1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * DVA-based Adjustable Replacement Cache 31 * 32 * While much of the theory of operation used here is 33 * based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slows the flow of new data 52 * into the cache until we can make space available. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory pressure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefore exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefore choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() interface 80 * uses method 1, while the internal arc algorithms for 81 * adjusting the cache use method 2. We therefore provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * arc list locks. 84 * 85 * Buffers do not have their own mutexes, rather they rely on the 86 * hash table mutexes for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexes). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each arc state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an arc list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the active state mutex must be held before the ghost state mutex. 101 * 102 * Arc buffers may have an associated eviction callback function. 103 * This function will be invoked prior to removing the buffer (e.g. 104 * in arc_do_user_evicts()). Note however that the data associated 105 * with the buffer may be evicted prior to the callback. The callback 106 * must be made with *no locks held* (to prevent deadlock). Additionally, 107 * the users of callbacks must ensure that their private data is 108 * protected from simultaneous callbacks from arc_clear_callback() 109 * and arc_do_user_evicts(). 110 * 111 * Note that the majority of the performance stats are manipulated 112 * with atomic operations. 113 * 114 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 115 * 116 * - L2ARC buflist creation 117 * - L2ARC buflist eviction 118 * - L2ARC write completion, which walks L2ARC buflists 119 * - ARC header destruction, as it removes from L2ARC buflists 120 * - ARC header release, as it removes from L2ARC buflists 121 */ 122 123 #include <sys/spa.h> 124 #include <sys/zio.h> 125 #include <sys/zio_compress.h> 126 #include <sys/zfs_context.h> 127 #include <sys/arc.h> 128 #include <sys/refcount.h> 129 #include <sys/vdev.h> 130 #include <sys/vdev_impl.h> 131 #include <sys/dsl_pool.h> 132 #ifdef _KERNEL 133 #include <sys/vmsystm.h> 134 #include <vm/anon.h> 135 #include <sys/fs/swapnode.h> 136 #include <sys/dnlc.h> 137 #endif 138 #include <sys/callb.h> 139 #include <sys/kstat.h> 140 #include <zfs_fletcher.h> 141 142 #ifndef _KERNEL 143 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 144 boolean_t arc_watch = B_FALSE; 145 int arc_procfd; 146 #endif 147 148 static kmutex_t arc_reclaim_thr_lock; 149 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 150 static uint8_t arc_thread_exit; 151 152 #define ARC_REDUCE_DNLC_PERCENT 3 153 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 154 155 typedef enum arc_reclaim_strategy { 156 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 157 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 158 } arc_reclaim_strategy_t; 159 160 /* 161 * The number of iterations through arc_evict_*() before we 162 * drop & reacquire the lock. 163 */ 164 int arc_evict_iterations = 100; 165 166 /* number of seconds before growing cache again */ 167 static int arc_grow_retry = 60; 168 169 /* shift of arc_c for calculating both min and max arc_p */ 170 static int arc_p_min_shift = 4; 171 172 /* log2(fraction of arc to reclaim) */ 173 static int arc_shrink_shift = 5; 174 175 /* 176 * minimum lifespan of a prefetch block in clock ticks 177 * (initialized in arc_init()) 178 */ 179 static int arc_min_prefetch_lifespan; 180 181 /* 182 * If this percent of memory is free, don't throttle. 183 */ 184 int arc_lotsfree_percent = 10; 185 186 static int arc_dead; 187 188 /* 189 * The arc has filled available memory and has now warmed up. 190 */ 191 static boolean_t arc_warm; 192 193 /* 194 * These tunables are for performance analysis. 195 */ 196 uint64_t zfs_arc_max; 197 uint64_t zfs_arc_min; 198 uint64_t zfs_arc_meta_limit = 0; 199 uint64_t zfs_arc_meta_min = 0; 200 int zfs_arc_grow_retry = 0; 201 int zfs_arc_shrink_shift = 0; 202 int zfs_arc_p_min_shift = 0; 203 int zfs_disable_dup_eviction = 0; 204 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 205 206 /* 207 * Note that buffers can be in one of 6 states: 208 * ARC_anon - anonymous (discussed below) 209 * ARC_mru - recently used, currently cached 210 * ARC_mru_ghost - recentely used, no longer in cache 211 * ARC_mfu - frequently used, currently cached 212 * ARC_mfu_ghost - frequently used, no longer in cache 213 * ARC_l2c_only - exists in L2ARC but not other states 214 * When there are no active references to the buffer, they are 215 * are linked onto a list in one of these arc states. These are 216 * the only buffers that can be evicted or deleted. Within each 217 * state there are multiple lists, one for meta-data and one for 218 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 219 * etc.) is tracked separately so that it can be managed more 220 * explicitly: favored over data, limited explicitly. 221 * 222 * Anonymous buffers are buffers that are not associated with 223 * a DVA. These are buffers that hold dirty block copies 224 * before they are written to stable storage. By definition, 225 * they are "ref'd" and are considered part of arc_mru 226 * that cannot be freed. Generally, they will aquire a DVA 227 * as they are written and migrate onto the arc_mru list. 228 * 229 * The ARC_l2c_only state is for buffers that are in the second 230 * level ARC but no longer in any of the ARC_m* lists. The second 231 * level ARC itself may also contain buffers that are in any of 232 * the ARC_m* states - meaning that a buffer can exist in two 233 * places. The reason for the ARC_l2c_only state is to keep the 234 * buffer header in the hash table, so that reads that hit the 235 * second level ARC benefit from these fast lookups. 236 */ 237 238 typedef struct arc_state { 239 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 240 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 241 uint64_t arcs_size; /* total amount of data in this state */ 242 kmutex_t arcs_mtx; 243 } arc_state_t; 244 245 /* The 6 states: */ 246 static arc_state_t ARC_anon; 247 static arc_state_t ARC_mru; 248 static arc_state_t ARC_mru_ghost; 249 static arc_state_t ARC_mfu; 250 static arc_state_t ARC_mfu_ghost; 251 static arc_state_t ARC_l2c_only; 252 253 typedef struct arc_stats { 254 kstat_named_t arcstat_hits; 255 kstat_named_t arcstat_misses; 256 kstat_named_t arcstat_demand_data_hits; 257 kstat_named_t arcstat_demand_data_misses; 258 kstat_named_t arcstat_demand_metadata_hits; 259 kstat_named_t arcstat_demand_metadata_misses; 260 kstat_named_t arcstat_prefetch_data_hits; 261 kstat_named_t arcstat_prefetch_data_misses; 262 kstat_named_t arcstat_prefetch_metadata_hits; 263 kstat_named_t arcstat_prefetch_metadata_misses; 264 kstat_named_t arcstat_mru_hits; 265 kstat_named_t arcstat_mru_ghost_hits; 266 kstat_named_t arcstat_mfu_hits; 267 kstat_named_t arcstat_mfu_ghost_hits; 268 kstat_named_t arcstat_deleted; 269 kstat_named_t arcstat_recycle_miss; 270 /* 271 * Number of buffers that could not be evicted because the hash lock 272 * was held by another thread. The lock may not necessarily be held 273 * by something using the same buffer, since hash locks are shared 274 * by multiple buffers. 275 */ 276 kstat_named_t arcstat_mutex_miss; 277 /* 278 * Number of buffers skipped because they have I/O in progress, are 279 * indrect prefetch buffers that have not lived long enough, or are 280 * not from the spa we're trying to evict from. 281 */ 282 kstat_named_t arcstat_evict_skip; 283 kstat_named_t arcstat_evict_l2_cached; 284 kstat_named_t arcstat_evict_l2_eligible; 285 kstat_named_t arcstat_evict_l2_ineligible; 286 kstat_named_t arcstat_hash_elements; 287 kstat_named_t arcstat_hash_elements_max; 288 kstat_named_t arcstat_hash_collisions; 289 kstat_named_t arcstat_hash_chains; 290 kstat_named_t arcstat_hash_chain_max; 291 kstat_named_t arcstat_p; 292 kstat_named_t arcstat_c; 293 kstat_named_t arcstat_c_min; 294 kstat_named_t arcstat_c_max; 295 kstat_named_t arcstat_size; 296 kstat_named_t arcstat_hdr_size; 297 kstat_named_t arcstat_data_size; 298 kstat_named_t arcstat_other_size; 299 kstat_named_t arcstat_l2_hits; 300 kstat_named_t arcstat_l2_misses; 301 kstat_named_t arcstat_l2_feeds; 302 kstat_named_t arcstat_l2_rw_clash; 303 kstat_named_t arcstat_l2_read_bytes; 304 kstat_named_t arcstat_l2_write_bytes; 305 kstat_named_t arcstat_l2_writes_sent; 306 kstat_named_t arcstat_l2_writes_done; 307 kstat_named_t arcstat_l2_writes_error; 308 kstat_named_t arcstat_l2_writes_hdr_miss; 309 kstat_named_t arcstat_l2_evict_lock_retry; 310 kstat_named_t arcstat_l2_evict_reading; 311 kstat_named_t arcstat_l2_free_on_write; 312 kstat_named_t arcstat_l2_abort_lowmem; 313 kstat_named_t arcstat_l2_cksum_bad; 314 kstat_named_t arcstat_l2_io_error; 315 kstat_named_t arcstat_l2_size; 316 kstat_named_t arcstat_l2_asize; 317 kstat_named_t arcstat_l2_hdr_size; 318 kstat_named_t arcstat_l2_compress_successes; 319 kstat_named_t arcstat_l2_compress_zeros; 320 kstat_named_t arcstat_l2_compress_failures; 321 kstat_named_t arcstat_memory_throttle_count; 322 kstat_named_t arcstat_duplicate_buffers; 323 kstat_named_t arcstat_duplicate_buffers_size; 324 kstat_named_t arcstat_duplicate_reads; 325 kstat_named_t arcstat_meta_used; 326 kstat_named_t arcstat_meta_limit; 327 kstat_named_t arcstat_meta_max; 328 kstat_named_t arcstat_meta_min; 329 } arc_stats_t; 330 331 static arc_stats_t arc_stats = { 332 { "hits", KSTAT_DATA_UINT64 }, 333 { "misses", KSTAT_DATA_UINT64 }, 334 { "demand_data_hits", KSTAT_DATA_UINT64 }, 335 { "demand_data_misses", KSTAT_DATA_UINT64 }, 336 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 337 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 338 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 339 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 340 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 341 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 342 { "mru_hits", KSTAT_DATA_UINT64 }, 343 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 344 { "mfu_hits", KSTAT_DATA_UINT64 }, 345 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 346 { "deleted", KSTAT_DATA_UINT64 }, 347 { "recycle_miss", KSTAT_DATA_UINT64 }, 348 { "mutex_miss", KSTAT_DATA_UINT64 }, 349 { "evict_skip", KSTAT_DATA_UINT64 }, 350 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 351 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 352 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 353 { "hash_elements", KSTAT_DATA_UINT64 }, 354 { "hash_elements_max", KSTAT_DATA_UINT64 }, 355 { "hash_collisions", KSTAT_DATA_UINT64 }, 356 { "hash_chains", KSTAT_DATA_UINT64 }, 357 { "hash_chain_max", KSTAT_DATA_UINT64 }, 358 { "p", KSTAT_DATA_UINT64 }, 359 { "c", KSTAT_DATA_UINT64 }, 360 { "c_min", KSTAT_DATA_UINT64 }, 361 { "c_max", KSTAT_DATA_UINT64 }, 362 { "size", KSTAT_DATA_UINT64 }, 363 { "hdr_size", KSTAT_DATA_UINT64 }, 364 { "data_size", KSTAT_DATA_UINT64 }, 365 { "other_size", KSTAT_DATA_UINT64 }, 366 { "l2_hits", KSTAT_DATA_UINT64 }, 367 { "l2_misses", KSTAT_DATA_UINT64 }, 368 { "l2_feeds", KSTAT_DATA_UINT64 }, 369 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 370 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 371 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 372 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 373 { "l2_writes_done", KSTAT_DATA_UINT64 }, 374 { "l2_writes_error", KSTAT_DATA_UINT64 }, 375 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 376 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 377 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 378 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 379 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 380 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 381 { "l2_io_error", KSTAT_DATA_UINT64 }, 382 { "l2_size", KSTAT_DATA_UINT64 }, 383 { "l2_asize", KSTAT_DATA_UINT64 }, 384 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 385 { "l2_compress_successes", KSTAT_DATA_UINT64 }, 386 { "l2_compress_zeros", KSTAT_DATA_UINT64 }, 387 { "l2_compress_failures", KSTAT_DATA_UINT64 }, 388 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 389 { "duplicate_buffers", KSTAT_DATA_UINT64 }, 390 { "duplicate_buffers_size", KSTAT_DATA_UINT64 }, 391 { "duplicate_reads", KSTAT_DATA_UINT64 }, 392 { "arc_meta_used", KSTAT_DATA_UINT64 }, 393 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 394 { "arc_meta_max", KSTAT_DATA_UINT64 }, 395 { "arc_meta_min", KSTAT_DATA_UINT64 } 396 }; 397 398 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 399 400 #define ARCSTAT_INCR(stat, val) \ 401 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 402 403 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 404 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 405 406 #define ARCSTAT_MAX(stat, val) { \ 407 uint64_t m; \ 408 while ((val) > (m = arc_stats.stat.value.ui64) && \ 409 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 410 continue; \ 411 } 412 413 #define ARCSTAT_MAXSTAT(stat) \ 414 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 415 416 /* 417 * We define a macro to allow ARC hits/misses to be easily broken down by 418 * two separate conditions, giving a total of four different subtypes for 419 * each of hits and misses (so eight statistics total). 420 */ 421 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 422 if (cond1) { \ 423 if (cond2) { \ 424 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 425 } else { \ 426 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 427 } \ 428 } else { \ 429 if (cond2) { \ 430 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 431 } else { \ 432 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 433 } \ 434 } 435 436 kstat_t *arc_ksp; 437 static arc_state_t *arc_anon; 438 static arc_state_t *arc_mru; 439 static arc_state_t *arc_mru_ghost; 440 static arc_state_t *arc_mfu; 441 static arc_state_t *arc_mfu_ghost; 442 static arc_state_t *arc_l2c_only; 443 444 /* 445 * There are several ARC variables that are critical to export as kstats -- 446 * but we don't want to have to grovel around in the kstat whenever we wish to 447 * manipulate them. For these variables, we therefore define them to be in 448 * terms of the statistic variable. This assures that we are not introducing 449 * the possibility of inconsistency by having shadow copies of the variables, 450 * while still allowing the code to be readable. 451 */ 452 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 453 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 454 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 455 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 456 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 457 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 458 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 459 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ 460 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 461 462 #define L2ARC_IS_VALID_COMPRESS(_c_) \ 463 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY) 464 465 static int arc_no_grow; /* Don't try to grow cache size */ 466 static uint64_t arc_tempreserve; 467 static uint64_t arc_loaned_bytes; 468 469 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 470 471 typedef struct arc_callback arc_callback_t; 472 473 struct arc_callback { 474 void *acb_private; 475 arc_done_func_t *acb_done; 476 arc_buf_t *acb_buf; 477 zio_t *acb_zio_dummy; 478 arc_callback_t *acb_next; 479 }; 480 481 typedef struct arc_write_callback arc_write_callback_t; 482 483 struct arc_write_callback { 484 void *awcb_private; 485 arc_done_func_t *awcb_ready; 486 arc_done_func_t *awcb_physdone; 487 arc_done_func_t *awcb_done; 488 arc_buf_t *awcb_buf; 489 }; 490 491 struct arc_buf_hdr { 492 /* protected by hash lock */ 493 dva_t b_dva; 494 uint64_t b_birth; 495 uint64_t b_cksum0; 496 497 kmutex_t b_freeze_lock; 498 zio_cksum_t *b_freeze_cksum; 499 void *b_thawed; 500 501 arc_buf_hdr_t *b_hash_next; 502 arc_buf_t *b_buf; 503 arc_flags_t b_flags; 504 uint32_t b_datacnt; 505 506 arc_callback_t *b_acb; 507 kcondvar_t b_cv; 508 509 /* immutable */ 510 arc_buf_contents_t b_type; 511 uint64_t b_size; 512 uint64_t b_spa; 513 514 /* protected by arc state mutex */ 515 arc_state_t *b_state; 516 list_node_t b_arc_node; 517 518 /* updated atomically */ 519 clock_t b_arc_access; 520 521 /* self protecting */ 522 refcount_t b_refcnt; 523 524 l2arc_buf_hdr_t *b_l2hdr; 525 list_node_t b_l2node; 526 }; 527 528 static arc_buf_t *arc_eviction_list; 529 static kmutex_t arc_eviction_mtx; 530 static arc_buf_hdr_t arc_eviction_hdr; 531 532 #define GHOST_STATE(state) \ 533 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 534 (state) == arc_l2c_only) 535 536 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 537 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 538 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 539 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 540 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FLAG_FREED_IN_READ) 541 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE) 542 #define HDR_FREE_IN_PROGRESS(hdr) \ 543 ((hdr)->b_flags & ARC_FLAG_FREE_IN_PROGRESS) 544 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 545 #define HDR_L2_READING(hdr) \ 546 ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS && \ 547 (hdr)->b_l2hdr != NULL) 548 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 549 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 550 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 551 552 /* 553 * Other sizes 554 */ 555 556 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 557 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 558 559 /* 560 * Hash table routines 561 */ 562 563 #define HT_LOCK_PAD 64 564 565 struct ht_lock { 566 kmutex_t ht_lock; 567 #ifdef _KERNEL 568 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 569 #endif 570 }; 571 572 #define BUF_LOCKS 256 573 typedef struct buf_hash_table { 574 uint64_t ht_mask; 575 arc_buf_hdr_t **ht_table; 576 struct ht_lock ht_locks[BUF_LOCKS]; 577 } buf_hash_table_t; 578 579 static buf_hash_table_t buf_hash_table; 580 581 #define BUF_HASH_INDEX(spa, dva, birth) \ 582 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 583 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 584 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 585 #define HDR_LOCK(hdr) \ 586 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 587 588 uint64_t zfs_crc64_table[256]; 589 590 /* 591 * Level 2 ARC 592 */ 593 594 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 595 #define L2ARC_HEADROOM 2 /* num of writes */ 596 /* 597 * If we discover during ARC scan any buffers to be compressed, we boost 598 * our headroom for the next scanning cycle by this percentage multiple. 599 */ 600 #define L2ARC_HEADROOM_BOOST 200 601 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 602 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 603 604 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 605 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 606 607 /* L2ARC Performance Tunables */ 608 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 609 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 610 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 611 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 612 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 613 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 614 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 615 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 616 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 617 618 /* 619 * L2ARC Internals 620 */ 621 typedef struct l2arc_dev { 622 vdev_t *l2ad_vdev; /* vdev */ 623 spa_t *l2ad_spa; /* spa */ 624 uint64_t l2ad_hand; /* next write location */ 625 uint64_t l2ad_start; /* first addr on device */ 626 uint64_t l2ad_end; /* last addr on device */ 627 uint64_t l2ad_evict; /* last addr eviction reached */ 628 boolean_t l2ad_first; /* first sweep through */ 629 boolean_t l2ad_writing; /* currently writing */ 630 list_t *l2ad_buflist; /* buffer list */ 631 list_node_t l2ad_node; /* device list node */ 632 } l2arc_dev_t; 633 634 static list_t L2ARC_dev_list; /* device list */ 635 static list_t *l2arc_dev_list; /* device list pointer */ 636 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 637 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 638 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 639 static list_t L2ARC_free_on_write; /* free after write buf list */ 640 static list_t *l2arc_free_on_write; /* free after write list ptr */ 641 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 642 static uint64_t l2arc_ndev; /* number of devices */ 643 644 typedef struct l2arc_read_callback { 645 arc_buf_t *l2rcb_buf; /* read buffer */ 646 spa_t *l2rcb_spa; /* spa */ 647 blkptr_t l2rcb_bp; /* original blkptr */ 648 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 649 int l2rcb_flags; /* original flags */ 650 enum zio_compress l2rcb_compress; /* applied compress */ 651 } l2arc_read_callback_t; 652 653 typedef struct l2arc_write_callback { 654 l2arc_dev_t *l2wcb_dev; /* device info */ 655 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 656 } l2arc_write_callback_t; 657 658 struct l2arc_buf_hdr { 659 /* protected by arc_buf_hdr mutex */ 660 l2arc_dev_t *b_dev; /* L2ARC device */ 661 uint64_t b_daddr; /* disk address, offset byte */ 662 /* compression applied to buffer data */ 663 enum zio_compress b_compress; 664 /* real alloc'd buffer size depending on b_compress applied */ 665 int b_asize; 666 /* temporary buffer holder for in-flight compressed data */ 667 void *b_tmp_cdata; 668 }; 669 670 typedef struct l2arc_data_free { 671 /* protected by l2arc_free_on_write_mtx */ 672 void *l2df_data; 673 size_t l2df_size; 674 void (*l2df_func)(void *, size_t); 675 list_node_t l2df_list_node; 676 } l2arc_data_free_t; 677 678 static kmutex_t l2arc_feed_thr_lock; 679 static kcondvar_t l2arc_feed_thr_cv; 680 static uint8_t l2arc_thread_exit; 681 682 static void arc_get_data_buf(arc_buf_t *); 683 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 684 static int arc_evict_needed(arc_buf_contents_t); 685 static void arc_evict_ghost(arc_state_t *, uint64_t, int64_t); 686 static void arc_buf_watch(arc_buf_t *); 687 688 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 689 static void l2arc_read_done(zio_t *); 690 static void l2arc_hdr_stat_add(void); 691 static void l2arc_hdr_stat_remove(void); 692 693 static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *); 694 static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress); 695 static void l2arc_release_cdata_buf(arc_buf_hdr_t *); 696 697 static uint64_t 698 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 699 { 700 uint8_t *vdva = (uint8_t *)dva; 701 uint64_t crc = -1ULL; 702 int i; 703 704 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 705 706 for (i = 0; i < sizeof (dva_t); i++) 707 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 708 709 crc ^= (spa>>8) ^ birth; 710 711 return (crc); 712 } 713 714 #define BUF_EMPTY(buf) \ 715 ((buf)->b_dva.dva_word[0] == 0 && \ 716 (buf)->b_dva.dva_word[1] == 0 && \ 717 (buf)->b_cksum0 == 0) 718 719 #define BUF_EQUAL(spa, dva, birth, buf) \ 720 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 721 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 722 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 723 724 static void 725 buf_discard_identity(arc_buf_hdr_t *hdr) 726 { 727 hdr->b_dva.dva_word[0] = 0; 728 hdr->b_dva.dva_word[1] = 0; 729 hdr->b_birth = 0; 730 hdr->b_cksum0 = 0; 731 } 732 733 static arc_buf_hdr_t * 734 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 735 { 736 const dva_t *dva = BP_IDENTITY(bp); 737 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 738 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 739 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 740 arc_buf_hdr_t *hdr; 741 742 mutex_enter(hash_lock); 743 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 744 hdr = hdr->b_hash_next) { 745 if (BUF_EQUAL(spa, dva, birth, hdr)) { 746 *lockp = hash_lock; 747 return (hdr); 748 } 749 } 750 mutex_exit(hash_lock); 751 *lockp = NULL; 752 return (NULL); 753 } 754 755 /* 756 * Insert an entry into the hash table. If there is already an element 757 * equal to elem in the hash table, then the already existing element 758 * will be returned and the new element will not be inserted. 759 * Otherwise returns NULL. 760 */ 761 static arc_buf_hdr_t * 762 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 763 { 764 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 765 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 766 arc_buf_hdr_t *fhdr; 767 uint32_t i; 768 769 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 770 ASSERT(hdr->b_birth != 0); 771 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 772 *lockp = hash_lock; 773 mutex_enter(hash_lock); 774 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 775 fhdr = fhdr->b_hash_next, i++) { 776 if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 777 return (fhdr); 778 } 779 780 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 781 buf_hash_table.ht_table[idx] = hdr; 782 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE; 783 784 /* collect some hash table performance data */ 785 if (i > 0) { 786 ARCSTAT_BUMP(arcstat_hash_collisions); 787 if (i == 1) 788 ARCSTAT_BUMP(arcstat_hash_chains); 789 790 ARCSTAT_MAX(arcstat_hash_chain_max, i); 791 } 792 793 ARCSTAT_BUMP(arcstat_hash_elements); 794 ARCSTAT_MAXSTAT(arcstat_hash_elements); 795 796 return (NULL); 797 } 798 799 static void 800 buf_hash_remove(arc_buf_hdr_t *hdr) 801 { 802 arc_buf_hdr_t *fhdr, **hdrp; 803 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 804 805 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 806 ASSERT(HDR_IN_HASH_TABLE(hdr)); 807 808 hdrp = &buf_hash_table.ht_table[idx]; 809 while ((fhdr = *hdrp) != hdr) { 810 ASSERT(fhdr != NULL); 811 hdrp = &fhdr->b_hash_next; 812 } 813 *hdrp = hdr->b_hash_next; 814 hdr->b_hash_next = NULL; 815 hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE; 816 817 /* collect some hash table performance data */ 818 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 819 820 if (buf_hash_table.ht_table[idx] && 821 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 822 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 823 } 824 825 /* 826 * Global data structures and functions for the buf kmem cache. 827 */ 828 static kmem_cache_t *hdr_cache; 829 static kmem_cache_t *buf_cache; 830 831 static void 832 buf_fini(void) 833 { 834 int i; 835 836 kmem_free(buf_hash_table.ht_table, 837 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 838 for (i = 0; i < BUF_LOCKS; i++) 839 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 840 kmem_cache_destroy(hdr_cache); 841 kmem_cache_destroy(buf_cache); 842 } 843 844 /* 845 * Constructor callback - called when the cache is empty 846 * and a new buf is requested. 847 */ 848 /* ARGSUSED */ 849 static int 850 hdr_cons(void *vbuf, void *unused, int kmflag) 851 { 852 arc_buf_hdr_t *hdr = vbuf; 853 854 bzero(hdr, sizeof (arc_buf_hdr_t)); 855 refcount_create(&hdr->b_refcnt); 856 cv_init(&hdr->b_cv, NULL, CV_DEFAULT, NULL); 857 mutex_init(&hdr->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 858 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 859 860 return (0); 861 } 862 863 /* ARGSUSED */ 864 static int 865 buf_cons(void *vbuf, void *unused, int kmflag) 866 { 867 arc_buf_t *buf = vbuf; 868 869 bzero(buf, sizeof (arc_buf_t)); 870 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 871 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 872 873 return (0); 874 } 875 876 /* 877 * Destructor callback - called when a cached buf is 878 * no longer required. 879 */ 880 /* ARGSUSED */ 881 static void 882 hdr_dest(void *vbuf, void *unused) 883 { 884 arc_buf_hdr_t *hdr = vbuf; 885 886 ASSERT(BUF_EMPTY(hdr)); 887 refcount_destroy(&hdr->b_refcnt); 888 cv_destroy(&hdr->b_cv); 889 mutex_destroy(&hdr->b_freeze_lock); 890 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 891 } 892 893 /* ARGSUSED */ 894 static void 895 buf_dest(void *vbuf, void *unused) 896 { 897 arc_buf_t *buf = vbuf; 898 899 mutex_destroy(&buf->b_evict_lock); 900 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 901 } 902 903 /* 904 * Reclaim callback -- invoked when memory is low. 905 */ 906 /* ARGSUSED */ 907 static void 908 hdr_recl(void *unused) 909 { 910 dprintf("hdr_recl called\n"); 911 /* 912 * umem calls the reclaim func when we destroy the buf cache, 913 * which is after we do arc_fini(). 914 */ 915 if (!arc_dead) 916 cv_signal(&arc_reclaim_thr_cv); 917 } 918 919 static void 920 buf_init(void) 921 { 922 uint64_t *ct; 923 uint64_t hsize = 1ULL << 12; 924 int i, j; 925 926 /* 927 * The hash table is big enough to fill all of physical memory 928 * with an average block size of zfs_arc_average_blocksize (default 8K). 929 * By default, the table will take up 930 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 931 */ 932 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 933 hsize <<= 1; 934 retry: 935 buf_hash_table.ht_mask = hsize - 1; 936 buf_hash_table.ht_table = 937 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 938 if (buf_hash_table.ht_table == NULL) { 939 ASSERT(hsize > (1ULL << 8)); 940 hsize >>= 1; 941 goto retry; 942 } 943 944 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 945 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 946 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 947 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 948 949 for (i = 0; i < 256; i++) 950 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 951 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 952 953 for (i = 0; i < BUF_LOCKS; i++) { 954 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 955 NULL, MUTEX_DEFAULT, NULL); 956 } 957 } 958 959 #define ARC_MINTIME (hz>>4) /* 62 ms */ 960 961 static void 962 arc_cksum_verify(arc_buf_t *buf) 963 { 964 zio_cksum_t zc; 965 966 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 967 return; 968 969 mutex_enter(&buf->b_hdr->b_freeze_lock); 970 if (buf->b_hdr->b_freeze_cksum == NULL || 971 (buf->b_hdr->b_flags & ARC_FLAG_IO_ERROR)) { 972 mutex_exit(&buf->b_hdr->b_freeze_lock); 973 return; 974 } 975 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 976 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 977 panic("buffer modified while frozen!"); 978 mutex_exit(&buf->b_hdr->b_freeze_lock); 979 } 980 981 static int 982 arc_cksum_equal(arc_buf_t *buf) 983 { 984 zio_cksum_t zc; 985 int equal; 986 987 mutex_enter(&buf->b_hdr->b_freeze_lock); 988 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 989 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 990 mutex_exit(&buf->b_hdr->b_freeze_lock); 991 992 return (equal); 993 } 994 995 static void 996 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 997 { 998 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 999 return; 1000 1001 mutex_enter(&buf->b_hdr->b_freeze_lock); 1002 if (buf->b_hdr->b_freeze_cksum != NULL) { 1003 mutex_exit(&buf->b_hdr->b_freeze_lock); 1004 return; 1005 } 1006 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 1007 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 1008 buf->b_hdr->b_freeze_cksum); 1009 mutex_exit(&buf->b_hdr->b_freeze_lock); 1010 arc_buf_watch(buf); 1011 } 1012 1013 #ifndef _KERNEL 1014 typedef struct procctl { 1015 long cmd; 1016 prwatch_t prwatch; 1017 } procctl_t; 1018 #endif 1019 1020 /* ARGSUSED */ 1021 static void 1022 arc_buf_unwatch(arc_buf_t *buf) 1023 { 1024 #ifndef _KERNEL 1025 if (arc_watch) { 1026 int result; 1027 procctl_t ctl; 1028 ctl.cmd = PCWATCH; 1029 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1030 ctl.prwatch.pr_size = 0; 1031 ctl.prwatch.pr_wflags = 0; 1032 result = write(arc_procfd, &ctl, sizeof (ctl)); 1033 ASSERT3U(result, ==, sizeof (ctl)); 1034 } 1035 #endif 1036 } 1037 1038 /* ARGSUSED */ 1039 static void 1040 arc_buf_watch(arc_buf_t *buf) 1041 { 1042 #ifndef _KERNEL 1043 if (arc_watch) { 1044 int result; 1045 procctl_t ctl; 1046 ctl.cmd = PCWATCH; 1047 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1048 ctl.prwatch.pr_size = buf->b_hdr->b_size; 1049 ctl.prwatch.pr_wflags = WA_WRITE; 1050 result = write(arc_procfd, &ctl, sizeof (ctl)); 1051 ASSERT3U(result, ==, sizeof (ctl)); 1052 } 1053 #endif 1054 } 1055 1056 void 1057 arc_buf_thaw(arc_buf_t *buf) 1058 { 1059 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1060 if (buf->b_hdr->b_state != arc_anon) 1061 panic("modifying non-anon buffer!"); 1062 if (buf->b_hdr->b_flags & ARC_FLAG_IO_IN_PROGRESS) 1063 panic("modifying buffer while i/o in progress!"); 1064 arc_cksum_verify(buf); 1065 } 1066 1067 mutex_enter(&buf->b_hdr->b_freeze_lock); 1068 if (buf->b_hdr->b_freeze_cksum != NULL) { 1069 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1070 buf->b_hdr->b_freeze_cksum = NULL; 1071 } 1072 1073 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1074 if (buf->b_hdr->b_thawed) 1075 kmem_free(buf->b_hdr->b_thawed, 1); 1076 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP); 1077 } 1078 1079 mutex_exit(&buf->b_hdr->b_freeze_lock); 1080 1081 arc_buf_unwatch(buf); 1082 } 1083 1084 void 1085 arc_buf_freeze(arc_buf_t *buf) 1086 { 1087 kmutex_t *hash_lock; 1088 1089 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1090 return; 1091 1092 hash_lock = HDR_LOCK(buf->b_hdr); 1093 mutex_enter(hash_lock); 1094 1095 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 1096 buf->b_hdr->b_state == arc_anon); 1097 arc_cksum_compute(buf, B_FALSE); 1098 mutex_exit(hash_lock); 1099 1100 } 1101 1102 static void 1103 add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 1104 { 1105 ASSERT(MUTEX_HELD(hash_lock)); 1106 1107 if ((refcount_add(&hdr->b_refcnt, tag) == 1) && 1108 (hdr->b_state != arc_anon)) { 1109 uint64_t delta = hdr->b_size * hdr->b_datacnt; 1110 list_t *list = &hdr->b_state->arcs_list[hdr->b_type]; 1111 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 1112 1113 ASSERT(!MUTEX_HELD(&hdr->b_state->arcs_mtx)); 1114 mutex_enter(&hdr->b_state->arcs_mtx); 1115 ASSERT(list_link_active(&hdr->b_arc_node)); 1116 list_remove(list, hdr); 1117 if (GHOST_STATE(hdr->b_state)) { 1118 ASSERT0(hdr->b_datacnt); 1119 ASSERT3P(hdr->b_buf, ==, NULL); 1120 delta = hdr->b_size; 1121 } 1122 ASSERT(delta > 0); 1123 ASSERT3U(*size, >=, delta); 1124 atomic_add_64(size, -delta); 1125 mutex_exit(&hdr->b_state->arcs_mtx); 1126 /* remove the prefetch flag if we get a reference */ 1127 if (hdr->b_flags & ARC_FLAG_PREFETCH) 1128 hdr->b_flags &= ~ARC_FLAG_PREFETCH; 1129 } 1130 } 1131 1132 static int 1133 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 1134 { 1135 int cnt; 1136 arc_state_t *state = hdr->b_state; 1137 1138 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1139 ASSERT(!GHOST_STATE(state)); 1140 1141 if (((cnt = refcount_remove(&hdr->b_refcnt, tag)) == 0) && 1142 (state != arc_anon)) { 1143 uint64_t *size = &state->arcs_lsize[hdr->b_type]; 1144 1145 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1146 mutex_enter(&state->arcs_mtx); 1147 ASSERT(!list_link_active(&hdr->b_arc_node)); 1148 list_insert_head(&state->arcs_list[hdr->b_type], hdr); 1149 ASSERT(hdr->b_datacnt > 0); 1150 atomic_add_64(size, hdr->b_size * hdr->b_datacnt); 1151 mutex_exit(&state->arcs_mtx); 1152 } 1153 return (cnt); 1154 } 1155 1156 /* 1157 * Move the supplied buffer to the indicated state. The mutex 1158 * for the buffer must be held by the caller. 1159 */ 1160 static void 1161 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 1162 kmutex_t *hash_lock) 1163 { 1164 arc_state_t *old_state = hdr->b_state; 1165 int64_t refcnt = refcount_count(&hdr->b_refcnt); 1166 uint64_t from_delta, to_delta; 1167 1168 ASSERT(MUTEX_HELD(hash_lock)); 1169 ASSERT3P(new_state, !=, old_state); 1170 ASSERT(refcnt == 0 || hdr->b_datacnt > 0); 1171 ASSERT(hdr->b_datacnt == 0 || !GHOST_STATE(new_state)); 1172 ASSERT(hdr->b_datacnt <= 1 || old_state != arc_anon); 1173 1174 from_delta = to_delta = hdr->b_datacnt * hdr->b_size; 1175 1176 /* 1177 * If this buffer is evictable, transfer it from the 1178 * old state list to the new state list. 1179 */ 1180 if (refcnt == 0) { 1181 if (old_state != arc_anon) { 1182 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1183 uint64_t *size = &old_state->arcs_lsize[hdr->b_type]; 1184 1185 if (use_mutex) 1186 mutex_enter(&old_state->arcs_mtx); 1187 1188 ASSERT(list_link_active(&hdr->b_arc_node)); 1189 list_remove(&old_state->arcs_list[hdr->b_type], hdr); 1190 1191 /* 1192 * If prefetching out of the ghost cache, 1193 * we will have a non-zero datacnt. 1194 */ 1195 if (GHOST_STATE(old_state) && hdr->b_datacnt == 0) { 1196 /* ghost elements have a ghost size */ 1197 ASSERT(hdr->b_buf == NULL); 1198 from_delta = hdr->b_size; 1199 } 1200 ASSERT3U(*size, >=, from_delta); 1201 atomic_add_64(size, -from_delta); 1202 1203 if (use_mutex) 1204 mutex_exit(&old_state->arcs_mtx); 1205 } 1206 if (new_state != arc_anon) { 1207 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1208 uint64_t *size = &new_state->arcs_lsize[hdr->b_type]; 1209 1210 if (use_mutex) 1211 mutex_enter(&new_state->arcs_mtx); 1212 1213 list_insert_head(&new_state->arcs_list[hdr->b_type], 1214 hdr); 1215 1216 /* ghost elements have a ghost size */ 1217 if (GHOST_STATE(new_state)) { 1218 ASSERT(hdr->b_datacnt == 0); 1219 ASSERT(hdr->b_buf == NULL); 1220 to_delta = hdr->b_size; 1221 } 1222 atomic_add_64(size, to_delta); 1223 1224 if (use_mutex) 1225 mutex_exit(&new_state->arcs_mtx); 1226 } 1227 } 1228 1229 ASSERT(!BUF_EMPTY(hdr)); 1230 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 1231 buf_hash_remove(hdr); 1232 1233 /* adjust state sizes */ 1234 if (to_delta) 1235 atomic_add_64(&new_state->arcs_size, to_delta); 1236 if (from_delta) { 1237 ASSERT3U(old_state->arcs_size, >=, from_delta); 1238 atomic_add_64(&old_state->arcs_size, -from_delta); 1239 } 1240 hdr->b_state = new_state; 1241 1242 /* adjust l2arc hdr stats */ 1243 if (new_state == arc_l2c_only) 1244 l2arc_hdr_stat_add(); 1245 else if (old_state == arc_l2c_only) 1246 l2arc_hdr_stat_remove(); 1247 } 1248 1249 void 1250 arc_space_consume(uint64_t space, arc_space_type_t type) 1251 { 1252 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1253 1254 switch (type) { 1255 case ARC_SPACE_DATA: 1256 ARCSTAT_INCR(arcstat_data_size, space); 1257 break; 1258 case ARC_SPACE_OTHER: 1259 ARCSTAT_INCR(arcstat_other_size, space); 1260 break; 1261 case ARC_SPACE_HDRS: 1262 ARCSTAT_INCR(arcstat_hdr_size, space); 1263 break; 1264 case ARC_SPACE_L2HDRS: 1265 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1266 break; 1267 } 1268 1269 ARCSTAT_INCR(arcstat_meta_used, space); 1270 atomic_add_64(&arc_size, space); 1271 } 1272 1273 void 1274 arc_space_return(uint64_t space, arc_space_type_t type) 1275 { 1276 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1277 1278 switch (type) { 1279 case ARC_SPACE_DATA: 1280 ARCSTAT_INCR(arcstat_data_size, -space); 1281 break; 1282 case ARC_SPACE_OTHER: 1283 ARCSTAT_INCR(arcstat_other_size, -space); 1284 break; 1285 case ARC_SPACE_HDRS: 1286 ARCSTAT_INCR(arcstat_hdr_size, -space); 1287 break; 1288 case ARC_SPACE_L2HDRS: 1289 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1290 break; 1291 } 1292 1293 ASSERT(arc_meta_used >= space); 1294 if (arc_meta_max < arc_meta_used) 1295 arc_meta_max = arc_meta_used; 1296 ARCSTAT_INCR(arcstat_meta_used, -space); 1297 ASSERT(arc_size >= space); 1298 atomic_add_64(&arc_size, -space); 1299 } 1300 1301 arc_buf_t * 1302 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1303 { 1304 arc_buf_hdr_t *hdr; 1305 arc_buf_t *buf; 1306 1307 ASSERT3U(size, >, 0); 1308 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1309 ASSERT(BUF_EMPTY(hdr)); 1310 hdr->b_size = size; 1311 hdr->b_type = type; 1312 hdr->b_spa = spa_load_guid(spa); 1313 hdr->b_state = arc_anon; 1314 hdr->b_arc_access = 0; 1315 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1316 buf->b_hdr = hdr; 1317 buf->b_data = NULL; 1318 buf->b_efunc = NULL; 1319 buf->b_private = NULL; 1320 buf->b_next = NULL; 1321 hdr->b_buf = buf; 1322 arc_get_data_buf(buf); 1323 hdr->b_datacnt = 1; 1324 hdr->b_flags = 0; 1325 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1326 (void) refcount_add(&hdr->b_refcnt, tag); 1327 1328 return (buf); 1329 } 1330 1331 static char *arc_onloan_tag = "onloan"; 1332 1333 /* 1334 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1335 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1336 * buffers must be returned to the arc before they can be used by the DMU or 1337 * freed. 1338 */ 1339 arc_buf_t * 1340 arc_loan_buf(spa_t *spa, int size) 1341 { 1342 arc_buf_t *buf; 1343 1344 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1345 1346 atomic_add_64(&arc_loaned_bytes, size); 1347 return (buf); 1348 } 1349 1350 /* 1351 * Return a loaned arc buffer to the arc. 1352 */ 1353 void 1354 arc_return_buf(arc_buf_t *buf, void *tag) 1355 { 1356 arc_buf_hdr_t *hdr = buf->b_hdr; 1357 1358 ASSERT(buf->b_data != NULL); 1359 (void) refcount_add(&hdr->b_refcnt, tag); 1360 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); 1361 1362 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1363 } 1364 1365 /* Detach an arc_buf from a dbuf (tag) */ 1366 void 1367 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1368 { 1369 arc_buf_hdr_t *hdr; 1370 1371 ASSERT(buf->b_data != NULL); 1372 hdr = buf->b_hdr; 1373 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); 1374 (void) refcount_remove(&hdr->b_refcnt, tag); 1375 buf->b_efunc = NULL; 1376 buf->b_private = NULL; 1377 1378 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1379 } 1380 1381 static arc_buf_t * 1382 arc_buf_clone(arc_buf_t *from) 1383 { 1384 arc_buf_t *buf; 1385 arc_buf_hdr_t *hdr = from->b_hdr; 1386 uint64_t size = hdr->b_size; 1387 1388 ASSERT(hdr->b_state != arc_anon); 1389 1390 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1391 buf->b_hdr = hdr; 1392 buf->b_data = NULL; 1393 buf->b_efunc = NULL; 1394 buf->b_private = NULL; 1395 buf->b_next = hdr->b_buf; 1396 hdr->b_buf = buf; 1397 arc_get_data_buf(buf); 1398 bcopy(from->b_data, buf->b_data, size); 1399 1400 /* 1401 * This buffer already exists in the arc so create a duplicate 1402 * copy for the caller. If the buffer is associated with user data 1403 * then track the size and number of duplicates. These stats will be 1404 * updated as duplicate buffers are created and destroyed. 1405 */ 1406 if (hdr->b_type == ARC_BUFC_DATA) { 1407 ARCSTAT_BUMP(arcstat_duplicate_buffers); 1408 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size); 1409 } 1410 hdr->b_datacnt += 1; 1411 return (buf); 1412 } 1413 1414 void 1415 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1416 { 1417 arc_buf_hdr_t *hdr; 1418 kmutex_t *hash_lock; 1419 1420 /* 1421 * Check to see if this buffer is evicted. Callers 1422 * must verify b_data != NULL to know if the add_ref 1423 * was successful. 1424 */ 1425 mutex_enter(&buf->b_evict_lock); 1426 if (buf->b_data == NULL) { 1427 mutex_exit(&buf->b_evict_lock); 1428 return; 1429 } 1430 hash_lock = HDR_LOCK(buf->b_hdr); 1431 mutex_enter(hash_lock); 1432 hdr = buf->b_hdr; 1433 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1434 mutex_exit(&buf->b_evict_lock); 1435 1436 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1437 add_reference(hdr, hash_lock, tag); 1438 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1439 arc_access(hdr, hash_lock); 1440 mutex_exit(hash_lock); 1441 ARCSTAT_BUMP(arcstat_hits); 1442 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_FLAG_PREFETCH), 1443 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1444 data, metadata, hits); 1445 } 1446 1447 /* 1448 * Free the arc data buffer. If it is an l2arc write in progress, 1449 * the buffer is placed on l2arc_free_on_write to be freed later. 1450 */ 1451 static void 1452 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t)) 1453 { 1454 arc_buf_hdr_t *hdr = buf->b_hdr; 1455 1456 if (HDR_L2_WRITING(hdr)) { 1457 l2arc_data_free_t *df; 1458 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1459 df->l2df_data = buf->b_data; 1460 df->l2df_size = hdr->b_size; 1461 df->l2df_func = free_func; 1462 mutex_enter(&l2arc_free_on_write_mtx); 1463 list_insert_head(l2arc_free_on_write, df); 1464 mutex_exit(&l2arc_free_on_write_mtx); 1465 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1466 } else { 1467 free_func(buf->b_data, hdr->b_size); 1468 } 1469 } 1470 1471 /* 1472 * Free up buf->b_data and if 'remove' is set, then pull the 1473 * arc_buf_t off of the the arc_buf_hdr_t's list and free it. 1474 */ 1475 static void 1476 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t remove) 1477 { 1478 arc_buf_t **bufp; 1479 1480 /* free up data associated with the buf */ 1481 if (buf->b_data) { 1482 arc_state_t *state = buf->b_hdr->b_state; 1483 uint64_t size = buf->b_hdr->b_size; 1484 arc_buf_contents_t type = buf->b_hdr->b_type; 1485 1486 arc_cksum_verify(buf); 1487 arc_buf_unwatch(buf); 1488 1489 if (!recycle) { 1490 if (type == ARC_BUFC_METADATA) { 1491 arc_buf_data_free(buf, zio_buf_free); 1492 arc_space_return(size, ARC_SPACE_DATA); 1493 } else { 1494 ASSERT(type == ARC_BUFC_DATA); 1495 arc_buf_data_free(buf, zio_data_buf_free); 1496 ARCSTAT_INCR(arcstat_data_size, -size); 1497 atomic_add_64(&arc_size, -size); 1498 } 1499 } 1500 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1501 uint64_t *cnt = &state->arcs_lsize[type]; 1502 1503 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1504 ASSERT(state != arc_anon); 1505 1506 ASSERT3U(*cnt, >=, size); 1507 atomic_add_64(cnt, -size); 1508 } 1509 ASSERT3U(state->arcs_size, >=, size); 1510 atomic_add_64(&state->arcs_size, -size); 1511 buf->b_data = NULL; 1512 1513 /* 1514 * If we're destroying a duplicate buffer make sure 1515 * that the appropriate statistics are updated. 1516 */ 1517 if (buf->b_hdr->b_datacnt > 1 && 1518 buf->b_hdr->b_type == ARC_BUFC_DATA) { 1519 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 1520 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size); 1521 } 1522 ASSERT(buf->b_hdr->b_datacnt > 0); 1523 buf->b_hdr->b_datacnt -= 1; 1524 } 1525 1526 /* only remove the buf if requested */ 1527 if (!remove) 1528 return; 1529 1530 /* remove the buf from the hdr list */ 1531 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1532 continue; 1533 *bufp = buf->b_next; 1534 buf->b_next = NULL; 1535 1536 ASSERT(buf->b_efunc == NULL); 1537 1538 /* clean up the buf */ 1539 buf->b_hdr = NULL; 1540 kmem_cache_free(buf_cache, buf); 1541 } 1542 1543 static void 1544 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1545 { 1546 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1547 ASSERT3P(hdr->b_state, ==, arc_anon); 1548 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1549 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1550 1551 if (l2hdr != NULL) { 1552 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); 1553 /* 1554 * To prevent arc_free() and l2arc_evict() from 1555 * attempting to free the same buffer at the same time, 1556 * a FREE_IN_PROGRESS flag is given to arc_free() to 1557 * give it priority. l2arc_evict() can't destroy this 1558 * header while we are waiting on l2arc_buflist_mtx. 1559 * 1560 * The hdr may be removed from l2ad_buflist before we 1561 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1562 */ 1563 if (!buflist_held) { 1564 mutex_enter(&l2arc_buflist_mtx); 1565 l2hdr = hdr->b_l2hdr; 1566 } 1567 1568 if (l2hdr != NULL) { 1569 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 1570 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1571 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 1572 vdev_space_update(l2hdr->b_dev->l2ad_vdev, 1573 -l2hdr->b_asize, 0, 0); 1574 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 1575 if (hdr->b_state == arc_l2c_only) 1576 l2arc_hdr_stat_remove(); 1577 hdr->b_l2hdr = NULL; 1578 } 1579 1580 if (!buflist_held) 1581 mutex_exit(&l2arc_buflist_mtx); 1582 } 1583 1584 if (!BUF_EMPTY(hdr)) { 1585 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1586 buf_discard_identity(hdr); 1587 } 1588 while (hdr->b_buf) { 1589 arc_buf_t *buf = hdr->b_buf; 1590 1591 if (buf->b_efunc) { 1592 mutex_enter(&arc_eviction_mtx); 1593 mutex_enter(&buf->b_evict_lock); 1594 ASSERT(buf->b_hdr != NULL); 1595 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1596 hdr->b_buf = buf->b_next; 1597 buf->b_hdr = &arc_eviction_hdr; 1598 buf->b_next = arc_eviction_list; 1599 arc_eviction_list = buf; 1600 mutex_exit(&buf->b_evict_lock); 1601 mutex_exit(&arc_eviction_mtx); 1602 } else { 1603 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1604 } 1605 } 1606 if (hdr->b_freeze_cksum != NULL) { 1607 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1608 hdr->b_freeze_cksum = NULL; 1609 } 1610 if (hdr->b_thawed) { 1611 kmem_free(hdr->b_thawed, 1); 1612 hdr->b_thawed = NULL; 1613 } 1614 1615 ASSERT(!list_link_active(&hdr->b_arc_node)); 1616 ASSERT3P(hdr->b_hash_next, ==, NULL); 1617 ASSERT3P(hdr->b_acb, ==, NULL); 1618 kmem_cache_free(hdr_cache, hdr); 1619 } 1620 1621 void 1622 arc_buf_free(arc_buf_t *buf, void *tag) 1623 { 1624 arc_buf_hdr_t *hdr = buf->b_hdr; 1625 int hashed = hdr->b_state != arc_anon; 1626 1627 ASSERT(buf->b_efunc == NULL); 1628 ASSERT(buf->b_data != NULL); 1629 1630 if (hashed) { 1631 kmutex_t *hash_lock = HDR_LOCK(hdr); 1632 1633 mutex_enter(hash_lock); 1634 hdr = buf->b_hdr; 1635 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1636 1637 (void) remove_reference(hdr, hash_lock, tag); 1638 if (hdr->b_datacnt > 1) { 1639 arc_buf_destroy(buf, FALSE, TRUE); 1640 } else { 1641 ASSERT(buf == hdr->b_buf); 1642 ASSERT(buf->b_efunc == NULL); 1643 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE; 1644 } 1645 mutex_exit(hash_lock); 1646 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1647 int destroy_hdr; 1648 /* 1649 * We are in the middle of an async write. Don't destroy 1650 * this buffer unless the write completes before we finish 1651 * decrementing the reference count. 1652 */ 1653 mutex_enter(&arc_eviction_mtx); 1654 (void) remove_reference(hdr, NULL, tag); 1655 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1656 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1657 mutex_exit(&arc_eviction_mtx); 1658 if (destroy_hdr) 1659 arc_hdr_destroy(hdr); 1660 } else { 1661 if (remove_reference(hdr, NULL, tag) > 0) 1662 arc_buf_destroy(buf, FALSE, TRUE); 1663 else 1664 arc_hdr_destroy(hdr); 1665 } 1666 } 1667 1668 boolean_t 1669 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1670 { 1671 arc_buf_hdr_t *hdr = buf->b_hdr; 1672 kmutex_t *hash_lock = HDR_LOCK(hdr); 1673 boolean_t no_callback = (buf->b_efunc == NULL); 1674 1675 if (hdr->b_state == arc_anon) { 1676 ASSERT(hdr->b_datacnt == 1); 1677 arc_buf_free(buf, tag); 1678 return (no_callback); 1679 } 1680 1681 mutex_enter(hash_lock); 1682 hdr = buf->b_hdr; 1683 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1684 ASSERT(hdr->b_state != arc_anon); 1685 ASSERT(buf->b_data != NULL); 1686 1687 (void) remove_reference(hdr, hash_lock, tag); 1688 if (hdr->b_datacnt > 1) { 1689 if (no_callback) 1690 arc_buf_destroy(buf, FALSE, TRUE); 1691 } else if (no_callback) { 1692 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1693 ASSERT(buf->b_efunc == NULL); 1694 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE; 1695 } 1696 ASSERT(no_callback || hdr->b_datacnt > 1 || 1697 refcount_is_zero(&hdr->b_refcnt)); 1698 mutex_exit(hash_lock); 1699 return (no_callback); 1700 } 1701 1702 int 1703 arc_buf_size(arc_buf_t *buf) 1704 { 1705 return (buf->b_hdr->b_size); 1706 } 1707 1708 /* 1709 * Called from the DMU to determine if the current buffer should be 1710 * evicted. In order to ensure proper locking, the eviction must be initiated 1711 * from the DMU. Return true if the buffer is associated with user data and 1712 * duplicate buffers still exist. 1713 */ 1714 boolean_t 1715 arc_buf_eviction_needed(arc_buf_t *buf) 1716 { 1717 arc_buf_hdr_t *hdr; 1718 boolean_t evict_needed = B_FALSE; 1719 1720 if (zfs_disable_dup_eviction) 1721 return (B_FALSE); 1722 1723 mutex_enter(&buf->b_evict_lock); 1724 hdr = buf->b_hdr; 1725 if (hdr == NULL) { 1726 /* 1727 * We are in arc_do_user_evicts(); let that function 1728 * perform the eviction. 1729 */ 1730 ASSERT(buf->b_data == NULL); 1731 mutex_exit(&buf->b_evict_lock); 1732 return (B_FALSE); 1733 } else if (buf->b_data == NULL) { 1734 /* 1735 * We have already been added to the arc eviction list; 1736 * recommend eviction. 1737 */ 1738 ASSERT3P(hdr, ==, &arc_eviction_hdr); 1739 mutex_exit(&buf->b_evict_lock); 1740 return (B_TRUE); 1741 } 1742 1743 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA) 1744 evict_needed = B_TRUE; 1745 1746 mutex_exit(&buf->b_evict_lock); 1747 return (evict_needed); 1748 } 1749 1750 /* 1751 * Evict buffers from list until we've removed the specified number of 1752 * bytes. Move the removed buffers to the appropriate evict state. 1753 * If the recycle flag is set, then attempt to "recycle" a buffer: 1754 * - look for a buffer to evict that is `bytes' long. 1755 * - return the data block from this buffer rather than freeing it. 1756 * This flag is used by callers that are trying to make space for a 1757 * new buffer in a full arc cache. 1758 * 1759 * This function makes a "best effort". It skips over any buffers 1760 * it can't get a hash_lock on, and so may not catch all candidates. 1761 * It may also return without evicting as much space as requested. 1762 */ 1763 static void * 1764 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1765 arc_buf_contents_t type) 1766 { 1767 arc_state_t *evicted_state; 1768 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1769 arc_buf_hdr_t *hdr, *hdr_prev = NULL; 1770 kmutex_t *hash_lock; 1771 boolean_t have_lock; 1772 void *stolen = NULL; 1773 arc_buf_hdr_t marker = { 0 }; 1774 int count = 0; 1775 1776 ASSERT(state == arc_mru || state == arc_mfu); 1777 1778 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1779 1780 mutex_enter(&state->arcs_mtx); 1781 mutex_enter(&evicted_state->arcs_mtx); 1782 1783 /* 1784 * Decide which "type" (data vs metadata) to recycle from. 1785 * 1786 * If we are over the metadata limit, recycle from metadata. 1787 * If we are under the metadata minimum, recycle from data. 1788 * Otherwise, recycle from whichever type has the oldest (least 1789 * recently accessed) header. 1790 */ 1791 if (recycle) { 1792 arc_buf_hdr_t *data_hdr = 1793 list_tail(&state->arcs_list[ARC_BUFC_DATA]); 1794 arc_buf_hdr_t *metadata_hdr = 1795 list_tail(&state->arcs_list[ARC_BUFC_METADATA]); 1796 arc_buf_contents_t realtype; 1797 if (data_hdr == NULL) { 1798 realtype = ARC_BUFC_METADATA; 1799 } else if (metadata_hdr == NULL) { 1800 realtype = ARC_BUFC_DATA; 1801 } else if (arc_meta_used >= arc_meta_limit) { 1802 realtype = ARC_BUFC_METADATA; 1803 } else if (arc_meta_used <= arc_meta_min) { 1804 realtype = ARC_BUFC_DATA; 1805 } else { 1806 if (data_hdr->b_arc_access < 1807 metadata_hdr->b_arc_access) { 1808 realtype = ARC_BUFC_DATA; 1809 } else { 1810 realtype = ARC_BUFC_METADATA; 1811 } 1812 } 1813 if (realtype != type) { 1814 /* 1815 * If we want to evict from a different list, 1816 * we can not recycle, because DATA vs METADATA 1817 * buffers are segregated into different kmem 1818 * caches (and vmem arenas). 1819 */ 1820 type = realtype; 1821 recycle = B_FALSE; 1822 } 1823 } 1824 1825 list_t *list = &state->arcs_list[type]; 1826 1827 for (hdr = list_tail(list); hdr; hdr = hdr_prev) { 1828 hdr_prev = list_prev(list, hdr); 1829 /* prefetch buffers have a minimum lifespan */ 1830 if (HDR_IO_IN_PROGRESS(hdr) || 1831 (spa && hdr->b_spa != spa) || 1832 (hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT) && 1833 ddi_get_lbolt() - hdr->b_arc_access < 1834 arc_min_prefetch_lifespan)) { 1835 skipped++; 1836 continue; 1837 } 1838 /* "lookahead" for better eviction candidate */ 1839 if (recycle && hdr->b_size != bytes && 1840 hdr_prev && hdr_prev->b_size == bytes) 1841 continue; 1842 1843 /* ignore markers */ 1844 if (hdr->b_spa == 0) 1845 continue; 1846 1847 /* 1848 * It may take a long time to evict all the bufs requested. 1849 * To avoid blocking all arc activity, periodically drop 1850 * the arcs_mtx and give other threads a chance to run 1851 * before reacquiring the lock. 1852 * 1853 * If we are looking for a buffer to recycle, we are in 1854 * the hot code path, so don't sleep. 1855 */ 1856 if (!recycle && count++ > arc_evict_iterations) { 1857 list_insert_after(list, hdr, &marker); 1858 mutex_exit(&evicted_state->arcs_mtx); 1859 mutex_exit(&state->arcs_mtx); 1860 kpreempt(KPREEMPT_SYNC); 1861 mutex_enter(&state->arcs_mtx); 1862 mutex_enter(&evicted_state->arcs_mtx); 1863 hdr_prev = list_prev(list, &marker); 1864 list_remove(list, &marker); 1865 count = 0; 1866 continue; 1867 } 1868 1869 hash_lock = HDR_LOCK(hdr); 1870 have_lock = MUTEX_HELD(hash_lock); 1871 if (have_lock || mutex_tryenter(hash_lock)) { 1872 ASSERT0(refcount_count(&hdr->b_refcnt)); 1873 ASSERT(hdr->b_datacnt > 0); 1874 while (hdr->b_buf) { 1875 arc_buf_t *buf = hdr->b_buf; 1876 if (!mutex_tryenter(&buf->b_evict_lock)) { 1877 missed += 1; 1878 break; 1879 } 1880 if (buf->b_data) { 1881 bytes_evicted += hdr->b_size; 1882 if (recycle && hdr->b_type == type && 1883 hdr->b_size == bytes && 1884 !HDR_L2_WRITING(hdr)) { 1885 stolen = buf->b_data; 1886 recycle = FALSE; 1887 } 1888 } 1889 if (buf->b_efunc) { 1890 mutex_enter(&arc_eviction_mtx); 1891 arc_buf_destroy(buf, 1892 buf->b_data == stolen, FALSE); 1893 hdr->b_buf = buf->b_next; 1894 buf->b_hdr = &arc_eviction_hdr; 1895 buf->b_next = arc_eviction_list; 1896 arc_eviction_list = buf; 1897 mutex_exit(&arc_eviction_mtx); 1898 mutex_exit(&buf->b_evict_lock); 1899 } else { 1900 mutex_exit(&buf->b_evict_lock); 1901 arc_buf_destroy(buf, 1902 buf->b_data == stolen, TRUE); 1903 } 1904 } 1905 1906 if (hdr->b_l2hdr) { 1907 ARCSTAT_INCR(arcstat_evict_l2_cached, 1908 hdr->b_size); 1909 } else { 1910 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 1911 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1912 hdr->b_size); 1913 } else { 1914 ARCSTAT_INCR( 1915 arcstat_evict_l2_ineligible, 1916 hdr->b_size); 1917 } 1918 } 1919 1920 if (hdr->b_datacnt == 0) { 1921 arc_change_state(evicted_state, hdr, hash_lock); 1922 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1923 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE; 1924 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE; 1925 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 1926 } 1927 if (!have_lock) 1928 mutex_exit(hash_lock); 1929 if (bytes >= 0 && bytes_evicted >= bytes) 1930 break; 1931 } else { 1932 missed += 1; 1933 } 1934 } 1935 1936 mutex_exit(&evicted_state->arcs_mtx); 1937 mutex_exit(&state->arcs_mtx); 1938 1939 if (bytes_evicted < bytes) 1940 dprintf("only evicted %lld bytes from %x", 1941 (longlong_t)bytes_evicted, state); 1942 1943 if (skipped) 1944 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1945 1946 if (missed) 1947 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1948 1949 /* 1950 * Note: we have just evicted some data into the ghost state, 1951 * potentially putting the ghost size over the desired size. Rather 1952 * that evicting from the ghost list in this hot code path, leave 1953 * this chore to the arc_reclaim_thread(). 1954 */ 1955 1956 return (stolen); 1957 } 1958 1959 /* 1960 * Remove buffers from list until we've removed the specified number of 1961 * bytes. Destroy the buffers that are removed. 1962 */ 1963 static void 1964 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1965 { 1966 arc_buf_hdr_t *hdr, *hdr_prev; 1967 arc_buf_hdr_t marker = { 0 }; 1968 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1969 kmutex_t *hash_lock; 1970 uint64_t bytes_deleted = 0; 1971 uint64_t bufs_skipped = 0; 1972 int count = 0; 1973 1974 ASSERT(GHOST_STATE(state)); 1975 top: 1976 mutex_enter(&state->arcs_mtx); 1977 for (hdr = list_tail(list); hdr; hdr = hdr_prev) { 1978 hdr_prev = list_prev(list, hdr); 1979 if (hdr->b_type > ARC_BUFC_NUMTYPES) 1980 panic("invalid hdr=%p", (void *)hdr); 1981 if (spa && hdr->b_spa != spa) 1982 continue; 1983 1984 /* ignore markers */ 1985 if (hdr->b_spa == 0) 1986 continue; 1987 1988 hash_lock = HDR_LOCK(hdr); 1989 /* caller may be trying to modify this buffer, skip it */ 1990 if (MUTEX_HELD(hash_lock)) 1991 continue; 1992 1993 /* 1994 * It may take a long time to evict all the bufs requested. 1995 * To avoid blocking all arc activity, periodically drop 1996 * the arcs_mtx and give other threads a chance to run 1997 * before reacquiring the lock. 1998 */ 1999 if (count++ > arc_evict_iterations) { 2000 list_insert_after(list, hdr, &marker); 2001 mutex_exit(&state->arcs_mtx); 2002 kpreempt(KPREEMPT_SYNC); 2003 mutex_enter(&state->arcs_mtx); 2004 hdr_prev = list_prev(list, &marker); 2005 list_remove(list, &marker); 2006 count = 0; 2007 continue; 2008 } 2009 if (mutex_tryenter(hash_lock)) { 2010 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2011 ASSERT(hdr->b_buf == NULL); 2012 ARCSTAT_BUMP(arcstat_deleted); 2013 bytes_deleted += hdr->b_size; 2014 2015 if (hdr->b_l2hdr != NULL) { 2016 /* 2017 * This buffer is cached on the 2nd Level ARC; 2018 * don't destroy the header. 2019 */ 2020 arc_change_state(arc_l2c_only, hdr, hash_lock); 2021 mutex_exit(hash_lock); 2022 } else { 2023 arc_change_state(arc_anon, hdr, hash_lock); 2024 mutex_exit(hash_lock); 2025 arc_hdr_destroy(hdr); 2026 } 2027 2028 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 2029 if (bytes >= 0 && bytes_deleted >= bytes) 2030 break; 2031 } else if (bytes < 0) { 2032 /* 2033 * Insert a list marker and then wait for the 2034 * hash lock to become available. Once its 2035 * available, restart from where we left off. 2036 */ 2037 list_insert_after(list, hdr, &marker); 2038 mutex_exit(&state->arcs_mtx); 2039 mutex_enter(hash_lock); 2040 mutex_exit(hash_lock); 2041 mutex_enter(&state->arcs_mtx); 2042 hdr_prev = list_prev(list, &marker); 2043 list_remove(list, &marker); 2044 } else { 2045 bufs_skipped += 1; 2046 } 2047 2048 } 2049 mutex_exit(&state->arcs_mtx); 2050 2051 if (list == &state->arcs_list[ARC_BUFC_DATA] && 2052 (bytes < 0 || bytes_deleted < bytes)) { 2053 list = &state->arcs_list[ARC_BUFC_METADATA]; 2054 goto top; 2055 } 2056 2057 if (bufs_skipped) { 2058 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 2059 ASSERT(bytes >= 0); 2060 } 2061 2062 if (bytes_deleted < bytes) 2063 dprintf("only deleted %lld bytes from %p", 2064 (longlong_t)bytes_deleted, state); 2065 } 2066 2067 static void 2068 arc_adjust(void) 2069 { 2070 int64_t adjustment, delta; 2071 2072 /* 2073 * Adjust MRU size 2074 */ 2075 2076 adjustment = MIN((int64_t)(arc_size - arc_c), 2077 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - 2078 arc_p)); 2079 2080 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 2081 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 2082 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 2083 adjustment -= delta; 2084 } 2085 2086 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2087 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 2088 (void) arc_evict(arc_mru, NULL, delta, FALSE, 2089 ARC_BUFC_METADATA); 2090 } 2091 2092 /* 2093 * Adjust MFU size 2094 */ 2095 2096 adjustment = arc_size - arc_c; 2097 2098 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 2099 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 2100 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 2101 adjustment -= delta; 2102 } 2103 2104 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2105 int64_t delta = MIN(adjustment, 2106 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 2107 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 2108 ARC_BUFC_METADATA); 2109 } 2110 2111 /* 2112 * Adjust ghost lists 2113 */ 2114 2115 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 2116 2117 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 2118 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 2119 arc_evict_ghost(arc_mru_ghost, NULL, delta); 2120 } 2121 2122 adjustment = 2123 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 2124 2125 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 2126 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 2127 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 2128 } 2129 } 2130 2131 static void 2132 arc_do_user_evicts(void) 2133 { 2134 mutex_enter(&arc_eviction_mtx); 2135 while (arc_eviction_list != NULL) { 2136 arc_buf_t *buf = arc_eviction_list; 2137 arc_eviction_list = buf->b_next; 2138 mutex_enter(&buf->b_evict_lock); 2139 buf->b_hdr = NULL; 2140 mutex_exit(&buf->b_evict_lock); 2141 mutex_exit(&arc_eviction_mtx); 2142 2143 if (buf->b_efunc != NULL) 2144 VERIFY0(buf->b_efunc(buf->b_private)); 2145 2146 buf->b_efunc = NULL; 2147 buf->b_private = NULL; 2148 kmem_cache_free(buf_cache, buf); 2149 mutex_enter(&arc_eviction_mtx); 2150 } 2151 mutex_exit(&arc_eviction_mtx); 2152 } 2153 2154 /* 2155 * Flush all *evictable* data from the cache for the given spa. 2156 * NOTE: this will not touch "active" (i.e. referenced) data. 2157 */ 2158 void 2159 arc_flush(spa_t *spa) 2160 { 2161 uint64_t guid = 0; 2162 2163 if (spa) 2164 guid = spa_load_guid(spa); 2165 2166 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 2167 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 2168 if (spa) 2169 break; 2170 } 2171 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 2172 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 2173 if (spa) 2174 break; 2175 } 2176 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 2177 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 2178 if (spa) 2179 break; 2180 } 2181 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 2182 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 2183 if (spa) 2184 break; 2185 } 2186 2187 arc_evict_ghost(arc_mru_ghost, guid, -1); 2188 arc_evict_ghost(arc_mfu_ghost, guid, -1); 2189 2190 mutex_enter(&arc_reclaim_thr_lock); 2191 arc_do_user_evicts(); 2192 mutex_exit(&arc_reclaim_thr_lock); 2193 ASSERT(spa || arc_eviction_list == NULL); 2194 } 2195 2196 void 2197 arc_shrink(void) 2198 { 2199 if (arc_c > arc_c_min) { 2200 uint64_t to_free; 2201 2202 #ifdef _KERNEL 2203 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 2204 #else 2205 to_free = arc_c >> arc_shrink_shift; 2206 #endif 2207 if (arc_c > arc_c_min + to_free) 2208 atomic_add_64(&arc_c, -to_free); 2209 else 2210 arc_c = arc_c_min; 2211 2212 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 2213 if (arc_c > arc_size) 2214 arc_c = MAX(arc_size, arc_c_min); 2215 if (arc_p > arc_c) 2216 arc_p = (arc_c >> 1); 2217 ASSERT(arc_c >= arc_c_min); 2218 ASSERT((int64_t)arc_p >= 0); 2219 } 2220 2221 if (arc_size > arc_c) 2222 arc_adjust(); 2223 } 2224 2225 /* 2226 * Determine if the system is under memory pressure and is asking 2227 * to reclaim memory. A return value of 1 indicates that the system 2228 * is under memory pressure and that the arc should adjust accordingly. 2229 */ 2230 static int 2231 arc_reclaim_needed(void) 2232 { 2233 uint64_t extra; 2234 2235 #ifdef _KERNEL 2236 2237 if (needfree) 2238 return (1); 2239 2240 /* 2241 * take 'desfree' extra pages, so we reclaim sooner, rather than later 2242 */ 2243 extra = desfree; 2244 2245 /* 2246 * check that we're out of range of the pageout scanner. It starts to 2247 * schedule paging if freemem is less than lotsfree and needfree. 2248 * lotsfree is the high-water mark for pageout, and needfree is the 2249 * number of needed free pages. We add extra pages here to make sure 2250 * the scanner doesn't start up while we're freeing memory. 2251 */ 2252 if (freemem < lotsfree + needfree + extra) 2253 return (1); 2254 2255 /* 2256 * check to make sure that swapfs has enough space so that anon 2257 * reservations can still succeed. anon_resvmem() checks that the 2258 * availrmem is greater than swapfs_minfree, and the number of reserved 2259 * swap pages. We also add a bit of extra here just to prevent 2260 * circumstances from getting really dire. 2261 */ 2262 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 2263 return (1); 2264 2265 /* 2266 * Check that we have enough availrmem that memory locking (e.g., via 2267 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 2268 * stores the number of pages that cannot be locked; when availrmem 2269 * drops below pages_pp_maximum, page locking mechanisms such as 2270 * page_pp_lock() will fail.) 2271 */ 2272 if (availrmem <= pages_pp_maximum) 2273 return (1); 2274 2275 #if defined(__i386) 2276 /* 2277 * If we're on an i386 platform, it's possible that we'll exhaust the 2278 * kernel heap space before we ever run out of available physical 2279 * memory. Most checks of the size of the heap_area compare against 2280 * tune.t_minarmem, which is the minimum available real memory that we 2281 * can have in the system. However, this is generally fixed at 25 pages 2282 * which is so low that it's useless. In this comparison, we seek to 2283 * calculate the total heap-size, and reclaim if more than 3/4ths of the 2284 * heap is allocated. (Or, in the calculation, if less than 1/4th is 2285 * free) 2286 */ 2287 if (vmem_size(heap_arena, VMEM_FREE) < 2288 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2)) 2289 return (1); 2290 #endif 2291 2292 /* 2293 * If zio data pages are being allocated out of a separate heap segment, 2294 * then enforce that the size of available vmem for this arena remains 2295 * above about 1/16th free. 2296 * 2297 * Note: The 1/16th arena free requirement was put in place 2298 * to aggressively evict memory from the arc in order to avoid 2299 * memory fragmentation issues. 2300 */ 2301 if (zio_arena != NULL && 2302 vmem_size(zio_arena, VMEM_FREE) < 2303 (vmem_size(zio_arena, VMEM_ALLOC) >> 4)) 2304 return (1); 2305 #else 2306 if (spa_get_random(100) == 0) 2307 return (1); 2308 #endif 2309 return (0); 2310 } 2311 2312 static void 2313 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 2314 { 2315 size_t i; 2316 kmem_cache_t *prev_cache = NULL; 2317 kmem_cache_t *prev_data_cache = NULL; 2318 extern kmem_cache_t *zio_buf_cache[]; 2319 extern kmem_cache_t *zio_data_buf_cache[]; 2320 extern kmem_cache_t *range_seg_cache; 2321 2322 #ifdef _KERNEL 2323 if (arc_meta_used >= arc_meta_limit) { 2324 /* 2325 * We are exceeding our meta-data cache limit. 2326 * Purge some DNLC entries to release holds on meta-data. 2327 */ 2328 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 2329 } 2330 #if defined(__i386) 2331 /* 2332 * Reclaim unused memory from all kmem caches. 2333 */ 2334 kmem_reap(); 2335 #endif 2336 #endif 2337 2338 /* 2339 * An aggressive reclamation will shrink the cache size as well as 2340 * reap free buffers from the arc kmem caches. 2341 */ 2342 if (strat == ARC_RECLAIM_AGGR) 2343 arc_shrink(); 2344 2345 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2346 if (zio_buf_cache[i] != prev_cache) { 2347 prev_cache = zio_buf_cache[i]; 2348 kmem_cache_reap_now(zio_buf_cache[i]); 2349 } 2350 if (zio_data_buf_cache[i] != prev_data_cache) { 2351 prev_data_cache = zio_data_buf_cache[i]; 2352 kmem_cache_reap_now(zio_data_buf_cache[i]); 2353 } 2354 } 2355 kmem_cache_reap_now(buf_cache); 2356 kmem_cache_reap_now(hdr_cache); 2357 kmem_cache_reap_now(range_seg_cache); 2358 2359 /* 2360 * Ask the vmem areana to reclaim unused memory from its 2361 * quantum caches. 2362 */ 2363 if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR) 2364 vmem_qcache_reap(zio_arena); 2365 } 2366 2367 static void 2368 arc_reclaim_thread(void) 2369 { 2370 clock_t growtime = 0; 2371 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 2372 callb_cpr_t cpr; 2373 2374 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2375 2376 mutex_enter(&arc_reclaim_thr_lock); 2377 while (arc_thread_exit == 0) { 2378 if (arc_reclaim_needed()) { 2379 2380 if (arc_no_grow) { 2381 if (last_reclaim == ARC_RECLAIM_CONS) { 2382 last_reclaim = ARC_RECLAIM_AGGR; 2383 } else { 2384 last_reclaim = ARC_RECLAIM_CONS; 2385 } 2386 } else { 2387 arc_no_grow = TRUE; 2388 last_reclaim = ARC_RECLAIM_AGGR; 2389 membar_producer(); 2390 } 2391 2392 /* reset the growth delay for every reclaim */ 2393 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 2394 2395 arc_kmem_reap_now(last_reclaim); 2396 arc_warm = B_TRUE; 2397 2398 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) { 2399 arc_no_grow = FALSE; 2400 } 2401 2402 arc_adjust(); 2403 2404 if (arc_eviction_list != NULL) 2405 arc_do_user_evicts(); 2406 2407 /* block until needed, or one second, whichever is shorter */ 2408 CALLB_CPR_SAFE_BEGIN(&cpr); 2409 (void) cv_timedwait(&arc_reclaim_thr_cv, 2410 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz)); 2411 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2412 } 2413 2414 arc_thread_exit = 0; 2415 cv_broadcast(&arc_reclaim_thr_cv); 2416 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2417 thread_exit(); 2418 } 2419 2420 /* 2421 * Adapt arc info given the number of bytes we are trying to add and 2422 * the state that we are comming from. This function is only called 2423 * when we are adding new content to the cache. 2424 */ 2425 static void 2426 arc_adapt(int bytes, arc_state_t *state) 2427 { 2428 int mult; 2429 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2430 2431 if (state == arc_l2c_only) 2432 return; 2433 2434 ASSERT(bytes > 0); 2435 /* 2436 * Adapt the target size of the MRU list: 2437 * - if we just hit in the MRU ghost list, then increase 2438 * the target size of the MRU list. 2439 * - if we just hit in the MFU ghost list, then increase 2440 * the target size of the MFU list by decreasing the 2441 * target size of the MRU list. 2442 */ 2443 if (state == arc_mru_ghost) { 2444 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2445 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2446 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 2447 2448 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2449 } else if (state == arc_mfu_ghost) { 2450 uint64_t delta; 2451 2452 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2453 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2454 mult = MIN(mult, 10); 2455 2456 delta = MIN(bytes * mult, arc_p); 2457 arc_p = MAX(arc_p_min, arc_p - delta); 2458 } 2459 ASSERT((int64_t)arc_p >= 0); 2460 2461 if (arc_reclaim_needed()) { 2462 cv_signal(&arc_reclaim_thr_cv); 2463 return; 2464 } 2465 2466 if (arc_no_grow) 2467 return; 2468 2469 if (arc_c >= arc_c_max) 2470 return; 2471 2472 /* 2473 * If we're within (2 * maxblocksize) bytes of the target 2474 * cache size, increment the target cache size 2475 */ 2476 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2477 atomic_add_64(&arc_c, (int64_t)bytes); 2478 if (arc_c > arc_c_max) 2479 arc_c = arc_c_max; 2480 else if (state == arc_anon) 2481 atomic_add_64(&arc_p, (int64_t)bytes); 2482 if (arc_p > arc_c) 2483 arc_p = arc_c; 2484 } 2485 ASSERT((int64_t)arc_p >= 0); 2486 } 2487 2488 /* 2489 * Check if the cache has reached its limits and eviction is required 2490 * prior to insert. 2491 */ 2492 static int 2493 arc_evict_needed(arc_buf_contents_t type) 2494 { 2495 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2496 return (1); 2497 2498 if (arc_reclaim_needed()) 2499 return (1); 2500 2501 return (arc_size > arc_c); 2502 } 2503 2504 /* 2505 * The buffer, supplied as the first argument, needs a data block. 2506 * So, if we are at cache max, determine which cache should be victimized. 2507 * We have the following cases: 2508 * 2509 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2510 * In this situation if we're out of space, but the resident size of the MFU is 2511 * under the limit, victimize the MFU cache to satisfy this insertion request. 2512 * 2513 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2514 * Here, we've used up all of the available space for the MRU, so we need to 2515 * evict from our own cache instead. Evict from the set of resident MRU 2516 * entries. 2517 * 2518 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2519 * c minus p represents the MFU space in the cache, since p is the size of the 2520 * cache that is dedicated to the MRU. In this situation there's still space on 2521 * the MFU side, so the MRU side needs to be victimized. 2522 * 2523 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2524 * MFU's resident set is consuming more space than it has been allotted. In 2525 * this situation, we must victimize our own cache, the MFU, for this insertion. 2526 */ 2527 static void 2528 arc_get_data_buf(arc_buf_t *buf) 2529 { 2530 arc_state_t *state = buf->b_hdr->b_state; 2531 uint64_t size = buf->b_hdr->b_size; 2532 arc_buf_contents_t type = buf->b_hdr->b_type; 2533 2534 arc_adapt(size, state); 2535 2536 /* 2537 * We have not yet reached cache maximum size, 2538 * just allocate a new buffer. 2539 */ 2540 if (!arc_evict_needed(type)) { 2541 if (type == ARC_BUFC_METADATA) { 2542 buf->b_data = zio_buf_alloc(size); 2543 arc_space_consume(size, ARC_SPACE_DATA); 2544 } else { 2545 ASSERT(type == ARC_BUFC_DATA); 2546 buf->b_data = zio_data_buf_alloc(size); 2547 ARCSTAT_INCR(arcstat_data_size, size); 2548 atomic_add_64(&arc_size, size); 2549 } 2550 goto out; 2551 } 2552 2553 /* 2554 * If we are prefetching from the mfu ghost list, this buffer 2555 * will end up on the mru list; so steal space from there. 2556 */ 2557 if (state == arc_mfu_ghost) 2558 state = buf->b_hdr->b_flags & ARC_FLAG_PREFETCH ? 2559 arc_mru : arc_mfu; 2560 else if (state == arc_mru_ghost) 2561 state = arc_mru; 2562 2563 if (state == arc_mru || state == arc_anon) { 2564 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2565 state = (arc_mfu->arcs_lsize[type] >= size && 2566 arc_p > mru_used) ? arc_mfu : arc_mru; 2567 } else { 2568 /* MFU cases */ 2569 uint64_t mfu_space = arc_c - arc_p; 2570 state = (arc_mru->arcs_lsize[type] >= size && 2571 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2572 } 2573 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2574 if (type == ARC_BUFC_METADATA) { 2575 buf->b_data = zio_buf_alloc(size); 2576 arc_space_consume(size, ARC_SPACE_DATA); 2577 } else { 2578 ASSERT(type == ARC_BUFC_DATA); 2579 buf->b_data = zio_data_buf_alloc(size); 2580 ARCSTAT_INCR(arcstat_data_size, size); 2581 atomic_add_64(&arc_size, size); 2582 } 2583 ARCSTAT_BUMP(arcstat_recycle_miss); 2584 } 2585 ASSERT(buf->b_data != NULL); 2586 out: 2587 /* 2588 * Update the state size. Note that ghost states have a 2589 * "ghost size" and so don't need to be updated. 2590 */ 2591 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2592 arc_buf_hdr_t *hdr = buf->b_hdr; 2593 2594 atomic_add_64(&hdr->b_state->arcs_size, size); 2595 if (list_link_active(&hdr->b_arc_node)) { 2596 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2597 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2598 } 2599 /* 2600 * If we are growing the cache, and we are adding anonymous 2601 * data, and we have outgrown arc_p, update arc_p 2602 */ 2603 if (arc_size < arc_c && hdr->b_state == arc_anon && 2604 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2605 arc_p = MIN(arc_c, arc_p + size); 2606 } 2607 } 2608 2609 /* 2610 * This routine is called whenever a buffer is accessed. 2611 * NOTE: the hash lock is dropped in this function. 2612 */ 2613 static void 2614 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 2615 { 2616 clock_t now; 2617 2618 ASSERT(MUTEX_HELD(hash_lock)); 2619 2620 if (hdr->b_state == arc_anon) { 2621 /* 2622 * This buffer is not in the cache, and does not 2623 * appear in our "ghost" list. Add the new buffer 2624 * to the MRU state. 2625 */ 2626 2627 ASSERT(hdr->b_arc_access == 0); 2628 hdr->b_arc_access = ddi_get_lbolt(); 2629 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 2630 arc_change_state(arc_mru, hdr, hash_lock); 2631 2632 } else if (hdr->b_state == arc_mru) { 2633 now = ddi_get_lbolt(); 2634 2635 /* 2636 * If this buffer is here because of a prefetch, then either: 2637 * - clear the flag if this is a "referencing" read 2638 * (any subsequent access will bump this into the MFU state). 2639 * or 2640 * - move the buffer to the head of the list if this is 2641 * another prefetch (to make it less likely to be evicted). 2642 */ 2643 if ((hdr->b_flags & ARC_FLAG_PREFETCH) != 0) { 2644 if (refcount_count(&hdr->b_refcnt) == 0) { 2645 ASSERT(list_link_active(&hdr->b_arc_node)); 2646 } else { 2647 hdr->b_flags &= ~ARC_FLAG_PREFETCH; 2648 ARCSTAT_BUMP(arcstat_mru_hits); 2649 } 2650 hdr->b_arc_access = now; 2651 return; 2652 } 2653 2654 /* 2655 * This buffer has been "accessed" only once so far, 2656 * but it is still in the cache. Move it to the MFU 2657 * state. 2658 */ 2659 if (now > hdr->b_arc_access + ARC_MINTIME) { 2660 /* 2661 * More than 125ms have passed since we 2662 * instantiated this buffer. Move it to the 2663 * most frequently used state. 2664 */ 2665 hdr->b_arc_access = now; 2666 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 2667 arc_change_state(arc_mfu, hdr, hash_lock); 2668 } 2669 ARCSTAT_BUMP(arcstat_mru_hits); 2670 } else if (hdr->b_state == arc_mru_ghost) { 2671 arc_state_t *new_state; 2672 /* 2673 * This buffer has been "accessed" recently, but 2674 * was evicted from the cache. Move it to the 2675 * MFU state. 2676 */ 2677 2678 if (hdr->b_flags & ARC_FLAG_PREFETCH) { 2679 new_state = arc_mru; 2680 if (refcount_count(&hdr->b_refcnt) > 0) 2681 hdr->b_flags &= ~ARC_FLAG_PREFETCH; 2682 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 2683 } else { 2684 new_state = arc_mfu; 2685 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 2686 } 2687 2688 hdr->b_arc_access = ddi_get_lbolt(); 2689 arc_change_state(new_state, hdr, hash_lock); 2690 2691 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2692 } else if (hdr->b_state == arc_mfu) { 2693 /* 2694 * This buffer has been accessed more than once and is 2695 * still in the cache. Keep it in the MFU state. 2696 * 2697 * NOTE: an add_reference() that occurred when we did 2698 * the arc_read() will have kicked this off the list. 2699 * If it was a prefetch, we will explicitly move it to 2700 * the head of the list now. 2701 */ 2702 if ((hdr->b_flags & ARC_FLAG_PREFETCH) != 0) { 2703 ASSERT(refcount_count(&hdr->b_refcnt) == 0); 2704 ASSERT(list_link_active(&hdr->b_arc_node)); 2705 } 2706 ARCSTAT_BUMP(arcstat_mfu_hits); 2707 hdr->b_arc_access = ddi_get_lbolt(); 2708 } else if (hdr->b_state == arc_mfu_ghost) { 2709 arc_state_t *new_state = arc_mfu; 2710 /* 2711 * This buffer has been accessed more than once but has 2712 * been evicted from the cache. Move it back to the 2713 * MFU state. 2714 */ 2715 2716 if (hdr->b_flags & ARC_FLAG_PREFETCH) { 2717 /* 2718 * This is a prefetch access... 2719 * move this block back to the MRU state. 2720 */ 2721 ASSERT0(refcount_count(&hdr->b_refcnt)); 2722 new_state = arc_mru; 2723 } 2724 2725 hdr->b_arc_access = ddi_get_lbolt(); 2726 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 2727 arc_change_state(new_state, hdr, hash_lock); 2728 2729 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2730 } else if (hdr->b_state == arc_l2c_only) { 2731 /* 2732 * This buffer is on the 2nd Level ARC. 2733 */ 2734 2735 hdr->b_arc_access = ddi_get_lbolt(); 2736 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 2737 arc_change_state(arc_mfu, hdr, hash_lock); 2738 } else { 2739 ASSERT(!"invalid arc state"); 2740 } 2741 } 2742 2743 /* a generic arc_done_func_t which you can use */ 2744 /* ARGSUSED */ 2745 void 2746 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2747 { 2748 if (zio == NULL || zio->io_error == 0) 2749 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2750 VERIFY(arc_buf_remove_ref(buf, arg)); 2751 } 2752 2753 /* a generic arc_done_func_t */ 2754 void 2755 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2756 { 2757 arc_buf_t **bufp = arg; 2758 if (zio && zio->io_error) { 2759 VERIFY(arc_buf_remove_ref(buf, arg)); 2760 *bufp = NULL; 2761 } else { 2762 *bufp = buf; 2763 ASSERT(buf->b_data); 2764 } 2765 } 2766 2767 static void 2768 arc_read_done(zio_t *zio) 2769 { 2770 arc_buf_hdr_t *hdr; 2771 arc_buf_t *buf; 2772 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2773 kmutex_t *hash_lock = NULL; 2774 arc_callback_t *callback_list, *acb; 2775 int freeable = FALSE; 2776 2777 buf = zio->io_private; 2778 hdr = buf->b_hdr; 2779 2780 /* 2781 * The hdr was inserted into hash-table and removed from lists 2782 * prior to starting I/O. We should find this header, since 2783 * it's in the hash table, and it should be legit since it's 2784 * not possible to evict it during the I/O. The only possible 2785 * reason for it not to be found is if we were freed during the 2786 * read. 2787 */ 2788 if (HDR_IN_HASH_TABLE(hdr)) { 2789 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 2790 ASSERT3U(hdr->b_dva.dva_word[0], ==, 2791 BP_IDENTITY(zio->io_bp)->dva_word[0]); 2792 ASSERT3U(hdr->b_dva.dva_word[1], ==, 2793 BP_IDENTITY(zio->io_bp)->dva_word[1]); 2794 2795 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 2796 &hash_lock); 2797 2798 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && 2799 hash_lock == NULL) || 2800 (found == hdr && 2801 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2802 (found == hdr && HDR_L2_READING(hdr))); 2803 } 2804 2805 hdr->b_flags &= ~ARC_FLAG_L2_EVICTED; 2806 if (l2arc_noprefetch && (hdr->b_flags & ARC_FLAG_PREFETCH)) 2807 hdr->b_flags &= ~ARC_FLAG_L2CACHE; 2808 2809 /* byteswap if necessary */ 2810 callback_list = hdr->b_acb; 2811 ASSERT(callback_list != NULL); 2812 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2813 dmu_object_byteswap_t bswap = 2814 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 2815 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2816 byteswap_uint64_array : 2817 dmu_ot_byteswap[bswap].ob_func; 2818 func(buf->b_data, hdr->b_size); 2819 } 2820 2821 arc_cksum_compute(buf, B_FALSE); 2822 arc_buf_watch(buf); 2823 2824 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { 2825 /* 2826 * Only call arc_access on anonymous buffers. This is because 2827 * if we've issued an I/O for an evicted buffer, we've already 2828 * called arc_access (to prevent any simultaneous readers from 2829 * getting confused). 2830 */ 2831 arc_access(hdr, hash_lock); 2832 } 2833 2834 /* create copies of the data buffer for the callers */ 2835 abuf = buf; 2836 for (acb = callback_list; acb; acb = acb->acb_next) { 2837 if (acb->acb_done) { 2838 if (abuf == NULL) { 2839 ARCSTAT_BUMP(arcstat_duplicate_reads); 2840 abuf = arc_buf_clone(buf); 2841 } 2842 acb->acb_buf = abuf; 2843 abuf = NULL; 2844 } 2845 } 2846 hdr->b_acb = NULL; 2847 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS; 2848 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2849 if (abuf == buf) { 2850 ASSERT(buf->b_efunc == NULL); 2851 ASSERT(hdr->b_datacnt == 1); 2852 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE; 2853 } 2854 2855 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2856 2857 if (zio->io_error != 0) { 2858 hdr->b_flags |= ARC_FLAG_IO_ERROR; 2859 if (hdr->b_state != arc_anon) 2860 arc_change_state(arc_anon, hdr, hash_lock); 2861 if (HDR_IN_HASH_TABLE(hdr)) 2862 buf_hash_remove(hdr); 2863 freeable = refcount_is_zero(&hdr->b_refcnt); 2864 } 2865 2866 /* 2867 * Broadcast before we drop the hash_lock to avoid the possibility 2868 * that the hdr (and hence the cv) might be freed before we get to 2869 * the cv_broadcast(). 2870 */ 2871 cv_broadcast(&hdr->b_cv); 2872 2873 if (hash_lock) { 2874 mutex_exit(hash_lock); 2875 } else { 2876 /* 2877 * This block was freed while we waited for the read to 2878 * complete. It has been removed from the hash table and 2879 * moved to the anonymous state (so that it won't show up 2880 * in the cache). 2881 */ 2882 ASSERT3P(hdr->b_state, ==, arc_anon); 2883 freeable = refcount_is_zero(&hdr->b_refcnt); 2884 } 2885 2886 /* execute each callback and free its structure */ 2887 while ((acb = callback_list) != NULL) { 2888 if (acb->acb_done) 2889 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2890 2891 if (acb->acb_zio_dummy != NULL) { 2892 acb->acb_zio_dummy->io_error = zio->io_error; 2893 zio_nowait(acb->acb_zio_dummy); 2894 } 2895 2896 callback_list = acb->acb_next; 2897 kmem_free(acb, sizeof (arc_callback_t)); 2898 } 2899 2900 if (freeable) 2901 arc_hdr_destroy(hdr); 2902 } 2903 2904 /* 2905 * "Read" the block at the specified DVA (in bp) via the 2906 * cache. If the block is found in the cache, invoke the provided 2907 * callback immediately and return. Note that the `zio' parameter 2908 * in the callback will be NULL in this case, since no IO was 2909 * required. If the block is not in the cache pass the read request 2910 * on to the spa with a substitute callback function, so that the 2911 * requested block will be added to the cache. 2912 * 2913 * If a read request arrives for a block that has a read in-progress, 2914 * either wait for the in-progress read to complete (and return the 2915 * results); or, if this is a read with a "done" func, add a record 2916 * to the read to invoke the "done" func when the read completes, 2917 * and return; or just return. 2918 * 2919 * arc_read_done() will invoke all the requested "done" functions 2920 * for readers of this block. 2921 */ 2922 int 2923 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 2924 void *private, zio_priority_t priority, int zio_flags, 2925 arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 2926 { 2927 arc_buf_hdr_t *hdr = NULL; 2928 arc_buf_t *buf = NULL; 2929 kmutex_t *hash_lock = NULL; 2930 zio_t *rzio; 2931 uint64_t guid = spa_load_guid(spa); 2932 2933 ASSERT(!BP_IS_EMBEDDED(bp) || 2934 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 2935 2936 top: 2937 if (!BP_IS_EMBEDDED(bp)) { 2938 /* 2939 * Embedded BP's have no DVA and require no I/O to "read". 2940 * Create an anonymous arc buf to back it. 2941 */ 2942 hdr = buf_hash_find(guid, bp, &hash_lock); 2943 } 2944 2945 if (hdr != NULL && hdr->b_datacnt > 0) { 2946 2947 *arc_flags |= ARC_FLAG_CACHED; 2948 2949 if (HDR_IO_IN_PROGRESS(hdr)) { 2950 2951 if (*arc_flags & ARC_FLAG_WAIT) { 2952 cv_wait(&hdr->b_cv, hash_lock); 2953 mutex_exit(hash_lock); 2954 goto top; 2955 } 2956 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 2957 2958 if (done) { 2959 arc_callback_t *acb = NULL; 2960 2961 acb = kmem_zalloc(sizeof (arc_callback_t), 2962 KM_SLEEP); 2963 acb->acb_done = done; 2964 acb->acb_private = private; 2965 if (pio != NULL) 2966 acb->acb_zio_dummy = zio_null(pio, 2967 spa, NULL, NULL, NULL, zio_flags); 2968 2969 ASSERT(acb->acb_done != NULL); 2970 acb->acb_next = hdr->b_acb; 2971 hdr->b_acb = acb; 2972 add_reference(hdr, hash_lock, private); 2973 mutex_exit(hash_lock); 2974 return (0); 2975 } 2976 mutex_exit(hash_lock); 2977 return (0); 2978 } 2979 2980 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2981 2982 if (done) { 2983 add_reference(hdr, hash_lock, private); 2984 /* 2985 * If this block is already in use, create a new 2986 * copy of the data so that we will be guaranteed 2987 * that arc_release() will always succeed. 2988 */ 2989 buf = hdr->b_buf; 2990 ASSERT(buf); 2991 ASSERT(buf->b_data); 2992 if (HDR_BUF_AVAILABLE(hdr)) { 2993 ASSERT(buf->b_efunc == NULL); 2994 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE; 2995 } else { 2996 buf = arc_buf_clone(buf); 2997 } 2998 2999 } else if (*arc_flags & ARC_FLAG_PREFETCH && 3000 refcount_count(&hdr->b_refcnt) == 0) { 3001 hdr->b_flags |= ARC_FLAG_PREFETCH; 3002 } 3003 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 3004 arc_access(hdr, hash_lock); 3005 if (*arc_flags & ARC_FLAG_L2CACHE) 3006 hdr->b_flags |= ARC_FLAG_L2CACHE; 3007 if (*arc_flags & ARC_FLAG_L2COMPRESS) 3008 hdr->b_flags |= ARC_FLAG_L2COMPRESS; 3009 mutex_exit(hash_lock); 3010 ARCSTAT_BUMP(arcstat_hits); 3011 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_FLAG_PREFETCH), 3012 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 3013 data, metadata, hits); 3014 3015 if (done) 3016 done(NULL, buf, private); 3017 } else { 3018 uint64_t size = BP_GET_LSIZE(bp); 3019 arc_callback_t *acb; 3020 vdev_t *vd = NULL; 3021 uint64_t addr = 0; 3022 boolean_t devw = B_FALSE; 3023 enum zio_compress b_compress = ZIO_COMPRESS_OFF; 3024 uint64_t b_asize = 0; 3025 3026 if (hdr == NULL) { 3027 /* this block is not in the cache */ 3028 arc_buf_hdr_t *exists = NULL; 3029 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 3030 buf = arc_buf_alloc(spa, size, private, type); 3031 hdr = buf->b_hdr; 3032 if (!BP_IS_EMBEDDED(bp)) { 3033 hdr->b_dva = *BP_IDENTITY(bp); 3034 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 3035 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 3036 exists = buf_hash_insert(hdr, &hash_lock); 3037 } 3038 if (exists != NULL) { 3039 /* somebody beat us to the hash insert */ 3040 mutex_exit(hash_lock); 3041 buf_discard_identity(hdr); 3042 (void) arc_buf_remove_ref(buf, private); 3043 goto top; /* restart the IO request */ 3044 } 3045 3046 /* if this is a prefetch, we don't have a reference */ 3047 if (*arc_flags & ARC_FLAG_PREFETCH) { 3048 (void) remove_reference(hdr, hash_lock, 3049 private); 3050 hdr->b_flags |= ARC_FLAG_PREFETCH; 3051 } 3052 if (*arc_flags & ARC_FLAG_L2CACHE) 3053 hdr->b_flags |= ARC_FLAG_L2CACHE; 3054 if (*arc_flags & ARC_FLAG_L2COMPRESS) 3055 hdr->b_flags |= ARC_FLAG_L2COMPRESS; 3056 if (BP_GET_LEVEL(bp) > 0) 3057 hdr->b_flags |= ARC_FLAG_INDIRECT; 3058 } else { 3059 /* this block is in the ghost cache */ 3060 ASSERT(GHOST_STATE(hdr->b_state)); 3061 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3062 ASSERT0(refcount_count(&hdr->b_refcnt)); 3063 ASSERT(hdr->b_buf == NULL); 3064 3065 /* if this is a prefetch, we don't have a reference */ 3066 if (*arc_flags & ARC_FLAG_PREFETCH) 3067 hdr->b_flags |= ARC_FLAG_PREFETCH; 3068 else 3069 add_reference(hdr, hash_lock, private); 3070 if (*arc_flags & ARC_FLAG_L2CACHE) 3071 hdr->b_flags |= ARC_FLAG_L2CACHE; 3072 if (*arc_flags & ARC_FLAG_L2COMPRESS) 3073 hdr->b_flags |= ARC_FLAG_L2COMPRESS; 3074 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 3075 buf->b_hdr = hdr; 3076 buf->b_data = NULL; 3077 buf->b_efunc = NULL; 3078 buf->b_private = NULL; 3079 buf->b_next = NULL; 3080 hdr->b_buf = buf; 3081 ASSERT(hdr->b_datacnt == 0); 3082 hdr->b_datacnt = 1; 3083 arc_get_data_buf(buf); 3084 arc_access(hdr, hash_lock); 3085 } 3086 3087 ASSERT(!GHOST_STATE(hdr->b_state)); 3088 3089 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 3090 acb->acb_done = done; 3091 acb->acb_private = private; 3092 3093 ASSERT(hdr->b_acb == NULL); 3094 hdr->b_acb = acb; 3095 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS; 3096 3097 if (hdr->b_l2hdr != NULL && 3098 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 3099 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 3100 addr = hdr->b_l2hdr->b_daddr; 3101 b_compress = hdr->b_l2hdr->b_compress; 3102 b_asize = hdr->b_l2hdr->b_asize; 3103 /* 3104 * Lock out device removal. 3105 */ 3106 if (vdev_is_dead(vd) || 3107 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 3108 vd = NULL; 3109 } 3110 3111 if (hash_lock != NULL) 3112 mutex_exit(hash_lock); 3113 3114 /* 3115 * At this point, we have a level 1 cache miss. Try again in 3116 * L2ARC if possible. 3117 */ 3118 ASSERT3U(hdr->b_size, ==, size); 3119 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 3120 uint64_t, size, zbookmark_phys_t *, zb); 3121 ARCSTAT_BUMP(arcstat_misses); 3122 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_FLAG_PREFETCH), 3123 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 3124 data, metadata, misses); 3125 3126 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 3127 /* 3128 * Read from the L2ARC if the following are true: 3129 * 1. The L2ARC vdev was previously cached. 3130 * 2. This buffer still has L2ARC metadata. 3131 * 3. This buffer isn't currently writing to the L2ARC. 3132 * 4. The L2ARC entry wasn't evicted, which may 3133 * also have invalidated the vdev. 3134 * 5. This isn't prefetch and l2arc_noprefetch is set. 3135 */ 3136 if (hdr->b_l2hdr != NULL && 3137 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 3138 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 3139 l2arc_read_callback_t *cb; 3140 3141 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 3142 ARCSTAT_BUMP(arcstat_l2_hits); 3143 3144 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 3145 KM_SLEEP); 3146 cb->l2rcb_buf = buf; 3147 cb->l2rcb_spa = spa; 3148 cb->l2rcb_bp = *bp; 3149 cb->l2rcb_zb = *zb; 3150 cb->l2rcb_flags = zio_flags; 3151 cb->l2rcb_compress = b_compress; 3152 3153 ASSERT(addr >= VDEV_LABEL_START_SIZE && 3154 addr + size < vd->vdev_psize - 3155 VDEV_LABEL_END_SIZE); 3156 3157 /* 3158 * l2arc read. The SCL_L2ARC lock will be 3159 * released by l2arc_read_done(). 3160 * Issue a null zio if the underlying buffer 3161 * was squashed to zero size by compression. 3162 */ 3163 if (b_compress == ZIO_COMPRESS_EMPTY) { 3164 rzio = zio_null(pio, spa, vd, 3165 l2arc_read_done, cb, 3166 zio_flags | ZIO_FLAG_DONT_CACHE | 3167 ZIO_FLAG_CANFAIL | 3168 ZIO_FLAG_DONT_PROPAGATE | 3169 ZIO_FLAG_DONT_RETRY); 3170 } else { 3171 rzio = zio_read_phys(pio, vd, addr, 3172 b_asize, buf->b_data, 3173 ZIO_CHECKSUM_OFF, 3174 l2arc_read_done, cb, priority, 3175 zio_flags | ZIO_FLAG_DONT_CACHE | 3176 ZIO_FLAG_CANFAIL | 3177 ZIO_FLAG_DONT_PROPAGATE | 3178 ZIO_FLAG_DONT_RETRY, B_FALSE); 3179 } 3180 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 3181 zio_t *, rzio); 3182 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize); 3183 3184 if (*arc_flags & ARC_FLAG_NOWAIT) { 3185 zio_nowait(rzio); 3186 return (0); 3187 } 3188 3189 ASSERT(*arc_flags & ARC_FLAG_WAIT); 3190 if (zio_wait(rzio) == 0) 3191 return (0); 3192 3193 /* l2arc read error; goto zio_read() */ 3194 } else { 3195 DTRACE_PROBE1(l2arc__miss, 3196 arc_buf_hdr_t *, hdr); 3197 ARCSTAT_BUMP(arcstat_l2_misses); 3198 if (HDR_L2_WRITING(hdr)) 3199 ARCSTAT_BUMP(arcstat_l2_rw_clash); 3200 spa_config_exit(spa, SCL_L2ARC, vd); 3201 } 3202 } else { 3203 if (vd != NULL) 3204 spa_config_exit(spa, SCL_L2ARC, vd); 3205 if (l2arc_ndev != 0) { 3206 DTRACE_PROBE1(l2arc__miss, 3207 arc_buf_hdr_t *, hdr); 3208 ARCSTAT_BUMP(arcstat_l2_misses); 3209 } 3210 } 3211 3212 rzio = zio_read(pio, spa, bp, buf->b_data, size, 3213 arc_read_done, buf, priority, zio_flags, zb); 3214 3215 if (*arc_flags & ARC_FLAG_WAIT) 3216 return (zio_wait(rzio)); 3217 3218 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 3219 zio_nowait(rzio); 3220 } 3221 return (0); 3222 } 3223 3224 void 3225 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 3226 { 3227 ASSERT(buf->b_hdr != NULL); 3228 ASSERT(buf->b_hdr->b_state != arc_anon); 3229 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 3230 ASSERT(buf->b_efunc == NULL); 3231 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 3232 3233 buf->b_efunc = func; 3234 buf->b_private = private; 3235 } 3236 3237 /* 3238 * Notify the arc that a block was freed, and thus will never be used again. 3239 */ 3240 void 3241 arc_freed(spa_t *spa, const blkptr_t *bp) 3242 { 3243 arc_buf_hdr_t *hdr; 3244 kmutex_t *hash_lock; 3245 uint64_t guid = spa_load_guid(spa); 3246 3247 ASSERT(!BP_IS_EMBEDDED(bp)); 3248 3249 hdr = buf_hash_find(guid, bp, &hash_lock); 3250 if (hdr == NULL) 3251 return; 3252 if (HDR_BUF_AVAILABLE(hdr)) { 3253 arc_buf_t *buf = hdr->b_buf; 3254 add_reference(hdr, hash_lock, FTAG); 3255 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE; 3256 mutex_exit(hash_lock); 3257 3258 arc_release(buf, FTAG); 3259 (void) arc_buf_remove_ref(buf, FTAG); 3260 } else { 3261 mutex_exit(hash_lock); 3262 } 3263 3264 } 3265 3266 /* 3267 * Clear the user eviction callback set by arc_set_callback(), first calling 3268 * it if it exists. Because the presence of a callback keeps an arc_buf cached 3269 * clearing the callback may result in the arc_buf being destroyed. However, 3270 * it will not result in the *last* arc_buf being destroyed, hence the data 3271 * will remain cached in the ARC. We make a copy of the arc buffer here so 3272 * that we can process the callback without holding any locks. 3273 * 3274 * It's possible that the callback is already in the process of being cleared 3275 * by another thread. In this case we can not clear the callback. 3276 * 3277 * Returns B_TRUE if the callback was successfully called and cleared. 3278 */ 3279 boolean_t 3280 arc_clear_callback(arc_buf_t *buf) 3281 { 3282 arc_buf_hdr_t *hdr; 3283 kmutex_t *hash_lock; 3284 arc_evict_func_t *efunc = buf->b_efunc; 3285 void *private = buf->b_private; 3286 3287 mutex_enter(&buf->b_evict_lock); 3288 hdr = buf->b_hdr; 3289 if (hdr == NULL) { 3290 /* 3291 * We are in arc_do_user_evicts(). 3292 */ 3293 ASSERT(buf->b_data == NULL); 3294 mutex_exit(&buf->b_evict_lock); 3295 return (B_FALSE); 3296 } else if (buf->b_data == NULL) { 3297 /* 3298 * We are on the eviction list; process this buffer now 3299 * but let arc_do_user_evicts() do the reaping. 3300 */ 3301 buf->b_efunc = NULL; 3302 mutex_exit(&buf->b_evict_lock); 3303 VERIFY0(efunc(private)); 3304 return (B_TRUE); 3305 } 3306 hash_lock = HDR_LOCK(hdr); 3307 mutex_enter(hash_lock); 3308 hdr = buf->b_hdr; 3309 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3310 3311 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 3312 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 3313 3314 buf->b_efunc = NULL; 3315 buf->b_private = NULL; 3316 3317 if (hdr->b_datacnt > 1) { 3318 mutex_exit(&buf->b_evict_lock); 3319 arc_buf_destroy(buf, FALSE, TRUE); 3320 } else { 3321 ASSERT(buf == hdr->b_buf); 3322 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE; 3323 mutex_exit(&buf->b_evict_lock); 3324 } 3325 3326 mutex_exit(hash_lock); 3327 VERIFY0(efunc(private)); 3328 return (B_TRUE); 3329 } 3330 3331 /* 3332 * Release this buffer from the cache, making it an anonymous buffer. This 3333 * must be done after a read and prior to modifying the buffer contents. 3334 * If the buffer has more than one reference, we must make 3335 * a new hdr for the buffer. 3336 */ 3337 void 3338 arc_release(arc_buf_t *buf, void *tag) 3339 { 3340 arc_buf_hdr_t *hdr; 3341 kmutex_t *hash_lock = NULL; 3342 l2arc_buf_hdr_t *l2hdr; 3343 uint64_t buf_size; 3344 3345 /* 3346 * It would be nice to assert that if it's DMU metadata (level > 3347 * 0 || it's the dnode file), then it must be syncing context. 3348 * But we don't know that information at this level. 3349 */ 3350 3351 mutex_enter(&buf->b_evict_lock); 3352 hdr = buf->b_hdr; 3353 3354 /* this buffer is not on any list */ 3355 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 3356 3357 if (hdr->b_state == arc_anon) { 3358 /* this buffer is already released */ 3359 ASSERT(buf->b_efunc == NULL); 3360 } else { 3361 hash_lock = HDR_LOCK(hdr); 3362 mutex_enter(hash_lock); 3363 hdr = buf->b_hdr; 3364 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3365 } 3366 3367 l2hdr = hdr->b_l2hdr; 3368 if (l2hdr) { 3369 mutex_enter(&l2arc_buflist_mtx); 3370 hdr->b_l2hdr = NULL; 3371 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3372 } 3373 buf_size = hdr->b_size; 3374 3375 /* 3376 * Do we have more than one buf? 3377 */ 3378 if (hdr->b_datacnt > 1) { 3379 arc_buf_hdr_t *nhdr; 3380 arc_buf_t **bufp; 3381 uint64_t blksz = hdr->b_size; 3382 uint64_t spa = hdr->b_spa; 3383 arc_buf_contents_t type = hdr->b_type; 3384 uint32_t flags = hdr->b_flags; 3385 3386 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3387 /* 3388 * Pull the data off of this hdr and attach it to 3389 * a new anonymous hdr. 3390 */ 3391 (void) remove_reference(hdr, hash_lock, tag); 3392 bufp = &hdr->b_buf; 3393 while (*bufp != buf) 3394 bufp = &(*bufp)->b_next; 3395 *bufp = buf->b_next; 3396 buf->b_next = NULL; 3397 3398 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3399 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3400 if (refcount_is_zero(&hdr->b_refcnt)) { 3401 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3402 ASSERT3U(*size, >=, hdr->b_size); 3403 atomic_add_64(size, -hdr->b_size); 3404 } 3405 3406 /* 3407 * We're releasing a duplicate user data buffer, update 3408 * our statistics accordingly. 3409 */ 3410 if (hdr->b_type == ARC_BUFC_DATA) { 3411 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 3412 ARCSTAT_INCR(arcstat_duplicate_buffers_size, 3413 -hdr->b_size); 3414 } 3415 hdr->b_datacnt -= 1; 3416 arc_cksum_verify(buf); 3417 arc_buf_unwatch(buf); 3418 3419 mutex_exit(hash_lock); 3420 3421 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3422 nhdr->b_size = blksz; 3423 nhdr->b_spa = spa; 3424 nhdr->b_type = type; 3425 nhdr->b_buf = buf; 3426 nhdr->b_state = arc_anon; 3427 nhdr->b_arc_access = 0; 3428 nhdr->b_flags = flags & ARC_FLAG_L2_WRITING; 3429 nhdr->b_l2hdr = NULL; 3430 nhdr->b_datacnt = 1; 3431 nhdr->b_freeze_cksum = NULL; 3432 (void) refcount_add(&nhdr->b_refcnt, tag); 3433 buf->b_hdr = nhdr; 3434 mutex_exit(&buf->b_evict_lock); 3435 atomic_add_64(&arc_anon->arcs_size, blksz); 3436 } else { 3437 mutex_exit(&buf->b_evict_lock); 3438 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3439 ASSERT(!list_link_active(&hdr->b_arc_node)); 3440 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3441 if (hdr->b_state != arc_anon) 3442 arc_change_state(arc_anon, hdr, hash_lock); 3443 hdr->b_arc_access = 0; 3444 if (hash_lock) 3445 mutex_exit(hash_lock); 3446 3447 buf_discard_identity(hdr); 3448 arc_buf_thaw(buf); 3449 } 3450 buf->b_efunc = NULL; 3451 buf->b_private = NULL; 3452 3453 if (l2hdr) { 3454 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 3455 vdev_space_update(l2hdr->b_dev->l2ad_vdev, 3456 -l2hdr->b_asize, 0, 0); 3457 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3458 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3459 mutex_exit(&l2arc_buflist_mtx); 3460 } 3461 } 3462 3463 int 3464 arc_released(arc_buf_t *buf) 3465 { 3466 int released; 3467 3468 mutex_enter(&buf->b_evict_lock); 3469 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3470 mutex_exit(&buf->b_evict_lock); 3471 return (released); 3472 } 3473 3474 #ifdef ZFS_DEBUG 3475 int 3476 arc_referenced(arc_buf_t *buf) 3477 { 3478 int referenced; 3479 3480 mutex_enter(&buf->b_evict_lock); 3481 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3482 mutex_exit(&buf->b_evict_lock); 3483 return (referenced); 3484 } 3485 #endif 3486 3487 static void 3488 arc_write_ready(zio_t *zio) 3489 { 3490 arc_write_callback_t *callback = zio->io_private; 3491 arc_buf_t *buf = callback->awcb_buf; 3492 arc_buf_hdr_t *hdr = buf->b_hdr; 3493 3494 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3495 callback->awcb_ready(zio, buf, callback->awcb_private); 3496 3497 /* 3498 * If the IO is already in progress, then this is a re-write 3499 * attempt, so we need to thaw and re-compute the cksum. 3500 * It is the responsibility of the callback to handle the 3501 * accounting for any re-write attempt. 3502 */ 3503 if (HDR_IO_IN_PROGRESS(hdr)) { 3504 mutex_enter(&hdr->b_freeze_lock); 3505 if (hdr->b_freeze_cksum != NULL) { 3506 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3507 hdr->b_freeze_cksum = NULL; 3508 } 3509 mutex_exit(&hdr->b_freeze_lock); 3510 } 3511 arc_cksum_compute(buf, B_FALSE); 3512 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS; 3513 } 3514 3515 /* 3516 * The SPA calls this callback for each physical write that happens on behalf 3517 * of a logical write. See the comment in dbuf_write_physdone() for details. 3518 */ 3519 static void 3520 arc_write_physdone(zio_t *zio) 3521 { 3522 arc_write_callback_t *cb = zio->io_private; 3523 if (cb->awcb_physdone != NULL) 3524 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 3525 } 3526 3527 static void 3528 arc_write_done(zio_t *zio) 3529 { 3530 arc_write_callback_t *callback = zio->io_private; 3531 arc_buf_t *buf = callback->awcb_buf; 3532 arc_buf_hdr_t *hdr = buf->b_hdr; 3533 3534 ASSERT(hdr->b_acb == NULL); 3535 3536 if (zio->io_error == 0) { 3537 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 3538 buf_discard_identity(hdr); 3539 } else { 3540 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3541 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 3542 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3543 } 3544 } else { 3545 ASSERT(BUF_EMPTY(hdr)); 3546 } 3547 3548 /* 3549 * If the block to be written was all-zero or compressed enough to be 3550 * embedded in the BP, no write was performed so there will be no 3551 * dva/birth/checksum. The buffer must therefore remain anonymous 3552 * (and uncached). 3553 */ 3554 if (!BUF_EMPTY(hdr)) { 3555 arc_buf_hdr_t *exists; 3556 kmutex_t *hash_lock; 3557 3558 ASSERT(zio->io_error == 0); 3559 3560 arc_cksum_verify(buf); 3561 3562 exists = buf_hash_insert(hdr, &hash_lock); 3563 if (exists) { 3564 /* 3565 * This can only happen if we overwrite for 3566 * sync-to-convergence, because we remove 3567 * buffers from the hash table when we arc_free(). 3568 */ 3569 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 3570 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3571 panic("bad overwrite, hdr=%p exists=%p", 3572 (void *)hdr, (void *)exists); 3573 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3574 arc_change_state(arc_anon, exists, hash_lock); 3575 mutex_exit(hash_lock); 3576 arc_hdr_destroy(exists); 3577 exists = buf_hash_insert(hdr, &hash_lock); 3578 ASSERT3P(exists, ==, NULL); 3579 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 3580 /* nopwrite */ 3581 ASSERT(zio->io_prop.zp_nopwrite); 3582 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3583 panic("bad nopwrite, hdr=%p exists=%p", 3584 (void *)hdr, (void *)exists); 3585 } else { 3586 /* Dedup */ 3587 ASSERT(hdr->b_datacnt == 1); 3588 ASSERT(hdr->b_state == arc_anon); 3589 ASSERT(BP_GET_DEDUP(zio->io_bp)); 3590 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 3591 } 3592 } 3593 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS; 3594 /* if it's not anon, we are doing a scrub */ 3595 if (!exists && hdr->b_state == arc_anon) 3596 arc_access(hdr, hash_lock); 3597 mutex_exit(hash_lock); 3598 } else { 3599 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS; 3600 } 3601 3602 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3603 callback->awcb_done(zio, buf, callback->awcb_private); 3604 3605 kmem_free(callback, sizeof (arc_write_callback_t)); 3606 } 3607 3608 zio_t * 3609 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 3610 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress, 3611 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone, 3612 arc_done_func_t *done, void *private, zio_priority_t priority, 3613 int zio_flags, const zbookmark_phys_t *zb) 3614 { 3615 arc_buf_hdr_t *hdr = buf->b_hdr; 3616 arc_write_callback_t *callback; 3617 zio_t *zio; 3618 3619 ASSERT(ready != NULL); 3620 ASSERT(done != NULL); 3621 ASSERT(!HDR_IO_ERROR(hdr)); 3622 ASSERT((hdr->b_flags & ARC_FLAG_IO_IN_PROGRESS) == 0); 3623 ASSERT(hdr->b_acb == NULL); 3624 if (l2arc) 3625 hdr->b_flags |= ARC_FLAG_L2CACHE; 3626 if (l2arc_compress) 3627 hdr->b_flags |= ARC_FLAG_L2COMPRESS; 3628 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3629 callback->awcb_ready = ready; 3630 callback->awcb_physdone = physdone; 3631 callback->awcb_done = done; 3632 callback->awcb_private = private; 3633 callback->awcb_buf = buf; 3634 3635 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 3636 arc_write_ready, arc_write_physdone, arc_write_done, callback, 3637 priority, zio_flags, zb); 3638 3639 return (zio); 3640 } 3641 3642 static int 3643 arc_memory_throttle(uint64_t reserve, uint64_t txg) 3644 { 3645 #ifdef _KERNEL 3646 uint64_t available_memory = ptob(freemem); 3647 static uint64_t page_load = 0; 3648 static uint64_t last_txg = 0; 3649 3650 #if defined(__i386) 3651 available_memory = 3652 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3653 #endif 3654 3655 if (freemem > physmem * arc_lotsfree_percent / 100) 3656 return (0); 3657 3658 if (txg > last_txg) { 3659 last_txg = txg; 3660 page_load = 0; 3661 } 3662 /* 3663 * If we are in pageout, we know that memory is already tight, 3664 * the arc is already going to be evicting, so we just want to 3665 * continue to let page writes occur as quickly as possible. 3666 */ 3667 if (curproc == proc_pageout) { 3668 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3669 return (SET_ERROR(ERESTART)); 3670 /* Note: reserve is inflated, so we deflate */ 3671 page_load += reserve / 8; 3672 return (0); 3673 } else if (page_load > 0 && arc_reclaim_needed()) { 3674 /* memory is low, delay before restarting */ 3675 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3676 return (SET_ERROR(EAGAIN)); 3677 } 3678 page_load = 0; 3679 #endif 3680 return (0); 3681 } 3682 3683 void 3684 arc_tempreserve_clear(uint64_t reserve) 3685 { 3686 atomic_add_64(&arc_tempreserve, -reserve); 3687 ASSERT((int64_t)arc_tempreserve >= 0); 3688 } 3689 3690 int 3691 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3692 { 3693 int error; 3694 uint64_t anon_size; 3695 3696 if (reserve > arc_c/4 && !arc_no_grow) 3697 arc_c = MIN(arc_c_max, reserve * 4); 3698 if (reserve > arc_c) 3699 return (SET_ERROR(ENOMEM)); 3700 3701 /* 3702 * Don't count loaned bufs as in flight dirty data to prevent long 3703 * network delays from blocking transactions that are ready to be 3704 * assigned to a txg. 3705 */ 3706 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3707 3708 /* 3709 * Writes will, almost always, require additional memory allocations 3710 * in order to compress/encrypt/etc the data. We therefore need to 3711 * make sure that there is sufficient available memory for this. 3712 */ 3713 error = arc_memory_throttle(reserve, txg); 3714 if (error != 0) 3715 return (error); 3716 3717 /* 3718 * Throttle writes when the amount of dirty data in the cache 3719 * gets too large. We try to keep the cache less than half full 3720 * of dirty blocks so that our sync times don't grow too large. 3721 * Note: if two requests come in concurrently, we might let them 3722 * both succeed, when one of them should fail. Not a huge deal. 3723 */ 3724 3725 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3726 anon_size > arc_c / 4) { 3727 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3728 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3729 arc_tempreserve>>10, 3730 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3731 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3732 reserve>>10, arc_c>>10); 3733 return (SET_ERROR(ERESTART)); 3734 } 3735 atomic_add_64(&arc_tempreserve, reserve); 3736 return (0); 3737 } 3738 3739 void 3740 arc_init(void) 3741 { 3742 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3743 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3744 3745 /* Convert seconds to clock ticks */ 3746 arc_min_prefetch_lifespan = 1 * hz; 3747 3748 /* Start out with 1/8 of all memory */ 3749 arc_c = physmem * PAGESIZE / 8; 3750 3751 #ifdef _KERNEL 3752 /* 3753 * On architectures where the physical memory can be larger 3754 * than the addressable space (intel in 32-bit mode), we may 3755 * need to limit the cache to 1/8 of VM size. 3756 */ 3757 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3758 #endif 3759 3760 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3761 arc_c_min = MAX(arc_c / 4, 64<<20); 3762 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3763 if (arc_c * 8 >= 1<<30) 3764 arc_c_max = (arc_c * 8) - (1<<30); 3765 else 3766 arc_c_max = arc_c_min; 3767 arc_c_max = MAX(arc_c * 6, arc_c_max); 3768 3769 /* 3770 * Allow the tunables to override our calculations if they are 3771 * reasonable (ie. over 64MB) 3772 */ 3773 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3774 arc_c_max = zfs_arc_max; 3775 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3776 arc_c_min = zfs_arc_min; 3777 3778 arc_c = arc_c_max; 3779 arc_p = (arc_c >> 1); 3780 3781 /* limit meta-data to 1/4 of the arc capacity */ 3782 arc_meta_limit = arc_c_max / 4; 3783 3784 /* Allow the tunable to override if it is reasonable */ 3785 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3786 arc_meta_limit = zfs_arc_meta_limit; 3787 3788 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3789 arc_c_min = arc_meta_limit / 2; 3790 3791 if (zfs_arc_meta_min > 0) { 3792 arc_meta_min = zfs_arc_meta_min; 3793 } else { 3794 arc_meta_min = arc_c_min / 2; 3795 } 3796 3797 if (zfs_arc_grow_retry > 0) 3798 arc_grow_retry = zfs_arc_grow_retry; 3799 3800 if (zfs_arc_shrink_shift > 0) 3801 arc_shrink_shift = zfs_arc_shrink_shift; 3802 3803 if (zfs_arc_p_min_shift > 0) 3804 arc_p_min_shift = zfs_arc_p_min_shift; 3805 3806 /* if kmem_flags are set, lets try to use less memory */ 3807 if (kmem_debugging()) 3808 arc_c = arc_c / 2; 3809 if (arc_c < arc_c_min) 3810 arc_c = arc_c_min; 3811 3812 arc_anon = &ARC_anon; 3813 arc_mru = &ARC_mru; 3814 arc_mru_ghost = &ARC_mru_ghost; 3815 arc_mfu = &ARC_mfu; 3816 arc_mfu_ghost = &ARC_mfu_ghost; 3817 arc_l2c_only = &ARC_l2c_only; 3818 arc_size = 0; 3819 3820 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3821 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3822 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3823 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3824 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3825 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3826 3827 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3828 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3829 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3830 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3831 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3832 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3833 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3834 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3835 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3836 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3837 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3838 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3839 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3840 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3841 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3842 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3843 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3844 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3845 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3846 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3847 3848 buf_init(); 3849 3850 arc_thread_exit = 0; 3851 arc_eviction_list = NULL; 3852 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3853 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3854 3855 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3856 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3857 3858 if (arc_ksp != NULL) { 3859 arc_ksp->ks_data = &arc_stats; 3860 kstat_install(arc_ksp); 3861 } 3862 3863 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3864 TS_RUN, minclsyspri); 3865 3866 arc_dead = FALSE; 3867 arc_warm = B_FALSE; 3868 3869 /* 3870 * Calculate maximum amount of dirty data per pool. 3871 * 3872 * If it has been set by /etc/system, take that. 3873 * Otherwise, use a percentage of physical memory defined by 3874 * zfs_dirty_data_max_percent (default 10%) with a cap at 3875 * zfs_dirty_data_max_max (default 4GB). 3876 */ 3877 if (zfs_dirty_data_max == 0) { 3878 zfs_dirty_data_max = physmem * PAGESIZE * 3879 zfs_dirty_data_max_percent / 100; 3880 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 3881 zfs_dirty_data_max_max); 3882 } 3883 } 3884 3885 void 3886 arc_fini(void) 3887 { 3888 mutex_enter(&arc_reclaim_thr_lock); 3889 arc_thread_exit = 1; 3890 while (arc_thread_exit != 0) 3891 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3892 mutex_exit(&arc_reclaim_thr_lock); 3893 3894 arc_flush(NULL); 3895 3896 arc_dead = TRUE; 3897 3898 if (arc_ksp != NULL) { 3899 kstat_delete(arc_ksp); 3900 arc_ksp = NULL; 3901 } 3902 3903 mutex_destroy(&arc_eviction_mtx); 3904 mutex_destroy(&arc_reclaim_thr_lock); 3905 cv_destroy(&arc_reclaim_thr_cv); 3906 3907 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3908 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3909 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3910 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3911 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3912 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3913 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3914 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3915 3916 mutex_destroy(&arc_anon->arcs_mtx); 3917 mutex_destroy(&arc_mru->arcs_mtx); 3918 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3919 mutex_destroy(&arc_mfu->arcs_mtx); 3920 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3921 mutex_destroy(&arc_l2c_only->arcs_mtx); 3922 3923 buf_fini(); 3924 3925 ASSERT(arc_loaned_bytes == 0); 3926 } 3927 3928 /* 3929 * Level 2 ARC 3930 * 3931 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3932 * It uses dedicated storage devices to hold cached data, which are populated 3933 * using large infrequent writes. The main role of this cache is to boost 3934 * the performance of random read workloads. The intended L2ARC devices 3935 * include short-stroked disks, solid state disks, and other media with 3936 * substantially faster read latency than disk. 3937 * 3938 * +-----------------------+ 3939 * | ARC | 3940 * +-----------------------+ 3941 * | ^ ^ 3942 * | | | 3943 * l2arc_feed_thread() arc_read() 3944 * | | | 3945 * | l2arc read | 3946 * V | | 3947 * +---------------+ | 3948 * | L2ARC | | 3949 * +---------------+ | 3950 * | ^ | 3951 * l2arc_write() | | 3952 * | | | 3953 * V | | 3954 * +-------+ +-------+ 3955 * | vdev | | vdev | 3956 * | cache | | cache | 3957 * +-------+ +-------+ 3958 * +=========+ .-----. 3959 * : L2ARC : |-_____-| 3960 * : devices : | Disks | 3961 * +=========+ `-_____-' 3962 * 3963 * Read requests are satisfied from the following sources, in order: 3964 * 3965 * 1) ARC 3966 * 2) vdev cache of L2ARC devices 3967 * 3) L2ARC devices 3968 * 4) vdev cache of disks 3969 * 5) disks 3970 * 3971 * Some L2ARC device types exhibit extremely slow write performance. 3972 * To accommodate for this there are some significant differences between 3973 * the L2ARC and traditional cache design: 3974 * 3975 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3976 * the ARC behave as usual, freeing buffers and placing headers on ghost 3977 * lists. The ARC does not send buffers to the L2ARC during eviction as 3978 * this would add inflated write latencies for all ARC memory pressure. 3979 * 3980 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3981 * It does this by periodically scanning buffers from the eviction-end of 3982 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3983 * not already there. It scans until a headroom of buffers is satisfied, 3984 * which itself is a buffer for ARC eviction. If a compressible buffer is 3985 * found during scanning and selected for writing to an L2ARC device, we 3986 * temporarily boost scanning headroom during the next scan cycle to make 3987 * sure we adapt to compression effects (which might significantly reduce 3988 * the data volume we write to L2ARC). The thread that does this is 3989 * l2arc_feed_thread(), illustrated below; example sizes are included to 3990 * provide a better sense of ratio than this diagram: 3991 * 3992 * head --> tail 3993 * +---------------------+----------+ 3994 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3995 * +---------------------+----------+ | o L2ARC eligible 3996 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3997 * +---------------------+----------+ | 3998 * 15.9 Gbytes ^ 32 Mbytes | 3999 * headroom | 4000 * l2arc_feed_thread() 4001 * | 4002 * l2arc write hand <--[oooo]--' 4003 * | 8 Mbyte 4004 * | write max 4005 * V 4006 * +==============================+ 4007 * L2ARC dev |####|#|###|###| |####| ... | 4008 * +==============================+ 4009 * 32 Gbytes 4010 * 4011 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 4012 * evicted, then the L2ARC has cached a buffer much sooner than it probably 4013 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 4014 * safe to say that this is an uncommon case, since buffers at the end of 4015 * the ARC lists have moved there due to inactivity. 4016 * 4017 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 4018 * then the L2ARC simply misses copying some buffers. This serves as a 4019 * pressure valve to prevent heavy read workloads from both stalling the ARC 4020 * with waits and clogging the L2ARC with writes. This also helps prevent 4021 * the potential for the L2ARC to churn if it attempts to cache content too 4022 * quickly, such as during backups of the entire pool. 4023 * 4024 * 5. After system boot and before the ARC has filled main memory, there are 4025 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 4026 * lists can remain mostly static. Instead of searching from tail of these 4027 * lists as pictured, the l2arc_feed_thread() will search from the list heads 4028 * for eligible buffers, greatly increasing its chance of finding them. 4029 * 4030 * The L2ARC device write speed is also boosted during this time so that 4031 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 4032 * there are no L2ARC reads, and no fear of degrading read performance 4033 * through increased writes. 4034 * 4035 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 4036 * the vdev queue can aggregate them into larger and fewer writes. Each 4037 * device is written to in a rotor fashion, sweeping writes through 4038 * available space then repeating. 4039 * 4040 * 7. The L2ARC does not store dirty content. It never needs to flush 4041 * write buffers back to disk based storage. 4042 * 4043 * 8. If an ARC buffer is written (and dirtied) which also exists in the 4044 * L2ARC, the now stale L2ARC buffer is immediately dropped. 4045 * 4046 * The performance of the L2ARC can be tweaked by a number of tunables, which 4047 * may be necessary for different workloads: 4048 * 4049 * l2arc_write_max max write bytes per interval 4050 * l2arc_write_boost extra write bytes during device warmup 4051 * l2arc_noprefetch skip caching prefetched buffers 4052 * l2arc_headroom number of max device writes to precache 4053 * l2arc_headroom_boost when we find compressed buffers during ARC 4054 * scanning, we multiply headroom by this 4055 * percentage factor for the next scan cycle, 4056 * since more compressed buffers are likely to 4057 * be present 4058 * l2arc_feed_secs seconds between L2ARC writing 4059 * 4060 * Tunables may be removed or added as future performance improvements are 4061 * integrated, and also may become zpool properties. 4062 * 4063 * There are three key functions that control how the L2ARC warms up: 4064 * 4065 * l2arc_write_eligible() check if a buffer is eligible to cache 4066 * l2arc_write_size() calculate how much to write 4067 * l2arc_write_interval() calculate sleep delay between writes 4068 * 4069 * These three functions determine what to write, how much, and how quickly 4070 * to send writes. 4071 */ 4072 4073 static boolean_t 4074 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 4075 { 4076 /* 4077 * A buffer is *not* eligible for the L2ARC if it: 4078 * 1. belongs to a different spa. 4079 * 2. is already cached on the L2ARC. 4080 * 3. has an I/O in progress (it may be an incomplete read). 4081 * 4. is flagged not eligible (zfs property). 4082 */ 4083 if (hdr->b_spa != spa_guid || hdr->b_l2hdr != NULL || 4084 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 4085 return (B_FALSE); 4086 4087 return (B_TRUE); 4088 } 4089 4090 static uint64_t 4091 l2arc_write_size(void) 4092 { 4093 uint64_t size; 4094 4095 /* 4096 * Make sure our globals have meaningful values in case the user 4097 * altered them. 4098 */ 4099 size = l2arc_write_max; 4100 if (size == 0) { 4101 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 4102 "be greater than zero, resetting it to the default (%d)", 4103 L2ARC_WRITE_SIZE); 4104 size = l2arc_write_max = L2ARC_WRITE_SIZE; 4105 } 4106 4107 if (arc_warm == B_FALSE) 4108 size += l2arc_write_boost; 4109 4110 return (size); 4111 4112 } 4113 4114 static clock_t 4115 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 4116 { 4117 clock_t interval, next, now; 4118 4119 /* 4120 * If the ARC lists are busy, increase our write rate; if the 4121 * lists are stale, idle back. This is achieved by checking 4122 * how much we previously wrote - if it was more than half of 4123 * what we wanted, schedule the next write much sooner. 4124 */ 4125 if (l2arc_feed_again && wrote > (wanted / 2)) 4126 interval = (hz * l2arc_feed_min_ms) / 1000; 4127 else 4128 interval = hz * l2arc_feed_secs; 4129 4130 now = ddi_get_lbolt(); 4131 next = MAX(now, MIN(now + interval, began + interval)); 4132 4133 return (next); 4134 } 4135 4136 static void 4137 l2arc_hdr_stat_add(void) 4138 { 4139 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 4140 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 4141 } 4142 4143 static void 4144 l2arc_hdr_stat_remove(void) 4145 { 4146 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 4147 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 4148 } 4149 4150 /* 4151 * Cycle through L2ARC devices. This is how L2ARC load balances. 4152 * If a device is returned, this also returns holding the spa config lock. 4153 */ 4154 static l2arc_dev_t * 4155 l2arc_dev_get_next(void) 4156 { 4157 l2arc_dev_t *first, *next = NULL; 4158 4159 /* 4160 * Lock out the removal of spas (spa_namespace_lock), then removal 4161 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 4162 * both locks will be dropped and a spa config lock held instead. 4163 */ 4164 mutex_enter(&spa_namespace_lock); 4165 mutex_enter(&l2arc_dev_mtx); 4166 4167 /* if there are no vdevs, there is nothing to do */ 4168 if (l2arc_ndev == 0) 4169 goto out; 4170 4171 first = NULL; 4172 next = l2arc_dev_last; 4173 do { 4174 /* loop around the list looking for a non-faulted vdev */ 4175 if (next == NULL) { 4176 next = list_head(l2arc_dev_list); 4177 } else { 4178 next = list_next(l2arc_dev_list, next); 4179 if (next == NULL) 4180 next = list_head(l2arc_dev_list); 4181 } 4182 4183 /* if we have come back to the start, bail out */ 4184 if (first == NULL) 4185 first = next; 4186 else if (next == first) 4187 break; 4188 4189 } while (vdev_is_dead(next->l2ad_vdev)); 4190 4191 /* if we were unable to find any usable vdevs, return NULL */ 4192 if (vdev_is_dead(next->l2ad_vdev)) 4193 next = NULL; 4194 4195 l2arc_dev_last = next; 4196 4197 out: 4198 mutex_exit(&l2arc_dev_mtx); 4199 4200 /* 4201 * Grab the config lock to prevent the 'next' device from being 4202 * removed while we are writing to it. 4203 */ 4204 if (next != NULL) 4205 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 4206 mutex_exit(&spa_namespace_lock); 4207 4208 return (next); 4209 } 4210 4211 /* 4212 * Free buffers that were tagged for destruction. 4213 */ 4214 static void 4215 l2arc_do_free_on_write() 4216 { 4217 list_t *buflist; 4218 l2arc_data_free_t *df, *df_prev; 4219 4220 mutex_enter(&l2arc_free_on_write_mtx); 4221 buflist = l2arc_free_on_write; 4222 4223 for (df = list_tail(buflist); df; df = df_prev) { 4224 df_prev = list_prev(buflist, df); 4225 ASSERT(df->l2df_data != NULL); 4226 ASSERT(df->l2df_func != NULL); 4227 df->l2df_func(df->l2df_data, df->l2df_size); 4228 list_remove(buflist, df); 4229 kmem_free(df, sizeof (l2arc_data_free_t)); 4230 } 4231 4232 mutex_exit(&l2arc_free_on_write_mtx); 4233 } 4234 4235 /* 4236 * A write to a cache device has completed. Update all headers to allow 4237 * reads from these buffers to begin. 4238 */ 4239 static void 4240 l2arc_write_done(zio_t *zio) 4241 { 4242 l2arc_write_callback_t *cb; 4243 l2arc_dev_t *dev; 4244 list_t *buflist; 4245 arc_buf_hdr_t *head, *hdr, *hdr_prev; 4246 l2arc_buf_hdr_t *abl2; 4247 kmutex_t *hash_lock; 4248 int64_t bytes_dropped = 0; 4249 4250 cb = zio->io_private; 4251 ASSERT(cb != NULL); 4252 dev = cb->l2wcb_dev; 4253 ASSERT(dev != NULL); 4254 head = cb->l2wcb_head; 4255 ASSERT(head != NULL); 4256 buflist = dev->l2ad_buflist; 4257 ASSERT(buflist != NULL); 4258 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 4259 l2arc_write_callback_t *, cb); 4260 4261 if (zio->io_error != 0) 4262 ARCSTAT_BUMP(arcstat_l2_writes_error); 4263 4264 mutex_enter(&l2arc_buflist_mtx); 4265 4266 /* 4267 * All writes completed, or an error was hit. 4268 */ 4269 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 4270 hdr_prev = list_prev(buflist, hdr); 4271 abl2 = hdr->b_l2hdr; 4272 4273 /* 4274 * Release the temporary compressed buffer as soon as possible. 4275 */ 4276 if (abl2->b_compress != ZIO_COMPRESS_OFF) 4277 l2arc_release_cdata_buf(hdr); 4278 4279 hash_lock = HDR_LOCK(hdr); 4280 if (!mutex_tryenter(hash_lock)) { 4281 /* 4282 * This buffer misses out. It may be in a stage 4283 * of eviction. Its ARC_L2_WRITING flag will be 4284 * left set, denying reads to this buffer. 4285 */ 4286 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 4287 continue; 4288 } 4289 4290 if (zio->io_error != 0) { 4291 /* 4292 * Error - drop L2ARC entry. 4293 */ 4294 list_remove(buflist, hdr); 4295 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); 4296 bytes_dropped += abl2->b_asize; 4297 hdr->b_l2hdr = NULL; 4298 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4299 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 4300 } 4301 4302 /* 4303 * Allow ARC to begin reads to this L2ARC entry. 4304 */ 4305 hdr->b_flags &= ~ARC_FLAG_L2_WRITING; 4306 4307 mutex_exit(hash_lock); 4308 } 4309 4310 atomic_inc_64(&l2arc_writes_done); 4311 list_remove(buflist, head); 4312 kmem_cache_free(hdr_cache, head); 4313 mutex_exit(&l2arc_buflist_mtx); 4314 4315 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 4316 4317 l2arc_do_free_on_write(); 4318 4319 kmem_free(cb, sizeof (l2arc_write_callback_t)); 4320 } 4321 4322 /* 4323 * A read to a cache device completed. Validate buffer contents before 4324 * handing over to the regular ARC routines. 4325 */ 4326 static void 4327 l2arc_read_done(zio_t *zio) 4328 { 4329 l2arc_read_callback_t *cb; 4330 arc_buf_hdr_t *hdr; 4331 arc_buf_t *buf; 4332 kmutex_t *hash_lock; 4333 int equal; 4334 4335 ASSERT(zio->io_vd != NULL); 4336 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 4337 4338 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 4339 4340 cb = zio->io_private; 4341 ASSERT(cb != NULL); 4342 buf = cb->l2rcb_buf; 4343 ASSERT(buf != NULL); 4344 4345 hash_lock = HDR_LOCK(buf->b_hdr); 4346 mutex_enter(hash_lock); 4347 hdr = buf->b_hdr; 4348 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 4349 4350 /* 4351 * If the buffer was compressed, decompress it first. 4352 */ 4353 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF) 4354 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress); 4355 ASSERT(zio->io_data != NULL); 4356 4357 /* 4358 * Check this survived the L2ARC journey. 4359 */ 4360 equal = arc_cksum_equal(buf); 4361 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 4362 mutex_exit(hash_lock); 4363 zio->io_private = buf; 4364 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 4365 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4366 arc_read_done(zio); 4367 } else { 4368 mutex_exit(hash_lock); 4369 /* 4370 * Buffer didn't survive caching. Increment stats and 4371 * reissue to the original storage device. 4372 */ 4373 if (zio->io_error != 0) { 4374 ARCSTAT_BUMP(arcstat_l2_io_error); 4375 } else { 4376 zio->io_error = SET_ERROR(EIO); 4377 } 4378 if (!equal) 4379 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4380 4381 /* 4382 * If there's no waiter, issue an async i/o to the primary 4383 * storage now. If there *is* a waiter, the caller must 4384 * issue the i/o in a context where it's OK to block. 4385 */ 4386 if (zio->io_waiter == NULL) { 4387 zio_t *pio = zio_unique_parent(zio); 4388 4389 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4390 4391 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4392 buf->b_data, zio->io_size, arc_read_done, buf, 4393 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4394 } 4395 } 4396 4397 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4398 } 4399 4400 /* 4401 * This is the list priority from which the L2ARC will search for pages to 4402 * cache. This is used within loops (0..3) to cycle through lists in the 4403 * desired order. This order can have a significant effect on cache 4404 * performance. 4405 * 4406 * Currently the metadata lists are hit first, MFU then MRU, followed by 4407 * the data lists. This function returns a locked list, and also returns 4408 * the lock pointer. 4409 */ 4410 static list_t * 4411 l2arc_list_locked(int list_num, kmutex_t **lock) 4412 { 4413 list_t *list = NULL; 4414 4415 ASSERT(list_num >= 0 && list_num <= 3); 4416 4417 switch (list_num) { 4418 case 0: 4419 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4420 *lock = &arc_mfu->arcs_mtx; 4421 break; 4422 case 1: 4423 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4424 *lock = &arc_mru->arcs_mtx; 4425 break; 4426 case 2: 4427 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4428 *lock = &arc_mfu->arcs_mtx; 4429 break; 4430 case 3: 4431 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4432 *lock = &arc_mru->arcs_mtx; 4433 break; 4434 } 4435 4436 ASSERT(!(MUTEX_HELD(*lock))); 4437 mutex_enter(*lock); 4438 return (list); 4439 } 4440 4441 /* 4442 * Evict buffers from the device write hand to the distance specified in 4443 * bytes. This distance may span populated buffers, it may span nothing. 4444 * This is clearing a region on the L2ARC device ready for writing. 4445 * If the 'all' boolean is set, every buffer is evicted. 4446 */ 4447 static void 4448 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4449 { 4450 list_t *buflist; 4451 l2arc_buf_hdr_t *abl2; 4452 arc_buf_hdr_t *hdr, *hdr_prev; 4453 kmutex_t *hash_lock; 4454 uint64_t taddr; 4455 int64_t bytes_evicted = 0; 4456 4457 buflist = dev->l2ad_buflist; 4458 4459 if (buflist == NULL) 4460 return; 4461 4462 if (!all && dev->l2ad_first) { 4463 /* 4464 * This is the first sweep through the device. There is 4465 * nothing to evict. 4466 */ 4467 return; 4468 } 4469 4470 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4471 /* 4472 * When nearing the end of the device, evict to the end 4473 * before the device write hand jumps to the start. 4474 */ 4475 taddr = dev->l2ad_end; 4476 } else { 4477 taddr = dev->l2ad_hand + distance; 4478 } 4479 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4480 uint64_t, taddr, boolean_t, all); 4481 4482 top: 4483 mutex_enter(&l2arc_buflist_mtx); 4484 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 4485 hdr_prev = list_prev(buflist, hdr); 4486 4487 hash_lock = HDR_LOCK(hdr); 4488 if (!mutex_tryenter(hash_lock)) { 4489 /* 4490 * Missed the hash lock. Retry. 4491 */ 4492 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4493 mutex_exit(&l2arc_buflist_mtx); 4494 mutex_enter(hash_lock); 4495 mutex_exit(hash_lock); 4496 goto top; 4497 } 4498 4499 if (HDR_L2_WRITE_HEAD(hdr)) { 4500 /* 4501 * We hit a write head node. Leave it for 4502 * l2arc_write_done(). 4503 */ 4504 list_remove(buflist, hdr); 4505 mutex_exit(hash_lock); 4506 continue; 4507 } 4508 4509 if (!all && hdr->b_l2hdr != NULL && 4510 (hdr->b_l2hdr->b_daddr > taddr || 4511 hdr->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4512 /* 4513 * We've evicted to the target address, 4514 * or the end of the device. 4515 */ 4516 mutex_exit(hash_lock); 4517 break; 4518 } 4519 4520 if (HDR_FREE_IN_PROGRESS(hdr)) { 4521 /* 4522 * Already on the path to destruction. 4523 */ 4524 mutex_exit(hash_lock); 4525 continue; 4526 } 4527 4528 if (hdr->b_state == arc_l2c_only) { 4529 ASSERT(!HDR_L2_READING(hdr)); 4530 /* 4531 * This doesn't exist in the ARC. Destroy. 4532 * arc_hdr_destroy() will call list_remove() 4533 * and decrement arcstat_l2_size. 4534 */ 4535 arc_change_state(arc_anon, hdr, hash_lock); 4536 arc_hdr_destroy(hdr); 4537 } else { 4538 /* 4539 * Invalidate issued or about to be issued 4540 * reads, since we may be about to write 4541 * over this location. 4542 */ 4543 if (HDR_L2_READING(hdr)) { 4544 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4545 hdr->b_flags |= ARC_FLAG_L2_EVICTED; 4546 } 4547 4548 /* 4549 * Tell ARC this no longer exists in L2ARC. 4550 */ 4551 if (hdr->b_l2hdr != NULL) { 4552 abl2 = hdr->b_l2hdr; 4553 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); 4554 bytes_evicted += abl2->b_asize; 4555 hdr->b_l2hdr = NULL; 4556 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4557 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 4558 } 4559 list_remove(buflist, hdr); 4560 4561 /* 4562 * This may have been leftover after a 4563 * failed write. 4564 */ 4565 hdr->b_flags &= ~ARC_FLAG_L2_WRITING; 4566 } 4567 mutex_exit(hash_lock); 4568 } 4569 mutex_exit(&l2arc_buflist_mtx); 4570 4571 vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0); 4572 dev->l2ad_evict = taddr; 4573 } 4574 4575 /* 4576 * Find and write ARC buffers to the L2ARC device. 4577 * 4578 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 4579 * for reading until they have completed writing. 4580 * The headroom_boost is an in-out parameter used to maintain headroom boost 4581 * state between calls to this function. 4582 * 4583 * Returns the number of bytes actually written (which may be smaller than 4584 * the delta by which the device hand has changed due to alignment). 4585 */ 4586 static uint64_t 4587 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz, 4588 boolean_t *headroom_boost) 4589 { 4590 arc_buf_hdr_t *hdr, *hdr_prev, *head; 4591 list_t *list; 4592 uint64_t write_asize, write_psize, write_sz, headroom, 4593 buf_compress_minsz; 4594 void *buf_data; 4595 kmutex_t *list_lock; 4596 boolean_t full; 4597 l2arc_write_callback_t *cb; 4598 zio_t *pio, *wzio; 4599 uint64_t guid = spa_load_guid(spa); 4600 const boolean_t do_headroom_boost = *headroom_boost; 4601 4602 ASSERT(dev->l2ad_vdev != NULL); 4603 4604 /* Lower the flag now, we might want to raise it again later. */ 4605 *headroom_boost = B_FALSE; 4606 4607 pio = NULL; 4608 write_sz = write_asize = write_psize = 0; 4609 full = B_FALSE; 4610 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4611 head->b_flags |= ARC_FLAG_L2_WRITE_HEAD; 4612 4613 /* 4614 * We will want to try to compress buffers that are at least 2x the 4615 * device sector size. 4616 */ 4617 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift; 4618 4619 /* 4620 * Copy buffers for L2ARC writing. 4621 */ 4622 mutex_enter(&l2arc_buflist_mtx); 4623 for (int try = 0; try <= 3; try++) { 4624 uint64_t passed_sz = 0; 4625 4626 list = l2arc_list_locked(try, &list_lock); 4627 4628 /* 4629 * L2ARC fast warmup. 4630 * 4631 * Until the ARC is warm and starts to evict, read from the 4632 * head of the ARC lists rather than the tail. 4633 */ 4634 if (arc_warm == B_FALSE) 4635 hdr = list_head(list); 4636 else 4637 hdr = list_tail(list); 4638 4639 headroom = target_sz * l2arc_headroom; 4640 if (do_headroom_boost) 4641 headroom = (headroom * l2arc_headroom_boost) / 100; 4642 4643 for (; hdr; hdr = hdr_prev) { 4644 l2arc_buf_hdr_t *l2hdr; 4645 kmutex_t *hash_lock; 4646 uint64_t buf_sz; 4647 4648 if (arc_warm == B_FALSE) 4649 hdr_prev = list_next(list, hdr); 4650 else 4651 hdr_prev = list_prev(list, hdr); 4652 4653 hash_lock = HDR_LOCK(hdr); 4654 if (!mutex_tryenter(hash_lock)) { 4655 /* 4656 * Skip this buffer rather than waiting. 4657 */ 4658 continue; 4659 } 4660 4661 passed_sz += hdr->b_size; 4662 if (passed_sz > headroom) { 4663 /* 4664 * Searched too far. 4665 */ 4666 mutex_exit(hash_lock); 4667 break; 4668 } 4669 4670 if (!l2arc_write_eligible(guid, hdr)) { 4671 mutex_exit(hash_lock); 4672 continue; 4673 } 4674 4675 if ((write_sz + hdr->b_size) > target_sz) { 4676 full = B_TRUE; 4677 mutex_exit(hash_lock); 4678 break; 4679 } 4680 4681 if (pio == NULL) { 4682 /* 4683 * Insert a dummy header on the buflist so 4684 * l2arc_write_done() can find where the 4685 * write buffers begin without searching. 4686 */ 4687 list_insert_head(dev->l2ad_buflist, head); 4688 4689 cb = kmem_alloc( 4690 sizeof (l2arc_write_callback_t), KM_SLEEP); 4691 cb->l2wcb_dev = dev; 4692 cb->l2wcb_head = head; 4693 pio = zio_root(spa, l2arc_write_done, cb, 4694 ZIO_FLAG_CANFAIL); 4695 } 4696 4697 /* 4698 * Create and add a new L2ARC header. 4699 */ 4700 l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4701 l2hdr->b_dev = dev; 4702 hdr->b_flags |= ARC_FLAG_L2_WRITING; 4703 4704 /* 4705 * Temporarily stash the data buffer in b_tmp_cdata. 4706 * The subsequent write step will pick it up from 4707 * there. This is because can't access hdr->b_buf 4708 * without holding the hash_lock, which we in turn 4709 * can't access without holding the ARC list locks 4710 * (which we want to avoid during compression/writing). 4711 */ 4712 l2hdr->b_compress = ZIO_COMPRESS_OFF; 4713 l2hdr->b_asize = hdr->b_size; 4714 l2hdr->b_tmp_cdata = hdr->b_buf->b_data; 4715 4716 buf_sz = hdr->b_size; 4717 hdr->b_l2hdr = l2hdr; 4718 4719 list_insert_head(dev->l2ad_buflist, hdr); 4720 4721 /* 4722 * Compute and store the buffer cksum before 4723 * writing. On debug the cksum is verified first. 4724 */ 4725 arc_cksum_verify(hdr->b_buf); 4726 arc_cksum_compute(hdr->b_buf, B_TRUE); 4727 4728 mutex_exit(hash_lock); 4729 4730 write_sz += buf_sz; 4731 } 4732 4733 mutex_exit(list_lock); 4734 4735 if (full == B_TRUE) 4736 break; 4737 } 4738 4739 /* No buffers selected for writing? */ 4740 if (pio == NULL) { 4741 ASSERT0(write_sz); 4742 mutex_exit(&l2arc_buflist_mtx); 4743 kmem_cache_free(hdr_cache, head); 4744 return (0); 4745 } 4746 4747 /* 4748 * Now start writing the buffers. We're starting at the write head 4749 * and work backwards, retracing the course of the buffer selector 4750 * loop above. 4751 */ 4752 for (hdr = list_prev(dev->l2ad_buflist, head); hdr; 4753 hdr = list_prev(dev->l2ad_buflist, hdr)) { 4754 l2arc_buf_hdr_t *l2hdr; 4755 uint64_t buf_sz; 4756 4757 /* 4758 * We shouldn't need to lock the buffer here, since we flagged 4759 * it as ARC_FLAG_L2_WRITING in the previous step, but we must 4760 * take care to only access its L2 cache parameters. In 4761 * particular, hdr->b_buf may be invalid by now due to 4762 * ARC eviction. 4763 */ 4764 l2hdr = hdr->b_l2hdr; 4765 l2hdr->b_daddr = dev->l2ad_hand; 4766 4767 if ((hdr->b_flags & ARC_FLAG_L2COMPRESS) && 4768 l2hdr->b_asize >= buf_compress_minsz) { 4769 if (l2arc_compress_buf(l2hdr)) { 4770 /* 4771 * If compression succeeded, enable headroom 4772 * boost on the next scan cycle. 4773 */ 4774 *headroom_boost = B_TRUE; 4775 } 4776 } 4777 4778 /* 4779 * Pick up the buffer data we had previously stashed away 4780 * (and now potentially also compressed). 4781 */ 4782 buf_data = l2hdr->b_tmp_cdata; 4783 buf_sz = l2hdr->b_asize; 4784 4785 /* Compression may have squashed the buffer to zero length. */ 4786 if (buf_sz != 0) { 4787 uint64_t buf_p_sz; 4788 4789 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4790 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4791 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4792 ZIO_FLAG_CANFAIL, B_FALSE); 4793 4794 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4795 zio_t *, wzio); 4796 (void) zio_nowait(wzio); 4797 4798 write_asize += buf_sz; 4799 /* 4800 * Keep the clock hand suitably device-aligned. 4801 */ 4802 buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4803 write_psize += buf_p_sz; 4804 dev->l2ad_hand += buf_p_sz; 4805 } 4806 } 4807 4808 mutex_exit(&l2arc_buflist_mtx); 4809 4810 ASSERT3U(write_asize, <=, target_sz); 4811 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4812 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize); 4813 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4814 ARCSTAT_INCR(arcstat_l2_asize, write_asize); 4815 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0); 4816 4817 /* 4818 * Bump device hand to the device start if it is approaching the end. 4819 * l2arc_evict() will already have evicted ahead for this case. 4820 */ 4821 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4822 dev->l2ad_hand = dev->l2ad_start; 4823 dev->l2ad_evict = dev->l2ad_start; 4824 dev->l2ad_first = B_FALSE; 4825 } 4826 4827 dev->l2ad_writing = B_TRUE; 4828 (void) zio_wait(pio); 4829 dev->l2ad_writing = B_FALSE; 4830 4831 return (write_asize); 4832 } 4833 4834 /* 4835 * Compresses an L2ARC buffer. 4836 * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its 4837 * size in l2hdr->b_asize. This routine tries to compress the data and 4838 * depending on the compression result there are three possible outcomes: 4839 * *) The buffer was incompressible. The original l2hdr contents were left 4840 * untouched and are ready for writing to an L2 device. 4841 * *) The buffer was all-zeros, so there is no need to write it to an L2 4842 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is 4843 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY. 4844 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary 4845 * data buffer which holds the compressed data to be written, and b_asize 4846 * tells us how much data there is. b_compress is set to the appropriate 4847 * compression algorithm. Once writing is done, invoke 4848 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer. 4849 * 4850 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the 4851 * buffer was incompressible). 4852 */ 4853 static boolean_t 4854 l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr) 4855 { 4856 void *cdata; 4857 size_t csize, len, rounded; 4858 4859 ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF); 4860 ASSERT(l2hdr->b_tmp_cdata != NULL); 4861 4862 len = l2hdr->b_asize; 4863 cdata = zio_data_buf_alloc(len); 4864 csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata, 4865 cdata, l2hdr->b_asize); 4866 4867 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE); 4868 if (rounded > csize) { 4869 bzero((char *)cdata + csize, rounded - csize); 4870 csize = rounded; 4871 } 4872 4873 if (csize == 0) { 4874 /* zero block, indicate that there's nothing to write */ 4875 zio_data_buf_free(cdata, len); 4876 l2hdr->b_compress = ZIO_COMPRESS_EMPTY; 4877 l2hdr->b_asize = 0; 4878 l2hdr->b_tmp_cdata = NULL; 4879 ARCSTAT_BUMP(arcstat_l2_compress_zeros); 4880 return (B_TRUE); 4881 } else if (csize > 0 && csize < len) { 4882 /* 4883 * Compression succeeded, we'll keep the cdata around for 4884 * writing and release it afterwards. 4885 */ 4886 l2hdr->b_compress = ZIO_COMPRESS_LZ4; 4887 l2hdr->b_asize = csize; 4888 l2hdr->b_tmp_cdata = cdata; 4889 ARCSTAT_BUMP(arcstat_l2_compress_successes); 4890 return (B_TRUE); 4891 } else { 4892 /* 4893 * Compression failed, release the compressed buffer. 4894 * l2hdr will be left unmodified. 4895 */ 4896 zio_data_buf_free(cdata, len); 4897 ARCSTAT_BUMP(arcstat_l2_compress_failures); 4898 return (B_FALSE); 4899 } 4900 } 4901 4902 /* 4903 * Decompresses a zio read back from an l2arc device. On success, the 4904 * underlying zio's io_data buffer is overwritten by the uncompressed 4905 * version. On decompression error (corrupt compressed stream), the 4906 * zio->io_error value is set to signal an I/O error. 4907 * 4908 * Please note that the compressed data stream is not checksummed, so 4909 * if the underlying device is experiencing data corruption, we may feed 4910 * corrupt data to the decompressor, so the decompressor needs to be 4911 * able to handle this situation (LZ4 does). 4912 */ 4913 static void 4914 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c) 4915 { 4916 ASSERT(L2ARC_IS_VALID_COMPRESS(c)); 4917 4918 if (zio->io_error != 0) { 4919 /* 4920 * An io error has occured, just restore the original io 4921 * size in preparation for a main pool read. 4922 */ 4923 zio->io_orig_size = zio->io_size = hdr->b_size; 4924 return; 4925 } 4926 4927 if (c == ZIO_COMPRESS_EMPTY) { 4928 /* 4929 * An empty buffer results in a null zio, which means we 4930 * need to fill its io_data after we're done restoring the 4931 * buffer's contents. 4932 */ 4933 ASSERT(hdr->b_buf != NULL); 4934 bzero(hdr->b_buf->b_data, hdr->b_size); 4935 zio->io_data = zio->io_orig_data = hdr->b_buf->b_data; 4936 } else { 4937 ASSERT(zio->io_data != NULL); 4938 /* 4939 * We copy the compressed data from the start of the arc buffer 4940 * (the zio_read will have pulled in only what we need, the 4941 * rest is garbage which we will overwrite at decompression) 4942 * and then decompress back to the ARC data buffer. This way we 4943 * can minimize copying by simply decompressing back over the 4944 * original compressed data (rather than decompressing to an 4945 * aux buffer and then copying back the uncompressed buffer, 4946 * which is likely to be much larger). 4947 */ 4948 uint64_t csize; 4949 void *cdata; 4950 4951 csize = zio->io_size; 4952 cdata = zio_data_buf_alloc(csize); 4953 bcopy(zio->io_data, cdata, csize); 4954 if (zio_decompress_data(c, cdata, zio->io_data, csize, 4955 hdr->b_size) != 0) 4956 zio->io_error = EIO; 4957 zio_data_buf_free(cdata, csize); 4958 } 4959 4960 /* Restore the expected uncompressed IO size. */ 4961 zio->io_orig_size = zio->io_size = hdr->b_size; 4962 } 4963 4964 /* 4965 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure. 4966 * This buffer serves as a temporary holder of compressed data while 4967 * the buffer entry is being written to an l2arc device. Once that is 4968 * done, we can dispose of it. 4969 */ 4970 static void 4971 l2arc_release_cdata_buf(arc_buf_hdr_t *hdr) 4972 { 4973 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 4974 4975 if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) { 4976 /* 4977 * If the data was compressed, then we've allocated a 4978 * temporary buffer for it, so now we need to release it. 4979 */ 4980 ASSERT(l2hdr->b_tmp_cdata != NULL); 4981 zio_data_buf_free(l2hdr->b_tmp_cdata, hdr->b_size); 4982 } 4983 l2hdr->b_tmp_cdata = NULL; 4984 } 4985 4986 /* 4987 * This thread feeds the L2ARC at regular intervals. This is the beating 4988 * heart of the L2ARC. 4989 */ 4990 static void 4991 l2arc_feed_thread(void) 4992 { 4993 callb_cpr_t cpr; 4994 l2arc_dev_t *dev; 4995 spa_t *spa; 4996 uint64_t size, wrote; 4997 clock_t begin, next = ddi_get_lbolt(); 4998 boolean_t headroom_boost = B_FALSE; 4999 5000 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 5001 5002 mutex_enter(&l2arc_feed_thr_lock); 5003 5004 while (l2arc_thread_exit == 0) { 5005 CALLB_CPR_SAFE_BEGIN(&cpr); 5006 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 5007 next); 5008 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 5009 next = ddi_get_lbolt() + hz; 5010 5011 /* 5012 * Quick check for L2ARC devices. 5013 */ 5014 mutex_enter(&l2arc_dev_mtx); 5015 if (l2arc_ndev == 0) { 5016 mutex_exit(&l2arc_dev_mtx); 5017 continue; 5018 } 5019 mutex_exit(&l2arc_dev_mtx); 5020 begin = ddi_get_lbolt(); 5021 5022 /* 5023 * This selects the next l2arc device to write to, and in 5024 * doing so the next spa to feed from: dev->l2ad_spa. This 5025 * will return NULL if there are now no l2arc devices or if 5026 * they are all faulted. 5027 * 5028 * If a device is returned, its spa's config lock is also 5029 * held to prevent device removal. l2arc_dev_get_next() 5030 * will grab and release l2arc_dev_mtx. 5031 */ 5032 if ((dev = l2arc_dev_get_next()) == NULL) 5033 continue; 5034 5035 spa = dev->l2ad_spa; 5036 ASSERT(spa != NULL); 5037 5038 /* 5039 * If the pool is read-only then force the feed thread to 5040 * sleep a little longer. 5041 */ 5042 if (!spa_writeable(spa)) { 5043 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 5044 spa_config_exit(spa, SCL_L2ARC, dev); 5045 continue; 5046 } 5047 5048 /* 5049 * Avoid contributing to memory pressure. 5050 */ 5051 if (arc_reclaim_needed()) { 5052 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 5053 spa_config_exit(spa, SCL_L2ARC, dev); 5054 continue; 5055 } 5056 5057 ARCSTAT_BUMP(arcstat_l2_feeds); 5058 5059 size = l2arc_write_size(); 5060 5061 /* 5062 * Evict L2ARC buffers that will be overwritten. 5063 */ 5064 l2arc_evict(dev, size, B_FALSE); 5065 5066 /* 5067 * Write ARC buffers. 5068 */ 5069 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost); 5070 5071 /* 5072 * Calculate interval between writes. 5073 */ 5074 next = l2arc_write_interval(begin, size, wrote); 5075 spa_config_exit(spa, SCL_L2ARC, dev); 5076 } 5077 5078 l2arc_thread_exit = 0; 5079 cv_broadcast(&l2arc_feed_thr_cv); 5080 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 5081 thread_exit(); 5082 } 5083 5084 boolean_t 5085 l2arc_vdev_present(vdev_t *vd) 5086 { 5087 l2arc_dev_t *dev; 5088 5089 mutex_enter(&l2arc_dev_mtx); 5090 for (dev = list_head(l2arc_dev_list); dev != NULL; 5091 dev = list_next(l2arc_dev_list, dev)) { 5092 if (dev->l2ad_vdev == vd) 5093 break; 5094 } 5095 mutex_exit(&l2arc_dev_mtx); 5096 5097 return (dev != NULL); 5098 } 5099 5100 /* 5101 * Add a vdev for use by the L2ARC. By this point the spa has already 5102 * validated the vdev and opened it. 5103 */ 5104 void 5105 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 5106 { 5107 l2arc_dev_t *adddev; 5108 5109 ASSERT(!l2arc_vdev_present(vd)); 5110 5111 /* 5112 * Create a new l2arc device entry. 5113 */ 5114 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 5115 adddev->l2ad_spa = spa; 5116 adddev->l2ad_vdev = vd; 5117 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 5118 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 5119 adddev->l2ad_hand = adddev->l2ad_start; 5120 adddev->l2ad_evict = adddev->l2ad_start; 5121 adddev->l2ad_first = B_TRUE; 5122 adddev->l2ad_writing = B_FALSE; 5123 5124 /* 5125 * This is a list of all ARC buffers that are still valid on the 5126 * device. 5127 */ 5128 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 5129 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 5130 offsetof(arc_buf_hdr_t, b_l2node)); 5131 5132 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 5133 5134 /* 5135 * Add device to global list 5136 */ 5137 mutex_enter(&l2arc_dev_mtx); 5138 list_insert_head(l2arc_dev_list, adddev); 5139 atomic_inc_64(&l2arc_ndev); 5140 mutex_exit(&l2arc_dev_mtx); 5141 } 5142 5143 /* 5144 * Remove a vdev from the L2ARC. 5145 */ 5146 void 5147 l2arc_remove_vdev(vdev_t *vd) 5148 { 5149 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 5150 5151 /* 5152 * Find the device by vdev 5153 */ 5154 mutex_enter(&l2arc_dev_mtx); 5155 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 5156 nextdev = list_next(l2arc_dev_list, dev); 5157 if (vd == dev->l2ad_vdev) { 5158 remdev = dev; 5159 break; 5160 } 5161 } 5162 ASSERT(remdev != NULL); 5163 5164 /* 5165 * Remove device from global list 5166 */ 5167 list_remove(l2arc_dev_list, remdev); 5168 l2arc_dev_last = NULL; /* may have been invalidated */ 5169 atomic_dec_64(&l2arc_ndev); 5170 mutex_exit(&l2arc_dev_mtx); 5171 5172 /* 5173 * Clear all buflists and ARC references. L2ARC device flush. 5174 */ 5175 l2arc_evict(remdev, 0, B_TRUE); 5176 list_destroy(remdev->l2ad_buflist); 5177 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 5178 kmem_free(remdev, sizeof (l2arc_dev_t)); 5179 } 5180 5181 void 5182 l2arc_init(void) 5183 { 5184 l2arc_thread_exit = 0; 5185 l2arc_ndev = 0; 5186 l2arc_writes_sent = 0; 5187 l2arc_writes_done = 0; 5188 5189 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 5190 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 5191 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 5192 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 5193 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 5194 5195 l2arc_dev_list = &L2ARC_dev_list; 5196 l2arc_free_on_write = &L2ARC_free_on_write; 5197 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 5198 offsetof(l2arc_dev_t, l2ad_node)); 5199 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 5200 offsetof(l2arc_data_free_t, l2df_list_node)); 5201 } 5202 5203 void 5204 l2arc_fini(void) 5205 { 5206 /* 5207 * This is called from dmu_fini(), which is called from spa_fini(); 5208 * Because of this, we can assume that all l2arc devices have 5209 * already been removed when the pools themselves were removed. 5210 */ 5211 5212 l2arc_do_free_on_write(); 5213 5214 mutex_destroy(&l2arc_feed_thr_lock); 5215 cv_destroy(&l2arc_feed_thr_cv); 5216 mutex_destroy(&l2arc_dev_mtx); 5217 mutex_destroy(&l2arc_buflist_mtx); 5218 mutex_destroy(&l2arc_free_on_write_mtx); 5219 5220 list_destroy(l2arc_dev_list); 5221 list_destroy(l2arc_free_on_write); 5222 } 5223 5224 void 5225 l2arc_start(void) 5226 { 5227 if (!(spa_mode_global & FWRITE)) 5228 return; 5229 5230 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 5231 TS_RUN, minclsyspri); 5232 } 5233 5234 void 5235 l2arc_stop(void) 5236 { 5237 if (!(spa_mode_global & FWRITE)) 5238 return; 5239 5240 mutex_enter(&l2arc_feed_thr_lock); 5241 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 5242 l2arc_thread_exit = 1; 5243 while (l2arc_thread_exit != 0) 5244 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 5245 mutex_exit(&l2arc_feed_thr_lock); 5246 } 5247