1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 24 * Copyright (c) 2011, 2016 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * DVA-based Adjustable Replacement Cache 31 * 32 * While much of the theory of operation used here is 33 * based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slows the flow of new data 52 * into the cache until we can make space available. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory pressure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefore exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefore choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() interface 80 * uses method 1, while the internal arc algorithms for 81 * adjusting the cache use method 2. We therefore provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * arc list locks. 84 * 85 * Buffers do not have their own mutexes, rather they rely on the 86 * hash table mutexes for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexes). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each arc state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an arc list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the active state mutex must be held before the ghost state mutex. 101 * 102 * Arc buffers may have an associated eviction callback function. 103 * This function will be invoked prior to removing the buffer (e.g. 104 * in arc_do_user_evicts()). Note however that the data associated 105 * with the buffer may be evicted prior to the callback. The callback 106 * must be made with *no locks held* (to prevent deadlock). Additionally, 107 * the users of callbacks must ensure that their private data is 108 * protected from simultaneous callbacks from arc_clear_callback() 109 * and arc_do_user_evicts(). 110 * 111 * Note that the majority of the performance stats are manipulated 112 * with atomic operations. 113 * 114 * The L2ARC uses the l2ad_mtx on each vdev for the following: 115 * 116 * - L2ARC buflist creation 117 * - L2ARC buflist eviction 118 * - L2ARC write completion, which walks L2ARC buflists 119 * - ARC header destruction, as it removes from L2ARC buflists 120 * - ARC header release, as it removes from L2ARC buflists 121 */ 122 123 /* 124 * ARC operation: 125 * 126 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 127 * This structure can point either to a block that is still in the cache or to 128 * one that is only accessible in an L2 ARC device, or it can provide 129 * information about a block that was recently evicted. If a block is 130 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 131 * information to retrieve it from the L2ARC device. This information is 132 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 133 * that is in this state cannot access the data directly. 134 * 135 * Blocks that are actively being referenced or have not been evicted 136 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 137 * the arc_buf_hdr_t that will point to the data block in memory. A block can 138 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 139 * caches data in two ways -- in a list of arc buffers (arc_buf_t) and 140 * also in the arc_buf_hdr_t's private physical data block pointer (b_pdata). 141 * Each arc buffer (arc_buf_t) is being actively accessed by a specific ARC 142 * consumer, and always contains uncompressed data. The ARC will provide 143 * references to this data and will keep it cached until it is no longer in 144 * use. Typically, the arc will try to cache only the L1ARC's physical data 145 * block and will aggressively evict any arc_buf_t that is no longer referenced. 146 * The amount of memory consumed by the arc_buf_t's can be seen via the 147 * "overhead_size" kstat. 148 * 149 * 150 * arc_buf_hdr_t 151 * +-----------+ 152 * | | 153 * | | 154 * | | 155 * +-----------+ 156 * l2arc_buf_hdr_t| | 157 * | | 158 * +-----------+ 159 * l1arc_buf_hdr_t| | 160 * | | arc_buf_t 161 * | b_buf +------------>+---------+ arc_buf_t 162 * | | |b_next +---->+---------+ 163 * | b_pdata +-+ |---------| |b_next +-->NULL 164 * +-----------+ | | | +---------+ 165 * | |b_data +-+ | | 166 * | +---------+ | |b_data +-+ 167 * +->+------+ | +---------+ | 168 * (potentially) | | | | 169 * compressed | | | | 170 * data +------+ | v 171 * +->+------+ +------+ 172 * uncompressed | | | | 173 * data | | | | 174 * +------+ +------+ 175 * 176 * The L1ARC's data pointer, however, may or may not be uncompressed. The 177 * ARC has the ability to store the physical data (b_pdata) associated with 178 * the DVA of the arc_buf_hdr_t. Since the b_pdata is a copy of the on-disk 179 * physical block, it will match its on-disk compression characteristics. 180 * If the block on-disk is compressed, then the physical data block 181 * in the cache will also be compressed and vice-versa. This behavior 182 * can be disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 183 * compressed ARC functionality is disabled, the b_pdata will point to an 184 * uncompressed version of the on-disk data. 185 * 186 * When a consumer reads a block, the ARC must first look to see if the 187 * arc_buf_hdr_t is cached. If the hdr is cached and already has an arc_buf_t, 188 * then an additional arc_buf_t is allocated and the uncompressed data is 189 * bcopied from the existing arc_buf_t. If the hdr is cached but does not 190 * have an arc_buf_t, then the ARC allocates a new arc_buf_t and decompresses 191 * the b_pdata contents into the arc_buf_t's b_data. If the arc_buf_hdr_t's 192 * b_pdata is not compressed, then the block is shared with the newly 193 * allocated arc_buf_t. This block sharing only occurs with one arc_buf_t 194 * in the arc buffer chain. Sharing the block reduces the memory overhead 195 * required when the hdr is caching uncompressed blocks or the compressed 196 * arc functionality has been disabled via 'zfs_compressed_arc_enabled'. 197 * 198 * The diagram below shows an example of an uncompressed ARC hdr that is 199 * sharing its data with an arc_buf_t: 200 * 201 * arc_buf_hdr_t 202 * +-----------+ 203 * | | 204 * | | 205 * | | 206 * +-----------+ 207 * l2arc_buf_hdr_t| | 208 * | | 209 * +-----------+ 210 * l1arc_buf_hdr_t| | 211 * | | arc_buf_t (shared) 212 * | b_buf +------------>+---------+ arc_buf_t 213 * | | |b_next +---->+---------+ 214 * | b_pdata +-+ |---------| |b_next +-->NULL 215 * +-----------+ | | | +---------+ 216 * | |b_data +-+ | | 217 * | +---------+ | |b_data +-+ 218 * +->+------+ | +---------+ | 219 * | | | | 220 * uncompressed | | | | 221 * data +------+ | | 222 * ^ +->+------+ | 223 * | uncompressed | | | 224 * | data | | | 225 * | +------+ | 226 * +---------------------------------+ 227 * 228 * Writing to the arc requires that the ARC first discard the b_pdata 229 * since the physical block is about to be rewritten. The new data contents 230 * will be contained in the arc_buf_t (uncompressed). As the I/O pipeline 231 * performs the write, it may compress the data before writing it to disk. 232 * The ARC will be called with the transformed data and will bcopy the 233 * transformed on-disk block into a newly allocated b_pdata. 234 * 235 * When the L2ARC is in use, it will also take advantage of the b_pdata. The 236 * L2ARC will always write the contents of b_pdata to the L2ARC. This means 237 * that when compressed arc is enabled that the L2ARC blocks are identical 238 * to the on-disk block in the main data pool. This provides a significant 239 * advantage since the ARC can leverage the bp's checksum when reading from the 240 * L2ARC to determine if the contents are valid. However, if the compressed 241 * arc is disabled, then the L2ARC's block must be transformed to look 242 * like the physical block in the main data pool before comparing the 243 * checksum and determining its validity. 244 */ 245 246 #include <sys/spa.h> 247 #include <sys/zio.h> 248 #include <sys/spa_impl.h> 249 #include <sys/zio_compress.h> 250 #include <sys/zio_checksum.h> 251 #include <sys/zfs_context.h> 252 #include <sys/arc.h> 253 #include <sys/refcount.h> 254 #include <sys/vdev.h> 255 #include <sys/vdev_impl.h> 256 #include <sys/dsl_pool.h> 257 #include <sys/multilist.h> 258 #ifdef _KERNEL 259 #include <sys/vmsystm.h> 260 #include <vm/anon.h> 261 #include <sys/fs/swapnode.h> 262 #include <sys/dnlc.h> 263 #endif 264 #include <sys/callb.h> 265 #include <sys/kstat.h> 266 #include <zfs_fletcher.h> 267 268 #ifndef _KERNEL 269 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 270 boolean_t arc_watch = B_FALSE; 271 int arc_procfd; 272 #endif 273 274 static kmutex_t arc_reclaim_lock; 275 static kcondvar_t arc_reclaim_thread_cv; 276 static boolean_t arc_reclaim_thread_exit; 277 static kcondvar_t arc_reclaim_waiters_cv; 278 279 uint_t arc_reduce_dnlc_percent = 3; 280 281 /* 282 * The number of headers to evict in arc_evict_state_impl() before 283 * dropping the sublist lock and evicting from another sublist. A lower 284 * value means we're more likely to evict the "correct" header (i.e. the 285 * oldest header in the arc state), but comes with higher overhead 286 * (i.e. more invocations of arc_evict_state_impl()). 287 */ 288 int zfs_arc_evict_batch_limit = 10; 289 290 /* 291 * The number of sublists used for each of the arc state lists. If this 292 * is not set to a suitable value by the user, it will be configured to 293 * the number of CPUs on the system in arc_init(). 294 */ 295 int zfs_arc_num_sublists_per_state = 0; 296 297 /* number of seconds before growing cache again */ 298 static int arc_grow_retry = 60; 299 300 /* shift of arc_c for calculating overflow limit in arc_get_data_buf */ 301 int zfs_arc_overflow_shift = 8; 302 303 /* shift of arc_c for calculating both min and max arc_p */ 304 static int arc_p_min_shift = 4; 305 306 /* log2(fraction of arc to reclaim) */ 307 static int arc_shrink_shift = 7; 308 309 /* 310 * log2(fraction of ARC which must be free to allow growing). 311 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 312 * when reading a new block into the ARC, we will evict an equal-sized block 313 * from the ARC. 314 * 315 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 316 * we will still not allow it to grow. 317 */ 318 int arc_no_grow_shift = 5; 319 320 321 /* 322 * minimum lifespan of a prefetch block in clock ticks 323 * (initialized in arc_init()) 324 */ 325 static int arc_min_prefetch_lifespan; 326 327 /* 328 * If this percent of memory is free, don't throttle. 329 */ 330 int arc_lotsfree_percent = 10; 331 332 static int arc_dead; 333 334 /* 335 * The arc has filled available memory and has now warmed up. 336 */ 337 static boolean_t arc_warm; 338 339 /* 340 * log2 fraction of the zio arena to keep free. 341 */ 342 int arc_zio_arena_free_shift = 2; 343 344 /* 345 * These tunables are for performance analysis. 346 */ 347 uint64_t zfs_arc_max; 348 uint64_t zfs_arc_min; 349 uint64_t zfs_arc_meta_limit = 0; 350 uint64_t zfs_arc_meta_min = 0; 351 int zfs_arc_grow_retry = 0; 352 int zfs_arc_shrink_shift = 0; 353 int zfs_arc_p_min_shift = 0; 354 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 355 356 boolean_t zfs_compressed_arc_enabled = B_TRUE; 357 358 /* 359 * Note that buffers can be in one of 6 states: 360 * ARC_anon - anonymous (discussed below) 361 * ARC_mru - recently used, currently cached 362 * ARC_mru_ghost - recentely used, no longer in cache 363 * ARC_mfu - frequently used, currently cached 364 * ARC_mfu_ghost - frequently used, no longer in cache 365 * ARC_l2c_only - exists in L2ARC but not other states 366 * When there are no active references to the buffer, they are 367 * are linked onto a list in one of these arc states. These are 368 * the only buffers that can be evicted or deleted. Within each 369 * state there are multiple lists, one for meta-data and one for 370 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 371 * etc.) is tracked separately so that it can be managed more 372 * explicitly: favored over data, limited explicitly. 373 * 374 * Anonymous buffers are buffers that are not associated with 375 * a DVA. These are buffers that hold dirty block copies 376 * before they are written to stable storage. By definition, 377 * they are "ref'd" and are considered part of arc_mru 378 * that cannot be freed. Generally, they will aquire a DVA 379 * as they are written and migrate onto the arc_mru list. 380 * 381 * The ARC_l2c_only state is for buffers that are in the second 382 * level ARC but no longer in any of the ARC_m* lists. The second 383 * level ARC itself may also contain buffers that are in any of 384 * the ARC_m* states - meaning that a buffer can exist in two 385 * places. The reason for the ARC_l2c_only state is to keep the 386 * buffer header in the hash table, so that reads that hit the 387 * second level ARC benefit from these fast lookups. 388 */ 389 390 typedef struct arc_state { 391 /* 392 * list of evictable buffers 393 */ 394 multilist_t arcs_list[ARC_BUFC_NUMTYPES]; 395 /* 396 * total amount of evictable data in this state 397 */ 398 refcount_t arcs_esize[ARC_BUFC_NUMTYPES]; 399 /* 400 * total amount of data in this state; this includes: evictable, 401 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA. 402 */ 403 refcount_t arcs_size; 404 } arc_state_t; 405 406 /* The 6 states: */ 407 static arc_state_t ARC_anon; 408 static arc_state_t ARC_mru; 409 static arc_state_t ARC_mru_ghost; 410 static arc_state_t ARC_mfu; 411 static arc_state_t ARC_mfu_ghost; 412 static arc_state_t ARC_l2c_only; 413 414 typedef struct arc_stats { 415 kstat_named_t arcstat_hits; 416 kstat_named_t arcstat_misses; 417 kstat_named_t arcstat_demand_data_hits; 418 kstat_named_t arcstat_demand_data_misses; 419 kstat_named_t arcstat_demand_metadata_hits; 420 kstat_named_t arcstat_demand_metadata_misses; 421 kstat_named_t arcstat_prefetch_data_hits; 422 kstat_named_t arcstat_prefetch_data_misses; 423 kstat_named_t arcstat_prefetch_metadata_hits; 424 kstat_named_t arcstat_prefetch_metadata_misses; 425 kstat_named_t arcstat_mru_hits; 426 kstat_named_t arcstat_mru_ghost_hits; 427 kstat_named_t arcstat_mfu_hits; 428 kstat_named_t arcstat_mfu_ghost_hits; 429 kstat_named_t arcstat_deleted; 430 /* 431 * Number of buffers that could not be evicted because the hash lock 432 * was held by another thread. The lock may not necessarily be held 433 * by something using the same buffer, since hash locks are shared 434 * by multiple buffers. 435 */ 436 kstat_named_t arcstat_mutex_miss; 437 /* 438 * Number of buffers skipped because they have I/O in progress, are 439 * indrect prefetch buffers that have not lived long enough, or are 440 * not from the spa we're trying to evict from. 441 */ 442 kstat_named_t arcstat_evict_skip; 443 /* 444 * Number of times arc_evict_state() was unable to evict enough 445 * buffers to reach it's target amount. 446 */ 447 kstat_named_t arcstat_evict_not_enough; 448 kstat_named_t arcstat_evict_l2_cached; 449 kstat_named_t arcstat_evict_l2_eligible; 450 kstat_named_t arcstat_evict_l2_ineligible; 451 kstat_named_t arcstat_evict_l2_skip; 452 kstat_named_t arcstat_hash_elements; 453 kstat_named_t arcstat_hash_elements_max; 454 kstat_named_t arcstat_hash_collisions; 455 kstat_named_t arcstat_hash_chains; 456 kstat_named_t arcstat_hash_chain_max; 457 kstat_named_t arcstat_p; 458 kstat_named_t arcstat_c; 459 kstat_named_t arcstat_c_min; 460 kstat_named_t arcstat_c_max; 461 kstat_named_t arcstat_size; 462 /* 463 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pdata. 464 * Note that the compressed bytes may match the uncompressed bytes 465 * if the block is either not compressed or compressed arc is disabled. 466 */ 467 kstat_named_t arcstat_compressed_size; 468 /* 469 * Uncompressed size of the data stored in b_pdata. If compressed 470 * arc is disabled then this value will be identical to the stat 471 * above. 472 */ 473 kstat_named_t arcstat_uncompressed_size; 474 /* 475 * Number of bytes stored in all the arc_buf_t's. This is classified 476 * as "overhead" since this data is typically short-lived and will 477 * be evicted from the arc when it becomes unreferenced unless the 478 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level 479 * values have been set (see comment in dbuf.c for more information). 480 */ 481 kstat_named_t arcstat_overhead_size; 482 /* 483 * Number of bytes consumed by internal ARC structures necessary 484 * for tracking purposes; these structures are not actually 485 * backed by ARC buffers. This includes arc_buf_hdr_t structures 486 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only 487 * caches), and arc_buf_t structures (allocated via arc_buf_t 488 * cache). 489 */ 490 kstat_named_t arcstat_hdr_size; 491 /* 492 * Number of bytes consumed by ARC buffers of type equal to 493 * ARC_BUFC_DATA. This is generally consumed by buffers backing 494 * on disk user data (e.g. plain file contents). 495 */ 496 kstat_named_t arcstat_data_size; 497 /* 498 * Number of bytes consumed by ARC buffers of type equal to 499 * ARC_BUFC_METADATA. This is generally consumed by buffers 500 * backing on disk data that is used for internal ZFS 501 * structures (e.g. ZAP, dnode, indirect blocks, etc). 502 */ 503 kstat_named_t arcstat_metadata_size; 504 /* 505 * Number of bytes consumed by various buffers and structures 506 * not actually backed with ARC buffers. This includes bonus 507 * buffers (allocated directly via zio_buf_* functions), 508 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t 509 * cache), and dnode_t structures (allocated via dnode_t cache). 510 */ 511 kstat_named_t arcstat_other_size; 512 /* 513 * Total number of bytes consumed by ARC buffers residing in the 514 * arc_anon state. This includes *all* buffers in the arc_anon 515 * state; e.g. data, metadata, evictable, and unevictable buffers 516 * are all included in this value. 517 */ 518 kstat_named_t arcstat_anon_size; 519 /* 520 * Number of bytes consumed by ARC buffers that meet the 521 * following criteria: backing buffers of type ARC_BUFC_DATA, 522 * residing in the arc_anon state, and are eligible for eviction 523 * (e.g. have no outstanding holds on the buffer). 524 */ 525 kstat_named_t arcstat_anon_evictable_data; 526 /* 527 * Number of bytes consumed by ARC buffers that meet the 528 * following criteria: backing buffers of type ARC_BUFC_METADATA, 529 * residing in the arc_anon state, and are eligible for eviction 530 * (e.g. have no outstanding holds on the buffer). 531 */ 532 kstat_named_t arcstat_anon_evictable_metadata; 533 /* 534 * Total number of bytes consumed by ARC buffers residing in the 535 * arc_mru state. This includes *all* buffers in the arc_mru 536 * state; e.g. data, metadata, evictable, and unevictable buffers 537 * are all included in this value. 538 */ 539 kstat_named_t arcstat_mru_size; 540 /* 541 * Number of bytes consumed by ARC buffers that meet the 542 * following criteria: backing buffers of type ARC_BUFC_DATA, 543 * residing in the arc_mru state, and are eligible for eviction 544 * (e.g. have no outstanding holds on the buffer). 545 */ 546 kstat_named_t arcstat_mru_evictable_data; 547 /* 548 * Number of bytes consumed by ARC buffers that meet the 549 * following criteria: backing buffers of type ARC_BUFC_METADATA, 550 * residing in the arc_mru state, and are eligible for eviction 551 * (e.g. have no outstanding holds on the buffer). 552 */ 553 kstat_named_t arcstat_mru_evictable_metadata; 554 /* 555 * Total number of bytes that *would have been* consumed by ARC 556 * buffers in the arc_mru_ghost state. The key thing to note 557 * here, is the fact that this size doesn't actually indicate 558 * RAM consumption. The ghost lists only consist of headers and 559 * don't actually have ARC buffers linked off of these headers. 560 * Thus, *if* the headers had associated ARC buffers, these 561 * buffers *would have* consumed this number of bytes. 562 */ 563 kstat_named_t arcstat_mru_ghost_size; 564 /* 565 * Number of bytes that *would have been* consumed by ARC 566 * buffers that are eligible for eviction, of type 567 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state. 568 */ 569 kstat_named_t arcstat_mru_ghost_evictable_data; 570 /* 571 * Number of bytes that *would have been* consumed by ARC 572 * buffers that are eligible for eviction, of type 573 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 574 */ 575 kstat_named_t arcstat_mru_ghost_evictable_metadata; 576 /* 577 * Total number of bytes consumed by ARC buffers residing in the 578 * arc_mfu state. This includes *all* buffers in the arc_mfu 579 * state; e.g. data, metadata, evictable, and unevictable buffers 580 * are all included in this value. 581 */ 582 kstat_named_t arcstat_mfu_size; 583 /* 584 * Number of bytes consumed by ARC buffers that are eligible for 585 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu 586 * state. 587 */ 588 kstat_named_t arcstat_mfu_evictable_data; 589 /* 590 * Number of bytes consumed by ARC buffers that are eligible for 591 * eviction, of type ARC_BUFC_METADATA, and reside in the 592 * arc_mfu state. 593 */ 594 kstat_named_t arcstat_mfu_evictable_metadata; 595 /* 596 * Total number of bytes that *would have been* consumed by ARC 597 * buffers in the arc_mfu_ghost state. See the comment above 598 * arcstat_mru_ghost_size for more details. 599 */ 600 kstat_named_t arcstat_mfu_ghost_size; 601 /* 602 * Number of bytes that *would have been* consumed by ARC 603 * buffers that are eligible for eviction, of type 604 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state. 605 */ 606 kstat_named_t arcstat_mfu_ghost_evictable_data; 607 /* 608 * Number of bytes that *would have been* consumed by ARC 609 * buffers that are eligible for eviction, of type 610 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 611 */ 612 kstat_named_t arcstat_mfu_ghost_evictable_metadata; 613 kstat_named_t arcstat_l2_hits; 614 kstat_named_t arcstat_l2_misses; 615 kstat_named_t arcstat_l2_feeds; 616 kstat_named_t arcstat_l2_rw_clash; 617 kstat_named_t arcstat_l2_read_bytes; 618 kstat_named_t arcstat_l2_write_bytes; 619 kstat_named_t arcstat_l2_writes_sent; 620 kstat_named_t arcstat_l2_writes_done; 621 kstat_named_t arcstat_l2_writes_error; 622 kstat_named_t arcstat_l2_writes_lock_retry; 623 kstat_named_t arcstat_l2_evict_lock_retry; 624 kstat_named_t arcstat_l2_evict_reading; 625 kstat_named_t arcstat_l2_evict_l1cached; 626 kstat_named_t arcstat_l2_free_on_write; 627 kstat_named_t arcstat_l2_abort_lowmem; 628 kstat_named_t arcstat_l2_cksum_bad; 629 kstat_named_t arcstat_l2_io_error; 630 kstat_named_t arcstat_l2_size; 631 kstat_named_t arcstat_l2_asize; 632 kstat_named_t arcstat_l2_hdr_size; 633 kstat_named_t arcstat_memory_throttle_count; 634 kstat_named_t arcstat_meta_used; 635 kstat_named_t arcstat_meta_limit; 636 kstat_named_t arcstat_meta_max; 637 kstat_named_t arcstat_meta_min; 638 kstat_named_t arcstat_sync_wait_for_async; 639 kstat_named_t arcstat_demand_hit_predictive_prefetch; 640 } arc_stats_t; 641 642 static arc_stats_t arc_stats = { 643 { "hits", KSTAT_DATA_UINT64 }, 644 { "misses", KSTAT_DATA_UINT64 }, 645 { "demand_data_hits", KSTAT_DATA_UINT64 }, 646 { "demand_data_misses", KSTAT_DATA_UINT64 }, 647 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 648 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 649 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 650 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 651 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 652 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 653 { "mru_hits", KSTAT_DATA_UINT64 }, 654 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 655 { "mfu_hits", KSTAT_DATA_UINT64 }, 656 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 657 { "deleted", KSTAT_DATA_UINT64 }, 658 { "mutex_miss", KSTAT_DATA_UINT64 }, 659 { "evict_skip", KSTAT_DATA_UINT64 }, 660 { "evict_not_enough", KSTAT_DATA_UINT64 }, 661 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 662 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 663 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 664 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 665 { "hash_elements", KSTAT_DATA_UINT64 }, 666 { "hash_elements_max", KSTAT_DATA_UINT64 }, 667 { "hash_collisions", KSTAT_DATA_UINT64 }, 668 { "hash_chains", KSTAT_DATA_UINT64 }, 669 { "hash_chain_max", KSTAT_DATA_UINT64 }, 670 { "p", KSTAT_DATA_UINT64 }, 671 { "c", KSTAT_DATA_UINT64 }, 672 { "c_min", KSTAT_DATA_UINT64 }, 673 { "c_max", KSTAT_DATA_UINT64 }, 674 { "size", KSTAT_DATA_UINT64 }, 675 { "compressed_size", KSTAT_DATA_UINT64 }, 676 { "uncompressed_size", KSTAT_DATA_UINT64 }, 677 { "overhead_size", KSTAT_DATA_UINT64 }, 678 { "hdr_size", KSTAT_DATA_UINT64 }, 679 { "data_size", KSTAT_DATA_UINT64 }, 680 { "metadata_size", KSTAT_DATA_UINT64 }, 681 { "other_size", KSTAT_DATA_UINT64 }, 682 { "anon_size", KSTAT_DATA_UINT64 }, 683 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 684 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 685 { "mru_size", KSTAT_DATA_UINT64 }, 686 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 687 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 688 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 689 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 690 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 691 { "mfu_size", KSTAT_DATA_UINT64 }, 692 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 693 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 694 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 695 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 696 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 697 { "l2_hits", KSTAT_DATA_UINT64 }, 698 { "l2_misses", KSTAT_DATA_UINT64 }, 699 { "l2_feeds", KSTAT_DATA_UINT64 }, 700 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 701 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 702 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 703 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 704 { "l2_writes_done", KSTAT_DATA_UINT64 }, 705 { "l2_writes_error", KSTAT_DATA_UINT64 }, 706 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 707 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 708 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 709 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 710 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 711 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 712 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 713 { "l2_io_error", KSTAT_DATA_UINT64 }, 714 { "l2_size", KSTAT_DATA_UINT64 }, 715 { "l2_asize", KSTAT_DATA_UINT64 }, 716 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 717 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 718 { "arc_meta_used", KSTAT_DATA_UINT64 }, 719 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 720 { "arc_meta_max", KSTAT_DATA_UINT64 }, 721 { "arc_meta_min", KSTAT_DATA_UINT64 }, 722 { "sync_wait_for_async", KSTAT_DATA_UINT64 }, 723 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 724 }; 725 726 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 727 728 #define ARCSTAT_INCR(stat, val) \ 729 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 730 731 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 732 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 733 734 #define ARCSTAT_MAX(stat, val) { \ 735 uint64_t m; \ 736 while ((val) > (m = arc_stats.stat.value.ui64) && \ 737 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 738 continue; \ 739 } 740 741 #define ARCSTAT_MAXSTAT(stat) \ 742 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 743 744 /* 745 * We define a macro to allow ARC hits/misses to be easily broken down by 746 * two separate conditions, giving a total of four different subtypes for 747 * each of hits and misses (so eight statistics total). 748 */ 749 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 750 if (cond1) { \ 751 if (cond2) { \ 752 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 753 } else { \ 754 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 755 } \ 756 } else { \ 757 if (cond2) { \ 758 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 759 } else { \ 760 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 761 } \ 762 } 763 764 kstat_t *arc_ksp; 765 static arc_state_t *arc_anon; 766 static arc_state_t *arc_mru; 767 static arc_state_t *arc_mru_ghost; 768 static arc_state_t *arc_mfu; 769 static arc_state_t *arc_mfu_ghost; 770 static arc_state_t *arc_l2c_only; 771 772 /* 773 * There are several ARC variables that are critical to export as kstats -- 774 * but we don't want to have to grovel around in the kstat whenever we wish to 775 * manipulate them. For these variables, we therefore define them to be in 776 * terms of the statistic variable. This assures that we are not introducing 777 * the possibility of inconsistency by having shadow copies of the variables, 778 * while still allowing the code to be readable. 779 */ 780 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 781 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 782 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 783 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 784 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 785 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 786 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 787 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ 788 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 789 790 /* compressed size of entire arc */ 791 #define arc_compressed_size ARCSTAT(arcstat_compressed_size) 792 /* uncompressed size of entire arc */ 793 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size) 794 /* number of bytes in the arc from arc_buf_t's */ 795 #define arc_overhead_size ARCSTAT(arcstat_overhead_size) 796 797 static int arc_no_grow; /* Don't try to grow cache size */ 798 static uint64_t arc_tempreserve; 799 static uint64_t arc_loaned_bytes; 800 801 typedef struct arc_callback arc_callback_t; 802 803 struct arc_callback { 804 void *acb_private; 805 arc_done_func_t *acb_done; 806 arc_buf_t *acb_buf; 807 zio_t *acb_zio_dummy; 808 arc_callback_t *acb_next; 809 }; 810 811 typedef struct arc_write_callback arc_write_callback_t; 812 813 struct arc_write_callback { 814 void *awcb_private; 815 arc_done_func_t *awcb_ready; 816 arc_done_func_t *awcb_children_ready; 817 arc_done_func_t *awcb_physdone; 818 arc_done_func_t *awcb_done; 819 arc_buf_t *awcb_buf; 820 }; 821 822 /* 823 * ARC buffers are separated into multiple structs as a memory saving measure: 824 * - Common fields struct, always defined, and embedded within it: 825 * - L2-only fields, always allocated but undefined when not in L2ARC 826 * - L1-only fields, only allocated when in L1ARC 827 * 828 * Buffer in L1 Buffer only in L2 829 * +------------------------+ +------------------------+ 830 * | arc_buf_hdr_t | | arc_buf_hdr_t | 831 * | | | | 832 * | | | | 833 * | | | | 834 * +------------------------+ +------------------------+ 835 * | l2arc_buf_hdr_t | | l2arc_buf_hdr_t | 836 * | (undefined if L1-only) | | | 837 * +------------------------+ +------------------------+ 838 * | l1arc_buf_hdr_t | 839 * | | 840 * | | 841 * | | 842 * | | 843 * +------------------------+ 844 * 845 * Because it's possible for the L2ARC to become extremely large, we can wind 846 * up eating a lot of memory in L2ARC buffer headers, so the size of a header 847 * is minimized by only allocating the fields necessary for an L1-cached buffer 848 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and 849 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple 850 * words in pointers. arc_hdr_realloc() is used to switch a header between 851 * these two allocation states. 852 */ 853 typedef struct l1arc_buf_hdr { 854 kmutex_t b_freeze_lock; 855 zio_cksum_t *b_freeze_cksum; 856 #ifdef ZFS_DEBUG 857 /* 858 * used for debugging wtih kmem_flags - by allocating and freeing 859 * b_thawed when the buffer is thawed, we get a record of the stack 860 * trace that thawed it. 861 */ 862 void *b_thawed; 863 #endif 864 865 arc_buf_t *b_buf; 866 uint32_t b_bufcnt; 867 /* for waiting on writes to complete */ 868 kcondvar_t b_cv; 869 uint8_t b_byteswap; 870 871 /* protected by arc state mutex */ 872 arc_state_t *b_state; 873 multilist_node_t b_arc_node; 874 875 /* updated atomically */ 876 clock_t b_arc_access; 877 878 /* self protecting */ 879 refcount_t b_refcnt; 880 881 arc_callback_t *b_acb; 882 void *b_pdata; 883 } l1arc_buf_hdr_t; 884 885 typedef struct l2arc_dev l2arc_dev_t; 886 887 typedef struct l2arc_buf_hdr { 888 /* protected by arc_buf_hdr mutex */ 889 l2arc_dev_t *b_dev; /* L2ARC device */ 890 uint64_t b_daddr; /* disk address, offset byte */ 891 892 list_node_t b_l2node; 893 } l2arc_buf_hdr_t; 894 895 struct arc_buf_hdr { 896 /* protected by hash lock */ 897 dva_t b_dva; 898 uint64_t b_birth; 899 900 arc_buf_contents_t b_type; 901 arc_buf_hdr_t *b_hash_next; 902 arc_flags_t b_flags; 903 904 /* 905 * This field stores the size of the data buffer after 906 * compression, and is set in the arc's zio completion handlers. 907 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes). 908 * 909 * While the block pointers can store up to 32MB in their psize 910 * field, we can only store up to 32MB minus 512B. This is due 911 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e. 912 * a field of zeros represents 512B in the bp). We can't use a 913 * bias of 1 since we need to reserve a psize of zero, here, to 914 * represent holes and embedded blocks. 915 * 916 * This isn't a problem in practice, since the maximum size of a 917 * buffer is limited to 16MB, so we never need to store 32MB in 918 * this field. Even in the upstream illumos code base, the 919 * maximum size of a buffer is limited to 16MB. 920 */ 921 uint16_t b_psize; 922 923 /* 924 * This field stores the size of the data buffer before 925 * compression, and cannot change once set. It is in units 926 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes) 927 */ 928 uint16_t b_lsize; /* immutable */ 929 uint64_t b_spa; /* immutable */ 930 931 /* L2ARC fields. Undefined when not in L2ARC. */ 932 l2arc_buf_hdr_t b_l2hdr; 933 /* L1ARC fields. Undefined when in l2arc_only state */ 934 l1arc_buf_hdr_t b_l1hdr; 935 }; 936 937 #define GHOST_STATE(state) \ 938 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 939 (state) == arc_l2c_only) 940 941 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 942 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 943 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 944 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 945 #define HDR_COMPRESSION_ENABLED(hdr) \ 946 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 947 948 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 949 #define HDR_L2_READING(hdr) \ 950 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 951 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 952 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 953 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 954 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 955 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 956 957 #define HDR_ISTYPE_METADATA(hdr) \ 958 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 959 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 960 961 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 962 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 963 964 /* For storing compression mode in b_flags */ 965 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 966 967 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 968 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 969 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 970 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 971 972 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 973 974 /* 975 * Other sizes 976 */ 977 978 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 979 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 980 981 /* 982 * Hash table routines 983 */ 984 985 #define HT_LOCK_PAD 64 986 987 struct ht_lock { 988 kmutex_t ht_lock; 989 #ifdef _KERNEL 990 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 991 #endif 992 }; 993 994 #define BUF_LOCKS 256 995 typedef struct buf_hash_table { 996 uint64_t ht_mask; 997 arc_buf_hdr_t **ht_table; 998 struct ht_lock ht_locks[BUF_LOCKS]; 999 } buf_hash_table_t; 1000 1001 static buf_hash_table_t buf_hash_table; 1002 1003 #define BUF_HASH_INDEX(spa, dva, birth) \ 1004 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 1005 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 1006 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 1007 #define HDR_LOCK(hdr) \ 1008 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 1009 1010 uint64_t zfs_crc64_table[256]; 1011 1012 /* 1013 * Level 2 ARC 1014 */ 1015 1016 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 1017 #define L2ARC_HEADROOM 2 /* num of writes */ 1018 /* 1019 * If we discover during ARC scan any buffers to be compressed, we boost 1020 * our headroom for the next scanning cycle by this percentage multiple. 1021 */ 1022 #define L2ARC_HEADROOM_BOOST 200 1023 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 1024 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 1025 1026 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 1027 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 1028 1029 /* L2ARC Performance Tunables */ 1030 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 1031 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 1032 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 1033 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 1034 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 1035 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 1036 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 1037 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 1038 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 1039 1040 /* 1041 * L2ARC Internals 1042 */ 1043 struct l2arc_dev { 1044 vdev_t *l2ad_vdev; /* vdev */ 1045 spa_t *l2ad_spa; /* spa */ 1046 uint64_t l2ad_hand; /* next write location */ 1047 uint64_t l2ad_start; /* first addr on device */ 1048 uint64_t l2ad_end; /* last addr on device */ 1049 boolean_t l2ad_first; /* first sweep through */ 1050 boolean_t l2ad_writing; /* currently writing */ 1051 kmutex_t l2ad_mtx; /* lock for buffer list */ 1052 list_t l2ad_buflist; /* buffer list */ 1053 list_node_t l2ad_node; /* device list node */ 1054 refcount_t l2ad_alloc; /* allocated bytes */ 1055 }; 1056 1057 static list_t L2ARC_dev_list; /* device list */ 1058 static list_t *l2arc_dev_list; /* device list pointer */ 1059 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 1060 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 1061 static list_t L2ARC_free_on_write; /* free after write buf list */ 1062 static list_t *l2arc_free_on_write; /* free after write list ptr */ 1063 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 1064 static uint64_t l2arc_ndev; /* number of devices */ 1065 1066 typedef struct l2arc_read_callback { 1067 arc_buf_hdr_t *l2rcb_hdr; /* read buffer */ 1068 blkptr_t l2rcb_bp; /* original blkptr */ 1069 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 1070 int l2rcb_flags; /* original flags */ 1071 } l2arc_read_callback_t; 1072 1073 typedef struct l2arc_write_callback { 1074 l2arc_dev_t *l2wcb_dev; /* device info */ 1075 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 1076 } l2arc_write_callback_t; 1077 1078 typedef struct l2arc_data_free { 1079 /* protected by l2arc_free_on_write_mtx */ 1080 void *l2df_data; 1081 size_t l2df_size; 1082 arc_buf_contents_t l2df_type; 1083 list_node_t l2df_list_node; 1084 } l2arc_data_free_t; 1085 1086 static kmutex_t l2arc_feed_thr_lock; 1087 static kcondvar_t l2arc_feed_thr_cv; 1088 static uint8_t l2arc_thread_exit; 1089 1090 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 1091 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 1092 static void arc_hdr_free_pdata(arc_buf_hdr_t *hdr); 1093 static void arc_hdr_alloc_pdata(arc_buf_hdr_t *); 1094 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 1095 static boolean_t arc_is_overflowing(); 1096 static void arc_buf_watch(arc_buf_t *); 1097 1098 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 1099 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 1100 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 1101 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 1102 1103 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 1104 static void l2arc_read_done(zio_t *); 1105 1106 static uint64_t 1107 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 1108 { 1109 uint8_t *vdva = (uint8_t *)dva; 1110 uint64_t crc = -1ULL; 1111 int i; 1112 1113 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 1114 1115 for (i = 0; i < sizeof (dva_t); i++) 1116 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 1117 1118 crc ^= (spa>>8) ^ birth; 1119 1120 return (crc); 1121 } 1122 1123 #define HDR_EMPTY(hdr) \ 1124 ((hdr)->b_dva.dva_word[0] == 0 && \ 1125 (hdr)->b_dva.dva_word[1] == 0) 1126 1127 #define HDR_EQUAL(spa, dva, birth, hdr) \ 1128 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 1129 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 1130 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 1131 1132 static void 1133 buf_discard_identity(arc_buf_hdr_t *hdr) 1134 { 1135 hdr->b_dva.dva_word[0] = 0; 1136 hdr->b_dva.dva_word[1] = 0; 1137 hdr->b_birth = 0; 1138 } 1139 1140 static arc_buf_hdr_t * 1141 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 1142 { 1143 const dva_t *dva = BP_IDENTITY(bp); 1144 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 1145 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1146 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1147 arc_buf_hdr_t *hdr; 1148 1149 mutex_enter(hash_lock); 1150 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1151 hdr = hdr->b_hash_next) { 1152 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1153 *lockp = hash_lock; 1154 return (hdr); 1155 } 1156 } 1157 mutex_exit(hash_lock); 1158 *lockp = NULL; 1159 return (NULL); 1160 } 1161 1162 /* 1163 * Insert an entry into the hash table. If there is already an element 1164 * equal to elem in the hash table, then the already existing element 1165 * will be returned and the new element will not be inserted. 1166 * Otherwise returns NULL. 1167 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1168 */ 1169 static arc_buf_hdr_t * 1170 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1171 { 1172 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1173 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1174 arc_buf_hdr_t *fhdr; 1175 uint32_t i; 1176 1177 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1178 ASSERT(hdr->b_birth != 0); 1179 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1180 1181 if (lockp != NULL) { 1182 *lockp = hash_lock; 1183 mutex_enter(hash_lock); 1184 } else { 1185 ASSERT(MUTEX_HELD(hash_lock)); 1186 } 1187 1188 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1189 fhdr = fhdr->b_hash_next, i++) { 1190 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1191 return (fhdr); 1192 } 1193 1194 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1195 buf_hash_table.ht_table[idx] = hdr; 1196 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1197 1198 /* collect some hash table performance data */ 1199 if (i > 0) { 1200 ARCSTAT_BUMP(arcstat_hash_collisions); 1201 if (i == 1) 1202 ARCSTAT_BUMP(arcstat_hash_chains); 1203 1204 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1205 } 1206 1207 ARCSTAT_BUMP(arcstat_hash_elements); 1208 ARCSTAT_MAXSTAT(arcstat_hash_elements); 1209 1210 return (NULL); 1211 } 1212 1213 static void 1214 buf_hash_remove(arc_buf_hdr_t *hdr) 1215 { 1216 arc_buf_hdr_t *fhdr, **hdrp; 1217 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1218 1219 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1220 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1221 1222 hdrp = &buf_hash_table.ht_table[idx]; 1223 while ((fhdr = *hdrp) != hdr) { 1224 ASSERT3P(fhdr, !=, NULL); 1225 hdrp = &fhdr->b_hash_next; 1226 } 1227 *hdrp = hdr->b_hash_next; 1228 hdr->b_hash_next = NULL; 1229 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1230 1231 /* collect some hash table performance data */ 1232 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 1233 1234 if (buf_hash_table.ht_table[idx] && 1235 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1236 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1237 } 1238 1239 /* 1240 * Global data structures and functions for the buf kmem cache. 1241 */ 1242 static kmem_cache_t *hdr_full_cache; 1243 static kmem_cache_t *hdr_l2only_cache; 1244 static kmem_cache_t *buf_cache; 1245 1246 static void 1247 buf_fini(void) 1248 { 1249 int i; 1250 1251 kmem_free(buf_hash_table.ht_table, 1252 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1253 for (i = 0; i < BUF_LOCKS; i++) 1254 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 1255 kmem_cache_destroy(hdr_full_cache); 1256 kmem_cache_destroy(hdr_l2only_cache); 1257 kmem_cache_destroy(buf_cache); 1258 } 1259 1260 /* 1261 * Constructor callback - called when the cache is empty 1262 * and a new buf is requested. 1263 */ 1264 /* ARGSUSED */ 1265 static int 1266 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1267 { 1268 arc_buf_hdr_t *hdr = vbuf; 1269 1270 bzero(hdr, HDR_FULL_SIZE); 1271 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1272 refcount_create(&hdr->b_l1hdr.b_refcnt); 1273 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1274 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1275 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1276 1277 return (0); 1278 } 1279 1280 /* ARGSUSED */ 1281 static int 1282 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1283 { 1284 arc_buf_hdr_t *hdr = vbuf; 1285 1286 bzero(hdr, HDR_L2ONLY_SIZE); 1287 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1288 1289 return (0); 1290 } 1291 1292 /* ARGSUSED */ 1293 static int 1294 buf_cons(void *vbuf, void *unused, int kmflag) 1295 { 1296 arc_buf_t *buf = vbuf; 1297 1298 bzero(buf, sizeof (arc_buf_t)); 1299 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1300 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1301 1302 return (0); 1303 } 1304 1305 /* 1306 * Destructor callback - called when a cached buf is 1307 * no longer required. 1308 */ 1309 /* ARGSUSED */ 1310 static void 1311 hdr_full_dest(void *vbuf, void *unused) 1312 { 1313 arc_buf_hdr_t *hdr = vbuf; 1314 1315 ASSERT(HDR_EMPTY(hdr)); 1316 cv_destroy(&hdr->b_l1hdr.b_cv); 1317 refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1318 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1319 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1320 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1321 } 1322 1323 /* ARGSUSED */ 1324 static void 1325 hdr_l2only_dest(void *vbuf, void *unused) 1326 { 1327 arc_buf_hdr_t *hdr = vbuf; 1328 1329 ASSERT(HDR_EMPTY(hdr)); 1330 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1331 } 1332 1333 /* ARGSUSED */ 1334 static void 1335 buf_dest(void *vbuf, void *unused) 1336 { 1337 arc_buf_t *buf = vbuf; 1338 1339 mutex_destroy(&buf->b_evict_lock); 1340 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1341 } 1342 1343 /* 1344 * Reclaim callback -- invoked when memory is low. 1345 */ 1346 /* ARGSUSED */ 1347 static void 1348 hdr_recl(void *unused) 1349 { 1350 dprintf("hdr_recl called\n"); 1351 /* 1352 * umem calls the reclaim func when we destroy the buf cache, 1353 * which is after we do arc_fini(). 1354 */ 1355 if (!arc_dead) 1356 cv_signal(&arc_reclaim_thread_cv); 1357 } 1358 1359 static void 1360 buf_init(void) 1361 { 1362 uint64_t *ct; 1363 uint64_t hsize = 1ULL << 12; 1364 int i, j; 1365 1366 /* 1367 * The hash table is big enough to fill all of physical memory 1368 * with an average block size of zfs_arc_average_blocksize (default 8K). 1369 * By default, the table will take up 1370 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1371 */ 1372 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 1373 hsize <<= 1; 1374 retry: 1375 buf_hash_table.ht_mask = hsize - 1; 1376 buf_hash_table.ht_table = 1377 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1378 if (buf_hash_table.ht_table == NULL) { 1379 ASSERT(hsize > (1ULL << 8)); 1380 hsize >>= 1; 1381 goto retry; 1382 } 1383 1384 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1385 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0); 1386 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1387 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl, 1388 NULL, NULL, 0); 1389 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1390 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1391 1392 for (i = 0; i < 256; i++) 1393 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1394 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1395 1396 for (i = 0; i < BUF_LOCKS; i++) { 1397 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1398 NULL, MUTEX_DEFAULT, NULL); 1399 } 1400 } 1401 1402 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1403 1404 static inline boolean_t 1405 arc_buf_is_shared(arc_buf_t *buf) 1406 { 1407 boolean_t shared = (buf->b_data != NULL && 1408 buf->b_data == buf->b_hdr->b_l1hdr.b_pdata); 1409 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1410 return (shared); 1411 } 1412 1413 static inline void 1414 arc_cksum_free(arc_buf_hdr_t *hdr) 1415 { 1416 ASSERT(HDR_HAS_L1HDR(hdr)); 1417 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1418 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1419 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1420 hdr->b_l1hdr.b_freeze_cksum = NULL; 1421 } 1422 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1423 } 1424 1425 static void 1426 arc_cksum_verify(arc_buf_t *buf) 1427 { 1428 arc_buf_hdr_t *hdr = buf->b_hdr; 1429 zio_cksum_t zc; 1430 1431 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1432 return; 1433 1434 ASSERT(HDR_HAS_L1HDR(hdr)); 1435 1436 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1437 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1438 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1439 return; 1440 } 1441 fletcher_2_native(buf->b_data, HDR_GET_LSIZE(hdr), NULL, &zc); 1442 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1443 panic("buffer modified while frozen!"); 1444 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1445 } 1446 1447 static boolean_t 1448 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1449 { 1450 enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp); 1451 boolean_t valid_cksum; 1452 1453 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1454 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1455 1456 /* 1457 * We rely on the blkptr's checksum to determine if the block 1458 * is valid or not. When compressed arc is enabled, the l2arc 1459 * writes the block to the l2arc just as it appears in the pool. 1460 * This allows us to use the blkptr's checksum to validate the 1461 * data that we just read off of the l2arc without having to store 1462 * a separate checksum in the arc_buf_hdr_t. However, if compressed 1463 * arc is disabled, then the data written to the l2arc is always 1464 * uncompressed and won't match the block as it exists in the main 1465 * pool. When this is the case, we must first compress it if it is 1466 * compressed on the main pool before we can validate the checksum. 1467 */ 1468 if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) { 1469 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1470 uint64_t lsize = HDR_GET_LSIZE(hdr); 1471 uint64_t csize; 1472 1473 void *cbuf = zio_buf_alloc(HDR_GET_PSIZE(hdr)); 1474 csize = zio_compress_data(compress, zio->io_data, cbuf, lsize); 1475 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr)); 1476 if (csize < HDR_GET_PSIZE(hdr)) { 1477 /* 1478 * Compressed blocks are always a multiple of the 1479 * smallest ashift in the pool. Ideally, we would 1480 * like to round up the csize to the next 1481 * spa_min_ashift but that value may have changed 1482 * since the block was last written. Instead, 1483 * we rely on the fact that the hdr's psize 1484 * was set to the psize of the block when it was 1485 * last written. We set the csize to that value 1486 * and zero out any part that should not contain 1487 * data. 1488 */ 1489 bzero((char *)cbuf + csize, HDR_GET_PSIZE(hdr) - csize); 1490 csize = HDR_GET_PSIZE(hdr); 1491 } 1492 zio_push_transform(zio, cbuf, csize, HDR_GET_PSIZE(hdr), NULL); 1493 } 1494 1495 /* 1496 * Block pointers always store the checksum for the logical data. 1497 * If the block pointer has the gang bit set, then the checksum 1498 * it represents is for the reconstituted data and not for an 1499 * individual gang member. The zio pipeline, however, must be able to 1500 * determine the checksum of each of the gang constituents so it 1501 * treats the checksum comparison differently than what we need 1502 * for l2arc blocks. This prevents us from using the 1503 * zio_checksum_error() interface directly. Instead we must call the 1504 * zio_checksum_error_impl() so that we can ensure the checksum is 1505 * generated using the correct checksum algorithm and accounts for the 1506 * logical I/O size and not just a gang fragment. 1507 */ 1508 valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1509 BP_GET_CHECKSUM(zio->io_bp), zio->io_data, zio->io_size, 1510 zio->io_offset, NULL) == 0); 1511 zio_pop_transforms(zio); 1512 return (valid_cksum); 1513 } 1514 1515 static void 1516 arc_cksum_compute(arc_buf_t *buf) 1517 { 1518 arc_buf_hdr_t *hdr = buf->b_hdr; 1519 1520 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1521 return; 1522 1523 ASSERT(HDR_HAS_L1HDR(hdr)); 1524 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1525 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1526 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1527 return; 1528 } 1529 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1530 KM_SLEEP); 1531 fletcher_2_native(buf->b_data, HDR_GET_LSIZE(hdr), NULL, 1532 hdr->b_l1hdr.b_freeze_cksum); 1533 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1534 arc_buf_watch(buf); 1535 } 1536 1537 #ifndef _KERNEL 1538 typedef struct procctl { 1539 long cmd; 1540 prwatch_t prwatch; 1541 } procctl_t; 1542 #endif 1543 1544 /* ARGSUSED */ 1545 static void 1546 arc_buf_unwatch(arc_buf_t *buf) 1547 { 1548 #ifndef _KERNEL 1549 if (arc_watch) { 1550 int result; 1551 procctl_t ctl; 1552 ctl.cmd = PCWATCH; 1553 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1554 ctl.prwatch.pr_size = 0; 1555 ctl.prwatch.pr_wflags = 0; 1556 result = write(arc_procfd, &ctl, sizeof (ctl)); 1557 ASSERT3U(result, ==, sizeof (ctl)); 1558 } 1559 #endif 1560 } 1561 1562 /* ARGSUSED */ 1563 static void 1564 arc_buf_watch(arc_buf_t *buf) 1565 { 1566 #ifndef _KERNEL 1567 if (arc_watch) { 1568 int result; 1569 procctl_t ctl; 1570 ctl.cmd = PCWATCH; 1571 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1572 ctl.prwatch.pr_size = HDR_GET_LSIZE(buf->b_hdr); 1573 ctl.prwatch.pr_wflags = WA_WRITE; 1574 result = write(arc_procfd, &ctl, sizeof (ctl)); 1575 ASSERT3U(result, ==, sizeof (ctl)); 1576 } 1577 #endif 1578 } 1579 1580 static arc_buf_contents_t 1581 arc_buf_type(arc_buf_hdr_t *hdr) 1582 { 1583 arc_buf_contents_t type; 1584 if (HDR_ISTYPE_METADATA(hdr)) { 1585 type = ARC_BUFC_METADATA; 1586 } else { 1587 type = ARC_BUFC_DATA; 1588 } 1589 VERIFY3U(hdr->b_type, ==, type); 1590 return (type); 1591 } 1592 1593 static uint32_t 1594 arc_bufc_to_flags(arc_buf_contents_t type) 1595 { 1596 switch (type) { 1597 case ARC_BUFC_DATA: 1598 /* metadata field is 0 if buffer contains normal data */ 1599 return (0); 1600 case ARC_BUFC_METADATA: 1601 return (ARC_FLAG_BUFC_METADATA); 1602 default: 1603 break; 1604 } 1605 panic("undefined ARC buffer type!"); 1606 return ((uint32_t)-1); 1607 } 1608 1609 void 1610 arc_buf_thaw(arc_buf_t *buf) 1611 { 1612 arc_buf_hdr_t *hdr = buf->b_hdr; 1613 1614 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1615 if (hdr->b_l1hdr.b_state != arc_anon) 1616 panic("modifying non-anon buffer!"); 1617 if (HDR_IO_IN_PROGRESS(hdr)) 1618 panic("modifying buffer while i/o in progress!"); 1619 arc_cksum_verify(buf); 1620 } 1621 1622 ASSERT(HDR_HAS_L1HDR(hdr)); 1623 arc_cksum_free(hdr); 1624 1625 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1626 #ifdef ZFS_DEBUG 1627 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1628 if (hdr->b_l1hdr.b_thawed != NULL) 1629 kmem_free(hdr->b_l1hdr.b_thawed, 1); 1630 hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP); 1631 } 1632 #endif 1633 1634 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1635 1636 arc_buf_unwatch(buf); 1637 } 1638 1639 void 1640 arc_buf_freeze(arc_buf_t *buf) 1641 { 1642 arc_buf_hdr_t *hdr = buf->b_hdr; 1643 kmutex_t *hash_lock; 1644 1645 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1646 return; 1647 1648 hash_lock = HDR_LOCK(hdr); 1649 mutex_enter(hash_lock); 1650 1651 ASSERT(HDR_HAS_L1HDR(hdr)); 1652 ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL || 1653 hdr->b_l1hdr.b_state == arc_anon); 1654 arc_cksum_compute(buf); 1655 mutex_exit(hash_lock); 1656 1657 } 1658 1659 /* 1660 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1661 * the following functions should be used to ensure that the flags are 1662 * updated in a thread-safe way. When manipulating the flags either 1663 * the hash_lock must be held or the hdr must be undiscoverable. This 1664 * ensures that we're not racing with any other threads when updating 1665 * the flags. 1666 */ 1667 static inline void 1668 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1669 { 1670 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1671 hdr->b_flags |= flags; 1672 } 1673 1674 static inline void 1675 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1676 { 1677 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1678 hdr->b_flags &= ~flags; 1679 } 1680 1681 /* 1682 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1683 * done in a special way since we have to clear and set bits 1684 * at the same time. Consumers that wish to set the compression bits 1685 * must use this function to ensure that the flags are updated in 1686 * thread-safe manner. 1687 */ 1688 static void 1689 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1690 { 1691 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1692 1693 /* 1694 * Holes and embedded blocks will always have a psize = 0 so 1695 * we ignore the compression of the blkptr and set the 1696 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF. 1697 * Holes and embedded blocks remain anonymous so we don't 1698 * want to uncompress them. Mark them as uncompressed. 1699 */ 1700 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1701 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1702 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 1703 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1704 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1705 } else { 1706 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1707 HDR_SET_COMPRESS(hdr, cmp); 1708 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1709 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1710 } 1711 } 1712 1713 static int 1714 arc_decompress(arc_buf_t *buf) 1715 { 1716 arc_buf_hdr_t *hdr = buf->b_hdr; 1717 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 1718 int error; 1719 1720 if (arc_buf_is_shared(buf)) { 1721 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1722 } else if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) { 1723 /* 1724 * The arc_buf_hdr_t is either not compressed or is 1725 * associated with an embedded block or a hole in which 1726 * case they remain anonymous. 1727 */ 1728 IMPLY(HDR_COMPRESSION_ENABLED(hdr), HDR_GET_PSIZE(hdr) == 0 || 1729 HDR_GET_PSIZE(hdr) == HDR_GET_LSIZE(hdr)); 1730 ASSERT(!HDR_SHARED_DATA(hdr)); 1731 bcopy(hdr->b_l1hdr.b_pdata, buf->b_data, HDR_GET_LSIZE(hdr)); 1732 } else { 1733 ASSERT(!HDR_SHARED_DATA(hdr)); 1734 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 1735 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1736 hdr->b_l1hdr.b_pdata, buf->b_data, HDR_GET_PSIZE(hdr), 1737 HDR_GET_LSIZE(hdr)); 1738 if (error != 0) { 1739 zfs_dbgmsg("hdr %p, compress %d, psize %d, lsize %d", 1740 hdr, HDR_GET_COMPRESS(hdr), HDR_GET_PSIZE(hdr), 1741 HDR_GET_LSIZE(hdr)); 1742 return (SET_ERROR(EIO)); 1743 } 1744 } 1745 if (bswap != DMU_BSWAP_NUMFUNCS) { 1746 ASSERT(!HDR_SHARED_DATA(hdr)); 1747 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 1748 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 1749 } 1750 arc_cksum_compute(buf); 1751 return (0); 1752 } 1753 1754 /* 1755 * Return the size of the block, b_pdata, that is stored in the arc_buf_hdr_t. 1756 */ 1757 static uint64_t 1758 arc_hdr_size(arc_buf_hdr_t *hdr) 1759 { 1760 uint64_t size; 1761 1762 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1763 HDR_GET_PSIZE(hdr) > 0) { 1764 size = HDR_GET_PSIZE(hdr); 1765 } else { 1766 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1767 size = HDR_GET_LSIZE(hdr); 1768 } 1769 return (size); 1770 } 1771 1772 /* 1773 * Increment the amount of evictable space in the arc_state_t's refcount. 1774 * We account for the space used by the hdr and the arc buf individually 1775 * so that we can add and remove them from the refcount individually. 1776 */ 1777 static void 1778 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 1779 { 1780 arc_buf_contents_t type = arc_buf_type(hdr); 1781 uint64_t lsize = HDR_GET_LSIZE(hdr); 1782 1783 ASSERT(HDR_HAS_L1HDR(hdr)); 1784 1785 if (GHOST_STATE(state)) { 1786 ASSERT0(hdr->b_l1hdr.b_bufcnt); 1787 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 1788 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 1789 (void) refcount_add_many(&state->arcs_esize[type], lsize, hdr); 1790 return; 1791 } 1792 1793 ASSERT(!GHOST_STATE(state)); 1794 if (hdr->b_l1hdr.b_pdata != NULL) { 1795 (void) refcount_add_many(&state->arcs_esize[type], 1796 arc_hdr_size(hdr), hdr); 1797 } 1798 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 1799 buf = buf->b_next) { 1800 if (arc_buf_is_shared(buf)) { 1801 ASSERT(ARC_BUF_LAST(buf)); 1802 continue; 1803 } 1804 (void) refcount_add_many(&state->arcs_esize[type], lsize, buf); 1805 } 1806 } 1807 1808 /* 1809 * Decrement the amount of evictable space in the arc_state_t's refcount. 1810 * We account for the space used by the hdr and the arc buf individually 1811 * so that we can add and remove them from the refcount individually. 1812 */ 1813 static void 1814 arc_evitable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 1815 { 1816 arc_buf_contents_t type = arc_buf_type(hdr); 1817 uint64_t lsize = HDR_GET_LSIZE(hdr); 1818 1819 ASSERT(HDR_HAS_L1HDR(hdr)); 1820 1821 if (GHOST_STATE(state)) { 1822 ASSERT0(hdr->b_l1hdr.b_bufcnt); 1823 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 1824 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 1825 (void) refcount_remove_many(&state->arcs_esize[type], 1826 lsize, hdr); 1827 return; 1828 } 1829 1830 ASSERT(!GHOST_STATE(state)); 1831 if (hdr->b_l1hdr.b_pdata != NULL) { 1832 (void) refcount_remove_many(&state->arcs_esize[type], 1833 arc_hdr_size(hdr), hdr); 1834 } 1835 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 1836 buf = buf->b_next) { 1837 if (arc_buf_is_shared(buf)) { 1838 ASSERT(ARC_BUF_LAST(buf)); 1839 continue; 1840 } 1841 (void) refcount_remove_many(&state->arcs_esize[type], 1842 lsize, buf); 1843 } 1844 } 1845 1846 /* 1847 * Add a reference to this hdr indicating that someone is actively 1848 * referencing that memory. When the refcount transitions from 0 to 1, 1849 * we remove it from the respective arc_state_t list to indicate that 1850 * it is not evictable. 1851 */ 1852 static void 1853 add_reference(arc_buf_hdr_t *hdr, void *tag) 1854 { 1855 ASSERT(HDR_HAS_L1HDR(hdr)); 1856 if (!MUTEX_HELD(HDR_LOCK(hdr))) { 1857 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 1858 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 1859 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 1860 } 1861 1862 arc_state_t *state = hdr->b_l1hdr.b_state; 1863 1864 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 1865 (state != arc_anon)) { 1866 /* We don't use the L2-only state list. */ 1867 if (state != arc_l2c_only) { 1868 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], 1869 hdr); 1870 arc_evitable_space_decrement(hdr, state); 1871 } 1872 /* remove the prefetch flag if we get a reference */ 1873 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 1874 } 1875 } 1876 1877 /* 1878 * Remove a reference from this hdr. When the reference transitions from 1879 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 1880 * list making it eligible for eviction. 1881 */ 1882 static int 1883 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 1884 { 1885 int cnt; 1886 arc_state_t *state = hdr->b_l1hdr.b_state; 1887 1888 ASSERT(HDR_HAS_L1HDR(hdr)); 1889 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1890 ASSERT(!GHOST_STATE(state)); 1891 1892 /* 1893 * arc_l2c_only counts as a ghost state so we don't need to explicitly 1894 * check to prevent usage of the arc_l2c_only list. 1895 */ 1896 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 1897 (state != arc_anon)) { 1898 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr); 1899 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 1900 arc_evictable_space_increment(hdr, state); 1901 } 1902 return (cnt); 1903 } 1904 1905 /* 1906 * Move the supplied buffer to the indicated state. The hash lock 1907 * for the buffer must be held by the caller. 1908 */ 1909 static void 1910 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 1911 kmutex_t *hash_lock) 1912 { 1913 arc_state_t *old_state; 1914 int64_t refcnt; 1915 uint32_t bufcnt; 1916 boolean_t update_old, update_new; 1917 arc_buf_contents_t buftype = arc_buf_type(hdr); 1918 1919 /* 1920 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 1921 * in arc_read() when bringing a buffer out of the L2ARC. However, the 1922 * L1 hdr doesn't always exist when we change state to arc_anon before 1923 * destroying a header, in which case reallocating to add the L1 hdr is 1924 * pointless. 1925 */ 1926 if (HDR_HAS_L1HDR(hdr)) { 1927 old_state = hdr->b_l1hdr.b_state; 1928 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt); 1929 bufcnt = hdr->b_l1hdr.b_bufcnt; 1930 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pdata != NULL); 1931 } else { 1932 old_state = arc_l2c_only; 1933 refcnt = 0; 1934 bufcnt = 0; 1935 update_old = B_FALSE; 1936 } 1937 update_new = update_old; 1938 1939 ASSERT(MUTEX_HELD(hash_lock)); 1940 ASSERT3P(new_state, !=, old_state); 1941 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 1942 ASSERT(old_state != arc_anon || bufcnt <= 1); 1943 1944 /* 1945 * If this buffer is evictable, transfer it from the 1946 * old state list to the new state list. 1947 */ 1948 if (refcnt == 0) { 1949 if (old_state != arc_anon && old_state != arc_l2c_only) { 1950 ASSERT(HDR_HAS_L1HDR(hdr)); 1951 multilist_remove(&old_state->arcs_list[buftype], hdr); 1952 1953 if (GHOST_STATE(old_state)) { 1954 ASSERT0(bufcnt); 1955 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 1956 update_old = B_TRUE; 1957 } 1958 arc_evitable_space_decrement(hdr, old_state); 1959 } 1960 if (new_state != arc_anon && new_state != arc_l2c_only) { 1961 1962 /* 1963 * An L1 header always exists here, since if we're 1964 * moving to some L1-cached state (i.e. not l2c_only or 1965 * anonymous), we realloc the header to add an L1hdr 1966 * beforehand. 1967 */ 1968 ASSERT(HDR_HAS_L1HDR(hdr)); 1969 multilist_insert(&new_state->arcs_list[buftype], hdr); 1970 1971 if (GHOST_STATE(new_state)) { 1972 ASSERT0(bufcnt); 1973 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 1974 update_new = B_TRUE; 1975 } 1976 arc_evictable_space_increment(hdr, new_state); 1977 } 1978 } 1979 1980 ASSERT(!HDR_EMPTY(hdr)); 1981 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 1982 buf_hash_remove(hdr); 1983 1984 /* adjust state sizes (ignore arc_l2c_only) */ 1985 1986 if (update_new && new_state != arc_l2c_only) { 1987 ASSERT(HDR_HAS_L1HDR(hdr)); 1988 if (GHOST_STATE(new_state)) { 1989 ASSERT0(bufcnt); 1990 1991 /* 1992 * When moving a header to a ghost state, we first 1993 * remove all arc buffers. Thus, we'll have a 1994 * bufcnt of zero, and no arc buffer to use for 1995 * the reference. As a result, we use the arc 1996 * header pointer for the reference. 1997 */ 1998 (void) refcount_add_many(&new_state->arcs_size, 1999 HDR_GET_LSIZE(hdr), hdr); 2000 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2001 } else { 2002 uint32_t buffers = 0; 2003 2004 /* 2005 * Each individual buffer holds a unique reference, 2006 * thus we must remove each of these references one 2007 * at a time. 2008 */ 2009 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2010 buf = buf->b_next) { 2011 ASSERT3U(bufcnt, !=, 0); 2012 buffers++; 2013 2014 /* 2015 * When the arc_buf_t is sharing the data 2016 * block with the hdr, the owner of the 2017 * reference belongs to the hdr. Only 2018 * add to the refcount if the arc_buf_t is 2019 * not shared. 2020 */ 2021 if (arc_buf_is_shared(buf)) { 2022 ASSERT(ARC_BUF_LAST(buf)); 2023 continue; 2024 } 2025 2026 (void) refcount_add_many(&new_state->arcs_size, 2027 HDR_GET_LSIZE(hdr), buf); 2028 } 2029 ASSERT3U(bufcnt, ==, buffers); 2030 2031 if (hdr->b_l1hdr.b_pdata != NULL) { 2032 (void) refcount_add_many(&new_state->arcs_size, 2033 arc_hdr_size(hdr), hdr); 2034 } else { 2035 ASSERT(GHOST_STATE(old_state)); 2036 } 2037 } 2038 } 2039 2040 if (update_old && old_state != arc_l2c_only) { 2041 ASSERT(HDR_HAS_L1HDR(hdr)); 2042 if (GHOST_STATE(old_state)) { 2043 ASSERT0(bufcnt); 2044 2045 /* 2046 * When moving a header off of a ghost state, 2047 * the header will not contain any arc buffers. 2048 * We use the arc header pointer for the reference 2049 * which is exactly what we did when we put the 2050 * header on the ghost state. 2051 */ 2052 2053 (void) refcount_remove_many(&old_state->arcs_size, 2054 HDR_GET_LSIZE(hdr), hdr); 2055 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2056 } else { 2057 uint32_t buffers = 0; 2058 2059 /* 2060 * Each individual buffer holds a unique reference, 2061 * thus we must remove each of these references one 2062 * at a time. 2063 */ 2064 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2065 buf = buf->b_next) { 2066 ASSERT3P(bufcnt, !=, 0); 2067 buffers++; 2068 2069 /* 2070 * When the arc_buf_t is sharing the data 2071 * block with the hdr, the owner of the 2072 * reference belongs to the hdr. Only 2073 * add to the refcount if the arc_buf_t is 2074 * not shared. 2075 */ 2076 if (arc_buf_is_shared(buf)) { 2077 ASSERT(ARC_BUF_LAST(buf)); 2078 continue; 2079 } 2080 2081 (void) refcount_remove_many( 2082 &old_state->arcs_size, HDR_GET_LSIZE(hdr), 2083 buf); 2084 } 2085 ASSERT3U(bufcnt, ==, buffers); 2086 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 2087 (void) refcount_remove_many( 2088 &old_state->arcs_size, arc_hdr_size(hdr), hdr); 2089 } 2090 } 2091 2092 if (HDR_HAS_L1HDR(hdr)) 2093 hdr->b_l1hdr.b_state = new_state; 2094 2095 /* 2096 * L2 headers should never be on the L2 state list since they don't 2097 * have L1 headers allocated. 2098 */ 2099 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2100 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2101 } 2102 2103 void 2104 arc_space_consume(uint64_t space, arc_space_type_t type) 2105 { 2106 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2107 2108 switch (type) { 2109 case ARC_SPACE_DATA: 2110 ARCSTAT_INCR(arcstat_data_size, space); 2111 break; 2112 case ARC_SPACE_META: 2113 ARCSTAT_INCR(arcstat_metadata_size, space); 2114 break; 2115 case ARC_SPACE_OTHER: 2116 ARCSTAT_INCR(arcstat_other_size, space); 2117 break; 2118 case ARC_SPACE_HDRS: 2119 ARCSTAT_INCR(arcstat_hdr_size, space); 2120 break; 2121 case ARC_SPACE_L2HDRS: 2122 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 2123 break; 2124 } 2125 2126 if (type != ARC_SPACE_DATA) 2127 ARCSTAT_INCR(arcstat_meta_used, space); 2128 2129 atomic_add_64(&arc_size, space); 2130 } 2131 2132 void 2133 arc_space_return(uint64_t space, arc_space_type_t type) 2134 { 2135 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2136 2137 switch (type) { 2138 case ARC_SPACE_DATA: 2139 ARCSTAT_INCR(arcstat_data_size, -space); 2140 break; 2141 case ARC_SPACE_META: 2142 ARCSTAT_INCR(arcstat_metadata_size, -space); 2143 break; 2144 case ARC_SPACE_OTHER: 2145 ARCSTAT_INCR(arcstat_other_size, -space); 2146 break; 2147 case ARC_SPACE_HDRS: 2148 ARCSTAT_INCR(arcstat_hdr_size, -space); 2149 break; 2150 case ARC_SPACE_L2HDRS: 2151 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 2152 break; 2153 } 2154 2155 if (type != ARC_SPACE_DATA) { 2156 ASSERT(arc_meta_used >= space); 2157 if (arc_meta_max < arc_meta_used) 2158 arc_meta_max = arc_meta_used; 2159 ARCSTAT_INCR(arcstat_meta_used, -space); 2160 } 2161 2162 ASSERT(arc_size >= space); 2163 atomic_add_64(&arc_size, -space); 2164 } 2165 2166 /* 2167 * Allocate an initial buffer for this hdr, subsequent buffers will 2168 * use arc_buf_clone(). 2169 */ 2170 static arc_buf_t * 2171 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag) 2172 { 2173 arc_buf_t *buf; 2174 2175 ASSERT(HDR_HAS_L1HDR(hdr)); 2176 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2177 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2178 hdr->b_type == ARC_BUFC_METADATA); 2179 2180 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2181 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2182 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2183 2184 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2185 buf->b_hdr = hdr; 2186 buf->b_data = NULL; 2187 buf->b_next = NULL; 2188 2189 add_reference(hdr, tag); 2190 2191 /* 2192 * We're about to change the hdr's b_flags. We must either 2193 * hold the hash_lock or be undiscoverable. 2194 */ 2195 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2196 2197 /* 2198 * If the hdr's data can be shared (no byteswapping, hdr is 2199 * uncompressed, hdr's data is not currently being written to the 2200 * L2ARC write) then we share the data buffer and set the appropriate 2201 * bit in the hdr's b_flags to indicate the hdr is sharing it's 2202 * b_pdata with the arc_buf_t. Otherwise, we allocate a new buffer to 2203 * store the buf's data. 2204 */ 2205 if (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2206 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF && !HDR_L2_WRITING(hdr)) { 2207 buf->b_data = hdr->b_l1hdr.b_pdata; 2208 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2209 } else { 2210 buf->b_data = arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2211 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2212 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2213 } 2214 VERIFY3P(buf->b_data, !=, NULL); 2215 2216 hdr->b_l1hdr.b_buf = buf; 2217 hdr->b_l1hdr.b_bufcnt += 1; 2218 2219 return (buf); 2220 } 2221 2222 /* 2223 * Used when allocating additional buffers. 2224 */ 2225 static arc_buf_t * 2226 arc_buf_clone(arc_buf_t *from) 2227 { 2228 arc_buf_t *buf; 2229 arc_buf_hdr_t *hdr = from->b_hdr; 2230 uint64_t size = HDR_GET_LSIZE(hdr); 2231 2232 ASSERT(HDR_HAS_L1HDR(hdr)); 2233 ASSERT(hdr->b_l1hdr.b_state != arc_anon); 2234 2235 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2236 buf->b_hdr = hdr; 2237 buf->b_data = NULL; 2238 buf->b_next = hdr->b_l1hdr.b_buf; 2239 hdr->b_l1hdr.b_buf = buf; 2240 buf->b_data = arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2241 bcopy(from->b_data, buf->b_data, size); 2242 hdr->b_l1hdr.b_bufcnt += 1; 2243 2244 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2245 return (buf); 2246 } 2247 2248 static char *arc_onloan_tag = "onloan"; 2249 2250 /* 2251 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2252 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2253 * buffers must be returned to the arc before they can be used by the DMU or 2254 * freed. 2255 */ 2256 arc_buf_t * 2257 arc_loan_buf(spa_t *spa, int size) 2258 { 2259 arc_buf_t *buf; 2260 2261 buf = arc_alloc_buf(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 2262 2263 atomic_add_64(&arc_loaned_bytes, size); 2264 return (buf); 2265 } 2266 2267 /* 2268 * Return a loaned arc buffer to the arc. 2269 */ 2270 void 2271 arc_return_buf(arc_buf_t *buf, void *tag) 2272 { 2273 arc_buf_hdr_t *hdr = buf->b_hdr; 2274 2275 ASSERT3P(buf->b_data, !=, NULL); 2276 ASSERT(HDR_HAS_L1HDR(hdr)); 2277 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2278 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2279 2280 atomic_add_64(&arc_loaned_bytes, -HDR_GET_LSIZE(hdr)); 2281 } 2282 2283 /* Detach an arc_buf from a dbuf (tag) */ 2284 void 2285 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2286 { 2287 arc_buf_hdr_t *hdr = buf->b_hdr; 2288 2289 ASSERT3P(buf->b_data, !=, NULL); 2290 ASSERT(HDR_HAS_L1HDR(hdr)); 2291 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2292 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2293 2294 atomic_add_64(&arc_loaned_bytes, HDR_GET_LSIZE(hdr)); 2295 } 2296 2297 static void 2298 l2arc_free_data_on_write(void *data, size_t size, arc_buf_contents_t type) 2299 { 2300 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2301 2302 df->l2df_data = data; 2303 df->l2df_size = size; 2304 df->l2df_type = type; 2305 mutex_enter(&l2arc_free_on_write_mtx); 2306 list_insert_head(l2arc_free_on_write, df); 2307 mutex_exit(&l2arc_free_on_write_mtx); 2308 } 2309 2310 static void 2311 arc_hdr_free_on_write(arc_buf_hdr_t *hdr) 2312 { 2313 arc_state_t *state = hdr->b_l1hdr.b_state; 2314 arc_buf_contents_t type = arc_buf_type(hdr); 2315 uint64_t size = arc_hdr_size(hdr); 2316 2317 /* protected by hash lock, if in the hash table */ 2318 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2319 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2320 ASSERT(state != arc_anon && state != arc_l2c_only); 2321 2322 (void) refcount_remove_many(&state->arcs_esize[type], 2323 size, hdr); 2324 } 2325 (void) refcount_remove_many(&state->arcs_size, size, hdr); 2326 2327 l2arc_free_data_on_write(hdr->b_l1hdr.b_pdata, size, type); 2328 } 2329 2330 /* 2331 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2332 * data buffer, we transfer the refcount ownership to the hdr and update 2333 * the appropriate kstats. 2334 */ 2335 static void 2336 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2337 { 2338 arc_state_t *state = hdr->b_l1hdr.b_state; 2339 2340 ASSERT(!HDR_SHARED_DATA(hdr)); 2341 ASSERT(!arc_buf_is_shared(buf)); 2342 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2343 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2344 2345 /* 2346 * Start sharing the data buffer. We transfer the 2347 * refcount ownership to the hdr since it always owns 2348 * the refcount whenever an arc_buf_t is shared. 2349 */ 2350 refcount_transfer_ownership(&state->arcs_size, buf, hdr); 2351 hdr->b_l1hdr.b_pdata = buf->b_data; 2352 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2353 2354 /* 2355 * Since we've transferred ownership to the hdr we need 2356 * to increment its compressed and uncompressed kstats and 2357 * decrement the overhead size. 2358 */ 2359 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2360 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2361 ARCSTAT_INCR(arcstat_overhead_size, -HDR_GET_LSIZE(hdr)); 2362 } 2363 2364 static void 2365 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2366 { 2367 arc_state_t *state = hdr->b_l1hdr.b_state; 2368 2369 ASSERT(HDR_SHARED_DATA(hdr)); 2370 ASSERT(arc_buf_is_shared(buf)); 2371 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 2372 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2373 2374 /* 2375 * We are no longer sharing this buffer so we need 2376 * to transfer its ownership to the rightful owner. 2377 */ 2378 refcount_transfer_ownership(&state->arcs_size, hdr, buf); 2379 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2380 hdr->b_l1hdr.b_pdata = NULL; 2381 2382 /* 2383 * Since the buffer is no longer shared between 2384 * the arc buf and the hdr, count it as overhead. 2385 */ 2386 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2387 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2388 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2389 } 2390 2391 /* 2392 * Free up buf->b_data and if 'remove' is set, then pull the 2393 * arc_buf_t off of the the arc_buf_hdr_t's list and free it. 2394 */ 2395 static void 2396 arc_buf_destroy_impl(arc_buf_t *buf, boolean_t remove) 2397 { 2398 arc_buf_t **bufp; 2399 arc_buf_hdr_t *hdr = buf->b_hdr; 2400 uint64_t size = HDR_GET_LSIZE(hdr); 2401 boolean_t destroyed_buf_is_shared = arc_buf_is_shared(buf); 2402 2403 /* 2404 * Free up the data associated with the buf but only 2405 * if we're not sharing this with the hdr. If we are sharing 2406 * it with the hdr, then hdr will have performed the allocation 2407 * so allow it to do the free. 2408 */ 2409 if (buf->b_data != NULL) { 2410 /* 2411 * We're about to change the hdr's b_flags. We must either 2412 * hold the hash_lock or be undiscoverable. 2413 */ 2414 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2415 2416 arc_cksum_verify(buf); 2417 arc_buf_unwatch(buf); 2418 2419 if (destroyed_buf_is_shared) { 2420 ASSERT(ARC_BUF_LAST(buf)); 2421 ASSERT(HDR_SHARED_DATA(hdr)); 2422 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2423 } else { 2424 arc_free_data_buf(hdr, buf->b_data, size, buf); 2425 ARCSTAT_INCR(arcstat_overhead_size, -size); 2426 } 2427 buf->b_data = NULL; 2428 2429 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 2430 hdr->b_l1hdr.b_bufcnt -= 1; 2431 } 2432 2433 /* only remove the buf if requested */ 2434 if (!remove) 2435 return; 2436 2437 /* remove the buf from the hdr list */ 2438 arc_buf_t *lastbuf = NULL; 2439 bufp = &hdr->b_l1hdr.b_buf; 2440 while (*bufp != NULL) { 2441 if (*bufp == buf) 2442 *bufp = buf->b_next; 2443 2444 /* 2445 * If we've removed a buffer in the middle of 2446 * the list then update the lastbuf and update 2447 * bufp. 2448 */ 2449 if (*bufp != NULL) { 2450 lastbuf = *bufp; 2451 bufp = &(*bufp)->b_next; 2452 } 2453 } 2454 buf->b_next = NULL; 2455 ASSERT3P(lastbuf, !=, buf); 2456 2457 /* 2458 * If the current arc_buf_t is sharing its data 2459 * buffer with the hdr, then reassign the hdr's 2460 * b_pdata to share it with the new buffer at the end 2461 * of the list. The shared buffer is always the last one 2462 * on the hdr's buffer list. 2463 */ 2464 if (destroyed_buf_is_shared && lastbuf != NULL) { 2465 ASSERT(ARC_BUF_LAST(buf)); 2466 ASSERT(ARC_BUF_LAST(lastbuf)); 2467 VERIFY(!arc_buf_is_shared(lastbuf)); 2468 2469 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 2470 arc_hdr_free_pdata(hdr); 2471 2472 /* 2473 * We must setup a new shared block between the 2474 * last buffer and the hdr. The data would have 2475 * been allocated by the arc buf so we need to transfer 2476 * ownership to the hdr since it's now being shared. 2477 */ 2478 arc_share_buf(hdr, lastbuf); 2479 } else if (HDR_SHARED_DATA(hdr)) { 2480 ASSERT(arc_buf_is_shared(lastbuf)); 2481 } 2482 2483 if (hdr->b_l1hdr.b_bufcnt == 0) 2484 arc_cksum_free(hdr); 2485 2486 /* clean up the buf */ 2487 buf->b_hdr = NULL; 2488 kmem_cache_free(buf_cache, buf); 2489 } 2490 2491 static void 2492 arc_hdr_alloc_pdata(arc_buf_hdr_t *hdr) 2493 { 2494 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2495 ASSERT(HDR_HAS_L1HDR(hdr)); 2496 ASSERT(!HDR_SHARED_DATA(hdr)); 2497 2498 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2499 hdr->b_l1hdr.b_pdata = arc_get_data_buf(hdr, arc_hdr_size(hdr), hdr); 2500 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 2501 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 2502 2503 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2504 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2505 } 2506 2507 static void 2508 arc_hdr_free_pdata(arc_buf_hdr_t *hdr) 2509 { 2510 ASSERT(HDR_HAS_L1HDR(hdr)); 2511 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 2512 2513 /* 2514 * If the hdr is currently being written to the l2arc then 2515 * we defer freeing the data by adding it to the l2arc_free_on_write 2516 * list. The l2arc will free the data once it's finished 2517 * writing it to the l2arc device. 2518 */ 2519 if (HDR_L2_WRITING(hdr)) { 2520 arc_hdr_free_on_write(hdr); 2521 ARCSTAT_BUMP(arcstat_l2_free_on_write); 2522 } else { 2523 arc_free_data_buf(hdr, hdr->b_l1hdr.b_pdata, 2524 arc_hdr_size(hdr), hdr); 2525 } 2526 hdr->b_l1hdr.b_pdata = NULL; 2527 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 2528 2529 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2530 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2531 } 2532 2533 static arc_buf_hdr_t * 2534 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 2535 enum zio_compress compress, arc_buf_contents_t type) 2536 { 2537 arc_buf_hdr_t *hdr; 2538 2539 ASSERT3U(lsize, >, 0); 2540 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 2541 2542 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 2543 ASSERT(HDR_EMPTY(hdr)); 2544 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 2545 ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL); 2546 HDR_SET_PSIZE(hdr, psize); 2547 HDR_SET_LSIZE(hdr, lsize); 2548 hdr->b_spa = spa; 2549 hdr->b_type = type; 2550 hdr->b_flags = 0; 2551 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 2552 arc_hdr_set_compress(hdr, compress); 2553 2554 hdr->b_l1hdr.b_state = arc_anon; 2555 hdr->b_l1hdr.b_arc_access = 0; 2556 hdr->b_l1hdr.b_bufcnt = 0; 2557 hdr->b_l1hdr.b_buf = NULL; 2558 2559 /* 2560 * Allocate the hdr's buffer. This will contain either 2561 * the compressed or uncompressed data depending on the block 2562 * it references and compressed arc enablement. 2563 */ 2564 arc_hdr_alloc_pdata(hdr); 2565 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2566 2567 return (hdr); 2568 } 2569 2570 /* 2571 * Transition between the two allocation states for the arc_buf_hdr struct. 2572 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 2573 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 2574 * version is used when a cache buffer is only in the L2ARC in order to reduce 2575 * memory usage. 2576 */ 2577 static arc_buf_hdr_t * 2578 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 2579 { 2580 ASSERT(HDR_HAS_L2HDR(hdr)); 2581 2582 arc_buf_hdr_t *nhdr; 2583 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 2584 2585 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 2586 (old == hdr_l2only_cache && new == hdr_full_cache)); 2587 2588 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 2589 2590 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 2591 buf_hash_remove(hdr); 2592 2593 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 2594 2595 if (new == hdr_full_cache) { 2596 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 2597 /* 2598 * arc_access and arc_change_state need to be aware that a 2599 * header has just come out of L2ARC, so we set its state to 2600 * l2c_only even though it's about to change. 2601 */ 2602 nhdr->b_l1hdr.b_state = arc_l2c_only; 2603 2604 /* Verify previous threads set to NULL before freeing */ 2605 ASSERT3P(nhdr->b_l1hdr.b_pdata, ==, NULL); 2606 } else { 2607 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2608 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2609 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 2610 2611 /* 2612 * If we've reached here, We must have been called from 2613 * arc_evict_hdr(), as such we should have already been 2614 * removed from any ghost list we were previously on 2615 * (which protects us from racing with arc_evict_state), 2616 * thus no locking is needed during this check. 2617 */ 2618 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 2619 2620 /* 2621 * A buffer must not be moved into the arc_l2c_only 2622 * state if it's not finished being written out to the 2623 * l2arc device. Otherwise, the b_l1hdr.b_pdata field 2624 * might try to be accessed, even though it was removed. 2625 */ 2626 VERIFY(!HDR_L2_WRITING(hdr)); 2627 VERIFY3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2628 2629 #ifdef ZFS_DEBUG 2630 if (hdr->b_l1hdr.b_thawed != NULL) { 2631 kmem_free(hdr->b_l1hdr.b_thawed, 1); 2632 hdr->b_l1hdr.b_thawed = NULL; 2633 } 2634 #endif 2635 2636 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 2637 } 2638 /* 2639 * The header has been reallocated so we need to re-insert it into any 2640 * lists it was on. 2641 */ 2642 (void) buf_hash_insert(nhdr, NULL); 2643 2644 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 2645 2646 mutex_enter(&dev->l2ad_mtx); 2647 2648 /* 2649 * We must place the realloc'ed header back into the list at 2650 * the same spot. Otherwise, if it's placed earlier in the list, 2651 * l2arc_write_buffers() could find it during the function's 2652 * write phase, and try to write it out to the l2arc. 2653 */ 2654 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 2655 list_remove(&dev->l2ad_buflist, hdr); 2656 2657 mutex_exit(&dev->l2ad_mtx); 2658 2659 /* 2660 * Since we're using the pointer address as the tag when 2661 * incrementing and decrementing the l2ad_alloc refcount, we 2662 * must remove the old pointer (that we're about to destroy) and 2663 * add the new pointer to the refcount. Otherwise we'd remove 2664 * the wrong pointer address when calling arc_hdr_destroy() later. 2665 */ 2666 2667 (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 2668 (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr); 2669 2670 buf_discard_identity(hdr); 2671 kmem_cache_free(old, hdr); 2672 2673 return (nhdr); 2674 } 2675 2676 /* 2677 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 2678 * The buf is returned thawed since we expect the consumer to modify it. 2679 */ 2680 arc_buf_t * 2681 arc_alloc_buf(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type) 2682 { 2683 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 2684 ZIO_COMPRESS_OFF, type); 2685 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr))); 2686 arc_buf_t *buf = arc_buf_alloc_impl(hdr, tag); 2687 arc_buf_thaw(buf); 2688 return (buf); 2689 } 2690 2691 static void 2692 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 2693 { 2694 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 2695 l2arc_dev_t *dev = l2hdr->b_dev; 2696 uint64_t asize = arc_hdr_size(hdr); 2697 2698 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 2699 ASSERT(HDR_HAS_L2HDR(hdr)); 2700 2701 list_remove(&dev->l2ad_buflist, hdr); 2702 2703 ARCSTAT_INCR(arcstat_l2_asize, -asize); 2704 ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr)); 2705 2706 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 2707 2708 (void) refcount_remove_many(&dev->l2ad_alloc, asize, hdr); 2709 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 2710 } 2711 2712 static void 2713 arc_hdr_destroy(arc_buf_hdr_t *hdr) 2714 { 2715 if (HDR_HAS_L1HDR(hdr)) { 2716 ASSERT(hdr->b_l1hdr.b_buf == NULL || 2717 hdr->b_l1hdr.b_bufcnt > 0); 2718 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2719 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 2720 } 2721 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2722 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 2723 2724 if (!HDR_EMPTY(hdr)) 2725 buf_discard_identity(hdr); 2726 2727 if (HDR_HAS_L2HDR(hdr)) { 2728 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 2729 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 2730 2731 if (!buflist_held) 2732 mutex_enter(&dev->l2ad_mtx); 2733 2734 /* 2735 * Even though we checked this conditional above, we 2736 * need to check this again now that we have the 2737 * l2ad_mtx. This is because we could be racing with 2738 * another thread calling l2arc_evict() which might have 2739 * destroyed this header's L2 portion as we were waiting 2740 * to acquire the l2ad_mtx. If that happens, we don't 2741 * want to re-destroy the header's L2 portion. 2742 */ 2743 if (HDR_HAS_L2HDR(hdr)) 2744 arc_hdr_l2hdr_destroy(hdr); 2745 2746 if (!buflist_held) 2747 mutex_exit(&dev->l2ad_mtx); 2748 } 2749 2750 if (HDR_HAS_L1HDR(hdr)) { 2751 arc_cksum_free(hdr); 2752 2753 while (hdr->b_l1hdr.b_buf != NULL) 2754 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf, B_TRUE); 2755 2756 #ifdef ZFS_DEBUG 2757 if (hdr->b_l1hdr.b_thawed != NULL) { 2758 kmem_free(hdr->b_l1hdr.b_thawed, 1); 2759 hdr->b_l1hdr.b_thawed = NULL; 2760 } 2761 #endif 2762 2763 if (hdr->b_l1hdr.b_pdata != NULL) { 2764 arc_hdr_free_pdata(hdr); 2765 } 2766 } 2767 2768 ASSERT3P(hdr->b_hash_next, ==, NULL); 2769 if (HDR_HAS_L1HDR(hdr)) { 2770 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 2771 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 2772 kmem_cache_free(hdr_full_cache, hdr); 2773 } else { 2774 kmem_cache_free(hdr_l2only_cache, hdr); 2775 } 2776 } 2777 2778 void 2779 arc_buf_destroy(arc_buf_t *buf, void* tag) 2780 { 2781 arc_buf_hdr_t *hdr = buf->b_hdr; 2782 kmutex_t *hash_lock = HDR_LOCK(hdr); 2783 2784 if (hdr->b_l1hdr.b_state == arc_anon) { 2785 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 2786 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2787 VERIFY0(remove_reference(hdr, NULL, tag)); 2788 arc_hdr_destroy(hdr); 2789 return; 2790 } 2791 2792 mutex_enter(hash_lock); 2793 ASSERT3P(hdr, ==, buf->b_hdr); 2794 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 2795 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 2796 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 2797 ASSERT3P(buf->b_data, !=, NULL); 2798 2799 (void) remove_reference(hdr, hash_lock, tag); 2800 arc_buf_destroy_impl(buf, B_TRUE); 2801 mutex_exit(hash_lock); 2802 } 2803 2804 int32_t 2805 arc_buf_size(arc_buf_t *buf) 2806 { 2807 return (HDR_GET_LSIZE(buf->b_hdr)); 2808 } 2809 2810 /* 2811 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 2812 * state of the header is dependent on it's state prior to entering this 2813 * function. The following transitions are possible: 2814 * 2815 * - arc_mru -> arc_mru_ghost 2816 * - arc_mfu -> arc_mfu_ghost 2817 * - arc_mru_ghost -> arc_l2c_only 2818 * - arc_mru_ghost -> deleted 2819 * - arc_mfu_ghost -> arc_l2c_only 2820 * - arc_mfu_ghost -> deleted 2821 */ 2822 static int64_t 2823 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 2824 { 2825 arc_state_t *evicted_state, *state; 2826 int64_t bytes_evicted = 0; 2827 2828 ASSERT(MUTEX_HELD(hash_lock)); 2829 ASSERT(HDR_HAS_L1HDR(hdr)); 2830 2831 state = hdr->b_l1hdr.b_state; 2832 if (GHOST_STATE(state)) { 2833 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2834 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2835 2836 /* 2837 * l2arc_write_buffers() relies on a header's L1 portion 2838 * (i.e. its b_pdata field) during its write phase. 2839 * Thus, we cannot push a header onto the arc_l2c_only 2840 * state (removing it's L1 piece) until the header is 2841 * done being written to the l2arc. 2842 */ 2843 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 2844 ARCSTAT_BUMP(arcstat_evict_l2_skip); 2845 return (bytes_evicted); 2846 } 2847 2848 ARCSTAT_BUMP(arcstat_deleted); 2849 bytes_evicted += HDR_GET_LSIZE(hdr); 2850 2851 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 2852 2853 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 2854 if (HDR_HAS_L2HDR(hdr)) { 2855 ASSERT(hdr->b_l1hdr.b_pdata == NULL); 2856 /* 2857 * This buffer is cached on the 2nd Level ARC; 2858 * don't destroy the header. 2859 */ 2860 arc_change_state(arc_l2c_only, hdr, hash_lock); 2861 /* 2862 * dropping from L1+L2 cached to L2-only, 2863 * realloc to remove the L1 header. 2864 */ 2865 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 2866 hdr_l2only_cache); 2867 } else { 2868 ASSERT(hdr->b_l1hdr.b_pdata == NULL); 2869 arc_change_state(arc_anon, hdr, hash_lock); 2870 arc_hdr_destroy(hdr); 2871 } 2872 return (bytes_evicted); 2873 } 2874 2875 ASSERT(state == arc_mru || state == arc_mfu); 2876 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 2877 2878 /* prefetch buffers have a minimum lifespan */ 2879 if (HDR_IO_IN_PROGRESS(hdr) || 2880 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 2881 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 2882 arc_min_prefetch_lifespan)) { 2883 ARCSTAT_BUMP(arcstat_evict_skip); 2884 return (bytes_evicted); 2885 } 2886 2887 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 2888 while (hdr->b_l1hdr.b_buf) { 2889 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 2890 if (!mutex_tryenter(&buf->b_evict_lock)) { 2891 ARCSTAT_BUMP(arcstat_mutex_miss); 2892 break; 2893 } 2894 if (buf->b_data != NULL) 2895 bytes_evicted += HDR_GET_LSIZE(hdr); 2896 mutex_exit(&buf->b_evict_lock); 2897 arc_buf_destroy_impl(buf, B_TRUE); 2898 } 2899 2900 if (HDR_HAS_L2HDR(hdr)) { 2901 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 2902 } else { 2903 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 2904 ARCSTAT_INCR(arcstat_evict_l2_eligible, 2905 HDR_GET_LSIZE(hdr)); 2906 } else { 2907 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 2908 HDR_GET_LSIZE(hdr)); 2909 } 2910 } 2911 2912 if (hdr->b_l1hdr.b_bufcnt == 0) { 2913 arc_cksum_free(hdr); 2914 2915 bytes_evicted += arc_hdr_size(hdr); 2916 2917 /* 2918 * If this hdr is being evicted and has a compressed 2919 * buffer then we discard it here before we change states. 2920 * This ensures that the accounting is updated correctly 2921 * in arc_free_data_buf(). 2922 */ 2923 arc_hdr_free_pdata(hdr); 2924 2925 arc_change_state(evicted_state, hdr, hash_lock); 2926 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2927 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 2928 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 2929 } 2930 2931 return (bytes_evicted); 2932 } 2933 2934 static uint64_t 2935 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 2936 uint64_t spa, int64_t bytes) 2937 { 2938 multilist_sublist_t *mls; 2939 uint64_t bytes_evicted = 0; 2940 arc_buf_hdr_t *hdr; 2941 kmutex_t *hash_lock; 2942 int evict_count = 0; 2943 2944 ASSERT3P(marker, !=, NULL); 2945 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 2946 2947 mls = multilist_sublist_lock(ml, idx); 2948 2949 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 2950 hdr = multilist_sublist_prev(mls, marker)) { 2951 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 2952 (evict_count >= zfs_arc_evict_batch_limit)) 2953 break; 2954 2955 /* 2956 * To keep our iteration location, move the marker 2957 * forward. Since we're not holding hdr's hash lock, we 2958 * must be very careful and not remove 'hdr' from the 2959 * sublist. Otherwise, other consumers might mistake the 2960 * 'hdr' as not being on a sublist when they call the 2961 * multilist_link_active() function (they all rely on 2962 * the hash lock protecting concurrent insertions and 2963 * removals). multilist_sublist_move_forward() was 2964 * specifically implemented to ensure this is the case 2965 * (only 'marker' will be removed and re-inserted). 2966 */ 2967 multilist_sublist_move_forward(mls, marker); 2968 2969 /* 2970 * The only case where the b_spa field should ever be 2971 * zero, is the marker headers inserted by 2972 * arc_evict_state(). It's possible for multiple threads 2973 * to be calling arc_evict_state() concurrently (e.g. 2974 * dsl_pool_close() and zio_inject_fault()), so we must 2975 * skip any markers we see from these other threads. 2976 */ 2977 if (hdr->b_spa == 0) 2978 continue; 2979 2980 /* we're only interested in evicting buffers of a certain spa */ 2981 if (spa != 0 && hdr->b_spa != spa) { 2982 ARCSTAT_BUMP(arcstat_evict_skip); 2983 continue; 2984 } 2985 2986 hash_lock = HDR_LOCK(hdr); 2987 2988 /* 2989 * We aren't calling this function from any code path 2990 * that would already be holding a hash lock, so we're 2991 * asserting on this assumption to be defensive in case 2992 * this ever changes. Without this check, it would be 2993 * possible to incorrectly increment arcstat_mutex_miss 2994 * below (e.g. if the code changed such that we called 2995 * this function with a hash lock held). 2996 */ 2997 ASSERT(!MUTEX_HELD(hash_lock)); 2998 2999 if (mutex_tryenter(hash_lock)) { 3000 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 3001 mutex_exit(hash_lock); 3002 3003 bytes_evicted += evicted; 3004 3005 /* 3006 * If evicted is zero, arc_evict_hdr() must have 3007 * decided to skip this header, don't increment 3008 * evict_count in this case. 3009 */ 3010 if (evicted != 0) 3011 evict_count++; 3012 3013 /* 3014 * If arc_size isn't overflowing, signal any 3015 * threads that might happen to be waiting. 3016 * 3017 * For each header evicted, we wake up a single 3018 * thread. If we used cv_broadcast, we could 3019 * wake up "too many" threads causing arc_size 3020 * to significantly overflow arc_c; since 3021 * arc_get_data_buf() doesn't check for overflow 3022 * when it's woken up (it doesn't because it's 3023 * possible for the ARC to be overflowing while 3024 * full of un-evictable buffers, and the 3025 * function should proceed in this case). 3026 * 3027 * If threads are left sleeping, due to not 3028 * using cv_broadcast, they will be woken up 3029 * just before arc_reclaim_thread() sleeps. 3030 */ 3031 mutex_enter(&arc_reclaim_lock); 3032 if (!arc_is_overflowing()) 3033 cv_signal(&arc_reclaim_waiters_cv); 3034 mutex_exit(&arc_reclaim_lock); 3035 } else { 3036 ARCSTAT_BUMP(arcstat_mutex_miss); 3037 } 3038 } 3039 3040 multilist_sublist_unlock(mls); 3041 3042 return (bytes_evicted); 3043 } 3044 3045 /* 3046 * Evict buffers from the given arc state, until we've removed the 3047 * specified number of bytes. Move the removed buffers to the 3048 * appropriate evict state. 3049 * 3050 * This function makes a "best effort". It skips over any buffers 3051 * it can't get a hash_lock on, and so, may not catch all candidates. 3052 * It may also return without evicting as much space as requested. 3053 * 3054 * If bytes is specified using the special value ARC_EVICT_ALL, this 3055 * will evict all available (i.e. unlocked and evictable) buffers from 3056 * the given arc state; which is used by arc_flush(). 3057 */ 3058 static uint64_t 3059 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 3060 arc_buf_contents_t type) 3061 { 3062 uint64_t total_evicted = 0; 3063 multilist_t *ml = &state->arcs_list[type]; 3064 int num_sublists; 3065 arc_buf_hdr_t **markers; 3066 3067 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3068 3069 num_sublists = multilist_get_num_sublists(ml); 3070 3071 /* 3072 * If we've tried to evict from each sublist, made some 3073 * progress, but still have not hit the target number of bytes 3074 * to evict, we want to keep trying. The markers allow us to 3075 * pick up where we left off for each individual sublist, rather 3076 * than starting from the tail each time. 3077 */ 3078 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 3079 for (int i = 0; i < num_sublists; i++) { 3080 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 3081 3082 /* 3083 * A b_spa of 0 is used to indicate that this header is 3084 * a marker. This fact is used in arc_adjust_type() and 3085 * arc_evict_state_impl(). 3086 */ 3087 markers[i]->b_spa = 0; 3088 3089 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 3090 multilist_sublist_insert_tail(mls, markers[i]); 3091 multilist_sublist_unlock(mls); 3092 } 3093 3094 /* 3095 * While we haven't hit our target number of bytes to evict, or 3096 * we're evicting all available buffers. 3097 */ 3098 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 3099 /* 3100 * Start eviction using a randomly selected sublist, 3101 * this is to try and evenly balance eviction across all 3102 * sublists. Always starting at the same sublist 3103 * (e.g. index 0) would cause evictions to favor certain 3104 * sublists over others. 3105 */ 3106 int sublist_idx = multilist_get_random_index(ml); 3107 uint64_t scan_evicted = 0; 3108 3109 for (int i = 0; i < num_sublists; i++) { 3110 uint64_t bytes_remaining; 3111 uint64_t bytes_evicted; 3112 3113 if (bytes == ARC_EVICT_ALL) 3114 bytes_remaining = ARC_EVICT_ALL; 3115 else if (total_evicted < bytes) 3116 bytes_remaining = bytes - total_evicted; 3117 else 3118 break; 3119 3120 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 3121 markers[sublist_idx], spa, bytes_remaining); 3122 3123 scan_evicted += bytes_evicted; 3124 total_evicted += bytes_evicted; 3125 3126 /* we've reached the end, wrap to the beginning */ 3127 if (++sublist_idx >= num_sublists) 3128 sublist_idx = 0; 3129 } 3130 3131 /* 3132 * If we didn't evict anything during this scan, we have 3133 * no reason to believe we'll evict more during another 3134 * scan, so break the loop. 3135 */ 3136 if (scan_evicted == 0) { 3137 /* This isn't possible, let's make that obvious */ 3138 ASSERT3S(bytes, !=, 0); 3139 3140 /* 3141 * When bytes is ARC_EVICT_ALL, the only way to 3142 * break the loop is when scan_evicted is zero. 3143 * In that case, we actually have evicted enough, 3144 * so we don't want to increment the kstat. 3145 */ 3146 if (bytes != ARC_EVICT_ALL) { 3147 ASSERT3S(total_evicted, <, bytes); 3148 ARCSTAT_BUMP(arcstat_evict_not_enough); 3149 } 3150 3151 break; 3152 } 3153 } 3154 3155 for (int i = 0; i < num_sublists; i++) { 3156 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 3157 multilist_sublist_remove(mls, markers[i]); 3158 multilist_sublist_unlock(mls); 3159 3160 kmem_cache_free(hdr_full_cache, markers[i]); 3161 } 3162 kmem_free(markers, sizeof (*markers) * num_sublists); 3163 3164 return (total_evicted); 3165 } 3166 3167 /* 3168 * Flush all "evictable" data of the given type from the arc state 3169 * specified. This will not evict any "active" buffers (i.e. referenced). 3170 * 3171 * When 'retry' is set to B_FALSE, the function will make a single pass 3172 * over the state and evict any buffers that it can. Since it doesn't 3173 * continually retry the eviction, it might end up leaving some buffers 3174 * in the ARC due to lock misses. 3175 * 3176 * When 'retry' is set to B_TRUE, the function will continually retry the 3177 * eviction until *all* evictable buffers have been removed from the 3178 * state. As a result, if concurrent insertions into the state are 3179 * allowed (e.g. if the ARC isn't shutting down), this function might 3180 * wind up in an infinite loop, continually trying to evict buffers. 3181 */ 3182 static uint64_t 3183 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 3184 boolean_t retry) 3185 { 3186 uint64_t evicted = 0; 3187 3188 while (refcount_count(&state->arcs_esize[type]) != 0) { 3189 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 3190 3191 if (!retry) 3192 break; 3193 } 3194 3195 return (evicted); 3196 } 3197 3198 /* 3199 * Evict the specified number of bytes from the state specified, 3200 * restricting eviction to the spa and type given. This function 3201 * prevents us from trying to evict more from a state's list than 3202 * is "evictable", and to skip evicting altogether when passed a 3203 * negative value for "bytes". In contrast, arc_evict_state() will 3204 * evict everything it can, when passed a negative value for "bytes". 3205 */ 3206 static uint64_t 3207 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 3208 arc_buf_contents_t type) 3209 { 3210 int64_t delta; 3211 3212 if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) { 3213 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes); 3214 return (arc_evict_state(state, spa, delta, type)); 3215 } 3216 3217 return (0); 3218 } 3219 3220 /* 3221 * Evict metadata buffers from the cache, such that arc_meta_used is 3222 * capped by the arc_meta_limit tunable. 3223 */ 3224 static uint64_t 3225 arc_adjust_meta(void) 3226 { 3227 uint64_t total_evicted = 0; 3228 int64_t target; 3229 3230 /* 3231 * If we're over the meta limit, we want to evict enough 3232 * metadata to get back under the meta limit. We don't want to 3233 * evict so much that we drop the MRU below arc_p, though. If 3234 * we're over the meta limit more than we're over arc_p, we 3235 * evict some from the MRU here, and some from the MFU below. 3236 */ 3237 target = MIN((int64_t)(arc_meta_used - arc_meta_limit), 3238 (int64_t)(refcount_count(&arc_anon->arcs_size) + 3239 refcount_count(&arc_mru->arcs_size) - arc_p)); 3240 3241 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3242 3243 /* 3244 * Similar to the above, we want to evict enough bytes to get us 3245 * below the meta limit, but not so much as to drop us below the 3246 * space alloted to the MFU (which is defined as arc_c - arc_p). 3247 */ 3248 target = MIN((int64_t)(arc_meta_used - arc_meta_limit), 3249 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p))); 3250 3251 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3252 3253 return (total_evicted); 3254 } 3255 3256 /* 3257 * Return the type of the oldest buffer in the given arc state 3258 * 3259 * This function will select a random sublist of type ARC_BUFC_DATA and 3260 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 3261 * is compared, and the type which contains the "older" buffer will be 3262 * returned. 3263 */ 3264 static arc_buf_contents_t 3265 arc_adjust_type(arc_state_t *state) 3266 { 3267 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA]; 3268 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA]; 3269 int data_idx = multilist_get_random_index(data_ml); 3270 int meta_idx = multilist_get_random_index(meta_ml); 3271 multilist_sublist_t *data_mls; 3272 multilist_sublist_t *meta_mls; 3273 arc_buf_contents_t type; 3274 arc_buf_hdr_t *data_hdr; 3275 arc_buf_hdr_t *meta_hdr; 3276 3277 /* 3278 * We keep the sublist lock until we're finished, to prevent 3279 * the headers from being destroyed via arc_evict_state(). 3280 */ 3281 data_mls = multilist_sublist_lock(data_ml, data_idx); 3282 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 3283 3284 /* 3285 * These two loops are to ensure we skip any markers that 3286 * might be at the tail of the lists due to arc_evict_state(). 3287 */ 3288 3289 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 3290 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 3291 if (data_hdr->b_spa != 0) 3292 break; 3293 } 3294 3295 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 3296 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 3297 if (meta_hdr->b_spa != 0) 3298 break; 3299 } 3300 3301 if (data_hdr == NULL && meta_hdr == NULL) { 3302 type = ARC_BUFC_DATA; 3303 } else if (data_hdr == NULL) { 3304 ASSERT3P(meta_hdr, !=, NULL); 3305 type = ARC_BUFC_METADATA; 3306 } else if (meta_hdr == NULL) { 3307 ASSERT3P(data_hdr, !=, NULL); 3308 type = ARC_BUFC_DATA; 3309 } else { 3310 ASSERT3P(data_hdr, !=, NULL); 3311 ASSERT3P(meta_hdr, !=, NULL); 3312 3313 /* The headers can't be on the sublist without an L1 header */ 3314 ASSERT(HDR_HAS_L1HDR(data_hdr)); 3315 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 3316 3317 if (data_hdr->b_l1hdr.b_arc_access < 3318 meta_hdr->b_l1hdr.b_arc_access) { 3319 type = ARC_BUFC_DATA; 3320 } else { 3321 type = ARC_BUFC_METADATA; 3322 } 3323 } 3324 3325 multilist_sublist_unlock(meta_mls); 3326 multilist_sublist_unlock(data_mls); 3327 3328 return (type); 3329 } 3330 3331 /* 3332 * Evict buffers from the cache, such that arc_size is capped by arc_c. 3333 */ 3334 static uint64_t 3335 arc_adjust(void) 3336 { 3337 uint64_t total_evicted = 0; 3338 uint64_t bytes; 3339 int64_t target; 3340 3341 /* 3342 * If we're over arc_meta_limit, we want to correct that before 3343 * potentially evicting data buffers below. 3344 */ 3345 total_evicted += arc_adjust_meta(); 3346 3347 /* 3348 * Adjust MRU size 3349 * 3350 * If we're over the target cache size, we want to evict enough 3351 * from the list to get back to our target size. We don't want 3352 * to evict too much from the MRU, such that it drops below 3353 * arc_p. So, if we're over our target cache size more than 3354 * the MRU is over arc_p, we'll evict enough to get back to 3355 * arc_p here, and then evict more from the MFU below. 3356 */ 3357 target = MIN((int64_t)(arc_size - arc_c), 3358 (int64_t)(refcount_count(&arc_anon->arcs_size) + 3359 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p)); 3360 3361 /* 3362 * If we're below arc_meta_min, always prefer to evict data. 3363 * Otherwise, try to satisfy the requested number of bytes to 3364 * evict from the type which contains older buffers; in an 3365 * effort to keep newer buffers in the cache regardless of their 3366 * type. If we cannot satisfy the number of bytes from this 3367 * type, spill over into the next type. 3368 */ 3369 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA && 3370 arc_meta_used > arc_meta_min) { 3371 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3372 total_evicted += bytes; 3373 3374 /* 3375 * If we couldn't evict our target number of bytes from 3376 * metadata, we try to get the rest from data. 3377 */ 3378 target -= bytes; 3379 3380 total_evicted += 3381 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 3382 } else { 3383 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 3384 total_evicted += bytes; 3385 3386 /* 3387 * If we couldn't evict our target number of bytes from 3388 * data, we try to get the rest from metadata. 3389 */ 3390 target -= bytes; 3391 3392 total_evicted += 3393 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3394 } 3395 3396 /* 3397 * Adjust MFU size 3398 * 3399 * Now that we've tried to evict enough from the MRU to get its 3400 * size back to arc_p, if we're still above the target cache 3401 * size, we evict the rest from the MFU. 3402 */ 3403 target = arc_size - arc_c; 3404 3405 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA && 3406 arc_meta_used > arc_meta_min) { 3407 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3408 total_evicted += bytes; 3409 3410 /* 3411 * If we couldn't evict our target number of bytes from 3412 * metadata, we try to get the rest from data. 3413 */ 3414 target -= bytes; 3415 3416 total_evicted += 3417 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 3418 } else { 3419 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 3420 total_evicted += bytes; 3421 3422 /* 3423 * If we couldn't evict our target number of bytes from 3424 * data, we try to get the rest from data. 3425 */ 3426 target -= bytes; 3427 3428 total_evicted += 3429 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3430 } 3431 3432 /* 3433 * Adjust ghost lists 3434 * 3435 * In addition to the above, the ARC also defines target values 3436 * for the ghost lists. The sum of the mru list and mru ghost 3437 * list should never exceed the target size of the cache, and 3438 * the sum of the mru list, mfu list, mru ghost list, and mfu 3439 * ghost list should never exceed twice the target size of the 3440 * cache. The following logic enforces these limits on the ghost 3441 * caches, and evicts from them as needed. 3442 */ 3443 target = refcount_count(&arc_mru->arcs_size) + 3444 refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 3445 3446 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 3447 total_evicted += bytes; 3448 3449 target -= bytes; 3450 3451 total_evicted += 3452 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 3453 3454 /* 3455 * We assume the sum of the mru list and mfu list is less than 3456 * or equal to arc_c (we enforced this above), which means we 3457 * can use the simpler of the two equations below: 3458 * 3459 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 3460 * mru ghost + mfu ghost <= arc_c 3461 */ 3462 target = refcount_count(&arc_mru_ghost->arcs_size) + 3463 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 3464 3465 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 3466 total_evicted += bytes; 3467 3468 target -= bytes; 3469 3470 total_evicted += 3471 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 3472 3473 return (total_evicted); 3474 } 3475 3476 void 3477 arc_flush(spa_t *spa, boolean_t retry) 3478 { 3479 uint64_t guid = 0; 3480 3481 /* 3482 * If retry is B_TRUE, a spa must not be specified since we have 3483 * no good way to determine if all of a spa's buffers have been 3484 * evicted from an arc state. 3485 */ 3486 ASSERT(!retry || spa == 0); 3487 3488 if (spa != NULL) 3489 guid = spa_load_guid(spa); 3490 3491 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 3492 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 3493 3494 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 3495 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 3496 3497 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 3498 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 3499 3500 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 3501 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 3502 } 3503 3504 void 3505 arc_shrink(int64_t to_free) 3506 { 3507 if (arc_c > arc_c_min) { 3508 3509 if (arc_c > arc_c_min + to_free) 3510 atomic_add_64(&arc_c, -to_free); 3511 else 3512 arc_c = arc_c_min; 3513 3514 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 3515 if (arc_c > arc_size) 3516 arc_c = MAX(arc_size, arc_c_min); 3517 if (arc_p > arc_c) 3518 arc_p = (arc_c >> 1); 3519 ASSERT(arc_c >= arc_c_min); 3520 ASSERT((int64_t)arc_p >= 0); 3521 } 3522 3523 if (arc_size > arc_c) 3524 (void) arc_adjust(); 3525 } 3526 3527 typedef enum free_memory_reason_t { 3528 FMR_UNKNOWN, 3529 FMR_NEEDFREE, 3530 FMR_LOTSFREE, 3531 FMR_SWAPFS_MINFREE, 3532 FMR_PAGES_PP_MAXIMUM, 3533 FMR_HEAP_ARENA, 3534 FMR_ZIO_ARENA, 3535 } free_memory_reason_t; 3536 3537 int64_t last_free_memory; 3538 free_memory_reason_t last_free_reason; 3539 3540 /* 3541 * Additional reserve of pages for pp_reserve. 3542 */ 3543 int64_t arc_pages_pp_reserve = 64; 3544 3545 /* 3546 * Additional reserve of pages for swapfs. 3547 */ 3548 int64_t arc_swapfs_reserve = 64; 3549 3550 /* 3551 * Return the amount of memory that can be consumed before reclaim will be 3552 * needed. Positive if there is sufficient free memory, negative indicates 3553 * the amount of memory that needs to be freed up. 3554 */ 3555 static int64_t 3556 arc_available_memory(void) 3557 { 3558 int64_t lowest = INT64_MAX; 3559 int64_t n; 3560 free_memory_reason_t r = FMR_UNKNOWN; 3561 3562 #ifdef _KERNEL 3563 if (needfree > 0) { 3564 n = PAGESIZE * (-needfree); 3565 if (n < lowest) { 3566 lowest = n; 3567 r = FMR_NEEDFREE; 3568 } 3569 } 3570 3571 /* 3572 * check that we're out of range of the pageout scanner. It starts to 3573 * schedule paging if freemem is less than lotsfree and needfree. 3574 * lotsfree is the high-water mark for pageout, and needfree is the 3575 * number of needed free pages. We add extra pages here to make sure 3576 * the scanner doesn't start up while we're freeing memory. 3577 */ 3578 n = PAGESIZE * (freemem - lotsfree - needfree - desfree); 3579 if (n < lowest) { 3580 lowest = n; 3581 r = FMR_LOTSFREE; 3582 } 3583 3584 /* 3585 * check to make sure that swapfs has enough space so that anon 3586 * reservations can still succeed. anon_resvmem() checks that the 3587 * availrmem is greater than swapfs_minfree, and the number of reserved 3588 * swap pages. We also add a bit of extra here just to prevent 3589 * circumstances from getting really dire. 3590 */ 3591 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve - 3592 desfree - arc_swapfs_reserve); 3593 if (n < lowest) { 3594 lowest = n; 3595 r = FMR_SWAPFS_MINFREE; 3596 } 3597 3598 3599 /* 3600 * Check that we have enough availrmem that memory locking (e.g., via 3601 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 3602 * stores the number of pages that cannot be locked; when availrmem 3603 * drops below pages_pp_maximum, page locking mechanisms such as 3604 * page_pp_lock() will fail.) 3605 */ 3606 n = PAGESIZE * (availrmem - pages_pp_maximum - 3607 arc_pages_pp_reserve); 3608 if (n < lowest) { 3609 lowest = n; 3610 r = FMR_PAGES_PP_MAXIMUM; 3611 } 3612 3613 #if defined(__i386) 3614 /* 3615 * If we're on an i386 platform, it's possible that we'll exhaust the 3616 * kernel heap space before we ever run out of available physical 3617 * memory. Most checks of the size of the heap_area compare against 3618 * tune.t_minarmem, which is the minimum available real memory that we 3619 * can have in the system. However, this is generally fixed at 25 pages 3620 * which is so low that it's useless. In this comparison, we seek to 3621 * calculate the total heap-size, and reclaim if more than 3/4ths of the 3622 * heap is allocated. (Or, in the calculation, if less than 1/4th is 3623 * free) 3624 */ 3625 n = (int64_t)vmem_size(heap_arena, VMEM_FREE) - 3626 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2); 3627 if (n < lowest) { 3628 lowest = n; 3629 r = FMR_HEAP_ARENA; 3630 } 3631 #endif 3632 3633 /* 3634 * If zio data pages are being allocated out of a separate heap segment, 3635 * then enforce that the size of available vmem for this arena remains 3636 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free. 3637 * 3638 * Note that reducing the arc_zio_arena_free_shift keeps more virtual 3639 * memory (in the zio_arena) free, which can avoid memory 3640 * fragmentation issues. 3641 */ 3642 if (zio_arena != NULL) { 3643 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) - 3644 (vmem_size(zio_arena, VMEM_ALLOC) >> 3645 arc_zio_arena_free_shift); 3646 if (n < lowest) { 3647 lowest = n; 3648 r = FMR_ZIO_ARENA; 3649 } 3650 } 3651 #else 3652 /* Every 100 calls, free a small amount */ 3653 if (spa_get_random(100) == 0) 3654 lowest = -1024; 3655 #endif 3656 3657 last_free_memory = lowest; 3658 last_free_reason = r; 3659 3660 return (lowest); 3661 } 3662 3663 3664 /* 3665 * Determine if the system is under memory pressure and is asking 3666 * to reclaim memory. A return value of B_TRUE indicates that the system 3667 * is under memory pressure and that the arc should adjust accordingly. 3668 */ 3669 static boolean_t 3670 arc_reclaim_needed(void) 3671 { 3672 return (arc_available_memory() < 0); 3673 } 3674 3675 static void 3676 arc_kmem_reap_now(void) 3677 { 3678 size_t i; 3679 kmem_cache_t *prev_cache = NULL; 3680 kmem_cache_t *prev_data_cache = NULL; 3681 extern kmem_cache_t *zio_buf_cache[]; 3682 extern kmem_cache_t *zio_data_buf_cache[]; 3683 extern kmem_cache_t *range_seg_cache; 3684 3685 #ifdef _KERNEL 3686 if (arc_meta_used >= arc_meta_limit) { 3687 /* 3688 * We are exceeding our meta-data cache limit. 3689 * Purge some DNLC entries to release holds on meta-data. 3690 */ 3691 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 3692 } 3693 #if defined(__i386) 3694 /* 3695 * Reclaim unused memory from all kmem caches. 3696 */ 3697 kmem_reap(); 3698 #endif 3699 #endif 3700 3701 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 3702 if (zio_buf_cache[i] != prev_cache) { 3703 prev_cache = zio_buf_cache[i]; 3704 kmem_cache_reap_now(zio_buf_cache[i]); 3705 } 3706 if (zio_data_buf_cache[i] != prev_data_cache) { 3707 prev_data_cache = zio_data_buf_cache[i]; 3708 kmem_cache_reap_now(zio_data_buf_cache[i]); 3709 } 3710 } 3711 kmem_cache_reap_now(buf_cache); 3712 kmem_cache_reap_now(hdr_full_cache); 3713 kmem_cache_reap_now(hdr_l2only_cache); 3714 kmem_cache_reap_now(range_seg_cache); 3715 3716 if (zio_arena != NULL) { 3717 /* 3718 * Ask the vmem arena to reclaim unused memory from its 3719 * quantum caches. 3720 */ 3721 vmem_qcache_reap(zio_arena); 3722 } 3723 } 3724 3725 /* 3726 * Threads can block in arc_get_data_buf() waiting for this thread to evict 3727 * enough data and signal them to proceed. When this happens, the threads in 3728 * arc_get_data_buf() are sleeping while holding the hash lock for their 3729 * particular arc header. Thus, we must be careful to never sleep on a 3730 * hash lock in this thread. This is to prevent the following deadlock: 3731 * 3732 * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L", 3733 * waiting for the reclaim thread to signal it. 3734 * 3735 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter, 3736 * fails, and goes to sleep forever. 3737 * 3738 * This possible deadlock is avoided by always acquiring a hash lock 3739 * using mutex_tryenter() from arc_reclaim_thread(). 3740 */ 3741 static void 3742 arc_reclaim_thread(void) 3743 { 3744 hrtime_t growtime = 0; 3745 callb_cpr_t cpr; 3746 3747 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG); 3748 3749 mutex_enter(&arc_reclaim_lock); 3750 while (!arc_reclaim_thread_exit) { 3751 int64_t free_memory = arc_available_memory(); 3752 uint64_t evicted = 0; 3753 3754 /* 3755 * This is necessary in order for the mdb ::arc dcmd to 3756 * show up to date information. Since the ::arc command 3757 * does not call the kstat's update function, without 3758 * this call, the command may show stale stats for the 3759 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 3760 * with this change, the data might be up to 1 second 3761 * out of date; but that should suffice. The arc_state_t 3762 * structures can be queried directly if more accurate 3763 * information is needed. 3764 */ 3765 if (arc_ksp != NULL) 3766 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 3767 3768 mutex_exit(&arc_reclaim_lock); 3769 3770 if (free_memory < 0) { 3771 3772 arc_no_grow = B_TRUE; 3773 arc_warm = B_TRUE; 3774 3775 /* 3776 * Wait at least zfs_grow_retry (default 60) seconds 3777 * before considering growing. 3778 */ 3779 growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 3780 3781 arc_kmem_reap_now(); 3782 3783 /* 3784 * If we are still low on memory, shrink the ARC 3785 * so that we have arc_shrink_min free space. 3786 */ 3787 free_memory = arc_available_memory(); 3788 3789 int64_t to_free = 3790 (arc_c >> arc_shrink_shift) - free_memory; 3791 if (to_free > 0) { 3792 #ifdef _KERNEL 3793 to_free = MAX(to_free, ptob(needfree)); 3794 #endif 3795 arc_shrink(to_free); 3796 } 3797 } else if (free_memory < arc_c >> arc_no_grow_shift) { 3798 arc_no_grow = B_TRUE; 3799 } else if (gethrtime() >= growtime) { 3800 arc_no_grow = B_FALSE; 3801 } 3802 3803 evicted = arc_adjust(); 3804 3805 mutex_enter(&arc_reclaim_lock); 3806 3807 /* 3808 * If evicted is zero, we couldn't evict anything via 3809 * arc_adjust(). This could be due to hash lock 3810 * collisions, but more likely due to the majority of 3811 * arc buffers being unevictable. Therefore, even if 3812 * arc_size is above arc_c, another pass is unlikely to 3813 * be helpful and could potentially cause us to enter an 3814 * infinite loop. 3815 */ 3816 if (arc_size <= arc_c || evicted == 0) { 3817 /* 3818 * We're either no longer overflowing, or we 3819 * can't evict anything more, so we should wake 3820 * up any threads before we go to sleep. 3821 */ 3822 cv_broadcast(&arc_reclaim_waiters_cv); 3823 3824 /* 3825 * Block until signaled, or after one second (we 3826 * might need to perform arc_kmem_reap_now() 3827 * even if we aren't being signalled) 3828 */ 3829 CALLB_CPR_SAFE_BEGIN(&cpr); 3830 (void) cv_timedwait_hires(&arc_reclaim_thread_cv, 3831 &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); 3832 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock); 3833 } 3834 } 3835 3836 arc_reclaim_thread_exit = B_FALSE; 3837 cv_broadcast(&arc_reclaim_thread_cv); 3838 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */ 3839 thread_exit(); 3840 } 3841 3842 /* 3843 * Adapt arc info given the number of bytes we are trying to add and 3844 * the state that we are comming from. This function is only called 3845 * when we are adding new content to the cache. 3846 */ 3847 static void 3848 arc_adapt(int bytes, arc_state_t *state) 3849 { 3850 int mult; 3851 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 3852 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size); 3853 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size); 3854 3855 if (state == arc_l2c_only) 3856 return; 3857 3858 ASSERT(bytes > 0); 3859 /* 3860 * Adapt the target size of the MRU list: 3861 * - if we just hit in the MRU ghost list, then increase 3862 * the target size of the MRU list. 3863 * - if we just hit in the MFU ghost list, then increase 3864 * the target size of the MFU list by decreasing the 3865 * target size of the MRU list. 3866 */ 3867 if (state == arc_mru_ghost) { 3868 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 3869 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 3870 3871 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 3872 } else if (state == arc_mfu_ghost) { 3873 uint64_t delta; 3874 3875 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 3876 mult = MIN(mult, 10); 3877 3878 delta = MIN(bytes * mult, arc_p); 3879 arc_p = MAX(arc_p_min, arc_p - delta); 3880 } 3881 ASSERT((int64_t)arc_p >= 0); 3882 3883 if (arc_reclaim_needed()) { 3884 cv_signal(&arc_reclaim_thread_cv); 3885 return; 3886 } 3887 3888 if (arc_no_grow) 3889 return; 3890 3891 if (arc_c >= arc_c_max) 3892 return; 3893 3894 /* 3895 * If we're within (2 * maxblocksize) bytes of the target 3896 * cache size, increment the target cache size 3897 */ 3898 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 3899 atomic_add_64(&arc_c, (int64_t)bytes); 3900 if (arc_c > arc_c_max) 3901 arc_c = arc_c_max; 3902 else if (state == arc_anon) 3903 atomic_add_64(&arc_p, (int64_t)bytes); 3904 if (arc_p > arc_c) 3905 arc_p = arc_c; 3906 } 3907 ASSERT((int64_t)arc_p >= 0); 3908 } 3909 3910 /* 3911 * Check if arc_size has grown past our upper threshold, determined by 3912 * zfs_arc_overflow_shift. 3913 */ 3914 static boolean_t 3915 arc_is_overflowing(void) 3916 { 3917 /* Always allow at least one block of overflow */ 3918 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE, 3919 arc_c >> zfs_arc_overflow_shift); 3920 3921 return (arc_size >= arc_c + overflow); 3922 } 3923 3924 /* 3925 * Allocate a block and return it to the caller. If we are hitting the 3926 * hard limit for the cache size, we must sleep, waiting for the eviction 3927 * thread to catch up. If we're past the target size but below the hard 3928 * limit, we'll only signal the reclaim thread and continue on. 3929 */ 3930 static void * 3931 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 3932 { 3933 void *datap = NULL; 3934 arc_state_t *state = hdr->b_l1hdr.b_state; 3935 arc_buf_contents_t type = arc_buf_type(hdr); 3936 3937 arc_adapt(size, state); 3938 3939 /* 3940 * If arc_size is currently overflowing, and has grown past our 3941 * upper limit, we must be adding data faster than the evict 3942 * thread can evict. Thus, to ensure we don't compound the 3943 * problem by adding more data and forcing arc_size to grow even 3944 * further past it's target size, we halt and wait for the 3945 * eviction thread to catch up. 3946 * 3947 * It's also possible that the reclaim thread is unable to evict 3948 * enough buffers to get arc_size below the overflow limit (e.g. 3949 * due to buffers being un-evictable, or hash lock collisions). 3950 * In this case, we want to proceed regardless if we're 3951 * overflowing; thus we don't use a while loop here. 3952 */ 3953 if (arc_is_overflowing()) { 3954 mutex_enter(&arc_reclaim_lock); 3955 3956 /* 3957 * Now that we've acquired the lock, we may no longer be 3958 * over the overflow limit, lets check. 3959 * 3960 * We're ignoring the case of spurious wake ups. If that 3961 * were to happen, it'd let this thread consume an ARC 3962 * buffer before it should have (i.e. before we're under 3963 * the overflow limit and were signalled by the reclaim 3964 * thread). As long as that is a rare occurrence, it 3965 * shouldn't cause any harm. 3966 */ 3967 if (arc_is_overflowing()) { 3968 cv_signal(&arc_reclaim_thread_cv); 3969 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock); 3970 } 3971 3972 mutex_exit(&arc_reclaim_lock); 3973 } 3974 3975 VERIFY3U(hdr->b_type, ==, type); 3976 if (type == ARC_BUFC_METADATA) { 3977 datap = zio_buf_alloc(size); 3978 arc_space_consume(size, ARC_SPACE_META); 3979 } else { 3980 ASSERT(type == ARC_BUFC_DATA); 3981 datap = zio_data_buf_alloc(size); 3982 arc_space_consume(size, ARC_SPACE_DATA); 3983 } 3984 3985 /* 3986 * Update the state size. Note that ghost states have a 3987 * "ghost size" and so don't need to be updated. 3988 */ 3989 if (!GHOST_STATE(state)) { 3990 3991 (void) refcount_add_many(&state->arcs_size, size, tag); 3992 3993 /* 3994 * If this is reached via arc_read, the link is 3995 * protected by the hash lock. If reached via 3996 * arc_buf_alloc, the header should not be accessed by 3997 * any other thread. And, if reached via arc_read_done, 3998 * the hash lock will protect it if it's found in the 3999 * hash table; otherwise no other thread should be 4000 * trying to [add|remove]_reference it. 4001 */ 4002 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 4003 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4004 (void) refcount_add_many(&state->arcs_esize[type], 4005 size, tag); 4006 } 4007 4008 /* 4009 * If we are growing the cache, and we are adding anonymous 4010 * data, and we have outgrown arc_p, update arc_p 4011 */ 4012 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon && 4013 (refcount_count(&arc_anon->arcs_size) + 4014 refcount_count(&arc_mru->arcs_size) > arc_p)) 4015 arc_p = MIN(arc_c, arc_p + size); 4016 } 4017 return (datap); 4018 } 4019 4020 /* 4021 * Free the arc data buffer. 4022 */ 4023 static void 4024 arc_free_data_buf(arc_buf_hdr_t *hdr, void *data, uint64_t size, void *tag) 4025 { 4026 arc_state_t *state = hdr->b_l1hdr.b_state; 4027 arc_buf_contents_t type = arc_buf_type(hdr); 4028 4029 /* protected by hash lock, if in the hash table */ 4030 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 4031 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4032 ASSERT(state != arc_anon && state != arc_l2c_only); 4033 4034 (void) refcount_remove_many(&state->arcs_esize[type], 4035 size, tag); 4036 } 4037 (void) refcount_remove_many(&state->arcs_size, size, tag); 4038 4039 VERIFY3U(hdr->b_type, ==, type); 4040 if (type == ARC_BUFC_METADATA) { 4041 zio_buf_free(data, size); 4042 arc_space_return(size, ARC_SPACE_META); 4043 } else { 4044 ASSERT(type == ARC_BUFC_DATA); 4045 zio_data_buf_free(data, size); 4046 arc_space_return(size, ARC_SPACE_DATA); 4047 } 4048 } 4049 4050 /* 4051 * This routine is called whenever a buffer is accessed. 4052 * NOTE: the hash lock is dropped in this function. 4053 */ 4054 static void 4055 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 4056 { 4057 clock_t now; 4058 4059 ASSERT(MUTEX_HELD(hash_lock)); 4060 ASSERT(HDR_HAS_L1HDR(hdr)); 4061 4062 if (hdr->b_l1hdr.b_state == arc_anon) { 4063 /* 4064 * This buffer is not in the cache, and does not 4065 * appear in our "ghost" list. Add the new buffer 4066 * to the MRU state. 4067 */ 4068 4069 ASSERT0(hdr->b_l1hdr.b_arc_access); 4070 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4071 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 4072 arc_change_state(arc_mru, hdr, hash_lock); 4073 4074 } else if (hdr->b_l1hdr.b_state == arc_mru) { 4075 now = ddi_get_lbolt(); 4076 4077 /* 4078 * If this buffer is here because of a prefetch, then either: 4079 * - clear the flag if this is a "referencing" read 4080 * (any subsequent access will bump this into the MFU state). 4081 * or 4082 * - move the buffer to the head of the list if this is 4083 * another prefetch (to make it less likely to be evicted). 4084 */ 4085 if (HDR_PREFETCH(hdr)) { 4086 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 4087 /* link protected by hash lock */ 4088 ASSERT(multilist_link_active( 4089 &hdr->b_l1hdr.b_arc_node)); 4090 } else { 4091 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 4092 ARCSTAT_BUMP(arcstat_mru_hits); 4093 } 4094 hdr->b_l1hdr.b_arc_access = now; 4095 return; 4096 } 4097 4098 /* 4099 * This buffer has been "accessed" only once so far, 4100 * but it is still in the cache. Move it to the MFU 4101 * state. 4102 */ 4103 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) { 4104 /* 4105 * More than 125ms have passed since we 4106 * instantiated this buffer. Move it to the 4107 * most frequently used state. 4108 */ 4109 hdr->b_l1hdr.b_arc_access = now; 4110 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4111 arc_change_state(arc_mfu, hdr, hash_lock); 4112 } 4113 ARCSTAT_BUMP(arcstat_mru_hits); 4114 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 4115 arc_state_t *new_state; 4116 /* 4117 * This buffer has been "accessed" recently, but 4118 * was evicted from the cache. Move it to the 4119 * MFU state. 4120 */ 4121 4122 if (HDR_PREFETCH(hdr)) { 4123 new_state = arc_mru; 4124 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) 4125 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 4126 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 4127 } else { 4128 new_state = arc_mfu; 4129 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4130 } 4131 4132 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4133 arc_change_state(new_state, hdr, hash_lock); 4134 4135 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 4136 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 4137 /* 4138 * This buffer has been accessed more than once and is 4139 * still in the cache. Keep it in the MFU state. 4140 * 4141 * NOTE: an add_reference() that occurred when we did 4142 * the arc_read() will have kicked this off the list. 4143 * If it was a prefetch, we will explicitly move it to 4144 * the head of the list now. 4145 */ 4146 if ((HDR_PREFETCH(hdr)) != 0) { 4147 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4148 /* link protected by hash_lock */ 4149 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 4150 } 4151 ARCSTAT_BUMP(arcstat_mfu_hits); 4152 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4153 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 4154 arc_state_t *new_state = arc_mfu; 4155 /* 4156 * This buffer has been accessed more than once but has 4157 * been evicted from the cache. Move it back to the 4158 * MFU state. 4159 */ 4160 4161 if (HDR_PREFETCH(hdr)) { 4162 /* 4163 * This is a prefetch access... 4164 * move this block back to the MRU state. 4165 */ 4166 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 4167 new_state = arc_mru; 4168 } 4169 4170 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4171 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4172 arc_change_state(new_state, hdr, hash_lock); 4173 4174 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 4175 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 4176 /* 4177 * This buffer is on the 2nd Level ARC. 4178 */ 4179 4180 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4181 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4182 arc_change_state(arc_mfu, hdr, hash_lock); 4183 } else { 4184 ASSERT(!"invalid arc state"); 4185 } 4186 } 4187 4188 /* a generic arc_done_func_t which you can use */ 4189 /* ARGSUSED */ 4190 void 4191 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 4192 { 4193 if (zio == NULL || zio->io_error == 0) 4194 bcopy(buf->b_data, arg, HDR_GET_LSIZE(buf->b_hdr)); 4195 arc_buf_destroy(buf, arg); 4196 } 4197 4198 /* a generic arc_done_func_t */ 4199 void 4200 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 4201 { 4202 arc_buf_t **bufp = arg; 4203 if (zio && zio->io_error) { 4204 arc_buf_destroy(buf, arg); 4205 *bufp = NULL; 4206 } else { 4207 *bufp = buf; 4208 ASSERT(buf->b_data); 4209 } 4210 } 4211 4212 static void 4213 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 4214 { 4215 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 4216 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 4217 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 4218 } else { 4219 if (HDR_COMPRESSION_ENABLED(hdr)) { 4220 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, 4221 BP_GET_COMPRESS(bp)); 4222 } 4223 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 4224 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 4225 } 4226 } 4227 4228 static void 4229 arc_read_done(zio_t *zio) 4230 { 4231 arc_buf_hdr_t *hdr = zio->io_private; 4232 arc_buf_t *abuf = NULL; /* buffer we're assigning to callback */ 4233 kmutex_t *hash_lock = NULL; 4234 arc_callback_t *callback_list, *acb; 4235 int freeable = B_FALSE; 4236 4237 /* 4238 * The hdr was inserted into hash-table and removed from lists 4239 * prior to starting I/O. We should find this header, since 4240 * it's in the hash table, and it should be legit since it's 4241 * not possible to evict it during the I/O. The only possible 4242 * reason for it not to be found is if we were freed during the 4243 * read. 4244 */ 4245 if (HDR_IN_HASH_TABLE(hdr)) { 4246 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 4247 ASSERT3U(hdr->b_dva.dva_word[0], ==, 4248 BP_IDENTITY(zio->io_bp)->dva_word[0]); 4249 ASSERT3U(hdr->b_dva.dva_word[1], ==, 4250 BP_IDENTITY(zio->io_bp)->dva_word[1]); 4251 4252 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 4253 &hash_lock); 4254 4255 ASSERT((found == hdr && 4256 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 4257 (found == hdr && HDR_L2_READING(hdr))); 4258 ASSERT3P(hash_lock, !=, NULL); 4259 } 4260 4261 if (zio->io_error == 0) { 4262 /* byteswap if necessary */ 4263 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 4264 if (BP_GET_LEVEL(zio->io_bp) > 0) { 4265 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 4266 } else { 4267 hdr->b_l1hdr.b_byteswap = 4268 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 4269 } 4270 } else { 4271 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 4272 } 4273 } 4274 4275 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 4276 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 4277 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 4278 4279 callback_list = hdr->b_l1hdr.b_acb; 4280 ASSERT3P(callback_list, !=, NULL); 4281 4282 if (hash_lock && zio->io_error == 0 && 4283 hdr->b_l1hdr.b_state == arc_anon) { 4284 /* 4285 * Only call arc_access on anonymous buffers. This is because 4286 * if we've issued an I/O for an evicted buffer, we've already 4287 * called arc_access (to prevent any simultaneous readers from 4288 * getting confused). 4289 */ 4290 arc_access(hdr, hash_lock); 4291 } 4292 4293 /* create copies of the data buffer for the callers */ 4294 for (acb = callback_list; acb; acb = acb->acb_next) { 4295 if (acb->acb_done != NULL) { 4296 /* 4297 * If we're here, then this must be a demand read 4298 * since prefetch requests don't have callbacks. 4299 * If a read request has a callback (i.e. acb_done is 4300 * not NULL), then we decompress the data for the 4301 * first request and clone the rest. This avoids 4302 * having to waste cpu resources decompressing data 4303 * that nobody is explicitly waiting to read. 4304 */ 4305 if (abuf == NULL) { 4306 acb->acb_buf = arc_buf_alloc_impl(hdr, 4307 acb->acb_private); 4308 if (zio->io_error == 0) { 4309 zio->io_error = 4310 arc_decompress(acb->acb_buf); 4311 } 4312 abuf = acb->acb_buf; 4313 } else { 4314 add_reference(hdr, acb->acb_private); 4315 acb->acb_buf = arc_buf_clone(abuf); 4316 } 4317 } 4318 } 4319 hdr->b_l1hdr.b_acb = NULL; 4320 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 4321 if (abuf == NULL) { 4322 /* 4323 * This buffer didn't have a callback so it must 4324 * be a prefetch. 4325 */ 4326 ASSERT(HDR_PREFETCH(hdr)); 4327 ASSERT0(hdr->b_l1hdr.b_bufcnt); 4328 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 4329 } 4330 4331 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 4332 callback_list != NULL); 4333 4334 if (zio->io_error == 0) { 4335 arc_hdr_verify(hdr, zio->io_bp); 4336 } else { 4337 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 4338 if (hdr->b_l1hdr.b_state != arc_anon) 4339 arc_change_state(arc_anon, hdr, hash_lock); 4340 if (HDR_IN_HASH_TABLE(hdr)) 4341 buf_hash_remove(hdr); 4342 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 4343 } 4344 4345 /* 4346 * Broadcast before we drop the hash_lock to avoid the possibility 4347 * that the hdr (and hence the cv) might be freed before we get to 4348 * the cv_broadcast(). 4349 */ 4350 cv_broadcast(&hdr->b_l1hdr.b_cv); 4351 4352 if (hash_lock != NULL) { 4353 mutex_exit(hash_lock); 4354 } else { 4355 /* 4356 * This block was freed while we waited for the read to 4357 * complete. It has been removed from the hash table and 4358 * moved to the anonymous state (so that it won't show up 4359 * in the cache). 4360 */ 4361 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 4362 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 4363 } 4364 4365 /* execute each callback and free its structure */ 4366 while ((acb = callback_list) != NULL) { 4367 if (acb->acb_done) 4368 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 4369 4370 if (acb->acb_zio_dummy != NULL) { 4371 acb->acb_zio_dummy->io_error = zio->io_error; 4372 zio_nowait(acb->acb_zio_dummy); 4373 } 4374 4375 callback_list = acb->acb_next; 4376 kmem_free(acb, sizeof (arc_callback_t)); 4377 } 4378 4379 if (freeable) 4380 arc_hdr_destroy(hdr); 4381 } 4382 4383 /* 4384 * "Read" the block at the specified DVA (in bp) via the 4385 * cache. If the block is found in the cache, invoke the provided 4386 * callback immediately and return. Note that the `zio' parameter 4387 * in the callback will be NULL in this case, since no IO was 4388 * required. If the block is not in the cache pass the read request 4389 * on to the spa with a substitute callback function, so that the 4390 * requested block will be added to the cache. 4391 * 4392 * If a read request arrives for a block that has a read in-progress, 4393 * either wait for the in-progress read to complete (and return the 4394 * results); or, if this is a read with a "done" func, add a record 4395 * to the read to invoke the "done" func when the read completes, 4396 * and return; or just return. 4397 * 4398 * arc_read_done() will invoke all the requested "done" functions 4399 * for readers of this block. 4400 */ 4401 int 4402 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 4403 void *private, zio_priority_t priority, int zio_flags, 4404 arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 4405 { 4406 arc_buf_hdr_t *hdr = NULL; 4407 kmutex_t *hash_lock = NULL; 4408 zio_t *rzio; 4409 uint64_t guid = spa_load_guid(spa); 4410 4411 ASSERT(!BP_IS_EMBEDDED(bp) || 4412 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 4413 4414 top: 4415 if (!BP_IS_EMBEDDED(bp)) { 4416 /* 4417 * Embedded BP's have no DVA and require no I/O to "read". 4418 * Create an anonymous arc buf to back it. 4419 */ 4420 hdr = buf_hash_find(guid, bp, &hash_lock); 4421 } 4422 4423 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pdata != NULL) { 4424 arc_buf_t *buf = NULL; 4425 *arc_flags |= ARC_FLAG_CACHED; 4426 4427 if (HDR_IO_IN_PROGRESS(hdr)) { 4428 4429 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 4430 priority == ZIO_PRIORITY_SYNC_READ) { 4431 /* 4432 * This sync read must wait for an 4433 * in-progress async read (e.g. a predictive 4434 * prefetch). Async reads are queued 4435 * separately at the vdev_queue layer, so 4436 * this is a form of priority inversion. 4437 * Ideally, we would "inherit" the demand 4438 * i/o's priority by moving the i/o from 4439 * the async queue to the synchronous queue, 4440 * but there is currently no mechanism to do 4441 * so. Track this so that we can evaluate 4442 * the magnitude of this potential performance 4443 * problem. 4444 * 4445 * Note that if the prefetch i/o is already 4446 * active (has been issued to the device), 4447 * the prefetch improved performance, because 4448 * we issued it sooner than we would have 4449 * without the prefetch. 4450 */ 4451 DTRACE_PROBE1(arc__sync__wait__for__async, 4452 arc_buf_hdr_t *, hdr); 4453 ARCSTAT_BUMP(arcstat_sync_wait_for_async); 4454 } 4455 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 4456 arc_hdr_clear_flags(hdr, 4457 ARC_FLAG_PREDICTIVE_PREFETCH); 4458 } 4459 4460 if (*arc_flags & ARC_FLAG_WAIT) { 4461 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 4462 mutex_exit(hash_lock); 4463 goto top; 4464 } 4465 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 4466 4467 if (done) { 4468 arc_callback_t *acb = NULL; 4469 4470 acb = kmem_zalloc(sizeof (arc_callback_t), 4471 KM_SLEEP); 4472 acb->acb_done = done; 4473 acb->acb_private = private; 4474 if (pio != NULL) 4475 acb->acb_zio_dummy = zio_null(pio, 4476 spa, NULL, NULL, NULL, zio_flags); 4477 4478 ASSERT3P(acb->acb_done, !=, NULL); 4479 acb->acb_next = hdr->b_l1hdr.b_acb; 4480 hdr->b_l1hdr.b_acb = acb; 4481 mutex_exit(hash_lock); 4482 return (0); 4483 } 4484 mutex_exit(hash_lock); 4485 return (0); 4486 } 4487 4488 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 4489 hdr->b_l1hdr.b_state == arc_mfu); 4490 4491 if (done) { 4492 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 4493 /* 4494 * This is a demand read which does not have to 4495 * wait for i/o because we did a predictive 4496 * prefetch i/o for it, which has completed. 4497 */ 4498 DTRACE_PROBE1( 4499 arc__demand__hit__predictive__prefetch, 4500 arc_buf_hdr_t *, hdr); 4501 ARCSTAT_BUMP( 4502 arcstat_demand_hit_predictive_prefetch); 4503 arc_hdr_clear_flags(hdr, 4504 ARC_FLAG_PREDICTIVE_PREFETCH); 4505 } 4506 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp)); 4507 4508 /* 4509 * If this block is already in use, create a new 4510 * copy of the data so that we will be guaranteed 4511 * that arc_release() will always succeed. 4512 */ 4513 buf = hdr->b_l1hdr.b_buf; 4514 if (buf == NULL) { 4515 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 4516 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 4517 buf = arc_buf_alloc_impl(hdr, private); 4518 VERIFY0(arc_decompress(buf)); 4519 } else { 4520 add_reference(hdr, private); 4521 buf = arc_buf_clone(buf); 4522 } 4523 ASSERT3P(buf->b_data, !=, NULL); 4524 4525 } else if (*arc_flags & ARC_FLAG_PREFETCH && 4526 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 4527 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 4528 } 4529 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 4530 arc_access(hdr, hash_lock); 4531 if (*arc_flags & ARC_FLAG_L2CACHE) 4532 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 4533 mutex_exit(hash_lock); 4534 ARCSTAT_BUMP(arcstat_hits); 4535 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 4536 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 4537 data, metadata, hits); 4538 4539 if (done) 4540 done(NULL, buf, private); 4541 } else { 4542 uint64_t lsize = BP_GET_LSIZE(bp); 4543 uint64_t psize = BP_GET_PSIZE(bp); 4544 arc_callback_t *acb; 4545 vdev_t *vd = NULL; 4546 uint64_t addr = 0; 4547 boolean_t devw = B_FALSE; 4548 uint64_t size; 4549 4550 if (hdr == NULL) { 4551 /* this block is not in the cache */ 4552 arc_buf_hdr_t *exists = NULL; 4553 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 4554 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 4555 BP_GET_COMPRESS(bp), type); 4556 4557 if (!BP_IS_EMBEDDED(bp)) { 4558 hdr->b_dva = *BP_IDENTITY(bp); 4559 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 4560 exists = buf_hash_insert(hdr, &hash_lock); 4561 } 4562 if (exists != NULL) { 4563 /* somebody beat us to the hash insert */ 4564 mutex_exit(hash_lock); 4565 buf_discard_identity(hdr); 4566 arc_hdr_destroy(hdr); 4567 goto top; /* restart the IO request */ 4568 } 4569 } else { 4570 /* 4571 * This block is in the ghost cache. If it was L2-only 4572 * (and thus didn't have an L1 hdr), we realloc the 4573 * header to add an L1 hdr. 4574 */ 4575 if (!HDR_HAS_L1HDR(hdr)) { 4576 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 4577 hdr_full_cache); 4578 } 4579 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 4580 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state)); 4581 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 4582 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4583 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 4584 4585 /* 4586 * This is a delicate dance that we play here. 4587 * This hdr is in the ghost list so we access it 4588 * to move it out of the ghost list before we 4589 * initiate the read. If it's a prefetch then 4590 * it won't have a callback so we'll remove the 4591 * reference that arc_buf_alloc_impl() created. We 4592 * do this after we've called arc_access() to 4593 * avoid hitting an assert in remove_reference(). 4594 */ 4595 arc_access(hdr, hash_lock); 4596 arc_hdr_alloc_pdata(hdr); 4597 } 4598 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 4599 size = arc_hdr_size(hdr); 4600 4601 /* 4602 * If compression is enabled on the hdr, then will do 4603 * RAW I/O and will store the compressed data in the hdr's 4604 * data block. Otherwise, the hdr's data block will contain 4605 * the uncompressed data. 4606 */ 4607 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) { 4608 zio_flags |= ZIO_FLAG_RAW; 4609 } 4610 4611 if (*arc_flags & ARC_FLAG_PREFETCH) 4612 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 4613 if (*arc_flags & ARC_FLAG_L2CACHE) 4614 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 4615 if (BP_GET_LEVEL(bp) > 0) 4616 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 4617 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 4618 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 4619 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 4620 4621 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 4622 acb->acb_done = done; 4623 acb->acb_private = private; 4624 4625 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 4626 hdr->b_l1hdr.b_acb = acb; 4627 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 4628 4629 if (HDR_HAS_L2HDR(hdr) && 4630 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 4631 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 4632 addr = hdr->b_l2hdr.b_daddr; 4633 /* 4634 * Lock out device removal. 4635 */ 4636 if (vdev_is_dead(vd) || 4637 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 4638 vd = NULL; 4639 } 4640 4641 if (priority == ZIO_PRIORITY_ASYNC_READ) 4642 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 4643 else 4644 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 4645 4646 if (hash_lock != NULL) 4647 mutex_exit(hash_lock); 4648 4649 /* 4650 * At this point, we have a level 1 cache miss. Try again in 4651 * L2ARC if possible. 4652 */ 4653 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 4654 4655 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 4656 uint64_t, lsize, zbookmark_phys_t *, zb); 4657 ARCSTAT_BUMP(arcstat_misses); 4658 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 4659 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 4660 data, metadata, misses); 4661 4662 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 4663 /* 4664 * Read from the L2ARC if the following are true: 4665 * 1. The L2ARC vdev was previously cached. 4666 * 2. This buffer still has L2ARC metadata. 4667 * 3. This buffer isn't currently writing to the L2ARC. 4668 * 4. The L2ARC entry wasn't evicted, which may 4669 * also have invalidated the vdev. 4670 * 5. This isn't prefetch and l2arc_noprefetch is set. 4671 */ 4672 if (HDR_HAS_L2HDR(hdr) && 4673 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 4674 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 4675 l2arc_read_callback_t *cb; 4676 4677 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 4678 ARCSTAT_BUMP(arcstat_l2_hits); 4679 4680 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 4681 KM_SLEEP); 4682 cb->l2rcb_hdr = hdr; 4683 cb->l2rcb_bp = *bp; 4684 cb->l2rcb_zb = *zb; 4685 cb->l2rcb_flags = zio_flags; 4686 4687 ASSERT(addr >= VDEV_LABEL_START_SIZE && 4688 addr + lsize < vd->vdev_psize - 4689 VDEV_LABEL_END_SIZE); 4690 4691 /* 4692 * l2arc read. The SCL_L2ARC lock will be 4693 * released by l2arc_read_done(). 4694 * Issue a null zio if the underlying buffer 4695 * was squashed to zero size by compression. 4696 */ 4697 ASSERT3U(HDR_GET_COMPRESS(hdr), !=, 4698 ZIO_COMPRESS_EMPTY); 4699 rzio = zio_read_phys(pio, vd, addr, 4700 size, hdr->b_l1hdr.b_pdata, 4701 ZIO_CHECKSUM_OFF, 4702 l2arc_read_done, cb, priority, 4703 zio_flags | ZIO_FLAG_DONT_CACHE | 4704 ZIO_FLAG_CANFAIL | 4705 ZIO_FLAG_DONT_PROPAGATE | 4706 ZIO_FLAG_DONT_RETRY, B_FALSE); 4707 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 4708 zio_t *, rzio); 4709 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 4710 4711 if (*arc_flags & ARC_FLAG_NOWAIT) { 4712 zio_nowait(rzio); 4713 return (0); 4714 } 4715 4716 ASSERT(*arc_flags & ARC_FLAG_WAIT); 4717 if (zio_wait(rzio) == 0) 4718 return (0); 4719 4720 /* l2arc read error; goto zio_read() */ 4721 } else { 4722 DTRACE_PROBE1(l2arc__miss, 4723 arc_buf_hdr_t *, hdr); 4724 ARCSTAT_BUMP(arcstat_l2_misses); 4725 if (HDR_L2_WRITING(hdr)) 4726 ARCSTAT_BUMP(arcstat_l2_rw_clash); 4727 spa_config_exit(spa, SCL_L2ARC, vd); 4728 } 4729 } else { 4730 if (vd != NULL) 4731 spa_config_exit(spa, SCL_L2ARC, vd); 4732 if (l2arc_ndev != 0) { 4733 DTRACE_PROBE1(l2arc__miss, 4734 arc_buf_hdr_t *, hdr); 4735 ARCSTAT_BUMP(arcstat_l2_misses); 4736 } 4737 } 4738 4739 rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pdata, size, 4740 arc_read_done, hdr, priority, zio_flags, zb); 4741 4742 if (*arc_flags & ARC_FLAG_WAIT) 4743 return (zio_wait(rzio)); 4744 4745 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 4746 zio_nowait(rzio); 4747 } 4748 return (0); 4749 } 4750 4751 /* 4752 * Notify the arc that a block was freed, and thus will never be used again. 4753 */ 4754 void 4755 arc_freed(spa_t *spa, const blkptr_t *bp) 4756 { 4757 arc_buf_hdr_t *hdr; 4758 kmutex_t *hash_lock; 4759 uint64_t guid = spa_load_guid(spa); 4760 4761 ASSERT(!BP_IS_EMBEDDED(bp)); 4762 4763 hdr = buf_hash_find(guid, bp, &hash_lock); 4764 if (hdr == NULL) 4765 return; 4766 4767 /* 4768 * We might be trying to free a block that is still doing I/O 4769 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 4770 * dmu_sync-ed block). If this block is being prefetched, then it 4771 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 4772 * until the I/O completes. A block may also have a reference if it is 4773 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 4774 * have written the new block to its final resting place on disk but 4775 * without the dedup flag set. This would have left the hdr in the MRU 4776 * state and discoverable. When the txg finally syncs it detects that 4777 * the block was overridden in open context and issues an override I/O. 4778 * Since this is a dedup block, the override I/O will determine if the 4779 * block is already in the DDT. If so, then it will replace the io_bp 4780 * with the bp from the DDT and allow the I/O to finish. When the I/O 4781 * reaches the done callback, dbuf_write_override_done, it will 4782 * check to see if the io_bp and io_bp_override are identical. 4783 * If they are not, then it indicates that the bp was replaced with 4784 * the bp in the DDT and the override bp is freed. This allows 4785 * us to arrive here with a reference on a block that is being 4786 * freed. So if we have an I/O in progress, or a reference to 4787 * this hdr, then we don't destroy the hdr. 4788 */ 4789 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 4790 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 4791 arc_change_state(arc_anon, hdr, hash_lock); 4792 arc_hdr_destroy(hdr); 4793 mutex_exit(hash_lock); 4794 } else { 4795 mutex_exit(hash_lock); 4796 } 4797 4798 } 4799 4800 /* 4801 * Release this buffer from the cache, making it an anonymous buffer. This 4802 * must be done after a read and prior to modifying the buffer contents. 4803 * If the buffer has more than one reference, we must make 4804 * a new hdr for the buffer. 4805 */ 4806 void 4807 arc_release(arc_buf_t *buf, void *tag) 4808 { 4809 arc_buf_hdr_t *hdr = buf->b_hdr; 4810 4811 /* 4812 * It would be nice to assert that if it's DMU metadata (level > 4813 * 0 || it's the dnode file), then it must be syncing context. 4814 * But we don't know that information at this level. 4815 */ 4816 4817 mutex_enter(&buf->b_evict_lock); 4818 4819 ASSERT(HDR_HAS_L1HDR(hdr)); 4820 4821 /* 4822 * We don't grab the hash lock prior to this check, because if 4823 * the buffer's header is in the arc_anon state, it won't be 4824 * linked into the hash table. 4825 */ 4826 if (hdr->b_l1hdr.b_state == arc_anon) { 4827 mutex_exit(&buf->b_evict_lock); 4828 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 4829 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 4830 ASSERT(!HDR_HAS_L2HDR(hdr)); 4831 ASSERT(HDR_EMPTY(hdr)); 4832 4833 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 4834 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 4835 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 4836 4837 hdr->b_l1hdr.b_arc_access = 0; 4838 4839 /* 4840 * If the buf is being overridden then it may already 4841 * have a hdr that is not empty. 4842 */ 4843 buf_discard_identity(hdr); 4844 arc_buf_thaw(buf); 4845 4846 return; 4847 } 4848 4849 kmutex_t *hash_lock = HDR_LOCK(hdr); 4850 mutex_enter(hash_lock); 4851 4852 /* 4853 * This assignment is only valid as long as the hash_lock is 4854 * held, we must be careful not to reference state or the 4855 * b_state field after dropping the lock. 4856 */ 4857 arc_state_t *state = hdr->b_l1hdr.b_state; 4858 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 4859 ASSERT3P(state, !=, arc_anon); 4860 4861 /* this buffer is not on any list */ 4862 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0); 4863 4864 if (HDR_HAS_L2HDR(hdr)) { 4865 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 4866 4867 /* 4868 * We have to recheck this conditional again now that 4869 * we're holding the l2ad_mtx to prevent a race with 4870 * another thread which might be concurrently calling 4871 * l2arc_evict(). In that case, l2arc_evict() might have 4872 * destroyed the header's L2 portion as we were waiting 4873 * to acquire the l2ad_mtx. 4874 */ 4875 if (HDR_HAS_L2HDR(hdr)) 4876 arc_hdr_l2hdr_destroy(hdr); 4877 4878 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 4879 } 4880 4881 /* 4882 * Do we have more than one buf? 4883 */ 4884 if (hdr->b_l1hdr.b_bufcnt > 1) { 4885 arc_buf_hdr_t *nhdr; 4886 arc_buf_t **bufp; 4887 uint64_t spa = hdr->b_spa; 4888 uint64_t psize = HDR_GET_PSIZE(hdr); 4889 uint64_t lsize = HDR_GET_LSIZE(hdr); 4890 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 4891 arc_buf_contents_t type = arc_buf_type(hdr); 4892 VERIFY3U(hdr->b_type, ==, type); 4893 4894 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 4895 (void) remove_reference(hdr, hash_lock, tag); 4896 4897 if (arc_buf_is_shared(buf)) { 4898 ASSERT(HDR_SHARED_DATA(hdr)); 4899 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 4900 ASSERT(ARC_BUF_LAST(buf)); 4901 } 4902 4903 /* 4904 * Pull the data off of this hdr and attach it to 4905 * a new anonymous hdr. Also find the last buffer 4906 * in the hdr's buffer list. 4907 */ 4908 arc_buf_t *lastbuf = NULL; 4909 bufp = &hdr->b_l1hdr.b_buf; 4910 while (*bufp != NULL) { 4911 if (*bufp == buf) { 4912 *bufp = buf->b_next; 4913 } 4914 4915 /* 4916 * If we've removed a buffer in the middle of 4917 * the list then update the lastbuf and update 4918 * bufp. 4919 */ 4920 if (*bufp != NULL) { 4921 lastbuf = *bufp; 4922 bufp = &(*bufp)->b_next; 4923 } 4924 } 4925 buf->b_next = NULL; 4926 ASSERT3P(lastbuf, !=, buf); 4927 ASSERT3P(lastbuf, !=, NULL); 4928 4929 /* 4930 * If the current arc_buf_t and the hdr are sharing their data 4931 * buffer, then we must stop sharing that block, transfer 4932 * ownership and setup sharing with a new arc_buf_t at the end 4933 * of the hdr's b_buf list. 4934 */ 4935 if (arc_buf_is_shared(buf)) { 4936 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 4937 ASSERT(ARC_BUF_LAST(lastbuf)); 4938 VERIFY(!arc_buf_is_shared(lastbuf)); 4939 4940 /* 4941 * First, sever the block sharing relationship between 4942 * buf and the arc_buf_hdr_t. Then, setup a new 4943 * block sharing relationship with the last buffer 4944 * on the arc_buf_t list. 4945 */ 4946 arc_unshare_buf(hdr, buf); 4947 arc_share_buf(hdr, lastbuf); 4948 VERIFY3P(lastbuf->b_data, !=, NULL); 4949 } else if (HDR_SHARED_DATA(hdr)) { 4950 ASSERT(arc_buf_is_shared(lastbuf)); 4951 } 4952 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 4953 ASSERT3P(state, !=, arc_l2c_only); 4954 4955 (void) refcount_remove_many(&state->arcs_size, 4956 HDR_GET_LSIZE(hdr), buf); 4957 4958 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 4959 ASSERT3P(state, !=, arc_l2c_only); 4960 (void) refcount_remove_many(&state->arcs_esize[type], 4961 HDR_GET_LSIZE(hdr), buf); 4962 } 4963 4964 hdr->b_l1hdr.b_bufcnt -= 1; 4965 arc_cksum_verify(buf); 4966 arc_buf_unwatch(buf); 4967 4968 mutex_exit(hash_lock); 4969 4970 /* 4971 * Allocate a new hdr. The new hdr will contain a b_pdata 4972 * buffer which will be freed in arc_write(). 4973 */ 4974 nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type); 4975 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 4976 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 4977 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt)); 4978 VERIFY3U(nhdr->b_type, ==, type); 4979 ASSERT(!HDR_SHARED_DATA(nhdr)); 4980 4981 nhdr->b_l1hdr.b_buf = buf; 4982 nhdr->b_l1hdr.b_bufcnt = 1; 4983 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 4984 buf->b_hdr = nhdr; 4985 4986 mutex_exit(&buf->b_evict_lock); 4987 (void) refcount_add_many(&arc_anon->arcs_size, 4988 HDR_GET_LSIZE(nhdr), buf); 4989 } else { 4990 mutex_exit(&buf->b_evict_lock); 4991 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 4992 /* protected by hash lock, or hdr is on arc_anon */ 4993 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 4994 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 4995 arc_change_state(arc_anon, hdr, hash_lock); 4996 hdr->b_l1hdr.b_arc_access = 0; 4997 mutex_exit(hash_lock); 4998 4999 buf_discard_identity(hdr); 5000 arc_buf_thaw(buf); 5001 } 5002 } 5003 5004 int 5005 arc_released(arc_buf_t *buf) 5006 { 5007 int released; 5008 5009 mutex_enter(&buf->b_evict_lock); 5010 released = (buf->b_data != NULL && 5011 buf->b_hdr->b_l1hdr.b_state == arc_anon); 5012 mutex_exit(&buf->b_evict_lock); 5013 return (released); 5014 } 5015 5016 #ifdef ZFS_DEBUG 5017 int 5018 arc_referenced(arc_buf_t *buf) 5019 { 5020 int referenced; 5021 5022 mutex_enter(&buf->b_evict_lock); 5023 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 5024 mutex_exit(&buf->b_evict_lock); 5025 return (referenced); 5026 } 5027 #endif 5028 5029 static void 5030 arc_write_ready(zio_t *zio) 5031 { 5032 arc_write_callback_t *callback = zio->io_private; 5033 arc_buf_t *buf = callback->awcb_buf; 5034 arc_buf_hdr_t *hdr = buf->b_hdr; 5035 uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp); 5036 5037 ASSERT(HDR_HAS_L1HDR(hdr)); 5038 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 5039 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 5040 5041 /* 5042 * If we're reexecuting this zio because the pool suspended, then 5043 * cleanup any state that was previously set the first time the 5044 * callback as invoked. 5045 */ 5046 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 5047 arc_cksum_free(hdr); 5048 arc_buf_unwatch(buf); 5049 if (hdr->b_l1hdr.b_pdata != NULL) { 5050 if (arc_buf_is_shared(buf)) { 5051 ASSERT(HDR_SHARED_DATA(hdr)); 5052 5053 arc_unshare_buf(hdr, buf); 5054 } else { 5055 arc_hdr_free_pdata(hdr); 5056 } 5057 } 5058 } 5059 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 5060 ASSERT(!HDR_SHARED_DATA(hdr)); 5061 ASSERT(!arc_buf_is_shared(buf)); 5062 5063 callback->awcb_ready(zio, buf, callback->awcb_private); 5064 5065 if (HDR_IO_IN_PROGRESS(hdr)) 5066 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 5067 5068 arc_cksum_compute(buf); 5069 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5070 5071 enum zio_compress compress; 5072 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 5073 compress = ZIO_COMPRESS_OFF; 5074 } else { 5075 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp)); 5076 compress = BP_GET_COMPRESS(zio->io_bp); 5077 } 5078 HDR_SET_PSIZE(hdr, psize); 5079 arc_hdr_set_compress(hdr, compress); 5080 5081 /* 5082 * If the hdr is compressed, then copy the compressed 5083 * zio contents into arc_buf_hdr_t. Otherwise, copy the original 5084 * data buf into the hdr. Ideally, we would like to always copy the 5085 * io_data into b_pdata but the user may have disabled compressed 5086 * arc thus the on-disk block may or may not match what we maintain 5087 * in the hdr's b_pdata field. 5088 */ 5089 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) { 5090 ASSERT(BP_GET_COMPRESS(zio->io_bp) != ZIO_COMPRESS_OFF); 5091 ASSERT3U(psize, >, 0); 5092 arc_hdr_alloc_pdata(hdr); 5093 bcopy(zio->io_data, hdr->b_l1hdr.b_pdata, psize); 5094 } else { 5095 ASSERT3P(buf->b_data, ==, zio->io_orig_data); 5096 ASSERT3U(zio->io_orig_size, ==, HDR_GET_LSIZE(hdr)); 5097 ASSERT3U(hdr->b_l1hdr.b_byteswap, ==, DMU_BSWAP_NUMFUNCS); 5098 ASSERT(!HDR_SHARED_DATA(hdr)); 5099 ASSERT(!arc_buf_is_shared(buf)); 5100 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 5101 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 5102 5103 /* 5104 * This hdr is not compressed so we're able to share 5105 * the arc_buf_t data buffer with the hdr. 5106 */ 5107 arc_share_buf(hdr, buf); 5108 VERIFY0(bcmp(zio->io_orig_data, hdr->b_l1hdr.b_pdata, 5109 HDR_GET_LSIZE(hdr))); 5110 } 5111 arc_hdr_verify(hdr, zio->io_bp); 5112 } 5113 5114 static void 5115 arc_write_children_ready(zio_t *zio) 5116 { 5117 arc_write_callback_t *callback = zio->io_private; 5118 arc_buf_t *buf = callback->awcb_buf; 5119 5120 callback->awcb_children_ready(zio, buf, callback->awcb_private); 5121 } 5122 5123 /* 5124 * The SPA calls this callback for each physical write that happens on behalf 5125 * of a logical write. See the comment in dbuf_write_physdone() for details. 5126 */ 5127 static void 5128 arc_write_physdone(zio_t *zio) 5129 { 5130 arc_write_callback_t *cb = zio->io_private; 5131 if (cb->awcb_physdone != NULL) 5132 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 5133 } 5134 5135 static void 5136 arc_write_done(zio_t *zio) 5137 { 5138 arc_write_callback_t *callback = zio->io_private; 5139 arc_buf_t *buf = callback->awcb_buf; 5140 arc_buf_hdr_t *hdr = buf->b_hdr; 5141 5142 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5143 5144 if (zio->io_error == 0) { 5145 arc_hdr_verify(hdr, zio->io_bp); 5146 5147 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 5148 buf_discard_identity(hdr); 5149 } else { 5150 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 5151 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 5152 } 5153 } else { 5154 ASSERT(HDR_EMPTY(hdr)); 5155 } 5156 5157 /* 5158 * If the block to be written was all-zero or compressed enough to be 5159 * embedded in the BP, no write was performed so there will be no 5160 * dva/birth/checksum. The buffer must therefore remain anonymous 5161 * (and uncached). 5162 */ 5163 if (!HDR_EMPTY(hdr)) { 5164 arc_buf_hdr_t *exists; 5165 kmutex_t *hash_lock; 5166 5167 ASSERT(zio->io_error == 0); 5168 5169 arc_cksum_verify(buf); 5170 5171 exists = buf_hash_insert(hdr, &hash_lock); 5172 if (exists != NULL) { 5173 /* 5174 * This can only happen if we overwrite for 5175 * sync-to-convergence, because we remove 5176 * buffers from the hash table when we arc_free(). 5177 */ 5178 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 5179 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 5180 panic("bad overwrite, hdr=%p exists=%p", 5181 (void *)hdr, (void *)exists); 5182 ASSERT(refcount_is_zero( 5183 &exists->b_l1hdr.b_refcnt)); 5184 arc_change_state(arc_anon, exists, hash_lock); 5185 mutex_exit(hash_lock); 5186 arc_hdr_destroy(exists); 5187 exists = buf_hash_insert(hdr, &hash_lock); 5188 ASSERT3P(exists, ==, NULL); 5189 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 5190 /* nopwrite */ 5191 ASSERT(zio->io_prop.zp_nopwrite); 5192 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 5193 panic("bad nopwrite, hdr=%p exists=%p", 5194 (void *)hdr, (void *)exists); 5195 } else { 5196 /* Dedup */ 5197 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 5198 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 5199 ASSERT(BP_GET_DEDUP(zio->io_bp)); 5200 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 5201 } 5202 } 5203 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5204 /* if it's not anon, we are doing a scrub */ 5205 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 5206 arc_access(hdr, hash_lock); 5207 mutex_exit(hash_lock); 5208 } else { 5209 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5210 } 5211 5212 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5213 callback->awcb_done(zio, buf, callback->awcb_private); 5214 5215 kmem_free(callback, sizeof (arc_write_callback_t)); 5216 } 5217 5218 zio_t * 5219 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 5220 boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready, 5221 arc_done_func_t *children_ready, arc_done_func_t *physdone, 5222 arc_done_func_t *done, void *private, zio_priority_t priority, 5223 int zio_flags, const zbookmark_phys_t *zb) 5224 { 5225 arc_buf_hdr_t *hdr = buf->b_hdr; 5226 arc_write_callback_t *callback; 5227 zio_t *zio; 5228 5229 ASSERT3P(ready, !=, NULL); 5230 ASSERT3P(done, !=, NULL); 5231 ASSERT(!HDR_IO_ERROR(hdr)); 5232 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5233 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5234 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 5235 if (l2arc) 5236 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5237 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 5238 callback->awcb_ready = ready; 5239 callback->awcb_children_ready = children_ready; 5240 callback->awcb_physdone = physdone; 5241 callback->awcb_done = done; 5242 callback->awcb_private = private; 5243 callback->awcb_buf = buf; 5244 5245 /* 5246 * The hdr's b_pdata is now stale, free it now. A new data block 5247 * will be allocated when the zio pipeline calls arc_write_ready(). 5248 */ 5249 if (hdr->b_l1hdr.b_pdata != NULL) { 5250 /* 5251 * If the buf is currently sharing the data block with 5252 * the hdr then we need to break that relationship here. 5253 * The hdr will remain with a NULL data pointer and the 5254 * buf will take sole ownership of the block. 5255 */ 5256 if (arc_buf_is_shared(buf)) { 5257 ASSERT(ARC_BUF_LAST(buf)); 5258 arc_unshare_buf(hdr, buf); 5259 } else { 5260 arc_hdr_free_pdata(hdr); 5261 } 5262 VERIFY3P(buf->b_data, !=, NULL); 5263 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 5264 } 5265 ASSERT(!arc_buf_is_shared(buf)); 5266 ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); 5267 5268 zio = zio_write(pio, spa, txg, bp, buf->b_data, HDR_GET_LSIZE(hdr), zp, 5269 arc_write_ready, 5270 (children_ready != NULL) ? arc_write_children_ready : NULL, 5271 arc_write_physdone, arc_write_done, callback, 5272 priority, zio_flags, zb); 5273 5274 return (zio); 5275 } 5276 5277 static int 5278 arc_memory_throttle(uint64_t reserve, uint64_t txg) 5279 { 5280 #ifdef _KERNEL 5281 uint64_t available_memory = ptob(freemem); 5282 static uint64_t page_load = 0; 5283 static uint64_t last_txg = 0; 5284 5285 #if defined(__i386) 5286 available_memory = 5287 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 5288 #endif 5289 5290 if (freemem > physmem * arc_lotsfree_percent / 100) 5291 return (0); 5292 5293 if (txg > last_txg) { 5294 last_txg = txg; 5295 page_load = 0; 5296 } 5297 /* 5298 * If we are in pageout, we know that memory is already tight, 5299 * the arc is already going to be evicting, so we just want to 5300 * continue to let page writes occur as quickly as possible. 5301 */ 5302 if (curproc == proc_pageout) { 5303 if (page_load > MAX(ptob(minfree), available_memory) / 4) 5304 return (SET_ERROR(ERESTART)); 5305 /* Note: reserve is inflated, so we deflate */ 5306 page_load += reserve / 8; 5307 return (0); 5308 } else if (page_load > 0 && arc_reclaim_needed()) { 5309 /* memory is low, delay before restarting */ 5310 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 5311 return (SET_ERROR(EAGAIN)); 5312 } 5313 page_load = 0; 5314 #endif 5315 return (0); 5316 } 5317 5318 void 5319 arc_tempreserve_clear(uint64_t reserve) 5320 { 5321 atomic_add_64(&arc_tempreserve, -reserve); 5322 ASSERT((int64_t)arc_tempreserve >= 0); 5323 } 5324 5325 int 5326 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 5327 { 5328 int error; 5329 uint64_t anon_size; 5330 5331 if (reserve > arc_c/4 && !arc_no_grow) 5332 arc_c = MIN(arc_c_max, reserve * 4); 5333 if (reserve > arc_c) 5334 return (SET_ERROR(ENOMEM)); 5335 5336 /* 5337 * Don't count loaned bufs as in flight dirty data to prevent long 5338 * network delays from blocking transactions that are ready to be 5339 * assigned to a txg. 5340 */ 5341 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) - 5342 arc_loaned_bytes), 0); 5343 5344 /* 5345 * Writes will, almost always, require additional memory allocations 5346 * in order to compress/encrypt/etc the data. We therefore need to 5347 * make sure that there is sufficient available memory for this. 5348 */ 5349 error = arc_memory_throttle(reserve, txg); 5350 if (error != 0) 5351 return (error); 5352 5353 /* 5354 * Throttle writes when the amount of dirty data in the cache 5355 * gets too large. We try to keep the cache less than half full 5356 * of dirty blocks so that our sync times don't grow too large. 5357 * Note: if two requests come in concurrently, we might let them 5358 * both succeed, when one of them should fail. Not a huge deal. 5359 */ 5360 5361 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 5362 anon_size > arc_c / 4) { 5363 uint64_t meta_esize = 5364 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 5365 uint64_t data_esize = 5366 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 5367 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 5368 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 5369 arc_tempreserve >> 10, meta_esize >> 10, 5370 data_esize >> 10, reserve >> 10, arc_c >> 10); 5371 return (SET_ERROR(ERESTART)); 5372 } 5373 atomic_add_64(&arc_tempreserve, reserve); 5374 return (0); 5375 } 5376 5377 static void 5378 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 5379 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 5380 { 5381 size->value.ui64 = refcount_count(&state->arcs_size); 5382 evict_data->value.ui64 = 5383 refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 5384 evict_metadata->value.ui64 = 5385 refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 5386 } 5387 5388 static int 5389 arc_kstat_update(kstat_t *ksp, int rw) 5390 { 5391 arc_stats_t *as = ksp->ks_data; 5392 5393 if (rw == KSTAT_WRITE) { 5394 return (EACCES); 5395 } else { 5396 arc_kstat_update_state(arc_anon, 5397 &as->arcstat_anon_size, 5398 &as->arcstat_anon_evictable_data, 5399 &as->arcstat_anon_evictable_metadata); 5400 arc_kstat_update_state(arc_mru, 5401 &as->arcstat_mru_size, 5402 &as->arcstat_mru_evictable_data, 5403 &as->arcstat_mru_evictable_metadata); 5404 arc_kstat_update_state(arc_mru_ghost, 5405 &as->arcstat_mru_ghost_size, 5406 &as->arcstat_mru_ghost_evictable_data, 5407 &as->arcstat_mru_ghost_evictable_metadata); 5408 arc_kstat_update_state(arc_mfu, 5409 &as->arcstat_mfu_size, 5410 &as->arcstat_mfu_evictable_data, 5411 &as->arcstat_mfu_evictable_metadata); 5412 arc_kstat_update_state(arc_mfu_ghost, 5413 &as->arcstat_mfu_ghost_size, 5414 &as->arcstat_mfu_ghost_evictable_data, 5415 &as->arcstat_mfu_ghost_evictable_metadata); 5416 } 5417 5418 return (0); 5419 } 5420 5421 /* 5422 * This function *must* return indices evenly distributed between all 5423 * sublists of the multilist. This is needed due to how the ARC eviction 5424 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 5425 * distributed between all sublists and uses this assumption when 5426 * deciding which sublist to evict from and how much to evict from it. 5427 */ 5428 unsigned int 5429 arc_state_multilist_index_func(multilist_t *ml, void *obj) 5430 { 5431 arc_buf_hdr_t *hdr = obj; 5432 5433 /* 5434 * We rely on b_dva to generate evenly distributed index 5435 * numbers using buf_hash below. So, as an added precaution, 5436 * let's make sure we never add empty buffers to the arc lists. 5437 */ 5438 ASSERT(!HDR_EMPTY(hdr)); 5439 5440 /* 5441 * The assumption here, is the hash value for a given 5442 * arc_buf_hdr_t will remain constant throughout it's lifetime 5443 * (i.e. it's b_spa, b_dva, and b_birth fields don't change). 5444 * Thus, we don't need to store the header's sublist index 5445 * on insertion, as this index can be recalculated on removal. 5446 * 5447 * Also, the low order bits of the hash value are thought to be 5448 * distributed evenly. Otherwise, in the case that the multilist 5449 * has a power of two number of sublists, each sublists' usage 5450 * would not be evenly distributed. 5451 */ 5452 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 5453 multilist_get_num_sublists(ml)); 5454 } 5455 5456 static void 5457 arc_state_init(void) 5458 { 5459 arc_anon = &ARC_anon; 5460 arc_mru = &ARC_mru; 5461 arc_mru_ghost = &ARC_mru_ghost; 5462 arc_mfu = &ARC_mfu; 5463 arc_mfu_ghost = &ARC_mfu_ghost; 5464 arc_l2c_only = &ARC_l2c_only; 5465 5466 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 5467 sizeof (arc_buf_hdr_t), 5468 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5469 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5470 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 5471 sizeof (arc_buf_hdr_t), 5472 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5473 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5474 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 5475 sizeof (arc_buf_hdr_t), 5476 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5477 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5478 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 5479 sizeof (arc_buf_hdr_t), 5480 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5481 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5482 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 5483 sizeof (arc_buf_hdr_t), 5484 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5485 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5486 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 5487 sizeof (arc_buf_hdr_t), 5488 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5489 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5490 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 5491 sizeof (arc_buf_hdr_t), 5492 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5493 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5494 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 5495 sizeof (arc_buf_hdr_t), 5496 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5497 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5498 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 5499 sizeof (arc_buf_hdr_t), 5500 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5501 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5502 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 5503 sizeof (arc_buf_hdr_t), 5504 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 5505 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); 5506 5507 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 5508 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 5509 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 5510 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 5511 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 5512 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 5513 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 5514 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 5515 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 5516 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 5517 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 5518 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 5519 5520 refcount_create(&arc_anon->arcs_size); 5521 refcount_create(&arc_mru->arcs_size); 5522 refcount_create(&arc_mru_ghost->arcs_size); 5523 refcount_create(&arc_mfu->arcs_size); 5524 refcount_create(&arc_mfu_ghost->arcs_size); 5525 refcount_create(&arc_l2c_only->arcs_size); 5526 } 5527 5528 static void 5529 arc_state_fini(void) 5530 { 5531 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 5532 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 5533 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 5534 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 5535 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 5536 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 5537 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 5538 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 5539 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 5540 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 5541 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 5542 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 5543 5544 refcount_destroy(&arc_anon->arcs_size); 5545 refcount_destroy(&arc_mru->arcs_size); 5546 refcount_destroy(&arc_mru_ghost->arcs_size); 5547 refcount_destroy(&arc_mfu->arcs_size); 5548 refcount_destroy(&arc_mfu_ghost->arcs_size); 5549 refcount_destroy(&arc_l2c_only->arcs_size); 5550 5551 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 5552 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 5553 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 5554 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 5555 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 5556 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 5557 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 5558 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 5559 } 5560 5561 uint64_t 5562 arc_max_bytes(void) 5563 { 5564 return (arc_c_max); 5565 } 5566 5567 void 5568 arc_init(void) 5569 { 5570 /* 5571 * allmem is "all memory that we could possibly use". 5572 */ 5573 #ifdef _KERNEL 5574 uint64_t allmem = ptob(physmem - swapfs_minfree); 5575 #else 5576 uint64_t allmem = (physmem * PAGESIZE) / 2; 5577 #endif 5578 5579 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 5580 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL); 5581 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL); 5582 5583 /* Convert seconds to clock ticks */ 5584 arc_min_prefetch_lifespan = 1 * hz; 5585 5586 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 5587 arc_c_min = MAX(allmem / 32, 64 << 20); 5588 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 5589 if (allmem >= 1 << 30) 5590 arc_c_max = allmem - (1 << 30); 5591 else 5592 arc_c_max = arc_c_min; 5593 arc_c_max = MAX(allmem * 3 / 4, arc_c_max); 5594 5595 /* 5596 * In userland, there's only the memory pressure that we artificially 5597 * create (see arc_available_memory()). Don't let arc_c get too 5598 * small, because it can cause transactions to be larger than 5599 * arc_c, causing arc_tempreserve_space() to fail. 5600 */ 5601 #ifndef _KERNEL 5602 arc_c_min = arc_c_max / 2; 5603 #endif 5604 5605 /* 5606 * Allow the tunables to override our calculations if they are 5607 * reasonable (ie. over 64MB) 5608 */ 5609 if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) 5610 arc_c_max = zfs_arc_max; 5611 if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max) 5612 arc_c_min = zfs_arc_min; 5613 5614 arc_c = arc_c_max; 5615 arc_p = (arc_c >> 1); 5616 arc_size = 0; 5617 5618 /* limit meta-data to 1/4 of the arc capacity */ 5619 arc_meta_limit = arc_c_max / 4; 5620 5621 #ifdef _KERNEL 5622 /* 5623 * Metadata is stored in the kernel's heap. Don't let us 5624 * use more than half the heap for the ARC. 5625 */ 5626 arc_meta_limit = MIN(arc_meta_limit, 5627 vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2); 5628 #endif 5629 5630 /* Allow the tunable to override if it is reasonable */ 5631 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 5632 arc_meta_limit = zfs_arc_meta_limit; 5633 5634 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 5635 arc_c_min = arc_meta_limit / 2; 5636 5637 if (zfs_arc_meta_min > 0) { 5638 arc_meta_min = zfs_arc_meta_min; 5639 } else { 5640 arc_meta_min = arc_c_min / 2; 5641 } 5642 5643 if (zfs_arc_grow_retry > 0) 5644 arc_grow_retry = zfs_arc_grow_retry; 5645 5646 if (zfs_arc_shrink_shift > 0) 5647 arc_shrink_shift = zfs_arc_shrink_shift; 5648 5649 /* 5650 * Ensure that arc_no_grow_shift is less than arc_shrink_shift. 5651 */ 5652 if (arc_no_grow_shift >= arc_shrink_shift) 5653 arc_no_grow_shift = arc_shrink_shift - 1; 5654 5655 if (zfs_arc_p_min_shift > 0) 5656 arc_p_min_shift = zfs_arc_p_min_shift; 5657 5658 if (zfs_arc_num_sublists_per_state < 1) 5659 zfs_arc_num_sublists_per_state = MAX(boot_ncpus, 1); 5660 5661 /* if kmem_flags are set, lets try to use less memory */ 5662 if (kmem_debugging()) 5663 arc_c = arc_c / 2; 5664 if (arc_c < arc_c_min) 5665 arc_c = arc_c_min; 5666 5667 arc_state_init(); 5668 buf_init(); 5669 5670 arc_reclaim_thread_exit = B_FALSE; 5671 5672 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 5673 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 5674 5675 if (arc_ksp != NULL) { 5676 arc_ksp->ks_data = &arc_stats; 5677 arc_ksp->ks_update = arc_kstat_update; 5678 kstat_install(arc_ksp); 5679 } 5680 5681 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 5682 TS_RUN, minclsyspri); 5683 5684 arc_dead = B_FALSE; 5685 arc_warm = B_FALSE; 5686 5687 /* 5688 * Calculate maximum amount of dirty data per pool. 5689 * 5690 * If it has been set by /etc/system, take that. 5691 * Otherwise, use a percentage of physical memory defined by 5692 * zfs_dirty_data_max_percent (default 10%) with a cap at 5693 * zfs_dirty_data_max_max (default 4GB). 5694 */ 5695 if (zfs_dirty_data_max == 0) { 5696 zfs_dirty_data_max = physmem * PAGESIZE * 5697 zfs_dirty_data_max_percent / 100; 5698 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 5699 zfs_dirty_data_max_max); 5700 } 5701 } 5702 5703 void 5704 arc_fini(void) 5705 { 5706 mutex_enter(&arc_reclaim_lock); 5707 arc_reclaim_thread_exit = B_TRUE; 5708 /* 5709 * The reclaim thread will set arc_reclaim_thread_exit back to 5710 * B_FALSE when it is finished exiting; we're waiting for that. 5711 */ 5712 while (arc_reclaim_thread_exit) { 5713 cv_signal(&arc_reclaim_thread_cv); 5714 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock); 5715 } 5716 mutex_exit(&arc_reclaim_lock); 5717 5718 /* Use B_TRUE to ensure *all* buffers are evicted */ 5719 arc_flush(NULL, B_TRUE); 5720 5721 arc_dead = B_TRUE; 5722 5723 if (arc_ksp != NULL) { 5724 kstat_delete(arc_ksp); 5725 arc_ksp = NULL; 5726 } 5727 5728 mutex_destroy(&arc_reclaim_lock); 5729 cv_destroy(&arc_reclaim_thread_cv); 5730 cv_destroy(&arc_reclaim_waiters_cv); 5731 5732 arc_state_fini(); 5733 buf_fini(); 5734 5735 ASSERT0(arc_loaned_bytes); 5736 } 5737 5738 /* 5739 * Level 2 ARC 5740 * 5741 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 5742 * It uses dedicated storage devices to hold cached data, which are populated 5743 * using large infrequent writes. The main role of this cache is to boost 5744 * the performance of random read workloads. The intended L2ARC devices 5745 * include short-stroked disks, solid state disks, and other media with 5746 * substantially faster read latency than disk. 5747 * 5748 * +-----------------------+ 5749 * | ARC | 5750 * +-----------------------+ 5751 * | ^ ^ 5752 * | | | 5753 * l2arc_feed_thread() arc_read() 5754 * | | | 5755 * | l2arc read | 5756 * V | | 5757 * +---------------+ | 5758 * | L2ARC | | 5759 * +---------------+ | 5760 * | ^ | 5761 * l2arc_write() | | 5762 * | | | 5763 * V | | 5764 * +-------+ +-------+ 5765 * | vdev | | vdev | 5766 * | cache | | cache | 5767 * +-------+ +-------+ 5768 * +=========+ .-----. 5769 * : L2ARC : |-_____-| 5770 * : devices : | Disks | 5771 * +=========+ `-_____-' 5772 * 5773 * Read requests are satisfied from the following sources, in order: 5774 * 5775 * 1) ARC 5776 * 2) vdev cache of L2ARC devices 5777 * 3) L2ARC devices 5778 * 4) vdev cache of disks 5779 * 5) disks 5780 * 5781 * Some L2ARC device types exhibit extremely slow write performance. 5782 * To accommodate for this there are some significant differences between 5783 * the L2ARC and traditional cache design: 5784 * 5785 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 5786 * the ARC behave as usual, freeing buffers and placing headers on ghost 5787 * lists. The ARC does not send buffers to the L2ARC during eviction as 5788 * this would add inflated write latencies for all ARC memory pressure. 5789 * 5790 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 5791 * It does this by periodically scanning buffers from the eviction-end of 5792 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 5793 * not already there. It scans until a headroom of buffers is satisfied, 5794 * which itself is a buffer for ARC eviction. If a compressible buffer is 5795 * found during scanning and selected for writing to an L2ARC device, we 5796 * temporarily boost scanning headroom during the next scan cycle to make 5797 * sure we adapt to compression effects (which might significantly reduce 5798 * the data volume we write to L2ARC). The thread that does this is 5799 * l2arc_feed_thread(), illustrated below; example sizes are included to 5800 * provide a better sense of ratio than this diagram: 5801 * 5802 * head --> tail 5803 * +---------------------+----------+ 5804 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 5805 * +---------------------+----------+ | o L2ARC eligible 5806 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 5807 * +---------------------+----------+ | 5808 * 15.9 Gbytes ^ 32 Mbytes | 5809 * headroom | 5810 * l2arc_feed_thread() 5811 * | 5812 * l2arc write hand <--[oooo]--' 5813 * | 8 Mbyte 5814 * | write max 5815 * V 5816 * +==============================+ 5817 * L2ARC dev |####|#|###|###| |####| ... | 5818 * +==============================+ 5819 * 32 Gbytes 5820 * 5821 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 5822 * evicted, then the L2ARC has cached a buffer much sooner than it probably 5823 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 5824 * safe to say that this is an uncommon case, since buffers at the end of 5825 * the ARC lists have moved there due to inactivity. 5826 * 5827 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 5828 * then the L2ARC simply misses copying some buffers. This serves as a 5829 * pressure valve to prevent heavy read workloads from both stalling the ARC 5830 * with waits and clogging the L2ARC with writes. This also helps prevent 5831 * the potential for the L2ARC to churn if it attempts to cache content too 5832 * quickly, such as during backups of the entire pool. 5833 * 5834 * 5. After system boot and before the ARC has filled main memory, there are 5835 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 5836 * lists can remain mostly static. Instead of searching from tail of these 5837 * lists as pictured, the l2arc_feed_thread() will search from the list heads 5838 * for eligible buffers, greatly increasing its chance of finding them. 5839 * 5840 * The L2ARC device write speed is also boosted during this time so that 5841 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 5842 * there are no L2ARC reads, and no fear of degrading read performance 5843 * through increased writes. 5844 * 5845 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 5846 * the vdev queue can aggregate them into larger and fewer writes. Each 5847 * device is written to in a rotor fashion, sweeping writes through 5848 * available space then repeating. 5849 * 5850 * 7. The L2ARC does not store dirty content. It never needs to flush 5851 * write buffers back to disk based storage. 5852 * 5853 * 8. If an ARC buffer is written (and dirtied) which also exists in the 5854 * L2ARC, the now stale L2ARC buffer is immediately dropped. 5855 * 5856 * The performance of the L2ARC can be tweaked by a number of tunables, which 5857 * may be necessary for different workloads: 5858 * 5859 * l2arc_write_max max write bytes per interval 5860 * l2arc_write_boost extra write bytes during device warmup 5861 * l2arc_noprefetch skip caching prefetched buffers 5862 * l2arc_headroom number of max device writes to precache 5863 * l2arc_headroom_boost when we find compressed buffers during ARC 5864 * scanning, we multiply headroom by this 5865 * percentage factor for the next scan cycle, 5866 * since more compressed buffers are likely to 5867 * be present 5868 * l2arc_feed_secs seconds between L2ARC writing 5869 * 5870 * Tunables may be removed or added as future performance improvements are 5871 * integrated, and also may become zpool properties. 5872 * 5873 * There are three key functions that control how the L2ARC warms up: 5874 * 5875 * l2arc_write_eligible() check if a buffer is eligible to cache 5876 * l2arc_write_size() calculate how much to write 5877 * l2arc_write_interval() calculate sleep delay between writes 5878 * 5879 * These three functions determine what to write, how much, and how quickly 5880 * to send writes. 5881 */ 5882 5883 static boolean_t 5884 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 5885 { 5886 /* 5887 * A buffer is *not* eligible for the L2ARC if it: 5888 * 1. belongs to a different spa. 5889 * 2. is already cached on the L2ARC. 5890 * 3. has an I/O in progress (it may be an incomplete read). 5891 * 4. is flagged not eligible (zfs property). 5892 */ 5893 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 5894 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 5895 return (B_FALSE); 5896 5897 return (B_TRUE); 5898 } 5899 5900 static uint64_t 5901 l2arc_write_size(void) 5902 { 5903 uint64_t size; 5904 5905 /* 5906 * Make sure our globals have meaningful values in case the user 5907 * altered them. 5908 */ 5909 size = l2arc_write_max; 5910 if (size == 0) { 5911 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 5912 "be greater than zero, resetting it to the default (%d)", 5913 L2ARC_WRITE_SIZE); 5914 size = l2arc_write_max = L2ARC_WRITE_SIZE; 5915 } 5916 5917 if (arc_warm == B_FALSE) 5918 size += l2arc_write_boost; 5919 5920 return (size); 5921 5922 } 5923 5924 static clock_t 5925 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 5926 { 5927 clock_t interval, next, now; 5928 5929 /* 5930 * If the ARC lists are busy, increase our write rate; if the 5931 * lists are stale, idle back. This is achieved by checking 5932 * how much we previously wrote - if it was more than half of 5933 * what we wanted, schedule the next write much sooner. 5934 */ 5935 if (l2arc_feed_again && wrote > (wanted / 2)) 5936 interval = (hz * l2arc_feed_min_ms) / 1000; 5937 else 5938 interval = hz * l2arc_feed_secs; 5939 5940 now = ddi_get_lbolt(); 5941 next = MAX(now, MIN(now + interval, began + interval)); 5942 5943 return (next); 5944 } 5945 5946 /* 5947 * Cycle through L2ARC devices. This is how L2ARC load balances. 5948 * If a device is returned, this also returns holding the spa config lock. 5949 */ 5950 static l2arc_dev_t * 5951 l2arc_dev_get_next(void) 5952 { 5953 l2arc_dev_t *first, *next = NULL; 5954 5955 /* 5956 * Lock out the removal of spas (spa_namespace_lock), then removal 5957 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 5958 * both locks will be dropped and a spa config lock held instead. 5959 */ 5960 mutex_enter(&spa_namespace_lock); 5961 mutex_enter(&l2arc_dev_mtx); 5962 5963 /* if there are no vdevs, there is nothing to do */ 5964 if (l2arc_ndev == 0) 5965 goto out; 5966 5967 first = NULL; 5968 next = l2arc_dev_last; 5969 do { 5970 /* loop around the list looking for a non-faulted vdev */ 5971 if (next == NULL) { 5972 next = list_head(l2arc_dev_list); 5973 } else { 5974 next = list_next(l2arc_dev_list, next); 5975 if (next == NULL) 5976 next = list_head(l2arc_dev_list); 5977 } 5978 5979 /* if we have come back to the start, bail out */ 5980 if (first == NULL) 5981 first = next; 5982 else if (next == first) 5983 break; 5984 5985 } while (vdev_is_dead(next->l2ad_vdev)); 5986 5987 /* if we were unable to find any usable vdevs, return NULL */ 5988 if (vdev_is_dead(next->l2ad_vdev)) 5989 next = NULL; 5990 5991 l2arc_dev_last = next; 5992 5993 out: 5994 mutex_exit(&l2arc_dev_mtx); 5995 5996 /* 5997 * Grab the config lock to prevent the 'next' device from being 5998 * removed while we are writing to it. 5999 */ 6000 if (next != NULL) 6001 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 6002 mutex_exit(&spa_namespace_lock); 6003 6004 return (next); 6005 } 6006 6007 /* 6008 * Free buffers that were tagged for destruction. 6009 */ 6010 static void 6011 l2arc_do_free_on_write() 6012 { 6013 list_t *buflist; 6014 l2arc_data_free_t *df, *df_prev; 6015 6016 mutex_enter(&l2arc_free_on_write_mtx); 6017 buflist = l2arc_free_on_write; 6018 6019 for (df = list_tail(buflist); df; df = df_prev) { 6020 df_prev = list_prev(buflist, df); 6021 ASSERT3P(df->l2df_data, !=, NULL); 6022 if (df->l2df_type == ARC_BUFC_METADATA) { 6023 zio_buf_free(df->l2df_data, df->l2df_size); 6024 } else { 6025 ASSERT(df->l2df_type == ARC_BUFC_DATA); 6026 zio_data_buf_free(df->l2df_data, df->l2df_size); 6027 } 6028 list_remove(buflist, df); 6029 kmem_free(df, sizeof (l2arc_data_free_t)); 6030 } 6031 6032 mutex_exit(&l2arc_free_on_write_mtx); 6033 } 6034 6035 /* 6036 * A write to a cache device has completed. Update all headers to allow 6037 * reads from these buffers to begin. 6038 */ 6039 static void 6040 l2arc_write_done(zio_t *zio) 6041 { 6042 l2arc_write_callback_t *cb; 6043 l2arc_dev_t *dev; 6044 list_t *buflist; 6045 arc_buf_hdr_t *head, *hdr, *hdr_prev; 6046 kmutex_t *hash_lock; 6047 int64_t bytes_dropped = 0; 6048 6049 cb = zio->io_private; 6050 ASSERT3P(cb, !=, NULL); 6051 dev = cb->l2wcb_dev; 6052 ASSERT3P(dev, !=, NULL); 6053 head = cb->l2wcb_head; 6054 ASSERT3P(head, !=, NULL); 6055 buflist = &dev->l2ad_buflist; 6056 ASSERT3P(buflist, !=, NULL); 6057 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 6058 l2arc_write_callback_t *, cb); 6059 6060 if (zio->io_error != 0) 6061 ARCSTAT_BUMP(arcstat_l2_writes_error); 6062 6063 /* 6064 * All writes completed, or an error was hit. 6065 */ 6066 top: 6067 mutex_enter(&dev->l2ad_mtx); 6068 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 6069 hdr_prev = list_prev(buflist, hdr); 6070 6071 hash_lock = HDR_LOCK(hdr); 6072 6073 /* 6074 * We cannot use mutex_enter or else we can deadlock 6075 * with l2arc_write_buffers (due to swapping the order 6076 * the hash lock and l2ad_mtx are taken). 6077 */ 6078 if (!mutex_tryenter(hash_lock)) { 6079 /* 6080 * Missed the hash lock. We must retry so we 6081 * don't leave the ARC_FLAG_L2_WRITING bit set. 6082 */ 6083 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 6084 6085 /* 6086 * We don't want to rescan the headers we've 6087 * already marked as having been written out, so 6088 * we reinsert the head node so we can pick up 6089 * where we left off. 6090 */ 6091 list_remove(buflist, head); 6092 list_insert_after(buflist, hdr, head); 6093 6094 mutex_exit(&dev->l2ad_mtx); 6095 6096 /* 6097 * We wait for the hash lock to become available 6098 * to try and prevent busy waiting, and increase 6099 * the chance we'll be able to acquire the lock 6100 * the next time around. 6101 */ 6102 mutex_enter(hash_lock); 6103 mutex_exit(hash_lock); 6104 goto top; 6105 } 6106 6107 /* 6108 * We could not have been moved into the arc_l2c_only 6109 * state while in-flight due to our ARC_FLAG_L2_WRITING 6110 * bit being set. Let's just ensure that's being enforced. 6111 */ 6112 ASSERT(HDR_HAS_L1HDR(hdr)); 6113 6114 if (zio->io_error != 0) { 6115 /* 6116 * Error - drop L2ARC entry. 6117 */ 6118 list_remove(buflist, hdr); 6119 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 6120 6121 ARCSTAT_INCR(arcstat_l2_asize, -arc_hdr_size(hdr)); 6122 ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr)); 6123 6124 bytes_dropped += arc_hdr_size(hdr); 6125 (void) refcount_remove_many(&dev->l2ad_alloc, 6126 arc_hdr_size(hdr), hdr); 6127 } 6128 6129 /* 6130 * Allow ARC to begin reads and ghost list evictions to 6131 * this L2ARC entry. 6132 */ 6133 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 6134 6135 mutex_exit(hash_lock); 6136 } 6137 6138 atomic_inc_64(&l2arc_writes_done); 6139 list_remove(buflist, head); 6140 ASSERT(!HDR_HAS_L1HDR(head)); 6141 kmem_cache_free(hdr_l2only_cache, head); 6142 mutex_exit(&dev->l2ad_mtx); 6143 6144 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 6145 6146 l2arc_do_free_on_write(); 6147 6148 kmem_free(cb, sizeof (l2arc_write_callback_t)); 6149 } 6150 6151 /* 6152 * A read to a cache device completed. Validate buffer contents before 6153 * handing over to the regular ARC routines. 6154 */ 6155 static void 6156 l2arc_read_done(zio_t *zio) 6157 { 6158 l2arc_read_callback_t *cb; 6159 arc_buf_hdr_t *hdr; 6160 kmutex_t *hash_lock; 6161 boolean_t valid_cksum; 6162 6163 ASSERT3P(zio->io_vd, !=, NULL); 6164 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 6165 6166 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 6167 6168 cb = zio->io_private; 6169 ASSERT3P(cb, !=, NULL); 6170 hdr = cb->l2rcb_hdr; 6171 ASSERT3P(hdr, !=, NULL); 6172 6173 hash_lock = HDR_LOCK(hdr); 6174 mutex_enter(hash_lock); 6175 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6176 6177 ASSERT3P(zio->io_data, !=, NULL); 6178 6179 /* 6180 * Check this survived the L2ARC journey. 6181 */ 6182 ASSERT3P(zio->io_data, ==, hdr->b_l1hdr.b_pdata); 6183 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 6184 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 6185 6186 valid_cksum = arc_cksum_is_equal(hdr, zio); 6187 if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 6188 mutex_exit(hash_lock); 6189 zio->io_private = hdr; 6190 arc_read_done(zio); 6191 } else { 6192 mutex_exit(hash_lock); 6193 /* 6194 * Buffer didn't survive caching. Increment stats and 6195 * reissue to the original storage device. 6196 */ 6197 if (zio->io_error != 0) { 6198 ARCSTAT_BUMP(arcstat_l2_io_error); 6199 } else { 6200 zio->io_error = SET_ERROR(EIO); 6201 } 6202 if (!valid_cksum) 6203 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 6204 6205 /* 6206 * If there's no waiter, issue an async i/o to the primary 6207 * storage now. If there *is* a waiter, the caller must 6208 * issue the i/o in a context where it's OK to block. 6209 */ 6210 if (zio->io_waiter == NULL) { 6211 zio_t *pio = zio_unique_parent(zio); 6212 6213 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 6214 6215 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp, 6216 hdr->b_l1hdr.b_pdata, zio->io_size, arc_read_done, 6217 hdr, zio->io_priority, cb->l2rcb_flags, 6218 &cb->l2rcb_zb)); 6219 } 6220 } 6221 6222 kmem_free(cb, sizeof (l2arc_read_callback_t)); 6223 } 6224 6225 /* 6226 * This is the list priority from which the L2ARC will search for pages to 6227 * cache. This is used within loops (0..3) to cycle through lists in the 6228 * desired order. This order can have a significant effect on cache 6229 * performance. 6230 * 6231 * Currently the metadata lists are hit first, MFU then MRU, followed by 6232 * the data lists. This function returns a locked list, and also returns 6233 * the lock pointer. 6234 */ 6235 static multilist_sublist_t * 6236 l2arc_sublist_lock(int list_num) 6237 { 6238 multilist_t *ml = NULL; 6239 unsigned int idx; 6240 6241 ASSERT(list_num >= 0 && list_num <= 3); 6242 6243 switch (list_num) { 6244 case 0: 6245 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 6246 break; 6247 case 1: 6248 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 6249 break; 6250 case 2: 6251 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 6252 break; 6253 case 3: 6254 ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; 6255 break; 6256 } 6257 6258 /* 6259 * Return a randomly-selected sublist. This is acceptable 6260 * because the caller feeds only a little bit of data for each 6261 * call (8MB). Subsequent calls will result in different 6262 * sublists being selected. 6263 */ 6264 idx = multilist_get_random_index(ml); 6265 return (multilist_sublist_lock(ml, idx)); 6266 } 6267 6268 /* 6269 * Evict buffers from the device write hand to the distance specified in 6270 * bytes. This distance may span populated buffers, it may span nothing. 6271 * This is clearing a region on the L2ARC device ready for writing. 6272 * If the 'all' boolean is set, every buffer is evicted. 6273 */ 6274 static void 6275 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 6276 { 6277 list_t *buflist; 6278 arc_buf_hdr_t *hdr, *hdr_prev; 6279 kmutex_t *hash_lock; 6280 uint64_t taddr; 6281 6282 buflist = &dev->l2ad_buflist; 6283 6284 if (!all && dev->l2ad_first) { 6285 /* 6286 * This is the first sweep through the device. There is 6287 * nothing to evict. 6288 */ 6289 return; 6290 } 6291 6292 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 6293 /* 6294 * When nearing the end of the device, evict to the end 6295 * before the device write hand jumps to the start. 6296 */ 6297 taddr = dev->l2ad_end; 6298 } else { 6299 taddr = dev->l2ad_hand + distance; 6300 } 6301 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 6302 uint64_t, taddr, boolean_t, all); 6303 6304 top: 6305 mutex_enter(&dev->l2ad_mtx); 6306 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 6307 hdr_prev = list_prev(buflist, hdr); 6308 6309 hash_lock = HDR_LOCK(hdr); 6310 6311 /* 6312 * We cannot use mutex_enter or else we can deadlock 6313 * with l2arc_write_buffers (due to swapping the order 6314 * the hash lock and l2ad_mtx are taken). 6315 */ 6316 if (!mutex_tryenter(hash_lock)) { 6317 /* 6318 * Missed the hash lock. Retry. 6319 */ 6320 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 6321 mutex_exit(&dev->l2ad_mtx); 6322 mutex_enter(hash_lock); 6323 mutex_exit(hash_lock); 6324 goto top; 6325 } 6326 6327 if (HDR_L2_WRITE_HEAD(hdr)) { 6328 /* 6329 * We hit a write head node. Leave it for 6330 * l2arc_write_done(). 6331 */ 6332 list_remove(buflist, hdr); 6333 mutex_exit(hash_lock); 6334 continue; 6335 } 6336 6337 if (!all && HDR_HAS_L2HDR(hdr) && 6338 (hdr->b_l2hdr.b_daddr > taddr || 6339 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 6340 /* 6341 * We've evicted to the target address, 6342 * or the end of the device. 6343 */ 6344 mutex_exit(hash_lock); 6345 break; 6346 } 6347 6348 ASSERT(HDR_HAS_L2HDR(hdr)); 6349 if (!HDR_HAS_L1HDR(hdr)) { 6350 ASSERT(!HDR_L2_READING(hdr)); 6351 /* 6352 * This doesn't exist in the ARC. Destroy. 6353 * arc_hdr_destroy() will call list_remove() 6354 * and decrement arcstat_l2_size. 6355 */ 6356 arc_change_state(arc_anon, hdr, hash_lock); 6357 arc_hdr_destroy(hdr); 6358 } else { 6359 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 6360 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 6361 /* 6362 * Invalidate issued or about to be issued 6363 * reads, since we may be about to write 6364 * over this location. 6365 */ 6366 if (HDR_L2_READING(hdr)) { 6367 ARCSTAT_BUMP(arcstat_l2_evict_reading); 6368 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 6369 } 6370 6371 /* Ensure this header has finished being written */ 6372 ASSERT(!HDR_L2_WRITING(hdr)); 6373 6374 arc_hdr_l2hdr_destroy(hdr); 6375 } 6376 mutex_exit(hash_lock); 6377 } 6378 mutex_exit(&dev->l2ad_mtx); 6379 } 6380 6381 /* 6382 * Find and write ARC buffers to the L2ARC device. 6383 * 6384 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 6385 * for reading until they have completed writing. 6386 * The headroom_boost is an in-out parameter used to maintain headroom boost 6387 * state between calls to this function. 6388 * 6389 * Returns the number of bytes actually written (which may be smaller than 6390 * the delta by which the device hand has changed due to alignment). 6391 */ 6392 static uint64_t 6393 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 6394 { 6395 arc_buf_hdr_t *hdr, *hdr_prev, *head; 6396 uint64_t write_asize, write_psize, write_sz, headroom; 6397 boolean_t full; 6398 l2arc_write_callback_t *cb; 6399 zio_t *pio, *wzio; 6400 uint64_t guid = spa_load_guid(spa); 6401 6402 ASSERT3P(dev->l2ad_vdev, !=, NULL); 6403 6404 pio = NULL; 6405 write_sz = write_asize = write_psize = 0; 6406 full = B_FALSE; 6407 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 6408 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 6409 6410 /* 6411 * Copy buffers for L2ARC writing. 6412 */ 6413 for (int try = 0; try <= 3; try++) { 6414 multilist_sublist_t *mls = l2arc_sublist_lock(try); 6415 uint64_t passed_sz = 0; 6416 6417 /* 6418 * L2ARC fast warmup. 6419 * 6420 * Until the ARC is warm and starts to evict, read from the 6421 * head of the ARC lists rather than the tail. 6422 */ 6423 if (arc_warm == B_FALSE) 6424 hdr = multilist_sublist_head(mls); 6425 else 6426 hdr = multilist_sublist_tail(mls); 6427 6428 headroom = target_sz * l2arc_headroom; 6429 if (zfs_compressed_arc_enabled) 6430 headroom = (headroom * l2arc_headroom_boost) / 100; 6431 6432 for (; hdr; hdr = hdr_prev) { 6433 kmutex_t *hash_lock; 6434 6435 if (arc_warm == B_FALSE) 6436 hdr_prev = multilist_sublist_next(mls, hdr); 6437 else 6438 hdr_prev = multilist_sublist_prev(mls, hdr); 6439 6440 hash_lock = HDR_LOCK(hdr); 6441 if (!mutex_tryenter(hash_lock)) { 6442 /* 6443 * Skip this buffer rather than waiting. 6444 */ 6445 continue; 6446 } 6447 6448 passed_sz += HDR_GET_LSIZE(hdr); 6449 if (passed_sz > headroom) { 6450 /* 6451 * Searched too far. 6452 */ 6453 mutex_exit(hash_lock); 6454 break; 6455 } 6456 6457 if (!l2arc_write_eligible(guid, hdr)) { 6458 mutex_exit(hash_lock); 6459 continue; 6460 } 6461 6462 if ((write_asize + HDR_GET_LSIZE(hdr)) > target_sz) { 6463 full = B_TRUE; 6464 mutex_exit(hash_lock); 6465 break; 6466 } 6467 6468 if (pio == NULL) { 6469 /* 6470 * Insert a dummy header on the buflist so 6471 * l2arc_write_done() can find where the 6472 * write buffers begin without searching. 6473 */ 6474 mutex_enter(&dev->l2ad_mtx); 6475 list_insert_head(&dev->l2ad_buflist, head); 6476 mutex_exit(&dev->l2ad_mtx); 6477 6478 cb = kmem_alloc( 6479 sizeof (l2arc_write_callback_t), KM_SLEEP); 6480 cb->l2wcb_dev = dev; 6481 cb->l2wcb_head = head; 6482 pio = zio_root(spa, l2arc_write_done, cb, 6483 ZIO_FLAG_CANFAIL); 6484 } 6485 6486 hdr->b_l2hdr.b_dev = dev; 6487 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 6488 arc_hdr_set_flags(hdr, 6489 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR); 6490 6491 mutex_enter(&dev->l2ad_mtx); 6492 list_insert_head(&dev->l2ad_buflist, hdr); 6493 mutex_exit(&dev->l2ad_mtx); 6494 6495 /* 6496 * We rely on the L1 portion of the header below, so 6497 * it's invalid for this header to have been evicted out 6498 * of the ghost cache, prior to being written out. The 6499 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 6500 */ 6501 ASSERT(HDR_HAS_L1HDR(hdr)); 6502 6503 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 6504 ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); 6505 ASSERT3U(arc_hdr_size(hdr), >, 0); 6506 uint64_t size = arc_hdr_size(hdr); 6507 6508 (void) refcount_add_many(&dev->l2ad_alloc, size, hdr); 6509 6510 /* 6511 * Normally the L2ARC can use the hdr's data, but if 6512 * we're sharing data between the hdr and one of its 6513 * bufs, L2ARC needs its own copy of the data so that 6514 * the ZIO below can't race with the buf consumer. To 6515 * ensure that this copy will be available for the 6516 * lifetime of the ZIO and be cleaned up afterwards, we 6517 * add it to the l2arc_free_on_write queue. 6518 */ 6519 void *to_write; 6520 if (!HDR_SHARED_DATA(hdr)) { 6521 to_write = hdr->b_l1hdr.b_pdata; 6522 } else { 6523 arc_buf_contents_t type = arc_buf_type(hdr); 6524 if (type == ARC_BUFC_METADATA) { 6525 to_write = zio_buf_alloc(size); 6526 } else { 6527 ASSERT3U(type, ==, ARC_BUFC_DATA); 6528 to_write = zio_data_buf_alloc(size); 6529 } 6530 6531 bcopy(hdr->b_l1hdr.b_pdata, to_write, size); 6532 l2arc_free_data_on_write(to_write, size, type); 6533 } 6534 wzio = zio_write_phys(pio, dev->l2ad_vdev, 6535 hdr->b_l2hdr.b_daddr, size, to_write, 6536 ZIO_CHECKSUM_OFF, NULL, hdr, 6537 ZIO_PRIORITY_ASYNC_WRITE, 6538 ZIO_FLAG_CANFAIL, B_FALSE); 6539 6540 write_sz += HDR_GET_LSIZE(hdr); 6541 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 6542 zio_t *, wzio); 6543 6544 write_asize += size; 6545 /* 6546 * Keep the clock hand suitably device-aligned. 6547 */ 6548 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 6549 size); 6550 write_psize += asize; 6551 dev->l2ad_hand += asize; 6552 6553 mutex_exit(hash_lock); 6554 6555 (void) zio_nowait(wzio); 6556 } 6557 6558 multilist_sublist_unlock(mls); 6559 6560 if (full == B_TRUE) 6561 break; 6562 } 6563 6564 /* No buffers selected for writing? */ 6565 if (pio == NULL) { 6566 ASSERT0(write_sz); 6567 ASSERT(!HDR_HAS_L1HDR(head)); 6568 kmem_cache_free(hdr_l2only_cache, head); 6569 return (0); 6570 } 6571 6572 ASSERT3U(write_asize, <=, target_sz); 6573 ARCSTAT_BUMP(arcstat_l2_writes_sent); 6574 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize); 6575 ARCSTAT_INCR(arcstat_l2_size, write_sz); 6576 ARCSTAT_INCR(arcstat_l2_asize, write_asize); 6577 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0); 6578 6579 /* 6580 * Bump device hand to the device start if it is approaching the end. 6581 * l2arc_evict() will already have evicted ahead for this case. 6582 */ 6583 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 6584 dev->l2ad_hand = dev->l2ad_start; 6585 dev->l2ad_first = B_FALSE; 6586 } 6587 6588 dev->l2ad_writing = B_TRUE; 6589 (void) zio_wait(pio); 6590 dev->l2ad_writing = B_FALSE; 6591 6592 return (write_asize); 6593 } 6594 6595 /* 6596 * This thread feeds the L2ARC at regular intervals. This is the beating 6597 * heart of the L2ARC. 6598 */ 6599 static void 6600 l2arc_feed_thread(void) 6601 { 6602 callb_cpr_t cpr; 6603 l2arc_dev_t *dev; 6604 spa_t *spa; 6605 uint64_t size, wrote; 6606 clock_t begin, next = ddi_get_lbolt(); 6607 6608 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 6609 6610 mutex_enter(&l2arc_feed_thr_lock); 6611 6612 while (l2arc_thread_exit == 0) { 6613 CALLB_CPR_SAFE_BEGIN(&cpr); 6614 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 6615 next); 6616 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 6617 next = ddi_get_lbolt() + hz; 6618 6619 /* 6620 * Quick check for L2ARC devices. 6621 */ 6622 mutex_enter(&l2arc_dev_mtx); 6623 if (l2arc_ndev == 0) { 6624 mutex_exit(&l2arc_dev_mtx); 6625 continue; 6626 } 6627 mutex_exit(&l2arc_dev_mtx); 6628 begin = ddi_get_lbolt(); 6629 6630 /* 6631 * This selects the next l2arc device to write to, and in 6632 * doing so the next spa to feed from: dev->l2ad_spa. This 6633 * will return NULL if there are now no l2arc devices or if 6634 * they are all faulted. 6635 * 6636 * If a device is returned, its spa's config lock is also 6637 * held to prevent device removal. l2arc_dev_get_next() 6638 * will grab and release l2arc_dev_mtx. 6639 */ 6640 if ((dev = l2arc_dev_get_next()) == NULL) 6641 continue; 6642 6643 spa = dev->l2ad_spa; 6644 ASSERT3P(spa, !=, NULL); 6645 6646 /* 6647 * If the pool is read-only then force the feed thread to 6648 * sleep a little longer. 6649 */ 6650 if (!spa_writeable(spa)) { 6651 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 6652 spa_config_exit(spa, SCL_L2ARC, dev); 6653 continue; 6654 } 6655 6656 /* 6657 * Avoid contributing to memory pressure. 6658 */ 6659 if (arc_reclaim_needed()) { 6660 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 6661 spa_config_exit(spa, SCL_L2ARC, dev); 6662 continue; 6663 } 6664 6665 ARCSTAT_BUMP(arcstat_l2_feeds); 6666 6667 size = l2arc_write_size(); 6668 6669 /* 6670 * Evict L2ARC buffers that will be overwritten. 6671 */ 6672 l2arc_evict(dev, size, B_FALSE); 6673 6674 /* 6675 * Write ARC buffers. 6676 */ 6677 wrote = l2arc_write_buffers(spa, dev, size); 6678 6679 /* 6680 * Calculate interval between writes. 6681 */ 6682 next = l2arc_write_interval(begin, size, wrote); 6683 spa_config_exit(spa, SCL_L2ARC, dev); 6684 } 6685 6686 l2arc_thread_exit = 0; 6687 cv_broadcast(&l2arc_feed_thr_cv); 6688 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 6689 thread_exit(); 6690 } 6691 6692 boolean_t 6693 l2arc_vdev_present(vdev_t *vd) 6694 { 6695 l2arc_dev_t *dev; 6696 6697 mutex_enter(&l2arc_dev_mtx); 6698 for (dev = list_head(l2arc_dev_list); dev != NULL; 6699 dev = list_next(l2arc_dev_list, dev)) { 6700 if (dev->l2ad_vdev == vd) 6701 break; 6702 } 6703 mutex_exit(&l2arc_dev_mtx); 6704 6705 return (dev != NULL); 6706 } 6707 6708 /* 6709 * Add a vdev for use by the L2ARC. By this point the spa has already 6710 * validated the vdev and opened it. 6711 */ 6712 void 6713 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 6714 { 6715 l2arc_dev_t *adddev; 6716 6717 ASSERT(!l2arc_vdev_present(vd)); 6718 6719 /* 6720 * Create a new l2arc device entry. 6721 */ 6722 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 6723 adddev->l2ad_spa = spa; 6724 adddev->l2ad_vdev = vd; 6725 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 6726 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 6727 adddev->l2ad_hand = adddev->l2ad_start; 6728 adddev->l2ad_first = B_TRUE; 6729 adddev->l2ad_writing = B_FALSE; 6730 6731 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 6732 /* 6733 * This is a list of all ARC buffers that are still valid on the 6734 * device. 6735 */ 6736 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 6737 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 6738 6739 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 6740 refcount_create(&adddev->l2ad_alloc); 6741 6742 /* 6743 * Add device to global list 6744 */ 6745 mutex_enter(&l2arc_dev_mtx); 6746 list_insert_head(l2arc_dev_list, adddev); 6747 atomic_inc_64(&l2arc_ndev); 6748 mutex_exit(&l2arc_dev_mtx); 6749 } 6750 6751 /* 6752 * Remove a vdev from the L2ARC. 6753 */ 6754 void 6755 l2arc_remove_vdev(vdev_t *vd) 6756 { 6757 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 6758 6759 /* 6760 * Find the device by vdev 6761 */ 6762 mutex_enter(&l2arc_dev_mtx); 6763 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 6764 nextdev = list_next(l2arc_dev_list, dev); 6765 if (vd == dev->l2ad_vdev) { 6766 remdev = dev; 6767 break; 6768 } 6769 } 6770 ASSERT3P(remdev, !=, NULL); 6771 6772 /* 6773 * Remove device from global list 6774 */ 6775 list_remove(l2arc_dev_list, remdev); 6776 l2arc_dev_last = NULL; /* may have been invalidated */ 6777 atomic_dec_64(&l2arc_ndev); 6778 mutex_exit(&l2arc_dev_mtx); 6779 6780 /* 6781 * Clear all buflists and ARC references. L2ARC device flush. 6782 */ 6783 l2arc_evict(remdev, 0, B_TRUE); 6784 list_destroy(&remdev->l2ad_buflist); 6785 mutex_destroy(&remdev->l2ad_mtx); 6786 refcount_destroy(&remdev->l2ad_alloc); 6787 kmem_free(remdev, sizeof (l2arc_dev_t)); 6788 } 6789 6790 void 6791 l2arc_init(void) 6792 { 6793 l2arc_thread_exit = 0; 6794 l2arc_ndev = 0; 6795 l2arc_writes_sent = 0; 6796 l2arc_writes_done = 0; 6797 6798 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 6799 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 6800 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 6801 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 6802 6803 l2arc_dev_list = &L2ARC_dev_list; 6804 l2arc_free_on_write = &L2ARC_free_on_write; 6805 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 6806 offsetof(l2arc_dev_t, l2ad_node)); 6807 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 6808 offsetof(l2arc_data_free_t, l2df_list_node)); 6809 } 6810 6811 void 6812 l2arc_fini(void) 6813 { 6814 /* 6815 * This is called from dmu_fini(), which is called from spa_fini(); 6816 * Because of this, we can assume that all l2arc devices have 6817 * already been removed when the pools themselves were removed. 6818 */ 6819 6820 l2arc_do_free_on_write(); 6821 6822 mutex_destroy(&l2arc_feed_thr_lock); 6823 cv_destroy(&l2arc_feed_thr_cv); 6824 mutex_destroy(&l2arc_dev_mtx); 6825 mutex_destroy(&l2arc_free_on_write_mtx); 6826 6827 list_destroy(l2arc_dev_list); 6828 list_destroy(l2arc_free_on_write); 6829 } 6830 6831 void 6832 l2arc_start(void) 6833 { 6834 if (!(spa_mode_global & FWRITE)) 6835 return; 6836 6837 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 6838 TS_RUN, minclsyspri); 6839 } 6840 6841 void 6842 l2arc_stop(void) 6843 { 6844 if (!(spa_mode_global & FWRITE)) 6845 return; 6846 6847 mutex_enter(&l2arc_feed_thr_lock); 6848 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 6849 l2arc_thread_exit = 1; 6850 while (l2arc_thread_exit != 0) 6851 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 6852 mutex_exit(&l2arc_feed_thr_lock); 6853 } 6854