1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2019, Joyent, Inc. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2011, 2019, Delphix. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2020, The FreeBSD Foundation [1] 30 * Copyright 2024 Bill Sommerfeld <sommerfeld@hamachi.org> 31 * 32 * [1] Portions of this software were developed by Allan Jude 33 * under sponsorship from the FreeBSD Foundation. 34 */ 35 36 /* 37 * DVA-based Adjustable Replacement Cache 38 * 39 * While much of the theory of operation used here is 40 * based on the self-tuning, low overhead replacement cache 41 * presented by Megiddo and Modha at FAST 2003, there are some 42 * significant differences: 43 * 44 * 1. The Megiddo and Modha model assumes any page is evictable. 45 * Pages in its cache cannot be "locked" into memory. This makes 46 * the eviction algorithm simple: evict the last page in the list. 47 * This also make the performance characteristics easy to reason 48 * about. Our cache is not so simple. At any given moment, some 49 * subset of the blocks in the cache are un-evictable because we 50 * have handed out a reference to them. Blocks are only evictable 51 * when there are no external references active. This makes 52 * eviction far more problematic: we choose to evict the evictable 53 * blocks that are the "lowest" in the list. 54 * 55 * There are times when it is not possible to evict the requested 56 * space. In these circumstances we are unable to adjust the cache 57 * size. To prevent the cache growing unbounded at these times we 58 * implement a "cache throttle" that slows the flow of new data 59 * into the cache until we can make space available. 60 * 61 * 2. The Megiddo and Modha model assumes a fixed cache size. 62 * Pages are evicted when the cache is full and there is a cache 63 * miss. Our model has a variable sized cache. It grows with 64 * high use, but also tries to react to memory pressure from the 65 * operating system: decreasing its size when system memory is 66 * tight. 67 * 68 * 3. The Megiddo and Modha model assumes a fixed page size. All 69 * elements of the cache are therefore exactly the same size. So 70 * when adjusting the cache size following a cache miss, its simply 71 * a matter of choosing a single page to evict. In our model, we 72 * have variable sized cache blocks (rangeing from 512 bytes to 73 * 128K bytes). We therefore choose a set of blocks to evict to make 74 * space for a cache miss that approximates as closely as possible 75 * the space used by the new block. 76 * 77 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 78 * by N. Megiddo & D. Modha, FAST 2003 79 */ 80 81 /* 82 * The locking model: 83 * 84 * A new reference to a cache buffer can be obtained in two 85 * ways: 1) via a hash table lookup using the DVA as a key, 86 * or 2) via one of the ARC lists. The arc_read() interface 87 * uses method 1, while the internal ARC algorithms for 88 * adjusting the cache use method 2. We therefore provide two 89 * types of locks: 1) the hash table lock array, and 2) the 90 * ARC list locks. 91 * 92 * Buffers do not have their own mutexes, rather they rely on the 93 * hash table mutexes for the bulk of their protection (i.e. most 94 * fields in the arc_buf_hdr_t are protected by these mutexes). 95 * 96 * buf_hash_find() returns the appropriate mutex (held) when it 97 * locates the requested buffer in the hash table. It returns 98 * NULL for the mutex if the buffer was not in the table. 99 * 100 * buf_hash_remove() expects the appropriate hash mutex to be 101 * already held before it is invoked. 102 * 103 * Each ARC state also has a mutex which is used to protect the 104 * buffer list associated with the state. When attempting to 105 * obtain a hash table lock while holding an ARC list lock you 106 * must use: mutex_tryenter() to avoid deadlock. Also note that 107 * the active state mutex must be held before the ghost state mutex. 108 * 109 * Note that the majority of the performance stats are manipulated 110 * with atomic operations. 111 * 112 * The L2ARC uses the l2ad_mtx on each vdev for the following: 113 * 114 * - L2ARC buflist creation 115 * - L2ARC buflist eviction 116 * - L2ARC write completion, which walks L2ARC buflists 117 * - ARC header destruction, as it removes from L2ARC buflists 118 * - ARC header release, as it removes from L2ARC buflists 119 */ 120 121 /* 122 * ARC operation: 123 * 124 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 125 * This structure can point either to a block that is still in the cache or to 126 * one that is only accessible in an L2 ARC device, or it can provide 127 * information about a block that was recently evicted. If a block is 128 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 129 * information to retrieve it from the L2ARC device. This information is 130 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 131 * that is in this state cannot access the data directly. 132 * 133 * Blocks that are actively being referenced or have not been evicted 134 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 135 * the arc_buf_hdr_t that will point to the data block in memory. A block can 136 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 137 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 138 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 139 * 140 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 141 * ability to store the physical data (b_pabd) associated with the DVA of the 142 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 143 * it will match its on-disk compression characteristics. This behavior can be 144 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 145 * compressed ARC functionality is disabled, the b_pabd will point to an 146 * uncompressed version of the on-disk data. 147 * 148 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 149 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 150 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 151 * consumer. The ARC will provide references to this data and will keep it 152 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 153 * data block and will evict any arc_buf_t that is no longer referenced. The 154 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 155 * "overhead_size" kstat. 156 * 157 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 158 * compressed form. The typical case is that consumers will want uncompressed 159 * data, and when that happens a new data buffer is allocated where the data is 160 * decompressed for them to use. Currently the only consumer who wants 161 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 162 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 163 * with the arc_buf_hdr_t. 164 * 165 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 166 * first one is owned by a compressed send consumer (and therefore references 167 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 168 * used by any other consumer (and has its own uncompressed copy of the data 169 * buffer). 170 * 171 * arc_buf_hdr_t 172 * +-----------+ 173 * | fields | 174 * | common to | 175 * | L1- and | 176 * | L2ARC | 177 * +-----------+ 178 * | l2arc_buf_hdr_t 179 * | | 180 * +-----------+ 181 * | l1arc_buf_hdr_t 182 * | | arc_buf_t 183 * | b_buf +------------>+-----------+ arc_buf_t 184 * | b_pabd +-+ |b_next +---->+-----------+ 185 * +-----------+ | |-----------| |b_next +-->NULL 186 * | |b_comp = T | +-----------+ 187 * | |b_data +-+ |b_comp = F | 188 * | +-----------+ | |b_data +-+ 189 * +->+------+ | +-----------+ | 190 * compressed | | | | 191 * data | |<--------------+ | uncompressed 192 * +------+ compressed, | data 193 * shared +-->+------+ 194 * data | | 195 * | | 196 * +------+ 197 * 198 * When a consumer reads a block, the ARC must first look to see if the 199 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 200 * arc_buf_t and either copies uncompressed data into a new data buffer from an 201 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 202 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 203 * hdr is compressed and the desired compression characteristics of the 204 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 205 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 206 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 207 * be anywhere in the hdr's list. 208 * 209 * The diagram below shows an example of an uncompressed ARC hdr that is 210 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 211 * the last element in the buf list): 212 * 213 * arc_buf_hdr_t 214 * +-----------+ 215 * | | 216 * | | 217 * | | 218 * +-----------+ 219 * l2arc_buf_hdr_t| | 220 * | | 221 * +-----------+ 222 * l1arc_buf_hdr_t| | 223 * | | arc_buf_t (shared) 224 * | b_buf +------------>+---------+ arc_buf_t 225 * | | |b_next +---->+---------+ 226 * | b_pabd +-+ |---------| |b_next +-->NULL 227 * +-----------+ | | | +---------+ 228 * | |b_data +-+ | | 229 * | +---------+ | |b_data +-+ 230 * +->+------+ | +---------+ | 231 * | | | | 232 * uncompressed | | | | 233 * data +------+ | | 234 * ^ +->+------+ | 235 * | uncompressed | | | 236 * | data | | | 237 * | +------+ | 238 * +---------------------------------+ 239 * 240 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 241 * since the physical block is about to be rewritten. The new data contents 242 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 243 * it may compress the data before writing it to disk. The ARC will be called 244 * with the transformed data and will bcopy the transformed on-disk block into 245 * a newly allocated b_pabd. Writes are always done into buffers which have 246 * either been loaned (and hence are new and don't have other readers) or 247 * buffers which have been released (and hence have their own hdr, if there 248 * were originally other readers of the buf's original hdr). This ensures that 249 * the ARC only needs to update a single buf and its hdr after a write occurs. 250 * 251 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 252 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 253 * that when compressed ARC is enabled that the L2ARC blocks are identical 254 * to the on-disk block in the main data pool. This provides a significant 255 * advantage since the ARC can leverage the bp's checksum when reading from the 256 * L2ARC to determine if the contents are valid. However, if the compressed 257 * ARC is disabled, then the L2ARC's block must be transformed to look 258 * like the physical block in the main data pool before comparing the 259 * checksum and determining its validity. 260 * 261 * The L1ARC has a slightly different system for storing encrypted data. 262 * Raw (encrypted + possibly compressed) data has a few subtle differences from 263 * data that is just compressed. The biggest difference is that it is not 264 * possible to decrypt encrypted data (or visa versa) if the keys aren't loaded. 265 * The other difference is that encryption cannot be treated as a suggestion. 266 * If a caller would prefer compressed data, but they actually wind up with 267 * uncompressed data the worst thing that could happen is there might be a 268 * performance hit. If the caller requests encrypted data, however, we must be 269 * sure they actually get it or else secret information could be leaked. Raw 270 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 271 * may have both an encrypted version and a decrypted version of its data at 272 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 273 * copied out of this header. To avoid complications with b_pabd, raw buffers 274 * cannot be shared. 275 */ 276 277 #include <sys/spa.h> 278 #include <sys/zio.h> 279 #include <sys/spa_impl.h> 280 #include <sys/zio_compress.h> 281 #include <sys/zio_checksum.h> 282 #include <sys/zfs_context.h> 283 #include <sys/arc.h> 284 #include <sys/refcount.h> 285 #include <sys/vdev.h> 286 #include <sys/vdev_impl.h> 287 #include <sys/dsl_pool.h> 288 #include <sys/zio_checksum.h> 289 #include <sys/multilist.h> 290 #include <sys/abd.h> 291 #include <sys/zil.h> 292 #include <sys/fm/fs/zfs.h> 293 #ifdef _KERNEL 294 #include <sys/vmsystm.h> 295 #include <vm/anon.h> 296 #include <sys/fs/swapnode.h> 297 #include <sys/dnlc.h> 298 #endif 299 #include <sys/callb.h> 300 #include <sys/kstat.h> 301 #include <sys/zthr.h> 302 #include <zfs_fletcher.h> 303 #include <sys/arc_impl.h> 304 #include <sys/aggsum.h> 305 #include <sys/cityhash.h> 306 #include <sys/param.h> 307 308 #ifndef _KERNEL 309 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 310 boolean_t arc_watch = B_FALSE; 311 int arc_procfd; 312 #endif 313 314 /* 315 * This thread's job is to keep enough free memory in the system, by 316 * calling arc_kmem_reap_now() plus arc_shrink(), which improves 317 * arc_available_memory(). 318 */ 319 static zthr_t *arc_reap_zthr; 320 321 /* 322 * This thread's job is to keep arc_size under arc_c, by calling 323 * arc_adjust(), which improves arc_is_overflowing(). 324 */ 325 static zthr_t *arc_adjust_zthr; 326 327 static kmutex_t arc_adjust_lock; 328 static kcondvar_t arc_adjust_waiters_cv; 329 static boolean_t arc_adjust_needed = B_FALSE; 330 331 uint_t arc_reduce_dnlc_percent = 3; 332 333 /* 334 * The number of headers to evict in arc_evict_state_impl() before 335 * dropping the sublist lock and evicting from another sublist. A lower 336 * value means we're more likely to evict the "correct" header (i.e. the 337 * oldest header in the arc state), but comes with higher overhead 338 * (i.e. more invocations of arc_evict_state_impl()). 339 */ 340 int zfs_arc_evict_batch_limit = 10; 341 342 /* number of seconds before growing cache again */ 343 int arc_grow_retry = 60; 344 345 /* 346 * Minimum time between calls to arc_kmem_reap_soon(). Note that this will 347 * be converted to ticks, so with the default hz=100, a setting of 15 ms 348 * will actually wait 2 ticks, or 20ms. 349 */ 350 int arc_kmem_cache_reap_retry_ms = 1000; 351 352 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 353 int zfs_arc_overflow_shift = 8; 354 355 /* shift of arc_c for calculating both min and max arc_p */ 356 int arc_p_min_shift = 4; 357 358 /* log2(fraction of arc to reclaim) */ 359 int arc_shrink_shift = 7; 360 361 /* 362 * log2(fraction of ARC which must be free to allow growing). 363 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 364 * when reading a new block into the ARC, we will evict an equal-sized block 365 * from the ARC. 366 * 367 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 368 * we will still not allow it to grow. 369 */ 370 int arc_no_grow_shift = 5; 371 372 373 /* 374 * minimum lifespan of a prefetch block in clock ticks 375 * (initialized in arc_init()) 376 */ 377 static int zfs_arc_min_prefetch_ms = 1; 378 static int zfs_arc_min_prescient_prefetch_ms = 6; 379 380 /* 381 * If this percent of memory is free, don't throttle. 382 */ 383 int arc_lotsfree_percent = 10; 384 385 static boolean_t arc_initialized; 386 387 /* 388 * The arc has filled available memory and has now warmed up. 389 */ 390 static boolean_t arc_warm; 391 392 /* 393 * log2 fraction of the zio arena to keep free. 394 */ 395 int arc_zio_arena_free_shift = 2; 396 397 /* 398 * These tunables are for performance analysis. 399 */ 400 uint64_t zfs_arc_max; 401 uint64_t zfs_arc_min; 402 uint64_t zfs_arc_meta_limit = 0; 403 uint64_t zfs_arc_meta_min = 0; 404 int zfs_arc_grow_retry = 0; 405 int zfs_arc_shrink_shift = 0; 406 int zfs_arc_p_min_shift = 0; 407 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 408 409 /* 410 * ARC dirty data constraints for arc_tempreserve_space() throttle 411 */ 412 uint_t zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */ 413 uint_t zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */ 414 uint_t zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */ 415 416 boolean_t zfs_compressed_arc_enabled = B_TRUE; 417 418 /* The 6 states: */ 419 static arc_state_t ARC_anon; 420 static arc_state_t ARC_mru; 421 static arc_state_t ARC_mru_ghost; 422 static arc_state_t ARC_mfu; 423 static arc_state_t ARC_mfu_ghost; 424 static arc_state_t ARC_l2c_only; 425 426 arc_stats_t arc_stats = { 427 { "hits", KSTAT_DATA_UINT64 }, 428 { "misses", KSTAT_DATA_UINT64 }, 429 { "demand_data_hits", KSTAT_DATA_UINT64 }, 430 { "demand_data_misses", KSTAT_DATA_UINT64 }, 431 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 432 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 433 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 434 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 435 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 436 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 437 { "mru_hits", KSTAT_DATA_UINT64 }, 438 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 439 { "mfu_hits", KSTAT_DATA_UINT64 }, 440 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 441 { "deleted", KSTAT_DATA_UINT64 }, 442 { "mutex_miss", KSTAT_DATA_UINT64 }, 443 { "access_skip", KSTAT_DATA_UINT64 }, 444 { "evict_skip", KSTAT_DATA_UINT64 }, 445 { "evict_not_enough", KSTAT_DATA_UINT64 }, 446 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 447 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 448 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 }, 449 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 }, 450 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 451 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 452 { "hash_elements", KSTAT_DATA_UINT64 }, 453 { "hash_elements_max", KSTAT_DATA_UINT64 }, 454 { "hash_collisions", KSTAT_DATA_UINT64 }, 455 { "hash_chains", KSTAT_DATA_UINT64 }, 456 { "hash_chain_max", KSTAT_DATA_UINT64 }, 457 { "p", KSTAT_DATA_UINT64 }, 458 { "c", KSTAT_DATA_UINT64 }, 459 { "c_min", KSTAT_DATA_UINT64 }, 460 { "c_max", KSTAT_DATA_UINT64 }, 461 { "size", KSTAT_DATA_UINT64 }, 462 { "compressed_size", KSTAT_DATA_UINT64 }, 463 { "uncompressed_size", KSTAT_DATA_UINT64 }, 464 { "overhead_size", KSTAT_DATA_UINT64 }, 465 { "hdr_size", KSTAT_DATA_UINT64 }, 466 { "data_size", KSTAT_DATA_UINT64 }, 467 { "metadata_size", KSTAT_DATA_UINT64 }, 468 { "other_size", KSTAT_DATA_UINT64 }, 469 { "anon_size", KSTAT_DATA_UINT64 }, 470 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 471 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 472 { "mru_size", KSTAT_DATA_UINT64 }, 473 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 474 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 475 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 476 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 477 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 478 { "mfu_size", KSTAT_DATA_UINT64 }, 479 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 480 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 481 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 482 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 483 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 484 { "l2_hits", KSTAT_DATA_UINT64 }, 485 { "l2_misses", KSTAT_DATA_UINT64 }, 486 { "l2_prefetch_asize", KSTAT_DATA_UINT64 }, 487 { "l2_mru_asize", KSTAT_DATA_UINT64 }, 488 { "l2_mfu_asize", KSTAT_DATA_UINT64 }, 489 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 }, 490 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 }, 491 { "l2_feeds", KSTAT_DATA_UINT64 }, 492 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 493 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 494 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 495 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 496 { "l2_writes_done", KSTAT_DATA_UINT64 }, 497 { "l2_writes_error", KSTAT_DATA_UINT64 }, 498 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 499 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 500 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 501 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 502 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 503 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 504 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 505 { "l2_io_error", KSTAT_DATA_UINT64 }, 506 { "l2_size", KSTAT_DATA_UINT64 }, 507 { "l2_asize", KSTAT_DATA_UINT64 }, 508 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 509 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 510 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 511 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 512 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 513 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 514 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 515 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 516 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 517 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 518 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 519 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 520 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 521 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 522 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 523 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 524 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 525 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 526 { "arc_meta_used", KSTAT_DATA_UINT64 }, 527 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 528 { "arc_meta_max", KSTAT_DATA_UINT64 }, 529 { "arc_meta_min", KSTAT_DATA_UINT64 }, 530 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 531 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 532 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 533 }; 534 535 #define ARCSTAT_MAX(stat, val) { \ 536 uint64_t m; \ 537 while ((val) > (m = arc_stats.stat.value.ui64) && \ 538 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 539 continue; \ 540 } 541 542 #define ARCSTAT_MAXSTAT(stat) \ 543 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 544 545 /* 546 * We define a macro to allow ARC hits/misses to be easily broken down by 547 * two separate conditions, giving a total of four different subtypes for 548 * each of hits and misses (so eight statistics total). 549 */ 550 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 551 if (cond1) { \ 552 if (cond2) { \ 553 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 554 } else { \ 555 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 556 } \ 557 } else { \ 558 if (cond2) { \ 559 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 560 } else { \ 561 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 562 } \ 563 } 564 565 /* 566 * This macro allows us to use kstats as floating averages. Each time we 567 * update this kstat, we first factor it and the update value by 568 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 569 * average. This macro assumes that integer loads and stores are atomic, but 570 * is not safe for multiple writers updating the kstat in parallel (only the 571 * last writer's update will remain). 572 */ 573 #define ARCSTAT_F_AVG_FACTOR 3 574 #define ARCSTAT_F_AVG(stat, value) \ 575 do { \ 576 uint64_t x = ARCSTAT(stat); \ 577 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 578 (value) / ARCSTAT_F_AVG_FACTOR; \ 579 ARCSTAT(stat) = x; \ 580 _NOTE(CONSTCOND) \ 581 } while (0) 582 583 kstat_t *arc_ksp; 584 static arc_state_t *arc_anon; 585 static arc_state_t *arc_mru; 586 static arc_state_t *arc_mru_ghost; 587 static arc_state_t *arc_mfu; 588 static arc_state_t *arc_mfu_ghost; 589 static arc_state_t *arc_l2c_only; 590 591 /* 592 * There are also some ARC variables that we want to export, but that are 593 * updated so often that having the canonical representation be the statistic 594 * variable causes a performance bottleneck. We want to use aggsum_t's for these 595 * instead, but still be able to export the kstat in the same way as before. 596 * The solution is to always use the aggsum version, except in the kstat update 597 * callback. 598 */ 599 aggsum_t arc_size; 600 aggsum_t arc_meta_used; 601 aggsum_t astat_data_size; 602 aggsum_t astat_metadata_size; 603 aggsum_t astat_hdr_size; 604 aggsum_t astat_other_size; 605 aggsum_t astat_l2_hdr_size; 606 607 static int arc_no_grow; /* Don't try to grow cache size */ 608 static hrtime_t arc_growtime; 609 static uint64_t arc_tempreserve; 610 static uint64_t arc_loaned_bytes; 611 612 #define GHOST_STATE(state) \ 613 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 614 (state) == arc_l2c_only) 615 616 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 617 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 618 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 619 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 620 #define HDR_PRESCIENT_PREFETCH(hdr) \ 621 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 622 #define HDR_COMPRESSION_ENABLED(hdr) \ 623 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 624 625 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 626 #define HDR_L2_READING(hdr) \ 627 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 628 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 629 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 630 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 631 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 632 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 633 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 634 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 635 636 #define HDR_ISTYPE_METADATA(hdr) \ 637 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 638 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 639 640 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 641 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 642 #define HDR_HAS_RABD(hdr) \ 643 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 644 (hdr)->b_crypt_hdr.b_rabd != NULL) 645 #define HDR_ENCRYPTED(hdr) \ 646 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 647 #define HDR_AUTHENTICATED(hdr) \ 648 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 649 650 /* For storing compression mode in b_flags */ 651 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 652 653 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 654 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 655 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 656 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 657 658 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 659 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 660 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 661 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 662 663 /* 664 * Other sizes 665 */ 666 667 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 668 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr)) 669 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 670 671 /* 672 * Hash table routines 673 */ 674 675 #define HT_LOCK_PAD 64 676 677 struct ht_lock { 678 kmutex_t ht_lock; 679 #ifdef _KERNEL 680 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 681 #endif 682 }; 683 684 #define BUF_LOCKS 256 685 typedef struct buf_hash_table { 686 uint64_t ht_mask; 687 arc_buf_hdr_t **ht_table; 688 struct ht_lock ht_locks[BUF_LOCKS]; 689 } buf_hash_table_t; 690 691 static buf_hash_table_t buf_hash_table; 692 693 #define BUF_HASH_INDEX(spa, dva, birth) \ 694 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 695 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 696 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 697 #define HDR_LOCK(hdr) \ 698 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 699 700 uint64_t zfs_crc64_table[256]; 701 702 /* 703 * Level 2 ARC 704 */ 705 706 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 707 #define L2ARC_HEADROOM 2 /* num of writes */ 708 /* 709 * If we discover during ARC scan any buffers to be compressed, we boost 710 * our headroom for the next scanning cycle by this percentage multiple. 711 */ 712 #define L2ARC_HEADROOM_BOOST 200 713 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 714 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 715 716 /* 717 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 718 * and each of the state has two types: data and metadata. 719 */ 720 #define L2ARC_FEED_TYPES 4 721 722 723 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 724 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 725 726 /* L2ARC Performance Tunables */ 727 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 728 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 729 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 730 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 731 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 732 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 733 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 734 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 735 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 736 int l2arc_meta_percent = 33; /* limit on headers size */ 737 738 /* 739 * L2ARC Internals 740 */ 741 static list_t L2ARC_dev_list; /* device list */ 742 static list_t *l2arc_dev_list; /* device list pointer */ 743 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 744 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 745 static list_t L2ARC_free_on_write; /* free after write buf list */ 746 static list_t *l2arc_free_on_write; /* free after write list ptr */ 747 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 748 static uint64_t l2arc_ndev; /* number of devices */ 749 750 typedef struct l2arc_read_callback { 751 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 752 blkptr_t l2rcb_bp; /* original blkptr */ 753 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 754 int l2rcb_flags; /* original flags */ 755 abd_t *l2rcb_abd; /* temporary buffer */ 756 } l2arc_read_callback_t; 757 758 typedef struct l2arc_data_free { 759 /* protected by l2arc_free_on_write_mtx */ 760 abd_t *l2df_abd; 761 size_t l2df_size; 762 arc_buf_contents_t l2df_type; 763 list_node_t l2df_list_node; 764 } l2arc_data_free_t; 765 766 static kmutex_t l2arc_feed_thr_lock; 767 static kcondvar_t l2arc_feed_thr_cv; 768 static uint8_t l2arc_thread_exit; 769 770 static kmutex_t l2arc_rebuild_thr_lock; 771 static kcondvar_t l2arc_rebuild_thr_cv; 772 773 enum arc_hdr_alloc_flags { 774 ARC_HDR_ALLOC_RDATA = 0x1, 775 ARC_HDR_DO_ADAPT = 0x2, 776 }; 777 778 779 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 780 typedef enum arc_fill_flags { 781 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 782 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 783 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 784 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 785 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 786 } arc_fill_flags_t; 787 788 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 789 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 790 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 791 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 792 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 793 static void arc_hdr_free_pabd(arc_buf_hdr_t *, boolean_t); 794 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *, int); 795 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 796 static boolean_t arc_is_overflowing(); 797 static void arc_buf_watch(arc_buf_t *); 798 static l2arc_dev_t *l2arc_vdev_get(vdev_t *vd); 799 800 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 801 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 802 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 803 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 804 805 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 806 static void l2arc_read_done(zio_t *); 807 static void l2arc_do_free_on_write(void); 808 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 809 boolean_t state_only); 810 811 #define l2arc_hdr_arcstats_increment(hdr) \ 812 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE) 813 #define l2arc_hdr_arcstats_decrement(hdr) \ 814 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE) 815 #define l2arc_hdr_arcstats_increment_state(hdr) \ 816 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE) 817 #define l2arc_hdr_arcstats_decrement_state(hdr) \ 818 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE) 819 820 /* 821 * The arc_all_memory function is a ZoL enhancement that lives in their OSL 822 * code. In user-space code, which is used primarily for testing, we return 823 * half of all memory. 824 */ 825 uint64_t 826 arc_all_memory(void) 827 { 828 #ifdef _KERNEL 829 return (ptob(physmem)); 830 #else 831 return ((sysconf(_SC_PAGESIZE) * sysconf(_SC_PHYS_PAGES)) / 2); 832 #endif 833 } 834 835 /* 836 * We use Cityhash for this. It's fast, and has good hash properties without 837 * requiring any large static buffers. 838 */ 839 static uint64_t 840 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 841 { 842 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 843 } 844 845 #define HDR_EMPTY(hdr) \ 846 ((hdr)->b_dva.dva_word[0] == 0 && \ 847 (hdr)->b_dva.dva_word[1] == 0) 848 849 #define HDR_EMPTY_OR_LOCKED(hdr) \ 850 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 851 852 #define HDR_EQUAL(spa, dva, birth, hdr) \ 853 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 854 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 855 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 856 857 static void 858 buf_discard_identity(arc_buf_hdr_t *hdr) 859 { 860 hdr->b_dva.dva_word[0] = 0; 861 hdr->b_dva.dva_word[1] = 0; 862 hdr->b_birth = 0; 863 } 864 865 static arc_buf_hdr_t * 866 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 867 { 868 const dva_t *dva = BP_IDENTITY(bp); 869 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 870 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 871 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 872 arc_buf_hdr_t *hdr; 873 874 mutex_enter(hash_lock); 875 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 876 hdr = hdr->b_hash_next) { 877 if (HDR_EQUAL(spa, dva, birth, hdr)) { 878 *lockp = hash_lock; 879 return (hdr); 880 } 881 } 882 mutex_exit(hash_lock); 883 *lockp = NULL; 884 return (NULL); 885 } 886 887 /* 888 * Insert an entry into the hash table. If there is already an element 889 * equal to elem in the hash table, then the already existing element 890 * will be returned and the new element will not be inserted. 891 * Otherwise returns NULL. 892 * If lockp == NULL, the caller is assumed to already hold the hash lock. 893 */ 894 static arc_buf_hdr_t * 895 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 896 { 897 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 898 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 899 arc_buf_hdr_t *fhdr; 900 uint32_t i; 901 902 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 903 ASSERT(hdr->b_birth != 0); 904 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 905 906 if (lockp != NULL) { 907 *lockp = hash_lock; 908 mutex_enter(hash_lock); 909 } else { 910 ASSERT(MUTEX_HELD(hash_lock)); 911 } 912 913 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 914 fhdr = fhdr->b_hash_next, i++) { 915 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 916 return (fhdr); 917 } 918 919 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 920 buf_hash_table.ht_table[idx] = hdr; 921 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 922 923 /* collect some hash table performance data */ 924 if (i > 0) { 925 ARCSTAT_BUMP(arcstat_hash_collisions); 926 if (i == 1) 927 ARCSTAT_BUMP(arcstat_hash_chains); 928 929 ARCSTAT_MAX(arcstat_hash_chain_max, i); 930 } 931 932 ARCSTAT_BUMP(arcstat_hash_elements); 933 ARCSTAT_MAXSTAT(arcstat_hash_elements); 934 935 return (NULL); 936 } 937 938 static void 939 buf_hash_remove(arc_buf_hdr_t *hdr) 940 { 941 arc_buf_hdr_t *fhdr, **hdrp; 942 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 943 944 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 945 ASSERT(HDR_IN_HASH_TABLE(hdr)); 946 947 hdrp = &buf_hash_table.ht_table[idx]; 948 while ((fhdr = *hdrp) != hdr) { 949 ASSERT3P(fhdr, !=, NULL); 950 hdrp = &fhdr->b_hash_next; 951 } 952 *hdrp = hdr->b_hash_next; 953 hdr->b_hash_next = NULL; 954 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 955 956 /* collect some hash table performance data */ 957 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 958 959 if (buf_hash_table.ht_table[idx] && 960 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 961 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 962 } 963 964 /* 965 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 966 * metadata and data are cached from ARC into L2ARC. 967 */ 968 int l2arc_mfuonly = 0; 969 970 /* 971 * Global data structures and functions for the buf kmem cache. 972 */ 973 974 static kmem_cache_t *hdr_full_cache; 975 static kmem_cache_t *hdr_full_crypt_cache; 976 static kmem_cache_t *hdr_l2only_cache; 977 static kmem_cache_t *buf_cache; 978 979 static void 980 buf_fini(void) 981 { 982 int i; 983 984 kmem_free(buf_hash_table.ht_table, 985 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 986 for (i = 0; i < BUF_LOCKS; i++) 987 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 988 kmem_cache_destroy(hdr_full_cache); 989 kmem_cache_destroy(hdr_full_crypt_cache); 990 kmem_cache_destroy(hdr_l2only_cache); 991 kmem_cache_destroy(buf_cache); 992 } 993 994 /* 995 * Constructor callback - called when the cache is empty 996 * and a new buf is requested. 997 */ 998 /* ARGSUSED */ 999 static int 1000 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1001 { 1002 arc_buf_hdr_t *hdr = vbuf; 1003 1004 bzero(hdr, HDR_FULL_SIZE); 1005 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1006 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1007 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1008 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1009 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1010 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1011 1012 return (0); 1013 } 1014 1015 /* ARGSUSED */ 1016 static int 1017 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag) 1018 { 1019 arc_buf_hdr_t *hdr = vbuf; 1020 1021 (void) hdr_full_cons(vbuf, unused, kmflag); 1022 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr)); 1023 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1024 1025 return (0); 1026 } 1027 1028 /* ARGSUSED */ 1029 static int 1030 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1031 { 1032 arc_buf_hdr_t *hdr = vbuf; 1033 1034 bzero(hdr, HDR_L2ONLY_SIZE); 1035 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1036 1037 return (0); 1038 } 1039 1040 /* ARGSUSED */ 1041 static int 1042 buf_cons(void *vbuf, void *unused, int kmflag) 1043 { 1044 arc_buf_t *buf = vbuf; 1045 1046 bzero(buf, sizeof (arc_buf_t)); 1047 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1048 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1049 1050 return (0); 1051 } 1052 1053 /* 1054 * Destructor callback - called when a cached buf is 1055 * no longer required. 1056 */ 1057 /* ARGSUSED */ 1058 static void 1059 hdr_full_dest(void *vbuf, void *unused) 1060 { 1061 arc_buf_hdr_t *hdr = vbuf; 1062 1063 ASSERT(HDR_EMPTY(hdr)); 1064 cv_destroy(&hdr->b_l1hdr.b_cv); 1065 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1066 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1067 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1068 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1069 } 1070 1071 /* ARGSUSED */ 1072 static void 1073 hdr_full_crypt_dest(void *vbuf, void *unused) 1074 { 1075 arc_buf_hdr_t *hdr = vbuf; 1076 1077 hdr_full_dest(hdr, unused); 1078 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1079 } 1080 1081 /* ARGSUSED */ 1082 static void 1083 hdr_l2only_dest(void *vbuf, void *unused) 1084 { 1085 arc_buf_hdr_t *hdr = vbuf; 1086 1087 ASSERT(HDR_EMPTY(hdr)); 1088 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1089 } 1090 1091 /* ARGSUSED */ 1092 static void 1093 buf_dest(void *vbuf, void *unused) 1094 { 1095 arc_buf_t *buf = vbuf; 1096 1097 mutex_destroy(&buf->b_evict_lock); 1098 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1099 } 1100 1101 /* 1102 * Reclaim callback -- invoked when memory is low. 1103 */ 1104 /* ARGSUSED */ 1105 static void 1106 hdr_recl(void *unused) 1107 { 1108 dprintf("hdr_recl called\n"); 1109 /* 1110 * umem calls the reclaim func when we destroy the buf cache, 1111 * which is after we do arc_fini(). 1112 */ 1113 if (arc_initialized) 1114 zthr_wakeup(arc_reap_zthr); 1115 } 1116 1117 static void 1118 buf_init(void) 1119 { 1120 uint64_t *ct; 1121 uint64_t hsize = 1ULL << 12; 1122 int i, j; 1123 1124 /* 1125 * The hash table is big enough to fill all of physical memory 1126 * with an average block size of zfs_arc_average_blocksize (default 8K). 1127 * By default, the table will take up 1128 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1129 */ 1130 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 1131 hsize <<= 1; 1132 retry: 1133 buf_hash_table.ht_mask = hsize - 1; 1134 buf_hash_table.ht_table = 1135 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1136 if (buf_hash_table.ht_table == NULL) { 1137 ASSERT(hsize > (1ULL << 8)); 1138 hsize >>= 1; 1139 goto retry; 1140 } 1141 1142 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1143 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0); 1144 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt", 1145 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest, 1146 hdr_recl, NULL, NULL, 0); 1147 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1148 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl, 1149 NULL, NULL, 0); 1150 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1151 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1152 1153 for (i = 0; i < 256; i++) 1154 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1155 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1156 1157 for (i = 0; i < BUF_LOCKS; i++) { 1158 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1159 NULL, MUTEX_DEFAULT, NULL); 1160 } 1161 } 1162 1163 /* 1164 * This is the size that the buf occupies in memory. If the buf is compressed, 1165 * it will correspond to the compressed size. You should use this method of 1166 * getting the buf size unless you explicitly need the logical size. 1167 */ 1168 int32_t 1169 arc_buf_size(arc_buf_t *buf) 1170 { 1171 return (ARC_BUF_COMPRESSED(buf) ? 1172 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1173 } 1174 1175 int32_t 1176 arc_buf_lsize(arc_buf_t *buf) 1177 { 1178 return (HDR_GET_LSIZE(buf->b_hdr)); 1179 } 1180 1181 /* 1182 * This function will return B_TRUE if the buffer is encrypted in memory. 1183 * This buffer can be decrypted by calling arc_untransform(). 1184 */ 1185 boolean_t 1186 arc_is_encrypted(arc_buf_t *buf) 1187 { 1188 return (ARC_BUF_ENCRYPTED(buf) != 0); 1189 } 1190 1191 /* 1192 * Returns B_TRUE if the buffer represents data that has not had its MAC 1193 * verified yet. 1194 */ 1195 boolean_t 1196 arc_is_unauthenticated(arc_buf_t *buf) 1197 { 1198 return (HDR_NOAUTH(buf->b_hdr) != 0); 1199 } 1200 1201 void 1202 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1203 uint8_t *iv, uint8_t *mac) 1204 { 1205 arc_buf_hdr_t *hdr = buf->b_hdr; 1206 1207 ASSERT(HDR_PROTECTED(hdr)); 1208 1209 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 1210 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 1211 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 1212 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1213 /* CONSTCOND */ 1214 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1215 } 1216 1217 /* 1218 * Indicates how this buffer is compressed in memory. If it is not compressed 1219 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1220 * arc_untransform() as long as it is also unencrypted. 1221 */ 1222 enum zio_compress 1223 arc_get_compression(arc_buf_t *buf) 1224 { 1225 return (ARC_BUF_COMPRESSED(buf) ? 1226 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1227 } 1228 1229 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1230 1231 /* 1232 * Return the compression algorithm used to store this data in the ARC. If ARC 1233 * compression is enabled or this is an encrypted block, this will be the same 1234 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1235 */ 1236 static inline enum zio_compress 1237 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1238 { 1239 return (HDR_COMPRESSION_ENABLED(hdr) ? 1240 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1241 } 1242 1243 static inline boolean_t 1244 arc_buf_is_shared(arc_buf_t *buf) 1245 { 1246 boolean_t shared = (buf->b_data != NULL && 1247 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1248 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1249 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1250 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1251 IMPLY(shared, ARC_BUF_SHARED(buf)); 1252 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1253 1254 /* 1255 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1256 * already being shared" requirement prevents us from doing that. 1257 */ 1258 1259 return (shared); 1260 } 1261 1262 /* 1263 * Free the checksum associated with this header. If there is no checksum, this 1264 * is a no-op. 1265 */ 1266 static inline void 1267 arc_cksum_free(arc_buf_hdr_t *hdr) 1268 { 1269 ASSERT(HDR_HAS_L1HDR(hdr)); 1270 1271 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1272 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1273 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1274 hdr->b_l1hdr.b_freeze_cksum = NULL; 1275 } 1276 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1277 } 1278 1279 /* 1280 * Return true iff at least one of the bufs on hdr is not compressed. 1281 * Encrypted buffers count as compressed. 1282 */ 1283 static boolean_t 1284 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1285 { 1286 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1287 1288 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1289 if (!ARC_BUF_COMPRESSED(b)) { 1290 return (B_TRUE); 1291 } 1292 } 1293 return (B_FALSE); 1294 } 1295 1296 /* 1297 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1298 * matches the checksum that is stored in the hdr. If there is no checksum, 1299 * or if the buf is compressed, this is a no-op. 1300 */ 1301 static void 1302 arc_cksum_verify(arc_buf_t *buf) 1303 { 1304 arc_buf_hdr_t *hdr = buf->b_hdr; 1305 zio_cksum_t zc; 1306 1307 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1308 return; 1309 1310 if (ARC_BUF_COMPRESSED(buf)) 1311 return; 1312 1313 ASSERT(HDR_HAS_L1HDR(hdr)); 1314 1315 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1316 1317 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1318 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1319 return; 1320 } 1321 1322 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1323 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1324 panic("buffer modified while frozen!"); 1325 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1326 } 1327 1328 /* 1329 * This function makes the assumption that data stored in the L2ARC 1330 * will be transformed exactly as it is in the main pool. Because of 1331 * this we can verify the checksum against the reading process's bp. 1332 */ 1333 static boolean_t 1334 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1335 { 1336 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1337 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1338 1339 /* 1340 * Block pointers always store the checksum for the logical data. 1341 * If the block pointer has the gang bit set, then the checksum 1342 * it represents is for the reconstituted data and not for an 1343 * individual gang member. The zio pipeline, however, must be able to 1344 * determine the checksum of each of the gang constituents so it 1345 * treats the checksum comparison differently than what we need 1346 * for l2arc blocks. This prevents us from using the 1347 * zio_checksum_error() interface directly. Instead we must call the 1348 * zio_checksum_error_impl() so that we can ensure the checksum is 1349 * generated using the correct checksum algorithm and accounts for the 1350 * logical I/O size and not just a gang fragment. 1351 */ 1352 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1353 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1354 zio->io_offset, NULL) == 0); 1355 } 1356 1357 /* 1358 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1359 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1360 * isn't modified later on. If buf is compressed or there is already a checksum 1361 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1362 */ 1363 static void 1364 arc_cksum_compute(arc_buf_t *buf) 1365 { 1366 arc_buf_hdr_t *hdr = buf->b_hdr; 1367 1368 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1369 return; 1370 1371 ASSERT(HDR_HAS_L1HDR(hdr)); 1372 1373 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1374 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1375 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1376 return; 1377 } 1378 1379 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1380 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1381 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1382 KM_SLEEP); 1383 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1384 hdr->b_l1hdr.b_freeze_cksum); 1385 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1386 arc_buf_watch(buf); 1387 } 1388 1389 #ifndef _KERNEL 1390 typedef struct procctl { 1391 long cmd; 1392 prwatch_t prwatch; 1393 } procctl_t; 1394 #endif 1395 1396 /* ARGSUSED */ 1397 static void 1398 arc_buf_unwatch(arc_buf_t *buf) 1399 { 1400 #ifndef _KERNEL 1401 if (arc_watch) { 1402 int result; 1403 procctl_t ctl; 1404 ctl.cmd = PCWATCH; 1405 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1406 ctl.prwatch.pr_size = 0; 1407 ctl.prwatch.pr_wflags = 0; 1408 result = write(arc_procfd, &ctl, sizeof (ctl)); 1409 ASSERT3U(result, ==, sizeof (ctl)); 1410 } 1411 #endif 1412 } 1413 1414 /* ARGSUSED */ 1415 static void 1416 arc_buf_watch(arc_buf_t *buf) 1417 { 1418 #ifndef _KERNEL 1419 if (arc_watch) { 1420 int result; 1421 procctl_t ctl; 1422 ctl.cmd = PCWATCH; 1423 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1424 ctl.prwatch.pr_size = arc_buf_size(buf); 1425 ctl.prwatch.pr_wflags = WA_WRITE; 1426 result = write(arc_procfd, &ctl, sizeof (ctl)); 1427 ASSERT3U(result, ==, sizeof (ctl)); 1428 } 1429 #endif 1430 } 1431 1432 static arc_buf_contents_t 1433 arc_buf_type(arc_buf_hdr_t *hdr) 1434 { 1435 arc_buf_contents_t type; 1436 if (HDR_ISTYPE_METADATA(hdr)) { 1437 type = ARC_BUFC_METADATA; 1438 } else { 1439 type = ARC_BUFC_DATA; 1440 } 1441 VERIFY3U(hdr->b_type, ==, type); 1442 return (type); 1443 } 1444 1445 boolean_t 1446 arc_is_metadata(arc_buf_t *buf) 1447 { 1448 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1449 } 1450 1451 static uint32_t 1452 arc_bufc_to_flags(arc_buf_contents_t type) 1453 { 1454 switch (type) { 1455 case ARC_BUFC_DATA: 1456 /* metadata field is 0 if buffer contains normal data */ 1457 return (0); 1458 case ARC_BUFC_METADATA: 1459 return (ARC_FLAG_BUFC_METADATA); 1460 default: 1461 break; 1462 } 1463 panic("undefined ARC buffer type!"); 1464 return ((uint32_t)-1); 1465 } 1466 1467 void 1468 arc_buf_thaw(arc_buf_t *buf) 1469 { 1470 arc_buf_hdr_t *hdr = buf->b_hdr; 1471 1472 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1473 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1474 1475 arc_cksum_verify(buf); 1476 1477 /* 1478 * Compressed buffers do not manipulate the b_freeze_cksum. 1479 */ 1480 if (ARC_BUF_COMPRESSED(buf)) 1481 return; 1482 1483 ASSERT(HDR_HAS_L1HDR(hdr)); 1484 arc_cksum_free(hdr); 1485 1486 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1487 #ifdef ZFS_DEBUG 1488 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1489 if (hdr->b_l1hdr.b_thawed != NULL) 1490 kmem_free(hdr->b_l1hdr.b_thawed, 1); 1491 hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP); 1492 } 1493 #endif 1494 1495 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1496 1497 arc_buf_unwatch(buf); 1498 } 1499 1500 void 1501 arc_buf_freeze(arc_buf_t *buf) 1502 { 1503 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1504 return; 1505 1506 if (ARC_BUF_COMPRESSED(buf)) 1507 return; 1508 1509 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1510 arc_cksum_compute(buf); 1511 } 1512 1513 /* 1514 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1515 * the following functions should be used to ensure that the flags are 1516 * updated in a thread-safe way. When manipulating the flags either 1517 * the hash_lock must be held or the hdr must be undiscoverable. This 1518 * ensures that we're not racing with any other threads when updating 1519 * the flags. 1520 */ 1521 static inline void 1522 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1523 { 1524 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1525 hdr->b_flags |= flags; 1526 } 1527 1528 static inline void 1529 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1530 { 1531 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1532 hdr->b_flags &= ~flags; 1533 } 1534 1535 /* 1536 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1537 * done in a special way since we have to clear and set bits 1538 * at the same time. Consumers that wish to set the compression bits 1539 * must use this function to ensure that the flags are updated in 1540 * thread-safe manner. 1541 */ 1542 static void 1543 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1544 { 1545 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1546 1547 /* 1548 * Holes and embedded blocks will always have a psize = 0 so 1549 * we ignore the compression of the blkptr and set the 1550 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF. 1551 * Holes and embedded blocks remain anonymous so we don't 1552 * want to uncompress them. Mark them as uncompressed. 1553 */ 1554 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1555 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1556 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1557 } else { 1558 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1559 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1560 } 1561 1562 HDR_SET_COMPRESS(hdr, cmp); 1563 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1564 } 1565 1566 /* 1567 * Looks for another buf on the same hdr which has the data decompressed, copies 1568 * from it, and returns true. If no such buf exists, returns false. 1569 */ 1570 static boolean_t 1571 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1572 { 1573 arc_buf_hdr_t *hdr = buf->b_hdr; 1574 boolean_t copied = B_FALSE; 1575 1576 ASSERT(HDR_HAS_L1HDR(hdr)); 1577 ASSERT3P(buf->b_data, !=, NULL); 1578 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1579 1580 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1581 from = from->b_next) { 1582 /* can't use our own data buffer */ 1583 if (from == buf) { 1584 continue; 1585 } 1586 1587 if (!ARC_BUF_COMPRESSED(from)) { 1588 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1589 copied = B_TRUE; 1590 break; 1591 } 1592 } 1593 1594 /* 1595 * Note: With encryption support, the following assertion is no longer 1596 * necessarily valid. If we receive two back to back raw snapshots 1597 * (send -w), the second receive can use a hdr with a cksum already 1598 * calculated. This happens via: 1599 * dmu_recv_stream() -> receive_read_record() -> arc_loan_raw_buf() 1600 * The rsend/send_mixed_raw test case exercises this code path. 1601 * 1602 * There were no decompressed bufs, so there should not be a 1603 * checksum on the hdr either. 1604 * EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1605 */ 1606 1607 return (copied); 1608 } 1609 1610 /* 1611 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1612 */ 1613 static uint64_t 1614 arc_hdr_size(arc_buf_hdr_t *hdr) 1615 { 1616 uint64_t size; 1617 1618 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1619 HDR_GET_PSIZE(hdr) > 0) { 1620 size = HDR_GET_PSIZE(hdr); 1621 } else { 1622 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1623 size = HDR_GET_LSIZE(hdr); 1624 } 1625 return (size); 1626 } 1627 1628 static int 1629 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1630 { 1631 int ret; 1632 uint64_t csize; 1633 uint64_t lsize = HDR_GET_LSIZE(hdr); 1634 uint64_t psize = HDR_GET_PSIZE(hdr); 1635 void *tmpbuf = NULL; 1636 abd_t *abd = hdr->b_l1hdr.b_pabd; 1637 1638 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1639 ASSERT(HDR_AUTHENTICATED(hdr)); 1640 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1641 1642 /* 1643 * The MAC is calculated on the compressed data that is stored on disk. 1644 * However, if compressed arc is disabled we will only have the 1645 * decompressed data available to us now. Compress it into a temporary 1646 * abd so we can verify the MAC. The performance overhead of this will 1647 * be relatively low, since most objects in an encrypted objset will 1648 * be encrypted (instead of authenticated) anyway. 1649 */ 1650 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1651 !HDR_COMPRESSION_ENABLED(hdr)) { 1652 tmpbuf = zio_buf_alloc(lsize); 1653 abd = abd_get_from_buf(tmpbuf, lsize); 1654 abd_take_ownership_of_buf(abd, B_TRUE); 1655 1656 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1657 hdr->b_l1hdr.b_pabd, tmpbuf, lsize); 1658 ASSERT3U(csize, <=, psize); 1659 abd_zero_off(abd, csize, psize - csize); 1660 } 1661 1662 /* 1663 * Authentication is best effort. We authenticate whenever the key is 1664 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1665 */ 1666 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1667 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1668 ASSERT3U(lsize, ==, psize); 1669 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1670 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1671 } else { 1672 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1673 hdr->b_crypt_hdr.b_mac); 1674 } 1675 1676 if (ret == 0) 1677 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1678 else if (ret != ENOENT) 1679 goto error; 1680 1681 if (tmpbuf != NULL) 1682 abd_free(abd); 1683 1684 return (0); 1685 1686 error: 1687 if (tmpbuf != NULL) 1688 abd_free(abd); 1689 1690 return (ret); 1691 } 1692 1693 /* 1694 * This function will take a header that only has raw encrypted data in 1695 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1696 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1697 * also decompress the data. 1698 */ 1699 static int 1700 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1701 { 1702 int ret; 1703 abd_t *cabd = NULL; 1704 void *tmp = NULL; 1705 boolean_t no_crypt = B_FALSE; 1706 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1707 1708 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1709 ASSERT(HDR_ENCRYPTED(hdr)); 1710 1711 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT); 1712 1713 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1714 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1715 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1716 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1717 if (ret != 0) 1718 goto error; 1719 1720 if (no_crypt) { 1721 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1722 HDR_GET_PSIZE(hdr)); 1723 } 1724 1725 /* 1726 * If this header has disabled arc compression but the b_pabd is 1727 * compressed after decrypting it, we need to decompress the newly 1728 * decrypted data. 1729 */ 1730 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1731 !HDR_COMPRESSION_ENABLED(hdr)) { 1732 /* 1733 * We want to make sure that we are correctly honoring the 1734 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1735 * and then loan a buffer from it, rather than allocating a 1736 * linear buffer and wrapping it in an abd later. 1737 */ 1738 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, B_TRUE); 1739 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 1740 1741 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1742 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 1743 HDR_GET_LSIZE(hdr)); 1744 if (ret != 0) { 1745 abd_return_buf(cabd, tmp, arc_hdr_size(hdr)); 1746 goto error; 1747 } 1748 1749 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 1750 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1751 arc_hdr_size(hdr), hdr); 1752 hdr->b_l1hdr.b_pabd = cabd; 1753 } 1754 1755 return (0); 1756 1757 error: 1758 arc_hdr_free_pabd(hdr, B_FALSE); 1759 if (cabd != NULL) 1760 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1761 1762 return (ret); 1763 } 1764 1765 /* 1766 * This function is called during arc_buf_fill() to prepare the header's 1767 * abd plaintext pointer for use. This involves authenticated protected 1768 * data and decrypting encrypted data into the plaintext abd. 1769 */ 1770 static int 1771 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1772 const zbookmark_phys_t *zb, boolean_t noauth) 1773 { 1774 int ret; 1775 1776 ASSERT(HDR_PROTECTED(hdr)); 1777 1778 if (hash_lock != NULL) 1779 mutex_enter(hash_lock); 1780 1781 if (HDR_NOAUTH(hdr) && !noauth) { 1782 /* 1783 * The caller requested authenticated data but our data has 1784 * not been authenticated yet. Verify the MAC now if we can. 1785 */ 1786 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1787 if (ret != 0) 1788 goto error; 1789 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1790 /* 1791 * If we only have the encrypted version of the data, but the 1792 * unencrypted version was requested we take this opportunity 1793 * to store the decrypted version in the header for future use. 1794 */ 1795 ret = arc_hdr_decrypt(hdr, spa, zb); 1796 if (ret != 0) 1797 goto error; 1798 } 1799 1800 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1801 1802 if (hash_lock != NULL) 1803 mutex_exit(hash_lock); 1804 1805 return (0); 1806 1807 error: 1808 if (hash_lock != NULL) 1809 mutex_exit(hash_lock); 1810 1811 return (ret); 1812 } 1813 1814 /* 1815 * This function is used by the dbuf code to decrypt bonus buffers in place. 1816 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1817 * block, so we use the hash lock here to protect against concurrent calls to 1818 * arc_buf_fill(). 1819 */ 1820 /* ARGSUSED */ 1821 static void 1822 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock) 1823 { 1824 arc_buf_hdr_t *hdr = buf->b_hdr; 1825 1826 ASSERT(HDR_ENCRYPTED(hdr)); 1827 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1828 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1829 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1830 1831 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1832 arc_buf_size(buf)); 1833 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1834 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1835 hdr->b_crypt_hdr.b_ebufcnt -= 1; 1836 } 1837 1838 /* 1839 * Given a buf that has a data buffer attached to it, this function will 1840 * efficiently fill the buf with data of the specified compression setting from 1841 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1842 * are already sharing a data buf, no copy is performed. 1843 * 1844 * If the buf is marked as compressed but uncompressed data was requested, this 1845 * will allocate a new data buffer for the buf, remove that flag, and fill the 1846 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1847 * uncompressed data, and (since we haven't added support for it yet) if you 1848 * want compressed data your buf must already be marked as compressed and have 1849 * the correct-sized data buffer. 1850 */ 1851 static int 1852 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 1853 arc_fill_flags_t flags) 1854 { 1855 int error = 0; 1856 arc_buf_hdr_t *hdr = buf->b_hdr; 1857 boolean_t hdr_compressed = 1858 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 1859 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 1860 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 1861 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 1862 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 1863 1864 ASSERT3P(buf->b_data, !=, NULL); 1865 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 1866 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 1867 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 1868 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 1869 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 1870 IMPLY(encrypted, !ARC_BUF_SHARED(buf)); 1871 1872 /* 1873 * If the caller wanted encrypted data we just need to copy it from 1874 * b_rabd and potentially byteswap it. We won't be able to do any 1875 * further transforms on it. 1876 */ 1877 if (encrypted) { 1878 ASSERT(HDR_HAS_RABD(hdr)); 1879 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 1880 HDR_GET_PSIZE(hdr)); 1881 goto byteswap; 1882 } 1883 1884 /* 1885 * Adjust encrypted and authenticated headers to accomodate 1886 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 1887 * allowed to fail decryption due to keys not being loaded 1888 * without being marked as an IO error. 1889 */ 1890 if (HDR_PROTECTED(hdr)) { 1891 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 1892 zb, !!(flags & ARC_FILL_NOAUTH)); 1893 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 1894 return (error); 1895 } else if (error != 0) { 1896 if (hash_lock != NULL) 1897 mutex_enter(hash_lock); 1898 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 1899 if (hash_lock != NULL) 1900 mutex_exit(hash_lock); 1901 return (error); 1902 } 1903 } 1904 1905 /* 1906 * There is a special case here for dnode blocks which are 1907 * decrypting their bonus buffers. These blocks may request to 1908 * be decrypted in-place. This is necessary because there may 1909 * be many dnodes pointing into this buffer and there is 1910 * currently no method to synchronize replacing the backing 1911 * b_data buffer and updating all of the pointers. Here we use 1912 * the hash lock to ensure there are no races. If the need 1913 * arises for other types to be decrypted in-place, they must 1914 * add handling here as well. 1915 */ 1916 if ((flags & ARC_FILL_IN_PLACE) != 0) { 1917 ASSERT(!hdr_compressed); 1918 ASSERT(!compressed); 1919 ASSERT(!encrypted); 1920 1921 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 1922 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1923 1924 if (hash_lock != NULL) 1925 mutex_enter(hash_lock); 1926 arc_buf_untransform_in_place(buf, hash_lock); 1927 if (hash_lock != NULL) 1928 mutex_exit(hash_lock); 1929 1930 /* Compute the hdr's checksum if necessary */ 1931 arc_cksum_compute(buf); 1932 } 1933 1934 return (0); 1935 } 1936 1937 if (hdr_compressed == compressed) { 1938 if (!arc_buf_is_shared(buf)) { 1939 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 1940 arc_buf_size(buf)); 1941 } 1942 } else { 1943 ASSERT(hdr_compressed); 1944 ASSERT(!compressed); 1945 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 1946 1947 /* 1948 * If the buf is sharing its data with the hdr, unlink it and 1949 * allocate a new data buffer for the buf. 1950 */ 1951 if (arc_buf_is_shared(buf)) { 1952 ASSERT(ARC_BUF_COMPRESSED(buf)); 1953 1954 /* We need to give the buf its own b_data */ 1955 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 1956 buf->b_data = 1957 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 1958 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 1959 1960 /* Previously overhead was 0; just add new overhead */ 1961 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 1962 } else if (ARC_BUF_COMPRESSED(buf)) { 1963 /* We need to reallocate the buf's b_data */ 1964 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 1965 buf); 1966 buf->b_data = 1967 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 1968 1969 /* We increased the size of b_data; update overhead */ 1970 ARCSTAT_INCR(arcstat_overhead_size, 1971 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 1972 } 1973 1974 /* 1975 * Regardless of the buf's previous compression settings, it 1976 * should not be compressed at the end of this function. 1977 */ 1978 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1979 1980 /* 1981 * Try copying the data from another buf which already has a 1982 * decompressed version. If that's not possible, it's time to 1983 * bite the bullet and decompress the data from the hdr. 1984 */ 1985 if (arc_buf_try_copy_decompressed_data(buf)) { 1986 /* Skip byteswapping and checksumming (already done) */ 1987 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL); 1988 return (0); 1989 } else { 1990 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1991 hdr->b_l1hdr.b_pabd, buf->b_data, 1992 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 1993 1994 /* 1995 * Absent hardware errors or software bugs, this should 1996 * be impossible, but log it anyway so we can debug it. 1997 */ 1998 if (error != 0) { 1999 zfs_dbgmsg( 2000 "hdr %p, compress %d, psize %d, lsize %d", 2001 hdr, arc_hdr_get_compress(hdr), 2002 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2003 if (hash_lock != NULL) 2004 mutex_enter(hash_lock); 2005 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2006 if (hash_lock != NULL) 2007 mutex_exit(hash_lock); 2008 return (SET_ERROR(EIO)); 2009 } 2010 } 2011 } 2012 2013 byteswap: 2014 /* Byteswap the buf's data if necessary */ 2015 if (bswap != DMU_BSWAP_NUMFUNCS) { 2016 ASSERT(!HDR_SHARED_DATA(hdr)); 2017 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2018 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2019 } 2020 2021 /* Compute the hdr's checksum if necessary */ 2022 arc_cksum_compute(buf); 2023 2024 return (0); 2025 } 2026 2027 /* 2028 * If this function is being called to decrypt an encrypted buffer or verify an 2029 * authenticated one, the key must be loaded and a mapping must be made 2030 * available in the keystore via spa_keystore_create_mapping() or one of its 2031 * callers. 2032 */ 2033 int 2034 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2035 boolean_t in_place) 2036 { 2037 int ret; 2038 arc_fill_flags_t flags = 0; 2039 2040 if (in_place) 2041 flags |= ARC_FILL_IN_PLACE; 2042 2043 ret = arc_buf_fill(buf, spa, zb, flags); 2044 if (ret == ECKSUM) { 2045 /* 2046 * Convert authentication and decryption errors to EIO 2047 * (and generate an ereport) before leaving the ARC. 2048 */ 2049 ret = SET_ERROR(EIO); 2050 spa_log_error(spa, zb); 2051 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2052 spa, NULL, zb, NULL, 0, 0); 2053 } 2054 2055 return (ret); 2056 } 2057 2058 /* 2059 * Increment the amount of evictable space in the arc_state_t's refcount. 2060 * We account for the space used by the hdr and the arc buf individually 2061 * so that we can add and remove them from the refcount individually. 2062 */ 2063 static void 2064 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2065 { 2066 arc_buf_contents_t type = arc_buf_type(hdr); 2067 2068 ASSERT(HDR_HAS_L1HDR(hdr)); 2069 2070 if (GHOST_STATE(state)) { 2071 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2072 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2073 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2074 ASSERT(!HDR_HAS_RABD(hdr)); 2075 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2076 HDR_GET_LSIZE(hdr), hdr); 2077 return; 2078 } 2079 2080 ASSERT(!GHOST_STATE(state)); 2081 if (hdr->b_l1hdr.b_pabd != NULL) { 2082 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2083 arc_hdr_size(hdr), hdr); 2084 } 2085 if (HDR_HAS_RABD(hdr)) { 2086 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2087 HDR_GET_PSIZE(hdr), hdr); 2088 } 2089 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2090 buf = buf->b_next) { 2091 if (arc_buf_is_shared(buf)) 2092 continue; 2093 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2094 arc_buf_size(buf), buf); 2095 } 2096 } 2097 2098 /* 2099 * Decrement the amount of evictable space in the arc_state_t's refcount. 2100 * We account for the space used by the hdr and the arc buf individually 2101 * so that we can add and remove them from the refcount individually. 2102 */ 2103 static void 2104 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2105 { 2106 arc_buf_contents_t type = arc_buf_type(hdr); 2107 2108 ASSERT(HDR_HAS_L1HDR(hdr)); 2109 2110 if (GHOST_STATE(state)) { 2111 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2112 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2113 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2114 ASSERT(!HDR_HAS_RABD(hdr)); 2115 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2116 HDR_GET_LSIZE(hdr), hdr); 2117 return; 2118 } 2119 2120 ASSERT(!GHOST_STATE(state)); 2121 if (hdr->b_l1hdr.b_pabd != NULL) { 2122 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2123 arc_hdr_size(hdr), hdr); 2124 } 2125 if (HDR_HAS_RABD(hdr)) { 2126 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2127 HDR_GET_PSIZE(hdr), hdr); 2128 } 2129 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2130 buf = buf->b_next) { 2131 if (arc_buf_is_shared(buf)) 2132 continue; 2133 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2134 arc_buf_size(buf), buf); 2135 } 2136 } 2137 2138 /* 2139 * Add a reference to this hdr indicating that someone is actively 2140 * referencing that memory. When the refcount transitions from 0 to 1, 2141 * we remove it from the respective arc_state_t list to indicate that 2142 * it is not evictable. 2143 */ 2144 static void 2145 add_reference(arc_buf_hdr_t *hdr, void *tag) 2146 { 2147 ASSERT(HDR_HAS_L1HDR(hdr)); 2148 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2149 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2150 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2151 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2152 } 2153 2154 arc_state_t *state = hdr->b_l1hdr.b_state; 2155 2156 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2157 (state != arc_anon)) { 2158 /* We don't use the L2-only state list. */ 2159 if (state != arc_l2c_only) { 2160 multilist_remove(state->arcs_list[arc_buf_type(hdr)], 2161 hdr); 2162 arc_evictable_space_decrement(hdr, state); 2163 } 2164 /* remove the prefetch flag if we get a reference */ 2165 if (HDR_HAS_L2HDR(hdr)) 2166 l2arc_hdr_arcstats_decrement_state(hdr); 2167 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2168 if (HDR_HAS_L2HDR(hdr)) 2169 l2arc_hdr_arcstats_increment_state(hdr); 2170 } 2171 } 2172 2173 /* 2174 * Remove a reference from this hdr. When the reference transitions from 2175 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2176 * list making it eligible for eviction. 2177 */ 2178 static int 2179 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2180 { 2181 int cnt; 2182 arc_state_t *state = hdr->b_l1hdr.b_state; 2183 2184 ASSERT(HDR_HAS_L1HDR(hdr)); 2185 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2186 ASSERT(!GHOST_STATE(state)); 2187 2188 /* 2189 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2190 * check to prevent usage of the arc_l2c_only list. 2191 */ 2192 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2193 (state != arc_anon)) { 2194 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr); 2195 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2196 arc_evictable_space_increment(hdr, state); 2197 } 2198 return (cnt); 2199 } 2200 2201 /* 2202 * Move the supplied buffer to the indicated state. The hash lock 2203 * for the buffer must be held by the caller. 2204 */ 2205 static void 2206 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2207 kmutex_t *hash_lock) 2208 { 2209 arc_state_t *old_state; 2210 int64_t refcnt; 2211 uint32_t bufcnt; 2212 boolean_t update_old, update_new; 2213 arc_buf_contents_t buftype = arc_buf_type(hdr); 2214 2215 /* 2216 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2217 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2218 * L1 hdr doesn't always exist when we change state to arc_anon before 2219 * destroying a header, in which case reallocating to add the L1 hdr is 2220 * pointless. 2221 */ 2222 if (HDR_HAS_L1HDR(hdr)) { 2223 old_state = hdr->b_l1hdr.b_state; 2224 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2225 bufcnt = hdr->b_l1hdr.b_bufcnt; 2226 2227 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL || 2228 HDR_HAS_RABD(hdr)); 2229 } else { 2230 old_state = arc_l2c_only; 2231 refcnt = 0; 2232 bufcnt = 0; 2233 update_old = B_FALSE; 2234 } 2235 update_new = update_old; 2236 2237 ASSERT(MUTEX_HELD(hash_lock)); 2238 ASSERT3P(new_state, !=, old_state); 2239 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2240 ASSERT(old_state != arc_anon || bufcnt <= 1); 2241 2242 /* 2243 * If this buffer is evictable, transfer it from the 2244 * old state list to the new state list. 2245 */ 2246 if (refcnt == 0) { 2247 if (old_state != arc_anon && old_state != arc_l2c_only) { 2248 ASSERT(HDR_HAS_L1HDR(hdr)); 2249 multilist_remove(old_state->arcs_list[buftype], hdr); 2250 2251 if (GHOST_STATE(old_state)) { 2252 ASSERT0(bufcnt); 2253 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2254 update_old = B_TRUE; 2255 } 2256 arc_evictable_space_decrement(hdr, old_state); 2257 } 2258 if (new_state != arc_anon && new_state != arc_l2c_only) { 2259 2260 /* 2261 * An L1 header always exists here, since if we're 2262 * moving to some L1-cached state (i.e. not l2c_only or 2263 * anonymous), we realloc the header to add an L1hdr 2264 * beforehand. 2265 */ 2266 ASSERT(HDR_HAS_L1HDR(hdr)); 2267 multilist_insert(new_state->arcs_list[buftype], hdr); 2268 2269 if (GHOST_STATE(new_state)) { 2270 ASSERT0(bufcnt); 2271 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2272 update_new = B_TRUE; 2273 } 2274 arc_evictable_space_increment(hdr, new_state); 2275 } 2276 } 2277 2278 ASSERT(!HDR_EMPTY(hdr)); 2279 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2280 buf_hash_remove(hdr); 2281 2282 /* adjust state sizes (ignore arc_l2c_only) */ 2283 2284 if (update_new && new_state != arc_l2c_only) { 2285 ASSERT(HDR_HAS_L1HDR(hdr)); 2286 if (GHOST_STATE(new_state)) { 2287 ASSERT0(bufcnt); 2288 2289 /* 2290 * When moving a header to a ghost state, we first 2291 * remove all arc buffers. Thus, we'll have a 2292 * bufcnt of zero, and no arc buffer to use for 2293 * the reference. As a result, we use the arc 2294 * header pointer for the reference. 2295 */ 2296 (void) zfs_refcount_add_many(&new_state->arcs_size, 2297 HDR_GET_LSIZE(hdr), hdr); 2298 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2299 ASSERT(!HDR_HAS_RABD(hdr)); 2300 } else { 2301 uint32_t buffers = 0; 2302 2303 /* 2304 * Each individual buffer holds a unique reference, 2305 * thus we must remove each of these references one 2306 * at a time. 2307 */ 2308 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2309 buf = buf->b_next) { 2310 ASSERT3U(bufcnt, !=, 0); 2311 buffers++; 2312 2313 /* 2314 * When the arc_buf_t is sharing the data 2315 * block with the hdr, the owner of the 2316 * reference belongs to the hdr. Only 2317 * add to the refcount if the arc_buf_t is 2318 * not shared. 2319 */ 2320 if (arc_buf_is_shared(buf)) 2321 continue; 2322 2323 (void) zfs_refcount_add_many( 2324 &new_state->arcs_size, 2325 arc_buf_size(buf), buf); 2326 } 2327 ASSERT3U(bufcnt, ==, buffers); 2328 2329 if (hdr->b_l1hdr.b_pabd != NULL) { 2330 (void) zfs_refcount_add_many( 2331 &new_state->arcs_size, 2332 arc_hdr_size(hdr), hdr); 2333 } 2334 2335 if (HDR_HAS_RABD(hdr)) { 2336 (void) zfs_refcount_add_many( 2337 &new_state->arcs_size, 2338 HDR_GET_PSIZE(hdr), hdr); 2339 } 2340 } 2341 } 2342 2343 if (update_old && old_state != arc_l2c_only) { 2344 ASSERT(HDR_HAS_L1HDR(hdr)); 2345 if (GHOST_STATE(old_state)) { 2346 ASSERT0(bufcnt); 2347 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2348 ASSERT(!HDR_HAS_RABD(hdr)); 2349 2350 /* 2351 * When moving a header off of a ghost state, 2352 * the header will not contain any arc buffers. 2353 * We use the arc header pointer for the reference 2354 * which is exactly what we did when we put the 2355 * header on the ghost state. 2356 */ 2357 2358 (void) zfs_refcount_remove_many(&old_state->arcs_size, 2359 HDR_GET_LSIZE(hdr), hdr); 2360 } else { 2361 uint32_t buffers = 0; 2362 2363 /* 2364 * Each individual buffer holds a unique reference, 2365 * thus we must remove each of these references one 2366 * at a time. 2367 */ 2368 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2369 buf = buf->b_next) { 2370 ASSERT3U(bufcnt, !=, 0); 2371 buffers++; 2372 2373 /* 2374 * When the arc_buf_t is sharing the data 2375 * block with the hdr, the owner of the 2376 * reference belongs to the hdr. Only 2377 * add to the refcount if the arc_buf_t is 2378 * not shared. 2379 */ 2380 if (arc_buf_is_shared(buf)) 2381 continue; 2382 2383 (void) zfs_refcount_remove_many( 2384 &old_state->arcs_size, arc_buf_size(buf), 2385 buf); 2386 } 2387 ASSERT3U(bufcnt, ==, buffers); 2388 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2389 HDR_HAS_RABD(hdr)); 2390 2391 if (hdr->b_l1hdr.b_pabd != NULL) { 2392 (void) zfs_refcount_remove_many( 2393 &old_state->arcs_size, arc_hdr_size(hdr), 2394 hdr); 2395 } 2396 2397 if (HDR_HAS_RABD(hdr)) { 2398 (void) zfs_refcount_remove_many( 2399 &old_state->arcs_size, HDR_GET_PSIZE(hdr), 2400 hdr); 2401 } 2402 } 2403 } 2404 2405 if (HDR_HAS_L1HDR(hdr)) { 2406 hdr->b_l1hdr.b_state = new_state; 2407 2408 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) { 2409 l2arc_hdr_arcstats_decrement_state(hdr); 2410 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state; 2411 l2arc_hdr_arcstats_increment_state(hdr); 2412 } 2413 } 2414 2415 /* 2416 * L2 headers should never be on the L2 state list since they don't 2417 * have L1 headers allocated. 2418 */ 2419 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2420 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2421 } 2422 2423 void 2424 arc_space_consume(uint64_t space, arc_space_type_t type) 2425 { 2426 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2427 2428 switch (type) { 2429 case ARC_SPACE_DATA: 2430 aggsum_add(&astat_data_size, space); 2431 break; 2432 case ARC_SPACE_META: 2433 aggsum_add(&astat_metadata_size, space); 2434 break; 2435 case ARC_SPACE_OTHER: 2436 aggsum_add(&astat_other_size, space); 2437 break; 2438 case ARC_SPACE_HDRS: 2439 aggsum_add(&astat_hdr_size, space); 2440 break; 2441 case ARC_SPACE_L2HDRS: 2442 aggsum_add(&astat_l2_hdr_size, space); 2443 break; 2444 } 2445 2446 if (type != ARC_SPACE_DATA) 2447 aggsum_add(&arc_meta_used, space); 2448 2449 aggsum_add(&arc_size, space); 2450 } 2451 2452 void 2453 arc_space_return(uint64_t space, arc_space_type_t type) 2454 { 2455 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2456 2457 switch (type) { 2458 case ARC_SPACE_DATA: 2459 aggsum_add(&astat_data_size, -space); 2460 break; 2461 case ARC_SPACE_META: 2462 aggsum_add(&astat_metadata_size, -space); 2463 break; 2464 case ARC_SPACE_OTHER: 2465 aggsum_add(&astat_other_size, -space); 2466 break; 2467 case ARC_SPACE_HDRS: 2468 aggsum_add(&astat_hdr_size, -space); 2469 break; 2470 case ARC_SPACE_L2HDRS: 2471 aggsum_add(&astat_l2_hdr_size, -space); 2472 break; 2473 } 2474 2475 if (type != ARC_SPACE_DATA) { 2476 ASSERT(aggsum_compare(&arc_meta_used, space) >= 0); 2477 /* 2478 * We use the upper bound here rather than the precise value 2479 * because the arc_meta_max value doesn't need to be 2480 * precise. It's only consumed by humans via arcstats. 2481 */ 2482 if (arc_meta_max < aggsum_upper_bound(&arc_meta_used)) 2483 arc_meta_max = aggsum_upper_bound(&arc_meta_used); 2484 aggsum_add(&arc_meta_used, -space); 2485 } 2486 2487 ASSERT(aggsum_compare(&arc_size, space) >= 0); 2488 aggsum_add(&arc_size, -space); 2489 } 2490 2491 /* 2492 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2493 * with the hdr's b_pabd. 2494 */ 2495 static boolean_t 2496 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2497 { 2498 /* 2499 * The criteria for sharing a hdr's data are: 2500 * 1. the buffer is not encrypted 2501 * 2. the hdr's compression matches the buf's compression 2502 * 3. the hdr doesn't need to be byteswapped 2503 * 4. the hdr isn't already being shared 2504 * 5. the buf is either compressed or it is the last buf in the hdr list 2505 * 2506 * Criterion #5 maintains the invariant that shared uncompressed 2507 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2508 * might ask, "if a compressed buf is allocated first, won't that be the 2509 * last thing in the list?", but in that case it's impossible to create 2510 * a shared uncompressed buf anyway (because the hdr must be compressed 2511 * to have the compressed buf). You might also think that #3 is 2512 * sufficient to make this guarantee, however it's possible 2513 * (specifically in the rare L2ARC write race mentioned in 2514 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2515 * is sharable, but wasn't at the time of its allocation. Rather than 2516 * allow a new shared uncompressed buf to be created and then shuffle 2517 * the list around to make it the last element, this simply disallows 2518 * sharing if the new buf isn't the first to be added. 2519 */ 2520 ASSERT3P(buf->b_hdr, ==, hdr); 2521 boolean_t hdr_compressed = arc_hdr_get_compress(hdr) != 2522 ZIO_COMPRESS_OFF; 2523 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2524 return (!ARC_BUF_ENCRYPTED(buf) && 2525 buf_compressed == hdr_compressed && 2526 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2527 !HDR_SHARED_DATA(hdr) && 2528 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2529 } 2530 2531 /* 2532 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2533 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2534 * copy was made successfully, or an error code otherwise. 2535 */ 2536 static int 2537 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2538 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth, 2539 boolean_t fill, arc_buf_t **ret) 2540 { 2541 arc_buf_t *buf; 2542 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2543 2544 ASSERT(HDR_HAS_L1HDR(hdr)); 2545 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2546 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2547 hdr->b_type == ARC_BUFC_METADATA); 2548 ASSERT3P(ret, !=, NULL); 2549 ASSERT3P(*ret, ==, NULL); 2550 IMPLY(encrypted, compressed); 2551 2552 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2553 buf->b_hdr = hdr; 2554 buf->b_data = NULL; 2555 buf->b_next = hdr->b_l1hdr.b_buf; 2556 buf->b_flags = 0; 2557 2558 add_reference(hdr, tag); 2559 2560 /* 2561 * We're about to change the hdr's b_flags. We must either 2562 * hold the hash_lock or be undiscoverable. 2563 */ 2564 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2565 2566 /* 2567 * Only honor requests for compressed bufs if the hdr is actually 2568 * compressed. This must be overriden if the buffer is encrypted since 2569 * encrypted buffers cannot be decompressed. 2570 */ 2571 if (encrypted) { 2572 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2573 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2574 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2575 } else if (compressed && 2576 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2577 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2578 flags |= ARC_FILL_COMPRESSED; 2579 } 2580 2581 if (noauth) { 2582 ASSERT0(encrypted); 2583 flags |= ARC_FILL_NOAUTH; 2584 } 2585 2586 /* 2587 * If the hdr's data can be shared then we share the data buffer and 2588 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2589 * allocate a new buffer to store the buf's data. 2590 * 2591 * There are two additional restrictions here because we're sharing 2592 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2593 * actively involved in an L2ARC write, because if this buf is used by 2594 * an arc_write() then the hdr's data buffer will be released when the 2595 * write completes, even though the L2ARC write might still be using it. 2596 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2597 * need to be ABD-aware. 2598 */ 2599 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) && 2600 hdr->b_l1hdr.b_pabd != NULL && abd_is_linear(hdr->b_l1hdr.b_pabd); 2601 2602 /* Set up b_data and sharing */ 2603 if (can_share) { 2604 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2605 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2606 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2607 } else { 2608 buf->b_data = 2609 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2610 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2611 } 2612 VERIFY3P(buf->b_data, !=, NULL); 2613 2614 hdr->b_l1hdr.b_buf = buf; 2615 hdr->b_l1hdr.b_bufcnt += 1; 2616 if (encrypted) 2617 hdr->b_crypt_hdr.b_ebufcnt += 1; 2618 2619 /* 2620 * If the user wants the data from the hdr, we need to either copy or 2621 * decompress the data. 2622 */ 2623 if (fill) { 2624 ASSERT3P(zb, !=, NULL); 2625 return (arc_buf_fill(buf, spa, zb, flags)); 2626 } 2627 2628 return (0); 2629 } 2630 2631 static char *arc_onloan_tag = "onloan"; 2632 2633 static inline void 2634 arc_loaned_bytes_update(int64_t delta) 2635 { 2636 atomic_add_64(&arc_loaned_bytes, delta); 2637 2638 /* assert that it did not wrap around */ 2639 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2640 } 2641 2642 /* 2643 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2644 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2645 * buffers must be returned to the arc before they can be used by the DMU or 2646 * freed. 2647 */ 2648 arc_buf_t * 2649 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2650 { 2651 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2652 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2653 2654 arc_loaned_bytes_update(arc_buf_size(buf)); 2655 2656 return (buf); 2657 } 2658 2659 arc_buf_t * 2660 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2661 enum zio_compress compression_type) 2662 { 2663 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2664 psize, lsize, compression_type); 2665 2666 arc_loaned_bytes_update(arc_buf_size(buf)); 2667 2668 return (buf); 2669 } 2670 2671 arc_buf_t * 2672 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2673 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2674 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2675 enum zio_compress compression_type) 2676 { 2677 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2678 byteorder, salt, iv, mac, ot, psize, lsize, compression_type); 2679 2680 atomic_add_64(&arc_loaned_bytes, psize); 2681 return (buf); 2682 } 2683 2684 /* 2685 * Performance tuning of L2ARC persistence: 2686 * 2687 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 2688 * an L2ARC device (either at pool import or later) will attempt 2689 * to rebuild L2ARC buffer contents. 2690 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 2691 * whether log blocks are written to the L2ARC device. If the L2ARC 2692 * device is less than 1GB, the amount of data l2arc_evict() 2693 * evicts is significant compared to the amount of restored L2ARC 2694 * data. In this case do not write log blocks in L2ARC in order 2695 * not to waste space. 2696 */ 2697 int l2arc_rebuild_enabled = B_TRUE; 2698 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 2699 2700 /* L2ARC persistence rebuild control routines. */ 2701 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 2702 static void l2arc_dev_rebuild_start(l2arc_dev_t *dev); 2703 static int l2arc_rebuild(l2arc_dev_t *dev); 2704 2705 /* L2ARC persistence read I/O routines. */ 2706 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 2707 static int l2arc_log_blk_read(l2arc_dev_t *dev, 2708 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 2709 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 2710 zio_t *this_io, zio_t **next_io); 2711 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 2712 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 2713 static void l2arc_log_blk_fetch_abort(zio_t *zio); 2714 2715 /* L2ARC persistence block restoration routines. */ 2716 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 2717 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize); 2718 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 2719 l2arc_dev_t *dev); 2720 2721 /* L2ARC persistence write I/O routines. */ 2722 static void l2arc_dev_hdr_update(l2arc_dev_t *dev); 2723 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 2724 l2arc_write_callback_t *cb); 2725 2726 /* L2ARC persistence auxilliary routines. */ 2727 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 2728 const l2arc_log_blkptr_t *lbp); 2729 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 2730 const arc_buf_hdr_t *ab); 2731 boolean_t l2arc_range_check_overlap(uint64_t bottom, 2732 uint64_t top, uint64_t check); 2733 static void l2arc_blk_fetch_done(zio_t *zio); 2734 static inline uint64_t 2735 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 2736 2737 /* 2738 * Return a loaned arc buffer to the arc. 2739 */ 2740 void 2741 arc_return_buf(arc_buf_t *buf, void *tag) 2742 { 2743 arc_buf_hdr_t *hdr = buf->b_hdr; 2744 2745 ASSERT3P(buf->b_data, !=, NULL); 2746 ASSERT(HDR_HAS_L1HDR(hdr)); 2747 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2748 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2749 2750 arc_loaned_bytes_update(-arc_buf_size(buf)); 2751 } 2752 2753 /* Detach an arc_buf from a dbuf (tag) */ 2754 void 2755 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2756 { 2757 arc_buf_hdr_t *hdr = buf->b_hdr; 2758 2759 ASSERT3P(buf->b_data, !=, NULL); 2760 ASSERT(HDR_HAS_L1HDR(hdr)); 2761 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2762 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2763 2764 arc_loaned_bytes_update(arc_buf_size(buf)); 2765 } 2766 2767 static void 2768 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2769 { 2770 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2771 2772 df->l2df_abd = abd; 2773 df->l2df_size = size; 2774 df->l2df_type = type; 2775 mutex_enter(&l2arc_free_on_write_mtx); 2776 list_insert_head(l2arc_free_on_write, df); 2777 mutex_exit(&l2arc_free_on_write_mtx); 2778 } 2779 2780 static void 2781 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2782 { 2783 arc_state_t *state = hdr->b_l1hdr.b_state; 2784 arc_buf_contents_t type = arc_buf_type(hdr); 2785 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2786 2787 /* protected by hash lock, if in the hash table */ 2788 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2789 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2790 ASSERT(state != arc_anon && state != arc_l2c_only); 2791 2792 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2793 size, hdr); 2794 } 2795 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr); 2796 if (type == ARC_BUFC_METADATA) { 2797 arc_space_return(size, ARC_SPACE_META); 2798 } else { 2799 ASSERT(type == ARC_BUFC_DATA); 2800 arc_space_return(size, ARC_SPACE_DATA); 2801 } 2802 2803 if (free_rdata) { 2804 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2805 } else { 2806 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2807 } 2808 } 2809 2810 /* 2811 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2812 * data buffer, we transfer the refcount ownership to the hdr and update 2813 * the appropriate kstats. 2814 */ 2815 static void 2816 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2817 { 2818 /* LINTED */ 2819 arc_state_t *state = hdr->b_l1hdr.b_state; 2820 2821 ASSERT(arc_can_share(hdr, buf)); 2822 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2823 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2824 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2825 2826 /* 2827 * Start sharing the data buffer. We transfer the 2828 * refcount ownership to the hdr since it always owns 2829 * the refcount whenever an arc_buf_t is shared. 2830 */ 2831 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 2832 arc_hdr_size(hdr), buf, hdr); 2833 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2834 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 2835 HDR_ISTYPE_METADATA(hdr)); 2836 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2837 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2838 2839 /* 2840 * Since we've transferred ownership to the hdr we need 2841 * to increment its compressed and uncompressed kstats and 2842 * decrement the overhead size. 2843 */ 2844 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2845 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2846 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 2847 } 2848 2849 static void 2850 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2851 { 2852 /* LINTED */ 2853 arc_state_t *state = hdr->b_l1hdr.b_state; 2854 2855 ASSERT(arc_buf_is_shared(buf)); 2856 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2857 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2858 2859 /* 2860 * We are no longer sharing this buffer so we need 2861 * to transfer its ownership to the rightful owner. 2862 */ 2863 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 2864 arc_hdr_size(hdr), hdr, buf); 2865 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2866 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 2867 abd_put(hdr->b_l1hdr.b_pabd); 2868 hdr->b_l1hdr.b_pabd = NULL; 2869 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2870 2871 /* 2872 * Since the buffer is no longer shared between 2873 * the arc buf and the hdr, count it as overhead. 2874 */ 2875 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2876 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2877 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2878 } 2879 2880 /* 2881 * Remove an arc_buf_t from the hdr's buf list and return the last 2882 * arc_buf_t on the list. If no buffers remain on the list then return 2883 * NULL. 2884 */ 2885 static arc_buf_t * 2886 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2887 { 2888 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 2889 arc_buf_t *lastbuf = NULL; 2890 2891 ASSERT(HDR_HAS_L1HDR(hdr)); 2892 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2893 2894 /* 2895 * Remove the buf from the hdr list and locate the last 2896 * remaining buffer on the list. 2897 */ 2898 while (*bufp != NULL) { 2899 if (*bufp == buf) 2900 *bufp = buf->b_next; 2901 2902 /* 2903 * If we've removed a buffer in the middle of 2904 * the list then update the lastbuf and update 2905 * bufp. 2906 */ 2907 if (*bufp != NULL) { 2908 lastbuf = *bufp; 2909 bufp = &(*bufp)->b_next; 2910 } 2911 } 2912 buf->b_next = NULL; 2913 ASSERT3P(lastbuf, !=, buf); 2914 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 2915 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 2916 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 2917 2918 return (lastbuf); 2919 } 2920 2921 /* 2922 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's 2923 * list and free it. 2924 */ 2925 static void 2926 arc_buf_destroy_impl(arc_buf_t *buf) 2927 { 2928 arc_buf_hdr_t *hdr = buf->b_hdr; 2929 2930 /* 2931 * Free up the data associated with the buf but only if we're not 2932 * sharing this with the hdr. If we are sharing it with the hdr, the 2933 * hdr is responsible for doing the free. 2934 */ 2935 if (buf->b_data != NULL) { 2936 /* 2937 * We're about to change the hdr's b_flags. We must either 2938 * hold the hash_lock or be undiscoverable. 2939 */ 2940 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2941 2942 arc_cksum_verify(buf); 2943 arc_buf_unwatch(buf); 2944 2945 if (arc_buf_is_shared(buf)) { 2946 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2947 } else { 2948 uint64_t size = arc_buf_size(buf); 2949 arc_free_data_buf(hdr, buf->b_data, size, buf); 2950 ARCSTAT_INCR(arcstat_overhead_size, -size); 2951 } 2952 buf->b_data = NULL; 2953 2954 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 2955 hdr->b_l1hdr.b_bufcnt -= 1; 2956 2957 if (ARC_BUF_ENCRYPTED(buf)) { 2958 hdr->b_crypt_hdr.b_ebufcnt -= 1; 2959 2960 /* 2961 * If we have no more encrypted buffers and we've 2962 * already gotten a copy of the decrypted data we can 2963 * free b_rabd to save some space. 2964 */ 2965 if (hdr->b_crypt_hdr.b_ebufcnt == 0 && 2966 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL && 2967 !HDR_IO_IN_PROGRESS(hdr)) { 2968 arc_hdr_free_pabd(hdr, B_TRUE); 2969 } 2970 } 2971 } 2972 2973 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 2974 2975 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 2976 /* 2977 * If the current arc_buf_t is sharing its data buffer with the 2978 * hdr, then reassign the hdr's b_pabd to share it with the new 2979 * buffer at the end of the list. The shared buffer is always 2980 * the last one on the hdr's buffer list. 2981 * 2982 * There is an equivalent case for compressed bufs, but since 2983 * they aren't guaranteed to be the last buf in the list and 2984 * that is an exceedingly rare case, we just allow that space be 2985 * wasted temporarily. We must also be careful not to share 2986 * encrypted buffers, since they cannot be shared. 2987 */ 2988 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 2989 /* Only one buf can be shared at once */ 2990 VERIFY(!arc_buf_is_shared(lastbuf)); 2991 /* hdr is uncompressed so can't have compressed buf */ 2992 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 2993 2994 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2995 arc_hdr_free_pabd(hdr, B_FALSE); 2996 2997 /* 2998 * We must setup a new shared block between the 2999 * last buffer and the hdr. The data would have 3000 * been allocated by the arc buf so we need to transfer 3001 * ownership to the hdr since it's now being shared. 3002 */ 3003 arc_share_buf(hdr, lastbuf); 3004 } 3005 } else if (HDR_SHARED_DATA(hdr)) { 3006 /* 3007 * Uncompressed shared buffers are always at the end 3008 * of the list. Compressed buffers don't have the 3009 * same requirements. This makes it hard to 3010 * simply assert that the lastbuf is shared so 3011 * we rely on the hdr's compression flags to determine 3012 * if we have a compressed, shared buffer. 3013 */ 3014 ASSERT3P(lastbuf, !=, NULL); 3015 ASSERT(arc_buf_is_shared(lastbuf) || 3016 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3017 } 3018 3019 /* 3020 * Free the checksum if we're removing the last uncompressed buf from 3021 * this hdr. 3022 */ 3023 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3024 arc_cksum_free(hdr); 3025 } 3026 3027 /* clean up the buf */ 3028 buf->b_hdr = NULL; 3029 kmem_cache_free(buf_cache, buf); 3030 } 3031 3032 static void 3033 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr, int alloc_flags) 3034 { 3035 uint64_t size; 3036 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3037 boolean_t do_adapt = ((alloc_flags & ARC_HDR_DO_ADAPT) != 0); 3038 3039 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3040 ASSERT(HDR_HAS_L1HDR(hdr)); 3041 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3042 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3043 3044 if (alloc_rdata) { 3045 size = HDR_GET_PSIZE(hdr); 3046 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3047 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3048 do_adapt); 3049 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3050 } else { 3051 size = arc_hdr_size(hdr); 3052 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3053 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3054 do_adapt); 3055 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3056 } 3057 3058 ARCSTAT_INCR(arcstat_compressed_size, size); 3059 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3060 } 3061 3062 static void 3063 arc_hdr_free_pabd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3064 { 3065 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3066 3067 ASSERT(HDR_HAS_L1HDR(hdr)); 3068 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3069 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3070 3071 3072 /* 3073 * If the hdr is currently being written to the l2arc then 3074 * we defer freeing the data by adding it to the l2arc_free_on_write 3075 * list. The l2arc will free the data once it's finished 3076 * writing it to the l2arc device. 3077 */ 3078 if (HDR_L2_WRITING(hdr)) { 3079 arc_hdr_free_on_write(hdr, free_rdata); 3080 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3081 } else if (free_rdata) { 3082 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3083 } else { 3084 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 3085 size, hdr); 3086 } 3087 3088 if (free_rdata) { 3089 hdr->b_crypt_hdr.b_rabd = NULL; 3090 } else { 3091 hdr->b_l1hdr.b_pabd = NULL; 3092 } 3093 3094 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3095 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3096 3097 ARCSTAT_INCR(arcstat_compressed_size, -size); 3098 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3099 } 3100 3101 static arc_buf_hdr_t * 3102 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3103 boolean_t protected, enum zio_compress compression_type, 3104 arc_buf_contents_t type, boolean_t alloc_rdata) 3105 { 3106 arc_buf_hdr_t *hdr; 3107 int flags = ARC_HDR_DO_ADAPT; 3108 3109 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3110 if (protected) { 3111 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE); 3112 } else { 3113 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3114 } 3115 flags |= alloc_rdata ? ARC_HDR_ALLOC_RDATA : 0; 3116 ASSERT(HDR_EMPTY(hdr)); 3117 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3118 ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL); 3119 HDR_SET_PSIZE(hdr, psize); 3120 HDR_SET_LSIZE(hdr, lsize); 3121 hdr->b_spa = spa; 3122 hdr->b_type = type; 3123 hdr->b_flags = 0; 3124 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3125 arc_hdr_set_compress(hdr, compression_type); 3126 if (protected) 3127 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3128 3129 hdr->b_l1hdr.b_state = arc_anon; 3130 hdr->b_l1hdr.b_arc_access = 0; 3131 hdr->b_l1hdr.b_bufcnt = 0; 3132 hdr->b_l1hdr.b_buf = NULL; 3133 3134 /* 3135 * Allocate the hdr's buffer. This will contain either 3136 * the compressed or uncompressed data depending on the block 3137 * it references and compressed arc enablement. 3138 */ 3139 arc_hdr_alloc_pabd(hdr, flags); 3140 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3141 3142 return (hdr); 3143 } 3144 3145 /* 3146 * Transition between the two allocation states for the arc_buf_hdr struct. 3147 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3148 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3149 * version is used when a cache buffer is only in the L2ARC in order to reduce 3150 * memory usage. 3151 */ 3152 static arc_buf_hdr_t * 3153 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3154 { 3155 ASSERT(HDR_HAS_L2HDR(hdr)); 3156 3157 arc_buf_hdr_t *nhdr; 3158 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3159 3160 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3161 (old == hdr_l2only_cache && new == hdr_full_cache)); 3162 3163 /* 3164 * if the caller wanted a new full header and the header is to be 3165 * encrypted we will actually allocate the header from the full crypt 3166 * cache instead. The same applies to freeing from the old cache. 3167 */ 3168 if (HDR_PROTECTED(hdr) && new == hdr_full_cache) 3169 new = hdr_full_crypt_cache; 3170 if (HDR_PROTECTED(hdr) && old == hdr_full_cache) 3171 old = hdr_full_crypt_cache; 3172 3173 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3174 3175 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3176 buf_hash_remove(hdr); 3177 3178 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 3179 3180 if (new == hdr_full_cache || new == hdr_full_crypt_cache) { 3181 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3182 /* 3183 * arc_access and arc_change_state need to be aware that a 3184 * header has just come out of L2ARC, so we set its state to 3185 * l2c_only even though it's about to change. 3186 */ 3187 nhdr->b_l1hdr.b_state = arc_l2c_only; 3188 3189 /* Verify previous threads set to NULL before freeing */ 3190 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3191 ASSERT(!HDR_HAS_RABD(hdr)); 3192 } else { 3193 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3194 ASSERT0(hdr->b_l1hdr.b_bufcnt); 3195 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3196 3197 /* 3198 * If we've reached here, We must have been called from 3199 * arc_evict_hdr(), as such we should have already been 3200 * removed from any ghost list we were previously on 3201 * (which protects us from racing with arc_evict_state), 3202 * thus no locking is needed during this check. 3203 */ 3204 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3205 3206 /* 3207 * A buffer must not be moved into the arc_l2c_only 3208 * state if it's not finished being written out to the 3209 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3210 * might try to be accessed, even though it was removed. 3211 */ 3212 VERIFY(!HDR_L2_WRITING(hdr)); 3213 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3214 ASSERT(!HDR_HAS_RABD(hdr)); 3215 3216 #ifdef ZFS_DEBUG 3217 if (hdr->b_l1hdr.b_thawed != NULL) { 3218 kmem_free(hdr->b_l1hdr.b_thawed, 1); 3219 hdr->b_l1hdr.b_thawed = NULL; 3220 } 3221 #endif 3222 3223 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3224 } 3225 /* 3226 * The header has been reallocated so we need to re-insert it into any 3227 * lists it was on. 3228 */ 3229 (void) buf_hash_insert(nhdr, NULL); 3230 3231 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3232 3233 mutex_enter(&dev->l2ad_mtx); 3234 3235 /* 3236 * We must place the realloc'ed header back into the list at 3237 * the same spot. Otherwise, if it's placed earlier in the list, 3238 * l2arc_write_buffers() could find it during the function's 3239 * write phase, and try to write it out to the l2arc. 3240 */ 3241 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3242 list_remove(&dev->l2ad_buflist, hdr); 3243 3244 mutex_exit(&dev->l2ad_mtx); 3245 3246 /* 3247 * Since we're using the pointer address as the tag when 3248 * incrementing and decrementing the l2ad_alloc refcount, we 3249 * must remove the old pointer (that we're about to destroy) and 3250 * add the new pointer to the refcount. Otherwise we'd remove 3251 * the wrong pointer address when calling arc_hdr_destroy() later. 3252 */ 3253 3254 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3255 hdr); 3256 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), 3257 nhdr); 3258 3259 buf_discard_identity(hdr); 3260 kmem_cache_free(old, hdr); 3261 3262 return (nhdr); 3263 } 3264 3265 /* 3266 * This function allows an L1 header to be reallocated as a crypt 3267 * header and vice versa. If we are going to a crypt header, the 3268 * new fields will be zeroed out. 3269 */ 3270 static arc_buf_hdr_t * 3271 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt) 3272 { 3273 arc_buf_hdr_t *nhdr; 3274 arc_buf_t *buf; 3275 kmem_cache_t *ncache, *ocache; 3276 3277 /* 3278 * This function requires that hdr is in the arc_anon state. 3279 * Therefore it won't have any L2ARC data for us to worry about 3280 * copying. 3281 */ 3282 ASSERT(HDR_HAS_L1HDR(hdr)); 3283 ASSERT(!HDR_HAS_L2HDR(hdr)); 3284 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt); 3285 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3286 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3287 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node)); 3288 ASSERT3P(hdr->b_hash_next, ==, NULL); 3289 3290 if (need_crypt) { 3291 ncache = hdr_full_crypt_cache; 3292 ocache = hdr_full_cache; 3293 } else { 3294 ncache = hdr_full_cache; 3295 ocache = hdr_full_crypt_cache; 3296 } 3297 3298 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE); 3299 3300 /* 3301 * Copy all members that aren't locks or condvars to the new header. 3302 * No lists are pointing to us (as we asserted above), so we don't 3303 * need to worry about the list nodes. 3304 */ 3305 nhdr->b_dva = hdr->b_dva; 3306 nhdr->b_birth = hdr->b_birth; 3307 nhdr->b_type = hdr->b_type; 3308 nhdr->b_flags = hdr->b_flags; 3309 nhdr->b_psize = hdr->b_psize; 3310 nhdr->b_lsize = hdr->b_lsize; 3311 nhdr->b_spa = hdr->b_spa; 3312 nhdr->b_l2hdr.b_dev = hdr->b_l2hdr.b_dev; 3313 nhdr->b_l2hdr.b_daddr = hdr->b_l2hdr.b_daddr; 3314 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum; 3315 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt; 3316 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap; 3317 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state; 3318 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access; 3319 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb; 3320 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd; 3321 #ifdef ZFS_DEBUG 3322 if (hdr->b_l1hdr.b_thawed != NULL) { 3323 nhdr->b_l1hdr.b_thawed = hdr->b_l1hdr.b_thawed; 3324 hdr->b_l1hdr.b_thawed = NULL; 3325 } 3326 #endif 3327 3328 /* 3329 * This refcount_add() exists only to ensure that the individual 3330 * arc buffers always point to a header that is referenced, avoiding 3331 * a small race condition that could trigger ASSERTs. 3332 */ 3333 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG); 3334 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf; 3335 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { 3336 mutex_enter(&buf->b_evict_lock); 3337 buf->b_hdr = nhdr; 3338 mutex_exit(&buf->b_evict_lock); 3339 } 3340 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt); 3341 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG); 3342 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3343 3344 /* 3345 * We have already asserted that we are not on any ghost lists, and we 3346 * are never called to switch from a crypt to non-crypt header 3347 * with a non-NULL rabd (this is asserted below). 3348 * This leaves the hdr's b_pabd buffer to deal with. 3349 */ 3350 if (hdr->b_l1hdr.b_pabd != NULL) { 3351 zfs_refcount_transfer_ownership_many( 3352 &hdr->b_l1hdr.b_state->arcs_size, arc_hdr_size(hdr), 3353 hdr, nhdr); 3354 } 3355 3356 if (need_crypt) { 3357 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED); 3358 } else { 3359 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED); 3360 } 3361 3362 /* unset all members of the original hdr */ 3363 bzero(&hdr->b_dva, sizeof (dva_t)); 3364 hdr->b_birth = 0; 3365 hdr->b_type = ARC_BUFC_INVALID; 3366 hdr->b_flags = 0; 3367 hdr->b_psize = 0; 3368 hdr->b_lsize = 0; 3369 hdr->b_spa = 0; 3370 hdr->b_l2hdr.b_dev = NULL; 3371 hdr->b_l2hdr.b_daddr = 0; 3372 hdr->b_l1hdr.b_freeze_cksum = NULL; 3373 hdr->b_l1hdr.b_buf = NULL; 3374 hdr->b_l1hdr.b_bufcnt = 0; 3375 hdr->b_l1hdr.b_byteswap = 0; 3376 hdr->b_l1hdr.b_state = NULL; 3377 hdr->b_l1hdr.b_arc_access = 0; 3378 hdr->b_l1hdr.b_acb = NULL; 3379 hdr->b_l1hdr.b_pabd = NULL; 3380 3381 if (ocache == hdr_full_crypt_cache) { 3382 ASSERT(!HDR_HAS_RABD(hdr)); 3383 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE; 3384 hdr->b_crypt_hdr.b_ebufcnt = 0; 3385 hdr->b_crypt_hdr.b_dsobj = 0; 3386 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3387 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3388 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3389 } 3390 3391 buf_discard_identity(hdr); 3392 kmem_cache_free(ocache, hdr); 3393 3394 return (nhdr); 3395 } 3396 3397 /* 3398 * This function is used by the send / receive code to convert a newly 3399 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3400 * is also used to allow the root objset block to be uupdated without altering 3401 * its embedded MACs. Both block types will always be uncompressed so we do not 3402 * have to worry about compression type or psize. 3403 */ 3404 void 3405 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3406 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3407 const uint8_t *mac) 3408 { 3409 arc_buf_hdr_t *hdr = buf->b_hdr; 3410 3411 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3412 ASSERT(HDR_HAS_L1HDR(hdr)); 3413 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3414 3415 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3416 if (!HDR_PROTECTED(hdr)) 3417 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE); 3418 hdr->b_crypt_hdr.b_dsobj = dsobj; 3419 hdr->b_crypt_hdr.b_ot = ot; 3420 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3421 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3422 if (!arc_hdr_has_uncompressed_buf(hdr)) 3423 arc_cksum_free(hdr); 3424 3425 if (salt != NULL) 3426 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3427 if (iv != NULL) 3428 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3429 if (mac != NULL) 3430 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3431 } 3432 3433 /* 3434 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3435 * The buf is returned thawed since we expect the consumer to modify it. 3436 */ 3437 arc_buf_t * 3438 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3439 { 3440 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3441 B_FALSE, ZIO_COMPRESS_OFF, type, B_FALSE); 3442 3443 arc_buf_t *buf = NULL; 3444 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3445 B_FALSE, B_FALSE, &buf)); 3446 arc_buf_thaw(buf); 3447 3448 return (buf); 3449 } 3450 3451 /* 3452 * Allocates an ARC buf header that's in an evicted & L2-cached state. 3453 * This is used during l2arc reconstruction to make empty ARC buffers 3454 * which circumvent the regular disk->arc->l2arc path and instead come 3455 * into being in the reverse order, i.e. l2arc->arc. 3456 */ 3457 arc_buf_hdr_t * 3458 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 3459 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, 3460 enum zio_compress compress, boolean_t protected, 3461 boolean_t prefetch, arc_state_type_t arcs_state) 3462 { 3463 arc_buf_hdr_t *hdr; 3464 3465 ASSERT(size != 0); 3466 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 3467 hdr->b_birth = birth; 3468 hdr->b_type = type; 3469 hdr->b_flags = 0; 3470 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 3471 HDR_SET_LSIZE(hdr, size); 3472 HDR_SET_PSIZE(hdr, psize); 3473 arc_hdr_set_compress(hdr, compress); 3474 if (protected) 3475 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3476 if (prefetch) 3477 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 3478 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 3479 3480 hdr->b_dva = dva; 3481 3482 hdr->b_l2hdr.b_dev = dev; 3483 hdr->b_l2hdr.b_daddr = daddr; 3484 hdr->b_l2hdr.b_arcs_state = arcs_state; 3485 3486 return (hdr); 3487 } 3488 3489 /* 3490 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3491 * for bufs containing metadata. 3492 */ 3493 arc_buf_t * 3494 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3495 enum zio_compress compression_type) 3496 { 3497 ASSERT3U(lsize, >, 0); 3498 ASSERT3U(lsize, >=, psize); 3499 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3500 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3501 3502 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3503 B_FALSE, compression_type, ARC_BUFC_DATA, B_FALSE); 3504 3505 arc_buf_t *buf = NULL; 3506 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3507 B_TRUE, B_FALSE, B_FALSE, &buf)); 3508 arc_buf_thaw(buf); 3509 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3510 3511 if (!arc_buf_is_shared(buf)) { 3512 /* 3513 * To ensure that the hdr has the correct data in it if we call 3514 * arc_untransform() on this buf before it's been written to 3515 * disk, it's easiest if we just set up sharing between the 3516 * buf and the hdr. 3517 */ 3518 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd)); 3519 arc_hdr_free_pabd(hdr, B_FALSE); 3520 arc_share_buf(hdr, buf); 3521 } 3522 3523 return (buf); 3524 } 3525 3526 arc_buf_t * 3527 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder, 3528 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 3529 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3530 enum zio_compress compression_type) 3531 { 3532 arc_buf_hdr_t *hdr; 3533 arc_buf_t *buf; 3534 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3535 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3536 3537 ASSERT3U(lsize, >, 0); 3538 ASSERT3U(lsize, >=, psize); 3539 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3540 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3541 3542 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3543 compression_type, type, B_TRUE); 3544 3545 hdr->b_crypt_hdr.b_dsobj = dsobj; 3546 hdr->b_crypt_hdr.b_ot = ot; 3547 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3548 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3549 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3550 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3551 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3552 3553 /* 3554 * This buffer will be considered encrypted even if the ot is not an 3555 * encrypted type. It will become authenticated instead in 3556 * arc_write_ready(). 3557 */ 3558 buf = NULL; 3559 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3560 B_FALSE, B_FALSE, &buf)); 3561 arc_buf_thaw(buf); 3562 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3563 3564 return (buf); 3565 } 3566 3567 static void 3568 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 3569 boolean_t state_only) 3570 { 3571 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3572 l2arc_dev_t *dev = l2hdr->b_dev; 3573 uint64_t lsize = HDR_GET_LSIZE(hdr); 3574 uint64_t psize = HDR_GET_PSIZE(hdr); 3575 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3576 arc_buf_contents_t type = hdr->b_type; 3577 int64_t lsize_s; 3578 int64_t psize_s; 3579 int64_t asize_s; 3580 3581 if (incr) { 3582 lsize_s = lsize; 3583 psize_s = psize; 3584 asize_s = asize; 3585 } else { 3586 lsize_s = -lsize; 3587 psize_s = -psize; 3588 asize_s = -asize; 3589 } 3590 3591 /* If the buffer is a prefetch, count it as such. */ 3592 if (HDR_PREFETCH(hdr)) { 3593 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s); 3594 } else { 3595 /* 3596 * We use the value stored in the L2 header upon initial 3597 * caching in L2ARC. This value will be updated in case 3598 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC 3599 * metadata (log entry) cannot currently be updated. Having 3600 * the ARC state in the L2 header solves the problem of a 3601 * possibly absent L1 header (apparent in buffers restored 3602 * from persistent L2ARC). 3603 */ 3604 switch (hdr->b_l2hdr.b_arcs_state) { 3605 case ARC_STATE_MRU_GHOST: 3606 case ARC_STATE_MRU: 3607 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s); 3608 break; 3609 case ARC_STATE_MFU_GHOST: 3610 case ARC_STATE_MFU: 3611 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s); 3612 break; 3613 default: 3614 break; 3615 } 3616 } 3617 3618 if (state_only) 3619 return; 3620 3621 ARCSTAT_INCR(arcstat_l2_psize, psize_s); 3622 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s); 3623 3624 switch (type) { 3625 case ARC_BUFC_DATA: 3626 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s); 3627 break; 3628 case ARC_BUFC_METADATA: 3629 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s); 3630 break; 3631 default: 3632 break; 3633 } 3634 } 3635 3636 3637 static void 3638 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3639 { 3640 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3641 l2arc_dev_t *dev = l2hdr->b_dev; 3642 uint64_t psize = HDR_GET_PSIZE(hdr); 3643 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3644 3645 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3646 ASSERT(HDR_HAS_L2HDR(hdr)); 3647 3648 list_remove(&dev->l2ad_buflist, hdr); 3649 3650 l2arc_hdr_arcstats_decrement(hdr); 3651 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3652 3653 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3654 hdr); 3655 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3656 } 3657 3658 static void 3659 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3660 { 3661 if (HDR_HAS_L1HDR(hdr)) { 3662 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3663 hdr->b_l1hdr.b_bufcnt > 0); 3664 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3665 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3666 } 3667 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3668 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3669 3670 if (HDR_HAS_L2HDR(hdr)) { 3671 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3672 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3673 3674 if (!buflist_held) 3675 mutex_enter(&dev->l2ad_mtx); 3676 3677 /* 3678 * Even though we checked this conditional above, we 3679 * need to check this again now that we have the 3680 * l2ad_mtx. This is because we could be racing with 3681 * another thread calling l2arc_evict() which might have 3682 * destroyed this header's L2 portion as we were waiting 3683 * to acquire the l2ad_mtx. If that happens, we don't 3684 * want to re-destroy the header's L2 portion. 3685 */ 3686 if (HDR_HAS_L2HDR(hdr)) 3687 arc_hdr_l2hdr_destroy(hdr); 3688 3689 if (!buflist_held) 3690 mutex_exit(&dev->l2ad_mtx); 3691 } 3692 3693 /* 3694 * The header's identity can only be safely discarded once it is no 3695 * longer discoverable. This requires removing it from the hash table 3696 * and the l2arc header list. After this point the hash lock can not 3697 * be used to protect the header. 3698 */ 3699 if (!HDR_EMPTY(hdr)) 3700 buf_discard_identity(hdr); 3701 3702 if (HDR_HAS_L1HDR(hdr)) { 3703 arc_cksum_free(hdr); 3704 3705 while (hdr->b_l1hdr.b_buf != NULL) 3706 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3707 3708 #ifdef ZFS_DEBUG 3709 if (hdr->b_l1hdr.b_thawed != NULL) { 3710 kmem_free(hdr->b_l1hdr.b_thawed, 1); 3711 hdr->b_l1hdr.b_thawed = NULL; 3712 } 3713 #endif 3714 3715 if (hdr->b_l1hdr.b_pabd != NULL) 3716 arc_hdr_free_pabd(hdr, B_FALSE); 3717 3718 if (HDR_HAS_RABD(hdr)) 3719 arc_hdr_free_pabd(hdr, B_TRUE); 3720 } 3721 3722 ASSERT3P(hdr->b_hash_next, ==, NULL); 3723 if (HDR_HAS_L1HDR(hdr)) { 3724 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3725 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3726 3727 if (!HDR_PROTECTED(hdr)) { 3728 kmem_cache_free(hdr_full_cache, hdr); 3729 } else { 3730 kmem_cache_free(hdr_full_crypt_cache, hdr); 3731 } 3732 } else { 3733 kmem_cache_free(hdr_l2only_cache, hdr); 3734 } 3735 } 3736 3737 void 3738 arc_buf_destroy(arc_buf_t *buf, void* tag) 3739 { 3740 arc_buf_hdr_t *hdr = buf->b_hdr; 3741 3742 if (hdr->b_l1hdr.b_state == arc_anon) { 3743 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3744 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3745 VERIFY0(remove_reference(hdr, NULL, tag)); 3746 arc_hdr_destroy(hdr); 3747 return; 3748 } 3749 3750 kmutex_t *hash_lock = HDR_LOCK(hdr); 3751 mutex_enter(hash_lock); 3752 3753 ASSERT3P(hdr, ==, buf->b_hdr); 3754 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3755 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3756 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3757 ASSERT3P(buf->b_data, !=, NULL); 3758 3759 (void) remove_reference(hdr, hash_lock, tag); 3760 arc_buf_destroy_impl(buf); 3761 mutex_exit(hash_lock); 3762 } 3763 3764 /* 3765 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3766 * state of the header is dependent on its state prior to entering this 3767 * function. The following transitions are possible: 3768 * 3769 * - arc_mru -> arc_mru_ghost 3770 * - arc_mfu -> arc_mfu_ghost 3771 * - arc_mru_ghost -> arc_l2c_only 3772 * - arc_mru_ghost -> deleted 3773 * - arc_mfu_ghost -> arc_l2c_only 3774 * - arc_mfu_ghost -> deleted 3775 */ 3776 static int64_t 3777 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3778 { 3779 arc_state_t *evicted_state, *state; 3780 int64_t bytes_evicted = 0; 3781 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3782 zfs_arc_min_prescient_prefetch_ms : zfs_arc_min_prefetch_ms; 3783 3784 ASSERT(MUTEX_HELD(hash_lock)); 3785 ASSERT(HDR_HAS_L1HDR(hdr)); 3786 3787 state = hdr->b_l1hdr.b_state; 3788 if (GHOST_STATE(state)) { 3789 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3790 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3791 3792 /* 3793 * l2arc_write_buffers() relies on a header's L1 portion 3794 * (i.e. its b_pabd field) during its write phase. 3795 * Thus, we cannot push a header onto the arc_l2c_only 3796 * state (removing its L1 piece) until the header is 3797 * done being written to the l2arc. 3798 */ 3799 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3800 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3801 return (bytes_evicted); 3802 } 3803 3804 ARCSTAT_BUMP(arcstat_deleted); 3805 bytes_evicted += HDR_GET_LSIZE(hdr); 3806 3807 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3808 3809 if (HDR_HAS_L2HDR(hdr)) { 3810 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3811 ASSERT(!HDR_HAS_RABD(hdr)); 3812 /* 3813 * This buffer is cached on the 2nd Level ARC; 3814 * don't destroy the header. 3815 */ 3816 arc_change_state(arc_l2c_only, hdr, hash_lock); 3817 /* 3818 * dropping from L1+L2 cached to L2-only, 3819 * realloc to remove the L1 header. 3820 */ 3821 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3822 hdr_l2only_cache); 3823 } else { 3824 arc_change_state(arc_anon, hdr, hash_lock); 3825 arc_hdr_destroy(hdr); 3826 } 3827 return (bytes_evicted); 3828 } 3829 3830 ASSERT(state == arc_mru || state == arc_mfu); 3831 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3832 3833 /* prefetch buffers have a minimum lifespan */ 3834 if (HDR_IO_IN_PROGRESS(hdr) || 3835 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3836 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < min_lifetime * hz)) { 3837 ARCSTAT_BUMP(arcstat_evict_skip); 3838 return (bytes_evicted); 3839 } 3840 3841 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3842 while (hdr->b_l1hdr.b_buf) { 3843 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3844 if (!mutex_tryenter(&buf->b_evict_lock)) { 3845 ARCSTAT_BUMP(arcstat_mutex_miss); 3846 break; 3847 } 3848 if (buf->b_data != NULL) 3849 bytes_evicted += HDR_GET_LSIZE(hdr); 3850 mutex_exit(&buf->b_evict_lock); 3851 arc_buf_destroy_impl(buf); 3852 } 3853 3854 if (HDR_HAS_L2HDR(hdr)) { 3855 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3856 } else { 3857 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3858 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3859 HDR_GET_LSIZE(hdr)); 3860 3861 switch (state->arcs_state) { 3862 case ARC_STATE_MRU: 3863 ARCSTAT_INCR( 3864 arcstat_evict_l2_eligible_mru, 3865 HDR_GET_LSIZE(hdr)); 3866 break; 3867 case ARC_STATE_MFU: 3868 ARCSTAT_INCR( 3869 arcstat_evict_l2_eligible_mfu, 3870 HDR_GET_LSIZE(hdr)); 3871 break; 3872 default: 3873 break; 3874 } 3875 } else { 3876 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3877 HDR_GET_LSIZE(hdr)); 3878 } 3879 } 3880 3881 if (hdr->b_l1hdr.b_bufcnt == 0) { 3882 arc_cksum_free(hdr); 3883 3884 bytes_evicted += arc_hdr_size(hdr); 3885 3886 /* 3887 * If this hdr is being evicted and has a compressed 3888 * buffer then we discard it here before we change states. 3889 * This ensures that the accounting is updated correctly 3890 * in arc_free_data_impl(). 3891 */ 3892 if (hdr->b_l1hdr.b_pabd != NULL) 3893 arc_hdr_free_pabd(hdr, B_FALSE); 3894 3895 if (HDR_HAS_RABD(hdr)) 3896 arc_hdr_free_pabd(hdr, B_TRUE); 3897 3898 arc_change_state(evicted_state, hdr, hash_lock); 3899 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3900 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 3901 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3902 } 3903 3904 return (bytes_evicted); 3905 } 3906 3907 static uint64_t 3908 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 3909 uint64_t spa, int64_t bytes) 3910 { 3911 multilist_sublist_t *mls; 3912 uint64_t bytes_evicted = 0; 3913 arc_buf_hdr_t *hdr; 3914 kmutex_t *hash_lock; 3915 int evict_count = 0; 3916 3917 ASSERT3P(marker, !=, NULL); 3918 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3919 3920 mls = multilist_sublist_lock(ml, idx); 3921 3922 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 3923 hdr = multilist_sublist_prev(mls, marker)) { 3924 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 3925 (evict_count >= zfs_arc_evict_batch_limit)) 3926 break; 3927 3928 /* 3929 * To keep our iteration location, move the marker 3930 * forward. Since we're not holding hdr's hash lock, we 3931 * must be very careful and not remove 'hdr' from the 3932 * sublist. Otherwise, other consumers might mistake the 3933 * 'hdr' as not being on a sublist when they call the 3934 * multilist_link_active() function (they all rely on 3935 * the hash lock protecting concurrent insertions and 3936 * removals). multilist_sublist_move_forward() was 3937 * specifically implemented to ensure this is the case 3938 * (only 'marker' will be removed and re-inserted). 3939 */ 3940 multilist_sublist_move_forward(mls, marker); 3941 3942 /* 3943 * The only case where the b_spa field should ever be 3944 * zero, is the marker headers inserted by 3945 * arc_evict_state(). It's possible for multiple threads 3946 * to be calling arc_evict_state() concurrently (e.g. 3947 * dsl_pool_close() and zio_inject_fault()), so we must 3948 * skip any markers we see from these other threads. 3949 */ 3950 if (hdr->b_spa == 0) 3951 continue; 3952 3953 /* we're only interested in evicting buffers of a certain spa */ 3954 if (spa != 0 && hdr->b_spa != spa) { 3955 ARCSTAT_BUMP(arcstat_evict_skip); 3956 continue; 3957 } 3958 3959 hash_lock = HDR_LOCK(hdr); 3960 3961 /* 3962 * We aren't calling this function from any code path 3963 * that would already be holding a hash lock, so we're 3964 * asserting on this assumption to be defensive in case 3965 * this ever changes. Without this check, it would be 3966 * possible to incorrectly increment arcstat_mutex_miss 3967 * below (e.g. if the code changed such that we called 3968 * this function with a hash lock held). 3969 */ 3970 ASSERT(!MUTEX_HELD(hash_lock)); 3971 3972 if (mutex_tryenter(hash_lock)) { 3973 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 3974 mutex_exit(hash_lock); 3975 3976 bytes_evicted += evicted; 3977 3978 /* 3979 * If evicted is zero, arc_evict_hdr() must have 3980 * decided to skip this header, don't increment 3981 * evict_count in this case. 3982 */ 3983 if (evicted != 0) 3984 evict_count++; 3985 3986 /* 3987 * If arc_size isn't overflowing, signal any 3988 * threads that might happen to be waiting. 3989 * 3990 * For each header evicted, we wake up a single 3991 * thread. If we used cv_broadcast, we could 3992 * wake up "too many" threads causing arc_size 3993 * to significantly overflow arc_c; since 3994 * arc_get_data_impl() doesn't check for overflow 3995 * when it's woken up (it doesn't because it's 3996 * possible for the ARC to be overflowing while 3997 * full of un-evictable buffers, and the 3998 * function should proceed in this case). 3999 * 4000 * If threads are left sleeping, due to not 4001 * using cv_broadcast here, they will be woken 4002 * up via cv_broadcast in arc_adjust_cb() just 4003 * before arc_adjust_zthr sleeps. 4004 */ 4005 mutex_enter(&arc_adjust_lock); 4006 if (!arc_is_overflowing()) 4007 cv_signal(&arc_adjust_waiters_cv); 4008 mutex_exit(&arc_adjust_lock); 4009 } else { 4010 ARCSTAT_BUMP(arcstat_mutex_miss); 4011 } 4012 } 4013 4014 multilist_sublist_unlock(mls); 4015 4016 return (bytes_evicted); 4017 } 4018 4019 /* 4020 * Evict buffers from the given arc state, until we've removed the 4021 * specified number of bytes. Move the removed buffers to the 4022 * appropriate evict state. 4023 * 4024 * This function makes a "best effort". It skips over any buffers 4025 * it can't get a hash_lock on, and so, may not catch all candidates. 4026 * It may also return without evicting as much space as requested. 4027 * 4028 * If bytes is specified using the special value ARC_EVICT_ALL, this 4029 * will evict all available (i.e. unlocked and evictable) buffers from 4030 * the given arc state; which is used by arc_flush(). 4031 */ 4032 static uint64_t 4033 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 4034 arc_buf_contents_t type) 4035 { 4036 uint64_t total_evicted = 0; 4037 multilist_t *ml = state->arcs_list[type]; 4038 int num_sublists; 4039 arc_buf_hdr_t **markers; 4040 4041 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 4042 4043 num_sublists = multilist_get_num_sublists(ml); 4044 4045 /* 4046 * If we've tried to evict from each sublist, made some 4047 * progress, but still have not hit the target number of bytes 4048 * to evict, we want to keep trying. The markers allow us to 4049 * pick up where we left off for each individual sublist, rather 4050 * than starting from the tail each time. 4051 */ 4052 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 4053 for (int i = 0; i < num_sublists; i++) { 4054 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4055 4056 /* 4057 * A b_spa of 0 is used to indicate that this header is 4058 * a marker. This fact is used in arc_adjust_type() and 4059 * arc_evict_state_impl(). 4060 */ 4061 markers[i]->b_spa = 0; 4062 4063 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4064 multilist_sublist_insert_tail(mls, markers[i]); 4065 multilist_sublist_unlock(mls); 4066 } 4067 4068 /* 4069 * While we haven't hit our target number of bytes to evict, or 4070 * we're evicting all available buffers. 4071 */ 4072 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 4073 /* 4074 * Start eviction using a randomly selected sublist, 4075 * this is to try and evenly balance eviction across all 4076 * sublists. Always starting at the same sublist 4077 * (e.g. index 0) would cause evictions to favor certain 4078 * sublists over others. 4079 */ 4080 int sublist_idx = multilist_get_random_index(ml); 4081 uint64_t scan_evicted = 0; 4082 4083 for (int i = 0; i < num_sublists; i++) { 4084 uint64_t bytes_remaining; 4085 uint64_t bytes_evicted; 4086 4087 if (bytes == ARC_EVICT_ALL) 4088 bytes_remaining = ARC_EVICT_ALL; 4089 else if (total_evicted < bytes) 4090 bytes_remaining = bytes - total_evicted; 4091 else 4092 break; 4093 4094 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4095 markers[sublist_idx], spa, bytes_remaining); 4096 4097 scan_evicted += bytes_evicted; 4098 total_evicted += bytes_evicted; 4099 4100 /* we've reached the end, wrap to the beginning */ 4101 if (++sublist_idx >= num_sublists) 4102 sublist_idx = 0; 4103 } 4104 4105 /* 4106 * If we didn't evict anything during this scan, we have 4107 * no reason to believe we'll evict more during another 4108 * scan, so break the loop. 4109 */ 4110 if (scan_evicted == 0) { 4111 /* This isn't possible, let's make that obvious */ 4112 ASSERT3S(bytes, !=, 0); 4113 4114 /* 4115 * When bytes is ARC_EVICT_ALL, the only way to 4116 * break the loop is when scan_evicted is zero. 4117 * In that case, we actually have evicted enough, 4118 * so we don't want to increment the kstat. 4119 */ 4120 if (bytes != ARC_EVICT_ALL) { 4121 ASSERT3S(total_evicted, <, bytes); 4122 ARCSTAT_BUMP(arcstat_evict_not_enough); 4123 } 4124 4125 break; 4126 } 4127 } 4128 4129 for (int i = 0; i < num_sublists; i++) { 4130 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4131 multilist_sublist_remove(mls, markers[i]); 4132 multilist_sublist_unlock(mls); 4133 4134 kmem_cache_free(hdr_full_cache, markers[i]); 4135 } 4136 kmem_free(markers, sizeof (*markers) * num_sublists); 4137 4138 return (total_evicted); 4139 } 4140 4141 /* 4142 * Flush all "evictable" data of the given type from the arc state 4143 * specified. This will not evict any "active" buffers (i.e. referenced). 4144 * 4145 * When 'retry' is set to B_FALSE, the function will make a single pass 4146 * over the state and evict any buffers that it can. Since it doesn't 4147 * continually retry the eviction, it might end up leaving some buffers 4148 * in the ARC due to lock misses. 4149 * 4150 * When 'retry' is set to B_TRUE, the function will continually retry the 4151 * eviction until *all* evictable buffers have been removed from the 4152 * state. As a result, if concurrent insertions into the state are 4153 * allowed (e.g. if the ARC isn't shutting down), this function might 4154 * wind up in an infinite loop, continually trying to evict buffers. 4155 */ 4156 static uint64_t 4157 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4158 boolean_t retry) 4159 { 4160 uint64_t evicted = 0; 4161 4162 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4163 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 4164 4165 if (!retry) 4166 break; 4167 } 4168 4169 return (evicted); 4170 } 4171 4172 /* 4173 * Evict the specified number of bytes from the state specified, 4174 * restricting eviction to the spa and type given. This function 4175 * prevents us from trying to evict more from a state's list than 4176 * is "evictable", and to skip evicting altogether when passed a 4177 * negative value for "bytes". In contrast, arc_evict_state() will 4178 * evict everything it can, when passed a negative value for "bytes". 4179 */ 4180 static uint64_t 4181 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 4182 arc_buf_contents_t type) 4183 { 4184 int64_t delta; 4185 4186 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4187 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4188 bytes); 4189 return (arc_evict_state(state, spa, delta, type)); 4190 } 4191 4192 return (0); 4193 } 4194 4195 /* 4196 * Evict metadata buffers from the cache, such that arc_meta_used is 4197 * capped by the arc_meta_limit tunable. 4198 */ 4199 static uint64_t 4200 arc_adjust_meta(uint64_t meta_used) 4201 { 4202 uint64_t total_evicted = 0; 4203 int64_t target; 4204 4205 /* 4206 * If we're over the meta limit, we want to evict enough 4207 * metadata to get back under the meta limit. We don't want to 4208 * evict so much that we drop the MRU below arc_p, though. If 4209 * we're over the meta limit more than we're over arc_p, we 4210 * evict some from the MRU here, and some from the MFU below. 4211 */ 4212 target = MIN((int64_t)(meta_used - arc_meta_limit), 4213 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4214 zfs_refcount_count(&arc_mru->arcs_size) - arc_p)); 4215 4216 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4217 4218 /* 4219 * Similar to the above, we want to evict enough bytes to get us 4220 * below the meta limit, but not so much as to drop us below the 4221 * space allotted to the MFU (which is defined as arc_c - arc_p). 4222 */ 4223 target = MIN((int64_t)(meta_used - arc_meta_limit), 4224 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) - 4225 (arc_c - arc_p))); 4226 4227 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4228 4229 return (total_evicted); 4230 } 4231 4232 /* 4233 * Return the type of the oldest buffer in the given arc state 4234 * 4235 * This function will select a random sublist of type ARC_BUFC_DATA and 4236 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 4237 * is compared, and the type which contains the "older" buffer will be 4238 * returned. 4239 */ 4240 static arc_buf_contents_t 4241 arc_adjust_type(arc_state_t *state) 4242 { 4243 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA]; 4244 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA]; 4245 int data_idx = multilist_get_random_index(data_ml); 4246 int meta_idx = multilist_get_random_index(meta_ml); 4247 multilist_sublist_t *data_mls; 4248 multilist_sublist_t *meta_mls; 4249 arc_buf_contents_t type; 4250 arc_buf_hdr_t *data_hdr; 4251 arc_buf_hdr_t *meta_hdr; 4252 4253 /* 4254 * We keep the sublist lock until we're finished, to prevent 4255 * the headers from being destroyed via arc_evict_state(). 4256 */ 4257 data_mls = multilist_sublist_lock(data_ml, data_idx); 4258 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 4259 4260 /* 4261 * These two loops are to ensure we skip any markers that 4262 * might be at the tail of the lists due to arc_evict_state(). 4263 */ 4264 4265 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 4266 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 4267 if (data_hdr->b_spa != 0) 4268 break; 4269 } 4270 4271 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 4272 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 4273 if (meta_hdr->b_spa != 0) 4274 break; 4275 } 4276 4277 if (data_hdr == NULL && meta_hdr == NULL) { 4278 type = ARC_BUFC_DATA; 4279 } else if (data_hdr == NULL) { 4280 ASSERT3P(meta_hdr, !=, NULL); 4281 type = ARC_BUFC_METADATA; 4282 } else if (meta_hdr == NULL) { 4283 ASSERT3P(data_hdr, !=, NULL); 4284 type = ARC_BUFC_DATA; 4285 } else { 4286 ASSERT3P(data_hdr, !=, NULL); 4287 ASSERT3P(meta_hdr, !=, NULL); 4288 4289 /* The headers can't be on the sublist without an L1 header */ 4290 ASSERT(HDR_HAS_L1HDR(data_hdr)); 4291 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 4292 4293 if (data_hdr->b_l1hdr.b_arc_access < 4294 meta_hdr->b_l1hdr.b_arc_access) { 4295 type = ARC_BUFC_DATA; 4296 } else { 4297 type = ARC_BUFC_METADATA; 4298 } 4299 } 4300 4301 multilist_sublist_unlock(meta_mls); 4302 multilist_sublist_unlock(data_mls); 4303 4304 return (type); 4305 } 4306 4307 /* 4308 * Evict buffers from the cache, such that arc_size is capped by arc_c. 4309 */ 4310 static uint64_t 4311 arc_adjust(void) 4312 { 4313 uint64_t total_evicted = 0; 4314 uint64_t bytes; 4315 int64_t target; 4316 uint64_t asize = aggsum_value(&arc_size); 4317 uint64_t ameta = aggsum_value(&arc_meta_used); 4318 4319 /* 4320 * If we're over arc_meta_limit, we want to correct that before 4321 * potentially evicting data buffers below. 4322 */ 4323 total_evicted += arc_adjust_meta(ameta); 4324 4325 /* 4326 * Adjust MRU size 4327 * 4328 * If we're over the target cache size, we want to evict enough 4329 * from the list to get back to our target size. We don't want 4330 * to evict too much from the MRU, such that it drops below 4331 * arc_p. So, if we're over our target cache size more than 4332 * the MRU is over arc_p, we'll evict enough to get back to 4333 * arc_p here, and then evict more from the MFU below. 4334 */ 4335 target = MIN((int64_t)(asize - arc_c), 4336 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4337 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 4338 4339 /* 4340 * If we're below arc_meta_min, always prefer to evict data. 4341 * Otherwise, try to satisfy the requested number of bytes to 4342 * evict from the type which contains older buffers; in an 4343 * effort to keep newer buffers in the cache regardless of their 4344 * type. If we cannot satisfy the number of bytes from this 4345 * type, spill over into the next type. 4346 */ 4347 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA && 4348 ameta > arc_meta_min) { 4349 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4350 total_evicted += bytes; 4351 4352 /* 4353 * If we couldn't evict our target number of bytes from 4354 * metadata, we try to get the rest from data. 4355 */ 4356 target -= bytes; 4357 4358 total_evicted += 4359 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4360 } else { 4361 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4362 total_evicted += bytes; 4363 4364 /* 4365 * If we couldn't evict our target number of bytes from 4366 * data, we try to get the rest from metadata. 4367 */ 4368 target -= bytes; 4369 4370 total_evicted += 4371 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4372 } 4373 4374 /* 4375 * Adjust MFU size 4376 * 4377 * Now that we've tried to evict enough from the MRU to get its 4378 * size back to arc_p, if we're still above the target cache 4379 * size, we evict the rest from the MFU. 4380 */ 4381 target = asize - arc_c; 4382 4383 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA && 4384 ameta > arc_meta_min) { 4385 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4386 total_evicted += bytes; 4387 4388 /* 4389 * If we couldn't evict our target number of bytes from 4390 * metadata, we try to get the rest from data. 4391 */ 4392 target -= bytes; 4393 4394 total_evicted += 4395 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4396 } else { 4397 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4398 total_evicted += bytes; 4399 4400 /* 4401 * If we couldn't evict our target number of bytes from 4402 * data, we try to get the rest from data. 4403 */ 4404 target -= bytes; 4405 4406 total_evicted += 4407 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4408 } 4409 4410 /* 4411 * Adjust ghost lists 4412 * 4413 * In addition to the above, the ARC also defines target values 4414 * for the ghost lists. The sum of the mru list and mru ghost 4415 * list should never exceed the target size of the cache, and 4416 * the sum of the mru list, mfu list, mru ghost list, and mfu 4417 * ghost list should never exceed twice the target size of the 4418 * cache. The following logic enforces these limits on the ghost 4419 * caches, and evicts from them as needed. 4420 */ 4421 target = zfs_refcount_count(&arc_mru->arcs_size) + 4422 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 4423 4424 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 4425 total_evicted += bytes; 4426 4427 target -= bytes; 4428 4429 total_evicted += 4430 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 4431 4432 /* 4433 * We assume the sum of the mru list and mfu list is less than 4434 * or equal to arc_c (we enforced this above), which means we 4435 * can use the simpler of the two equations below: 4436 * 4437 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 4438 * mru ghost + mfu ghost <= arc_c 4439 */ 4440 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) + 4441 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 4442 4443 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 4444 total_evicted += bytes; 4445 4446 target -= bytes; 4447 4448 total_evicted += 4449 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 4450 4451 return (total_evicted); 4452 } 4453 4454 void 4455 arc_flush(spa_t *spa, boolean_t retry) 4456 { 4457 uint64_t guid = 0; 4458 4459 /* 4460 * If retry is B_TRUE, a spa must not be specified since we have 4461 * no good way to determine if all of a spa's buffers have been 4462 * evicted from an arc state. 4463 */ 4464 ASSERT(!retry || spa == 0); 4465 4466 if (spa != NULL) 4467 guid = spa_load_guid(spa); 4468 4469 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4470 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4471 4472 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4473 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4474 4475 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4476 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4477 4478 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4479 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4480 } 4481 4482 static void 4483 arc_reduce_target_size(int64_t to_free) 4484 { 4485 uint64_t asize = aggsum_value(&arc_size); 4486 if (arc_c > arc_c_min) { 4487 4488 if (arc_c > arc_c_min + to_free) 4489 atomic_add_64(&arc_c, -to_free); 4490 else 4491 arc_c = arc_c_min; 4492 4493 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 4494 if (asize < arc_c) 4495 arc_c = MAX(asize, arc_c_min); 4496 if (arc_p > arc_c) 4497 arc_p = (arc_c >> 1); 4498 ASSERT(arc_c >= arc_c_min); 4499 ASSERT((int64_t)arc_p >= 0); 4500 } 4501 4502 if (asize > arc_c) { 4503 /* See comment in arc_adjust_cb_check() on why lock+flag */ 4504 mutex_enter(&arc_adjust_lock); 4505 arc_adjust_needed = B_TRUE; 4506 mutex_exit(&arc_adjust_lock); 4507 zthr_wakeup(arc_adjust_zthr); 4508 } 4509 } 4510 4511 typedef enum free_memory_reason_t { 4512 FMR_UNKNOWN, 4513 FMR_NEEDFREE, 4514 FMR_LOTSFREE, 4515 FMR_SWAPFS_MINFREE, 4516 FMR_PAGES_PP_MAXIMUM, 4517 FMR_HEAP_ARENA, 4518 FMR_ZIO_ARENA, 4519 } free_memory_reason_t; 4520 4521 int64_t last_free_memory; 4522 free_memory_reason_t last_free_reason; 4523 4524 /* 4525 * Additional reserve of pages for pp_reserve. 4526 */ 4527 int64_t arc_pages_pp_reserve = 64; 4528 4529 /* 4530 * Additional reserve of pages for swapfs. 4531 */ 4532 int64_t arc_swapfs_reserve = 64; 4533 4534 /* 4535 * Return the amount of memory that can be consumed before reclaim will be 4536 * needed. Positive if there is sufficient free memory, negative indicates 4537 * the amount of memory that needs to be freed up. 4538 */ 4539 static int64_t 4540 arc_available_memory(void) 4541 { 4542 int64_t lowest = INT64_MAX; 4543 int64_t n; 4544 free_memory_reason_t r = FMR_UNKNOWN; 4545 4546 #ifdef _KERNEL 4547 if (needfree > 0) { 4548 n = PAGESIZE * (-needfree); 4549 if (n < lowest) { 4550 lowest = n; 4551 r = FMR_NEEDFREE; 4552 } 4553 } 4554 4555 /* 4556 * check that we're out of range of the pageout scanner. It starts to 4557 * schedule paging if freemem is less than lotsfree and needfree. 4558 * lotsfree is the high-water mark for pageout, and needfree is the 4559 * number of needed free pages. We add extra pages here to make sure 4560 * the scanner doesn't start up while we're freeing memory. 4561 */ 4562 n = PAGESIZE * (freemem - lotsfree - needfree - desfree); 4563 if (n < lowest) { 4564 lowest = n; 4565 r = FMR_LOTSFREE; 4566 } 4567 4568 /* 4569 * check to make sure that swapfs has enough space so that anon 4570 * reservations can still succeed. anon_resvmem() checks that the 4571 * availrmem is greater than swapfs_minfree, and the number of reserved 4572 * swap pages. We also add a bit of extra here just to prevent 4573 * circumstances from getting really dire. 4574 */ 4575 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve - 4576 desfree - arc_swapfs_reserve); 4577 if (n < lowest) { 4578 lowest = n; 4579 r = FMR_SWAPFS_MINFREE; 4580 } 4581 4582 4583 /* 4584 * Check that we have enough availrmem that memory locking (e.g., via 4585 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 4586 * stores the number of pages that cannot be locked; when availrmem 4587 * drops below pages_pp_maximum, page locking mechanisms such as 4588 * page_pp_lock() will fail.) 4589 */ 4590 n = PAGESIZE * (availrmem - pages_pp_maximum - 4591 arc_pages_pp_reserve); 4592 if (n < lowest) { 4593 lowest = n; 4594 r = FMR_PAGES_PP_MAXIMUM; 4595 } 4596 4597 4598 /* 4599 * If zio data pages are being allocated out of a separate heap segment, 4600 * then enforce that the size of available vmem for this arena remains 4601 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free. 4602 * 4603 * Note that reducing the arc_zio_arena_free_shift keeps more virtual 4604 * memory (in the zio_arena) free, which can avoid memory 4605 * fragmentation issues. 4606 */ 4607 if (zio_arena != NULL) { 4608 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) - 4609 (vmem_size(zio_arena, VMEM_ALLOC) >> 4610 arc_zio_arena_free_shift); 4611 if (n < lowest) { 4612 lowest = n; 4613 r = FMR_ZIO_ARENA; 4614 } 4615 } 4616 #else 4617 /* Every 100 calls, free a small amount */ 4618 if (spa_get_random(100) == 0) 4619 lowest = -1024; 4620 #endif 4621 4622 last_free_memory = lowest; 4623 last_free_reason = r; 4624 4625 return (lowest); 4626 } 4627 4628 4629 /* 4630 * Determine if the system is under memory pressure and is asking 4631 * to reclaim memory. A return value of B_TRUE indicates that the system 4632 * is under memory pressure and that the arc should adjust accordingly. 4633 */ 4634 static boolean_t 4635 arc_reclaim_needed(void) 4636 { 4637 return (arc_available_memory() < 0); 4638 } 4639 4640 static void 4641 arc_kmem_reap_soon(void) 4642 { 4643 size_t i; 4644 kmem_cache_t *prev_cache = NULL; 4645 kmem_cache_t *prev_data_cache = NULL; 4646 extern kmem_cache_t *zio_buf_cache[]; 4647 extern kmem_cache_t *zio_data_buf_cache[]; 4648 extern kmem_cache_t *zfs_btree_leaf_cache; 4649 extern kmem_cache_t *abd_chunk_cache; 4650 4651 #ifdef _KERNEL 4652 if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) { 4653 /* 4654 * We are exceeding our meta-data cache limit. 4655 * Purge some DNLC entries to release holds on meta-data. 4656 */ 4657 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 4658 } 4659 #endif 4660 4661 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4662 if (zio_buf_cache[i] != prev_cache) { 4663 prev_cache = zio_buf_cache[i]; 4664 kmem_cache_reap_soon(zio_buf_cache[i]); 4665 } 4666 if (zio_data_buf_cache[i] != prev_data_cache) { 4667 prev_data_cache = zio_data_buf_cache[i]; 4668 kmem_cache_reap_soon(zio_data_buf_cache[i]); 4669 } 4670 } 4671 kmem_cache_reap_soon(abd_chunk_cache); 4672 kmem_cache_reap_soon(buf_cache); 4673 kmem_cache_reap_soon(hdr_full_cache); 4674 kmem_cache_reap_soon(hdr_l2only_cache); 4675 kmem_cache_reap_soon(zfs_btree_leaf_cache); 4676 4677 if (zio_arena != NULL) { 4678 /* 4679 * Ask the vmem arena to reclaim unused memory from its 4680 * quantum caches. 4681 */ 4682 vmem_qcache_reap(zio_arena); 4683 } 4684 } 4685 4686 /* ARGSUSED */ 4687 static boolean_t 4688 arc_adjust_cb_check(void *arg, zthr_t *zthr) 4689 { 4690 /* 4691 * This is necessary in order for the mdb ::arc dcmd to 4692 * show up to date information. Since the ::arc command 4693 * does not call the kstat's update function, without 4694 * this call, the command may show stale stats for the 4695 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4696 * with this change, the data might be up to 1 second 4697 * out of date(the arc_adjust_zthr has a maximum sleep 4698 * time of 1 second); but that should suffice. The 4699 * arc_state_t structures can be queried directly if more 4700 * accurate information is needed. 4701 */ 4702 if (arc_ksp != NULL) 4703 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4704 4705 /* 4706 * We have to rely on arc_get_data_impl() to tell us when to adjust, 4707 * rather than checking if we are overflowing here, so that we are 4708 * sure to not leave arc_get_data_impl() waiting on 4709 * arc_adjust_waiters_cv. If we have become "not overflowing" since 4710 * arc_get_data_impl() checked, we need to wake it up. We could 4711 * broadcast the CV here, but arc_get_data_impl() may have not yet 4712 * gone to sleep. We would need to use a mutex to ensure that this 4713 * function doesn't broadcast until arc_get_data_impl() has gone to 4714 * sleep (e.g. the arc_adjust_lock). However, the lock ordering of 4715 * such a lock would necessarily be incorrect with respect to the 4716 * zthr_lock, which is held before this function is called, and is 4717 * held by arc_get_data_impl() when it calls zthr_wakeup(). 4718 */ 4719 return (arc_adjust_needed); 4720 } 4721 4722 /* 4723 * Keep arc_size under arc_c by running arc_adjust which evicts data 4724 * from the ARC. 4725 */ 4726 /* ARGSUSED */ 4727 static void 4728 arc_adjust_cb(void *arg, zthr_t *zthr) 4729 { 4730 uint64_t evicted = 0; 4731 4732 /* Evict from cache */ 4733 evicted = arc_adjust(); 4734 4735 /* 4736 * If evicted is zero, we couldn't evict anything 4737 * via arc_adjust(). This could be due to hash lock 4738 * collisions, but more likely due to the majority of 4739 * arc buffers being unevictable. Therefore, even if 4740 * arc_size is above arc_c, another pass is unlikely to 4741 * be helpful and could potentially cause us to enter an 4742 * infinite loop. Additionally, zthr_iscancelled() is 4743 * checked here so that if the arc is shutting down, the 4744 * broadcast will wake any remaining arc adjust waiters. 4745 */ 4746 mutex_enter(&arc_adjust_lock); 4747 arc_adjust_needed = !zthr_iscancelled(arc_adjust_zthr) && 4748 evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0; 4749 if (!arc_adjust_needed) { 4750 /* 4751 * We're either no longer overflowing, or we 4752 * can't evict anything more, so we should wake 4753 * up any waiters. 4754 */ 4755 cv_broadcast(&arc_adjust_waiters_cv); 4756 } 4757 mutex_exit(&arc_adjust_lock); 4758 } 4759 4760 /* ARGSUSED */ 4761 static boolean_t 4762 arc_reap_cb_check(void *arg, zthr_t *zthr) 4763 { 4764 int64_t free_memory = arc_available_memory(); 4765 4766 /* 4767 * If a kmem reap is already active, don't schedule more. We must 4768 * check for this because kmem_cache_reap_soon() won't actually 4769 * block on the cache being reaped (this is to prevent callers from 4770 * becoming implicitly blocked by a system-wide kmem reap -- which, 4771 * on a system with many, many full magazines, can take minutes). 4772 */ 4773 if (!kmem_cache_reap_active() && 4774 free_memory < 0) { 4775 arc_no_grow = B_TRUE; 4776 arc_warm = B_TRUE; 4777 /* 4778 * Wait at least zfs_grow_retry (default 60) seconds 4779 * before considering growing. 4780 */ 4781 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4782 return (B_TRUE); 4783 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4784 arc_no_grow = B_TRUE; 4785 } else if (gethrtime() >= arc_growtime) { 4786 arc_no_grow = B_FALSE; 4787 } 4788 4789 return (B_FALSE); 4790 } 4791 4792 /* 4793 * Keep enough free memory in the system by reaping the ARC's kmem 4794 * caches. To cause more slabs to be reapable, we may reduce the 4795 * target size of the cache (arc_c), causing the arc_adjust_cb() 4796 * to free more buffers. 4797 */ 4798 /* ARGSUSED */ 4799 static void 4800 arc_reap_cb(void *arg, zthr_t *zthr) 4801 { 4802 int64_t free_memory; 4803 4804 /* 4805 * Kick off asynchronous kmem_reap()'s of all our caches. 4806 */ 4807 arc_kmem_reap_soon(); 4808 4809 /* 4810 * Wait at least arc_kmem_cache_reap_retry_ms between 4811 * arc_kmem_reap_soon() calls. Without this check it is possible to 4812 * end up in a situation where we spend lots of time reaping 4813 * caches, while we're near arc_c_min. Waiting here also gives the 4814 * subsequent free memory check a chance of finding that the 4815 * asynchronous reap has already freed enough memory, and we don't 4816 * need to call arc_reduce_target_size(). 4817 */ 4818 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 4819 4820 /* 4821 * Reduce the target size as needed to maintain the amount of free 4822 * memory in the system at a fraction of the arc_size (1/128th by 4823 * default). If oversubscribed (free_memory < 0) then reduce the 4824 * target arc_size by the deficit amount plus the fractional 4825 * amount. If free memory is positive but less then the fractional 4826 * amount, reduce by what is needed to hit the fractional amount. 4827 */ 4828 free_memory = arc_available_memory(); 4829 4830 int64_t to_free = 4831 (arc_c >> arc_shrink_shift) - free_memory; 4832 if (to_free > 0) { 4833 #ifdef _KERNEL 4834 to_free = MAX(to_free, ptob(needfree)); 4835 #endif 4836 arc_reduce_target_size(to_free); 4837 } 4838 } 4839 4840 /* 4841 * Adapt arc info given the number of bytes we are trying to add and 4842 * the state that we are coming from. This function is only called 4843 * when we are adding new content to the cache. 4844 */ 4845 static void 4846 arc_adapt(int bytes, arc_state_t *state) 4847 { 4848 int mult; 4849 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 4850 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size); 4851 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size); 4852 4853 ASSERT(bytes > 0); 4854 /* 4855 * Adapt the target size of the MRU list: 4856 * - if we just hit in the MRU ghost list, then increase 4857 * the target size of the MRU list. 4858 * - if we just hit in the MFU ghost list, then increase 4859 * the target size of the MFU list by decreasing the 4860 * target size of the MRU list. 4861 */ 4862 if (state == arc_mru_ghost) { 4863 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 4864 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 4865 4866 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 4867 } else if (state == arc_mfu_ghost) { 4868 uint64_t delta; 4869 4870 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 4871 mult = MIN(mult, 10); 4872 4873 delta = MIN(bytes * mult, arc_p); 4874 arc_p = MAX(arc_p_min, arc_p - delta); 4875 } 4876 ASSERT((int64_t)arc_p >= 0); 4877 4878 /* 4879 * Wake reap thread if we do not have any available memory 4880 */ 4881 if (arc_reclaim_needed()) { 4882 zthr_wakeup(arc_reap_zthr); 4883 return; 4884 } 4885 4886 4887 if (arc_no_grow) 4888 return; 4889 4890 if (arc_c >= arc_c_max) 4891 return; 4892 4893 /* 4894 * If we're within (2 * maxblocksize) bytes of the target 4895 * cache size, increment the target cache size 4896 */ 4897 if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) > 4898 0) { 4899 atomic_add_64(&arc_c, (int64_t)bytes); 4900 if (arc_c > arc_c_max) 4901 arc_c = arc_c_max; 4902 else if (state == arc_anon) 4903 atomic_add_64(&arc_p, (int64_t)bytes); 4904 if (arc_p > arc_c) 4905 arc_p = arc_c; 4906 } 4907 ASSERT((int64_t)arc_p >= 0); 4908 } 4909 4910 /* 4911 * Check if arc_size has grown past our upper threshold, determined by 4912 * zfs_arc_overflow_shift. 4913 */ 4914 static boolean_t 4915 arc_is_overflowing(void) 4916 { 4917 /* Always allow at least one block of overflow */ 4918 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE, 4919 arc_c >> zfs_arc_overflow_shift); 4920 4921 /* 4922 * We just compare the lower bound here for performance reasons. Our 4923 * primary goals are to make sure that the arc never grows without 4924 * bound, and that it can reach its maximum size. This check 4925 * accomplishes both goals. The maximum amount we could run over by is 4926 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 4927 * in the ARC. In practice, that's in the tens of MB, which is low 4928 * enough to be safe. 4929 */ 4930 return (aggsum_lower_bound(&arc_size) >= arc_c + overflow); 4931 } 4932 4933 static abd_t * 4934 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 4935 boolean_t do_adapt) 4936 { 4937 arc_buf_contents_t type = arc_buf_type(hdr); 4938 4939 arc_get_data_impl(hdr, size, tag, do_adapt); 4940 if (type == ARC_BUFC_METADATA) { 4941 return (abd_alloc(size, B_TRUE)); 4942 } else { 4943 ASSERT(type == ARC_BUFC_DATA); 4944 return (abd_alloc(size, B_FALSE)); 4945 } 4946 } 4947 4948 static void * 4949 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4950 { 4951 arc_buf_contents_t type = arc_buf_type(hdr); 4952 4953 arc_get_data_impl(hdr, size, tag, B_TRUE); 4954 if (type == ARC_BUFC_METADATA) { 4955 return (zio_buf_alloc(size)); 4956 } else { 4957 ASSERT(type == ARC_BUFC_DATA); 4958 return (zio_data_buf_alloc(size)); 4959 } 4960 } 4961 4962 /* 4963 * Allocate a block and return it to the caller. If we are hitting the 4964 * hard limit for the cache size, we must sleep, waiting for the eviction 4965 * thread to catch up. If we're past the target size but below the hard 4966 * limit, we'll only signal the reclaim thread and continue on. 4967 */ 4968 static void 4969 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 4970 boolean_t do_adapt) 4971 { 4972 arc_state_t *state = hdr->b_l1hdr.b_state; 4973 arc_buf_contents_t type = arc_buf_type(hdr); 4974 4975 if (do_adapt) 4976 arc_adapt(size, state); 4977 4978 /* 4979 * If arc_size is currently overflowing, and has grown past our 4980 * upper limit, we must be adding data faster than the evict 4981 * thread can evict. Thus, to ensure we don't compound the 4982 * problem by adding more data and forcing arc_size to grow even 4983 * further past its target size, we halt and wait for the 4984 * eviction thread to catch up. 4985 * 4986 * It's also possible that the reclaim thread is unable to evict 4987 * enough buffers to get arc_size below the overflow limit (e.g. 4988 * due to buffers being un-evictable, or hash lock collisions). 4989 * In this case, we want to proceed regardless if we're 4990 * overflowing; thus we don't use a while loop here. 4991 */ 4992 if (arc_is_overflowing()) { 4993 mutex_enter(&arc_adjust_lock); 4994 4995 /* 4996 * Now that we've acquired the lock, we may no longer be 4997 * over the overflow limit, lets check. 4998 * 4999 * We're ignoring the case of spurious wake ups. If that 5000 * were to happen, it'd let this thread consume an ARC 5001 * buffer before it should have (i.e. before we're under 5002 * the overflow limit and were signalled by the reclaim 5003 * thread). As long as that is a rare occurrence, it 5004 * shouldn't cause any harm. 5005 */ 5006 if (arc_is_overflowing()) { 5007 arc_adjust_needed = B_TRUE; 5008 zthr_wakeup(arc_adjust_zthr); 5009 (void) cv_wait(&arc_adjust_waiters_cv, 5010 &arc_adjust_lock); 5011 } 5012 mutex_exit(&arc_adjust_lock); 5013 } 5014 5015 VERIFY3U(hdr->b_type, ==, type); 5016 if (type == ARC_BUFC_METADATA) { 5017 arc_space_consume(size, ARC_SPACE_META); 5018 } else { 5019 arc_space_consume(size, ARC_SPACE_DATA); 5020 } 5021 5022 /* 5023 * Update the state size. Note that ghost states have a 5024 * "ghost size" and so don't need to be updated. 5025 */ 5026 if (!GHOST_STATE(state)) { 5027 5028 (void) zfs_refcount_add_many(&state->arcs_size, size, tag); 5029 5030 /* 5031 * If this is reached via arc_read, the link is 5032 * protected by the hash lock. If reached via 5033 * arc_buf_alloc, the header should not be accessed by 5034 * any other thread. And, if reached via arc_read_done, 5035 * the hash lock will protect it if it's found in the 5036 * hash table; otherwise no other thread should be 5037 * trying to [add|remove]_reference it. 5038 */ 5039 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5040 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5041 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5042 size, tag); 5043 } 5044 5045 /* 5046 * If we are growing the cache, and we are adding anonymous 5047 * data, and we have outgrown arc_p, update arc_p 5048 */ 5049 if (aggsum_compare(&arc_size, arc_c) < 0 && 5050 hdr->b_l1hdr.b_state == arc_anon && 5051 (zfs_refcount_count(&arc_anon->arcs_size) + 5052 zfs_refcount_count(&arc_mru->arcs_size) > arc_p)) 5053 arc_p = MIN(arc_c, arc_p + size); 5054 } 5055 } 5056 5057 static void 5058 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 5059 { 5060 arc_free_data_impl(hdr, size, tag); 5061 abd_free(abd); 5062 } 5063 5064 static void 5065 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 5066 { 5067 arc_buf_contents_t type = arc_buf_type(hdr); 5068 5069 arc_free_data_impl(hdr, size, tag); 5070 if (type == ARC_BUFC_METADATA) { 5071 zio_buf_free(buf, size); 5072 } else { 5073 ASSERT(type == ARC_BUFC_DATA); 5074 zio_data_buf_free(buf, size); 5075 } 5076 } 5077 5078 /* 5079 * Free the arc data buffer. 5080 */ 5081 static void 5082 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5083 { 5084 arc_state_t *state = hdr->b_l1hdr.b_state; 5085 arc_buf_contents_t type = arc_buf_type(hdr); 5086 5087 /* protected by hash lock, if in the hash table */ 5088 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5089 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5090 ASSERT(state != arc_anon && state != arc_l2c_only); 5091 5092 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5093 size, tag); 5094 } 5095 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag); 5096 5097 VERIFY3U(hdr->b_type, ==, type); 5098 if (type == ARC_BUFC_METADATA) { 5099 arc_space_return(size, ARC_SPACE_META); 5100 } else { 5101 ASSERT(type == ARC_BUFC_DATA); 5102 arc_space_return(size, ARC_SPACE_DATA); 5103 } 5104 } 5105 5106 /* 5107 * This routine is called whenever a buffer is accessed. 5108 * NOTE: the hash lock is dropped in this function. 5109 */ 5110 static void 5111 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 5112 { 5113 clock_t now; 5114 5115 ASSERT(MUTEX_HELD(hash_lock)); 5116 ASSERT(HDR_HAS_L1HDR(hdr)); 5117 5118 if (hdr->b_l1hdr.b_state == arc_anon) { 5119 /* 5120 * This buffer is not in the cache, and does not 5121 * appear in our "ghost" list. Add the new buffer 5122 * to the MRU state. 5123 */ 5124 5125 ASSERT0(hdr->b_l1hdr.b_arc_access); 5126 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5127 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5128 arc_change_state(arc_mru, hdr, hash_lock); 5129 5130 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5131 now = ddi_get_lbolt(); 5132 5133 /* 5134 * If this buffer is here because of a prefetch, then either: 5135 * - clear the flag if this is a "referencing" read 5136 * (any subsequent access will bump this into the MFU state). 5137 * or 5138 * - move the buffer to the head of the list if this is 5139 * another prefetch (to make it less likely to be evicted). 5140 */ 5141 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5142 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5143 /* link protected by hash lock */ 5144 ASSERT(multilist_link_active( 5145 &hdr->b_l1hdr.b_arc_node)); 5146 } else { 5147 if (HDR_HAS_L2HDR(hdr)) 5148 l2arc_hdr_arcstats_decrement_state(hdr); 5149 arc_hdr_clear_flags(hdr, 5150 ARC_FLAG_PREFETCH | 5151 ARC_FLAG_PRESCIENT_PREFETCH); 5152 ARCSTAT_BUMP(arcstat_mru_hits); 5153 if (HDR_HAS_L2HDR(hdr)) 5154 l2arc_hdr_arcstats_increment_state(hdr); 5155 } 5156 hdr->b_l1hdr.b_arc_access = now; 5157 return; 5158 } 5159 5160 /* 5161 * This buffer has been "accessed" only once so far, 5162 * but it is still in the cache. Move it to the MFU 5163 * state. 5164 */ 5165 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) { 5166 /* 5167 * More than 125ms have passed since we 5168 * instantiated this buffer. Move it to the 5169 * most frequently used state. 5170 */ 5171 hdr->b_l1hdr.b_arc_access = now; 5172 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5173 arc_change_state(arc_mfu, hdr, hash_lock); 5174 } 5175 ARCSTAT_BUMP(arcstat_mru_hits); 5176 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5177 arc_state_t *new_state; 5178 /* 5179 * This buffer has been "accessed" recently, but 5180 * was evicted from the cache. Move it to the 5181 * MFU state. 5182 */ 5183 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5184 new_state = arc_mru; 5185 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) { 5186 if (HDR_HAS_L2HDR(hdr)) 5187 l2arc_hdr_arcstats_decrement_state(hdr); 5188 arc_hdr_clear_flags(hdr, 5189 ARC_FLAG_PREFETCH | 5190 ARC_FLAG_PRESCIENT_PREFETCH); 5191 if (HDR_HAS_L2HDR(hdr)) 5192 l2arc_hdr_arcstats_increment_state(hdr); 5193 } 5194 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5195 } else { 5196 new_state = arc_mfu; 5197 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5198 } 5199 5200 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5201 arc_change_state(new_state, hdr, hash_lock); 5202 5203 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5204 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5205 /* 5206 * This buffer has been accessed more than once and is 5207 * still in the cache. Keep it in the MFU state. 5208 * 5209 * NOTE: an add_reference() that occurred when we did 5210 * the arc_read() will have kicked this off the list. 5211 * If it was a prefetch, we will explicitly move it to 5212 * the head of the list now. 5213 */ 5214 ARCSTAT_BUMP(arcstat_mfu_hits); 5215 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5216 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5217 arc_state_t *new_state = arc_mfu; 5218 /* 5219 * This buffer has been accessed more than once but has 5220 * been evicted from the cache. Move it back to the 5221 * MFU state. 5222 */ 5223 5224 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5225 /* 5226 * This is a prefetch access... 5227 * move this block back to the MRU state. 5228 */ 5229 new_state = arc_mru; 5230 } 5231 5232 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5233 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5234 arc_change_state(new_state, hdr, hash_lock); 5235 5236 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5237 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5238 /* 5239 * This buffer is on the 2nd Level ARC. 5240 */ 5241 5242 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5243 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5244 arc_change_state(arc_mfu, hdr, hash_lock); 5245 } else { 5246 ASSERT(!"invalid arc state"); 5247 } 5248 } 5249 5250 /* 5251 * This routine is called by dbuf_hold() to update the arc_access() state 5252 * which otherwise would be skipped for entries in the dbuf cache. 5253 */ 5254 void 5255 arc_buf_access(arc_buf_t *buf) 5256 { 5257 mutex_enter(&buf->b_evict_lock); 5258 arc_buf_hdr_t *hdr = buf->b_hdr; 5259 5260 /* 5261 * Avoid taking the hash_lock when possible as an optimization. 5262 * The header must be checked again under the hash_lock in order 5263 * to handle the case where it is concurrently being released. 5264 */ 5265 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5266 mutex_exit(&buf->b_evict_lock); 5267 return; 5268 } 5269 5270 kmutex_t *hash_lock = HDR_LOCK(hdr); 5271 mutex_enter(hash_lock); 5272 5273 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5274 mutex_exit(hash_lock); 5275 mutex_exit(&buf->b_evict_lock); 5276 ARCSTAT_BUMP(arcstat_access_skip); 5277 return; 5278 } 5279 5280 mutex_exit(&buf->b_evict_lock); 5281 5282 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5283 hdr->b_l1hdr.b_state == arc_mfu); 5284 5285 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5286 arc_access(hdr, hash_lock); 5287 mutex_exit(hash_lock); 5288 5289 ARCSTAT_BUMP(arcstat_hits); 5290 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5291 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5292 } 5293 5294 /* a generic arc_read_done_func_t which you can use */ 5295 /* ARGSUSED */ 5296 void 5297 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5298 arc_buf_t *buf, void *arg) 5299 { 5300 if (buf == NULL) 5301 return; 5302 5303 bcopy(buf->b_data, arg, arc_buf_size(buf)); 5304 arc_buf_destroy(buf, arg); 5305 } 5306 5307 /* a generic arc_read_done_func_t */ 5308 void 5309 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5310 arc_buf_t *buf, void *arg) 5311 { 5312 arc_buf_t **bufp = arg; 5313 5314 if (buf == NULL) { 5315 ASSERT(zio == NULL || zio->io_error != 0); 5316 *bufp = NULL; 5317 } else { 5318 ASSERT(zio == NULL || zio->io_error == 0); 5319 *bufp = buf; 5320 ASSERT(buf->b_data != NULL); 5321 } 5322 } 5323 5324 static void 5325 arc_hdr_verify(arc_buf_hdr_t *hdr, const blkptr_t *bp) 5326 { 5327 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5328 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5329 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5330 } else { 5331 if (HDR_COMPRESSION_ENABLED(hdr)) { 5332 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5333 BP_GET_COMPRESS(bp)); 5334 } 5335 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5336 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5337 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5338 } 5339 } 5340 5341 /* 5342 * XXX this should be changed to return an error, and callers 5343 * re-read from disk on failure (on nondebug bits). 5344 */ 5345 static void 5346 arc_hdr_verify_checksum(spa_t *spa, arc_buf_hdr_t *hdr, const blkptr_t *bp) 5347 { 5348 arc_hdr_verify(hdr, bp); 5349 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 5350 return; 5351 int err = 0; 5352 abd_t *abd = NULL; 5353 if (BP_IS_ENCRYPTED(bp)) { 5354 if (HDR_HAS_RABD(hdr)) { 5355 abd = hdr->b_crypt_hdr.b_rabd; 5356 } 5357 } else if (HDR_COMPRESSION_ENABLED(hdr)) { 5358 abd = hdr->b_l1hdr.b_pabd; 5359 } 5360 if (abd != NULL) { 5361 /* 5362 * The offset is only used for labels, which are not 5363 * cached in the ARC, so it doesn't matter what we 5364 * pass for the offset parameter. 5365 */ 5366 int psize = HDR_GET_PSIZE(hdr); 5367 err = zio_checksum_error_impl(spa, bp, 5368 BP_GET_CHECKSUM(bp), abd, psize, 0, NULL); 5369 if (err != 0) { 5370 /* 5371 * Use abd_copy_to_buf() rather than 5372 * abd_borrow_buf_copy() so that we are sure to 5373 * include the buf in crash dumps. 5374 */ 5375 void *buf = kmem_alloc(psize, KM_SLEEP); 5376 abd_copy_to_buf(buf, abd, psize); 5377 panic("checksum of cached data doesn't match BP " 5378 "err=%u hdr=%p bp=%p abd=%p buf=%p", 5379 err, (void *)hdr, (void *)bp, (void *)abd, buf); 5380 } 5381 } 5382 } 5383 5384 static void 5385 arc_read_done(zio_t *zio) 5386 { 5387 blkptr_t *bp = zio->io_bp; 5388 arc_buf_hdr_t *hdr = zio->io_private; 5389 kmutex_t *hash_lock = NULL; 5390 arc_callback_t *callback_list; 5391 arc_callback_t *acb; 5392 boolean_t freeable = B_FALSE; 5393 5394 /* 5395 * The hdr was inserted into hash-table and removed from lists 5396 * prior to starting I/O. We should find this header, since 5397 * it's in the hash table, and it should be legit since it's 5398 * not possible to evict it during the I/O. The only possible 5399 * reason for it not to be found is if we were freed during the 5400 * read. 5401 */ 5402 if (HDR_IN_HASH_TABLE(hdr)) { 5403 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 5404 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5405 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5406 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5407 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5408 5409 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 5410 &hash_lock); 5411 5412 ASSERT((found == hdr && 5413 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5414 (found == hdr && HDR_L2_READING(hdr))); 5415 ASSERT3P(hash_lock, !=, NULL); 5416 } 5417 5418 if (BP_IS_PROTECTED(bp)) { 5419 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5420 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5421 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5422 hdr->b_crypt_hdr.b_iv); 5423 5424 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5425 void *tmpbuf; 5426 5427 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5428 sizeof (zil_chain_t)); 5429 zio_crypt_decode_mac_zil(tmpbuf, 5430 hdr->b_crypt_hdr.b_mac); 5431 abd_return_buf(zio->io_abd, tmpbuf, 5432 sizeof (zil_chain_t)); 5433 } else { 5434 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 5435 } 5436 } 5437 5438 if (zio->io_error == 0) { 5439 /* byteswap if necessary */ 5440 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5441 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5442 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5443 } else { 5444 hdr->b_l1hdr.b_byteswap = 5445 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5446 } 5447 } else { 5448 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5449 } 5450 } 5451 5452 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5453 5454 callback_list = hdr->b_l1hdr.b_acb; 5455 ASSERT3P(callback_list, !=, NULL); 5456 5457 if (hash_lock && zio->io_error == 0 && 5458 hdr->b_l1hdr.b_state == arc_anon) { 5459 /* 5460 * Only call arc_access on anonymous buffers. This is because 5461 * if we've issued an I/O for an evicted buffer, we've already 5462 * called arc_access (to prevent any simultaneous readers from 5463 * getting confused). 5464 */ 5465 arc_access(hdr, hash_lock); 5466 } 5467 5468 /* 5469 * If a read request has a callback (i.e. acb_done is not NULL), then we 5470 * make a buf containing the data according to the parameters which were 5471 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5472 * aren't needlessly decompressing the data multiple times. 5473 */ 5474 int callback_cnt = 0; 5475 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5476 if (!acb->acb_done) 5477 continue; 5478 5479 callback_cnt++; 5480 5481 if (zio->io_error != 0) 5482 continue; 5483 5484 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5485 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5486 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5487 &acb->acb_buf); 5488 5489 /* 5490 * Assert non-speculative zios didn't fail because an 5491 * encryption key wasn't loaded 5492 */ 5493 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5494 error != EACCES); 5495 5496 /* 5497 * If we failed to decrypt, report an error now (as the zio 5498 * layer would have done if it had done the transforms). 5499 */ 5500 if (error == ECKSUM) { 5501 ASSERT(BP_IS_PROTECTED(bp)); 5502 error = SET_ERROR(EIO); 5503 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5504 spa_log_error(zio->io_spa, &acb->acb_zb); 5505 (void) zfs_ereport_post( 5506 FM_EREPORT_ZFS_AUTHENTICATION, 5507 zio->io_spa, NULL, &acb->acb_zb, zio, 0, 0); 5508 } 5509 } 5510 5511 if (error != 0) { 5512 /* 5513 * Decompression failed. Set io_error 5514 * so that when we call acb_done (below), 5515 * we will indicate that the read failed. 5516 * Note that in the unusual case where one 5517 * callback is compressed and another 5518 * uncompressed, we will mark all of them 5519 * as failed, even though the uncompressed 5520 * one can't actually fail. In this case, 5521 * the hdr will not be anonymous, because 5522 * if there are multiple callbacks, it's 5523 * because multiple threads found the same 5524 * arc buf in the hash table. 5525 */ 5526 zio->io_error = error; 5527 } 5528 } 5529 5530 /* 5531 * If there are multiple callbacks, we must have the hash lock, 5532 * because the only way for multiple threads to find this hdr is 5533 * in the hash table. This ensures that if there are multiple 5534 * callbacks, the hdr is not anonymous. If it were anonymous, 5535 * we couldn't use arc_buf_destroy() in the error case below. 5536 */ 5537 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5538 5539 hdr->b_l1hdr.b_acb = NULL; 5540 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5541 if (callback_cnt == 0) 5542 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 5543 5544 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 5545 callback_list != NULL); 5546 5547 if (zio->io_error == 0) { 5548 arc_hdr_verify(hdr, zio->io_bp); 5549 } else { 5550 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5551 if (hdr->b_l1hdr.b_state != arc_anon) 5552 arc_change_state(arc_anon, hdr, hash_lock); 5553 if (HDR_IN_HASH_TABLE(hdr)) 5554 buf_hash_remove(hdr); 5555 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5556 } 5557 5558 /* 5559 * Broadcast before we drop the hash_lock to avoid the possibility 5560 * that the hdr (and hence the cv) might be freed before we get to 5561 * the cv_broadcast(). 5562 */ 5563 cv_broadcast(&hdr->b_l1hdr.b_cv); 5564 5565 if (hash_lock != NULL) { 5566 mutex_exit(hash_lock); 5567 } else { 5568 /* 5569 * This block was freed while we waited for the read to 5570 * complete. It has been removed from the hash table and 5571 * moved to the anonymous state (so that it won't show up 5572 * in the cache). 5573 */ 5574 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 5575 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5576 } 5577 5578 /* execute each callback and free its structure */ 5579 while ((acb = callback_list) != NULL) { 5580 5581 if (acb->acb_done != NULL) { 5582 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5583 /* 5584 * If arc_buf_alloc_impl() fails during 5585 * decompression, the buf will still be 5586 * allocated, and needs to be freed here. 5587 */ 5588 arc_buf_destroy(acb->acb_buf, acb->acb_private); 5589 acb->acb_buf = NULL; 5590 } 5591 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5592 acb->acb_buf, acb->acb_private); 5593 } 5594 5595 if (acb->acb_zio_dummy != NULL) { 5596 acb->acb_zio_dummy->io_error = zio->io_error; 5597 zio_nowait(acb->acb_zio_dummy); 5598 } 5599 5600 callback_list = acb->acb_next; 5601 kmem_free(acb, sizeof (arc_callback_t)); 5602 } 5603 5604 if (freeable) 5605 arc_hdr_destroy(hdr); 5606 } 5607 5608 /* 5609 * "Read" the block at the specified DVA (in bp) via the 5610 * cache. If the block is found in the cache, invoke the provided 5611 * callback immediately and return. Note that the `zio' parameter 5612 * in the callback will be NULL in this case, since no IO was 5613 * required. If the block is not in the cache pass the read request 5614 * on to the spa with a substitute callback function, so that the 5615 * requested block will be added to the cache. 5616 * 5617 * If a read request arrives for a block that has a read in-progress, 5618 * either wait for the in-progress read to complete (and return the 5619 * results); or, if this is a read with a "done" func, add a record 5620 * to the read to invoke the "done" func when the read completes, 5621 * and return; or just return. 5622 * 5623 * arc_read_done() will invoke all the requested "done" functions 5624 * for readers of this block. 5625 */ 5626 int 5627 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_read_done_func_t *done, 5628 void *private, zio_priority_t priority, int zio_flags, 5629 arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5630 { 5631 arc_buf_hdr_t *hdr = NULL; 5632 kmutex_t *hash_lock = NULL; 5633 zio_t *rzio; 5634 uint64_t guid = spa_load_guid(spa); 5635 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5636 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5637 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5638 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5639 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5640 int rc = 0; 5641 5642 ASSERT(!BP_IS_EMBEDDED(bp) || 5643 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5644 5645 top: 5646 if (!BP_IS_EMBEDDED(bp)) { 5647 /* 5648 * Embedded BP's have no DVA and require no I/O to "read". 5649 * Create an anonymous arc buf to back it. 5650 */ 5651 hdr = buf_hash_find(guid, bp, &hash_lock); 5652 } 5653 5654 /* 5655 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5656 * we maintain encrypted data seperately from compressed / uncompressed 5657 * data. If the user is requesting raw encrypted data and we don't have 5658 * that in the header we will read from disk to guarantee that we can 5659 * get it even if the encryption keys aren't loaded. 5660 */ 5661 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5662 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5663 arc_buf_t *buf = NULL; 5664 *arc_flags |= ARC_FLAG_CACHED; 5665 5666 if (HDR_IO_IN_PROGRESS(hdr)) { 5667 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5668 5669 ASSERT3P(head_zio, !=, NULL); 5670 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5671 priority == ZIO_PRIORITY_SYNC_READ) { 5672 /* 5673 * This is a sync read that needs to wait for 5674 * an in-flight async read. Request that the 5675 * zio have its priority upgraded. 5676 */ 5677 zio_change_priority(head_zio, priority); 5678 DTRACE_PROBE1(arc__async__upgrade__sync, 5679 arc_buf_hdr_t *, hdr); 5680 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5681 } 5682 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5683 arc_hdr_clear_flags(hdr, 5684 ARC_FLAG_PREDICTIVE_PREFETCH); 5685 } 5686 5687 if (*arc_flags & ARC_FLAG_WAIT) { 5688 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5689 mutex_exit(hash_lock); 5690 goto top; 5691 } 5692 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5693 5694 if (done) { 5695 arc_callback_t *acb = NULL; 5696 5697 acb = kmem_zalloc(sizeof (arc_callback_t), 5698 KM_SLEEP); 5699 acb->acb_done = done; 5700 acb->acb_private = private; 5701 acb->acb_compressed = compressed_read; 5702 acb->acb_encrypted = encrypted_read; 5703 acb->acb_noauth = noauth_read; 5704 acb->acb_zb = *zb; 5705 if (pio != NULL) 5706 acb->acb_zio_dummy = zio_null(pio, 5707 spa, NULL, NULL, NULL, zio_flags); 5708 5709 ASSERT3P(acb->acb_done, !=, NULL); 5710 acb->acb_zio_head = head_zio; 5711 acb->acb_next = hdr->b_l1hdr.b_acb; 5712 hdr->b_l1hdr.b_acb = acb; 5713 mutex_exit(hash_lock); 5714 return (0); 5715 } 5716 mutex_exit(hash_lock); 5717 return (0); 5718 } 5719 5720 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5721 hdr->b_l1hdr.b_state == arc_mfu); 5722 5723 if (done) { 5724 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5725 /* 5726 * This is a demand read which does not have to 5727 * wait for i/o because we did a predictive 5728 * prefetch i/o for it, which has completed. 5729 */ 5730 DTRACE_PROBE1( 5731 arc__demand__hit__predictive__prefetch, 5732 arc_buf_hdr_t *, hdr); 5733 ARCSTAT_BUMP( 5734 arcstat_demand_hit_predictive_prefetch); 5735 arc_hdr_clear_flags(hdr, 5736 ARC_FLAG_PREDICTIVE_PREFETCH); 5737 } 5738 5739 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 5740 ARCSTAT_BUMP( 5741 arcstat_demand_hit_prescient_prefetch); 5742 arc_hdr_clear_flags(hdr, 5743 ARC_FLAG_PRESCIENT_PREFETCH); 5744 } 5745 5746 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp)); 5747 5748 arc_hdr_verify_checksum(spa, hdr, bp); 5749 5750 /* Get a buf with the desired data in it. */ 5751 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 5752 encrypted_read, compressed_read, noauth_read, 5753 B_TRUE, &buf); 5754 if (rc == ECKSUM) { 5755 /* 5756 * Convert authentication and decryption errors 5757 * to EIO (and generate an ereport if needed) 5758 * before leaving the ARC. 5759 */ 5760 rc = SET_ERROR(EIO); 5761 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5762 spa_log_error(spa, zb); 5763 (void) zfs_ereport_post( 5764 FM_EREPORT_ZFS_AUTHENTICATION, 5765 spa, NULL, zb, NULL, 0, 0); 5766 } 5767 } 5768 if (rc != 0) { 5769 (void) remove_reference(hdr, hash_lock, 5770 private); 5771 arc_buf_destroy_impl(buf); 5772 buf = NULL; 5773 } 5774 /* assert any errors weren't due to unloaded keys */ 5775 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 5776 rc != EACCES); 5777 } else if (*arc_flags & ARC_FLAG_PREFETCH && 5778 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 5779 if (HDR_HAS_L2HDR(hdr)) 5780 l2arc_hdr_arcstats_decrement_state(hdr); 5781 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5782 if (HDR_HAS_L2HDR(hdr)) 5783 l2arc_hdr_arcstats_increment_state(hdr); 5784 } 5785 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5786 arc_access(hdr, hash_lock); 5787 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 5788 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 5789 if (*arc_flags & ARC_FLAG_L2CACHE) 5790 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5791 mutex_exit(hash_lock); 5792 ARCSTAT_BUMP(arcstat_hits); 5793 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5794 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 5795 data, metadata, hits); 5796 5797 if (done) 5798 done(NULL, zb, bp, buf, private); 5799 } else { 5800 uint64_t lsize = BP_GET_LSIZE(bp); 5801 uint64_t psize = BP_GET_PSIZE(bp); 5802 arc_callback_t *acb; 5803 vdev_t *vd = NULL; 5804 uint64_t addr = 0; 5805 boolean_t devw = B_FALSE; 5806 uint64_t size; 5807 abd_t *hdr_abd; 5808 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 5809 5810 if (hdr == NULL) { 5811 /* this block is not in the cache */ 5812 arc_buf_hdr_t *exists = NULL; 5813 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 5814 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 5815 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), type, 5816 encrypted_read); 5817 5818 if (!BP_IS_EMBEDDED(bp)) { 5819 hdr->b_dva = *BP_IDENTITY(bp); 5820 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 5821 exists = buf_hash_insert(hdr, &hash_lock); 5822 } 5823 if (exists != NULL) { 5824 /* somebody beat us to the hash insert */ 5825 mutex_exit(hash_lock); 5826 buf_discard_identity(hdr); 5827 arc_hdr_destroy(hdr); 5828 goto top; /* restart the IO request */ 5829 } 5830 } else { 5831 /* 5832 * This block is in the ghost cache or encrypted data 5833 * was requested and we didn't have it. If it was 5834 * L2-only (and thus didn't have an L1 hdr), 5835 * we realloc the header to add an L1 hdr. 5836 */ 5837 if (!HDR_HAS_L1HDR(hdr)) { 5838 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 5839 hdr_full_cache); 5840 } 5841 5842 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 5843 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 5844 ASSERT(!HDR_HAS_RABD(hdr)); 5845 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5846 ASSERT0(zfs_refcount_count( 5847 &hdr->b_l1hdr.b_refcnt)); 5848 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 5849 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 5850 } else if (HDR_IO_IN_PROGRESS(hdr)) { 5851 /* 5852 * If this header already had an IO in progress 5853 * and we are performing another IO to fetch 5854 * encrypted data we must wait until the first 5855 * IO completes so as not to confuse 5856 * arc_read_done(). This should be very rare 5857 * and so the performance impact shouldn't 5858 * matter. 5859 */ 5860 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5861 mutex_exit(hash_lock); 5862 goto top; 5863 } 5864 5865 /* 5866 * This is a delicate dance that we play here. 5867 * This hdr might be in the ghost list so we access 5868 * it to move it out of the ghost list before we 5869 * initiate the read. If it's a prefetch then 5870 * it won't have a callback so we'll remove the 5871 * reference that arc_buf_alloc_impl() created. We 5872 * do this after we've called arc_access() to 5873 * avoid hitting an assert in remove_reference(). 5874 */ 5875 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state); 5876 arc_access(hdr, hash_lock); 5877 arc_hdr_alloc_pabd(hdr, alloc_flags); 5878 } 5879 5880 if (encrypted_read) { 5881 ASSERT(HDR_HAS_RABD(hdr)); 5882 size = HDR_GET_PSIZE(hdr); 5883 hdr_abd = hdr->b_crypt_hdr.b_rabd; 5884 zio_flags |= ZIO_FLAG_RAW; 5885 } else { 5886 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 5887 size = arc_hdr_size(hdr); 5888 hdr_abd = hdr->b_l1hdr.b_pabd; 5889 5890 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 5891 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 5892 } 5893 5894 /* 5895 * For authenticated bp's, we do not ask the ZIO layer 5896 * to authenticate them since this will cause the entire 5897 * IO to fail if the key isn't loaded. Instead, we 5898 * defer authentication until arc_buf_fill(), which will 5899 * verify the data when the key is available. 5900 */ 5901 if (BP_IS_AUTHENTICATED(bp)) 5902 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 5903 } 5904 5905 if (*arc_flags & ARC_FLAG_PREFETCH && 5906 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 5907 if (HDR_HAS_L2HDR(hdr)) 5908 l2arc_hdr_arcstats_decrement_state(hdr); 5909 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5910 if (HDR_HAS_L2HDR(hdr)) 5911 l2arc_hdr_arcstats_increment_state(hdr); 5912 } 5913 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 5914 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 5915 5916 if (*arc_flags & ARC_FLAG_L2CACHE) 5917 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5918 if (BP_IS_AUTHENTICATED(bp)) 5919 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 5920 if (BP_GET_LEVEL(bp) > 0) 5921 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 5922 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 5923 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 5924 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 5925 5926 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 5927 acb->acb_done = done; 5928 acb->acb_private = private; 5929 acb->acb_compressed = compressed_read; 5930 acb->acb_encrypted = encrypted_read; 5931 acb->acb_noauth = noauth_read; 5932 acb->acb_zb = *zb; 5933 5934 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5935 hdr->b_l1hdr.b_acb = acb; 5936 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5937 5938 if (HDR_HAS_L2HDR(hdr) && 5939 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 5940 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 5941 addr = hdr->b_l2hdr.b_daddr; 5942 /* 5943 * Lock out L2ARC device removal. 5944 */ 5945 if (vdev_is_dead(vd) || 5946 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 5947 vd = NULL; 5948 } 5949 5950 /* 5951 * We count both async reads and scrub IOs as asynchronous so 5952 * that both can be upgraded in the event of a cache hit while 5953 * the read IO is still in-flight. 5954 */ 5955 if (priority == ZIO_PRIORITY_ASYNC_READ || 5956 priority == ZIO_PRIORITY_SCRUB) 5957 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5958 else 5959 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5960 5961 /* 5962 * At this point, we have a level 1 cache miss. Try again in 5963 * L2ARC if possible. 5964 */ 5965 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 5966 5967 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 5968 uint64_t, lsize, zbookmark_phys_t *, zb); 5969 ARCSTAT_BUMP(arcstat_misses); 5970 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5971 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 5972 data, metadata, misses); 5973 5974 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 5975 /* 5976 * Read from the L2ARC if the following are true: 5977 * 1. The L2ARC vdev was previously cached. 5978 * 2. This buffer still has L2ARC metadata. 5979 * 3. This buffer isn't currently writing to the L2ARC. 5980 * 4. The L2ARC entry wasn't evicted, which may 5981 * also have invalidated the vdev. 5982 * 5. This isn't prefetch or l2arc_noprefetch is 0. 5983 */ 5984 if (HDR_HAS_L2HDR(hdr) && 5985 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 5986 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 5987 l2arc_read_callback_t *cb; 5988 abd_t *abd; 5989 uint64_t asize; 5990 5991 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 5992 ARCSTAT_BUMP(arcstat_l2_hits); 5993 5994 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 5995 KM_SLEEP); 5996 cb->l2rcb_hdr = hdr; 5997 cb->l2rcb_bp = *bp; 5998 cb->l2rcb_zb = *zb; 5999 cb->l2rcb_flags = zio_flags; 6000 6001 /* 6002 * When Compressed ARC is disabled, but the 6003 * L2ARC block is compressed, arc_hdr_size() 6004 * will have returned LSIZE rather than PSIZE. 6005 */ 6006 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 6007 !HDR_COMPRESSION_ENABLED(hdr) && 6008 HDR_GET_PSIZE(hdr) != 0) { 6009 size = HDR_GET_PSIZE(hdr); 6010 } 6011 6012 asize = vdev_psize_to_asize(vd, size); 6013 if (asize != size) { 6014 abd = abd_alloc_for_io(asize, 6015 HDR_ISTYPE_METADATA(hdr)); 6016 cb->l2rcb_abd = abd; 6017 } else { 6018 abd = hdr_abd; 6019 } 6020 6021 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6022 addr + asize <= vd->vdev_psize - 6023 VDEV_LABEL_END_SIZE); 6024 6025 /* 6026 * l2arc read. The SCL_L2ARC lock will be 6027 * released by l2arc_read_done(). 6028 * Issue a null zio if the underlying buffer 6029 * was squashed to zero size by compression. 6030 */ 6031 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6032 ZIO_COMPRESS_EMPTY); 6033 rzio = zio_read_phys(pio, vd, addr, 6034 asize, abd, 6035 ZIO_CHECKSUM_OFF, 6036 l2arc_read_done, cb, priority, 6037 zio_flags | ZIO_FLAG_DONT_CACHE | 6038 ZIO_FLAG_CANFAIL | 6039 ZIO_FLAG_DONT_PROPAGATE | 6040 ZIO_FLAG_DONT_RETRY, B_FALSE); 6041 acb->acb_zio_head = rzio; 6042 6043 if (hash_lock != NULL) 6044 mutex_exit(hash_lock); 6045 6046 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6047 zio_t *, rzio); 6048 ARCSTAT_INCR(arcstat_l2_read_bytes, 6049 HDR_GET_PSIZE(hdr)); 6050 6051 if (*arc_flags & ARC_FLAG_NOWAIT) { 6052 zio_nowait(rzio); 6053 return (0); 6054 } 6055 6056 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6057 if (zio_wait(rzio) == 0) 6058 return (0); 6059 6060 /* l2arc read error; goto zio_read() */ 6061 if (hash_lock != NULL) 6062 mutex_enter(hash_lock); 6063 } else { 6064 DTRACE_PROBE1(l2arc__miss, 6065 arc_buf_hdr_t *, hdr); 6066 ARCSTAT_BUMP(arcstat_l2_misses); 6067 if (HDR_L2_WRITING(hdr)) 6068 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6069 spa_config_exit(spa, SCL_L2ARC, vd); 6070 } 6071 } else { 6072 if (vd != NULL) 6073 spa_config_exit(spa, SCL_L2ARC, vd); 6074 if (l2arc_ndev != 0) { 6075 DTRACE_PROBE1(l2arc__miss, 6076 arc_buf_hdr_t *, hdr); 6077 ARCSTAT_BUMP(arcstat_l2_misses); 6078 } 6079 } 6080 6081 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6082 arc_read_done, hdr, priority, zio_flags, zb); 6083 acb->acb_zio_head = rzio; 6084 6085 if (hash_lock != NULL) 6086 mutex_exit(hash_lock); 6087 6088 if (*arc_flags & ARC_FLAG_WAIT) 6089 return (zio_wait(rzio)); 6090 6091 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6092 zio_nowait(rzio); 6093 } 6094 return (rc); 6095 } 6096 6097 /* 6098 * Notify the arc that a block was freed, and thus will never be used again. 6099 */ 6100 void 6101 arc_freed(spa_t *spa, const blkptr_t *bp) 6102 { 6103 arc_buf_hdr_t *hdr; 6104 kmutex_t *hash_lock; 6105 uint64_t guid = spa_load_guid(spa); 6106 6107 ASSERT(!BP_IS_EMBEDDED(bp)); 6108 6109 hdr = buf_hash_find(guid, bp, &hash_lock); 6110 if (hdr == NULL) 6111 return; 6112 6113 /* 6114 * We might be trying to free a block that is still doing I/O 6115 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 6116 * dmu_sync-ed block). If this block is being prefetched, then it 6117 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 6118 * until the I/O completes. A block may also have a reference if it is 6119 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6120 * have written the new block to its final resting place on disk but 6121 * without the dedup flag set. This would have left the hdr in the MRU 6122 * state and discoverable. When the txg finally syncs it detects that 6123 * the block was overridden in open context and issues an override I/O. 6124 * Since this is a dedup block, the override I/O will determine if the 6125 * block is already in the DDT. If so, then it will replace the io_bp 6126 * with the bp from the DDT and allow the I/O to finish. When the I/O 6127 * reaches the done callback, dbuf_write_override_done, it will 6128 * check to see if the io_bp and io_bp_override are identical. 6129 * If they are not, then it indicates that the bp was replaced with 6130 * the bp in the DDT and the override bp is freed. This allows 6131 * us to arrive here with a reference on a block that is being 6132 * freed. So if we have an I/O in progress, or a reference to 6133 * this hdr, then we don't destroy the hdr. 6134 */ 6135 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 6136 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 6137 arc_change_state(arc_anon, hdr, hash_lock); 6138 arc_hdr_destroy(hdr); 6139 mutex_exit(hash_lock); 6140 } else { 6141 mutex_exit(hash_lock); 6142 } 6143 6144 } 6145 6146 /* 6147 * Release this buffer from the cache, making it an anonymous buffer. This 6148 * must be done after a read and prior to modifying the buffer contents. 6149 * If the buffer has more than one reference, we must make 6150 * a new hdr for the buffer. 6151 */ 6152 void 6153 arc_release(arc_buf_t *buf, void *tag) 6154 { 6155 /* 6156 * It would be nice to assert that if its DMU metadata (level > 6157 * 0 || it's the dnode file), then it must be syncing context. 6158 * But we don't know that information at this level. 6159 */ 6160 6161 mutex_enter(&buf->b_evict_lock); 6162 6163 arc_buf_hdr_t *hdr = buf->b_hdr; 6164 6165 ASSERT(HDR_HAS_L1HDR(hdr)); 6166 6167 /* 6168 * We don't grab the hash lock prior to this check, because if 6169 * the buffer's header is in the arc_anon state, it won't be 6170 * linked into the hash table. 6171 */ 6172 if (hdr->b_l1hdr.b_state == arc_anon) { 6173 mutex_exit(&buf->b_evict_lock); 6174 /* 6175 * If we are called from dmu_convert_mdn_block_to_raw(), 6176 * a write might be in progress. This is OK because 6177 * the caller won't change the content of this buffer, 6178 * only the flags (via arc_convert_to_raw()). 6179 */ 6180 /* ASSERT(!HDR_IO_IN_PROGRESS(hdr)); */ 6181 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6182 ASSERT(!HDR_HAS_L2HDR(hdr)); 6183 ASSERT(HDR_EMPTY(hdr)); 6184 6185 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6186 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6187 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 6188 6189 hdr->b_l1hdr.b_arc_access = 0; 6190 6191 /* 6192 * If the buf is being overridden then it may already 6193 * have a hdr that is not empty. 6194 */ 6195 buf_discard_identity(hdr); 6196 arc_buf_thaw(buf); 6197 6198 return; 6199 } 6200 6201 kmutex_t *hash_lock = HDR_LOCK(hdr); 6202 mutex_enter(hash_lock); 6203 6204 /* 6205 * Wait for any other IO for this hdr, as additional 6206 * buf(s) could be about to appear, in which case 6207 * we would not want to transition hdr to arc_anon. 6208 */ 6209 while (HDR_IO_IN_PROGRESS(hdr)) { 6210 DTRACE_PROBE1(arc_release__io, arc_buf_hdr_t *, hdr); 6211 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 6212 } 6213 6214 /* 6215 * This assignment is only valid as long as the hash_lock is 6216 * held, we must be careful not to reference state or the 6217 * b_state field after dropping the lock. 6218 */ 6219 arc_state_t *state = hdr->b_l1hdr.b_state; 6220 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6221 ASSERT3P(state, !=, arc_anon); 6222 6223 /* this buffer is not on any list */ 6224 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6225 6226 if (HDR_HAS_L2HDR(hdr)) { 6227 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6228 6229 /* 6230 * We have to recheck this conditional again now that 6231 * we're holding the l2ad_mtx to prevent a race with 6232 * another thread which might be concurrently calling 6233 * l2arc_evict(). In that case, l2arc_evict() might have 6234 * destroyed the header's L2 portion as we were waiting 6235 * to acquire the l2ad_mtx. 6236 */ 6237 if (HDR_HAS_L2HDR(hdr)) 6238 arc_hdr_l2hdr_destroy(hdr); 6239 6240 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6241 } 6242 6243 /* 6244 * Do we have more than one buf? 6245 */ 6246 if (hdr->b_l1hdr.b_bufcnt > 1) { 6247 arc_buf_hdr_t *nhdr; 6248 uint64_t spa = hdr->b_spa; 6249 uint64_t psize = HDR_GET_PSIZE(hdr); 6250 uint64_t lsize = HDR_GET_LSIZE(hdr); 6251 boolean_t protected = HDR_PROTECTED(hdr); 6252 enum zio_compress compress = arc_hdr_get_compress(hdr); 6253 arc_buf_contents_t type = arc_buf_type(hdr); 6254 VERIFY3U(hdr->b_type, ==, type); 6255 6256 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6257 (void) remove_reference(hdr, hash_lock, tag); 6258 6259 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 6260 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6261 ASSERT(ARC_BUF_LAST(buf)); 6262 } 6263 6264 /* 6265 * Pull the data off of this hdr and attach it to 6266 * a new anonymous hdr. Also find the last buffer 6267 * in the hdr's buffer list. 6268 */ 6269 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6270 ASSERT3P(lastbuf, !=, NULL); 6271 6272 /* 6273 * If the current arc_buf_t and the hdr are sharing their data 6274 * buffer, then we must stop sharing that block. 6275 */ 6276 if (arc_buf_is_shared(buf)) { 6277 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6278 VERIFY(!arc_buf_is_shared(lastbuf)); 6279 6280 /* 6281 * First, sever the block sharing relationship between 6282 * buf and the arc_buf_hdr_t. 6283 */ 6284 arc_unshare_buf(hdr, buf); 6285 6286 /* 6287 * Now we need to recreate the hdr's b_pabd. Since we 6288 * have lastbuf handy, we try to share with it, but if 6289 * we can't then we allocate a new b_pabd and copy the 6290 * data from buf into it. 6291 */ 6292 if (arc_can_share(hdr, lastbuf)) { 6293 arc_share_buf(hdr, lastbuf); 6294 } else { 6295 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT); 6296 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6297 buf->b_data, psize); 6298 } 6299 VERIFY3P(lastbuf->b_data, !=, NULL); 6300 } else if (HDR_SHARED_DATA(hdr)) { 6301 /* 6302 * Uncompressed shared buffers are always at the end 6303 * of the list. Compressed buffers don't have the 6304 * same requirements. This makes it hard to 6305 * simply assert that the lastbuf is shared so 6306 * we rely on the hdr's compression flags to determine 6307 * if we have a compressed, shared buffer. 6308 */ 6309 ASSERT(arc_buf_is_shared(lastbuf) || 6310 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6311 ASSERT(!ARC_BUF_SHARED(buf)); 6312 } 6313 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6314 ASSERT3P(state, !=, arc_l2c_only); 6315 6316 (void) zfs_refcount_remove_many(&state->arcs_size, 6317 arc_buf_size(buf), buf); 6318 6319 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6320 ASSERT3P(state, !=, arc_l2c_only); 6321 (void) zfs_refcount_remove_many( 6322 &state->arcs_esize[type], 6323 arc_buf_size(buf), buf); 6324 } 6325 6326 hdr->b_l1hdr.b_bufcnt -= 1; 6327 if (ARC_BUF_ENCRYPTED(buf)) 6328 hdr->b_crypt_hdr.b_ebufcnt -= 1; 6329 6330 arc_cksum_verify(buf); 6331 arc_buf_unwatch(buf); 6332 6333 /* if this is the last uncompressed buf free the checksum */ 6334 if (!arc_hdr_has_uncompressed_buf(hdr)) 6335 arc_cksum_free(hdr); 6336 6337 mutex_exit(hash_lock); 6338 6339 /* 6340 * Allocate a new hdr. The new hdr will contain a b_pabd 6341 * buffer which will be freed in arc_write(). 6342 */ 6343 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6344 compress, type, HDR_HAS_RABD(hdr)); 6345 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6346 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 6347 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6348 VERIFY3U(nhdr->b_type, ==, type); 6349 ASSERT(!HDR_SHARED_DATA(nhdr)); 6350 6351 nhdr->b_l1hdr.b_buf = buf; 6352 nhdr->b_l1hdr.b_bufcnt = 1; 6353 if (ARC_BUF_ENCRYPTED(buf)) 6354 nhdr->b_crypt_hdr.b_ebufcnt = 1; 6355 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6356 buf->b_hdr = nhdr; 6357 6358 mutex_exit(&buf->b_evict_lock); 6359 (void) zfs_refcount_add_many(&arc_anon->arcs_size, 6360 arc_buf_size(buf), buf); 6361 } else { 6362 mutex_exit(&buf->b_evict_lock); 6363 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6364 /* protected by hash lock, or hdr is on arc_anon */ 6365 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6366 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6367 arc_change_state(arc_anon, hdr, hash_lock); 6368 hdr->b_l1hdr.b_arc_access = 0; 6369 6370 mutex_exit(hash_lock); 6371 buf_discard_identity(hdr); 6372 arc_buf_thaw(buf); 6373 } 6374 } 6375 6376 int 6377 arc_released(arc_buf_t *buf) 6378 { 6379 int released; 6380 6381 mutex_enter(&buf->b_evict_lock); 6382 released = (buf->b_data != NULL && 6383 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6384 mutex_exit(&buf->b_evict_lock); 6385 return (released); 6386 } 6387 6388 #ifdef ZFS_DEBUG 6389 int 6390 arc_referenced(arc_buf_t *buf) 6391 { 6392 int referenced; 6393 6394 mutex_enter(&buf->b_evict_lock); 6395 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6396 mutex_exit(&buf->b_evict_lock); 6397 return (referenced); 6398 } 6399 #endif 6400 6401 static void 6402 arc_write_ready(zio_t *zio) 6403 { 6404 arc_write_callback_t *callback = zio->io_private; 6405 arc_buf_t *buf = callback->awcb_buf; 6406 arc_buf_hdr_t *hdr = buf->b_hdr; 6407 blkptr_t *bp = zio->io_bp; 6408 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6409 6410 ASSERT(HDR_HAS_L1HDR(hdr)); 6411 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6412 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 6413 6414 /* 6415 * If we're reexecuting this zio because the pool suspended, then 6416 * cleanup any state that was previously set the first time the 6417 * callback was invoked. 6418 */ 6419 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6420 arc_cksum_free(hdr); 6421 arc_buf_unwatch(buf); 6422 if (hdr->b_l1hdr.b_pabd != NULL) { 6423 if (arc_buf_is_shared(buf)) { 6424 arc_unshare_buf(hdr, buf); 6425 } else { 6426 arc_hdr_free_pabd(hdr, B_FALSE); 6427 } 6428 } 6429 6430 if (HDR_HAS_RABD(hdr)) 6431 arc_hdr_free_pabd(hdr, B_TRUE); 6432 } 6433 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6434 ASSERT(!HDR_HAS_RABD(hdr)); 6435 ASSERT(!HDR_SHARED_DATA(hdr)); 6436 ASSERT(!arc_buf_is_shared(buf)); 6437 6438 callback->awcb_ready(zio, buf, callback->awcb_private); 6439 6440 if (HDR_IO_IN_PROGRESS(hdr)) 6441 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6442 6443 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6444 6445 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr)) 6446 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp)); 6447 6448 if (BP_IS_PROTECTED(bp)) { 6449 /* ZIL blocks are written through zio_rewrite */ 6450 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6451 ASSERT(HDR_PROTECTED(hdr)); 6452 6453 if (BP_SHOULD_BYTESWAP(bp)) { 6454 if (BP_GET_LEVEL(bp) > 0) { 6455 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6456 } else { 6457 hdr->b_l1hdr.b_byteswap = 6458 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6459 } 6460 } else { 6461 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6462 } 6463 6464 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6465 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6466 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6467 hdr->b_crypt_hdr.b_iv); 6468 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6469 } 6470 6471 /* 6472 * If this block was written for raw encryption but the zio layer 6473 * ended up only authenticating it, adjust the buffer flags now. 6474 */ 6475 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6476 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6477 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6478 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6479 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6480 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6481 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6482 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6483 } 6484 6485 /* this must be done after the buffer flags are adjusted */ 6486 arc_cksum_compute(buf); 6487 6488 enum zio_compress compress; 6489 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6490 compress = ZIO_COMPRESS_OFF; 6491 } else { 6492 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6493 compress = BP_GET_COMPRESS(bp); 6494 } 6495 HDR_SET_PSIZE(hdr, psize); 6496 arc_hdr_set_compress(hdr, compress); 6497 6498 if (zio->io_error != 0 || psize == 0) 6499 goto out; 6500 6501 /* 6502 * Fill the hdr with data. If the buffer is encrypted we have no choice 6503 * but to copy the data into b_rabd. If the hdr is compressed, the data 6504 * we want is available from the zio, otherwise we can take it from 6505 * the buf. 6506 * 6507 * We might be able to share the buf's data with the hdr here. However, 6508 * doing so would cause the ARC to be full of linear ABDs if we write a 6509 * lot of shareable data. As a compromise, we check whether scattered 6510 * ABDs are allowed, and assume that if they are then the user wants 6511 * the ARC to be primarily filled with them regardless of the data being 6512 * written. Therefore, if they're allowed then we allocate one and copy 6513 * the data into it; otherwise, we share the data directly if we can. 6514 */ 6515 if (ARC_BUF_ENCRYPTED(buf)) { 6516 ASSERT3U(psize, >, 0); 6517 ASSERT(ARC_BUF_COMPRESSED(buf)); 6518 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6519 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6520 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) { 6521 /* 6522 * Ideally, we would always copy the io_abd into b_pabd, but the 6523 * user may have disabled compressed ARC, thus we must check the 6524 * hdr's compression setting rather than the io_bp's. 6525 */ 6526 if (BP_IS_ENCRYPTED(bp)) { 6527 ASSERT3U(psize, >, 0); 6528 arc_hdr_alloc_pabd(hdr, 6529 ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6530 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6531 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6532 !ARC_BUF_COMPRESSED(buf)) { 6533 ASSERT3U(psize, >, 0); 6534 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT); 6535 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6536 } else { 6537 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6538 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT); 6539 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6540 arc_buf_size(buf)); 6541 } 6542 } else { 6543 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6544 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6545 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6546 arc_share_buf(hdr, buf); 6547 } 6548 6549 out: 6550 arc_hdr_verify(hdr, bp); 6551 } 6552 6553 static void 6554 arc_write_children_ready(zio_t *zio) 6555 { 6556 arc_write_callback_t *callback = zio->io_private; 6557 arc_buf_t *buf = callback->awcb_buf; 6558 6559 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6560 } 6561 6562 /* 6563 * The SPA calls this callback for each physical write that happens on behalf 6564 * of a logical write. See the comment in dbuf_write_physdone() for details. 6565 */ 6566 static void 6567 arc_write_physdone(zio_t *zio) 6568 { 6569 arc_write_callback_t *cb = zio->io_private; 6570 if (cb->awcb_physdone != NULL) 6571 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 6572 } 6573 6574 static void 6575 arc_write_done(zio_t *zio) 6576 { 6577 arc_write_callback_t *callback = zio->io_private; 6578 arc_buf_t *buf = callback->awcb_buf; 6579 arc_buf_hdr_t *hdr = buf->b_hdr; 6580 6581 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6582 6583 if (zio->io_error == 0) { 6584 arc_hdr_verify(hdr, zio->io_bp); 6585 6586 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6587 buf_discard_identity(hdr); 6588 } else { 6589 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6590 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 6591 } 6592 } else { 6593 ASSERT(HDR_EMPTY(hdr)); 6594 } 6595 6596 /* 6597 * If the block to be written was all-zero or compressed enough to be 6598 * embedded in the BP, no write was performed so there will be no 6599 * dva/birth/checksum. The buffer must therefore remain anonymous 6600 * (and uncached). 6601 */ 6602 if (!HDR_EMPTY(hdr)) { 6603 arc_buf_hdr_t *exists; 6604 kmutex_t *hash_lock; 6605 6606 ASSERT3U(zio->io_error, ==, 0); 6607 6608 arc_cksum_verify(buf); 6609 6610 exists = buf_hash_insert(hdr, &hash_lock); 6611 if (exists != NULL) { 6612 /* 6613 * This can only happen if we overwrite for 6614 * sync-to-convergence, because we remove 6615 * buffers from the hash table when we arc_free(). 6616 */ 6617 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 6618 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6619 panic("bad overwrite, hdr=%p exists=%p", 6620 (void *)hdr, (void *)exists); 6621 ASSERT(zfs_refcount_is_zero( 6622 &exists->b_l1hdr.b_refcnt)); 6623 arc_change_state(arc_anon, exists, hash_lock); 6624 arc_hdr_destroy(exists); 6625 mutex_exit(hash_lock); 6626 exists = buf_hash_insert(hdr, &hash_lock); 6627 ASSERT3P(exists, ==, NULL); 6628 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 6629 /* nopwrite */ 6630 ASSERT(zio->io_prop.zp_nopwrite); 6631 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6632 panic("bad nopwrite, hdr=%p exists=%p", 6633 (void *)hdr, (void *)exists); 6634 } else { 6635 /* Dedup */ 6636 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 6637 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 6638 ASSERT(BP_GET_DEDUP(zio->io_bp)); 6639 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 6640 } 6641 } 6642 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6643 /* if it's not anon, we are doing a scrub */ 6644 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 6645 arc_access(hdr, hash_lock); 6646 mutex_exit(hash_lock); 6647 } else { 6648 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6649 } 6650 6651 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 6652 callback->awcb_done(zio, buf, callback->awcb_private); 6653 6654 abd_put(zio->io_abd); 6655 kmem_free(callback, sizeof (arc_write_callback_t)); 6656 } 6657 6658 zio_t * 6659 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 6660 boolean_t l2arc, const zio_prop_t *zp, arc_write_done_func_t *ready, 6661 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone, 6662 arc_write_done_func_t *done, void *private, zio_priority_t priority, 6663 int zio_flags, const zbookmark_phys_t *zb) 6664 { 6665 arc_buf_hdr_t *hdr = buf->b_hdr; 6666 arc_write_callback_t *callback; 6667 zio_t *zio; 6668 zio_prop_t localprop = *zp; 6669 6670 ASSERT3P(ready, !=, NULL); 6671 ASSERT3P(done, !=, NULL); 6672 ASSERT(!HDR_IO_ERROR(hdr)); 6673 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6674 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6675 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 6676 if (l2arc) 6677 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6678 6679 if (ARC_BUF_ENCRYPTED(buf)) { 6680 ASSERT(ARC_BUF_COMPRESSED(buf)); 6681 localprop.zp_encrypt = B_TRUE; 6682 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6683 /* CONSTCOND */ 6684 localprop.zp_byteorder = 6685 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 6686 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 6687 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt, 6688 ZIO_DATA_SALT_LEN); 6689 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv, 6690 ZIO_DATA_IV_LEN); 6691 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac, 6692 ZIO_DATA_MAC_LEN); 6693 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 6694 localprop.zp_nopwrite = B_FALSE; 6695 localprop.zp_copies = 6696 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 6697 } 6698 zio_flags |= ZIO_FLAG_RAW; 6699 } else if (ARC_BUF_COMPRESSED(buf)) { 6700 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 6701 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6702 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6703 } 6704 6705 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 6706 callback->awcb_ready = ready; 6707 callback->awcb_children_ready = children_ready; 6708 callback->awcb_physdone = physdone; 6709 callback->awcb_done = done; 6710 callback->awcb_private = private; 6711 callback->awcb_buf = buf; 6712 6713 /* 6714 * The hdr's b_pabd is now stale, free it now. A new data block 6715 * will be allocated when the zio pipeline calls arc_write_ready(). 6716 */ 6717 if (hdr->b_l1hdr.b_pabd != NULL) { 6718 /* 6719 * If the buf is currently sharing the data block with 6720 * the hdr then we need to break that relationship here. 6721 * The hdr will remain with a NULL data pointer and the 6722 * buf will take sole ownership of the block. 6723 */ 6724 if (arc_buf_is_shared(buf)) { 6725 arc_unshare_buf(hdr, buf); 6726 } else { 6727 arc_hdr_free_pabd(hdr, B_FALSE); 6728 } 6729 VERIFY3P(buf->b_data, !=, NULL); 6730 } 6731 6732 if (HDR_HAS_RABD(hdr)) 6733 arc_hdr_free_pabd(hdr, B_TRUE); 6734 6735 if (!(zio_flags & ZIO_FLAG_RAW)) 6736 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 6737 6738 ASSERT(!arc_buf_is_shared(buf)); 6739 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6740 6741 zio = zio_write(pio, spa, txg, bp, 6742 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 6743 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 6744 (children_ready != NULL) ? arc_write_children_ready : NULL, 6745 arc_write_physdone, arc_write_done, callback, 6746 priority, zio_flags, zb); 6747 6748 return (zio); 6749 } 6750 6751 static int 6752 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg) 6753 { 6754 #ifdef _KERNEL 6755 uint64_t available_memory = ptob(freemem); 6756 6757 6758 if (freemem > physmem * arc_lotsfree_percent / 100) 6759 return (0); 6760 6761 if (txg > spa->spa_lowmem_last_txg) { 6762 spa->spa_lowmem_last_txg = txg; 6763 spa->spa_lowmem_page_load = 0; 6764 } 6765 /* 6766 * If we are in pageout, we know that memory is already tight, 6767 * the arc is already going to be evicting, so we just want to 6768 * continue to let page writes occur as quickly as possible. 6769 */ 6770 if (curproc == proc_pageout) { 6771 if (spa->spa_lowmem_page_load > 6772 MAX(ptob(minfree), available_memory) / 4) 6773 return (SET_ERROR(ERESTART)); 6774 /* Note: reserve is inflated, so we deflate */ 6775 atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8); 6776 return (0); 6777 } else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) { 6778 /* memory is low, delay before restarting */ 6779 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 6780 return (SET_ERROR(EAGAIN)); 6781 } 6782 spa->spa_lowmem_page_load = 0; 6783 #endif /* _KERNEL */ 6784 return (0); 6785 } 6786 6787 /* 6788 * In more extreme cases, return B_TRUE if system memory is tight enough 6789 * that ZFS should defer work requiring new allocations. 6790 */ 6791 boolean_t 6792 arc_memory_is_low(void) 6793 { 6794 #ifdef _KERNEL 6795 if (freemem < minfree + needfree) 6796 return (B_TRUE); 6797 #endif /* _KERNEL */ 6798 return (B_FALSE); 6799 } 6800 6801 void 6802 arc_tempreserve_clear(uint64_t reserve) 6803 { 6804 atomic_add_64(&arc_tempreserve, -reserve); 6805 ASSERT((int64_t)arc_tempreserve >= 0); 6806 } 6807 6808 int 6809 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 6810 { 6811 int error; 6812 uint64_t anon_size; 6813 6814 if (reserve > arc_c/4 && !arc_no_grow) 6815 arc_c = MIN(arc_c_max, reserve * 4); 6816 if (reserve > arc_c) 6817 return (SET_ERROR(ENOMEM)); 6818 6819 /* 6820 * Don't count loaned bufs as in flight dirty data to prevent long 6821 * network delays from blocking transactions that are ready to be 6822 * assigned to a txg. 6823 */ 6824 6825 /* assert that it has not wrapped around */ 6826 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 6827 6828 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) - 6829 arc_loaned_bytes), 0); 6830 6831 /* 6832 * Writes will, almost always, require additional memory allocations 6833 * in order to compress/encrypt/etc the data. We therefore need to 6834 * make sure that there is sufficient available memory for this. 6835 */ 6836 error = arc_memory_throttle(spa, reserve, txg); 6837 if (error != 0) 6838 return (error); 6839 6840 /* 6841 * Throttle writes when the amount of dirty data in the cache 6842 * gets too large. We try to keep the cache less than half full 6843 * of dirty blocks so that our sync times don't grow too large. 6844 * 6845 * In the case of one pool being built on another pool, we want 6846 * to make sure we don't end up throttling the lower (backing) 6847 * pool when the upper pool is the majority contributor to dirty 6848 * data. To insure we make forward progress during throttling, we 6849 * also check the current pool's net dirty data and only throttle 6850 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 6851 * data in the cache. 6852 * 6853 * Note: if two requests come in concurrently, we might let them 6854 * both succeed, when one of them should fail. Not a huge deal. 6855 */ 6856 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 6857 uint64_t spa_dirty_anon = spa_dirty_data(spa); 6858 6859 if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 && 6860 anon_size > arc_c * zfs_arc_anon_limit_percent / 100 && 6861 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 6862 uint64_t meta_esize = 6863 zfs_refcount_count( 6864 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 6865 uint64_t data_esize = 6866 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 6867 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 6868 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 6869 arc_tempreserve >> 10, meta_esize >> 10, 6870 data_esize >> 10, reserve >> 10, arc_c >> 10); 6871 return (SET_ERROR(ERESTART)); 6872 } 6873 atomic_add_64(&arc_tempreserve, reserve); 6874 return (0); 6875 } 6876 6877 static void 6878 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 6879 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 6880 { 6881 size->value.ui64 = zfs_refcount_count(&state->arcs_size); 6882 evict_data->value.ui64 = 6883 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 6884 evict_metadata->value.ui64 = 6885 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 6886 } 6887 6888 static int 6889 arc_kstat_update(kstat_t *ksp, int rw) 6890 { 6891 arc_stats_t *as = ksp->ks_data; 6892 6893 if (rw == KSTAT_WRITE) { 6894 return (EACCES); 6895 } else { 6896 arc_kstat_update_state(arc_anon, 6897 &as->arcstat_anon_size, 6898 &as->arcstat_anon_evictable_data, 6899 &as->arcstat_anon_evictable_metadata); 6900 arc_kstat_update_state(arc_mru, 6901 &as->arcstat_mru_size, 6902 &as->arcstat_mru_evictable_data, 6903 &as->arcstat_mru_evictable_metadata); 6904 arc_kstat_update_state(arc_mru_ghost, 6905 &as->arcstat_mru_ghost_size, 6906 &as->arcstat_mru_ghost_evictable_data, 6907 &as->arcstat_mru_ghost_evictable_metadata); 6908 arc_kstat_update_state(arc_mfu, 6909 &as->arcstat_mfu_size, 6910 &as->arcstat_mfu_evictable_data, 6911 &as->arcstat_mfu_evictable_metadata); 6912 arc_kstat_update_state(arc_mfu_ghost, 6913 &as->arcstat_mfu_ghost_size, 6914 &as->arcstat_mfu_ghost_evictable_data, 6915 &as->arcstat_mfu_ghost_evictable_metadata); 6916 6917 ARCSTAT(arcstat_size) = aggsum_value(&arc_size); 6918 ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used); 6919 ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size); 6920 ARCSTAT(arcstat_metadata_size) = 6921 aggsum_value(&astat_metadata_size); 6922 ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size); 6923 ARCSTAT(arcstat_other_size) = aggsum_value(&astat_other_size); 6924 ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size); 6925 } 6926 6927 return (0); 6928 } 6929 6930 /* 6931 * This function *must* return indices evenly distributed between all 6932 * sublists of the multilist. This is needed due to how the ARC eviction 6933 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 6934 * distributed between all sublists and uses this assumption when 6935 * deciding which sublist to evict from and how much to evict from it. 6936 */ 6937 unsigned int 6938 arc_state_multilist_index_func(multilist_t *ml, void *obj) 6939 { 6940 arc_buf_hdr_t *hdr = obj; 6941 6942 /* 6943 * We rely on b_dva to generate evenly distributed index 6944 * numbers using buf_hash below. So, as an added precaution, 6945 * let's make sure we never add empty buffers to the arc lists. 6946 */ 6947 ASSERT(!HDR_EMPTY(hdr)); 6948 6949 /* 6950 * The assumption here, is the hash value for a given 6951 * arc_buf_hdr_t will remain constant throughout its lifetime 6952 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 6953 * Thus, we don't need to store the header's sublist index 6954 * on insertion, as this index can be recalculated on removal. 6955 * 6956 * Also, the low order bits of the hash value are thought to be 6957 * distributed evenly. Otherwise, in the case that the multilist 6958 * has a power of two number of sublists, each sublists' usage 6959 * would not be evenly distributed. 6960 */ 6961 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 6962 multilist_get_num_sublists(ml)); 6963 } 6964 6965 static void 6966 arc_state_init(void) 6967 { 6968 arc_anon = &ARC_anon; 6969 arc_mru = &ARC_mru; 6970 arc_mru_ghost = &ARC_mru_ghost; 6971 arc_mfu = &ARC_mfu; 6972 arc_mfu_ghost = &ARC_mfu_ghost; 6973 arc_l2c_only = &ARC_l2c_only; 6974 6975 arc_mru->arcs_list[ARC_BUFC_METADATA] = 6976 multilist_create(sizeof (arc_buf_hdr_t), 6977 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6978 arc_state_multilist_index_func); 6979 arc_mru->arcs_list[ARC_BUFC_DATA] = 6980 multilist_create(sizeof (arc_buf_hdr_t), 6981 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6982 arc_state_multilist_index_func); 6983 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] = 6984 multilist_create(sizeof (arc_buf_hdr_t), 6985 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6986 arc_state_multilist_index_func); 6987 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] = 6988 multilist_create(sizeof (arc_buf_hdr_t), 6989 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6990 arc_state_multilist_index_func); 6991 arc_mfu->arcs_list[ARC_BUFC_METADATA] = 6992 multilist_create(sizeof (arc_buf_hdr_t), 6993 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6994 arc_state_multilist_index_func); 6995 arc_mfu->arcs_list[ARC_BUFC_DATA] = 6996 multilist_create(sizeof (arc_buf_hdr_t), 6997 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6998 arc_state_multilist_index_func); 6999 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] = 7000 multilist_create(sizeof (arc_buf_hdr_t), 7001 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7002 arc_state_multilist_index_func); 7003 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] = 7004 multilist_create(sizeof (arc_buf_hdr_t), 7005 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7006 arc_state_multilist_index_func); 7007 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] = 7008 multilist_create(sizeof (arc_buf_hdr_t), 7009 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7010 arc_state_multilist_index_func); 7011 arc_l2c_only->arcs_list[ARC_BUFC_DATA] = 7012 multilist_create(sizeof (arc_buf_hdr_t), 7013 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7014 arc_state_multilist_index_func); 7015 7016 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7017 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7018 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7019 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7020 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7021 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7022 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7023 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7024 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7025 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7026 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7027 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7028 7029 zfs_refcount_create(&arc_anon->arcs_size); 7030 zfs_refcount_create(&arc_mru->arcs_size); 7031 zfs_refcount_create(&arc_mru_ghost->arcs_size); 7032 zfs_refcount_create(&arc_mfu->arcs_size); 7033 zfs_refcount_create(&arc_mfu_ghost->arcs_size); 7034 zfs_refcount_create(&arc_l2c_only->arcs_size); 7035 7036 aggsum_init(&arc_meta_used, 0); 7037 aggsum_init(&arc_size, 0); 7038 aggsum_init(&astat_data_size, 0); 7039 aggsum_init(&astat_metadata_size, 0); 7040 aggsum_init(&astat_hdr_size, 0); 7041 aggsum_init(&astat_other_size, 0); 7042 aggsum_init(&astat_l2_hdr_size, 0); 7043 7044 arc_anon->arcs_state = ARC_STATE_ANON; 7045 arc_mru->arcs_state = ARC_STATE_MRU; 7046 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7047 arc_mfu->arcs_state = ARC_STATE_MFU; 7048 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7049 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7050 } 7051 7052 static void 7053 arc_state_fini(void) 7054 { 7055 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7056 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7057 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7058 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7059 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7060 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7061 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7062 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7063 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7064 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7065 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7066 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7067 7068 zfs_refcount_destroy(&arc_anon->arcs_size); 7069 zfs_refcount_destroy(&arc_mru->arcs_size); 7070 zfs_refcount_destroy(&arc_mru_ghost->arcs_size); 7071 zfs_refcount_destroy(&arc_mfu->arcs_size); 7072 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size); 7073 zfs_refcount_destroy(&arc_l2c_only->arcs_size); 7074 7075 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]); 7076 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7077 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7078 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7079 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]); 7080 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7081 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]); 7082 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7083 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7084 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7085 7086 aggsum_fini(&arc_meta_used); 7087 aggsum_fini(&arc_size); 7088 aggsum_fini(&astat_data_size); 7089 aggsum_fini(&astat_metadata_size); 7090 aggsum_fini(&astat_hdr_size); 7091 aggsum_fini(&astat_other_size); 7092 aggsum_fini(&astat_l2_hdr_size); 7093 7094 } 7095 7096 uint64_t 7097 arc_max_bytes(void) 7098 { 7099 return (arc_c_max); 7100 } 7101 7102 void 7103 arc_init(void) 7104 { 7105 /* 7106 * allmem is "all memory that we could possibly use". 7107 */ 7108 #ifdef _KERNEL 7109 uint64_t allmem = ptob(physmem - swapfs_minfree); 7110 #else 7111 uint64_t allmem = (physmem * PAGESIZE) / 2; 7112 #endif 7113 mutex_init(&arc_adjust_lock, NULL, MUTEX_DEFAULT, NULL); 7114 cv_init(&arc_adjust_waiters_cv, NULL, CV_DEFAULT, NULL); 7115 7116 /* 7117 * Set the minimum cache size to 1/64 of all memory, with a hard 7118 * minimum of 64MB. 7119 */ 7120 arc_c_min = MAX(allmem / 64, 64 << 20); 7121 /* 7122 * In a system with a lot of physical memory this will still result in 7123 * an ARC size floor that is quite large in absolute terms. Cap the 7124 * growth of the value at 1GB. 7125 */ 7126 arc_c_min = MIN(arc_c_min, 1 << 30); 7127 7128 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 7129 if (allmem >= 1 << 30) 7130 arc_c_max = allmem - (1 << 30); 7131 else 7132 arc_c_max = arc_c_min; 7133 arc_c_max = MAX(allmem * 3 / 4, arc_c_max); 7134 7135 /* 7136 * In userland, there's only the memory pressure that we artificially 7137 * create (see arc_available_memory()). Don't let arc_c get too 7138 * small, because it can cause transactions to be larger than 7139 * arc_c, causing arc_tempreserve_space() to fail. 7140 */ 7141 #ifndef _KERNEL 7142 arc_c_min = arc_c_max / 2; 7143 #endif 7144 7145 /* 7146 * Allow the tunables to override our calculations if they are 7147 * reasonable (ie. over 64MB) 7148 */ 7149 if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) { 7150 arc_c_max = zfs_arc_max; 7151 arc_c_min = MIN(arc_c_min, arc_c_max); 7152 } 7153 if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max) 7154 arc_c_min = zfs_arc_min; 7155 7156 arc_c = arc_c_max; 7157 arc_p = (arc_c >> 1); 7158 7159 /* limit meta-data to 1/4 of the arc capacity */ 7160 arc_meta_limit = arc_c_max / 4; 7161 7162 #ifdef _KERNEL 7163 /* 7164 * Metadata is stored in the kernel's heap. Don't let us 7165 * use more than half the heap for the ARC. 7166 */ 7167 arc_meta_limit = MIN(arc_meta_limit, 7168 vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2); 7169 #endif 7170 7171 /* Allow the tunable to override if it is reasonable */ 7172 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 7173 arc_meta_limit = zfs_arc_meta_limit; 7174 7175 if (zfs_arc_meta_min > 0) { 7176 arc_meta_min = zfs_arc_meta_min; 7177 } else { 7178 arc_meta_min = arc_c_min / 2; 7179 } 7180 7181 if (zfs_arc_grow_retry > 0) 7182 arc_grow_retry = zfs_arc_grow_retry; 7183 7184 if (zfs_arc_shrink_shift > 0) 7185 arc_shrink_shift = zfs_arc_shrink_shift; 7186 7187 /* 7188 * Ensure that arc_no_grow_shift is less than arc_shrink_shift. 7189 */ 7190 if (arc_no_grow_shift >= arc_shrink_shift) 7191 arc_no_grow_shift = arc_shrink_shift - 1; 7192 7193 if (zfs_arc_p_min_shift > 0) 7194 arc_p_min_shift = zfs_arc_p_min_shift; 7195 7196 /* if kmem_flags are set, lets try to use less memory */ 7197 if (kmem_debugging()) 7198 arc_c = arc_c / 2; 7199 if (arc_c < arc_c_min) 7200 arc_c = arc_c_min; 7201 7202 arc_state_init(); 7203 7204 /* 7205 * The arc must be "uninitialized", so that hdr_recl() (which is 7206 * registered by buf_init()) will not access arc_reap_zthr before 7207 * it is created. 7208 */ 7209 ASSERT(!arc_initialized); 7210 buf_init(); 7211 7212 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 7213 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 7214 7215 if (arc_ksp != NULL) { 7216 arc_ksp->ks_data = &arc_stats; 7217 arc_ksp->ks_update = arc_kstat_update; 7218 kstat_install(arc_ksp); 7219 } 7220 7221 arc_adjust_zthr = zthr_create(arc_adjust_cb_check, 7222 arc_adjust_cb, NULL); 7223 arc_reap_zthr = zthr_create_timer(arc_reap_cb_check, 7224 arc_reap_cb, NULL, SEC2NSEC(1)); 7225 7226 arc_initialized = B_TRUE; 7227 arc_warm = B_FALSE; 7228 7229 /* 7230 * Calculate maximum amount of dirty data per pool. 7231 * 7232 * If it has been set by /etc/system, take that. 7233 * Otherwise, use a percentage of physical memory defined by 7234 * zfs_dirty_data_max_percent (default 10%) with a cap at 7235 * zfs_dirty_data_max_max (default 4GB). 7236 */ 7237 if (zfs_dirty_data_max == 0) { 7238 zfs_dirty_data_max = physmem * PAGESIZE * 7239 zfs_dirty_data_max_percent / 100; 7240 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 7241 zfs_dirty_data_max_max); 7242 } 7243 } 7244 7245 void 7246 arc_fini(void) 7247 { 7248 /* Use B_TRUE to ensure *all* buffers are evicted */ 7249 arc_flush(NULL, B_TRUE); 7250 7251 arc_initialized = B_FALSE; 7252 7253 if (arc_ksp != NULL) { 7254 kstat_delete(arc_ksp); 7255 arc_ksp = NULL; 7256 } 7257 7258 (void) zthr_cancel(arc_adjust_zthr); 7259 zthr_destroy(arc_adjust_zthr); 7260 7261 (void) zthr_cancel(arc_reap_zthr); 7262 zthr_destroy(arc_reap_zthr); 7263 7264 mutex_destroy(&arc_adjust_lock); 7265 cv_destroy(&arc_adjust_waiters_cv); 7266 7267 /* 7268 * buf_fini() must proceed arc_state_fini() because buf_fin() may 7269 * trigger the release of kmem magazines, which can callback to 7270 * arc_space_return() which accesses aggsums freed in act_state_fini(). 7271 */ 7272 buf_fini(); 7273 arc_state_fini(); 7274 7275 ASSERT0(arc_loaned_bytes); 7276 } 7277 7278 /* 7279 * Level 2 ARC 7280 * 7281 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 7282 * It uses dedicated storage devices to hold cached data, which are populated 7283 * using large infrequent writes. The main role of this cache is to boost 7284 * the performance of random read workloads. The intended L2ARC devices 7285 * include short-stroked disks, solid state disks, and other media with 7286 * substantially faster read latency than disk. 7287 * 7288 * +-----------------------+ 7289 * | ARC | 7290 * +-----------------------+ 7291 * | ^ ^ 7292 * | | | 7293 * l2arc_feed_thread() arc_read() 7294 * | | | 7295 * | l2arc read | 7296 * V | | 7297 * +---------------+ | 7298 * | L2ARC | | 7299 * +---------------+ | 7300 * | ^ | 7301 * l2arc_write() | | 7302 * | | | 7303 * V | | 7304 * +-------+ +-------+ 7305 * | vdev | | vdev | 7306 * | cache | | cache | 7307 * +-------+ +-------+ 7308 * +=========+ .-----. 7309 * : L2ARC : |-_____-| 7310 * : devices : | Disks | 7311 * +=========+ `-_____-' 7312 * 7313 * Read requests are satisfied from the following sources, in order: 7314 * 7315 * 1) ARC 7316 * 2) vdev cache of L2ARC devices 7317 * 3) L2ARC devices 7318 * 4) vdev cache of disks 7319 * 5) disks 7320 * 7321 * Some L2ARC device types exhibit extremely slow write performance. 7322 * To accommodate for this there are some significant differences between 7323 * the L2ARC and traditional cache design: 7324 * 7325 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 7326 * the ARC behave as usual, freeing buffers and placing headers on ghost 7327 * lists. The ARC does not send buffers to the L2ARC during eviction as 7328 * this would add inflated write latencies for all ARC memory pressure. 7329 * 7330 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 7331 * It does this by periodically scanning buffers from the eviction-end of 7332 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 7333 * not already there. It scans until a headroom of buffers is satisfied, 7334 * which itself is a buffer for ARC eviction. If a compressible buffer is 7335 * found during scanning and selected for writing to an L2ARC device, we 7336 * temporarily boost scanning headroom during the next scan cycle to make 7337 * sure we adapt to compression effects (which might significantly reduce 7338 * the data volume we write to L2ARC). The thread that does this is 7339 * l2arc_feed_thread(), illustrated below; example sizes are included to 7340 * provide a better sense of ratio than this diagram: 7341 * 7342 * head --> tail 7343 * +---------------------+----------+ 7344 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 7345 * +---------------------+----------+ | o L2ARC eligible 7346 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 7347 * +---------------------+----------+ | 7348 * 15.9 Gbytes ^ 32 Mbytes | 7349 * headroom | 7350 * l2arc_feed_thread() 7351 * | 7352 * l2arc write hand <--[oooo]--' 7353 * | 8 Mbyte 7354 * | write max 7355 * V 7356 * +==============================+ 7357 * L2ARC dev |####|#|###|###| |####| ... | 7358 * +==============================+ 7359 * 32 Gbytes 7360 * 7361 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 7362 * evicted, then the L2ARC has cached a buffer much sooner than it probably 7363 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 7364 * safe to say that this is an uncommon case, since buffers at the end of 7365 * the ARC lists have moved there due to inactivity. 7366 * 7367 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 7368 * then the L2ARC simply misses copying some buffers. This serves as a 7369 * pressure valve to prevent heavy read workloads from both stalling the ARC 7370 * with waits and clogging the L2ARC with writes. This also helps prevent 7371 * the potential for the L2ARC to churn if it attempts to cache content too 7372 * quickly, such as during backups of the entire pool. 7373 * 7374 * 5. After system boot and before the ARC has filled main memory, there are 7375 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 7376 * lists can remain mostly static. Instead of searching from tail of these 7377 * lists as pictured, the l2arc_feed_thread() will search from the list heads 7378 * for eligible buffers, greatly increasing its chance of finding them. 7379 * 7380 * The L2ARC device write speed is also boosted during this time so that 7381 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 7382 * there are no L2ARC reads, and no fear of degrading read performance 7383 * through increased writes. 7384 * 7385 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 7386 * the vdev queue can aggregate them into larger and fewer writes. Each 7387 * device is written to in a rotor fashion, sweeping writes through 7388 * available space then repeating. 7389 * 7390 * 7. The L2ARC does not store dirty content. It never needs to flush 7391 * write buffers back to disk based storage. 7392 * 7393 * 8. If an ARC buffer is written (and dirtied) which also exists in the 7394 * L2ARC, the now stale L2ARC buffer is immediately dropped. 7395 * 7396 * The performance of the L2ARC can be tweaked by a number of tunables, which 7397 * may be necessary for different workloads: 7398 * 7399 * l2arc_write_max max write bytes per interval 7400 * l2arc_write_boost extra write bytes during device warmup 7401 * l2arc_noprefetch skip caching prefetched buffers 7402 * l2arc_headroom number of max device writes to precache 7403 * l2arc_headroom_boost when we find compressed buffers during ARC 7404 * scanning, we multiply headroom by this 7405 * percentage factor for the next scan cycle, 7406 * since more compressed buffers are likely to 7407 * be present 7408 * l2arc_feed_secs seconds between L2ARC writing 7409 * 7410 * Tunables may be removed or added as future performance improvements are 7411 * integrated, and also may become zpool properties. 7412 * 7413 * There are three key functions that control how the L2ARC warms up: 7414 * 7415 * l2arc_write_eligible() check if a buffer is eligible to cache 7416 * l2arc_write_size() calculate how much to write 7417 * l2arc_write_interval() calculate sleep delay between writes 7418 * 7419 * These three functions determine what to write, how much, and how quickly 7420 * to send writes. 7421 * 7422 * L2ARC persistence: 7423 * 7424 * When writing buffers to L2ARC, we periodically add some metadata to 7425 * make sure we can pick them up after reboot, thus dramatically reducing 7426 * the impact that any downtime has on the performance of storage systems 7427 * with large caches. 7428 * 7429 * The implementation works fairly simply by integrating the following two 7430 * modifications: 7431 * 7432 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 7433 * which is an additional piece of metadata which describes what's been 7434 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 7435 * main ARC buffers. There are 2 linked-lists of log blocks headed by 7436 * dh_start_lbps[2]. We alternate which chain we append to, so they are 7437 * time-wise and offset-wise interleaved, but that is an optimization rather 7438 * than for correctness. The log block also includes a pointer to the 7439 * previous block in its chain. 7440 * 7441 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 7442 * for our header bookkeeping purposes. This contains a device header, 7443 * which contains our top-level reference structures. We update it each 7444 * time we write a new log block, so that we're able to locate it in the 7445 * L2ARC device. If this write results in an inconsistent device header 7446 * (e.g. due to power failure), we detect this by verifying the header's 7447 * checksum and simply fail to reconstruct the L2ARC after reboot. 7448 * 7449 * Implementation diagram: 7450 * 7451 * +=== L2ARC device (not to scale) ======================================+ 7452 * | ___two newest log block pointers__.__________ | 7453 * | / \dh_start_lbps[1] | 7454 * | / \ \dh_start_lbps[0]| 7455 * |.___/__. V V | 7456 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 7457 * || hdr| ^ /^ /^ / / | 7458 * |+------+ ...--\-------/ \-----/--\------/ / | 7459 * | \--------------/ \--------------/ | 7460 * +======================================================================+ 7461 * 7462 * As can be seen on the diagram, rather than using a simple linked list, 7463 * we use a pair of linked lists with alternating elements. This is a 7464 * performance enhancement due to the fact that we only find out the 7465 * address of the next log block access once the current block has been 7466 * completely read in. Obviously, this hurts performance, because we'd be 7467 * keeping the device's I/O queue at only a 1 operation deep, thus 7468 * incurring a large amount of I/O round-trip latency. Having two lists 7469 * allows us to fetch two log blocks ahead of where we are currently 7470 * rebuilding L2ARC buffers. 7471 * 7472 * On-device data structures: 7473 * 7474 * L2ARC device header: l2arc_dev_hdr_phys_t 7475 * L2ARC log block: l2arc_log_blk_phys_t 7476 * 7477 * L2ARC reconstruction: 7478 * 7479 * When writing data, we simply write in the standard rotary fashion, 7480 * evicting buffers as we go and simply writing new data over them (writing 7481 * a new log block every now and then). This obviously means that once we 7482 * loop around the end of the device, we will start cutting into an already 7483 * committed log block (and its referenced data buffers), like so: 7484 * 7485 * current write head__ __old tail 7486 * \ / 7487 * V V 7488 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 7489 * ^ ^^^^^^^^^___________________________________ 7490 * | \ 7491 * <<nextwrite>> may overwrite this blk and/or its bufs --' 7492 * 7493 * When importing the pool, we detect this situation and use it to stop 7494 * our scanning process (see l2arc_rebuild). 7495 * 7496 * There is one significant caveat to consider when rebuilding ARC contents 7497 * from an L2ARC device: what about invalidated buffers? Given the above 7498 * construction, we cannot update blocks which we've already written to amend 7499 * them to remove buffers which were invalidated. Thus, during reconstruction, 7500 * we might be populating the cache with buffers for data that's not on the 7501 * main pool anymore, or may have been overwritten! 7502 * 7503 * As it turns out, this isn't a problem. Every arc_read request includes 7504 * both the DVA and, crucially, the birth TXG of the BP the caller is 7505 * looking for. So even if the cache were populated by completely rotten 7506 * blocks for data that had been long deleted and/or overwritten, we'll 7507 * never actually return bad data from the cache, since the DVA with the 7508 * birth TXG uniquely identify a block in space and time - once created, 7509 * a block is immutable on disk. The worst thing we have done is wasted 7510 * some time and memory at l2arc rebuild to reconstruct outdated ARC 7511 * entries that will get dropped from the l2arc as it is being updated 7512 * with new blocks. 7513 * 7514 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 7515 * hand are not restored. This is done by saving the offset (in bytes) 7516 * l2arc_evict() has evicted to in the L2ARC device header and taking it 7517 * into account when restoring buffers. 7518 */ 7519 7520 static boolean_t 7521 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 7522 { 7523 /* 7524 * A buffer is *not* eligible for the L2ARC if it: 7525 * 1. belongs to a different spa. 7526 * 2. is already cached on the L2ARC. 7527 * 3. has an I/O in progress (it may be an incomplete read). 7528 * 4. is flagged not eligible (zfs property). 7529 * 5. is a prefetch and l2arc_noprefetch is set. 7530 */ 7531 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 7532 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr) || 7533 (l2arc_noprefetch && HDR_PREFETCH(hdr))) 7534 return (B_FALSE); 7535 7536 return (B_TRUE); 7537 } 7538 7539 static uint64_t 7540 l2arc_write_size(l2arc_dev_t *dev) 7541 { 7542 uint64_t size, dev_size; 7543 7544 /* 7545 * Make sure our globals have meaningful values in case the user 7546 * altered them. 7547 */ 7548 size = l2arc_write_max; 7549 if (size == 0) { 7550 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 7551 "be greater than zero, resetting it to the default (%d)", 7552 L2ARC_WRITE_SIZE); 7553 size = l2arc_write_max = L2ARC_WRITE_SIZE; 7554 } 7555 7556 if (arc_warm == B_FALSE) 7557 size += l2arc_write_boost; 7558 7559 /* 7560 * Make sure the write size does not exceed the size of the cache 7561 * device. This is important in l2arc_evict(), otherwise infinite 7562 * iteration can occur. 7563 */ 7564 dev_size = dev->l2ad_end - dev->l2ad_start; 7565 if ((size + l2arc_log_blk_overhead(size, dev)) >= dev_size) { 7566 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " 7567 "plus the overhead of log blocks (persistent L2ARC, " 7568 "%" PRIu64 " bytes) exceeds the size of the cache device " 7569 "(guid %" PRIu64 "), resetting them to the default (%d)", 7570 l2arc_log_blk_overhead(size, dev), 7571 dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE); 7572 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE; 7573 7574 if (arc_warm == B_FALSE) 7575 size += l2arc_write_boost; 7576 } 7577 7578 return (size); 7579 7580 } 7581 7582 static clock_t 7583 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 7584 { 7585 clock_t interval, next, now; 7586 7587 /* 7588 * If the ARC lists are busy, increase our write rate; if the 7589 * lists are stale, idle back. This is achieved by checking 7590 * how much we previously wrote - if it was more than half of 7591 * what we wanted, schedule the next write much sooner. 7592 */ 7593 if (l2arc_feed_again && wrote > (wanted / 2)) 7594 interval = (hz * l2arc_feed_min_ms) / 1000; 7595 else 7596 interval = hz * l2arc_feed_secs; 7597 7598 now = ddi_get_lbolt(); 7599 next = MAX(now, MIN(now + interval, began + interval)); 7600 7601 return (next); 7602 } 7603 7604 /* 7605 * Cycle through L2ARC devices. This is how L2ARC load balances. 7606 * If a device is returned, this also returns holding the spa config lock. 7607 */ 7608 static l2arc_dev_t * 7609 l2arc_dev_get_next(void) 7610 { 7611 l2arc_dev_t *first, *next = NULL; 7612 7613 /* 7614 * Lock out the removal of spas (spa_namespace_lock), then removal 7615 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 7616 * both locks will be dropped and a spa config lock held instead. 7617 */ 7618 mutex_enter(&spa_namespace_lock); 7619 mutex_enter(&l2arc_dev_mtx); 7620 7621 /* if there are no vdevs, there is nothing to do */ 7622 if (l2arc_ndev == 0) 7623 goto out; 7624 7625 first = NULL; 7626 next = l2arc_dev_last; 7627 do { 7628 /* loop around the list looking for a non-faulted vdev */ 7629 if (next == NULL) { 7630 next = list_head(l2arc_dev_list); 7631 } else { 7632 next = list_next(l2arc_dev_list, next); 7633 if (next == NULL) 7634 next = list_head(l2arc_dev_list); 7635 } 7636 7637 /* if we have come back to the start, bail out */ 7638 if (first == NULL) 7639 first = next; 7640 else if (next == first) 7641 break; 7642 7643 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild); 7644 7645 /* if we were unable to find any usable vdevs, return NULL */ 7646 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild) 7647 next = NULL; 7648 7649 l2arc_dev_last = next; 7650 7651 out: 7652 mutex_exit(&l2arc_dev_mtx); 7653 7654 /* 7655 * Grab the config lock to prevent the 'next' device from being 7656 * removed while we are writing to it. 7657 */ 7658 if (next != NULL) 7659 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 7660 mutex_exit(&spa_namespace_lock); 7661 7662 return (next); 7663 } 7664 7665 /* 7666 * Free buffers that were tagged for destruction. 7667 */ 7668 static void 7669 l2arc_do_free_on_write() 7670 { 7671 list_t *buflist; 7672 l2arc_data_free_t *df, *df_prev; 7673 7674 mutex_enter(&l2arc_free_on_write_mtx); 7675 buflist = l2arc_free_on_write; 7676 7677 for (df = list_tail(buflist); df; df = df_prev) { 7678 df_prev = list_prev(buflist, df); 7679 ASSERT3P(df->l2df_abd, !=, NULL); 7680 abd_free(df->l2df_abd); 7681 list_remove(buflist, df); 7682 kmem_free(df, sizeof (l2arc_data_free_t)); 7683 } 7684 7685 mutex_exit(&l2arc_free_on_write_mtx); 7686 } 7687 7688 /* 7689 * A write to a cache device has completed. Update all headers to allow 7690 * reads from these buffers to begin. 7691 */ 7692 static void 7693 l2arc_write_done(zio_t *zio) 7694 { 7695 l2arc_write_callback_t *cb; 7696 l2arc_lb_abd_buf_t *abd_buf; 7697 l2arc_lb_ptr_buf_t *lb_ptr_buf; 7698 l2arc_dev_t *dev; 7699 l2arc_dev_hdr_phys_t *l2dhdr; 7700 list_t *buflist; 7701 arc_buf_hdr_t *head, *hdr, *hdr_prev; 7702 kmutex_t *hash_lock; 7703 int64_t bytes_dropped = 0; 7704 7705 cb = zio->io_private; 7706 ASSERT3P(cb, !=, NULL); 7707 dev = cb->l2wcb_dev; 7708 l2dhdr = dev->l2ad_dev_hdr; 7709 ASSERT3P(dev, !=, NULL); 7710 head = cb->l2wcb_head; 7711 ASSERT3P(head, !=, NULL); 7712 buflist = &dev->l2ad_buflist; 7713 ASSERT3P(buflist, !=, NULL); 7714 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 7715 l2arc_write_callback_t *, cb); 7716 7717 /* 7718 * All writes completed, or an error was hit. 7719 */ 7720 top: 7721 mutex_enter(&dev->l2ad_mtx); 7722 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 7723 hdr_prev = list_prev(buflist, hdr); 7724 7725 hash_lock = HDR_LOCK(hdr); 7726 7727 /* 7728 * We cannot use mutex_enter or else we can deadlock 7729 * with l2arc_write_buffers (due to swapping the order 7730 * the hash lock and l2ad_mtx are taken). 7731 */ 7732 if (!mutex_tryenter(hash_lock)) { 7733 /* 7734 * Missed the hash lock. We must retry so we 7735 * don't leave the ARC_FLAG_L2_WRITING bit set. 7736 */ 7737 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 7738 7739 /* 7740 * We don't want to rescan the headers we've 7741 * already marked as having been written out, so 7742 * we reinsert the head node so we can pick up 7743 * where we left off. 7744 */ 7745 list_remove(buflist, head); 7746 list_insert_after(buflist, hdr, head); 7747 7748 mutex_exit(&dev->l2ad_mtx); 7749 7750 /* 7751 * We wait for the hash lock to become available 7752 * to try and prevent busy waiting, and increase 7753 * the chance we'll be able to acquire the lock 7754 * the next time around. 7755 */ 7756 mutex_enter(hash_lock); 7757 mutex_exit(hash_lock); 7758 goto top; 7759 } 7760 7761 /* 7762 * We could not have been moved into the arc_l2c_only 7763 * state while in-flight due to our ARC_FLAG_L2_WRITING 7764 * bit being set. Let's just ensure that's being enforced. 7765 */ 7766 ASSERT(HDR_HAS_L1HDR(hdr)); 7767 7768 if (zio->io_error != 0) { 7769 /* 7770 * Error - drop L2ARC entry. 7771 */ 7772 list_remove(buflist, hdr); 7773 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 7774 7775 uint64_t psize = HDR_GET_PSIZE(hdr); 7776 l2arc_hdr_arcstats_decrement(hdr); 7777 7778 bytes_dropped += 7779 vdev_psize_to_asize(dev->l2ad_vdev, psize); 7780 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 7781 arc_hdr_size(hdr), hdr); 7782 } 7783 7784 /* 7785 * Allow ARC to begin reads and ghost list evictions to 7786 * this L2ARC entry. 7787 */ 7788 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 7789 7790 mutex_exit(hash_lock); 7791 } 7792 7793 /* 7794 * Free the allocated abd buffers for writing the log blocks. 7795 * If the zio failed reclaim the allocated space and remove the 7796 * pointers to these log blocks from the log block pointer list 7797 * of the L2ARC device. 7798 */ 7799 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 7800 abd_free(abd_buf->abd); 7801 zio_buf_free(abd_buf, sizeof (*abd_buf)); 7802 if (zio->io_error != 0) { 7803 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 7804 /* 7805 * L2BLK_GET_PSIZE returns aligned size for log 7806 * blocks. 7807 */ 7808 uint64_t asize = 7809 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 7810 bytes_dropped += asize; 7811 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 7812 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 7813 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 7814 lb_ptr_buf); 7815 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 7816 kmem_free(lb_ptr_buf->lb_ptr, 7817 sizeof (l2arc_log_blkptr_t)); 7818 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 7819 } 7820 } 7821 list_destroy(&cb->l2wcb_abd_list); 7822 7823 if (zio->io_error != 0) { 7824 ARCSTAT_BUMP(arcstat_l2_writes_error); 7825 7826 /* 7827 * Restore the lbps array in the header to its previous state. 7828 * If the list of log block pointers is empty, zero out the 7829 * log block pointers in the device header. 7830 */ 7831 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 7832 for (int i = 0; i < 2; i++) { 7833 if (lb_ptr_buf == NULL) { 7834 /* 7835 * If the list is empty zero out the device 7836 * header. Otherwise zero out the second log 7837 * block pointer in the header. 7838 */ 7839 if (i == 0) { 7840 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 7841 } else { 7842 bzero(&l2dhdr->dh_start_lbps[i], 7843 sizeof (l2arc_log_blkptr_t)); 7844 } 7845 break; 7846 } 7847 bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i], 7848 sizeof (l2arc_log_blkptr_t)); 7849 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 7850 lb_ptr_buf); 7851 } 7852 } 7853 7854 atomic_inc_64(&l2arc_writes_done); 7855 list_remove(buflist, head); 7856 ASSERT(!HDR_HAS_L1HDR(head)); 7857 kmem_cache_free(hdr_l2only_cache, head); 7858 mutex_exit(&dev->l2ad_mtx); 7859 7860 ASSERT(dev->l2ad_vdev != NULL); 7861 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 7862 7863 l2arc_do_free_on_write(); 7864 7865 kmem_free(cb, sizeof (l2arc_write_callback_t)); 7866 } 7867 7868 static int 7869 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 7870 { 7871 int ret; 7872 spa_t *spa = zio->io_spa; 7873 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 7874 blkptr_t *bp = zio->io_bp; 7875 uint8_t salt[ZIO_DATA_SALT_LEN]; 7876 uint8_t iv[ZIO_DATA_IV_LEN]; 7877 uint8_t mac[ZIO_DATA_MAC_LEN]; 7878 boolean_t no_crypt = B_FALSE; 7879 7880 /* 7881 * ZIL data is never be written to the L2ARC, so we don't need 7882 * special handling for its unique MAC storage. 7883 */ 7884 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 7885 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 7886 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 7887 7888 /* 7889 * If the data was encrypted, decrypt it now. Note that 7890 * we must check the bp here and not the hdr, since the 7891 * hdr does not have its encryption parameters updated 7892 * until arc_read_done(). 7893 */ 7894 if (BP_IS_ENCRYPTED(bp)) { 7895 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 7896 B_TRUE); 7897 7898 zio_crypt_decode_params_bp(bp, salt, iv); 7899 zio_crypt_decode_mac_bp(bp, mac); 7900 7901 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 7902 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 7903 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 7904 hdr->b_l1hdr.b_pabd, &no_crypt); 7905 if (ret != 0) { 7906 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 7907 goto error; 7908 } 7909 7910 /* 7911 * If we actually performed decryption, replace b_pabd 7912 * with the decrypted data. Otherwise we can just throw 7913 * our decryption buffer away. 7914 */ 7915 if (!no_crypt) { 7916 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 7917 arc_hdr_size(hdr), hdr); 7918 hdr->b_l1hdr.b_pabd = eabd; 7919 zio->io_abd = eabd; 7920 } else { 7921 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 7922 } 7923 } 7924 7925 /* 7926 * If the L2ARC block was compressed, but ARC compression 7927 * is disabled we decompress the data into a new buffer and 7928 * replace the existing data. 7929 */ 7930 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 7931 !HDR_COMPRESSION_ENABLED(hdr)) { 7932 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 7933 B_TRUE); 7934 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 7935 7936 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 7937 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 7938 HDR_GET_LSIZE(hdr)); 7939 if (ret != 0) { 7940 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 7941 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 7942 goto error; 7943 } 7944 7945 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 7946 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 7947 arc_hdr_size(hdr), hdr); 7948 hdr->b_l1hdr.b_pabd = cabd; 7949 zio->io_abd = cabd; 7950 zio->io_size = HDR_GET_LSIZE(hdr); 7951 } 7952 7953 return (0); 7954 7955 error: 7956 return (ret); 7957 } 7958 7959 7960 /* 7961 * A read to a cache device completed. Validate buffer contents before 7962 * handing over to the regular ARC routines. 7963 */ 7964 static void 7965 l2arc_read_done(zio_t *zio) 7966 { 7967 int tfm_error = 0; 7968 l2arc_read_callback_t *cb = zio->io_private; 7969 arc_buf_hdr_t *hdr; 7970 kmutex_t *hash_lock; 7971 boolean_t valid_cksum; 7972 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 7973 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 7974 7975 ASSERT3P(zio->io_vd, !=, NULL); 7976 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 7977 7978 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 7979 7980 ASSERT3P(cb, !=, NULL); 7981 hdr = cb->l2rcb_hdr; 7982 ASSERT3P(hdr, !=, NULL); 7983 7984 hash_lock = HDR_LOCK(hdr); 7985 mutex_enter(hash_lock); 7986 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 7987 7988 /* 7989 * If the data was read into a temporary buffer, 7990 * move it and free the buffer. 7991 */ 7992 if (cb->l2rcb_abd != NULL) { 7993 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 7994 if (zio->io_error == 0) { 7995 if (using_rdata) { 7996 abd_copy(hdr->b_crypt_hdr.b_rabd, 7997 cb->l2rcb_abd, arc_hdr_size(hdr)); 7998 } else { 7999 abd_copy(hdr->b_l1hdr.b_pabd, 8000 cb->l2rcb_abd, arc_hdr_size(hdr)); 8001 } 8002 } 8003 8004 /* 8005 * The following must be done regardless of whether 8006 * there was an error: 8007 * - free the temporary buffer 8008 * - point zio to the real ARC buffer 8009 * - set zio size accordingly 8010 * These are required because zio is either re-used for 8011 * an I/O of the block in the case of the error 8012 * or the zio is passed to arc_read_done() and it 8013 * needs real data. 8014 */ 8015 abd_free(cb->l2rcb_abd); 8016 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8017 8018 if (using_rdata) { 8019 ASSERT(HDR_HAS_RABD(hdr)); 8020 zio->io_abd = zio->io_orig_abd = 8021 hdr->b_crypt_hdr.b_rabd; 8022 } else { 8023 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8024 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8025 } 8026 } 8027 8028 ASSERT3P(zio->io_abd, !=, NULL); 8029 8030 /* 8031 * Check this survived the L2ARC journey. 8032 */ 8033 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8034 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8035 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8036 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8037 8038 valid_cksum = arc_cksum_is_equal(hdr, zio); 8039 8040 /* 8041 * b_rabd will always match the data as it exists on disk if it is 8042 * being used. Therefore if we are reading into b_rabd we do not 8043 * attempt to untransform the data. 8044 */ 8045 if (valid_cksum && !using_rdata) 8046 tfm_error = l2arc_untransform(zio, cb); 8047 8048 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8049 !HDR_L2_EVICTED(hdr)) { 8050 mutex_exit(hash_lock); 8051 zio->io_private = hdr; 8052 arc_read_done(zio); 8053 } else { 8054 /* 8055 * Buffer didn't survive caching. Increment stats and 8056 * reissue to the original storage device. 8057 */ 8058 if (zio->io_error != 0) { 8059 ARCSTAT_BUMP(arcstat_l2_io_error); 8060 } else { 8061 zio->io_error = SET_ERROR(EIO); 8062 } 8063 if (!valid_cksum || tfm_error != 0) 8064 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8065 8066 /* 8067 * If there's no waiter, issue an async i/o to the primary 8068 * storage now. If there *is* a waiter, the caller must 8069 * issue the i/o in a context where it's OK to block. 8070 */ 8071 if (zio->io_waiter == NULL) { 8072 zio_t *pio = zio_unique_parent(zio); 8073 void *abd = (using_rdata) ? 8074 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8075 8076 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8077 8078 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8079 abd, zio->io_size, arc_read_done, 8080 hdr, zio->io_priority, cb->l2rcb_flags, 8081 &cb->l2rcb_zb); 8082 8083 /* 8084 * Original ZIO will be freed, so we need to update 8085 * ARC header with the new ZIO pointer to be used 8086 * by zio_change_priority() in arc_read(). 8087 */ 8088 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8089 acb != NULL; acb = acb->acb_next) 8090 acb->acb_zio_head = zio; 8091 8092 mutex_exit(hash_lock); 8093 zio_nowait(zio); 8094 } else { 8095 mutex_exit(hash_lock); 8096 } 8097 } 8098 8099 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8100 } 8101 8102 /* 8103 * This is the list priority from which the L2ARC will search for pages to 8104 * cache. This is used within loops (0..3) to cycle through lists in the 8105 * desired order. This order can have a significant effect on cache 8106 * performance. 8107 * 8108 * Currently the metadata lists are hit first, MFU then MRU, followed by 8109 * the data lists. This function returns a locked list, and also returns 8110 * the lock pointer. 8111 */ 8112 static multilist_sublist_t * 8113 l2arc_sublist_lock(int list_num) 8114 { 8115 multilist_t *ml = NULL; 8116 unsigned int idx; 8117 8118 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 8119 8120 switch (list_num) { 8121 case 0: 8122 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA]; 8123 break; 8124 case 1: 8125 ml = arc_mru->arcs_list[ARC_BUFC_METADATA]; 8126 break; 8127 case 2: 8128 ml = arc_mfu->arcs_list[ARC_BUFC_DATA]; 8129 break; 8130 case 3: 8131 ml = arc_mru->arcs_list[ARC_BUFC_DATA]; 8132 break; 8133 default: 8134 return (NULL); 8135 } 8136 8137 /* 8138 * Return a randomly-selected sublist. This is acceptable 8139 * because the caller feeds only a little bit of data for each 8140 * call (8MB). Subsequent calls will result in different 8141 * sublists being selected. 8142 */ 8143 idx = multilist_get_random_index(ml); 8144 return (multilist_sublist_lock(ml, idx)); 8145 } 8146 8147 /* 8148 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 8149 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 8150 * overhead in processing to make sure there is enough headroom available 8151 * when writing buffers. 8152 */ 8153 static inline uint64_t 8154 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 8155 { 8156 if (dev->l2ad_log_entries == 0) { 8157 return (0); 8158 } else { 8159 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 8160 8161 uint64_t log_blocks = (log_entries + 8162 dev->l2ad_log_entries - 1) / 8163 dev->l2ad_log_entries; 8164 8165 return (vdev_psize_to_asize(dev->l2ad_vdev, 8166 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 8167 } 8168 } 8169 8170 /* 8171 * Evict buffers from the device write hand to the distance specified in 8172 * bytes. This distance may span populated buffers, it may span nothing. 8173 * This is clearing a region on the L2ARC device ready for writing. 8174 * If the 'all' boolean is set, every buffer is evicted. 8175 */ 8176 static void 8177 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 8178 { 8179 list_t *buflist; 8180 arc_buf_hdr_t *hdr, *hdr_prev; 8181 kmutex_t *hash_lock; 8182 uint64_t taddr; 8183 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 8184 boolean_t rerun; 8185 8186 buflist = &dev->l2ad_buflist; 8187 8188 /* 8189 * We need to add in the worst case scenario of log block overhead. 8190 */ 8191 distance += l2arc_log_blk_overhead(distance, dev); 8192 8193 top: 8194 rerun = B_FALSE; 8195 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) { 8196 /* 8197 * When there is no space to accommodate upcoming writes, 8198 * evict to the end. Then bump the write and evict hands 8199 * to the start and iterate. This iteration does not 8200 * happen indefinitely as we make sure in 8201 * l2arc_write_size() that when the write hand is reset, 8202 * the write size does not exceed the end of the device. 8203 */ 8204 rerun = B_TRUE; 8205 taddr = dev->l2ad_end; 8206 } else { 8207 taddr = dev->l2ad_hand + distance; 8208 } 8209 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 8210 uint64_t, taddr, boolean_t, all); 8211 8212 /* 8213 * This check has to be placed after deciding whether to iterate 8214 * (rerun). 8215 */ 8216 if (!all && dev->l2ad_first) { 8217 /* 8218 * This is the first sweep through the device. There is 8219 * nothing to evict. 8220 */ 8221 goto out; 8222 } 8223 8224 /* 8225 * When rebuilding L2ARC we retrieve the evict hand from the header of 8226 * the device. Of note, l2arc_evict() does not actually delete buffers 8227 * from the cache device, but keeping track of the evict hand will be 8228 * useful when TRIM is implemented. 8229 */ 8230 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 8231 8232 retry: 8233 mutex_enter(&dev->l2ad_mtx); 8234 /* 8235 * We have to account for evicted log blocks. Run vdev_space_update() 8236 * on log blocks whose offset (in bytes) is before the evicted offset 8237 * (in bytes) by searching in the list of pointers to log blocks 8238 * present in the L2ARC device. 8239 */ 8240 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 8241 lb_ptr_buf = lb_ptr_buf_prev) { 8242 8243 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 8244 8245 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 8246 uint64_t asize = L2BLK_GET_PSIZE( 8247 (lb_ptr_buf->lb_ptr)->lbp_prop); 8248 8249 /* 8250 * We don't worry about log blocks left behind (ie 8251 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 8252 * will never write more than l2arc_evict() evicts. 8253 */ 8254 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 8255 break; 8256 } else { 8257 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 8258 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8259 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8260 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8261 lb_ptr_buf); 8262 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8263 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 8264 kmem_free(lb_ptr_buf->lb_ptr, 8265 sizeof (l2arc_log_blkptr_t)); 8266 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8267 } 8268 } 8269 8270 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 8271 hdr_prev = list_prev(buflist, hdr); 8272 8273 ASSERT(!HDR_EMPTY(hdr)); 8274 hash_lock = HDR_LOCK(hdr); 8275 8276 /* 8277 * We cannot use mutex_enter or else we can deadlock 8278 * with l2arc_write_buffers (due to swapping the order 8279 * the hash lock and l2ad_mtx are taken). 8280 */ 8281 if (!mutex_tryenter(hash_lock)) { 8282 /* 8283 * Missed the hash lock. Retry. 8284 */ 8285 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 8286 mutex_exit(&dev->l2ad_mtx); 8287 mutex_enter(hash_lock); 8288 mutex_exit(hash_lock); 8289 goto retry; 8290 } 8291 8292 /* 8293 * A header can't be on this list if it doesn't have L2 header. 8294 */ 8295 ASSERT(HDR_HAS_L2HDR(hdr)); 8296 8297 /* Ensure this header has finished being written. */ 8298 ASSERT(!HDR_L2_WRITING(hdr)); 8299 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 8300 8301 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 8302 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 8303 /* 8304 * We've evicted to the target address, 8305 * or the end of the device. 8306 */ 8307 mutex_exit(hash_lock); 8308 break; 8309 } 8310 8311 if (!HDR_HAS_L1HDR(hdr)) { 8312 ASSERT(!HDR_L2_READING(hdr)); 8313 /* 8314 * This doesn't exist in the ARC. Destroy. 8315 * arc_hdr_destroy() will call list_remove() 8316 * and decrement arcstat_l2_lsize. 8317 */ 8318 arc_change_state(arc_anon, hdr, hash_lock); 8319 arc_hdr_destroy(hdr); 8320 } else { 8321 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 8322 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 8323 /* 8324 * Invalidate issued or about to be issued 8325 * reads, since we may be about to write 8326 * over this location. 8327 */ 8328 if (HDR_L2_READING(hdr)) { 8329 ARCSTAT_BUMP(arcstat_l2_evict_reading); 8330 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 8331 } 8332 8333 arc_hdr_l2hdr_destroy(hdr); 8334 } 8335 mutex_exit(hash_lock); 8336 } 8337 mutex_exit(&dev->l2ad_mtx); 8338 8339 out: 8340 /* 8341 * We need to check if we evict all buffers, otherwise we may iterate 8342 * unnecessarily. 8343 */ 8344 if (!all && rerun) { 8345 /* 8346 * Bump device hand to the device start if it is approaching the 8347 * end. l2arc_evict() has already evicted ahead for this case. 8348 */ 8349 dev->l2ad_hand = dev->l2ad_start; 8350 dev->l2ad_evict = dev->l2ad_start; 8351 dev->l2ad_first = B_FALSE; 8352 goto top; 8353 } 8354 8355 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end); 8356 if (!dev->l2ad_first) 8357 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict); 8358 } 8359 8360 /* 8361 * Handle any abd transforms that might be required for writing to the L2ARC. 8362 * If successful, this function will always return an abd with the data 8363 * transformed as it is on disk in a new abd of asize bytes. 8364 */ 8365 static int 8366 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 8367 abd_t **abd_out) 8368 { 8369 int ret; 8370 void *tmp = NULL; 8371 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 8372 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 8373 uint64_t psize = HDR_GET_PSIZE(hdr); 8374 uint64_t size = arc_hdr_size(hdr); 8375 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 8376 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 8377 dsl_crypto_key_t *dck = NULL; 8378 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 8379 boolean_t no_crypt = B_FALSE; 8380 8381 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8382 !HDR_COMPRESSION_ENABLED(hdr)) || 8383 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 8384 ASSERT3U(psize, <=, asize); 8385 8386 /* 8387 * If this data simply needs its own buffer, we simply allocate it 8388 * and copy the data. This may be done to eliminate a dependency on a 8389 * shared buffer or to reallocate the buffer to match asize. 8390 */ 8391 if (HDR_HAS_RABD(hdr) && asize != psize) { 8392 ASSERT3U(asize, >=, psize); 8393 to_write = abd_alloc_for_io(asize, ismd); 8394 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 8395 if (psize != asize) 8396 abd_zero_off(to_write, psize, asize - psize); 8397 goto out; 8398 } 8399 8400 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 8401 !HDR_ENCRYPTED(hdr)) { 8402 ASSERT3U(size, ==, psize); 8403 to_write = abd_alloc_for_io(asize, ismd); 8404 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 8405 if (size != asize) 8406 abd_zero_off(to_write, size, asize - size); 8407 goto out; 8408 } 8409 8410 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 8411 cabd = abd_alloc_for_io(asize, ismd); 8412 tmp = abd_borrow_buf(cabd, asize); 8413 8414 psize = zio_compress_data(compress, to_write, tmp, size); 8415 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr)); 8416 if (psize < asize) 8417 bzero((char *)tmp + psize, asize - psize); 8418 psize = HDR_GET_PSIZE(hdr); 8419 abd_return_buf_copy(cabd, tmp, asize); 8420 to_write = cabd; 8421 } 8422 8423 if (HDR_ENCRYPTED(hdr)) { 8424 eabd = abd_alloc_for_io(asize, ismd); 8425 8426 /* 8427 * If the dataset was disowned before the buffer 8428 * made it to this point, the key to re-encrypt 8429 * it won't be available. In this case we simply 8430 * won't write the buffer to the L2ARC. 8431 */ 8432 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 8433 FTAG, &dck); 8434 if (ret != 0) 8435 goto error; 8436 8437 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 8438 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 8439 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 8440 &no_crypt); 8441 if (ret != 0) 8442 goto error; 8443 8444 if (no_crypt) 8445 abd_copy(eabd, to_write, psize); 8446 8447 if (psize != asize) 8448 abd_zero_off(eabd, psize, asize - psize); 8449 8450 /* assert that the MAC we got here matches the one we saved */ 8451 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 8452 spa_keystore_dsl_key_rele(spa, dck, FTAG); 8453 8454 if (to_write == cabd) 8455 abd_free(cabd); 8456 8457 to_write = eabd; 8458 } 8459 8460 out: 8461 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 8462 *abd_out = to_write; 8463 return (0); 8464 8465 error: 8466 if (dck != NULL) 8467 spa_keystore_dsl_key_rele(spa, dck, FTAG); 8468 if (cabd != NULL) 8469 abd_free(cabd); 8470 if (eabd != NULL) 8471 abd_free(eabd); 8472 8473 *abd_out = NULL; 8474 return (ret); 8475 } 8476 8477 static void 8478 l2arc_blk_fetch_done(zio_t *zio) 8479 { 8480 l2arc_read_callback_t *cb; 8481 8482 cb = zio->io_private; 8483 if (cb->l2rcb_abd != NULL) 8484 abd_put(cb->l2rcb_abd); 8485 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8486 } 8487 8488 /* 8489 * Find and write ARC buffers to the L2ARC device. 8490 * 8491 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 8492 * for reading until they have completed writing. 8493 * The headroom_boost is an in-out parameter used to maintain headroom boost 8494 * state between calls to this function. 8495 * 8496 * Returns the number of bytes actually written (which may be smaller than 8497 * the delta by which the device hand has changed due to alignment and the 8498 * writing of log blocks). 8499 */ 8500 static uint64_t 8501 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 8502 { 8503 arc_buf_hdr_t *hdr, *hdr_prev, *head; 8504 uint64_t write_asize, write_psize, write_lsize, headroom; 8505 boolean_t full; 8506 l2arc_write_callback_t *cb = NULL; 8507 zio_t *pio, *wzio; 8508 uint64_t guid = spa_load_guid(spa); 8509 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 8510 8511 ASSERT3P(dev->l2ad_vdev, !=, NULL); 8512 8513 pio = NULL; 8514 write_lsize = write_asize = write_psize = 0; 8515 full = B_FALSE; 8516 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 8517 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 8518 8519 /* 8520 * Copy buffers for L2ARC writing. 8521 */ 8522 for (int try = 0; try < L2ARC_FEED_TYPES; try++) { 8523 /* 8524 * If try == 1 or 3, we cache MRU metadata and data 8525 * respectively. 8526 */ 8527 if (l2arc_mfuonly) { 8528 if (try == 1 || try == 3) 8529 continue; 8530 } 8531 8532 multilist_sublist_t *mls = l2arc_sublist_lock(try); 8533 uint64_t passed_sz = 0; 8534 8535 VERIFY3P(mls, !=, NULL); 8536 8537 /* 8538 * L2ARC fast warmup. 8539 * 8540 * Until the ARC is warm and starts to evict, read from the 8541 * head of the ARC lists rather than the tail. 8542 */ 8543 if (arc_warm == B_FALSE) 8544 hdr = multilist_sublist_head(mls); 8545 else 8546 hdr = multilist_sublist_tail(mls); 8547 8548 headroom = target_sz * l2arc_headroom; 8549 if (zfs_compressed_arc_enabled) 8550 headroom = (headroom * l2arc_headroom_boost) / 100; 8551 8552 for (; hdr; hdr = hdr_prev) { 8553 kmutex_t *hash_lock; 8554 abd_t *to_write = NULL; 8555 8556 if (arc_warm == B_FALSE) 8557 hdr_prev = multilist_sublist_next(mls, hdr); 8558 else 8559 hdr_prev = multilist_sublist_prev(mls, hdr); 8560 8561 hash_lock = HDR_LOCK(hdr); 8562 if (!mutex_tryenter(hash_lock)) { 8563 /* 8564 * Skip this buffer rather than waiting. 8565 */ 8566 continue; 8567 } 8568 8569 passed_sz += HDR_GET_LSIZE(hdr); 8570 if (l2arc_headroom != 0 && passed_sz > headroom) { 8571 /* 8572 * Searched too far. 8573 */ 8574 mutex_exit(hash_lock); 8575 break; 8576 } 8577 8578 if (!l2arc_write_eligible(guid, hdr)) { 8579 mutex_exit(hash_lock); 8580 continue; 8581 } 8582 8583 ASSERT(HDR_HAS_L1HDR(hdr)); 8584 8585 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 8586 ASSERT3U(arc_hdr_size(hdr), >, 0); 8587 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 8588 HDR_HAS_RABD(hdr)); 8589 uint64_t psize = HDR_GET_PSIZE(hdr); 8590 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 8591 psize); 8592 8593 if ((write_asize + asize) > target_sz) { 8594 full = B_TRUE; 8595 mutex_exit(hash_lock); 8596 break; 8597 } 8598 8599 /* 8600 * We rely on the L1 portion of the header below, so 8601 * it's invalid for this header to have been evicted out 8602 * of the ghost cache, prior to being written out. The 8603 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 8604 */ 8605 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING); 8606 8607 /* 8608 * If this header has b_rabd, we can use this since it 8609 * must always match the data exactly as it exists on 8610 * disk. Otherwise, the L2ARC can normally use the 8611 * hdr's data, but if we're sharing data between the 8612 * hdr and one of its bufs, L2ARC needs its own copy of 8613 * the data so that the ZIO below can't race with the 8614 * buf consumer. To ensure that this copy will be 8615 * available for the lifetime of the ZIO and be cleaned 8616 * up afterwards, we add it to the l2arc_free_on_write 8617 * queue. If we need to apply any transforms to the 8618 * data (compression, encryption) we will also need the 8619 * extra buffer. 8620 */ 8621 if (HDR_HAS_RABD(hdr) && psize == asize) { 8622 to_write = hdr->b_crypt_hdr.b_rabd; 8623 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 8624 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 8625 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 8626 psize == asize) { 8627 to_write = hdr->b_l1hdr.b_pabd; 8628 } else { 8629 int ret; 8630 arc_buf_contents_t type = arc_buf_type(hdr); 8631 8632 ret = l2arc_apply_transforms(spa, hdr, asize, 8633 &to_write); 8634 if (ret != 0) { 8635 arc_hdr_clear_flags(hdr, 8636 ARC_FLAG_L2_WRITING); 8637 mutex_exit(hash_lock); 8638 continue; 8639 } 8640 8641 l2arc_free_abd_on_write(to_write, asize, type); 8642 } 8643 8644 if (pio == NULL) { 8645 /* 8646 * Insert a dummy header on the buflist so 8647 * l2arc_write_done() can find where the 8648 * write buffers begin without searching. 8649 */ 8650 mutex_enter(&dev->l2ad_mtx); 8651 list_insert_head(&dev->l2ad_buflist, head); 8652 mutex_exit(&dev->l2ad_mtx); 8653 8654 cb = kmem_alloc( 8655 sizeof (l2arc_write_callback_t), KM_SLEEP); 8656 cb->l2wcb_dev = dev; 8657 cb->l2wcb_head = head; 8658 /* 8659 * Create a list to save allocated abd buffers 8660 * for l2arc_log_blk_commit(). 8661 */ 8662 list_create(&cb->l2wcb_abd_list, 8663 sizeof (l2arc_lb_abd_buf_t), 8664 offsetof(l2arc_lb_abd_buf_t, node)); 8665 pio = zio_root(spa, l2arc_write_done, cb, 8666 ZIO_FLAG_CANFAIL); 8667 } 8668 8669 hdr->b_l2hdr.b_dev = dev; 8670 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 8671 hdr->b_l2hdr.b_arcs_state = 8672 hdr->b_l1hdr.b_state->arcs_state; 8673 arc_hdr_set_flags(hdr, 8674 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR); 8675 8676 mutex_enter(&dev->l2ad_mtx); 8677 list_insert_head(&dev->l2ad_buflist, hdr); 8678 mutex_exit(&dev->l2ad_mtx); 8679 8680 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 8681 arc_hdr_size(hdr), hdr); 8682 8683 wzio = zio_write_phys(pio, dev->l2ad_vdev, 8684 hdr->b_l2hdr.b_daddr, asize, to_write, 8685 ZIO_CHECKSUM_OFF, NULL, hdr, 8686 ZIO_PRIORITY_ASYNC_WRITE, 8687 ZIO_FLAG_CANFAIL, B_FALSE); 8688 8689 write_lsize += HDR_GET_LSIZE(hdr); 8690 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 8691 zio_t *, wzio); 8692 8693 write_psize += psize; 8694 write_asize += asize; 8695 dev->l2ad_hand += asize; 8696 l2arc_hdr_arcstats_increment(hdr); 8697 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 8698 8699 mutex_exit(hash_lock); 8700 8701 /* 8702 * Append buf info to current log and commit if full. 8703 * arcstat_l2_{size,asize} kstats are updated 8704 * internally. 8705 */ 8706 if (l2arc_log_blk_insert(dev, hdr)) 8707 l2arc_log_blk_commit(dev, pio, cb); 8708 8709 (void) zio_nowait(wzio); 8710 } 8711 8712 multilist_sublist_unlock(mls); 8713 8714 if (full == B_TRUE) 8715 break; 8716 } 8717 8718 /* No buffers selected for writing? */ 8719 if (pio == NULL) { 8720 ASSERT0(write_lsize); 8721 ASSERT(!HDR_HAS_L1HDR(head)); 8722 kmem_cache_free(hdr_l2only_cache, head); 8723 8724 /* 8725 * Although we did not write any buffers l2ad_evict may 8726 * have advanced. 8727 */ 8728 if (dev->l2ad_evict != l2dhdr->dh_evict) 8729 l2arc_dev_hdr_update(dev); 8730 8731 return (0); 8732 } 8733 8734 if (!dev->l2ad_first) 8735 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 8736 8737 ASSERT3U(write_asize, <=, target_sz); 8738 ARCSTAT_BUMP(arcstat_l2_writes_sent); 8739 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 8740 8741 dev->l2ad_writing = B_TRUE; 8742 (void) zio_wait(pio); 8743 dev->l2ad_writing = B_FALSE; 8744 8745 /* 8746 * Update the device header after the zio completes as 8747 * l2arc_write_done() may have updated the memory holding the log block 8748 * pointers in the device header. 8749 */ 8750 l2arc_dev_hdr_update(dev); 8751 8752 return (write_asize); 8753 } 8754 8755 static boolean_t 8756 l2arc_hdr_limit_reached(void) 8757 { 8758 int64_t s = aggsum_upper_bound(&astat_l2_hdr_size); 8759 8760 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) || 8761 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 8762 } 8763 8764 /* 8765 * This thread feeds the L2ARC at regular intervals. This is the beating 8766 * heart of the L2ARC. 8767 */ 8768 /* ARGSUSED */ 8769 static void 8770 l2arc_feed_thread(void *unused) 8771 { 8772 callb_cpr_t cpr; 8773 l2arc_dev_t *dev; 8774 spa_t *spa; 8775 uint64_t size, wrote; 8776 clock_t begin, next = ddi_get_lbolt(); 8777 8778 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 8779 8780 mutex_enter(&l2arc_feed_thr_lock); 8781 8782 while (l2arc_thread_exit == 0) { 8783 CALLB_CPR_SAFE_BEGIN(&cpr); 8784 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 8785 next); 8786 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 8787 next = ddi_get_lbolt() + hz; 8788 8789 /* 8790 * Quick check for L2ARC devices. 8791 */ 8792 mutex_enter(&l2arc_dev_mtx); 8793 if (l2arc_ndev == 0) { 8794 mutex_exit(&l2arc_dev_mtx); 8795 continue; 8796 } 8797 mutex_exit(&l2arc_dev_mtx); 8798 begin = ddi_get_lbolt(); 8799 8800 /* 8801 * This selects the next l2arc device to write to, and in 8802 * doing so the next spa to feed from: dev->l2ad_spa. This 8803 * will return NULL if there are now no l2arc devices or if 8804 * they are all faulted. 8805 * 8806 * If a device is returned, its spa's config lock is also 8807 * held to prevent device removal. l2arc_dev_get_next() 8808 * will grab and release l2arc_dev_mtx. 8809 */ 8810 if ((dev = l2arc_dev_get_next()) == NULL) 8811 continue; 8812 8813 spa = dev->l2ad_spa; 8814 ASSERT3P(spa, !=, NULL); 8815 8816 /* 8817 * If the pool is read-only then force the feed thread to 8818 * sleep a little longer. 8819 */ 8820 if (!spa_writeable(spa)) { 8821 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 8822 spa_config_exit(spa, SCL_L2ARC, dev); 8823 continue; 8824 } 8825 8826 /* 8827 * Avoid contributing to memory pressure. 8828 */ 8829 if (l2arc_hdr_limit_reached()) { 8830 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 8831 spa_config_exit(spa, SCL_L2ARC, dev); 8832 continue; 8833 } 8834 8835 ARCSTAT_BUMP(arcstat_l2_feeds); 8836 8837 size = l2arc_write_size(dev); 8838 8839 /* 8840 * Evict L2ARC buffers that will be overwritten. 8841 */ 8842 l2arc_evict(dev, size, B_FALSE); 8843 8844 /* 8845 * Write ARC buffers. 8846 */ 8847 wrote = l2arc_write_buffers(spa, dev, size); 8848 8849 /* 8850 * Calculate interval between writes. 8851 */ 8852 next = l2arc_write_interval(begin, size, wrote); 8853 spa_config_exit(spa, SCL_L2ARC, dev); 8854 } 8855 8856 l2arc_thread_exit = 0; 8857 cv_broadcast(&l2arc_feed_thr_cv); 8858 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 8859 thread_exit(); 8860 } 8861 8862 boolean_t 8863 l2arc_vdev_present(vdev_t *vd) 8864 { 8865 return (l2arc_vdev_get(vd) != NULL); 8866 } 8867 8868 /* 8869 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 8870 * the vdev_t isn't an L2ARC device. 8871 */ 8872 static l2arc_dev_t * 8873 l2arc_vdev_get(vdev_t *vd) 8874 { 8875 l2arc_dev_t *dev; 8876 8877 mutex_enter(&l2arc_dev_mtx); 8878 for (dev = list_head(l2arc_dev_list); dev != NULL; 8879 dev = list_next(l2arc_dev_list, dev)) { 8880 if (dev->l2ad_vdev == vd) 8881 break; 8882 } 8883 mutex_exit(&l2arc_dev_mtx); 8884 8885 return (dev); 8886 } 8887 8888 /* 8889 * Add a vdev for use by the L2ARC. By this point the spa has already 8890 * validated the vdev and opened it. 8891 */ 8892 void 8893 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 8894 { 8895 l2arc_dev_t *adddev; 8896 uint64_t l2dhdr_asize; 8897 8898 ASSERT(!l2arc_vdev_present(vd)); 8899 8900 /* 8901 * Create a new l2arc device entry. 8902 */ 8903 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 8904 adddev->l2ad_spa = spa; 8905 adddev->l2ad_vdev = vd; 8906 /* leave extra size for an l2arc device header */ 8907 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 8908 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 8909 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 8910 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 8911 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 8912 adddev->l2ad_hand = adddev->l2ad_start; 8913 adddev->l2ad_evict = adddev->l2ad_start; 8914 adddev->l2ad_first = B_TRUE; 8915 adddev->l2ad_writing = B_FALSE; 8916 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 8917 8918 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 8919 /* 8920 * This is a list of all ARC buffers that are still valid on the 8921 * device. 8922 */ 8923 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 8924 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 8925 8926 /* 8927 * This is a list of pointers to log blocks that are still present 8928 * on the device. 8929 */ 8930 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 8931 offsetof(l2arc_lb_ptr_buf_t, node)); 8932 8933 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 8934 zfs_refcount_create(&adddev->l2ad_alloc); 8935 zfs_refcount_create(&adddev->l2ad_lb_asize); 8936 zfs_refcount_create(&adddev->l2ad_lb_count); 8937 8938 /* 8939 * Add device to global list 8940 */ 8941 mutex_enter(&l2arc_dev_mtx); 8942 list_insert_head(l2arc_dev_list, adddev); 8943 atomic_inc_64(&l2arc_ndev); 8944 mutex_exit(&l2arc_dev_mtx); 8945 8946 /* 8947 * Decide if vdev is eligible for L2ARC rebuild 8948 */ 8949 l2arc_rebuild_vdev(adddev->l2ad_vdev, B_FALSE); 8950 } 8951 8952 void 8953 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 8954 { 8955 l2arc_dev_t *dev = NULL; 8956 l2arc_dev_hdr_phys_t *l2dhdr; 8957 uint64_t l2dhdr_asize; 8958 spa_t *spa; 8959 8960 dev = l2arc_vdev_get(vd); 8961 ASSERT3P(dev, !=, NULL); 8962 spa = dev->l2ad_spa; 8963 l2dhdr = dev->l2ad_dev_hdr; 8964 l2dhdr_asize = dev->l2ad_dev_hdr_asize; 8965 8966 /* 8967 * The L2ARC has to hold at least the payload of one log block for 8968 * them to be restored (persistent L2ARC). The payload of a log block 8969 * depends on the amount of its log entries. We always write log blocks 8970 * with 1022 entries. How many of them are committed or restored depends 8971 * on the size of the L2ARC device. Thus the maximum payload of 8972 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 8973 * is less than that, we reduce the amount of committed and restored 8974 * log entries per block so as to enable persistence. 8975 */ 8976 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 8977 dev->l2ad_log_entries = 0; 8978 } else { 8979 dev->l2ad_log_entries = MIN((dev->l2ad_end - 8980 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 8981 L2ARC_LOG_BLK_MAX_ENTRIES); 8982 } 8983 8984 /* 8985 * Read the device header, if an error is returned do not rebuild L2ARC. 8986 */ 8987 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) { 8988 /* 8989 * If we are onlining a cache device (vdev_reopen) that was 8990 * still present (l2arc_vdev_present()) and rebuild is enabled, 8991 * we should evict all ARC buffers and pointers to log blocks 8992 * and reclaim their space before restoring its contents to 8993 * L2ARC. 8994 */ 8995 if (reopen) { 8996 if (!l2arc_rebuild_enabled) { 8997 return; 8998 } else { 8999 l2arc_evict(dev, 0, B_TRUE); 9000 /* start a new log block */ 9001 dev->l2ad_log_ent_idx = 0; 9002 dev->l2ad_log_blk_payload_asize = 0; 9003 dev->l2ad_log_blk_payload_start = 0; 9004 } 9005 } 9006 /* 9007 * Just mark the device as pending for a rebuild. We won't 9008 * be starting a rebuild in line here as it would block pool 9009 * import. Instead spa_load_impl will hand that off to an 9010 * async task which will call l2arc_spa_rebuild_start. 9011 */ 9012 dev->l2ad_rebuild = B_TRUE; 9013 } else if (spa_writeable(spa)) { 9014 /* 9015 * In this case create a new header. We zero out the memory 9016 * holding the header to reset dh_start_lbps. 9017 */ 9018 bzero(l2dhdr, l2dhdr_asize); 9019 l2arc_dev_hdr_update(dev); 9020 } 9021 } 9022 9023 /* 9024 * Remove a vdev from the L2ARC. 9025 */ 9026 void 9027 l2arc_remove_vdev(vdev_t *vd) 9028 { 9029 l2arc_dev_t *remdev = NULL; 9030 9031 /* 9032 * Find the device by vdev 9033 */ 9034 remdev = l2arc_vdev_get(vd); 9035 ASSERT3P(remdev, !=, NULL); 9036 9037 /* 9038 * Cancel any ongoing or scheduled rebuild. 9039 */ 9040 mutex_enter(&l2arc_rebuild_thr_lock); 9041 if (remdev->l2ad_rebuild_began == B_TRUE) { 9042 remdev->l2ad_rebuild_cancel = B_TRUE; 9043 while (remdev->l2ad_rebuild == B_TRUE) 9044 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 9045 } 9046 mutex_exit(&l2arc_rebuild_thr_lock); 9047 9048 /* 9049 * Remove device from global list 9050 */ 9051 mutex_enter(&l2arc_dev_mtx); 9052 list_remove(l2arc_dev_list, remdev); 9053 l2arc_dev_last = NULL; /* may have been invalidated */ 9054 atomic_dec_64(&l2arc_ndev); 9055 mutex_exit(&l2arc_dev_mtx); 9056 9057 /* 9058 * Clear all buflists and ARC references. L2ARC device flush. 9059 */ 9060 l2arc_evict(remdev, 0, B_TRUE); 9061 list_destroy(&remdev->l2ad_buflist); 9062 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 9063 list_destroy(&remdev->l2ad_lbptr_list); 9064 mutex_destroy(&remdev->l2ad_mtx); 9065 zfs_refcount_destroy(&remdev->l2ad_alloc); 9066 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 9067 zfs_refcount_destroy(&remdev->l2ad_lb_count); 9068 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 9069 kmem_free(remdev, sizeof (l2arc_dev_t)); 9070 } 9071 9072 void 9073 l2arc_init(void) 9074 { 9075 l2arc_thread_exit = 0; 9076 l2arc_ndev = 0; 9077 l2arc_writes_sent = 0; 9078 l2arc_writes_done = 0; 9079 9080 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9081 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 9082 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9083 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 9084 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 9085 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 9086 9087 l2arc_dev_list = &L2ARC_dev_list; 9088 l2arc_free_on_write = &L2ARC_free_on_write; 9089 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 9090 offsetof(l2arc_dev_t, l2ad_node)); 9091 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 9092 offsetof(l2arc_data_free_t, l2df_list_node)); 9093 } 9094 9095 void 9096 l2arc_fini(void) 9097 { 9098 /* 9099 * This is called from dmu_fini(), which is called from spa_fini(); 9100 * Because of this, we can assume that all l2arc devices have 9101 * already been removed when the pools themselves were removed. 9102 */ 9103 9104 l2arc_do_free_on_write(); 9105 9106 mutex_destroy(&l2arc_feed_thr_lock); 9107 cv_destroy(&l2arc_feed_thr_cv); 9108 mutex_destroy(&l2arc_rebuild_thr_lock); 9109 cv_destroy(&l2arc_rebuild_thr_cv); 9110 mutex_destroy(&l2arc_dev_mtx); 9111 mutex_destroy(&l2arc_free_on_write_mtx); 9112 9113 list_destroy(l2arc_dev_list); 9114 list_destroy(l2arc_free_on_write); 9115 } 9116 9117 void 9118 l2arc_start(void) 9119 { 9120 if (!(spa_mode_global & FWRITE)) 9121 return; 9122 9123 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 9124 TS_RUN, minclsyspri); 9125 } 9126 9127 void 9128 l2arc_stop(void) 9129 { 9130 if (!(spa_mode_global & FWRITE)) 9131 return; 9132 9133 mutex_enter(&l2arc_feed_thr_lock); 9134 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 9135 l2arc_thread_exit = 1; 9136 while (l2arc_thread_exit != 0) 9137 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 9138 mutex_exit(&l2arc_feed_thr_lock); 9139 } 9140 9141 /* 9142 * Punches out rebuild threads for the L2ARC devices in a spa. This should 9143 * be called after pool import from the spa async thread, since starting 9144 * these threads directly from spa_import() will make them part of the 9145 * "zpool import" context and delay process exit (and thus pool import). 9146 */ 9147 void 9148 l2arc_spa_rebuild_start(spa_t *spa) 9149 { 9150 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 9151 9152 /* 9153 * Locate the spa's l2arc devices and kick off rebuild threads. 9154 */ 9155 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 9156 l2arc_dev_t *dev = 9157 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 9158 if (dev == NULL) { 9159 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 9160 continue; 9161 } 9162 mutex_enter(&l2arc_rebuild_thr_lock); 9163 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 9164 dev->l2ad_rebuild_began = B_TRUE; 9165 (void) thread_create(NULL, 0, 9166 (void (*)(void *))l2arc_dev_rebuild_start, 9167 dev, 0, &p0, TS_RUN, minclsyspri); 9168 } 9169 mutex_exit(&l2arc_rebuild_thr_lock); 9170 } 9171 } 9172 9173 /* 9174 * Main entry point for L2ARC rebuilding. 9175 */ 9176 static void 9177 l2arc_dev_rebuild_start(l2arc_dev_t *dev) 9178 { 9179 VERIFY(!dev->l2ad_rebuild_cancel); 9180 VERIFY(dev->l2ad_rebuild); 9181 (void) l2arc_rebuild(dev); 9182 mutex_enter(&l2arc_rebuild_thr_lock); 9183 dev->l2ad_rebuild_began = B_FALSE; 9184 dev->l2ad_rebuild = B_FALSE; 9185 mutex_exit(&l2arc_rebuild_thr_lock); 9186 9187 thread_exit(); 9188 } 9189 9190 /* 9191 * This function implements the actual L2ARC metadata rebuild. It: 9192 * starts reading the log block chain and restores each block's contents 9193 * to memory (reconstructing arc_buf_hdr_t's). 9194 * 9195 * Operation stops under any of the following conditions: 9196 * 9197 * 1) We reach the end of the log block chain. 9198 * 2) We encounter *any* error condition (cksum errors, io errors) 9199 */ 9200 static int 9201 l2arc_rebuild(l2arc_dev_t *dev) 9202 { 9203 vdev_t *vd = dev->l2ad_vdev; 9204 spa_t *spa = vd->vdev_spa; 9205 int err = 0; 9206 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9207 l2arc_log_blk_phys_t *this_lb, *next_lb; 9208 zio_t *this_io = NULL, *next_io = NULL; 9209 l2arc_log_blkptr_t lbps[2]; 9210 l2arc_lb_ptr_buf_t *lb_ptr_buf; 9211 boolean_t lock_held; 9212 9213 this_lb = kmem_zalloc(sizeof (*this_lb), KM_SLEEP); 9214 next_lb = kmem_zalloc(sizeof (*next_lb), KM_SLEEP); 9215 9216 /* 9217 * We prevent device removal while issuing reads to the device, 9218 * then during the rebuilding phases we drop this lock again so 9219 * that a spa_unload or device remove can be initiated - this is 9220 * safe, because the spa will signal us to stop before removing 9221 * our device and wait for us to stop. 9222 */ 9223 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 9224 lock_held = B_TRUE; 9225 9226 /* 9227 * Retrieve the persistent L2ARC device state. 9228 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9229 */ 9230 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 9231 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 9232 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 9233 dev->l2ad_start); 9234 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 9235 9236 /* 9237 * In case the zfs module parameter l2arc_rebuild_enabled is false 9238 * we do not start the rebuild process. 9239 */ 9240 if (!l2arc_rebuild_enabled) 9241 goto out; 9242 9243 /* Prepare the rebuild process */ 9244 bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps)); 9245 9246 /* Start the rebuild process */ 9247 for (;;) { 9248 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 9249 break; 9250 9251 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 9252 this_lb, next_lb, this_io, &next_io)) != 0) 9253 goto out; 9254 9255 /* 9256 * Our memory pressure valve. If the system is running low 9257 * on memory, rather than swamping memory with new ARC buf 9258 * hdrs, we opt not to rebuild the L2ARC. At this point, 9259 * however, we have already set up our L2ARC dev to chain in 9260 * new metadata log blocks, so the user may choose to offline/ 9261 * online the L2ARC dev at a later time (or re-import the pool) 9262 * to reconstruct it (when there's less memory pressure). 9263 */ 9264 if (l2arc_hdr_limit_reached()) { 9265 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 9266 cmn_err(CE_NOTE, "System running low on memory, " 9267 "aborting L2ARC rebuild."); 9268 err = SET_ERROR(ENOMEM); 9269 goto out; 9270 } 9271 9272 spa_config_exit(spa, SCL_L2ARC, vd); 9273 lock_held = B_FALSE; 9274 9275 /* 9276 * Now that we know that the next_lb checks out alright, we 9277 * can start reconstruction from this log block. 9278 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9279 */ 9280 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 9281 l2arc_log_blk_restore(dev, this_lb, asize); 9282 9283 /* 9284 * log block restored, include its pointer in the list of 9285 * pointers to log blocks present in the L2ARC device. 9286 */ 9287 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 9288 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 9289 KM_SLEEP); 9290 bcopy(&lbps[0], lb_ptr_buf->lb_ptr, 9291 sizeof (l2arc_log_blkptr_t)); 9292 mutex_enter(&dev->l2ad_mtx); 9293 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 9294 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 9295 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 9296 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 9297 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 9298 mutex_exit(&dev->l2ad_mtx); 9299 vdev_space_update(vd, asize, 0, 0); 9300 9301 /* BEGIN CSTYLED */ 9302 /* 9303 * Protection against loops of log blocks: 9304 * 9305 * l2ad_hand l2ad_evict 9306 * V V 9307 * l2ad_start |=======================================| l2ad_end 9308 * -----|||----|||---|||----||| 9309 * (3) (2) (1) (0) 9310 * ---|||---|||----|||---||| 9311 * (7) (6) (5) (4) 9312 * 9313 * In this situation the pointer of log block (4) passes 9314 * l2arc_log_blkptr_valid() but the log block should not be 9315 * restored as it is overwritten by the payload of log block 9316 * (0). Only log blocks (0)-(3) should be restored. We check 9317 * whether l2ad_evict lies in between the payload starting 9318 * offset of the next log block (lbps[1].lbp_payload_start) 9319 * and the payload starting offset of the present log block 9320 * (lbps[0].lbp_payload_start). If true and this isn't the 9321 * first pass, we are looping from the beginning and we should 9322 * stop. 9323 */ 9324 /* END CSTYLED */ 9325 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 9326 lbps[0].lbp_payload_start, dev->l2ad_evict) && 9327 !dev->l2ad_first) 9328 goto out; 9329 9330 for (;;) { 9331 mutex_enter(&l2arc_rebuild_thr_lock); 9332 if (dev->l2ad_rebuild_cancel) { 9333 dev->l2ad_rebuild = B_FALSE; 9334 cv_signal(&l2arc_rebuild_thr_cv); 9335 mutex_exit(&l2arc_rebuild_thr_lock); 9336 err = SET_ERROR(ECANCELED); 9337 goto out; 9338 } 9339 mutex_exit(&l2arc_rebuild_thr_lock); 9340 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 9341 RW_READER)) { 9342 lock_held = B_TRUE; 9343 break; 9344 } 9345 /* 9346 * L2ARC config lock held by somebody in writer, 9347 * possibly due to them trying to remove us. They'll 9348 * likely to want us to shut down, so after a little 9349 * delay, we check l2ad_rebuild_cancel and retry 9350 * the lock again. 9351 */ 9352 delay(1); 9353 } 9354 9355 /* 9356 * Continue with the next log block. 9357 */ 9358 lbps[0] = lbps[1]; 9359 lbps[1] = this_lb->lb_prev_lbp; 9360 PTR_SWAP(this_lb, next_lb); 9361 this_io = next_io; 9362 next_io = NULL; 9363 } 9364 9365 if (this_io != NULL) 9366 l2arc_log_blk_fetch_abort(this_io); 9367 out: 9368 if (next_io != NULL) 9369 l2arc_log_blk_fetch_abort(next_io); 9370 kmem_free(this_lb, sizeof (*this_lb)); 9371 kmem_free(next_lb, sizeof (*next_lb)); 9372 9373 if (!l2arc_rebuild_enabled) { 9374 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9375 "disabled"); 9376 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 9377 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 9378 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9379 "successful, restored %llu blocks", 9380 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9381 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 9382 /* 9383 * No error but also nothing restored, meaning the lbps array 9384 * in the device header points to invalid/non-present log 9385 * blocks. Reset the header. 9386 */ 9387 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9388 "no valid log blocks"); 9389 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 9390 l2arc_dev_hdr_update(dev); 9391 } else if (err == ECANCELED) { 9392 /* 9393 * In case the rebuild was canceled do not log to spa history 9394 * log as the pool may be in the process of being removed. 9395 */ 9396 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 9397 zfs_refcount_count(&dev->l2ad_lb_count)); 9398 } else if (err != 0) { 9399 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9400 "aborted, restored %llu blocks", 9401 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9402 } 9403 9404 if (lock_held) 9405 spa_config_exit(spa, SCL_L2ARC, vd); 9406 9407 return (err); 9408 } 9409 9410 /* 9411 * Attempts to read the device header on the provided L2ARC device and writes 9412 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 9413 * error code is returned. 9414 */ 9415 static int 9416 l2arc_dev_hdr_read(l2arc_dev_t *dev) 9417 { 9418 int err; 9419 uint64_t guid; 9420 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9421 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9422 abd_t *abd; 9423 9424 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 9425 9426 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 9427 9428 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 9429 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 9430 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 9431 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 9432 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 9433 ZIO_FLAG_SPECULATIVE, B_FALSE)); 9434 9435 abd_put(abd); 9436 9437 if (err != 0) { 9438 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 9439 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 9440 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid); 9441 return (err); 9442 } 9443 9444 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 9445 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 9446 9447 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 9448 l2dhdr->dh_spa_guid != guid || 9449 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 9450 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 9451 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 9452 l2dhdr->dh_end != dev->l2ad_end || 9453 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 9454 l2dhdr->dh_evict)) { 9455 /* 9456 * Attempt to rebuild a device containing no actual dev hdr 9457 * or containing a header from some other pool or from another 9458 * version of persistent L2ARC. 9459 */ 9460 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 9461 return (SET_ERROR(ENOTSUP)); 9462 } 9463 9464 return (0); 9465 } 9466 9467 /* 9468 * Reads L2ARC log blocks from storage and validates their contents. 9469 * 9470 * This function implements a simple fetcher to make sure that while 9471 * we're processing one buffer the L2ARC is already fetching the next 9472 * one in the chain. 9473 * 9474 * The arguments this_lp and next_lp point to the current and next log block 9475 * address in the block chain. Similarly, this_lb and next_lb hold the 9476 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 9477 * 9478 * The `this_io' and `next_io' arguments are used for block fetching. 9479 * When issuing the first blk IO during rebuild, you should pass NULL for 9480 * `this_io'. This function will then issue a sync IO to read the block and 9481 * also issue an async IO to fetch the next block in the block chain. The 9482 * fetched IO is returned in `next_io'. On subsequent calls to this 9483 * function, pass the value returned in `next_io' from the previous call 9484 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 9485 * Prior to the call, you should initialize your `next_io' pointer to be 9486 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 9487 * 9488 * On success, this function returns 0, otherwise it returns an appropriate 9489 * error code. On error the fetching IO is aborted and cleared before 9490 * returning from this function. Therefore, if we return `success', the 9491 * caller can assume that we have taken care of cleanup of fetch IOs. 9492 */ 9493 static int 9494 l2arc_log_blk_read(l2arc_dev_t *dev, 9495 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 9496 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 9497 zio_t *this_io, zio_t **next_io) 9498 { 9499 int err = 0; 9500 zio_cksum_t cksum; 9501 abd_t *abd = NULL; 9502 uint64_t asize; 9503 9504 ASSERT(this_lbp != NULL && next_lbp != NULL); 9505 ASSERT(this_lb != NULL && next_lb != NULL); 9506 ASSERT(next_io != NULL && *next_io == NULL); 9507 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 9508 9509 /* 9510 * Check to see if we have issued the IO for this log block in a 9511 * previous run. If not, this is the first call, so issue it now. 9512 */ 9513 if (this_io == NULL) { 9514 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 9515 this_lb); 9516 } 9517 9518 /* 9519 * Peek to see if we can start issuing the next IO immediately. 9520 */ 9521 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 9522 /* 9523 * Start issuing IO for the next log block early - this 9524 * should help keep the L2ARC device busy while we 9525 * decompress and restore this log block. 9526 */ 9527 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 9528 next_lb); 9529 } 9530 9531 /* Wait for the IO to read this log block to complete */ 9532 if ((err = zio_wait(this_io)) != 0) { 9533 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 9534 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 9535 "offset: %llu, vdev guid: %llu", err, this_lbp->lbp_daddr, 9536 dev->l2ad_vdev->vdev_guid); 9537 goto cleanup; 9538 } 9539 9540 /* 9541 * Make sure the buffer checks out. 9542 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9543 */ 9544 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 9545 fletcher_4_native(this_lb, asize, NULL, &cksum); 9546 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 9547 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 9548 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 9549 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 9550 this_lbp->lbp_daddr, dev->l2ad_vdev->vdev_guid, 9551 dev->l2ad_hand, dev->l2ad_evict); 9552 err = SET_ERROR(ECKSUM); 9553 goto cleanup; 9554 } 9555 9556 /* Now we can take our time decoding this buffer */ 9557 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 9558 case ZIO_COMPRESS_OFF: 9559 break; 9560 case ZIO_COMPRESS_LZ4: 9561 abd = abd_alloc_for_io(asize, B_TRUE); 9562 abd_copy_from_buf_off(abd, this_lb, 0, asize); 9563 if ((err = zio_decompress_data( 9564 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 9565 abd, this_lb, asize, sizeof (*this_lb))) != 0) { 9566 err = SET_ERROR(EINVAL); 9567 goto cleanup; 9568 } 9569 break; 9570 default: 9571 err = SET_ERROR(EINVAL); 9572 goto cleanup; 9573 } 9574 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 9575 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 9576 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 9577 err = SET_ERROR(EINVAL); 9578 goto cleanup; 9579 } 9580 cleanup: 9581 /* Abort an in-flight fetch I/O in case of error */ 9582 if (err != 0 && *next_io != NULL) { 9583 l2arc_log_blk_fetch_abort(*next_io); 9584 *next_io = NULL; 9585 } 9586 if (abd != NULL) 9587 abd_free(abd); 9588 return (err); 9589 } 9590 9591 /* 9592 * Restores the payload of a log block to ARC. This creates empty ARC hdr 9593 * entries which only contain an l2arc hdr, essentially restoring the 9594 * buffers to their L2ARC evicted state. This function also updates space 9595 * usage on the L2ARC vdev to make sure it tracks restored buffers. 9596 */ 9597 static void 9598 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 9599 uint64_t lb_asize) 9600 { 9601 uint64_t size = 0, asize = 0; 9602 uint64_t log_entries = dev->l2ad_log_entries; 9603 9604 /* 9605 * Usually arc_adapt() is called only for data, not headers, but 9606 * since we may allocate significant amount of memory here, let ARC 9607 * grow its arc_c. 9608 */ 9609 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only); 9610 9611 for (int i = log_entries - 1; i >= 0; i--) { 9612 /* 9613 * Restore goes in the reverse temporal direction to preserve 9614 * correct temporal ordering of buffers in the l2ad_buflist. 9615 * l2arc_hdr_restore also does a list_insert_tail instead of 9616 * list_insert_head on the l2ad_buflist: 9617 * 9618 * LIST l2ad_buflist LIST 9619 * HEAD <------ (time) ------ TAIL 9620 * direction +-----+-----+-----+-----+-----+ direction 9621 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 9622 * fill +-----+-----+-----+-----+-----+ 9623 * ^ ^ 9624 * | | 9625 * | | 9626 * l2arc_feed_thread l2arc_rebuild 9627 * will place new bufs here restores bufs here 9628 * 9629 * During l2arc_rebuild() the device is not used by 9630 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 9631 */ 9632 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 9633 asize += vdev_psize_to_asize(dev->l2ad_vdev, 9634 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 9635 l2arc_hdr_restore(&lb->lb_entries[i], dev); 9636 } 9637 9638 /* 9639 * Record rebuild stats: 9640 * size Logical size of restored buffers in the L2ARC 9641 * asize Aligned size of restored buffers in the L2ARC 9642 */ 9643 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 9644 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 9645 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 9646 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 9647 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 9648 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 9649 } 9650 9651 /* 9652 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 9653 * into a state indicating that it has been evicted to L2ARC. 9654 */ 9655 static void 9656 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 9657 { 9658 arc_buf_hdr_t *hdr, *exists; 9659 kmutex_t *hash_lock; 9660 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 9661 uint64_t asize; 9662 9663 /* 9664 * Do all the allocation before grabbing any locks, this lets us 9665 * sleep if memory is full and we don't have to deal with failed 9666 * allocations. 9667 */ 9668 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 9669 dev, le->le_dva, le->le_daddr, 9670 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, 9671 L2BLK_GET_COMPRESS((le)->le_prop), 9672 L2BLK_GET_PROTECTED((le)->le_prop), 9673 L2BLK_GET_PREFETCH((le)->le_prop), 9674 L2BLK_GET_STATE((le)->le_prop)); 9675 asize = vdev_psize_to_asize(dev->l2ad_vdev, 9676 L2BLK_GET_PSIZE((le)->le_prop)); 9677 9678 /* 9679 * vdev_space_update() has to be called before arc_hdr_destroy() to 9680 * avoid underflow since the latter also calls vdev_space_update(). 9681 */ 9682 l2arc_hdr_arcstats_increment(hdr); 9683 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9684 9685 mutex_enter(&dev->l2ad_mtx); 9686 list_insert_tail(&dev->l2ad_buflist, hdr); 9687 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 9688 mutex_exit(&dev->l2ad_mtx); 9689 9690 exists = buf_hash_insert(hdr, &hash_lock); 9691 if (exists) { 9692 /* Buffer was already cached, no need to restore it. */ 9693 arc_hdr_destroy(hdr); 9694 /* 9695 * If the buffer is already cached, check whether it has 9696 * L2ARC metadata. If not, enter them and update the flag. 9697 * This is important is case of onlining a cache device, since 9698 * we previously evicted all L2ARC metadata from ARC. 9699 */ 9700 if (!HDR_HAS_L2HDR(exists)) { 9701 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 9702 exists->b_l2hdr.b_dev = dev; 9703 exists->b_l2hdr.b_daddr = le->le_daddr; 9704 exists->b_l2hdr.b_arcs_state = 9705 L2BLK_GET_STATE((le)->le_prop); 9706 mutex_enter(&dev->l2ad_mtx); 9707 list_insert_tail(&dev->l2ad_buflist, exists); 9708 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9709 arc_hdr_size(exists), exists); 9710 mutex_exit(&dev->l2ad_mtx); 9711 l2arc_hdr_arcstats_increment(exists); 9712 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9713 } 9714 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 9715 } 9716 9717 mutex_exit(hash_lock); 9718 } 9719 9720 /* 9721 * Starts an asynchronous read IO to read a log block. This is used in log 9722 * block reconstruction to start reading the next block before we are done 9723 * decoding and reconstructing the current block, to keep the l2arc device 9724 * nice and hot with read IO to process. 9725 * The returned zio will contain newly allocated memory buffers for the IO 9726 * data which should then be freed by the caller once the zio is no longer 9727 * needed (i.e. due to it having completed). If you wish to abort this 9728 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 9729 * care of disposing of the allocated buffers correctly. 9730 */ 9731 static zio_t * 9732 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 9733 l2arc_log_blk_phys_t *lb) 9734 { 9735 uint32_t asize; 9736 zio_t *pio; 9737 l2arc_read_callback_t *cb; 9738 9739 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 9740 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 9741 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 9742 9743 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 9744 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 9745 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 9746 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 9747 ZIO_FLAG_DONT_RETRY); 9748 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 9749 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 9750 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 9751 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 9752 9753 return (pio); 9754 } 9755 9756 /* 9757 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 9758 * buffers allocated for it. 9759 */ 9760 static void 9761 l2arc_log_blk_fetch_abort(zio_t *zio) 9762 { 9763 (void) zio_wait(zio); 9764 } 9765 9766 /* 9767 * Creates a zio to update the device header on an l2arc device. 9768 */ 9769 static void 9770 l2arc_dev_hdr_update(l2arc_dev_t *dev) 9771 { 9772 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9773 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9774 abd_t *abd; 9775 int err; 9776 9777 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 9778 9779 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 9780 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 9781 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 9782 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 9783 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 9784 l2dhdr->dh_evict = dev->l2ad_evict; 9785 l2dhdr->dh_start = dev->l2ad_start; 9786 l2dhdr->dh_end = dev->l2ad_end; 9787 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 9788 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 9789 l2dhdr->dh_flags = 0; 9790 if (dev->l2ad_first) 9791 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 9792 9793 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 9794 9795 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 9796 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 9797 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 9798 9799 abd_put(abd); 9800 9801 if (err != 0) { 9802 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 9803 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid); 9804 } 9805 } 9806 9807 /* 9808 * Commits a log block to the L2ARC device. This routine is invoked from 9809 * l2arc_write_buffers when the log block fills up. 9810 * This function allocates some memory to temporarily hold the serialized 9811 * buffer to be written. This is then released in l2arc_write_done. 9812 */ 9813 static void 9814 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 9815 { 9816 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 9817 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9818 uint64_t psize, asize; 9819 zio_t *wzio; 9820 l2arc_lb_abd_buf_t *abd_buf; 9821 uint8_t *tmpbuf; 9822 l2arc_lb_ptr_buf_t *lb_ptr_buf; 9823 9824 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 9825 9826 tmpbuf = zio_buf_alloc(sizeof (*lb)); 9827 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 9828 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 9829 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 9830 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 9831 9832 /* link the buffer into the block chain */ 9833 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 9834 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 9835 9836 /* 9837 * l2arc_log_blk_commit() may be called multiple times during a single 9838 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 9839 * so we can free them in l2arc_write_done() later on. 9840 */ 9841 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 9842 9843 /* try to compress the buffer */ 9844 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 9845 abd_buf->abd, tmpbuf, sizeof (*lb)); 9846 9847 /* a log block is never entirely zero */ 9848 ASSERT(psize != 0); 9849 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 9850 ASSERT(asize <= sizeof (*lb)); 9851 9852 /* 9853 * Update the start log block pointer in the device header to point 9854 * to the log block we're about to write. 9855 */ 9856 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 9857 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 9858 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 9859 dev->l2ad_log_blk_payload_asize; 9860 l2dhdr->dh_start_lbps[0].lbp_payload_start = 9861 dev->l2ad_log_blk_payload_start; 9862 _NOTE(CONSTCOND) 9863 L2BLK_SET_LSIZE( 9864 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 9865 L2BLK_SET_PSIZE( 9866 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 9867 L2BLK_SET_CHECKSUM( 9868 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 9869 ZIO_CHECKSUM_FLETCHER_4); 9870 if (asize < sizeof (*lb)) { 9871 /* compression succeeded */ 9872 bzero(tmpbuf + psize, asize - psize); 9873 L2BLK_SET_COMPRESS( 9874 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 9875 ZIO_COMPRESS_LZ4); 9876 } else { 9877 /* compression failed */ 9878 bcopy(lb, tmpbuf, sizeof (*lb)); 9879 L2BLK_SET_COMPRESS( 9880 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 9881 ZIO_COMPRESS_OFF); 9882 } 9883 9884 /* checksum what we're about to write */ 9885 fletcher_4_native(tmpbuf, asize, NULL, 9886 &l2dhdr->dh_start_lbps[0].lbp_cksum); 9887 9888 abd_put(abd_buf->abd); 9889 9890 /* perform the write itself */ 9891 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb)); 9892 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE); 9893 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 9894 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 9895 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 9896 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 9897 (void) zio_nowait(wzio); 9898 9899 dev->l2ad_hand += asize; 9900 /* 9901 * Include the committed log block's pointer in the list of pointers 9902 * to log blocks present in the L2ARC device. 9903 */ 9904 bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr, 9905 sizeof (l2arc_log_blkptr_t)); 9906 mutex_enter(&dev->l2ad_mtx); 9907 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 9908 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 9909 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 9910 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 9911 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 9912 mutex_exit(&dev->l2ad_mtx); 9913 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9914 9915 /* bump the kstats */ 9916 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 9917 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 9918 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 9919 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 9920 dev->l2ad_log_blk_payload_asize / asize); 9921 9922 /* start a new log block */ 9923 dev->l2ad_log_ent_idx = 0; 9924 dev->l2ad_log_blk_payload_asize = 0; 9925 dev->l2ad_log_blk_payload_start = 0; 9926 } 9927 9928 /* 9929 * Validates an L2ARC log block address to make sure that it can be read 9930 * from the provided L2ARC device. 9931 */ 9932 boolean_t 9933 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 9934 { 9935 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 9936 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 9937 uint64_t end = lbp->lbp_daddr + asize - 1; 9938 uint64_t start = lbp->lbp_payload_start; 9939 boolean_t evicted = B_FALSE; 9940 9941 /* BEGIN CSTYLED */ 9942 /* 9943 * A log block is valid if all of the following conditions are true: 9944 * - it fits entirely (including its payload) between l2ad_start and 9945 * l2ad_end 9946 * - it has a valid size 9947 * - neither the log block itself nor part of its payload was evicted 9948 * by l2arc_evict(): 9949 * 9950 * l2ad_hand l2ad_evict 9951 * | | lbp_daddr 9952 * | start | | end 9953 * | | | | | 9954 * V V V V V 9955 * l2ad_start ============================================ l2ad_end 9956 * --------------------------|||| 9957 * ^ ^ 9958 * | log block 9959 * payload 9960 */ 9961 /* END CSTYLED */ 9962 evicted = 9963 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 9964 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 9965 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 9966 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 9967 9968 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 9969 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 9970 (!evicted || dev->l2ad_first)); 9971 } 9972 9973 /* 9974 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 9975 * the device. The buffer being inserted must be present in L2ARC. 9976 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 9977 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 9978 */ 9979 static boolean_t 9980 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 9981 { 9982 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 9983 l2arc_log_ent_phys_t *le; 9984 9985 if (dev->l2ad_log_entries == 0) 9986 return (B_FALSE); 9987 9988 int index = dev->l2ad_log_ent_idx++; 9989 9990 ASSERT3S(index, <, dev->l2ad_log_entries); 9991 ASSERT(HDR_HAS_L2HDR(hdr)); 9992 9993 le = &lb->lb_entries[index]; 9994 bzero(le, sizeof (*le)); 9995 le->le_dva = hdr->b_dva; 9996 le->le_birth = hdr->b_birth; 9997 le->le_daddr = hdr->b_l2hdr.b_daddr; 9998 if (index == 0) 9999 dev->l2ad_log_blk_payload_start = le->le_daddr; 10000 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 10001 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 10002 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 10003 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 10004 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 10005 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 10006 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state); 10007 10008 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 10009 HDR_GET_PSIZE(hdr)); 10010 10011 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 10012 } 10013 10014 /* 10015 * Checks whether a given L2ARC device address sits in a time-sequential 10016 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 10017 * just do a range comparison, we need to handle the situation in which the 10018 * range wraps around the end of the L2ARC device. Arguments: 10019 * bottom -- Lower end of the range to check (written to earlier). 10020 * top -- Upper end of the range to check (written to later). 10021 * check -- The address for which we want to determine if it sits in 10022 * between the top and bottom. 10023 * 10024 * The 3-way conditional below represents the following cases: 10025 * 10026 * bottom < top : Sequentially ordered case: 10027 * <check>--------+-------------------+ 10028 * | (overlap here?) | 10029 * L2ARC dev V V 10030 * |---------------<bottom>============<top>--------------| 10031 * 10032 * bottom > top: Looped-around case: 10033 * <check>--------+------------------+ 10034 * | (overlap here?) | 10035 * L2ARC dev V V 10036 * |===============<top>---------------<bottom>===========| 10037 * ^ ^ 10038 * | (or here?) | 10039 * +---------------+---------<check> 10040 * 10041 * top == bottom : Just a single address comparison. 10042 */ 10043 boolean_t 10044 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 10045 { 10046 if (bottom < top) 10047 return (bottom <= check && check <= top); 10048 else if (bottom > top) 10049 return (check <= top || bottom <= check); 10050 else 10051 return (check == top); 10052 } 10053