xref: /illumos-gate/usr/src/uts/common/fs/zfs/arc.c (revision a6e6969cf9cfe2070eae4cd6071f76b0fa4f539f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * DVA-based Adjustable Replacement Cache
30  *
31  * While much of the theory of operation used here is
32  * based on the self-tuning, low overhead replacement cache
33  * presented by Megiddo and Modha at FAST 2003, there are some
34  * significant differences:
35  *
36  * 1. The Megiddo and Modha model assumes any page is evictable.
37  * Pages in its cache cannot be "locked" into memory.  This makes
38  * the eviction algorithm simple: evict the last page in the list.
39  * This also make the performance characteristics easy to reason
40  * about.  Our cache is not so simple.  At any given moment, some
41  * subset of the blocks in the cache are un-evictable because we
42  * have handed out a reference to them.  Blocks are only evictable
43  * when there are no external references active.  This makes
44  * eviction far more problematic:  we choose to evict the evictable
45  * blocks that are the "lowest" in the list.
46  *
47  * There are times when it is not possible to evict the requested
48  * space.  In these circumstances we are unable to adjust the cache
49  * size.  To prevent the cache growing unbounded at these times we
50  * implement a "cache throttle" that slows the flow of new data
51  * into the cache until we can make space available.
52  *
53  * 2. The Megiddo and Modha model assumes a fixed cache size.
54  * Pages are evicted when the cache is full and there is a cache
55  * miss.  Our model has a variable sized cache.  It grows with
56  * high use, but also tries to react to memory pressure from the
57  * operating system: decreasing its size when system memory is
58  * tight.
59  *
60  * 3. The Megiddo and Modha model assumes a fixed page size. All
61  * elements of the cache are therefor exactly the same size.  So
62  * when adjusting the cache size following a cache miss, its simply
63  * a matter of choosing a single page to evict.  In our model, we
64  * have variable sized cache blocks (rangeing from 512 bytes to
65  * 128K bytes).  We therefor choose a set of blocks to evict to make
66  * space for a cache miss that approximates as closely as possible
67  * the space used by the new block.
68  *
69  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70  * by N. Megiddo & D. Modha, FAST 2003
71  */
72 
73 /*
74  * The locking model:
75  *
76  * A new reference to a cache buffer can be obtained in two
77  * ways: 1) via a hash table lookup using the DVA as a key,
78  * or 2) via one of the ARC lists.  The arc_read() interface
79  * uses method 1, while the internal arc algorithms for
80  * adjusting the cache use method 2.  We therefor provide two
81  * types of locks: 1) the hash table lock array, and 2) the
82  * arc list locks.
83  *
84  * Buffers do not have their own mutexs, rather they rely on the
85  * hash table mutexs for the bulk of their protection (i.e. most
86  * fields in the arc_buf_hdr_t are protected by these mutexs).
87  *
88  * buf_hash_find() returns the appropriate mutex (held) when it
89  * locates the requested buffer in the hash table.  It returns
90  * NULL for the mutex if the buffer was not in the table.
91  *
92  * buf_hash_remove() expects the appropriate hash mutex to be
93  * already held before it is invoked.
94  *
95  * Each arc state also has a mutex which is used to protect the
96  * buffer list associated with the state.  When attempting to
97  * obtain a hash table lock while holding an arc list lock you
98  * must use: mutex_tryenter() to avoid deadlock.  Also note that
99  * the active state mutex must be held before the ghost state mutex.
100  *
101  * Arc buffers may have an associated eviction callback function.
102  * This function will be invoked prior to removing the buffer (e.g.
103  * in arc_do_user_evicts()).  Note however that the data associated
104  * with the buffer may be evicted prior to the callback.  The callback
105  * must be made with *no locks held* (to prevent deadlock).  Additionally,
106  * the users of callbacks must ensure that their private data is
107  * protected from simultaneous callbacks from arc_buf_evict()
108  * and arc_do_user_evicts().
109  *
110  * Note that the majority of the performance stats are manipulated
111  * with atomic operations.
112  *
113  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
114  *
115  *	- L2ARC buflist creation
116  *	- L2ARC buflist eviction
117  *	- L2ARC write completion, which walks L2ARC buflists
118  *	- ARC header destruction, as it removes from L2ARC buflists
119  *	- ARC header release, as it removes from L2ARC buflists
120  */
121 
122 #include <sys/spa.h>
123 #include <sys/zio.h>
124 #include <sys/zio_checksum.h>
125 #include <sys/zfs_context.h>
126 #include <sys/arc.h>
127 #include <sys/refcount.h>
128 #ifdef _KERNEL
129 #include <sys/vmsystm.h>
130 #include <vm/anon.h>
131 #include <sys/fs/swapnode.h>
132 #include <sys/dnlc.h>
133 #endif
134 #include <sys/callb.h>
135 #include <sys/kstat.h>
136 
137 static kmutex_t		arc_reclaim_thr_lock;
138 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
139 static uint8_t		arc_thread_exit;
140 
141 extern int zfs_write_limit_shift;
142 extern uint64_t zfs_write_limit_max;
143 extern uint64_t zfs_write_limit_inflated;
144 
145 #define	ARC_REDUCE_DNLC_PERCENT	3
146 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
147 
148 typedef enum arc_reclaim_strategy {
149 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
150 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
151 } arc_reclaim_strategy_t;
152 
153 /* number of seconds before growing cache again */
154 static int		arc_grow_retry = 60;
155 
156 /*
157  * minimum lifespan of a prefetch block in clock ticks
158  * (initialized in arc_init())
159  */
160 static int		arc_min_prefetch_lifespan;
161 
162 static int arc_dead;
163 
164 /*
165  * These tunables are for performance analysis.
166  */
167 uint64_t zfs_arc_max;
168 uint64_t zfs_arc_min;
169 uint64_t zfs_arc_meta_limit = 0;
170 
171 /*
172  * Note that buffers can be in one of 6 states:
173  *	ARC_anon	- anonymous (discussed below)
174  *	ARC_mru		- recently used, currently cached
175  *	ARC_mru_ghost	- recentely used, no longer in cache
176  *	ARC_mfu		- frequently used, currently cached
177  *	ARC_mfu_ghost	- frequently used, no longer in cache
178  *	ARC_l2c_only	- exists in L2ARC but not other states
179  * When there are no active references to the buffer, they are
180  * are linked onto a list in one of these arc states.  These are
181  * the only buffers that can be evicted or deleted.  Within each
182  * state there are multiple lists, one for meta-data and one for
183  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
184  * etc.) is tracked separately so that it can be managed more
185  * explicitly: favored over data, limited explicitly.
186  *
187  * Anonymous buffers are buffers that are not associated with
188  * a DVA.  These are buffers that hold dirty block copies
189  * before they are written to stable storage.  By definition,
190  * they are "ref'd" and are considered part of arc_mru
191  * that cannot be freed.  Generally, they will aquire a DVA
192  * as they are written and migrate onto the arc_mru list.
193  *
194  * The ARC_l2c_only state is for buffers that are in the second
195  * level ARC but no longer in any of the ARC_m* lists.  The second
196  * level ARC itself may also contain buffers that are in any of
197  * the ARC_m* states - meaning that a buffer can exist in two
198  * places.  The reason for the ARC_l2c_only state is to keep the
199  * buffer header in the hash table, so that reads that hit the
200  * second level ARC benefit from these fast lookups.
201  */
202 
203 typedef struct arc_state {
204 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
205 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
206 	uint64_t arcs_size;	/* total amount of data in this state */
207 	kmutex_t arcs_mtx;
208 } arc_state_t;
209 
210 /* The 6 states: */
211 static arc_state_t ARC_anon;
212 static arc_state_t ARC_mru;
213 static arc_state_t ARC_mru_ghost;
214 static arc_state_t ARC_mfu;
215 static arc_state_t ARC_mfu_ghost;
216 static arc_state_t ARC_l2c_only;
217 
218 typedef struct arc_stats {
219 	kstat_named_t arcstat_hits;
220 	kstat_named_t arcstat_misses;
221 	kstat_named_t arcstat_demand_data_hits;
222 	kstat_named_t arcstat_demand_data_misses;
223 	kstat_named_t arcstat_demand_metadata_hits;
224 	kstat_named_t arcstat_demand_metadata_misses;
225 	kstat_named_t arcstat_prefetch_data_hits;
226 	kstat_named_t arcstat_prefetch_data_misses;
227 	kstat_named_t arcstat_prefetch_metadata_hits;
228 	kstat_named_t arcstat_prefetch_metadata_misses;
229 	kstat_named_t arcstat_mru_hits;
230 	kstat_named_t arcstat_mru_ghost_hits;
231 	kstat_named_t arcstat_mfu_hits;
232 	kstat_named_t arcstat_mfu_ghost_hits;
233 	kstat_named_t arcstat_deleted;
234 	kstat_named_t arcstat_recycle_miss;
235 	kstat_named_t arcstat_mutex_miss;
236 	kstat_named_t arcstat_evict_skip;
237 	kstat_named_t arcstat_hash_elements;
238 	kstat_named_t arcstat_hash_elements_max;
239 	kstat_named_t arcstat_hash_collisions;
240 	kstat_named_t arcstat_hash_chains;
241 	kstat_named_t arcstat_hash_chain_max;
242 	kstat_named_t arcstat_p;
243 	kstat_named_t arcstat_c;
244 	kstat_named_t arcstat_c_min;
245 	kstat_named_t arcstat_c_max;
246 	kstat_named_t arcstat_size;
247 	kstat_named_t arcstat_hdr_size;
248 	kstat_named_t arcstat_l2_hits;
249 	kstat_named_t arcstat_l2_misses;
250 	kstat_named_t arcstat_l2_feeds;
251 	kstat_named_t arcstat_l2_rw_clash;
252 	kstat_named_t arcstat_l2_writes_sent;
253 	kstat_named_t arcstat_l2_writes_done;
254 	kstat_named_t arcstat_l2_writes_error;
255 	kstat_named_t arcstat_l2_writes_hdr_miss;
256 	kstat_named_t arcstat_l2_evict_lock_retry;
257 	kstat_named_t arcstat_l2_evict_reading;
258 	kstat_named_t arcstat_l2_free_on_write;
259 	kstat_named_t arcstat_l2_abort_lowmem;
260 	kstat_named_t arcstat_l2_cksum_bad;
261 	kstat_named_t arcstat_l2_io_error;
262 	kstat_named_t arcstat_l2_size;
263 	kstat_named_t arcstat_l2_hdr_size;
264 	kstat_named_t arcstat_memory_throttle_count;
265 } arc_stats_t;
266 
267 static arc_stats_t arc_stats = {
268 	{ "hits",			KSTAT_DATA_UINT64 },
269 	{ "misses",			KSTAT_DATA_UINT64 },
270 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
271 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
272 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
273 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
274 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
275 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
276 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
277 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
278 	{ "mru_hits",			KSTAT_DATA_UINT64 },
279 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
280 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
281 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
282 	{ "deleted",			KSTAT_DATA_UINT64 },
283 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
284 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
285 	{ "evict_skip",			KSTAT_DATA_UINT64 },
286 	{ "hash_elements",		KSTAT_DATA_UINT64 },
287 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
288 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
289 	{ "hash_chains",		KSTAT_DATA_UINT64 },
290 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
291 	{ "p",				KSTAT_DATA_UINT64 },
292 	{ "c",				KSTAT_DATA_UINT64 },
293 	{ "c_min",			KSTAT_DATA_UINT64 },
294 	{ "c_max",			KSTAT_DATA_UINT64 },
295 	{ "size",			KSTAT_DATA_UINT64 },
296 	{ "hdr_size",			KSTAT_DATA_UINT64 },
297 	{ "l2_hits",			KSTAT_DATA_UINT64 },
298 	{ "l2_misses",			KSTAT_DATA_UINT64 },
299 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
300 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
301 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
302 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
303 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
304 	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
305 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
306 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
307 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
308 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
309 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
310 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
311 	{ "l2_size",			KSTAT_DATA_UINT64 },
312 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
313 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 }
314 };
315 
316 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
317 
318 #define	ARCSTAT_INCR(stat, val) \
319 	atomic_add_64(&arc_stats.stat.value.ui64, (val));
320 
321 #define	ARCSTAT_BUMP(stat) 	ARCSTAT_INCR(stat, 1)
322 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
323 
324 #define	ARCSTAT_MAX(stat, val) {					\
325 	uint64_t m;							\
326 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
327 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
328 		continue;						\
329 }
330 
331 #define	ARCSTAT_MAXSTAT(stat) \
332 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
333 
334 /*
335  * We define a macro to allow ARC hits/misses to be easily broken down by
336  * two separate conditions, giving a total of four different subtypes for
337  * each of hits and misses (so eight statistics total).
338  */
339 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
340 	if (cond1) {							\
341 		if (cond2) {						\
342 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
343 		} else {						\
344 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
345 		}							\
346 	} else {							\
347 		if (cond2) {						\
348 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
349 		} else {						\
350 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
351 		}							\
352 	}
353 
354 kstat_t			*arc_ksp;
355 static arc_state_t 	*arc_anon;
356 static arc_state_t	*arc_mru;
357 static arc_state_t	*arc_mru_ghost;
358 static arc_state_t	*arc_mfu;
359 static arc_state_t	*arc_mfu_ghost;
360 static arc_state_t	*arc_l2c_only;
361 
362 /*
363  * There are several ARC variables that are critical to export as kstats --
364  * but we don't want to have to grovel around in the kstat whenever we wish to
365  * manipulate them.  For these variables, we therefore define them to be in
366  * terms of the statistic variable.  This assures that we are not introducing
367  * the possibility of inconsistency by having shadow copies of the variables,
368  * while still allowing the code to be readable.
369  */
370 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
371 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
372 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
373 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
374 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
375 
376 static int		arc_no_grow;	/* Don't try to grow cache size */
377 static uint64_t		arc_tempreserve;
378 static uint64_t		arc_meta_used;
379 static uint64_t		arc_meta_limit;
380 static uint64_t		arc_meta_max = 0;
381 
382 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
383 
384 typedef struct arc_callback arc_callback_t;
385 
386 struct arc_callback {
387 	void			*acb_private;
388 	arc_done_func_t		*acb_done;
389 	arc_byteswap_func_t	*acb_byteswap;
390 	arc_buf_t		*acb_buf;
391 	zio_t			*acb_zio_dummy;
392 	arc_callback_t		*acb_next;
393 };
394 
395 typedef struct arc_write_callback arc_write_callback_t;
396 
397 struct arc_write_callback {
398 	void		*awcb_private;
399 	arc_done_func_t	*awcb_ready;
400 	arc_done_func_t	*awcb_done;
401 	arc_buf_t	*awcb_buf;
402 };
403 
404 struct arc_buf_hdr {
405 	/* protected by hash lock */
406 	dva_t			b_dva;
407 	uint64_t		b_birth;
408 	uint64_t		b_cksum0;
409 
410 	kmutex_t		b_freeze_lock;
411 	zio_cksum_t		*b_freeze_cksum;
412 
413 	arc_buf_hdr_t		*b_hash_next;
414 	arc_buf_t		*b_buf;
415 	uint32_t		b_flags;
416 	uint32_t		b_datacnt;
417 
418 	arc_callback_t		*b_acb;
419 	kcondvar_t		b_cv;
420 
421 	/* immutable */
422 	arc_buf_contents_t	b_type;
423 	uint64_t		b_size;
424 	spa_t			*b_spa;
425 
426 	/* protected by arc state mutex */
427 	arc_state_t		*b_state;
428 	list_node_t		b_arc_node;
429 
430 	/* updated atomically */
431 	clock_t			b_arc_access;
432 
433 	/* self protecting */
434 	refcount_t		b_refcnt;
435 
436 	l2arc_buf_hdr_t		*b_l2hdr;
437 	list_node_t		b_l2node;
438 };
439 
440 static arc_buf_t *arc_eviction_list;
441 static kmutex_t arc_eviction_mtx;
442 static arc_buf_hdr_t arc_eviction_hdr;
443 static void arc_get_data_buf(arc_buf_t *buf);
444 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
445 static int arc_evict_needed(arc_buf_contents_t type);
446 static void arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes);
447 
448 #define	GHOST_STATE(state)	\
449 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
450 	(state) == arc_l2c_only)
451 
452 /*
453  * Private ARC flags.  These flags are private ARC only flags that will show up
454  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
455  * be passed in as arc_flags in things like arc_read.  However, these flags
456  * should never be passed and should only be set by ARC code.  When adding new
457  * public flags, make sure not to smash the private ones.
458  */
459 
460 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
461 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
462 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
463 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
464 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
465 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
466 #define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
467 #define	ARC_DONT_L2CACHE	(1 << 16)	/* originated by prefetch */
468 #define	ARC_L2_READING		(1 << 17)	/* L2ARC read in progress */
469 #define	ARC_L2_WRITING		(1 << 18)	/* L2ARC write in progress */
470 #define	ARC_L2_EVICTED		(1 << 19)	/* evicted during I/O */
471 #define	ARC_L2_WRITE_HEAD	(1 << 20)	/* head of write list */
472 
473 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
474 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
475 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
476 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
477 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
478 #define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
479 #define	HDR_DONT_L2CACHE(hdr)	((hdr)->b_flags & ARC_DONT_L2CACHE)
480 #define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_L2_READING)
481 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
482 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
483 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
484 
485 /*
486  * Other sizes
487  */
488 
489 #define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
490 #define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
491 
492 /*
493  * Hash table routines
494  */
495 
496 #define	HT_LOCK_PAD	64
497 
498 struct ht_lock {
499 	kmutex_t	ht_lock;
500 #ifdef _KERNEL
501 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
502 #endif
503 };
504 
505 #define	BUF_LOCKS 256
506 typedef struct buf_hash_table {
507 	uint64_t ht_mask;
508 	arc_buf_hdr_t **ht_table;
509 	struct ht_lock ht_locks[BUF_LOCKS];
510 } buf_hash_table_t;
511 
512 static buf_hash_table_t buf_hash_table;
513 
514 #define	BUF_HASH_INDEX(spa, dva, birth) \
515 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
516 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
517 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
518 #define	HDR_LOCK(buf) \
519 	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
520 
521 uint64_t zfs_crc64_table[256];
522 
523 /*
524  * Level 2 ARC
525  */
526 
527 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
528 #define	L2ARC_HEADROOM		4		/* num of writes */
529 #define	L2ARC_FEED_DELAY	180		/* starting grace */
530 #define	L2ARC_FEED_SECS		1		/* caching interval */
531 
532 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
533 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
534 
535 /*
536  * L2ARC Performance Tunables
537  */
538 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
539 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
540 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
541 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
542 
543 /*
544  * L2ARC Internals
545  */
546 typedef struct l2arc_dev {
547 	vdev_t			*l2ad_vdev;	/* vdev */
548 	spa_t			*l2ad_spa;	/* spa */
549 	uint64_t		l2ad_hand;	/* next write location */
550 	uint64_t		l2ad_write;	/* desired write size, bytes */
551 	uint64_t		l2ad_start;	/* first addr on device */
552 	uint64_t		l2ad_end;	/* last addr on device */
553 	uint64_t		l2ad_evict;	/* last addr eviction reached */
554 	boolean_t		l2ad_first;	/* first sweep through */
555 	list_t			*l2ad_buflist;	/* buffer list */
556 	list_node_t		l2ad_node;	/* device list node */
557 } l2arc_dev_t;
558 
559 static list_t L2ARC_dev_list;			/* device list */
560 static list_t *l2arc_dev_list;			/* device list pointer */
561 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
562 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
563 static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
564 static list_t L2ARC_free_on_write;		/* free after write buf list */
565 static list_t *l2arc_free_on_write;		/* free after write list ptr */
566 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
567 static uint64_t l2arc_ndev;			/* number of devices */
568 
569 typedef struct l2arc_read_callback {
570 	arc_buf_t	*l2rcb_buf;		/* read buffer */
571 	spa_t		*l2rcb_spa;		/* spa */
572 	blkptr_t	l2rcb_bp;		/* original blkptr */
573 	zbookmark_t	l2rcb_zb;		/* original bookmark */
574 	int		l2rcb_flags;		/* original flags */
575 } l2arc_read_callback_t;
576 
577 typedef struct l2arc_write_callback {
578 	l2arc_dev_t	*l2wcb_dev;		/* device info */
579 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
580 } l2arc_write_callback_t;
581 
582 struct l2arc_buf_hdr {
583 	/* protected by arc_buf_hdr  mutex */
584 	l2arc_dev_t	*b_dev;			/* L2ARC device */
585 	daddr_t		b_daddr;		/* disk address, offset byte */
586 };
587 
588 typedef struct l2arc_data_free {
589 	/* protected by l2arc_free_on_write_mtx */
590 	void		*l2df_data;
591 	size_t		l2df_size;
592 	void		(*l2df_func)(void *, size_t);
593 	list_node_t	l2df_list_node;
594 } l2arc_data_free_t;
595 
596 static kmutex_t l2arc_feed_thr_lock;
597 static kcondvar_t l2arc_feed_thr_cv;
598 static uint8_t l2arc_thread_exit;
599 
600 static void l2arc_read_done(zio_t *zio);
601 static void l2arc_hdr_stat_add(void);
602 static void l2arc_hdr_stat_remove(void);
603 
604 static uint64_t
605 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth)
606 {
607 	uintptr_t spav = (uintptr_t)spa;
608 	uint8_t *vdva = (uint8_t *)dva;
609 	uint64_t crc = -1ULL;
610 	int i;
611 
612 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
613 
614 	for (i = 0; i < sizeof (dva_t); i++)
615 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
616 
617 	crc ^= (spav>>8) ^ birth;
618 
619 	return (crc);
620 }
621 
622 #define	BUF_EMPTY(buf)						\
623 	((buf)->b_dva.dva_word[0] == 0 &&			\
624 	(buf)->b_dva.dva_word[1] == 0 &&			\
625 	(buf)->b_birth == 0)
626 
627 #define	BUF_EQUAL(spa, dva, birth, buf)				\
628 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
629 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
630 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
631 
632 static arc_buf_hdr_t *
633 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp)
634 {
635 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
636 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
637 	arc_buf_hdr_t *buf;
638 
639 	mutex_enter(hash_lock);
640 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
641 	    buf = buf->b_hash_next) {
642 		if (BUF_EQUAL(spa, dva, birth, buf)) {
643 			*lockp = hash_lock;
644 			return (buf);
645 		}
646 	}
647 	mutex_exit(hash_lock);
648 	*lockp = NULL;
649 	return (NULL);
650 }
651 
652 /*
653  * Insert an entry into the hash table.  If there is already an element
654  * equal to elem in the hash table, then the already existing element
655  * will be returned and the new element will not be inserted.
656  * Otherwise returns NULL.
657  */
658 static arc_buf_hdr_t *
659 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
660 {
661 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
662 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
663 	arc_buf_hdr_t *fbuf;
664 	uint32_t i;
665 
666 	ASSERT(!HDR_IN_HASH_TABLE(buf));
667 	*lockp = hash_lock;
668 	mutex_enter(hash_lock);
669 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
670 	    fbuf = fbuf->b_hash_next, i++) {
671 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
672 			return (fbuf);
673 	}
674 
675 	buf->b_hash_next = buf_hash_table.ht_table[idx];
676 	buf_hash_table.ht_table[idx] = buf;
677 	buf->b_flags |= ARC_IN_HASH_TABLE;
678 
679 	/* collect some hash table performance data */
680 	if (i > 0) {
681 		ARCSTAT_BUMP(arcstat_hash_collisions);
682 		if (i == 1)
683 			ARCSTAT_BUMP(arcstat_hash_chains);
684 
685 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
686 	}
687 
688 	ARCSTAT_BUMP(arcstat_hash_elements);
689 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
690 
691 	return (NULL);
692 }
693 
694 static void
695 buf_hash_remove(arc_buf_hdr_t *buf)
696 {
697 	arc_buf_hdr_t *fbuf, **bufp;
698 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
699 
700 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
701 	ASSERT(HDR_IN_HASH_TABLE(buf));
702 
703 	bufp = &buf_hash_table.ht_table[idx];
704 	while ((fbuf = *bufp) != buf) {
705 		ASSERT(fbuf != NULL);
706 		bufp = &fbuf->b_hash_next;
707 	}
708 	*bufp = buf->b_hash_next;
709 	buf->b_hash_next = NULL;
710 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
711 
712 	/* collect some hash table performance data */
713 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
714 
715 	if (buf_hash_table.ht_table[idx] &&
716 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
717 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
718 }
719 
720 /*
721  * Global data structures and functions for the buf kmem cache.
722  */
723 static kmem_cache_t *hdr_cache;
724 static kmem_cache_t *buf_cache;
725 
726 static void
727 buf_fini(void)
728 {
729 	int i;
730 
731 	kmem_free(buf_hash_table.ht_table,
732 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
733 	for (i = 0; i < BUF_LOCKS; i++)
734 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
735 	kmem_cache_destroy(hdr_cache);
736 	kmem_cache_destroy(buf_cache);
737 }
738 
739 /*
740  * Constructor callback - called when the cache is empty
741  * and a new buf is requested.
742  */
743 /* ARGSUSED */
744 static int
745 hdr_cons(void *vbuf, void *unused, int kmflag)
746 {
747 	arc_buf_hdr_t *buf = vbuf;
748 
749 	bzero(buf, sizeof (arc_buf_hdr_t));
750 	refcount_create(&buf->b_refcnt);
751 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
752 	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
753 
754 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
755 	return (0);
756 }
757 
758 /*
759  * Destructor callback - called when a cached buf is
760  * no longer required.
761  */
762 /* ARGSUSED */
763 static void
764 hdr_dest(void *vbuf, void *unused)
765 {
766 	arc_buf_hdr_t *buf = vbuf;
767 
768 	refcount_destroy(&buf->b_refcnt);
769 	cv_destroy(&buf->b_cv);
770 	mutex_destroy(&buf->b_freeze_lock);
771 
772 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
773 }
774 
775 /*
776  * Reclaim callback -- invoked when memory is low.
777  */
778 /* ARGSUSED */
779 static void
780 hdr_recl(void *unused)
781 {
782 	dprintf("hdr_recl called\n");
783 	/*
784 	 * umem calls the reclaim func when we destroy the buf cache,
785 	 * which is after we do arc_fini().
786 	 */
787 	if (!arc_dead)
788 		cv_signal(&arc_reclaim_thr_cv);
789 }
790 
791 static void
792 buf_init(void)
793 {
794 	uint64_t *ct;
795 	uint64_t hsize = 1ULL << 12;
796 	int i, j;
797 
798 	/*
799 	 * The hash table is big enough to fill all of physical memory
800 	 * with an average 64K block size.  The table will take up
801 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
802 	 */
803 	while (hsize * 65536 < physmem * PAGESIZE)
804 		hsize <<= 1;
805 retry:
806 	buf_hash_table.ht_mask = hsize - 1;
807 	buf_hash_table.ht_table =
808 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
809 	if (buf_hash_table.ht_table == NULL) {
810 		ASSERT(hsize > (1ULL << 8));
811 		hsize >>= 1;
812 		goto retry;
813 	}
814 
815 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
816 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
817 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
818 	    0, NULL, NULL, NULL, NULL, NULL, 0);
819 
820 	for (i = 0; i < 256; i++)
821 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
822 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
823 
824 	for (i = 0; i < BUF_LOCKS; i++) {
825 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
826 		    NULL, MUTEX_DEFAULT, NULL);
827 	}
828 }
829 
830 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
831 
832 static void
833 arc_cksum_verify(arc_buf_t *buf)
834 {
835 	zio_cksum_t zc;
836 
837 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
838 		return;
839 
840 	mutex_enter(&buf->b_hdr->b_freeze_lock);
841 	if (buf->b_hdr->b_freeze_cksum == NULL ||
842 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
843 		mutex_exit(&buf->b_hdr->b_freeze_lock);
844 		return;
845 	}
846 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
847 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
848 		panic("buffer modified while frozen!");
849 	mutex_exit(&buf->b_hdr->b_freeze_lock);
850 }
851 
852 static int
853 arc_cksum_equal(arc_buf_t *buf)
854 {
855 	zio_cksum_t zc;
856 	int equal;
857 
858 	mutex_enter(&buf->b_hdr->b_freeze_lock);
859 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
860 	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
861 	mutex_exit(&buf->b_hdr->b_freeze_lock);
862 
863 	return (equal);
864 }
865 
866 static void
867 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
868 {
869 	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
870 		return;
871 
872 	mutex_enter(&buf->b_hdr->b_freeze_lock);
873 	if (buf->b_hdr->b_freeze_cksum != NULL) {
874 		mutex_exit(&buf->b_hdr->b_freeze_lock);
875 		return;
876 	}
877 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
878 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
879 	    buf->b_hdr->b_freeze_cksum);
880 	mutex_exit(&buf->b_hdr->b_freeze_lock);
881 }
882 
883 void
884 arc_buf_thaw(arc_buf_t *buf)
885 {
886 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
887 		if (buf->b_hdr->b_state != arc_anon)
888 			panic("modifying non-anon buffer!");
889 		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
890 			panic("modifying buffer while i/o in progress!");
891 		arc_cksum_verify(buf);
892 	}
893 
894 	mutex_enter(&buf->b_hdr->b_freeze_lock);
895 	if (buf->b_hdr->b_freeze_cksum != NULL) {
896 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
897 		buf->b_hdr->b_freeze_cksum = NULL;
898 	}
899 	mutex_exit(&buf->b_hdr->b_freeze_lock);
900 }
901 
902 void
903 arc_buf_freeze(arc_buf_t *buf)
904 {
905 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
906 		return;
907 
908 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
909 	    buf->b_hdr->b_state == arc_anon);
910 	arc_cksum_compute(buf, B_FALSE);
911 }
912 
913 static void
914 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
915 {
916 	ASSERT(MUTEX_HELD(hash_lock));
917 
918 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
919 	    (ab->b_state != arc_anon)) {
920 		uint64_t delta = ab->b_size * ab->b_datacnt;
921 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
922 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
923 
924 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
925 		mutex_enter(&ab->b_state->arcs_mtx);
926 		ASSERT(list_link_active(&ab->b_arc_node));
927 		list_remove(list, ab);
928 		if (GHOST_STATE(ab->b_state)) {
929 			ASSERT3U(ab->b_datacnt, ==, 0);
930 			ASSERT3P(ab->b_buf, ==, NULL);
931 			delta = ab->b_size;
932 		}
933 		ASSERT(delta > 0);
934 		ASSERT3U(*size, >=, delta);
935 		atomic_add_64(size, -delta);
936 		mutex_exit(&ab->b_state->arcs_mtx);
937 		/* remove the prefetch flag is we get a reference */
938 		if (ab->b_flags & ARC_PREFETCH)
939 			ab->b_flags &= ~ARC_PREFETCH;
940 	}
941 }
942 
943 static int
944 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
945 {
946 	int cnt;
947 	arc_state_t *state = ab->b_state;
948 
949 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
950 	ASSERT(!GHOST_STATE(state));
951 
952 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
953 	    (state != arc_anon)) {
954 		uint64_t *size = &state->arcs_lsize[ab->b_type];
955 
956 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
957 		mutex_enter(&state->arcs_mtx);
958 		ASSERT(!list_link_active(&ab->b_arc_node));
959 		list_insert_head(&state->arcs_list[ab->b_type], ab);
960 		ASSERT(ab->b_datacnt > 0);
961 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
962 		mutex_exit(&state->arcs_mtx);
963 	}
964 	return (cnt);
965 }
966 
967 /*
968  * Move the supplied buffer to the indicated state.  The mutex
969  * for the buffer must be held by the caller.
970  */
971 static void
972 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
973 {
974 	arc_state_t *old_state = ab->b_state;
975 	int64_t refcnt = refcount_count(&ab->b_refcnt);
976 	uint64_t from_delta, to_delta;
977 
978 	ASSERT(MUTEX_HELD(hash_lock));
979 	ASSERT(new_state != old_state);
980 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
981 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
982 
983 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
984 
985 	/*
986 	 * If this buffer is evictable, transfer it from the
987 	 * old state list to the new state list.
988 	 */
989 	if (refcnt == 0) {
990 		if (old_state != arc_anon) {
991 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
992 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
993 
994 			if (use_mutex)
995 				mutex_enter(&old_state->arcs_mtx);
996 
997 			ASSERT(list_link_active(&ab->b_arc_node));
998 			list_remove(&old_state->arcs_list[ab->b_type], ab);
999 
1000 			/*
1001 			 * If prefetching out of the ghost cache,
1002 			 * we will have a non-null datacnt.
1003 			 */
1004 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1005 				/* ghost elements have a ghost size */
1006 				ASSERT(ab->b_buf == NULL);
1007 				from_delta = ab->b_size;
1008 			}
1009 			ASSERT3U(*size, >=, from_delta);
1010 			atomic_add_64(size, -from_delta);
1011 
1012 			if (use_mutex)
1013 				mutex_exit(&old_state->arcs_mtx);
1014 		}
1015 		if (new_state != arc_anon) {
1016 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1017 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1018 
1019 			if (use_mutex)
1020 				mutex_enter(&new_state->arcs_mtx);
1021 
1022 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1023 
1024 			/* ghost elements have a ghost size */
1025 			if (GHOST_STATE(new_state)) {
1026 				ASSERT(ab->b_datacnt == 0);
1027 				ASSERT(ab->b_buf == NULL);
1028 				to_delta = ab->b_size;
1029 			}
1030 			atomic_add_64(size, to_delta);
1031 
1032 			if (use_mutex)
1033 				mutex_exit(&new_state->arcs_mtx);
1034 		}
1035 	}
1036 
1037 	ASSERT(!BUF_EMPTY(ab));
1038 	if (new_state == arc_anon) {
1039 		buf_hash_remove(ab);
1040 	}
1041 
1042 	/* adjust state sizes */
1043 	if (to_delta)
1044 		atomic_add_64(&new_state->arcs_size, to_delta);
1045 	if (from_delta) {
1046 		ASSERT3U(old_state->arcs_size, >=, from_delta);
1047 		atomic_add_64(&old_state->arcs_size, -from_delta);
1048 	}
1049 	ab->b_state = new_state;
1050 
1051 	/* adjust l2arc hdr stats */
1052 	if (new_state == arc_l2c_only)
1053 		l2arc_hdr_stat_add();
1054 	else if (old_state == arc_l2c_only)
1055 		l2arc_hdr_stat_remove();
1056 }
1057 
1058 void
1059 arc_space_consume(uint64_t space)
1060 {
1061 	atomic_add_64(&arc_meta_used, space);
1062 	atomic_add_64(&arc_size, space);
1063 }
1064 
1065 void
1066 arc_space_return(uint64_t space)
1067 {
1068 	ASSERT(arc_meta_used >= space);
1069 	if (arc_meta_max < arc_meta_used)
1070 		arc_meta_max = arc_meta_used;
1071 	atomic_add_64(&arc_meta_used, -space);
1072 	ASSERT(arc_size >= space);
1073 	atomic_add_64(&arc_size, -space);
1074 }
1075 
1076 void *
1077 arc_data_buf_alloc(uint64_t size)
1078 {
1079 	if (arc_evict_needed(ARC_BUFC_DATA))
1080 		cv_signal(&arc_reclaim_thr_cv);
1081 	atomic_add_64(&arc_size, size);
1082 	return (zio_data_buf_alloc(size));
1083 }
1084 
1085 void
1086 arc_data_buf_free(void *buf, uint64_t size)
1087 {
1088 	zio_data_buf_free(buf, size);
1089 	ASSERT(arc_size >= size);
1090 	atomic_add_64(&arc_size, -size);
1091 }
1092 
1093 arc_buf_t *
1094 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1095 {
1096 	arc_buf_hdr_t *hdr;
1097 	arc_buf_t *buf;
1098 
1099 	ASSERT3U(size, >, 0);
1100 	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1101 	ASSERT(BUF_EMPTY(hdr));
1102 	hdr->b_size = size;
1103 	hdr->b_type = type;
1104 	hdr->b_spa = spa;
1105 	hdr->b_state = arc_anon;
1106 	hdr->b_arc_access = 0;
1107 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1108 	buf->b_hdr = hdr;
1109 	buf->b_data = NULL;
1110 	buf->b_efunc = NULL;
1111 	buf->b_private = NULL;
1112 	buf->b_next = NULL;
1113 	hdr->b_buf = buf;
1114 	arc_get_data_buf(buf);
1115 	hdr->b_datacnt = 1;
1116 	hdr->b_flags = 0;
1117 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1118 	(void) refcount_add(&hdr->b_refcnt, tag);
1119 
1120 	return (buf);
1121 }
1122 
1123 static arc_buf_t *
1124 arc_buf_clone(arc_buf_t *from)
1125 {
1126 	arc_buf_t *buf;
1127 	arc_buf_hdr_t *hdr = from->b_hdr;
1128 	uint64_t size = hdr->b_size;
1129 
1130 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1131 	buf->b_hdr = hdr;
1132 	buf->b_data = NULL;
1133 	buf->b_efunc = NULL;
1134 	buf->b_private = NULL;
1135 	buf->b_next = hdr->b_buf;
1136 	hdr->b_buf = buf;
1137 	arc_get_data_buf(buf);
1138 	bcopy(from->b_data, buf->b_data, size);
1139 	hdr->b_datacnt += 1;
1140 	return (buf);
1141 }
1142 
1143 void
1144 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1145 {
1146 	arc_buf_hdr_t *hdr;
1147 	kmutex_t *hash_lock;
1148 
1149 	/*
1150 	 * Check to see if this buffer is currently being evicted via
1151 	 * arc_do_user_evicts().
1152 	 */
1153 	mutex_enter(&arc_eviction_mtx);
1154 	hdr = buf->b_hdr;
1155 	if (hdr == NULL) {
1156 		mutex_exit(&arc_eviction_mtx);
1157 		return;
1158 	}
1159 	hash_lock = HDR_LOCK(hdr);
1160 	mutex_exit(&arc_eviction_mtx);
1161 
1162 	mutex_enter(hash_lock);
1163 	if (buf->b_data == NULL) {
1164 		/*
1165 		 * This buffer is evicted.
1166 		 */
1167 		mutex_exit(hash_lock);
1168 		return;
1169 	}
1170 
1171 	ASSERT(buf->b_hdr == hdr);
1172 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1173 	add_reference(hdr, hash_lock, tag);
1174 	arc_access(hdr, hash_lock);
1175 	mutex_exit(hash_lock);
1176 	ARCSTAT_BUMP(arcstat_hits);
1177 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1178 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1179 	    data, metadata, hits);
1180 }
1181 
1182 /*
1183  * Free the arc data buffer.  If it is an l2arc write in progress,
1184  * the buffer is placed on l2arc_free_on_write to be freed later.
1185  */
1186 static void
1187 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1188     void *data, size_t size)
1189 {
1190 	if (HDR_L2_WRITING(hdr)) {
1191 		l2arc_data_free_t *df;
1192 		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1193 		df->l2df_data = data;
1194 		df->l2df_size = size;
1195 		df->l2df_func = free_func;
1196 		mutex_enter(&l2arc_free_on_write_mtx);
1197 		list_insert_head(l2arc_free_on_write, df);
1198 		mutex_exit(&l2arc_free_on_write_mtx);
1199 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1200 	} else {
1201 		free_func(data, size);
1202 	}
1203 }
1204 
1205 static void
1206 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1207 {
1208 	arc_buf_t **bufp;
1209 
1210 	/* free up data associated with the buf */
1211 	if (buf->b_data) {
1212 		arc_state_t *state = buf->b_hdr->b_state;
1213 		uint64_t size = buf->b_hdr->b_size;
1214 		arc_buf_contents_t type = buf->b_hdr->b_type;
1215 
1216 		arc_cksum_verify(buf);
1217 		if (!recycle) {
1218 			if (type == ARC_BUFC_METADATA) {
1219 				arc_buf_data_free(buf->b_hdr, zio_buf_free,
1220 				    buf->b_data, size);
1221 				arc_space_return(size);
1222 			} else {
1223 				ASSERT(type == ARC_BUFC_DATA);
1224 				arc_buf_data_free(buf->b_hdr,
1225 				    zio_data_buf_free, buf->b_data, size);
1226 				atomic_add_64(&arc_size, -size);
1227 			}
1228 		}
1229 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1230 			uint64_t *cnt = &state->arcs_lsize[type];
1231 
1232 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1233 			ASSERT(state != arc_anon);
1234 
1235 			ASSERT3U(*cnt, >=, size);
1236 			atomic_add_64(cnt, -size);
1237 		}
1238 		ASSERT3U(state->arcs_size, >=, size);
1239 		atomic_add_64(&state->arcs_size, -size);
1240 		buf->b_data = NULL;
1241 		ASSERT(buf->b_hdr->b_datacnt > 0);
1242 		buf->b_hdr->b_datacnt -= 1;
1243 	}
1244 
1245 	/* only remove the buf if requested */
1246 	if (!all)
1247 		return;
1248 
1249 	/* remove the buf from the hdr list */
1250 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1251 		continue;
1252 	*bufp = buf->b_next;
1253 
1254 	ASSERT(buf->b_efunc == NULL);
1255 
1256 	/* clean up the buf */
1257 	buf->b_hdr = NULL;
1258 	kmem_cache_free(buf_cache, buf);
1259 }
1260 
1261 static void
1262 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1263 {
1264 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1265 	ASSERT3P(hdr->b_state, ==, arc_anon);
1266 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1267 
1268 	if (hdr->b_l2hdr != NULL) {
1269 		if (!MUTEX_HELD(&l2arc_buflist_mtx)) {
1270 			/*
1271 			 * To prevent arc_free() and l2arc_evict() from
1272 			 * attempting to free the same buffer at the same time,
1273 			 * a FREE_IN_PROGRESS flag is given to arc_free() to
1274 			 * give it priority.  l2arc_evict() can't destroy this
1275 			 * header while we are waiting on l2arc_buflist_mtx.
1276 			 */
1277 			mutex_enter(&l2arc_buflist_mtx);
1278 			ASSERT(hdr->b_l2hdr != NULL);
1279 
1280 			list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr);
1281 			mutex_exit(&l2arc_buflist_mtx);
1282 		} else {
1283 			list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr);
1284 		}
1285 		ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1286 		kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t));
1287 		if (hdr->b_state == arc_l2c_only)
1288 			l2arc_hdr_stat_remove();
1289 		hdr->b_l2hdr = NULL;
1290 	}
1291 
1292 	if (!BUF_EMPTY(hdr)) {
1293 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1294 		bzero(&hdr->b_dva, sizeof (dva_t));
1295 		hdr->b_birth = 0;
1296 		hdr->b_cksum0 = 0;
1297 	}
1298 	while (hdr->b_buf) {
1299 		arc_buf_t *buf = hdr->b_buf;
1300 
1301 		if (buf->b_efunc) {
1302 			mutex_enter(&arc_eviction_mtx);
1303 			ASSERT(buf->b_hdr != NULL);
1304 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1305 			hdr->b_buf = buf->b_next;
1306 			buf->b_hdr = &arc_eviction_hdr;
1307 			buf->b_next = arc_eviction_list;
1308 			arc_eviction_list = buf;
1309 			mutex_exit(&arc_eviction_mtx);
1310 		} else {
1311 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1312 		}
1313 	}
1314 	if (hdr->b_freeze_cksum != NULL) {
1315 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1316 		hdr->b_freeze_cksum = NULL;
1317 	}
1318 
1319 	ASSERT(!list_link_active(&hdr->b_arc_node));
1320 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1321 	ASSERT3P(hdr->b_acb, ==, NULL);
1322 	kmem_cache_free(hdr_cache, hdr);
1323 }
1324 
1325 void
1326 arc_buf_free(arc_buf_t *buf, void *tag)
1327 {
1328 	arc_buf_hdr_t *hdr = buf->b_hdr;
1329 	int hashed = hdr->b_state != arc_anon;
1330 
1331 	ASSERT(buf->b_efunc == NULL);
1332 	ASSERT(buf->b_data != NULL);
1333 
1334 	if (hashed) {
1335 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1336 
1337 		mutex_enter(hash_lock);
1338 		(void) remove_reference(hdr, hash_lock, tag);
1339 		if (hdr->b_datacnt > 1)
1340 			arc_buf_destroy(buf, FALSE, TRUE);
1341 		else
1342 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1343 		mutex_exit(hash_lock);
1344 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1345 		int destroy_hdr;
1346 		/*
1347 		 * We are in the middle of an async write.  Don't destroy
1348 		 * this buffer unless the write completes before we finish
1349 		 * decrementing the reference count.
1350 		 */
1351 		mutex_enter(&arc_eviction_mtx);
1352 		(void) remove_reference(hdr, NULL, tag);
1353 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1354 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1355 		mutex_exit(&arc_eviction_mtx);
1356 		if (destroy_hdr)
1357 			arc_hdr_destroy(hdr);
1358 	} else {
1359 		if (remove_reference(hdr, NULL, tag) > 0) {
1360 			ASSERT(HDR_IO_ERROR(hdr));
1361 			arc_buf_destroy(buf, FALSE, TRUE);
1362 		} else {
1363 			arc_hdr_destroy(hdr);
1364 		}
1365 	}
1366 }
1367 
1368 int
1369 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1370 {
1371 	arc_buf_hdr_t *hdr = buf->b_hdr;
1372 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1373 	int no_callback = (buf->b_efunc == NULL);
1374 
1375 	if (hdr->b_state == arc_anon) {
1376 		arc_buf_free(buf, tag);
1377 		return (no_callback);
1378 	}
1379 
1380 	mutex_enter(hash_lock);
1381 	ASSERT(hdr->b_state != arc_anon);
1382 	ASSERT(buf->b_data != NULL);
1383 
1384 	(void) remove_reference(hdr, hash_lock, tag);
1385 	if (hdr->b_datacnt > 1) {
1386 		if (no_callback)
1387 			arc_buf_destroy(buf, FALSE, TRUE);
1388 	} else if (no_callback) {
1389 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1390 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1391 	}
1392 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1393 	    refcount_is_zero(&hdr->b_refcnt));
1394 	mutex_exit(hash_lock);
1395 	return (no_callback);
1396 }
1397 
1398 int
1399 arc_buf_size(arc_buf_t *buf)
1400 {
1401 	return (buf->b_hdr->b_size);
1402 }
1403 
1404 /*
1405  * Evict buffers from list until we've removed the specified number of
1406  * bytes.  Move the removed buffers to the appropriate evict state.
1407  * If the recycle flag is set, then attempt to "recycle" a buffer:
1408  * - look for a buffer to evict that is `bytes' long.
1409  * - return the data block from this buffer rather than freeing it.
1410  * This flag is used by callers that are trying to make space for a
1411  * new buffer in a full arc cache.
1412  *
1413  * This function makes a "best effort".  It skips over any buffers
1414  * it can't get a hash_lock on, and so may not catch all candidates.
1415  * It may also return without evicting as much space as requested.
1416  */
1417 static void *
1418 arc_evict(arc_state_t *state, spa_t *spa, int64_t bytes, boolean_t recycle,
1419     arc_buf_contents_t type)
1420 {
1421 	arc_state_t *evicted_state;
1422 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1423 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1424 	list_t *list = &state->arcs_list[type];
1425 	kmutex_t *hash_lock;
1426 	boolean_t have_lock;
1427 	void *stolen = NULL;
1428 
1429 	ASSERT(state == arc_mru || state == arc_mfu);
1430 
1431 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1432 
1433 	mutex_enter(&state->arcs_mtx);
1434 	mutex_enter(&evicted_state->arcs_mtx);
1435 
1436 	for (ab = list_tail(list); ab; ab = ab_prev) {
1437 		ab_prev = list_prev(list, ab);
1438 		/* prefetch buffers have a minimum lifespan */
1439 		if (HDR_IO_IN_PROGRESS(ab) ||
1440 		    (spa && ab->b_spa != spa) ||
1441 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1442 		    lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) {
1443 			skipped++;
1444 			continue;
1445 		}
1446 		/* "lookahead" for better eviction candidate */
1447 		if (recycle && ab->b_size != bytes &&
1448 		    ab_prev && ab_prev->b_size == bytes)
1449 			continue;
1450 		hash_lock = HDR_LOCK(ab);
1451 		have_lock = MUTEX_HELD(hash_lock);
1452 		if (have_lock || mutex_tryenter(hash_lock)) {
1453 			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1454 			ASSERT(ab->b_datacnt > 0);
1455 			while (ab->b_buf) {
1456 				arc_buf_t *buf = ab->b_buf;
1457 				if (buf->b_data) {
1458 					bytes_evicted += ab->b_size;
1459 					if (recycle && ab->b_type == type &&
1460 					    ab->b_size == bytes &&
1461 					    !HDR_L2_WRITING(ab)) {
1462 						stolen = buf->b_data;
1463 						recycle = FALSE;
1464 					}
1465 				}
1466 				if (buf->b_efunc) {
1467 					mutex_enter(&arc_eviction_mtx);
1468 					arc_buf_destroy(buf,
1469 					    buf->b_data == stolen, FALSE);
1470 					ab->b_buf = buf->b_next;
1471 					buf->b_hdr = &arc_eviction_hdr;
1472 					buf->b_next = arc_eviction_list;
1473 					arc_eviction_list = buf;
1474 					mutex_exit(&arc_eviction_mtx);
1475 				} else {
1476 					arc_buf_destroy(buf,
1477 					    buf->b_data == stolen, TRUE);
1478 				}
1479 			}
1480 			ASSERT(ab->b_datacnt == 0);
1481 			arc_change_state(evicted_state, ab, hash_lock);
1482 			ASSERT(HDR_IN_HASH_TABLE(ab));
1483 			ab->b_flags |= ARC_IN_HASH_TABLE;
1484 			ab->b_flags &= ~ARC_BUF_AVAILABLE;
1485 			DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1486 			if (!have_lock)
1487 				mutex_exit(hash_lock);
1488 			if (bytes >= 0 && bytes_evicted >= bytes)
1489 				break;
1490 		} else {
1491 			missed += 1;
1492 		}
1493 	}
1494 
1495 	mutex_exit(&evicted_state->arcs_mtx);
1496 	mutex_exit(&state->arcs_mtx);
1497 
1498 	if (bytes_evicted < bytes)
1499 		dprintf("only evicted %lld bytes from %x",
1500 		    (longlong_t)bytes_evicted, state);
1501 
1502 	if (skipped)
1503 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1504 
1505 	if (missed)
1506 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1507 
1508 	/*
1509 	 * We have just evicted some date into the ghost state, make
1510 	 * sure we also adjust the ghost state size if necessary.
1511 	 */
1512 	if (arc_no_grow &&
1513 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1514 		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1515 		    arc_mru_ghost->arcs_size - arc_c;
1516 
1517 		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1518 			int64_t todelete =
1519 			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1520 			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1521 		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1522 			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1523 			    arc_mru_ghost->arcs_size +
1524 			    arc_mfu_ghost->arcs_size - arc_c);
1525 			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1526 		}
1527 	}
1528 
1529 	return (stolen);
1530 }
1531 
1532 /*
1533  * Remove buffers from list until we've removed the specified number of
1534  * bytes.  Destroy the buffers that are removed.
1535  */
1536 static void
1537 arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes)
1538 {
1539 	arc_buf_hdr_t *ab, *ab_prev;
1540 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1541 	kmutex_t *hash_lock;
1542 	uint64_t bytes_deleted = 0;
1543 	uint64_t bufs_skipped = 0;
1544 
1545 	ASSERT(GHOST_STATE(state));
1546 top:
1547 	mutex_enter(&state->arcs_mtx);
1548 	for (ab = list_tail(list); ab; ab = ab_prev) {
1549 		ab_prev = list_prev(list, ab);
1550 		if (spa && ab->b_spa != spa)
1551 			continue;
1552 		hash_lock = HDR_LOCK(ab);
1553 		if (mutex_tryenter(hash_lock)) {
1554 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1555 			ASSERT(ab->b_buf == NULL);
1556 			ARCSTAT_BUMP(arcstat_deleted);
1557 			bytes_deleted += ab->b_size;
1558 
1559 			if (ab->b_l2hdr != NULL) {
1560 				/*
1561 				 * This buffer is cached on the 2nd Level ARC;
1562 				 * don't destroy the header.
1563 				 */
1564 				arc_change_state(arc_l2c_only, ab, hash_lock);
1565 				mutex_exit(hash_lock);
1566 			} else {
1567 				arc_change_state(arc_anon, ab, hash_lock);
1568 				mutex_exit(hash_lock);
1569 				arc_hdr_destroy(ab);
1570 			}
1571 
1572 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1573 			if (bytes >= 0 && bytes_deleted >= bytes)
1574 				break;
1575 		} else {
1576 			if (bytes < 0) {
1577 				mutex_exit(&state->arcs_mtx);
1578 				mutex_enter(hash_lock);
1579 				mutex_exit(hash_lock);
1580 				goto top;
1581 			}
1582 			bufs_skipped += 1;
1583 		}
1584 	}
1585 	mutex_exit(&state->arcs_mtx);
1586 
1587 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1588 	    (bytes < 0 || bytes_deleted < bytes)) {
1589 		list = &state->arcs_list[ARC_BUFC_METADATA];
1590 		goto top;
1591 	}
1592 
1593 	if (bufs_skipped) {
1594 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1595 		ASSERT(bytes >= 0);
1596 	}
1597 
1598 	if (bytes_deleted < bytes)
1599 		dprintf("only deleted %lld bytes from %p",
1600 		    (longlong_t)bytes_deleted, state);
1601 }
1602 
1603 static void
1604 arc_adjust(void)
1605 {
1606 	int64_t top_sz, mru_over, arc_over, todelete;
1607 
1608 	top_sz = arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used;
1609 
1610 	if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1611 		int64_t toevict =
1612 		    MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], top_sz - arc_p);
1613 		(void) arc_evict(arc_mru, NULL, toevict, FALSE, ARC_BUFC_DATA);
1614 		top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1615 	}
1616 
1617 	if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1618 		int64_t toevict =
1619 		    MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], top_sz - arc_p);
1620 		(void) arc_evict(arc_mru, NULL, toevict, FALSE,
1621 		    ARC_BUFC_METADATA);
1622 		top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1623 	}
1624 
1625 	mru_over = top_sz + arc_mru_ghost->arcs_size - arc_c;
1626 
1627 	if (mru_over > 0) {
1628 		if (arc_mru_ghost->arcs_size > 0) {
1629 			todelete = MIN(arc_mru_ghost->arcs_size, mru_over);
1630 			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1631 		}
1632 	}
1633 
1634 	if ((arc_over = arc_size - arc_c) > 0) {
1635 		int64_t tbl_over;
1636 
1637 		if (arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1638 			int64_t toevict =
1639 			    MIN(arc_mfu->arcs_lsize[ARC_BUFC_DATA], arc_over);
1640 			(void) arc_evict(arc_mfu, NULL, toevict, FALSE,
1641 			    ARC_BUFC_DATA);
1642 			arc_over = arc_size - arc_c;
1643 		}
1644 
1645 		if (arc_over > 0 &&
1646 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1647 			int64_t toevict =
1648 			    MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA],
1649 			    arc_over);
1650 			(void) arc_evict(arc_mfu, NULL, toevict, FALSE,
1651 			    ARC_BUFC_METADATA);
1652 		}
1653 
1654 		tbl_over = arc_size + arc_mru_ghost->arcs_size +
1655 		    arc_mfu_ghost->arcs_size - arc_c * 2;
1656 
1657 		if (tbl_over > 0 && arc_mfu_ghost->arcs_size > 0) {
1658 			todelete = MIN(arc_mfu_ghost->arcs_size, tbl_over);
1659 			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1660 		}
1661 	}
1662 }
1663 
1664 static void
1665 arc_do_user_evicts(void)
1666 {
1667 	mutex_enter(&arc_eviction_mtx);
1668 	while (arc_eviction_list != NULL) {
1669 		arc_buf_t *buf = arc_eviction_list;
1670 		arc_eviction_list = buf->b_next;
1671 		buf->b_hdr = NULL;
1672 		mutex_exit(&arc_eviction_mtx);
1673 
1674 		if (buf->b_efunc != NULL)
1675 			VERIFY(buf->b_efunc(buf) == 0);
1676 
1677 		buf->b_efunc = NULL;
1678 		buf->b_private = NULL;
1679 		kmem_cache_free(buf_cache, buf);
1680 		mutex_enter(&arc_eviction_mtx);
1681 	}
1682 	mutex_exit(&arc_eviction_mtx);
1683 }
1684 
1685 /*
1686  * Flush all *evictable* data from the cache for the given spa.
1687  * NOTE: this will not touch "active" (i.e. referenced) data.
1688  */
1689 void
1690 arc_flush(spa_t *spa)
1691 {
1692 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
1693 		(void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_DATA);
1694 		if (spa)
1695 			break;
1696 	}
1697 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
1698 		(void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_METADATA);
1699 		if (spa)
1700 			break;
1701 	}
1702 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
1703 		(void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_DATA);
1704 		if (spa)
1705 			break;
1706 	}
1707 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
1708 		(void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_METADATA);
1709 		if (spa)
1710 			break;
1711 	}
1712 
1713 	arc_evict_ghost(arc_mru_ghost, spa, -1);
1714 	arc_evict_ghost(arc_mfu_ghost, spa, -1);
1715 
1716 	mutex_enter(&arc_reclaim_thr_lock);
1717 	arc_do_user_evicts();
1718 	mutex_exit(&arc_reclaim_thr_lock);
1719 	ASSERT(spa || arc_eviction_list == NULL);
1720 }
1721 
1722 int arc_shrink_shift = 5;		/* log2(fraction of arc to reclaim) */
1723 
1724 void
1725 arc_shrink(void)
1726 {
1727 	if (arc_c > arc_c_min) {
1728 		uint64_t to_free;
1729 
1730 #ifdef _KERNEL
1731 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
1732 #else
1733 		to_free = arc_c >> arc_shrink_shift;
1734 #endif
1735 		if (arc_c > arc_c_min + to_free)
1736 			atomic_add_64(&arc_c, -to_free);
1737 		else
1738 			arc_c = arc_c_min;
1739 
1740 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1741 		if (arc_c > arc_size)
1742 			arc_c = MAX(arc_size, arc_c_min);
1743 		if (arc_p > arc_c)
1744 			arc_p = (arc_c >> 1);
1745 		ASSERT(arc_c >= arc_c_min);
1746 		ASSERT((int64_t)arc_p >= 0);
1747 	}
1748 
1749 	if (arc_size > arc_c)
1750 		arc_adjust();
1751 }
1752 
1753 static int
1754 arc_reclaim_needed(void)
1755 {
1756 	uint64_t extra;
1757 
1758 #ifdef _KERNEL
1759 
1760 	if (needfree)
1761 		return (1);
1762 
1763 	/*
1764 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1765 	 */
1766 	extra = desfree;
1767 
1768 	/*
1769 	 * check that we're out of range of the pageout scanner.  It starts to
1770 	 * schedule paging if freemem is less than lotsfree and needfree.
1771 	 * lotsfree is the high-water mark for pageout, and needfree is the
1772 	 * number of needed free pages.  We add extra pages here to make sure
1773 	 * the scanner doesn't start up while we're freeing memory.
1774 	 */
1775 	if (freemem < lotsfree + needfree + extra)
1776 		return (1);
1777 
1778 	/*
1779 	 * check to make sure that swapfs has enough space so that anon
1780 	 * reservations can still succeed. anon_resvmem() checks that the
1781 	 * availrmem is greater than swapfs_minfree, and the number of reserved
1782 	 * swap pages.  We also add a bit of extra here just to prevent
1783 	 * circumstances from getting really dire.
1784 	 */
1785 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
1786 		return (1);
1787 
1788 #if defined(__i386)
1789 	/*
1790 	 * If we're on an i386 platform, it's possible that we'll exhaust the
1791 	 * kernel heap space before we ever run out of available physical
1792 	 * memory.  Most checks of the size of the heap_area compare against
1793 	 * tune.t_minarmem, which is the minimum available real memory that we
1794 	 * can have in the system.  However, this is generally fixed at 25 pages
1795 	 * which is so low that it's useless.  In this comparison, we seek to
1796 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
1797 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
1798 	 * free)
1799 	 */
1800 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
1801 	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
1802 		return (1);
1803 #endif
1804 
1805 #else
1806 	if (spa_get_random(100) == 0)
1807 		return (1);
1808 #endif
1809 	return (0);
1810 }
1811 
1812 static void
1813 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
1814 {
1815 	size_t			i;
1816 	kmem_cache_t		*prev_cache = NULL;
1817 	kmem_cache_t		*prev_data_cache = NULL;
1818 	extern kmem_cache_t	*zio_buf_cache[];
1819 	extern kmem_cache_t	*zio_data_buf_cache[];
1820 
1821 #ifdef _KERNEL
1822 	if (arc_meta_used >= arc_meta_limit) {
1823 		/*
1824 		 * We are exceeding our meta-data cache limit.
1825 		 * Purge some DNLC entries to release holds on meta-data.
1826 		 */
1827 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
1828 	}
1829 #if defined(__i386)
1830 	/*
1831 	 * Reclaim unused memory from all kmem caches.
1832 	 */
1833 	kmem_reap();
1834 #endif
1835 #endif
1836 
1837 	/*
1838 	 * An aggressive reclamation will shrink the cache size as well as
1839 	 * reap free buffers from the arc kmem caches.
1840 	 */
1841 	if (strat == ARC_RECLAIM_AGGR)
1842 		arc_shrink();
1843 
1844 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
1845 		if (zio_buf_cache[i] != prev_cache) {
1846 			prev_cache = zio_buf_cache[i];
1847 			kmem_cache_reap_now(zio_buf_cache[i]);
1848 		}
1849 		if (zio_data_buf_cache[i] != prev_data_cache) {
1850 			prev_data_cache = zio_data_buf_cache[i];
1851 			kmem_cache_reap_now(zio_data_buf_cache[i]);
1852 		}
1853 	}
1854 	kmem_cache_reap_now(buf_cache);
1855 	kmem_cache_reap_now(hdr_cache);
1856 }
1857 
1858 static void
1859 arc_reclaim_thread(void)
1860 {
1861 	clock_t			growtime = 0;
1862 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
1863 	callb_cpr_t		cpr;
1864 
1865 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
1866 
1867 	mutex_enter(&arc_reclaim_thr_lock);
1868 	while (arc_thread_exit == 0) {
1869 		if (arc_reclaim_needed()) {
1870 
1871 			if (arc_no_grow) {
1872 				if (last_reclaim == ARC_RECLAIM_CONS) {
1873 					last_reclaim = ARC_RECLAIM_AGGR;
1874 				} else {
1875 					last_reclaim = ARC_RECLAIM_CONS;
1876 				}
1877 			} else {
1878 				arc_no_grow = TRUE;
1879 				last_reclaim = ARC_RECLAIM_AGGR;
1880 				membar_producer();
1881 			}
1882 
1883 			/* reset the growth delay for every reclaim */
1884 			growtime = lbolt + (arc_grow_retry * hz);
1885 
1886 			arc_kmem_reap_now(last_reclaim);
1887 
1888 		} else if (arc_no_grow && lbolt >= growtime) {
1889 			arc_no_grow = FALSE;
1890 		}
1891 
1892 		if (2 * arc_c < arc_size +
1893 		    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size)
1894 			arc_adjust();
1895 
1896 		if (arc_eviction_list != NULL)
1897 			arc_do_user_evicts();
1898 
1899 		/* block until needed, or one second, whichever is shorter */
1900 		CALLB_CPR_SAFE_BEGIN(&cpr);
1901 		(void) cv_timedwait(&arc_reclaim_thr_cv,
1902 		    &arc_reclaim_thr_lock, (lbolt + hz));
1903 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
1904 	}
1905 
1906 	arc_thread_exit = 0;
1907 	cv_broadcast(&arc_reclaim_thr_cv);
1908 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
1909 	thread_exit();
1910 }
1911 
1912 /*
1913  * Adapt arc info given the number of bytes we are trying to add and
1914  * the state that we are comming from.  This function is only called
1915  * when we are adding new content to the cache.
1916  */
1917 static void
1918 arc_adapt(int bytes, arc_state_t *state)
1919 {
1920 	int mult;
1921 
1922 	if (state == arc_l2c_only)
1923 		return;
1924 
1925 	ASSERT(bytes > 0);
1926 	/*
1927 	 * Adapt the target size of the MRU list:
1928 	 *	- if we just hit in the MRU ghost list, then increase
1929 	 *	  the target size of the MRU list.
1930 	 *	- if we just hit in the MFU ghost list, then increase
1931 	 *	  the target size of the MFU list by decreasing the
1932 	 *	  target size of the MRU list.
1933 	 */
1934 	if (state == arc_mru_ghost) {
1935 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
1936 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
1937 
1938 		arc_p = MIN(arc_c, arc_p + bytes * mult);
1939 	} else if (state == arc_mfu_ghost) {
1940 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
1941 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
1942 
1943 		arc_p = MAX(0, (int64_t)arc_p - bytes * mult);
1944 	}
1945 	ASSERT((int64_t)arc_p >= 0);
1946 
1947 	if (arc_reclaim_needed()) {
1948 		cv_signal(&arc_reclaim_thr_cv);
1949 		return;
1950 	}
1951 
1952 	if (arc_no_grow)
1953 		return;
1954 
1955 	if (arc_c >= arc_c_max)
1956 		return;
1957 
1958 	/*
1959 	 * If we're within (2 * maxblocksize) bytes of the target
1960 	 * cache size, increment the target cache size
1961 	 */
1962 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
1963 		atomic_add_64(&arc_c, (int64_t)bytes);
1964 		if (arc_c > arc_c_max)
1965 			arc_c = arc_c_max;
1966 		else if (state == arc_anon)
1967 			atomic_add_64(&arc_p, (int64_t)bytes);
1968 		if (arc_p > arc_c)
1969 			arc_p = arc_c;
1970 	}
1971 	ASSERT((int64_t)arc_p >= 0);
1972 }
1973 
1974 /*
1975  * Check if the cache has reached its limits and eviction is required
1976  * prior to insert.
1977  */
1978 static int
1979 arc_evict_needed(arc_buf_contents_t type)
1980 {
1981 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
1982 		return (1);
1983 
1984 #ifdef _KERNEL
1985 	/*
1986 	 * If zio data pages are being allocated out of a separate heap segment,
1987 	 * then enforce that the size of available vmem for this area remains
1988 	 * above about 1/32nd free.
1989 	 */
1990 	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
1991 	    vmem_size(zio_arena, VMEM_FREE) <
1992 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
1993 		return (1);
1994 #endif
1995 
1996 	if (arc_reclaim_needed())
1997 		return (1);
1998 
1999 	return (arc_size > arc_c);
2000 }
2001 
2002 /*
2003  * The buffer, supplied as the first argument, needs a data block.
2004  * So, if we are at cache max, determine which cache should be victimized.
2005  * We have the following cases:
2006  *
2007  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2008  * In this situation if we're out of space, but the resident size of the MFU is
2009  * under the limit, victimize the MFU cache to satisfy this insertion request.
2010  *
2011  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2012  * Here, we've used up all of the available space for the MRU, so we need to
2013  * evict from our own cache instead.  Evict from the set of resident MRU
2014  * entries.
2015  *
2016  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2017  * c minus p represents the MFU space in the cache, since p is the size of the
2018  * cache that is dedicated to the MRU.  In this situation there's still space on
2019  * the MFU side, so the MRU side needs to be victimized.
2020  *
2021  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2022  * MFU's resident set is consuming more space than it has been allotted.  In
2023  * this situation, we must victimize our own cache, the MFU, for this insertion.
2024  */
2025 static void
2026 arc_get_data_buf(arc_buf_t *buf)
2027 {
2028 	arc_state_t		*state = buf->b_hdr->b_state;
2029 	uint64_t		size = buf->b_hdr->b_size;
2030 	arc_buf_contents_t	type = buf->b_hdr->b_type;
2031 
2032 	arc_adapt(size, state);
2033 
2034 	/*
2035 	 * We have not yet reached cache maximum size,
2036 	 * just allocate a new buffer.
2037 	 */
2038 	if (!arc_evict_needed(type)) {
2039 		if (type == ARC_BUFC_METADATA) {
2040 			buf->b_data = zio_buf_alloc(size);
2041 			arc_space_consume(size);
2042 		} else {
2043 			ASSERT(type == ARC_BUFC_DATA);
2044 			buf->b_data = zio_data_buf_alloc(size);
2045 			atomic_add_64(&arc_size, size);
2046 		}
2047 		goto out;
2048 	}
2049 
2050 	/*
2051 	 * If we are prefetching from the mfu ghost list, this buffer
2052 	 * will end up on the mru list; so steal space from there.
2053 	 */
2054 	if (state == arc_mfu_ghost)
2055 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2056 	else if (state == arc_mru_ghost)
2057 		state = arc_mru;
2058 
2059 	if (state == arc_mru || state == arc_anon) {
2060 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2061 		state = (arc_mfu->arcs_lsize[type] > 0 &&
2062 		    arc_p > mru_used) ? arc_mfu : arc_mru;
2063 	} else {
2064 		/* MFU cases */
2065 		uint64_t mfu_space = arc_c - arc_p;
2066 		state =  (arc_mru->arcs_lsize[type] > 0 &&
2067 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2068 	}
2069 	if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2070 		if (type == ARC_BUFC_METADATA) {
2071 			buf->b_data = zio_buf_alloc(size);
2072 			arc_space_consume(size);
2073 		} else {
2074 			ASSERT(type == ARC_BUFC_DATA);
2075 			buf->b_data = zio_data_buf_alloc(size);
2076 			atomic_add_64(&arc_size, size);
2077 		}
2078 		ARCSTAT_BUMP(arcstat_recycle_miss);
2079 	}
2080 	ASSERT(buf->b_data != NULL);
2081 out:
2082 	/*
2083 	 * Update the state size.  Note that ghost states have a
2084 	 * "ghost size" and so don't need to be updated.
2085 	 */
2086 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2087 		arc_buf_hdr_t *hdr = buf->b_hdr;
2088 
2089 		atomic_add_64(&hdr->b_state->arcs_size, size);
2090 		if (list_link_active(&hdr->b_arc_node)) {
2091 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2092 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2093 		}
2094 		/*
2095 		 * If we are growing the cache, and we are adding anonymous
2096 		 * data, and we have outgrown arc_p, update arc_p
2097 		 */
2098 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2099 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2100 			arc_p = MIN(arc_c, arc_p + size);
2101 	}
2102 }
2103 
2104 /*
2105  * This routine is called whenever a buffer is accessed.
2106  * NOTE: the hash lock is dropped in this function.
2107  */
2108 static void
2109 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2110 {
2111 	ASSERT(MUTEX_HELD(hash_lock));
2112 
2113 	if (buf->b_state == arc_anon) {
2114 		/*
2115 		 * This buffer is not in the cache, and does not
2116 		 * appear in our "ghost" list.  Add the new buffer
2117 		 * to the MRU state.
2118 		 */
2119 
2120 		ASSERT(buf->b_arc_access == 0);
2121 		buf->b_arc_access = lbolt;
2122 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2123 		arc_change_state(arc_mru, buf, hash_lock);
2124 
2125 	} else if (buf->b_state == arc_mru) {
2126 		/*
2127 		 * If this buffer is here because of a prefetch, then either:
2128 		 * - clear the flag if this is a "referencing" read
2129 		 *   (any subsequent access will bump this into the MFU state).
2130 		 * or
2131 		 * - move the buffer to the head of the list if this is
2132 		 *   another prefetch (to make it less likely to be evicted).
2133 		 */
2134 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2135 			if (refcount_count(&buf->b_refcnt) == 0) {
2136 				ASSERT(list_link_active(&buf->b_arc_node));
2137 			} else {
2138 				buf->b_flags &= ~ARC_PREFETCH;
2139 				ARCSTAT_BUMP(arcstat_mru_hits);
2140 			}
2141 			buf->b_arc_access = lbolt;
2142 			return;
2143 		}
2144 
2145 		/*
2146 		 * This buffer has been "accessed" only once so far,
2147 		 * but it is still in the cache. Move it to the MFU
2148 		 * state.
2149 		 */
2150 		if (lbolt > buf->b_arc_access + ARC_MINTIME) {
2151 			/*
2152 			 * More than 125ms have passed since we
2153 			 * instantiated this buffer.  Move it to the
2154 			 * most frequently used state.
2155 			 */
2156 			buf->b_arc_access = lbolt;
2157 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2158 			arc_change_state(arc_mfu, buf, hash_lock);
2159 		}
2160 		ARCSTAT_BUMP(arcstat_mru_hits);
2161 	} else if (buf->b_state == arc_mru_ghost) {
2162 		arc_state_t	*new_state;
2163 		/*
2164 		 * This buffer has been "accessed" recently, but
2165 		 * was evicted from the cache.  Move it to the
2166 		 * MFU state.
2167 		 */
2168 
2169 		if (buf->b_flags & ARC_PREFETCH) {
2170 			new_state = arc_mru;
2171 			if (refcount_count(&buf->b_refcnt) > 0)
2172 				buf->b_flags &= ~ARC_PREFETCH;
2173 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2174 		} else {
2175 			new_state = arc_mfu;
2176 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2177 		}
2178 
2179 		buf->b_arc_access = lbolt;
2180 		arc_change_state(new_state, buf, hash_lock);
2181 
2182 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2183 	} else if (buf->b_state == arc_mfu) {
2184 		/*
2185 		 * This buffer has been accessed more than once and is
2186 		 * still in the cache.  Keep it in the MFU state.
2187 		 *
2188 		 * NOTE: an add_reference() that occurred when we did
2189 		 * the arc_read() will have kicked this off the list.
2190 		 * If it was a prefetch, we will explicitly move it to
2191 		 * the head of the list now.
2192 		 */
2193 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2194 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2195 			ASSERT(list_link_active(&buf->b_arc_node));
2196 		}
2197 		ARCSTAT_BUMP(arcstat_mfu_hits);
2198 		buf->b_arc_access = lbolt;
2199 	} else if (buf->b_state == arc_mfu_ghost) {
2200 		arc_state_t	*new_state = arc_mfu;
2201 		/*
2202 		 * This buffer has been accessed more than once but has
2203 		 * been evicted from the cache.  Move it back to the
2204 		 * MFU state.
2205 		 */
2206 
2207 		if (buf->b_flags & ARC_PREFETCH) {
2208 			/*
2209 			 * This is a prefetch access...
2210 			 * move this block back to the MRU state.
2211 			 */
2212 			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2213 			new_state = arc_mru;
2214 		}
2215 
2216 		buf->b_arc_access = lbolt;
2217 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2218 		arc_change_state(new_state, buf, hash_lock);
2219 
2220 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2221 	} else if (buf->b_state == arc_l2c_only) {
2222 		/*
2223 		 * This buffer is on the 2nd Level ARC.
2224 		 */
2225 
2226 		buf->b_arc_access = lbolt;
2227 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2228 		arc_change_state(arc_mfu, buf, hash_lock);
2229 	} else {
2230 		ASSERT(!"invalid arc state");
2231 	}
2232 }
2233 
2234 /* a generic arc_done_func_t which you can use */
2235 /* ARGSUSED */
2236 void
2237 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2238 {
2239 	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2240 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2241 }
2242 
2243 /* a generic arc_done_func_t */
2244 void
2245 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2246 {
2247 	arc_buf_t **bufp = arg;
2248 	if (zio && zio->io_error) {
2249 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2250 		*bufp = NULL;
2251 	} else {
2252 		*bufp = buf;
2253 	}
2254 }
2255 
2256 static void
2257 arc_read_done(zio_t *zio)
2258 {
2259 	arc_buf_hdr_t	*hdr, *found;
2260 	arc_buf_t	*buf;
2261 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2262 	kmutex_t	*hash_lock;
2263 	arc_callback_t	*callback_list, *acb;
2264 	int		freeable = FALSE;
2265 
2266 	buf = zio->io_private;
2267 	hdr = buf->b_hdr;
2268 
2269 	/*
2270 	 * The hdr was inserted into hash-table and removed from lists
2271 	 * prior to starting I/O.  We should find this header, since
2272 	 * it's in the hash table, and it should be legit since it's
2273 	 * not possible to evict it during the I/O.  The only possible
2274 	 * reason for it not to be found is if we were freed during the
2275 	 * read.
2276 	 */
2277 	found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth,
2278 	    &hash_lock);
2279 
2280 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2281 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2282 	    (found == hdr && HDR_L2_READING(hdr)));
2283 
2284 	hdr->b_flags &= ~(ARC_L2_READING|ARC_L2_EVICTED);
2285 	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2286 		hdr->b_flags |= ARC_DONT_L2CACHE;
2287 
2288 	/* byteswap if necessary */
2289 	callback_list = hdr->b_acb;
2290 	ASSERT(callback_list != NULL);
2291 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap)
2292 		callback_list->acb_byteswap(buf->b_data, hdr->b_size);
2293 
2294 	arc_cksum_compute(buf, B_FALSE);
2295 
2296 	/* create copies of the data buffer for the callers */
2297 	abuf = buf;
2298 	for (acb = callback_list; acb; acb = acb->acb_next) {
2299 		if (acb->acb_done) {
2300 			if (abuf == NULL)
2301 				abuf = arc_buf_clone(buf);
2302 			acb->acb_buf = abuf;
2303 			abuf = NULL;
2304 		}
2305 	}
2306 	hdr->b_acb = NULL;
2307 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2308 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2309 	if (abuf == buf)
2310 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2311 
2312 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2313 
2314 	if (zio->io_error != 0) {
2315 		hdr->b_flags |= ARC_IO_ERROR;
2316 		if (hdr->b_state != arc_anon)
2317 			arc_change_state(arc_anon, hdr, hash_lock);
2318 		if (HDR_IN_HASH_TABLE(hdr))
2319 			buf_hash_remove(hdr);
2320 		freeable = refcount_is_zero(&hdr->b_refcnt);
2321 		/* convert checksum errors into IO errors */
2322 		if (zio->io_error == ECKSUM)
2323 			zio->io_error = EIO;
2324 	}
2325 
2326 	/*
2327 	 * Broadcast before we drop the hash_lock to avoid the possibility
2328 	 * that the hdr (and hence the cv) might be freed before we get to
2329 	 * the cv_broadcast().
2330 	 */
2331 	cv_broadcast(&hdr->b_cv);
2332 
2333 	if (hash_lock) {
2334 		/*
2335 		 * Only call arc_access on anonymous buffers.  This is because
2336 		 * if we've issued an I/O for an evicted buffer, we've already
2337 		 * called arc_access (to prevent any simultaneous readers from
2338 		 * getting confused).
2339 		 */
2340 		if (zio->io_error == 0 && hdr->b_state == arc_anon)
2341 			arc_access(hdr, hash_lock);
2342 		mutex_exit(hash_lock);
2343 	} else {
2344 		/*
2345 		 * This block was freed while we waited for the read to
2346 		 * complete.  It has been removed from the hash table and
2347 		 * moved to the anonymous state (so that it won't show up
2348 		 * in the cache).
2349 		 */
2350 		ASSERT3P(hdr->b_state, ==, arc_anon);
2351 		freeable = refcount_is_zero(&hdr->b_refcnt);
2352 	}
2353 
2354 	/* execute each callback and free its structure */
2355 	while ((acb = callback_list) != NULL) {
2356 		if (acb->acb_done)
2357 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2358 
2359 		if (acb->acb_zio_dummy != NULL) {
2360 			acb->acb_zio_dummy->io_error = zio->io_error;
2361 			zio_nowait(acb->acb_zio_dummy);
2362 		}
2363 
2364 		callback_list = acb->acb_next;
2365 		kmem_free(acb, sizeof (arc_callback_t));
2366 	}
2367 
2368 	if (freeable)
2369 		arc_hdr_destroy(hdr);
2370 }
2371 
2372 /*
2373  * "Read" the block block at the specified DVA (in bp) via the
2374  * cache.  If the block is found in the cache, invoke the provided
2375  * callback immediately and return.  Note that the `zio' parameter
2376  * in the callback will be NULL in this case, since no IO was
2377  * required.  If the block is not in the cache pass the read request
2378  * on to the spa with a substitute callback function, so that the
2379  * requested block will be added to the cache.
2380  *
2381  * If a read request arrives for a block that has a read in-progress,
2382  * either wait for the in-progress read to complete (and return the
2383  * results); or, if this is a read with a "done" func, add a record
2384  * to the read to invoke the "done" func when the read completes,
2385  * and return; or just return.
2386  *
2387  * arc_read_done() will invoke all the requested "done" functions
2388  * for readers of this block.
2389  */
2390 int
2391 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap,
2392     arc_done_func_t *done, void *private, int priority, int flags,
2393     uint32_t *arc_flags, zbookmark_t *zb)
2394 {
2395 	arc_buf_hdr_t *hdr;
2396 	arc_buf_t *buf;
2397 	kmutex_t *hash_lock;
2398 	zio_t *rzio;
2399 
2400 top:
2401 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2402 	if (hdr && hdr->b_datacnt > 0) {
2403 
2404 		*arc_flags |= ARC_CACHED;
2405 
2406 		if (HDR_IO_IN_PROGRESS(hdr)) {
2407 
2408 			if (*arc_flags & ARC_WAIT) {
2409 				cv_wait(&hdr->b_cv, hash_lock);
2410 				mutex_exit(hash_lock);
2411 				goto top;
2412 			}
2413 			ASSERT(*arc_flags & ARC_NOWAIT);
2414 
2415 			if (done) {
2416 				arc_callback_t	*acb = NULL;
2417 
2418 				acb = kmem_zalloc(sizeof (arc_callback_t),
2419 				    KM_SLEEP);
2420 				acb->acb_done = done;
2421 				acb->acb_private = private;
2422 				acb->acb_byteswap = swap;
2423 				if (pio != NULL)
2424 					acb->acb_zio_dummy = zio_null(pio,
2425 					    spa, NULL, NULL, flags);
2426 
2427 				ASSERT(acb->acb_done != NULL);
2428 				acb->acb_next = hdr->b_acb;
2429 				hdr->b_acb = acb;
2430 				add_reference(hdr, hash_lock, private);
2431 				mutex_exit(hash_lock);
2432 				return (0);
2433 			}
2434 			mutex_exit(hash_lock);
2435 			return (0);
2436 		}
2437 
2438 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2439 
2440 		if (done) {
2441 			add_reference(hdr, hash_lock, private);
2442 			/*
2443 			 * If this block is already in use, create a new
2444 			 * copy of the data so that we will be guaranteed
2445 			 * that arc_release() will always succeed.
2446 			 */
2447 			buf = hdr->b_buf;
2448 			ASSERT(buf);
2449 			ASSERT(buf->b_data);
2450 			if (HDR_BUF_AVAILABLE(hdr)) {
2451 				ASSERT(buf->b_efunc == NULL);
2452 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2453 			} else {
2454 				buf = arc_buf_clone(buf);
2455 			}
2456 		} else if (*arc_flags & ARC_PREFETCH &&
2457 		    refcount_count(&hdr->b_refcnt) == 0) {
2458 			hdr->b_flags |= ARC_PREFETCH;
2459 		}
2460 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2461 		arc_access(hdr, hash_lock);
2462 		mutex_exit(hash_lock);
2463 		ARCSTAT_BUMP(arcstat_hits);
2464 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2465 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2466 		    data, metadata, hits);
2467 
2468 		if (done)
2469 			done(NULL, buf, private);
2470 	} else {
2471 		uint64_t size = BP_GET_LSIZE(bp);
2472 		arc_callback_t	*acb;
2473 
2474 		if (hdr == NULL) {
2475 			/* this block is not in the cache */
2476 			arc_buf_hdr_t	*exists;
2477 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2478 			buf = arc_buf_alloc(spa, size, private, type);
2479 			hdr = buf->b_hdr;
2480 			hdr->b_dva = *BP_IDENTITY(bp);
2481 			hdr->b_birth = bp->blk_birth;
2482 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2483 			exists = buf_hash_insert(hdr, &hash_lock);
2484 			if (exists) {
2485 				/* somebody beat us to the hash insert */
2486 				mutex_exit(hash_lock);
2487 				bzero(&hdr->b_dva, sizeof (dva_t));
2488 				hdr->b_birth = 0;
2489 				hdr->b_cksum0 = 0;
2490 				(void) arc_buf_remove_ref(buf, private);
2491 				goto top; /* restart the IO request */
2492 			}
2493 			/* if this is a prefetch, we don't have a reference */
2494 			if (*arc_flags & ARC_PREFETCH) {
2495 				(void) remove_reference(hdr, hash_lock,
2496 				    private);
2497 				hdr->b_flags |= ARC_PREFETCH;
2498 			}
2499 			if (BP_GET_LEVEL(bp) > 0)
2500 				hdr->b_flags |= ARC_INDIRECT;
2501 		} else {
2502 			/* this block is in the ghost cache */
2503 			ASSERT(GHOST_STATE(hdr->b_state));
2504 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2505 			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2506 			ASSERT(hdr->b_buf == NULL);
2507 
2508 			/* if this is a prefetch, we don't have a reference */
2509 			if (*arc_flags & ARC_PREFETCH)
2510 				hdr->b_flags |= ARC_PREFETCH;
2511 			else
2512 				add_reference(hdr, hash_lock, private);
2513 			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2514 			buf->b_hdr = hdr;
2515 			buf->b_data = NULL;
2516 			buf->b_efunc = NULL;
2517 			buf->b_private = NULL;
2518 			buf->b_next = NULL;
2519 			hdr->b_buf = buf;
2520 			arc_get_data_buf(buf);
2521 			ASSERT(hdr->b_datacnt == 0);
2522 			hdr->b_datacnt = 1;
2523 
2524 		}
2525 
2526 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2527 		acb->acb_done = done;
2528 		acb->acb_private = private;
2529 		acb->acb_byteswap = swap;
2530 
2531 		ASSERT(hdr->b_acb == NULL);
2532 		hdr->b_acb = acb;
2533 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2534 
2535 		/*
2536 		 * If the buffer has been evicted, migrate it to a present state
2537 		 * before issuing the I/O.  Once we drop the hash-table lock,
2538 		 * the header will be marked as I/O in progress and have an
2539 		 * attached buffer.  At this point, anybody who finds this
2540 		 * buffer ought to notice that it's legit but has a pending I/O.
2541 		 */
2542 
2543 		if (GHOST_STATE(hdr->b_state))
2544 			arc_access(hdr, hash_lock);
2545 
2546 		ASSERT3U(hdr->b_size, ==, size);
2547 		DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
2548 		    zbookmark_t *, zb);
2549 		ARCSTAT_BUMP(arcstat_misses);
2550 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2551 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2552 		    data, metadata, misses);
2553 
2554 		if (l2arc_ndev != 0) {
2555 			/*
2556 			 * Read from the L2ARC if the following are true:
2557 			 * 1. This buffer has L2ARC metadata.
2558 			 * 2. This buffer isn't currently writing to the L2ARC.
2559 			 */
2560 			if (hdr->b_l2hdr != NULL && !HDR_L2_WRITING(hdr)) {
2561 				vdev_t *vd = hdr->b_l2hdr->b_dev->l2ad_vdev;
2562 				daddr_t addr = hdr->b_l2hdr->b_daddr;
2563 				l2arc_read_callback_t *cb;
2564 
2565 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2566 				ARCSTAT_BUMP(arcstat_l2_hits);
2567 
2568 				hdr->b_flags |= ARC_L2_READING;
2569 				mutex_exit(hash_lock);
2570 
2571 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2572 				    KM_SLEEP);
2573 				cb->l2rcb_buf = buf;
2574 				cb->l2rcb_spa = spa;
2575 				cb->l2rcb_bp = *bp;
2576 				cb->l2rcb_zb = *zb;
2577 				cb->l2rcb_flags = flags;
2578 
2579 				/*
2580 				 * l2arc read.
2581 				 */
2582 				rzio = zio_read_phys(pio, vd, addr, size,
2583 				    buf->b_data, ZIO_CHECKSUM_OFF,
2584 				    l2arc_read_done, cb, priority,
2585 				    flags | ZIO_FLAG_DONT_CACHE, B_FALSE);
2586 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2587 				    zio_t *, rzio);
2588 
2589 				if (*arc_flags & ARC_WAIT)
2590 					return (zio_wait(rzio));
2591 
2592 				ASSERT(*arc_flags & ARC_NOWAIT);
2593 				zio_nowait(rzio);
2594 				return (0);
2595 			} else {
2596 				DTRACE_PROBE1(l2arc__miss,
2597 				    arc_buf_hdr_t *, hdr);
2598 				ARCSTAT_BUMP(arcstat_l2_misses);
2599 				if (HDR_L2_WRITING(hdr))
2600 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
2601 			}
2602 		}
2603 		mutex_exit(hash_lock);
2604 
2605 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
2606 		    arc_read_done, buf, priority, flags, zb);
2607 
2608 		if (*arc_flags & ARC_WAIT)
2609 			return (zio_wait(rzio));
2610 
2611 		ASSERT(*arc_flags & ARC_NOWAIT);
2612 		zio_nowait(rzio);
2613 	}
2614 	return (0);
2615 }
2616 
2617 /*
2618  * arc_read() variant to support pool traversal.  If the block is already
2619  * in the ARC, make a copy of it; otherwise, the caller will do the I/O.
2620  * The idea is that we don't want pool traversal filling up memory, but
2621  * if the ARC already has the data anyway, we shouldn't pay for the I/O.
2622  */
2623 int
2624 arc_tryread(spa_t *spa, blkptr_t *bp, void *data)
2625 {
2626 	arc_buf_hdr_t *hdr;
2627 	kmutex_t *hash_mtx;
2628 	int rc = 0;
2629 
2630 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);
2631 
2632 	if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
2633 		arc_buf_t *buf = hdr->b_buf;
2634 
2635 		ASSERT(buf);
2636 		while (buf->b_data == NULL) {
2637 			buf = buf->b_next;
2638 			ASSERT(buf);
2639 		}
2640 		bcopy(buf->b_data, data, hdr->b_size);
2641 	} else {
2642 		rc = ENOENT;
2643 	}
2644 
2645 	if (hash_mtx)
2646 		mutex_exit(hash_mtx);
2647 
2648 	return (rc);
2649 }
2650 
2651 void
2652 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2653 {
2654 	ASSERT(buf->b_hdr != NULL);
2655 	ASSERT(buf->b_hdr->b_state != arc_anon);
2656 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2657 	buf->b_efunc = func;
2658 	buf->b_private = private;
2659 }
2660 
2661 /*
2662  * This is used by the DMU to let the ARC know that a buffer is
2663  * being evicted, so the ARC should clean up.  If this arc buf
2664  * is not yet in the evicted state, it will be put there.
2665  */
2666 int
2667 arc_buf_evict(arc_buf_t *buf)
2668 {
2669 	arc_buf_hdr_t *hdr;
2670 	kmutex_t *hash_lock;
2671 	arc_buf_t **bufp;
2672 
2673 	mutex_enter(&arc_eviction_mtx);
2674 	hdr = buf->b_hdr;
2675 	if (hdr == NULL) {
2676 		/*
2677 		 * We are in arc_do_user_evicts().
2678 		 */
2679 		ASSERT(buf->b_data == NULL);
2680 		mutex_exit(&arc_eviction_mtx);
2681 		return (0);
2682 	}
2683 	hash_lock = HDR_LOCK(hdr);
2684 	mutex_exit(&arc_eviction_mtx);
2685 
2686 	mutex_enter(hash_lock);
2687 
2688 	if (buf->b_data == NULL) {
2689 		/*
2690 		 * We are on the eviction list.
2691 		 */
2692 		mutex_exit(hash_lock);
2693 		mutex_enter(&arc_eviction_mtx);
2694 		if (buf->b_hdr == NULL) {
2695 			/*
2696 			 * We are already in arc_do_user_evicts().
2697 			 */
2698 			mutex_exit(&arc_eviction_mtx);
2699 			return (0);
2700 		} else {
2701 			arc_buf_t copy = *buf; /* structure assignment */
2702 			/*
2703 			 * Process this buffer now
2704 			 * but let arc_do_user_evicts() do the reaping.
2705 			 */
2706 			buf->b_efunc = NULL;
2707 			mutex_exit(&arc_eviction_mtx);
2708 			VERIFY(copy.b_efunc(&copy) == 0);
2709 			return (1);
2710 		}
2711 	}
2712 
2713 	ASSERT(buf->b_hdr == hdr);
2714 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2715 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2716 
2717 	/*
2718 	 * Pull this buffer off of the hdr
2719 	 */
2720 	bufp = &hdr->b_buf;
2721 	while (*bufp != buf)
2722 		bufp = &(*bufp)->b_next;
2723 	*bufp = buf->b_next;
2724 
2725 	ASSERT(buf->b_data != NULL);
2726 	arc_buf_destroy(buf, FALSE, FALSE);
2727 
2728 	if (hdr->b_datacnt == 0) {
2729 		arc_state_t *old_state = hdr->b_state;
2730 		arc_state_t *evicted_state;
2731 
2732 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2733 
2734 		evicted_state =
2735 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2736 
2737 		mutex_enter(&old_state->arcs_mtx);
2738 		mutex_enter(&evicted_state->arcs_mtx);
2739 
2740 		arc_change_state(evicted_state, hdr, hash_lock);
2741 		ASSERT(HDR_IN_HASH_TABLE(hdr));
2742 		hdr->b_flags |= ARC_IN_HASH_TABLE;
2743 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2744 
2745 		mutex_exit(&evicted_state->arcs_mtx);
2746 		mutex_exit(&old_state->arcs_mtx);
2747 	}
2748 	mutex_exit(hash_lock);
2749 
2750 	VERIFY(buf->b_efunc(buf) == 0);
2751 	buf->b_efunc = NULL;
2752 	buf->b_private = NULL;
2753 	buf->b_hdr = NULL;
2754 	kmem_cache_free(buf_cache, buf);
2755 	return (1);
2756 }
2757 
2758 /*
2759  * Release this buffer from the cache.  This must be done
2760  * after a read and prior to modifying the buffer contents.
2761  * If the buffer has more than one reference, we must make
2762  * make a new hdr for the buffer.
2763  */
2764 void
2765 arc_release(arc_buf_t *buf, void *tag)
2766 {
2767 	arc_buf_hdr_t *hdr = buf->b_hdr;
2768 	kmutex_t *hash_lock = HDR_LOCK(hdr);
2769 	l2arc_buf_hdr_t *l2hdr = NULL;
2770 	uint64_t buf_size;
2771 
2772 	/* this buffer is not on any list */
2773 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
2774 
2775 	if (hdr->b_state == arc_anon) {
2776 		/* this buffer is already released */
2777 		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
2778 		ASSERT(BUF_EMPTY(hdr));
2779 		ASSERT(buf->b_efunc == NULL);
2780 		arc_buf_thaw(buf);
2781 		return;
2782 	}
2783 
2784 	mutex_enter(hash_lock);
2785 
2786 	/*
2787 	 * Do we have more than one buf?
2788 	 */
2789 	if (hdr->b_buf != buf || buf->b_next != NULL) {
2790 		arc_buf_hdr_t *nhdr;
2791 		arc_buf_t **bufp;
2792 		uint64_t blksz = hdr->b_size;
2793 		spa_t *spa = hdr->b_spa;
2794 		arc_buf_contents_t type = hdr->b_type;
2795 		uint32_t flags = hdr->b_flags;
2796 
2797 		ASSERT(hdr->b_datacnt > 1);
2798 		/*
2799 		 * Pull the data off of this buf and attach it to
2800 		 * a new anonymous buf.
2801 		 */
2802 		(void) remove_reference(hdr, hash_lock, tag);
2803 		bufp = &hdr->b_buf;
2804 		while (*bufp != buf)
2805 			bufp = &(*bufp)->b_next;
2806 		*bufp = (*bufp)->b_next;
2807 		buf->b_next = NULL;
2808 
2809 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
2810 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
2811 		if (refcount_is_zero(&hdr->b_refcnt)) {
2812 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
2813 			ASSERT3U(*size, >=, hdr->b_size);
2814 			atomic_add_64(size, -hdr->b_size);
2815 		}
2816 		hdr->b_datacnt -= 1;
2817 		if (hdr->b_l2hdr != NULL) {
2818 			mutex_enter(&l2arc_buflist_mtx);
2819 			l2hdr = hdr->b_l2hdr;
2820 			hdr->b_l2hdr = NULL;
2821 			buf_size = hdr->b_size;
2822 		}
2823 		arc_cksum_verify(buf);
2824 
2825 		mutex_exit(hash_lock);
2826 
2827 		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
2828 		nhdr->b_size = blksz;
2829 		nhdr->b_spa = spa;
2830 		nhdr->b_type = type;
2831 		nhdr->b_buf = buf;
2832 		nhdr->b_state = arc_anon;
2833 		nhdr->b_arc_access = 0;
2834 		nhdr->b_flags = flags & ARC_L2_WRITING;
2835 		nhdr->b_l2hdr = NULL;
2836 		nhdr->b_datacnt = 1;
2837 		nhdr->b_freeze_cksum = NULL;
2838 		(void) refcount_add(&nhdr->b_refcnt, tag);
2839 		buf->b_hdr = nhdr;
2840 		atomic_add_64(&arc_anon->arcs_size, blksz);
2841 	} else {
2842 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
2843 		ASSERT(!list_link_active(&hdr->b_arc_node));
2844 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2845 		arc_change_state(arc_anon, hdr, hash_lock);
2846 		hdr->b_arc_access = 0;
2847 		if (hdr->b_l2hdr != NULL) {
2848 			mutex_enter(&l2arc_buflist_mtx);
2849 			l2hdr = hdr->b_l2hdr;
2850 			hdr->b_l2hdr = NULL;
2851 			buf_size = hdr->b_size;
2852 		}
2853 		mutex_exit(hash_lock);
2854 
2855 		bzero(&hdr->b_dva, sizeof (dva_t));
2856 		hdr->b_birth = 0;
2857 		hdr->b_cksum0 = 0;
2858 		arc_buf_thaw(buf);
2859 	}
2860 	buf->b_efunc = NULL;
2861 	buf->b_private = NULL;
2862 
2863 	if (l2hdr) {
2864 		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
2865 		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
2866 		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
2867 	}
2868 	if (MUTEX_HELD(&l2arc_buflist_mtx))
2869 		mutex_exit(&l2arc_buflist_mtx);
2870 }
2871 
2872 int
2873 arc_released(arc_buf_t *buf)
2874 {
2875 	return (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
2876 }
2877 
2878 int
2879 arc_has_callback(arc_buf_t *buf)
2880 {
2881 	return (buf->b_efunc != NULL);
2882 }
2883 
2884 #ifdef ZFS_DEBUG
2885 int
2886 arc_referenced(arc_buf_t *buf)
2887 {
2888 	return (refcount_count(&buf->b_hdr->b_refcnt));
2889 }
2890 #endif
2891 
2892 static void
2893 arc_write_ready(zio_t *zio)
2894 {
2895 	arc_write_callback_t *callback = zio->io_private;
2896 	arc_buf_t *buf = callback->awcb_buf;
2897 	arc_buf_hdr_t *hdr = buf->b_hdr;
2898 
2899 	if (zio->io_error == 0 && callback->awcb_ready) {
2900 		ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
2901 		callback->awcb_ready(zio, buf, callback->awcb_private);
2902 	}
2903 	/*
2904 	 * If the IO is already in progress, then this is a re-write
2905 	 * attempt, so we need to thaw and re-compute the cksum. It is
2906 	 * the responsibility of the callback to handle the freeing
2907 	 * and accounting for any re-write attempt. If we don't have a
2908 	 * callback registered then simply free the block here.
2909 	 */
2910 	if (HDR_IO_IN_PROGRESS(hdr)) {
2911 		if (!BP_IS_HOLE(&zio->io_bp_orig) &&
2912 		    callback->awcb_ready == NULL) {
2913 			zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg,
2914 			    &zio->io_bp_orig, NULL, NULL));
2915 		}
2916 		mutex_enter(&hdr->b_freeze_lock);
2917 		if (hdr->b_freeze_cksum != NULL) {
2918 			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2919 			hdr->b_freeze_cksum = NULL;
2920 		}
2921 		mutex_exit(&hdr->b_freeze_lock);
2922 	}
2923 	arc_cksum_compute(buf, B_FALSE);
2924 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
2925 }
2926 
2927 static void
2928 arc_write_done(zio_t *zio)
2929 {
2930 	arc_write_callback_t *callback = zio->io_private;
2931 	arc_buf_t *buf = callback->awcb_buf;
2932 	arc_buf_hdr_t *hdr = buf->b_hdr;
2933 
2934 	hdr->b_acb = NULL;
2935 
2936 	/* this buffer is on no lists and is not in the hash table */
2937 	ASSERT3P(hdr->b_state, ==, arc_anon);
2938 
2939 	hdr->b_dva = *BP_IDENTITY(zio->io_bp);
2940 	hdr->b_birth = zio->io_bp->blk_birth;
2941 	hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
2942 	/*
2943 	 * If the block to be written was all-zero, we may have
2944 	 * compressed it away.  In this case no write was performed
2945 	 * so there will be no dva/birth-date/checksum.  The buffer
2946 	 * must therefor remain anonymous (and uncached).
2947 	 */
2948 	if (!BUF_EMPTY(hdr)) {
2949 		arc_buf_hdr_t *exists;
2950 		kmutex_t *hash_lock;
2951 
2952 		arc_cksum_verify(buf);
2953 
2954 		exists = buf_hash_insert(hdr, &hash_lock);
2955 		if (exists) {
2956 			/*
2957 			 * This can only happen if we overwrite for
2958 			 * sync-to-convergence, because we remove
2959 			 * buffers from the hash table when we arc_free().
2960 			 */
2961 			ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
2962 			    BP_IDENTITY(zio->io_bp)));
2963 			ASSERT3U(zio->io_bp_orig.blk_birth, ==,
2964 			    zio->io_bp->blk_birth);
2965 
2966 			ASSERT(refcount_is_zero(&exists->b_refcnt));
2967 			arc_change_state(arc_anon, exists, hash_lock);
2968 			mutex_exit(hash_lock);
2969 			arc_hdr_destroy(exists);
2970 			exists = buf_hash_insert(hdr, &hash_lock);
2971 			ASSERT3P(exists, ==, NULL);
2972 		}
2973 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2974 		arc_access(hdr, hash_lock);
2975 		mutex_exit(hash_lock);
2976 	} else if (callback->awcb_done == NULL) {
2977 		int destroy_hdr;
2978 		/*
2979 		 * This is an anonymous buffer with no user callback,
2980 		 * destroy it if there are no active references.
2981 		 */
2982 		mutex_enter(&arc_eviction_mtx);
2983 		destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
2984 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2985 		mutex_exit(&arc_eviction_mtx);
2986 		if (destroy_hdr)
2987 			arc_hdr_destroy(hdr);
2988 	} else {
2989 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2990 	}
2991 
2992 	if (callback->awcb_done) {
2993 		ASSERT(!refcount_is_zero(&hdr->b_refcnt));
2994 		callback->awcb_done(zio, buf, callback->awcb_private);
2995 	}
2996 
2997 	kmem_free(callback, sizeof (arc_write_callback_t));
2998 }
2999 
3000 zio_t *
3001 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies,
3002     uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
3003     arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority,
3004     int flags, zbookmark_t *zb)
3005 {
3006 	arc_buf_hdr_t *hdr = buf->b_hdr;
3007 	arc_write_callback_t *callback;
3008 	zio_t	*zio;
3009 
3010 	/* this is a private buffer - no locking required */
3011 	ASSERT3P(hdr->b_state, ==, arc_anon);
3012 	ASSERT(BUF_EMPTY(hdr));
3013 	ASSERT(!HDR_IO_ERROR(hdr));
3014 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3015 	ASSERT(hdr->b_acb == 0);
3016 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3017 	callback->awcb_ready = ready;
3018 	callback->awcb_done = done;
3019 	callback->awcb_private = private;
3020 	callback->awcb_buf = buf;
3021 	zio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp,
3022 	    buf->b_data, hdr->b_size, arc_write_ready, arc_write_done, callback,
3023 	    priority, flags, zb);
3024 
3025 	return (zio);
3026 }
3027 
3028 int
3029 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
3030     zio_done_func_t *done, void *private, uint32_t arc_flags)
3031 {
3032 	arc_buf_hdr_t *ab;
3033 	kmutex_t *hash_lock;
3034 	zio_t	*zio;
3035 
3036 	/*
3037 	 * If this buffer is in the cache, release it, so it
3038 	 * can be re-used.
3039 	 */
3040 	ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
3041 	if (ab != NULL) {
3042 		/*
3043 		 * The checksum of blocks to free is not always
3044 		 * preserved (eg. on the deadlist).  However, if it is
3045 		 * nonzero, it should match what we have in the cache.
3046 		 */
3047 		ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
3048 		    ab->b_cksum0 == bp->blk_cksum.zc_word[0]);
3049 		if (ab->b_state != arc_anon)
3050 			arc_change_state(arc_anon, ab, hash_lock);
3051 		if (HDR_IO_IN_PROGRESS(ab)) {
3052 			/*
3053 			 * This should only happen when we prefetch.
3054 			 */
3055 			ASSERT(ab->b_flags & ARC_PREFETCH);
3056 			ASSERT3U(ab->b_datacnt, ==, 1);
3057 			ab->b_flags |= ARC_FREED_IN_READ;
3058 			if (HDR_IN_HASH_TABLE(ab))
3059 				buf_hash_remove(ab);
3060 			ab->b_arc_access = 0;
3061 			bzero(&ab->b_dva, sizeof (dva_t));
3062 			ab->b_birth = 0;
3063 			ab->b_cksum0 = 0;
3064 			ab->b_buf->b_efunc = NULL;
3065 			ab->b_buf->b_private = NULL;
3066 			mutex_exit(hash_lock);
3067 		} else if (refcount_is_zero(&ab->b_refcnt)) {
3068 			ab->b_flags |= ARC_FREE_IN_PROGRESS;
3069 			mutex_exit(hash_lock);
3070 			arc_hdr_destroy(ab);
3071 			ARCSTAT_BUMP(arcstat_deleted);
3072 		} else {
3073 			/*
3074 			 * We still have an active reference on this
3075 			 * buffer.  This can happen, e.g., from
3076 			 * dbuf_unoverride().
3077 			 */
3078 			ASSERT(!HDR_IN_HASH_TABLE(ab));
3079 			ab->b_arc_access = 0;
3080 			bzero(&ab->b_dva, sizeof (dva_t));
3081 			ab->b_birth = 0;
3082 			ab->b_cksum0 = 0;
3083 			ab->b_buf->b_efunc = NULL;
3084 			ab->b_buf->b_private = NULL;
3085 			mutex_exit(hash_lock);
3086 		}
3087 	}
3088 
3089 	zio = zio_free(pio, spa, txg, bp, done, private);
3090 
3091 	if (arc_flags & ARC_WAIT)
3092 		return (zio_wait(zio));
3093 
3094 	ASSERT(arc_flags & ARC_NOWAIT);
3095 	zio_nowait(zio);
3096 
3097 	return (0);
3098 }
3099 
3100 static int
3101 arc_memory_throttle(uint64_t reserve, uint64_t txg)
3102 {
3103 #ifdef _KERNEL
3104 	uint64_t inflight_data = arc_anon->arcs_size;
3105 	uint64_t available_memory = ptob(freemem);
3106 	static uint64_t page_load = 0;
3107 	static uint64_t last_txg = 0;
3108 
3109 #if defined(__i386)
3110 	available_memory =
3111 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3112 #endif
3113 	if (available_memory >= zfs_write_limit_max)
3114 		return (0);
3115 
3116 	if (txg > last_txg) {
3117 		last_txg = txg;
3118 		page_load = 0;
3119 	}
3120 	/*
3121 	 * If we are in pageout, we know that memory is already tight,
3122 	 * the arc is already going to be evicting, so we just want to
3123 	 * continue to let page writes occur as quickly as possible.
3124 	 */
3125 	if (curproc == proc_pageout) {
3126 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
3127 			return (ERESTART);
3128 		/* Note: reserve is inflated, so we deflate */
3129 		page_load += reserve / 8;
3130 		return (0);
3131 	} else if (page_load > 0 && arc_reclaim_needed()) {
3132 		/* memory is low, delay before restarting */
3133 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3134 		return (EAGAIN);
3135 	}
3136 	page_load = 0;
3137 
3138 	if (arc_size > arc_c_min) {
3139 		uint64_t evictable_memory =
3140 		    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3141 		    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3142 		    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3143 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3144 		available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3145 	}
3146 
3147 	if (inflight_data > available_memory / 4) {
3148 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3149 		return (ERESTART);
3150 	}
3151 #endif
3152 	return (0);
3153 }
3154 
3155 void
3156 arc_tempreserve_clear(uint64_t reserve)
3157 {
3158 	atomic_add_64(&arc_tempreserve, -reserve);
3159 	ASSERT((int64_t)arc_tempreserve >= 0);
3160 }
3161 
3162 int
3163 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3164 {
3165 	int error;
3166 
3167 #ifdef ZFS_DEBUG
3168 	/*
3169 	 * Once in a while, fail for no reason.  Everything should cope.
3170 	 */
3171 	if (spa_get_random(10000) == 0) {
3172 		dprintf("forcing random failure\n");
3173 		return (ERESTART);
3174 	}
3175 #endif
3176 	if (reserve > arc_c/4 && !arc_no_grow)
3177 		arc_c = MIN(arc_c_max, reserve * 4);
3178 	if (reserve > arc_c)
3179 		return (ENOMEM);
3180 
3181 	/*
3182 	 * Writes will, almost always, require additional memory allocations
3183 	 * in order to compress/encrypt/etc the data.  We therefor need to
3184 	 * make sure that there is sufficient available memory for this.
3185 	 */
3186 	if (error = arc_memory_throttle(reserve, txg))
3187 		return (error);
3188 
3189 	/*
3190 	 * Throttle writes when the amount of dirty data in the cache
3191 	 * gets too large.  We try to keep the cache less than half full
3192 	 * of dirty blocks so that our sync times don't grow too large.
3193 	 * Note: if two requests come in concurrently, we might let them
3194 	 * both succeed, when one of them should fail.  Not a huge deal.
3195 	 */
3196 	if (reserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 &&
3197 	    arc_anon->arcs_size > arc_c / 4) {
3198 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3199 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3200 		    arc_tempreserve>>10,
3201 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3202 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3203 		    reserve>>10, arc_c>>10);
3204 		return (ERESTART);
3205 	}
3206 	atomic_add_64(&arc_tempreserve, reserve);
3207 	return (0);
3208 }
3209 
3210 void
3211 arc_init(void)
3212 {
3213 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3214 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3215 
3216 	/* Convert seconds to clock ticks */
3217 	arc_min_prefetch_lifespan = 1 * hz;
3218 
3219 	/* Start out with 1/8 of all memory */
3220 	arc_c = physmem * PAGESIZE / 8;
3221 
3222 #ifdef _KERNEL
3223 	/*
3224 	 * On architectures where the physical memory can be larger
3225 	 * than the addressable space (intel in 32-bit mode), we may
3226 	 * need to limit the cache to 1/8 of VM size.
3227 	 */
3228 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3229 #endif
3230 
3231 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3232 	arc_c_min = MAX(arc_c / 4, 64<<20);
3233 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3234 	if (arc_c * 8 >= 1<<30)
3235 		arc_c_max = (arc_c * 8) - (1<<30);
3236 	else
3237 		arc_c_max = arc_c_min;
3238 	arc_c_max = MAX(arc_c * 6, arc_c_max);
3239 
3240 	/*
3241 	 * Allow the tunables to override our calculations if they are
3242 	 * reasonable (ie. over 64MB)
3243 	 */
3244 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3245 		arc_c_max = zfs_arc_max;
3246 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3247 		arc_c_min = zfs_arc_min;
3248 
3249 	arc_c = arc_c_max;
3250 	arc_p = (arc_c >> 1);
3251 
3252 	/* limit meta-data to 1/4 of the arc capacity */
3253 	arc_meta_limit = arc_c_max / 4;
3254 
3255 	/* Allow the tunable to override if it is reasonable */
3256 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3257 		arc_meta_limit = zfs_arc_meta_limit;
3258 
3259 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3260 		arc_c_min = arc_meta_limit / 2;
3261 
3262 	/* if kmem_flags are set, lets try to use less memory */
3263 	if (kmem_debugging())
3264 		arc_c = arc_c / 2;
3265 	if (arc_c < arc_c_min)
3266 		arc_c = arc_c_min;
3267 
3268 	arc_anon = &ARC_anon;
3269 	arc_mru = &ARC_mru;
3270 	arc_mru_ghost = &ARC_mru_ghost;
3271 	arc_mfu = &ARC_mfu;
3272 	arc_mfu_ghost = &ARC_mfu_ghost;
3273 	arc_l2c_only = &ARC_l2c_only;
3274 	arc_size = 0;
3275 
3276 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3277 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3278 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3279 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3280 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3281 	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3282 
3283 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3284 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3285 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3286 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3287 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3288 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3289 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3290 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3291 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3292 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3293 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3294 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3295 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3296 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3297 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3298 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3299 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3300 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3301 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3302 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3303 
3304 	buf_init();
3305 
3306 	arc_thread_exit = 0;
3307 	arc_eviction_list = NULL;
3308 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3309 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3310 
3311 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3312 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3313 
3314 	if (arc_ksp != NULL) {
3315 		arc_ksp->ks_data = &arc_stats;
3316 		kstat_install(arc_ksp);
3317 	}
3318 
3319 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3320 	    TS_RUN, minclsyspri);
3321 
3322 	arc_dead = FALSE;
3323 
3324 	if (zfs_write_limit_max == 0)
3325 		zfs_write_limit_max = physmem * PAGESIZE >>
3326 		    zfs_write_limit_shift;
3327 	else
3328 		zfs_write_limit_shift = 0;
3329 }
3330 
3331 void
3332 arc_fini(void)
3333 {
3334 	mutex_enter(&arc_reclaim_thr_lock);
3335 	arc_thread_exit = 1;
3336 	while (arc_thread_exit != 0)
3337 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3338 	mutex_exit(&arc_reclaim_thr_lock);
3339 
3340 	arc_flush(NULL);
3341 
3342 	arc_dead = TRUE;
3343 
3344 	if (arc_ksp != NULL) {
3345 		kstat_delete(arc_ksp);
3346 		arc_ksp = NULL;
3347 	}
3348 
3349 	mutex_destroy(&arc_eviction_mtx);
3350 	mutex_destroy(&arc_reclaim_thr_lock);
3351 	cv_destroy(&arc_reclaim_thr_cv);
3352 
3353 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3354 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3355 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3356 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3357 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3358 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3359 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3360 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3361 
3362 	mutex_destroy(&arc_anon->arcs_mtx);
3363 	mutex_destroy(&arc_mru->arcs_mtx);
3364 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3365 	mutex_destroy(&arc_mfu->arcs_mtx);
3366 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3367 
3368 	buf_fini();
3369 }
3370 
3371 /*
3372  * Level 2 ARC
3373  *
3374  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3375  * It uses dedicated storage devices to hold cached data, which are populated
3376  * using large infrequent writes.  The main role of this cache is to boost
3377  * the performance of random read workloads.  The intended L2ARC devices
3378  * include short-stroked disks, solid state disks, and other media with
3379  * substantially faster read latency than disk.
3380  *
3381  *                 +-----------------------+
3382  *                 |         ARC           |
3383  *                 +-----------------------+
3384  *                    |         ^     ^
3385  *                    |         |     |
3386  *      l2arc_feed_thread()    arc_read()
3387  *                    |         |     |
3388  *                    |  l2arc read   |
3389  *                    V         |     |
3390  *               +---------------+    |
3391  *               |     L2ARC     |    |
3392  *               +---------------+    |
3393  *                   |    ^           |
3394  *          l2arc_write() |           |
3395  *                   |    |           |
3396  *                   V    |           |
3397  *                 +-------+      +-------+
3398  *                 | vdev  |      | vdev  |
3399  *                 | cache |      | cache |
3400  *                 +-------+      +-------+
3401  *                 +=========+     .-----.
3402  *                 :  L2ARC  :    |-_____-|
3403  *                 : devices :    | Disks |
3404  *                 +=========+    `-_____-'
3405  *
3406  * Read requests are satisfied from the following sources, in order:
3407  *
3408  *	1) ARC
3409  *	2) vdev cache of L2ARC devices
3410  *	3) L2ARC devices
3411  *	4) vdev cache of disks
3412  *	5) disks
3413  *
3414  * Some L2ARC device types exhibit extremely slow write performance.
3415  * To accommodate for this there are some significant differences between
3416  * the L2ARC and traditional cache design:
3417  *
3418  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3419  * the ARC behave as usual, freeing buffers and placing headers on ghost
3420  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3421  * this would add inflated write latencies for all ARC memory pressure.
3422  *
3423  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3424  * It does this by periodically scanning buffers from the eviction-end of
3425  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3426  * not already there.  It scans until a headroom of buffers is satisfied,
3427  * which itself is a buffer for ARC eviction.  The thread that does this is
3428  * l2arc_feed_thread(), illustrated below; example sizes are included to
3429  * provide a better sense of ratio than this diagram:
3430  *
3431  *	       head -->                        tail
3432  *	        +---------------------+----------+
3433  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3434  *	        +---------------------+----------+   |   o L2ARC eligible
3435  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3436  *	        +---------------------+----------+   |
3437  *	             15.9 Gbytes      ^ 32 Mbytes    |
3438  *	                           headroom          |
3439  *	                                      l2arc_feed_thread()
3440  *	                                             |
3441  *	                 l2arc write hand <--[oooo]--'
3442  *	                         |           8 Mbyte
3443  *	                         |          write max
3444  *	                         V
3445  *		  +==============================+
3446  *	L2ARC dev |####|#|###|###|    |####| ... |
3447  *	          +==============================+
3448  *	                     32 Gbytes
3449  *
3450  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3451  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3452  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3453  * safe to say that this is an uncommon case, since buffers at the end of
3454  * the ARC lists have moved there due to inactivity.
3455  *
3456  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3457  * then the L2ARC simply misses copying some buffers.  This serves as a
3458  * pressure valve to prevent heavy read workloads from both stalling the ARC
3459  * with waits and clogging the L2ARC with writes.  This also helps prevent
3460  * the potential for the L2ARC to churn if it attempts to cache content too
3461  * quickly, such as during backups of the entire pool.
3462  *
3463  * 5. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3464  * the vdev queue can aggregate them into larger and fewer writes.  Each
3465  * device is written to in a rotor fashion, sweeping writes through
3466  * available space then repeating.
3467  *
3468  * 6. The L2ARC does not store dirty content.  It never needs to flush
3469  * write buffers back to disk based storage.
3470  *
3471  * 7. If an ARC buffer is written (and dirtied) which also exists in the
3472  * L2ARC, the now stale L2ARC buffer is immediately dropped.
3473  *
3474  * The performance of the L2ARC can be tweaked by a number of tunables, which
3475  * may be necessary for different workloads:
3476  *
3477  *	l2arc_write_max		max write bytes per interval
3478  *	l2arc_noprefetch	skip caching prefetched buffers
3479  *	l2arc_headroom		number of max device writes to precache
3480  *	l2arc_feed_secs		seconds between L2ARC writing
3481  *
3482  * Tunables may be removed or added as future performance improvements are
3483  * integrated, and also may become zpool properties.
3484  */
3485 
3486 static void
3487 l2arc_hdr_stat_add(void)
3488 {
3489 	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3490 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3491 }
3492 
3493 static void
3494 l2arc_hdr_stat_remove(void)
3495 {
3496 	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3497 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3498 }
3499 
3500 /*
3501  * Cycle through L2ARC devices.  This is how L2ARC load balances.
3502  * This is called with l2arc_dev_mtx held, which also locks out spa removal.
3503  */
3504 static l2arc_dev_t *
3505 l2arc_dev_get_next(void)
3506 {
3507 	l2arc_dev_t *next;
3508 
3509 	if (l2arc_dev_last == NULL) {
3510 		next = list_head(l2arc_dev_list);
3511 	} else {
3512 		next = list_next(l2arc_dev_list, l2arc_dev_last);
3513 		if (next == NULL)
3514 			next = list_head(l2arc_dev_list);
3515 	}
3516 
3517 	l2arc_dev_last = next;
3518 
3519 	return (next);
3520 }
3521 
3522 /*
3523  * A write to a cache device has completed.  Update all headers to allow
3524  * reads from these buffers to begin.
3525  */
3526 static void
3527 l2arc_write_done(zio_t *zio)
3528 {
3529 	l2arc_write_callback_t *cb;
3530 	l2arc_dev_t *dev;
3531 	list_t *buflist;
3532 	l2arc_data_free_t *df, *df_prev;
3533 	arc_buf_hdr_t *head, *ab, *ab_prev;
3534 	kmutex_t *hash_lock;
3535 
3536 	cb = zio->io_private;
3537 	ASSERT(cb != NULL);
3538 	dev = cb->l2wcb_dev;
3539 	ASSERT(dev != NULL);
3540 	head = cb->l2wcb_head;
3541 	ASSERT(head != NULL);
3542 	buflist = dev->l2ad_buflist;
3543 	ASSERT(buflist != NULL);
3544 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
3545 	    l2arc_write_callback_t *, cb);
3546 
3547 	if (zio->io_error != 0)
3548 		ARCSTAT_BUMP(arcstat_l2_writes_error);
3549 
3550 	mutex_enter(&l2arc_buflist_mtx);
3551 
3552 	/*
3553 	 * All writes completed, or an error was hit.
3554 	 */
3555 	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
3556 		ab_prev = list_prev(buflist, ab);
3557 
3558 		hash_lock = HDR_LOCK(ab);
3559 		if (!mutex_tryenter(hash_lock)) {
3560 			/*
3561 			 * This buffer misses out.  It may be in a stage
3562 			 * of eviction.  Its ARC_L2_WRITING flag will be
3563 			 * left set, denying reads to this buffer.
3564 			 */
3565 			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
3566 			continue;
3567 		}
3568 
3569 		if (zio->io_error != 0) {
3570 			/*
3571 			 * Error - invalidate L2ARC entry.
3572 			 */
3573 			ab->b_l2hdr = NULL;
3574 		}
3575 
3576 		/*
3577 		 * Allow ARC to begin reads to this L2ARC entry.
3578 		 */
3579 		ab->b_flags &= ~ARC_L2_WRITING;
3580 
3581 		mutex_exit(hash_lock);
3582 	}
3583 
3584 	atomic_inc_64(&l2arc_writes_done);
3585 	list_remove(buflist, head);
3586 	kmem_cache_free(hdr_cache, head);
3587 	mutex_exit(&l2arc_buflist_mtx);
3588 
3589 	/*
3590 	 * Free buffers that were tagged for destruction.
3591 	 */
3592 	mutex_enter(&l2arc_free_on_write_mtx);
3593 	buflist = l2arc_free_on_write;
3594 	for (df = list_tail(buflist); df; df = df_prev) {
3595 		df_prev = list_prev(buflist, df);
3596 		ASSERT(df->l2df_data != NULL);
3597 		ASSERT(df->l2df_func != NULL);
3598 		df->l2df_func(df->l2df_data, df->l2df_size);
3599 		list_remove(buflist, df);
3600 		kmem_free(df, sizeof (l2arc_data_free_t));
3601 	}
3602 	mutex_exit(&l2arc_free_on_write_mtx);
3603 
3604 	kmem_free(cb, sizeof (l2arc_write_callback_t));
3605 }
3606 
3607 /*
3608  * A read to a cache device completed.  Validate buffer contents before
3609  * handing over to the regular ARC routines.
3610  */
3611 static void
3612 l2arc_read_done(zio_t *zio)
3613 {
3614 	l2arc_read_callback_t *cb;
3615 	arc_buf_hdr_t *hdr;
3616 	arc_buf_t *buf;
3617 	zio_t *rzio;
3618 	kmutex_t *hash_lock;
3619 	int equal, err = 0;
3620 
3621 	cb = zio->io_private;
3622 	ASSERT(cb != NULL);
3623 	buf = cb->l2rcb_buf;
3624 	ASSERT(buf != NULL);
3625 	hdr = buf->b_hdr;
3626 	ASSERT(hdr != NULL);
3627 
3628 	hash_lock = HDR_LOCK(hdr);
3629 	mutex_enter(hash_lock);
3630 
3631 	/*
3632 	 * Check this survived the L2ARC journey.
3633 	 */
3634 	equal = arc_cksum_equal(buf);
3635 	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
3636 		mutex_exit(hash_lock);
3637 		zio->io_private = buf;
3638 		arc_read_done(zio);
3639 	} else {
3640 		mutex_exit(hash_lock);
3641 		/*
3642 		 * Buffer didn't survive caching.  Increment stats and
3643 		 * reissue to the original storage device.
3644 		 */
3645 		if (zio->io_error != 0)
3646 			ARCSTAT_BUMP(arcstat_l2_io_error);
3647 		if (!equal)
3648 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
3649 
3650 		zio->io_flags &= ~ZIO_FLAG_DONT_CACHE;
3651 		rzio = zio_read(NULL, cb->l2rcb_spa, &cb->l2rcb_bp,
3652 		    buf->b_data, zio->io_size, arc_read_done, buf,
3653 		    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb);
3654 
3655 		/*
3656 		 * Since this is a seperate thread, we can wait on this
3657 		 * I/O whether there is an io_waiter or not.
3658 		 */
3659 		err = zio_wait(rzio);
3660 
3661 		/*
3662 		 * Let the resent I/O call arc_read_done() instead.
3663 		 * io_error is set to the reissued I/O error status.
3664 		 */
3665 		zio->io_done = NULL;
3666 		zio->io_waiter = NULL;
3667 		zio->io_error = err;
3668 	}
3669 
3670 	kmem_free(cb, sizeof (l2arc_read_callback_t));
3671 }
3672 
3673 /*
3674  * This is the list priority from which the L2ARC will search for pages to
3675  * cache.  This is used within loops (0..3) to cycle through lists in the
3676  * desired order.  This order can have a significant effect on cache
3677  * performance.
3678  *
3679  * Currently the metadata lists are hit first, MFU then MRU, followed by
3680  * the data lists.  This function returns a locked list, and also returns
3681  * the lock pointer.
3682  */
3683 static list_t *
3684 l2arc_list_locked(int list_num, kmutex_t **lock)
3685 {
3686 	list_t *list;
3687 
3688 	ASSERT(list_num >= 0 && list_num <= 3);
3689 
3690 	switch (list_num) {
3691 	case 0:
3692 		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
3693 		*lock = &arc_mfu->arcs_mtx;
3694 		break;
3695 	case 1:
3696 		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
3697 		*lock = &arc_mru->arcs_mtx;
3698 		break;
3699 	case 2:
3700 		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
3701 		*lock = &arc_mfu->arcs_mtx;
3702 		break;
3703 	case 3:
3704 		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
3705 		*lock = &arc_mru->arcs_mtx;
3706 		break;
3707 	}
3708 
3709 	ASSERT(!(MUTEX_HELD(*lock)));
3710 	mutex_enter(*lock);
3711 	return (list);
3712 }
3713 
3714 /*
3715  * Evict buffers from the device write hand to the distance specified in
3716  * bytes.  This distance may span populated buffers, it may span nothing.
3717  * This is clearing a region on the L2ARC device ready for writing.
3718  * If the 'all' boolean is set, every buffer is evicted.
3719  */
3720 static void
3721 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
3722 {
3723 	list_t *buflist;
3724 	l2arc_buf_hdr_t *abl2;
3725 	arc_buf_hdr_t *ab, *ab_prev;
3726 	kmutex_t *hash_lock;
3727 	uint64_t taddr;
3728 
3729 	ASSERT(MUTEX_HELD(&l2arc_dev_mtx));
3730 
3731 	buflist = dev->l2ad_buflist;
3732 
3733 	if (buflist == NULL)
3734 		return;
3735 
3736 	if (!all && dev->l2ad_first) {
3737 		/*
3738 		 * This is the first sweep through the device.  There is
3739 		 * nothing to evict.
3740 		 */
3741 		return;
3742 	}
3743 
3744 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * dev->l2ad_write))) {
3745 		/*
3746 		 * When nearing the end of the device, evict to the end
3747 		 * before the device write hand jumps to the start.
3748 		 */
3749 		taddr = dev->l2ad_end;
3750 	} else {
3751 		taddr = dev->l2ad_hand + distance;
3752 	}
3753 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
3754 	    uint64_t, taddr, boolean_t, all);
3755 
3756 top:
3757 	mutex_enter(&l2arc_buflist_mtx);
3758 	for (ab = list_tail(buflist); ab; ab = ab_prev) {
3759 		ab_prev = list_prev(buflist, ab);
3760 
3761 		hash_lock = HDR_LOCK(ab);
3762 		if (!mutex_tryenter(hash_lock)) {
3763 			/*
3764 			 * Missed the hash lock.  Retry.
3765 			 */
3766 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
3767 			mutex_exit(&l2arc_buflist_mtx);
3768 			mutex_enter(hash_lock);
3769 			mutex_exit(hash_lock);
3770 			goto top;
3771 		}
3772 
3773 		if (HDR_L2_WRITE_HEAD(ab)) {
3774 			/*
3775 			 * We hit a write head node.  Leave it for
3776 			 * l2arc_write_done().
3777 			 */
3778 			list_remove(buflist, ab);
3779 			mutex_exit(hash_lock);
3780 			continue;
3781 		}
3782 
3783 		if (!all && ab->b_l2hdr != NULL &&
3784 		    (ab->b_l2hdr->b_daddr > taddr ||
3785 		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
3786 			/*
3787 			 * We've evicted to the target address,
3788 			 * or the end of the device.
3789 			 */
3790 			mutex_exit(hash_lock);
3791 			break;
3792 		}
3793 
3794 		if (HDR_FREE_IN_PROGRESS(ab)) {
3795 			/*
3796 			 * Already on the path to destruction.
3797 			 */
3798 			mutex_exit(hash_lock);
3799 			continue;
3800 		}
3801 
3802 		if (ab->b_state == arc_l2c_only) {
3803 			ASSERT(!HDR_L2_READING(ab));
3804 			/*
3805 			 * This doesn't exist in the ARC.  Destroy.
3806 			 * arc_hdr_destroy() will call list_remove()
3807 			 * and decrement arcstat_l2_size.
3808 			 */
3809 			arc_change_state(arc_anon, ab, hash_lock);
3810 			arc_hdr_destroy(ab);
3811 		} else {
3812 			/*
3813 			 * Tell ARC this no longer exists in L2ARC.
3814 			 */
3815 			if (ab->b_l2hdr != NULL) {
3816 				abl2 = ab->b_l2hdr;
3817 				ab->b_l2hdr = NULL;
3818 				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
3819 				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
3820 			}
3821 			list_remove(buflist, ab);
3822 
3823 			/*
3824 			 * This may have been leftover after a
3825 			 * failed write.
3826 			 */
3827 			ab->b_flags &= ~ARC_L2_WRITING;
3828 
3829 			/*
3830 			 * Invalidate issued or about to be issued
3831 			 * reads, since we may be about to write
3832 			 * over this location.
3833 			 */
3834 			if (HDR_L2_READING(ab)) {
3835 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
3836 				ab->b_flags |= ARC_L2_EVICTED;
3837 			}
3838 		}
3839 		mutex_exit(hash_lock);
3840 	}
3841 	mutex_exit(&l2arc_buflist_mtx);
3842 
3843 	spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict));
3844 	dev->l2ad_evict = taddr;
3845 }
3846 
3847 /*
3848  * Find and write ARC buffers to the L2ARC device.
3849  *
3850  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
3851  * for reading until they have completed writing.
3852  */
3853 static void
3854 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev)
3855 {
3856 	arc_buf_hdr_t *ab, *ab_prev, *head;
3857 	l2arc_buf_hdr_t *hdrl2;
3858 	list_t *list;
3859 	uint64_t passed_sz, write_sz, buf_sz;
3860 	uint64_t target_sz = dev->l2ad_write;
3861 	uint64_t headroom = dev->l2ad_write * l2arc_headroom;
3862 	void *buf_data;
3863 	kmutex_t *hash_lock, *list_lock;
3864 	boolean_t have_lock, full;
3865 	l2arc_write_callback_t *cb;
3866 	zio_t *pio, *wzio;
3867 
3868 	ASSERT(MUTEX_HELD(&l2arc_dev_mtx));
3869 	ASSERT(dev->l2ad_vdev != NULL);
3870 
3871 	pio = NULL;
3872 	write_sz = 0;
3873 	full = B_FALSE;
3874 	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3875 	head->b_flags |= ARC_L2_WRITE_HEAD;
3876 
3877 	/*
3878 	 * Copy buffers for L2ARC writing.
3879 	 */
3880 	mutex_enter(&l2arc_buflist_mtx);
3881 	for (int try = 0; try <= 3; try++) {
3882 		list = l2arc_list_locked(try, &list_lock);
3883 		passed_sz = 0;
3884 
3885 		for (ab = list_tail(list); ab; ab = ab_prev) {
3886 			ab_prev = list_prev(list, ab);
3887 
3888 			hash_lock = HDR_LOCK(ab);
3889 			have_lock = MUTEX_HELD(hash_lock);
3890 			if (!have_lock && !mutex_tryenter(hash_lock)) {
3891 				/*
3892 				 * Skip this buffer rather than waiting.
3893 				 */
3894 				continue;
3895 			}
3896 
3897 			passed_sz += ab->b_size;
3898 			if (passed_sz > headroom) {
3899 				/*
3900 				 * Searched too far.
3901 				 */
3902 				mutex_exit(hash_lock);
3903 				break;
3904 			}
3905 
3906 			if (ab->b_spa != spa) {
3907 				mutex_exit(hash_lock);
3908 				continue;
3909 			}
3910 
3911 			if (ab->b_l2hdr != NULL) {
3912 				/*
3913 				 * Already in L2ARC.
3914 				 */
3915 				mutex_exit(hash_lock);
3916 				continue;
3917 			}
3918 
3919 			if (HDR_IO_IN_PROGRESS(ab) || HDR_DONT_L2CACHE(ab)) {
3920 				mutex_exit(hash_lock);
3921 				continue;
3922 			}
3923 
3924 			if ((write_sz + ab->b_size) > target_sz) {
3925 				full = B_TRUE;
3926 				mutex_exit(hash_lock);
3927 				break;
3928 			}
3929 
3930 			if (ab->b_buf == NULL) {
3931 				DTRACE_PROBE1(l2arc__buf__null, void *, ab);
3932 				mutex_exit(hash_lock);
3933 				continue;
3934 			}
3935 
3936 			if (pio == NULL) {
3937 				/*
3938 				 * Insert a dummy header on the buflist so
3939 				 * l2arc_write_done() can find where the
3940 				 * write buffers begin without searching.
3941 				 */
3942 				list_insert_head(dev->l2ad_buflist, head);
3943 
3944 				cb = kmem_alloc(
3945 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
3946 				cb->l2wcb_dev = dev;
3947 				cb->l2wcb_head = head;
3948 				pio = zio_root(spa, l2arc_write_done, cb,
3949 				    ZIO_FLAG_CANFAIL);
3950 			}
3951 
3952 			/*
3953 			 * Create and add a new L2ARC header.
3954 			 */
3955 			hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
3956 			hdrl2->b_dev = dev;
3957 			hdrl2->b_daddr = dev->l2ad_hand;
3958 
3959 			ab->b_flags |= ARC_L2_WRITING;
3960 			ab->b_l2hdr = hdrl2;
3961 			list_insert_head(dev->l2ad_buflist, ab);
3962 			buf_data = ab->b_buf->b_data;
3963 			buf_sz = ab->b_size;
3964 
3965 			/*
3966 			 * Compute and store the buffer cksum before
3967 			 * writing.  On debug the cksum is verified first.
3968 			 */
3969 			arc_cksum_verify(ab->b_buf);
3970 			arc_cksum_compute(ab->b_buf, B_TRUE);
3971 
3972 			mutex_exit(hash_lock);
3973 
3974 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
3975 			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
3976 			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
3977 			    ZIO_FLAG_CANFAIL, B_FALSE);
3978 
3979 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
3980 			    zio_t *, wzio);
3981 			(void) zio_nowait(wzio);
3982 
3983 			write_sz += buf_sz;
3984 			dev->l2ad_hand += buf_sz;
3985 		}
3986 
3987 		mutex_exit(list_lock);
3988 
3989 		if (full == B_TRUE)
3990 			break;
3991 	}
3992 	mutex_exit(&l2arc_buflist_mtx);
3993 
3994 	if (pio == NULL) {
3995 		ASSERT3U(write_sz, ==, 0);
3996 		kmem_cache_free(hdr_cache, head);
3997 		return;
3998 	}
3999 
4000 	ASSERT3U(write_sz, <=, target_sz);
4001 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4002 	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4003 	spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz);
4004 
4005 	/*
4006 	 * Bump device hand to the device start if it is approaching the end.
4007 	 * l2arc_evict() will already have evicted ahead for this case.
4008 	 */
4009 	if (dev->l2ad_hand >= (dev->l2ad_end - dev->l2ad_write)) {
4010 		spa_l2cache_space_update(dev->l2ad_vdev, 0,
4011 		    dev->l2ad_end - dev->l2ad_hand);
4012 		dev->l2ad_hand = dev->l2ad_start;
4013 		dev->l2ad_evict = dev->l2ad_start;
4014 		dev->l2ad_first = B_FALSE;
4015 	}
4016 
4017 	(void) zio_wait(pio);
4018 }
4019 
4020 /*
4021  * This thread feeds the L2ARC at regular intervals.  This is the beating
4022  * heart of the L2ARC.
4023  */
4024 static void
4025 l2arc_feed_thread(void)
4026 {
4027 	callb_cpr_t cpr;
4028 	l2arc_dev_t *dev;
4029 	spa_t *spa;
4030 	int interval;
4031 	boolean_t startup = B_TRUE;
4032 
4033 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4034 
4035 	mutex_enter(&l2arc_feed_thr_lock);
4036 
4037 	while (l2arc_thread_exit == 0) {
4038 		/*
4039 		 * Initially pause for L2ARC_FEED_DELAY seconds as a grace
4040 		 * interval during boot, followed by l2arc_feed_secs seconds
4041 		 * thereafter.
4042 		 */
4043 		CALLB_CPR_SAFE_BEGIN(&cpr);
4044 		if (startup) {
4045 			interval = L2ARC_FEED_DELAY;
4046 			startup = B_FALSE;
4047 		} else {
4048 			interval = l2arc_feed_secs;
4049 		}
4050 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4051 		    lbolt + (hz * interval));
4052 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4053 
4054 		/*
4055 		 * Do nothing until L2ARC devices exist.
4056 		 */
4057 		mutex_enter(&l2arc_dev_mtx);
4058 		if (l2arc_ndev == 0) {
4059 			mutex_exit(&l2arc_dev_mtx);
4060 			continue;
4061 		}
4062 
4063 		/*
4064 		 * Avoid contributing to memory pressure.
4065 		 */
4066 		if (arc_reclaim_needed()) {
4067 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4068 			mutex_exit(&l2arc_dev_mtx);
4069 			continue;
4070 		}
4071 
4072 		/*
4073 		 * This selects the next l2arc device to write to, and in
4074 		 * doing so the next spa to feed from: dev->l2ad_spa.
4075 		 */
4076 		if ((dev = l2arc_dev_get_next()) == NULL) {
4077 			mutex_exit(&l2arc_dev_mtx);
4078 			continue;
4079 		}
4080 		spa = dev->l2ad_spa;
4081 		ASSERT(spa != NULL);
4082 		ARCSTAT_BUMP(arcstat_l2_feeds);
4083 
4084 		/*
4085 		 * Evict L2ARC buffers that will be overwritten.
4086 		 */
4087 		l2arc_evict(dev, dev->l2ad_write, B_FALSE);
4088 
4089 		/*
4090 		 * Write ARC buffers.
4091 		 */
4092 		l2arc_write_buffers(spa, dev);
4093 		mutex_exit(&l2arc_dev_mtx);
4094 	}
4095 
4096 	l2arc_thread_exit = 0;
4097 	cv_broadcast(&l2arc_feed_thr_cv);
4098 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4099 	thread_exit();
4100 }
4101 
4102 /*
4103  * Add a vdev for use by the L2ARC.  By this point the spa has already
4104  * validated the vdev and opened it.
4105  */
4106 void
4107 l2arc_add_vdev(spa_t *spa, vdev_t *vd, uint64_t start, uint64_t end)
4108 {
4109 	l2arc_dev_t *adddev;
4110 
4111 	/*
4112 	 * Create a new l2arc device entry.
4113 	 */
4114 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4115 	adddev->l2ad_spa = spa;
4116 	adddev->l2ad_vdev = vd;
4117 	adddev->l2ad_write = l2arc_write_max;
4118 	adddev->l2ad_start = start;
4119 	adddev->l2ad_end = end;
4120 	adddev->l2ad_hand = adddev->l2ad_start;
4121 	adddev->l2ad_evict = adddev->l2ad_start;
4122 	adddev->l2ad_first = B_TRUE;
4123 	ASSERT3U(adddev->l2ad_write, >, 0);
4124 
4125 	/*
4126 	 * This is a list of all ARC buffers that are still valid on the
4127 	 * device.
4128 	 */
4129 	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4130 	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4131 	    offsetof(arc_buf_hdr_t, b_l2node));
4132 
4133 	spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0);
4134 
4135 	/*
4136 	 * Add device to global list
4137 	 */
4138 	mutex_enter(&l2arc_dev_mtx);
4139 	list_insert_head(l2arc_dev_list, adddev);
4140 	atomic_inc_64(&l2arc_ndev);
4141 	mutex_exit(&l2arc_dev_mtx);
4142 }
4143 
4144 /*
4145  * Remove a vdev from the L2ARC.
4146  */
4147 void
4148 l2arc_remove_vdev(vdev_t *vd)
4149 {
4150 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4151 
4152 	/*
4153 	 * We can only grab the spa config lock when cache device writes
4154 	 * complete.
4155 	 */
4156 	ASSERT3U(l2arc_writes_sent, ==, l2arc_writes_done);
4157 
4158 	/*
4159 	 * Find the device by vdev
4160 	 */
4161 	mutex_enter(&l2arc_dev_mtx);
4162 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4163 		nextdev = list_next(l2arc_dev_list, dev);
4164 		if (vd == dev->l2ad_vdev) {
4165 			remdev = dev;
4166 			break;
4167 		}
4168 	}
4169 	ASSERT(remdev != NULL);
4170 
4171 	/*
4172 	 * Remove device from global list
4173 	 */
4174 	list_remove(l2arc_dev_list, remdev);
4175 	l2arc_dev_last = NULL;		/* may have been invalidated */
4176 
4177 	/*
4178 	 * Clear all buflists and ARC references.  L2ARC device flush.
4179 	 */
4180 	l2arc_evict(remdev, 0, B_TRUE);
4181 	list_destroy(remdev->l2ad_buflist);
4182 	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4183 	kmem_free(remdev, sizeof (l2arc_dev_t));
4184 
4185 	atomic_dec_64(&l2arc_ndev);
4186 	mutex_exit(&l2arc_dev_mtx);
4187 }
4188 
4189 void
4190 l2arc_init()
4191 {
4192 	l2arc_thread_exit = 0;
4193 	l2arc_ndev = 0;
4194 	l2arc_writes_sent = 0;
4195 	l2arc_writes_done = 0;
4196 
4197 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4198 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4199 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4200 	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4201 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4202 
4203 	l2arc_dev_list = &L2ARC_dev_list;
4204 	l2arc_free_on_write = &L2ARC_free_on_write;
4205 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4206 	    offsetof(l2arc_dev_t, l2ad_node));
4207 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4208 	    offsetof(l2arc_data_free_t, l2df_list_node));
4209 
4210 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4211 	    TS_RUN, minclsyspri);
4212 }
4213 
4214 void
4215 l2arc_fini()
4216 {
4217 	mutex_enter(&l2arc_feed_thr_lock);
4218 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
4219 	l2arc_thread_exit = 1;
4220 	while (l2arc_thread_exit != 0)
4221 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4222 	mutex_exit(&l2arc_feed_thr_lock);
4223 
4224 	mutex_destroy(&l2arc_feed_thr_lock);
4225 	cv_destroy(&l2arc_feed_thr_cv);
4226 	mutex_destroy(&l2arc_dev_mtx);
4227 	mutex_destroy(&l2arc_buflist_mtx);
4228 	mutex_destroy(&l2arc_free_on_write_mtx);
4229 
4230 	list_destroy(l2arc_dev_list);
4231 	list_destroy(l2arc_free_on_write);
4232 }
4233