */ 3864 if (first == NULL) 3865 first = next; 3866 else if (next == first) 3867 break; 3868 3869 } while (vdev_is_dead(next->l2ad_vdev)); 3870 3871 /* if we were unable to find any usable vdevs, return NULL */ 3872 if (vdev_is_dead(next->l2ad_vdev)) 3873 next = NULL; 3874 3875 l2arc_dev_last = next; 3876 3877 out: 3878 mutex_exit(&l2arc_dev_mtx); 3879 3880 /* 3881 * Grab the config lock to prevent the 'next' device from being 3882 * removed while we are writing to it. 3883 */ 3884 if (next != NULL) 3885 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 3886 mutex_exit(&spa_namespace_lock); 3887 3888 return (next); 3889 } 3890 3891 /* 3892 * Free buffers that were tagged for destruction. 3893 */ 3894 static void 3895 l2arc_do_free_on_write() 3896 { 3897 list_t *buflist; 3898 l2arc_data_free_t *df, *df_prev; 3899 3900 mutex_enter(&l2arc_free_on_write_mtx); 3901 buflist = l2arc_free_on_write; 3902 3903 for (df = list_tail(buflist); df; df = df_prev) { 3904 df_prev = list_prev(buflist, df); 3905 ASSERT(df->l2df_data != NULL); 3906 ASSERT(df->l2df_func != NULL); 3907 df->l2df_func(df->l2df_data, df->l2df_size); 3908 list_remove(buflist, df); 3909 kmem_free(df, sizeof (l2arc_data_free_t)); 3910 } 3911 3912 mutex_exit(&l2arc_free_on_write_mtx); 3913 } 3914 3915 /* 3916 * A write to a cache device has completed. Update all headers to allow 3917 * reads from these buffers to begin. 3918 */ 3919 static void 3920 l2arc_write_done(zio_t *zio) 3921 { 3922 l2arc_write_callback_t *cb; 3923 l2arc_dev_t *dev; 3924 list_t *buflist; 3925 arc_buf_hdr_t *head, *ab, *ab_prev; 3926 l2arc_buf_hdr_t *abl2; 3927 kmutex_t *hash_lock; 3928 3929 cb = zio->io_private; 3930 ASSERT(cb != NULL); 3931 dev = cb->l2wcb_dev; 3932 ASSERT(dev != NULL); 3933 head = cb->l2wcb_head; 3934 ASSERT(head != NULL); 3935 buflist = dev->l2ad_buflist; 3936 ASSERT(buflist != NULL); 3937 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 3938 l2arc_write_callback_t *, cb); 3939 3940 if (zio->io_error != 0) 3941 ARCSTAT_BUMP(arcstat_l2_writes_error); 3942 3943 mutex_enter(&l2arc_buflist_mtx); 3944 3945 /* 3946 * All writes completed, or an error was hit. 3947 */ 3948 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 3949 ab_prev = list_prev(buflist, ab); 3950 3951 hash_lock = HDR_LOCK(ab); 3952 if (!mutex_tryenter(hash_lock)) { 3953 /* 3954 * This buffer misses out. It may be in a stage 3955 * of eviction. Its ARC_L2_WRITING flag will be 3956 * left set, denying reads to this buffer. 3957 */ 3958 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 3959 continue; 3960 } 3961 3962 if (zio->io_error != 0) { 3963 /* 3964 * Error - drop L2ARC entry. 3965 */ 3966 list_remove(buflist, ab); 3967 abl2 = ab->b_l2hdr; 3968 ab->b_l2hdr = NULL; 3969 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 3970 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 3971 } 3972 3973 /* 3974 * Allow ARC to begin reads to this L2ARC entry. 3975 */ 3976 ab->b_flags &= ~ARC_L2_WRITING; 3977 3978 mutex_exit(hash_lock); 3979 } 3980 3981 atomic_inc_64(&l2arc_writes_done); 3982 list_remove(buflist, head); 3983 kmem_cache_free(hdr_cache, head); 3984 mutex_exit(&l2arc_buflist_mtx); 3985 3986 l2arc_do_free_on_write(); 3987 3988 kmem_free(cb, sizeof (l2arc_write_callback_t)); 3989 } 3990 3991 /* 3992 * A read to a cache device completed. Validate buffer contents before 3993 * handing over to the regular ARC routines. 3994 */ 3995 static void 3996 l2arc_read_done(zio_t *zio) 3997 { 3998 l2arc_read_callback_t *cb; 3999 arc_buf_hdr_t *hdr; 4000 arc_buf_t *buf; 4001 kmutex_t *hash_lock; 4002 int equal; 4003 4004 ASSERT(zio->io_vd != NULL); 4005 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 4006 4007 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 4008 4009 cb = zio->io_private; 4010 ASSERT(cb != NULL); 4011 buf = cb->l2rcb_buf; 4012 ASSERT(buf != NULL); 4013 4014 hash_lock = HDR_LOCK(buf->b_hdr); 4015 mutex_enter(hash_lock); 4016 hdr = buf->b_hdr; 4017 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 4018 4019 /* 4020 * Check this survived the L2ARC journey. 4021 */ 4022 equal = arc_cksum_equal(buf); 4023 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 4024 mutex_exit(hash_lock); 4025 zio->io_private = buf; 4026 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 4027 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4028 arc_read_done(zio); 4029 } else { 4030 mutex_exit(hash_lock); 4031 /* 4032 * Buffer didn't survive caching. Increment stats and 4033 * reissue to the original storage device. 4034 */ 4035 if (zio->io_error != 0) { 4036 ARCSTAT_BUMP(arcstat_l2_io_error); 4037 } else { 4038 zio->io_error = EIO; 4039 } 4040 if (!equal) 4041 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4042 4043 /* 4044 * If there's no waiter, issue an async i/o to the primary 4045 * storage now. If there *is* a waiter, the caller must 4046 * issue the i/o in a context where it's OK to block. 4047 */ 4048 if (zio->io_waiter == NULL) { 4049 zio_t *pio = zio_unique_parent(zio); 4050 4051 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4052 4053 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4054 buf->b_data, zio->io_size, arc_read_done, buf, 4055 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4056 } 4057 } 4058 4059 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4060 } 4061 4062 /* 4063 * This is the list priority from which the L2ARC will search for pages to 4064 * cache. This is used within loops (0..3) to cycle through lists in the 4065 * desired order. This order can have a significant effect on cache 4066 * performance. 4067 * 4068 * Currently the metadata lists are hit first, MFU then MRU, followed by 4069 * the data lists. This function returns a locked list, and also returns 4070 * the lock pointer. 4071 */ 4072 static list_t * 4073 l2arc_list_locked(int list_num, kmutex_t **lock) 4074 { 4075 list_t *list; 4076 4077 ASSERT(list_num >= 0 && list_num <= 3); 4078 4079 switch (list_num) { 4080 case 0: 4081 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4082 *lock = &arc_mfu->arcs_mtx; 4083 break; 4084 case 1: 4085 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4086 *lock = &arc_mru->arcs_mtx; 4087 break; 4088 case 2: 4089 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4090 *lock = &arc_mfu->arcs_mtx; 4091 break; 4092 case 3: 4093 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4094 *lock = &arc_mru->arcs_mtx; 4095 break; 4096 } 4097 4098 ASSERT(!(MUTEX_HELD(*lock))); 4099 mutex_enter(*lock); 4100 return (list); 4101 } 4102 4103 /* 4104 * Evict buffers from the device write hand to the distance specified in 4105 * bytes. This distance may span populated buffers, it may span nothing. 4106 * This is clearing a region on the L2ARC device ready for writing. 4107 * If the 'all' boolean is set, every buffer is evicted. 4108 */ 4109 static void 4110 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4111 { 4112 list_t *buflist; 4113 l2arc_buf_hdr_t *abl2; 4114 arc_buf_hdr_t *ab, *ab_prev; 4115 kmutex_t *hash_lock; 4116 uint64_t taddr; 4117 4118 buflist = dev->l2ad_buflist; 4119 4120 if (buflist == NULL) 4121 return; 4122 4123 if (!all && dev->l2ad_first) { 4124 /* 4125 * This is the first sweep through the device. There is 4126 * nothing to evict. 4127 */ 4128 return; 4129 } 4130 4131 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4132 /* 4133 * When nearing the end of the device, evict to the end 4134 * before the device write hand jumps to the start. 4135 */ 4136 taddr = dev->l2ad_end; 4137 } else { 4138 taddr = dev->l2ad_hand + distance; 4139 } 4140 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4141 uint64_t, taddr, boolean_t, all); 4142 4143 top: 4144 mutex_enter(&l2arc_buflist_mtx); 4145 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4146 ab_prev = list_prev(buflist, ab); 4147 4148 hash_lock = HDR_LOCK(ab); 4149 if (!mutex_tryenter(hash_lock)) { 4150 /* 4151 * Missed the hash lock. Retry. 4152 */ 4153 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4154 mutex_exit(&l2arc_buflist_mtx); 4155 mutex_enter(hash_lock); 4156 mutex_exit(hash_lock); 4157 goto top; 4158 } 4159 4160 if (HDR_L2_WRITE_HEAD(ab)) { 4161 /* 4162 * We hit a write head node. Leave it for 4163 * l2arc_write_done(). 4164 */ 4165 list_remove(buflist, ab); 4166 mutex_exit(hash_lock); 4167 continue; 4168 } 4169 4170 if (!all && ab->b_l2hdr != NULL && 4171 (ab->b_l2hdr->b_daddr > taddr || 4172 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4173 /* 4174 * We've evicted to the target address, 4175 * or the end of the device. 4176 */ 4177 mutex_exit(hash_lock); 4178 break; 4179 } 4180 4181 if (HDR_FREE_IN_PROGRESS(ab)) { 4182 /* 4183 * Already on the path to destruction. 4184 */ 4185 mutex_exit(hash_lock); 4186 continue; 4187 } 4188 4189 if (ab->b_state == arc_l2c_only) { 4190 ASSERT(!HDR_L2_READING(ab)); 4191 /* 4192 * This doesn't exist in the ARC. Destroy. 4193 * arc_hdr_destroy() will call list_remove() 4194 * and decrement arcstat_l2_size. 4195 */ 4196 arc_change_state(arc_anon, ab, hash_lock); 4197 arc_hdr_destroy(ab); 4198 } else { 4199 /* 4200 * Invalidate issued or about to be issued 4201 * reads, since we may be about to write 4202 * over this location. 4203 */ 4204 if (HDR_L2_READING(ab)) { 4205 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4206 ab->b_flags |= ARC_L2_EVICTED; 4207 } 4208 4209 /* 4210 * Tell ARC this no longer exists in L2ARC. 4211 */ 4212 if (ab->b_l2hdr != NULL) { 4213 abl2 = ab->b_l2hdr; 4214 ab->b_l2hdr = NULL; 4215 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4216 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4217 } 4218 list_remove(buflist, ab); 4219 4220 /* 4221 * This may have been leftover after a 4222 * failed write. 4223 */ 4224 ab->b_flags &= ~ARC_L2_WRITING; 4225 } 4226 mutex_exit(hash_lock); 4227 } 4228 mutex_exit(&l2arc_buflist_mtx); 4229 4230 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0); 4231 dev->l2ad_evict = taddr; 4232 } 4233 4234 /* 4235 * Find and write ARC buffers to the L2ARC device. 4236 * 4237 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4238 * for reading until they have completed writing. 4239 */ 4240 static uint64_t 4241 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 4242 { 4243 arc_buf_hdr_t *ab, *ab_prev, *head; 4244 l2arc_buf_hdr_t *hdrl2; 4245 list_t *list; 4246 uint64_t passed_sz, write_sz, buf_sz, headroom; 4247 void *buf_data; 4248 kmutex_t *hash_lock, *list_lock; 4249 boolean_t have_lock, full; 4250 l2arc_write_callback_t *cb; 4251 zio_t *pio, *wzio; 4252 uint64_t guid = spa_load_guid(spa); 4253 4254 ASSERT(dev->l2ad_vdev != NULL); 4255 4256 pio = NULL; 4257 write_sz = 0; 4258 full = B_FALSE; 4259 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4260 head->b_flags |= ARC_L2_WRITE_HEAD; 4261 4262 /* 4263 * Copy buffers for L2ARC writing. 4264 */ 4265 mutex_enter(&l2arc_buflist_mtx); 4266 for (int try = 0; try <= 3; try++) { 4267 list = l2arc_list_locked(try, &list_lock); 4268 passed_sz = 0; 4269 4270 /* 4271 * L2ARC fast warmup. 4272 * 4273 * Until the ARC is warm and starts to evict, read from the 4274 * head of the ARC lists rather than the tail. 4275 */ 4276 headroom = target_sz * l2arc_headroom; 4277 if (arc_warm == B_FALSE) 4278 ab = list_head(list); 4279 else 4280 ab = list_tail(list); 4281 4282 for (; ab; ab = ab_prev) { 4283 if (arc_warm == B_FALSE) 4284 ab_prev = list_next(list, ab); 4285 else 4286 ab_prev = list_prev(list, ab); 4287 4288 hash_lock = HDR_LOCK(ab); 4289 have_lock = MUTEX_HELD(hash_lock); 4290 if (!have_lock && !mutex_tryenter(hash_lock)) { 4291 /* 4292 * Skip this buffer rather than waiting. 4293 */ 4294 continue; 4295 } 4296 4297 passed_sz += ab->b_size; 4298 if (passed_sz > headroom) { 4299 /* 4300 * Searched too far. 4301 */ 4302 mutex_exit(hash_lock); 4303 break; 4304 } 4305 4306 if (!l2arc_write_eligible(guid, ab)) { 4307 mutex_exit(hash_lock); 4308 continue; 4309 } 4310 4311 if ((write_sz + ab->b_size) > target_sz) { 4312 full = B_TRUE; 4313 mutex_exit(hash_lock); 4314 break; 4315 } 4316 4317 if (pio == NULL) { 4318 /* 4319 * Insert a dummy header on the buflist so 4320 * l2arc_write_done() can find where the 4321 * write buffers begin without searching. 4322 */ 4323 list_insert_head(dev->l2ad_buflist, head); 4324 4325 cb = kmem_alloc( 4326 sizeof (l2arc_write_callback_t), KM_SLEEP); 4327 cb->l2wcb_dev = dev; 4328 cb->l2wcb_head = head; 4329 pio = zio_root(spa, l2arc_write_done, cb, 4330 ZIO_FLAG_CANFAIL); 4331 } 4332 4333 /* 4334 * Create and add a new L2ARC header. 4335 */ 4336 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4337 hdrl2->b_dev = dev; 4338 hdrl2->b_daddr = dev->l2ad_hand; 4339 4340 ab->b_flags |= ARC_L2_WRITING; 4341 ab->b_l2hdr = hdrl2; 4342 list_insert_head(dev->l2ad_buflist, ab); 4343 buf_data = ab->b_buf->b_data; 4344 buf_sz = ab->b_size; 4345 4346 /* 4347 * Compute and store the buffer cksum before 4348 * writing. On debug the cksum is verified first. 4349 */ 4350 arc_cksum_verify(ab->b_buf); 4351 arc_cksum_compute(ab->b_buf, B_TRUE); 4352 4353 mutex_exit(hash_lock); 4354 4355 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4356 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4357 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4358 ZIO_FLAG_CANFAIL, B_FALSE); 4359 4360 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4361 zio_t *, wzio); 4362 (void) zio_nowait(wzio); 4363 4364 /* 4365 * Keep the clock hand suitably device-aligned. 4366 */ 4367 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4368 4369 write_sz += buf_sz; 4370 dev->l2ad_hand += buf_sz; 4371 } 4372 4373 mutex_exit(list_lock); 4374 4375 if (full == B_TRUE) 4376 break; 4377 } 4378 mutex_exit(&l2arc_buflist_mtx); 4379 4380 if (pio == NULL) { 4381 ASSERT3U(write_sz, ==, 0); 4382 kmem_cache_free(hdr_cache, head); 4383 return (0); 4384 } 4385 4386 ASSERT3U(write_sz, <=, target_sz); 4387 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4388 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz); 4389 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4390 vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0); 4391 4392 /* 4393 * Bump device hand to the device start if it is approaching the end. 4394 * l2arc_evict() will already have evicted ahead for this case. 4395 */ 4396 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4397 vdev_space_update(dev->l2ad_vdev, 4398 dev->l2ad_end - dev->l2ad_hand, 0, 0); 4399 dev->l2ad_hand = dev->l2ad_start; 4400 dev->l2ad_evict = dev->l2ad_start; 4401 dev->l2ad_first = B_FALSE; 4402 } 4403 4404 dev->l2ad_writing = B_TRUE; 4405 (void) zio_wait(pio); 4406 dev->l2ad_writing = B_FALSE; 4407 4408 return (write_sz); 4409 } 4410 4411 /* 4412 * This thread feeds the L2ARC at regular intervals. This is the beating 4413 * heart of the L2ARC. 4414 */ 4415 static void 4416 l2arc_feed_thread(void) 4417 { 4418 callb_cpr_t cpr; 4419 l2arc_dev_t *dev; 4420 spa_t *spa; 4421 uint64_t size, wrote; 4422 clock_t begin, next = ddi_get_lbolt(); 4423 4424 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4425 4426 mutex_enter(&l2arc_feed_thr_lock); 4427 4428 while (l2arc_thread_exit == 0) { 4429 CALLB_CPR_SAFE_BEGIN(&cpr); 4430 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4431 next); 4432 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4433 next = ddi_get_lbolt() + hz; 4434 4435 /* 4436 * Quick check for L2ARC devices. 4437 */ 4438 mutex_enter(&l2arc_dev_mtx); 4439 if (l2arc_ndev == 0) { 4440 mutex_exit(&l2arc_dev_mtx); 4441 continue; 4442 } 4443 mutex_exit(&l2arc_dev_mtx); 4444 begin = ddi_get_lbolt(); 4445 4446 /* 4447 * This selects the next l2arc device to write to, and in 4448 * doing so the next spa to feed from: dev->l2ad_spa. This 4449 * will return NULL if there are now no l2arc devices or if 4450 * they are all faulted. 4451 * 4452 * If a device is returned, its spa's config lock is also 4453 * held to prevent device removal. l2arc_dev_get_next() 4454 * will grab and release l2arc_dev_mtx. 4455 */ 4456 if ((dev = l2arc_dev_get_next()) == NULL) 4457 continue; 4458 4459 spa = dev->l2ad_spa; 4460 ASSERT(spa != NULL); 4461 4462 /* 4463 * If the pool is read-only then force the feed thread to 4464 * sleep a little longer. 4465 */ 4466 if (!spa_writeable(spa)) { 4467 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 4468 spa_config_exit(spa, SCL_L2ARC, dev); 4469 continue; 4470 } 4471 4472 /* 4473 * Avoid contributing to memory pressure. 4474 */ 4475 if (arc_reclaim_needed()) { 4476 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 4477 spa_config_exit(spa, SCL_L2ARC, dev); 4478 continue; 4479 } 4480 4481 ARCSTAT_BUMP(arcstat_l2_feeds); 4482 4483 size = l2arc_write_size(dev); 4484 4485 /* 4486 * Evict L2ARC buffers that will be overwritten. 4487 */ 4488 l2arc_evict(dev, size, B_FALSE); 4489 4490 /* 4491 * Write ARC buffers. 4492 */ 4493 wrote = l2arc_write_buffers(spa, dev, size); 4494 4495 /* 4496 * Calculate interval between writes. 4497 */ 4498 next = l2arc_write_interval(begin, size, wrote); 4499 spa_config_exit(spa, SCL_L2ARC, dev); 4500 } 4501 4502 l2arc_thread_exit = 0; 4503 cv_broadcast(&l2arc_feed_thr_cv); 4504 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 4505 thread_exit(); 4506 } 4507 4508 boolean_t 4509 l2arc_vdev_present(vdev_t *vd) 4510 { 4511 l2arc_dev_t *dev; 4512 4513 mutex_enter(&l2arc_dev_mtx); 4514 for (dev = list_head(l2arc_dev_list); dev != NULL; 4515 dev = list_next(l2arc_dev_list, dev)) { 4516 if (dev->l2ad_vdev == vd) 4517 break; 4518 } 4519 mutex_exit(&l2arc_dev_mtx); 4520 4521 return (dev != NULL); 4522 } 4523 4524 /* 4525 * Add a vdev for use by the L2ARC. By this point the spa has already 4526 * validated the vdev and opened it. 4527 */ 4528 void 4529 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 4530 { 4531 l2arc_dev_t *adddev; 4532 4533 ASSERT(!l2arc_vdev_present(vd)); 4534 4535 /* 4536 * Create a new l2arc device entry. 4537 */ 4538 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 4539 adddev->l2ad_spa = spa; 4540 adddev->l2ad_vdev = vd; 4541 adddev->l2ad_write = l2arc_write_max; 4542 adddev->l2ad_boost = l2arc_write_boost; 4543 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 4544 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 4545 adddev->l2ad_hand = adddev->l2ad_start; 4546 adddev->l2ad_evict = adddev->l2ad_start; 4547 adddev->l2ad_first = B_TRUE; 4548 adddev->l2ad_writing = B_FALSE; 4549 ASSERT3U(adddev->l2ad_write, >, 0); 4550 4551 /* 4552 * This is a list of all ARC buffers that are still valid on the 4553 * device. 4554 */ 4555 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 4556 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 4557 offsetof(arc_buf_hdr_t, b_l2node)); 4558 4559 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 4560 4561 /* 4562 * Add device to global list 4563 */ 4564 mutex_enter(&l2arc_dev_mtx); 4565 list_insert_head(l2arc_dev_list, adddev); 4566 atomic_inc_64(&l2arc_ndev); 4567 mutex_exit(&l2arc_dev_mtx); 4568 } 4569 4570 /* 4571 * Remove a vdev from the L2ARC. 4572 */ 4573 void 4574 l2arc_remove_vdev(vdev_t *vd) 4575 { 4576 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 4577 4578 /* 4579 * Find the device by vdev 4580 */ 4581 mutex_enter(&l2arc_dev_mtx); 4582 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 4583 nextdev = list_next(l2arc_dev_list, dev); 4584 if (vd == dev->l2ad_vdev) { 4585 remdev = dev; 4586 break; 4587 } 4588 } 4589 ASSERT(remdev != NULL); 4590 4591 /* 4592 * Remove device from global list 4593 */ 4594 list_remove(l2arc_dev_list, remdev); 4595 l2arc_dev_last = NULL; /* may have been invalidated */ 4596 atomic_dec_64(&l2arc_ndev); 4597 mutex_exit(&l2arc_dev_mtx); 4598 4599 /* 4600 * Clear all buflists and ARC references. L2ARC device flush. 4601 */ 4602 l2arc_evict(remdev, 0, B_TRUE); 4603 list_destroy(remdev->l2ad_buflist); 4604 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 4605 kmem_free(remdev, sizeof (l2arc_dev_t)); 4606 } 4607 4608 void 4609 l2arc_init(void) 4610 { 4611 l2arc_thread_exit = 0; 4612 l2arc_ndev = 0; 4613 l2arc_writes_sent = 0; 4614 l2arc_writes_done = 0; 4615 4616 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 4617 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 4618 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 4619 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 4620 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 4621 4622 l2arc_dev_list = &L2ARC_dev_list; 4623 l2arc_free_on_write = &L2ARC_free_on_write; 4624 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 4625 offsetof(l2arc_dev_t, l2ad_node)); 4626 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 4627 offsetof(l2arc_data_free_t, l2df_list_node)); 4628 } 4629 4630 void 4631 l2arc_fini(void) 4632 { 4633 /* 4634 * This is called from dmu_fini(), which is called from spa_fini(); 4635 * Because of this, we can assume that all l2arc devices have 4636 * already been removed when the pools themselves were removed. 4637 */ 4638 4639 l2arc_do_free_on_write(); 4640 4641 mutex_destroy(&l2arc_feed_thr_lock); 4642 cv_destroy(&l2arc_feed_thr_cv); 4643 mutex_destroy(&l2arc_dev_mtx); 4644 mutex_destroy(&l2arc_buflist_mtx); 4645 mutex_destroy(&l2arc_free_on_write_mtx); 4646 4647 list_destroy(l2arc_dev_list); 4648 list_destroy(l2arc_free_on_write); 4649 } 4650 4651 void 4652 l2arc_start(void) 4653 { 4654 if (!(spa_mode_global & FWRITE)) 4655 return; 4656 4657 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 4658 TS_RUN, minclsyspri); 4659 } 4660 4661 void 4662 l2arc_stop(void) 4663 { 4664 if (!(spa_mode_global & FWRITE)) 4665 return; 4666 4667 mutex_enter(&l2arc_feed_thr_lock); 4668 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 4669 l2arc_thread_exit = 1; 4670 while (l2arc_thread_exit != 0) 4671 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 4672 mutex_exit(&l2arc_feed_thr_lock); 4673 } 4674