1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2019, Joyent, Inc. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2011, 2019, Delphix. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2020, The FreeBSD Foundation [1] 30 * Copyright 2024 Bill Sommerfeld <sommerfeld@hamachi.org> 31 * 32 * [1] Portions of this software were developed by Allan Jude 33 * under sponsorship from the FreeBSD Foundation. 34 */ 35 36 /* 37 * DVA-based Adjustable Replacement Cache 38 * 39 * While much of the theory of operation used here is 40 * based on the self-tuning, low overhead replacement cache 41 * presented by Megiddo and Modha at FAST 2003, there are some 42 * significant differences: 43 * 44 * 1. The Megiddo and Modha model assumes any page is evictable. 45 * Pages in its cache cannot be "locked" into memory. This makes 46 * the eviction algorithm simple: evict the last page in the list. 47 * This also make the performance characteristics easy to reason 48 * about. Our cache is not so simple. At any given moment, some 49 * subset of the blocks in the cache are un-evictable because we 50 * have handed out a reference to them. Blocks are only evictable 51 * when there are no external references active. This makes 52 * eviction far more problematic: we choose to evict the evictable 53 * blocks that are the "lowest" in the list. 54 * 55 * There are times when it is not possible to evict the requested 56 * space. In these circumstances we are unable to adjust the cache 57 * size. To prevent the cache growing unbounded at these times we 58 * implement a "cache throttle" that slows the flow of new data 59 * into the cache until we can make space available. 60 * 61 * 2. The Megiddo and Modha model assumes a fixed cache size. 62 * Pages are evicted when the cache is full and there is a cache 63 * miss. Our model has a variable sized cache. It grows with 64 * high use, but also tries to react to memory pressure from the 65 * operating system: decreasing its size when system memory is 66 * tight. 67 * 68 * 3. The Megiddo and Modha model assumes a fixed page size. All 69 * elements of the cache are therefore exactly the same size. So 70 * when adjusting the cache size following a cache miss, its simply 71 * a matter of choosing a single page to evict. In our model, we 72 * have variable sized cache blocks (rangeing from 512 bytes to 73 * 128K bytes). We therefore choose a set of blocks to evict to make 74 * space for a cache miss that approximates as closely as possible 75 * the space used by the new block. 76 * 77 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 78 * by N. Megiddo & D. Modha, FAST 2003 79 */ 80 81 /* 82 * The locking model: 83 * 84 * A new reference to a cache buffer can be obtained in two 85 * ways: 1) via a hash table lookup using the DVA as a key, 86 * or 2) via one of the ARC lists. The arc_read() interface 87 * uses method 1, while the internal ARC algorithms for 88 * adjusting the cache use method 2. We therefore provide two 89 * types of locks: 1) the hash table lock array, and 2) the 90 * ARC list locks. 91 * 92 * Buffers do not have their own mutexes, rather they rely on the 93 * hash table mutexes for the bulk of their protection (i.e. most 94 * fields in the arc_buf_hdr_t are protected by these mutexes). 95 * 96 * buf_hash_find() returns the appropriate mutex (held) when it 97 * locates the requested buffer in the hash table. It returns 98 * NULL for the mutex if the buffer was not in the table. 99 * 100 * buf_hash_remove() expects the appropriate hash mutex to be 101 * already held before it is invoked. 102 * 103 * Each ARC state also has a mutex which is used to protect the 104 * buffer list associated with the state. When attempting to 105 * obtain a hash table lock while holding an ARC list lock you 106 * must use: mutex_tryenter() to avoid deadlock. Also note that 107 * the active state mutex must be held before the ghost state mutex. 108 * 109 * Note that the majority of the performance stats are manipulated 110 * with atomic operations. 111 * 112 * The L2ARC uses the l2ad_mtx on each vdev for the following: 113 * 114 * - L2ARC buflist creation 115 * - L2ARC buflist eviction 116 * - L2ARC write completion, which walks L2ARC buflists 117 * - ARC header destruction, as it removes from L2ARC buflists 118 * - ARC header release, as it removes from L2ARC buflists 119 */ 120 121 /* 122 * ARC operation: 123 * 124 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 125 * This structure can point either to a block that is still in the cache or to 126 * one that is only accessible in an L2 ARC device, or it can provide 127 * information about a block that was recently evicted. If a block is 128 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 129 * information to retrieve it from the L2ARC device. This information is 130 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 131 * that is in this state cannot access the data directly. 132 * 133 * Blocks that are actively being referenced or have not been evicted 134 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 135 * the arc_buf_hdr_t that will point to the data block in memory. A block can 136 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 137 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 138 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 139 * 140 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 141 * ability to store the physical data (b_pabd) associated with the DVA of the 142 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 143 * it will match its on-disk compression characteristics. This behavior can be 144 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 145 * compressed ARC functionality is disabled, the b_pabd will point to an 146 * uncompressed version of the on-disk data. 147 * 148 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 149 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 150 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 151 * consumer. The ARC will provide references to this data and will keep it 152 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 153 * data block and will evict any arc_buf_t that is no longer referenced. The 154 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 155 * "overhead_size" kstat. 156 * 157 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 158 * compressed form. The typical case is that consumers will want uncompressed 159 * data, and when that happens a new data buffer is allocated where the data is 160 * decompressed for them to use. Currently the only consumer who wants 161 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 162 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 163 * with the arc_buf_hdr_t. 164 * 165 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 166 * first one is owned by a compressed send consumer (and therefore references 167 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 168 * used by any other consumer (and has its own uncompressed copy of the data 169 * buffer). 170 * 171 * arc_buf_hdr_t 172 * +-----------+ 173 * | fields | 174 * | common to | 175 * | L1- and | 176 * | L2ARC | 177 * +-----------+ 178 * | l2arc_buf_hdr_t 179 * | | 180 * +-----------+ 181 * | l1arc_buf_hdr_t 182 * | | arc_buf_t 183 * | b_buf +------------>+-----------+ arc_buf_t 184 * | b_pabd +-+ |b_next +---->+-----------+ 185 * +-----------+ | |-----------| |b_next +-->NULL 186 * | |b_comp = T | +-----------+ 187 * | |b_data +-+ |b_comp = F | 188 * | +-----------+ | |b_data +-+ 189 * +->+------+ | +-----------+ | 190 * compressed | | | | 191 * data | |<--------------+ | uncompressed 192 * +------+ compressed, | data 193 * shared +-->+------+ 194 * data | | 195 * | | 196 * +------+ 197 * 198 * When a consumer reads a block, the ARC must first look to see if the 199 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 200 * arc_buf_t and either copies uncompressed data into a new data buffer from an 201 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 202 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 203 * hdr is compressed and the desired compression characteristics of the 204 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 205 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 206 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 207 * be anywhere in the hdr's list. 208 * 209 * The diagram below shows an example of an uncompressed ARC hdr that is 210 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 211 * the last element in the buf list): 212 * 213 * arc_buf_hdr_t 214 * +-----------+ 215 * | | 216 * | | 217 * | | 218 * +-----------+ 219 * l2arc_buf_hdr_t| | 220 * | | 221 * +-----------+ 222 * l1arc_buf_hdr_t| | 223 * | | arc_buf_t (shared) 224 * | b_buf +------------>+---------+ arc_buf_t 225 * | | |b_next +---->+---------+ 226 * | b_pabd +-+ |---------| |b_next +-->NULL 227 * +-----------+ | | | +---------+ 228 * | |b_data +-+ | | 229 * | +---------+ | |b_data +-+ 230 * +->+------+ | +---------+ | 231 * | | | | 232 * uncompressed | | | | 233 * data +------+ | | 234 * ^ +->+------+ | 235 * | uncompressed | | | 236 * | data | | | 237 * | +------+ | 238 * +---------------------------------+ 239 * 240 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 241 * since the physical block is about to be rewritten. The new data contents 242 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 243 * it may compress the data before writing it to disk. The ARC will be called 244 * with the transformed data and will bcopy the transformed on-disk block into 245 * a newly allocated b_pabd. Writes are always done into buffers which have 246 * either been loaned (and hence are new and don't have other readers) or 247 * buffers which have been released (and hence have their own hdr, if there 248 * were originally other readers of the buf's original hdr). This ensures that 249 * the ARC only needs to update a single buf and its hdr after a write occurs. 250 * 251 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 252 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 253 * that when compressed ARC is enabled that the L2ARC blocks are identical 254 * to the on-disk block in the main data pool. This provides a significant 255 * advantage since the ARC can leverage the bp's checksum when reading from the 256 * L2ARC to determine if the contents are valid. However, if the compressed 257 * ARC is disabled, then the L2ARC's block must be transformed to look 258 * like the physical block in the main data pool before comparing the 259 * checksum and determining its validity. 260 * 261 * The L1ARC has a slightly different system for storing encrypted data. 262 * Raw (encrypted + possibly compressed) data has a few subtle differences from 263 * data that is just compressed. The biggest difference is that it is not 264 * possible to decrypt encrypted data (or visa versa) if the keys aren't loaded. 265 * The other difference is that encryption cannot be treated as a suggestion. 266 * If a caller would prefer compressed data, but they actually wind up with 267 * uncompressed data the worst thing that could happen is there might be a 268 * performance hit. If the caller requests encrypted data, however, we must be 269 * sure they actually get it or else secret information could be leaked. Raw 270 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 271 * may have both an encrypted version and a decrypted version of its data at 272 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 273 * copied out of this header. To avoid complications with b_pabd, raw buffers 274 * cannot be shared. 275 */ 276 277 #include <sys/spa.h> 278 #include <sys/zio.h> 279 #include <sys/spa_impl.h> 280 #include <sys/zio_compress.h> 281 #include <sys/zio_checksum.h> 282 #include <sys/zfs_context.h> 283 #include <sys/arc.h> 284 #include <sys/refcount.h> 285 #include <sys/vdev.h> 286 #include <sys/vdev_impl.h> 287 #include <sys/dsl_pool.h> 288 #include <sys/zio_checksum.h> 289 #include <sys/multilist.h> 290 #include <sys/abd.h> 291 #include <sys/zil.h> 292 #include <sys/fm/fs/zfs.h> 293 #ifdef _KERNEL 294 #include <sys/vmsystm.h> 295 #include <vm/anon.h> 296 #include <sys/fs/swapnode.h> 297 #include <sys/dnlc.h> 298 #endif 299 #include <sys/callb.h> 300 #include <sys/kstat.h> 301 #include <sys/zthr.h> 302 #include <zfs_fletcher.h> 303 #include <sys/arc_impl.h> 304 #include <sys/aggsum.h> 305 #include <sys/cityhash.h> 306 #include <sys/param.h> 307 308 #ifndef _KERNEL 309 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 310 boolean_t arc_watch = B_FALSE; 311 int arc_procfd; 312 #endif 313 314 /* 315 * This thread's job is to keep enough free memory in the system, by 316 * calling arc_kmem_reap_now() plus arc_shrink(), which improves 317 * arc_available_memory(). 318 */ 319 static zthr_t *arc_reap_zthr; 320 321 /* 322 * This thread's job is to keep arc_size under arc_c, by calling 323 * arc_adjust(), which improves arc_is_overflowing(). 324 */ 325 static zthr_t *arc_adjust_zthr; 326 327 static kmutex_t arc_adjust_lock; 328 static kcondvar_t arc_adjust_waiters_cv; 329 static boolean_t arc_adjust_needed = B_FALSE; 330 331 uint_t arc_reduce_dnlc_percent = 3; 332 333 /* 334 * The number of headers to evict in arc_evict_state_impl() before 335 * dropping the sublist lock and evicting from another sublist. A lower 336 * value means we're more likely to evict the "correct" header (i.e. the 337 * oldest header in the arc state), but comes with higher overhead 338 * (i.e. more invocations of arc_evict_state_impl()). 339 */ 340 int zfs_arc_evict_batch_limit = 10; 341 342 /* number of seconds before growing cache again */ 343 int arc_grow_retry = 60; 344 345 /* 346 * Minimum time between calls to arc_kmem_reap_soon(). Note that this will 347 * be converted to ticks, so with the default hz=100, a setting of 15 ms 348 * will actually wait 2 ticks, or 20ms. 349 */ 350 int arc_kmem_cache_reap_retry_ms = 1000; 351 352 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 353 int zfs_arc_overflow_shift = 8; 354 355 /* shift of arc_c for calculating both min and max arc_p */ 356 int arc_p_min_shift = 4; 357 358 /* log2(fraction of arc to reclaim) */ 359 int arc_shrink_shift = 7; 360 361 /* 362 * log2(fraction of ARC which must be free to allow growing). 363 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 364 * when reading a new block into the ARC, we will evict an equal-sized block 365 * from the ARC. 366 * 367 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 368 * we will still not allow it to grow. 369 */ 370 int arc_no_grow_shift = 5; 371 372 373 /* 374 * minimum lifespan of a prefetch block in clock ticks 375 * (initialized in arc_init()) 376 */ 377 static int zfs_arc_min_prefetch_ms = 1; 378 static int zfs_arc_min_prescient_prefetch_ms = 6; 379 380 /* 381 * If this percent of memory is free, don't throttle. 382 */ 383 int arc_lotsfree_percent = 10; 384 385 static boolean_t arc_initialized; 386 387 /* 388 * The arc has filled available memory and has now warmed up. 389 */ 390 static boolean_t arc_warm; 391 392 /* 393 * log2 fraction of the zio arena to keep free. 394 */ 395 int arc_zio_arena_free_shift = 2; 396 397 /* 398 * These tunables are for performance analysis. 399 */ 400 uint64_t zfs_arc_max; 401 uint64_t zfs_arc_min; 402 uint64_t zfs_arc_meta_limit = 0; 403 uint64_t zfs_arc_meta_min = 0; 404 int zfs_arc_grow_retry = 0; 405 int zfs_arc_shrink_shift = 0; 406 int zfs_arc_p_min_shift = 0; 407 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 408 409 /* 410 * ARC dirty data constraints for arc_tempreserve_space() throttle 411 */ 412 uint_t zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */ 413 uint_t zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */ 414 uint_t zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */ 415 416 boolean_t zfs_compressed_arc_enabled = B_TRUE; 417 418 /* The 6 states: */ 419 static arc_state_t ARC_anon; 420 static arc_state_t ARC_mru; 421 static arc_state_t ARC_mru_ghost; 422 static arc_state_t ARC_mfu; 423 static arc_state_t ARC_mfu_ghost; 424 static arc_state_t ARC_l2c_only; 425 426 arc_stats_t arc_stats = { 427 { "hits", KSTAT_DATA_UINT64 }, 428 { "misses", KSTAT_DATA_UINT64 }, 429 { "demand_data_hits", KSTAT_DATA_UINT64 }, 430 { "demand_data_misses", KSTAT_DATA_UINT64 }, 431 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 432 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 433 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 434 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 435 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 436 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 437 { "mru_hits", KSTAT_DATA_UINT64 }, 438 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 439 { "mfu_hits", KSTAT_DATA_UINT64 }, 440 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 441 { "deleted", KSTAT_DATA_UINT64 }, 442 { "mutex_miss", KSTAT_DATA_UINT64 }, 443 { "access_skip", KSTAT_DATA_UINT64 }, 444 { "evict_skip", KSTAT_DATA_UINT64 }, 445 { "evict_not_enough", KSTAT_DATA_UINT64 }, 446 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 447 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 448 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 }, 449 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 }, 450 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 451 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 452 { "hash_elements", KSTAT_DATA_UINT64 }, 453 { "hash_elements_max", KSTAT_DATA_UINT64 }, 454 { "hash_collisions", KSTAT_DATA_UINT64 }, 455 { "hash_chains", KSTAT_DATA_UINT64 }, 456 { "hash_chain_max", KSTAT_DATA_UINT64 }, 457 { "p", KSTAT_DATA_UINT64 }, 458 { "c", KSTAT_DATA_UINT64 }, 459 { "c_min", KSTAT_DATA_UINT64 }, 460 { "c_max", KSTAT_DATA_UINT64 }, 461 { "size", KSTAT_DATA_UINT64 }, 462 { "compressed_size", KSTAT_DATA_UINT64 }, 463 { "uncompressed_size", KSTAT_DATA_UINT64 }, 464 { "overhead_size", KSTAT_DATA_UINT64 }, 465 { "hdr_size", KSTAT_DATA_UINT64 }, 466 { "data_size", KSTAT_DATA_UINT64 }, 467 { "metadata_size", KSTAT_DATA_UINT64 }, 468 { "other_size", KSTAT_DATA_UINT64 }, 469 { "anon_size", KSTAT_DATA_UINT64 }, 470 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 471 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 472 { "mru_size", KSTAT_DATA_UINT64 }, 473 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 474 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 475 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 476 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 477 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 478 { "mfu_size", KSTAT_DATA_UINT64 }, 479 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 480 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 481 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 482 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 483 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 484 { "l2_hits", KSTAT_DATA_UINT64 }, 485 { "l2_misses", KSTAT_DATA_UINT64 }, 486 { "l2_prefetch_asize", KSTAT_DATA_UINT64 }, 487 { "l2_mru_asize", KSTAT_DATA_UINT64 }, 488 { "l2_mfu_asize", KSTAT_DATA_UINT64 }, 489 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 }, 490 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 }, 491 { "l2_feeds", KSTAT_DATA_UINT64 }, 492 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 493 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 494 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 495 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 496 { "l2_writes_done", KSTAT_DATA_UINT64 }, 497 { "l2_writes_error", KSTAT_DATA_UINT64 }, 498 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 499 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 500 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 501 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 502 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 503 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 504 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 505 { "l2_io_error", KSTAT_DATA_UINT64 }, 506 { "l2_size", KSTAT_DATA_UINT64 }, 507 { "l2_asize", KSTAT_DATA_UINT64 }, 508 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 509 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 510 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 511 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 512 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 513 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 514 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 515 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 516 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 517 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 518 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 519 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 520 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 521 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 522 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 523 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 524 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 525 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 526 { "arc_meta_used", KSTAT_DATA_UINT64 }, 527 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 528 { "arc_meta_max", KSTAT_DATA_UINT64 }, 529 { "arc_meta_min", KSTAT_DATA_UINT64 }, 530 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 531 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 532 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 533 }; 534 535 #define ARCSTAT_MAX(stat, val) { \ 536 uint64_t m; \ 537 while ((val) > (m = arc_stats.stat.value.ui64) && \ 538 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 539 continue; \ 540 } 541 542 #define ARCSTAT_MAXSTAT(stat) \ 543 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 544 545 /* 546 * We define a macro to allow ARC hits/misses to be easily broken down by 547 * two separate conditions, giving a total of four different subtypes for 548 * each of hits and misses (so eight statistics total). 549 */ 550 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 551 if (cond1) { \ 552 if (cond2) { \ 553 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 554 } else { \ 555 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 556 } \ 557 } else { \ 558 if (cond2) { \ 559 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 560 } else { \ 561 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 562 } \ 563 } 564 565 /* 566 * This macro allows us to use kstats as floating averages. Each time we 567 * update this kstat, we first factor it and the update value by 568 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 569 * average. This macro assumes that integer loads and stores are atomic, but 570 * is not safe for multiple writers updating the kstat in parallel (only the 571 * last writer's update will remain). 572 */ 573 #define ARCSTAT_F_AVG_FACTOR 3 574 #define ARCSTAT_F_AVG(stat, value) \ 575 do { \ 576 uint64_t x = ARCSTAT(stat); \ 577 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 578 (value) / ARCSTAT_F_AVG_FACTOR; \ 579 ARCSTAT(stat) = x; \ 580 _NOTE(CONSTCOND) \ 581 } while (0) 582 583 kstat_t *arc_ksp; 584 static arc_state_t *arc_anon; 585 static arc_state_t *arc_mru; 586 static arc_state_t *arc_mru_ghost; 587 static arc_state_t *arc_mfu; 588 static arc_state_t *arc_mfu_ghost; 589 static arc_state_t *arc_l2c_only; 590 591 /* 592 * There are also some ARC variables that we want to export, but that are 593 * updated so often that having the canonical representation be the statistic 594 * variable causes a performance bottleneck. We want to use aggsum_t's for these 595 * instead, but still be able to export the kstat in the same way as before. 596 * The solution is to always use the aggsum version, except in the kstat update 597 * callback. 598 */ 599 aggsum_t arc_size; 600 aggsum_t arc_meta_used; 601 aggsum_t astat_data_size; 602 aggsum_t astat_metadata_size; 603 aggsum_t astat_hdr_size; 604 aggsum_t astat_other_size; 605 aggsum_t astat_l2_hdr_size; 606 607 static int arc_no_grow; /* Don't try to grow cache size */ 608 static hrtime_t arc_growtime; 609 static uint64_t arc_tempreserve; 610 static uint64_t arc_loaned_bytes; 611 612 #define GHOST_STATE(state) \ 613 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 614 (state) == arc_l2c_only) 615 616 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 617 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 618 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 619 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 620 #define HDR_PRESCIENT_PREFETCH(hdr) \ 621 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 622 #define HDR_COMPRESSION_ENABLED(hdr) \ 623 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 624 625 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 626 #define HDR_L2_READING(hdr) \ 627 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 628 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 629 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 630 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 631 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 632 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 633 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 634 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 635 636 #define HDR_ISTYPE_METADATA(hdr) \ 637 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 638 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 639 640 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 641 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 642 #define HDR_HAS_RABD(hdr) \ 643 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 644 (hdr)->b_crypt_hdr.b_rabd != NULL) 645 #define HDR_ENCRYPTED(hdr) \ 646 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 647 #define HDR_AUTHENTICATED(hdr) \ 648 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 649 650 /* For storing compression mode in b_flags */ 651 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 652 653 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 654 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 655 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 656 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 657 658 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 659 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 660 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 661 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 662 663 /* 664 * Other sizes 665 */ 666 667 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 668 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr)) 669 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 670 671 /* 672 * Hash table routines 673 */ 674 675 #define HT_LOCK_PAD 64 676 677 struct ht_lock { 678 kmutex_t ht_lock; 679 #ifdef _KERNEL 680 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 681 #endif 682 }; 683 684 #define BUF_LOCKS 256 685 typedef struct buf_hash_table { 686 uint64_t ht_mask; 687 arc_buf_hdr_t **ht_table; 688 struct ht_lock ht_locks[BUF_LOCKS]; 689 } buf_hash_table_t; 690 691 static buf_hash_table_t buf_hash_table; 692 693 #define BUF_HASH_INDEX(spa, dva, birth) \ 694 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 695 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 696 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 697 #define HDR_LOCK(hdr) \ 698 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 699 700 uint64_t zfs_crc64_table[256]; 701 702 /* 703 * Level 2 ARC 704 */ 705 706 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 707 #define L2ARC_HEADROOM 2 /* num of writes */ 708 /* 709 * If we discover during ARC scan any buffers to be compressed, we boost 710 * our headroom for the next scanning cycle by this percentage multiple. 711 */ 712 #define L2ARC_HEADROOM_BOOST 200 713 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 714 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 715 716 /* 717 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 718 * and each of the state has two types: data and metadata. 719 */ 720 #define L2ARC_FEED_TYPES 4 721 722 723 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 724 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 725 726 /* L2ARC Performance Tunables */ 727 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 728 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 729 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 730 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 731 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 732 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 733 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 734 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 735 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 736 int l2arc_meta_percent = 33; /* limit on headers size */ 737 738 /* 739 * L2ARC Internals 740 */ 741 static list_t L2ARC_dev_list; /* device list */ 742 static list_t *l2arc_dev_list; /* device list pointer */ 743 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 744 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 745 static list_t L2ARC_free_on_write; /* free after write buf list */ 746 static list_t *l2arc_free_on_write; /* free after write list ptr */ 747 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 748 static uint64_t l2arc_ndev; /* number of devices */ 749 750 typedef struct l2arc_read_callback { 751 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 752 blkptr_t l2rcb_bp; /* original blkptr */ 753 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 754 int l2rcb_flags; /* original flags */ 755 abd_t *l2rcb_abd; /* temporary buffer */ 756 } l2arc_read_callback_t; 757 758 typedef struct l2arc_data_free { 759 /* protected by l2arc_free_on_write_mtx */ 760 abd_t *l2df_abd; 761 size_t l2df_size; 762 arc_buf_contents_t l2df_type; 763 list_node_t l2df_list_node; 764 } l2arc_data_free_t; 765 766 static kmutex_t l2arc_feed_thr_lock; 767 static kcondvar_t l2arc_feed_thr_cv; 768 static uint8_t l2arc_thread_exit; 769 770 static kmutex_t l2arc_rebuild_thr_lock; 771 static kcondvar_t l2arc_rebuild_thr_cv; 772 773 enum arc_hdr_alloc_flags { 774 ARC_HDR_ALLOC_RDATA = 0x1, 775 ARC_HDR_DO_ADAPT = 0x2, 776 }; 777 778 779 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 780 typedef enum arc_fill_flags { 781 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 782 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 783 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 784 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 785 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 786 } arc_fill_flags_t; 787 788 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 789 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 790 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 791 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 792 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 793 static void arc_hdr_free_pabd(arc_buf_hdr_t *, boolean_t); 794 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *, int); 795 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 796 static boolean_t arc_is_overflowing(); 797 static void arc_buf_watch(arc_buf_t *); 798 static l2arc_dev_t *l2arc_vdev_get(vdev_t *vd); 799 800 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 801 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 802 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 803 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 804 805 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 806 static void l2arc_read_done(zio_t *); 807 static void l2arc_do_free_on_write(void); 808 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 809 boolean_t state_only); 810 811 #define l2arc_hdr_arcstats_increment(hdr) \ 812 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE) 813 #define l2arc_hdr_arcstats_decrement(hdr) \ 814 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE) 815 #define l2arc_hdr_arcstats_increment_state(hdr) \ 816 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE) 817 #define l2arc_hdr_arcstats_decrement_state(hdr) \ 818 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE) 819 820 /* 821 * The arc_all_memory function is a ZoL enhancement that lives in their OSL 822 * code. In user-space code, which is used primarily for testing, we return 823 * half of all memory. 824 */ 825 uint64_t 826 arc_all_memory(void) 827 { 828 #ifdef _KERNEL 829 return (ptob(physmem)); 830 #else 831 return ((sysconf(_SC_PAGESIZE) * sysconf(_SC_PHYS_PAGES)) / 2); 832 #endif 833 } 834 835 /* 836 * We use Cityhash for this. It's fast, and has good hash properties without 837 * requiring any large static buffers. 838 */ 839 static uint64_t 840 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 841 { 842 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 843 } 844 845 #define HDR_EMPTY(hdr) \ 846 ((hdr)->b_dva.dva_word[0] == 0 && \ 847 (hdr)->b_dva.dva_word[1] == 0) 848 849 #define HDR_EMPTY_OR_LOCKED(hdr) \ 850 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 851 852 #define HDR_EQUAL(spa, dva, birth, hdr) \ 853 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 854 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 855 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 856 857 static void 858 buf_discard_identity(arc_buf_hdr_t *hdr) 859 { 860 hdr->b_dva.dva_word[0] = 0; 861 hdr->b_dva.dva_word[1] = 0; 862 hdr->b_birth = 0; 863 } 864 865 static arc_buf_hdr_t * 866 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 867 { 868 const dva_t *dva = BP_IDENTITY(bp); 869 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 870 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 871 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 872 arc_buf_hdr_t *hdr; 873 874 mutex_enter(hash_lock); 875 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 876 hdr = hdr->b_hash_next) { 877 if (HDR_EQUAL(spa, dva, birth, hdr)) { 878 *lockp = hash_lock; 879 return (hdr); 880 } 881 } 882 mutex_exit(hash_lock); 883 *lockp = NULL; 884 return (NULL); 885 } 886 887 /* 888 * Insert an entry into the hash table. If there is already an element 889 * equal to elem in the hash table, then the already existing element 890 * will be returned and the new element will not be inserted. 891 * Otherwise returns NULL. 892 * If lockp == NULL, the caller is assumed to already hold the hash lock. 893 */ 894 static arc_buf_hdr_t * 895 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 896 { 897 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 898 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 899 arc_buf_hdr_t *fhdr; 900 uint32_t i; 901 902 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 903 ASSERT(hdr->b_birth != 0); 904 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 905 906 if (lockp != NULL) { 907 *lockp = hash_lock; 908 mutex_enter(hash_lock); 909 } else { 910 ASSERT(MUTEX_HELD(hash_lock)); 911 } 912 913 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 914 fhdr = fhdr->b_hash_next, i++) { 915 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 916 return (fhdr); 917 } 918 919 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 920 buf_hash_table.ht_table[idx] = hdr; 921 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 922 923 /* collect some hash table performance data */ 924 if (i > 0) { 925 ARCSTAT_BUMP(arcstat_hash_collisions); 926 if (i == 1) 927 ARCSTAT_BUMP(arcstat_hash_chains); 928 929 ARCSTAT_MAX(arcstat_hash_chain_max, i); 930 } 931 932 ARCSTAT_BUMP(arcstat_hash_elements); 933 ARCSTAT_MAXSTAT(arcstat_hash_elements); 934 935 return (NULL); 936 } 937 938 static void 939 buf_hash_remove(arc_buf_hdr_t *hdr) 940 { 941 arc_buf_hdr_t *fhdr, **hdrp; 942 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 943 944 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 945 ASSERT(HDR_IN_HASH_TABLE(hdr)); 946 947 hdrp = &buf_hash_table.ht_table[idx]; 948 while ((fhdr = *hdrp) != hdr) { 949 ASSERT3P(fhdr, !=, NULL); 950 hdrp = &fhdr->b_hash_next; 951 } 952 *hdrp = hdr->b_hash_next; 953 hdr->b_hash_next = NULL; 954 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 955 956 /* collect some hash table performance data */ 957 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 958 959 if (buf_hash_table.ht_table[idx] && 960 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 961 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 962 } 963 964 /* 965 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 966 * metadata and data are cached from ARC into L2ARC. 967 */ 968 int l2arc_mfuonly = 0; 969 970 /* 971 * Global data structures and functions for the buf kmem cache. 972 */ 973 974 static kmem_cache_t *hdr_full_cache; 975 static kmem_cache_t *hdr_full_crypt_cache; 976 static kmem_cache_t *hdr_l2only_cache; 977 static kmem_cache_t *buf_cache; 978 979 static void 980 buf_fini(void) 981 { 982 int i; 983 984 kmem_free(buf_hash_table.ht_table, 985 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 986 for (i = 0; i < BUF_LOCKS; i++) 987 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 988 kmem_cache_destroy(hdr_full_cache); 989 kmem_cache_destroy(hdr_full_crypt_cache); 990 kmem_cache_destroy(hdr_l2only_cache); 991 kmem_cache_destroy(buf_cache); 992 } 993 994 /* 995 * Constructor callback - called when the cache is empty 996 * and a new buf is requested. 997 */ 998 /* ARGSUSED */ 999 static int 1000 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1001 { 1002 arc_buf_hdr_t *hdr = vbuf; 1003 1004 bzero(hdr, HDR_FULL_SIZE); 1005 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1006 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1007 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1008 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1009 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1010 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1011 1012 return (0); 1013 } 1014 1015 /* ARGSUSED */ 1016 static int 1017 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag) 1018 { 1019 arc_buf_hdr_t *hdr = vbuf; 1020 1021 (void) hdr_full_cons(vbuf, unused, kmflag); 1022 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr)); 1023 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1024 1025 return (0); 1026 } 1027 1028 /* ARGSUSED */ 1029 static int 1030 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1031 { 1032 arc_buf_hdr_t *hdr = vbuf; 1033 1034 bzero(hdr, HDR_L2ONLY_SIZE); 1035 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1036 1037 return (0); 1038 } 1039 1040 /* ARGSUSED */ 1041 static int 1042 buf_cons(void *vbuf, void *unused, int kmflag) 1043 { 1044 arc_buf_t *buf = vbuf; 1045 1046 bzero(buf, sizeof (arc_buf_t)); 1047 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1048 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1049 1050 return (0); 1051 } 1052 1053 /* 1054 * Destructor callback - called when a cached buf is 1055 * no longer required. 1056 */ 1057 /* ARGSUSED */ 1058 static void 1059 hdr_full_dest(void *vbuf, void *unused) 1060 { 1061 arc_buf_hdr_t *hdr = vbuf; 1062 1063 ASSERT(HDR_EMPTY(hdr)); 1064 cv_destroy(&hdr->b_l1hdr.b_cv); 1065 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1066 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1067 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1068 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1069 } 1070 1071 /* ARGSUSED */ 1072 static void 1073 hdr_full_crypt_dest(void *vbuf, void *unused) 1074 { 1075 arc_buf_hdr_t *hdr = vbuf; 1076 1077 hdr_full_dest(hdr, unused); 1078 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1079 } 1080 1081 /* ARGSUSED */ 1082 static void 1083 hdr_l2only_dest(void *vbuf, void *unused) 1084 { 1085 arc_buf_hdr_t *hdr = vbuf; 1086 1087 ASSERT(HDR_EMPTY(hdr)); 1088 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1089 } 1090 1091 /* ARGSUSED */ 1092 static void 1093 buf_dest(void *vbuf, void *unused) 1094 { 1095 arc_buf_t *buf = vbuf; 1096 1097 mutex_destroy(&buf->b_evict_lock); 1098 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1099 } 1100 1101 /* 1102 * Reclaim callback -- invoked when memory is low. 1103 */ 1104 /* ARGSUSED */ 1105 static void 1106 hdr_recl(void *unused) 1107 { 1108 dprintf("hdr_recl called\n"); 1109 /* 1110 * umem calls the reclaim func when we destroy the buf cache, 1111 * which is after we do arc_fini(). 1112 */ 1113 if (arc_initialized) 1114 zthr_wakeup(arc_reap_zthr); 1115 } 1116 1117 static void 1118 buf_init(void) 1119 { 1120 uint64_t *ct; 1121 uint64_t hsize = 1ULL << 12; 1122 int i, j; 1123 1124 /* 1125 * The hash table is big enough to fill all of physical memory 1126 * with an average block size of zfs_arc_average_blocksize (default 8K). 1127 * By default, the table will take up 1128 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1129 */ 1130 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 1131 hsize <<= 1; 1132 retry: 1133 buf_hash_table.ht_mask = hsize - 1; 1134 buf_hash_table.ht_table = 1135 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1136 if (buf_hash_table.ht_table == NULL) { 1137 ASSERT(hsize > (1ULL << 8)); 1138 hsize >>= 1; 1139 goto retry; 1140 } 1141 1142 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1143 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0); 1144 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt", 1145 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest, 1146 hdr_recl, NULL, NULL, 0); 1147 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1148 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl, 1149 NULL, NULL, 0); 1150 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1151 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1152 1153 for (i = 0; i < 256; i++) 1154 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1155 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1156 1157 for (i = 0; i < BUF_LOCKS; i++) { 1158 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1159 NULL, MUTEX_DEFAULT, NULL); 1160 } 1161 } 1162 1163 /* 1164 * This is the size that the buf occupies in memory. If the buf is compressed, 1165 * it will correspond to the compressed size. You should use this method of 1166 * getting the buf size unless you explicitly need the logical size. 1167 */ 1168 int32_t 1169 arc_buf_size(arc_buf_t *buf) 1170 { 1171 return (ARC_BUF_COMPRESSED(buf) ? 1172 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1173 } 1174 1175 int32_t 1176 arc_buf_lsize(arc_buf_t *buf) 1177 { 1178 return (HDR_GET_LSIZE(buf->b_hdr)); 1179 } 1180 1181 /* 1182 * This function will return B_TRUE if the buffer is encrypted in memory. 1183 * This buffer can be decrypted by calling arc_untransform(). 1184 */ 1185 boolean_t 1186 arc_is_encrypted(arc_buf_t *buf) 1187 { 1188 return (ARC_BUF_ENCRYPTED(buf) != 0); 1189 } 1190 1191 /* 1192 * Returns B_TRUE if the buffer represents data that has not had its MAC 1193 * verified yet. 1194 */ 1195 boolean_t 1196 arc_is_unauthenticated(arc_buf_t *buf) 1197 { 1198 return (HDR_NOAUTH(buf->b_hdr) != 0); 1199 } 1200 1201 void 1202 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1203 uint8_t *iv, uint8_t *mac) 1204 { 1205 arc_buf_hdr_t *hdr = buf->b_hdr; 1206 1207 ASSERT(HDR_PROTECTED(hdr)); 1208 1209 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 1210 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 1211 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 1212 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1213 /* CONSTCOND */ 1214 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1215 } 1216 1217 /* 1218 * Indicates how this buffer is compressed in memory. If it is not compressed 1219 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1220 * arc_untransform() as long as it is also unencrypted. 1221 */ 1222 enum zio_compress 1223 arc_get_compression(arc_buf_t *buf) 1224 { 1225 return (ARC_BUF_COMPRESSED(buf) ? 1226 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1227 } 1228 1229 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1230 1231 /* 1232 * Return the compression algorithm used to store this data in the ARC. If ARC 1233 * compression is enabled or this is an encrypted block, this will be the same 1234 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1235 */ 1236 static inline enum zio_compress 1237 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1238 { 1239 return (HDR_COMPRESSION_ENABLED(hdr) ? 1240 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1241 } 1242 1243 static inline boolean_t 1244 arc_buf_is_shared(arc_buf_t *buf) 1245 { 1246 boolean_t shared = (buf->b_data != NULL && 1247 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1248 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1249 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1250 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1251 IMPLY(shared, ARC_BUF_SHARED(buf)); 1252 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1253 1254 /* 1255 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1256 * already being shared" requirement prevents us from doing that. 1257 */ 1258 1259 return (shared); 1260 } 1261 1262 /* 1263 * Free the checksum associated with this header. If there is no checksum, this 1264 * is a no-op. 1265 */ 1266 static inline void 1267 arc_cksum_free(arc_buf_hdr_t *hdr) 1268 { 1269 ASSERT(HDR_HAS_L1HDR(hdr)); 1270 1271 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1272 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1273 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1274 hdr->b_l1hdr.b_freeze_cksum = NULL; 1275 } 1276 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1277 } 1278 1279 /* 1280 * Return true iff at least one of the bufs on hdr is not compressed. 1281 * Encrypted buffers count as compressed. 1282 */ 1283 static boolean_t 1284 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1285 { 1286 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1287 1288 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1289 if (!ARC_BUF_COMPRESSED(b)) { 1290 return (B_TRUE); 1291 } 1292 } 1293 return (B_FALSE); 1294 } 1295 1296 /* 1297 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1298 * matches the checksum that is stored in the hdr. If there is no checksum, 1299 * or if the buf is compressed, this is a no-op. 1300 */ 1301 static void 1302 arc_cksum_verify(arc_buf_t *buf) 1303 { 1304 arc_buf_hdr_t *hdr = buf->b_hdr; 1305 zio_cksum_t zc; 1306 1307 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1308 return; 1309 1310 if (ARC_BUF_COMPRESSED(buf)) 1311 return; 1312 1313 ASSERT(HDR_HAS_L1HDR(hdr)); 1314 1315 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1316 1317 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1318 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1319 return; 1320 } 1321 1322 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1323 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1324 panic("buffer modified while frozen!"); 1325 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1326 } 1327 1328 /* 1329 * This function makes the assumption that data stored in the L2ARC 1330 * will be transformed exactly as it is in the main pool. Because of 1331 * this we can verify the checksum against the reading process's bp. 1332 */ 1333 static boolean_t 1334 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1335 { 1336 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1337 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1338 1339 /* 1340 * Block pointers always store the checksum for the logical data. 1341 * If the block pointer has the gang bit set, then the checksum 1342 * it represents is for the reconstituted data and not for an 1343 * individual gang member. The zio pipeline, however, must be able to 1344 * determine the checksum of each of the gang constituents so it 1345 * treats the checksum comparison differently than what we need 1346 * for l2arc blocks. This prevents us from using the 1347 * zio_checksum_error() interface directly. Instead we must call the 1348 * zio_checksum_error_impl() so that we can ensure the checksum is 1349 * generated using the correct checksum algorithm and accounts for the 1350 * logical I/O size and not just a gang fragment. 1351 */ 1352 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1353 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1354 zio->io_offset, NULL) == 0); 1355 } 1356 1357 /* 1358 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1359 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1360 * isn't modified later on. If buf is compressed or there is already a checksum 1361 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1362 */ 1363 static void 1364 arc_cksum_compute(arc_buf_t *buf) 1365 { 1366 arc_buf_hdr_t *hdr = buf->b_hdr; 1367 1368 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1369 return; 1370 1371 ASSERT(HDR_HAS_L1HDR(hdr)); 1372 1373 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1374 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1375 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1376 return; 1377 } 1378 1379 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1380 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1381 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1382 KM_SLEEP); 1383 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1384 hdr->b_l1hdr.b_freeze_cksum); 1385 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1386 arc_buf_watch(buf); 1387 } 1388 1389 #ifndef _KERNEL 1390 typedef struct procctl { 1391 long cmd; 1392 prwatch_t prwatch; 1393 } procctl_t; 1394 #endif 1395 1396 /* ARGSUSED */ 1397 static void 1398 arc_buf_unwatch(arc_buf_t *buf) 1399 { 1400 #ifndef _KERNEL 1401 if (arc_watch) { 1402 int result; 1403 procctl_t ctl; 1404 ctl.cmd = PCWATCH; 1405 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1406 ctl.prwatch.pr_size = 0; 1407 ctl.prwatch.pr_wflags = 0; 1408 result = write(arc_procfd, &ctl, sizeof (ctl)); 1409 ASSERT3U(result, ==, sizeof (ctl)); 1410 } 1411 #endif 1412 } 1413 1414 /* ARGSUSED */ 1415 static void 1416 arc_buf_watch(arc_buf_t *buf) 1417 { 1418 #ifndef _KERNEL 1419 if (arc_watch) { 1420 int result; 1421 procctl_t ctl; 1422 ctl.cmd = PCWATCH; 1423 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1424 ctl.prwatch.pr_size = arc_buf_size(buf); 1425 ctl.prwatch.pr_wflags = WA_WRITE; 1426 result = write(arc_procfd, &ctl, sizeof (ctl)); 1427 ASSERT3U(result, ==, sizeof (ctl)); 1428 } 1429 #endif 1430 } 1431 1432 static arc_buf_contents_t 1433 arc_buf_type(arc_buf_hdr_t *hdr) 1434 { 1435 arc_buf_contents_t type; 1436 if (HDR_ISTYPE_METADATA(hdr)) { 1437 type = ARC_BUFC_METADATA; 1438 } else { 1439 type = ARC_BUFC_DATA; 1440 } 1441 VERIFY3U(hdr->b_type, ==, type); 1442 return (type); 1443 } 1444 1445 boolean_t 1446 arc_is_metadata(arc_buf_t *buf) 1447 { 1448 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1449 } 1450 1451 static uint32_t 1452 arc_bufc_to_flags(arc_buf_contents_t type) 1453 { 1454 switch (type) { 1455 case ARC_BUFC_DATA: 1456 /* metadata field is 0 if buffer contains normal data */ 1457 return (0); 1458 case ARC_BUFC_METADATA: 1459 return (ARC_FLAG_BUFC_METADATA); 1460 default: 1461 break; 1462 } 1463 panic("undefined ARC buffer type!"); 1464 return ((uint32_t)-1); 1465 } 1466 1467 void 1468 arc_buf_thaw(arc_buf_t *buf) 1469 { 1470 arc_buf_hdr_t *hdr = buf->b_hdr; 1471 1472 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1473 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1474 1475 arc_cksum_verify(buf); 1476 1477 /* 1478 * Compressed buffers do not manipulate the b_freeze_cksum. 1479 */ 1480 if (ARC_BUF_COMPRESSED(buf)) 1481 return; 1482 1483 ASSERT(HDR_HAS_L1HDR(hdr)); 1484 arc_cksum_free(hdr); 1485 1486 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1487 #ifdef ZFS_DEBUG 1488 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1489 if (hdr->b_l1hdr.b_thawed != NULL) 1490 kmem_free(hdr->b_l1hdr.b_thawed, 1); 1491 hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP); 1492 } 1493 #endif 1494 1495 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1496 1497 arc_buf_unwatch(buf); 1498 } 1499 1500 void 1501 arc_buf_freeze(arc_buf_t *buf) 1502 { 1503 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1504 return; 1505 1506 if (ARC_BUF_COMPRESSED(buf)) 1507 return; 1508 1509 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1510 arc_cksum_compute(buf); 1511 } 1512 1513 /* 1514 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1515 * the following functions should be used to ensure that the flags are 1516 * updated in a thread-safe way. When manipulating the flags either 1517 * the hash_lock must be held or the hdr must be undiscoverable. This 1518 * ensures that we're not racing with any other threads when updating 1519 * the flags. 1520 */ 1521 static inline void 1522 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1523 { 1524 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1525 hdr->b_flags |= flags; 1526 } 1527 1528 static inline void 1529 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1530 { 1531 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1532 hdr->b_flags &= ~flags; 1533 } 1534 1535 /* 1536 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1537 * done in a special way since we have to clear and set bits 1538 * at the same time. Consumers that wish to set the compression bits 1539 * must use this function to ensure that the flags are updated in 1540 * thread-safe manner. 1541 */ 1542 static void 1543 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1544 { 1545 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1546 1547 /* 1548 * Holes and embedded blocks will always have a psize = 0 so 1549 * we ignore the compression of the blkptr and set the 1550 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF. 1551 * Holes and embedded blocks remain anonymous so we don't 1552 * want to uncompress them. Mark them as uncompressed. 1553 */ 1554 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1555 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1556 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1557 } else { 1558 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1559 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1560 } 1561 1562 HDR_SET_COMPRESS(hdr, cmp); 1563 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1564 } 1565 1566 /* 1567 * Looks for another buf on the same hdr which has the data decompressed, copies 1568 * from it, and returns true. If no such buf exists, returns false. 1569 */ 1570 static boolean_t 1571 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1572 { 1573 arc_buf_hdr_t *hdr = buf->b_hdr; 1574 boolean_t copied = B_FALSE; 1575 1576 ASSERT(HDR_HAS_L1HDR(hdr)); 1577 ASSERT3P(buf->b_data, !=, NULL); 1578 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1579 1580 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1581 from = from->b_next) { 1582 /* can't use our own data buffer */ 1583 if (from == buf) { 1584 continue; 1585 } 1586 1587 if (!ARC_BUF_COMPRESSED(from)) { 1588 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1589 copied = B_TRUE; 1590 break; 1591 } 1592 } 1593 1594 /* 1595 * Note: With encryption support, the following assertion is no longer 1596 * necessarily valid. If we receive two back to back raw snapshots 1597 * (send -w), the second receive can use a hdr with a cksum already 1598 * calculated. This happens via: 1599 * dmu_recv_stream() -> receive_read_record() -> arc_loan_raw_buf() 1600 * The rsend/send_mixed_raw test case exercises this code path. 1601 * 1602 * There were no decompressed bufs, so there should not be a 1603 * checksum on the hdr either. 1604 * EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1605 */ 1606 1607 return (copied); 1608 } 1609 1610 /* 1611 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1612 */ 1613 static uint64_t 1614 arc_hdr_size(arc_buf_hdr_t *hdr) 1615 { 1616 uint64_t size; 1617 1618 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1619 HDR_GET_PSIZE(hdr) > 0) { 1620 size = HDR_GET_PSIZE(hdr); 1621 } else { 1622 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1623 size = HDR_GET_LSIZE(hdr); 1624 } 1625 return (size); 1626 } 1627 1628 static int 1629 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1630 { 1631 int ret; 1632 uint64_t csize; 1633 uint64_t lsize = HDR_GET_LSIZE(hdr); 1634 uint64_t psize = HDR_GET_PSIZE(hdr); 1635 void *tmpbuf = NULL; 1636 abd_t *abd = hdr->b_l1hdr.b_pabd; 1637 1638 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1639 ASSERT(HDR_AUTHENTICATED(hdr)); 1640 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1641 1642 /* 1643 * The MAC is calculated on the compressed data that is stored on disk. 1644 * However, if compressed arc is disabled we will only have the 1645 * decompressed data available to us now. Compress it into a temporary 1646 * abd so we can verify the MAC. The performance overhead of this will 1647 * be relatively low, since most objects in an encrypted objset will 1648 * be encrypted (instead of authenticated) anyway. 1649 */ 1650 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1651 !HDR_COMPRESSION_ENABLED(hdr)) { 1652 tmpbuf = zio_buf_alloc(lsize); 1653 abd = abd_get_from_buf(tmpbuf, lsize); 1654 abd_take_ownership_of_buf(abd, B_TRUE); 1655 1656 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1657 hdr->b_l1hdr.b_pabd, tmpbuf, lsize); 1658 ASSERT3U(csize, <=, psize); 1659 abd_zero_off(abd, csize, psize - csize); 1660 } 1661 1662 /* 1663 * Authentication is best effort. We authenticate whenever the key is 1664 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1665 */ 1666 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1667 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1668 ASSERT3U(lsize, ==, psize); 1669 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1670 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1671 } else { 1672 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1673 hdr->b_crypt_hdr.b_mac); 1674 } 1675 1676 if (ret == 0) 1677 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1678 else if (ret != ENOENT) 1679 goto error; 1680 1681 if (tmpbuf != NULL) 1682 abd_free(abd); 1683 1684 return (0); 1685 1686 error: 1687 if (tmpbuf != NULL) 1688 abd_free(abd); 1689 1690 return (ret); 1691 } 1692 1693 /* 1694 * This function will take a header that only has raw encrypted data in 1695 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1696 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1697 * also decompress the data. 1698 */ 1699 static int 1700 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1701 { 1702 int ret; 1703 abd_t *cabd = NULL; 1704 void *tmp = NULL; 1705 boolean_t no_crypt = B_FALSE; 1706 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1707 1708 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1709 ASSERT(HDR_ENCRYPTED(hdr)); 1710 1711 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT); 1712 1713 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1714 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1715 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1716 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1717 if (ret != 0) 1718 goto error; 1719 1720 if (no_crypt) { 1721 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1722 HDR_GET_PSIZE(hdr)); 1723 } 1724 1725 /* 1726 * If this header has disabled arc compression but the b_pabd is 1727 * compressed after decrypting it, we need to decompress the newly 1728 * decrypted data. 1729 */ 1730 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1731 !HDR_COMPRESSION_ENABLED(hdr)) { 1732 /* 1733 * We want to make sure that we are correctly honoring the 1734 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1735 * and then loan a buffer from it, rather than allocating a 1736 * linear buffer and wrapping it in an abd later. 1737 */ 1738 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, B_TRUE); 1739 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 1740 1741 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1742 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 1743 HDR_GET_LSIZE(hdr)); 1744 if (ret != 0) { 1745 abd_return_buf(cabd, tmp, arc_hdr_size(hdr)); 1746 goto error; 1747 } 1748 1749 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 1750 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1751 arc_hdr_size(hdr), hdr); 1752 hdr->b_l1hdr.b_pabd = cabd; 1753 } 1754 1755 return (0); 1756 1757 error: 1758 arc_hdr_free_pabd(hdr, B_FALSE); 1759 if (cabd != NULL) 1760 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1761 1762 return (ret); 1763 } 1764 1765 /* 1766 * This function is called during arc_buf_fill() to prepare the header's 1767 * abd plaintext pointer for use. This involves authenticated protected 1768 * data and decrypting encrypted data into the plaintext abd. 1769 */ 1770 static int 1771 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1772 const zbookmark_phys_t *zb, boolean_t noauth) 1773 { 1774 int ret; 1775 1776 ASSERT(HDR_PROTECTED(hdr)); 1777 1778 if (hash_lock != NULL) 1779 mutex_enter(hash_lock); 1780 1781 if (HDR_NOAUTH(hdr) && !noauth) { 1782 /* 1783 * The caller requested authenticated data but our data has 1784 * not been authenticated yet. Verify the MAC now if we can. 1785 */ 1786 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1787 if (ret != 0) 1788 goto error; 1789 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1790 /* 1791 * If we only have the encrypted version of the data, but the 1792 * unencrypted version was requested we take this opportunity 1793 * to store the decrypted version in the header for future use. 1794 */ 1795 ret = arc_hdr_decrypt(hdr, spa, zb); 1796 if (ret != 0) 1797 goto error; 1798 } 1799 1800 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1801 1802 if (hash_lock != NULL) 1803 mutex_exit(hash_lock); 1804 1805 return (0); 1806 1807 error: 1808 if (hash_lock != NULL) 1809 mutex_exit(hash_lock); 1810 1811 return (ret); 1812 } 1813 1814 /* 1815 * This function is used by the dbuf code to decrypt bonus buffers in place. 1816 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1817 * block, so we use the hash lock here to protect against concurrent calls to 1818 * arc_buf_fill(). 1819 */ 1820 /* ARGSUSED */ 1821 static void 1822 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock) 1823 { 1824 arc_buf_hdr_t *hdr = buf->b_hdr; 1825 1826 ASSERT(HDR_ENCRYPTED(hdr)); 1827 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1828 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1829 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1830 1831 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1832 arc_buf_size(buf)); 1833 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1834 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1835 hdr->b_crypt_hdr.b_ebufcnt -= 1; 1836 } 1837 1838 /* 1839 * Given a buf that has a data buffer attached to it, this function will 1840 * efficiently fill the buf with data of the specified compression setting from 1841 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1842 * are already sharing a data buf, no copy is performed. 1843 * 1844 * If the buf is marked as compressed but uncompressed data was requested, this 1845 * will allocate a new data buffer for the buf, remove that flag, and fill the 1846 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1847 * uncompressed data, and (since we haven't added support for it yet) if you 1848 * want compressed data your buf must already be marked as compressed and have 1849 * the correct-sized data buffer. 1850 */ 1851 static int 1852 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 1853 arc_fill_flags_t flags) 1854 { 1855 int error = 0; 1856 arc_buf_hdr_t *hdr = buf->b_hdr; 1857 boolean_t hdr_compressed = 1858 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 1859 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 1860 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 1861 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 1862 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 1863 1864 ASSERT3P(buf->b_data, !=, NULL); 1865 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 1866 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 1867 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 1868 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 1869 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 1870 IMPLY(encrypted, !ARC_BUF_SHARED(buf)); 1871 1872 /* 1873 * If the caller wanted encrypted data we just need to copy it from 1874 * b_rabd and potentially byteswap it. We won't be able to do any 1875 * further transforms on it. 1876 */ 1877 if (encrypted) { 1878 ASSERT(HDR_HAS_RABD(hdr)); 1879 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 1880 HDR_GET_PSIZE(hdr)); 1881 goto byteswap; 1882 } 1883 1884 /* 1885 * Adjust encrypted and authenticated headers to accomodate 1886 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 1887 * allowed to fail decryption due to keys not being loaded 1888 * without being marked as an IO error. 1889 */ 1890 if (HDR_PROTECTED(hdr)) { 1891 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 1892 zb, !!(flags & ARC_FILL_NOAUTH)); 1893 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 1894 return (error); 1895 } else if (error != 0) { 1896 if (hash_lock != NULL) 1897 mutex_enter(hash_lock); 1898 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 1899 if (hash_lock != NULL) 1900 mutex_exit(hash_lock); 1901 return (error); 1902 } 1903 } 1904 1905 /* 1906 * There is a special case here for dnode blocks which are 1907 * decrypting their bonus buffers. These blocks may request to 1908 * be decrypted in-place. This is necessary because there may 1909 * be many dnodes pointing into this buffer and there is 1910 * currently no method to synchronize replacing the backing 1911 * b_data buffer and updating all of the pointers. Here we use 1912 * the hash lock to ensure there are no races. If the need 1913 * arises for other types to be decrypted in-place, they must 1914 * add handling here as well. 1915 */ 1916 if ((flags & ARC_FILL_IN_PLACE) != 0) { 1917 ASSERT(!hdr_compressed); 1918 ASSERT(!compressed); 1919 ASSERT(!encrypted); 1920 1921 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 1922 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1923 1924 if (hash_lock != NULL) 1925 mutex_enter(hash_lock); 1926 arc_buf_untransform_in_place(buf, hash_lock); 1927 if (hash_lock != NULL) 1928 mutex_exit(hash_lock); 1929 1930 /* Compute the hdr's checksum if necessary */ 1931 arc_cksum_compute(buf); 1932 } 1933 1934 return (0); 1935 } 1936 1937 if (hdr_compressed == compressed) { 1938 if (!arc_buf_is_shared(buf)) { 1939 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 1940 arc_buf_size(buf)); 1941 } 1942 } else { 1943 ASSERT(hdr_compressed); 1944 ASSERT(!compressed); 1945 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 1946 1947 /* 1948 * If the buf is sharing its data with the hdr, unlink it and 1949 * allocate a new data buffer for the buf. 1950 */ 1951 if (arc_buf_is_shared(buf)) { 1952 ASSERT(ARC_BUF_COMPRESSED(buf)); 1953 1954 /* We need to give the buf its own b_data */ 1955 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 1956 buf->b_data = 1957 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 1958 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 1959 1960 /* Previously overhead was 0; just add new overhead */ 1961 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 1962 } else if (ARC_BUF_COMPRESSED(buf)) { 1963 /* We need to reallocate the buf's b_data */ 1964 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 1965 buf); 1966 buf->b_data = 1967 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 1968 1969 /* We increased the size of b_data; update overhead */ 1970 ARCSTAT_INCR(arcstat_overhead_size, 1971 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 1972 } 1973 1974 /* 1975 * Regardless of the buf's previous compression settings, it 1976 * should not be compressed at the end of this function. 1977 */ 1978 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1979 1980 /* 1981 * Try copying the data from another buf which already has a 1982 * decompressed version. If that's not possible, it's time to 1983 * bite the bullet and decompress the data from the hdr. 1984 */ 1985 if (arc_buf_try_copy_decompressed_data(buf)) { 1986 /* Skip byteswapping and checksumming (already done) */ 1987 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL); 1988 return (0); 1989 } else { 1990 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1991 hdr->b_l1hdr.b_pabd, buf->b_data, 1992 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 1993 1994 /* 1995 * Absent hardware errors or software bugs, this should 1996 * be impossible, but log it anyway so we can debug it. 1997 */ 1998 if (error != 0) { 1999 zfs_dbgmsg( 2000 "hdr %p, compress %d, psize %d, lsize %d", 2001 hdr, arc_hdr_get_compress(hdr), 2002 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2003 if (hash_lock != NULL) 2004 mutex_enter(hash_lock); 2005 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2006 if (hash_lock != NULL) 2007 mutex_exit(hash_lock); 2008 return (SET_ERROR(EIO)); 2009 } 2010 } 2011 } 2012 2013 byteswap: 2014 /* Byteswap the buf's data if necessary */ 2015 if (bswap != DMU_BSWAP_NUMFUNCS) { 2016 ASSERT(!HDR_SHARED_DATA(hdr)); 2017 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2018 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2019 } 2020 2021 /* Compute the hdr's checksum if necessary */ 2022 arc_cksum_compute(buf); 2023 2024 return (0); 2025 } 2026 2027 /* 2028 * If this function is being called to decrypt an encrypted buffer or verify an 2029 * authenticated one, the key must be loaded and a mapping must be made 2030 * available in the keystore via spa_keystore_create_mapping() or one of its 2031 * callers. 2032 */ 2033 int 2034 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2035 boolean_t in_place) 2036 { 2037 int ret; 2038 arc_fill_flags_t flags = 0; 2039 2040 if (in_place) 2041 flags |= ARC_FILL_IN_PLACE; 2042 2043 ret = arc_buf_fill(buf, spa, zb, flags); 2044 if (ret == ECKSUM) { 2045 /* 2046 * Convert authentication and decryption errors to EIO 2047 * (and generate an ereport) before leaving the ARC. 2048 */ 2049 ret = SET_ERROR(EIO); 2050 spa_log_error(spa, zb); 2051 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2052 spa, NULL, zb, NULL, 0, 0); 2053 } 2054 2055 return (ret); 2056 } 2057 2058 /* 2059 * Increment the amount of evictable space in the arc_state_t's refcount. 2060 * We account for the space used by the hdr and the arc buf individually 2061 * so that we can add and remove them from the refcount individually. 2062 */ 2063 static void 2064 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2065 { 2066 arc_buf_contents_t type = arc_buf_type(hdr); 2067 2068 ASSERT(HDR_HAS_L1HDR(hdr)); 2069 2070 if (GHOST_STATE(state)) { 2071 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2072 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2073 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2074 ASSERT(!HDR_HAS_RABD(hdr)); 2075 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2076 HDR_GET_LSIZE(hdr), hdr); 2077 return; 2078 } 2079 2080 ASSERT(!GHOST_STATE(state)); 2081 if (hdr->b_l1hdr.b_pabd != NULL) { 2082 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2083 arc_hdr_size(hdr), hdr); 2084 } 2085 if (HDR_HAS_RABD(hdr)) { 2086 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2087 HDR_GET_PSIZE(hdr), hdr); 2088 } 2089 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2090 buf = buf->b_next) { 2091 if (arc_buf_is_shared(buf)) 2092 continue; 2093 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2094 arc_buf_size(buf), buf); 2095 } 2096 } 2097 2098 /* 2099 * Decrement the amount of evictable space in the arc_state_t's refcount. 2100 * We account for the space used by the hdr and the arc buf individually 2101 * so that we can add and remove them from the refcount individually. 2102 */ 2103 static void 2104 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2105 { 2106 arc_buf_contents_t type = arc_buf_type(hdr); 2107 2108 ASSERT(HDR_HAS_L1HDR(hdr)); 2109 2110 if (GHOST_STATE(state)) { 2111 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2112 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2113 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2114 ASSERT(!HDR_HAS_RABD(hdr)); 2115 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2116 HDR_GET_LSIZE(hdr), hdr); 2117 return; 2118 } 2119 2120 ASSERT(!GHOST_STATE(state)); 2121 if (hdr->b_l1hdr.b_pabd != NULL) { 2122 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2123 arc_hdr_size(hdr), hdr); 2124 } 2125 if (HDR_HAS_RABD(hdr)) { 2126 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2127 HDR_GET_PSIZE(hdr), hdr); 2128 } 2129 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2130 buf = buf->b_next) { 2131 if (arc_buf_is_shared(buf)) 2132 continue; 2133 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2134 arc_buf_size(buf), buf); 2135 } 2136 } 2137 2138 /* 2139 * Add a reference to this hdr indicating that someone is actively 2140 * referencing that memory. When the refcount transitions from 0 to 1, 2141 * we remove it from the respective arc_state_t list to indicate that 2142 * it is not evictable. 2143 */ 2144 static void 2145 add_reference(arc_buf_hdr_t *hdr, void *tag) 2146 { 2147 ASSERT(HDR_HAS_L1HDR(hdr)); 2148 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2149 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2150 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2151 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2152 } 2153 2154 arc_state_t *state = hdr->b_l1hdr.b_state; 2155 2156 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2157 (state != arc_anon)) { 2158 /* We don't use the L2-only state list. */ 2159 if (state != arc_l2c_only) { 2160 multilist_remove(state->arcs_list[arc_buf_type(hdr)], 2161 hdr); 2162 arc_evictable_space_decrement(hdr, state); 2163 } 2164 /* remove the prefetch flag if we get a reference */ 2165 if (HDR_HAS_L2HDR(hdr)) 2166 l2arc_hdr_arcstats_decrement_state(hdr); 2167 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2168 if (HDR_HAS_L2HDR(hdr)) 2169 l2arc_hdr_arcstats_increment_state(hdr); 2170 } 2171 } 2172 2173 /* 2174 * Remove a reference from this hdr. When the reference transitions from 2175 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2176 * list making it eligible for eviction. 2177 */ 2178 static int 2179 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2180 { 2181 int cnt; 2182 arc_state_t *state = hdr->b_l1hdr.b_state; 2183 2184 ASSERT(HDR_HAS_L1HDR(hdr)); 2185 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2186 ASSERT(!GHOST_STATE(state)); 2187 2188 /* 2189 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2190 * check to prevent usage of the arc_l2c_only list. 2191 */ 2192 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2193 (state != arc_anon)) { 2194 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr); 2195 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2196 arc_evictable_space_increment(hdr, state); 2197 } 2198 return (cnt); 2199 } 2200 2201 /* 2202 * Move the supplied buffer to the indicated state. The hash lock 2203 * for the buffer must be held by the caller. 2204 */ 2205 static void 2206 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2207 kmutex_t *hash_lock) 2208 { 2209 arc_state_t *old_state; 2210 int64_t refcnt; 2211 uint32_t bufcnt; 2212 boolean_t update_old, update_new; 2213 arc_buf_contents_t buftype = arc_buf_type(hdr); 2214 2215 /* 2216 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2217 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2218 * L1 hdr doesn't always exist when we change state to arc_anon before 2219 * destroying a header, in which case reallocating to add the L1 hdr is 2220 * pointless. 2221 */ 2222 if (HDR_HAS_L1HDR(hdr)) { 2223 old_state = hdr->b_l1hdr.b_state; 2224 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2225 bufcnt = hdr->b_l1hdr.b_bufcnt; 2226 2227 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL || 2228 HDR_HAS_RABD(hdr)); 2229 } else { 2230 old_state = arc_l2c_only; 2231 refcnt = 0; 2232 bufcnt = 0; 2233 update_old = B_FALSE; 2234 } 2235 update_new = update_old; 2236 2237 ASSERT(MUTEX_HELD(hash_lock)); 2238 ASSERT3P(new_state, !=, old_state); 2239 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2240 ASSERT(old_state != arc_anon || bufcnt <= 1); 2241 2242 /* 2243 * If this buffer is evictable, transfer it from the 2244 * old state list to the new state list. 2245 */ 2246 if (refcnt == 0) { 2247 if (old_state != arc_anon && old_state != arc_l2c_only) { 2248 ASSERT(HDR_HAS_L1HDR(hdr)); 2249 multilist_remove(old_state->arcs_list[buftype], hdr); 2250 2251 if (GHOST_STATE(old_state)) { 2252 ASSERT0(bufcnt); 2253 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2254 update_old = B_TRUE; 2255 } 2256 arc_evictable_space_decrement(hdr, old_state); 2257 } 2258 if (new_state != arc_anon && new_state != arc_l2c_only) { 2259 2260 /* 2261 * An L1 header always exists here, since if we're 2262 * moving to some L1-cached state (i.e. not l2c_only or 2263 * anonymous), we realloc the header to add an L1hdr 2264 * beforehand. 2265 */ 2266 ASSERT(HDR_HAS_L1HDR(hdr)); 2267 multilist_insert(new_state->arcs_list[buftype], hdr); 2268 2269 if (GHOST_STATE(new_state)) { 2270 ASSERT0(bufcnt); 2271 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2272 update_new = B_TRUE; 2273 } 2274 arc_evictable_space_increment(hdr, new_state); 2275 } 2276 } 2277 2278 ASSERT(!HDR_EMPTY(hdr)); 2279 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2280 buf_hash_remove(hdr); 2281 2282 /* adjust state sizes (ignore arc_l2c_only) */ 2283 2284 if (update_new && new_state != arc_l2c_only) { 2285 ASSERT(HDR_HAS_L1HDR(hdr)); 2286 if (GHOST_STATE(new_state)) { 2287 ASSERT0(bufcnt); 2288 2289 /* 2290 * When moving a header to a ghost state, we first 2291 * remove all arc buffers. Thus, we'll have a 2292 * bufcnt of zero, and no arc buffer to use for 2293 * the reference. As a result, we use the arc 2294 * header pointer for the reference. 2295 */ 2296 (void) zfs_refcount_add_many(&new_state->arcs_size, 2297 HDR_GET_LSIZE(hdr), hdr); 2298 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2299 ASSERT(!HDR_HAS_RABD(hdr)); 2300 } else { 2301 uint32_t buffers = 0; 2302 2303 /* 2304 * Each individual buffer holds a unique reference, 2305 * thus we must remove each of these references one 2306 * at a time. 2307 */ 2308 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2309 buf = buf->b_next) { 2310 ASSERT3U(bufcnt, !=, 0); 2311 buffers++; 2312 2313 /* 2314 * When the arc_buf_t is sharing the data 2315 * block with the hdr, the owner of the 2316 * reference belongs to the hdr. Only 2317 * add to the refcount if the arc_buf_t is 2318 * not shared. 2319 */ 2320 if (arc_buf_is_shared(buf)) 2321 continue; 2322 2323 (void) zfs_refcount_add_many( 2324 &new_state->arcs_size, 2325 arc_buf_size(buf), buf); 2326 } 2327 ASSERT3U(bufcnt, ==, buffers); 2328 2329 if (hdr->b_l1hdr.b_pabd != NULL) { 2330 (void) zfs_refcount_add_many( 2331 &new_state->arcs_size, 2332 arc_hdr_size(hdr), hdr); 2333 } 2334 2335 if (HDR_HAS_RABD(hdr)) { 2336 (void) zfs_refcount_add_many( 2337 &new_state->arcs_size, 2338 HDR_GET_PSIZE(hdr), hdr); 2339 } 2340 } 2341 } 2342 2343 if (update_old && old_state != arc_l2c_only) { 2344 ASSERT(HDR_HAS_L1HDR(hdr)); 2345 if (GHOST_STATE(old_state)) { 2346 ASSERT0(bufcnt); 2347 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2348 ASSERT(!HDR_HAS_RABD(hdr)); 2349 2350 /* 2351 * When moving a header off of a ghost state, 2352 * the header will not contain any arc buffers. 2353 * We use the arc header pointer for the reference 2354 * which is exactly what we did when we put the 2355 * header on the ghost state. 2356 */ 2357 2358 (void) zfs_refcount_remove_many(&old_state->arcs_size, 2359 HDR_GET_LSIZE(hdr), hdr); 2360 } else { 2361 uint32_t buffers = 0; 2362 2363 /* 2364 * Each individual buffer holds a unique reference, 2365 * thus we must remove each of these references one 2366 * at a time. 2367 */ 2368 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2369 buf = buf->b_next) { 2370 ASSERT3U(bufcnt, !=, 0); 2371 buffers++; 2372 2373 /* 2374 * When the arc_buf_t is sharing the data 2375 * block with the hdr, the owner of the 2376 * reference belongs to the hdr. Only 2377 * add to the refcount if the arc_buf_t is 2378 * not shared. 2379 */ 2380 if (arc_buf_is_shared(buf)) 2381 continue; 2382 2383 (void) zfs_refcount_remove_many( 2384 &old_state->arcs_size, arc_buf_size(buf), 2385 buf); 2386 } 2387 ASSERT3U(bufcnt, ==, buffers); 2388 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2389 HDR_HAS_RABD(hdr)); 2390 2391 if (hdr->b_l1hdr.b_pabd != NULL) { 2392 (void) zfs_refcount_remove_many( 2393 &old_state->arcs_size, arc_hdr_size(hdr), 2394 hdr); 2395 } 2396 2397 if (HDR_HAS_RABD(hdr)) { 2398 (void) zfs_refcount_remove_many( 2399 &old_state->arcs_size, HDR_GET_PSIZE(hdr), 2400 hdr); 2401 } 2402 } 2403 } 2404 2405 if (HDR_HAS_L1HDR(hdr)) { 2406 hdr->b_l1hdr.b_state = new_state; 2407 2408 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) { 2409 l2arc_hdr_arcstats_decrement_state(hdr); 2410 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state; 2411 l2arc_hdr_arcstats_increment_state(hdr); 2412 } 2413 } 2414 2415 /* 2416 * L2 headers should never be on the L2 state list since they don't 2417 * have L1 headers allocated. 2418 */ 2419 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2420 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2421 } 2422 2423 void 2424 arc_space_consume(uint64_t space, arc_space_type_t type) 2425 { 2426 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2427 2428 switch (type) { 2429 case ARC_SPACE_DATA: 2430 aggsum_add(&astat_data_size, space); 2431 break; 2432 case ARC_SPACE_META: 2433 aggsum_add(&astat_metadata_size, space); 2434 break; 2435 case ARC_SPACE_OTHER: 2436 aggsum_add(&astat_other_size, space); 2437 break; 2438 case ARC_SPACE_HDRS: 2439 aggsum_add(&astat_hdr_size, space); 2440 break; 2441 case ARC_SPACE_L2HDRS: 2442 aggsum_add(&astat_l2_hdr_size, space); 2443 break; 2444 } 2445 2446 if (type != ARC_SPACE_DATA) 2447 aggsum_add(&arc_meta_used, space); 2448 2449 aggsum_add(&arc_size, space); 2450 } 2451 2452 void 2453 arc_space_return(uint64_t space, arc_space_type_t type) 2454 { 2455 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2456 2457 switch (type) { 2458 case ARC_SPACE_DATA: 2459 aggsum_add(&astat_data_size, -space); 2460 break; 2461 case ARC_SPACE_META: 2462 aggsum_add(&astat_metadata_size, -space); 2463 break; 2464 case ARC_SPACE_OTHER: 2465 aggsum_add(&astat_other_size, -space); 2466 break; 2467 case ARC_SPACE_HDRS: 2468 aggsum_add(&astat_hdr_size, -space); 2469 break; 2470 case ARC_SPACE_L2HDRS: 2471 aggsum_add(&astat_l2_hdr_size, -space); 2472 break; 2473 } 2474 2475 if (type != ARC_SPACE_DATA) { 2476 ASSERT(aggsum_compare(&arc_meta_used, space) >= 0); 2477 /* 2478 * We use the upper bound here rather than the precise value 2479 * because the arc_meta_max value doesn't need to be 2480 * precise. It's only consumed by humans via arcstats. 2481 */ 2482 if (arc_meta_max < aggsum_upper_bound(&arc_meta_used)) 2483 arc_meta_max = aggsum_upper_bound(&arc_meta_used); 2484 aggsum_add(&arc_meta_used, -space); 2485 } 2486 2487 ASSERT(aggsum_compare(&arc_size, space) >= 0); 2488 aggsum_add(&arc_size, -space); 2489 } 2490 2491 /* 2492 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2493 * with the hdr's b_pabd. 2494 */ 2495 static boolean_t 2496 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2497 { 2498 /* 2499 * The criteria for sharing a hdr's data are: 2500 * 1. the buffer is not encrypted 2501 * 2. the hdr's compression matches the buf's compression 2502 * 3. the hdr doesn't need to be byteswapped 2503 * 4. the hdr isn't already being shared 2504 * 5. the buf is either compressed or it is the last buf in the hdr list 2505 * 2506 * Criterion #5 maintains the invariant that shared uncompressed 2507 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2508 * might ask, "if a compressed buf is allocated first, won't that be the 2509 * last thing in the list?", but in that case it's impossible to create 2510 * a shared uncompressed buf anyway (because the hdr must be compressed 2511 * to have the compressed buf). You might also think that #3 is 2512 * sufficient to make this guarantee, however it's possible 2513 * (specifically in the rare L2ARC write race mentioned in 2514 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2515 * is sharable, but wasn't at the time of its allocation. Rather than 2516 * allow a new shared uncompressed buf to be created and then shuffle 2517 * the list around to make it the last element, this simply disallows 2518 * sharing if the new buf isn't the first to be added. 2519 */ 2520 ASSERT3P(buf->b_hdr, ==, hdr); 2521 boolean_t hdr_compressed = arc_hdr_get_compress(hdr) != 2522 ZIO_COMPRESS_OFF; 2523 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2524 return (!ARC_BUF_ENCRYPTED(buf) && 2525 buf_compressed == hdr_compressed && 2526 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2527 !HDR_SHARED_DATA(hdr) && 2528 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2529 } 2530 2531 /* 2532 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2533 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2534 * copy was made successfully, or an error code otherwise. 2535 */ 2536 static int 2537 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2538 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth, 2539 boolean_t fill, arc_buf_t **ret) 2540 { 2541 arc_buf_t *buf; 2542 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2543 2544 ASSERT(HDR_HAS_L1HDR(hdr)); 2545 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2546 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2547 hdr->b_type == ARC_BUFC_METADATA); 2548 ASSERT3P(ret, !=, NULL); 2549 ASSERT3P(*ret, ==, NULL); 2550 IMPLY(encrypted, compressed); 2551 2552 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2553 buf->b_hdr = hdr; 2554 buf->b_data = NULL; 2555 buf->b_next = hdr->b_l1hdr.b_buf; 2556 buf->b_flags = 0; 2557 2558 add_reference(hdr, tag); 2559 2560 /* 2561 * We're about to change the hdr's b_flags. We must either 2562 * hold the hash_lock or be undiscoverable. 2563 */ 2564 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2565 2566 /* 2567 * Only honor requests for compressed bufs if the hdr is actually 2568 * compressed. This must be overriden if the buffer is encrypted since 2569 * encrypted buffers cannot be decompressed. 2570 */ 2571 if (encrypted) { 2572 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2573 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2574 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2575 } else if (compressed && 2576 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2577 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2578 flags |= ARC_FILL_COMPRESSED; 2579 } 2580 2581 if (noauth) { 2582 ASSERT0(encrypted); 2583 flags |= ARC_FILL_NOAUTH; 2584 } 2585 2586 /* 2587 * If the hdr's data can be shared then we share the data buffer and 2588 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2589 * allocate a new buffer to store the buf's data. 2590 * 2591 * There are two additional restrictions here because we're sharing 2592 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2593 * actively involved in an L2ARC write, because if this buf is used by 2594 * an arc_write() then the hdr's data buffer will be released when the 2595 * write completes, even though the L2ARC write might still be using it. 2596 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2597 * need to be ABD-aware. 2598 */ 2599 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) && 2600 hdr->b_l1hdr.b_pabd != NULL && abd_is_linear(hdr->b_l1hdr.b_pabd); 2601 2602 /* Set up b_data and sharing */ 2603 if (can_share) { 2604 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2605 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2606 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2607 } else { 2608 buf->b_data = 2609 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2610 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2611 } 2612 VERIFY3P(buf->b_data, !=, NULL); 2613 2614 hdr->b_l1hdr.b_buf = buf; 2615 hdr->b_l1hdr.b_bufcnt += 1; 2616 if (encrypted) 2617 hdr->b_crypt_hdr.b_ebufcnt += 1; 2618 2619 /* 2620 * If the user wants the data from the hdr, we need to either copy or 2621 * decompress the data. 2622 */ 2623 if (fill) { 2624 ASSERT3P(zb, !=, NULL); 2625 return (arc_buf_fill(buf, spa, zb, flags)); 2626 } 2627 2628 return (0); 2629 } 2630 2631 static char *arc_onloan_tag = "onloan"; 2632 2633 static inline void 2634 arc_loaned_bytes_update(int64_t delta) 2635 { 2636 atomic_add_64(&arc_loaned_bytes, delta); 2637 2638 /* assert that it did not wrap around */ 2639 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2640 } 2641 2642 /* 2643 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2644 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2645 * buffers must be returned to the arc before they can be used by the DMU or 2646 * freed. 2647 */ 2648 arc_buf_t * 2649 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2650 { 2651 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2652 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2653 2654 arc_loaned_bytes_update(arc_buf_size(buf)); 2655 2656 return (buf); 2657 } 2658 2659 arc_buf_t * 2660 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2661 enum zio_compress compression_type) 2662 { 2663 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2664 psize, lsize, compression_type); 2665 2666 arc_loaned_bytes_update(arc_buf_size(buf)); 2667 2668 return (buf); 2669 } 2670 2671 arc_buf_t * 2672 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2673 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2674 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2675 enum zio_compress compression_type) 2676 { 2677 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2678 byteorder, salt, iv, mac, ot, psize, lsize, compression_type); 2679 2680 atomic_add_64(&arc_loaned_bytes, psize); 2681 return (buf); 2682 } 2683 2684 /* 2685 * Performance tuning of L2ARC persistence: 2686 * 2687 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 2688 * an L2ARC device (either at pool import or later) will attempt 2689 * to rebuild L2ARC buffer contents. 2690 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 2691 * whether log blocks are written to the L2ARC device. If the L2ARC 2692 * device is less than 1GB, the amount of data l2arc_evict() 2693 * evicts is significant compared to the amount of restored L2ARC 2694 * data. In this case do not write log blocks in L2ARC in order 2695 * not to waste space. 2696 */ 2697 int l2arc_rebuild_enabled = B_TRUE; 2698 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 2699 2700 /* L2ARC persistence rebuild control routines. */ 2701 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 2702 static void l2arc_dev_rebuild_start(l2arc_dev_t *dev); 2703 static int l2arc_rebuild(l2arc_dev_t *dev); 2704 2705 /* L2ARC persistence read I/O routines. */ 2706 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 2707 static int l2arc_log_blk_read(l2arc_dev_t *dev, 2708 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 2709 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 2710 zio_t *this_io, zio_t **next_io); 2711 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 2712 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 2713 static void l2arc_log_blk_fetch_abort(zio_t *zio); 2714 2715 /* L2ARC persistence block restoration routines. */ 2716 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 2717 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize); 2718 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 2719 l2arc_dev_t *dev); 2720 2721 /* L2ARC persistence write I/O routines. */ 2722 static void l2arc_dev_hdr_update(l2arc_dev_t *dev); 2723 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 2724 l2arc_write_callback_t *cb); 2725 2726 /* L2ARC persistence auxilliary routines. */ 2727 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 2728 const l2arc_log_blkptr_t *lbp); 2729 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 2730 const arc_buf_hdr_t *ab); 2731 boolean_t l2arc_range_check_overlap(uint64_t bottom, 2732 uint64_t top, uint64_t check); 2733 static void l2arc_blk_fetch_done(zio_t *zio); 2734 static inline uint64_t 2735 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 2736 2737 /* 2738 * Return a loaned arc buffer to the arc. 2739 */ 2740 void 2741 arc_return_buf(arc_buf_t *buf, void *tag) 2742 { 2743 arc_buf_hdr_t *hdr = buf->b_hdr; 2744 2745 ASSERT3P(buf->b_data, !=, NULL); 2746 ASSERT(HDR_HAS_L1HDR(hdr)); 2747 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2748 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2749 2750 arc_loaned_bytes_update(-arc_buf_size(buf)); 2751 } 2752 2753 /* Detach an arc_buf from a dbuf (tag) */ 2754 void 2755 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2756 { 2757 arc_buf_hdr_t *hdr = buf->b_hdr; 2758 2759 ASSERT3P(buf->b_data, !=, NULL); 2760 ASSERT(HDR_HAS_L1HDR(hdr)); 2761 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2762 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2763 2764 arc_loaned_bytes_update(arc_buf_size(buf)); 2765 } 2766 2767 static void 2768 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2769 { 2770 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2771 2772 df->l2df_abd = abd; 2773 df->l2df_size = size; 2774 df->l2df_type = type; 2775 mutex_enter(&l2arc_free_on_write_mtx); 2776 list_insert_head(l2arc_free_on_write, df); 2777 mutex_exit(&l2arc_free_on_write_mtx); 2778 } 2779 2780 static void 2781 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2782 { 2783 arc_state_t *state = hdr->b_l1hdr.b_state; 2784 arc_buf_contents_t type = arc_buf_type(hdr); 2785 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2786 2787 /* protected by hash lock, if in the hash table */ 2788 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2789 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2790 ASSERT(state != arc_anon && state != arc_l2c_only); 2791 2792 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2793 size, hdr); 2794 } 2795 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr); 2796 if (type == ARC_BUFC_METADATA) { 2797 arc_space_return(size, ARC_SPACE_META); 2798 } else { 2799 ASSERT(type == ARC_BUFC_DATA); 2800 arc_space_return(size, ARC_SPACE_DATA); 2801 } 2802 2803 if (free_rdata) { 2804 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2805 } else { 2806 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2807 } 2808 } 2809 2810 /* 2811 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2812 * data buffer, we transfer the refcount ownership to the hdr and update 2813 * the appropriate kstats. 2814 */ 2815 static void 2816 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2817 { 2818 /* LINTED */ 2819 arc_state_t *state = hdr->b_l1hdr.b_state; 2820 2821 ASSERT(arc_can_share(hdr, buf)); 2822 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2823 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2824 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2825 2826 /* 2827 * Start sharing the data buffer. We transfer the 2828 * refcount ownership to the hdr since it always owns 2829 * the refcount whenever an arc_buf_t is shared. 2830 */ 2831 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 2832 arc_hdr_size(hdr), buf, hdr); 2833 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2834 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 2835 HDR_ISTYPE_METADATA(hdr)); 2836 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2837 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2838 2839 /* 2840 * Since we've transferred ownership to the hdr we need 2841 * to increment its compressed and uncompressed kstats and 2842 * decrement the overhead size. 2843 */ 2844 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2845 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2846 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 2847 } 2848 2849 static void 2850 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2851 { 2852 /* LINTED */ 2853 arc_state_t *state = hdr->b_l1hdr.b_state; 2854 2855 ASSERT(arc_buf_is_shared(buf)); 2856 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2857 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2858 2859 /* 2860 * We are no longer sharing this buffer so we need 2861 * to transfer its ownership to the rightful owner. 2862 */ 2863 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 2864 arc_hdr_size(hdr), hdr, buf); 2865 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2866 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 2867 abd_put(hdr->b_l1hdr.b_pabd); 2868 hdr->b_l1hdr.b_pabd = NULL; 2869 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2870 2871 /* 2872 * Since the buffer is no longer shared between 2873 * the arc buf and the hdr, count it as overhead. 2874 */ 2875 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2876 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2877 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2878 } 2879 2880 /* 2881 * Remove an arc_buf_t from the hdr's buf list and return the last 2882 * arc_buf_t on the list. If no buffers remain on the list then return 2883 * NULL. 2884 */ 2885 static arc_buf_t * 2886 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2887 { 2888 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 2889 arc_buf_t *lastbuf = NULL; 2890 2891 ASSERT(HDR_HAS_L1HDR(hdr)); 2892 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2893 2894 /* 2895 * Remove the buf from the hdr list and locate the last 2896 * remaining buffer on the list. 2897 */ 2898 while (*bufp != NULL) { 2899 if (*bufp == buf) 2900 *bufp = buf->b_next; 2901 2902 /* 2903 * If we've removed a buffer in the middle of 2904 * the list then update the lastbuf and update 2905 * bufp. 2906 */ 2907 if (*bufp != NULL) { 2908 lastbuf = *bufp; 2909 bufp = &(*bufp)->b_next; 2910 } 2911 } 2912 buf->b_next = NULL; 2913 ASSERT3P(lastbuf, !=, buf); 2914 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 2915 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 2916 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 2917 2918 return (lastbuf); 2919 } 2920 2921 /* 2922 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's 2923 * list and free it. 2924 */ 2925 static void 2926 arc_buf_destroy_impl(arc_buf_t *buf) 2927 { 2928 arc_buf_hdr_t *hdr = buf->b_hdr; 2929 2930 /* 2931 * Free up the data associated with the buf but only if we're not 2932 * sharing this with the hdr. If we are sharing it with the hdr, the 2933 * hdr is responsible for doing the free. 2934 */ 2935 if (buf->b_data != NULL) { 2936 /* 2937 * We're about to change the hdr's b_flags. We must either 2938 * hold the hash_lock or be undiscoverable. 2939 */ 2940 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2941 2942 arc_cksum_verify(buf); 2943 arc_buf_unwatch(buf); 2944 2945 if (arc_buf_is_shared(buf)) { 2946 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2947 } else { 2948 uint64_t size = arc_buf_size(buf); 2949 arc_free_data_buf(hdr, buf->b_data, size, buf); 2950 ARCSTAT_INCR(arcstat_overhead_size, -size); 2951 } 2952 buf->b_data = NULL; 2953 2954 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 2955 hdr->b_l1hdr.b_bufcnt -= 1; 2956 2957 if (ARC_BUF_ENCRYPTED(buf)) { 2958 hdr->b_crypt_hdr.b_ebufcnt -= 1; 2959 2960 /* 2961 * If we have no more encrypted buffers and we've 2962 * already gotten a copy of the decrypted data we can 2963 * free b_rabd to save some space. 2964 */ 2965 if (hdr->b_crypt_hdr.b_ebufcnt == 0 && 2966 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL && 2967 !HDR_IO_IN_PROGRESS(hdr)) { 2968 arc_hdr_free_pabd(hdr, B_TRUE); 2969 } 2970 } 2971 } 2972 2973 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 2974 2975 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 2976 /* 2977 * If the current arc_buf_t is sharing its data buffer with the 2978 * hdr, then reassign the hdr's b_pabd to share it with the new 2979 * buffer at the end of the list. The shared buffer is always 2980 * the last one on the hdr's buffer list. 2981 * 2982 * There is an equivalent case for compressed bufs, but since 2983 * they aren't guaranteed to be the last buf in the list and 2984 * that is an exceedingly rare case, we just allow that space be 2985 * wasted temporarily. We must also be careful not to share 2986 * encrypted buffers, since they cannot be shared. 2987 */ 2988 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 2989 /* Only one buf can be shared at once */ 2990 VERIFY(!arc_buf_is_shared(lastbuf)); 2991 /* hdr is uncompressed so can't have compressed buf */ 2992 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 2993 2994 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2995 arc_hdr_free_pabd(hdr, B_FALSE); 2996 2997 /* 2998 * We must setup a new shared block between the 2999 * last buffer and the hdr. The data would have 3000 * been allocated by the arc buf so we need to transfer 3001 * ownership to the hdr since it's now being shared. 3002 */ 3003 arc_share_buf(hdr, lastbuf); 3004 } 3005 } else if (HDR_SHARED_DATA(hdr)) { 3006 /* 3007 * Uncompressed shared buffers are always at the end 3008 * of the list. Compressed buffers don't have the 3009 * same requirements. This makes it hard to 3010 * simply assert that the lastbuf is shared so 3011 * we rely on the hdr's compression flags to determine 3012 * if we have a compressed, shared buffer. 3013 */ 3014 ASSERT3P(lastbuf, !=, NULL); 3015 ASSERT(arc_buf_is_shared(lastbuf) || 3016 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3017 } 3018 3019 /* 3020 * Free the checksum if we're removing the last uncompressed buf from 3021 * this hdr. 3022 */ 3023 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3024 arc_cksum_free(hdr); 3025 } 3026 3027 /* clean up the buf */ 3028 buf->b_hdr = NULL; 3029 kmem_cache_free(buf_cache, buf); 3030 } 3031 3032 static void 3033 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr, int alloc_flags) 3034 { 3035 uint64_t size; 3036 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3037 boolean_t do_adapt = ((alloc_flags & ARC_HDR_DO_ADAPT) != 0); 3038 3039 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3040 ASSERT(HDR_HAS_L1HDR(hdr)); 3041 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3042 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3043 3044 if (alloc_rdata) { 3045 size = HDR_GET_PSIZE(hdr); 3046 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3047 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3048 do_adapt); 3049 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3050 } else { 3051 size = arc_hdr_size(hdr); 3052 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3053 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3054 do_adapt); 3055 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3056 } 3057 3058 ARCSTAT_INCR(arcstat_compressed_size, size); 3059 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3060 } 3061 3062 static void 3063 arc_hdr_free_pabd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3064 { 3065 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3066 3067 ASSERT(HDR_HAS_L1HDR(hdr)); 3068 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3069 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3070 3071 3072 /* 3073 * If the hdr is currently being written to the l2arc then 3074 * we defer freeing the data by adding it to the l2arc_free_on_write 3075 * list. The l2arc will free the data once it's finished 3076 * writing it to the l2arc device. 3077 */ 3078 if (HDR_L2_WRITING(hdr)) { 3079 arc_hdr_free_on_write(hdr, free_rdata); 3080 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3081 } else if (free_rdata) { 3082 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3083 } else { 3084 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 3085 size, hdr); 3086 } 3087 3088 if (free_rdata) { 3089 hdr->b_crypt_hdr.b_rabd = NULL; 3090 } else { 3091 hdr->b_l1hdr.b_pabd = NULL; 3092 } 3093 3094 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3095 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3096 3097 ARCSTAT_INCR(arcstat_compressed_size, -size); 3098 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3099 } 3100 3101 static arc_buf_hdr_t * 3102 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3103 boolean_t protected, enum zio_compress compression_type, 3104 arc_buf_contents_t type, boolean_t alloc_rdata) 3105 { 3106 arc_buf_hdr_t *hdr; 3107 int flags = ARC_HDR_DO_ADAPT; 3108 3109 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3110 if (protected) { 3111 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE); 3112 } else { 3113 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3114 } 3115 flags |= alloc_rdata ? ARC_HDR_ALLOC_RDATA : 0; 3116 ASSERT(HDR_EMPTY(hdr)); 3117 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3118 ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL); 3119 HDR_SET_PSIZE(hdr, psize); 3120 HDR_SET_LSIZE(hdr, lsize); 3121 hdr->b_spa = spa; 3122 hdr->b_type = type; 3123 hdr->b_flags = 0; 3124 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3125 arc_hdr_set_compress(hdr, compression_type); 3126 if (protected) 3127 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3128 3129 hdr->b_l1hdr.b_state = arc_anon; 3130 hdr->b_l1hdr.b_arc_access = 0; 3131 hdr->b_l1hdr.b_bufcnt = 0; 3132 hdr->b_l1hdr.b_buf = NULL; 3133 3134 /* 3135 * Allocate the hdr's buffer. This will contain either 3136 * the compressed or uncompressed data depending on the block 3137 * it references and compressed arc enablement. 3138 */ 3139 arc_hdr_alloc_pabd(hdr, flags); 3140 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3141 3142 return (hdr); 3143 } 3144 3145 /* 3146 * Transition between the two allocation states for the arc_buf_hdr struct. 3147 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3148 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3149 * version is used when a cache buffer is only in the L2ARC in order to reduce 3150 * memory usage. 3151 */ 3152 static arc_buf_hdr_t * 3153 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3154 { 3155 ASSERT(HDR_HAS_L2HDR(hdr)); 3156 3157 arc_buf_hdr_t *nhdr; 3158 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3159 3160 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3161 (old == hdr_l2only_cache && new == hdr_full_cache)); 3162 3163 /* 3164 * if the caller wanted a new full header and the header is to be 3165 * encrypted we will actually allocate the header from the full crypt 3166 * cache instead. The same applies to freeing from the old cache. 3167 */ 3168 if (HDR_PROTECTED(hdr) && new == hdr_full_cache) 3169 new = hdr_full_crypt_cache; 3170 if (HDR_PROTECTED(hdr) && old == hdr_full_cache) 3171 old = hdr_full_crypt_cache; 3172 3173 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3174 3175 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3176 buf_hash_remove(hdr); 3177 3178 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 3179 3180 if (new == hdr_full_cache || new == hdr_full_crypt_cache) { 3181 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3182 /* 3183 * arc_access and arc_change_state need to be aware that a 3184 * header has just come out of L2ARC, so we set its state to 3185 * l2c_only even though it's about to change. 3186 */ 3187 nhdr->b_l1hdr.b_state = arc_l2c_only; 3188 3189 /* Verify previous threads set to NULL before freeing */ 3190 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3191 ASSERT(!HDR_HAS_RABD(hdr)); 3192 } else { 3193 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3194 ASSERT0(hdr->b_l1hdr.b_bufcnt); 3195 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3196 3197 /* 3198 * If we've reached here, We must have been called from 3199 * arc_evict_hdr(), as such we should have already been 3200 * removed from any ghost list we were previously on 3201 * (which protects us from racing with arc_evict_state), 3202 * thus no locking is needed during this check. 3203 */ 3204 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3205 3206 /* 3207 * A buffer must not be moved into the arc_l2c_only 3208 * state if it's not finished being written out to the 3209 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3210 * might try to be accessed, even though it was removed. 3211 */ 3212 VERIFY(!HDR_L2_WRITING(hdr)); 3213 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3214 ASSERT(!HDR_HAS_RABD(hdr)); 3215 3216 #ifdef ZFS_DEBUG 3217 if (hdr->b_l1hdr.b_thawed != NULL) { 3218 kmem_free(hdr->b_l1hdr.b_thawed, 1); 3219 hdr->b_l1hdr.b_thawed = NULL; 3220 } 3221 #endif 3222 3223 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3224 } 3225 /* 3226 * The header has been reallocated so we need to re-insert it into any 3227 * lists it was on. 3228 */ 3229 (void) buf_hash_insert(nhdr, NULL); 3230 3231 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3232 3233 mutex_enter(&dev->l2ad_mtx); 3234 3235 /* 3236 * We must place the realloc'ed header back into the list at 3237 * the same spot. Otherwise, if it's placed earlier in the list, 3238 * l2arc_write_buffers() could find it during the function's 3239 * write phase, and try to write it out to the l2arc. 3240 */ 3241 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3242 list_remove(&dev->l2ad_buflist, hdr); 3243 3244 mutex_exit(&dev->l2ad_mtx); 3245 3246 /* 3247 * Since we're using the pointer address as the tag when 3248 * incrementing and decrementing the l2ad_alloc refcount, we 3249 * must remove the old pointer (that we're about to destroy) and 3250 * add the new pointer to the refcount. Otherwise we'd remove 3251 * the wrong pointer address when calling arc_hdr_destroy() later. 3252 */ 3253 3254 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3255 hdr); 3256 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), 3257 nhdr); 3258 3259 buf_discard_identity(hdr); 3260 kmem_cache_free(old, hdr); 3261 3262 return (nhdr); 3263 } 3264 3265 /* 3266 * This function allows an L1 header to be reallocated as a crypt 3267 * header and vice versa. If we are going to a crypt header, the 3268 * new fields will be zeroed out. 3269 */ 3270 static arc_buf_hdr_t * 3271 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt) 3272 { 3273 arc_buf_hdr_t *nhdr; 3274 arc_buf_t *buf; 3275 kmem_cache_t *ncache, *ocache; 3276 3277 ASSERT(HDR_HAS_L1HDR(hdr)); 3278 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt); 3279 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3280 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3281 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node)); 3282 ASSERT3P(hdr->b_hash_next, ==, NULL); 3283 3284 if (need_crypt) { 3285 ncache = hdr_full_crypt_cache; 3286 ocache = hdr_full_cache; 3287 } else { 3288 ncache = hdr_full_cache; 3289 ocache = hdr_full_crypt_cache; 3290 } 3291 3292 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE); 3293 3294 /* 3295 * Copy all members that aren't locks or condvars to the new header. 3296 * No lists are pointing to us (as we asserted above), so we don't 3297 * need to worry about the list nodes. 3298 */ 3299 nhdr->b_dva = hdr->b_dva; 3300 nhdr->b_birth = hdr->b_birth; 3301 nhdr->b_type = hdr->b_type; 3302 nhdr->b_flags = hdr->b_flags; 3303 nhdr->b_psize = hdr->b_psize; 3304 nhdr->b_lsize = hdr->b_lsize; 3305 nhdr->b_spa = hdr->b_spa; 3306 nhdr->b_l2hdr.b_dev = hdr->b_l2hdr.b_dev; 3307 nhdr->b_l2hdr.b_daddr = hdr->b_l2hdr.b_daddr; 3308 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum; 3309 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt; 3310 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap; 3311 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state; 3312 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access; 3313 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb; 3314 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd; 3315 #ifdef ZFS_DEBUG 3316 if (hdr->b_l1hdr.b_thawed != NULL) { 3317 nhdr->b_l1hdr.b_thawed = hdr->b_l1hdr.b_thawed; 3318 hdr->b_l1hdr.b_thawed = NULL; 3319 } 3320 #endif 3321 3322 /* 3323 * This refcount_add() exists only to ensure that the individual 3324 * arc buffers always point to a header that is referenced, avoiding 3325 * a small race condition that could trigger ASSERTs. 3326 */ 3327 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG); 3328 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf; 3329 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { 3330 mutex_enter(&buf->b_evict_lock); 3331 buf->b_hdr = nhdr; 3332 mutex_exit(&buf->b_evict_lock); 3333 } 3334 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt); 3335 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG); 3336 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3337 3338 if (need_crypt) { 3339 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED); 3340 } else { 3341 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED); 3342 } 3343 3344 /* unset all members of the original hdr */ 3345 bzero(&hdr->b_dva, sizeof (dva_t)); 3346 hdr->b_birth = 0; 3347 hdr->b_type = ARC_BUFC_INVALID; 3348 hdr->b_flags = 0; 3349 hdr->b_psize = 0; 3350 hdr->b_lsize = 0; 3351 hdr->b_spa = 0; 3352 hdr->b_l2hdr.b_dev = NULL; 3353 hdr->b_l2hdr.b_daddr = 0; 3354 hdr->b_l1hdr.b_freeze_cksum = NULL; 3355 hdr->b_l1hdr.b_buf = NULL; 3356 hdr->b_l1hdr.b_bufcnt = 0; 3357 hdr->b_l1hdr.b_byteswap = 0; 3358 hdr->b_l1hdr.b_state = NULL; 3359 hdr->b_l1hdr.b_arc_access = 0; 3360 hdr->b_l1hdr.b_acb = NULL; 3361 hdr->b_l1hdr.b_pabd = NULL; 3362 3363 if (ocache == hdr_full_crypt_cache) { 3364 ASSERT(!HDR_HAS_RABD(hdr)); 3365 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE; 3366 hdr->b_crypt_hdr.b_ebufcnt = 0; 3367 hdr->b_crypt_hdr.b_dsobj = 0; 3368 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3369 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3370 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3371 } 3372 3373 buf_discard_identity(hdr); 3374 kmem_cache_free(ocache, hdr); 3375 3376 return (nhdr); 3377 } 3378 3379 /* 3380 * This function is used by the send / receive code to convert a newly 3381 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3382 * is also used to allow the root objset block to be uupdated without altering 3383 * its embedded MACs. Both block types will always be uncompressed so we do not 3384 * have to worry about compression type or psize. 3385 */ 3386 void 3387 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3388 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3389 const uint8_t *mac) 3390 { 3391 arc_buf_hdr_t *hdr = buf->b_hdr; 3392 3393 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3394 ASSERT(HDR_HAS_L1HDR(hdr)); 3395 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3396 3397 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3398 if (!HDR_PROTECTED(hdr)) 3399 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE); 3400 hdr->b_crypt_hdr.b_dsobj = dsobj; 3401 hdr->b_crypt_hdr.b_ot = ot; 3402 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3403 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3404 if (!arc_hdr_has_uncompressed_buf(hdr)) 3405 arc_cksum_free(hdr); 3406 3407 if (salt != NULL) 3408 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3409 if (iv != NULL) 3410 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3411 if (mac != NULL) 3412 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3413 } 3414 3415 /* 3416 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3417 * The buf is returned thawed since we expect the consumer to modify it. 3418 */ 3419 arc_buf_t * 3420 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3421 { 3422 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3423 B_FALSE, ZIO_COMPRESS_OFF, type, B_FALSE); 3424 3425 arc_buf_t *buf = NULL; 3426 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3427 B_FALSE, B_FALSE, &buf)); 3428 arc_buf_thaw(buf); 3429 3430 return (buf); 3431 } 3432 3433 /* 3434 * Allocates an ARC buf header that's in an evicted & L2-cached state. 3435 * This is used during l2arc reconstruction to make empty ARC buffers 3436 * which circumvent the regular disk->arc->l2arc path and instead come 3437 * into being in the reverse order, i.e. l2arc->arc. 3438 */ 3439 arc_buf_hdr_t * 3440 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 3441 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, 3442 enum zio_compress compress, boolean_t protected, 3443 boolean_t prefetch, arc_state_type_t arcs_state) 3444 { 3445 arc_buf_hdr_t *hdr; 3446 3447 ASSERT(size != 0); 3448 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 3449 hdr->b_birth = birth; 3450 hdr->b_type = type; 3451 hdr->b_flags = 0; 3452 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 3453 HDR_SET_LSIZE(hdr, size); 3454 HDR_SET_PSIZE(hdr, psize); 3455 arc_hdr_set_compress(hdr, compress); 3456 if (protected) 3457 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3458 if (prefetch) 3459 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 3460 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 3461 3462 hdr->b_dva = dva; 3463 3464 hdr->b_l2hdr.b_dev = dev; 3465 hdr->b_l2hdr.b_daddr = daddr; 3466 hdr->b_l2hdr.b_arcs_state = arcs_state; 3467 3468 return (hdr); 3469 } 3470 3471 /* 3472 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3473 * for bufs containing metadata. 3474 */ 3475 arc_buf_t * 3476 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3477 enum zio_compress compression_type) 3478 { 3479 ASSERT3U(lsize, >, 0); 3480 ASSERT3U(lsize, >=, psize); 3481 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3482 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3483 3484 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3485 B_FALSE, compression_type, ARC_BUFC_DATA, B_FALSE); 3486 3487 arc_buf_t *buf = NULL; 3488 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3489 B_TRUE, B_FALSE, B_FALSE, &buf)); 3490 arc_buf_thaw(buf); 3491 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3492 3493 if (!arc_buf_is_shared(buf)) { 3494 /* 3495 * To ensure that the hdr has the correct data in it if we call 3496 * arc_untransform() on this buf before it's been written to 3497 * disk, it's easiest if we just set up sharing between the 3498 * buf and the hdr. 3499 */ 3500 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd)); 3501 arc_hdr_free_pabd(hdr, B_FALSE); 3502 arc_share_buf(hdr, buf); 3503 } 3504 3505 return (buf); 3506 } 3507 3508 arc_buf_t * 3509 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder, 3510 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 3511 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3512 enum zio_compress compression_type) 3513 { 3514 arc_buf_hdr_t *hdr; 3515 arc_buf_t *buf; 3516 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3517 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3518 3519 ASSERT3U(lsize, >, 0); 3520 ASSERT3U(lsize, >=, psize); 3521 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3522 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3523 3524 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3525 compression_type, type, B_TRUE); 3526 3527 hdr->b_crypt_hdr.b_dsobj = dsobj; 3528 hdr->b_crypt_hdr.b_ot = ot; 3529 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3530 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3531 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3532 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3533 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3534 3535 /* 3536 * This buffer will be considered encrypted even if the ot is not an 3537 * encrypted type. It will become authenticated instead in 3538 * arc_write_ready(). 3539 */ 3540 buf = NULL; 3541 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3542 B_FALSE, B_FALSE, &buf)); 3543 arc_buf_thaw(buf); 3544 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3545 3546 return (buf); 3547 } 3548 3549 static void 3550 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr, 3551 boolean_t state_only) 3552 { 3553 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3554 l2arc_dev_t *dev = l2hdr->b_dev; 3555 uint64_t lsize = HDR_GET_LSIZE(hdr); 3556 uint64_t psize = HDR_GET_PSIZE(hdr); 3557 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3558 arc_buf_contents_t type = hdr->b_type; 3559 int64_t lsize_s; 3560 int64_t psize_s; 3561 int64_t asize_s; 3562 3563 if (incr) { 3564 lsize_s = lsize; 3565 psize_s = psize; 3566 asize_s = asize; 3567 } else { 3568 lsize_s = -lsize; 3569 psize_s = -psize; 3570 asize_s = -asize; 3571 } 3572 3573 /* If the buffer is a prefetch, count it as such. */ 3574 if (HDR_PREFETCH(hdr)) { 3575 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s); 3576 } else { 3577 /* 3578 * We use the value stored in the L2 header upon initial 3579 * caching in L2ARC. This value will be updated in case 3580 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC 3581 * metadata (log entry) cannot currently be updated. Having 3582 * the ARC state in the L2 header solves the problem of a 3583 * possibly absent L1 header (apparent in buffers restored 3584 * from persistent L2ARC). 3585 */ 3586 switch (hdr->b_l2hdr.b_arcs_state) { 3587 case ARC_STATE_MRU_GHOST: 3588 case ARC_STATE_MRU: 3589 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s); 3590 break; 3591 case ARC_STATE_MFU_GHOST: 3592 case ARC_STATE_MFU: 3593 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s); 3594 break; 3595 default: 3596 break; 3597 } 3598 } 3599 3600 if (state_only) 3601 return; 3602 3603 ARCSTAT_INCR(arcstat_l2_psize, psize_s); 3604 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s); 3605 3606 switch (type) { 3607 case ARC_BUFC_DATA: 3608 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s); 3609 break; 3610 case ARC_BUFC_METADATA: 3611 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s); 3612 break; 3613 default: 3614 break; 3615 } 3616 } 3617 3618 3619 static void 3620 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3621 { 3622 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3623 l2arc_dev_t *dev = l2hdr->b_dev; 3624 uint64_t psize = HDR_GET_PSIZE(hdr); 3625 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3626 3627 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3628 ASSERT(HDR_HAS_L2HDR(hdr)); 3629 3630 list_remove(&dev->l2ad_buflist, hdr); 3631 3632 l2arc_hdr_arcstats_decrement(hdr); 3633 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3634 3635 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3636 hdr); 3637 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3638 } 3639 3640 static void 3641 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3642 { 3643 if (HDR_HAS_L1HDR(hdr)) { 3644 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3645 hdr->b_l1hdr.b_bufcnt > 0); 3646 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3647 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3648 } 3649 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3650 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3651 3652 if (HDR_HAS_L2HDR(hdr)) { 3653 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3654 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3655 3656 if (!buflist_held) 3657 mutex_enter(&dev->l2ad_mtx); 3658 3659 /* 3660 * Even though we checked this conditional above, we 3661 * need to check this again now that we have the 3662 * l2ad_mtx. This is because we could be racing with 3663 * another thread calling l2arc_evict() which might have 3664 * destroyed this header's L2 portion as we were waiting 3665 * to acquire the l2ad_mtx. If that happens, we don't 3666 * want to re-destroy the header's L2 portion. 3667 */ 3668 if (HDR_HAS_L2HDR(hdr)) 3669 arc_hdr_l2hdr_destroy(hdr); 3670 3671 if (!buflist_held) 3672 mutex_exit(&dev->l2ad_mtx); 3673 } 3674 3675 /* 3676 * The header's identity can only be safely discarded once it is no 3677 * longer discoverable. This requires removing it from the hash table 3678 * and the l2arc header list. After this point the hash lock can not 3679 * be used to protect the header. 3680 */ 3681 if (!HDR_EMPTY(hdr)) 3682 buf_discard_identity(hdr); 3683 3684 if (HDR_HAS_L1HDR(hdr)) { 3685 arc_cksum_free(hdr); 3686 3687 while (hdr->b_l1hdr.b_buf != NULL) 3688 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3689 3690 #ifdef ZFS_DEBUG 3691 if (hdr->b_l1hdr.b_thawed != NULL) { 3692 kmem_free(hdr->b_l1hdr.b_thawed, 1); 3693 hdr->b_l1hdr.b_thawed = NULL; 3694 } 3695 #endif 3696 3697 if (hdr->b_l1hdr.b_pabd != NULL) 3698 arc_hdr_free_pabd(hdr, B_FALSE); 3699 3700 if (HDR_HAS_RABD(hdr)) 3701 arc_hdr_free_pabd(hdr, B_TRUE); 3702 } 3703 3704 ASSERT3P(hdr->b_hash_next, ==, NULL); 3705 if (HDR_HAS_L1HDR(hdr)) { 3706 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3707 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3708 3709 if (!HDR_PROTECTED(hdr)) { 3710 kmem_cache_free(hdr_full_cache, hdr); 3711 } else { 3712 kmem_cache_free(hdr_full_crypt_cache, hdr); 3713 } 3714 } else { 3715 kmem_cache_free(hdr_l2only_cache, hdr); 3716 } 3717 } 3718 3719 void 3720 arc_buf_destroy(arc_buf_t *buf, void* tag) 3721 { 3722 arc_buf_hdr_t *hdr = buf->b_hdr; 3723 3724 if (hdr->b_l1hdr.b_state == arc_anon) { 3725 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3726 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3727 VERIFY0(remove_reference(hdr, NULL, tag)); 3728 arc_hdr_destroy(hdr); 3729 return; 3730 } 3731 3732 kmutex_t *hash_lock = HDR_LOCK(hdr); 3733 mutex_enter(hash_lock); 3734 3735 ASSERT3P(hdr, ==, buf->b_hdr); 3736 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3737 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3738 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3739 ASSERT3P(buf->b_data, !=, NULL); 3740 3741 (void) remove_reference(hdr, hash_lock, tag); 3742 arc_buf_destroy_impl(buf); 3743 mutex_exit(hash_lock); 3744 } 3745 3746 /* 3747 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3748 * state of the header is dependent on its state prior to entering this 3749 * function. The following transitions are possible: 3750 * 3751 * - arc_mru -> arc_mru_ghost 3752 * - arc_mfu -> arc_mfu_ghost 3753 * - arc_mru_ghost -> arc_l2c_only 3754 * - arc_mru_ghost -> deleted 3755 * - arc_mfu_ghost -> arc_l2c_only 3756 * - arc_mfu_ghost -> deleted 3757 */ 3758 static int64_t 3759 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3760 { 3761 arc_state_t *evicted_state, *state; 3762 int64_t bytes_evicted = 0; 3763 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3764 zfs_arc_min_prescient_prefetch_ms : zfs_arc_min_prefetch_ms; 3765 3766 ASSERT(MUTEX_HELD(hash_lock)); 3767 ASSERT(HDR_HAS_L1HDR(hdr)); 3768 3769 state = hdr->b_l1hdr.b_state; 3770 if (GHOST_STATE(state)) { 3771 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3772 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3773 3774 /* 3775 * l2arc_write_buffers() relies on a header's L1 portion 3776 * (i.e. its b_pabd field) during its write phase. 3777 * Thus, we cannot push a header onto the arc_l2c_only 3778 * state (removing its L1 piece) until the header is 3779 * done being written to the l2arc. 3780 */ 3781 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3782 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3783 return (bytes_evicted); 3784 } 3785 3786 ARCSTAT_BUMP(arcstat_deleted); 3787 bytes_evicted += HDR_GET_LSIZE(hdr); 3788 3789 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3790 3791 if (HDR_HAS_L2HDR(hdr)) { 3792 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3793 ASSERT(!HDR_HAS_RABD(hdr)); 3794 /* 3795 * This buffer is cached on the 2nd Level ARC; 3796 * don't destroy the header. 3797 */ 3798 arc_change_state(arc_l2c_only, hdr, hash_lock); 3799 /* 3800 * dropping from L1+L2 cached to L2-only, 3801 * realloc to remove the L1 header. 3802 */ 3803 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3804 hdr_l2only_cache); 3805 } else { 3806 arc_change_state(arc_anon, hdr, hash_lock); 3807 arc_hdr_destroy(hdr); 3808 } 3809 return (bytes_evicted); 3810 } 3811 3812 ASSERT(state == arc_mru || state == arc_mfu); 3813 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3814 3815 /* prefetch buffers have a minimum lifespan */ 3816 if (HDR_IO_IN_PROGRESS(hdr) || 3817 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3818 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < min_lifetime * hz)) { 3819 ARCSTAT_BUMP(arcstat_evict_skip); 3820 return (bytes_evicted); 3821 } 3822 3823 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3824 while (hdr->b_l1hdr.b_buf) { 3825 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3826 if (!mutex_tryenter(&buf->b_evict_lock)) { 3827 ARCSTAT_BUMP(arcstat_mutex_miss); 3828 break; 3829 } 3830 if (buf->b_data != NULL) 3831 bytes_evicted += HDR_GET_LSIZE(hdr); 3832 mutex_exit(&buf->b_evict_lock); 3833 arc_buf_destroy_impl(buf); 3834 } 3835 3836 if (HDR_HAS_L2HDR(hdr)) { 3837 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3838 } else { 3839 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3840 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3841 HDR_GET_LSIZE(hdr)); 3842 3843 switch (state->arcs_state) { 3844 case ARC_STATE_MRU: 3845 ARCSTAT_INCR( 3846 arcstat_evict_l2_eligible_mru, 3847 HDR_GET_LSIZE(hdr)); 3848 break; 3849 case ARC_STATE_MFU: 3850 ARCSTAT_INCR( 3851 arcstat_evict_l2_eligible_mfu, 3852 HDR_GET_LSIZE(hdr)); 3853 break; 3854 default: 3855 break; 3856 } 3857 } else { 3858 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3859 HDR_GET_LSIZE(hdr)); 3860 } 3861 } 3862 3863 if (hdr->b_l1hdr.b_bufcnt == 0) { 3864 arc_cksum_free(hdr); 3865 3866 bytes_evicted += arc_hdr_size(hdr); 3867 3868 /* 3869 * If this hdr is being evicted and has a compressed 3870 * buffer then we discard it here before we change states. 3871 * This ensures that the accounting is updated correctly 3872 * in arc_free_data_impl(). 3873 */ 3874 if (hdr->b_l1hdr.b_pabd != NULL) 3875 arc_hdr_free_pabd(hdr, B_FALSE); 3876 3877 if (HDR_HAS_RABD(hdr)) 3878 arc_hdr_free_pabd(hdr, B_TRUE); 3879 3880 arc_change_state(evicted_state, hdr, hash_lock); 3881 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3882 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 3883 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3884 } 3885 3886 return (bytes_evicted); 3887 } 3888 3889 static uint64_t 3890 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 3891 uint64_t spa, int64_t bytes) 3892 { 3893 multilist_sublist_t *mls; 3894 uint64_t bytes_evicted = 0; 3895 arc_buf_hdr_t *hdr; 3896 kmutex_t *hash_lock; 3897 int evict_count = 0; 3898 3899 ASSERT3P(marker, !=, NULL); 3900 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3901 3902 mls = multilist_sublist_lock(ml, idx); 3903 3904 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 3905 hdr = multilist_sublist_prev(mls, marker)) { 3906 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 3907 (evict_count >= zfs_arc_evict_batch_limit)) 3908 break; 3909 3910 /* 3911 * To keep our iteration location, move the marker 3912 * forward. Since we're not holding hdr's hash lock, we 3913 * must be very careful and not remove 'hdr' from the 3914 * sublist. Otherwise, other consumers might mistake the 3915 * 'hdr' as not being on a sublist when they call the 3916 * multilist_link_active() function (they all rely on 3917 * the hash lock protecting concurrent insertions and 3918 * removals). multilist_sublist_move_forward() was 3919 * specifically implemented to ensure this is the case 3920 * (only 'marker' will be removed and re-inserted). 3921 */ 3922 multilist_sublist_move_forward(mls, marker); 3923 3924 /* 3925 * The only case where the b_spa field should ever be 3926 * zero, is the marker headers inserted by 3927 * arc_evict_state(). It's possible for multiple threads 3928 * to be calling arc_evict_state() concurrently (e.g. 3929 * dsl_pool_close() and zio_inject_fault()), so we must 3930 * skip any markers we see from these other threads. 3931 */ 3932 if (hdr->b_spa == 0) 3933 continue; 3934 3935 /* we're only interested in evicting buffers of a certain spa */ 3936 if (spa != 0 && hdr->b_spa != spa) { 3937 ARCSTAT_BUMP(arcstat_evict_skip); 3938 continue; 3939 } 3940 3941 hash_lock = HDR_LOCK(hdr); 3942 3943 /* 3944 * We aren't calling this function from any code path 3945 * that would already be holding a hash lock, so we're 3946 * asserting on this assumption to be defensive in case 3947 * this ever changes. Without this check, it would be 3948 * possible to incorrectly increment arcstat_mutex_miss 3949 * below (e.g. if the code changed such that we called 3950 * this function with a hash lock held). 3951 */ 3952 ASSERT(!MUTEX_HELD(hash_lock)); 3953 3954 if (mutex_tryenter(hash_lock)) { 3955 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 3956 mutex_exit(hash_lock); 3957 3958 bytes_evicted += evicted; 3959 3960 /* 3961 * If evicted is zero, arc_evict_hdr() must have 3962 * decided to skip this header, don't increment 3963 * evict_count in this case. 3964 */ 3965 if (evicted != 0) 3966 evict_count++; 3967 3968 /* 3969 * If arc_size isn't overflowing, signal any 3970 * threads that might happen to be waiting. 3971 * 3972 * For each header evicted, we wake up a single 3973 * thread. If we used cv_broadcast, we could 3974 * wake up "too many" threads causing arc_size 3975 * to significantly overflow arc_c; since 3976 * arc_get_data_impl() doesn't check for overflow 3977 * when it's woken up (it doesn't because it's 3978 * possible for the ARC to be overflowing while 3979 * full of un-evictable buffers, and the 3980 * function should proceed in this case). 3981 * 3982 * If threads are left sleeping, due to not 3983 * using cv_broadcast here, they will be woken 3984 * up via cv_broadcast in arc_adjust_cb() just 3985 * before arc_adjust_zthr sleeps. 3986 */ 3987 mutex_enter(&arc_adjust_lock); 3988 if (!arc_is_overflowing()) 3989 cv_signal(&arc_adjust_waiters_cv); 3990 mutex_exit(&arc_adjust_lock); 3991 } else { 3992 ARCSTAT_BUMP(arcstat_mutex_miss); 3993 } 3994 } 3995 3996 multilist_sublist_unlock(mls); 3997 3998 return (bytes_evicted); 3999 } 4000 4001 /* 4002 * Evict buffers from the given arc state, until we've removed the 4003 * specified number of bytes. Move the removed buffers to the 4004 * appropriate evict state. 4005 * 4006 * This function makes a "best effort". It skips over any buffers 4007 * it can't get a hash_lock on, and so, may not catch all candidates. 4008 * It may also return without evicting as much space as requested. 4009 * 4010 * If bytes is specified using the special value ARC_EVICT_ALL, this 4011 * will evict all available (i.e. unlocked and evictable) buffers from 4012 * the given arc state; which is used by arc_flush(). 4013 */ 4014 static uint64_t 4015 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 4016 arc_buf_contents_t type) 4017 { 4018 uint64_t total_evicted = 0; 4019 multilist_t *ml = state->arcs_list[type]; 4020 int num_sublists; 4021 arc_buf_hdr_t **markers; 4022 4023 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 4024 4025 num_sublists = multilist_get_num_sublists(ml); 4026 4027 /* 4028 * If we've tried to evict from each sublist, made some 4029 * progress, but still have not hit the target number of bytes 4030 * to evict, we want to keep trying. The markers allow us to 4031 * pick up where we left off for each individual sublist, rather 4032 * than starting from the tail each time. 4033 */ 4034 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 4035 for (int i = 0; i < num_sublists; i++) { 4036 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4037 4038 /* 4039 * A b_spa of 0 is used to indicate that this header is 4040 * a marker. This fact is used in arc_adjust_type() and 4041 * arc_evict_state_impl(). 4042 */ 4043 markers[i]->b_spa = 0; 4044 4045 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4046 multilist_sublist_insert_tail(mls, markers[i]); 4047 multilist_sublist_unlock(mls); 4048 } 4049 4050 /* 4051 * While we haven't hit our target number of bytes to evict, or 4052 * we're evicting all available buffers. 4053 */ 4054 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 4055 /* 4056 * Start eviction using a randomly selected sublist, 4057 * this is to try and evenly balance eviction across all 4058 * sublists. Always starting at the same sublist 4059 * (e.g. index 0) would cause evictions to favor certain 4060 * sublists over others. 4061 */ 4062 int sublist_idx = multilist_get_random_index(ml); 4063 uint64_t scan_evicted = 0; 4064 4065 for (int i = 0; i < num_sublists; i++) { 4066 uint64_t bytes_remaining; 4067 uint64_t bytes_evicted; 4068 4069 if (bytes == ARC_EVICT_ALL) 4070 bytes_remaining = ARC_EVICT_ALL; 4071 else if (total_evicted < bytes) 4072 bytes_remaining = bytes - total_evicted; 4073 else 4074 break; 4075 4076 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4077 markers[sublist_idx], spa, bytes_remaining); 4078 4079 scan_evicted += bytes_evicted; 4080 total_evicted += bytes_evicted; 4081 4082 /* we've reached the end, wrap to the beginning */ 4083 if (++sublist_idx >= num_sublists) 4084 sublist_idx = 0; 4085 } 4086 4087 /* 4088 * If we didn't evict anything during this scan, we have 4089 * no reason to believe we'll evict more during another 4090 * scan, so break the loop. 4091 */ 4092 if (scan_evicted == 0) { 4093 /* This isn't possible, let's make that obvious */ 4094 ASSERT3S(bytes, !=, 0); 4095 4096 /* 4097 * When bytes is ARC_EVICT_ALL, the only way to 4098 * break the loop is when scan_evicted is zero. 4099 * In that case, we actually have evicted enough, 4100 * so we don't want to increment the kstat. 4101 */ 4102 if (bytes != ARC_EVICT_ALL) { 4103 ASSERT3S(total_evicted, <, bytes); 4104 ARCSTAT_BUMP(arcstat_evict_not_enough); 4105 } 4106 4107 break; 4108 } 4109 } 4110 4111 for (int i = 0; i < num_sublists; i++) { 4112 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4113 multilist_sublist_remove(mls, markers[i]); 4114 multilist_sublist_unlock(mls); 4115 4116 kmem_cache_free(hdr_full_cache, markers[i]); 4117 } 4118 kmem_free(markers, sizeof (*markers) * num_sublists); 4119 4120 return (total_evicted); 4121 } 4122 4123 /* 4124 * Flush all "evictable" data of the given type from the arc state 4125 * specified. This will not evict any "active" buffers (i.e. referenced). 4126 * 4127 * When 'retry' is set to B_FALSE, the function will make a single pass 4128 * over the state and evict any buffers that it can. Since it doesn't 4129 * continually retry the eviction, it might end up leaving some buffers 4130 * in the ARC due to lock misses. 4131 * 4132 * When 'retry' is set to B_TRUE, the function will continually retry the 4133 * eviction until *all* evictable buffers have been removed from the 4134 * state. As a result, if concurrent insertions into the state are 4135 * allowed (e.g. if the ARC isn't shutting down), this function might 4136 * wind up in an infinite loop, continually trying to evict buffers. 4137 */ 4138 static uint64_t 4139 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4140 boolean_t retry) 4141 { 4142 uint64_t evicted = 0; 4143 4144 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4145 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 4146 4147 if (!retry) 4148 break; 4149 } 4150 4151 return (evicted); 4152 } 4153 4154 /* 4155 * Evict the specified number of bytes from the state specified, 4156 * restricting eviction to the spa and type given. This function 4157 * prevents us from trying to evict more from a state's list than 4158 * is "evictable", and to skip evicting altogether when passed a 4159 * negative value for "bytes". In contrast, arc_evict_state() will 4160 * evict everything it can, when passed a negative value for "bytes". 4161 */ 4162 static uint64_t 4163 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 4164 arc_buf_contents_t type) 4165 { 4166 int64_t delta; 4167 4168 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4169 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4170 bytes); 4171 return (arc_evict_state(state, spa, delta, type)); 4172 } 4173 4174 return (0); 4175 } 4176 4177 /* 4178 * Evict metadata buffers from the cache, such that arc_meta_used is 4179 * capped by the arc_meta_limit tunable. 4180 */ 4181 static uint64_t 4182 arc_adjust_meta(uint64_t meta_used) 4183 { 4184 uint64_t total_evicted = 0; 4185 int64_t target; 4186 4187 /* 4188 * If we're over the meta limit, we want to evict enough 4189 * metadata to get back under the meta limit. We don't want to 4190 * evict so much that we drop the MRU below arc_p, though. If 4191 * we're over the meta limit more than we're over arc_p, we 4192 * evict some from the MRU here, and some from the MFU below. 4193 */ 4194 target = MIN((int64_t)(meta_used - arc_meta_limit), 4195 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4196 zfs_refcount_count(&arc_mru->arcs_size) - arc_p)); 4197 4198 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4199 4200 /* 4201 * Similar to the above, we want to evict enough bytes to get us 4202 * below the meta limit, but not so much as to drop us below the 4203 * space allotted to the MFU (which is defined as arc_c - arc_p). 4204 */ 4205 target = MIN((int64_t)(meta_used - arc_meta_limit), 4206 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) - 4207 (arc_c - arc_p))); 4208 4209 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4210 4211 return (total_evicted); 4212 } 4213 4214 /* 4215 * Return the type of the oldest buffer in the given arc state 4216 * 4217 * This function will select a random sublist of type ARC_BUFC_DATA and 4218 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 4219 * is compared, and the type which contains the "older" buffer will be 4220 * returned. 4221 */ 4222 static arc_buf_contents_t 4223 arc_adjust_type(arc_state_t *state) 4224 { 4225 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA]; 4226 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA]; 4227 int data_idx = multilist_get_random_index(data_ml); 4228 int meta_idx = multilist_get_random_index(meta_ml); 4229 multilist_sublist_t *data_mls; 4230 multilist_sublist_t *meta_mls; 4231 arc_buf_contents_t type; 4232 arc_buf_hdr_t *data_hdr; 4233 arc_buf_hdr_t *meta_hdr; 4234 4235 /* 4236 * We keep the sublist lock until we're finished, to prevent 4237 * the headers from being destroyed via arc_evict_state(). 4238 */ 4239 data_mls = multilist_sublist_lock(data_ml, data_idx); 4240 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 4241 4242 /* 4243 * These two loops are to ensure we skip any markers that 4244 * might be at the tail of the lists due to arc_evict_state(). 4245 */ 4246 4247 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 4248 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 4249 if (data_hdr->b_spa != 0) 4250 break; 4251 } 4252 4253 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 4254 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 4255 if (meta_hdr->b_spa != 0) 4256 break; 4257 } 4258 4259 if (data_hdr == NULL && meta_hdr == NULL) { 4260 type = ARC_BUFC_DATA; 4261 } else if (data_hdr == NULL) { 4262 ASSERT3P(meta_hdr, !=, NULL); 4263 type = ARC_BUFC_METADATA; 4264 } else if (meta_hdr == NULL) { 4265 ASSERT3P(data_hdr, !=, NULL); 4266 type = ARC_BUFC_DATA; 4267 } else { 4268 ASSERT3P(data_hdr, !=, NULL); 4269 ASSERT3P(meta_hdr, !=, NULL); 4270 4271 /* The headers can't be on the sublist without an L1 header */ 4272 ASSERT(HDR_HAS_L1HDR(data_hdr)); 4273 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 4274 4275 if (data_hdr->b_l1hdr.b_arc_access < 4276 meta_hdr->b_l1hdr.b_arc_access) { 4277 type = ARC_BUFC_DATA; 4278 } else { 4279 type = ARC_BUFC_METADATA; 4280 } 4281 } 4282 4283 multilist_sublist_unlock(meta_mls); 4284 multilist_sublist_unlock(data_mls); 4285 4286 return (type); 4287 } 4288 4289 /* 4290 * Evict buffers from the cache, such that arc_size is capped by arc_c. 4291 */ 4292 static uint64_t 4293 arc_adjust(void) 4294 { 4295 uint64_t total_evicted = 0; 4296 uint64_t bytes; 4297 int64_t target; 4298 uint64_t asize = aggsum_value(&arc_size); 4299 uint64_t ameta = aggsum_value(&arc_meta_used); 4300 4301 /* 4302 * If we're over arc_meta_limit, we want to correct that before 4303 * potentially evicting data buffers below. 4304 */ 4305 total_evicted += arc_adjust_meta(ameta); 4306 4307 /* 4308 * Adjust MRU size 4309 * 4310 * If we're over the target cache size, we want to evict enough 4311 * from the list to get back to our target size. We don't want 4312 * to evict too much from the MRU, such that it drops below 4313 * arc_p. So, if we're over our target cache size more than 4314 * the MRU is over arc_p, we'll evict enough to get back to 4315 * arc_p here, and then evict more from the MFU below. 4316 */ 4317 target = MIN((int64_t)(asize - arc_c), 4318 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4319 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 4320 4321 /* 4322 * If we're below arc_meta_min, always prefer to evict data. 4323 * Otherwise, try to satisfy the requested number of bytes to 4324 * evict from the type which contains older buffers; in an 4325 * effort to keep newer buffers in the cache regardless of their 4326 * type. If we cannot satisfy the number of bytes from this 4327 * type, spill over into the next type. 4328 */ 4329 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA && 4330 ameta > arc_meta_min) { 4331 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4332 total_evicted += bytes; 4333 4334 /* 4335 * If we couldn't evict our target number of bytes from 4336 * metadata, we try to get the rest from data. 4337 */ 4338 target -= bytes; 4339 4340 total_evicted += 4341 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4342 } else { 4343 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4344 total_evicted += bytes; 4345 4346 /* 4347 * If we couldn't evict our target number of bytes from 4348 * data, we try to get the rest from metadata. 4349 */ 4350 target -= bytes; 4351 4352 total_evicted += 4353 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4354 } 4355 4356 /* 4357 * Adjust MFU size 4358 * 4359 * Now that we've tried to evict enough from the MRU to get its 4360 * size back to arc_p, if we're still above the target cache 4361 * size, we evict the rest from the MFU. 4362 */ 4363 target = asize - arc_c; 4364 4365 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA && 4366 ameta > arc_meta_min) { 4367 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4368 total_evicted += bytes; 4369 4370 /* 4371 * If we couldn't evict our target number of bytes from 4372 * metadata, we try to get the rest from data. 4373 */ 4374 target -= bytes; 4375 4376 total_evicted += 4377 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4378 } else { 4379 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4380 total_evicted += bytes; 4381 4382 /* 4383 * If we couldn't evict our target number of bytes from 4384 * data, we try to get the rest from data. 4385 */ 4386 target -= bytes; 4387 4388 total_evicted += 4389 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4390 } 4391 4392 /* 4393 * Adjust ghost lists 4394 * 4395 * In addition to the above, the ARC also defines target values 4396 * for the ghost lists. The sum of the mru list and mru ghost 4397 * list should never exceed the target size of the cache, and 4398 * the sum of the mru list, mfu list, mru ghost list, and mfu 4399 * ghost list should never exceed twice the target size of the 4400 * cache. The following logic enforces these limits on the ghost 4401 * caches, and evicts from them as needed. 4402 */ 4403 target = zfs_refcount_count(&arc_mru->arcs_size) + 4404 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 4405 4406 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 4407 total_evicted += bytes; 4408 4409 target -= bytes; 4410 4411 total_evicted += 4412 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 4413 4414 /* 4415 * We assume the sum of the mru list and mfu list is less than 4416 * or equal to arc_c (we enforced this above), which means we 4417 * can use the simpler of the two equations below: 4418 * 4419 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 4420 * mru ghost + mfu ghost <= arc_c 4421 */ 4422 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) + 4423 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 4424 4425 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 4426 total_evicted += bytes; 4427 4428 target -= bytes; 4429 4430 total_evicted += 4431 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 4432 4433 return (total_evicted); 4434 } 4435 4436 void 4437 arc_flush(spa_t *spa, boolean_t retry) 4438 { 4439 uint64_t guid = 0; 4440 4441 /* 4442 * If retry is B_TRUE, a spa must not be specified since we have 4443 * no good way to determine if all of a spa's buffers have been 4444 * evicted from an arc state. 4445 */ 4446 ASSERT(!retry || spa == 0); 4447 4448 if (spa != NULL) 4449 guid = spa_load_guid(spa); 4450 4451 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4452 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4453 4454 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4455 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4456 4457 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4458 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4459 4460 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4461 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4462 } 4463 4464 static void 4465 arc_reduce_target_size(int64_t to_free) 4466 { 4467 uint64_t asize = aggsum_value(&arc_size); 4468 if (arc_c > arc_c_min) { 4469 4470 if (arc_c > arc_c_min + to_free) 4471 atomic_add_64(&arc_c, -to_free); 4472 else 4473 arc_c = arc_c_min; 4474 4475 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 4476 if (asize < arc_c) 4477 arc_c = MAX(asize, arc_c_min); 4478 if (arc_p > arc_c) 4479 arc_p = (arc_c >> 1); 4480 ASSERT(arc_c >= arc_c_min); 4481 ASSERT((int64_t)arc_p >= 0); 4482 } 4483 4484 if (asize > arc_c) { 4485 /* See comment in arc_adjust_cb_check() on why lock+flag */ 4486 mutex_enter(&arc_adjust_lock); 4487 arc_adjust_needed = B_TRUE; 4488 mutex_exit(&arc_adjust_lock); 4489 zthr_wakeup(arc_adjust_zthr); 4490 } 4491 } 4492 4493 typedef enum free_memory_reason_t { 4494 FMR_UNKNOWN, 4495 FMR_NEEDFREE, 4496 FMR_LOTSFREE, 4497 FMR_SWAPFS_MINFREE, 4498 FMR_PAGES_PP_MAXIMUM, 4499 FMR_HEAP_ARENA, 4500 FMR_ZIO_ARENA, 4501 } free_memory_reason_t; 4502 4503 int64_t last_free_memory; 4504 free_memory_reason_t last_free_reason; 4505 4506 /* 4507 * Additional reserve of pages for pp_reserve. 4508 */ 4509 int64_t arc_pages_pp_reserve = 64; 4510 4511 /* 4512 * Additional reserve of pages for swapfs. 4513 */ 4514 int64_t arc_swapfs_reserve = 64; 4515 4516 /* 4517 * Return the amount of memory that can be consumed before reclaim will be 4518 * needed. Positive if there is sufficient free memory, negative indicates 4519 * the amount of memory that needs to be freed up. 4520 */ 4521 static int64_t 4522 arc_available_memory(void) 4523 { 4524 int64_t lowest = INT64_MAX; 4525 int64_t n; 4526 free_memory_reason_t r = FMR_UNKNOWN; 4527 4528 #ifdef _KERNEL 4529 if (needfree > 0) { 4530 n = PAGESIZE * (-needfree); 4531 if (n < lowest) { 4532 lowest = n; 4533 r = FMR_NEEDFREE; 4534 } 4535 } 4536 4537 /* 4538 * check that we're out of range of the pageout scanner. It starts to 4539 * schedule paging if freemem is less than lotsfree and needfree. 4540 * lotsfree is the high-water mark for pageout, and needfree is the 4541 * number of needed free pages. We add extra pages here to make sure 4542 * the scanner doesn't start up while we're freeing memory. 4543 */ 4544 n = PAGESIZE * (freemem - lotsfree - needfree - desfree); 4545 if (n < lowest) { 4546 lowest = n; 4547 r = FMR_LOTSFREE; 4548 } 4549 4550 /* 4551 * check to make sure that swapfs has enough space so that anon 4552 * reservations can still succeed. anon_resvmem() checks that the 4553 * availrmem is greater than swapfs_minfree, and the number of reserved 4554 * swap pages. We also add a bit of extra here just to prevent 4555 * circumstances from getting really dire. 4556 */ 4557 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve - 4558 desfree - arc_swapfs_reserve); 4559 if (n < lowest) { 4560 lowest = n; 4561 r = FMR_SWAPFS_MINFREE; 4562 } 4563 4564 4565 /* 4566 * Check that we have enough availrmem that memory locking (e.g., via 4567 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 4568 * stores the number of pages that cannot be locked; when availrmem 4569 * drops below pages_pp_maximum, page locking mechanisms such as 4570 * page_pp_lock() will fail.) 4571 */ 4572 n = PAGESIZE * (availrmem - pages_pp_maximum - 4573 arc_pages_pp_reserve); 4574 if (n < lowest) { 4575 lowest = n; 4576 r = FMR_PAGES_PP_MAXIMUM; 4577 } 4578 4579 4580 /* 4581 * If zio data pages are being allocated out of a separate heap segment, 4582 * then enforce that the size of available vmem for this arena remains 4583 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free. 4584 * 4585 * Note that reducing the arc_zio_arena_free_shift keeps more virtual 4586 * memory (in the zio_arena) free, which can avoid memory 4587 * fragmentation issues. 4588 */ 4589 if (zio_arena != NULL) { 4590 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) - 4591 (vmem_size(zio_arena, VMEM_ALLOC) >> 4592 arc_zio_arena_free_shift); 4593 if (n < lowest) { 4594 lowest = n; 4595 r = FMR_ZIO_ARENA; 4596 } 4597 } 4598 #else 4599 /* Every 100 calls, free a small amount */ 4600 if (spa_get_random(100) == 0) 4601 lowest = -1024; 4602 #endif 4603 4604 last_free_memory = lowest; 4605 last_free_reason = r; 4606 4607 return (lowest); 4608 } 4609 4610 4611 /* 4612 * Determine if the system is under memory pressure and is asking 4613 * to reclaim memory. A return value of B_TRUE indicates that the system 4614 * is under memory pressure and that the arc should adjust accordingly. 4615 */ 4616 static boolean_t 4617 arc_reclaim_needed(void) 4618 { 4619 return (arc_available_memory() < 0); 4620 } 4621 4622 static void 4623 arc_kmem_reap_soon(void) 4624 { 4625 size_t i; 4626 kmem_cache_t *prev_cache = NULL; 4627 kmem_cache_t *prev_data_cache = NULL; 4628 extern kmem_cache_t *zio_buf_cache[]; 4629 extern kmem_cache_t *zio_data_buf_cache[]; 4630 extern kmem_cache_t *zfs_btree_leaf_cache; 4631 extern kmem_cache_t *abd_chunk_cache; 4632 4633 #ifdef _KERNEL 4634 if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) { 4635 /* 4636 * We are exceeding our meta-data cache limit. 4637 * Purge some DNLC entries to release holds on meta-data. 4638 */ 4639 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 4640 } 4641 #endif 4642 4643 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4644 if (zio_buf_cache[i] != prev_cache) { 4645 prev_cache = zio_buf_cache[i]; 4646 kmem_cache_reap_soon(zio_buf_cache[i]); 4647 } 4648 if (zio_data_buf_cache[i] != prev_data_cache) { 4649 prev_data_cache = zio_data_buf_cache[i]; 4650 kmem_cache_reap_soon(zio_data_buf_cache[i]); 4651 } 4652 } 4653 kmem_cache_reap_soon(abd_chunk_cache); 4654 kmem_cache_reap_soon(buf_cache); 4655 kmem_cache_reap_soon(hdr_full_cache); 4656 kmem_cache_reap_soon(hdr_l2only_cache); 4657 kmem_cache_reap_soon(zfs_btree_leaf_cache); 4658 4659 if (zio_arena != NULL) { 4660 /* 4661 * Ask the vmem arena to reclaim unused memory from its 4662 * quantum caches. 4663 */ 4664 vmem_qcache_reap(zio_arena); 4665 } 4666 } 4667 4668 /* ARGSUSED */ 4669 static boolean_t 4670 arc_adjust_cb_check(void *arg, zthr_t *zthr) 4671 { 4672 /* 4673 * This is necessary in order for the mdb ::arc dcmd to 4674 * show up to date information. Since the ::arc command 4675 * does not call the kstat's update function, without 4676 * this call, the command may show stale stats for the 4677 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4678 * with this change, the data might be up to 1 second 4679 * out of date(the arc_adjust_zthr has a maximum sleep 4680 * time of 1 second); but that should suffice. The 4681 * arc_state_t structures can be queried directly if more 4682 * accurate information is needed. 4683 */ 4684 if (arc_ksp != NULL) 4685 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4686 4687 /* 4688 * We have to rely on arc_get_data_impl() to tell us when to adjust, 4689 * rather than checking if we are overflowing here, so that we are 4690 * sure to not leave arc_get_data_impl() waiting on 4691 * arc_adjust_waiters_cv. If we have become "not overflowing" since 4692 * arc_get_data_impl() checked, we need to wake it up. We could 4693 * broadcast the CV here, but arc_get_data_impl() may have not yet 4694 * gone to sleep. We would need to use a mutex to ensure that this 4695 * function doesn't broadcast until arc_get_data_impl() has gone to 4696 * sleep (e.g. the arc_adjust_lock). However, the lock ordering of 4697 * such a lock would necessarily be incorrect with respect to the 4698 * zthr_lock, which is held before this function is called, and is 4699 * held by arc_get_data_impl() when it calls zthr_wakeup(). 4700 */ 4701 return (arc_adjust_needed); 4702 } 4703 4704 /* 4705 * Keep arc_size under arc_c by running arc_adjust which evicts data 4706 * from the ARC. 4707 */ 4708 /* ARGSUSED */ 4709 static void 4710 arc_adjust_cb(void *arg, zthr_t *zthr) 4711 { 4712 uint64_t evicted = 0; 4713 4714 /* Evict from cache */ 4715 evicted = arc_adjust(); 4716 4717 /* 4718 * If evicted is zero, we couldn't evict anything 4719 * via arc_adjust(). This could be due to hash lock 4720 * collisions, but more likely due to the majority of 4721 * arc buffers being unevictable. Therefore, even if 4722 * arc_size is above arc_c, another pass is unlikely to 4723 * be helpful and could potentially cause us to enter an 4724 * infinite loop. Additionally, zthr_iscancelled() is 4725 * checked here so that if the arc is shutting down, the 4726 * broadcast will wake any remaining arc adjust waiters. 4727 */ 4728 mutex_enter(&arc_adjust_lock); 4729 arc_adjust_needed = !zthr_iscancelled(arc_adjust_zthr) && 4730 evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0; 4731 if (!arc_adjust_needed) { 4732 /* 4733 * We're either no longer overflowing, or we 4734 * can't evict anything more, so we should wake 4735 * up any waiters. 4736 */ 4737 cv_broadcast(&arc_adjust_waiters_cv); 4738 } 4739 mutex_exit(&arc_adjust_lock); 4740 } 4741 4742 /* ARGSUSED */ 4743 static boolean_t 4744 arc_reap_cb_check(void *arg, zthr_t *zthr) 4745 { 4746 int64_t free_memory = arc_available_memory(); 4747 4748 /* 4749 * If a kmem reap is already active, don't schedule more. We must 4750 * check for this because kmem_cache_reap_soon() won't actually 4751 * block on the cache being reaped (this is to prevent callers from 4752 * becoming implicitly blocked by a system-wide kmem reap -- which, 4753 * on a system with many, many full magazines, can take minutes). 4754 */ 4755 if (!kmem_cache_reap_active() && 4756 free_memory < 0) { 4757 arc_no_grow = B_TRUE; 4758 arc_warm = B_TRUE; 4759 /* 4760 * Wait at least zfs_grow_retry (default 60) seconds 4761 * before considering growing. 4762 */ 4763 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4764 return (B_TRUE); 4765 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4766 arc_no_grow = B_TRUE; 4767 } else if (gethrtime() >= arc_growtime) { 4768 arc_no_grow = B_FALSE; 4769 } 4770 4771 return (B_FALSE); 4772 } 4773 4774 /* 4775 * Keep enough free memory in the system by reaping the ARC's kmem 4776 * caches. To cause more slabs to be reapable, we may reduce the 4777 * target size of the cache (arc_c), causing the arc_adjust_cb() 4778 * to free more buffers. 4779 */ 4780 /* ARGSUSED */ 4781 static void 4782 arc_reap_cb(void *arg, zthr_t *zthr) 4783 { 4784 int64_t free_memory; 4785 4786 /* 4787 * Kick off asynchronous kmem_reap()'s of all our caches. 4788 */ 4789 arc_kmem_reap_soon(); 4790 4791 /* 4792 * Wait at least arc_kmem_cache_reap_retry_ms between 4793 * arc_kmem_reap_soon() calls. Without this check it is possible to 4794 * end up in a situation where we spend lots of time reaping 4795 * caches, while we're near arc_c_min. Waiting here also gives the 4796 * subsequent free memory check a chance of finding that the 4797 * asynchronous reap has already freed enough memory, and we don't 4798 * need to call arc_reduce_target_size(). 4799 */ 4800 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 4801 4802 /* 4803 * Reduce the target size as needed to maintain the amount of free 4804 * memory in the system at a fraction of the arc_size (1/128th by 4805 * default). If oversubscribed (free_memory < 0) then reduce the 4806 * target arc_size by the deficit amount plus the fractional 4807 * amount. If free memory is positive but less then the fractional 4808 * amount, reduce by what is needed to hit the fractional amount. 4809 */ 4810 free_memory = arc_available_memory(); 4811 4812 int64_t to_free = 4813 (arc_c >> arc_shrink_shift) - free_memory; 4814 if (to_free > 0) { 4815 #ifdef _KERNEL 4816 to_free = MAX(to_free, ptob(needfree)); 4817 #endif 4818 arc_reduce_target_size(to_free); 4819 } 4820 } 4821 4822 /* 4823 * Adapt arc info given the number of bytes we are trying to add and 4824 * the state that we are coming from. This function is only called 4825 * when we are adding new content to the cache. 4826 */ 4827 static void 4828 arc_adapt(int bytes, arc_state_t *state) 4829 { 4830 int mult; 4831 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 4832 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size); 4833 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size); 4834 4835 ASSERT(bytes > 0); 4836 /* 4837 * Adapt the target size of the MRU list: 4838 * - if we just hit in the MRU ghost list, then increase 4839 * the target size of the MRU list. 4840 * - if we just hit in the MFU ghost list, then increase 4841 * the target size of the MFU list by decreasing the 4842 * target size of the MRU list. 4843 */ 4844 if (state == arc_mru_ghost) { 4845 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 4846 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 4847 4848 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 4849 } else if (state == arc_mfu_ghost) { 4850 uint64_t delta; 4851 4852 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 4853 mult = MIN(mult, 10); 4854 4855 delta = MIN(bytes * mult, arc_p); 4856 arc_p = MAX(arc_p_min, arc_p - delta); 4857 } 4858 ASSERT((int64_t)arc_p >= 0); 4859 4860 /* 4861 * Wake reap thread if we do not have any available memory 4862 */ 4863 if (arc_reclaim_needed()) { 4864 zthr_wakeup(arc_reap_zthr); 4865 return; 4866 } 4867 4868 4869 if (arc_no_grow) 4870 return; 4871 4872 if (arc_c >= arc_c_max) 4873 return; 4874 4875 /* 4876 * If we're within (2 * maxblocksize) bytes of the target 4877 * cache size, increment the target cache size 4878 */ 4879 if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) > 4880 0) { 4881 atomic_add_64(&arc_c, (int64_t)bytes); 4882 if (arc_c > arc_c_max) 4883 arc_c = arc_c_max; 4884 else if (state == arc_anon) 4885 atomic_add_64(&arc_p, (int64_t)bytes); 4886 if (arc_p > arc_c) 4887 arc_p = arc_c; 4888 } 4889 ASSERT((int64_t)arc_p >= 0); 4890 } 4891 4892 /* 4893 * Check if arc_size has grown past our upper threshold, determined by 4894 * zfs_arc_overflow_shift. 4895 */ 4896 static boolean_t 4897 arc_is_overflowing(void) 4898 { 4899 /* Always allow at least one block of overflow */ 4900 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE, 4901 arc_c >> zfs_arc_overflow_shift); 4902 4903 /* 4904 * We just compare the lower bound here for performance reasons. Our 4905 * primary goals are to make sure that the arc never grows without 4906 * bound, and that it can reach its maximum size. This check 4907 * accomplishes both goals. The maximum amount we could run over by is 4908 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 4909 * in the ARC. In practice, that's in the tens of MB, which is low 4910 * enough to be safe. 4911 */ 4912 return (aggsum_lower_bound(&arc_size) >= arc_c + overflow); 4913 } 4914 4915 static abd_t * 4916 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 4917 boolean_t do_adapt) 4918 { 4919 arc_buf_contents_t type = arc_buf_type(hdr); 4920 4921 arc_get_data_impl(hdr, size, tag, do_adapt); 4922 if (type == ARC_BUFC_METADATA) { 4923 return (abd_alloc(size, B_TRUE)); 4924 } else { 4925 ASSERT(type == ARC_BUFC_DATA); 4926 return (abd_alloc(size, B_FALSE)); 4927 } 4928 } 4929 4930 static void * 4931 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4932 { 4933 arc_buf_contents_t type = arc_buf_type(hdr); 4934 4935 arc_get_data_impl(hdr, size, tag, B_TRUE); 4936 if (type == ARC_BUFC_METADATA) { 4937 return (zio_buf_alloc(size)); 4938 } else { 4939 ASSERT(type == ARC_BUFC_DATA); 4940 return (zio_data_buf_alloc(size)); 4941 } 4942 } 4943 4944 /* 4945 * Allocate a block and return it to the caller. If we are hitting the 4946 * hard limit for the cache size, we must sleep, waiting for the eviction 4947 * thread to catch up. If we're past the target size but below the hard 4948 * limit, we'll only signal the reclaim thread and continue on. 4949 */ 4950 static void 4951 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 4952 boolean_t do_adapt) 4953 { 4954 arc_state_t *state = hdr->b_l1hdr.b_state; 4955 arc_buf_contents_t type = arc_buf_type(hdr); 4956 4957 if (do_adapt) 4958 arc_adapt(size, state); 4959 4960 /* 4961 * If arc_size is currently overflowing, and has grown past our 4962 * upper limit, we must be adding data faster than the evict 4963 * thread can evict. Thus, to ensure we don't compound the 4964 * problem by adding more data and forcing arc_size to grow even 4965 * further past its target size, we halt and wait for the 4966 * eviction thread to catch up. 4967 * 4968 * It's also possible that the reclaim thread is unable to evict 4969 * enough buffers to get arc_size below the overflow limit (e.g. 4970 * due to buffers being un-evictable, or hash lock collisions). 4971 * In this case, we want to proceed regardless if we're 4972 * overflowing; thus we don't use a while loop here. 4973 */ 4974 if (arc_is_overflowing()) { 4975 mutex_enter(&arc_adjust_lock); 4976 4977 /* 4978 * Now that we've acquired the lock, we may no longer be 4979 * over the overflow limit, lets check. 4980 * 4981 * We're ignoring the case of spurious wake ups. If that 4982 * were to happen, it'd let this thread consume an ARC 4983 * buffer before it should have (i.e. before we're under 4984 * the overflow limit and were signalled by the reclaim 4985 * thread). As long as that is a rare occurrence, it 4986 * shouldn't cause any harm. 4987 */ 4988 if (arc_is_overflowing()) { 4989 arc_adjust_needed = B_TRUE; 4990 zthr_wakeup(arc_adjust_zthr); 4991 (void) cv_wait(&arc_adjust_waiters_cv, 4992 &arc_adjust_lock); 4993 } 4994 mutex_exit(&arc_adjust_lock); 4995 } 4996 4997 VERIFY3U(hdr->b_type, ==, type); 4998 if (type == ARC_BUFC_METADATA) { 4999 arc_space_consume(size, ARC_SPACE_META); 5000 } else { 5001 arc_space_consume(size, ARC_SPACE_DATA); 5002 } 5003 5004 /* 5005 * Update the state size. Note that ghost states have a 5006 * "ghost size" and so don't need to be updated. 5007 */ 5008 if (!GHOST_STATE(state)) { 5009 5010 (void) zfs_refcount_add_many(&state->arcs_size, size, tag); 5011 5012 /* 5013 * If this is reached via arc_read, the link is 5014 * protected by the hash lock. If reached via 5015 * arc_buf_alloc, the header should not be accessed by 5016 * any other thread. And, if reached via arc_read_done, 5017 * the hash lock will protect it if it's found in the 5018 * hash table; otherwise no other thread should be 5019 * trying to [add|remove]_reference it. 5020 */ 5021 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5022 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5023 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5024 size, tag); 5025 } 5026 5027 /* 5028 * If we are growing the cache, and we are adding anonymous 5029 * data, and we have outgrown arc_p, update arc_p 5030 */ 5031 if (aggsum_compare(&arc_size, arc_c) < 0 && 5032 hdr->b_l1hdr.b_state == arc_anon && 5033 (zfs_refcount_count(&arc_anon->arcs_size) + 5034 zfs_refcount_count(&arc_mru->arcs_size) > arc_p)) 5035 arc_p = MIN(arc_c, arc_p + size); 5036 } 5037 } 5038 5039 static void 5040 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 5041 { 5042 arc_free_data_impl(hdr, size, tag); 5043 abd_free(abd); 5044 } 5045 5046 static void 5047 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 5048 { 5049 arc_buf_contents_t type = arc_buf_type(hdr); 5050 5051 arc_free_data_impl(hdr, size, tag); 5052 if (type == ARC_BUFC_METADATA) { 5053 zio_buf_free(buf, size); 5054 } else { 5055 ASSERT(type == ARC_BUFC_DATA); 5056 zio_data_buf_free(buf, size); 5057 } 5058 } 5059 5060 /* 5061 * Free the arc data buffer. 5062 */ 5063 static void 5064 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5065 { 5066 arc_state_t *state = hdr->b_l1hdr.b_state; 5067 arc_buf_contents_t type = arc_buf_type(hdr); 5068 5069 /* protected by hash lock, if in the hash table */ 5070 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5071 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5072 ASSERT(state != arc_anon && state != arc_l2c_only); 5073 5074 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5075 size, tag); 5076 } 5077 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag); 5078 5079 VERIFY3U(hdr->b_type, ==, type); 5080 if (type == ARC_BUFC_METADATA) { 5081 arc_space_return(size, ARC_SPACE_META); 5082 } else { 5083 ASSERT(type == ARC_BUFC_DATA); 5084 arc_space_return(size, ARC_SPACE_DATA); 5085 } 5086 } 5087 5088 /* 5089 * This routine is called whenever a buffer is accessed. 5090 * NOTE: the hash lock is dropped in this function. 5091 */ 5092 static void 5093 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 5094 { 5095 clock_t now; 5096 5097 ASSERT(MUTEX_HELD(hash_lock)); 5098 ASSERT(HDR_HAS_L1HDR(hdr)); 5099 5100 if (hdr->b_l1hdr.b_state == arc_anon) { 5101 /* 5102 * This buffer is not in the cache, and does not 5103 * appear in our "ghost" list. Add the new buffer 5104 * to the MRU state. 5105 */ 5106 5107 ASSERT0(hdr->b_l1hdr.b_arc_access); 5108 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5109 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5110 arc_change_state(arc_mru, hdr, hash_lock); 5111 5112 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5113 now = ddi_get_lbolt(); 5114 5115 /* 5116 * If this buffer is here because of a prefetch, then either: 5117 * - clear the flag if this is a "referencing" read 5118 * (any subsequent access will bump this into the MFU state). 5119 * or 5120 * - move the buffer to the head of the list if this is 5121 * another prefetch (to make it less likely to be evicted). 5122 */ 5123 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5124 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5125 /* link protected by hash lock */ 5126 ASSERT(multilist_link_active( 5127 &hdr->b_l1hdr.b_arc_node)); 5128 } else { 5129 if (HDR_HAS_L2HDR(hdr)) 5130 l2arc_hdr_arcstats_decrement_state(hdr); 5131 arc_hdr_clear_flags(hdr, 5132 ARC_FLAG_PREFETCH | 5133 ARC_FLAG_PRESCIENT_PREFETCH); 5134 ARCSTAT_BUMP(arcstat_mru_hits); 5135 if (HDR_HAS_L2HDR(hdr)) 5136 l2arc_hdr_arcstats_increment_state(hdr); 5137 } 5138 hdr->b_l1hdr.b_arc_access = now; 5139 return; 5140 } 5141 5142 /* 5143 * This buffer has been "accessed" only once so far, 5144 * but it is still in the cache. Move it to the MFU 5145 * state. 5146 */ 5147 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) { 5148 /* 5149 * More than 125ms have passed since we 5150 * instantiated this buffer. Move it to the 5151 * most frequently used state. 5152 */ 5153 hdr->b_l1hdr.b_arc_access = now; 5154 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5155 arc_change_state(arc_mfu, hdr, hash_lock); 5156 } 5157 ARCSTAT_BUMP(arcstat_mru_hits); 5158 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5159 arc_state_t *new_state; 5160 /* 5161 * This buffer has been "accessed" recently, but 5162 * was evicted from the cache. Move it to the 5163 * MFU state. 5164 */ 5165 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5166 new_state = arc_mru; 5167 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) { 5168 if (HDR_HAS_L2HDR(hdr)) 5169 l2arc_hdr_arcstats_decrement_state(hdr); 5170 arc_hdr_clear_flags(hdr, 5171 ARC_FLAG_PREFETCH | 5172 ARC_FLAG_PRESCIENT_PREFETCH); 5173 if (HDR_HAS_L2HDR(hdr)) 5174 l2arc_hdr_arcstats_increment_state(hdr); 5175 } 5176 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5177 } else { 5178 new_state = arc_mfu; 5179 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5180 } 5181 5182 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5183 arc_change_state(new_state, hdr, hash_lock); 5184 5185 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5186 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5187 /* 5188 * This buffer has been accessed more than once and is 5189 * still in the cache. Keep it in the MFU state. 5190 * 5191 * NOTE: an add_reference() that occurred when we did 5192 * the arc_read() will have kicked this off the list. 5193 * If it was a prefetch, we will explicitly move it to 5194 * the head of the list now. 5195 */ 5196 ARCSTAT_BUMP(arcstat_mfu_hits); 5197 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5198 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5199 arc_state_t *new_state = arc_mfu; 5200 /* 5201 * This buffer has been accessed more than once but has 5202 * been evicted from the cache. Move it back to the 5203 * MFU state. 5204 */ 5205 5206 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5207 /* 5208 * This is a prefetch access... 5209 * move this block back to the MRU state. 5210 */ 5211 new_state = arc_mru; 5212 } 5213 5214 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5215 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5216 arc_change_state(new_state, hdr, hash_lock); 5217 5218 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5219 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5220 /* 5221 * This buffer is on the 2nd Level ARC. 5222 */ 5223 5224 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5225 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5226 arc_change_state(arc_mfu, hdr, hash_lock); 5227 } else { 5228 ASSERT(!"invalid arc state"); 5229 } 5230 } 5231 5232 /* 5233 * This routine is called by dbuf_hold() to update the arc_access() state 5234 * which otherwise would be skipped for entries in the dbuf cache. 5235 */ 5236 void 5237 arc_buf_access(arc_buf_t *buf) 5238 { 5239 mutex_enter(&buf->b_evict_lock); 5240 arc_buf_hdr_t *hdr = buf->b_hdr; 5241 5242 /* 5243 * Avoid taking the hash_lock when possible as an optimization. 5244 * The header must be checked again under the hash_lock in order 5245 * to handle the case where it is concurrently being released. 5246 */ 5247 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5248 mutex_exit(&buf->b_evict_lock); 5249 return; 5250 } 5251 5252 kmutex_t *hash_lock = HDR_LOCK(hdr); 5253 mutex_enter(hash_lock); 5254 5255 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5256 mutex_exit(hash_lock); 5257 mutex_exit(&buf->b_evict_lock); 5258 ARCSTAT_BUMP(arcstat_access_skip); 5259 return; 5260 } 5261 5262 mutex_exit(&buf->b_evict_lock); 5263 5264 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5265 hdr->b_l1hdr.b_state == arc_mfu); 5266 5267 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5268 arc_access(hdr, hash_lock); 5269 mutex_exit(hash_lock); 5270 5271 ARCSTAT_BUMP(arcstat_hits); 5272 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5273 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5274 } 5275 5276 /* a generic arc_read_done_func_t which you can use */ 5277 /* ARGSUSED */ 5278 void 5279 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5280 arc_buf_t *buf, void *arg) 5281 { 5282 if (buf == NULL) 5283 return; 5284 5285 bcopy(buf->b_data, arg, arc_buf_size(buf)); 5286 arc_buf_destroy(buf, arg); 5287 } 5288 5289 /* a generic arc_read_done_func_t */ 5290 void 5291 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5292 arc_buf_t *buf, void *arg) 5293 { 5294 arc_buf_t **bufp = arg; 5295 5296 if (buf == NULL) { 5297 ASSERT(zio == NULL || zio->io_error != 0); 5298 *bufp = NULL; 5299 } else { 5300 ASSERT(zio == NULL || zio->io_error == 0); 5301 *bufp = buf; 5302 ASSERT(buf->b_data != NULL); 5303 } 5304 } 5305 5306 static void 5307 arc_hdr_verify(arc_buf_hdr_t *hdr, const blkptr_t *bp) 5308 { 5309 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5310 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5311 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5312 } else { 5313 if (HDR_COMPRESSION_ENABLED(hdr)) { 5314 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5315 BP_GET_COMPRESS(bp)); 5316 } 5317 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5318 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5319 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5320 } 5321 } 5322 5323 /* 5324 * XXX this should be changed to return an error, and callers 5325 * re-read from disk on failure (on nondebug bits). 5326 */ 5327 static void 5328 arc_hdr_verify_checksum(spa_t *spa, arc_buf_hdr_t *hdr, const blkptr_t *bp) 5329 { 5330 arc_hdr_verify(hdr, bp); 5331 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 5332 return; 5333 int err = 0; 5334 abd_t *abd = NULL; 5335 if (BP_IS_ENCRYPTED(bp)) { 5336 if (HDR_HAS_RABD(hdr)) { 5337 abd = hdr->b_crypt_hdr.b_rabd; 5338 } 5339 } else if (HDR_COMPRESSION_ENABLED(hdr)) { 5340 abd = hdr->b_l1hdr.b_pabd; 5341 } 5342 if (abd != NULL) { 5343 /* 5344 * The offset is only used for labels, which are not 5345 * cached in the ARC, so it doesn't matter what we 5346 * pass for the offset parameter. 5347 */ 5348 int psize = HDR_GET_PSIZE(hdr); 5349 err = zio_checksum_error_impl(spa, bp, 5350 BP_GET_CHECKSUM(bp), abd, psize, 0, NULL); 5351 if (err != 0) { 5352 /* 5353 * Use abd_copy_to_buf() rather than 5354 * abd_borrow_buf_copy() so that we are sure to 5355 * include the buf in crash dumps. 5356 */ 5357 void *buf = kmem_alloc(psize, KM_SLEEP); 5358 abd_copy_to_buf(buf, abd, psize); 5359 panic("checksum of cached data doesn't match BP " 5360 "err=%u hdr=%p bp=%p abd=%p buf=%p", 5361 err, (void *)hdr, (void *)bp, (void *)abd, buf); 5362 } 5363 } 5364 } 5365 5366 static void 5367 arc_read_done(zio_t *zio) 5368 { 5369 blkptr_t *bp = zio->io_bp; 5370 arc_buf_hdr_t *hdr = zio->io_private; 5371 kmutex_t *hash_lock = NULL; 5372 arc_callback_t *callback_list; 5373 arc_callback_t *acb; 5374 boolean_t freeable = B_FALSE; 5375 5376 /* 5377 * The hdr was inserted into hash-table and removed from lists 5378 * prior to starting I/O. We should find this header, since 5379 * it's in the hash table, and it should be legit since it's 5380 * not possible to evict it during the I/O. The only possible 5381 * reason for it not to be found is if we were freed during the 5382 * read. 5383 */ 5384 if (HDR_IN_HASH_TABLE(hdr)) { 5385 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 5386 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5387 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5388 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5389 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5390 5391 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 5392 &hash_lock); 5393 5394 ASSERT((found == hdr && 5395 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5396 (found == hdr && HDR_L2_READING(hdr))); 5397 ASSERT3P(hash_lock, !=, NULL); 5398 } 5399 5400 if (BP_IS_PROTECTED(bp)) { 5401 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5402 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5403 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5404 hdr->b_crypt_hdr.b_iv); 5405 5406 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5407 void *tmpbuf; 5408 5409 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5410 sizeof (zil_chain_t)); 5411 zio_crypt_decode_mac_zil(tmpbuf, 5412 hdr->b_crypt_hdr.b_mac); 5413 abd_return_buf(zio->io_abd, tmpbuf, 5414 sizeof (zil_chain_t)); 5415 } else { 5416 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 5417 } 5418 } 5419 5420 if (zio->io_error == 0) { 5421 /* byteswap if necessary */ 5422 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5423 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5424 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5425 } else { 5426 hdr->b_l1hdr.b_byteswap = 5427 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5428 } 5429 } else { 5430 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5431 } 5432 } 5433 5434 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5435 5436 callback_list = hdr->b_l1hdr.b_acb; 5437 ASSERT3P(callback_list, !=, NULL); 5438 5439 if (hash_lock && zio->io_error == 0 && 5440 hdr->b_l1hdr.b_state == arc_anon) { 5441 /* 5442 * Only call arc_access on anonymous buffers. This is because 5443 * if we've issued an I/O for an evicted buffer, we've already 5444 * called arc_access (to prevent any simultaneous readers from 5445 * getting confused). 5446 */ 5447 arc_access(hdr, hash_lock); 5448 } 5449 5450 /* 5451 * If a read request has a callback (i.e. acb_done is not NULL), then we 5452 * make a buf containing the data according to the parameters which were 5453 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5454 * aren't needlessly decompressing the data multiple times. 5455 */ 5456 int callback_cnt = 0; 5457 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5458 if (!acb->acb_done) 5459 continue; 5460 5461 callback_cnt++; 5462 5463 if (zio->io_error != 0) 5464 continue; 5465 5466 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5467 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5468 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5469 &acb->acb_buf); 5470 5471 /* 5472 * Assert non-speculative zios didn't fail because an 5473 * encryption key wasn't loaded 5474 */ 5475 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5476 error != EACCES); 5477 5478 /* 5479 * If we failed to decrypt, report an error now (as the zio 5480 * layer would have done if it had done the transforms). 5481 */ 5482 if (error == ECKSUM) { 5483 ASSERT(BP_IS_PROTECTED(bp)); 5484 error = SET_ERROR(EIO); 5485 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5486 spa_log_error(zio->io_spa, &acb->acb_zb); 5487 (void) zfs_ereport_post( 5488 FM_EREPORT_ZFS_AUTHENTICATION, 5489 zio->io_spa, NULL, &acb->acb_zb, zio, 0, 0); 5490 } 5491 } 5492 5493 if (error != 0) { 5494 /* 5495 * Decompression failed. Set io_error 5496 * so that when we call acb_done (below), 5497 * we will indicate that the read failed. 5498 * Note that in the unusual case where one 5499 * callback is compressed and another 5500 * uncompressed, we will mark all of them 5501 * as failed, even though the uncompressed 5502 * one can't actually fail. In this case, 5503 * the hdr will not be anonymous, because 5504 * if there are multiple callbacks, it's 5505 * because multiple threads found the same 5506 * arc buf in the hash table. 5507 */ 5508 zio->io_error = error; 5509 } 5510 } 5511 5512 /* 5513 * If there are multiple callbacks, we must have the hash lock, 5514 * because the only way for multiple threads to find this hdr is 5515 * in the hash table. This ensures that if there are multiple 5516 * callbacks, the hdr is not anonymous. If it were anonymous, 5517 * we couldn't use arc_buf_destroy() in the error case below. 5518 */ 5519 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5520 5521 hdr->b_l1hdr.b_acb = NULL; 5522 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5523 if (callback_cnt == 0) 5524 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 5525 5526 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 5527 callback_list != NULL); 5528 5529 if (zio->io_error == 0) { 5530 arc_hdr_verify(hdr, zio->io_bp); 5531 } else { 5532 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5533 if (hdr->b_l1hdr.b_state != arc_anon) 5534 arc_change_state(arc_anon, hdr, hash_lock); 5535 if (HDR_IN_HASH_TABLE(hdr)) 5536 buf_hash_remove(hdr); 5537 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5538 } 5539 5540 /* 5541 * Broadcast before we drop the hash_lock to avoid the possibility 5542 * that the hdr (and hence the cv) might be freed before we get to 5543 * the cv_broadcast(). 5544 */ 5545 cv_broadcast(&hdr->b_l1hdr.b_cv); 5546 5547 if (hash_lock != NULL) { 5548 mutex_exit(hash_lock); 5549 } else { 5550 /* 5551 * This block was freed while we waited for the read to 5552 * complete. It has been removed from the hash table and 5553 * moved to the anonymous state (so that it won't show up 5554 * in the cache). 5555 */ 5556 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 5557 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5558 } 5559 5560 /* execute each callback and free its structure */ 5561 while ((acb = callback_list) != NULL) { 5562 5563 if (acb->acb_done != NULL) { 5564 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5565 /* 5566 * If arc_buf_alloc_impl() fails during 5567 * decompression, the buf will still be 5568 * allocated, and needs to be freed here. 5569 */ 5570 arc_buf_destroy(acb->acb_buf, acb->acb_private); 5571 acb->acb_buf = NULL; 5572 } 5573 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5574 acb->acb_buf, acb->acb_private); 5575 } 5576 5577 if (acb->acb_zio_dummy != NULL) { 5578 acb->acb_zio_dummy->io_error = zio->io_error; 5579 zio_nowait(acb->acb_zio_dummy); 5580 } 5581 5582 callback_list = acb->acb_next; 5583 kmem_free(acb, sizeof (arc_callback_t)); 5584 } 5585 5586 if (freeable) 5587 arc_hdr_destroy(hdr); 5588 } 5589 5590 /* 5591 * "Read" the block at the specified DVA (in bp) via the 5592 * cache. If the block is found in the cache, invoke the provided 5593 * callback immediately and return. Note that the `zio' parameter 5594 * in the callback will be NULL in this case, since no IO was 5595 * required. If the block is not in the cache pass the read request 5596 * on to the spa with a substitute callback function, so that the 5597 * requested block will be added to the cache. 5598 * 5599 * If a read request arrives for a block that has a read in-progress, 5600 * either wait for the in-progress read to complete (and return the 5601 * results); or, if this is a read with a "done" func, add a record 5602 * to the read to invoke the "done" func when the read completes, 5603 * and return; or just return. 5604 * 5605 * arc_read_done() will invoke all the requested "done" functions 5606 * for readers of this block. 5607 */ 5608 int 5609 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_read_done_func_t *done, 5610 void *private, zio_priority_t priority, int zio_flags, 5611 arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5612 { 5613 arc_buf_hdr_t *hdr = NULL; 5614 kmutex_t *hash_lock = NULL; 5615 zio_t *rzio; 5616 uint64_t guid = spa_load_guid(spa); 5617 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5618 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5619 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5620 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5621 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5622 int rc = 0; 5623 5624 ASSERT(!BP_IS_EMBEDDED(bp) || 5625 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5626 5627 top: 5628 if (!BP_IS_EMBEDDED(bp)) { 5629 /* 5630 * Embedded BP's have no DVA and require no I/O to "read". 5631 * Create an anonymous arc buf to back it. 5632 */ 5633 hdr = buf_hash_find(guid, bp, &hash_lock); 5634 } 5635 5636 /* 5637 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5638 * we maintain encrypted data seperately from compressed / uncompressed 5639 * data. If the user is requesting raw encrypted data and we don't have 5640 * that in the header we will read from disk to guarantee that we can 5641 * get it even if the encryption keys aren't loaded. 5642 */ 5643 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5644 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5645 arc_buf_t *buf = NULL; 5646 *arc_flags |= ARC_FLAG_CACHED; 5647 5648 if (HDR_IO_IN_PROGRESS(hdr)) { 5649 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5650 5651 ASSERT3P(head_zio, !=, NULL); 5652 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5653 priority == ZIO_PRIORITY_SYNC_READ) { 5654 /* 5655 * This is a sync read that needs to wait for 5656 * an in-flight async read. Request that the 5657 * zio have its priority upgraded. 5658 */ 5659 zio_change_priority(head_zio, priority); 5660 DTRACE_PROBE1(arc__async__upgrade__sync, 5661 arc_buf_hdr_t *, hdr); 5662 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5663 } 5664 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5665 arc_hdr_clear_flags(hdr, 5666 ARC_FLAG_PREDICTIVE_PREFETCH); 5667 } 5668 5669 if (*arc_flags & ARC_FLAG_WAIT) { 5670 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5671 mutex_exit(hash_lock); 5672 goto top; 5673 } 5674 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5675 5676 if (done) { 5677 arc_callback_t *acb = NULL; 5678 5679 acb = kmem_zalloc(sizeof (arc_callback_t), 5680 KM_SLEEP); 5681 acb->acb_done = done; 5682 acb->acb_private = private; 5683 acb->acb_compressed = compressed_read; 5684 acb->acb_encrypted = encrypted_read; 5685 acb->acb_noauth = noauth_read; 5686 acb->acb_zb = *zb; 5687 if (pio != NULL) 5688 acb->acb_zio_dummy = zio_null(pio, 5689 spa, NULL, NULL, NULL, zio_flags); 5690 5691 ASSERT3P(acb->acb_done, !=, NULL); 5692 acb->acb_zio_head = head_zio; 5693 acb->acb_next = hdr->b_l1hdr.b_acb; 5694 hdr->b_l1hdr.b_acb = acb; 5695 mutex_exit(hash_lock); 5696 return (0); 5697 } 5698 mutex_exit(hash_lock); 5699 return (0); 5700 } 5701 5702 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5703 hdr->b_l1hdr.b_state == arc_mfu); 5704 5705 if (done) { 5706 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5707 /* 5708 * This is a demand read which does not have to 5709 * wait for i/o because we did a predictive 5710 * prefetch i/o for it, which has completed. 5711 */ 5712 DTRACE_PROBE1( 5713 arc__demand__hit__predictive__prefetch, 5714 arc_buf_hdr_t *, hdr); 5715 ARCSTAT_BUMP( 5716 arcstat_demand_hit_predictive_prefetch); 5717 arc_hdr_clear_flags(hdr, 5718 ARC_FLAG_PREDICTIVE_PREFETCH); 5719 } 5720 5721 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 5722 ARCSTAT_BUMP( 5723 arcstat_demand_hit_prescient_prefetch); 5724 arc_hdr_clear_flags(hdr, 5725 ARC_FLAG_PRESCIENT_PREFETCH); 5726 } 5727 5728 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp)); 5729 5730 arc_hdr_verify_checksum(spa, hdr, bp); 5731 5732 /* Get a buf with the desired data in it. */ 5733 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 5734 encrypted_read, compressed_read, noauth_read, 5735 B_TRUE, &buf); 5736 if (rc == ECKSUM) { 5737 /* 5738 * Convert authentication and decryption errors 5739 * to EIO (and generate an ereport if needed) 5740 * before leaving the ARC. 5741 */ 5742 rc = SET_ERROR(EIO); 5743 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5744 spa_log_error(spa, zb); 5745 (void) zfs_ereport_post( 5746 FM_EREPORT_ZFS_AUTHENTICATION, 5747 spa, NULL, zb, NULL, 0, 0); 5748 } 5749 } 5750 if (rc != 0) { 5751 (void) remove_reference(hdr, hash_lock, 5752 private); 5753 arc_buf_destroy_impl(buf); 5754 buf = NULL; 5755 } 5756 /* assert any errors weren't due to unloaded keys */ 5757 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 5758 rc != EACCES); 5759 } else if (*arc_flags & ARC_FLAG_PREFETCH && 5760 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 5761 if (HDR_HAS_L2HDR(hdr)) 5762 l2arc_hdr_arcstats_decrement_state(hdr); 5763 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5764 if (HDR_HAS_L2HDR(hdr)) 5765 l2arc_hdr_arcstats_increment_state(hdr); 5766 } 5767 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5768 arc_access(hdr, hash_lock); 5769 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 5770 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 5771 if (*arc_flags & ARC_FLAG_L2CACHE) 5772 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5773 mutex_exit(hash_lock); 5774 ARCSTAT_BUMP(arcstat_hits); 5775 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5776 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 5777 data, metadata, hits); 5778 5779 if (done) 5780 done(NULL, zb, bp, buf, private); 5781 } else { 5782 uint64_t lsize = BP_GET_LSIZE(bp); 5783 uint64_t psize = BP_GET_PSIZE(bp); 5784 arc_callback_t *acb; 5785 vdev_t *vd = NULL; 5786 uint64_t addr = 0; 5787 boolean_t devw = B_FALSE; 5788 uint64_t size; 5789 abd_t *hdr_abd; 5790 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 5791 5792 if (hdr == NULL) { 5793 /* this block is not in the cache */ 5794 arc_buf_hdr_t *exists = NULL; 5795 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 5796 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 5797 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), type, 5798 encrypted_read); 5799 5800 if (!BP_IS_EMBEDDED(bp)) { 5801 hdr->b_dva = *BP_IDENTITY(bp); 5802 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 5803 exists = buf_hash_insert(hdr, &hash_lock); 5804 } 5805 if (exists != NULL) { 5806 /* somebody beat us to the hash insert */ 5807 mutex_exit(hash_lock); 5808 buf_discard_identity(hdr); 5809 arc_hdr_destroy(hdr); 5810 goto top; /* restart the IO request */ 5811 } 5812 } else { 5813 /* 5814 * This block is in the ghost cache or encrypted data 5815 * was requested and we didn't have it. If it was 5816 * L2-only (and thus didn't have an L1 hdr), 5817 * we realloc the header to add an L1 hdr. 5818 */ 5819 if (!HDR_HAS_L1HDR(hdr)) { 5820 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 5821 hdr_full_cache); 5822 } 5823 5824 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 5825 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 5826 ASSERT(!HDR_HAS_RABD(hdr)); 5827 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5828 ASSERT0(zfs_refcount_count( 5829 &hdr->b_l1hdr.b_refcnt)); 5830 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 5831 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 5832 } else if (HDR_IO_IN_PROGRESS(hdr)) { 5833 /* 5834 * If this header already had an IO in progress 5835 * and we are performing another IO to fetch 5836 * encrypted data we must wait until the first 5837 * IO completes so as not to confuse 5838 * arc_read_done(). This should be very rare 5839 * and so the performance impact shouldn't 5840 * matter. 5841 */ 5842 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5843 mutex_exit(hash_lock); 5844 goto top; 5845 } 5846 5847 /* 5848 * This is a delicate dance that we play here. 5849 * This hdr might be in the ghost list so we access 5850 * it to move it out of the ghost list before we 5851 * initiate the read. If it's a prefetch then 5852 * it won't have a callback so we'll remove the 5853 * reference that arc_buf_alloc_impl() created. We 5854 * do this after we've called arc_access() to 5855 * avoid hitting an assert in remove_reference(). 5856 */ 5857 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state); 5858 arc_access(hdr, hash_lock); 5859 arc_hdr_alloc_pabd(hdr, alloc_flags); 5860 } 5861 5862 if (encrypted_read) { 5863 ASSERT(HDR_HAS_RABD(hdr)); 5864 size = HDR_GET_PSIZE(hdr); 5865 hdr_abd = hdr->b_crypt_hdr.b_rabd; 5866 zio_flags |= ZIO_FLAG_RAW; 5867 } else { 5868 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 5869 size = arc_hdr_size(hdr); 5870 hdr_abd = hdr->b_l1hdr.b_pabd; 5871 5872 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 5873 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 5874 } 5875 5876 /* 5877 * For authenticated bp's, we do not ask the ZIO layer 5878 * to authenticate them since this will cause the entire 5879 * IO to fail if the key isn't loaded. Instead, we 5880 * defer authentication until arc_buf_fill(), which will 5881 * verify the data when the key is available. 5882 */ 5883 if (BP_IS_AUTHENTICATED(bp)) 5884 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 5885 } 5886 5887 if (*arc_flags & ARC_FLAG_PREFETCH && 5888 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 5889 if (HDR_HAS_L2HDR(hdr)) 5890 l2arc_hdr_arcstats_decrement_state(hdr); 5891 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5892 if (HDR_HAS_L2HDR(hdr)) 5893 l2arc_hdr_arcstats_increment_state(hdr); 5894 } 5895 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 5896 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 5897 5898 if (*arc_flags & ARC_FLAG_L2CACHE) 5899 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5900 if (BP_IS_AUTHENTICATED(bp)) 5901 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 5902 if (BP_GET_LEVEL(bp) > 0) 5903 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 5904 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 5905 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 5906 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 5907 5908 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 5909 acb->acb_done = done; 5910 acb->acb_private = private; 5911 acb->acb_compressed = compressed_read; 5912 acb->acb_encrypted = encrypted_read; 5913 acb->acb_noauth = noauth_read; 5914 acb->acb_zb = *zb; 5915 5916 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5917 hdr->b_l1hdr.b_acb = acb; 5918 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5919 5920 if (HDR_HAS_L2HDR(hdr) && 5921 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 5922 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 5923 addr = hdr->b_l2hdr.b_daddr; 5924 /* 5925 * Lock out L2ARC device removal. 5926 */ 5927 if (vdev_is_dead(vd) || 5928 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 5929 vd = NULL; 5930 } 5931 5932 /* 5933 * We count both async reads and scrub IOs as asynchronous so 5934 * that both can be upgraded in the event of a cache hit while 5935 * the read IO is still in-flight. 5936 */ 5937 if (priority == ZIO_PRIORITY_ASYNC_READ || 5938 priority == ZIO_PRIORITY_SCRUB) 5939 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5940 else 5941 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5942 5943 /* 5944 * At this point, we have a level 1 cache miss. Try again in 5945 * L2ARC if possible. 5946 */ 5947 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 5948 5949 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 5950 uint64_t, lsize, zbookmark_phys_t *, zb); 5951 ARCSTAT_BUMP(arcstat_misses); 5952 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5953 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 5954 data, metadata, misses); 5955 5956 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 5957 /* 5958 * Read from the L2ARC if the following are true: 5959 * 1. The L2ARC vdev was previously cached. 5960 * 2. This buffer still has L2ARC metadata. 5961 * 3. This buffer isn't currently writing to the L2ARC. 5962 * 4. The L2ARC entry wasn't evicted, which may 5963 * also have invalidated the vdev. 5964 * 5. This isn't prefetch or l2arc_noprefetch is 0. 5965 */ 5966 if (HDR_HAS_L2HDR(hdr) && 5967 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 5968 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 5969 l2arc_read_callback_t *cb; 5970 abd_t *abd; 5971 uint64_t asize; 5972 5973 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 5974 ARCSTAT_BUMP(arcstat_l2_hits); 5975 5976 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 5977 KM_SLEEP); 5978 cb->l2rcb_hdr = hdr; 5979 cb->l2rcb_bp = *bp; 5980 cb->l2rcb_zb = *zb; 5981 cb->l2rcb_flags = zio_flags; 5982 5983 /* 5984 * When Compressed ARC is disabled, but the 5985 * L2ARC block is compressed, arc_hdr_size() 5986 * will have returned LSIZE rather than PSIZE. 5987 */ 5988 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 5989 !HDR_COMPRESSION_ENABLED(hdr) && 5990 HDR_GET_PSIZE(hdr) != 0) { 5991 size = HDR_GET_PSIZE(hdr); 5992 } 5993 5994 asize = vdev_psize_to_asize(vd, size); 5995 if (asize != size) { 5996 abd = abd_alloc_for_io(asize, 5997 HDR_ISTYPE_METADATA(hdr)); 5998 cb->l2rcb_abd = abd; 5999 } else { 6000 abd = hdr_abd; 6001 } 6002 6003 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6004 addr + asize <= vd->vdev_psize - 6005 VDEV_LABEL_END_SIZE); 6006 6007 /* 6008 * l2arc read. The SCL_L2ARC lock will be 6009 * released by l2arc_read_done(). 6010 * Issue a null zio if the underlying buffer 6011 * was squashed to zero size by compression. 6012 */ 6013 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6014 ZIO_COMPRESS_EMPTY); 6015 rzio = zio_read_phys(pio, vd, addr, 6016 asize, abd, 6017 ZIO_CHECKSUM_OFF, 6018 l2arc_read_done, cb, priority, 6019 zio_flags | ZIO_FLAG_DONT_CACHE | 6020 ZIO_FLAG_CANFAIL | 6021 ZIO_FLAG_DONT_PROPAGATE | 6022 ZIO_FLAG_DONT_RETRY, B_FALSE); 6023 acb->acb_zio_head = rzio; 6024 6025 if (hash_lock != NULL) 6026 mutex_exit(hash_lock); 6027 6028 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6029 zio_t *, rzio); 6030 ARCSTAT_INCR(arcstat_l2_read_bytes, 6031 HDR_GET_PSIZE(hdr)); 6032 6033 if (*arc_flags & ARC_FLAG_NOWAIT) { 6034 zio_nowait(rzio); 6035 return (0); 6036 } 6037 6038 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6039 if (zio_wait(rzio) == 0) 6040 return (0); 6041 6042 /* l2arc read error; goto zio_read() */ 6043 if (hash_lock != NULL) 6044 mutex_enter(hash_lock); 6045 } else { 6046 DTRACE_PROBE1(l2arc__miss, 6047 arc_buf_hdr_t *, hdr); 6048 ARCSTAT_BUMP(arcstat_l2_misses); 6049 if (HDR_L2_WRITING(hdr)) 6050 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6051 spa_config_exit(spa, SCL_L2ARC, vd); 6052 } 6053 } else { 6054 if (vd != NULL) 6055 spa_config_exit(spa, SCL_L2ARC, vd); 6056 if (l2arc_ndev != 0) { 6057 DTRACE_PROBE1(l2arc__miss, 6058 arc_buf_hdr_t *, hdr); 6059 ARCSTAT_BUMP(arcstat_l2_misses); 6060 } 6061 } 6062 6063 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6064 arc_read_done, hdr, priority, zio_flags, zb); 6065 acb->acb_zio_head = rzio; 6066 6067 if (hash_lock != NULL) 6068 mutex_exit(hash_lock); 6069 6070 if (*arc_flags & ARC_FLAG_WAIT) 6071 return (zio_wait(rzio)); 6072 6073 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6074 zio_nowait(rzio); 6075 } 6076 return (rc); 6077 } 6078 6079 /* 6080 * Notify the arc that a block was freed, and thus will never be used again. 6081 */ 6082 void 6083 arc_freed(spa_t *spa, const blkptr_t *bp) 6084 { 6085 arc_buf_hdr_t *hdr; 6086 kmutex_t *hash_lock; 6087 uint64_t guid = spa_load_guid(spa); 6088 6089 ASSERT(!BP_IS_EMBEDDED(bp)); 6090 6091 hdr = buf_hash_find(guid, bp, &hash_lock); 6092 if (hdr == NULL) 6093 return; 6094 6095 /* 6096 * We might be trying to free a block that is still doing I/O 6097 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 6098 * dmu_sync-ed block). If this block is being prefetched, then it 6099 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 6100 * until the I/O completes. A block may also have a reference if it is 6101 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6102 * have written the new block to its final resting place on disk but 6103 * without the dedup flag set. This would have left the hdr in the MRU 6104 * state and discoverable. When the txg finally syncs it detects that 6105 * the block was overridden in open context and issues an override I/O. 6106 * Since this is a dedup block, the override I/O will determine if the 6107 * block is already in the DDT. If so, then it will replace the io_bp 6108 * with the bp from the DDT and allow the I/O to finish. When the I/O 6109 * reaches the done callback, dbuf_write_override_done, it will 6110 * check to see if the io_bp and io_bp_override are identical. 6111 * If they are not, then it indicates that the bp was replaced with 6112 * the bp in the DDT and the override bp is freed. This allows 6113 * us to arrive here with a reference on a block that is being 6114 * freed. So if we have an I/O in progress, or a reference to 6115 * this hdr, then we don't destroy the hdr. 6116 */ 6117 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 6118 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 6119 arc_change_state(arc_anon, hdr, hash_lock); 6120 arc_hdr_destroy(hdr); 6121 mutex_exit(hash_lock); 6122 } else { 6123 mutex_exit(hash_lock); 6124 } 6125 6126 } 6127 6128 /* 6129 * Release this buffer from the cache, making it an anonymous buffer. This 6130 * must be done after a read and prior to modifying the buffer contents. 6131 * If the buffer has more than one reference, we must make 6132 * a new hdr for the buffer. 6133 */ 6134 void 6135 arc_release(arc_buf_t *buf, void *tag) 6136 { 6137 /* 6138 * It would be nice to assert that if its DMU metadata (level > 6139 * 0 || it's the dnode file), then it must be syncing context. 6140 * But we don't know that information at this level. 6141 */ 6142 6143 mutex_enter(&buf->b_evict_lock); 6144 6145 arc_buf_hdr_t *hdr = buf->b_hdr; 6146 6147 ASSERT(HDR_HAS_L1HDR(hdr)); 6148 6149 /* 6150 * We don't grab the hash lock prior to this check, because if 6151 * the buffer's header is in the arc_anon state, it won't be 6152 * linked into the hash table. 6153 */ 6154 if (hdr->b_l1hdr.b_state == arc_anon) { 6155 mutex_exit(&buf->b_evict_lock); 6156 /* 6157 * If we are called from dmu_convert_mdn_block_to_raw(), 6158 * a write might be in progress. This is OK because 6159 * the caller won't change the content of this buffer, 6160 * only the flags (via arc_convert_to_raw()). 6161 */ 6162 /* ASSERT(!HDR_IO_IN_PROGRESS(hdr)); */ 6163 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6164 ASSERT(!HDR_HAS_L2HDR(hdr)); 6165 ASSERT(HDR_EMPTY(hdr)); 6166 6167 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6168 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6169 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 6170 6171 hdr->b_l1hdr.b_arc_access = 0; 6172 6173 /* 6174 * If the buf is being overridden then it may already 6175 * have a hdr that is not empty. 6176 */ 6177 buf_discard_identity(hdr); 6178 arc_buf_thaw(buf); 6179 6180 return; 6181 } 6182 6183 kmutex_t *hash_lock = HDR_LOCK(hdr); 6184 mutex_enter(hash_lock); 6185 6186 /* 6187 * Wait for any other IO for this hdr, as additional 6188 * buf(s) could be about to appear, in which case 6189 * we would not want to transition hdr to arc_anon. 6190 */ 6191 while (HDR_IO_IN_PROGRESS(hdr)) { 6192 DTRACE_PROBE1(arc_release__io, arc_buf_hdr_t *, hdr); 6193 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 6194 } 6195 6196 /* 6197 * This assignment is only valid as long as the hash_lock is 6198 * held, we must be careful not to reference state or the 6199 * b_state field after dropping the lock. 6200 */ 6201 arc_state_t *state = hdr->b_l1hdr.b_state; 6202 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6203 ASSERT3P(state, !=, arc_anon); 6204 6205 /* this buffer is not on any list */ 6206 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6207 6208 if (HDR_HAS_L2HDR(hdr)) { 6209 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6210 6211 /* 6212 * We have to recheck this conditional again now that 6213 * we're holding the l2ad_mtx to prevent a race with 6214 * another thread which might be concurrently calling 6215 * l2arc_evict(). In that case, l2arc_evict() might have 6216 * destroyed the header's L2 portion as we were waiting 6217 * to acquire the l2ad_mtx. 6218 */ 6219 if (HDR_HAS_L2HDR(hdr)) 6220 arc_hdr_l2hdr_destroy(hdr); 6221 6222 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6223 } 6224 6225 /* 6226 * Do we have more than one buf? 6227 */ 6228 if (hdr->b_l1hdr.b_bufcnt > 1) { 6229 arc_buf_hdr_t *nhdr; 6230 uint64_t spa = hdr->b_spa; 6231 uint64_t psize = HDR_GET_PSIZE(hdr); 6232 uint64_t lsize = HDR_GET_LSIZE(hdr); 6233 boolean_t protected = HDR_PROTECTED(hdr); 6234 enum zio_compress compress = arc_hdr_get_compress(hdr); 6235 arc_buf_contents_t type = arc_buf_type(hdr); 6236 VERIFY3U(hdr->b_type, ==, type); 6237 6238 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6239 (void) remove_reference(hdr, hash_lock, tag); 6240 6241 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 6242 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6243 ASSERT(ARC_BUF_LAST(buf)); 6244 } 6245 6246 /* 6247 * Pull the data off of this hdr and attach it to 6248 * a new anonymous hdr. Also find the last buffer 6249 * in the hdr's buffer list. 6250 */ 6251 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6252 ASSERT3P(lastbuf, !=, NULL); 6253 6254 /* 6255 * If the current arc_buf_t and the hdr are sharing their data 6256 * buffer, then we must stop sharing that block. 6257 */ 6258 if (arc_buf_is_shared(buf)) { 6259 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6260 VERIFY(!arc_buf_is_shared(lastbuf)); 6261 6262 /* 6263 * First, sever the block sharing relationship between 6264 * buf and the arc_buf_hdr_t. 6265 */ 6266 arc_unshare_buf(hdr, buf); 6267 6268 /* 6269 * Now we need to recreate the hdr's b_pabd. Since we 6270 * have lastbuf handy, we try to share with it, but if 6271 * we can't then we allocate a new b_pabd and copy the 6272 * data from buf into it. 6273 */ 6274 if (arc_can_share(hdr, lastbuf)) { 6275 arc_share_buf(hdr, lastbuf); 6276 } else { 6277 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT); 6278 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6279 buf->b_data, psize); 6280 } 6281 VERIFY3P(lastbuf->b_data, !=, NULL); 6282 } else if (HDR_SHARED_DATA(hdr)) { 6283 /* 6284 * Uncompressed shared buffers are always at the end 6285 * of the list. Compressed buffers don't have the 6286 * same requirements. This makes it hard to 6287 * simply assert that the lastbuf is shared so 6288 * we rely on the hdr's compression flags to determine 6289 * if we have a compressed, shared buffer. 6290 */ 6291 ASSERT(arc_buf_is_shared(lastbuf) || 6292 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6293 ASSERT(!ARC_BUF_SHARED(buf)); 6294 } 6295 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6296 ASSERT3P(state, !=, arc_l2c_only); 6297 6298 (void) zfs_refcount_remove_many(&state->arcs_size, 6299 arc_buf_size(buf), buf); 6300 6301 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6302 ASSERT3P(state, !=, arc_l2c_only); 6303 (void) zfs_refcount_remove_many( 6304 &state->arcs_esize[type], 6305 arc_buf_size(buf), buf); 6306 } 6307 6308 hdr->b_l1hdr.b_bufcnt -= 1; 6309 if (ARC_BUF_ENCRYPTED(buf)) 6310 hdr->b_crypt_hdr.b_ebufcnt -= 1; 6311 6312 arc_cksum_verify(buf); 6313 arc_buf_unwatch(buf); 6314 6315 /* if this is the last uncompressed buf free the checksum */ 6316 if (!arc_hdr_has_uncompressed_buf(hdr)) 6317 arc_cksum_free(hdr); 6318 6319 mutex_exit(hash_lock); 6320 6321 /* 6322 * Allocate a new hdr. The new hdr will contain a b_pabd 6323 * buffer which will be freed in arc_write(). 6324 */ 6325 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6326 compress, type, HDR_HAS_RABD(hdr)); 6327 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6328 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 6329 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6330 VERIFY3U(nhdr->b_type, ==, type); 6331 ASSERT(!HDR_SHARED_DATA(nhdr)); 6332 6333 nhdr->b_l1hdr.b_buf = buf; 6334 nhdr->b_l1hdr.b_bufcnt = 1; 6335 if (ARC_BUF_ENCRYPTED(buf)) 6336 nhdr->b_crypt_hdr.b_ebufcnt = 1; 6337 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6338 buf->b_hdr = nhdr; 6339 6340 mutex_exit(&buf->b_evict_lock); 6341 (void) zfs_refcount_add_many(&arc_anon->arcs_size, 6342 arc_buf_size(buf), buf); 6343 } else { 6344 mutex_exit(&buf->b_evict_lock); 6345 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6346 /* protected by hash lock, or hdr is on arc_anon */ 6347 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6348 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6349 arc_change_state(arc_anon, hdr, hash_lock); 6350 hdr->b_l1hdr.b_arc_access = 0; 6351 6352 mutex_exit(hash_lock); 6353 buf_discard_identity(hdr); 6354 arc_buf_thaw(buf); 6355 } 6356 } 6357 6358 int 6359 arc_released(arc_buf_t *buf) 6360 { 6361 int released; 6362 6363 mutex_enter(&buf->b_evict_lock); 6364 released = (buf->b_data != NULL && 6365 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6366 mutex_exit(&buf->b_evict_lock); 6367 return (released); 6368 } 6369 6370 #ifdef ZFS_DEBUG 6371 int 6372 arc_referenced(arc_buf_t *buf) 6373 { 6374 int referenced; 6375 6376 mutex_enter(&buf->b_evict_lock); 6377 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6378 mutex_exit(&buf->b_evict_lock); 6379 return (referenced); 6380 } 6381 #endif 6382 6383 static void 6384 arc_write_ready(zio_t *zio) 6385 { 6386 arc_write_callback_t *callback = zio->io_private; 6387 arc_buf_t *buf = callback->awcb_buf; 6388 arc_buf_hdr_t *hdr = buf->b_hdr; 6389 blkptr_t *bp = zio->io_bp; 6390 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6391 6392 ASSERT(HDR_HAS_L1HDR(hdr)); 6393 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6394 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 6395 6396 /* 6397 * If we're reexecuting this zio because the pool suspended, then 6398 * cleanup any state that was previously set the first time the 6399 * callback was invoked. 6400 */ 6401 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6402 arc_cksum_free(hdr); 6403 arc_buf_unwatch(buf); 6404 if (hdr->b_l1hdr.b_pabd != NULL) { 6405 if (arc_buf_is_shared(buf)) { 6406 arc_unshare_buf(hdr, buf); 6407 } else { 6408 arc_hdr_free_pabd(hdr, B_FALSE); 6409 } 6410 } 6411 6412 if (HDR_HAS_RABD(hdr)) 6413 arc_hdr_free_pabd(hdr, B_TRUE); 6414 } 6415 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6416 ASSERT(!HDR_HAS_RABD(hdr)); 6417 ASSERT(!HDR_SHARED_DATA(hdr)); 6418 ASSERT(!arc_buf_is_shared(buf)); 6419 6420 callback->awcb_ready(zio, buf, callback->awcb_private); 6421 6422 if (HDR_IO_IN_PROGRESS(hdr)) 6423 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6424 6425 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6426 6427 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr)) 6428 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp)); 6429 6430 if (BP_IS_PROTECTED(bp)) { 6431 /* ZIL blocks are written through zio_rewrite */ 6432 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6433 ASSERT(HDR_PROTECTED(hdr)); 6434 6435 if (BP_SHOULD_BYTESWAP(bp)) { 6436 if (BP_GET_LEVEL(bp) > 0) { 6437 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6438 } else { 6439 hdr->b_l1hdr.b_byteswap = 6440 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6441 } 6442 } else { 6443 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6444 } 6445 6446 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6447 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6448 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6449 hdr->b_crypt_hdr.b_iv); 6450 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6451 } 6452 6453 /* 6454 * If this block was written for raw encryption but the zio layer 6455 * ended up only authenticating it, adjust the buffer flags now. 6456 */ 6457 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6458 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6459 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6460 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6461 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6462 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6463 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6464 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6465 } 6466 6467 /* this must be done after the buffer flags are adjusted */ 6468 arc_cksum_compute(buf); 6469 6470 enum zio_compress compress; 6471 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6472 compress = ZIO_COMPRESS_OFF; 6473 } else { 6474 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6475 compress = BP_GET_COMPRESS(bp); 6476 } 6477 HDR_SET_PSIZE(hdr, psize); 6478 arc_hdr_set_compress(hdr, compress); 6479 6480 if (zio->io_error != 0 || psize == 0) 6481 goto out; 6482 6483 /* 6484 * Fill the hdr with data. If the buffer is encrypted we have no choice 6485 * but to copy the data into b_rabd. If the hdr is compressed, the data 6486 * we want is available from the zio, otherwise we can take it from 6487 * the buf. 6488 * 6489 * We might be able to share the buf's data with the hdr here. However, 6490 * doing so would cause the ARC to be full of linear ABDs if we write a 6491 * lot of shareable data. As a compromise, we check whether scattered 6492 * ABDs are allowed, and assume that if they are then the user wants 6493 * the ARC to be primarily filled with them regardless of the data being 6494 * written. Therefore, if they're allowed then we allocate one and copy 6495 * the data into it; otherwise, we share the data directly if we can. 6496 */ 6497 if (ARC_BUF_ENCRYPTED(buf)) { 6498 ASSERT3U(psize, >, 0); 6499 ASSERT(ARC_BUF_COMPRESSED(buf)); 6500 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6501 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6502 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) { 6503 /* 6504 * Ideally, we would always copy the io_abd into b_pabd, but the 6505 * user may have disabled compressed ARC, thus we must check the 6506 * hdr's compression setting rather than the io_bp's. 6507 */ 6508 if (BP_IS_ENCRYPTED(bp)) { 6509 ASSERT3U(psize, >, 0); 6510 arc_hdr_alloc_pabd(hdr, 6511 ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6512 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6513 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6514 !ARC_BUF_COMPRESSED(buf)) { 6515 ASSERT3U(psize, >, 0); 6516 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT); 6517 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6518 } else { 6519 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6520 arc_hdr_alloc_pabd(hdr, ARC_HDR_DO_ADAPT); 6521 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6522 arc_buf_size(buf)); 6523 } 6524 } else { 6525 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6526 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6527 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6528 arc_share_buf(hdr, buf); 6529 } 6530 6531 out: 6532 arc_hdr_verify(hdr, bp); 6533 } 6534 6535 static void 6536 arc_write_children_ready(zio_t *zio) 6537 { 6538 arc_write_callback_t *callback = zio->io_private; 6539 arc_buf_t *buf = callback->awcb_buf; 6540 6541 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6542 } 6543 6544 /* 6545 * The SPA calls this callback for each physical write that happens on behalf 6546 * of a logical write. See the comment in dbuf_write_physdone() for details. 6547 */ 6548 static void 6549 arc_write_physdone(zio_t *zio) 6550 { 6551 arc_write_callback_t *cb = zio->io_private; 6552 if (cb->awcb_physdone != NULL) 6553 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 6554 } 6555 6556 static void 6557 arc_write_done(zio_t *zio) 6558 { 6559 arc_write_callback_t *callback = zio->io_private; 6560 arc_buf_t *buf = callback->awcb_buf; 6561 arc_buf_hdr_t *hdr = buf->b_hdr; 6562 6563 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6564 6565 if (zio->io_error == 0) { 6566 arc_hdr_verify(hdr, zio->io_bp); 6567 6568 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6569 buf_discard_identity(hdr); 6570 } else { 6571 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6572 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 6573 } 6574 } else { 6575 ASSERT(HDR_EMPTY(hdr)); 6576 } 6577 6578 /* 6579 * If the block to be written was all-zero or compressed enough to be 6580 * embedded in the BP, no write was performed so there will be no 6581 * dva/birth/checksum. The buffer must therefore remain anonymous 6582 * (and uncached). 6583 */ 6584 if (!HDR_EMPTY(hdr)) { 6585 arc_buf_hdr_t *exists; 6586 kmutex_t *hash_lock; 6587 6588 ASSERT3U(zio->io_error, ==, 0); 6589 6590 arc_cksum_verify(buf); 6591 6592 exists = buf_hash_insert(hdr, &hash_lock); 6593 if (exists != NULL) { 6594 /* 6595 * This can only happen if we overwrite for 6596 * sync-to-convergence, because we remove 6597 * buffers from the hash table when we arc_free(). 6598 */ 6599 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 6600 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6601 panic("bad overwrite, hdr=%p exists=%p", 6602 (void *)hdr, (void *)exists); 6603 ASSERT(zfs_refcount_is_zero( 6604 &exists->b_l1hdr.b_refcnt)); 6605 arc_change_state(arc_anon, exists, hash_lock); 6606 arc_hdr_destroy(exists); 6607 mutex_exit(hash_lock); 6608 exists = buf_hash_insert(hdr, &hash_lock); 6609 ASSERT3P(exists, ==, NULL); 6610 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 6611 /* nopwrite */ 6612 ASSERT(zio->io_prop.zp_nopwrite); 6613 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6614 panic("bad nopwrite, hdr=%p exists=%p", 6615 (void *)hdr, (void *)exists); 6616 } else { 6617 /* Dedup */ 6618 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 6619 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 6620 ASSERT(BP_GET_DEDUP(zio->io_bp)); 6621 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 6622 } 6623 } 6624 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6625 /* if it's not anon, we are doing a scrub */ 6626 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 6627 arc_access(hdr, hash_lock); 6628 mutex_exit(hash_lock); 6629 } else { 6630 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6631 } 6632 6633 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 6634 callback->awcb_done(zio, buf, callback->awcb_private); 6635 6636 abd_put(zio->io_abd); 6637 kmem_free(callback, sizeof (arc_write_callback_t)); 6638 } 6639 6640 zio_t * 6641 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 6642 boolean_t l2arc, const zio_prop_t *zp, arc_write_done_func_t *ready, 6643 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone, 6644 arc_write_done_func_t *done, void *private, zio_priority_t priority, 6645 int zio_flags, const zbookmark_phys_t *zb) 6646 { 6647 arc_buf_hdr_t *hdr = buf->b_hdr; 6648 arc_write_callback_t *callback; 6649 zio_t *zio; 6650 zio_prop_t localprop = *zp; 6651 6652 ASSERT3P(ready, !=, NULL); 6653 ASSERT3P(done, !=, NULL); 6654 ASSERT(!HDR_IO_ERROR(hdr)); 6655 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6656 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6657 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 6658 if (l2arc) 6659 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6660 6661 if (ARC_BUF_ENCRYPTED(buf)) { 6662 ASSERT(ARC_BUF_COMPRESSED(buf)); 6663 localprop.zp_encrypt = B_TRUE; 6664 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6665 /* CONSTCOND */ 6666 localprop.zp_byteorder = 6667 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 6668 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 6669 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt, 6670 ZIO_DATA_SALT_LEN); 6671 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv, 6672 ZIO_DATA_IV_LEN); 6673 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac, 6674 ZIO_DATA_MAC_LEN); 6675 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 6676 localprop.zp_nopwrite = B_FALSE; 6677 localprop.zp_copies = 6678 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 6679 } 6680 zio_flags |= ZIO_FLAG_RAW; 6681 } else if (ARC_BUF_COMPRESSED(buf)) { 6682 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 6683 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6684 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6685 } 6686 6687 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 6688 callback->awcb_ready = ready; 6689 callback->awcb_children_ready = children_ready; 6690 callback->awcb_physdone = physdone; 6691 callback->awcb_done = done; 6692 callback->awcb_private = private; 6693 callback->awcb_buf = buf; 6694 6695 /* 6696 * The hdr's b_pabd is now stale, free it now. A new data block 6697 * will be allocated when the zio pipeline calls arc_write_ready(). 6698 */ 6699 if (hdr->b_l1hdr.b_pabd != NULL) { 6700 /* 6701 * If the buf is currently sharing the data block with 6702 * the hdr then we need to break that relationship here. 6703 * The hdr will remain with a NULL data pointer and the 6704 * buf will take sole ownership of the block. 6705 */ 6706 if (arc_buf_is_shared(buf)) { 6707 arc_unshare_buf(hdr, buf); 6708 } else { 6709 arc_hdr_free_pabd(hdr, B_FALSE); 6710 } 6711 VERIFY3P(buf->b_data, !=, NULL); 6712 } 6713 6714 if (HDR_HAS_RABD(hdr)) 6715 arc_hdr_free_pabd(hdr, B_TRUE); 6716 6717 if (!(zio_flags & ZIO_FLAG_RAW)) 6718 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 6719 6720 ASSERT(!arc_buf_is_shared(buf)); 6721 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6722 6723 zio = zio_write(pio, spa, txg, bp, 6724 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 6725 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 6726 (children_ready != NULL) ? arc_write_children_ready : NULL, 6727 arc_write_physdone, arc_write_done, callback, 6728 priority, zio_flags, zb); 6729 6730 return (zio); 6731 } 6732 6733 static int 6734 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg) 6735 { 6736 #ifdef _KERNEL 6737 uint64_t available_memory = ptob(freemem); 6738 6739 6740 if (freemem > physmem * arc_lotsfree_percent / 100) 6741 return (0); 6742 6743 if (txg > spa->spa_lowmem_last_txg) { 6744 spa->spa_lowmem_last_txg = txg; 6745 spa->spa_lowmem_page_load = 0; 6746 } 6747 /* 6748 * If we are in pageout, we know that memory is already tight, 6749 * the arc is already going to be evicting, so we just want to 6750 * continue to let page writes occur as quickly as possible. 6751 */ 6752 if (curproc == proc_pageout) { 6753 if (spa->spa_lowmem_page_load > 6754 MAX(ptob(minfree), available_memory) / 4) 6755 return (SET_ERROR(ERESTART)); 6756 /* Note: reserve is inflated, so we deflate */ 6757 atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8); 6758 return (0); 6759 } else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) { 6760 /* memory is low, delay before restarting */ 6761 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 6762 return (SET_ERROR(EAGAIN)); 6763 } 6764 spa->spa_lowmem_page_load = 0; 6765 #endif /* _KERNEL */ 6766 return (0); 6767 } 6768 6769 /* 6770 * In more extreme cases, return B_TRUE if system memory is tight enough 6771 * that ZFS should defer work requiring new allocations. 6772 */ 6773 boolean_t 6774 arc_memory_is_low(void) 6775 { 6776 #ifdef _KERNEL 6777 if (freemem < minfree + needfree) 6778 return (B_TRUE); 6779 #endif /* _KERNEL */ 6780 return (B_FALSE); 6781 } 6782 6783 void 6784 arc_tempreserve_clear(uint64_t reserve) 6785 { 6786 atomic_add_64(&arc_tempreserve, -reserve); 6787 ASSERT((int64_t)arc_tempreserve >= 0); 6788 } 6789 6790 int 6791 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 6792 { 6793 int error; 6794 uint64_t anon_size; 6795 6796 if (reserve > arc_c/4 && !arc_no_grow) 6797 arc_c = MIN(arc_c_max, reserve * 4); 6798 if (reserve > arc_c) 6799 return (SET_ERROR(ENOMEM)); 6800 6801 /* 6802 * Don't count loaned bufs as in flight dirty data to prevent long 6803 * network delays from blocking transactions that are ready to be 6804 * assigned to a txg. 6805 */ 6806 6807 /* assert that it has not wrapped around */ 6808 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 6809 6810 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) - 6811 arc_loaned_bytes), 0); 6812 6813 /* 6814 * Writes will, almost always, require additional memory allocations 6815 * in order to compress/encrypt/etc the data. We therefore need to 6816 * make sure that there is sufficient available memory for this. 6817 */ 6818 error = arc_memory_throttle(spa, reserve, txg); 6819 if (error != 0) 6820 return (error); 6821 6822 /* 6823 * Throttle writes when the amount of dirty data in the cache 6824 * gets too large. We try to keep the cache less than half full 6825 * of dirty blocks so that our sync times don't grow too large. 6826 * 6827 * In the case of one pool being built on another pool, we want 6828 * to make sure we don't end up throttling the lower (backing) 6829 * pool when the upper pool is the majority contributor to dirty 6830 * data. To insure we make forward progress during throttling, we 6831 * also check the current pool's net dirty data and only throttle 6832 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 6833 * data in the cache. 6834 * 6835 * Note: if two requests come in concurrently, we might let them 6836 * both succeed, when one of them should fail. Not a huge deal. 6837 */ 6838 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 6839 uint64_t spa_dirty_anon = spa_dirty_data(spa); 6840 6841 if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 && 6842 anon_size > arc_c * zfs_arc_anon_limit_percent / 100 && 6843 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 6844 uint64_t meta_esize = 6845 zfs_refcount_count( 6846 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 6847 uint64_t data_esize = 6848 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 6849 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 6850 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 6851 arc_tempreserve >> 10, meta_esize >> 10, 6852 data_esize >> 10, reserve >> 10, arc_c >> 10); 6853 return (SET_ERROR(ERESTART)); 6854 } 6855 atomic_add_64(&arc_tempreserve, reserve); 6856 return (0); 6857 } 6858 6859 static void 6860 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 6861 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 6862 { 6863 size->value.ui64 = zfs_refcount_count(&state->arcs_size); 6864 evict_data->value.ui64 = 6865 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 6866 evict_metadata->value.ui64 = 6867 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 6868 } 6869 6870 static int 6871 arc_kstat_update(kstat_t *ksp, int rw) 6872 { 6873 arc_stats_t *as = ksp->ks_data; 6874 6875 if (rw == KSTAT_WRITE) { 6876 return (EACCES); 6877 } else { 6878 arc_kstat_update_state(arc_anon, 6879 &as->arcstat_anon_size, 6880 &as->arcstat_anon_evictable_data, 6881 &as->arcstat_anon_evictable_metadata); 6882 arc_kstat_update_state(arc_mru, 6883 &as->arcstat_mru_size, 6884 &as->arcstat_mru_evictable_data, 6885 &as->arcstat_mru_evictable_metadata); 6886 arc_kstat_update_state(arc_mru_ghost, 6887 &as->arcstat_mru_ghost_size, 6888 &as->arcstat_mru_ghost_evictable_data, 6889 &as->arcstat_mru_ghost_evictable_metadata); 6890 arc_kstat_update_state(arc_mfu, 6891 &as->arcstat_mfu_size, 6892 &as->arcstat_mfu_evictable_data, 6893 &as->arcstat_mfu_evictable_metadata); 6894 arc_kstat_update_state(arc_mfu_ghost, 6895 &as->arcstat_mfu_ghost_size, 6896 &as->arcstat_mfu_ghost_evictable_data, 6897 &as->arcstat_mfu_ghost_evictable_metadata); 6898 6899 ARCSTAT(arcstat_size) = aggsum_value(&arc_size); 6900 ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used); 6901 ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size); 6902 ARCSTAT(arcstat_metadata_size) = 6903 aggsum_value(&astat_metadata_size); 6904 ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size); 6905 ARCSTAT(arcstat_other_size) = aggsum_value(&astat_other_size); 6906 ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size); 6907 } 6908 6909 return (0); 6910 } 6911 6912 /* 6913 * This function *must* return indices evenly distributed between all 6914 * sublists of the multilist. This is needed due to how the ARC eviction 6915 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 6916 * distributed between all sublists and uses this assumption when 6917 * deciding which sublist to evict from and how much to evict from it. 6918 */ 6919 unsigned int 6920 arc_state_multilist_index_func(multilist_t *ml, void *obj) 6921 { 6922 arc_buf_hdr_t *hdr = obj; 6923 6924 /* 6925 * We rely on b_dva to generate evenly distributed index 6926 * numbers using buf_hash below. So, as an added precaution, 6927 * let's make sure we never add empty buffers to the arc lists. 6928 */ 6929 ASSERT(!HDR_EMPTY(hdr)); 6930 6931 /* 6932 * The assumption here, is the hash value for a given 6933 * arc_buf_hdr_t will remain constant throughout its lifetime 6934 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 6935 * Thus, we don't need to store the header's sublist index 6936 * on insertion, as this index can be recalculated on removal. 6937 * 6938 * Also, the low order bits of the hash value are thought to be 6939 * distributed evenly. Otherwise, in the case that the multilist 6940 * has a power of two number of sublists, each sublists' usage 6941 * would not be evenly distributed. 6942 */ 6943 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 6944 multilist_get_num_sublists(ml)); 6945 } 6946 6947 static void 6948 arc_state_init(void) 6949 { 6950 arc_anon = &ARC_anon; 6951 arc_mru = &ARC_mru; 6952 arc_mru_ghost = &ARC_mru_ghost; 6953 arc_mfu = &ARC_mfu; 6954 arc_mfu_ghost = &ARC_mfu_ghost; 6955 arc_l2c_only = &ARC_l2c_only; 6956 6957 arc_mru->arcs_list[ARC_BUFC_METADATA] = 6958 multilist_create(sizeof (arc_buf_hdr_t), 6959 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6960 arc_state_multilist_index_func); 6961 arc_mru->arcs_list[ARC_BUFC_DATA] = 6962 multilist_create(sizeof (arc_buf_hdr_t), 6963 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6964 arc_state_multilist_index_func); 6965 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] = 6966 multilist_create(sizeof (arc_buf_hdr_t), 6967 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6968 arc_state_multilist_index_func); 6969 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] = 6970 multilist_create(sizeof (arc_buf_hdr_t), 6971 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6972 arc_state_multilist_index_func); 6973 arc_mfu->arcs_list[ARC_BUFC_METADATA] = 6974 multilist_create(sizeof (arc_buf_hdr_t), 6975 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6976 arc_state_multilist_index_func); 6977 arc_mfu->arcs_list[ARC_BUFC_DATA] = 6978 multilist_create(sizeof (arc_buf_hdr_t), 6979 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6980 arc_state_multilist_index_func); 6981 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] = 6982 multilist_create(sizeof (arc_buf_hdr_t), 6983 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6984 arc_state_multilist_index_func); 6985 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] = 6986 multilist_create(sizeof (arc_buf_hdr_t), 6987 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6988 arc_state_multilist_index_func); 6989 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] = 6990 multilist_create(sizeof (arc_buf_hdr_t), 6991 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6992 arc_state_multilist_index_func); 6993 arc_l2c_only->arcs_list[ARC_BUFC_DATA] = 6994 multilist_create(sizeof (arc_buf_hdr_t), 6995 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6996 arc_state_multilist_index_func); 6997 6998 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 6999 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7000 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7001 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7002 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7003 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7004 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7005 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7006 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7007 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7008 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7009 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7010 7011 zfs_refcount_create(&arc_anon->arcs_size); 7012 zfs_refcount_create(&arc_mru->arcs_size); 7013 zfs_refcount_create(&arc_mru_ghost->arcs_size); 7014 zfs_refcount_create(&arc_mfu->arcs_size); 7015 zfs_refcount_create(&arc_mfu_ghost->arcs_size); 7016 zfs_refcount_create(&arc_l2c_only->arcs_size); 7017 7018 aggsum_init(&arc_meta_used, 0); 7019 aggsum_init(&arc_size, 0); 7020 aggsum_init(&astat_data_size, 0); 7021 aggsum_init(&astat_metadata_size, 0); 7022 aggsum_init(&astat_hdr_size, 0); 7023 aggsum_init(&astat_other_size, 0); 7024 aggsum_init(&astat_l2_hdr_size, 0); 7025 7026 arc_anon->arcs_state = ARC_STATE_ANON; 7027 arc_mru->arcs_state = ARC_STATE_MRU; 7028 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7029 arc_mfu->arcs_state = ARC_STATE_MFU; 7030 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7031 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7032 } 7033 7034 static void 7035 arc_state_fini(void) 7036 { 7037 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7038 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7039 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7040 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7041 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7042 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7043 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7044 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7045 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7046 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7047 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7048 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7049 7050 zfs_refcount_destroy(&arc_anon->arcs_size); 7051 zfs_refcount_destroy(&arc_mru->arcs_size); 7052 zfs_refcount_destroy(&arc_mru_ghost->arcs_size); 7053 zfs_refcount_destroy(&arc_mfu->arcs_size); 7054 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size); 7055 zfs_refcount_destroy(&arc_l2c_only->arcs_size); 7056 7057 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]); 7058 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7059 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7060 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7061 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]); 7062 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7063 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]); 7064 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7065 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7066 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7067 7068 aggsum_fini(&arc_meta_used); 7069 aggsum_fini(&arc_size); 7070 aggsum_fini(&astat_data_size); 7071 aggsum_fini(&astat_metadata_size); 7072 aggsum_fini(&astat_hdr_size); 7073 aggsum_fini(&astat_other_size); 7074 aggsum_fini(&astat_l2_hdr_size); 7075 7076 } 7077 7078 uint64_t 7079 arc_max_bytes(void) 7080 { 7081 return (arc_c_max); 7082 } 7083 7084 void 7085 arc_init(void) 7086 { 7087 /* 7088 * allmem is "all memory that we could possibly use". 7089 */ 7090 #ifdef _KERNEL 7091 uint64_t allmem = ptob(physmem - swapfs_minfree); 7092 #else 7093 uint64_t allmem = (physmem * PAGESIZE) / 2; 7094 #endif 7095 mutex_init(&arc_adjust_lock, NULL, MUTEX_DEFAULT, NULL); 7096 cv_init(&arc_adjust_waiters_cv, NULL, CV_DEFAULT, NULL); 7097 7098 /* 7099 * Set the minimum cache size to 1/64 of all memory, with a hard 7100 * minimum of 64MB. 7101 */ 7102 arc_c_min = MAX(allmem / 64, 64 << 20); 7103 /* 7104 * In a system with a lot of physical memory this will still result in 7105 * an ARC size floor that is quite large in absolute terms. Cap the 7106 * growth of the value at 1GB. 7107 */ 7108 arc_c_min = MIN(arc_c_min, 1 << 30); 7109 7110 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 7111 if (allmem >= 1 << 30) 7112 arc_c_max = allmem - (1 << 30); 7113 else 7114 arc_c_max = arc_c_min; 7115 arc_c_max = MAX(allmem * 3 / 4, arc_c_max); 7116 7117 /* 7118 * In userland, there's only the memory pressure that we artificially 7119 * create (see arc_available_memory()). Don't let arc_c get too 7120 * small, because it can cause transactions to be larger than 7121 * arc_c, causing arc_tempreserve_space() to fail. 7122 */ 7123 #ifndef _KERNEL 7124 arc_c_min = arc_c_max / 2; 7125 #endif 7126 7127 /* 7128 * Allow the tunables to override our calculations if they are 7129 * reasonable (ie. over 64MB) 7130 */ 7131 if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) { 7132 arc_c_max = zfs_arc_max; 7133 arc_c_min = MIN(arc_c_min, arc_c_max); 7134 } 7135 if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max) 7136 arc_c_min = zfs_arc_min; 7137 7138 arc_c = arc_c_max; 7139 arc_p = (arc_c >> 1); 7140 7141 /* limit meta-data to 1/4 of the arc capacity */ 7142 arc_meta_limit = arc_c_max / 4; 7143 7144 #ifdef _KERNEL 7145 /* 7146 * Metadata is stored in the kernel's heap. Don't let us 7147 * use more than half the heap for the ARC. 7148 */ 7149 arc_meta_limit = MIN(arc_meta_limit, 7150 vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2); 7151 #endif 7152 7153 /* Allow the tunable to override if it is reasonable */ 7154 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 7155 arc_meta_limit = zfs_arc_meta_limit; 7156 7157 if (zfs_arc_meta_min > 0) { 7158 arc_meta_min = zfs_arc_meta_min; 7159 } else { 7160 arc_meta_min = arc_c_min / 2; 7161 } 7162 7163 if (zfs_arc_grow_retry > 0) 7164 arc_grow_retry = zfs_arc_grow_retry; 7165 7166 if (zfs_arc_shrink_shift > 0) 7167 arc_shrink_shift = zfs_arc_shrink_shift; 7168 7169 /* 7170 * Ensure that arc_no_grow_shift is less than arc_shrink_shift. 7171 */ 7172 if (arc_no_grow_shift >= arc_shrink_shift) 7173 arc_no_grow_shift = arc_shrink_shift - 1; 7174 7175 if (zfs_arc_p_min_shift > 0) 7176 arc_p_min_shift = zfs_arc_p_min_shift; 7177 7178 /* if kmem_flags are set, lets try to use less memory */ 7179 if (kmem_debugging()) 7180 arc_c = arc_c / 2; 7181 if (arc_c < arc_c_min) 7182 arc_c = arc_c_min; 7183 7184 arc_state_init(); 7185 7186 /* 7187 * The arc must be "uninitialized", so that hdr_recl() (which is 7188 * registered by buf_init()) will not access arc_reap_zthr before 7189 * it is created. 7190 */ 7191 ASSERT(!arc_initialized); 7192 buf_init(); 7193 7194 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 7195 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 7196 7197 if (arc_ksp != NULL) { 7198 arc_ksp->ks_data = &arc_stats; 7199 arc_ksp->ks_update = arc_kstat_update; 7200 kstat_install(arc_ksp); 7201 } 7202 7203 arc_adjust_zthr = zthr_create(arc_adjust_cb_check, 7204 arc_adjust_cb, NULL); 7205 arc_reap_zthr = zthr_create_timer(arc_reap_cb_check, 7206 arc_reap_cb, NULL, SEC2NSEC(1)); 7207 7208 arc_initialized = B_TRUE; 7209 arc_warm = B_FALSE; 7210 7211 /* 7212 * Calculate maximum amount of dirty data per pool. 7213 * 7214 * If it has been set by /etc/system, take that. 7215 * Otherwise, use a percentage of physical memory defined by 7216 * zfs_dirty_data_max_percent (default 10%) with a cap at 7217 * zfs_dirty_data_max_max (default 4GB). 7218 */ 7219 if (zfs_dirty_data_max == 0) { 7220 zfs_dirty_data_max = physmem * PAGESIZE * 7221 zfs_dirty_data_max_percent / 100; 7222 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 7223 zfs_dirty_data_max_max); 7224 } 7225 } 7226 7227 void 7228 arc_fini(void) 7229 { 7230 /* Use B_TRUE to ensure *all* buffers are evicted */ 7231 arc_flush(NULL, B_TRUE); 7232 7233 arc_initialized = B_FALSE; 7234 7235 if (arc_ksp != NULL) { 7236 kstat_delete(arc_ksp); 7237 arc_ksp = NULL; 7238 } 7239 7240 (void) zthr_cancel(arc_adjust_zthr); 7241 zthr_destroy(arc_adjust_zthr); 7242 7243 (void) zthr_cancel(arc_reap_zthr); 7244 zthr_destroy(arc_reap_zthr); 7245 7246 mutex_destroy(&arc_adjust_lock); 7247 cv_destroy(&arc_adjust_waiters_cv); 7248 7249 /* 7250 * buf_fini() must proceed arc_state_fini() because buf_fin() may 7251 * trigger the release of kmem magazines, which can callback to 7252 * arc_space_return() which accesses aggsums freed in act_state_fini(). 7253 */ 7254 buf_fini(); 7255 arc_state_fini(); 7256 7257 ASSERT0(arc_loaned_bytes); 7258 } 7259 7260 /* 7261 * Level 2 ARC 7262 * 7263 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 7264 * It uses dedicated storage devices to hold cached data, which are populated 7265 * using large infrequent writes. The main role of this cache is to boost 7266 * the performance of random read workloads. The intended L2ARC devices 7267 * include short-stroked disks, solid state disks, and other media with 7268 * substantially faster read latency than disk. 7269 * 7270 * +-----------------------+ 7271 * | ARC | 7272 * +-----------------------+ 7273 * | ^ ^ 7274 * | | | 7275 * l2arc_feed_thread() arc_read() 7276 * | | | 7277 * | l2arc read | 7278 * V | | 7279 * +---------------+ | 7280 * | L2ARC | | 7281 * +---------------+ | 7282 * | ^ | 7283 * l2arc_write() | | 7284 * | | | 7285 * V | | 7286 * +-------+ +-------+ 7287 * | vdev | | vdev | 7288 * | cache | | cache | 7289 * +-------+ +-------+ 7290 * +=========+ .-----. 7291 * : L2ARC : |-_____-| 7292 * : devices : | Disks | 7293 * +=========+ `-_____-' 7294 * 7295 * Read requests are satisfied from the following sources, in order: 7296 * 7297 * 1) ARC 7298 * 2) vdev cache of L2ARC devices 7299 * 3) L2ARC devices 7300 * 4) vdev cache of disks 7301 * 5) disks 7302 * 7303 * Some L2ARC device types exhibit extremely slow write performance. 7304 * To accommodate for this there are some significant differences between 7305 * the L2ARC and traditional cache design: 7306 * 7307 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 7308 * the ARC behave as usual, freeing buffers and placing headers on ghost 7309 * lists. The ARC does not send buffers to the L2ARC during eviction as 7310 * this would add inflated write latencies for all ARC memory pressure. 7311 * 7312 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 7313 * It does this by periodically scanning buffers from the eviction-end of 7314 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 7315 * not already there. It scans until a headroom of buffers is satisfied, 7316 * which itself is a buffer for ARC eviction. If a compressible buffer is 7317 * found during scanning and selected for writing to an L2ARC device, we 7318 * temporarily boost scanning headroom during the next scan cycle to make 7319 * sure we adapt to compression effects (which might significantly reduce 7320 * the data volume we write to L2ARC). The thread that does this is 7321 * l2arc_feed_thread(), illustrated below; example sizes are included to 7322 * provide a better sense of ratio than this diagram: 7323 * 7324 * head --> tail 7325 * +---------------------+----------+ 7326 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 7327 * +---------------------+----------+ | o L2ARC eligible 7328 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 7329 * +---------------------+----------+ | 7330 * 15.9 Gbytes ^ 32 Mbytes | 7331 * headroom | 7332 * l2arc_feed_thread() 7333 * | 7334 * l2arc write hand <--[oooo]--' 7335 * | 8 Mbyte 7336 * | write max 7337 * V 7338 * +==============================+ 7339 * L2ARC dev |####|#|###|###| |####| ... | 7340 * +==============================+ 7341 * 32 Gbytes 7342 * 7343 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 7344 * evicted, then the L2ARC has cached a buffer much sooner than it probably 7345 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 7346 * safe to say that this is an uncommon case, since buffers at the end of 7347 * the ARC lists have moved there due to inactivity. 7348 * 7349 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 7350 * then the L2ARC simply misses copying some buffers. This serves as a 7351 * pressure valve to prevent heavy read workloads from both stalling the ARC 7352 * with waits and clogging the L2ARC with writes. This also helps prevent 7353 * the potential for the L2ARC to churn if it attempts to cache content too 7354 * quickly, such as during backups of the entire pool. 7355 * 7356 * 5. After system boot and before the ARC has filled main memory, there are 7357 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 7358 * lists can remain mostly static. Instead of searching from tail of these 7359 * lists as pictured, the l2arc_feed_thread() will search from the list heads 7360 * for eligible buffers, greatly increasing its chance of finding them. 7361 * 7362 * The L2ARC device write speed is also boosted during this time so that 7363 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 7364 * there are no L2ARC reads, and no fear of degrading read performance 7365 * through increased writes. 7366 * 7367 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 7368 * the vdev queue can aggregate them into larger and fewer writes. Each 7369 * device is written to in a rotor fashion, sweeping writes through 7370 * available space then repeating. 7371 * 7372 * 7. The L2ARC does not store dirty content. It never needs to flush 7373 * write buffers back to disk based storage. 7374 * 7375 * 8. If an ARC buffer is written (and dirtied) which also exists in the 7376 * L2ARC, the now stale L2ARC buffer is immediately dropped. 7377 * 7378 * The performance of the L2ARC can be tweaked by a number of tunables, which 7379 * may be necessary for different workloads: 7380 * 7381 * l2arc_write_max max write bytes per interval 7382 * l2arc_write_boost extra write bytes during device warmup 7383 * l2arc_noprefetch skip caching prefetched buffers 7384 * l2arc_headroom number of max device writes to precache 7385 * l2arc_headroom_boost when we find compressed buffers during ARC 7386 * scanning, we multiply headroom by this 7387 * percentage factor for the next scan cycle, 7388 * since more compressed buffers are likely to 7389 * be present 7390 * l2arc_feed_secs seconds between L2ARC writing 7391 * 7392 * Tunables may be removed or added as future performance improvements are 7393 * integrated, and also may become zpool properties. 7394 * 7395 * There are three key functions that control how the L2ARC warms up: 7396 * 7397 * l2arc_write_eligible() check if a buffer is eligible to cache 7398 * l2arc_write_size() calculate how much to write 7399 * l2arc_write_interval() calculate sleep delay between writes 7400 * 7401 * These three functions determine what to write, how much, and how quickly 7402 * to send writes. 7403 * 7404 * L2ARC persistence: 7405 * 7406 * When writing buffers to L2ARC, we periodically add some metadata to 7407 * make sure we can pick them up after reboot, thus dramatically reducing 7408 * the impact that any downtime has on the performance of storage systems 7409 * with large caches. 7410 * 7411 * The implementation works fairly simply by integrating the following two 7412 * modifications: 7413 * 7414 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 7415 * which is an additional piece of metadata which describes what's been 7416 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 7417 * main ARC buffers. There are 2 linked-lists of log blocks headed by 7418 * dh_start_lbps[2]. We alternate which chain we append to, so they are 7419 * time-wise and offset-wise interleaved, but that is an optimization rather 7420 * than for correctness. The log block also includes a pointer to the 7421 * previous block in its chain. 7422 * 7423 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 7424 * for our header bookkeeping purposes. This contains a device header, 7425 * which contains our top-level reference structures. We update it each 7426 * time we write a new log block, so that we're able to locate it in the 7427 * L2ARC device. If this write results in an inconsistent device header 7428 * (e.g. due to power failure), we detect this by verifying the header's 7429 * checksum and simply fail to reconstruct the L2ARC after reboot. 7430 * 7431 * Implementation diagram: 7432 * 7433 * +=== L2ARC device (not to scale) ======================================+ 7434 * | ___two newest log block pointers__.__________ | 7435 * | / \dh_start_lbps[1] | 7436 * | / \ \dh_start_lbps[0]| 7437 * |.___/__. V V | 7438 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 7439 * || hdr| ^ /^ /^ / / | 7440 * |+------+ ...--\-------/ \-----/--\------/ / | 7441 * | \--------------/ \--------------/ | 7442 * +======================================================================+ 7443 * 7444 * As can be seen on the diagram, rather than using a simple linked list, 7445 * we use a pair of linked lists with alternating elements. This is a 7446 * performance enhancement due to the fact that we only find out the 7447 * address of the next log block access once the current block has been 7448 * completely read in. Obviously, this hurts performance, because we'd be 7449 * keeping the device's I/O queue at only a 1 operation deep, thus 7450 * incurring a large amount of I/O round-trip latency. Having two lists 7451 * allows us to fetch two log blocks ahead of where we are currently 7452 * rebuilding L2ARC buffers. 7453 * 7454 * On-device data structures: 7455 * 7456 * L2ARC device header: l2arc_dev_hdr_phys_t 7457 * L2ARC log block: l2arc_log_blk_phys_t 7458 * 7459 * L2ARC reconstruction: 7460 * 7461 * When writing data, we simply write in the standard rotary fashion, 7462 * evicting buffers as we go and simply writing new data over them (writing 7463 * a new log block every now and then). This obviously means that once we 7464 * loop around the end of the device, we will start cutting into an already 7465 * committed log block (and its referenced data buffers), like so: 7466 * 7467 * current write head__ __old tail 7468 * \ / 7469 * V V 7470 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 7471 * ^ ^^^^^^^^^___________________________________ 7472 * | \ 7473 * <<nextwrite>> may overwrite this blk and/or its bufs --' 7474 * 7475 * When importing the pool, we detect this situation and use it to stop 7476 * our scanning process (see l2arc_rebuild). 7477 * 7478 * There is one significant caveat to consider when rebuilding ARC contents 7479 * from an L2ARC device: what about invalidated buffers? Given the above 7480 * construction, we cannot update blocks which we've already written to amend 7481 * them to remove buffers which were invalidated. Thus, during reconstruction, 7482 * we might be populating the cache with buffers for data that's not on the 7483 * main pool anymore, or may have been overwritten! 7484 * 7485 * As it turns out, this isn't a problem. Every arc_read request includes 7486 * both the DVA and, crucially, the birth TXG of the BP the caller is 7487 * looking for. So even if the cache were populated by completely rotten 7488 * blocks for data that had been long deleted and/or overwritten, we'll 7489 * never actually return bad data from the cache, since the DVA with the 7490 * birth TXG uniquely identify a block in space and time - once created, 7491 * a block is immutable on disk. The worst thing we have done is wasted 7492 * some time and memory at l2arc rebuild to reconstruct outdated ARC 7493 * entries that will get dropped from the l2arc as it is being updated 7494 * with new blocks. 7495 * 7496 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 7497 * hand are not restored. This is done by saving the offset (in bytes) 7498 * l2arc_evict() has evicted to in the L2ARC device header and taking it 7499 * into account when restoring buffers. 7500 */ 7501 7502 static boolean_t 7503 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 7504 { 7505 /* 7506 * A buffer is *not* eligible for the L2ARC if it: 7507 * 1. belongs to a different spa. 7508 * 2. is already cached on the L2ARC. 7509 * 3. has an I/O in progress (it may be an incomplete read). 7510 * 4. is flagged not eligible (zfs property). 7511 * 5. is a prefetch and l2arc_noprefetch is set. 7512 */ 7513 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 7514 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr) || 7515 (l2arc_noprefetch && HDR_PREFETCH(hdr))) 7516 return (B_FALSE); 7517 7518 return (B_TRUE); 7519 } 7520 7521 static uint64_t 7522 l2arc_write_size(l2arc_dev_t *dev) 7523 { 7524 uint64_t size, dev_size; 7525 7526 /* 7527 * Make sure our globals have meaningful values in case the user 7528 * altered them. 7529 */ 7530 size = l2arc_write_max; 7531 if (size == 0) { 7532 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 7533 "be greater than zero, resetting it to the default (%d)", 7534 L2ARC_WRITE_SIZE); 7535 size = l2arc_write_max = L2ARC_WRITE_SIZE; 7536 } 7537 7538 if (arc_warm == B_FALSE) 7539 size += l2arc_write_boost; 7540 7541 /* 7542 * Make sure the write size does not exceed the size of the cache 7543 * device. This is important in l2arc_evict(), otherwise infinite 7544 * iteration can occur. 7545 */ 7546 dev_size = dev->l2ad_end - dev->l2ad_start; 7547 if ((size + l2arc_log_blk_overhead(size, dev)) >= dev_size) { 7548 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " 7549 "plus the overhead of log blocks (persistent L2ARC, " 7550 "%" PRIu64 " bytes) exceeds the size of the cache device " 7551 "(guid %" PRIu64 "), resetting them to the default (%d)", 7552 l2arc_log_blk_overhead(size, dev), 7553 dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE); 7554 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE; 7555 7556 if (arc_warm == B_FALSE) 7557 size += l2arc_write_boost; 7558 } 7559 7560 return (size); 7561 7562 } 7563 7564 static clock_t 7565 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 7566 { 7567 clock_t interval, next, now; 7568 7569 /* 7570 * If the ARC lists are busy, increase our write rate; if the 7571 * lists are stale, idle back. This is achieved by checking 7572 * how much we previously wrote - if it was more than half of 7573 * what we wanted, schedule the next write much sooner. 7574 */ 7575 if (l2arc_feed_again && wrote > (wanted / 2)) 7576 interval = (hz * l2arc_feed_min_ms) / 1000; 7577 else 7578 interval = hz * l2arc_feed_secs; 7579 7580 now = ddi_get_lbolt(); 7581 next = MAX(now, MIN(now + interval, began + interval)); 7582 7583 return (next); 7584 } 7585 7586 /* 7587 * Cycle through L2ARC devices. This is how L2ARC load balances. 7588 * If a device is returned, this also returns holding the spa config lock. 7589 */ 7590 static l2arc_dev_t * 7591 l2arc_dev_get_next(void) 7592 { 7593 l2arc_dev_t *first, *next = NULL; 7594 7595 /* 7596 * Lock out the removal of spas (spa_namespace_lock), then removal 7597 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 7598 * both locks will be dropped and a spa config lock held instead. 7599 */ 7600 mutex_enter(&spa_namespace_lock); 7601 mutex_enter(&l2arc_dev_mtx); 7602 7603 /* if there are no vdevs, there is nothing to do */ 7604 if (l2arc_ndev == 0) 7605 goto out; 7606 7607 first = NULL; 7608 next = l2arc_dev_last; 7609 do { 7610 /* loop around the list looking for a non-faulted vdev */ 7611 if (next == NULL) { 7612 next = list_head(l2arc_dev_list); 7613 } else { 7614 next = list_next(l2arc_dev_list, next); 7615 if (next == NULL) 7616 next = list_head(l2arc_dev_list); 7617 } 7618 7619 /* if we have come back to the start, bail out */ 7620 if (first == NULL) 7621 first = next; 7622 else if (next == first) 7623 break; 7624 7625 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild); 7626 7627 /* if we were unable to find any usable vdevs, return NULL */ 7628 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild) 7629 next = NULL; 7630 7631 l2arc_dev_last = next; 7632 7633 out: 7634 mutex_exit(&l2arc_dev_mtx); 7635 7636 /* 7637 * Grab the config lock to prevent the 'next' device from being 7638 * removed while we are writing to it. 7639 */ 7640 if (next != NULL) 7641 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 7642 mutex_exit(&spa_namespace_lock); 7643 7644 return (next); 7645 } 7646 7647 /* 7648 * Free buffers that were tagged for destruction. 7649 */ 7650 static void 7651 l2arc_do_free_on_write() 7652 { 7653 list_t *buflist; 7654 l2arc_data_free_t *df, *df_prev; 7655 7656 mutex_enter(&l2arc_free_on_write_mtx); 7657 buflist = l2arc_free_on_write; 7658 7659 for (df = list_tail(buflist); df; df = df_prev) { 7660 df_prev = list_prev(buflist, df); 7661 ASSERT3P(df->l2df_abd, !=, NULL); 7662 abd_free(df->l2df_abd); 7663 list_remove(buflist, df); 7664 kmem_free(df, sizeof (l2arc_data_free_t)); 7665 } 7666 7667 mutex_exit(&l2arc_free_on_write_mtx); 7668 } 7669 7670 /* 7671 * A write to a cache device has completed. Update all headers to allow 7672 * reads from these buffers to begin. 7673 */ 7674 static void 7675 l2arc_write_done(zio_t *zio) 7676 { 7677 l2arc_write_callback_t *cb; 7678 l2arc_lb_abd_buf_t *abd_buf; 7679 l2arc_lb_ptr_buf_t *lb_ptr_buf; 7680 l2arc_dev_t *dev; 7681 l2arc_dev_hdr_phys_t *l2dhdr; 7682 list_t *buflist; 7683 arc_buf_hdr_t *head, *hdr, *hdr_prev; 7684 kmutex_t *hash_lock; 7685 int64_t bytes_dropped = 0; 7686 7687 cb = zio->io_private; 7688 ASSERT3P(cb, !=, NULL); 7689 dev = cb->l2wcb_dev; 7690 l2dhdr = dev->l2ad_dev_hdr; 7691 ASSERT3P(dev, !=, NULL); 7692 head = cb->l2wcb_head; 7693 ASSERT3P(head, !=, NULL); 7694 buflist = &dev->l2ad_buflist; 7695 ASSERT3P(buflist, !=, NULL); 7696 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 7697 l2arc_write_callback_t *, cb); 7698 7699 /* 7700 * All writes completed, or an error was hit. 7701 */ 7702 top: 7703 mutex_enter(&dev->l2ad_mtx); 7704 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 7705 hdr_prev = list_prev(buflist, hdr); 7706 7707 hash_lock = HDR_LOCK(hdr); 7708 7709 /* 7710 * We cannot use mutex_enter or else we can deadlock 7711 * with l2arc_write_buffers (due to swapping the order 7712 * the hash lock and l2ad_mtx are taken). 7713 */ 7714 if (!mutex_tryenter(hash_lock)) { 7715 /* 7716 * Missed the hash lock. We must retry so we 7717 * don't leave the ARC_FLAG_L2_WRITING bit set. 7718 */ 7719 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 7720 7721 /* 7722 * We don't want to rescan the headers we've 7723 * already marked as having been written out, so 7724 * we reinsert the head node so we can pick up 7725 * where we left off. 7726 */ 7727 list_remove(buflist, head); 7728 list_insert_after(buflist, hdr, head); 7729 7730 mutex_exit(&dev->l2ad_mtx); 7731 7732 /* 7733 * We wait for the hash lock to become available 7734 * to try and prevent busy waiting, and increase 7735 * the chance we'll be able to acquire the lock 7736 * the next time around. 7737 */ 7738 mutex_enter(hash_lock); 7739 mutex_exit(hash_lock); 7740 goto top; 7741 } 7742 7743 /* 7744 * We could not have been moved into the arc_l2c_only 7745 * state while in-flight due to our ARC_FLAG_L2_WRITING 7746 * bit being set. Let's just ensure that's being enforced. 7747 */ 7748 ASSERT(HDR_HAS_L1HDR(hdr)); 7749 7750 if (zio->io_error != 0) { 7751 /* 7752 * Error - drop L2ARC entry. 7753 */ 7754 list_remove(buflist, hdr); 7755 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 7756 7757 uint64_t psize = HDR_GET_PSIZE(hdr); 7758 l2arc_hdr_arcstats_decrement(hdr); 7759 7760 bytes_dropped += 7761 vdev_psize_to_asize(dev->l2ad_vdev, psize); 7762 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 7763 arc_hdr_size(hdr), hdr); 7764 } 7765 7766 /* 7767 * Allow ARC to begin reads and ghost list evictions to 7768 * this L2ARC entry. 7769 */ 7770 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 7771 7772 mutex_exit(hash_lock); 7773 } 7774 7775 /* 7776 * Free the allocated abd buffers for writing the log blocks. 7777 * If the zio failed reclaim the allocated space and remove the 7778 * pointers to these log blocks from the log block pointer list 7779 * of the L2ARC device. 7780 */ 7781 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 7782 abd_free(abd_buf->abd); 7783 zio_buf_free(abd_buf, sizeof (*abd_buf)); 7784 if (zio->io_error != 0) { 7785 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 7786 /* 7787 * L2BLK_GET_PSIZE returns aligned size for log 7788 * blocks. 7789 */ 7790 uint64_t asize = 7791 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 7792 bytes_dropped += asize; 7793 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 7794 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 7795 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 7796 lb_ptr_buf); 7797 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 7798 kmem_free(lb_ptr_buf->lb_ptr, 7799 sizeof (l2arc_log_blkptr_t)); 7800 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 7801 } 7802 } 7803 list_destroy(&cb->l2wcb_abd_list); 7804 7805 if (zio->io_error != 0) { 7806 ARCSTAT_BUMP(arcstat_l2_writes_error); 7807 7808 /* 7809 * Restore the lbps array in the header to its previous state. 7810 * If the list of log block pointers is empty, zero out the 7811 * log block pointers in the device header. 7812 */ 7813 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 7814 for (int i = 0; i < 2; i++) { 7815 if (lb_ptr_buf == NULL) { 7816 /* 7817 * If the list is empty zero out the device 7818 * header. Otherwise zero out the second log 7819 * block pointer in the header. 7820 */ 7821 if (i == 0) { 7822 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 7823 } else { 7824 bzero(&l2dhdr->dh_start_lbps[i], 7825 sizeof (l2arc_log_blkptr_t)); 7826 } 7827 break; 7828 } 7829 bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i], 7830 sizeof (l2arc_log_blkptr_t)); 7831 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 7832 lb_ptr_buf); 7833 } 7834 } 7835 7836 atomic_inc_64(&l2arc_writes_done); 7837 list_remove(buflist, head); 7838 ASSERT(!HDR_HAS_L1HDR(head)); 7839 kmem_cache_free(hdr_l2only_cache, head); 7840 mutex_exit(&dev->l2ad_mtx); 7841 7842 ASSERT(dev->l2ad_vdev != NULL); 7843 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 7844 7845 l2arc_do_free_on_write(); 7846 7847 kmem_free(cb, sizeof (l2arc_write_callback_t)); 7848 } 7849 7850 static int 7851 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 7852 { 7853 int ret; 7854 spa_t *spa = zio->io_spa; 7855 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 7856 blkptr_t *bp = zio->io_bp; 7857 uint8_t salt[ZIO_DATA_SALT_LEN]; 7858 uint8_t iv[ZIO_DATA_IV_LEN]; 7859 uint8_t mac[ZIO_DATA_MAC_LEN]; 7860 boolean_t no_crypt = B_FALSE; 7861 7862 /* 7863 * ZIL data is never be written to the L2ARC, so we don't need 7864 * special handling for its unique MAC storage. 7865 */ 7866 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 7867 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 7868 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 7869 7870 /* 7871 * If the data was encrypted, decrypt it now. Note that 7872 * we must check the bp here and not the hdr, since the 7873 * hdr does not have its encryption parameters updated 7874 * until arc_read_done(). 7875 */ 7876 if (BP_IS_ENCRYPTED(bp)) { 7877 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 7878 B_TRUE); 7879 7880 zio_crypt_decode_params_bp(bp, salt, iv); 7881 zio_crypt_decode_mac_bp(bp, mac); 7882 7883 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 7884 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 7885 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 7886 hdr->b_l1hdr.b_pabd, &no_crypt); 7887 if (ret != 0) { 7888 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 7889 goto error; 7890 } 7891 7892 /* 7893 * If we actually performed decryption, replace b_pabd 7894 * with the decrypted data. Otherwise we can just throw 7895 * our decryption buffer away. 7896 */ 7897 if (!no_crypt) { 7898 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 7899 arc_hdr_size(hdr), hdr); 7900 hdr->b_l1hdr.b_pabd = eabd; 7901 zio->io_abd = eabd; 7902 } else { 7903 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 7904 } 7905 } 7906 7907 /* 7908 * If the L2ARC block was compressed, but ARC compression 7909 * is disabled we decompress the data into a new buffer and 7910 * replace the existing data. 7911 */ 7912 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 7913 !HDR_COMPRESSION_ENABLED(hdr)) { 7914 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 7915 B_TRUE); 7916 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 7917 7918 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 7919 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 7920 HDR_GET_LSIZE(hdr)); 7921 if (ret != 0) { 7922 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 7923 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 7924 goto error; 7925 } 7926 7927 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 7928 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 7929 arc_hdr_size(hdr), hdr); 7930 hdr->b_l1hdr.b_pabd = cabd; 7931 zio->io_abd = cabd; 7932 zio->io_size = HDR_GET_LSIZE(hdr); 7933 } 7934 7935 return (0); 7936 7937 error: 7938 return (ret); 7939 } 7940 7941 7942 /* 7943 * A read to a cache device completed. Validate buffer contents before 7944 * handing over to the regular ARC routines. 7945 */ 7946 static void 7947 l2arc_read_done(zio_t *zio) 7948 { 7949 int tfm_error = 0; 7950 l2arc_read_callback_t *cb = zio->io_private; 7951 arc_buf_hdr_t *hdr; 7952 kmutex_t *hash_lock; 7953 boolean_t valid_cksum; 7954 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 7955 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 7956 7957 ASSERT3P(zio->io_vd, !=, NULL); 7958 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 7959 7960 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 7961 7962 ASSERT3P(cb, !=, NULL); 7963 hdr = cb->l2rcb_hdr; 7964 ASSERT3P(hdr, !=, NULL); 7965 7966 hash_lock = HDR_LOCK(hdr); 7967 mutex_enter(hash_lock); 7968 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 7969 7970 /* 7971 * If the data was read into a temporary buffer, 7972 * move it and free the buffer. 7973 */ 7974 if (cb->l2rcb_abd != NULL) { 7975 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 7976 if (zio->io_error == 0) { 7977 if (using_rdata) { 7978 abd_copy(hdr->b_crypt_hdr.b_rabd, 7979 cb->l2rcb_abd, arc_hdr_size(hdr)); 7980 } else { 7981 abd_copy(hdr->b_l1hdr.b_pabd, 7982 cb->l2rcb_abd, arc_hdr_size(hdr)); 7983 } 7984 } 7985 7986 /* 7987 * The following must be done regardless of whether 7988 * there was an error: 7989 * - free the temporary buffer 7990 * - point zio to the real ARC buffer 7991 * - set zio size accordingly 7992 * These are required because zio is either re-used for 7993 * an I/O of the block in the case of the error 7994 * or the zio is passed to arc_read_done() and it 7995 * needs real data. 7996 */ 7997 abd_free(cb->l2rcb_abd); 7998 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 7999 8000 if (using_rdata) { 8001 ASSERT(HDR_HAS_RABD(hdr)); 8002 zio->io_abd = zio->io_orig_abd = 8003 hdr->b_crypt_hdr.b_rabd; 8004 } else { 8005 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8006 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8007 } 8008 } 8009 8010 ASSERT3P(zio->io_abd, !=, NULL); 8011 8012 /* 8013 * Check this survived the L2ARC journey. 8014 */ 8015 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8016 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8017 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8018 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8019 8020 valid_cksum = arc_cksum_is_equal(hdr, zio); 8021 8022 /* 8023 * b_rabd will always match the data as it exists on disk if it is 8024 * being used. Therefore if we are reading into b_rabd we do not 8025 * attempt to untransform the data. 8026 */ 8027 if (valid_cksum && !using_rdata) 8028 tfm_error = l2arc_untransform(zio, cb); 8029 8030 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8031 !HDR_L2_EVICTED(hdr)) { 8032 mutex_exit(hash_lock); 8033 zio->io_private = hdr; 8034 arc_read_done(zio); 8035 } else { 8036 /* 8037 * Buffer didn't survive caching. Increment stats and 8038 * reissue to the original storage device. 8039 */ 8040 if (zio->io_error != 0) { 8041 ARCSTAT_BUMP(arcstat_l2_io_error); 8042 } else { 8043 zio->io_error = SET_ERROR(EIO); 8044 } 8045 if (!valid_cksum || tfm_error != 0) 8046 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8047 8048 /* 8049 * If there's no waiter, issue an async i/o to the primary 8050 * storage now. If there *is* a waiter, the caller must 8051 * issue the i/o in a context where it's OK to block. 8052 */ 8053 if (zio->io_waiter == NULL) { 8054 zio_t *pio = zio_unique_parent(zio); 8055 void *abd = (using_rdata) ? 8056 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8057 8058 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8059 8060 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8061 abd, zio->io_size, arc_read_done, 8062 hdr, zio->io_priority, cb->l2rcb_flags, 8063 &cb->l2rcb_zb); 8064 8065 /* 8066 * Original ZIO will be freed, so we need to update 8067 * ARC header with the new ZIO pointer to be used 8068 * by zio_change_priority() in arc_read(). 8069 */ 8070 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8071 acb != NULL; acb = acb->acb_next) 8072 acb->acb_zio_head = zio; 8073 8074 mutex_exit(hash_lock); 8075 zio_nowait(zio); 8076 } else { 8077 mutex_exit(hash_lock); 8078 } 8079 } 8080 8081 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8082 } 8083 8084 /* 8085 * This is the list priority from which the L2ARC will search for pages to 8086 * cache. This is used within loops (0..3) to cycle through lists in the 8087 * desired order. This order can have a significant effect on cache 8088 * performance. 8089 * 8090 * Currently the metadata lists are hit first, MFU then MRU, followed by 8091 * the data lists. This function returns a locked list, and also returns 8092 * the lock pointer. 8093 */ 8094 static multilist_sublist_t * 8095 l2arc_sublist_lock(int list_num) 8096 { 8097 multilist_t *ml = NULL; 8098 unsigned int idx; 8099 8100 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 8101 8102 switch (list_num) { 8103 case 0: 8104 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA]; 8105 break; 8106 case 1: 8107 ml = arc_mru->arcs_list[ARC_BUFC_METADATA]; 8108 break; 8109 case 2: 8110 ml = arc_mfu->arcs_list[ARC_BUFC_DATA]; 8111 break; 8112 case 3: 8113 ml = arc_mru->arcs_list[ARC_BUFC_DATA]; 8114 break; 8115 default: 8116 return (NULL); 8117 } 8118 8119 /* 8120 * Return a randomly-selected sublist. This is acceptable 8121 * because the caller feeds only a little bit of data for each 8122 * call (8MB). Subsequent calls will result in different 8123 * sublists being selected. 8124 */ 8125 idx = multilist_get_random_index(ml); 8126 return (multilist_sublist_lock(ml, idx)); 8127 } 8128 8129 /* 8130 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 8131 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 8132 * overhead in processing to make sure there is enough headroom available 8133 * when writing buffers. 8134 */ 8135 static inline uint64_t 8136 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 8137 { 8138 if (dev->l2ad_log_entries == 0) { 8139 return (0); 8140 } else { 8141 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 8142 8143 uint64_t log_blocks = (log_entries + 8144 dev->l2ad_log_entries - 1) / 8145 dev->l2ad_log_entries; 8146 8147 return (vdev_psize_to_asize(dev->l2ad_vdev, 8148 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 8149 } 8150 } 8151 8152 /* 8153 * Evict buffers from the device write hand to the distance specified in 8154 * bytes. This distance may span populated buffers, it may span nothing. 8155 * This is clearing a region on the L2ARC device ready for writing. 8156 * If the 'all' boolean is set, every buffer is evicted. 8157 */ 8158 static void 8159 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 8160 { 8161 list_t *buflist; 8162 arc_buf_hdr_t *hdr, *hdr_prev; 8163 kmutex_t *hash_lock; 8164 uint64_t taddr; 8165 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 8166 boolean_t rerun; 8167 8168 buflist = &dev->l2ad_buflist; 8169 8170 /* 8171 * We need to add in the worst case scenario of log block overhead. 8172 */ 8173 distance += l2arc_log_blk_overhead(distance, dev); 8174 8175 top: 8176 rerun = B_FALSE; 8177 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) { 8178 /* 8179 * When there is no space to accommodate upcoming writes, 8180 * evict to the end. Then bump the write and evict hands 8181 * to the start and iterate. This iteration does not 8182 * happen indefinitely as we make sure in 8183 * l2arc_write_size() that when the write hand is reset, 8184 * the write size does not exceed the end of the device. 8185 */ 8186 rerun = B_TRUE; 8187 taddr = dev->l2ad_end; 8188 } else { 8189 taddr = dev->l2ad_hand + distance; 8190 } 8191 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 8192 uint64_t, taddr, boolean_t, all); 8193 8194 /* 8195 * This check has to be placed after deciding whether to iterate 8196 * (rerun). 8197 */ 8198 if (!all && dev->l2ad_first) { 8199 /* 8200 * This is the first sweep through the device. There is 8201 * nothing to evict. 8202 */ 8203 goto out; 8204 } 8205 8206 /* 8207 * When rebuilding L2ARC we retrieve the evict hand from the header of 8208 * the device. Of note, l2arc_evict() does not actually delete buffers 8209 * from the cache device, but keeping track of the evict hand will be 8210 * useful when TRIM is implemented. 8211 */ 8212 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 8213 8214 retry: 8215 mutex_enter(&dev->l2ad_mtx); 8216 /* 8217 * We have to account for evicted log blocks. Run vdev_space_update() 8218 * on log blocks whose offset (in bytes) is before the evicted offset 8219 * (in bytes) by searching in the list of pointers to log blocks 8220 * present in the L2ARC device. 8221 */ 8222 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 8223 lb_ptr_buf = lb_ptr_buf_prev) { 8224 8225 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 8226 8227 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 8228 uint64_t asize = L2BLK_GET_PSIZE( 8229 (lb_ptr_buf->lb_ptr)->lbp_prop); 8230 8231 /* 8232 * We don't worry about log blocks left behind (ie 8233 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 8234 * will never write more than l2arc_evict() evicts. 8235 */ 8236 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 8237 break; 8238 } else { 8239 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 8240 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8241 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8242 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8243 lb_ptr_buf); 8244 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8245 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 8246 kmem_free(lb_ptr_buf->lb_ptr, 8247 sizeof (l2arc_log_blkptr_t)); 8248 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8249 } 8250 } 8251 8252 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 8253 hdr_prev = list_prev(buflist, hdr); 8254 8255 ASSERT(!HDR_EMPTY(hdr)); 8256 hash_lock = HDR_LOCK(hdr); 8257 8258 /* 8259 * We cannot use mutex_enter or else we can deadlock 8260 * with l2arc_write_buffers (due to swapping the order 8261 * the hash lock and l2ad_mtx are taken). 8262 */ 8263 if (!mutex_tryenter(hash_lock)) { 8264 /* 8265 * Missed the hash lock. Retry. 8266 */ 8267 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 8268 mutex_exit(&dev->l2ad_mtx); 8269 mutex_enter(hash_lock); 8270 mutex_exit(hash_lock); 8271 goto retry; 8272 } 8273 8274 /* 8275 * A header can't be on this list if it doesn't have L2 header. 8276 */ 8277 ASSERT(HDR_HAS_L2HDR(hdr)); 8278 8279 /* Ensure this header has finished being written. */ 8280 ASSERT(!HDR_L2_WRITING(hdr)); 8281 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 8282 8283 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 8284 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 8285 /* 8286 * We've evicted to the target address, 8287 * or the end of the device. 8288 */ 8289 mutex_exit(hash_lock); 8290 break; 8291 } 8292 8293 if (!HDR_HAS_L1HDR(hdr)) { 8294 ASSERT(!HDR_L2_READING(hdr)); 8295 /* 8296 * This doesn't exist in the ARC. Destroy. 8297 * arc_hdr_destroy() will call list_remove() 8298 * and decrement arcstat_l2_lsize. 8299 */ 8300 arc_change_state(arc_anon, hdr, hash_lock); 8301 arc_hdr_destroy(hdr); 8302 } else { 8303 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 8304 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 8305 /* 8306 * Invalidate issued or about to be issued 8307 * reads, since we may be about to write 8308 * over this location. 8309 */ 8310 if (HDR_L2_READING(hdr)) { 8311 ARCSTAT_BUMP(arcstat_l2_evict_reading); 8312 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 8313 } 8314 8315 arc_hdr_l2hdr_destroy(hdr); 8316 } 8317 mutex_exit(hash_lock); 8318 } 8319 mutex_exit(&dev->l2ad_mtx); 8320 8321 out: 8322 /* 8323 * We need to check if we evict all buffers, otherwise we may iterate 8324 * unnecessarily. 8325 */ 8326 if (!all && rerun) { 8327 /* 8328 * Bump device hand to the device start if it is approaching the 8329 * end. l2arc_evict() has already evicted ahead for this case. 8330 */ 8331 dev->l2ad_hand = dev->l2ad_start; 8332 dev->l2ad_evict = dev->l2ad_start; 8333 dev->l2ad_first = B_FALSE; 8334 goto top; 8335 } 8336 8337 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end); 8338 if (!dev->l2ad_first) 8339 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict); 8340 } 8341 8342 /* 8343 * Handle any abd transforms that might be required for writing to the L2ARC. 8344 * If successful, this function will always return an abd with the data 8345 * transformed as it is on disk in a new abd of asize bytes. 8346 */ 8347 static int 8348 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 8349 abd_t **abd_out) 8350 { 8351 int ret; 8352 void *tmp = NULL; 8353 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 8354 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 8355 uint64_t psize = HDR_GET_PSIZE(hdr); 8356 uint64_t size = arc_hdr_size(hdr); 8357 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 8358 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 8359 dsl_crypto_key_t *dck = NULL; 8360 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 8361 boolean_t no_crypt = B_FALSE; 8362 8363 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8364 !HDR_COMPRESSION_ENABLED(hdr)) || 8365 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 8366 ASSERT3U(psize, <=, asize); 8367 8368 /* 8369 * If this data simply needs its own buffer, we simply allocate it 8370 * and copy the data. This may be done to eliminate a dependency on a 8371 * shared buffer or to reallocate the buffer to match asize. 8372 */ 8373 if (HDR_HAS_RABD(hdr) && asize != psize) { 8374 ASSERT3U(asize, >=, psize); 8375 to_write = abd_alloc_for_io(asize, ismd); 8376 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 8377 if (psize != asize) 8378 abd_zero_off(to_write, psize, asize - psize); 8379 goto out; 8380 } 8381 8382 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 8383 !HDR_ENCRYPTED(hdr)) { 8384 ASSERT3U(size, ==, psize); 8385 to_write = abd_alloc_for_io(asize, ismd); 8386 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 8387 if (size != asize) 8388 abd_zero_off(to_write, size, asize - size); 8389 goto out; 8390 } 8391 8392 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 8393 cabd = abd_alloc_for_io(asize, ismd); 8394 tmp = abd_borrow_buf(cabd, asize); 8395 8396 psize = zio_compress_data(compress, to_write, tmp, size); 8397 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr)); 8398 if (psize < asize) 8399 bzero((char *)tmp + psize, asize - psize); 8400 psize = HDR_GET_PSIZE(hdr); 8401 abd_return_buf_copy(cabd, tmp, asize); 8402 to_write = cabd; 8403 } 8404 8405 if (HDR_ENCRYPTED(hdr)) { 8406 eabd = abd_alloc_for_io(asize, ismd); 8407 8408 /* 8409 * If the dataset was disowned before the buffer 8410 * made it to this point, the key to re-encrypt 8411 * it won't be available. In this case we simply 8412 * won't write the buffer to the L2ARC. 8413 */ 8414 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 8415 FTAG, &dck); 8416 if (ret != 0) 8417 goto error; 8418 8419 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 8420 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 8421 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 8422 &no_crypt); 8423 if (ret != 0) 8424 goto error; 8425 8426 if (no_crypt) 8427 abd_copy(eabd, to_write, psize); 8428 8429 if (psize != asize) 8430 abd_zero_off(eabd, psize, asize - psize); 8431 8432 /* assert that the MAC we got here matches the one we saved */ 8433 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 8434 spa_keystore_dsl_key_rele(spa, dck, FTAG); 8435 8436 if (to_write == cabd) 8437 abd_free(cabd); 8438 8439 to_write = eabd; 8440 } 8441 8442 out: 8443 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 8444 *abd_out = to_write; 8445 return (0); 8446 8447 error: 8448 if (dck != NULL) 8449 spa_keystore_dsl_key_rele(spa, dck, FTAG); 8450 if (cabd != NULL) 8451 abd_free(cabd); 8452 if (eabd != NULL) 8453 abd_free(eabd); 8454 8455 *abd_out = NULL; 8456 return (ret); 8457 } 8458 8459 static void 8460 l2arc_blk_fetch_done(zio_t *zio) 8461 { 8462 l2arc_read_callback_t *cb; 8463 8464 cb = zio->io_private; 8465 if (cb->l2rcb_abd != NULL) 8466 abd_put(cb->l2rcb_abd); 8467 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8468 } 8469 8470 /* 8471 * Find and write ARC buffers to the L2ARC device. 8472 * 8473 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 8474 * for reading until they have completed writing. 8475 * The headroom_boost is an in-out parameter used to maintain headroom boost 8476 * state between calls to this function. 8477 * 8478 * Returns the number of bytes actually written (which may be smaller than 8479 * the delta by which the device hand has changed due to alignment and the 8480 * writing of log blocks). 8481 */ 8482 static uint64_t 8483 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 8484 { 8485 arc_buf_hdr_t *hdr, *hdr_prev, *head; 8486 uint64_t write_asize, write_psize, write_lsize, headroom; 8487 boolean_t full; 8488 l2arc_write_callback_t *cb = NULL; 8489 zio_t *pio, *wzio; 8490 uint64_t guid = spa_load_guid(spa); 8491 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 8492 8493 ASSERT3P(dev->l2ad_vdev, !=, NULL); 8494 8495 pio = NULL; 8496 write_lsize = write_asize = write_psize = 0; 8497 full = B_FALSE; 8498 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 8499 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 8500 8501 /* 8502 * Copy buffers for L2ARC writing. 8503 */ 8504 for (int try = 0; try < L2ARC_FEED_TYPES; try++) { 8505 /* 8506 * If try == 1 or 3, we cache MRU metadata and data 8507 * respectively. 8508 */ 8509 if (l2arc_mfuonly) { 8510 if (try == 1 || try == 3) 8511 continue; 8512 } 8513 8514 multilist_sublist_t *mls = l2arc_sublist_lock(try); 8515 uint64_t passed_sz = 0; 8516 8517 VERIFY3P(mls, !=, NULL); 8518 8519 /* 8520 * L2ARC fast warmup. 8521 * 8522 * Until the ARC is warm and starts to evict, read from the 8523 * head of the ARC lists rather than the tail. 8524 */ 8525 if (arc_warm == B_FALSE) 8526 hdr = multilist_sublist_head(mls); 8527 else 8528 hdr = multilist_sublist_tail(mls); 8529 8530 headroom = target_sz * l2arc_headroom; 8531 if (zfs_compressed_arc_enabled) 8532 headroom = (headroom * l2arc_headroom_boost) / 100; 8533 8534 for (; hdr; hdr = hdr_prev) { 8535 kmutex_t *hash_lock; 8536 abd_t *to_write = NULL; 8537 8538 if (arc_warm == B_FALSE) 8539 hdr_prev = multilist_sublist_next(mls, hdr); 8540 else 8541 hdr_prev = multilist_sublist_prev(mls, hdr); 8542 8543 hash_lock = HDR_LOCK(hdr); 8544 if (!mutex_tryenter(hash_lock)) { 8545 /* 8546 * Skip this buffer rather than waiting. 8547 */ 8548 continue; 8549 } 8550 8551 passed_sz += HDR_GET_LSIZE(hdr); 8552 if (l2arc_headroom != 0 && passed_sz > headroom) { 8553 /* 8554 * Searched too far. 8555 */ 8556 mutex_exit(hash_lock); 8557 break; 8558 } 8559 8560 if (!l2arc_write_eligible(guid, hdr)) { 8561 mutex_exit(hash_lock); 8562 continue; 8563 } 8564 8565 ASSERT(HDR_HAS_L1HDR(hdr)); 8566 8567 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 8568 ASSERT3U(arc_hdr_size(hdr), >, 0); 8569 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 8570 HDR_HAS_RABD(hdr)); 8571 uint64_t psize = HDR_GET_PSIZE(hdr); 8572 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 8573 psize); 8574 8575 if ((write_asize + asize) > target_sz) { 8576 full = B_TRUE; 8577 mutex_exit(hash_lock); 8578 break; 8579 } 8580 8581 /* 8582 * We rely on the L1 portion of the header below, so 8583 * it's invalid for this header to have been evicted out 8584 * of the ghost cache, prior to being written out. The 8585 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 8586 */ 8587 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING); 8588 8589 /* 8590 * If this header has b_rabd, we can use this since it 8591 * must always match the data exactly as it exists on 8592 * disk. Otherwise, the L2ARC can normally use the 8593 * hdr's data, but if we're sharing data between the 8594 * hdr and one of its bufs, L2ARC needs its own copy of 8595 * the data so that the ZIO below can't race with the 8596 * buf consumer. To ensure that this copy will be 8597 * available for the lifetime of the ZIO and be cleaned 8598 * up afterwards, we add it to the l2arc_free_on_write 8599 * queue. If we need to apply any transforms to the 8600 * data (compression, encryption) we will also need the 8601 * extra buffer. 8602 */ 8603 if (HDR_HAS_RABD(hdr) && psize == asize) { 8604 to_write = hdr->b_crypt_hdr.b_rabd; 8605 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 8606 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 8607 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 8608 psize == asize) { 8609 to_write = hdr->b_l1hdr.b_pabd; 8610 } else { 8611 int ret; 8612 arc_buf_contents_t type = arc_buf_type(hdr); 8613 8614 ret = l2arc_apply_transforms(spa, hdr, asize, 8615 &to_write); 8616 if (ret != 0) { 8617 arc_hdr_clear_flags(hdr, 8618 ARC_FLAG_L2_WRITING); 8619 mutex_exit(hash_lock); 8620 continue; 8621 } 8622 8623 l2arc_free_abd_on_write(to_write, asize, type); 8624 } 8625 8626 if (pio == NULL) { 8627 /* 8628 * Insert a dummy header on the buflist so 8629 * l2arc_write_done() can find where the 8630 * write buffers begin without searching. 8631 */ 8632 mutex_enter(&dev->l2ad_mtx); 8633 list_insert_head(&dev->l2ad_buflist, head); 8634 mutex_exit(&dev->l2ad_mtx); 8635 8636 cb = kmem_alloc( 8637 sizeof (l2arc_write_callback_t), KM_SLEEP); 8638 cb->l2wcb_dev = dev; 8639 cb->l2wcb_head = head; 8640 /* 8641 * Create a list to save allocated abd buffers 8642 * for l2arc_log_blk_commit(). 8643 */ 8644 list_create(&cb->l2wcb_abd_list, 8645 sizeof (l2arc_lb_abd_buf_t), 8646 offsetof(l2arc_lb_abd_buf_t, node)); 8647 pio = zio_root(spa, l2arc_write_done, cb, 8648 ZIO_FLAG_CANFAIL); 8649 } 8650 8651 hdr->b_l2hdr.b_dev = dev; 8652 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 8653 hdr->b_l2hdr.b_arcs_state = 8654 hdr->b_l1hdr.b_state->arcs_state; 8655 arc_hdr_set_flags(hdr, 8656 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR); 8657 8658 mutex_enter(&dev->l2ad_mtx); 8659 list_insert_head(&dev->l2ad_buflist, hdr); 8660 mutex_exit(&dev->l2ad_mtx); 8661 8662 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 8663 arc_hdr_size(hdr), hdr); 8664 8665 wzio = zio_write_phys(pio, dev->l2ad_vdev, 8666 hdr->b_l2hdr.b_daddr, asize, to_write, 8667 ZIO_CHECKSUM_OFF, NULL, hdr, 8668 ZIO_PRIORITY_ASYNC_WRITE, 8669 ZIO_FLAG_CANFAIL, B_FALSE); 8670 8671 write_lsize += HDR_GET_LSIZE(hdr); 8672 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 8673 zio_t *, wzio); 8674 8675 write_psize += psize; 8676 write_asize += asize; 8677 dev->l2ad_hand += asize; 8678 l2arc_hdr_arcstats_increment(hdr); 8679 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 8680 8681 mutex_exit(hash_lock); 8682 8683 /* 8684 * Append buf info to current log and commit if full. 8685 * arcstat_l2_{size,asize} kstats are updated 8686 * internally. 8687 */ 8688 if (l2arc_log_blk_insert(dev, hdr)) 8689 l2arc_log_blk_commit(dev, pio, cb); 8690 8691 (void) zio_nowait(wzio); 8692 } 8693 8694 multilist_sublist_unlock(mls); 8695 8696 if (full == B_TRUE) 8697 break; 8698 } 8699 8700 /* No buffers selected for writing? */ 8701 if (pio == NULL) { 8702 ASSERT0(write_lsize); 8703 ASSERT(!HDR_HAS_L1HDR(head)); 8704 kmem_cache_free(hdr_l2only_cache, head); 8705 8706 /* 8707 * Although we did not write any buffers l2ad_evict may 8708 * have advanced. 8709 */ 8710 if (dev->l2ad_evict != l2dhdr->dh_evict) 8711 l2arc_dev_hdr_update(dev); 8712 8713 return (0); 8714 } 8715 8716 if (!dev->l2ad_first) 8717 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 8718 8719 ASSERT3U(write_asize, <=, target_sz); 8720 ARCSTAT_BUMP(arcstat_l2_writes_sent); 8721 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 8722 8723 dev->l2ad_writing = B_TRUE; 8724 (void) zio_wait(pio); 8725 dev->l2ad_writing = B_FALSE; 8726 8727 /* 8728 * Update the device header after the zio completes as 8729 * l2arc_write_done() may have updated the memory holding the log block 8730 * pointers in the device header. 8731 */ 8732 l2arc_dev_hdr_update(dev); 8733 8734 return (write_asize); 8735 } 8736 8737 static boolean_t 8738 l2arc_hdr_limit_reached(void) 8739 { 8740 int64_t s = aggsum_upper_bound(&astat_l2_hdr_size); 8741 8742 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) || 8743 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 8744 } 8745 8746 /* 8747 * This thread feeds the L2ARC at regular intervals. This is the beating 8748 * heart of the L2ARC. 8749 */ 8750 /* ARGSUSED */ 8751 static void 8752 l2arc_feed_thread(void *unused) 8753 { 8754 callb_cpr_t cpr; 8755 l2arc_dev_t *dev; 8756 spa_t *spa; 8757 uint64_t size, wrote; 8758 clock_t begin, next = ddi_get_lbolt(); 8759 8760 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 8761 8762 mutex_enter(&l2arc_feed_thr_lock); 8763 8764 while (l2arc_thread_exit == 0) { 8765 CALLB_CPR_SAFE_BEGIN(&cpr); 8766 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 8767 next); 8768 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 8769 next = ddi_get_lbolt() + hz; 8770 8771 /* 8772 * Quick check for L2ARC devices. 8773 */ 8774 mutex_enter(&l2arc_dev_mtx); 8775 if (l2arc_ndev == 0) { 8776 mutex_exit(&l2arc_dev_mtx); 8777 continue; 8778 } 8779 mutex_exit(&l2arc_dev_mtx); 8780 begin = ddi_get_lbolt(); 8781 8782 /* 8783 * This selects the next l2arc device to write to, and in 8784 * doing so the next spa to feed from: dev->l2ad_spa. This 8785 * will return NULL if there are now no l2arc devices or if 8786 * they are all faulted. 8787 * 8788 * If a device is returned, its spa's config lock is also 8789 * held to prevent device removal. l2arc_dev_get_next() 8790 * will grab and release l2arc_dev_mtx. 8791 */ 8792 if ((dev = l2arc_dev_get_next()) == NULL) 8793 continue; 8794 8795 spa = dev->l2ad_spa; 8796 ASSERT3P(spa, !=, NULL); 8797 8798 /* 8799 * If the pool is read-only then force the feed thread to 8800 * sleep a little longer. 8801 */ 8802 if (!spa_writeable(spa)) { 8803 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 8804 spa_config_exit(spa, SCL_L2ARC, dev); 8805 continue; 8806 } 8807 8808 /* 8809 * Avoid contributing to memory pressure. 8810 */ 8811 if (l2arc_hdr_limit_reached()) { 8812 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 8813 spa_config_exit(spa, SCL_L2ARC, dev); 8814 continue; 8815 } 8816 8817 ARCSTAT_BUMP(arcstat_l2_feeds); 8818 8819 size = l2arc_write_size(dev); 8820 8821 /* 8822 * Evict L2ARC buffers that will be overwritten. 8823 */ 8824 l2arc_evict(dev, size, B_FALSE); 8825 8826 /* 8827 * Write ARC buffers. 8828 */ 8829 wrote = l2arc_write_buffers(spa, dev, size); 8830 8831 /* 8832 * Calculate interval between writes. 8833 */ 8834 next = l2arc_write_interval(begin, size, wrote); 8835 spa_config_exit(spa, SCL_L2ARC, dev); 8836 } 8837 8838 l2arc_thread_exit = 0; 8839 cv_broadcast(&l2arc_feed_thr_cv); 8840 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 8841 thread_exit(); 8842 } 8843 8844 boolean_t 8845 l2arc_vdev_present(vdev_t *vd) 8846 { 8847 return (l2arc_vdev_get(vd) != NULL); 8848 } 8849 8850 /* 8851 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 8852 * the vdev_t isn't an L2ARC device. 8853 */ 8854 static l2arc_dev_t * 8855 l2arc_vdev_get(vdev_t *vd) 8856 { 8857 l2arc_dev_t *dev; 8858 8859 mutex_enter(&l2arc_dev_mtx); 8860 for (dev = list_head(l2arc_dev_list); dev != NULL; 8861 dev = list_next(l2arc_dev_list, dev)) { 8862 if (dev->l2ad_vdev == vd) 8863 break; 8864 } 8865 mutex_exit(&l2arc_dev_mtx); 8866 8867 return (dev); 8868 } 8869 8870 /* 8871 * Add a vdev for use by the L2ARC. By this point the spa has already 8872 * validated the vdev and opened it. 8873 */ 8874 void 8875 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 8876 { 8877 l2arc_dev_t *adddev; 8878 uint64_t l2dhdr_asize; 8879 8880 ASSERT(!l2arc_vdev_present(vd)); 8881 8882 /* 8883 * Create a new l2arc device entry. 8884 */ 8885 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 8886 adddev->l2ad_spa = spa; 8887 adddev->l2ad_vdev = vd; 8888 /* leave extra size for an l2arc device header */ 8889 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 8890 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 8891 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 8892 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 8893 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 8894 adddev->l2ad_hand = adddev->l2ad_start; 8895 adddev->l2ad_evict = adddev->l2ad_start; 8896 adddev->l2ad_first = B_TRUE; 8897 adddev->l2ad_writing = B_FALSE; 8898 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 8899 8900 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 8901 /* 8902 * This is a list of all ARC buffers that are still valid on the 8903 * device. 8904 */ 8905 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 8906 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 8907 8908 /* 8909 * This is a list of pointers to log blocks that are still present 8910 * on the device. 8911 */ 8912 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 8913 offsetof(l2arc_lb_ptr_buf_t, node)); 8914 8915 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 8916 zfs_refcount_create(&adddev->l2ad_alloc); 8917 zfs_refcount_create(&adddev->l2ad_lb_asize); 8918 zfs_refcount_create(&adddev->l2ad_lb_count); 8919 8920 /* 8921 * Add device to global list 8922 */ 8923 mutex_enter(&l2arc_dev_mtx); 8924 list_insert_head(l2arc_dev_list, adddev); 8925 atomic_inc_64(&l2arc_ndev); 8926 mutex_exit(&l2arc_dev_mtx); 8927 8928 /* 8929 * Decide if vdev is eligible for L2ARC rebuild 8930 */ 8931 l2arc_rebuild_vdev(adddev->l2ad_vdev, B_FALSE); 8932 } 8933 8934 void 8935 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 8936 { 8937 l2arc_dev_t *dev = NULL; 8938 l2arc_dev_hdr_phys_t *l2dhdr; 8939 uint64_t l2dhdr_asize; 8940 spa_t *spa; 8941 8942 dev = l2arc_vdev_get(vd); 8943 ASSERT3P(dev, !=, NULL); 8944 spa = dev->l2ad_spa; 8945 l2dhdr = dev->l2ad_dev_hdr; 8946 l2dhdr_asize = dev->l2ad_dev_hdr_asize; 8947 8948 /* 8949 * The L2ARC has to hold at least the payload of one log block for 8950 * them to be restored (persistent L2ARC). The payload of a log block 8951 * depends on the amount of its log entries. We always write log blocks 8952 * with 1022 entries. How many of them are committed or restored depends 8953 * on the size of the L2ARC device. Thus the maximum payload of 8954 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 8955 * is less than that, we reduce the amount of committed and restored 8956 * log entries per block so as to enable persistence. 8957 */ 8958 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 8959 dev->l2ad_log_entries = 0; 8960 } else { 8961 dev->l2ad_log_entries = MIN((dev->l2ad_end - 8962 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 8963 L2ARC_LOG_BLK_MAX_ENTRIES); 8964 } 8965 8966 /* 8967 * Read the device header, if an error is returned do not rebuild L2ARC. 8968 */ 8969 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) { 8970 /* 8971 * If we are onlining a cache device (vdev_reopen) that was 8972 * still present (l2arc_vdev_present()) and rebuild is enabled, 8973 * we should evict all ARC buffers and pointers to log blocks 8974 * and reclaim their space before restoring its contents to 8975 * L2ARC. 8976 */ 8977 if (reopen) { 8978 if (!l2arc_rebuild_enabled) { 8979 return; 8980 } else { 8981 l2arc_evict(dev, 0, B_TRUE); 8982 /* start a new log block */ 8983 dev->l2ad_log_ent_idx = 0; 8984 dev->l2ad_log_blk_payload_asize = 0; 8985 dev->l2ad_log_blk_payload_start = 0; 8986 } 8987 } 8988 /* 8989 * Just mark the device as pending for a rebuild. We won't 8990 * be starting a rebuild in line here as it would block pool 8991 * import. Instead spa_load_impl will hand that off to an 8992 * async task which will call l2arc_spa_rebuild_start. 8993 */ 8994 dev->l2ad_rebuild = B_TRUE; 8995 } else if (spa_writeable(spa)) { 8996 /* 8997 * In this case create a new header. We zero out the memory 8998 * holding the header to reset dh_start_lbps. 8999 */ 9000 bzero(l2dhdr, l2dhdr_asize); 9001 l2arc_dev_hdr_update(dev); 9002 } 9003 } 9004 9005 /* 9006 * Remove a vdev from the L2ARC. 9007 */ 9008 void 9009 l2arc_remove_vdev(vdev_t *vd) 9010 { 9011 l2arc_dev_t *remdev = NULL; 9012 9013 /* 9014 * Find the device by vdev 9015 */ 9016 remdev = l2arc_vdev_get(vd); 9017 ASSERT3P(remdev, !=, NULL); 9018 9019 /* 9020 * Cancel any ongoing or scheduled rebuild. 9021 */ 9022 mutex_enter(&l2arc_rebuild_thr_lock); 9023 if (remdev->l2ad_rebuild_began == B_TRUE) { 9024 remdev->l2ad_rebuild_cancel = B_TRUE; 9025 while (remdev->l2ad_rebuild == B_TRUE) 9026 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 9027 } 9028 mutex_exit(&l2arc_rebuild_thr_lock); 9029 9030 /* 9031 * Remove device from global list 9032 */ 9033 mutex_enter(&l2arc_dev_mtx); 9034 list_remove(l2arc_dev_list, remdev); 9035 l2arc_dev_last = NULL; /* may have been invalidated */ 9036 atomic_dec_64(&l2arc_ndev); 9037 mutex_exit(&l2arc_dev_mtx); 9038 9039 /* 9040 * Clear all buflists and ARC references. L2ARC device flush. 9041 */ 9042 l2arc_evict(remdev, 0, B_TRUE); 9043 list_destroy(&remdev->l2ad_buflist); 9044 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 9045 list_destroy(&remdev->l2ad_lbptr_list); 9046 mutex_destroy(&remdev->l2ad_mtx); 9047 zfs_refcount_destroy(&remdev->l2ad_alloc); 9048 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 9049 zfs_refcount_destroy(&remdev->l2ad_lb_count); 9050 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 9051 kmem_free(remdev, sizeof (l2arc_dev_t)); 9052 } 9053 9054 void 9055 l2arc_init(void) 9056 { 9057 l2arc_thread_exit = 0; 9058 l2arc_ndev = 0; 9059 l2arc_writes_sent = 0; 9060 l2arc_writes_done = 0; 9061 9062 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9063 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 9064 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9065 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 9066 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 9067 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 9068 9069 l2arc_dev_list = &L2ARC_dev_list; 9070 l2arc_free_on_write = &L2ARC_free_on_write; 9071 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 9072 offsetof(l2arc_dev_t, l2ad_node)); 9073 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 9074 offsetof(l2arc_data_free_t, l2df_list_node)); 9075 } 9076 9077 void 9078 l2arc_fini(void) 9079 { 9080 /* 9081 * This is called from dmu_fini(), which is called from spa_fini(); 9082 * Because of this, we can assume that all l2arc devices have 9083 * already been removed when the pools themselves were removed. 9084 */ 9085 9086 l2arc_do_free_on_write(); 9087 9088 mutex_destroy(&l2arc_feed_thr_lock); 9089 cv_destroy(&l2arc_feed_thr_cv); 9090 mutex_destroy(&l2arc_rebuild_thr_lock); 9091 cv_destroy(&l2arc_rebuild_thr_cv); 9092 mutex_destroy(&l2arc_dev_mtx); 9093 mutex_destroy(&l2arc_free_on_write_mtx); 9094 9095 list_destroy(l2arc_dev_list); 9096 list_destroy(l2arc_free_on_write); 9097 } 9098 9099 void 9100 l2arc_start(void) 9101 { 9102 if (!(spa_mode_global & FWRITE)) 9103 return; 9104 9105 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 9106 TS_RUN, minclsyspri); 9107 } 9108 9109 void 9110 l2arc_stop(void) 9111 { 9112 if (!(spa_mode_global & FWRITE)) 9113 return; 9114 9115 mutex_enter(&l2arc_feed_thr_lock); 9116 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 9117 l2arc_thread_exit = 1; 9118 while (l2arc_thread_exit != 0) 9119 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 9120 mutex_exit(&l2arc_feed_thr_lock); 9121 } 9122 9123 /* 9124 * Punches out rebuild threads for the L2ARC devices in a spa. This should 9125 * be called after pool import from the spa async thread, since starting 9126 * these threads directly from spa_import() will make them part of the 9127 * "zpool import" context and delay process exit (and thus pool import). 9128 */ 9129 void 9130 l2arc_spa_rebuild_start(spa_t *spa) 9131 { 9132 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 9133 9134 /* 9135 * Locate the spa's l2arc devices and kick off rebuild threads. 9136 */ 9137 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 9138 l2arc_dev_t *dev = 9139 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 9140 if (dev == NULL) { 9141 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 9142 continue; 9143 } 9144 mutex_enter(&l2arc_rebuild_thr_lock); 9145 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 9146 dev->l2ad_rebuild_began = B_TRUE; 9147 (void) thread_create(NULL, 0, 9148 (void (*)(void *))l2arc_dev_rebuild_start, 9149 dev, 0, &p0, TS_RUN, minclsyspri); 9150 } 9151 mutex_exit(&l2arc_rebuild_thr_lock); 9152 } 9153 } 9154 9155 /* 9156 * Main entry point for L2ARC rebuilding. 9157 */ 9158 static void 9159 l2arc_dev_rebuild_start(l2arc_dev_t *dev) 9160 { 9161 VERIFY(!dev->l2ad_rebuild_cancel); 9162 VERIFY(dev->l2ad_rebuild); 9163 (void) l2arc_rebuild(dev); 9164 mutex_enter(&l2arc_rebuild_thr_lock); 9165 dev->l2ad_rebuild_began = B_FALSE; 9166 dev->l2ad_rebuild = B_FALSE; 9167 mutex_exit(&l2arc_rebuild_thr_lock); 9168 9169 thread_exit(); 9170 } 9171 9172 /* 9173 * This function implements the actual L2ARC metadata rebuild. It: 9174 * starts reading the log block chain and restores each block's contents 9175 * to memory (reconstructing arc_buf_hdr_t's). 9176 * 9177 * Operation stops under any of the following conditions: 9178 * 9179 * 1) We reach the end of the log block chain. 9180 * 2) We encounter *any* error condition (cksum errors, io errors) 9181 */ 9182 static int 9183 l2arc_rebuild(l2arc_dev_t *dev) 9184 { 9185 vdev_t *vd = dev->l2ad_vdev; 9186 spa_t *spa = vd->vdev_spa; 9187 int err = 0; 9188 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9189 l2arc_log_blk_phys_t *this_lb, *next_lb; 9190 zio_t *this_io = NULL, *next_io = NULL; 9191 l2arc_log_blkptr_t lbps[2]; 9192 l2arc_lb_ptr_buf_t *lb_ptr_buf; 9193 boolean_t lock_held; 9194 9195 this_lb = kmem_zalloc(sizeof (*this_lb), KM_SLEEP); 9196 next_lb = kmem_zalloc(sizeof (*next_lb), KM_SLEEP); 9197 9198 /* 9199 * We prevent device removal while issuing reads to the device, 9200 * then during the rebuilding phases we drop this lock again so 9201 * that a spa_unload or device remove can be initiated - this is 9202 * safe, because the spa will signal us to stop before removing 9203 * our device and wait for us to stop. 9204 */ 9205 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 9206 lock_held = B_TRUE; 9207 9208 /* 9209 * Retrieve the persistent L2ARC device state. 9210 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9211 */ 9212 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 9213 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 9214 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 9215 dev->l2ad_start); 9216 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 9217 9218 /* 9219 * In case the zfs module parameter l2arc_rebuild_enabled is false 9220 * we do not start the rebuild process. 9221 */ 9222 if (!l2arc_rebuild_enabled) 9223 goto out; 9224 9225 /* Prepare the rebuild process */ 9226 bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps)); 9227 9228 /* Start the rebuild process */ 9229 for (;;) { 9230 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 9231 break; 9232 9233 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 9234 this_lb, next_lb, this_io, &next_io)) != 0) 9235 goto out; 9236 9237 /* 9238 * Our memory pressure valve. If the system is running low 9239 * on memory, rather than swamping memory with new ARC buf 9240 * hdrs, we opt not to rebuild the L2ARC. At this point, 9241 * however, we have already set up our L2ARC dev to chain in 9242 * new metadata log blocks, so the user may choose to offline/ 9243 * online the L2ARC dev at a later time (or re-import the pool) 9244 * to reconstruct it (when there's less memory pressure). 9245 */ 9246 if (l2arc_hdr_limit_reached()) { 9247 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 9248 cmn_err(CE_NOTE, "System running low on memory, " 9249 "aborting L2ARC rebuild."); 9250 err = SET_ERROR(ENOMEM); 9251 goto out; 9252 } 9253 9254 spa_config_exit(spa, SCL_L2ARC, vd); 9255 lock_held = B_FALSE; 9256 9257 /* 9258 * Now that we know that the next_lb checks out alright, we 9259 * can start reconstruction from this log block. 9260 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9261 */ 9262 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 9263 l2arc_log_blk_restore(dev, this_lb, asize); 9264 9265 /* 9266 * log block restored, include its pointer in the list of 9267 * pointers to log blocks present in the L2ARC device. 9268 */ 9269 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 9270 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 9271 KM_SLEEP); 9272 bcopy(&lbps[0], lb_ptr_buf->lb_ptr, 9273 sizeof (l2arc_log_blkptr_t)); 9274 mutex_enter(&dev->l2ad_mtx); 9275 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 9276 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 9277 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 9278 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 9279 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 9280 mutex_exit(&dev->l2ad_mtx); 9281 vdev_space_update(vd, asize, 0, 0); 9282 9283 /* BEGIN CSTYLED */ 9284 /* 9285 * Protection against loops of log blocks: 9286 * 9287 * l2ad_hand l2ad_evict 9288 * V V 9289 * l2ad_start |=======================================| l2ad_end 9290 * -----|||----|||---|||----||| 9291 * (3) (2) (1) (0) 9292 * ---|||---|||----|||---||| 9293 * (7) (6) (5) (4) 9294 * 9295 * In this situation the pointer of log block (4) passes 9296 * l2arc_log_blkptr_valid() but the log block should not be 9297 * restored as it is overwritten by the payload of log block 9298 * (0). Only log blocks (0)-(3) should be restored. We check 9299 * whether l2ad_evict lies in between the payload starting 9300 * offset of the next log block (lbps[1].lbp_payload_start) 9301 * and the payload starting offset of the present log block 9302 * (lbps[0].lbp_payload_start). If true and this isn't the 9303 * first pass, we are looping from the beginning and we should 9304 * stop. 9305 */ 9306 /* END CSTYLED */ 9307 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 9308 lbps[0].lbp_payload_start, dev->l2ad_evict) && 9309 !dev->l2ad_first) 9310 goto out; 9311 9312 for (;;) { 9313 mutex_enter(&l2arc_rebuild_thr_lock); 9314 if (dev->l2ad_rebuild_cancel) { 9315 dev->l2ad_rebuild = B_FALSE; 9316 cv_signal(&l2arc_rebuild_thr_cv); 9317 mutex_exit(&l2arc_rebuild_thr_lock); 9318 err = SET_ERROR(ECANCELED); 9319 goto out; 9320 } 9321 mutex_exit(&l2arc_rebuild_thr_lock); 9322 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 9323 RW_READER)) { 9324 lock_held = B_TRUE; 9325 break; 9326 } 9327 /* 9328 * L2ARC config lock held by somebody in writer, 9329 * possibly due to them trying to remove us. They'll 9330 * likely to want us to shut down, so after a little 9331 * delay, we check l2ad_rebuild_cancel and retry 9332 * the lock again. 9333 */ 9334 delay(1); 9335 } 9336 9337 /* 9338 * Continue with the next log block. 9339 */ 9340 lbps[0] = lbps[1]; 9341 lbps[1] = this_lb->lb_prev_lbp; 9342 PTR_SWAP(this_lb, next_lb); 9343 this_io = next_io; 9344 next_io = NULL; 9345 } 9346 9347 if (this_io != NULL) 9348 l2arc_log_blk_fetch_abort(this_io); 9349 out: 9350 if (next_io != NULL) 9351 l2arc_log_blk_fetch_abort(next_io); 9352 kmem_free(this_lb, sizeof (*this_lb)); 9353 kmem_free(next_lb, sizeof (*next_lb)); 9354 9355 if (!l2arc_rebuild_enabled) { 9356 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9357 "disabled"); 9358 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 9359 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 9360 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9361 "successful, restored %llu blocks", 9362 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9363 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 9364 /* 9365 * No error but also nothing restored, meaning the lbps array 9366 * in the device header points to invalid/non-present log 9367 * blocks. Reset the header. 9368 */ 9369 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9370 "no valid log blocks"); 9371 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 9372 l2arc_dev_hdr_update(dev); 9373 } else if (err == ECANCELED) { 9374 /* 9375 * In case the rebuild was canceled do not log to spa history 9376 * log as the pool may be in the process of being removed. 9377 */ 9378 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 9379 zfs_refcount_count(&dev->l2ad_lb_count)); 9380 } else if (err != 0) { 9381 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9382 "aborted, restored %llu blocks", 9383 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9384 } 9385 9386 if (lock_held) 9387 spa_config_exit(spa, SCL_L2ARC, vd); 9388 9389 return (err); 9390 } 9391 9392 /* 9393 * Attempts to read the device header on the provided L2ARC device and writes 9394 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 9395 * error code is returned. 9396 */ 9397 static int 9398 l2arc_dev_hdr_read(l2arc_dev_t *dev) 9399 { 9400 int err; 9401 uint64_t guid; 9402 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9403 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9404 abd_t *abd; 9405 9406 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 9407 9408 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 9409 9410 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 9411 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 9412 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ, 9413 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 9414 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 9415 ZIO_FLAG_SPECULATIVE, B_FALSE)); 9416 9417 abd_put(abd); 9418 9419 if (err != 0) { 9420 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 9421 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 9422 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid); 9423 return (err); 9424 } 9425 9426 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 9427 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 9428 9429 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 9430 l2dhdr->dh_spa_guid != guid || 9431 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 9432 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 9433 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 9434 l2dhdr->dh_end != dev->l2ad_end || 9435 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 9436 l2dhdr->dh_evict)) { 9437 /* 9438 * Attempt to rebuild a device containing no actual dev hdr 9439 * or containing a header from some other pool or from another 9440 * version of persistent L2ARC. 9441 */ 9442 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 9443 return (SET_ERROR(ENOTSUP)); 9444 } 9445 9446 return (0); 9447 } 9448 9449 /* 9450 * Reads L2ARC log blocks from storage and validates their contents. 9451 * 9452 * This function implements a simple fetcher to make sure that while 9453 * we're processing one buffer the L2ARC is already fetching the next 9454 * one in the chain. 9455 * 9456 * The arguments this_lp and next_lp point to the current and next log block 9457 * address in the block chain. Similarly, this_lb and next_lb hold the 9458 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 9459 * 9460 * The `this_io' and `next_io' arguments are used for block fetching. 9461 * When issuing the first blk IO during rebuild, you should pass NULL for 9462 * `this_io'. This function will then issue a sync IO to read the block and 9463 * also issue an async IO to fetch the next block in the block chain. The 9464 * fetched IO is returned in `next_io'. On subsequent calls to this 9465 * function, pass the value returned in `next_io' from the previous call 9466 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 9467 * Prior to the call, you should initialize your `next_io' pointer to be 9468 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 9469 * 9470 * On success, this function returns 0, otherwise it returns an appropriate 9471 * error code. On error the fetching IO is aborted and cleared before 9472 * returning from this function. Therefore, if we return `success', the 9473 * caller can assume that we have taken care of cleanup of fetch IOs. 9474 */ 9475 static int 9476 l2arc_log_blk_read(l2arc_dev_t *dev, 9477 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 9478 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 9479 zio_t *this_io, zio_t **next_io) 9480 { 9481 int err = 0; 9482 zio_cksum_t cksum; 9483 abd_t *abd = NULL; 9484 uint64_t asize; 9485 9486 ASSERT(this_lbp != NULL && next_lbp != NULL); 9487 ASSERT(this_lb != NULL && next_lb != NULL); 9488 ASSERT(next_io != NULL && *next_io == NULL); 9489 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 9490 9491 /* 9492 * Check to see if we have issued the IO for this log block in a 9493 * previous run. If not, this is the first call, so issue it now. 9494 */ 9495 if (this_io == NULL) { 9496 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 9497 this_lb); 9498 } 9499 9500 /* 9501 * Peek to see if we can start issuing the next IO immediately. 9502 */ 9503 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 9504 /* 9505 * Start issuing IO for the next log block early - this 9506 * should help keep the L2ARC device busy while we 9507 * decompress and restore this log block. 9508 */ 9509 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 9510 next_lb); 9511 } 9512 9513 /* Wait for the IO to read this log block to complete */ 9514 if ((err = zio_wait(this_io)) != 0) { 9515 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 9516 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 9517 "offset: %llu, vdev guid: %llu", err, this_lbp->lbp_daddr, 9518 dev->l2ad_vdev->vdev_guid); 9519 goto cleanup; 9520 } 9521 9522 /* 9523 * Make sure the buffer checks out. 9524 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9525 */ 9526 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 9527 fletcher_4_native(this_lb, asize, NULL, &cksum); 9528 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 9529 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 9530 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 9531 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 9532 this_lbp->lbp_daddr, dev->l2ad_vdev->vdev_guid, 9533 dev->l2ad_hand, dev->l2ad_evict); 9534 err = SET_ERROR(ECKSUM); 9535 goto cleanup; 9536 } 9537 9538 /* Now we can take our time decoding this buffer */ 9539 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 9540 case ZIO_COMPRESS_OFF: 9541 break; 9542 case ZIO_COMPRESS_LZ4: 9543 abd = abd_alloc_for_io(asize, B_TRUE); 9544 abd_copy_from_buf_off(abd, this_lb, 0, asize); 9545 if ((err = zio_decompress_data( 9546 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 9547 abd, this_lb, asize, sizeof (*this_lb))) != 0) { 9548 err = SET_ERROR(EINVAL); 9549 goto cleanup; 9550 } 9551 break; 9552 default: 9553 err = SET_ERROR(EINVAL); 9554 goto cleanup; 9555 } 9556 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 9557 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 9558 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 9559 err = SET_ERROR(EINVAL); 9560 goto cleanup; 9561 } 9562 cleanup: 9563 /* Abort an in-flight fetch I/O in case of error */ 9564 if (err != 0 && *next_io != NULL) { 9565 l2arc_log_blk_fetch_abort(*next_io); 9566 *next_io = NULL; 9567 } 9568 if (abd != NULL) 9569 abd_free(abd); 9570 return (err); 9571 } 9572 9573 /* 9574 * Restores the payload of a log block to ARC. This creates empty ARC hdr 9575 * entries which only contain an l2arc hdr, essentially restoring the 9576 * buffers to their L2ARC evicted state. This function also updates space 9577 * usage on the L2ARC vdev to make sure it tracks restored buffers. 9578 */ 9579 static void 9580 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 9581 uint64_t lb_asize) 9582 { 9583 uint64_t size = 0, asize = 0; 9584 uint64_t log_entries = dev->l2ad_log_entries; 9585 9586 /* 9587 * Usually arc_adapt() is called only for data, not headers, but 9588 * since we may allocate significant amount of memory here, let ARC 9589 * grow its arc_c. 9590 */ 9591 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only); 9592 9593 for (int i = log_entries - 1; i >= 0; i--) { 9594 /* 9595 * Restore goes in the reverse temporal direction to preserve 9596 * correct temporal ordering of buffers in the l2ad_buflist. 9597 * l2arc_hdr_restore also does a list_insert_tail instead of 9598 * list_insert_head on the l2ad_buflist: 9599 * 9600 * LIST l2ad_buflist LIST 9601 * HEAD <------ (time) ------ TAIL 9602 * direction +-----+-----+-----+-----+-----+ direction 9603 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 9604 * fill +-----+-----+-----+-----+-----+ 9605 * ^ ^ 9606 * | | 9607 * | | 9608 * l2arc_feed_thread l2arc_rebuild 9609 * will place new bufs here restores bufs here 9610 * 9611 * During l2arc_rebuild() the device is not used by 9612 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 9613 */ 9614 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 9615 asize += vdev_psize_to_asize(dev->l2ad_vdev, 9616 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 9617 l2arc_hdr_restore(&lb->lb_entries[i], dev); 9618 } 9619 9620 /* 9621 * Record rebuild stats: 9622 * size Logical size of restored buffers in the L2ARC 9623 * asize Aligned size of restored buffers in the L2ARC 9624 */ 9625 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 9626 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 9627 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 9628 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 9629 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 9630 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 9631 } 9632 9633 /* 9634 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 9635 * into a state indicating that it has been evicted to L2ARC. 9636 */ 9637 static void 9638 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 9639 { 9640 arc_buf_hdr_t *hdr, *exists; 9641 kmutex_t *hash_lock; 9642 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 9643 uint64_t asize; 9644 9645 /* 9646 * Do all the allocation before grabbing any locks, this lets us 9647 * sleep if memory is full and we don't have to deal with failed 9648 * allocations. 9649 */ 9650 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 9651 dev, le->le_dva, le->le_daddr, 9652 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, 9653 L2BLK_GET_COMPRESS((le)->le_prop), 9654 L2BLK_GET_PROTECTED((le)->le_prop), 9655 L2BLK_GET_PREFETCH((le)->le_prop), 9656 L2BLK_GET_STATE((le)->le_prop)); 9657 asize = vdev_psize_to_asize(dev->l2ad_vdev, 9658 L2BLK_GET_PSIZE((le)->le_prop)); 9659 9660 /* 9661 * vdev_space_update() has to be called before arc_hdr_destroy() to 9662 * avoid underflow since the latter also calls vdev_space_update(). 9663 */ 9664 l2arc_hdr_arcstats_increment(hdr); 9665 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9666 9667 mutex_enter(&dev->l2ad_mtx); 9668 list_insert_tail(&dev->l2ad_buflist, hdr); 9669 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 9670 mutex_exit(&dev->l2ad_mtx); 9671 9672 exists = buf_hash_insert(hdr, &hash_lock); 9673 if (exists) { 9674 /* Buffer was already cached, no need to restore it. */ 9675 arc_hdr_destroy(hdr); 9676 /* 9677 * If the buffer is already cached, check whether it has 9678 * L2ARC metadata. If not, enter them and update the flag. 9679 * This is important is case of onlining a cache device, since 9680 * we previously evicted all L2ARC metadata from ARC. 9681 */ 9682 if (!HDR_HAS_L2HDR(exists)) { 9683 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 9684 exists->b_l2hdr.b_dev = dev; 9685 exists->b_l2hdr.b_daddr = le->le_daddr; 9686 exists->b_l2hdr.b_arcs_state = 9687 L2BLK_GET_STATE((le)->le_prop); 9688 mutex_enter(&dev->l2ad_mtx); 9689 list_insert_tail(&dev->l2ad_buflist, exists); 9690 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9691 arc_hdr_size(exists), exists); 9692 mutex_exit(&dev->l2ad_mtx); 9693 l2arc_hdr_arcstats_increment(exists); 9694 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9695 } 9696 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 9697 } 9698 9699 mutex_exit(hash_lock); 9700 } 9701 9702 /* 9703 * Starts an asynchronous read IO to read a log block. This is used in log 9704 * block reconstruction to start reading the next block before we are done 9705 * decoding and reconstructing the current block, to keep the l2arc device 9706 * nice and hot with read IO to process. 9707 * The returned zio will contain newly allocated memory buffers for the IO 9708 * data which should then be freed by the caller once the zio is no longer 9709 * needed (i.e. due to it having completed). If you wish to abort this 9710 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 9711 * care of disposing of the allocated buffers correctly. 9712 */ 9713 static zio_t * 9714 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 9715 l2arc_log_blk_phys_t *lb) 9716 { 9717 uint32_t asize; 9718 zio_t *pio; 9719 l2arc_read_callback_t *cb; 9720 9721 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 9722 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 9723 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 9724 9725 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 9726 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 9727 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 9728 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 9729 ZIO_FLAG_DONT_RETRY); 9730 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 9731 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 9732 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 9733 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 9734 9735 return (pio); 9736 } 9737 9738 /* 9739 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 9740 * buffers allocated for it. 9741 */ 9742 static void 9743 l2arc_log_blk_fetch_abort(zio_t *zio) 9744 { 9745 (void) zio_wait(zio); 9746 } 9747 9748 /* 9749 * Creates a zio to update the device header on an l2arc device. 9750 */ 9751 static void 9752 l2arc_dev_hdr_update(l2arc_dev_t *dev) 9753 { 9754 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9755 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9756 abd_t *abd; 9757 int err; 9758 9759 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 9760 9761 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 9762 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 9763 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 9764 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 9765 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 9766 l2dhdr->dh_evict = dev->l2ad_evict; 9767 l2dhdr->dh_start = dev->l2ad_start; 9768 l2dhdr->dh_end = dev->l2ad_end; 9769 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 9770 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 9771 l2dhdr->dh_flags = 0; 9772 if (dev->l2ad_first) 9773 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 9774 9775 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 9776 9777 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 9778 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 9779 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 9780 9781 abd_put(abd); 9782 9783 if (err != 0) { 9784 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 9785 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid); 9786 } 9787 } 9788 9789 /* 9790 * Commits a log block to the L2ARC device. This routine is invoked from 9791 * l2arc_write_buffers when the log block fills up. 9792 * This function allocates some memory to temporarily hold the serialized 9793 * buffer to be written. This is then released in l2arc_write_done. 9794 */ 9795 static void 9796 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 9797 { 9798 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 9799 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9800 uint64_t psize, asize; 9801 zio_t *wzio; 9802 l2arc_lb_abd_buf_t *abd_buf; 9803 uint8_t *tmpbuf; 9804 l2arc_lb_ptr_buf_t *lb_ptr_buf; 9805 9806 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 9807 9808 tmpbuf = zio_buf_alloc(sizeof (*lb)); 9809 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 9810 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 9811 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 9812 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 9813 9814 /* link the buffer into the block chain */ 9815 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 9816 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 9817 9818 /* 9819 * l2arc_log_blk_commit() may be called multiple times during a single 9820 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 9821 * so we can free them in l2arc_write_done() later on. 9822 */ 9823 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 9824 9825 /* try to compress the buffer */ 9826 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 9827 abd_buf->abd, tmpbuf, sizeof (*lb)); 9828 9829 /* a log block is never entirely zero */ 9830 ASSERT(psize != 0); 9831 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 9832 ASSERT(asize <= sizeof (*lb)); 9833 9834 /* 9835 * Update the start log block pointer in the device header to point 9836 * to the log block we're about to write. 9837 */ 9838 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 9839 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 9840 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 9841 dev->l2ad_log_blk_payload_asize; 9842 l2dhdr->dh_start_lbps[0].lbp_payload_start = 9843 dev->l2ad_log_blk_payload_start; 9844 _NOTE(CONSTCOND) 9845 L2BLK_SET_LSIZE( 9846 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 9847 L2BLK_SET_PSIZE( 9848 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 9849 L2BLK_SET_CHECKSUM( 9850 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 9851 ZIO_CHECKSUM_FLETCHER_4); 9852 if (asize < sizeof (*lb)) { 9853 /* compression succeeded */ 9854 bzero(tmpbuf + psize, asize - psize); 9855 L2BLK_SET_COMPRESS( 9856 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 9857 ZIO_COMPRESS_LZ4); 9858 } else { 9859 /* compression failed */ 9860 bcopy(lb, tmpbuf, sizeof (*lb)); 9861 L2BLK_SET_COMPRESS( 9862 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 9863 ZIO_COMPRESS_OFF); 9864 } 9865 9866 /* checksum what we're about to write */ 9867 fletcher_4_native(tmpbuf, asize, NULL, 9868 &l2dhdr->dh_start_lbps[0].lbp_cksum); 9869 9870 abd_put(abd_buf->abd); 9871 9872 /* perform the write itself */ 9873 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb)); 9874 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE); 9875 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 9876 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 9877 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 9878 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 9879 (void) zio_nowait(wzio); 9880 9881 dev->l2ad_hand += asize; 9882 /* 9883 * Include the committed log block's pointer in the list of pointers 9884 * to log blocks present in the L2ARC device. 9885 */ 9886 bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr, 9887 sizeof (l2arc_log_blkptr_t)); 9888 mutex_enter(&dev->l2ad_mtx); 9889 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 9890 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 9891 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 9892 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 9893 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 9894 mutex_exit(&dev->l2ad_mtx); 9895 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9896 9897 /* bump the kstats */ 9898 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 9899 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 9900 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 9901 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 9902 dev->l2ad_log_blk_payload_asize / asize); 9903 9904 /* start a new log block */ 9905 dev->l2ad_log_ent_idx = 0; 9906 dev->l2ad_log_blk_payload_asize = 0; 9907 dev->l2ad_log_blk_payload_start = 0; 9908 } 9909 9910 /* 9911 * Validates an L2ARC log block address to make sure that it can be read 9912 * from the provided L2ARC device. 9913 */ 9914 boolean_t 9915 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 9916 { 9917 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 9918 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 9919 uint64_t end = lbp->lbp_daddr + asize - 1; 9920 uint64_t start = lbp->lbp_payload_start; 9921 boolean_t evicted = B_FALSE; 9922 9923 /* BEGIN CSTYLED */ 9924 /* 9925 * A log block is valid if all of the following conditions are true: 9926 * - it fits entirely (including its payload) between l2ad_start and 9927 * l2ad_end 9928 * - it has a valid size 9929 * - neither the log block itself nor part of its payload was evicted 9930 * by l2arc_evict(): 9931 * 9932 * l2ad_hand l2ad_evict 9933 * | | lbp_daddr 9934 * | start | | end 9935 * | | | | | 9936 * V V V V V 9937 * l2ad_start ============================================ l2ad_end 9938 * --------------------------|||| 9939 * ^ ^ 9940 * | log block 9941 * payload 9942 */ 9943 /* END CSTYLED */ 9944 evicted = 9945 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 9946 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 9947 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 9948 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 9949 9950 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 9951 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 9952 (!evicted || dev->l2ad_first)); 9953 } 9954 9955 /* 9956 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 9957 * the device. The buffer being inserted must be present in L2ARC. 9958 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 9959 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 9960 */ 9961 static boolean_t 9962 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 9963 { 9964 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 9965 l2arc_log_ent_phys_t *le; 9966 9967 if (dev->l2ad_log_entries == 0) 9968 return (B_FALSE); 9969 9970 int index = dev->l2ad_log_ent_idx++; 9971 9972 ASSERT3S(index, <, dev->l2ad_log_entries); 9973 ASSERT(HDR_HAS_L2HDR(hdr)); 9974 9975 le = &lb->lb_entries[index]; 9976 bzero(le, sizeof (*le)); 9977 le->le_dva = hdr->b_dva; 9978 le->le_birth = hdr->b_birth; 9979 le->le_daddr = hdr->b_l2hdr.b_daddr; 9980 if (index == 0) 9981 dev->l2ad_log_blk_payload_start = le->le_daddr; 9982 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 9983 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 9984 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 9985 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 9986 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 9987 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 9988 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state); 9989 9990 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 9991 HDR_GET_PSIZE(hdr)); 9992 9993 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 9994 } 9995 9996 /* 9997 * Checks whether a given L2ARC device address sits in a time-sequential 9998 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 9999 * just do a range comparison, we need to handle the situation in which the 10000 * range wraps around the end of the L2ARC device. Arguments: 10001 * bottom -- Lower end of the range to check (written to earlier). 10002 * top -- Upper end of the range to check (written to later). 10003 * check -- The address for which we want to determine if it sits in 10004 * between the top and bottom. 10005 * 10006 * The 3-way conditional below represents the following cases: 10007 * 10008 * bottom < top : Sequentially ordered case: 10009 * <check>--------+-------------------+ 10010 * | (overlap here?) | 10011 * L2ARC dev V V 10012 * |---------------<bottom>============<top>--------------| 10013 * 10014 * bottom > top: Looped-around case: 10015 * <check>--------+------------------+ 10016 * | (overlap here?) | 10017 * L2ARC dev V V 10018 * |===============<top>---------------<bottom>===========| 10019 * ^ ^ 10020 * | (or here?) | 10021 * +---------------+---------<check> 10022 * 10023 * top == bottom : Just a single address comparison. 10024 */ 10025 boolean_t 10026 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 10027 { 10028 if (bottom < top) 10029 return (bottom <= check && check <= top); 10030 else if (bottom > top) 10031 return (check <= top || bottom <= check); 10032 else 10033 return (check == top); 10034 } 10035