xref: /illumos-gate/usr/src/uts/common/fs/zfs/arc.c (revision c1976b8365310f23085adaa53cf00b14039014c8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012 by Delphix. All rights reserved.
25  */
26 
27 /*
28  * DVA-based Adjustable Replacement Cache
29  *
30  * While much of the theory of operation used here is
31  * based on the self-tuning, low overhead replacement cache
32  * presented by Megiddo and Modha at FAST 2003, there are some
33  * significant differences:
34  *
35  * 1. The Megiddo and Modha model assumes any page is evictable.
36  * Pages in its cache cannot be "locked" into memory.  This makes
37  * the eviction algorithm simple: evict the last page in the list.
38  * This also make the performance characteristics easy to reason
39  * about.  Our cache is not so simple.  At any given moment, some
40  * subset of the blocks in the cache are un-evictable because we
41  * have handed out a reference to them.  Blocks are only evictable
42  * when there are no external references active.  This makes
43  * eviction far more problematic:  we choose to evict the evictable
44  * blocks that are the "lowest" in the list.
45  *
46  * There are times when it is not possible to evict the requested
47  * space.  In these circumstances we are unable to adjust the cache
48  * size.  To prevent the cache growing unbounded at these times we
49  * implement a "cache throttle" that slows the flow of new data
50  * into the cache until we can make space available.
51  *
52  * 2. The Megiddo and Modha model assumes a fixed cache size.
53  * Pages are evicted when the cache is full and there is a cache
54  * miss.  Our model has a variable sized cache.  It grows with
55  * high use, but also tries to react to memory pressure from the
56  * operating system: decreasing its size when system memory is
57  * tight.
58  *
59  * 3. The Megiddo and Modha model assumes a fixed page size. All
60  * elements of the cache are therefor exactly the same size.  So
61  * when adjusting the cache size following a cache miss, its simply
62  * a matter of choosing a single page to evict.  In our model, we
63  * have variable sized cache blocks (rangeing from 512 bytes to
64  * 128K bytes).  We therefor choose a set of blocks to evict to make
65  * space for a cache miss that approximates as closely as possible
66  * the space used by the new block.
67  *
68  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
69  * by N. Megiddo & D. Modha, FAST 2003
70  */
71 
72 /*
73  * The locking model:
74  *
75  * A new reference to a cache buffer can be obtained in two
76  * ways: 1) via a hash table lookup using the DVA as a key,
77  * or 2) via one of the ARC lists.  The arc_read() interface
78  * uses method 1, while the internal arc algorithms for
79  * adjusting the cache use method 2.  We therefor provide two
80  * types of locks: 1) the hash table lock array, and 2) the
81  * arc list locks.
82  *
83  * Buffers do not have their own mutexs, rather they rely on the
84  * hash table mutexs for the bulk of their protection (i.e. most
85  * fields in the arc_buf_hdr_t are protected by these mutexs).
86  *
87  * buf_hash_find() returns the appropriate mutex (held) when it
88  * locates the requested buffer in the hash table.  It returns
89  * NULL for the mutex if the buffer was not in the table.
90  *
91  * buf_hash_remove() expects the appropriate hash mutex to be
92  * already held before it is invoked.
93  *
94  * Each arc state also has a mutex which is used to protect the
95  * buffer list associated with the state.  When attempting to
96  * obtain a hash table lock while holding an arc list lock you
97  * must use: mutex_tryenter() to avoid deadlock.  Also note that
98  * the active state mutex must be held before the ghost state mutex.
99  *
100  * Arc buffers may have an associated eviction callback function.
101  * This function will be invoked prior to removing the buffer (e.g.
102  * in arc_do_user_evicts()).  Note however that the data associated
103  * with the buffer may be evicted prior to the callback.  The callback
104  * must be made with *no locks held* (to prevent deadlock).  Additionally,
105  * the users of callbacks must ensure that their private data is
106  * protected from simultaneous callbacks from arc_buf_evict()
107  * and arc_do_user_evicts().
108  *
109  * Note that the majority of the performance stats are manipulated
110  * with atomic operations.
111  *
112  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
113  *
114  *	- L2ARC buflist creation
115  *	- L2ARC buflist eviction
116  *	- L2ARC write completion, which walks L2ARC buflists
117  *	- ARC header destruction, as it removes from L2ARC buflists
118  *	- ARC header release, as it removes from L2ARC buflists
119  */
120 
121 #include <sys/spa.h>
122 #include <sys/zio.h>
123 #include <sys/zfs_context.h>
124 #include <sys/arc.h>
125 #include <sys/refcount.h>
126 #include <sys/vdev.h>
127 #include <sys/vdev_impl.h>
128 #ifdef _KERNEL
129 #include <sys/vmsystm.h>
130 #include <vm/anon.h>
131 #include <sys/fs/swapnode.h>
132 #include <sys/dnlc.h>
133 #endif
134 #include <sys/callb.h>
135 #include <sys/kstat.h>
136 #include <zfs_fletcher.h>
137 
138 static kmutex_t		arc_reclaim_thr_lock;
139 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
140 static uint8_t		arc_thread_exit;
141 
142 extern int zfs_write_limit_shift;
143 extern uint64_t zfs_write_limit_max;
144 extern kmutex_t zfs_write_limit_lock;
145 
146 #define	ARC_REDUCE_DNLC_PERCENT	3
147 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
148 
149 typedef enum arc_reclaim_strategy {
150 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
151 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
152 } arc_reclaim_strategy_t;
153 
154 /* number of seconds before growing cache again */
155 static int		arc_grow_retry = 60;
156 
157 /* shift of arc_c for calculating both min and max arc_p */
158 static int		arc_p_min_shift = 4;
159 
160 /* log2(fraction of arc to reclaim) */
161 static int		arc_shrink_shift = 5;
162 
163 /*
164  * minimum lifespan of a prefetch block in clock ticks
165  * (initialized in arc_init())
166  */
167 static int		arc_min_prefetch_lifespan;
168 
169 static int arc_dead;
170 
171 /*
172  * The arc has filled available memory and has now warmed up.
173  */
174 static boolean_t arc_warm;
175 
176 /*
177  * These tunables are for performance analysis.
178  */
179 uint64_t zfs_arc_max;
180 uint64_t zfs_arc_min;
181 uint64_t zfs_arc_meta_limit = 0;
182 int zfs_arc_grow_retry = 0;
183 int zfs_arc_shrink_shift = 0;
184 int zfs_arc_p_min_shift = 0;
185 
186 /*
187  * Note that buffers can be in one of 6 states:
188  *	ARC_anon	- anonymous (discussed below)
189  *	ARC_mru		- recently used, currently cached
190  *	ARC_mru_ghost	- recentely used, no longer in cache
191  *	ARC_mfu		- frequently used, currently cached
192  *	ARC_mfu_ghost	- frequently used, no longer in cache
193  *	ARC_l2c_only	- exists in L2ARC but not other states
194  * When there are no active references to the buffer, they are
195  * are linked onto a list in one of these arc states.  These are
196  * the only buffers that can be evicted or deleted.  Within each
197  * state there are multiple lists, one for meta-data and one for
198  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
199  * etc.) is tracked separately so that it can be managed more
200  * explicitly: favored over data, limited explicitly.
201  *
202  * Anonymous buffers are buffers that are not associated with
203  * a DVA.  These are buffers that hold dirty block copies
204  * before they are written to stable storage.  By definition,
205  * they are "ref'd" and are considered part of arc_mru
206  * that cannot be freed.  Generally, they will aquire a DVA
207  * as they are written and migrate onto the arc_mru list.
208  *
209  * The ARC_l2c_only state is for buffers that are in the second
210  * level ARC but no longer in any of the ARC_m* lists.  The second
211  * level ARC itself may also contain buffers that are in any of
212  * the ARC_m* states - meaning that a buffer can exist in two
213  * places.  The reason for the ARC_l2c_only state is to keep the
214  * buffer header in the hash table, so that reads that hit the
215  * second level ARC benefit from these fast lookups.
216  */
217 
218 typedef struct arc_state {
219 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
220 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
221 	uint64_t arcs_size;	/* total amount of data in this state */
222 	kmutex_t arcs_mtx;
223 } arc_state_t;
224 
225 /* The 6 states: */
226 static arc_state_t ARC_anon;
227 static arc_state_t ARC_mru;
228 static arc_state_t ARC_mru_ghost;
229 static arc_state_t ARC_mfu;
230 static arc_state_t ARC_mfu_ghost;
231 static arc_state_t ARC_l2c_only;
232 
233 typedef struct arc_stats {
234 	kstat_named_t arcstat_hits;
235 	kstat_named_t arcstat_misses;
236 	kstat_named_t arcstat_demand_data_hits;
237 	kstat_named_t arcstat_demand_data_misses;
238 	kstat_named_t arcstat_demand_metadata_hits;
239 	kstat_named_t arcstat_demand_metadata_misses;
240 	kstat_named_t arcstat_prefetch_data_hits;
241 	kstat_named_t arcstat_prefetch_data_misses;
242 	kstat_named_t arcstat_prefetch_metadata_hits;
243 	kstat_named_t arcstat_prefetch_metadata_misses;
244 	kstat_named_t arcstat_mru_hits;
245 	kstat_named_t arcstat_mru_ghost_hits;
246 	kstat_named_t arcstat_mfu_hits;
247 	kstat_named_t arcstat_mfu_ghost_hits;
248 	kstat_named_t arcstat_deleted;
249 	kstat_named_t arcstat_recycle_miss;
250 	kstat_named_t arcstat_mutex_miss;
251 	kstat_named_t arcstat_evict_skip;
252 	kstat_named_t arcstat_evict_l2_cached;
253 	kstat_named_t arcstat_evict_l2_eligible;
254 	kstat_named_t arcstat_evict_l2_ineligible;
255 	kstat_named_t arcstat_hash_elements;
256 	kstat_named_t arcstat_hash_elements_max;
257 	kstat_named_t arcstat_hash_collisions;
258 	kstat_named_t arcstat_hash_chains;
259 	kstat_named_t arcstat_hash_chain_max;
260 	kstat_named_t arcstat_p;
261 	kstat_named_t arcstat_c;
262 	kstat_named_t arcstat_c_min;
263 	kstat_named_t arcstat_c_max;
264 	kstat_named_t arcstat_size;
265 	kstat_named_t arcstat_hdr_size;
266 	kstat_named_t arcstat_data_size;
267 	kstat_named_t arcstat_other_size;
268 	kstat_named_t arcstat_l2_hits;
269 	kstat_named_t arcstat_l2_misses;
270 	kstat_named_t arcstat_l2_feeds;
271 	kstat_named_t arcstat_l2_rw_clash;
272 	kstat_named_t arcstat_l2_read_bytes;
273 	kstat_named_t arcstat_l2_write_bytes;
274 	kstat_named_t arcstat_l2_writes_sent;
275 	kstat_named_t arcstat_l2_writes_done;
276 	kstat_named_t arcstat_l2_writes_error;
277 	kstat_named_t arcstat_l2_writes_hdr_miss;
278 	kstat_named_t arcstat_l2_evict_lock_retry;
279 	kstat_named_t arcstat_l2_evict_reading;
280 	kstat_named_t arcstat_l2_free_on_write;
281 	kstat_named_t arcstat_l2_abort_lowmem;
282 	kstat_named_t arcstat_l2_cksum_bad;
283 	kstat_named_t arcstat_l2_io_error;
284 	kstat_named_t arcstat_l2_size;
285 	kstat_named_t arcstat_l2_hdr_size;
286 	kstat_named_t arcstat_memory_throttle_count;
287 } arc_stats_t;
288 
289 static arc_stats_t arc_stats = {
290 	{ "hits",			KSTAT_DATA_UINT64 },
291 	{ "misses",			KSTAT_DATA_UINT64 },
292 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
293 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
294 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
295 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
296 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
297 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
298 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
299 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
300 	{ "mru_hits",			KSTAT_DATA_UINT64 },
301 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
302 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
303 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
304 	{ "deleted",			KSTAT_DATA_UINT64 },
305 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
306 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
307 	{ "evict_skip",			KSTAT_DATA_UINT64 },
308 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
309 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
310 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
311 	{ "hash_elements",		KSTAT_DATA_UINT64 },
312 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
313 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
314 	{ "hash_chains",		KSTAT_DATA_UINT64 },
315 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
316 	{ "p",				KSTAT_DATA_UINT64 },
317 	{ "c",				KSTAT_DATA_UINT64 },
318 	{ "c_min",			KSTAT_DATA_UINT64 },
319 	{ "c_max",			KSTAT_DATA_UINT64 },
320 	{ "size",			KSTAT_DATA_UINT64 },
321 	{ "hdr_size",			KSTAT_DATA_UINT64 },
322 	{ "data_size",			KSTAT_DATA_UINT64 },
323 	{ "other_size",			KSTAT_DATA_UINT64 },
324 	{ "l2_hits",			KSTAT_DATA_UINT64 },
325 	{ "l2_misses",			KSTAT_DATA_UINT64 },
326 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
327 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
328 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
329 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
330 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
331 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
332 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
333 	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
334 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
335 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
336 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
337 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
338 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
339 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
340 	{ "l2_size",			KSTAT_DATA_UINT64 },
341 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
342 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 }
343 };
344 
345 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
346 
347 #define	ARCSTAT_INCR(stat, val) \
348 	atomic_add_64(&arc_stats.stat.value.ui64, (val));
349 
350 #define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
351 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
352 
353 #define	ARCSTAT_MAX(stat, val) {					\
354 	uint64_t m;							\
355 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
356 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
357 		continue;						\
358 }
359 
360 #define	ARCSTAT_MAXSTAT(stat) \
361 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
362 
363 /*
364  * We define a macro to allow ARC hits/misses to be easily broken down by
365  * two separate conditions, giving a total of four different subtypes for
366  * each of hits and misses (so eight statistics total).
367  */
368 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
369 	if (cond1) {							\
370 		if (cond2) {						\
371 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
372 		} else {						\
373 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
374 		}							\
375 	} else {							\
376 		if (cond2) {						\
377 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
378 		} else {						\
379 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
380 		}							\
381 	}
382 
383 kstat_t			*arc_ksp;
384 static arc_state_t	*arc_anon;
385 static arc_state_t	*arc_mru;
386 static arc_state_t	*arc_mru_ghost;
387 static arc_state_t	*arc_mfu;
388 static arc_state_t	*arc_mfu_ghost;
389 static arc_state_t	*arc_l2c_only;
390 
391 /*
392  * There are several ARC variables that are critical to export as kstats --
393  * but we don't want to have to grovel around in the kstat whenever we wish to
394  * manipulate them.  For these variables, we therefore define them to be in
395  * terms of the statistic variable.  This assures that we are not introducing
396  * the possibility of inconsistency by having shadow copies of the variables,
397  * while still allowing the code to be readable.
398  */
399 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
400 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
401 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
402 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
403 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
404 
405 static int		arc_no_grow;	/* Don't try to grow cache size */
406 static uint64_t		arc_tempreserve;
407 static uint64_t		arc_loaned_bytes;
408 static uint64_t		arc_meta_used;
409 static uint64_t		arc_meta_limit;
410 static uint64_t		arc_meta_max = 0;
411 
412 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
413 
414 typedef struct arc_callback arc_callback_t;
415 
416 struct arc_callback {
417 	void			*acb_private;
418 	arc_done_func_t		*acb_done;
419 	arc_buf_t		*acb_buf;
420 	zio_t			*acb_zio_dummy;
421 	arc_callback_t		*acb_next;
422 };
423 
424 typedef struct arc_write_callback arc_write_callback_t;
425 
426 struct arc_write_callback {
427 	void		*awcb_private;
428 	arc_done_func_t	*awcb_ready;
429 	arc_done_func_t	*awcb_done;
430 	arc_buf_t	*awcb_buf;
431 };
432 
433 struct arc_buf_hdr {
434 	/* protected by hash lock */
435 	dva_t			b_dva;
436 	uint64_t		b_birth;
437 	uint64_t		b_cksum0;
438 
439 	kmutex_t		b_freeze_lock;
440 	zio_cksum_t		*b_freeze_cksum;
441 	void			*b_thawed;
442 
443 	arc_buf_hdr_t		*b_hash_next;
444 	arc_buf_t		*b_buf;
445 	uint32_t		b_flags;
446 	uint32_t		b_datacnt;
447 
448 	arc_callback_t		*b_acb;
449 	kcondvar_t		b_cv;
450 
451 	/* immutable */
452 	arc_buf_contents_t	b_type;
453 	uint64_t		b_size;
454 	uint64_t		b_spa;
455 
456 	/* protected by arc state mutex */
457 	arc_state_t		*b_state;
458 	list_node_t		b_arc_node;
459 
460 	/* updated atomically */
461 	clock_t			b_arc_access;
462 
463 	/* self protecting */
464 	refcount_t		b_refcnt;
465 
466 	l2arc_buf_hdr_t		*b_l2hdr;
467 	list_node_t		b_l2node;
468 };
469 
470 static arc_buf_t *arc_eviction_list;
471 static kmutex_t arc_eviction_mtx;
472 static arc_buf_hdr_t arc_eviction_hdr;
473 static void arc_get_data_buf(arc_buf_t *buf);
474 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
475 static int arc_evict_needed(arc_buf_contents_t type);
476 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
477 
478 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
479 
480 #define	GHOST_STATE(state)	\
481 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
482 	(state) == arc_l2c_only)
483 
484 /*
485  * Private ARC flags.  These flags are private ARC only flags that will show up
486  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
487  * be passed in as arc_flags in things like arc_read.  However, these flags
488  * should never be passed and should only be set by ARC code.  When adding new
489  * public flags, make sure not to smash the private ones.
490  */
491 
492 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
493 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
494 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
495 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
496 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
497 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
498 #define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
499 #define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
500 #define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
501 #define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
502 
503 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
504 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
505 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
506 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
507 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
508 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
509 #define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
510 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
511 #define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
512 				    (hdr)->b_l2hdr != NULL)
513 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
514 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
515 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
516 
517 /*
518  * Other sizes
519  */
520 
521 #define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
522 #define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
523 
524 /*
525  * Hash table routines
526  */
527 
528 #define	HT_LOCK_PAD	64
529 
530 struct ht_lock {
531 	kmutex_t	ht_lock;
532 #ifdef _KERNEL
533 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
534 #endif
535 };
536 
537 #define	BUF_LOCKS 256
538 typedef struct buf_hash_table {
539 	uint64_t ht_mask;
540 	arc_buf_hdr_t **ht_table;
541 	struct ht_lock ht_locks[BUF_LOCKS];
542 } buf_hash_table_t;
543 
544 static buf_hash_table_t buf_hash_table;
545 
546 #define	BUF_HASH_INDEX(spa, dva, birth) \
547 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
548 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
549 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
550 #define	HDR_LOCK(hdr) \
551 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
552 
553 uint64_t zfs_crc64_table[256];
554 
555 /*
556  * Level 2 ARC
557  */
558 
559 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
560 #define	L2ARC_HEADROOM		2		/* num of writes */
561 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
562 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
563 
564 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
565 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
566 
567 /*
568  * L2ARC Performance Tunables
569  */
570 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
571 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
572 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
573 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
574 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
575 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
576 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
577 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
578 
579 /*
580  * L2ARC Internals
581  */
582 typedef struct l2arc_dev {
583 	vdev_t			*l2ad_vdev;	/* vdev */
584 	spa_t			*l2ad_spa;	/* spa */
585 	uint64_t		l2ad_hand;	/* next write location */
586 	uint64_t		l2ad_write;	/* desired write size, bytes */
587 	uint64_t		l2ad_boost;	/* warmup write boost, bytes */
588 	uint64_t		l2ad_start;	/* first addr on device */
589 	uint64_t		l2ad_end;	/* last addr on device */
590 	uint64_t		l2ad_evict;	/* last addr eviction reached */
591 	boolean_t		l2ad_first;	/* first sweep through */
592 	boolean_t		l2ad_writing;	/* currently writing */
593 	list_t			*l2ad_buflist;	/* buffer list */
594 	list_node_t		l2ad_node;	/* device list node */
595 } l2arc_dev_t;
596 
597 static list_t L2ARC_dev_list;			/* device list */
598 static list_t *l2arc_dev_list;			/* device list pointer */
599 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
600 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
601 static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
602 static list_t L2ARC_free_on_write;		/* free after write buf list */
603 static list_t *l2arc_free_on_write;		/* free after write list ptr */
604 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
605 static uint64_t l2arc_ndev;			/* number of devices */
606 
607 typedef struct l2arc_read_callback {
608 	arc_buf_t	*l2rcb_buf;		/* read buffer */
609 	spa_t		*l2rcb_spa;		/* spa */
610 	blkptr_t	l2rcb_bp;		/* original blkptr */
611 	zbookmark_t	l2rcb_zb;		/* original bookmark */
612 	int		l2rcb_flags;		/* original flags */
613 } l2arc_read_callback_t;
614 
615 typedef struct l2arc_write_callback {
616 	l2arc_dev_t	*l2wcb_dev;		/* device info */
617 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
618 } l2arc_write_callback_t;
619 
620 struct l2arc_buf_hdr {
621 	/* protected by arc_buf_hdr  mutex */
622 	l2arc_dev_t	*b_dev;			/* L2ARC device */
623 	uint64_t	b_daddr;		/* disk address, offset byte */
624 };
625 
626 typedef struct l2arc_data_free {
627 	/* protected by l2arc_free_on_write_mtx */
628 	void		*l2df_data;
629 	size_t		l2df_size;
630 	void		(*l2df_func)(void *, size_t);
631 	list_node_t	l2df_list_node;
632 } l2arc_data_free_t;
633 
634 static kmutex_t l2arc_feed_thr_lock;
635 static kcondvar_t l2arc_feed_thr_cv;
636 static uint8_t l2arc_thread_exit;
637 
638 static void l2arc_read_done(zio_t *zio);
639 static void l2arc_hdr_stat_add(void);
640 static void l2arc_hdr_stat_remove(void);
641 
642 static uint64_t
643 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
644 {
645 	uint8_t *vdva = (uint8_t *)dva;
646 	uint64_t crc = -1ULL;
647 	int i;
648 
649 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
650 
651 	for (i = 0; i < sizeof (dva_t); i++)
652 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
653 
654 	crc ^= (spa>>8) ^ birth;
655 
656 	return (crc);
657 }
658 
659 #define	BUF_EMPTY(buf)						\
660 	((buf)->b_dva.dva_word[0] == 0 &&			\
661 	(buf)->b_dva.dva_word[1] == 0 &&			\
662 	(buf)->b_birth == 0)
663 
664 #define	BUF_EQUAL(spa, dva, birth, buf)				\
665 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
666 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
667 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
668 
669 static void
670 buf_discard_identity(arc_buf_hdr_t *hdr)
671 {
672 	hdr->b_dva.dva_word[0] = 0;
673 	hdr->b_dva.dva_word[1] = 0;
674 	hdr->b_birth = 0;
675 	hdr->b_cksum0 = 0;
676 }
677 
678 static arc_buf_hdr_t *
679 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
680 {
681 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
682 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
683 	arc_buf_hdr_t *buf;
684 
685 	mutex_enter(hash_lock);
686 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
687 	    buf = buf->b_hash_next) {
688 		if (BUF_EQUAL(spa, dva, birth, buf)) {
689 			*lockp = hash_lock;
690 			return (buf);
691 		}
692 	}
693 	mutex_exit(hash_lock);
694 	*lockp = NULL;
695 	return (NULL);
696 }
697 
698 /*
699  * Insert an entry into the hash table.  If there is already an element
700  * equal to elem in the hash table, then the already existing element
701  * will be returned and the new element will not be inserted.
702  * Otherwise returns NULL.
703  */
704 static arc_buf_hdr_t *
705 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
706 {
707 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
708 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
709 	arc_buf_hdr_t *fbuf;
710 	uint32_t i;
711 
712 	ASSERT(!HDR_IN_HASH_TABLE(buf));
713 	*lockp = hash_lock;
714 	mutex_enter(hash_lock);
715 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
716 	    fbuf = fbuf->b_hash_next, i++) {
717 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
718 			return (fbuf);
719 	}
720 
721 	buf->b_hash_next = buf_hash_table.ht_table[idx];
722 	buf_hash_table.ht_table[idx] = buf;
723 	buf->b_flags |= ARC_IN_HASH_TABLE;
724 
725 	/* collect some hash table performance data */
726 	if (i > 0) {
727 		ARCSTAT_BUMP(arcstat_hash_collisions);
728 		if (i == 1)
729 			ARCSTAT_BUMP(arcstat_hash_chains);
730 
731 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
732 	}
733 
734 	ARCSTAT_BUMP(arcstat_hash_elements);
735 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
736 
737 	return (NULL);
738 }
739 
740 static void
741 buf_hash_remove(arc_buf_hdr_t *buf)
742 {
743 	arc_buf_hdr_t *fbuf, **bufp;
744 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
745 
746 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
747 	ASSERT(HDR_IN_HASH_TABLE(buf));
748 
749 	bufp = &buf_hash_table.ht_table[idx];
750 	while ((fbuf = *bufp) != buf) {
751 		ASSERT(fbuf != NULL);
752 		bufp = &fbuf->b_hash_next;
753 	}
754 	*bufp = buf->b_hash_next;
755 	buf->b_hash_next = NULL;
756 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
757 
758 	/* collect some hash table performance data */
759 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
760 
761 	if (buf_hash_table.ht_table[idx] &&
762 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
763 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
764 }
765 
766 /*
767  * Global data structures and functions for the buf kmem cache.
768  */
769 static kmem_cache_t *hdr_cache;
770 static kmem_cache_t *buf_cache;
771 
772 static void
773 buf_fini(void)
774 {
775 	int i;
776 
777 	kmem_free(buf_hash_table.ht_table,
778 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
779 	for (i = 0; i < BUF_LOCKS; i++)
780 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
781 	kmem_cache_destroy(hdr_cache);
782 	kmem_cache_destroy(buf_cache);
783 }
784 
785 /*
786  * Constructor callback - called when the cache is empty
787  * and a new buf is requested.
788  */
789 /* ARGSUSED */
790 static int
791 hdr_cons(void *vbuf, void *unused, int kmflag)
792 {
793 	arc_buf_hdr_t *buf = vbuf;
794 
795 	bzero(buf, sizeof (arc_buf_hdr_t));
796 	refcount_create(&buf->b_refcnt);
797 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
798 	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
799 	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
800 
801 	return (0);
802 }
803 
804 /* ARGSUSED */
805 static int
806 buf_cons(void *vbuf, void *unused, int kmflag)
807 {
808 	arc_buf_t *buf = vbuf;
809 
810 	bzero(buf, sizeof (arc_buf_t));
811 	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
812 	rw_init(&buf->b_data_lock, NULL, RW_DEFAULT, NULL);
813 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
814 
815 	return (0);
816 }
817 
818 /*
819  * Destructor callback - called when a cached buf is
820  * no longer required.
821  */
822 /* ARGSUSED */
823 static void
824 hdr_dest(void *vbuf, void *unused)
825 {
826 	arc_buf_hdr_t *buf = vbuf;
827 
828 	ASSERT(BUF_EMPTY(buf));
829 	refcount_destroy(&buf->b_refcnt);
830 	cv_destroy(&buf->b_cv);
831 	mutex_destroy(&buf->b_freeze_lock);
832 	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
833 }
834 
835 /* ARGSUSED */
836 static void
837 buf_dest(void *vbuf, void *unused)
838 {
839 	arc_buf_t *buf = vbuf;
840 
841 	mutex_destroy(&buf->b_evict_lock);
842 	rw_destroy(&buf->b_data_lock);
843 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
844 }
845 
846 /*
847  * Reclaim callback -- invoked when memory is low.
848  */
849 /* ARGSUSED */
850 static void
851 hdr_recl(void *unused)
852 {
853 	dprintf("hdr_recl called\n");
854 	/*
855 	 * umem calls the reclaim func when we destroy the buf cache,
856 	 * which is after we do arc_fini().
857 	 */
858 	if (!arc_dead)
859 		cv_signal(&arc_reclaim_thr_cv);
860 }
861 
862 static void
863 buf_init(void)
864 {
865 	uint64_t *ct;
866 	uint64_t hsize = 1ULL << 12;
867 	int i, j;
868 
869 	/*
870 	 * The hash table is big enough to fill all of physical memory
871 	 * with an average 64K block size.  The table will take up
872 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
873 	 */
874 	while (hsize * 65536 < physmem * PAGESIZE)
875 		hsize <<= 1;
876 retry:
877 	buf_hash_table.ht_mask = hsize - 1;
878 	buf_hash_table.ht_table =
879 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
880 	if (buf_hash_table.ht_table == NULL) {
881 		ASSERT(hsize > (1ULL << 8));
882 		hsize >>= 1;
883 		goto retry;
884 	}
885 
886 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
887 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
888 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
889 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
890 
891 	for (i = 0; i < 256; i++)
892 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
893 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
894 
895 	for (i = 0; i < BUF_LOCKS; i++) {
896 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
897 		    NULL, MUTEX_DEFAULT, NULL);
898 	}
899 }
900 
901 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
902 
903 static void
904 arc_cksum_verify(arc_buf_t *buf)
905 {
906 	zio_cksum_t zc;
907 
908 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
909 		return;
910 
911 	mutex_enter(&buf->b_hdr->b_freeze_lock);
912 	if (buf->b_hdr->b_freeze_cksum == NULL ||
913 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
914 		mutex_exit(&buf->b_hdr->b_freeze_lock);
915 		return;
916 	}
917 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
918 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
919 		panic("buffer modified while frozen!");
920 	mutex_exit(&buf->b_hdr->b_freeze_lock);
921 }
922 
923 static int
924 arc_cksum_equal(arc_buf_t *buf)
925 {
926 	zio_cksum_t zc;
927 	int equal;
928 
929 	mutex_enter(&buf->b_hdr->b_freeze_lock);
930 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
931 	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
932 	mutex_exit(&buf->b_hdr->b_freeze_lock);
933 
934 	return (equal);
935 }
936 
937 static void
938 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
939 {
940 	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
941 		return;
942 
943 	mutex_enter(&buf->b_hdr->b_freeze_lock);
944 	if (buf->b_hdr->b_freeze_cksum != NULL) {
945 		mutex_exit(&buf->b_hdr->b_freeze_lock);
946 		return;
947 	}
948 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
949 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
950 	    buf->b_hdr->b_freeze_cksum);
951 	mutex_exit(&buf->b_hdr->b_freeze_lock);
952 }
953 
954 void
955 arc_buf_thaw(arc_buf_t *buf)
956 {
957 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
958 		if (buf->b_hdr->b_state != arc_anon)
959 			panic("modifying non-anon buffer!");
960 		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
961 			panic("modifying buffer while i/o in progress!");
962 		arc_cksum_verify(buf);
963 	}
964 
965 	mutex_enter(&buf->b_hdr->b_freeze_lock);
966 	if (buf->b_hdr->b_freeze_cksum != NULL) {
967 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
968 		buf->b_hdr->b_freeze_cksum = NULL;
969 	}
970 
971 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
972 		if (buf->b_hdr->b_thawed)
973 			kmem_free(buf->b_hdr->b_thawed, 1);
974 		buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP);
975 	}
976 
977 	mutex_exit(&buf->b_hdr->b_freeze_lock);
978 }
979 
980 void
981 arc_buf_freeze(arc_buf_t *buf)
982 {
983 	kmutex_t *hash_lock;
984 
985 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
986 		return;
987 
988 	hash_lock = HDR_LOCK(buf->b_hdr);
989 	mutex_enter(hash_lock);
990 
991 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
992 	    buf->b_hdr->b_state == arc_anon);
993 	arc_cksum_compute(buf, B_FALSE);
994 	mutex_exit(hash_lock);
995 }
996 
997 static void
998 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
999 {
1000 	ASSERT(MUTEX_HELD(hash_lock));
1001 
1002 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1003 	    (ab->b_state != arc_anon)) {
1004 		uint64_t delta = ab->b_size * ab->b_datacnt;
1005 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
1006 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1007 
1008 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1009 		mutex_enter(&ab->b_state->arcs_mtx);
1010 		ASSERT(list_link_active(&ab->b_arc_node));
1011 		list_remove(list, ab);
1012 		if (GHOST_STATE(ab->b_state)) {
1013 			ASSERT3U(ab->b_datacnt, ==, 0);
1014 			ASSERT3P(ab->b_buf, ==, NULL);
1015 			delta = ab->b_size;
1016 		}
1017 		ASSERT(delta > 0);
1018 		ASSERT3U(*size, >=, delta);
1019 		atomic_add_64(size, -delta);
1020 		mutex_exit(&ab->b_state->arcs_mtx);
1021 		/* remove the prefetch flag if we get a reference */
1022 		if (ab->b_flags & ARC_PREFETCH)
1023 			ab->b_flags &= ~ARC_PREFETCH;
1024 	}
1025 }
1026 
1027 static int
1028 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1029 {
1030 	int cnt;
1031 	arc_state_t *state = ab->b_state;
1032 
1033 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1034 	ASSERT(!GHOST_STATE(state));
1035 
1036 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1037 	    (state != arc_anon)) {
1038 		uint64_t *size = &state->arcs_lsize[ab->b_type];
1039 
1040 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1041 		mutex_enter(&state->arcs_mtx);
1042 		ASSERT(!list_link_active(&ab->b_arc_node));
1043 		list_insert_head(&state->arcs_list[ab->b_type], ab);
1044 		ASSERT(ab->b_datacnt > 0);
1045 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1046 		mutex_exit(&state->arcs_mtx);
1047 	}
1048 	return (cnt);
1049 }
1050 
1051 /*
1052  * Move the supplied buffer to the indicated state.  The mutex
1053  * for the buffer must be held by the caller.
1054  */
1055 static void
1056 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1057 {
1058 	arc_state_t *old_state = ab->b_state;
1059 	int64_t refcnt = refcount_count(&ab->b_refcnt);
1060 	uint64_t from_delta, to_delta;
1061 
1062 	ASSERT(MUTEX_HELD(hash_lock));
1063 	ASSERT(new_state != old_state);
1064 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1065 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1066 	ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1067 
1068 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1069 
1070 	/*
1071 	 * If this buffer is evictable, transfer it from the
1072 	 * old state list to the new state list.
1073 	 */
1074 	if (refcnt == 0) {
1075 		if (old_state != arc_anon) {
1076 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1077 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1078 
1079 			if (use_mutex)
1080 				mutex_enter(&old_state->arcs_mtx);
1081 
1082 			ASSERT(list_link_active(&ab->b_arc_node));
1083 			list_remove(&old_state->arcs_list[ab->b_type], ab);
1084 
1085 			/*
1086 			 * If prefetching out of the ghost cache,
1087 			 * we will have a non-zero datacnt.
1088 			 */
1089 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1090 				/* ghost elements have a ghost size */
1091 				ASSERT(ab->b_buf == NULL);
1092 				from_delta = ab->b_size;
1093 			}
1094 			ASSERT3U(*size, >=, from_delta);
1095 			atomic_add_64(size, -from_delta);
1096 
1097 			if (use_mutex)
1098 				mutex_exit(&old_state->arcs_mtx);
1099 		}
1100 		if (new_state != arc_anon) {
1101 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1102 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1103 
1104 			if (use_mutex)
1105 				mutex_enter(&new_state->arcs_mtx);
1106 
1107 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1108 
1109 			/* ghost elements have a ghost size */
1110 			if (GHOST_STATE(new_state)) {
1111 				ASSERT(ab->b_datacnt == 0);
1112 				ASSERT(ab->b_buf == NULL);
1113 				to_delta = ab->b_size;
1114 			}
1115 			atomic_add_64(size, to_delta);
1116 
1117 			if (use_mutex)
1118 				mutex_exit(&new_state->arcs_mtx);
1119 		}
1120 	}
1121 
1122 	ASSERT(!BUF_EMPTY(ab));
1123 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
1124 		buf_hash_remove(ab);
1125 
1126 	/* adjust state sizes */
1127 	if (to_delta)
1128 		atomic_add_64(&new_state->arcs_size, to_delta);
1129 	if (from_delta) {
1130 		ASSERT3U(old_state->arcs_size, >=, from_delta);
1131 		atomic_add_64(&old_state->arcs_size, -from_delta);
1132 	}
1133 	ab->b_state = new_state;
1134 
1135 	/* adjust l2arc hdr stats */
1136 	if (new_state == arc_l2c_only)
1137 		l2arc_hdr_stat_add();
1138 	else if (old_state == arc_l2c_only)
1139 		l2arc_hdr_stat_remove();
1140 }
1141 
1142 void
1143 arc_space_consume(uint64_t space, arc_space_type_t type)
1144 {
1145 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1146 
1147 	switch (type) {
1148 	case ARC_SPACE_DATA:
1149 		ARCSTAT_INCR(arcstat_data_size, space);
1150 		break;
1151 	case ARC_SPACE_OTHER:
1152 		ARCSTAT_INCR(arcstat_other_size, space);
1153 		break;
1154 	case ARC_SPACE_HDRS:
1155 		ARCSTAT_INCR(arcstat_hdr_size, space);
1156 		break;
1157 	case ARC_SPACE_L2HDRS:
1158 		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1159 		break;
1160 	}
1161 
1162 	atomic_add_64(&arc_meta_used, space);
1163 	atomic_add_64(&arc_size, space);
1164 }
1165 
1166 void
1167 arc_space_return(uint64_t space, arc_space_type_t type)
1168 {
1169 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1170 
1171 	switch (type) {
1172 	case ARC_SPACE_DATA:
1173 		ARCSTAT_INCR(arcstat_data_size, -space);
1174 		break;
1175 	case ARC_SPACE_OTHER:
1176 		ARCSTAT_INCR(arcstat_other_size, -space);
1177 		break;
1178 	case ARC_SPACE_HDRS:
1179 		ARCSTAT_INCR(arcstat_hdr_size, -space);
1180 		break;
1181 	case ARC_SPACE_L2HDRS:
1182 		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1183 		break;
1184 	}
1185 
1186 	ASSERT(arc_meta_used >= space);
1187 	if (arc_meta_max < arc_meta_used)
1188 		arc_meta_max = arc_meta_used;
1189 	atomic_add_64(&arc_meta_used, -space);
1190 	ASSERT(arc_size >= space);
1191 	atomic_add_64(&arc_size, -space);
1192 }
1193 
1194 void *
1195 arc_data_buf_alloc(uint64_t size)
1196 {
1197 	if (arc_evict_needed(ARC_BUFC_DATA))
1198 		cv_signal(&arc_reclaim_thr_cv);
1199 	atomic_add_64(&arc_size, size);
1200 	return (zio_data_buf_alloc(size));
1201 }
1202 
1203 void
1204 arc_data_buf_free(void *buf, uint64_t size)
1205 {
1206 	zio_data_buf_free(buf, size);
1207 	ASSERT(arc_size >= size);
1208 	atomic_add_64(&arc_size, -size);
1209 }
1210 
1211 arc_buf_t *
1212 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1213 {
1214 	arc_buf_hdr_t *hdr;
1215 	arc_buf_t *buf;
1216 
1217 	ASSERT3U(size, >, 0);
1218 	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1219 	ASSERT(BUF_EMPTY(hdr));
1220 	hdr->b_size = size;
1221 	hdr->b_type = type;
1222 	hdr->b_spa = spa_load_guid(spa);
1223 	hdr->b_state = arc_anon;
1224 	hdr->b_arc_access = 0;
1225 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1226 	buf->b_hdr = hdr;
1227 	buf->b_data = NULL;
1228 	buf->b_efunc = NULL;
1229 	buf->b_private = NULL;
1230 	buf->b_next = NULL;
1231 	hdr->b_buf = buf;
1232 	arc_get_data_buf(buf);
1233 	hdr->b_datacnt = 1;
1234 	hdr->b_flags = 0;
1235 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1236 	(void) refcount_add(&hdr->b_refcnt, tag);
1237 
1238 	return (buf);
1239 }
1240 
1241 static char *arc_onloan_tag = "onloan";
1242 
1243 /*
1244  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1245  * flight data by arc_tempreserve_space() until they are "returned". Loaned
1246  * buffers must be returned to the arc before they can be used by the DMU or
1247  * freed.
1248  */
1249 arc_buf_t *
1250 arc_loan_buf(spa_t *spa, int size)
1251 {
1252 	arc_buf_t *buf;
1253 
1254 	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1255 
1256 	atomic_add_64(&arc_loaned_bytes, size);
1257 	return (buf);
1258 }
1259 
1260 /*
1261  * Return a loaned arc buffer to the arc.
1262  */
1263 void
1264 arc_return_buf(arc_buf_t *buf, void *tag)
1265 {
1266 	arc_buf_hdr_t *hdr = buf->b_hdr;
1267 
1268 	ASSERT(buf->b_data != NULL);
1269 	(void) refcount_add(&hdr->b_refcnt, tag);
1270 	(void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
1271 
1272 	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1273 }
1274 
1275 /* Detach an arc_buf from a dbuf (tag) */
1276 void
1277 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1278 {
1279 	arc_buf_hdr_t *hdr;
1280 
1281 	ASSERT(buf->b_data != NULL);
1282 	hdr = buf->b_hdr;
1283 	(void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1284 	(void) refcount_remove(&hdr->b_refcnt, tag);
1285 	buf->b_efunc = NULL;
1286 	buf->b_private = NULL;
1287 
1288 	atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1289 }
1290 
1291 static arc_buf_t *
1292 arc_buf_clone(arc_buf_t *from)
1293 {
1294 	arc_buf_t *buf;
1295 	arc_buf_hdr_t *hdr = from->b_hdr;
1296 	uint64_t size = hdr->b_size;
1297 
1298 	ASSERT(hdr->b_state != arc_anon);
1299 
1300 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1301 	buf->b_hdr = hdr;
1302 	buf->b_data = NULL;
1303 	buf->b_efunc = NULL;
1304 	buf->b_private = NULL;
1305 	buf->b_next = hdr->b_buf;
1306 	hdr->b_buf = buf;
1307 	arc_get_data_buf(buf);
1308 	bcopy(from->b_data, buf->b_data, size);
1309 	hdr->b_datacnt += 1;
1310 	return (buf);
1311 }
1312 
1313 void
1314 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1315 {
1316 	arc_buf_hdr_t *hdr;
1317 	kmutex_t *hash_lock;
1318 
1319 	/*
1320 	 * Check to see if this buffer is evicted.  Callers
1321 	 * must verify b_data != NULL to know if the add_ref
1322 	 * was successful.
1323 	 */
1324 	mutex_enter(&buf->b_evict_lock);
1325 	if (buf->b_data == NULL) {
1326 		mutex_exit(&buf->b_evict_lock);
1327 		return;
1328 	}
1329 	hash_lock = HDR_LOCK(buf->b_hdr);
1330 	mutex_enter(hash_lock);
1331 	hdr = buf->b_hdr;
1332 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1333 	mutex_exit(&buf->b_evict_lock);
1334 
1335 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1336 	add_reference(hdr, hash_lock, tag);
1337 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1338 	arc_access(hdr, hash_lock);
1339 	mutex_exit(hash_lock);
1340 	ARCSTAT_BUMP(arcstat_hits);
1341 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1342 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1343 	    data, metadata, hits);
1344 }
1345 
1346 /*
1347  * Free the arc data buffer.  If it is an l2arc write in progress,
1348  * the buffer is placed on l2arc_free_on_write to be freed later.
1349  */
1350 static void
1351 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1352     void *data, size_t size)
1353 {
1354 	if (HDR_L2_WRITING(hdr)) {
1355 		l2arc_data_free_t *df;
1356 		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1357 		df->l2df_data = data;
1358 		df->l2df_size = size;
1359 		df->l2df_func = free_func;
1360 		mutex_enter(&l2arc_free_on_write_mtx);
1361 		list_insert_head(l2arc_free_on_write, df);
1362 		mutex_exit(&l2arc_free_on_write_mtx);
1363 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1364 	} else {
1365 		free_func(data, size);
1366 	}
1367 }
1368 
1369 static void
1370 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1371 {
1372 	arc_buf_t **bufp;
1373 
1374 	/* free up data associated with the buf */
1375 	if (buf->b_data) {
1376 		arc_state_t *state = buf->b_hdr->b_state;
1377 		uint64_t size = buf->b_hdr->b_size;
1378 		arc_buf_contents_t type = buf->b_hdr->b_type;
1379 
1380 		arc_cksum_verify(buf);
1381 
1382 		if (!recycle) {
1383 			if (type == ARC_BUFC_METADATA) {
1384 				arc_buf_data_free(buf->b_hdr, zio_buf_free,
1385 				    buf->b_data, size);
1386 				arc_space_return(size, ARC_SPACE_DATA);
1387 			} else {
1388 				ASSERT(type == ARC_BUFC_DATA);
1389 				arc_buf_data_free(buf->b_hdr,
1390 				    zio_data_buf_free, buf->b_data, size);
1391 				ARCSTAT_INCR(arcstat_data_size, -size);
1392 				atomic_add_64(&arc_size, -size);
1393 			}
1394 		}
1395 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1396 			uint64_t *cnt = &state->arcs_lsize[type];
1397 
1398 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1399 			ASSERT(state != arc_anon);
1400 
1401 			ASSERT3U(*cnt, >=, size);
1402 			atomic_add_64(cnt, -size);
1403 		}
1404 		ASSERT3U(state->arcs_size, >=, size);
1405 		atomic_add_64(&state->arcs_size, -size);
1406 		buf->b_data = NULL;
1407 		ASSERT(buf->b_hdr->b_datacnt > 0);
1408 		buf->b_hdr->b_datacnt -= 1;
1409 	}
1410 
1411 	/* only remove the buf if requested */
1412 	if (!all)
1413 		return;
1414 
1415 	/* remove the buf from the hdr list */
1416 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1417 		continue;
1418 	*bufp = buf->b_next;
1419 	buf->b_next = NULL;
1420 
1421 	ASSERT(buf->b_efunc == NULL);
1422 
1423 	/* clean up the buf */
1424 	buf->b_hdr = NULL;
1425 	kmem_cache_free(buf_cache, buf);
1426 }
1427 
1428 static void
1429 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1430 {
1431 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1432 	ASSERT3P(hdr->b_state, ==, arc_anon);
1433 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1434 	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1435 
1436 	if (l2hdr != NULL) {
1437 		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1438 		/*
1439 		 * To prevent arc_free() and l2arc_evict() from
1440 		 * attempting to free the same buffer at the same time,
1441 		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1442 		 * give it priority.  l2arc_evict() can't destroy this
1443 		 * header while we are waiting on l2arc_buflist_mtx.
1444 		 *
1445 		 * The hdr may be removed from l2ad_buflist before we
1446 		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1447 		 */
1448 		if (!buflist_held) {
1449 			mutex_enter(&l2arc_buflist_mtx);
1450 			l2hdr = hdr->b_l2hdr;
1451 		}
1452 
1453 		if (l2hdr != NULL) {
1454 			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1455 			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1456 			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1457 			if (hdr->b_state == arc_l2c_only)
1458 				l2arc_hdr_stat_remove();
1459 			hdr->b_l2hdr = NULL;
1460 		}
1461 
1462 		if (!buflist_held)
1463 			mutex_exit(&l2arc_buflist_mtx);
1464 	}
1465 
1466 	if (!BUF_EMPTY(hdr)) {
1467 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1468 		buf_discard_identity(hdr);
1469 	}
1470 	while (hdr->b_buf) {
1471 		arc_buf_t *buf = hdr->b_buf;
1472 
1473 		if (buf->b_efunc) {
1474 			mutex_enter(&arc_eviction_mtx);
1475 			mutex_enter(&buf->b_evict_lock);
1476 			ASSERT(buf->b_hdr != NULL);
1477 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1478 			hdr->b_buf = buf->b_next;
1479 			buf->b_hdr = &arc_eviction_hdr;
1480 			buf->b_next = arc_eviction_list;
1481 			arc_eviction_list = buf;
1482 			mutex_exit(&buf->b_evict_lock);
1483 			mutex_exit(&arc_eviction_mtx);
1484 		} else {
1485 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1486 		}
1487 	}
1488 	if (hdr->b_freeze_cksum != NULL) {
1489 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1490 		hdr->b_freeze_cksum = NULL;
1491 	}
1492 	if (hdr->b_thawed) {
1493 		kmem_free(hdr->b_thawed, 1);
1494 		hdr->b_thawed = NULL;
1495 	}
1496 
1497 	ASSERT(!list_link_active(&hdr->b_arc_node));
1498 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1499 	ASSERT3P(hdr->b_acb, ==, NULL);
1500 	kmem_cache_free(hdr_cache, hdr);
1501 }
1502 
1503 void
1504 arc_buf_free(arc_buf_t *buf, void *tag)
1505 {
1506 	arc_buf_hdr_t *hdr = buf->b_hdr;
1507 	int hashed = hdr->b_state != arc_anon;
1508 
1509 	ASSERT(buf->b_efunc == NULL);
1510 	ASSERT(buf->b_data != NULL);
1511 
1512 	if (hashed) {
1513 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1514 
1515 		mutex_enter(hash_lock);
1516 		hdr = buf->b_hdr;
1517 		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1518 
1519 		(void) remove_reference(hdr, hash_lock, tag);
1520 		if (hdr->b_datacnt > 1) {
1521 			arc_buf_destroy(buf, FALSE, TRUE);
1522 		} else {
1523 			ASSERT(buf == hdr->b_buf);
1524 			ASSERT(buf->b_efunc == NULL);
1525 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1526 		}
1527 		mutex_exit(hash_lock);
1528 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1529 		int destroy_hdr;
1530 		/*
1531 		 * We are in the middle of an async write.  Don't destroy
1532 		 * this buffer unless the write completes before we finish
1533 		 * decrementing the reference count.
1534 		 */
1535 		mutex_enter(&arc_eviction_mtx);
1536 		(void) remove_reference(hdr, NULL, tag);
1537 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1538 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1539 		mutex_exit(&arc_eviction_mtx);
1540 		if (destroy_hdr)
1541 			arc_hdr_destroy(hdr);
1542 	} else {
1543 		if (remove_reference(hdr, NULL, tag) > 0)
1544 			arc_buf_destroy(buf, FALSE, TRUE);
1545 		else
1546 			arc_hdr_destroy(hdr);
1547 	}
1548 }
1549 
1550 int
1551 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1552 {
1553 	arc_buf_hdr_t *hdr = buf->b_hdr;
1554 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1555 	int no_callback = (buf->b_efunc == NULL);
1556 
1557 	if (hdr->b_state == arc_anon) {
1558 		ASSERT(hdr->b_datacnt == 1);
1559 		arc_buf_free(buf, tag);
1560 		return (no_callback);
1561 	}
1562 
1563 	mutex_enter(hash_lock);
1564 	hdr = buf->b_hdr;
1565 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1566 	ASSERT(hdr->b_state != arc_anon);
1567 	ASSERT(buf->b_data != NULL);
1568 
1569 	(void) remove_reference(hdr, hash_lock, tag);
1570 	if (hdr->b_datacnt > 1) {
1571 		if (no_callback)
1572 			arc_buf_destroy(buf, FALSE, TRUE);
1573 	} else if (no_callback) {
1574 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1575 		ASSERT(buf->b_efunc == NULL);
1576 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1577 	}
1578 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1579 	    refcount_is_zero(&hdr->b_refcnt));
1580 	mutex_exit(hash_lock);
1581 	return (no_callback);
1582 }
1583 
1584 int
1585 arc_buf_size(arc_buf_t *buf)
1586 {
1587 	return (buf->b_hdr->b_size);
1588 }
1589 
1590 /*
1591  * Evict buffers from list until we've removed the specified number of
1592  * bytes.  Move the removed buffers to the appropriate evict state.
1593  * If the recycle flag is set, then attempt to "recycle" a buffer:
1594  * - look for a buffer to evict that is `bytes' long.
1595  * - return the data block from this buffer rather than freeing it.
1596  * This flag is used by callers that are trying to make space for a
1597  * new buffer in a full arc cache.
1598  *
1599  * This function makes a "best effort".  It skips over any buffers
1600  * it can't get a hash_lock on, and so may not catch all candidates.
1601  * It may also return without evicting as much space as requested.
1602  */
1603 static void *
1604 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1605     arc_buf_contents_t type)
1606 {
1607 	arc_state_t *evicted_state;
1608 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1609 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1610 	list_t *list = &state->arcs_list[type];
1611 	kmutex_t *hash_lock;
1612 	boolean_t have_lock;
1613 	void *stolen = NULL;
1614 
1615 	ASSERT(state == arc_mru || state == arc_mfu);
1616 
1617 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1618 
1619 	mutex_enter(&state->arcs_mtx);
1620 	mutex_enter(&evicted_state->arcs_mtx);
1621 
1622 	for (ab = list_tail(list); ab; ab = ab_prev) {
1623 		ab_prev = list_prev(list, ab);
1624 		/* prefetch buffers have a minimum lifespan */
1625 		if (HDR_IO_IN_PROGRESS(ab) ||
1626 		    (spa && ab->b_spa != spa) ||
1627 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1628 		    ddi_get_lbolt() - ab->b_arc_access <
1629 		    arc_min_prefetch_lifespan)) {
1630 			skipped++;
1631 			continue;
1632 		}
1633 		/* "lookahead" for better eviction candidate */
1634 		if (recycle && ab->b_size != bytes &&
1635 		    ab_prev && ab_prev->b_size == bytes)
1636 			continue;
1637 		hash_lock = HDR_LOCK(ab);
1638 		have_lock = MUTEX_HELD(hash_lock);
1639 		if (have_lock || mutex_tryenter(hash_lock)) {
1640 			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1641 			ASSERT(ab->b_datacnt > 0);
1642 			while (ab->b_buf) {
1643 				arc_buf_t *buf = ab->b_buf;
1644 				if (!mutex_tryenter(&buf->b_evict_lock)) {
1645 					missed += 1;
1646 					break;
1647 				}
1648 				if (buf->b_data) {
1649 					bytes_evicted += ab->b_size;
1650 					if (recycle && ab->b_type == type &&
1651 					    ab->b_size == bytes &&
1652 					    !HDR_L2_WRITING(ab)) {
1653 						stolen = buf->b_data;
1654 						recycle = FALSE;
1655 					}
1656 				}
1657 				if (buf->b_efunc) {
1658 					mutex_enter(&arc_eviction_mtx);
1659 					arc_buf_destroy(buf,
1660 					    buf->b_data == stolen, FALSE);
1661 					ab->b_buf = buf->b_next;
1662 					buf->b_hdr = &arc_eviction_hdr;
1663 					buf->b_next = arc_eviction_list;
1664 					arc_eviction_list = buf;
1665 					mutex_exit(&arc_eviction_mtx);
1666 					mutex_exit(&buf->b_evict_lock);
1667 				} else {
1668 					mutex_exit(&buf->b_evict_lock);
1669 					arc_buf_destroy(buf,
1670 					    buf->b_data == stolen, TRUE);
1671 				}
1672 			}
1673 
1674 			if (ab->b_l2hdr) {
1675 				ARCSTAT_INCR(arcstat_evict_l2_cached,
1676 				    ab->b_size);
1677 			} else {
1678 				if (l2arc_write_eligible(ab->b_spa, ab)) {
1679 					ARCSTAT_INCR(arcstat_evict_l2_eligible,
1680 					    ab->b_size);
1681 				} else {
1682 					ARCSTAT_INCR(
1683 					    arcstat_evict_l2_ineligible,
1684 					    ab->b_size);
1685 				}
1686 			}
1687 
1688 			if (ab->b_datacnt == 0) {
1689 				arc_change_state(evicted_state, ab, hash_lock);
1690 				ASSERT(HDR_IN_HASH_TABLE(ab));
1691 				ab->b_flags |= ARC_IN_HASH_TABLE;
1692 				ab->b_flags &= ~ARC_BUF_AVAILABLE;
1693 				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1694 			}
1695 			if (!have_lock)
1696 				mutex_exit(hash_lock);
1697 			if (bytes >= 0 && bytes_evicted >= bytes)
1698 				break;
1699 		} else {
1700 			missed += 1;
1701 		}
1702 	}
1703 
1704 	mutex_exit(&evicted_state->arcs_mtx);
1705 	mutex_exit(&state->arcs_mtx);
1706 
1707 	if (bytes_evicted < bytes)
1708 		dprintf("only evicted %lld bytes from %x",
1709 		    (longlong_t)bytes_evicted, state);
1710 
1711 	if (skipped)
1712 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1713 
1714 	if (missed)
1715 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1716 
1717 	/*
1718 	 * We have just evicted some date into the ghost state, make
1719 	 * sure we also adjust the ghost state size if necessary.
1720 	 */
1721 	if (arc_no_grow &&
1722 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1723 		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1724 		    arc_mru_ghost->arcs_size - arc_c;
1725 
1726 		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1727 			int64_t todelete =
1728 			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1729 			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1730 		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1731 			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1732 			    arc_mru_ghost->arcs_size +
1733 			    arc_mfu_ghost->arcs_size - arc_c);
1734 			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1735 		}
1736 	}
1737 
1738 	return (stolen);
1739 }
1740 
1741 /*
1742  * Remove buffers from list until we've removed the specified number of
1743  * bytes.  Destroy the buffers that are removed.
1744  */
1745 static void
1746 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1747 {
1748 	arc_buf_hdr_t *ab, *ab_prev;
1749 	arc_buf_hdr_t marker = { 0 };
1750 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1751 	kmutex_t *hash_lock;
1752 	uint64_t bytes_deleted = 0;
1753 	uint64_t bufs_skipped = 0;
1754 
1755 	ASSERT(GHOST_STATE(state));
1756 top:
1757 	mutex_enter(&state->arcs_mtx);
1758 	for (ab = list_tail(list); ab; ab = ab_prev) {
1759 		ab_prev = list_prev(list, ab);
1760 		if (spa && ab->b_spa != spa)
1761 			continue;
1762 
1763 		/* ignore markers */
1764 		if (ab->b_spa == 0)
1765 			continue;
1766 
1767 		hash_lock = HDR_LOCK(ab);
1768 		/* caller may be trying to modify this buffer, skip it */
1769 		if (MUTEX_HELD(hash_lock))
1770 			continue;
1771 		if (mutex_tryenter(hash_lock)) {
1772 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1773 			ASSERT(ab->b_buf == NULL);
1774 			ARCSTAT_BUMP(arcstat_deleted);
1775 			bytes_deleted += ab->b_size;
1776 
1777 			if (ab->b_l2hdr != NULL) {
1778 				/*
1779 				 * This buffer is cached on the 2nd Level ARC;
1780 				 * don't destroy the header.
1781 				 */
1782 				arc_change_state(arc_l2c_only, ab, hash_lock);
1783 				mutex_exit(hash_lock);
1784 			} else {
1785 				arc_change_state(arc_anon, ab, hash_lock);
1786 				mutex_exit(hash_lock);
1787 				arc_hdr_destroy(ab);
1788 			}
1789 
1790 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1791 			if (bytes >= 0 && bytes_deleted >= bytes)
1792 				break;
1793 		} else if (bytes < 0) {
1794 			/*
1795 			 * Insert a list marker and then wait for the
1796 			 * hash lock to become available. Once its
1797 			 * available, restart from where we left off.
1798 			 */
1799 			list_insert_after(list, ab, &marker);
1800 			mutex_exit(&state->arcs_mtx);
1801 			mutex_enter(hash_lock);
1802 			mutex_exit(hash_lock);
1803 			mutex_enter(&state->arcs_mtx);
1804 			ab_prev = list_prev(list, &marker);
1805 			list_remove(list, &marker);
1806 		} else
1807 			bufs_skipped += 1;
1808 	}
1809 	mutex_exit(&state->arcs_mtx);
1810 
1811 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1812 	    (bytes < 0 || bytes_deleted < bytes)) {
1813 		list = &state->arcs_list[ARC_BUFC_METADATA];
1814 		goto top;
1815 	}
1816 
1817 	if (bufs_skipped) {
1818 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1819 		ASSERT(bytes >= 0);
1820 	}
1821 
1822 	if (bytes_deleted < bytes)
1823 		dprintf("only deleted %lld bytes from %p",
1824 		    (longlong_t)bytes_deleted, state);
1825 }
1826 
1827 static void
1828 arc_adjust(void)
1829 {
1830 	int64_t adjustment, delta;
1831 
1832 	/*
1833 	 * Adjust MRU size
1834 	 */
1835 
1836 	adjustment = MIN((int64_t)(arc_size - arc_c),
1837 	    (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used -
1838 	    arc_p));
1839 
1840 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1841 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
1842 		(void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
1843 		adjustment -= delta;
1844 	}
1845 
1846 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1847 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
1848 		(void) arc_evict(arc_mru, NULL, delta, FALSE,
1849 		    ARC_BUFC_METADATA);
1850 	}
1851 
1852 	/*
1853 	 * Adjust MFU size
1854 	 */
1855 
1856 	adjustment = arc_size - arc_c;
1857 
1858 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1859 		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
1860 		(void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);
1861 		adjustment -= delta;
1862 	}
1863 
1864 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1865 		int64_t delta = MIN(adjustment,
1866 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
1867 		(void) arc_evict(arc_mfu, NULL, delta, FALSE,
1868 		    ARC_BUFC_METADATA);
1869 	}
1870 
1871 	/*
1872 	 * Adjust ghost lists
1873 	 */
1874 
1875 	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
1876 
1877 	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
1878 		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
1879 		arc_evict_ghost(arc_mru_ghost, NULL, delta);
1880 	}
1881 
1882 	adjustment =
1883 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
1884 
1885 	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
1886 		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
1887 		arc_evict_ghost(arc_mfu_ghost, NULL, delta);
1888 	}
1889 }
1890 
1891 static void
1892 arc_do_user_evicts(void)
1893 {
1894 	mutex_enter(&arc_eviction_mtx);
1895 	while (arc_eviction_list != NULL) {
1896 		arc_buf_t *buf = arc_eviction_list;
1897 		arc_eviction_list = buf->b_next;
1898 		mutex_enter(&buf->b_evict_lock);
1899 		buf->b_hdr = NULL;
1900 		mutex_exit(&buf->b_evict_lock);
1901 		mutex_exit(&arc_eviction_mtx);
1902 
1903 		if (buf->b_efunc != NULL)
1904 			VERIFY(buf->b_efunc(buf) == 0);
1905 
1906 		buf->b_efunc = NULL;
1907 		buf->b_private = NULL;
1908 		kmem_cache_free(buf_cache, buf);
1909 		mutex_enter(&arc_eviction_mtx);
1910 	}
1911 	mutex_exit(&arc_eviction_mtx);
1912 }
1913 
1914 /*
1915  * Flush all *evictable* data from the cache for the given spa.
1916  * NOTE: this will not touch "active" (i.e. referenced) data.
1917  */
1918 void
1919 arc_flush(spa_t *spa)
1920 {
1921 	uint64_t guid = 0;
1922 
1923 	if (spa)
1924 		guid = spa_load_guid(spa);
1925 
1926 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
1927 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
1928 		if (spa)
1929 			break;
1930 	}
1931 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
1932 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
1933 		if (spa)
1934 			break;
1935 	}
1936 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
1937 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
1938 		if (spa)
1939 			break;
1940 	}
1941 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
1942 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
1943 		if (spa)
1944 			break;
1945 	}
1946 
1947 	arc_evict_ghost(arc_mru_ghost, guid, -1);
1948 	arc_evict_ghost(arc_mfu_ghost, guid, -1);
1949 
1950 	mutex_enter(&arc_reclaim_thr_lock);
1951 	arc_do_user_evicts();
1952 	mutex_exit(&arc_reclaim_thr_lock);
1953 	ASSERT(spa || arc_eviction_list == NULL);
1954 }
1955 
1956 void
1957 arc_shrink(void)
1958 {
1959 	if (arc_c > arc_c_min) {
1960 		uint64_t to_free;
1961 
1962 #ifdef _KERNEL
1963 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
1964 #else
1965 		to_free = arc_c >> arc_shrink_shift;
1966 #endif
1967 		if (arc_c > arc_c_min + to_free)
1968 			atomic_add_64(&arc_c, -to_free);
1969 		else
1970 			arc_c = arc_c_min;
1971 
1972 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1973 		if (arc_c > arc_size)
1974 			arc_c = MAX(arc_size, arc_c_min);
1975 		if (arc_p > arc_c)
1976 			arc_p = (arc_c >> 1);
1977 		ASSERT(arc_c >= arc_c_min);
1978 		ASSERT((int64_t)arc_p >= 0);
1979 	}
1980 
1981 	if (arc_size > arc_c)
1982 		arc_adjust();
1983 }
1984 
1985 /*
1986  * Determine if the system is under memory pressure and is asking
1987  * to reclaim memory. A return value of 1 indicates that the system
1988  * is under memory pressure and that the arc should adjust accordingly.
1989  */
1990 static int
1991 arc_reclaim_needed(void)
1992 {
1993 	uint64_t extra;
1994 
1995 #ifdef _KERNEL
1996 
1997 	if (needfree)
1998 		return (1);
1999 
2000 	/*
2001 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
2002 	 */
2003 	extra = desfree;
2004 
2005 	/*
2006 	 * check that we're out of range of the pageout scanner.  It starts to
2007 	 * schedule paging if freemem is less than lotsfree and needfree.
2008 	 * lotsfree is the high-water mark for pageout, and needfree is the
2009 	 * number of needed free pages.  We add extra pages here to make sure
2010 	 * the scanner doesn't start up while we're freeing memory.
2011 	 */
2012 	if (freemem < lotsfree + needfree + extra)
2013 		return (1);
2014 
2015 	/*
2016 	 * check to make sure that swapfs has enough space so that anon
2017 	 * reservations can still succeed. anon_resvmem() checks that the
2018 	 * availrmem is greater than swapfs_minfree, and the number of reserved
2019 	 * swap pages.  We also add a bit of extra here just to prevent
2020 	 * circumstances from getting really dire.
2021 	 */
2022 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
2023 		return (1);
2024 
2025 #if defined(__i386)
2026 	/*
2027 	 * If we're on an i386 platform, it's possible that we'll exhaust the
2028 	 * kernel heap space before we ever run out of available physical
2029 	 * memory.  Most checks of the size of the heap_area compare against
2030 	 * tune.t_minarmem, which is the minimum available real memory that we
2031 	 * can have in the system.  However, this is generally fixed at 25 pages
2032 	 * which is so low that it's useless.  In this comparison, we seek to
2033 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
2034 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
2035 	 * free)
2036 	 */
2037 	if (vmem_size(heap_arena, VMEM_FREE) <
2038 	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2))
2039 		return (1);
2040 #endif
2041 
2042 	/*
2043 	 * If zio data pages are being allocated out of a separate heap segment,
2044 	 * then enforce that the size of available vmem for this arena remains
2045 	 * above about 1/16th free.
2046 	 *
2047 	 * Note: The 1/16th arena free requirement was put in place
2048 	 * to aggressively evict memory from the arc in order to avoid
2049 	 * memory fragmentation issues.
2050 	 */
2051 	if (zio_arena != NULL &&
2052 	    vmem_size(zio_arena, VMEM_FREE) <
2053 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 4))
2054 		return (1);
2055 #else
2056 	if (spa_get_random(100) == 0)
2057 		return (1);
2058 #endif
2059 	return (0);
2060 }
2061 
2062 static void
2063 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
2064 {
2065 	size_t			i;
2066 	kmem_cache_t		*prev_cache = NULL;
2067 	kmem_cache_t		*prev_data_cache = NULL;
2068 	extern kmem_cache_t	*zio_buf_cache[];
2069 	extern kmem_cache_t	*zio_data_buf_cache[];
2070 
2071 #ifdef _KERNEL
2072 	if (arc_meta_used >= arc_meta_limit) {
2073 		/*
2074 		 * We are exceeding our meta-data cache limit.
2075 		 * Purge some DNLC entries to release holds on meta-data.
2076 		 */
2077 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
2078 	}
2079 #if defined(__i386)
2080 	/*
2081 	 * Reclaim unused memory from all kmem caches.
2082 	 */
2083 	kmem_reap();
2084 #endif
2085 #endif
2086 
2087 	/*
2088 	 * An aggressive reclamation will shrink the cache size as well as
2089 	 * reap free buffers from the arc kmem caches.
2090 	 */
2091 	if (strat == ARC_RECLAIM_AGGR)
2092 		arc_shrink();
2093 
2094 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2095 		if (zio_buf_cache[i] != prev_cache) {
2096 			prev_cache = zio_buf_cache[i];
2097 			kmem_cache_reap_now(zio_buf_cache[i]);
2098 		}
2099 		if (zio_data_buf_cache[i] != prev_data_cache) {
2100 			prev_data_cache = zio_data_buf_cache[i];
2101 			kmem_cache_reap_now(zio_data_buf_cache[i]);
2102 		}
2103 	}
2104 	kmem_cache_reap_now(buf_cache);
2105 	kmem_cache_reap_now(hdr_cache);
2106 
2107 	/*
2108 	 * Ask the vmem areana to reclaim unused memory from its
2109 	 * quantum caches.
2110 	 */
2111 	if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR)
2112 		vmem_qcache_reap(zio_arena);
2113 }
2114 
2115 static void
2116 arc_reclaim_thread(void)
2117 {
2118 	clock_t			growtime = 0;
2119 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2120 	callb_cpr_t		cpr;
2121 
2122 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2123 
2124 	mutex_enter(&arc_reclaim_thr_lock);
2125 	while (arc_thread_exit == 0) {
2126 		if (arc_reclaim_needed()) {
2127 
2128 			if (arc_no_grow) {
2129 				if (last_reclaim == ARC_RECLAIM_CONS) {
2130 					last_reclaim = ARC_RECLAIM_AGGR;
2131 				} else {
2132 					last_reclaim = ARC_RECLAIM_CONS;
2133 				}
2134 			} else {
2135 				arc_no_grow = TRUE;
2136 				last_reclaim = ARC_RECLAIM_AGGR;
2137 				membar_producer();
2138 			}
2139 
2140 			/* reset the growth delay for every reclaim */
2141 			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2142 
2143 			arc_kmem_reap_now(last_reclaim);
2144 			arc_warm = B_TRUE;
2145 
2146 		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2147 			arc_no_grow = FALSE;
2148 		}
2149 
2150 		arc_adjust();
2151 
2152 		if (arc_eviction_list != NULL)
2153 			arc_do_user_evicts();
2154 
2155 		/* block until needed, or one second, whichever is shorter */
2156 		CALLB_CPR_SAFE_BEGIN(&cpr);
2157 		(void) cv_timedwait(&arc_reclaim_thr_cv,
2158 		    &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2159 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2160 	}
2161 
2162 	arc_thread_exit = 0;
2163 	cv_broadcast(&arc_reclaim_thr_cv);
2164 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2165 	thread_exit();
2166 }
2167 
2168 /*
2169  * Adapt arc info given the number of bytes we are trying to add and
2170  * the state that we are comming from.  This function is only called
2171  * when we are adding new content to the cache.
2172  */
2173 static void
2174 arc_adapt(int bytes, arc_state_t *state)
2175 {
2176 	int mult;
2177 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2178 
2179 	if (state == arc_l2c_only)
2180 		return;
2181 
2182 	ASSERT(bytes > 0);
2183 	/*
2184 	 * Adapt the target size of the MRU list:
2185 	 *	- if we just hit in the MRU ghost list, then increase
2186 	 *	  the target size of the MRU list.
2187 	 *	- if we just hit in the MFU ghost list, then increase
2188 	 *	  the target size of the MFU list by decreasing the
2189 	 *	  target size of the MRU list.
2190 	 */
2191 	if (state == arc_mru_ghost) {
2192 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2193 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2194 		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
2195 
2196 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2197 	} else if (state == arc_mfu_ghost) {
2198 		uint64_t delta;
2199 
2200 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2201 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2202 		mult = MIN(mult, 10);
2203 
2204 		delta = MIN(bytes * mult, arc_p);
2205 		arc_p = MAX(arc_p_min, arc_p - delta);
2206 	}
2207 	ASSERT((int64_t)arc_p >= 0);
2208 
2209 	if (arc_reclaim_needed()) {
2210 		cv_signal(&arc_reclaim_thr_cv);
2211 		return;
2212 	}
2213 
2214 	if (arc_no_grow)
2215 		return;
2216 
2217 	if (arc_c >= arc_c_max)
2218 		return;
2219 
2220 	/*
2221 	 * If we're within (2 * maxblocksize) bytes of the target
2222 	 * cache size, increment the target cache size
2223 	 */
2224 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2225 		atomic_add_64(&arc_c, (int64_t)bytes);
2226 		if (arc_c > arc_c_max)
2227 			arc_c = arc_c_max;
2228 		else if (state == arc_anon)
2229 			atomic_add_64(&arc_p, (int64_t)bytes);
2230 		if (arc_p > arc_c)
2231 			arc_p = arc_c;
2232 	}
2233 	ASSERT((int64_t)arc_p >= 0);
2234 }
2235 
2236 /*
2237  * Check if the cache has reached its limits and eviction is required
2238  * prior to insert.
2239  */
2240 static int
2241 arc_evict_needed(arc_buf_contents_t type)
2242 {
2243 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2244 		return (1);
2245 
2246 	if (arc_reclaim_needed())
2247 		return (1);
2248 
2249 	return (arc_size > arc_c);
2250 }
2251 
2252 /*
2253  * The buffer, supplied as the first argument, needs a data block.
2254  * So, if we are at cache max, determine which cache should be victimized.
2255  * We have the following cases:
2256  *
2257  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2258  * In this situation if we're out of space, but the resident size of the MFU is
2259  * under the limit, victimize the MFU cache to satisfy this insertion request.
2260  *
2261  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2262  * Here, we've used up all of the available space for the MRU, so we need to
2263  * evict from our own cache instead.  Evict from the set of resident MRU
2264  * entries.
2265  *
2266  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2267  * c minus p represents the MFU space in the cache, since p is the size of the
2268  * cache that is dedicated to the MRU.  In this situation there's still space on
2269  * the MFU side, so the MRU side needs to be victimized.
2270  *
2271  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2272  * MFU's resident set is consuming more space than it has been allotted.  In
2273  * this situation, we must victimize our own cache, the MFU, for this insertion.
2274  */
2275 static void
2276 arc_get_data_buf(arc_buf_t *buf)
2277 {
2278 	arc_state_t		*state = buf->b_hdr->b_state;
2279 	uint64_t		size = buf->b_hdr->b_size;
2280 	arc_buf_contents_t	type = buf->b_hdr->b_type;
2281 
2282 	arc_adapt(size, state);
2283 
2284 	/*
2285 	 * We have not yet reached cache maximum size,
2286 	 * just allocate a new buffer.
2287 	 */
2288 	if (!arc_evict_needed(type)) {
2289 		if (type == ARC_BUFC_METADATA) {
2290 			buf->b_data = zio_buf_alloc(size);
2291 			arc_space_consume(size, ARC_SPACE_DATA);
2292 		} else {
2293 			ASSERT(type == ARC_BUFC_DATA);
2294 			buf->b_data = zio_data_buf_alloc(size);
2295 			ARCSTAT_INCR(arcstat_data_size, size);
2296 			atomic_add_64(&arc_size, size);
2297 		}
2298 		goto out;
2299 	}
2300 
2301 	/*
2302 	 * If we are prefetching from the mfu ghost list, this buffer
2303 	 * will end up on the mru list; so steal space from there.
2304 	 */
2305 	if (state == arc_mfu_ghost)
2306 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2307 	else if (state == arc_mru_ghost)
2308 		state = arc_mru;
2309 
2310 	if (state == arc_mru || state == arc_anon) {
2311 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2312 		state = (arc_mfu->arcs_lsize[type] >= size &&
2313 		    arc_p > mru_used) ? arc_mfu : arc_mru;
2314 	} else {
2315 		/* MFU cases */
2316 		uint64_t mfu_space = arc_c - arc_p;
2317 		state =  (arc_mru->arcs_lsize[type] >= size &&
2318 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2319 	}
2320 	if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2321 		if (type == ARC_BUFC_METADATA) {
2322 			buf->b_data = zio_buf_alloc(size);
2323 			arc_space_consume(size, ARC_SPACE_DATA);
2324 		} else {
2325 			ASSERT(type == ARC_BUFC_DATA);
2326 			buf->b_data = zio_data_buf_alloc(size);
2327 			ARCSTAT_INCR(arcstat_data_size, size);
2328 			atomic_add_64(&arc_size, size);
2329 		}
2330 		ARCSTAT_BUMP(arcstat_recycle_miss);
2331 	}
2332 	ASSERT(buf->b_data != NULL);
2333 out:
2334 	/*
2335 	 * Update the state size.  Note that ghost states have a
2336 	 * "ghost size" and so don't need to be updated.
2337 	 */
2338 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2339 		arc_buf_hdr_t *hdr = buf->b_hdr;
2340 
2341 		atomic_add_64(&hdr->b_state->arcs_size, size);
2342 		if (list_link_active(&hdr->b_arc_node)) {
2343 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2344 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2345 		}
2346 		/*
2347 		 * If we are growing the cache, and we are adding anonymous
2348 		 * data, and we have outgrown arc_p, update arc_p
2349 		 */
2350 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2351 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2352 			arc_p = MIN(arc_c, arc_p + size);
2353 	}
2354 }
2355 
2356 /*
2357  * This routine is called whenever a buffer is accessed.
2358  * NOTE: the hash lock is dropped in this function.
2359  */
2360 static void
2361 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2362 {
2363 	clock_t now;
2364 
2365 	ASSERT(MUTEX_HELD(hash_lock));
2366 
2367 	if (buf->b_state == arc_anon) {
2368 		/*
2369 		 * This buffer is not in the cache, and does not
2370 		 * appear in our "ghost" list.  Add the new buffer
2371 		 * to the MRU state.
2372 		 */
2373 
2374 		ASSERT(buf->b_arc_access == 0);
2375 		buf->b_arc_access = ddi_get_lbolt();
2376 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2377 		arc_change_state(arc_mru, buf, hash_lock);
2378 
2379 	} else if (buf->b_state == arc_mru) {
2380 		now = ddi_get_lbolt();
2381 
2382 		/*
2383 		 * If this buffer is here because of a prefetch, then either:
2384 		 * - clear the flag if this is a "referencing" read
2385 		 *   (any subsequent access will bump this into the MFU state).
2386 		 * or
2387 		 * - move the buffer to the head of the list if this is
2388 		 *   another prefetch (to make it less likely to be evicted).
2389 		 */
2390 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2391 			if (refcount_count(&buf->b_refcnt) == 0) {
2392 				ASSERT(list_link_active(&buf->b_arc_node));
2393 			} else {
2394 				buf->b_flags &= ~ARC_PREFETCH;
2395 				ARCSTAT_BUMP(arcstat_mru_hits);
2396 			}
2397 			buf->b_arc_access = now;
2398 			return;
2399 		}
2400 
2401 		/*
2402 		 * This buffer has been "accessed" only once so far,
2403 		 * but it is still in the cache. Move it to the MFU
2404 		 * state.
2405 		 */
2406 		if (now > buf->b_arc_access + ARC_MINTIME) {
2407 			/*
2408 			 * More than 125ms have passed since we
2409 			 * instantiated this buffer.  Move it to the
2410 			 * most frequently used state.
2411 			 */
2412 			buf->b_arc_access = now;
2413 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2414 			arc_change_state(arc_mfu, buf, hash_lock);
2415 		}
2416 		ARCSTAT_BUMP(arcstat_mru_hits);
2417 	} else if (buf->b_state == arc_mru_ghost) {
2418 		arc_state_t	*new_state;
2419 		/*
2420 		 * This buffer has been "accessed" recently, but
2421 		 * was evicted from the cache.  Move it to the
2422 		 * MFU state.
2423 		 */
2424 
2425 		if (buf->b_flags & ARC_PREFETCH) {
2426 			new_state = arc_mru;
2427 			if (refcount_count(&buf->b_refcnt) > 0)
2428 				buf->b_flags &= ~ARC_PREFETCH;
2429 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2430 		} else {
2431 			new_state = arc_mfu;
2432 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2433 		}
2434 
2435 		buf->b_arc_access = ddi_get_lbolt();
2436 		arc_change_state(new_state, buf, hash_lock);
2437 
2438 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2439 	} else if (buf->b_state == arc_mfu) {
2440 		/*
2441 		 * This buffer has been accessed more than once and is
2442 		 * still in the cache.  Keep it in the MFU state.
2443 		 *
2444 		 * NOTE: an add_reference() that occurred when we did
2445 		 * the arc_read() will have kicked this off the list.
2446 		 * If it was a prefetch, we will explicitly move it to
2447 		 * the head of the list now.
2448 		 */
2449 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2450 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2451 			ASSERT(list_link_active(&buf->b_arc_node));
2452 		}
2453 		ARCSTAT_BUMP(arcstat_mfu_hits);
2454 		buf->b_arc_access = ddi_get_lbolt();
2455 	} else if (buf->b_state == arc_mfu_ghost) {
2456 		arc_state_t	*new_state = arc_mfu;
2457 		/*
2458 		 * This buffer has been accessed more than once but has
2459 		 * been evicted from the cache.  Move it back to the
2460 		 * MFU state.
2461 		 */
2462 
2463 		if (buf->b_flags & ARC_PREFETCH) {
2464 			/*
2465 			 * This is a prefetch access...
2466 			 * move this block back to the MRU state.
2467 			 */
2468 			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2469 			new_state = arc_mru;
2470 		}
2471 
2472 		buf->b_arc_access = ddi_get_lbolt();
2473 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2474 		arc_change_state(new_state, buf, hash_lock);
2475 
2476 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2477 	} else if (buf->b_state == arc_l2c_only) {
2478 		/*
2479 		 * This buffer is on the 2nd Level ARC.
2480 		 */
2481 
2482 		buf->b_arc_access = ddi_get_lbolt();
2483 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2484 		arc_change_state(arc_mfu, buf, hash_lock);
2485 	} else {
2486 		ASSERT(!"invalid arc state");
2487 	}
2488 }
2489 
2490 /* a generic arc_done_func_t which you can use */
2491 /* ARGSUSED */
2492 void
2493 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2494 {
2495 	if (zio == NULL || zio->io_error == 0)
2496 		bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2497 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2498 }
2499 
2500 /* a generic arc_done_func_t */
2501 void
2502 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2503 {
2504 	arc_buf_t **bufp = arg;
2505 	if (zio && zio->io_error) {
2506 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2507 		*bufp = NULL;
2508 	} else {
2509 		*bufp = buf;
2510 		ASSERT(buf->b_data);
2511 	}
2512 }
2513 
2514 static void
2515 arc_read_done(zio_t *zio)
2516 {
2517 	arc_buf_hdr_t	*hdr, *found;
2518 	arc_buf_t	*buf;
2519 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2520 	kmutex_t	*hash_lock;
2521 	arc_callback_t	*callback_list, *acb;
2522 	int		freeable = FALSE;
2523 
2524 	buf = zio->io_private;
2525 	hdr = buf->b_hdr;
2526 
2527 	/*
2528 	 * The hdr was inserted into hash-table and removed from lists
2529 	 * prior to starting I/O.  We should find this header, since
2530 	 * it's in the hash table, and it should be legit since it's
2531 	 * not possible to evict it during the I/O.  The only possible
2532 	 * reason for it not to be found is if we were freed during the
2533 	 * read.
2534 	 */
2535 	found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2536 	    &hash_lock);
2537 
2538 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2539 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2540 	    (found == hdr && HDR_L2_READING(hdr)));
2541 
2542 	hdr->b_flags &= ~ARC_L2_EVICTED;
2543 	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2544 		hdr->b_flags &= ~ARC_L2CACHE;
2545 
2546 	/* byteswap if necessary */
2547 	callback_list = hdr->b_acb;
2548 	ASSERT(callback_list != NULL);
2549 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2550 		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2551 		    byteswap_uint64_array :
2552 		    dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap;
2553 		func(buf->b_data, hdr->b_size);
2554 	}
2555 
2556 	arc_cksum_compute(buf, B_FALSE);
2557 
2558 	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2559 		/*
2560 		 * Only call arc_access on anonymous buffers.  This is because
2561 		 * if we've issued an I/O for an evicted buffer, we've already
2562 		 * called arc_access (to prevent any simultaneous readers from
2563 		 * getting confused).
2564 		 */
2565 		arc_access(hdr, hash_lock);
2566 	}
2567 
2568 	/* create copies of the data buffer for the callers */
2569 	abuf = buf;
2570 	for (acb = callback_list; acb; acb = acb->acb_next) {
2571 		if (acb->acb_done) {
2572 			if (abuf == NULL)
2573 				abuf = arc_buf_clone(buf);
2574 			acb->acb_buf = abuf;
2575 			abuf = NULL;
2576 		}
2577 	}
2578 	hdr->b_acb = NULL;
2579 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2580 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2581 	if (abuf == buf) {
2582 		ASSERT(buf->b_efunc == NULL);
2583 		ASSERT(hdr->b_datacnt == 1);
2584 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2585 	}
2586 
2587 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2588 
2589 	if (zio->io_error != 0) {
2590 		hdr->b_flags |= ARC_IO_ERROR;
2591 		if (hdr->b_state != arc_anon)
2592 			arc_change_state(arc_anon, hdr, hash_lock);
2593 		if (HDR_IN_HASH_TABLE(hdr))
2594 			buf_hash_remove(hdr);
2595 		freeable = refcount_is_zero(&hdr->b_refcnt);
2596 	}
2597 
2598 	/*
2599 	 * Broadcast before we drop the hash_lock to avoid the possibility
2600 	 * that the hdr (and hence the cv) might be freed before we get to
2601 	 * the cv_broadcast().
2602 	 */
2603 	cv_broadcast(&hdr->b_cv);
2604 
2605 	if (hash_lock) {
2606 		mutex_exit(hash_lock);
2607 	} else {
2608 		/*
2609 		 * This block was freed while we waited for the read to
2610 		 * complete.  It has been removed from the hash table and
2611 		 * moved to the anonymous state (so that it won't show up
2612 		 * in the cache).
2613 		 */
2614 		ASSERT3P(hdr->b_state, ==, arc_anon);
2615 		freeable = refcount_is_zero(&hdr->b_refcnt);
2616 	}
2617 
2618 	/* execute each callback and free its structure */
2619 	while ((acb = callback_list) != NULL) {
2620 		if (acb->acb_done)
2621 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2622 
2623 		if (acb->acb_zio_dummy != NULL) {
2624 			acb->acb_zio_dummy->io_error = zio->io_error;
2625 			zio_nowait(acb->acb_zio_dummy);
2626 		}
2627 
2628 		callback_list = acb->acb_next;
2629 		kmem_free(acb, sizeof (arc_callback_t));
2630 	}
2631 
2632 	if (freeable)
2633 		arc_hdr_destroy(hdr);
2634 }
2635 
2636 /*
2637  * "Read" the block block at the specified DVA (in bp) via the
2638  * cache.  If the block is found in the cache, invoke the provided
2639  * callback immediately and return.  Note that the `zio' parameter
2640  * in the callback will be NULL in this case, since no IO was
2641  * required.  If the block is not in the cache pass the read request
2642  * on to the spa with a substitute callback function, so that the
2643  * requested block will be added to the cache.
2644  *
2645  * If a read request arrives for a block that has a read in-progress,
2646  * either wait for the in-progress read to complete (and return the
2647  * results); or, if this is a read with a "done" func, add a record
2648  * to the read to invoke the "done" func when the read completes,
2649  * and return; or just return.
2650  *
2651  * arc_read_done() will invoke all the requested "done" functions
2652  * for readers of this block.
2653  *
2654  * Normal callers should use arc_read and pass the arc buffer and offset
2655  * for the bp.  But if you know you don't need locking, you can use
2656  * arc_read_bp.
2657  */
2658 int
2659 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf,
2660     arc_done_func_t *done, void *private, int priority, int zio_flags,
2661     uint32_t *arc_flags, const zbookmark_t *zb)
2662 {
2663 	int err;
2664 
2665 	if (pbuf == NULL) {
2666 		/*
2667 		 * XXX This happens from traverse callback funcs, for
2668 		 * the objset_phys_t block.
2669 		 */
2670 		return (arc_read_nolock(pio, spa, bp, done, private, priority,
2671 		    zio_flags, arc_flags, zb));
2672 	}
2673 
2674 	ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2675 	ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2676 	rw_enter(&pbuf->b_data_lock, RW_READER);
2677 
2678 	err = arc_read_nolock(pio, spa, bp, done, private, priority,
2679 	    zio_flags, arc_flags, zb);
2680 	rw_exit(&pbuf->b_data_lock);
2681 
2682 	return (err);
2683 }
2684 
2685 int
2686 arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp,
2687     arc_done_func_t *done, void *private, int priority, int zio_flags,
2688     uint32_t *arc_flags, const zbookmark_t *zb)
2689 {
2690 	arc_buf_hdr_t *hdr;
2691 	arc_buf_t *buf;
2692 	kmutex_t *hash_lock;
2693 	zio_t *rzio;
2694 	uint64_t guid = spa_load_guid(spa);
2695 
2696 top:
2697 	hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2698 	    &hash_lock);
2699 	if (hdr && hdr->b_datacnt > 0) {
2700 
2701 		*arc_flags |= ARC_CACHED;
2702 
2703 		if (HDR_IO_IN_PROGRESS(hdr)) {
2704 
2705 			if (*arc_flags & ARC_WAIT) {
2706 				cv_wait(&hdr->b_cv, hash_lock);
2707 				mutex_exit(hash_lock);
2708 				goto top;
2709 			}
2710 			ASSERT(*arc_flags & ARC_NOWAIT);
2711 
2712 			if (done) {
2713 				arc_callback_t	*acb = NULL;
2714 
2715 				acb = kmem_zalloc(sizeof (arc_callback_t),
2716 				    KM_SLEEP);
2717 				acb->acb_done = done;
2718 				acb->acb_private = private;
2719 				if (pio != NULL)
2720 					acb->acb_zio_dummy = zio_null(pio,
2721 					    spa, NULL, NULL, NULL, zio_flags);
2722 
2723 				ASSERT(acb->acb_done != NULL);
2724 				acb->acb_next = hdr->b_acb;
2725 				hdr->b_acb = acb;
2726 				add_reference(hdr, hash_lock, private);
2727 				mutex_exit(hash_lock);
2728 				return (0);
2729 			}
2730 			mutex_exit(hash_lock);
2731 			return (0);
2732 		}
2733 
2734 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2735 
2736 		if (done) {
2737 			add_reference(hdr, hash_lock, private);
2738 			/*
2739 			 * If this block is already in use, create a new
2740 			 * copy of the data so that we will be guaranteed
2741 			 * that arc_release() will always succeed.
2742 			 */
2743 			buf = hdr->b_buf;
2744 			ASSERT(buf);
2745 			ASSERT(buf->b_data);
2746 			if (HDR_BUF_AVAILABLE(hdr)) {
2747 				ASSERT(buf->b_efunc == NULL);
2748 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2749 			} else {
2750 				buf = arc_buf_clone(buf);
2751 			}
2752 
2753 		} else if (*arc_flags & ARC_PREFETCH &&
2754 		    refcount_count(&hdr->b_refcnt) == 0) {
2755 			hdr->b_flags |= ARC_PREFETCH;
2756 		}
2757 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2758 		arc_access(hdr, hash_lock);
2759 		if (*arc_flags & ARC_L2CACHE)
2760 			hdr->b_flags |= ARC_L2CACHE;
2761 		mutex_exit(hash_lock);
2762 		ARCSTAT_BUMP(arcstat_hits);
2763 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2764 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2765 		    data, metadata, hits);
2766 
2767 		if (done)
2768 			done(NULL, buf, private);
2769 	} else {
2770 		uint64_t size = BP_GET_LSIZE(bp);
2771 		arc_callback_t	*acb;
2772 		vdev_t *vd = NULL;
2773 		uint64_t addr;
2774 		boolean_t devw = B_FALSE;
2775 
2776 		if (hdr == NULL) {
2777 			/* this block is not in the cache */
2778 			arc_buf_hdr_t	*exists;
2779 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2780 			buf = arc_buf_alloc(spa, size, private, type);
2781 			hdr = buf->b_hdr;
2782 			hdr->b_dva = *BP_IDENTITY(bp);
2783 			hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
2784 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2785 			exists = buf_hash_insert(hdr, &hash_lock);
2786 			if (exists) {
2787 				/* somebody beat us to the hash insert */
2788 				mutex_exit(hash_lock);
2789 				buf_discard_identity(hdr);
2790 				(void) arc_buf_remove_ref(buf, private);
2791 				goto top; /* restart the IO request */
2792 			}
2793 			/* if this is a prefetch, we don't have a reference */
2794 			if (*arc_flags & ARC_PREFETCH) {
2795 				(void) remove_reference(hdr, hash_lock,
2796 				    private);
2797 				hdr->b_flags |= ARC_PREFETCH;
2798 			}
2799 			if (*arc_flags & ARC_L2CACHE)
2800 				hdr->b_flags |= ARC_L2CACHE;
2801 			if (BP_GET_LEVEL(bp) > 0)
2802 				hdr->b_flags |= ARC_INDIRECT;
2803 		} else {
2804 			/* this block is in the ghost cache */
2805 			ASSERT(GHOST_STATE(hdr->b_state));
2806 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2807 			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2808 			ASSERT(hdr->b_buf == NULL);
2809 
2810 			/* if this is a prefetch, we don't have a reference */
2811 			if (*arc_flags & ARC_PREFETCH)
2812 				hdr->b_flags |= ARC_PREFETCH;
2813 			else
2814 				add_reference(hdr, hash_lock, private);
2815 			if (*arc_flags & ARC_L2CACHE)
2816 				hdr->b_flags |= ARC_L2CACHE;
2817 			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2818 			buf->b_hdr = hdr;
2819 			buf->b_data = NULL;
2820 			buf->b_efunc = NULL;
2821 			buf->b_private = NULL;
2822 			buf->b_next = NULL;
2823 			hdr->b_buf = buf;
2824 			ASSERT(hdr->b_datacnt == 0);
2825 			hdr->b_datacnt = 1;
2826 			arc_get_data_buf(buf);
2827 			arc_access(hdr, hash_lock);
2828 		}
2829 
2830 		ASSERT(!GHOST_STATE(hdr->b_state));
2831 
2832 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2833 		acb->acb_done = done;
2834 		acb->acb_private = private;
2835 
2836 		ASSERT(hdr->b_acb == NULL);
2837 		hdr->b_acb = acb;
2838 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2839 
2840 		if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2841 		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
2842 			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
2843 			addr = hdr->b_l2hdr->b_daddr;
2844 			/*
2845 			 * Lock out device removal.
2846 			 */
2847 			if (vdev_is_dead(vd) ||
2848 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2849 				vd = NULL;
2850 		}
2851 
2852 		mutex_exit(hash_lock);
2853 
2854 		ASSERT3U(hdr->b_size, ==, size);
2855 		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
2856 		    uint64_t, size, zbookmark_t *, zb);
2857 		ARCSTAT_BUMP(arcstat_misses);
2858 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2859 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2860 		    data, metadata, misses);
2861 
2862 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
2863 			/*
2864 			 * Read from the L2ARC if the following are true:
2865 			 * 1. The L2ARC vdev was previously cached.
2866 			 * 2. This buffer still has L2ARC metadata.
2867 			 * 3. This buffer isn't currently writing to the L2ARC.
2868 			 * 4. The L2ARC entry wasn't evicted, which may
2869 			 *    also have invalidated the vdev.
2870 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
2871 			 */
2872 			if (hdr->b_l2hdr != NULL &&
2873 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
2874 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
2875 				l2arc_read_callback_t *cb;
2876 
2877 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2878 				ARCSTAT_BUMP(arcstat_l2_hits);
2879 
2880 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2881 				    KM_SLEEP);
2882 				cb->l2rcb_buf = buf;
2883 				cb->l2rcb_spa = spa;
2884 				cb->l2rcb_bp = *bp;
2885 				cb->l2rcb_zb = *zb;
2886 				cb->l2rcb_flags = zio_flags;
2887 
2888 				/*
2889 				 * l2arc read.  The SCL_L2ARC lock will be
2890 				 * released by l2arc_read_done().
2891 				 */
2892 				rzio = zio_read_phys(pio, vd, addr, size,
2893 				    buf->b_data, ZIO_CHECKSUM_OFF,
2894 				    l2arc_read_done, cb, priority, zio_flags |
2895 				    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
2896 				    ZIO_FLAG_DONT_PROPAGATE |
2897 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
2898 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2899 				    zio_t *, rzio);
2900 				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
2901 
2902 				if (*arc_flags & ARC_NOWAIT) {
2903 					zio_nowait(rzio);
2904 					return (0);
2905 				}
2906 
2907 				ASSERT(*arc_flags & ARC_WAIT);
2908 				if (zio_wait(rzio) == 0)
2909 					return (0);
2910 
2911 				/* l2arc read error; goto zio_read() */
2912 			} else {
2913 				DTRACE_PROBE1(l2arc__miss,
2914 				    arc_buf_hdr_t *, hdr);
2915 				ARCSTAT_BUMP(arcstat_l2_misses);
2916 				if (HDR_L2_WRITING(hdr))
2917 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
2918 				spa_config_exit(spa, SCL_L2ARC, vd);
2919 			}
2920 		} else {
2921 			if (vd != NULL)
2922 				spa_config_exit(spa, SCL_L2ARC, vd);
2923 			if (l2arc_ndev != 0) {
2924 				DTRACE_PROBE1(l2arc__miss,
2925 				    arc_buf_hdr_t *, hdr);
2926 				ARCSTAT_BUMP(arcstat_l2_misses);
2927 			}
2928 		}
2929 
2930 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
2931 		    arc_read_done, buf, priority, zio_flags, zb);
2932 
2933 		if (*arc_flags & ARC_WAIT)
2934 			return (zio_wait(rzio));
2935 
2936 		ASSERT(*arc_flags & ARC_NOWAIT);
2937 		zio_nowait(rzio);
2938 	}
2939 	return (0);
2940 }
2941 
2942 void
2943 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2944 {
2945 	ASSERT(buf->b_hdr != NULL);
2946 	ASSERT(buf->b_hdr->b_state != arc_anon);
2947 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2948 	ASSERT(buf->b_efunc == NULL);
2949 	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
2950 
2951 	buf->b_efunc = func;
2952 	buf->b_private = private;
2953 }
2954 
2955 /*
2956  * This is used by the DMU to let the ARC know that a buffer is
2957  * being evicted, so the ARC should clean up.  If this arc buf
2958  * is not yet in the evicted state, it will be put there.
2959  */
2960 int
2961 arc_buf_evict(arc_buf_t *buf)
2962 {
2963 	arc_buf_hdr_t *hdr;
2964 	kmutex_t *hash_lock;
2965 	arc_buf_t **bufp;
2966 
2967 	mutex_enter(&buf->b_evict_lock);
2968 	hdr = buf->b_hdr;
2969 	if (hdr == NULL) {
2970 		/*
2971 		 * We are in arc_do_user_evicts().
2972 		 */
2973 		ASSERT(buf->b_data == NULL);
2974 		mutex_exit(&buf->b_evict_lock);
2975 		return (0);
2976 	} else if (buf->b_data == NULL) {
2977 		arc_buf_t copy = *buf; /* structure assignment */
2978 		/*
2979 		 * We are on the eviction list; process this buffer now
2980 		 * but let arc_do_user_evicts() do the reaping.
2981 		 */
2982 		buf->b_efunc = NULL;
2983 		mutex_exit(&buf->b_evict_lock);
2984 		VERIFY(copy.b_efunc(&copy) == 0);
2985 		return (1);
2986 	}
2987 	hash_lock = HDR_LOCK(hdr);
2988 	mutex_enter(hash_lock);
2989 	hdr = buf->b_hdr;
2990 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2991 
2992 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2993 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2994 
2995 	/*
2996 	 * Pull this buffer off of the hdr
2997 	 */
2998 	bufp = &hdr->b_buf;
2999 	while (*bufp != buf)
3000 		bufp = &(*bufp)->b_next;
3001 	*bufp = buf->b_next;
3002 
3003 	ASSERT(buf->b_data != NULL);
3004 	arc_buf_destroy(buf, FALSE, FALSE);
3005 
3006 	if (hdr->b_datacnt == 0) {
3007 		arc_state_t *old_state = hdr->b_state;
3008 		arc_state_t *evicted_state;
3009 
3010 		ASSERT(hdr->b_buf == NULL);
3011 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
3012 
3013 		evicted_state =
3014 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3015 
3016 		mutex_enter(&old_state->arcs_mtx);
3017 		mutex_enter(&evicted_state->arcs_mtx);
3018 
3019 		arc_change_state(evicted_state, hdr, hash_lock);
3020 		ASSERT(HDR_IN_HASH_TABLE(hdr));
3021 		hdr->b_flags |= ARC_IN_HASH_TABLE;
3022 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3023 
3024 		mutex_exit(&evicted_state->arcs_mtx);
3025 		mutex_exit(&old_state->arcs_mtx);
3026 	}
3027 	mutex_exit(hash_lock);
3028 	mutex_exit(&buf->b_evict_lock);
3029 
3030 	VERIFY(buf->b_efunc(buf) == 0);
3031 	buf->b_efunc = NULL;
3032 	buf->b_private = NULL;
3033 	buf->b_hdr = NULL;
3034 	buf->b_next = NULL;
3035 	kmem_cache_free(buf_cache, buf);
3036 	return (1);
3037 }
3038 
3039 /*
3040  * Release this buffer from the cache.  This must be done
3041  * after a read and prior to modifying the buffer contents.
3042  * If the buffer has more than one reference, we must make
3043  * a new hdr for the buffer.
3044  */
3045 void
3046 arc_release(arc_buf_t *buf, void *tag)
3047 {
3048 	arc_buf_hdr_t *hdr;
3049 	kmutex_t *hash_lock = NULL;
3050 	l2arc_buf_hdr_t *l2hdr;
3051 	uint64_t buf_size;
3052 
3053 	/*
3054 	 * It would be nice to assert that if it's DMU metadata (level >
3055 	 * 0 || it's the dnode file), then it must be syncing context.
3056 	 * But we don't know that information at this level.
3057 	 */
3058 
3059 	mutex_enter(&buf->b_evict_lock);
3060 	hdr = buf->b_hdr;
3061 
3062 	/* this buffer is not on any list */
3063 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3064 
3065 	if (hdr->b_state == arc_anon) {
3066 		/* this buffer is already released */
3067 		ASSERT(buf->b_efunc == NULL);
3068 	} else {
3069 		hash_lock = HDR_LOCK(hdr);
3070 		mutex_enter(hash_lock);
3071 		hdr = buf->b_hdr;
3072 		ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3073 	}
3074 
3075 	l2hdr = hdr->b_l2hdr;
3076 	if (l2hdr) {
3077 		mutex_enter(&l2arc_buflist_mtx);
3078 		hdr->b_l2hdr = NULL;
3079 		buf_size = hdr->b_size;
3080 	}
3081 
3082 	/*
3083 	 * Do we have more than one buf?
3084 	 */
3085 	if (hdr->b_datacnt > 1) {
3086 		arc_buf_hdr_t *nhdr;
3087 		arc_buf_t **bufp;
3088 		uint64_t blksz = hdr->b_size;
3089 		uint64_t spa = hdr->b_spa;
3090 		arc_buf_contents_t type = hdr->b_type;
3091 		uint32_t flags = hdr->b_flags;
3092 
3093 		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3094 		/*
3095 		 * Pull the data off of this hdr and attach it to
3096 		 * a new anonymous hdr.
3097 		 */
3098 		(void) remove_reference(hdr, hash_lock, tag);
3099 		bufp = &hdr->b_buf;
3100 		while (*bufp != buf)
3101 			bufp = &(*bufp)->b_next;
3102 		*bufp = buf->b_next;
3103 		buf->b_next = NULL;
3104 
3105 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3106 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3107 		if (refcount_is_zero(&hdr->b_refcnt)) {
3108 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3109 			ASSERT3U(*size, >=, hdr->b_size);
3110 			atomic_add_64(size, -hdr->b_size);
3111 		}
3112 		hdr->b_datacnt -= 1;
3113 		arc_cksum_verify(buf);
3114 
3115 		mutex_exit(hash_lock);
3116 
3117 		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3118 		nhdr->b_size = blksz;
3119 		nhdr->b_spa = spa;
3120 		nhdr->b_type = type;
3121 		nhdr->b_buf = buf;
3122 		nhdr->b_state = arc_anon;
3123 		nhdr->b_arc_access = 0;
3124 		nhdr->b_flags = flags & ARC_L2_WRITING;
3125 		nhdr->b_l2hdr = NULL;
3126 		nhdr->b_datacnt = 1;
3127 		nhdr->b_freeze_cksum = NULL;
3128 		(void) refcount_add(&nhdr->b_refcnt, tag);
3129 		buf->b_hdr = nhdr;
3130 		mutex_exit(&buf->b_evict_lock);
3131 		atomic_add_64(&arc_anon->arcs_size, blksz);
3132 	} else {
3133 		mutex_exit(&buf->b_evict_lock);
3134 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3135 		ASSERT(!list_link_active(&hdr->b_arc_node));
3136 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3137 		if (hdr->b_state != arc_anon)
3138 			arc_change_state(arc_anon, hdr, hash_lock);
3139 		hdr->b_arc_access = 0;
3140 		if (hash_lock)
3141 			mutex_exit(hash_lock);
3142 
3143 		buf_discard_identity(hdr);
3144 		arc_buf_thaw(buf);
3145 	}
3146 	buf->b_efunc = NULL;
3147 	buf->b_private = NULL;
3148 
3149 	if (l2hdr) {
3150 		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3151 		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3152 		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3153 		mutex_exit(&l2arc_buflist_mtx);
3154 	}
3155 }
3156 
3157 /*
3158  * Release this buffer.  If it does not match the provided BP, fill it
3159  * with that block's contents.
3160  */
3161 /* ARGSUSED */
3162 int
3163 arc_release_bp(arc_buf_t *buf, void *tag, blkptr_t *bp, spa_t *spa,
3164     zbookmark_t *zb)
3165 {
3166 	arc_release(buf, tag);
3167 	return (0);
3168 }
3169 
3170 int
3171 arc_released(arc_buf_t *buf)
3172 {
3173 	int released;
3174 
3175 	mutex_enter(&buf->b_evict_lock);
3176 	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3177 	mutex_exit(&buf->b_evict_lock);
3178 	return (released);
3179 }
3180 
3181 int
3182 arc_has_callback(arc_buf_t *buf)
3183 {
3184 	int callback;
3185 
3186 	mutex_enter(&buf->b_evict_lock);
3187 	callback = (buf->b_efunc != NULL);
3188 	mutex_exit(&buf->b_evict_lock);
3189 	return (callback);
3190 }
3191 
3192 #ifdef ZFS_DEBUG
3193 int
3194 arc_referenced(arc_buf_t *buf)
3195 {
3196 	int referenced;
3197 
3198 	mutex_enter(&buf->b_evict_lock);
3199 	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3200 	mutex_exit(&buf->b_evict_lock);
3201 	return (referenced);
3202 }
3203 #endif
3204 
3205 static void
3206 arc_write_ready(zio_t *zio)
3207 {
3208 	arc_write_callback_t *callback = zio->io_private;
3209 	arc_buf_t *buf = callback->awcb_buf;
3210 	arc_buf_hdr_t *hdr = buf->b_hdr;
3211 
3212 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3213 	callback->awcb_ready(zio, buf, callback->awcb_private);
3214 
3215 	/*
3216 	 * If the IO is already in progress, then this is a re-write
3217 	 * attempt, so we need to thaw and re-compute the cksum.
3218 	 * It is the responsibility of the callback to handle the
3219 	 * accounting for any re-write attempt.
3220 	 */
3221 	if (HDR_IO_IN_PROGRESS(hdr)) {
3222 		mutex_enter(&hdr->b_freeze_lock);
3223 		if (hdr->b_freeze_cksum != NULL) {
3224 			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3225 			hdr->b_freeze_cksum = NULL;
3226 		}
3227 		mutex_exit(&hdr->b_freeze_lock);
3228 	}
3229 	arc_cksum_compute(buf, B_FALSE);
3230 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3231 }
3232 
3233 static void
3234 arc_write_done(zio_t *zio)
3235 {
3236 	arc_write_callback_t *callback = zio->io_private;
3237 	arc_buf_t *buf = callback->awcb_buf;
3238 	arc_buf_hdr_t *hdr = buf->b_hdr;
3239 
3240 	ASSERT(hdr->b_acb == NULL);
3241 
3242 	if (zio->io_error == 0) {
3243 		hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3244 		hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3245 		hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3246 	} else {
3247 		ASSERT(BUF_EMPTY(hdr));
3248 	}
3249 
3250 	/*
3251 	 * If the block to be written was all-zero, we may have
3252 	 * compressed it away.  In this case no write was performed
3253 	 * so there will be no dva/birth/checksum.  The buffer must
3254 	 * therefore remain anonymous (and uncached).
3255 	 */
3256 	if (!BUF_EMPTY(hdr)) {
3257 		arc_buf_hdr_t *exists;
3258 		kmutex_t *hash_lock;
3259 
3260 		ASSERT(zio->io_error == 0);
3261 
3262 		arc_cksum_verify(buf);
3263 
3264 		exists = buf_hash_insert(hdr, &hash_lock);
3265 		if (exists) {
3266 			/*
3267 			 * This can only happen if we overwrite for
3268 			 * sync-to-convergence, because we remove
3269 			 * buffers from the hash table when we arc_free().
3270 			 */
3271 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3272 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3273 					panic("bad overwrite, hdr=%p exists=%p",
3274 					    (void *)hdr, (void *)exists);
3275 				ASSERT(refcount_is_zero(&exists->b_refcnt));
3276 				arc_change_state(arc_anon, exists, hash_lock);
3277 				mutex_exit(hash_lock);
3278 				arc_hdr_destroy(exists);
3279 				exists = buf_hash_insert(hdr, &hash_lock);
3280 				ASSERT3P(exists, ==, NULL);
3281 			} else {
3282 				/* Dedup */
3283 				ASSERT(hdr->b_datacnt == 1);
3284 				ASSERT(hdr->b_state == arc_anon);
3285 				ASSERT(BP_GET_DEDUP(zio->io_bp));
3286 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3287 			}
3288 		}
3289 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3290 		/* if it's not anon, we are doing a scrub */
3291 		if (!exists && hdr->b_state == arc_anon)
3292 			arc_access(hdr, hash_lock);
3293 		mutex_exit(hash_lock);
3294 	} else {
3295 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3296 	}
3297 
3298 	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3299 	callback->awcb_done(zio, buf, callback->awcb_private);
3300 
3301 	kmem_free(callback, sizeof (arc_write_callback_t));
3302 }
3303 
3304 zio_t *
3305 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3306     blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
3307     arc_done_func_t *ready, arc_done_func_t *done, void *private,
3308     int priority, int zio_flags, const zbookmark_t *zb)
3309 {
3310 	arc_buf_hdr_t *hdr = buf->b_hdr;
3311 	arc_write_callback_t *callback;
3312 	zio_t *zio;
3313 
3314 	ASSERT(ready != NULL);
3315 	ASSERT(done != NULL);
3316 	ASSERT(!HDR_IO_ERROR(hdr));
3317 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3318 	ASSERT(hdr->b_acb == NULL);
3319 	if (l2arc)
3320 		hdr->b_flags |= ARC_L2CACHE;
3321 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3322 	callback->awcb_ready = ready;
3323 	callback->awcb_done = done;
3324 	callback->awcb_private = private;
3325 	callback->awcb_buf = buf;
3326 
3327 	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3328 	    arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3329 
3330 	return (zio);
3331 }
3332 
3333 static int
3334 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3335 {
3336 #ifdef _KERNEL
3337 	uint64_t available_memory = ptob(freemem);
3338 	static uint64_t page_load = 0;
3339 	static uint64_t last_txg = 0;
3340 
3341 #if defined(__i386)
3342 	available_memory =
3343 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3344 #endif
3345 	if (available_memory >= zfs_write_limit_max)
3346 		return (0);
3347 
3348 	if (txg > last_txg) {
3349 		last_txg = txg;
3350 		page_load = 0;
3351 	}
3352 	/*
3353 	 * If we are in pageout, we know that memory is already tight,
3354 	 * the arc is already going to be evicting, so we just want to
3355 	 * continue to let page writes occur as quickly as possible.
3356 	 */
3357 	if (curproc == proc_pageout) {
3358 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
3359 			return (ERESTART);
3360 		/* Note: reserve is inflated, so we deflate */
3361 		page_load += reserve / 8;
3362 		return (0);
3363 	} else if (page_load > 0 && arc_reclaim_needed()) {
3364 		/* memory is low, delay before restarting */
3365 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3366 		return (EAGAIN);
3367 	}
3368 	page_load = 0;
3369 
3370 	if (arc_size > arc_c_min) {
3371 		uint64_t evictable_memory =
3372 		    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3373 		    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3374 		    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3375 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3376 		available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3377 	}
3378 
3379 	if (inflight_data > available_memory / 4) {
3380 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3381 		return (ERESTART);
3382 	}
3383 #endif
3384 	return (0);
3385 }
3386 
3387 void
3388 arc_tempreserve_clear(uint64_t reserve)
3389 {
3390 	atomic_add_64(&arc_tempreserve, -reserve);
3391 	ASSERT((int64_t)arc_tempreserve >= 0);
3392 }
3393 
3394 int
3395 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3396 {
3397 	int error;
3398 	uint64_t anon_size;
3399 
3400 #ifdef ZFS_DEBUG
3401 	/*
3402 	 * Once in a while, fail for no reason.  Everything should cope.
3403 	 */
3404 	if (spa_get_random(10000) == 0) {
3405 		dprintf("forcing random failure\n");
3406 		return (ERESTART);
3407 	}
3408 #endif
3409 	if (reserve > arc_c/4 && !arc_no_grow)
3410 		arc_c = MIN(arc_c_max, reserve * 4);
3411 	if (reserve > arc_c)
3412 		return (ENOMEM);
3413 
3414 	/*
3415 	 * Don't count loaned bufs as in flight dirty data to prevent long
3416 	 * network delays from blocking transactions that are ready to be
3417 	 * assigned to a txg.
3418 	 */
3419 	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3420 
3421 	/*
3422 	 * Writes will, almost always, require additional memory allocations
3423 	 * in order to compress/encrypt/etc the data.  We therefor need to
3424 	 * make sure that there is sufficient available memory for this.
3425 	 */
3426 	if (error = arc_memory_throttle(reserve, anon_size, txg))
3427 		return (error);
3428 
3429 	/*
3430 	 * Throttle writes when the amount of dirty data in the cache
3431 	 * gets too large.  We try to keep the cache less than half full
3432 	 * of dirty blocks so that our sync times don't grow too large.
3433 	 * Note: if two requests come in concurrently, we might let them
3434 	 * both succeed, when one of them should fail.  Not a huge deal.
3435 	 */
3436 
3437 	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3438 	    anon_size > arc_c / 4) {
3439 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3440 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3441 		    arc_tempreserve>>10,
3442 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3443 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3444 		    reserve>>10, arc_c>>10);
3445 		return (ERESTART);
3446 	}
3447 	atomic_add_64(&arc_tempreserve, reserve);
3448 	return (0);
3449 }
3450 
3451 void
3452 arc_init(void)
3453 {
3454 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3455 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3456 
3457 	/* Convert seconds to clock ticks */
3458 	arc_min_prefetch_lifespan = 1 * hz;
3459 
3460 	/* Start out with 1/8 of all memory */
3461 	arc_c = physmem * PAGESIZE / 8;
3462 
3463 #ifdef _KERNEL
3464 	/*
3465 	 * On architectures where the physical memory can be larger
3466 	 * than the addressable space (intel in 32-bit mode), we may
3467 	 * need to limit the cache to 1/8 of VM size.
3468 	 */
3469 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3470 #endif
3471 
3472 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3473 	arc_c_min = MAX(arc_c / 4, 64<<20);
3474 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3475 	if (arc_c * 8 >= 1<<30)
3476 		arc_c_max = (arc_c * 8) - (1<<30);
3477 	else
3478 		arc_c_max = arc_c_min;
3479 	arc_c_max = MAX(arc_c * 6, arc_c_max);
3480 
3481 	/*
3482 	 * Allow the tunables to override our calculations if they are
3483 	 * reasonable (ie. over 64MB)
3484 	 */
3485 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3486 		arc_c_max = zfs_arc_max;
3487 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3488 		arc_c_min = zfs_arc_min;
3489 
3490 	arc_c = arc_c_max;
3491 	arc_p = (arc_c >> 1);
3492 
3493 	/* limit meta-data to 1/4 of the arc capacity */
3494 	arc_meta_limit = arc_c_max / 4;
3495 
3496 	/* Allow the tunable to override if it is reasonable */
3497 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3498 		arc_meta_limit = zfs_arc_meta_limit;
3499 
3500 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3501 		arc_c_min = arc_meta_limit / 2;
3502 
3503 	if (zfs_arc_grow_retry > 0)
3504 		arc_grow_retry = zfs_arc_grow_retry;
3505 
3506 	if (zfs_arc_shrink_shift > 0)
3507 		arc_shrink_shift = zfs_arc_shrink_shift;
3508 
3509 	if (zfs_arc_p_min_shift > 0)
3510 		arc_p_min_shift = zfs_arc_p_min_shift;
3511 
3512 	/* if kmem_flags are set, lets try to use less memory */
3513 	if (kmem_debugging())
3514 		arc_c = arc_c / 2;
3515 	if (arc_c < arc_c_min)
3516 		arc_c = arc_c_min;
3517 
3518 	arc_anon = &ARC_anon;
3519 	arc_mru = &ARC_mru;
3520 	arc_mru_ghost = &ARC_mru_ghost;
3521 	arc_mfu = &ARC_mfu;
3522 	arc_mfu_ghost = &ARC_mfu_ghost;
3523 	arc_l2c_only = &ARC_l2c_only;
3524 	arc_size = 0;
3525 
3526 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3527 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3528 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3529 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3530 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3531 	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3532 
3533 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3534 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3535 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3536 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3537 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3538 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3539 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3540 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3541 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3542 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3543 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3544 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3545 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3546 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3547 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3548 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3549 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3550 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3551 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3552 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3553 
3554 	buf_init();
3555 
3556 	arc_thread_exit = 0;
3557 	arc_eviction_list = NULL;
3558 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3559 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3560 
3561 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3562 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3563 
3564 	if (arc_ksp != NULL) {
3565 		arc_ksp->ks_data = &arc_stats;
3566 		kstat_install(arc_ksp);
3567 	}
3568 
3569 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3570 	    TS_RUN, minclsyspri);
3571 
3572 	arc_dead = FALSE;
3573 	arc_warm = B_FALSE;
3574 
3575 	if (zfs_write_limit_max == 0)
3576 		zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3577 	else
3578 		zfs_write_limit_shift = 0;
3579 	mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3580 }
3581 
3582 void
3583 arc_fini(void)
3584 {
3585 	mutex_enter(&arc_reclaim_thr_lock);
3586 	arc_thread_exit = 1;
3587 	while (arc_thread_exit != 0)
3588 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3589 	mutex_exit(&arc_reclaim_thr_lock);
3590 
3591 	arc_flush(NULL);
3592 
3593 	arc_dead = TRUE;
3594 
3595 	if (arc_ksp != NULL) {
3596 		kstat_delete(arc_ksp);
3597 		arc_ksp = NULL;
3598 	}
3599 
3600 	mutex_destroy(&arc_eviction_mtx);
3601 	mutex_destroy(&arc_reclaim_thr_lock);
3602 	cv_destroy(&arc_reclaim_thr_cv);
3603 
3604 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3605 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3606 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3607 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3608 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3609 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3610 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3611 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3612 
3613 	mutex_destroy(&arc_anon->arcs_mtx);
3614 	mutex_destroy(&arc_mru->arcs_mtx);
3615 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3616 	mutex_destroy(&arc_mfu->arcs_mtx);
3617 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3618 	mutex_destroy(&arc_l2c_only->arcs_mtx);
3619 
3620 	mutex_destroy(&zfs_write_limit_lock);
3621 
3622 	buf_fini();
3623 
3624 	ASSERT(arc_loaned_bytes == 0);
3625 }
3626 
3627 /*
3628  * Level 2 ARC
3629  *
3630  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3631  * It uses dedicated storage devices to hold cached data, which are populated
3632  * using large infrequent writes.  The main role of this cache is to boost
3633  * the performance of random read workloads.  The intended L2ARC devices
3634  * include short-stroked disks, solid state disks, and other media with
3635  * substantially faster read latency than disk.
3636  *
3637  *                 +-----------------------+
3638  *                 |         ARC           |
3639  *                 +-----------------------+
3640  *                    |         ^     ^
3641  *                    |         |     |
3642  *      l2arc_feed_thread()    arc_read()
3643  *                    |         |     |
3644  *                    |  l2arc read   |
3645  *                    V         |     |
3646  *               +---------------+    |
3647  *               |     L2ARC     |    |
3648  *               +---------------+    |
3649  *                   |    ^           |
3650  *          l2arc_write() |           |
3651  *                   |    |           |
3652  *                   V    |           |
3653  *                 +-------+      +-------+
3654  *                 | vdev  |      | vdev  |
3655  *                 | cache |      | cache |
3656  *                 +-------+      +-------+
3657  *                 +=========+     .-----.
3658  *                 :  L2ARC  :    |-_____-|
3659  *                 : devices :    | Disks |
3660  *                 +=========+    `-_____-'
3661  *
3662  * Read requests are satisfied from the following sources, in order:
3663  *
3664  *	1) ARC
3665  *	2) vdev cache of L2ARC devices
3666  *	3) L2ARC devices
3667  *	4) vdev cache of disks
3668  *	5) disks
3669  *
3670  * Some L2ARC device types exhibit extremely slow write performance.
3671  * To accommodate for this there are some significant differences between
3672  * the L2ARC and traditional cache design:
3673  *
3674  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3675  * the ARC behave as usual, freeing buffers and placing headers on ghost
3676  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3677  * this would add inflated write latencies for all ARC memory pressure.
3678  *
3679  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3680  * It does this by periodically scanning buffers from the eviction-end of
3681  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3682  * not already there.  It scans until a headroom of buffers is satisfied,
3683  * which itself is a buffer for ARC eviction.  The thread that does this is
3684  * l2arc_feed_thread(), illustrated below; example sizes are included to
3685  * provide a better sense of ratio than this diagram:
3686  *
3687  *	       head -->                        tail
3688  *	        +---------------------+----------+
3689  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3690  *	        +---------------------+----------+   |   o L2ARC eligible
3691  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3692  *	        +---------------------+----------+   |
3693  *	             15.9 Gbytes      ^ 32 Mbytes    |
3694  *	                           headroom          |
3695  *	                                      l2arc_feed_thread()
3696  *	                                             |
3697  *	                 l2arc write hand <--[oooo]--'
3698  *	                         |           8 Mbyte
3699  *	                         |          write max
3700  *	                         V
3701  *		  +==============================+
3702  *	L2ARC dev |####|#|###|###|    |####| ... |
3703  *	          +==============================+
3704  *	                     32 Gbytes
3705  *
3706  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3707  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3708  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3709  * safe to say that this is an uncommon case, since buffers at the end of
3710  * the ARC lists have moved there due to inactivity.
3711  *
3712  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3713  * then the L2ARC simply misses copying some buffers.  This serves as a
3714  * pressure valve to prevent heavy read workloads from both stalling the ARC
3715  * with waits and clogging the L2ARC with writes.  This also helps prevent
3716  * the potential for the L2ARC to churn if it attempts to cache content too
3717  * quickly, such as during backups of the entire pool.
3718  *
3719  * 5. After system boot and before the ARC has filled main memory, there are
3720  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3721  * lists can remain mostly static.  Instead of searching from tail of these
3722  * lists as pictured, the l2arc_feed_thread() will search from the list heads
3723  * for eligible buffers, greatly increasing its chance of finding them.
3724  *
3725  * The L2ARC device write speed is also boosted during this time so that
3726  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
3727  * there are no L2ARC reads, and no fear of degrading read performance
3728  * through increased writes.
3729  *
3730  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3731  * the vdev queue can aggregate them into larger and fewer writes.  Each
3732  * device is written to in a rotor fashion, sweeping writes through
3733  * available space then repeating.
3734  *
3735  * 7. The L2ARC does not store dirty content.  It never needs to flush
3736  * write buffers back to disk based storage.
3737  *
3738  * 8. If an ARC buffer is written (and dirtied) which also exists in the
3739  * L2ARC, the now stale L2ARC buffer is immediately dropped.
3740  *
3741  * The performance of the L2ARC can be tweaked by a number of tunables, which
3742  * may be necessary for different workloads:
3743  *
3744  *	l2arc_write_max		max write bytes per interval
3745  *	l2arc_write_boost	extra write bytes during device warmup
3746  *	l2arc_noprefetch	skip caching prefetched buffers
3747  *	l2arc_headroom		number of max device writes to precache
3748  *	l2arc_feed_secs		seconds between L2ARC writing
3749  *
3750  * Tunables may be removed or added as future performance improvements are
3751  * integrated, and also may become zpool properties.
3752  *
3753  * There are three key functions that control how the L2ARC warms up:
3754  *
3755  *	l2arc_write_eligible()	check if a buffer is eligible to cache
3756  *	l2arc_write_size()	calculate how much to write
3757  *	l2arc_write_interval()	calculate sleep delay between writes
3758  *
3759  * These three functions determine what to write, how much, and how quickly
3760  * to send writes.
3761  */
3762 
3763 static boolean_t
3764 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
3765 {
3766 	/*
3767 	 * A buffer is *not* eligible for the L2ARC if it:
3768 	 * 1. belongs to a different spa.
3769 	 * 2. is already cached on the L2ARC.
3770 	 * 3. has an I/O in progress (it may be an incomplete read).
3771 	 * 4. is flagged not eligible (zfs property).
3772 	 */
3773 	if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
3774 	    HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
3775 		return (B_FALSE);
3776 
3777 	return (B_TRUE);
3778 }
3779 
3780 static uint64_t
3781 l2arc_write_size(l2arc_dev_t *dev)
3782 {
3783 	uint64_t size;
3784 
3785 	size = dev->l2ad_write;
3786 
3787 	if (arc_warm == B_FALSE)
3788 		size += dev->l2ad_boost;
3789 
3790 	return (size);
3791 
3792 }
3793 
3794 static clock_t
3795 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
3796 {
3797 	clock_t interval, next, now;
3798 
3799 	/*
3800 	 * If the ARC lists are busy, increase our write rate; if the
3801 	 * lists are stale, idle back.  This is achieved by checking
3802 	 * how much we previously wrote - if it was more than half of
3803 	 * what we wanted, schedule the next write much sooner.
3804 	 */
3805 	if (l2arc_feed_again && wrote > (wanted / 2))
3806 		interval = (hz * l2arc_feed_min_ms) / 1000;
3807 	else
3808 		interval = hz * l2arc_feed_secs;
3809 
3810 	now = ddi_get_lbolt();
3811 	next = MAX(now, MIN(now + interval, began + interval));
3812 
3813 	return (next);
3814 }
3815 
3816 static void
3817 l2arc_hdr_stat_add(void)
3818 {
3819 	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3820 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3821 }
3822 
3823 static void
3824 l2arc_hdr_stat_remove(void)
3825 {
3826 	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3827 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3828 }
3829 
3830 /*
3831  * Cycle through L2ARC devices.  This is how L2ARC load balances.
3832  * If a device is returned, this also returns holding the spa config lock.
3833  */
3834 static l2arc_dev_t *
3835 l2arc_dev_get_next(void)
3836 {
3837 	l2arc_dev_t *first, *next = NULL;
3838 
3839 	/*
3840 	 * Lock out the removal of spas (spa_namespace_lock), then removal
3841 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
3842 	 * both locks will be dropped and a spa config lock held instead.
3843 	 */
3844 	mutex_enter(&spa_namespace_lock);
3845 	mutex_enter(&l2arc_dev_mtx);
3846 
3847 	/* if there are no vdevs, there is nothing to do */
3848 	if (l2arc_ndev == 0)
3849 		goto out;
3850 
3851 	first = NULL;
3852 	next = l2arc_dev_last;
3853 	do {
3854 		/* loop around the list looking for a non-faulted vdev */
3855 		if (next == NULL) {
3856 			next = list_head(l2arc_dev_list);
3857 		} else {
3858 			next = list_next(l2arc_dev_list, next);
3859 			if (next == NULL)
3860 				next = list_head(l2arc_dev_list);
3861 		}
3862 
3863 		/* if we have come back to the start, bail out */
3864 		if (first == NULL)
3865 			first = next;
3866 		else if (next == first)
3867 			break;
3868 
3869 	} while (vdev_is_dead(next->l2ad_vdev));
3870 
3871 	/* if we were unable to find any usable vdevs, return NULL */
3872 	if (vdev_is_dead(next->l2ad_vdev))
3873 		next = NULL;
3874 
3875 	l2arc_dev_last = next;
3876 
3877 out:
3878 	mutex_exit(&l2arc_dev_mtx);
3879 
3880 	/*
3881 	 * Grab the config lock to prevent the 'next' device from being
3882 	 * removed while we are writing to it.
3883 	 */
3884 	if (next != NULL)
3885 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
3886 	mutex_exit(&spa_namespace_lock);
3887 
3888 	return (next);
3889 }
3890 
3891 /*
3892  * Free buffers that were tagged for destruction.
3893  */
3894 static void
3895 l2arc_do_free_on_write()
3896 {
3897 	list_t *buflist;
3898 	l2arc_data_free_t *df, *df_prev;
3899 
3900 	mutex_enter(&l2arc_free_on_write_mtx);
3901 	buflist = l2arc_free_on_write;
3902 
3903 	for (df = list_tail(buflist); df; df = df_prev) {
3904 		df_prev = list_prev(buflist, df);
3905 		ASSERT(df->l2df_data != NULL);
3906 		ASSERT(df->l2df_func != NULL);
3907 		df->l2df_func(df->l2df_data, df->l2df_size);
3908 		list_remove(buflist, df);
3909 		kmem_free(df, sizeof (l2arc_data_free_t));
3910 	}
3911 
3912 	mutex_exit(&l2arc_free_on_write_mtx);
3913 }
3914 
3915 /*
3916  * A write to a cache device has completed.  Update all headers to allow
3917  * reads from these buffers to begin.
3918  */
3919 static void
3920 l2arc_write_done(zio_t *zio)
3921 {
3922 	l2arc_write_callback_t *cb;
3923 	l2arc_dev_t *dev;
3924 	list_t *buflist;
3925 	arc_buf_hdr_t *head, *ab, *ab_prev;
3926 	l2arc_buf_hdr_t *abl2;
3927 	kmutex_t *hash_lock;
3928 
3929 	cb = zio->io_private;
3930 	ASSERT(cb != NULL);
3931 	dev = cb->l2wcb_dev;
3932 	ASSERT(dev != NULL);
3933 	head = cb->l2wcb_head;
3934 	ASSERT(head != NULL);
3935 	buflist = dev->l2ad_buflist;
3936 	ASSERT(buflist != NULL);
3937 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
3938 	    l2arc_write_callback_t *, cb);
3939 
3940 	if (zio->io_error != 0)
3941 		ARCSTAT_BUMP(arcstat_l2_writes_error);
3942 
3943 	mutex_enter(&l2arc_buflist_mtx);
3944 
3945 	/*
3946 	 * All writes completed, or an error was hit.
3947 	 */
3948 	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
3949 		ab_prev = list_prev(buflist, ab);
3950 
3951 		hash_lock = HDR_LOCK(ab);
3952 		if (!mutex_tryenter(hash_lock)) {
3953 			/*
3954 			 * This buffer misses out.  It may be in a stage
3955 			 * of eviction.  Its ARC_L2_WRITING flag will be
3956 			 * left set, denying reads to this buffer.
3957 			 */
3958 			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
3959 			continue;
3960 		}
3961 
3962 		if (zio->io_error != 0) {
3963 			/*
3964 			 * Error - drop L2ARC entry.
3965 			 */
3966 			list_remove(buflist, ab);
3967 			abl2 = ab->b_l2hdr;
3968 			ab->b_l2hdr = NULL;
3969 			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
3970 			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
3971 		}
3972 
3973 		/*
3974 		 * Allow ARC to begin reads to this L2ARC entry.
3975 		 */
3976 		ab->b_flags &= ~ARC_L2_WRITING;
3977 
3978 		mutex_exit(hash_lock);
3979 	}
3980 
3981 	atomic_inc_64(&l2arc_writes_done);
3982 	list_remove(buflist, head);
3983 	kmem_cache_free(hdr_cache, head);
3984 	mutex_exit(&l2arc_buflist_mtx);
3985 
3986 	l2arc_do_free_on_write();
3987 
3988 	kmem_free(cb, sizeof (l2arc_write_callback_t));
3989 }
3990 
3991 /*
3992  * A read to a cache device completed.  Validate buffer contents before
3993  * handing over to the regular ARC routines.
3994  */
3995 static void
3996 l2arc_read_done(zio_t *zio)
3997 {
3998 	l2arc_read_callback_t *cb;
3999 	arc_buf_hdr_t *hdr;
4000 	arc_buf_t *buf;
4001 	kmutex_t *hash_lock;
4002 	int equal;
4003 
4004 	ASSERT(zio->io_vd != NULL);
4005 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4006 
4007 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
4008 
4009 	cb = zio->io_private;
4010 	ASSERT(cb != NULL);
4011 	buf = cb->l2rcb_buf;
4012 	ASSERT(buf != NULL);
4013 
4014 	hash_lock = HDR_LOCK(buf->b_hdr);
4015 	mutex_enter(hash_lock);
4016 	hdr = buf->b_hdr;
4017 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4018 
4019 	/*
4020 	 * Check this survived the L2ARC journey.
4021 	 */
4022 	equal = arc_cksum_equal(buf);
4023 	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4024 		mutex_exit(hash_lock);
4025 		zio->io_private = buf;
4026 		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
4027 		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
4028 		arc_read_done(zio);
4029 	} else {
4030 		mutex_exit(hash_lock);
4031 		/*
4032 		 * Buffer didn't survive caching.  Increment stats and
4033 		 * reissue to the original storage device.
4034 		 */
4035 		if (zio->io_error != 0) {
4036 			ARCSTAT_BUMP(arcstat_l2_io_error);
4037 		} else {
4038 			zio->io_error = EIO;
4039 		}
4040 		if (!equal)
4041 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4042 
4043 		/*
4044 		 * If there's no waiter, issue an async i/o to the primary
4045 		 * storage now.  If there *is* a waiter, the caller must
4046 		 * issue the i/o in a context where it's OK to block.
4047 		 */
4048 		if (zio->io_waiter == NULL) {
4049 			zio_t *pio = zio_unique_parent(zio);
4050 
4051 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4052 
4053 			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4054 			    buf->b_data, zio->io_size, arc_read_done, buf,
4055 			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4056 		}
4057 	}
4058 
4059 	kmem_free(cb, sizeof (l2arc_read_callback_t));
4060 }
4061 
4062 /*
4063  * This is the list priority from which the L2ARC will search for pages to
4064  * cache.  This is used within loops (0..3) to cycle through lists in the
4065  * desired order.  This order can have a significant effect on cache
4066  * performance.
4067  *
4068  * Currently the metadata lists are hit first, MFU then MRU, followed by
4069  * the data lists.  This function returns a locked list, and also returns
4070  * the lock pointer.
4071  */
4072 static list_t *
4073 l2arc_list_locked(int list_num, kmutex_t **lock)
4074 {
4075 	list_t *list;
4076 
4077 	ASSERT(list_num >= 0 && list_num <= 3);
4078 
4079 	switch (list_num) {
4080 	case 0:
4081 		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4082 		*lock = &arc_mfu->arcs_mtx;
4083 		break;
4084 	case 1:
4085 		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4086 		*lock = &arc_mru->arcs_mtx;
4087 		break;
4088 	case 2:
4089 		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4090 		*lock = &arc_mfu->arcs_mtx;
4091 		break;
4092 	case 3:
4093 		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4094 		*lock = &arc_mru->arcs_mtx;
4095 		break;
4096 	}
4097 
4098 	ASSERT(!(MUTEX_HELD(*lock)));
4099 	mutex_enter(*lock);
4100 	return (list);
4101 }
4102 
4103 /*
4104  * Evict buffers from the device write hand to the distance specified in
4105  * bytes.  This distance may span populated buffers, it may span nothing.
4106  * This is clearing a region on the L2ARC device ready for writing.
4107  * If the 'all' boolean is set, every buffer is evicted.
4108  */
4109 static void
4110 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4111 {
4112 	list_t *buflist;
4113 	l2arc_buf_hdr_t *abl2;
4114 	arc_buf_hdr_t *ab, *ab_prev;
4115 	kmutex_t *hash_lock;
4116 	uint64_t taddr;
4117 
4118 	buflist = dev->l2ad_buflist;
4119 
4120 	if (buflist == NULL)
4121 		return;
4122 
4123 	if (!all && dev->l2ad_first) {
4124 		/*
4125 		 * This is the first sweep through the device.  There is
4126 		 * nothing to evict.
4127 		 */
4128 		return;
4129 	}
4130 
4131 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4132 		/*
4133 		 * When nearing the end of the device, evict to the end
4134 		 * before the device write hand jumps to the start.
4135 		 */
4136 		taddr = dev->l2ad_end;
4137 	} else {
4138 		taddr = dev->l2ad_hand + distance;
4139 	}
4140 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4141 	    uint64_t, taddr, boolean_t, all);
4142 
4143 top:
4144 	mutex_enter(&l2arc_buflist_mtx);
4145 	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4146 		ab_prev = list_prev(buflist, ab);
4147 
4148 		hash_lock = HDR_LOCK(ab);
4149 		if (!mutex_tryenter(hash_lock)) {
4150 			/*
4151 			 * Missed the hash lock.  Retry.
4152 			 */
4153 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4154 			mutex_exit(&l2arc_buflist_mtx);
4155 			mutex_enter(hash_lock);
4156 			mutex_exit(hash_lock);
4157 			goto top;
4158 		}
4159 
4160 		if (HDR_L2_WRITE_HEAD(ab)) {
4161 			/*
4162 			 * We hit a write head node.  Leave it for
4163 			 * l2arc_write_done().
4164 			 */
4165 			list_remove(buflist, ab);
4166 			mutex_exit(hash_lock);
4167 			continue;
4168 		}
4169 
4170 		if (!all && ab->b_l2hdr != NULL &&
4171 		    (ab->b_l2hdr->b_daddr > taddr ||
4172 		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4173 			/*
4174 			 * We've evicted to the target address,
4175 			 * or the end of the device.
4176 			 */
4177 			mutex_exit(hash_lock);
4178 			break;
4179 		}
4180 
4181 		if (HDR_FREE_IN_PROGRESS(ab)) {
4182 			/*
4183 			 * Already on the path to destruction.
4184 			 */
4185 			mutex_exit(hash_lock);
4186 			continue;
4187 		}
4188 
4189 		if (ab->b_state == arc_l2c_only) {
4190 			ASSERT(!HDR_L2_READING(ab));
4191 			/*
4192 			 * This doesn't exist in the ARC.  Destroy.
4193 			 * arc_hdr_destroy() will call list_remove()
4194 			 * and decrement arcstat_l2_size.
4195 			 */
4196 			arc_change_state(arc_anon, ab, hash_lock);
4197 			arc_hdr_destroy(ab);
4198 		} else {
4199 			/*
4200 			 * Invalidate issued or about to be issued
4201 			 * reads, since we may be about to write
4202 			 * over this location.
4203 			 */
4204 			if (HDR_L2_READING(ab)) {
4205 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4206 				ab->b_flags |= ARC_L2_EVICTED;
4207 			}
4208 
4209 			/*
4210 			 * Tell ARC this no longer exists in L2ARC.
4211 			 */
4212 			if (ab->b_l2hdr != NULL) {
4213 				abl2 = ab->b_l2hdr;
4214 				ab->b_l2hdr = NULL;
4215 				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4216 				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4217 			}
4218 			list_remove(buflist, ab);
4219 
4220 			/*
4221 			 * This may have been leftover after a
4222 			 * failed write.
4223 			 */
4224 			ab->b_flags &= ~ARC_L2_WRITING;
4225 		}
4226 		mutex_exit(hash_lock);
4227 	}
4228 	mutex_exit(&l2arc_buflist_mtx);
4229 
4230 	vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4231 	dev->l2ad_evict = taddr;
4232 }
4233 
4234 /*
4235  * Find and write ARC buffers to the L2ARC device.
4236  *
4237  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4238  * for reading until they have completed writing.
4239  */
4240 static uint64_t
4241 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4242 {
4243 	arc_buf_hdr_t *ab, *ab_prev, *head;
4244 	l2arc_buf_hdr_t *hdrl2;
4245 	list_t *list;
4246 	uint64_t passed_sz, write_sz, buf_sz, headroom;
4247 	void *buf_data;
4248 	kmutex_t *hash_lock, *list_lock;
4249 	boolean_t have_lock, full;
4250 	l2arc_write_callback_t *cb;
4251 	zio_t *pio, *wzio;
4252 	uint64_t guid = spa_load_guid(spa);
4253 
4254 	ASSERT(dev->l2ad_vdev != NULL);
4255 
4256 	pio = NULL;
4257 	write_sz = 0;
4258 	full = B_FALSE;
4259 	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4260 	head->b_flags |= ARC_L2_WRITE_HEAD;
4261 
4262 	/*
4263 	 * Copy buffers for L2ARC writing.
4264 	 */
4265 	mutex_enter(&l2arc_buflist_mtx);
4266 	for (int try = 0; try <= 3; try++) {
4267 		list = l2arc_list_locked(try, &list_lock);
4268 		passed_sz = 0;
4269 
4270 		/*
4271 		 * L2ARC fast warmup.
4272 		 *
4273 		 * Until the ARC is warm and starts to evict, read from the
4274 		 * head of the ARC lists rather than the tail.
4275 		 */
4276 		headroom = target_sz * l2arc_headroom;
4277 		if (arc_warm == B_FALSE)
4278 			ab = list_head(list);
4279 		else
4280 			ab = list_tail(list);
4281 
4282 		for (; ab; ab = ab_prev) {
4283 			if (arc_warm == B_FALSE)
4284 				ab_prev = list_next(list, ab);
4285 			else
4286 				ab_prev = list_prev(list, ab);
4287 
4288 			hash_lock = HDR_LOCK(ab);
4289 			have_lock = MUTEX_HELD(hash_lock);
4290 			if (!have_lock && !mutex_tryenter(hash_lock)) {
4291 				/*
4292 				 * Skip this buffer rather than waiting.
4293 				 */
4294 				continue;
4295 			}
4296 
4297 			passed_sz += ab->b_size;
4298 			if (passed_sz > headroom) {
4299 				/*
4300 				 * Searched too far.
4301 				 */
4302 				mutex_exit(hash_lock);
4303 				break;
4304 			}
4305 
4306 			if (!l2arc_write_eligible(guid, ab)) {
4307 				mutex_exit(hash_lock);
4308 				continue;
4309 			}
4310 
4311 			if ((write_sz + ab->b_size) > target_sz) {
4312 				full = B_TRUE;
4313 				mutex_exit(hash_lock);
4314 				break;
4315 			}
4316 
4317 			if (pio == NULL) {
4318 				/*
4319 				 * Insert a dummy header on the buflist so
4320 				 * l2arc_write_done() can find where the
4321 				 * write buffers begin without searching.
4322 				 */
4323 				list_insert_head(dev->l2ad_buflist, head);
4324 
4325 				cb = kmem_alloc(
4326 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4327 				cb->l2wcb_dev = dev;
4328 				cb->l2wcb_head = head;
4329 				pio = zio_root(spa, l2arc_write_done, cb,
4330 				    ZIO_FLAG_CANFAIL);
4331 			}
4332 
4333 			/*
4334 			 * Create and add a new L2ARC header.
4335 			 */
4336 			hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4337 			hdrl2->b_dev = dev;
4338 			hdrl2->b_daddr = dev->l2ad_hand;
4339 
4340 			ab->b_flags |= ARC_L2_WRITING;
4341 			ab->b_l2hdr = hdrl2;
4342 			list_insert_head(dev->l2ad_buflist, ab);
4343 			buf_data = ab->b_buf->b_data;
4344 			buf_sz = ab->b_size;
4345 
4346 			/*
4347 			 * Compute and store the buffer cksum before
4348 			 * writing.  On debug the cksum is verified first.
4349 			 */
4350 			arc_cksum_verify(ab->b_buf);
4351 			arc_cksum_compute(ab->b_buf, B_TRUE);
4352 
4353 			mutex_exit(hash_lock);
4354 
4355 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4356 			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4357 			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4358 			    ZIO_FLAG_CANFAIL, B_FALSE);
4359 
4360 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4361 			    zio_t *, wzio);
4362 			(void) zio_nowait(wzio);
4363 
4364 			/*
4365 			 * Keep the clock hand suitably device-aligned.
4366 			 */
4367 			buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4368 
4369 			write_sz += buf_sz;
4370 			dev->l2ad_hand += buf_sz;
4371 		}
4372 
4373 		mutex_exit(list_lock);
4374 
4375 		if (full == B_TRUE)
4376 			break;
4377 	}
4378 	mutex_exit(&l2arc_buflist_mtx);
4379 
4380 	if (pio == NULL) {
4381 		ASSERT3U(write_sz, ==, 0);
4382 		kmem_cache_free(hdr_cache, head);
4383 		return (0);
4384 	}
4385 
4386 	ASSERT3U(write_sz, <=, target_sz);
4387 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4388 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
4389 	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4390 	vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0);
4391 
4392 	/*
4393 	 * Bump device hand to the device start if it is approaching the end.
4394 	 * l2arc_evict() will already have evicted ahead for this case.
4395 	 */
4396 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4397 		vdev_space_update(dev->l2ad_vdev,
4398 		    dev->l2ad_end - dev->l2ad_hand, 0, 0);
4399 		dev->l2ad_hand = dev->l2ad_start;
4400 		dev->l2ad_evict = dev->l2ad_start;
4401 		dev->l2ad_first = B_FALSE;
4402 	}
4403 
4404 	dev->l2ad_writing = B_TRUE;
4405 	(void) zio_wait(pio);
4406 	dev->l2ad_writing = B_FALSE;
4407 
4408 	return (write_sz);
4409 }
4410 
4411 /*
4412  * This thread feeds the L2ARC at regular intervals.  This is the beating
4413  * heart of the L2ARC.
4414  */
4415 static void
4416 l2arc_feed_thread(void)
4417 {
4418 	callb_cpr_t cpr;
4419 	l2arc_dev_t *dev;
4420 	spa_t *spa;
4421 	uint64_t size, wrote;
4422 	clock_t begin, next = ddi_get_lbolt();
4423 
4424 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4425 
4426 	mutex_enter(&l2arc_feed_thr_lock);
4427 
4428 	while (l2arc_thread_exit == 0) {
4429 		CALLB_CPR_SAFE_BEGIN(&cpr);
4430 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4431 		    next);
4432 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4433 		next = ddi_get_lbolt() + hz;
4434 
4435 		/*
4436 		 * Quick check for L2ARC devices.
4437 		 */
4438 		mutex_enter(&l2arc_dev_mtx);
4439 		if (l2arc_ndev == 0) {
4440 			mutex_exit(&l2arc_dev_mtx);
4441 			continue;
4442 		}
4443 		mutex_exit(&l2arc_dev_mtx);
4444 		begin = ddi_get_lbolt();
4445 
4446 		/*
4447 		 * This selects the next l2arc device to write to, and in
4448 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4449 		 * will return NULL if there are now no l2arc devices or if
4450 		 * they are all faulted.
4451 		 *
4452 		 * If a device is returned, its spa's config lock is also
4453 		 * held to prevent device removal.  l2arc_dev_get_next()
4454 		 * will grab and release l2arc_dev_mtx.
4455 		 */
4456 		if ((dev = l2arc_dev_get_next()) == NULL)
4457 			continue;
4458 
4459 		spa = dev->l2ad_spa;
4460 		ASSERT(spa != NULL);
4461 
4462 		/*
4463 		 * If the pool is read-only then force the feed thread to
4464 		 * sleep a little longer.
4465 		 */
4466 		if (!spa_writeable(spa)) {
4467 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
4468 			spa_config_exit(spa, SCL_L2ARC, dev);
4469 			continue;
4470 		}
4471 
4472 		/*
4473 		 * Avoid contributing to memory pressure.
4474 		 */
4475 		if (arc_reclaim_needed()) {
4476 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4477 			spa_config_exit(spa, SCL_L2ARC, dev);
4478 			continue;
4479 		}
4480 
4481 		ARCSTAT_BUMP(arcstat_l2_feeds);
4482 
4483 		size = l2arc_write_size(dev);
4484 
4485 		/*
4486 		 * Evict L2ARC buffers that will be overwritten.
4487 		 */
4488 		l2arc_evict(dev, size, B_FALSE);
4489 
4490 		/*
4491 		 * Write ARC buffers.
4492 		 */
4493 		wrote = l2arc_write_buffers(spa, dev, size);
4494 
4495 		/*
4496 		 * Calculate interval between writes.
4497 		 */
4498 		next = l2arc_write_interval(begin, size, wrote);
4499 		spa_config_exit(spa, SCL_L2ARC, dev);
4500 	}
4501 
4502 	l2arc_thread_exit = 0;
4503 	cv_broadcast(&l2arc_feed_thr_cv);
4504 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4505 	thread_exit();
4506 }
4507 
4508 boolean_t
4509 l2arc_vdev_present(vdev_t *vd)
4510 {
4511 	l2arc_dev_t *dev;
4512 
4513 	mutex_enter(&l2arc_dev_mtx);
4514 	for (dev = list_head(l2arc_dev_list); dev != NULL;
4515 	    dev = list_next(l2arc_dev_list, dev)) {
4516 		if (dev->l2ad_vdev == vd)
4517 			break;
4518 	}
4519 	mutex_exit(&l2arc_dev_mtx);
4520 
4521 	return (dev != NULL);
4522 }
4523 
4524 /*
4525  * Add a vdev for use by the L2ARC.  By this point the spa has already
4526  * validated the vdev and opened it.
4527  */
4528 void
4529 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
4530 {
4531 	l2arc_dev_t *adddev;
4532 
4533 	ASSERT(!l2arc_vdev_present(vd));
4534 
4535 	/*
4536 	 * Create a new l2arc device entry.
4537 	 */
4538 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4539 	adddev->l2ad_spa = spa;
4540 	adddev->l2ad_vdev = vd;
4541 	adddev->l2ad_write = l2arc_write_max;
4542 	adddev->l2ad_boost = l2arc_write_boost;
4543 	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
4544 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
4545 	adddev->l2ad_hand = adddev->l2ad_start;
4546 	adddev->l2ad_evict = adddev->l2ad_start;
4547 	adddev->l2ad_first = B_TRUE;
4548 	adddev->l2ad_writing = B_FALSE;
4549 	ASSERT3U(adddev->l2ad_write, >, 0);
4550 
4551 	/*
4552 	 * This is a list of all ARC buffers that are still valid on the
4553 	 * device.
4554 	 */
4555 	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4556 	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4557 	    offsetof(arc_buf_hdr_t, b_l2node));
4558 
4559 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
4560 
4561 	/*
4562 	 * Add device to global list
4563 	 */
4564 	mutex_enter(&l2arc_dev_mtx);
4565 	list_insert_head(l2arc_dev_list, adddev);
4566 	atomic_inc_64(&l2arc_ndev);
4567 	mutex_exit(&l2arc_dev_mtx);
4568 }
4569 
4570 /*
4571  * Remove a vdev from the L2ARC.
4572  */
4573 void
4574 l2arc_remove_vdev(vdev_t *vd)
4575 {
4576 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4577 
4578 	/*
4579 	 * Find the device by vdev
4580 	 */
4581 	mutex_enter(&l2arc_dev_mtx);
4582 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4583 		nextdev = list_next(l2arc_dev_list, dev);
4584 		if (vd == dev->l2ad_vdev) {
4585 			remdev = dev;
4586 			break;
4587 		}
4588 	}
4589 	ASSERT(remdev != NULL);
4590 
4591 	/*
4592 	 * Remove device from global list
4593 	 */
4594 	list_remove(l2arc_dev_list, remdev);
4595 	l2arc_dev_last = NULL;		/* may have been invalidated */
4596 	atomic_dec_64(&l2arc_ndev);
4597 	mutex_exit(&l2arc_dev_mtx);
4598 
4599 	/*
4600 	 * Clear all buflists and ARC references.  L2ARC device flush.
4601 	 */
4602 	l2arc_evict(remdev, 0, B_TRUE);
4603 	list_destroy(remdev->l2ad_buflist);
4604 	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4605 	kmem_free(remdev, sizeof (l2arc_dev_t));
4606 }
4607 
4608 void
4609 l2arc_init(void)
4610 {
4611 	l2arc_thread_exit = 0;
4612 	l2arc_ndev = 0;
4613 	l2arc_writes_sent = 0;
4614 	l2arc_writes_done = 0;
4615 
4616 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4617 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4618 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4619 	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4620 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4621 
4622 	l2arc_dev_list = &L2ARC_dev_list;
4623 	l2arc_free_on_write = &L2ARC_free_on_write;
4624 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4625 	    offsetof(l2arc_dev_t, l2ad_node));
4626 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4627 	    offsetof(l2arc_data_free_t, l2df_list_node));
4628 }
4629 
4630 void
4631 l2arc_fini(void)
4632 {
4633 	/*
4634 	 * This is called from dmu_fini(), which is called from spa_fini();
4635 	 * Because of this, we can assume that all l2arc devices have
4636 	 * already been removed when the pools themselves were removed.
4637 	 */
4638 
4639 	l2arc_do_free_on_write();
4640 
4641 	mutex_destroy(&l2arc_feed_thr_lock);
4642 	cv_destroy(&l2arc_feed_thr_cv);
4643 	mutex_destroy(&l2arc_dev_mtx);
4644 	mutex_destroy(&l2arc_buflist_mtx);
4645 	mutex_destroy(&l2arc_free_on_write_mtx);
4646 
4647 	list_destroy(l2arc_dev_list);
4648 	list_destroy(l2arc_free_on_write);
4649 }
4650 
4651 void
4652 l2arc_start(void)
4653 {
4654 	if (!(spa_mode_global & FWRITE))
4655 		return;
4656 
4657 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4658 	    TS_RUN, minclsyspri);
4659 }
4660 
4661 void
4662 l2arc_stop(void)
4663 {
4664 	if (!(spa_mode_global & FWRITE))
4665 		return;
4666 
4667 	mutex_enter(&l2arc_feed_thr_lock);
4668 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
4669 	l2arc_thread_exit = 1;
4670 	while (l2arc_thread_exit != 0)
4671 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4672 	mutex_exit(&l2arc_feed_thr_lock);
4673 }
4674