xref: /illumos-gate/usr/src/uts/common/fs/zfs/arc.c (revision 6e6c7d67bf5ba2efa13619acd59395d0f278ee75)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2018, Joyent, Inc.
24  * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25  * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
27  */
28 
29 /*
30  * DVA-based Adjustable Replacement Cache
31  *
32  * While much of the theory of operation used here is
33  * based on the self-tuning, low overhead replacement cache
34  * presented by Megiddo and Modha at FAST 2003, there are some
35  * significant differences:
36  *
37  * 1. The Megiddo and Modha model assumes any page is evictable.
38  * Pages in its cache cannot be "locked" into memory.  This makes
39  * the eviction algorithm simple: evict the last page in the list.
40  * This also make the performance characteristics easy to reason
41  * about.  Our cache is not so simple.  At any given moment, some
42  * subset of the blocks in the cache are un-evictable because we
43  * have handed out a reference to them.  Blocks are only evictable
44  * when there are no external references active.  This makes
45  * eviction far more problematic:  we choose to evict the evictable
46  * blocks that are the "lowest" in the list.
47  *
48  * There are times when it is not possible to evict the requested
49  * space.  In these circumstances we are unable to adjust the cache
50  * size.  To prevent the cache growing unbounded at these times we
51  * implement a "cache throttle" that slows the flow of new data
52  * into the cache until we can make space available.
53  *
54  * 2. The Megiddo and Modha model assumes a fixed cache size.
55  * Pages are evicted when the cache is full and there is a cache
56  * miss.  Our model has a variable sized cache.  It grows with
57  * high use, but also tries to react to memory pressure from the
58  * operating system: decreasing its size when system memory is
59  * tight.
60  *
61  * 3. The Megiddo and Modha model assumes a fixed page size. All
62  * elements of the cache are therefore exactly the same size.  So
63  * when adjusting the cache size following a cache miss, its simply
64  * a matter of choosing a single page to evict.  In our model, we
65  * have variable sized cache blocks (rangeing from 512 bytes to
66  * 128K bytes).  We therefore choose a set of blocks to evict to make
67  * space for a cache miss that approximates as closely as possible
68  * the space used by the new block.
69  *
70  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71  * by N. Megiddo & D. Modha, FAST 2003
72  */
73 
74 /*
75  * The locking model:
76  *
77  * A new reference to a cache buffer can be obtained in two
78  * ways: 1) via a hash table lookup using the DVA as a key,
79  * or 2) via one of the ARC lists.  The arc_read() interface
80  * uses method 1, while the internal ARC algorithms for
81  * adjusting the cache use method 2.  We therefore provide two
82  * types of locks: 1) the hash table lock array, and 2) the
83  * ARC list locks.
84  *
85  * Buffers do not have their own mutexes, rather they rely on the
86  * hash table mutexes for the bulk of their protection (i.e. most
87  * fields in the arc_buf_hdr_t are protected by these mutexes).
88  *
89  * buf_hash_find() returns the appropriate mutex (held) when it
90  * locates the requested buffer in the hash table.  It returns
91  * NULL for the mutex if the buffer was not in the table.
92  *
93  * buf_hash_remove() expects the appropriate hash mutex to be
94  * already held before it is invoked.
95  *
96  * Each ARC state also has a mutex which is used to protect the
97  * buffer list associated with the state.  When attempting to
98  * obtain a hash table lock while holding an ARC list lock you
99  * must use: mutex_tryenter() to avoid deadlock.  Also note that
100  * the active state mutex must be held before the ghost state mutex.
101  *
102  * Note that the majority of the performance stats are manipulated
103  * with atomic operations.
104  *
105  * The L2ARC uses the l2ad_mtx on each vdev for the following:
106  *
107  *	- L2ARC buflist creation
108  *	- L2ARC buflist eviction
109  *	- L2ARC write completion, which walks L2ARC buflists
110  *	- ARC header destruction, as it removes from L2ARC buflists
111  *	- ARC header release, as it removes from L2ARC buflists
112  */
113 
114 /*
115  * ARC operation:
116  *
117  * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
118  * This structure can point either to a block that is still in the cache or to
119  * one that is only accessible in an L2 ARC device, or it can provide
120  * information about a block that was recently evicted. If a block is
121  * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
122  * information to retrieve it from the L2ARC device. This information is
123  * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
124  * that is in this state cannot access the data directly.
125  *
126  * Blocks that are actively being referenced or have not been evicted
127  * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
128  * the arc_buf_hdr_t that will point to the data block in memory. A block can
129  * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
130  * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
131  * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
132  *
133  * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
134  * ability to store the physical data (b_pabd) associated with the DVA of the
135  * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
136  * it will match its on-disk compression characteristics. This behavior can be
137  * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
138  * compressed ARC functionality is disabled, the b_pabd will point to an
139  * uncompressed version of the on-disk data.
140  *
141  * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
142  * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
143  * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
144  * consumer. The ARC will provide references to this data and will keep it
145  * cached until it is no longer in use. The ARC caches only the L1ARC's physical
146  * data block and will evict any arc_buf_t that is no longer referenced. The
147  * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
148  * "overhead_size" kstat.
149  *
150  * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
151  * compressed form. The typical case is that consumers will want uncompressed
152  * data, and when that happens a new data buffer is allocated where the data is
153  * decompressed for them to use. Currently the only consumer who wants
154  * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
155  * exists on disk. When this happens, the arc_buf_t's data buffer is shared
156  * with the arc_buf_hdr_t.
157  *
158  * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
159  * first one is owned by a compressed send consumer (and therefore references
160  * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
161  * used by any other consumer (and has its own uncompressed copy of the data
162  * buffer).
163  *
164  *   arc_buf_hdr_t
165  *   +-----------+
166  *   | fields    |
167  *   | common to |
168  *   | L1- and   |
169  *   | L2ARC     |
170  *   +-----------+
171  *   | l2arc_buf_hdr_t
172  *   |           |
173  *   +-----------+
174  *   | l1arc_buf_hdr_t
175  *   |           |              arc_buf_t
176  *   | b_buf     +------------>+-----------+      arc_buf_t
177  *   | b_pabd    +-+           |b_next     +---->+-----------+
178  *   +-----------+ |           |-----------|     |b_next     +-->NULL
179  *                 |           |b_comp = T |     +-----------+
180  *                 |           |b_data     +-+   |b_comp = F |
181  *                 |           +-----------+ |   |b_data     +-+
182  *                 +->+------+               |   +-----------+ |
183  *        compressed  |      |               |                 |
184  *           data     |      |<--------------+                 | uncompressed
185  *                    +------+          compressed,            |     data
186  *                                        shared               +-->+------+
187  *                                         data                    |      |
188  *                                                                 |      |
189  *                                                                 +------+
190  *
191  * When a consumer reads a block, the ARC must first look to see if the
192  * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
193  * arc_buf_t and either copies uncompressed data into a new data buffer from an
194  * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
195  * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
196  * hdr is compressed and the desired compression characteristics of the
197  * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
198  * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
199  * the last buffer in the hdr's b_buf list, however a shared compressed buf can
200  * be anywhere in the hdr's list.
201  *
202  * The diagram below shows an example of an uncompressed ARC hdr that is
203  * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
204  * the last element in the buf list):
205  *
206  *                arc_buf_hdr_t
207  *                +-----------+
208  *                |           |
209  *                |           |
210  *                |           |
211  *                +-----------+
212  * l2arc_buf_hdr_t|           |
213  *                |           |
214  *                +-----------+
215  * l1arc_buf_hdr_t|           |
216  *                |           |                 arc_buf_t    (shared)
217  *                |    b_buf  +------------>+---------+      arc_buf_t
218  *                |           |             |b_next   +---->+---------+
219  *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
220  *                +-----------+ |           |         |     +---------+
221  *                              |           |b_data   +-+   |         |
222  *                              |           +---------+ |   |b_data   +-+
223  *                              +->+------+             |   +---------+ |
224  *                                 |      |             |               |
225  *                   uncompressed  |      |             |               |
226  *                        data     +------+             |               |
227  *                                    ^                 +->+------+     |
228  *                                    |       uncompressed |      |     |
229  *                                    |           data     |      |     |
230  *                                    |                    +------+     |
231  *                                    +---------------------------------+
232  *
233  * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
234  * since the physical block is about to be rewritten. The new data contents
235  * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
236  * it may compress the data before writing it to disk. The ARC will be called
237  * with the transformed data and will bcopy the transformed on-disk block into
238  * a newly allocated b_pabd. Writes are always done into buffers which have
239  * either been loaned (and hence are new and don't have other readers) or
240  * buffers which have been released (and hence have their own hdr, if there
241  * were originally other readers of the buf's original hdr). This ensures that
242  * the ARC only needs to update a single buf and its hdr after a write occurs.
243  *
244  * When the L2ARC is in use, it will also take advantage of the b_pabd. The
245  * L2ARC will always write the contents of b_pabd to the L2ARC. This means
246  * that when compressed ARC is enabled that the L2ARC blocks are identical
247  * to the on-disk block in the main data pool. This provides a significant
248  * advantage since the ARC can leverage the bp's checksum when reading from the
249  * L2ARC to determine if the contents are valid. However, if the compressed
250  * ARC is disabled, then the L2ARC's block must be transformed to look
251  * like the physical block in the main data pool before comparing the
252  * checksum and determining its validity.
253  */
254 
255 #include <sys/spa.h>
256 #include <sys/zio.h>
257 #include <sys/spa_impl.h>
258 #include <sys/zio_compress.h>
259 #include <sys/zio_checksum.h>
260 #include <sys/zfs_context.h>
261 #include <sys/arc.h>
262 #include <sys/refcount.h>
263 #include <sys/vdev.h>
264 #include <sys/vdev_impl.h>
265 #include <sys/dsl_pool.h>
266 #include <sys/zio_checksum.h>
267 #include <sys/multilist.h>
268 #include <sys/abd.h>
269 #ifdef _KERNEL
270 #include <sys/vmsystm.h>
271 #include <vm/anon.h>
272 #include <sys/fs/swapnode.h>
273 #include <sys/dnlc.h>
274 #endif
275 #include <sys/callb.h>
276 #include <sys/kstat.h>
277 #include <zfs_fletcher.h>
278 #include <sys/aggsum.h>
279 #include <sys/cityhash.h>
280 
281 #ifndef _KERNEL
282 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
283 boolean_t arc_watch = B_FALSE;
284 int arc_procfd;
285 #endif
286 
287 static kmutex_t		arc_reclaim_lock;
288 static kcondvar_t	arc_reclaim_thread_cv;
289 static boolean_t	arc_reclaim_thread_exit;
290 static kcondvar_t	arc_reclaim_waiters_cv;
291 
292 uint_t arc_reduce_dnlc_percent = 3;
293 
294 /*
295  * The number of headers to evict in arc_evict_state_impl() before
296  * dropping the sublist lock and evicting from another sublist. A lower
297  * value means we're more likely to evict the "correct" header (i.e. the
298  * oldest header in the arc state), but comes with higher overhead
299  * (i.e. more invocations of arc_evict_state_impl()).
300  */
301 int zfs_arc_evict_batch_limit = 10;
302 
303 /* number of seconds before growing cache again */
304 static int		arc_grow_retry = 60;
305 
306 /* number of milliseconds before attempting a kmem-cache-reap */
307 static int		arc_kmem_cache_reap_retry_ms = 1000;
308 
309 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
310 int		zfs_arc_overflow_shift = 8;
311 
312 /* shift of arc_c for calculating both min and max arc_p */
313 static int		arc_p_min_shift = 4;
314 
315 /* log2(fraction of arc to reclaim) */
316 static int		arc_shrink_shift = 7;
317 
318 /*
319  * log2(fraction of ARC which must be free to allow growing).
320  * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
321  * when reading a new block into the ARC, we will evict an equal-sized block
322  * from the ARC.
323  *
324  * This must be less than arc_shrink_shift, so that when we shrink the ARC,
325  * we will still not allow it to grow.
326  */
327 int			arc_no_grow_shift = 5;
328 
329 
330 /*
331  * minimum lifespan of a prefetch block in clock ticks
332  * (initialized in arc_init())
333  */
334 static int		arc_min_prefetch_lifespan;
335 
336 /*
337  * If this percent of memory is free, don't throttle.
338  */
339 int arc_lotsfree_percent = 10;
340 
341 static int arc_dead;
342 
343 /*
344  * The arc has filled available memory and has now warmed up.
345  */
346 static boolean_t arc_warm;
347 
348 /*
349  * log2 fraction of the zio arena to keep free.
350  */
351 int arc_zio_arena_free_shift = 2;
352 
353 /*
354  * These tunables are for performance analysis.
355  */
356 uint64_t zfs_arc_max;
357 uint64_t zfs_arc_min;
358 uint64_t zfs_arc_meta_limit = 0;
359 uint64_t zfs_arc_meta_min = 0;
360 int zfs_arc_grow_retry = 0;
361 int zfs_arc_shrink_shift = 0;
362 int zfs_arc_p_min_shift = 0;
363 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
364 
365 boolean_t zfs_compressed_arc_enabled = B_TRUE;
366 
367 /*
368  * Note that buffers can be in one of 6 states:
369  *	ARC_anon	- anonymous (discussed below)
370  *	ARC_mru		- recently used, currently cached
371  *	ARC_mru_ghost	- recentely used, no longer in cache
372  *	ARC_mfu		- frequently used, currently cached
373  *	ARC_mfu_ghost	- frequently used, no longer in cache
374  *	ARC_l2c_only	- exists in L2ARC but not other states
375  * When there are no active references to the buffer, they are
376  * are linked onto a list in one of these arc states.  These are
377  * the only buffers that can be evicted or deleted.  Within each
378  * state there are multiple lists, one for meta-data and one for
379  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
380  * etc.) is tracked separately so that it can be managed more
381  * explicitly: favored over data, limited explicitly.
382  *
383  * Anonymous buffers are buffers that are not associated with
384  * a DVA.  These are buffers that hold dirty block copies
385  * before they are written to stable storage.  By definition,
386  * they are "ref'd" and are considered part of arc_mru
387  * that cannot be freed.  Generally, they will aquire a DVA
388  * as they are written and migrate onto the arc_mru list.
389  *
390  * The ARC_l2c_only state is for buffers that are in the second
391  * level ARC but no longer in any of the ARC_m* lists.  The second
392  * level ARC itself may also contain buffers that are in any of
393  * the ARC_m* states - meaning that a buffer can exist in two
394  * places.  The reason for the ARC_l2c_only state is to keep the
395  * buffer header in the hash table, so that reads that hit the
396  * second level ARC benefit from these fast lookups.
397  */
398 
399 typedef struct arc_state {
400 	/*
401 	 * list of evictable buffers
402 	 */
403 	multilist_t *arcs_list[ARC_BUFC_NUMTYPES];
404 	/*
405 	 * total amount of evictable data in this state
406 	 */
407 	refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
408 	/*
409 	 * total amount of data in this state; this includes: evictable,
410 	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
411 	 */
412 	refcount_t arcs_size;
413 } arc_state_t;
414 
415 /* The 6 states: */
416 static arc_state_t ARC_anon;
417 static arc_state_t ARC_mru;
418 static arc_state_t ARC_mru_ghost;
419 static arc_state_t ARC_mfu;
420 static arc_state_t ARC_mfu_ghost;
421 static arc_state_t ARC_l2c_only;
422 
423 typedef struct arc_stats {
424 	kstat_named_t arcstat_hits;
425 	kstat_named_t arcstat_misses;
426 	kstat_named_t arcstat_demand_data_hits;
427 	kstat_named_t arcstat_demand_data_misses;
428 	kstat_named_t arcstat_demand_metadata_hits;
429 	kstat_named_t arcstat_demand_metadata_misses;
430 	kstat_named_t arcstat_prefetch_data_hits;
431 	kstat_named_t arcstat_prefetch_data_misses;
432 	kstat_named_t arcstat_prefetch_metadata_hits;
433 	kstat_named_t arcstat_prefetch_metadata_misses;
434 	kstat_named_t arcstat_mru_hits;
435 	kstat_named_t arcstat_mru_ghost_hits;
436 	kstat_named_t arcstat_mfu_hits;
437 	kstat_named_t arcstat_mfu_ghost_hits;
438 	kstat_named_t arcstat_deleted;
439 	/*
440 	 * Number of buffers that could not be evicted because the hash lock
441 	 * was held by another thread.  The lock may not necessarily be held
442 	 * by something using the same buffer, since hash locks are shared
443 	 * by multiple buffers.
444 	 */
445 	kstat_named_t arcstat_mutex_miss;
446 	/*
447 	 * Number of buffers skipped because they have I/O in progress, are
448 	 * indrect prefetch buffers that have not lived long enough, or are
449 	 * not from the spa we're trying to evict from.
450 	 */
451 	kstat_named_t arcstat_evict_skip;
452 	/*
453 	 * Number of times arc_evict_state() was unable to evict enough
454 	 * buffers to reach it's target amount.
455 	 */
456 	kstat_named_t arcstat_evict_not_enough;
457 	kstat_named_t arcstat_evict_l2_cached;
458 	kstat_named_t arcstat_evict_l2_eligible;
459 	kstat_named_t arcstat_evict_l2_ineligible;
460 	kstat_named_t arcstat_evict_l2_skip;
461 	kstat_named_t arcstat_hash_elements;
462 	kstat_named_t arcstat_hash_elements_max;
463 	kstat_named_t arcstat_hash_collisions;
464 	kstat_named_t arcstat_hash_chains;
465 	kstat_named_t arcstat_hash_chain_max;
466 	kstat_named_t arcstat_p;
467 	kstat_named_t arcstat_c;
468 	kstat_named_t arcstat_c_min;
469 	kstat_named_t arcstat_c_max;
470 	/* Not updated directly; only synced in arc_kstat_update. */
471 	kstat_named_t arcstat_size;
472 	/*
473 	 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
474 	 * Note that the compressed bytes may match the uncompressed bytes
475 	 * if the block is either not compressed or compressed arc is disabled.
476 	 */
477 	kstat_named_t arcstat_compressed_size;
478 	/*
479 	 * Uncompressed size of the data stored in b_pabd. If compressed
480 	 * arc is disabled then this value will be identical to the stat
481 	 * above.
482 	 */
483 	kstat_named_t arcstat_uncompressed_size;
484 	/*
485 	 * Number of bytes stored in all the arc_buf_t's. This is classified
486 	 * as "overhead" since this data is typically short-lived and will
487 	 * be evicted from the arc when it becomes unreferenced unless the
488 	 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
489 	 * values have been set (see comment in dbuf.c for more information).
490 	 */
491 	kstat_named_t arcstat_overhead_size;
492 	/*
493 	 * Number of bytes consumed by internal ARC structures necessary
494 	 * for tracking purposes; these structures are not actually
495 	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
496 	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
497 	 * caches), and arc_buf_t structures (allocated via arc_buf_t
498 	 * cache).
499 	 * Not updated directly; only synced in arc_kstat_update.
500 	 */
501 	kstat_named_t arcstat_hdr_size;
502 	/*
503 	 * Number of bytes consumed by ARC buffers of type equal to
504 	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
505 	 * on disk user data (e.g. plain file contents).
506 	 * Not updated directly; only synced in arc_kstat_update.
507 	 */
508 	kstat_named_t arcstat_data_size;
509 	/*
510 	 * Number of bytes consumed by ARC buffers of type equal to
511 	 * ARC_BUFC_METADATA. This is generally consumed by buffers
512 	 * backing on disk data that is used for internal ZFS
513 	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
514 	 * Not updated directly; only synced in arc_kstat_update.
515 	 */
516 	kstat_named_t arcstat_metadata_size;
517 	/*
518 	 * Number of bytes consumed by various buffers and structures
519 	 * not actually backed with ARC buffers. This includes bonus
520 	 * buffers (allocated directly via zio_buf_* functions),
521 	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
522 	 * cache), and dnode_t structures (allocated via dnode_t cache).
523 	 * Not updated directly; only synced in arc_kstat_update.
524 	 */
525 	kstat_named_t arcstat_other_size;
526 	/*
527 	 * Total number of bytes consumed by ARC buffers residing in the
528 	 * arc_anon state. This includes *all* buffers in the arc_anon
529 	 * state; e.g. data, metadata, evictable, and unevictable buffers
530 	 * are all included in this value.
531 	 * Not updated directly; only synced in arc_kstat_update.
532 	 */
533 	kstat_named_t arcstat_anon_size;
534 	/*
535 	 * Number of bytes consumed by ARC buffers that meet the
536 	 * following criteria: backing buffers of type ARC_BUFC_DATA,
537 	 * residing in the arc_anon state, and are eligible for eviction
538 	 * (e.g. have no outstanding holds on the buffer).
539 	 * Not updated directly; only synced in arc_kstat_update.
540 	 */
541 	kstat_named_t arcstat_anon_evictable_data;
542 	/*
543 	 * Number of bytes consumed by ARC buffers that meet the
544 	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
545 	 * residing in the arc_anon state, and are eligible for eviction
546 	 * (e.g. have no outstanding holds on the buffer).
547 	 * Not updated directly; only synced in arc_kstat_update.
548 	 */
549 	kstat_named_t arcstat_anon_evictable_metadata;
550 	/*
551 	 * Total number of bytes consumed by ARC buffers residing in the
552 	 * arc_mru state. This includes *all* buffers in the arc_mru
553 	 * state; e.g. data, metadata, evictable, and unevictable buffers
554 	 * are all included in this value.
555 	 * Not updated directly; only synced in arc_kstat_update.
556 	 */
557 	kstat_named_t arcstat_mru_size;
558 	/*
559 	 * Number of bytes consumed by ARC buffers that meet the
560 	 * following criteria: backing buffers of type ARC_BUFC_DATA,
561 	 * residing in the arc_mru state, and are eligible for eviction
562 	 * (e.g. have no outstanding holds on the buffer).
563 	 * Not updated directly; only synced in arc_kstat_update.
564 	 */
565 	kstat_named_t arcstat_mru_evictable_data;
566 	/*
567 	 * Number of bytes consumed by ARC buffers that meet the
568 	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
569 	 * residing in the arc_mru state, and are eligible for eviction
570 	 * (e.g. have no outstanding holds on the buffer).
571 	 * Not updated directly; only synced in arc_kstat_update.
572 	 */
573 	kstat_named_t arcstat_mru_evictable_metadata;
574 	/*
575 	 * Total number of bytes that *would have been* consumed by ARC
576 	 * buffers in the arc_mru_ghost state. The key thing to note
577 	 * here, is the fact that this size doesn't actually indicate
578 	 * RAM consumption. The ghost lists only consist of headers and
579 	 * don't actually have ARC buffers linked off of these headers.
580 	 * Thus, *if* the headers had associated ARC buffers, these
581 	 * buffers *would have* consumed this number of bytes.
582 	 * Not updated directly; only synced in arc_kstat_update.
583 	 */
584 	kstat_named_t arcstat_mru_ghost_size;
585 	/*
586 	 * Number of bytes that *would have been* consumed by ARC
587 	 * buffers that are eligible for eviction, of type
588 	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
589 	 * Not updated directly; only synced in arc_kstat_update.
590 	 */
591 	kstat_named_t arcstat_mru_ghost_evictable_data;
592 	/*
593 	 * Number of bytes that *would have been* consumed by ARC
594 	 * buffers that are eligible for eviction, of type
595 	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
596 	 * Not updated directly; only synced in arc_kstat_update.
597 	 */
598 	kstat_named_t arcstat_mru_ghost_evictable_metadata;
599 	/*
600 	 * Total number of bytes consumed by ARC buffers residing in the
601 	 * arc_mfu state. This includes *all* buffers in the arc_mfu
602 	 * state; e.g. data, metadata, evictable, and unevictable buffers
603 	 * are all included in this value.
604 	 * Not updated directly; only synced in arc_kstat_update.
605 	 */
606 	kstat_named_t arcstat_mfu_size;
607 	/*
608 	 * Number of bytes consumed by ARC buffers that are eligible for
609 	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
610 	 * state.
611 	 * Not updated directly; only synced in arc_kstat_update.
612 	 */
613 	kstat_named_t arcstat_mfu_evictable_data;
614 	/*
615 	 * Number of bytes consumed by ARC buffers that are eligible for
616 	 * eviction, of type ARC_BUFC_METADATA, and reside in the
617 	 * arc_mfu state.
618 	 * Not updated directly; only synced in arc_kstat_update.
619 	 */
620 	kstat_named_t arcstat_mfu_evictable_metadata;
621 	/*
622 	 * Total number of bytes that *would have been* consumed by ARC
623 	 * buffers in the arc_mfu_ghost state. See the comment above
624 	 * arcstat_mru_ghost_size for more details.
625 	 * Not updated directly; only synced in arc_kstat_update.
626 	 */
627 	kstat_named_t arcstat_mfu_ghost_size;
628 	/*
629 	 * Number of bytes that *would have been* consumed by ARC
630 	 * buffers that are eligible for eviction, of type
631 	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
632 	 * Not updated directly; only synced in arc_kstat_update.
633 	 */
634 	kstat_named_t arcstat_mfu_ghost_evictable_data;
635 	/*
636 	 * Number of bytes that *would have been* consumed by ARC
637 	 * buffers that are eligible for eviction, of type
638 	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
639 	 * Not updated directly; only synced in arc_kstat_update.
640 	 */
641 	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
642 	kstat_named_t arcstat_l2_hits;
643 	kstat_named_t arcstat_l2_misses;
644 	kstat_named_t arcstat_l2_feeds;
645 	kstat_named_t arcstat_l2_rw_clash;
646 	kstat_named_t arcstat_l2_read_bytes;
647 	kstat_named_t arcstat_l2_write_bytes;
648 	kstat_named_t arcstat_l2_writes_sent;
649 	kstat_named_t arcstat_l2_writes_done;
650 	kstat_named_t arcstat_l2_writes_error;
651 	kstat_named_t arcstat_l2_writes_lock_retry;
652 	kstat_named_t arcstat_l2_evict_lock_retry;
653 	kstat_named_t arcstat_l2_evict_reading;
654 	kstat_named_t arcstat_l2_evict_l1cached;
655 	kstat_named_t arcstat_l2_free_on_write;
656 	kstat_named_t arcstat_l2_abort_lowmem;
657 	kstat_named_t arcstat_l2_cksum_bad;
658 	kstat_named_t arcstat_l2_io_error;
659 	kstat_named_t arcstat_l2_lsize;
660 	kstat_named_t arcstat_l2_psize;
661 	/* Not updated directly; only synced in arc_kstat_update. */
662 	kstat_named_t arcstat_l2_hdr_size;
663 	kstat_named_t arcstat_memory_throttle_count;
664 	/* Not updated directly; only synced in arc_kstat_update. */
665 	kstat_named_t arcstat_meta_used;
666 	kstat_named_t arcstat_meta_limit;
667 	kstat_named_t arcstat_meta_max;
668 	kstat_named_t arcstat_meta_min;
669 	kstat_named_t arcstat_sync_wait_for_async;
670 	kstat_named_t arcstat_demand_hit_predictive_prefetch;
671 } arc_stats_t;
672 
673 static arc_stats_t arc_stats = {
674 	{ "hits",			KSTAT_DATA_UINT64 },
675 	{ "misses",			KSTAT_DATA_UINT64 },
676 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
677 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
678 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
679 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
680 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
681 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
682 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
683 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
684 	{ "mru_hits",			KSTAT_DATA_UINT64 },
685 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
686 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
687 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
688 	{ "deleted",			KSTAT_DATA_UINT64 },
689 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
690 	{ "evict_skip",			KSTAT_DATA_UINT64 },
691 	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
692 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
693 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
694 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
695 	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
696 	{ "hash_elements",		KSTAT_DATA_UINT64 },
697 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
698 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
699 	{ "hash_chains",		KSTAT_DATA_UINT64 },
700 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
701 	{ "p",				KSTAT_DATA_UINT64 },
702 	{ "c",				KSTAT_DATA_UINT64 },
703 	{ "c_min",			KSTAT_DATA_UINT64 },
704 	{ "c_max",			KSTAT_DATA_UINT64 },
705 	{ "size",			KSTAT_DATA_UINT64 },
706 	{ "compressed_size",		KSTAT_DATA_UINT64 },
707 	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
708 	{ "overhead_size",		KSTAT_DATA_UINT64 },
709 	{ "hdr_size",			KSTAT_DATA_UINT64 },
710 	{ "data_size",			KSTAT_DATA_UINT64 },
711 	{ "metadata_size",		KSTAT_DATA_UINT64 },
712 	{ "other_size",			KSTAT_DATA_UINT64 },
713 	{ "anon_size",			KSTAT_DATA_UINT64 },
714 	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
715 	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
716 	{ "mru_size",			KSTAT_DATA_UINT64 },
717 	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
718 	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
719 	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
720 	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
721 	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
722 	{ "mfu_size",			KSTAT_DATA_UINT64 },
723 	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
724 	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
725 	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
726 	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
727 	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
728 	{ "l2_hits",			KSTAT_DATA_UINT64 },
729 	{ "l2_misses",			KSTAT_DATA_UINT64 },
730 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
731 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
732 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
733 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
734 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
735 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
736 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
737 	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
738 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
739 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
740 	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
741 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
742 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
743 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
744 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
745 	{ "l2_size",			KSTAT_DATA_UINT64 },
746 	{ "l2_asize",			KSTAT_DATA_UINT64 },
747 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
748 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
749 	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
750 	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
751 	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
752 	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
753 	{ "sync_wait_for_async",	KSTAT_DATA_UINT64 },
754 	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
755 };
756 
757 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
758 
759 #define	ARCSTAT_INCR(stat, val) \
760 	atomic_add_64(&arc_stats.stat.value.ui64, (val))
761 
762 #define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
763 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
764 
765 #define	ARCSTAT_MAX(stat, val) {					\
766 	uint64_t m;							\
767 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
768 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
769 		continue;						\
770 }
771 
772 #define	ARCSTAT_MAXSTAT(stat) \
773 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
774 
775 /*
776  * We define a macro to allow ARC hits/misses to be easily broken down by
777  * two separate conditions, giving a total of four different subtypes for
778  * each of hits and misses (so eight statistics total).
779  */
780 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
781 	if (cond1) {							\
782 		if (cond2) {						\
783 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
784 		} else {						\
785 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
786 		}							\
787 	} else {							\
788 		if (cond2) {						\
789 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
790 		} else {						\
791 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
792 		}							\
793 	}
794 
795 kstat_t			*arc_ksp;
796 static arc_state_t	*arc_anon;
797 static arc_state_t	*arc_mru;
798 static arc_state_t	*arc_mru_ghost;
799 static arc_state_t	*arc_mfu;
800 static arc_state_t	*arc_mfu_ghost;
801 static arc_state_t	*arc_l2c_only;
802 
803 /*
804  * There are several ARC variables that are critical to export as kstats --
805  * but we don't want to have to grovel around in the kstat whenever we wish to
806  * manipulate them.  For these variables, we therefore define them to be in
807  * terms of the statistic variable.  This assures that we are not introducing
808  * the possibility of inconsistency by having shadow copies of the variables,
809  * while still allowing the code to be readable.
810  */
811 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
812 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
813 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
814 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
815 #define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
816 #define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
817 #define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
818 
819 /* compressed size of entire arc */
820 #define	arc_compressed_size	ARCSTAT(arcstat_compressed_size)
821 /* uncompressed size of entire arc */
822 #define	arc_uncompressed_size	ARCSTAT(arcstat_uncompressed_size)
823 /* number of bytes in the arc from arc_buf_t's */
824 #define	arc_overhead_size	ARCSTAT(arcstat_overhead_size)
825 
826 /*
827  * There are also some ARC variables that we want to export, but that are
828  * updated so often that having the canonical representation be the statistic
829  * variable causes a performance bottleneck. We want to use aggsum_t's for these
830  * instead, but still be able to export the kstat in the same way as before.
831  * The solution is to always use the aggsum version, except in the kstat update
832  * callback.
833  */
834 aggsum_t arc_size;
835 aggsum_t arc_meta_used;
836 aggsum_t astat_data_size;
837 aggsum_t astat_metadata_size;
838 aggsum_t astat_hdr_size;
839 aggsum_t astat_other_size;
840 aggsum_t astat_l2_hdr_size;
841 
842 static int		arc_no_grow;	/* Don't try to grow cache size */
843 static uint64_t		arc_tempreserve;
844 static uint64_t		arc_loaned_bytes;
845 
846 typedef struct arc_callback arc_callback_t;
847 
848 struct arc_callback {
849 	void			*acb_private;
850 	arc_done_func_t		*acb_done;
851 	arc_buf_t		*acb_buf;
852 	boolean_t		acb_compressed;
853 	zio_t			*acb_zio_dummy;
854 	arc_callback_t		*acb_next;
855 };
856 
857 typedef struct arc_write_callback arc_write_callback_t;
858 
859 struct arc_write_callback {
860 	void		*awcb_private;
861 	arc_done_func_t	*awcb_ready;
862 	arc_done_func_t	*awcb_children_ready;
863 	arc_done_func_t	*awcb_physdone;
864 	arc_done_func_t	*awcb_done;
865 	arc_buf_t	*awcb_buf;
866 };
867 
868 /*
869  * ARC buffers are separated into multiple structs as a memory saving measure:
870  *   - Common fields struct, always defined, and embedded within it:
871  *       - L2-only fields, always allocated but undefined when not in L2ARC
872  *       - L1-only fields, only allocated when in L1ARC
873  *
874  *           Buffer in L1                     Buffer only in L2
875  *    +------------------------+          +------------------------+
876  *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
877  *    |                        |          |                        |
878  *    |                        |          |                        |
879  *    |                        |          |                        |
880  *    +------------------------+          +------------------------+
881  *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
882  *    | (undefined if L1-only) |          |                        |
883  *    +------------------------+          +------------------------+
884  *    | l1arc_buf_hdr_t        |
885  *    |                        |
886  *    |                        |
887  *    |                        |
888  *    |                        |
889  *    +------------------------+
890  *
891  * Because it's possible for the L2ARC to become extremely large, we can wind
892  * up eating a lot of memory in L2ARC buffer headers, so the size of a header
893  * is minimized by only allocating the fields necessary for an L1-cached buffer
894  * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
895  * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
896  * words in pointers. arc_hdr_realloc() is used to switch a header between
897  * these two allocation states.
898  */
899 typedef struct l1arc_buf_hdr {
900 	kmutex_t		b_freeze_lock;
901 	zio_cksum_t		*b_freeze_cksum;
902 #ifdef ZFS_DEBUG
903 	/*
904 	 * Used for debugging with kmem_flags - by allocating and freeing
905 	 * b_thawed when the buffer is thawed, we get a record of the stack
906 	 * trace that thawed it.
907 	 */
908 	void			*b_thawed;
909 #endif
910 
911 	arc_buf_t		*b_buf;
912 	uint32_t		b_bufcnt;
913 	/* for waiting on writes to complete */
914 	kcondvar_t		b_cv;
915 	uint8_t			b_byteswap;
916 
917 	/* protected by arc state mutex */
918 	arc_state_t		*b_state;
919 	multilist_node_t	b_arc_node;
920 
921 	/* updated atomically */
922 	clock_t			b_arc_access;
923 
924 	/* self protecting */
925 	refcount_t		b_refcnt;
926 
927 	arc_callback_t		*b_acb;
928 	abd_t			*b_pabd;
929 } l1arc_buf_hdr_t;
930 
931 typedef struct l2arc_dev l2arc_dev_t;
932 
933 typedef struct l2arc_buf_hdr {
934 	/* protected by arc_buf_hdr mutex */
935 	l2arc_dev_t		*b_dev;		/* L2ARC device */
936 	uint64_t		b_daddr;	/* disk address, offset byte */
937 
938 	list_node_t		b_l2node;
939 } l2arc_buf_hdr_t;
940 
941 struct arc_buf_hdr {
942 	/* protected by hash lock */
943 	dva_t			b_dva;
944 	uint64_t		b_birth;
945 
946 	arc_buf_contents_t	b_type;
947 	arc_buf_hdr_t		*b_hash_next;
948 	arc_flags_t		b_flags;
949 
950 	/*
951 	 * This field stores the size of the data buffer after
952 	 * compression, and is set in the arc's zio completion handlers.
953 	 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
954 	 *
955 	 * While the block pointers can store up to 32MB in their psize
956 	 * field, we can only store up to 32MB minus 512B. This is due
957 	 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
958 	 * a field of zeros represents 512B in the bp). We can't use a
959 	 * bias of 1 since we need to reserve a psize of zero, here, to
960 	 * represent holes and embedded blocks.
961 	 *
962 	 * This isn't a problem in practice, since the maximum size of a
963 	 * buffer is limited to 16MB, so we never need to store 32MB in
964 	 * this field. Even in the upstream illumos code base, the
965 	 * maximum size of a buffer is limited to 16MB.
966 	 */
967 	uint16_t		b_psize;
968 
969 	/*
970 	 * This field stores the size of the data buffer before
971 	 * compression, and cannot change once set. It is in units
972 	 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
973 	 */
974 	uint16_t		b_lsize;	/* immutable */
975 	uint64_t		b_spa;		/* immutable */
976 
977 	/* L2ARC fields. Undefined when not in L2ARC. */
978 	l2arc_buf_hdr_t		b_l2hdr;
979 	/* L1ARC fields. Undefined when in l2arc_only state */
980 	l1arc_buf_hdr_t		b_l1hdr;
981 };
982 
983 #define	GHOST_STATE(state)	\
984 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
985 	(state) == arc_l2c_only)
986 
987 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
988 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
989 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
990 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
991 #define	HDR_COMPRESSION_ENABLED(hdr)	\
992 	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
993 
994 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
995 #define	HDR_L2_READING(hdr)	\
996 	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
997 	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
998 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
999 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
1000 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
1001 #define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
1002 
1003 #define	HDR_ISTYPE_METADATA(hdr)	\
1004 	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1005 #define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
1006 
1007 #define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1008 #define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1009 
1010 /* For storing compression mode in b_flags */
1011 #define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
1012 
1013 #define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
1014 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
1015 #define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
1016 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
1017 
1018 #define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
1019 #define	ARC_BUF_SHARED(buf)	((buf)->b_flags & ARC_BUF_FLAG_SHARED)
1020 #define	ARC_BUF_COMPRESSED(buf)	((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
1021 
1022 /*
1023  * Other sizes
1024  */
1025 
1026 #define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1027 #define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1028 
1029 /*
1030  * Hash table routines
1031  */
1032 
1033 #define	HT_LOCK_PAD	64
1034 
1035 struct ht_lock {
1036 	kmutex_t	ht_lock;
1037 #ifdef _KERNEL
1038 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1039 #endif
1040 };
1041 
1042 #define	BUF_LOCKS 256
1043 typedef struct buf_hash_table {
1044 	uint64_t ht_mask;
1045 	arc_buf_hdr_t **ht_table;
1046 	struct ht_lock ht_locks[BUF_LOCKS];
1047 } buf_hash_table_t;
1048 
1049 static buf_hash_table_t buf_hash_table;
1050 
1051 #define	BUF_HASH_INDEX(spa, dva, birth) \
1052 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1053 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1054 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1055 #define	HDR_LOCK(hdr) \
1056 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1057 
1058 uint64_t zfs_crc64_table[256];
1059 
1060 /*
1061  * Level 2 ARC
1062  */
1063 
1064 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
1065 #define	L2ARC_HEADROOM		2			/* num of writes */
1066 /*
1067  * If we discover during ARC scan any buffers to be compressed, we boost
1068  * our headroom for the next scanning cycle by this percentage multiple.
1069  */
1070 #define	L2ARC_HEADROOM_BOOST	200
1071 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
1072 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
1073 
1074 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1075 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1076 
1077 /* L2ARC Performance Tunables */
1078 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1079 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1080 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1081 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1082 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1083 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1084 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1085 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1086 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1087 
1088 /*
1089  * L2ARC Internals
1090  */
1091 struct l2arc_dev {
1092 	vdev_t			*l2ad_vdev;	/* vdev */
1093 	spa_t			*l2ad_spa;	/* spa */
1094 	uint64_t		l2ad_hand;	/* next write location */
1095 	uint64_t		l2ad_start;	/* first addr on device */
1096 	uint64_t		l2ad_end;	/* last addr on device */
1097 	boolean_t		l2ad_first;	/* first sweep through */
1098 	boolean_t		l2ad_writing;	/* currently writing */
1099 	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1100 	list_t			l2ad_buflist;	/* buffer list */
1101 	list_node_t		l2ad_node;	/* device list node */
1102 	refcount_t		l2ad_alloc;	/* allocated bytes */
1103 };
1104 
1105 static list_t L2ARC_dev_list;			/* device list */
1106 static list_t *l2arc_dev_list;			/* device list pointer */
1107 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1108 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1109 static list_t L2ARC_free_on_write;		/* free after write buf list */
1110 static list_t *l2arc_free_on_write;		/* free after write list ptr */
1111 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1112 static uint64_t l2arc_ndev;			/* number of devices */
1113 
1114 typedef struct l2arc_read_callback {
1115 	arc_buf_hdr_t		*l2rcb_hdr;		/* read header */
1116 	blkptr_t		l2rcb_bp;		/* original blkptr */
1117 	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1118 	int			l2rcb_flags;		/* original flags */
1119 	abd_t			*l2rcb_abd;		/* temporary buffer */
1120 } l2arc_read_callback_t;
1121 
1122 typedef struct l2arc_write_callback {
1123 	l2arc_dev_t	*l2wcb_dev;		/* device info */
1124 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1125 } l2arc_write_callback_t;
1126 
1127 typedef struct l2arc_data_free {
1128 	/* protected by l2arc_free_on_write_mtx */
1129 	abd_t		*l2df_abd;
1130 	size_t		l2df_size;
1131 	arc_buf_contents_t l2df_type;
1132 	list_node_t	l2df_list_node;
1133 } l2arc_data_free_t;
1134 
1135 static kmutex_t l2arc_feed_thr_lock;
1136 static kcondvar_t l2arc_feed_thr_cv;
1137 static uint8_t l2arc_thread_exit;
1138 
1139 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
1140 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1141 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
1142 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
1143 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1144 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
1145 static void arc_hdr_free_pabd(arc_buf_hdr_t *);
1146 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *);
1147 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1148 static boolean_t arc_is_overflowing();
1149 static void arc_buf_watch(arc_buf_t *);
1150 
1151 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1152 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1153 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1154 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1155 
1156 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1157 static void l2arc_read_done(zio_t *);
1158 
1159 
1160 /*
1161  * We use Cityhash for this. It's fast, and has good hash properties without
1162  * requiring any large static buffers.
1163  */
1164 static uint64_t
1165 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1166 {
1167 	return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
1168 }
1169 
1170 #define	HDR_EMPTY(hdr)						\
1171 	((hdr)->b_dva.dva_word[0] == 0 &&			\
1172 	(hdr)->b_dva.dva_word[1] == 0)
1173 
1174 #define	HDR_EQUAL(spa, dva, birth, hdr)				\
1175 	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1176 	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1177 	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1178 
1179 static void
1180 buf_discard_identity(arc_buf_hdr_t *hdr)
1181 {
1182 	hdr->b_dva.dva_word[0] = 0;
1183 	hdr->b_dva.dva_word[1] = 0;
1184 	hdr->b_birth = 0;
1185 }
1186 
1187 static arc_buf_hdr_t *
1188 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1189 {
1190 	const dva_t *dva = BP_IDENTITY(bp);
1191 	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1192 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1193 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1194 	arc_buf_hdr_t *hdr;
1195 
1196 	mutex_enter(hash_lock);
1197 	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1198 	    hdr = hdr->b_hash_next) {
1199 		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1200 			*lockp = hash_lock;
1201 			return (hdr);
1202 		}
1203 	}
1204 	mutex_exit(hash_lock);
1205 	*lockp = NULL;
1206 	return (NULL);
1207 }
1208 
1209 /*
1210  * Insert an entry into the hash table.  If there is already an element
1211  * equal to elem in the hash table, then the already existing element
1212  * will be returned and the new element will not be inserted.
1213  * Otherwise returns NULL.
1214  * If lockp == NULL, the caller is assumed to already hold the hash lock.
1215  */
1216 static arc_buf_hdr_t *
1217 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1218 {
1219 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1220 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1221 	arc_buf_hdr_t *fhdr;
1222 	uint32_t i;
1223 
1224 	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1225 	ASSERT(hdr->b_birth != 0);
1226 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1227 
1228 	if (lockp != NULL) {
1229 		*lockp = hash_lock;
1230 		mutex_enter(hash_lock);
1231 	} else {
1232 		ASSERT(MUTEX_HELD(hash_lock));
1233 	}
1234 
1235 	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1236 	    fhdr = fhdr->b_hash_next, i++) {
1237 		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1238 			return (fhdr);
1239 	}
1240 
1241 	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1242 	buf_hash_table.ht_table[idx] = hdr;
1243 	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1244 
1245 	/* collect some hash table performance data */
1246 	if (i > 0) {
1247 		ARCSTAT_BUMP(arcstat_hash_collisions);
1248 		if (i == 1)
1249 			ARCSTAT_BUMP(arcstat_hash_chains);
1250 
1251 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1252 	}
1253 
1254 	ARCSTAT_BUMP(arcstat_hash_elements);
1255 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1256 
1257 	return (NULL);
1258 }
1259 
1260 static void
1261 buf_hash_remove(arc_buf_hdr_t *hdr)
1262 {
1263 	arc_buf_hdr_t *fhdr, **hdrp;
1264 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1265 
1266 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1267 	ASSERT(HDR_IN_HASH_TABLE(hdr));
1268 
1269 	hdrp = &buf_hash_table.ht_table[idx];
1270 	while ((fhdr = *hdrp) != hdr) {
1271 		ASSERT3P(fhdr, !=, NULL);
1272 		hdrp = &fhdr->b_hash_next;
1273 	}
1274 	*hdrp = hdr->b_hash_next;
1275 	hdr->b_hash_next = NULL;
1276 	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1277 
1278 	/* collect some hash table performance data */
1279 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1280 
1281 	if (buf_hash_table.ht_table[idx] &&
1282 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1283 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1284 }
1285 
1286 /*
1287  * Global data structures and functions for the buf kmem cache.
1288  */
1289 static kmem_cache_t *hdr_full_cache;
1290 static kmem_cache_t *hdr_l2only_cache;
1291 static kmem_cache_t *buf_cache;
1292 
1293 static void
1294 buf_fini(void)
1295 {
1296 	int i;
1297 
1298 	kmem_free(buf_hash_table.ht_table,
1299 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1300 	for (i = 0; i < BUF_LOCKS; i++)
1301 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1302 	kmem_cache_destroy(hdr_full_cache);
1303 	kmem_cache_destroy(hdr_l2only_cache);
1304 	kmem_cache_destroy(buf_cache);
1305 }
1306 
1307 /*
1308  * Constructor callback - called when the cache is empty
1309  * and a new buf is requested.
1310  */
1311 /* ARGSUSED */
1312 static int
1313 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1314 {
1315 	arc_buf_hdr_t *hdr = vbuf;
1316 
1317 	bzero(hdr, HDR_FULL_SIZE);
1318 	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1319 	refcount_create(&hdr->b_l1hdr.b_refcnt);
1320 	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1321 	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1322 	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1323 
1324 	return (0);
1325 }
1326 
1327 /* ARGSUSED */
1328 static int
1329 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1330 {
1331 	arc_buf_hdr_t *hdr = vbuf;
1332 
1333 	bzero(hdr, HDR_L2ONLY_SIZE);
1334 	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1335 
1336 	return (0);
1337 }
1338 
1339 /* ARGSUSED */
1340 static int
1341 buf_cons(void *vbuf, void *unused, int kmflag)
1342 {
1343 	arc_buf_t *buf = vbuf;
1344 
1345 	bzero(buf, sizeof (arc_buf_t));
1346 	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1347 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1348 
1349 	return (0);
1350 }
1351 
1352 /*
1353  * Destructor callback - called when a cached buf is
1354  * no longer required.
1355  */
1356 /* ARGSUSED */
1357 static void
1358 hdr_full_dest(void *vbuf, void *unused)
1359 {
1360 	arc_buf_hdr_t *hdr = vbuf;
1361 
1362 	ASSERT(HDR_EMPTY(hdr));
1363 	cv_destroy(&hdr->b_l1hdr.b_cv);
1364 	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1365 	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1366 	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1367 	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1368 }
1369 
1370 /* ARGSUSED */
1371 static void
1372 hdr_l2only_dest(void *vbuf, void *unused)
1373 {
1374 	arc_buf_hdr_t *hdr = vbuf;
1375 
1376 	ASSERT(HDR_EMPTY(hdr));
1377 	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1378 }
1379 
1380 /* ARGSUSED */
1381 static void
1382 buf_dest(void *vbuf, void *unused)
1383 {
1384 	arc_buf_t *buf = vbuf;
1385 
1386 	mutex_destroy(&buf->b_evict_lock);
1387 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1388 }
1389 
1390 /*
1391  * Reclaim callback -- invoked when memory is low.
1392  */
1393 /* ARGSUSED */
1394 static void
1395 hdr_recl(void *unused)
1396 {
1397 	dprintf("hdr_recl called\n");
1398 	/*
1399 	 * umem calls the reclaim func when we destroy the buf cache,
1400 	 * which is after we do arc_fini().
1401 	 */
1402 	if (!arc_dead)
1403 		cv_signal(&arc_reclaim_thread_cv);
1404 }
1405 
1406 static void
1407 buf_init(void)
1408 {
1409 	uint64_t *ct;
1410 	uint64_t hsize = 1ULL << 12;
1411 	int i, j;
1412 
1413 	/*
1414 	 * The hash table is big enough to fill all of physical memory
1415 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1416 	 * By default, the table will take up
1417 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1418 	 */
1419 	while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1420 		hsize <<= 1;
1421 retry:
1422 	buf_hash_table.ht_mask = hsize - 1;
1423 	buf_hash_table.ht_table =
1424 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1425 	if (buf_hash_table.ht_table == NULL) {
1426 		ASSERT(hsize > (1ULL << 8));
1427 		hsize >>= 1;
1428 		goto retry;
1429 	}
1430 
1431 	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1432 	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1433 	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1434 	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1435 	    NULL, NULL, 0);
1436 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1437 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1438 
1439 	for (i = 0; i < 256; i++)
1440 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1441 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1442 
1443 	for (i = 0; i < BUF_LOCKS; i++) {
1444 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1445 		    NULL, MUTEX_DEFAULT, NULL);
1446 	}
1447 }
1448 
1449 /*
1450  * This is the size that the buf occupies in memory. If the buf is compressed,
1451  * it will correspond to the compressed size. You should use this method of
1452  * getting the buf size unless you explicitly need the logical size.
1453  */
1454 int32_t
1455 arc_buf_size(arc_buf_t *buf)
1456 {
1457 	return (ARC_BUF_COMPRESSED(buf) ?
1458 	    HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1459 }
1460 
1461 int32_t
1462 arc_buf_lsize(arc_buf_t *buf)
1463 {
1464 	return (HDR_GET_LSIZE(buf->b_hdr));
1465 }
1466 
1467 enum zio_compress
1468 arc_get_compression(arc_buf_t *buf)
1469 {
1470 	return (ARC_BUF_COMPRESSED(buf) ?
1471 	    HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1472 }
1473 
1474 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
1475 
1476 static inline boolean_t
1477 arc_buf_is_shared(arc_buf_t *buf)
1478 {
1479 	boolean_t shared = (buf->b_data != NULL &&
1480 	    buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1481 	    abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1482 	    buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1483 	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1484 	IMPLY(shared, ARC_BUF_SHARED(buf));
1485 	IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1486 
1487 	/*
1488 	 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1489 	 * already being shared" requirement prevents us from doing that.
1490 	 */
1491 
1492 	return (shared);
1493 }
1494 
1495 /*
1496  * Free the checksum associated with this header. If there is no checksum, this
1497  * is a no-op.
1498  */
1499 static inline void
1500 arc_cksum_free(arc_buf_hdr_t *hdr)
1501 {
1502 	ASSERT(HDR_HAS_L1HDR(hdr));
1503 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1504 	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1505 		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1506 		hdr->b_l1hdr.b_freeze_cksum = NULL;
1507 	}
1508 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1509 }
1510 
1511 /*
1512  * Return true iff at least one of the bufs on hdr is not compressed.
1513  */
1514 static boolean_t
1515 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1516 {
1517 	for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1518 		if (!ARC_BUF_COMPRESSED(b)) {
1519 			return (B_TRUE);
1520 		}
1521 	}
1522 	return (B_FALSE);
1523 }
1524 
1525 /*
1526  * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1527  * matches the checksum that is stored in the hdr. If there is no checksum,
1528  * or if the buf is compressed, this is a no-op.
1529  */
1530 static void
1531 arc_cksum_verify(arc_buf_t *buf)
1532 {
1533 	arc_buf_hdr_t *hdr = buf->b_hdr;
1534 	zio_cksum_t zc;
1535 
1536 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1537 		return;
1538 
1539 	if (ARC_BUF_COMPRESSED(buf)) {
1540 		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1541 		    arc_hdr_has_uncompressed_buf(hdr));
1542 		return;
1543 	}
1544 
1545 	ASSERT(HDR_HAS_L1HDR(hdr));
1546 
1547 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1548 	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1549 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1550 		return;
1551 	}
1552 
1553 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1554 	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1555 		panic("buffer modified while frozen!");
1556 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1557 }
1558 
1559 static boolean_t
1560 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1561 {
1562 	enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1563 	boolean_t valid_cksum;
1564 
1565 	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1566 	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1567 
1568 	/*
1569 	 * We rely on the blkptr's checksum to determine if the block
1570 	 * is valid or not. When compressed arc is enabled, the l2arc
1571 	 * writes the block to the l2arc just as it appears in the pool.
1572 	 * This allows us to use the blkptr's checksum to validate the
1573 	 * data that we just read off of the l2arc without having to store
1574 	 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1575 	 * arc is disabled, then the data written to the l2arc is always
1576 	 * uncompressed and won't match the block as it exists in the main
1577 	 * pool. When this is the case, we must first compress it if it is
1578 	 * compressed on the main pool before we can validate the checksum.
1579 	 */
1580 	if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1581 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1582 		uint64_t lsize = HDR_GET_LSIZE(hdr);
1583 		uint64_t csize;
1584 
1585 		abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE);
1586 		csize = zio_compress_data(compress, zio->io_abd,
1587 		    abd_to_buf(cdata), lsize);
1588 
1589 		ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1590 		if (csize < HDR_GET_PSIZE(hdr)) {
1591 			/*
1592 			 * Compressed blocks are always a multiple of the
1593 			 * smallest ashift in the pool. Ideally, we would
1594 			 * like to round up the csize to the next
1595 			 * spa_min_ashift but that value may have changed
1596 			 * since the block was last written. Instead,
1597 			 * we rely on the fact that the hdr's psize
1598 			 * was set to the psize of the block when it was
1599 			 * last written. We set the csize to that value
1600 			 * and zero out any part that should not contain
1601 			 * data.
1602 			 */
1603 			abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize);
1604 			csize = HDR_GET_PSIZE(hdr);
1605 		}
1606 		zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL);
1607 	}
1608 
1609 	/*
1610 	 * Block pointers always store the checksum for the logical data.
1611 	 * If the block pointer has the gang bit set, then the checksum
1612 	 * it represents is for the reconstituted data and not for an
1613 	 * individual gang member. The zio pipeline, however, must be able to
1614 	 * determine the checksum of each of the gang constituents so it
1615 	 * treats the checksum comparison differently than what we need
1616 	 * for l2arc blocks. This prevents us from using the
1617 	 * zio_checksum_error() interface directly. Instead we must call the
1618 	 * zio_checksum_error_impl() so that we can ensure the checksum is
1619 	 * generated using the correct checksum algorithm and accounts for the
1620 	 * logical I/O size and not just a gang fragment.
1621 	 */
1622 	valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1623 	    BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1624 	    zio->io_offset, NULL) == 0);
1625 	zio_pop_transforms(zio);
1626 	return (valid_cksum);
1627 }
1628 
1629 /*
1630  * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1631  * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1632  * isn't modified later on. If buf is compressed or there is already a checksum
1633  * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1634  */
1635 static void
1636 arc_cksum_compute(arc_buf_t *buf)
1637 {
1638 	arc_buf_hdr_t *hdr = buf->b_hdr;
1639 
1640 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1641 		return;
1642 
1643 	ASSERT(HDR_HAS_L1HDR(hdr));
1644 
1645 	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1646 	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1647 		ASSERT(arc_hdr_has_uncompressed_buf(hdr));
1648 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1649 		return;
1650 	} else if (ARC_BUF_COMPRESSED(buf)) {
1651 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1652 		return;
1653 	}
1654 
1655 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1656 	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1657 	    KM_SLEEP);
1658 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1659 	    hdr->b_l1hdr.b_freeze_cksum);
1660 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1661 	arc_buf_watch(buf);
1662 }
1663 
1664 #ifndef _KERNEL
1665 typedef struct procctl {
1666 	long cmd;
1667 	prwatch_t prwatch;
1668 } procctl_t;
1669 #endif
1670 
1671 /* ARGSUSED */
1672 static void
1673 arc_buf_unwatch(arc_buf_t *buf)
1674 {
1675 #ifndef _KERNEL
1676 	if (arc_watch) {
1677 		int result;
1678 		procctl_t ctl;
1679 		ctl.cmd = PCWATCH;
1680 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1681 		ctl.prwatch.pr_size = 0;
1682 		ctl.prwatch.pr_wflags = 0;
1683 		result = write(arc_procfd, &ctl, sizeof (ctl));
1684 		ASSERT3U(result, ==, sizeof (ctl));
1685 	}
1686 #endif
1687 }
1688 
1689 /* ARGSUSED */
1690 static void
1691 arc_buf_watch(arc_buf_t *buf)
1692 {
1693 #ifndef _KERNEL
1694 	if (arc_watch) {
1695 		int result;
1696 		procctl_t ctl;
1697 		ctl.cmd = PCWATCH;
1698 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1699 		ctl.prwatch.pr_size = arc_buf_size(buf);
1700 		ctl.prwatch.pr_wflags = WA_WRITE;
1701 		result = write(arc_procfd, &ctl, sizeof (ctl));
1702 		ASSERT3U(result, ==, sizeof (ctl));
1703 	}
1704 #endif
1705 }
1706 
1707 static arc_buf_contents_t
1708 arc_buf_type(arc_buf_hdr_t *hdr)
1709 {
1710 	arc_buf_contents_t type;
1711 	if (HDR_ISTYPE_METADATA(hdr)) {
1712 		type = ARC_BUFC_METADATA;
1713 	} else {
1714 		type = ARC_BUFC_DATA;
1715 	}
1716 	VERIFY3U(hdr->b_type, ==, type);
1717 	return (type);
1718 }
1719 
1720 boolean_t
1721 arc_is_metadata(arc_buf_t *buf)
1722 {
1723 	return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1724 }
1725 
1726 static uint32_t
1727 arc_bufc_to_flags(arc_buf_contents_t type)
1728 {
1729 	switch (type) {
1730 	case ARC_BUFC_DATA:
1731 		/* metadata field is 0 if buffer contains normal data */
1732 		return (0);
1733 	case ARC_BUFC_METADATA:
1734 		return (ARC_FLAG_BUFC_METADATA);
1735 	default:
1736 		break;
1737 	}
1738 	panic("undefined ARC buffer type!");
1739 	return ((uint32_t)-1);
1740 }
1741 
1742 void
1743 arc_buf_thaw(arc_buf_t *buf)
1744 {
1745 	arc_buf_hdr_t *hdr = buf->b_hdr;
1746 
1747 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1748 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1749 
1750 	arc_cksum_verify(buf);
1751 
1752 	/*
1753 	 * Compressed buffers do not manipulate the b_freeze_cksum or
1754 	 * allocate b_thawed.
1755 	 */
1756 	if (ARC_BUF_COMPRESSED(buf)) {
1757 		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1758 		    arc_hdr_has_uncompressed_buf(hdr));
1759 		return;
1760 	}
1761 
1762 	ASSERT(HDR_HAS_L1HDR(hdr));
1763 	arc_cksum_free(hdr);
1764 
1765 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1766 #ifdef ZFS_DEBUG
1767 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1768 		if (hdr->b_l1hdr.b_thawed != NULL)
1769 			kmem_free(hdr->b_l1hdr.b_thawed, 1);
1770 		hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1771 	}
1772 #endif
1773 
1774 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1775 
1776 	arc_buf_unwatch(buf);
1777 }
1778 
1779 void
1780 arc_buf_freeze(arc_buf_t *buf)
1781 {
1782 	arc_buf_hdr_t *hdr = buf->b_hdr;
1783 	kmutex_t *hash_lock;
1784 
1785 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1786 		return;
1787 
1788 	if (ARC_BUF_COMPRESSED(buf)) {
1789 		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1790 		    arc_hdr_has_uncompressed_buf(hdr));
1791 		return;
1792 	}
1793 
1794 	hash_lock = HDR_LOCK(hdr);
1795 	mutex_enter(hash_lock);
1796 
1797 	ASSERT(HDR_HAS_L1HDR(hdr));
1798 	ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1799 	    hdr->b_l1hdr.b_state == arc_anon);
1800 	arc_cksum_compute(buf);
1801 	mutex_exit(hash_lock);
1802 }
1803 
1804 /*
1805  * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1806  * the following functions should be used to ensure that the flags are
1807  * updated in a thread-safe way. When manipulating the flags either
1808  * the hash_lock must be held or the hdr must be undiscoverable. This
1809  * ensures that we're not racing with any other threads when updating
1810  * the flags.
1811  */
1812 static inline void
1813 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1814 {
1815 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1816 	hdr->b_flags |= flags;
1817 }
1818 
1819 static inline void
1820 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1821 {
1822 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1823 	hdr->b_flags &= ~flags;
1824 }
1825 
1826 /*
1827  * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1828  * done in a special way since we have to clear and set bits
1829  * at the same time. Consumers that wish to set the compression bits
1830  * must use this function to ensure that the flags are updated in
1831  * thread-safe manner.
1832  */
1833 static void
1834 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1835 {
1836 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1837 
1838 	/*
1839 	 * Holes and embedded blocks will always have a psize = 0 so
1840 	 * we ignore the compression of the blkptr and set the
1841 	 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
1842 	 * Holes and embedded blocks remain anonymous so we don't
1843 	 * want to uncompress them. Mark them as uncompressed.
1844 	 */
1845 	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1846 		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1847 		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
1848 		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1849 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1850 	} else {
1851 		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1852 		HDR_SET_COMPRESS(hdr, cmp);
1853 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1854 		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1855 	}
1856 }
1857 
1858 /*
1859  * Looks for another buf on the same hdr which has the data decompressed, copies
1860  * from it, and returns true. If no such buf exists, returns false.
1861  */
1862 static boolean_t
1863 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1864 {
1865 	arc_buf_hdr_t *hdr = buf->b_hdr;
1866 	boolean_t copied = B_FALSE;
1867 
1868 	ASSERT(HDR_HAS_L1HDR(hdr));
1869 	ASSERT3P(buf->b_data, !=, NULL);
1870 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1871 
1872 	for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1873 	    from = from->b_next) {
1874 		/* can't use our own data buffer */
1875 		if (from == buf) {
1876 			continue;
1877 		}
1878 
1879 		if (!ARC_BUF_COMPRESSED(from)) {
1880 			bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1881 			copied = B_TRUE;
1882 			break;
1883 		}
1884 	}
1885 
1886 	/*
1887 	 * There were no decompressed bufs, so there should not be a
1888 	 * checksum on the hdr either.
1889 	 */
1890 	EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1891 
1892 	return (copied);
1893 }
1894 
1895 /*
1896  * Given a buf that has a data buffer attached to it, this function will
1897  * efficiently fill the buf with data of the specified compression setting from
1898  * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1899  * are already sharing a data buf, no copy is performed.
1900  *
1901  * If the buf is marked as compressed but uncompressed data was requested, this
1902  * will allocate a new data buffer for the buf, remove that flag, and fill the
1903  * buf with uncompressed data. You can't request a compressed buf on a hdr with
1904  * uncompressed data, and (since we haven't added support for it yet) if you
1905  * want compressed data your buf must already be marked as compressed and have
1906  * the correct-sized data buffer.
1907  */
1908 static int
1909 arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
1910 {
1911 	arc_buf_hdr_t *hdr = buf->b_hdr;
1912 	boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
1913 	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1914 
1915 	ASSERT3P(buf->b_data, !=, NULL);
1916 	IMPLY(compressed, hdr_compressed);
1917 	IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1918 
1919 	if (hdr_compressed == compressed) {
1920 		if (!arc_buf_is_shared(buf)) {
1921 			abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
1922 			    arc_buf_size(buf));
1923 		}
1924 	} else {
1925 		ASSERT(hdr_compressed);
1926 		ASSERT(!compressed);
1927 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
1928 
1929 		/*
1930 		 * If the buf is sharing its data with the hdr, unlink it and
1931 		 * allocate a new data buffer for the buf.
1932 		 */
1933 		if (arc_buf_is_shared(buf)) {
1934 			ASSERT(ARC_BUF_COMPRESSED(buf));
1935 
1936 			/* We need to give the buf it's own b_data */
1937 			buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
1938 			buf->b_data =
1939 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1940 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
1941 
1942 			/* Previously overhead was 0; just add new overhead */
1943 			ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
1944 		} else if (ARC_BUF_COMPRESSED(buf)) {
1945 			/* We need to reallocate the buf's b_data */
1946 			arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
1947 			    buf);
1948 			buf->b_data =
1949 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1950 
1951 			/* We increased the size of b_data; update overhead */
1952 			ARCSTAT_INCR(arcstat_overhead_size,
1953 			    HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
1954 		}
1955 
1956 		/*
1957 		 * Regardless of the buf's previous compression settings, it
1958 		 * should not be compressed at the end of this function.
1959 		 */
1960 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1961 
1962 		/*
1963 		 * Try copying the data from another buf which already has a
1964 		 * decompressed version. If that's not possible, it's time to
1965 		 * bite the bullet and decompress the data from the hdr.
1966 		 */
1967 		if (arc_buf_try_copy_decompressed_data(buf)) {
1968 			/* Skip byteswapping and checksumming (already done) */
1969 			ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
1970 			return (0);
1971 		} else {
1972 			int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1973 			    hdr->b_l1hdr.b_pabd, buf->b_data,
1974 			    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1975 
1976 			/*
1977 			 * Absent hardware errors or software bugs, this should
1978 			 * be impossible, but log it anyway so we can debug it.
1979 			 */
1980 			if (error != 0) {
1981 				zfs_dbgmsg(
1982 				    "hdr %p, compress %d, psize %d, lsize %d",
1983 				    hdr, HDR_GET_COMPRESS(hdr),
1984 				    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1985 				return (SET_ERROR(EIO));
1986 			}
1987 		}
1988 	}
1989 
1990 	/* Byteswap the buf's data if necessary */
1991 	if (bswap != DMU_BSWAP_NUMFUNCS) {
1992 		ASSERT(!HDR_SHARED_DATA(hdr));
1993 		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
1994 		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
1995 	}
1996 
1997 	/* Compute the hdr's checksum if necessary */
1998 	arc_cksum_compute(buf);
1999 
2000 	return (0);
2001 }
2002 
2003 int
2004 arc_decompress(arc_buf_t *buf)
2005 {
2006 	return (arc_buf_fill(buf, B_FALSE));
2007 }
2008 
2009 /*
2010  * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
2011  */
2012 static uint64_t
2013 arc_hdr_size(arc_buf_hdr_t *hdr)
2014 {
2015 	uint64_t size;
2016 
2017 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
2018 	    HDR_GET_PSIZE(hdr) > 0) {
2019 		size = HDR_GET_PSIZE(hdr);
2020 	} else {
2021 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
2022 		size = HDR_GET_LSIZE(hdr);
2023 	}
2024 	return (size);
2025 }
2026 
2027 /*
2028  * Increment the amount of evictable space in the arc_state_t's refcount.
2029  * We account for the space used by the hdr and the arc buf individually
2030  * so that we can add and remove them from the refcount individually.
2031  */
2032 static void
2033 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2034 {
2035 	arc_buf_contents_t type = arc_buf_type(hdr);
2036 
2037 	ASSERT(HDR_HAS_L1HDR(hdr));
2038 
2039 	if (GHOST_STATE(state)) {
2040 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2041 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2042 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2043 		(void) refcount_add_many(&state->arcs_esize[type],
2044 		    HDR_GET_LSIZE(hdr), hdr);
2045 		return;
2046 	}
2047 
2048 	ASSERT(!GHOST_STATE(state));
2049 	if (hdr->b_l1hdr.b_pabd != NULL) {
2050 		(void) refcount_add_many(&state->arcs_esize[type],
2051 		    arc_hdr_size(hdr), hdr);
2052 	}
2053 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2054 	    buf = buf->b_next) {
2055 		if (arc_buf_is_shared(buf))
2056 			continue;
2057 		(void) refcount_add_many(&state->arcs_esize[type],
2058 		    arc_buf_size(buf), buf);
2059 	}
2060 }
2061 
2062 /*
2063  * Decrement the amount of evictable space in the arc_state_t's refcount.
2064  * We account for the space used by the hdr and the arc buf individually
2065  * so that we can add and remove them from the refcount individually.
2066  */
2067 static void
2068 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2069 {
2070 	arc_buf_contents_t type = arc_buf_type(hdr);
2071 
2072 	ASSERT(HDR_HAS_L1HDR(hdr));
2073 
2074 	if (GHOST_STATE(state)) {
2075 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2076 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2077 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2078 		(void) refcount_remove_many(&state->arcs_esize[type],
2079 		    HDR_GET_LSIZE(hdr), hdr);
2080 		return;
2081 	}
2082 
2083 	ASSERT(!GHOST_STATE(state));
2084 	if (hdr->b_l1hdr.b_pabd != NULL) {
2085 		(void) refcount_remove_many(&state->arcs_esize[type],
2086 		    arc_hdr_size(hdr), hdr);
2087 	}
2088 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2089 	    buf = buf->b_next) {
2090 		if (arc_buf_is_shared(buf))
2091 			continue;
2092 		(void) refcount_remove_many(&state->arcs_esize[type],
2093 		    arc_buf_size(buf), buf);
2094 	}
2095 }
2096 
2097 /*
2098  * Add a reference to this hdr indicating that someone is actively
2099  * referencing that memory. When the refcount transitions from 0 to 1,
2100  * we remove it from the respective arc_state_t list to indicate that
2101  * it is not evictable.
2102  */
2103 static void
2104 add_reference(arc_buf_hdr_t *hdr, void *tag)
2105 {
2106 	ASSERT(HDR_HAS_L1HDR(hdr));
2107 	if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2108 		ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2109 		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2110 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2111 	}
2112 
2113 	arc_state_t *state = hdr->b_l1hdr.b_state;
2114 
2115 	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2116 	    (state != arc_anon)) {
2117 		/* We don't use the L2-only state list. */
2118 		if (state != arc_l2c_only) {
2119 			multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2120 			    hdr);
2121 			arc_evictable_space_decrement(hdr, state);
2122 		}
2123 		/* remove the prefetch flag if we get a reference */
2124 		arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2125 	}
2126 }
2127 
2128 /*
2129  * Remove a reference from this hdr. When the reference transitions from
2130  * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2131  * list making it eligible for eviction.
2132  */
2133 static int
2134 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2135 {
2136 	int cnt;
2137 	arc_state_t *state = hdr->b_l1hdr.b_state;
2138 
2139 	ASSERT(HDR_HAS_L1HDR(hdr));
2140 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2141 	ASSERT(!GHOST_STATE(state));
2142 
2143 	/*
2144 	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2145 	 * check to prevent usage of the arc_l2c_only list.
2146 	 */
2147 	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2148 	    (state != arc_anon)) {
2149 		multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2150 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2151 		arc_evictable_space_increment(hdr, state);
2152 	}
2153 	return (cnt);
2154 }
2155 
2156 /*
2157  * Move the supplied buffer to the indicated state. The hash lock
2158  * for the buffer must be held by the caller.
2159  */
2160 static void
2161 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2162     kmutex_t *hash_lock)
2163 {
2164 	arc_state_t *old_state;
2165 	int64_t refcnt;
2166 	uint32_t bufcnt;
2167 	boolean_t update_old, update_new;
2168 	arc_buf_contents_t buftype = arc_buf_type(hdr);
2169 
2170 	/*
2171 	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2172 	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2173 	 * L1 hdr doesn't always exist when we change state to arc_anon before
2174 	 * destroying a header, in which case reallocating to add the L1 hdr is
2175 	 * pointless.
2176 	 */
2177 	if (HDR_HAS_L1HDR(hdr)) {
2178 		old_state = hdr->b_l1hdr.b_state;
2179 		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2180 		bufcnt = hdr->b_l1hdr.b_bufcnt;
2181 		update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL);
2182 	} else {
2183 		old_state = arc_l2c_only;
2184 		refcnt = 0;
2185 		bufcnt = 0;
2186 		update_old = B_FALSE;
2187 	}
2188 	update_new = update_old;
2189 
2190 	ASSERT(MUTEX_HELD(hash_lock));
2191 	ASSERT3P(new_state, !=, old_state);
2192 	ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2193 	ASSERT(old_state != arc_anon || bufcnt <= 1);
2194 
2195 	/*
2196 	 * If this buffer is evictable, transfer it from the
2197 	 * old state list to the new state list.
2198 	 */
2199 	if (refcnt == 0) {
2200 		if (old_state != arc_anon && old_state != arc_l2c_only) {
2201 			ASSERT(HDR_HAS_L1HDR(hdr));
2202 			multilist_remove(old_state->arcs_list[buftype], hdr);
2203 
2204 			if (GHOST_STATE(old_state)) {
2205 				ASSERT0(bufcnt);
2206 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2207 				update_old = B_TRUE;
2208 			}
2209 			arc_evictable_space_decrement(hdr, old_state);
2210 		}
2211 		if (new_state != arc_anon && new_state != arc_l2c_only) {
2212 
2213 			/*
2214 			 * An L1 header always exists here, since if we're
2215 			 * moving to some L1-cached state (i.e. not l2c_only or
2216 			 * anonymous), we realloc the header to add an L1hdr
2217 			 * beforehand.
2218 			 */
2219 			ASSERT(HDR_HAS_L1HDR(hdr));
2220 			multilist_insert(new_state->arcs_list[buftype], hdr);
2221 
2222 			if (GHOST_STATE(new_state)) {
2223 				ASSERT0(bufcnt);
2224 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2225 				update_new = B_TRUE;
2226 			}
2227 			arc_evictable_space_increment(hdr, new_state);
2228 		}
2229 	}
2230 
2231 	ASSERT(!HDR_EMPTY(hdr));
2232 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2233 		buf_hash_remove(hdr);
2234 
2235 	/* adjust state sizes (ignore arc_l2c_only) */
2236 
2237 	if (update_new && new_state != arc_l2c_only) {
2238 		ASSERT(HDR_HAS_L1HDR(hdr));
2239 		if (GHOST_STATE(new_state)) {
2240 			ASSERT0(bufcnt);
2241 
2242 			/*
2243 			 * When moving a header to a ghost state, we first
2244 			 * remove all arc buffers. Thus, we'll have a
2245 			 * bufcnt of zero, and no arc buffer to use for
2246 			 * the reference. As a result, we use the arc
2247 			 * header pointer for the reference.
2248 			 */
2249 			(void) refcount_add_many(&new_state->arcs_size,
2250 			    HDR_GET_LSIZE(hdr), hdr);
2251 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2252 		} else {
2253 			uint32_t buffers = 0;
2254 
2255 			/*
2256 			 * Each individual buffer holds a unique reference,
2257 			 * thus we must remove each of these references one
2258 			 * at a time.
2259 			 */
2260 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2261 			    buf = buf->b_next) {
2262 				ASSERT3U(bufcnt, !=, 0);
2263 				buffers++;
2264 
2265 				/*
2266 				 * When the arc_buf_t is sharing the data
2267 				 * block with the hdr, the owner of the
2268 				 * reference belongs to the hdr. Only
2269 				 * add to the refcount if the arc_buf_t is
2270 				 * not shared.
2271 				 */
2272 				if (arc_buf_is_shared(buf))
2273 					continue;
2274 
2275 				(void) refcount_add_many(&new_state->arcs_size,
2276 				    arc_buf_size(buf), buf);
2277 			}
2278 			ASSERT3U(bufcnt, ==, buffers);
2279 
2280 			if (hdr->b_l1hdr.b_pabd != NULL) {
2281 				(void) refcount_add_many(&new_state->arcs_size,
2282 				    arc_hdr_size(hdr), hdr);
2283 			} else {
2284 				ASSERT(GHOST_STATE(old_state));
2285 			}
2286 		}
2287 	}
2288 
2289 	if (update_old && old_state != arc_l2c_only) {
2290 		ASSERT(HDR_HAS_L1HDR(hdr));
2291 		if (GHOST_STATE(old_state)) {
2292 			ASSERT0(bufcnt);
2293 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2294 
2295 			/*
2296 			 * When moving a header off of a ghost state,
2297 			 * the header will not contain any arc buffers.
2298 			 * We use the arc header pointer for the reference
2299 			 * which is exactly what we did when we put the
2300 			 * header on the ghost state.
2301 			 */
2302 
2303 			(void) refcount_remove_many(&old_state->arcs_size,
2304 			    HDR_GET_LSIZE(hdr), hdr);
2305 		} else {
2306 			uint32_t buffers = 0;
2307 
2308 			/*
2309 			 * Each individual buffer holds a unique reference,
2310 			 * thus we must remove each of these references one
2311 			 * at a time.
2312 			 */
2313 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2314 			    buf = buf->b_next) {
2315 				ASSERT3U(bufcnt, !=, 0);
2316 				buffers++;
2317 
2318 				/*
2319 				 * When the arc_buf_t is sharing the data
2320 				 * block with the hdr, the owner of the
2321 				 * reference belongs to the hdr. Only
2322 				 * add to the refcount if the arc_buf_t is
2323 				 * not shared.
2324 				 */
2325 				if (arc_buf_is_shared(buf))
2326 					continue;
2327 
2328 				(void) refcount_remove_many(
2329 				    &old_state->arcs_size, arc_buf_size(buf),
2330 				    buf);
2331 			}
2332 			ASSERT3U(bufcnt, ==, buffers);
2333 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2334 			(void) refcount_remove_many(
2335 			    &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2336 		}
2337 	}
2338 
2339 	if (HDR_HAS_L1HDR(hdr))
2340 		hdr->b_l1hdr.b_state = new_state;
2341 
2342 	/*
2343 	 * L2 headers should never be on the L2 state list since they don't
2344 	 * have L1 headers allocated.
2345 	 */
2346 	ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2347 	    multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2348 }
2349 
2350 void
2351 arc_space_consume(uint64_t space, arc_space_type_t type)
2352 {
2353 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2354 
2355 	switch (type) {
2356 	case ARC_SPACE_DATA:
2357 		aggsum_add(&astat_data_size, space);
2358 		break;
2359 	case ARC_SPACE_META:
2360 		aggsum_add(&astat_metadata_size, space);
2361 		break;
2362 	case ARC_SPACE_OTHER:
2363 		aggsum_add(&astat_other_size, space);
2364 		break;
2365 	case ARC_SPACE_HDRS:
2366 		aggsum_add(&astat_hdr_size, space);
2367 		break;
2368 	case ARC_SPACE_L2HDRS:
2369 		aggsum_add(&astat_l2_hdr_size, space);
2370 		break;
2371 	}
2372 
2373 	if (type != ARC_SPACE_DATA)
2374 		aggsum_add(&arc_meta_used, space);
2375 
2376 	aggsum_add(&arc_size, space);
2377 }
2378 
2379 void
2380 arc_space_return(uint64_t space, arc_space_type_t type)
2381 {
2382 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2383 
2384 	switch (type) {
2385 	case ARC_SPACE_DATA:
2386 		aggsum_add(&astat_data_size, -space);
2387 		break;
2388 	case ARC_SPACE_META:
2389 		aggsum_add(&astat_metadata_size, -space);
2390 		break;
2391 	case ARC_SPACE_OTHER:
2392 		aggsum_add(&astat_other_size, -space);
2393 		break;
2394 	case ARC_SPACE_HDRS:
2395 		aggsum_add(&astat_hdr_size, -space);
2396 		break;
2397 	case ARC_SPACE_L2HDRS:
2398 		aggsum_add(&astat_l2_hdr_size, -space);
2399 		break;
2400 	}
2401 
2402 	if (type != ARC_SPACE_DATA) {
2403 		ASSERT(aggsum_compare(&arc_meta_used, space) >= 0);
2404 		/*
2405 		 * We use the upper bound here rather than the precise value
2406 		 * because the arc_meta_max value doesn't need to be
2407 		 * precise. It's only consumed by humans via arcstats.
2408 		 */
2409 		if (arc_meta_max < aggsum_upper_bound(&arc_meta_used))
2410 			arc_meta_max = aggsum_upper_bound(&arc_meta_used);
2411 		aggsum_add(&arc_meta_used, -space);
2412 	}
2413 
2414 	ASSERT(aggsum_compare(&arc_size, space) >= 0);
2415 	aggsum_add(&arc_size, -space);
2416 }
2417 
2418 /*
2419  * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2420  * with the hdr's b_pabd.
2421  */
2422 static boolean_t
2423 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2424 {
2425 	/*
2426 	 * The criteria for sharing a hdr's data are:
2427 	 * 1. the hdr's compression matches the buf's compression
2428 	 * 2. the hdr doesn't need to be byteswapped
2429 	 * 3. the hdr isn't already being shared
2430 	 * 4. the buf is either compressed or it is the last buf in the hdr list
2431 	 *
2432 	 * Criterion #4 maintains the invariant that shared uncompressed
2433 	 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2434 	 * might ask, "if a compressed buf is allocated first, won't that be the
2435 	 * last thing in the list?", but in that case it's impossible to create
2436 	 * a shared uncompressed buf anyway (because the hdr must be compressed
2437 	 * to have the compressed buf). You might also think that #3 is
2438 	 * sufficient to make this guarantee, however it's possible
2439 	 * (specifically in the rare L2ARC write race mentioned in
2440 	 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2441 	 * is sharable, but wasn't at the time of its allocation. Rather than
2442 	 * allow a new shared uncompressed buf to be created and then shuffle
2443 	 * the list around to make it the last element, this simply disallows
2444 	 * sharing if the new buf isn't the first to be added.
2445 	 */
2446 	ASSERT3P(buf->b_hdr, ==, hdr);
2447 	boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
2448 	boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2449 	return (buf_compressed == hdr_compressed &&
2450 	    hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2451 	    !HDR_SHARED_DATA(hdr) &&
2452 	    (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2453 }
2454 
2455 /*
2456  * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2457  * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2458  * copy was made successfully, or an error code otherwise.
2459  */
2460 static int
2461 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
2462     boolean_t fill, arc_buf_t **ret)
2463 {
2464 	arc_buf_t *buf;
2465 
2466 	ASSERT(HDR_HAS_L1HDR(hdr));
2467 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2468 	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2469 	    hdr->b_type == ARC_BUFC_METADATA);
2470 	ASSERT3P(ret, !=, NULL);
2471 	ASSERT3P(*ret, ==, NULL);
2472 
2473 	buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2474 	buf->b_hdr = hdr;
2475 	buf->b_data = NULL;
2476 	buf->b_next = hdr->b_l1hdr.b_buf;
2477 	buf->b_flags = 0;
2478 
2479 	add_reference(hdr, tag);
2480 
2481 	/*
2482 	 * We're about to change the hdr's b_flags. We must either
2483 	 * hold the hash_lock or be undiscoverable.
2484 	 */
2485 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2486 
2487 	/*
2488 	 * Only honor requests for compressed bufs if the hdr is actually
2489 	 * compressed.
2490 	 */
2491 	if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
2492 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2493 
2494 	/*
2495 	 * If the hdr's data can be shared then we share the data buffer and
2496 	 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2497 	 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2498 	 * buffer to store the buf's data.
2499 	 *
2500 	 * There are two additional restrictions here because we're sharing
2501 	 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2502 	 * actively involved in an L2ARC write, because if this buf is used by
2503 	 * an arc_write() then the hdr's data buffer will be released when the
2504 	 * write completes, even though the L2ARC write might still be using it.
2505 	 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2506 	 * need to be ABD-aware.
2507 	 */
2508 	boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2509 	    abd_is_linear(hdr->b_l1hdr.b_pabd);
2510 
2511 	/* Set up b_data and sharing */
2512 	if (can_share) {
2513 		buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2514 		buf->b_flags |= ARC_BUF_FLAG_SHARED;
2515 		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2516 	} else {
2517 		buf->b_data =
2518 		    arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2519 		ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2520 	}
2521 	VERIFY3P(buf->b_data, !=, NULL);
2522 
2523 	hdr->b_l1hdr.b_buf = buf;
2524 	hdr->b_l1hdr.b_bufcnt += 1;
2525 
2526 	/*
2527 	 * If the user wants the data from the hdr, we need to either copy or
2528 	 * decompress the data.
2529 	 */
2530 	if (fill) {
2531 		return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
2532 	}
2533 
2534 	return (0);
2535 }
2536 
2537 static char *arc_onloan_tag = "onloan";
2538 
2539 static inline void
2540 arc_loaned_bytes_update(int64_t delta)
2541 {
2542 	atomic_add_64(&arc_loaned_bytes, delta);
2543 
2544 	/* assert that it did not wrap around */
2545 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2546 }
2547 
2548 /*
2549  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2550  * flight data by arc_tempreserve_space() until they are "returned". Loaned
2551  * buffers must be returned to the arc before they can be used by the DMU or
2552  * freed.
2553  */
2554 arc_buf_t *
2555 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2556 {
2557 	arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2558 	    is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2559 
2560 	arc_loaned_bytes_update(size);
2561 
2562 	return (buf);
2563 }
2564 
2565 arc_buf_t *
2566 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2567     enum zio_compress compression_type)
2568 {
2569 	arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2570 	    psize, lsize, compression_type);
2571 
2572 	arc_loaned_bytes_update(psize);
2573 
2574 	return (buf);
2575 }
2576 
2577 
2578 /*
2579  * Return a loaned arc buffer to the arc.
2580  */
2581 void
2582 arc_return_buf(arc_buf_t *buf, void *tag)
2583 {
2584 	arc_buf_hdr_t *hdr = buf->b_hdr;
2585 
2586 	ASSERT3P(buf->b_data, !=, NULL);
2587 	ASSERT(HDR_HAS_L1HDR(hdr));
2588 	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2589 	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2590 
2591 	arc_loaned_bytes_update(-arc_buf_size(buf));
2592 }
2593 
2594 /* Detach an arc_buf from a dbuf (tag) */
2595 void
2596 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2597 {
2598 	arc_buf_hdr_t *hdr = buf->b_hdr;
2599 
2600 	ASSERT3P(buf->b_data, !=, NULL);
2601 	ASSERT(HDR_HAS_L1HDR(hdr));
2602 	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2603 	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2604 
2605 	arc_loaned_bytes_update(arc_buf_size(buf));
2606 }
2607 
2608 static void
2609 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2610 {
2611 	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2612 
2613 	df->l2df_abd = abd;
2614 	df->l2df_size = size;
2615 	df->l2df_type = type;
2616 	mutex_enter(&l2arc_free_on_write_mtx);
2617 	list_insert_head(l2arc_free_on_write, df);
2618 	mutex_exit(&l2arc_free_on_write_mtx);
2619 }
2620 
2621 static void
2622 arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2623 {
2624 	arc_state_t *state = hdr->b_l1hdr.b_state;
2625 	arc_buf_contents_t type = arc_buf_type(hdr);
2626 	uint64_t size = arc_hdr_size(hdr);
2627 
2628 	/* protected by hash lock, if in the hash table */
2629 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2630 		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2631 		ASSERT(state != arc_anon && state != arc_l2c_only);
2632 
2633 		(void) refcount_remove_many(&state->arcs_esize[type],
2634 		    size, hdr);
2635 	}
2636 	(void) refcount_remove_many(&state->arcs_size, size, hdr);
2637 	if (type == ARC_BUFC_METADATA) {
2638 		arc_space_return(size, ARC_SPACE_META);
2639 	} else {
2640 		ASSERT(type == ARC_BUFC_DATA);
2641 		arc_space_return(size, ARC_SPACE_DATA);
2642 	}
2643 
2644 	l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2645 }
2646 
2647 /*
2648  * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2649  * data buffer, we transfer the refcount ownership to the hdr and update
2650  * the appropriate kstats.
2651  */
2652 static void
2653 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2654 {
2655 	arc_state_t *state = hdr->b_l1hdr.b_state;
2656 
2657 	ASSERT(arc_can_share(hdr, buf));
2658 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2659 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2660 
2661 	/*
2662 	 * Start sharing the data buffer. We transfer the
2663 	 * refcount ownership to the hdr since it always owns
2664 	 * the refcount whenever an arc_buf_t is shared.
2665 	 */
2666 	refcount_transfer_ownership(&state->arcs_size, buf, hdr);
2667 	hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2668 	abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2669 	    HDR_ISTYPE_METADATA(hdr));
2670 	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2671 	buf->b_flags |= ARC_BUF_FLAG_SHARED;
2672 
2673 	/*
2674 	 * Since we've transferred ownership to the hdr we need
2675 	 * to increment its compressed and uncompressed kstats and
2676 	 * decrement the overhead size.
2677 	 */
2678 	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2679 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2680 	ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2681 }
2682 
2683 static void
2684 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2685 {
2686 	arc_state_t *state = hdr->b_l1hdr.b_state;
2687 
2688 	ASSERT(arc_buf_is_shared(buf));
2689 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2690 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2691 
2692 	/*
2693 	 * We are no longer sharing this buffer so we need
2694 	 * to transfer its ownership to the rightful owner.
2695 	 */
2696 	refcount_transfer_ownership(&state->arcs_size, hdr, buf);
2697 	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2698 	abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2699 	abd_put(hdr->b_l1hdr.b_pabd);
2700 	hdr->b_l1hdr.b_pabd = NULL;
2701 	buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2702 
2703 	/*
2704 	 * Since the buffer is no longer shared between
2705 	 * the arc buf and the hdr, count it as overhead.
2706 	 */
2707 	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2708 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2709 	ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2710 }
2711 
2712 /*
2713  * Remove an arc_buf_t from the hdr's buf list and return the last
2714  * arc_buf_t on the list. If no buffers remain on the list then return
2715  * NULL.
2716  */
2717 static arc_buf_t *
2718 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2719 {
2720 	ASSERT(HDR_HAS_L1HDR(hdr));
2721 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2722 
2723 	arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
2724 	arc_buf_t *lastbuf = NULL;
2725 
2726 	/*
2727 	 * Remove the buf from the hdr list and locate the last
2728 	 * remaining buffer on the list.
2729 	 */
2730 	while (*bufp != NULL) {
2731 		if (*bufp == buf)
2732 			*bufp = buf->b_next;
2733 
2734 		/*
2735 		 * If we've removed a buffer in the middle of
2736 		 * the list then update the lastbuf and update
2737 		 * bufp.
2738 		 */
2739 		if (*bufp != NULL) {
2740 			lastbuf = *bufp;
2741 			bufp = &(*bufp)->b_next;
2742 		}
2743 	}
2744 	buf->b_next = NULL;
2745 	ASSERT3P(lastbuf, !=, buf);
2746 	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
2747 	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
2748 	IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
2749 
2750 	return (lastbuf);
2751 }
2752 
2753 /*
2754  * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
2755  * list and free it.
2756  */
2757 static void
2758 arc_buf_destroy_impl(arc_buf_t *buf)
2759 {
2760 	arc_buf_hdr_t *hdr = buf->b_hdr;
2761 
2762 	/*
2763 	 * Free up the data associated with the buf but only if we're not
2764 	 * sharing this with the hdr. If we are sharing it with the hdr, the
2765 	 * hdr is responsible for doing the free.
2766 	 */
2767 	if (buf->b_data != NULL) {
2768 		/*
2769 		 * We're about to change the hdr's b_flags. We must either
2770 		 * hold the hash_lock or be undiscoverable.
2771 		 */
2772 		ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2773 
2774 		arc_cksum_verify(buf);
2775 		arc_buf_unwatch(buf);
2776 
2777 		if (arc_buf_is_shared(buf)) {
2778 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2779 		} else {
2780 			uint64_t size = arc_buf_size(buf);
2781 			arc_free_data_buf(hdr, buf->b_data, size, buf);
2782 			ARCSTAT_INCR(arcstat_overhead_size, -size);
2783 		}
2784 		buf->b_data = NULL;
2785 
2786 		ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2787 		hdr->b_l1hdr.b_bufcnt -= 1;
2788 	}
2789 
2790 	arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
2791 
2792 	if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2793 		/*
2794 		 * If the current arc_buf_t is sharing its data buffer with the
2795 		 * hdr, then reassign the hdr's b_pabd to share it with the new
2796 		 * buffer at the end of the list. The shared buffer is always
2797 		 * the last one on the hdr's buffer list.
2798 		 *
2799 		 * There is an equivalent case for compressed bufs, but since
2800 		 * they aren't guaranteed to be the last buf in the list and
2801 		 * that is an exceedingly rare case, we just allow that space be
2802 		 * wasted temporarily.
2803 		 */
2804 		if (lastbuf != NULL) {
2805 			/* Only one buf can be shared at once */
2806 			VERIFY(!arc_buf_is_shared(lastbuf));
2807 			/* hdr is uncompressed so can't have compressed buf */
2808 			VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
2809 
2810 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2811 			arc_hdr_free_pabd(hdr);
2812 
2813 			/*
2814 			 * We must setup a new shared block between the
2815 			 * last buffer and the hdr. The data would have
2816 			 * been allocated by the arc buf so we need to transfer
2817 			 * ownership to the hdr since it's now being shared.
2818 			 */
2819 			arc_share_buf(hdr, lastbuf);
2820 		}
2821 	} else if (HDR_SHARED_DATA(hdr)) {
2822 		/*
2823 		 * Uncompressed shared buffers are always at the end
2824 		 * of the list. Compressed buffers don't have the
2825 		 * same requirements. This makes it hard to
2826 		 * simply assert that the lastbuf is shared so
2827 		 * we rely on the hdr's compression flags to determine
2828 		 * if we have a compressed, shared buffer.
2829 		 */
2830 		ASSERT3P(lastbuf, !=, NULL);
2831 		ASSERT(arc_buf_is_shared(lastbuf) ||
2832 		    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
2833 	}
2834 
2835 	/*
2836 	 * Free the checksum if we're removing the last uncompressed buf from
2837 	 * this hdr.
2838 	 */
2839 	if (!arc_hdr_has_uncompressed_buf(hdr)) {
2840 		arc_cksum_free(hdr);
2841 	}
2842 
2843 	/* clean up the buf */
2844 	buf->b_hdr = NULL;
2845 	kmem_cache_free(buf_cache, buf);
2846 }
2847 
2848 static void
2849 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr)
2850 {
2851 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2852 	ASSERT(HDR_HAS_L1HDR(hdr));
2853 	ASSERT(!HDR_SHARED_DATA(hdr));
2854 
2855 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2856 	hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
2857 	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2858 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2859 
2860 	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2861 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2862 }
2863 
2864 static void
2865 arc_hdr_free_pabd(arc_buf_hdr_t *hdr)
2866 {
2867 	ASSERT(HDR_HAS_L1HDR(hdr));
2868 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2869 
2870 	/*
2871 	 * If the hdr is currently being written to the l2arc then
2872 	 * we defer freeing the data by adding it to the l2arc_free_on_write
2873 	 * list. The l2arc will free the data once it's finished
2874 	 * writing it to the l2arc device.
2875 	 */
2876 	if (HDR_L2_WRITING(hdr)) {
2877 		arc_hdr_free_on_write(hdr);
2878 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
2879 	} else {
2880 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
2881 		    arc_hdr_size(hdr), hdr);
2882 	}
2883 	hdr->b_l1hdr.b_pabd = NULL;
2884 	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2885 
2886 	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2887 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2888 }
2889 
2890 static arc_buf_hdr_t *
2891 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
2892     enum zio_compress compression_type, arc_buf_contents_t type)
2893 {
2894 	arc_buf_hdr_t *hdr;
2895 
2896 	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
2897 
2898 	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2899 	ASSERT(HDR_EMPTY(hdr));
2900 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2901 	ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
2902 	HDR_SET_PSIZE(hdr, psize);
2903 	HDR_SET_LSIZE(hdr, lsize);
2904 	hdr->b_spa = spa;
2905 	hdr->b_type = type;
2906 	hdr->b_flags = 0;
2907 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2908 	arc_hdr_set_compress(hdr, compression_type);
2909 
2910 	hdr->b_l1hdr.b_state = arc_anon;
2911 	hdr->b_l1hdr.b_arc_access = 0;
2912 	hdr->b_l1hdr.b_bufcnt = 0;
2913 	hdr->b_l1hdr.b_buf = NULL;
2914 
2915 	/*
2916 	 * Allocate the hdr's buffer. This will contain either
2917 	 * the compressed or uncompressed data depending on the block
2918 	 * it references and compressed arc enablement.
2919 	 */
2920 	arc_hdr_alloc_pabd(hdr);
2921 	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2922 
2923 	return (hdr);
2924 }
2925 
2926 /*
2927  * Transition between the two allocation states for the arc_buf_hdr struct.
2928  * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
2929  * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
2930  * version is used when a cache buffer is only in the L2ARC in order to reduce
2931  * memory usage.
2932  */
2933 static arc_buf_hdr_t *
2934 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
2935 {
2936 	ASSERT(HDR_HAS_L2HDR(hdr));
2937 
2938 	arc_buf_hdr_t *nhdr;
2939 	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2940 
2941 	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
2942 	    (old == hdr_l2only_cache && new == hdr_full_cache));
2943 
2944 	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
2945 
2946 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2947 	buf_hash_remove(hdr);
2948 
2949 	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
2950 
2951 	if (new == hdr_full_cache) {
2952 		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2953 		/*
2954 		 * arc_access and arc_change_state need to be aware that a
2955 		 * header has just come out of L2ARC, so we set its state to
2956 		 * l2c_only even though it's about to change.
2957 		 */
2958 		nhdr->b_l1hdr.b_state = arc_l2c_only;
2959 
2960 		/* Verify previous threads set to NULL before freeing */
2961 		ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
2962 	} else {
2963 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2964 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2965 		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2966 
2967 		/*
2968 		 * If we've reached here, We must have been called from
2969 		 * arc_evict_hdr(), as such we should have already been
2970 		 * removed from any ghost list we were previously on
2971 		 * (which protects us from racing with arc_evict_state),
2972 		 * thus no locking is needed during this check.
2973 		 */
2974 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2975 
2976 		/*
2977 		 * A buffer must not be moved into the arc_l2c_only
2978 		 * state if it's not finished being written out to the
2979 		 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
2980 		 * might try to be accessed, even though it was removed.
2981 		 */
2982 		VERIFY(!HDR_L2_WRITING(hdr));
2983 		VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2984 
2985 #ifdef ZFS_DEBUG
2986 		if (hdr->b_l1hdr.b_thawed != NULL) {
2987 			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2988 			hdr->b_l1hdr.b_thawed = NULL;
2989 		}
2990 #endif
2991 
2992 		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2993 	}
2994 	/*
2995 	 * The header has been reallocated so we need to re-insert it into any
2996 	 * lists it was on.
2997 	 */
2998 	(void) buf_hash_insert(nhdr, NULL);
2999 
3000 	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3001 
3002 	mutex_enter(&dev->l2ad_mtx);
3003 
3004 	/*
3005 	 * We must place the realloc'ed header back into the list at
3006 	 * the same spot. Otherwise, if it's placed earlier in the list,
3007 	 * l2arc_write_buffers() could find it during the function's
3008 	 * write phase, and try to write it out to the l2arc.
3009 	 */
3010 	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3011 	list_remove(&dev->l2ad_buflist, hdr);
3012 
3013 	mutex_exit(&dev->l2ad_mtx);
3014 
3015 	/*
3016 	 * Since we're using the pointer address as the tag when
3017 	 * incrementing and decrementing the l2ad_alloc refcount, we
3018 	 * must remove the old pointer (that we're about to destroy) and
3019 	 * add the new pointer to the refcount. Otherwise we'd remove
3020 	 * the wrong pointer address when calling arc_hdr_destroy() later.
3021 	 */
3022 
3023 	(void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
3024 	(void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
3025 
3026 	buf_discard_identity(hdr);
3027 	kmem_cache_free(old, hdr);
3028 
3029 	return (nhdr);
3030 }
3031 
3032 /*
3033  * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3034  * The buf is returned thawed since we expect the consumer to modify it.
3035  */
3036 arc_buf_t *
3037 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3038 {
3039 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3040 	    ZIO_COMPRESS_OFF, type);
3041 	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3042 
3043 	arc_buf_t *buf = NULL;
3044 	VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
3045 	arc_buf_thaw(buf);
3046 
3047 	return (buf);
3048 }
3049 
3050 /*
3051  * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3052  * for bufs containing metadata.
3053  */
3054 arc_buf_t *
3055 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3056     enum zio_compress compression_type)
3057 {
3058 	ASSERT3U(lsize, >, 0);
3059 	ASSERT3U(lsize, >=, psize);
3060 	ASSERT(compression_type > ZIO_COMPRESS_OFF);
3061 	ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
3062 
3063 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3064 	    compression_type, ARC_BUFC_DATA);
3065 	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3066 
3067 	arc_buf_t *buf = NULL;
3068 	VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
3069 	arc_buf_thaw(buf);
3070 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3071 
3072 	if (!arc_buf_is_shared(buf)) {
3073 		/*
3074 		 * To ensure that the hdr has the correct data in it if we call
3075 		 * arc_decompress() on this buf before it's been written to
3076 		 * disk, it's easiest if we just set up sharing between the
3077 		 * buf and the hdr.
3078 		 */
3079 		ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3080 		arc_hdr_free_pabd(hdr);
3081 		arc_share_buf(hdr, buf);
3082 	}
3083 
3084 	return (buf);
3085 }
3086 
3087 static void
3088 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3089 {
3090 	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3091 	l2arc_dev_t *dev = l2hdr->b_dev;
3092 	uint64_t psize = arc_hdr_size(hdr);
3093 
3094 	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3095 	ASSERT(HDR_HAS_L2HDR(hdr));
3096 
3097 	list_remove(&dev->l2ad_buflist, hdr);
3098 
3099 	ARCSTAT_INCR(arcstat_l2_psize, -psize);
3100 	ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3101 
3102 	vdev_space_update(dev->l2ad_vdev, -psize, 0, 0);
3103 
3104 	(void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr);
3105 	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3106 }
3107 
3108 static void
3109 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3110 {
3111 	if (HDR_HAS_L1HDR(hdr)) {
3112 		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3113 		    hdr->b_l1hdr.b_bufcnt > 0);
3114 		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3115 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3116 	}
3117 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3118 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3119 
3120 	if (!HDR_EMPTY(hdr))
3121 		buf_discard_identity(hdr);
3122 
3123 	if (HDR_HAS_L2HDR(hdr)) {
3124 		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3125 		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3126 
3127 		if (!buflist_held)
3128 			mutex_enter(&dev->l2ad_mtx);
3129 
3130 		/*
3131 		 * Even though we checked this conditional above, we
3132 		 * need to check this again now that we have the
3133 		 * l2ad_mtx. This is because we could be racing with
3134 		 * another thread calling l2arc_evict() which might have
3135 		 * destroyed this header's L2 portion as we were waiting
3136 		 * to acquire the l2ad_mtx. If that happens, we don't
3137 		 * want to re-destroy the header's L2 portion.
3138 		 */
3139 		if (HDR_HAS_L2HDR(hdr))
3140 			arc_hdr_l2hdr_destroy(hdr);
3141 
3142 		if (!buflist_held)
3143 			mutex_exit(&dev->l2ad_mtx);
3144 	}
3145 
3146 	if (HDR_HAS_L1HDR(hdr)) {
3147 		arc_cksum_free(hdr);
3148 
3149 		while (hdr->b_l1hdr.b_buf != NULL)
3150 			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3151 
3152 #ifdef ZFS_DEBUG
3153 		if (hdr->b_l1hdr.b_thawed != NULL) {
3154 			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3155 			hdr->b_l1hdr.b_thawed = NULL;
3156 		}
3157 #endif
3158 
3159 		if (hdr->b_l1hdr.b_pabd != NULL) {
3160 			arc_hdr_free_pabd(hdr);
3161 		}
3162 	}
3163 
3164 	ASSERT3P(hdr->b_hash_next, ==, NULL);
3165 	if (HDR_HAS_L1HDR(hdr)) {
3166 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3167 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3168 		kmem_cache_free(hdr_full_cache, hdr);
3169 	} else {
3170 		kmem_cache_free(hdr_l2only_cache, hdr);
3171 	}
3172 }
3173 
3174 void
3175 arc_buf_destroy(arc_buf_t *buf, void* tag)
3176 {
3177 	arc_buf_hdr_t *hdr = buf->b_hdr;
3178 	kmutex_t *hash_lock = HDR_LOCK(hdr);
3179 
3180 	if (hdr->b_l1hdr.b_state == arc_anon) {
3181 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3182 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3183 		VERIFY0(remove_reference(hdr, NULL, tag));
3184 		arc_hdr_destroy(hdr);
3185 		return;
3186 	}
3187 
3188 	mutex_enter(hash_lock);
3189 	ASSERT3P(hdr, ==, buf->b_hdr);
3190 	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3191 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3192 	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3193 	ASSERT3P(buf->b_data, !=, NULL);
3194 
3195 	(void) remove_reference(hdr, hash_lock, tag);
3196 	arc_buf_destroy_impl(buf);
3197 	mutex_exit(hash_lock);
3198 }
3199 
3200 /*
3201  * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3202  * state of the header is dependent on it's state prior to entering this
3203  * function. The following transitions are possible:
3204  *
3205  *    - arc_mru -> arc_mru_ghost
3206  *    - arc_mfu -> arc_mfu_ghost
3207  *    - arc_mru_ghost -> arc_l2c_only
3208  *    - arc_mru_ghost -> deleted
3209  *    - arc_mfu_ghost -> arc_l2c_only
3210  *    - arc_mfu_ghost -> deleted
3211  */
3212 static int64_t
3213 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3214 {
3215 	arc_state_t *evicted_state, *state;
3216 	int64_t bytes_evicted = 0;
3217 
3218 	ASSERT(MUTEX_HELD(hash_lock));
3219 	ASSERT(HDR_HAS_L1HDR(hdr));
3220 
3221 	state = hdr->b_l1hdr.b_state;
3222 	if (GHOST_STATE(state)) {
3223 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3224 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3225 
3226 		/*
3227 		 * l2arc_write_buffers() relies on a header's L1 portion
3228 		 * (i.e. its b_pabd field) during it's write phase.
3229 		 * Thus, we cannot push a header onto the arc_l2c_only
3230 		 * state (removing it's L1 piece) until the header is
3231 		 * done being written to the l2arc.
3232 		 */
3233 		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3234 			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3235 			return (bytes_evicted);
3236 		}
3237 
3238 		ARCSTAT_BUMP(arcstat_deleted);
3239 		bytes_evicted += HDR_GET_LSIZE(hdr);
3240 
3241 		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3242 
3243 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3244 		if (HDR_HAS_L2HDR(hdr)) {
3245 			/*
3246 			 * This buffer is cached on the 2nd Level ARC;
3247 			 * don't destroy the header.
3248 			 */
3249 			arc_change_state(arc_l2c_only, hdr, hash_lock);
3250 			/*
3251 			 * dropping from L1+L2 cached to L2-only,
3252 			 * realloc to remove the L1 header.
3253 			 */
3254 			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3255 			    hdr_l2only_cache);
3256 		} else {
3257 			arc_change_state(arc_anon, hdr, hash_lock);
3258 			arc_hdr_destroy(hdr);
3259 		}
3260 		return (bytes_evicted);
3261 	}
3262 
3263 	ASSERT(state == arc_mru || state == arc_mfu);
3264 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3265 
3266 	/* prefetch buffers have a minimum lifespan */
3267 	if (HDR_IO_IN_PROGRESS(hdr) ||
3268 	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3269 	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3270 	    arc_min_prefetch_lifespan)) {
3271 		ARCSTAT_BUMP(arcstat_evict_skip);
3272 		return (bytes_evicted);
3273 	}
3274 
3275 	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3276 	while (hdr->b_l1hdr.b_buf) {
3277 		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3278 		if (!mutex_tryenter(&buf->b_evict_lock)) {
3279 			ARCSTAT_BUMP(arcstat_mutex_miss);
3280 			break;
3281 		}
3282 		if (buf->b_data != NULL)
3283 			bytes_evicted += HDR_GET_LSIZE(hdr);
3284 		mutex_exit(&buf->b_evict_lock);
3285 		arc_buf_destroy_impl(buf);
3286 	}
3287 
3288 	if (HDR_HAS_L2HDR(hdr)) {
3289 		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3290 	} else {
3291 		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3292 			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3293 			    HDR_GET_LSIZE(hdr));
3294 		} else {
3295 			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3296 			    HDR_GET_LSIZE(hdr));
3297 		}
3298 	}
3299 
3300 	if (hdr->b_l1hdr.b_bufcnt == 0) {
3301 		arc_cksum_free(hdr);
3302 
3303 		bytes_evicted += arc_hdr_size(hdr);
3304 
3305 		/*
3306 		 * If this hdr is being evicted and has a compressed
3307 		 * buffer then we discard it here before we change states.
3308 		 * This ensures that the accounting is updated correctly
3309 		 * in arc_free_data_impl().
3310 		 */
3311 		arc_hdr_free_pabd(hdr);
3312 
3313 		arc_change_state(evicted_state, hdr, hash_lock);
3314 		ASSERT(HDR_IN_HASH_TABLE(hdr));
3315 		arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3316 		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3317 	}
3318 
3319 	return (bytes_evicted);
3320 }
3321 
3322 static uint64_t
3323 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3324     uint64_t spa, int64_t bytes)
3325 {
3326 	multilist_sublist_t *mls;
3327 	uint64_t bytes_evicted = 0;
3328 	arc_buf_hdr_t *hdr;
3329 	kmutex_t *hash_lock;
3330 	int evict_count = 0;
3331 
3332 	ASSERT3P(marker, !=, NULL);
3333 	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3334 
3335 	mls = multilist_sublist_lock(ml, idx);
3336 
3337 	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3338 	    hdr = multilist_sublist_prev(mls, marker)) {
3339 		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3340 		    (evict_count >= zfs_arc_evict_batch_limit))
3341 			break;
3342 
3343 		/*
3344 		 * To keep our iteration location, move the marker
3345 		 * forward. Since we're not holding hdr's hash lock, we
3346 		 * must be very careful and not remove 'hdr' from the
3347 		 * sublist. Otherwise, other consumers might mistake the
3348 		 * 'hdr' as not being on a sublist when they call the
3349 		 * multilist_link_active() function (they all rely on
3350 		 * the hash lock protecting concurrent insertions and
3351 		 * removals). multilist_sublist_move_forward() was
3352 		 * specifically implemented to ensure this is the case
3353 		 * (only 'marker' will be removed and re-inserted).
3354 		 */
3355 		multilist_sublist_move_forward(mls, marker);
3356 
3357 		/*
3358 		 * The only case where the b_spa field should ever be
3359 		 * zero, is the marker headers inserted by
3360 		 * arc_evict_state(). It's possible for multiple threads
3361 		 * to be calling arc_evict_state() concurrently (e.g.
3362 		 * dsl_pool_close() and zio_inject_fault()), so we must
3363 		 * skip any markers we see from these other threads.
3364 		 */
3365 		if (hdr->b_spa == 0)
3366 			continue;
3367 
3368 		/* we're only interested in evicting buffers of a certain spa */
3369 		if (spa != 0 && hdr->b_spa != spa) {
3370 			ARCSTAT_BUMP(arcstat_evict_skip);
3371 			continue;
3372 		}
3373 
3374 		hash_lock = HDR_LOCK(hdr);
3375 
3376 		/*
3377 		 * We aren't calling this function from any code path
3378 		 * that would already be holding a hash lock, so we're
3379 		 * asserting on this assumption to be defensive in case
3380 		 * this ever changes. Without this check, it would be
3381 		 * possible to incorrectly increment arcstat_mutex_miss
3382 		 * below (e.g. if the code changed such that we called
3383 		 * this function with a hash lock held).
3384 		 */
3385 		ASSERT(!MUTEX_HELD(hash_lock));
3386 
3387 		if (mutex_tryenter(hash_lock)) {
3388 			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3389 			mutex_exit(hash_lock);
3390 
3391 			bytes_evicted += evicted;
3392 
3393 			/*
3394 			 * If evicted is zero, arc_evict_hdr() must have
3395 			 * decided to skip this header, don't increment
3396 			 * evict_count in this case.
3397 			 */
3398 			if (evicted != 0)
3399 				evict_count++;
3400 
3401 			/*
3402 			 * If arc_size isn't overflowing, signal any
3403 			 * threads that might happen to be waiting.
3404 			 *
3405 			 * For each header evicted, we wake up a single
3406 			 * thread. If we used cv_broadcast, we could
3407 			 * wake up "too many" threads causing arc_size
3408 			 * to significantly overflow arc_c; since
3409 			 * arc_get_data_impl() doesn't check for overflow
3410 			 * when it's woken up (it doesn't because it's
3411 			 * possible for the ARC to be overflowing while
3412 			 * full of un-evictable buffers, and the
3413 			 * function should proceed in this case).
3414 			 *
3415 			 * If threads are left sleeping, due to not
3416 			 * using cv_broadcast, they will be woken up
3417 			 * just before arc_reclaim_thread() sleeps.
3418 			 */
3419 			mutex_enter(&arc_reclaim_lock);
3420 			if (!arc_is_overflowing())
3421 				cv_signal(&arc_reclaim_waiters_cv);
3422 			mutex_exit(&arc_reclaim_lock);
3423 		} else {
3424 			ARCSTAT_BUMP(arcstat_mutex_miss);
3425 		}
3426 	}
3427 
3428 	multilist_sublist_unlock(mls);
3429 
3430 	return (bytes_evicted);
3431 }
3432 
3433 /*
3434  * Evict buffers from the given arc state, until we've removed the
3435  * specified number of bytes. Move the removed buffers to the
3436  * appropriate evict state.
3437  *
3438  * This function makes a "best effort". It skips over any buffers
3439  * it can't get a hash_lock on, and so, may not catch all candidates.
3440  * It may also return without evicting as much space as requested.
3441  *
3442  * If bytes is specified using the special value ARC_EVICT_ALL, this
3443  * will evict all available (i.e. unlocked and evictable) buffers from
3444  * the given arc state; which is used by arc_flush().
3445  */
3446 static uint64_t
3447 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3448     arc_buf_contents_t type)
3449 {
3450 	uint64_t total_evicted = 0;
3451 	multilist_t *ml = state->arcs_list[type];
3452 	int num_sublists;
3453 	arc_buf_hdr_t **markers;
3454 
3455 	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3456 
3457 	num_sublists = multilist_get_num_sublists(ml);
3458 
3459 	/*
3460 	 * If we've tried to evict from each sublist, made some
3461 	 * progress, but still have not hit the target number of bytes
3462 	 * to evict, we want to keep trying. The markers allow us to
3463 	 * pick up where we left off for each individual sublist, rather
3464 	 * than starting from the tail each time.
3465 	 */
3466 	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3467 	for (int i = 0; i < num_sublists; i++) {
3468 		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3469 
3470 		/*
3471 		 * A b_spa of 0 is used to indicate that this header is
3472 		 * a marker. This fact is used in arc_adjust_type() and
3473 		 * arc_evict_state_impl().
3474 		 */
3475 		markers[i]->b_spa = 0;
3476 
3477 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3478 		multilist_sublist_insert_tail(mls, markers[i]);
3479 		multilist_sublist_unlock(mls);
3480 	}
3481 
3482 	/*
3483 	 * While we haven't hit our target number of bytes to evict, or
3484 	 * we're evicting all available buffers.
3485 	 */
3486 	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3487 		/*
3488 		 * Start eviction using a randomly selected sublist,
3489 		 * this is to try and evenly balance eviction across all
3490 		 * sublists. Always starting at the same sublist
3491 		 * (e.g. index 0) would cause evictions to favor certain
3492 		 * sublists over others.
3493 		 */
3494 		int sublist_idx = multilist_get_random_index(ml);
3495 		uint64_t scan_evicted = 0;
3496 
3497 		for (int i = 0; i < num_sublists; i++) {
3498 			uint64_t bytes_remaining;
3499 			uint64_t bytes_evicted;
3500 
3501 			if (bytes == ARC_EVICT_ALL)
3502 				bytes_remaining = ARC_EVICT_ALL;
3503 			else if (total_evicted < bytes)
3504 				bytes_remaining = bytes - total_evicted;
3505 			else
3506 				break;
3507 
3508 			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3509 			    markers[sublist_idx], spa, bytes_remaining);
3510 
3511 			scan_evicted += bytes_evicted;
3512 			total_evicted += bytes_evicted;
3513 
3514 			/* we've reached the end, wrap to the beginning */
3515 			if (++sublist_idx >= num_sublists)
3516 				sublist_idx = 0;
3517 		}
3518 
3519 		/*
3520 		 * If we didn't evict anything during this scan, we have
3521 		 * no reason to believe we'll evict more during another
3522 		 * scan, so break the loop.
3523 		 */
3524 		if (scan_evicted == 0) {
3525 			/* This isn't possible, let's make that obvious */
3526 			ASSERT3S(bytes, !=, 0);
3527 
3528 			/*
3529 			 * When bytes is ARC_EVICT_ALL, the only way to
3530 			 * break the loop is when scan_evicted is zero.
3531 			 * In that case, we actually have evicted enough,
3532 			 * so we don't want to increment the kstat.
3533 			 */
3534 			if (bytes != ARC_EVICT_ALL) {
3535 				ASSERT3S(total_evicted, <, bytes);
3536 				ARCSTAT_BUMP(arcstat_evict_not_enough);
3537 			}
3538 
3539 			break;
3540 		}
3541 	}
3542 
3543 	for (int i = 0; i < num_sublists; i++) {
3544 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3545 		multilist_sublist_remove(mls, markers[i]);
3546 		multilist_sublist_unlock(mls);
3547 
3548 		kmem_cache_free(hdr_full_cache, markers[i]);
3549 	}
3550 	kmem_free(markers, sizeof (*markers) * num_sublists);
3551 
3552 	return (total_evicted);
3553 }
3554 
3555 /*
3556  * Flush all "evictable" data of the given type from the arc state
3557  * specified. This will not evict any "active" buffers (i.e. referenced).
3558  *
3559  * When 'retry' is set to B_FALSE, the function will make a single pass
3560  * over the state and evict any buffers that it can. Since it doesn't
3561  * continually retry the eviction, it might end up leaving some buffers
3562  * in the ARC due to lock misses.
3563  *
3564  * When 'retry' is set to B_TRUE, the function will continually retry the
3565  * eviction until *all* evictable buffers have been removed from the
3566  * state. As a result, if concurrent insertions into the state are
3567  * allowed (e.g. if the ARC isn't shutting down), this function might
3568  * wind up in an infinite loop, continually trying to evict buffers.
3569  */
3570 static uint64_t
3571 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3572     boolean_t retry)
3573 {
3574 	uint64_t evicted = 0;
3575 
3576 	while (refcount_count(&state->arcs_esize[type]) != 0) {
3577 		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3578 
3579 		if (!retry)
3580 			break;
3581 	}
3582 
3583 	return (evicted);
3584 }
3585 
3586 /*
3587  * Evict the specified number of bytes from the state specified,
3588  * restricting eviction to the spa and type given. This function
3589  * prevents us from trying to evict more from a state's list than
3590  * is "evictable", and to skip evicting altogether when passed a
3591  * negative value for "bytes". In contrast, arc_evict_state() will
3592  * evict everything it can, when passed a negative value for "bytes".
3593  */
3594 static uint64_t
3595 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3596     arc_buf_contents_t type)
3597 {
3598 	int64_t delta;
3599 
3600 	if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3601 		delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3602 		return (arc_evict_state(state, spa, delta, type));
3603 	}
3604 
3605 	return (0);
3606 }
3607 
3608 /*
3609  * Evict metadata buffers from the cache, such that arc_meta_used is
3610  * capped by the arc_meta_limit tunable.
3611  */
3612 static uint64_t
3613 arc_adjust_meta(uint64_t meta_used)
3614 {
3615 	uint64_t total_evicted = 0;
3616 	int64_t target;
3617 
3618 	/*
3619 	 * If we're over the meta limit, we want to evict enough
3620 	 * metadata to get back under the meta limit. We don't want to
3621 	 * evict so much that we drop the MRU below arc_p, though. If
3622 	 * we're over the meta limit more than we're over arc_p, we
3623 	 * evict some from the MRU here, and some from the MFU below.
3624 	 */
3625 	target = MIN((int64_t)(meta_used - arc_meta_limit),
3626 	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3627 	    refcount_count(&arc_mru->arcs_size) - arc_p));
3628 
3629 	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3630 
3631 	/*
3632 	 * Similar to the above, we want to evict enough bytes to get us
3633 	 * below the meta limit, but not so much as to drop us below the
3634 	 * space allotted to the MFU (which is defined as arc_c - arc_p).
3635 	 */
3636 	target = MIN((int64_t)(meta_used - arc_meta_limit),
3637 	    (int64_t)(refcount_count(&arc_mfu->arcs_size) -
3638 	    (arc_c - arc_p)));
3639 
3640 	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3641 
3642 	return (total_evicted);
3643 }
3644 
3645 /*
3646  * Return the type of the oldest buffer in the given arc state
3647  *
3648  * This function will select a random sublist of type ARC_BUFC_DATA and
3649  * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3650  * is compared, and the type which contains the "older" buffer will be
3651  * returned.
3652  */
3653 static arc_buf_contents_t
3654 arc_adjust_type(arc_state_t *state)
3655 {
3656 	multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
3657 	multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
3658 	int data_idx = multilist_get_random_index(data_ml);
3659 	int meta_idx = multilist_get_random_index(meta_ml);
3660 	multilist_sublist_t *data_mls;
3661 	multilist_sublist_t *meta_mls;
3662 	arc_buf_contents_t type;
3663 	arc_buf_hdr_t *data_hdr;
3664 	arc_buf_hdr_t *meta_hdr;
3665 
3666 	/*
3667 	 * We keep the sublist lock until we're finished, to prevent
3668 	 * the headers from being destroyed via arc_evict_state().
3669 	 */
3670 	data_mls = multilist_sublist_lock(data_ml, data_idx);
3671 	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3672 
3673 	/*
3674 	 * These two loops are to ensure we skip any markers that
3675 	 * might be at the tail of the lists due to arc_evict_state().
3676 	 */
3677 
3678 	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3679 	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3680 		if (data_hdr->b_spa != 0)
3681 			break;
3682 	}
3683 
3684 	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3685 	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3686 		if (meta_hdr->b_spa != 0)
3687 			break;
3688 	}
3689 
3690 	if (data_hdr == NULL && meta_hdr == NULL) {
3691 		type = ARC_BUFC_DATA;
3692 	} else if (data_hdr == NULL) {
3693 		ASSERT3P(meta_hdr, !=, NULL);
3694 		type = ARC_BUFC_METADATA;
3695 	} else if (meta_hdr == NULL) {
3696 		ASSERT3P(data_hdr, !=, NULL);
3697 		type = ARC_BUFC_DATA;
3698 	} else {
3699 		ASSERT3P(data_hdr, !=, NULL);
3700 		ASSERT3P(meta_hdr, !=, NULL);
3701 
3702 		/* The headers can't be on the sublist without an L1 header */
3703 		ASSERT(HDR_HAS_L1HDR(data_hdr));
3704 		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3705 
3706 		if (data_hdr->b_l1hdr.b_arc_access <
3707 		    meta_hdr->b_l1hdr.b_arc_access) {
3708 			type = ARC_BUFC_DATA;
3709 		} else {
3710 			type = ARC_BUFC_METADATA;
3711 		}
3712 	}
3713 
3714 	multilist_sublist_unlock(meta_mls);
3715 	multilist_sublist_unlock(data_mls);
3716 
3717 	return (type);
3718 }
3719 
3720 /*
3721  * Evict buffers from the cache, such that arc_size is capped by arc_c.
3722  */
3723 static uint64_t
3724 arc_adjust(void)
3725 {
3726 	uint64_t total_evicted = 0;
3727 	uint64_t bytes;
3728 	int64_t target;
3729 	uint64_t asize = aggsum_value(&arc_size);
3730 	uint64_t ameta = aggsum_value(&arc_meta_used);
3731 
3732 	/*
3733 	 * If we're over arc_meta_limit, we want to correct that before
3734 	 * potentially evicting data buffers below.
3735 	 */
3736 	total_evicted += arc_adjust_meta(ameta);
3737 
3738 	/*
3739 	 * Adjust MRU size
3740 	 *
3741 	 * If we're over the target cache size, we want to evict enough
3742 	 * from the list to get back to our target size. We don't want
3743 	 * to evict too much from the MRU, such that it drops below
3744 	 * arc_p. So, if we're over our target cache size more than
3745 	 * the MRU is over arc_p, we'll evict enough to get back to
3746 	 * arc_p here, and then evict more from the MFU below.
3747 	 */
3748 	target = MIN((int64_t)(asize - arc_c),
3749 	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3750 	    refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
3751 
3752 	/*
3753 	 * If we're below arc_meta_min, always prefer to evict data.
3754 	 * Otherwise, try to satisfy the requested number of bytes to
3755 	 * evict from the type which contains older buffers; in an
3756 	 * effort to keep newer buffers in the cache regardless of their
3757 	 * type. If we cannot satisfy the number of bytes from this
3758 	 * type, spill over into the next type.
3759 	 */
3760 	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3761 	    ameta > arc_meta_min) {
3762 		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3763 		total_evicted += bytes;
3764 
3765 		/*
3766 		 * If we couldn't evict our target number of bytes from
3767 		 * metadata, we try to get the rest from data.
3768 		 */
3769 		target -= bytes;
3770 
3771 		total_evicted +=
3772 		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3773 	} else {
3774 		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3775 		total_evicted += bytes;
3776 
3777 		/*
3778 		 * If we couldn't evict our target number of bytes from
3779 		 * data, we try to get the rest from metadata.
3780 		 */
3781 		target -= bytes;
3782 
3783 		total_evicted +=
3784 		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3785 	}
3786 
3787 	/*
3788 	 * Adjust MFU size
3789 	 *
3790 	 * Now that we've tried to evict enough from the MRU to get its
3791 	 * size back to arc_p, if we're still above the target cache
3792 	 * size, we evict the rest from the MFU.
3793 	 */
3794 	target = asize - arc_c;
3795 
3796 	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3797 	    ameta > arc_meta_min) {
3798 		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3799 		total_evicted += bytes;
3800 
3801 		/*
3802 		 * If we couldn't evict our target number of bytes from
3803 		 * metadata, we try to get the rest from data.
3804 		 */
3805 		target -= bytes;
3806 
3807 		total_evicted +=
3808 		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3809 	} else {
3810 		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3811 		total_evicted += bytes;
3812 
3813 		/*
3814 		 * If we couldn't evict our target number of bytes from
3815 		 * data, we try to get the rest from data.
3816 		 */
3817 		target -= bytes;
3818 
3819 		total_evicted +=
3820 		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3821 	}
3822 
3823 	/*
3824 	 * Adjust ghost lists
3825 	 *
3826 	 * In addition to the above, the ARC also defines target values
3827 	 * for the ghost lists. The sum of the mru list and mru ghost
3828 	 * list should never exceed the target size of the cache, and
3829 	 * the sum of the mru list, mfu list, mru ghost list, and mfu
3830 	 * ghost list should never exceed twice the target size of the
3831 	 * cache. The following logic enforces these limits on the ghost
3832 	 * caches, and evicts from them as needed.
3833 	 */
3834 	target = refcount_count(&arc_mru->arcs_size) +
3835 	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3836 
3837 	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3838 	total_evicted += bytes;
3839 
3840 	target -= bytes;
3841 
3842 	total_evicted +=
3843 	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3844 
3845 	/*
3846 	 * We assume the sum of the mru list and mfu list is less than
3847 	 * or equal to arc_c (we enforced this above), which means we
3848 	 * can use the simpler of the two equations below:
3849 	 *
3850 	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3851 	 *		    mru ghost + mfu ghost <= arc_c
3852 	 */
3853 	target = refcount_count(&arc_mru_ghost->arcs_size) +
3854 	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3855 
3856 	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3857 	total_evicted += bytes;
3858 
3859 	target -= bytes;
3860 
3861 	total_evicted +=
3862 	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3863 
3864 	return (total_evicted);
3865 }
3866 
3867 void
3868 arc_flush(spa_t *spa, boolean_t retry)
3869 {
3870 	uint64_t guid = 0;
3871 
3872 	/*
3873 	 * If retry is B_TRUE, a spa must not be specified since we have
3874 	 * no good way to determine if all of a spa's buffers have been
3875 	 * evicted from an arc state.
3876 	 */
3877 	ASSERT(!retry || spa == 0);
3878 
3879 	if (spa != NULL)
3880 		guid = spa_load_guid(spa);
3881 
3882 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3883 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3884 
3885 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3886 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3887 
3888 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3889 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3890 
3891 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3892 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3893 }
3894 
3895 void
3896 arc_shrink(int64_t to_free)
3897 {
3898 	uint64_t asize = aggsum_value(&arc_size);
3899 	if (arc_c > arc_c_min) {
3900 
3901 		if (arc_c > arc_c_min + to_free)
3902 			atomic_add_64(&arc_c, -to_free);
3903 		else
3904 			arc_c = arc_c_min;
3905 
3906 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3907 		if (asize < arc_c)
3908 			arc_c = MAX(asize, arc_c_min);
3909 		if (arc_p > arc_c)
3910 			arc_p = (arc_c >> 1);
3911 		ASSERT(arc_c >= arc_c_min);
3912 		ASSERT((int64_t)arc_p >= 0);
3913 	}
3914 
3915 	if (asize > arc_c)
3916 		(void) arc_adjust();
3917 }
3918 
3919 typedef enum free_memory_reason_t {
3920 	FMR_UNKNOWN,
3921 	FMR_NEEDFREE,
3922 	FMR_LOTSFREE,
3923 	FMR_SWAPFS_MINFREE,
3924 	FMR_PAGES_PP_MAXIMUM,
3925 	FMR_HEAP_ARENA,
3926 	FMR_ZIO_ARENA,
3927 } free_memory_reason_t;
3928 
3929 int64_t last_free_memory;
3930 free_memory_reason_t last_free_reason;
3931 
3932 /*
3933  * Additional reserve of pages for pp_reserve.
3934  */
3935 int64_t arc_pages_pp_reserve = 64;
3936 
3937 /*
3938  * Additional reserve of pages for swapfs.
3939  */
3940 int64_t arc_swapfs_reserve = 64;
3941 
3942 /*
3943  * Return the amount of memory that can be consumed before reclaim will be
3944  * needed.  Positive if there is sufficient free memory, negative indicates
3945  * the amount of memory that needs to be freed up.
3946  */
3947 static int64_t
3948 arc_available_memory(void)
3949 {
3950 	int64_t lowest = INT64_MAX;
3951 	int64_t n;
3952 	free_memory_reason_t r = FMR_UNKNOWN;
3953 
3954 #ifdef _KERNEL
3955 	if (needfree > 0) {
3956 		n = PAGESIZE * (-needfree);
3957 		if (n < lowest) {
3958 			lowest = n;
3959 			r = FMR_NEEDFREE;
3960 		}
3961 	}
3962 
3963 	/*
3964 	 * check that we're out of range of the pageout scanner.  It starts to
3965 	 * schedule paging if freemem is less than lotsfree and needfree.
3966 	 * lotsfree is the high-water mark for pageout, and needfree is the
3967 	 * number of needed free pages.  We add extra pages here to make sure
3968 	 * the scanner doesn't start up while we're freeing memory.
3969 	 */
3970 	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3971 	if (n < lowest) {
3972 		lowest = n;
3973 		r = FMR_LOTSFREE;
3974 	}
3975 
3976 	/*
3977 	 * check to make sure that swapfs has enough space so that anon
3978 	 * reservations can still succeed. anon_resvmem() checks that the
3979 	 * availrmem is greater than swapfs_minfree, and the number of reserved
3980 	 * swap pages.  We also add a bit of extra here just to prevent
3981 	 * circumstances from getting really dire.
3982 	 */
3983 	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3984 	    desfree - arc_swapfs_reserve);
3985 	if (n < lowest) {
3986 		lowest = n;
3987 		r = FMR_SWAPFS_MINFREE;
3988 	}
3989 
3990 
3991 	/*
3992 	 * Check that we have enough availrmem that memory locking (e.g., via
3993 	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
3994 	 * stores the number of pages that cannot be locked; when availrmem
3995 	 * drops below pages_pp_maximum, page locking mechanisms such as
3996 	 * page_pp_lock() will fail.)
3997 	 */
3998 	n = PAGESIZE * (availrmem - pages_pp_maximum -
3999 	    arc_pages_pp_reserve);
4000 	if (n < lowest) {
4001 		lowest = n;
4002 		r = FMR_PAGES_PP_MAXIMUM;
4003 	}
4004 
4005 #if defined(__i386)
4006 	/*
4007 	 * If we're on an i386 platform, it's possible that we'll exhaust the
4008 	 * kernel heap space before we ever run out of available physical
4009 	 * memory.  Most checks of the size of the heap_area compare against
4010 	 * tune.t_minarmem, which is the minimum available real memory that we
4011 	 * can have in the system.  However, this is generally fixed at 25 pages
4012 	 * which is so low that it's useless.  In this comparison, we seek to
4013 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4014 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
4015 	 * free)
4016 	 */
4017 	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
4018 	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4019 	if (n < lowest) {
4020 		lowest = n;
4021 		r = FMR_HEAP_ARENA;
4022 	}
4023 #endif
4024 
4025 	/*
4026 	 * If zio data pages are being allocated out of a separate heap segment,
4027 	 * then enforce that the size of available vmem for this arena remains
4028 	 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4029 	 *
4030 	 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4031 	 * memory (in the zio_arena) free, which can avoid memory
4032 	 * fragmentation issues.
4033 	 */
4034 	if (zio_arena != NULL) {
4035 		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4036 		    (vmem_size(zio_arena, VMEM_ALLOC) >>
4037 		    arc_zio_arena_free_shift);
4038 		if (n < lowest) {
4039 			lowest = n;
4040 			r = FMR_ZIO_ARENA;
4041 		}
4042 	}
4043 #else
4044 	/* Every 100 calls, free a small amount */
4045 	if (spa_get_random(100) == 0)
4046 		lowest = -1024;
4047 #endif
4048 
4049 	last_free_memory = lowest;
4050 	last_free_reason = r;
4051 
4052 	return (lowest);
4053 }
4054 
4055 
4056 /*
4057  * Determine if the system is under memory pressure and is asking
4058  * to reclaim memory. A return value of B_TRUE indicates that the system
4059  * is under memory pressure and that the arc should adjust accordingly.
4060  */
4061 static boolean_t
4062 arc_reclaim_needed(void)
4063 {
4064 	return (arc_available_memory() < 0);
4065 }
4066 
4067 static void
4068 arc_kmem_reap_now(void)
4069 {
4070 	size_t			i;
4071 	kmem_cache_t		*prev_cache = NULL;
4072 	kmem_cache_t		*prev_data_cache = NULL;
4073 	extern kmem_cache_t	*zio_buf_cache[];
4074 	extern kmem_cache_t	*zio_data_buf_cache[];
4075 	extern kmem_cache_t	*range_seg_cache;
4076 	extern kmem_cache_t	*abd_chunk_cache;
4077 
4078 #ifdef _KERNEL
4079 	if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) {
4080 		/*
4081 		 * We are exceeding our meta-data cache limit.
4082 		 * Purge some DNLC entries to release holds on meta-data.
4083 		 */
4084 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4085 	}
4086 #if defined(__i386)
4087 	/*
4088 	 * Reclaim unused memory from all kmem caches.
4089 	 */
4090 	kmem_reap();
4091 #endif
4092 #endif
4093 
4094 	/*
4095 	 * If a kmem reap is already active, don't schedule more.  We must
4096 	 * check for this because kmem_cache_reap_soon() won't actually
4097 	 * block on the cache being reaped (this is to prevent callers from
4098 	 * becoming implicitly blocked by a system-wide kmem reap -- which,
4099 	 * on a system with many, many full magazines, can take minutes).
4100 	 */
4101 	if (kmem_cache_reap_active())
4102 		return;
4103 
4104 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4105 		if (zio_buf_cache[i] != prev_cache) {
4106 			prev_cache = zio_buf_cache[i];
4107 			kmem_cache_reap_soon(zio_buf_cache[i]);
4108 		}
4109 		if (zio_data_buf_cache[i] != prev_data_cache) {
4110 			prev_data_cache = zio_data_buf_cache[i];
4111 			kmem_cache_reap_soon(zio_data_buf_cache[i]);
4112 		}
4113 	}
4114 	kmem_cache_reap_soon(abd_chunk_cache);
4115 	kmem_cache_reap_soon(buf_cache);
4116 	kmem_cache_reap_soon(hdr_full_cache);
4117 	kmem_cache_reap_soon(hdr_l2only_cache);
4118 	kmem_cache_reap_soon(range_seg_cache);
4119 
4120 	if (zio_arena != NULL) {
4121 		/*
4122 		 * Ask the vmem arena to reclaim unused memory from its
4123 		 * quantum caches.
4124 		 */
4125 		vmem_qcache_reap(zio_arena);
4126 	}
4127 }
4128 
4129 /*
4130  * Threads can block in arc_get_data_impl() waiting for this thread to evict
4131  * enough data and signal them to proceed. When this happens, the threads in
4132  * arc_get_data_impl() are sleeping while holding the hash lock for their
4133  * particular arc header. Thus, we must be careful to never sleep on a
4134  * hash lock in this thread. This is to prevent the following deadlock:
4135  *
4136  *  - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L",
4137  *    waiting for the reclaim thread to signal it.
4138  *
4139  *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4140  *    fails, and goes to sleep forever.
4141  *
4142  * This possible deadlock is avoided by always acquiring a hash lock
4143  * using mutex_tryenter() from arc_reclaim_thread().
4144  */
4145 /* ARGSUSED */
4146 static void
4147 arc_reclaim_thread(void *unused)
4148 {
4149 	hrtime_t		growtime = 0;
4150 	hrtime_t		kmem_reap_time = 0;
4151 	callb_cpr_t		cpr;
4152 
4153 	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4154 
4155 	mutex_enter(&arc_reclaim_lock);
4156 	while (!arc_reclaim_thread_exit) {
4157 		uint64_t evicted = 0;
4158 
4159 		/*
4160 		 * This is necessary in order for the mdb ::arc dcmd to
4161 		 * show up to date information. Since the ::arc command
4162 		 * does not call the kstat's update function, without
4163 		 * this call, the command may show stale stats for the
4164 		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4165 		 * with this change, the data might be up to 1 second
4166 		 * out of date; but that should suffice. The arc_state_t
4167 		 * structures can be queried directly if more accurate
4168 		 * information is needed.
4169 		 */
4170 		if (arc_ksp != NULL)
4171 			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4172 
4173 		mutex_exit(&arc_reclaim_lock);
4174 
4175 		/*
4176 		 * We call arc_adjust() before (possibly) calling
4177 		 * arc_kmem_reap_now(), so that we can wake up
4178 		 * arc_get_data_impl() sooner.
4179 		 */
4180 		evicted = arc_adjust();
4181 
4182 		int64_t free_memory = arc_available_memory();
4183 		if (free_memory < 0) {
4184 			hrtime_t curtime = gethrtime();
4185 			arc_no_grow = B_TRUE;
4186 			arc_warm = B_TRUE;
4187 
4188 			/*
4189 			 * Wait at least zfs_grow_retry (default 60) seconds
4190 			 * before considering growing.
4191 			 */
4192 			growtime = curtime + SEC2NSEC(arc_grow_retry);
4193 
4194 			/*
4195 			 * Wait at least arc_kmem_cache_reap_retry_ms
4196 			 * between arc_kmem_reap_now() calls. Without
4197 			 * this check it is possible to end up in a
4198 			 * situation where we spend lots of time
4199 			 * reaping caches, while we're near arc_c_min.
4200 			 */
4201 			if (curtime >= kmem_reap_time) {
4202 				arc_kmem_reap_now();
4203 				kmem_reap_time = gethrtime() +
4204 				    MSEC2NSEC(arc_kmem_cache_reap_retry_ms);
4205 			}
4206 
4207 			/*
4208 			 * If we are still low on memory, shrink the ARC
4209 			 * so that we have arc_shrink_min free space.
4210 			 */
4211 			free_memory = arc_available_memory();
4212 
4213 			int64_t to_free =
4214 			    (arc_c >> arc_shrink_shift) - free_memory;
4215 			if (to_free > 0) {
4216 #ifdef _KERNEL
4217 				to_free = MAX(to_free, ptob(needfree));
4218 #endif
4219 				arc_shrink(to_free);
4220 			}
4221 		} else if (free_memory < arc_c >> arc_no_grow_shift) {
4222 			arc_no_grow = B_TRUE;
4223 		} else if (gethrtime() >= growtime) {
4224 			arc_no_grow = B_FALSE;
4225 		}
4226 
4227 		mutex_enter(&arc_reclaim_lock);
4228 
4229 		/*
4230 		 * If evicted is zero, we couldn't evict anything via
4231 		 * arc_adjust(). This could be due to hash lock
4232 		 * collisions, but more likely due to the majority of
4233 		 * arc buffers being unevictable. Therefore, even if
4234 		 * arc_size is above arc_c, another pass is unlikely to
4235 		 * be helpful and could potentially cause us to enter an
4236 		 * infinite loop.
4237 		 */
4238 		if (aggsum_compare(&arc_size, arc_c) <= 0|| evicted == 0) {
4239 			/*
4240 			 * We're either no longer overflowing, or we
4241 			 * can't evict anything more, so we should wake
4242 			 * up any threads before we go to sleep.
4243 			 */
4244 			cv_broadcast(&arc_reclaim_waiters_cv);
4245 
4246 			/*
4247 			 * Block until signaled, or after one second (we
4248 			 * might need to perform arc_kmem_reap_now()
4249 			 * even if we aren't being signalled)
4250 			 */
4251 			CALLB_CPR_SAFE_BEGIN(&cpr);
4252 			(void) cv_timedwait_hires(&arc_reclaim_thread_cv,
4253 			    &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
4254 			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
4255 		}
4256 	}
4257 
4258 	arc_reclaim_thread_exit = B_FALSE;
4259 	cv_broadcast(&arc_reclaim_thread_cv);
4260 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
4261 	thread_exit();
4262 }
4263 
4264 /*
4265  * Adapt arc info given the number of bytes we are trying to add and
4266  * the state that we are comming from.  This function is only called
4267  * when we are adding new content to the cache.
4268  */
4269 static void
4270 arc_adapt(int bytes, arc_state_t *state)
4271 {
4272 	int mult;
4273 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4274 	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4275 	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4276 
4277 	if (state == arc_l2c_only)
4278 		return;
4279 
4280 	ASSERT(bytes > 0);
4281 	/*
4282 	 * Adapt the target size of the MRU list:
4283 	 *	- if we just hit in the MRU ghost list, then increase
4284 	 *	  the target size of the MRU list.
4285 	 *	- if we just hit in the MFU ghost list, then increase
4286 	 *	  the target size of the MFU list by decreasing the
4287 	 *	  target size of the MRU list.
4288 	 */
4289 	if (state == arc_mru_ghost) {
4290 		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4291 		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4292 
4293 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4294 	} else if (state == arc_mfu_ghost) {
4295 		uint64_t delta;
4296 
4297 		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4298 		mult = MIN(mult, 10);
4299 
4300 		delta = MIN(bytes * mult, arc_p);
4301 		arc_p = MAX(arc_p_min, arc_p - delta);
4302 	}
4303 	ASSERT((int64_t)arc_p >= 0);
4304 
4305 	if (arc_reclaim_needed()) {
4306 		cv_signal(&arc_reclaim_thread_cv);
4307 		return;
4308 	}
4309 
4310 	if (arc_no_grow)
4311 		return;
4312 
4313 	if (arc_c >= arc_c_max)
4314 		return;
4315 
4316 	/*
4317 	 * If we're within (2 * maxblocksize) bytes of the target
4318 	 * cache size, increment the target cache size
4319 	 */
4320 	if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) >
4321 	    0) {
4322 		atomic_add_64(&arc_c, (int64_t)bytes);
4323 		if (arc_c > arc_c_max)
4324 			arc_c = arc_c_max;
4325 		else if (state == arc_anon)
4326 			atomic_add_64(&arc_p, (int64_t)bytes);
4327 		if (arc_p > arc_c)
4328 			arc_p = arc_c;
4329 	}
4330 	ASSERT((int64_t)arc_p >= 0);
4331 }
4332 
4333 /*
4334  * Check if arc_size has grown past our upper threshold, determined by
4335  * zfs_arc_overflow_shift.
4336  */
4337 static boolean_t
4338 arc_is_overflowing(void)
4339 {
4340 	/* Always allow at least one block of overflow */
4341 	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4342 	    arc_c >> zfs_arc_overflow_shift);
4343 
4344 	/*
4345 	 * We just compare the lower bound here for performance reasons. Our
4346 	 * primary goals are to make sure that the arc never grows without
4347 	 * bound, and that it can reach its maximum size. This check
4348 	 * accomplishes both goals. The maximum amount we could run over by is
4349 	 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
4350 	 * in the ARC. In practice, that's in the tens of MB, which is low
4351 	 * enough to be safe.
4352 	 */
4353 	return (aggsum_lower_bound(&arc_size) >= arc_c + overflow);
4354 }
4355 
4356 static abd_t *
4357 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4358 {
4359 	arc_buf_contents_t type = arc_buf_type(hdr);
4360 
4361 	arc_get_data_impl(hdr, size, tag);
4362 	if (type == ARC_BUFC_METADATA) {
4363 		return (abd_alloc(size, B_TRUE));
4364 	} else {
4365 		ASSERT(type == ARC_BUFC_DATA);
4366 		return (abd_alloc(size, B_FALSE));
4367 	}
4368 }
4369 
4370 static void *
4371 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4372 {
4373 	arc_buf_contents_t type = arc_buf_type(hdr);
4374 
4375 	arc_get_data_impl(hdr, size, tag);
4376 	if (type == ARC_BUFC_METADATA) {
4377 		return (zio_buf_alloc(size));
4378 	} else {
4379 		ASSERT(type == ARC_BUFC_DATA);
4380 		return (zio_data_buf_alloc(size));
4381 	}
4382 }
4383 
4384 /*
4385  * Allocate a block and return it to the caller. If we are hitting the
4386  * hard limit for the cache size, we must sleep, waiting for the eviction
4387  * thread to catch up. If we're past the target size but below the hard
4388  * limit, we'll only signal the reclaim thread and continue on.
4389  */
4390 static void
4391 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4392 {
4393 	arc_state_t *state = hdr->b_l1hdr.b_state;
4394 	arc_buf_contents_t type = arc_buf_type(hdr);
4395 
4396 	arc_adapt(size, state);
4397 
4398 	/*
4399 	 * If arc_size is currently overflowing, and has grown past our
4400 	 * upper limit, we must be adding data faster than the evict
4401 	 * thread can evict. Thus, to ensure we don't compound the
4402 	 * problem by adding more data and forcing arc_size to grow even
4403 	 * further past it's target size, we halt and wait for the
4404 	 * eviction thread to catch up.
4405 	 *
4406 	 * It's also possible that the reclaim thread is unable to evict
4407 	 * enough buffers to get arc_size below the overflow limit (e.g.
4408 	 * due to buffers being un-evictable, or hash lock collisions).
4409 	 * In this case, we want to proceed regardless if we're
4410 	 * overflowing; thus we don't use a while loop here.
4411 	 */
4412 	if (arc_is_overflowing()) {
4413 		mutex_enter(&arc_reclaim_lock);
4414 
4415 		/*
4416 		 * Now that we've acquired the lock, we may no longer be
4417 		 * over the overflow limit, lets check.
4418 		 *
4419 		 * We're ignoring the case of spurious wake ups. If that
4420 		 * were to happen, it'd let this thread consume an ARC
4421 		 * buffer before it should have (i.e. before we're under
4422 		 * the overflow limit and were signalled by the reclaim
4423 		 * thread). As long as that is a rare occurrence, it
4424 		 * shouldn't cause any harm.
4425 		 */
4426 		if (arc_is_overflowing()) {
4427 			cv_signal(&arc_reclaim_thread_cv);
4428 			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4429 		}
4430 
4431 		mutex_exit(&arc_reclaim_lock);
4432 	}
4433 
4434 	VERIFY3U(hdr->b_type, ==, type);
4435 	if (type == ARC_BUFC_METADATA) {
4436 		arc_space_consume(size, ARC_SPACE_META);
4437 	} else {
4438 		arc_space_consume(size, ARC_SPACE_DATA);
4439 	}
4440 
4441 	/*
4442 	 * Update the state size.  Note that ghost states have a
4443 	 * "ghost size" and so don't need to be updated.
4444 	 */
4445 	if (!GHOST_STATE(state)) {
4446 
4447 		(void) refcount_add_many(&state->arcs_size, size, tag);
4448 
4449 		/*
4450 		 * If this is reached via arc_read, the link is
4451 		 * protected by the hash lock. If reached via
4452 		 * arc_buf_alloc, the header should not be accessed by
4453 		 * any other thread. And, if reached via arc_read_done,
4454 		 * the hash lock will protect it if it's found in the
4455 		 * hash table; otherwise no other thread should be
4456 		 * trying to [add|remove]_reference it.
4457 		 */
4458 		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4459 			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4460 			(void) refcount_add_many(&state->arcs_esize[type],
4461 			    size, tag);
4462 		}
4463 
4464 		/*
4465 		 * If we are growing the cache, and we are adding anonymous
4466 		 * data, and we have outgrown arc_p, update arc_p
4467 		 */
4468 		if (aggsum_compare(&arc_size, arc_c) < 0 &&
4469 		    hdr->b_l1hdr.b_state == arc_anon &&
4470 		    (refcount_count(&arc_anon->arcs_size) +
4471 		    refcount_count(&arc_mru->arcs_size) > arc_p))
4472 			arc_p = MIN(arc_c, arc_p + size);
4473 	}
4474 }
4475 
4476 static void
4477 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
4478 {
4479 	arc_free_data_impl(hdr, size, tag);
4480 	abd_free(abd);
4481 }
4482 
4483 static void
4484 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
4485 {
4486 	arc_buf_contents_t type = arc_buf_type(hdr);
4487 
4488 	arc_free_data_impl(hdr, size, tag);
4489 	if (type == ARC_BUFC_METADATA) {
4490 		zio_buf_free(buf, size);
4491 	} else {
4492 		ASSERT(type == ARC_BUFC_DATA);
4493 		zio_data_buf_free(buf, size);
4494 	}
4495 }
4496 
4497 /*
4498  * Free the arc data buffer.
4499  */
4500 static void
4501 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4502 {
4503 	arc_state_t *state = hdr->b_l1hdr.b_state;
4504 	arc_buf_contents_t type = arc_buf_type(hdr);
4505 
4506 	/* protected by hash lock, if in the hash table */
4507 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4508 		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4509 		ASSERT(state != arc_anon && state != arc_l2c_only);
4510 
4511 		(void) refcount_remove_many(&state->arcs_esize[type],
4512 		    size, tag);
4513 	}
4514 	(void) refcount_remove_many(&state->arcs_size, size, tag);
4515 
4516 	VERIFY3U(hdr->b_type, ==, type);
4517 	if (type == ARC_BUFC_METADATA) {
4518 		arc_space_return(size, ARC_SPACE_META);
4519 	} else {
4520 		ASSERT(type == ARC_BUFC_DATA);
4521 		arc_space_return(size, ARC_SPACE_DATA);
4522 	}
4523 }
4524 
4525 /*
4526  * This routine is called whenever a buffer is accessed.
4527  * NOTE: the hash lock is dropped in this function.
4528  */
4529 static void
4530 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4531 {
4532 	clock_t now;
4533 
4534 	ASSERT(MUTEX_HELD(hash_lock));
4535 	ASSERT(HDR_HAS_L1HDR(hdr));
4536 
4537 	if (hdr->b_l1hdr.b_state == arc_anon) {
4538 		/*
4539 		 * This buffer is not in the cache, and does not
4540 		 * appear in our "ghost" list.  Add the new buffer
4541 		 * to the MRU state.
4542 		 */
4543 
4544 		ASSERT0(hdr->b_l1hdr.b_arc_access);
4545 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4546 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4547 		arc_change_state(arc_mru, hdr, hash_lock);
4548 
4549 	} else if (hdr->b_l1hdr.b_state == arc_mru) {
4550 		now = ddi_get_lbolt();
4551 
4552 		/*
4553 		 * If this buffer is here because of a prefetch, then either:
4554 		 * - clear the flag if this is a "referencing" read
4555 		 *   (any subsequent access will bump this into the MFU state).
4556 		 * or
4557 		 * - move the buffer to the head of the list if this is
4558 		 *   another prefetch (to make it less likely to be evicted).
4559 		 */
4560 		if (HDR_PREFETCH(hdr)) {
4561 			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4562 				/* link protected by hash lock */
4563 				ASSERT(multilist_link_active(
4564 				    &hdr->b_l1hdr.b_arc_node));
4565 			} else {
4566 				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4567 				ARCSTAT_BUMP(arcstat_mru_hits);
4568 			}
4569 			hdr->b_l1hdr.b_arc_access = now;
4570 			return;
4571 		}
4572 
4573 		/*
4574 		 * This buffer has been "accessed" only once so far,
4575 		 * but it is still in the cache. Move it to the MFU
4576 		 * state.
4577 		 */
4578 		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4579 			/*
4580 			 * More than 125ms have passed since we
4581 			 * instantiated this buffer.  Move it to the
4582 			 * most frequently used state.
4583 			 */
4584 			hdr->b_l1hdr.b_arc_access = now;
4585 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4586 			arc_change_state(arc_mfu, hdr, hash_lock);
4587 		}
4588 		ARCSTAT_BUMP(arcstat_mru_hits);
4589 	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4590 		arc_state_t	*new_state;
4591 		/*
4592 		 * This buffer has been "accessed" recently, but
4593 		 * was evicted from the cache.  Move it to the
4594 		 * MFU state.
4595 		 */
4596 
4597 		if (HDR_PREFETCH(hdr)) {
4598 			new_state = arc_mru;
4599 			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4600 				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4601 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4602 		} else {
4603 			new_state = arc_mfu;
4604 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4605 		}
4606 
4607 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4608 		arc_change_state(new_state, hdr, hash_lock);
4609 
4610 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4611 	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
4612 		/*
4613 		 * This buffer has been accessed more than once and is
4614 		 * still in the cache.  Keep it in the MFU state.
4615 		 *
4616 		 * NOTE: an add_reference() that occurred when we did
4617 		 * the arc_read() will have kicked this off the list.
4618 		 * If it was a prefetch, we will explicitly move it to
4619 		 * the head of the list now.
4620 		 */
4621 		if ((HDR_PREFETCH(hdr)) != 0) {
4622 			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4623 			/* link protected by hash_lock */
4624 			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4625 		}
4626 		ARCSTAT_BUMP(arcstat_mfu_hits);
4627 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4628 	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4629 		arc_state_t	*new_state = arc_mfu;
4630 		/*
4631 		 * This buffer has been accessed more than once but has
4632 		 * been evicted from the cache.  Move it back to the
4633 		 * MFU state.
4634 		 */
4635 
4636 		if (HDR_PREFETCH(hdr)) {
4637 			/*
4638 			 * This is a prefetch access...
4639 			 * move this block back to the MRU state.
4640 			 */
4641 			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4642 			new_state = arc_mru;
4643 		}
4644 
4645 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4646 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4647 		arc_change_state(new_state, hdr, hash_lock);
4648 
4649 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4650 	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4651 		/*
4652 		 * This buffer is on the 2nd Level ARC.
4653 		 */
4654 
4655 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4656 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4657 		arc_change_state(arc_mfu, hdr, hash_lock);
4658 	} else {
4659 		ASSERT(!"invalid arc state");
4660 	}
4661 }
4662 
4663 /* a generic arc_done_func_t which you can use */
4664 /* ARGSUSED */
4665 void
4666 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4667 {
4668 	if (zio == NULL || zio->io_error == 0)
4669 		bcopy(buf->b_data, arg, arc_buf_size(buf));
4670 	arc_buf_destroy(buf, arg);
4671 }
4672 
4673 /* a generic arc_done_func_t */
4674 void
4675 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4676 {
4677 	arc_buf_t **bufp = arg;
4678 	if (zio && zio->io_error) {
4679 		arc_buf_destroy(buf, arg);
4680 		*bufp = NULL;
4681 	} else {
4682 		*bufp = buf;
4683 		ASSERT(buf->b_data);
4684 	}
4685 }
4686 
4687 static void
4688 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
4689 {
4690 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
4691 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
4692 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
4693 	} else {
4694 		if (HDR_COMPRESSION_ENABLED(hdr)) {
4695 			ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
4696 			    BP_GET_COMPRESS(bp));
4697 		}
4698 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
4699 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
4700 	}
4701 }
4702 
4703 static void
4704 arc_read_done(zio_t *zio)
4705 {
4706 	arc_buf_hdr_t	*hdr = zio->io_private;
4707 	kmutex_t	*hash_lock = NULL;
4708 	arc_callback_t	*callback_list;
4709 	arc_callback_t	*acb;
4710 	boolean_t	freeable = B_FALSE;
4711 	boolean_t	no_zio_error = (zio->io_error == 0);
4712 
4713 	/*
4714 	 * The hdr was inserted into hash-table and removed from lists
4715 	 * prior to starting I/O.  We should find this header, since
4716 	 * it's in the hash table, and it should be legit since it's
4717 	 * not possible to evict it during the I/O.  The only possible
4718 	 * reason for it not to be found is if we were freed during the
4719 	 * read.
4720 	 */
4721 	if (HDR_IN_HASH_TABLE(hdr)) {
4722 		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4723 		ASSERT3U(hdr->b_dva.dva_word[0], ==,
4724 		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
4725 		ASSERT3U(hdr->b_dva.dva_word[1], ==,
4726 		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
4727 
4728 		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4729 		    &hash_lock);
4730 
4731 		ASSERT((found == hdr &&
4732 		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4733 		    (found == hdr && HDR_L2_READING(hdr)));
4734 		ASSERT3P(hash_lock, !=, NULL);
4735 	}
4736 
4737 	if (no_zio_error) {
4738 		/* byteswap if necessary */
4739 		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
4740 			if (BP_GET_LEVEL(zio->io_bp) > 0) {
4741 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
4742 			} else {
4743 				hdr->b_l1hdr.b_byteswap =
4744 				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4745 			}
4746 		} else {
4747 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
4748 		}
4749 	}
4750 
4751 	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
4752 	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4753 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
4754 
4755 	callback_list = hdr->b_l1hdr.b_acb;
4756 	ASSERT3P(callback_list, !=, NULL);
4757 
4758 	if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
4759 		/*
4760 		 * Only call arc_access on anonymous buffers.  This is because
4761 		 * if we've issued an I/O for an evicted buffer, we've already
4762 		 * called arc_access (to prevent any simultaneous readers from
4763 		 * getting confused).
4764 		 */
4765 		arc_access(hdr, hash_lock);
4766 	}
4767 
4768 	/*
4769 	 * If a read request has a callback (i.e. acb_done is not NULL), then we
4770 	 * make a buf containing the data according to the parameters which were
4771 	 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
4772 	 * aren't needlessly decompressing the data multiple times.
4773 	 */
4774 	int callback_cnt = 0;
4775 	for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
4776 		if (!acb->acb_done)
4777 			continue;
4778 
4779 		/* This is a demand read since prefetches don't use callbacks */
4780 		callback_cnt++;
4781 
4782 		int error = arc_buf_alloc_impl(hdr, acb->acb_private,
4783 		    acb->acb_compressed, no_zio_error, &acb->acb_buf);
4784 		if (no_zio_error) {
4785 			zio->io_error = error;
4786 		}
4787 	}
4788 	hdr->b_l1hdr.b_acb = NULL;
4789 	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
4790 	if (callback_cnt == 0) {
4791 		ASSERT(HDR_PREFETCH(hdr));
4792 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
4793 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
4794 	}
4795 
4796 	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4797 	    callback_list != NULL);
4798 
4799 	if (no_zio_error) {
4800 		arc_hdr_verify(hdr, zio->io_bp);
4801 	} else {
4802 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
4803 		if (hdr->b_l1hdr.b_state != arc_anon)
4804 			arc_change_state(arc_anon, hdr, hash_lock);
4805 		if (HDR_IN_HASH_TABLE(hdr))
4806 			buf_hash_remove(hdr);
4807 		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4808 	}
4809 
4810 	/*
4811 	 * Broadcast before we drop the hash_lock to avoid the possibility
4812 	 * that the hdr (and hence the cv) might be freed before we get to
4813 	 * the cv_broadcast().
4814 	 */
4815 	cv_broadcast(&hdr->b_l1hdr.b_cv);
4816 
4817 	if (hash_lock != NULL) {
4818 		mutex_exit(hash_lock);
4819 	} else {
4820 		/*
4821 		 * This block was freed while we waited for the read to
4822 		 * complete.  It has been removed from the hash table and
4823 		 * moved to the anonymous state (so that it won't show up
4824 		 * in the cache).
4825 		 */
4826 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4827 		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4828 	}
4829 
4830 	/* execute each callback and free its structure */
4831 	while ((acb = callback_list) != NULL) {
4832 		if (acb->acb_done)
4833 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4834 
4835 		if (acb->acb_zio_dummy != NULL) {
4836 			acb->acb_zio_dummy->io_error = zio->io_error;
4837 			zio_nowait(acb->acb_zio_dummy);
4838 		}
4839 
4840 		callback_list = acb->acb_next;
4841 		kmem_free(acb, sizeof (arc_callback_t));
4842 	}
4843 
4844 	if (freeable)
4845 		arc_hdr_destroy(hdr);
4846 }
4847 
4848 /*
4849  * "Read" the block at the specified DVA (in bp) via the
4850  * cache.  If the block is found in the cache, invoke the provided
4851  * callback immediately and return.  Note that the `zio' parameter
4852  * in the callback will be NULL in this case, since no IO was
4853  * required.  If the block is not in the cache pass the read request
4854  * on to the spa with a substitute callback function, so that the
4855  * requested block will be added to the cache.
4856  *
4857  * If a read request arrives for a block that has a read in-progress,
4858  * either wait for the in-progress read to complete (and return the
4859  * results); or, if this is a read with a "done" func, add a record
4860  * to the read to invoke the "done" func when the read completes,
4861  * and return; or just return.
4862  *
4863  * arc_read_done() will invoke all the requested "done" functions
4864  * for readers of this block.
4865  */
4866 int
4867 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4868     void *private, zio_priority_t priority, int zio_flags,
4869     arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4870 {
4871 	arc_buf_hdr_t *hdr = NULL;
4872 	kmutex_t *hash_lock = NULL;
4873 	zio_t *rzio;
4874 	uint64_t guid = spa_load_guid(spa);
4875 	boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
4876 
4877 	ASSERT(!BP_IS_EMBEDDED(bp) ||
4878 	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4879 
4880 top:
4881 	if (!BP_IS_EMBEDDED(bp)) {
4882 		/*
4883 		 * Embedded BP's have no DVA and require no I/O to "read".
4884 		 * Create an anonymous arc buf to back it.
4885 		 */
4886 		hdr = buf_hash_find(guid, bp, &hash_lock);
4887 	}
4888 
4889 	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) {
4890 		arc_buf_t *buf = NULL;
4891 		*arc_flags |= ARC_FLAG_CACHED;
4892 
4893 		if (HDR_IO_IN_PROGRESS(hdr)) {
4894 
4895 			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4896 			    priority == ZIO_PRIORITY_SYNC_READ) {
4897 				/*
4898 				 * This sync read must wait for an
4899 				 * in-progress async read (e.g. a predictive
4900 				 * prefetch).  Async reads are queued
4901 				 * separately at the vdev_queue layer, so
4902 				 * this is a form of priority inversion.
4903 				 * Ideally, we would "inherit" the demand
4904 				 * i/o's priority by moving the i/o from
4905 				 * the async queue to the synchronous queue,
4906 				 * but there is currently no mechanism to do
4907 				 * so.  Track this so that we can evaluate
4908 				 * the magnitude of this potential performance
4909 				 * problem.
4910 				 *
4911 				 * Note that if the prefetch i/o is already
4912 				 * active (has been issued to the device),
4913 				 * the prefetch improved performance, because
4914 				 * we issued it sooner than we would have
4915 				 * without the prefetch.
4916 				 */
4917 				DTRACE_PROBE1(arc__sync__wait__for__async,
4918 				    arc_buf_hdr_t *, hdr);
4919 				ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4920 			}
4921 			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4922 				arc_hdr_clear_flags(hdr,
4923 				    ARC_FLAG_PREDICTIVE_PREFETCH);
4924 			}
4925 
4926 			if (*arc_flags & ARC_FLAG_WAIT) {
4927 				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4928 				mutex_exit(hash_lock);
4929 				goto top;
4930 			}
4931 			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4932 
4933 			if (done) {
4934 				arc_callback_t *acb = NULL;
4935 
4936 				acb = kmem_zalloc(sizeof (arc_callback_t),
4937 				    KM_SLEEP);
4938 				acb->acb_done = done;
4939 				acb->acb_private = private;
4940 				acb->acb_compressed = compressed_read;
4941 				if (pio != NULL)
4942 					acb->acb_zio_dummy = zio_null(pio,
4943 					    spa, NULL, NULL, NULL, zio_flags);
4944 
4945 				ASSERT3P(acb->acb_done, !=, NULL);
4946 				acb->acb_next = hdr->b_l1hdr.b_acb;
4947 				hdr->b_l1hdr.b_acb = acb;
4948 				mutex_exit(hash_lock);
4949 				return (0);
4950 			}
4951 			mutex_exit(hash_lock);
4952 			return (0);
4953 		}
4954 
4955 		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4956 		    hdr->b_l1hdr.b_state == arc_mfu);
4957 
4958 		if (done) {
4959 			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4960 				/*
4961 				 * This is a demand read which does not have to
4962 				 * wait for i/o because we did a predictive
4963 				 * prefetch i/o for it, which has completed.
4964 				 */
4965 				DTRACE_PROBE1(
4966 				    arc__demand__hit__predictive__prefetch,
4967 				    arc_buf_hdr_t *, hdr);
4968 				ARCSTAT_BUMP(
4969 				    arcstat_demand_hit_predictive_prefetch);
4970 				arc_hdr_clear_flags(hdr,
4971 				    ARC_FLAG_PREDICTIVE_PREFETCH);
4972 			}
4973 			ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
4974 
4975 			/* Get a buf with the desired data in it. */
4976 			VERIFY0(arc_buf_alloc_impl(hdr, private,
4977 			    compressed_read, B_TRUE, &buf));
4978 		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
4979 		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4980 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
4981 		}
4982 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4983 		arc_access(hdr, hash_lock);
4984 		if (*arc_flags & ARC_FLAG_L2CACHE)
4985 			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
4986 		mutex_exit(hash_lock);
4987 		ARCSTAT_BUMP(arcstat_hits);
4988 		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4989 		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
4990 		    data, metadata, hits);
4991 
4992 		if (done)
4993 			done(NULL, buf, private);
4994 	} else {
4995 		uint64_t lsize = BP_GET_LSIZE(bp);
4996 		uint64_t psize = BP_GET_PSIZE(bp);
4997 		arc_callback_t *acb;
4998 		vdev_t *vd = NULL;
4999 		uint64_t addr = 0;
5000 		boolean_t devw = B_FALSE;
5001 		uint64_t size;
5002 
5003 		if (hdr == NULL) {
5004 			/* this block is not in the cache */
5005 			arc_buf_hdr_t *exists = NULL;
5006 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5007 			hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5008 			    BP_GET_COMPRESS(bp), type);
5009 
5010 			if (!BP_IS_EMBEDDED(bp)) {
5011 				hdr->b_dva = *BP_IDENTITY(bp);
5012 				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5013 				exists = buf_hash_insert(hdr, &hash_lock);
5014 			}
5015 			if (exists != NULL) {
5016 				/* somebody beat us to the hash insert */
5017 				mutex_exit(hash_lock);
5018 				buf_discard_identity(hdr);
5019 				arc_hdr_destroy(hdr);
5020 				goto top; /* restart the IO request */
5021 			}
5022 		} else {
5023 			/*
5024 			 * This block is in the ghost cache. If it was L2-only
5025 			 * (and thus didn't have an L1 hdr), we realloc the
5026 			 * header to add an L1 hdr.
5027 			 */
5028 			if (!HDR_HAS_L1HDR(hdr)) {
5029 				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5030 				    hdr_full_cache);
5031 			}
5032 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5033 			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
5034 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5035 			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5036 			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5037 			ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5038 
5039 			/*
5040 			 * This is a delicate dance that we play here.
5041 			 * This hdr is in the ghost list so we access it
5042 			 * to move it out of the ghost list before we
5043 			 * initiate the read. If it's a prefetch then
5044 			 * it won't have a callback so we'll remove the
5045 			 * reference that arc_buf_alloc_impl() created. We
5046 			 * do this after we've called arc_access() to
5047 			 * avoid hitting an assert in remove_reference().
5048 			 */
5049 			arc_access(hdr, hash_lock);
5050 			arc_hdr_alloc_pabd(hdr);
5051 		}
5052 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5053 		size = arc_hdr_size(hdr);
5054 
5055 		/*
5056 		 * If compression is enabled on the hdr, then will do
5057 		 * RAW I/O and will store the compressed data in the hdr's
5058 		 * data block. Otherwise, the hdr's data block will contain
5059 		 * the uncompressed data.
5060 		 */
5061 		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5062 			zio_flags |= ZIO_FLAG_RAW;
5063 		}
5064 
5065 		if (*arc_flags & ARC_FLAG_PREFETCH)
5066 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5067 		if (*arc_flags & ARC_FLAG_L2CACHE)
5068 			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5069 		if (BP_GET_LEVEL(bp) > 0)
5070 			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5071 		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5072 			arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5073 		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5074 
5075 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5076 		acb->acb_done = done;
5077 		acb->acb_private = private;
5078 		acb->acb_compressed = compressed_read;
5079 
5080 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5081 		hdr->b_l1hdr.b_acb = acb;
5082 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5083 
5084 		if (HDR_HAS_L2HDR(hdr) &&
5085 		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5086 			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5087 			addr = hdr->b_l2hdr.b_daddr;
5088 			/*
5089 			 * Lock out L2ARC device removal.
5090 			 */
5091 			if (vdev_is_dead(vd) ||
5092 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5093 				vd = NULL;
5094 		}
5095 
5096 		if (priority == ZIO_PRIORITY_ASYNC_READ)
5097 			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5098 		else
5099 			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5100 
5101 		if (hash_lock != NULL)
5102 			mutex_exit(hash_lock);
5103 
5104 		/*
5105 		 * At this point, we have a level 1 cache miss.  Try again in
5106 		 * L2ARC if possible.
5107 		 */
5108 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5109 
5110 		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5111 		    uint64_t, lsize, zbookmark_phys_t *, zb);
5112 		ARCSTAT_BUMP(arcstat_misses);
5113 		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5114 		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5115 		    data, metadata, misses);
5116 
5117 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5118 			/*
5119 			 * Read from the L2ARC if the following are true:
5120 			 * 1. The L2ARC vdev was previously cached.
5121 			 * 2. This buffer still has L2ARC metadata.
5122 			 * 3. This buffer isn't currently writing to the L2ARC.
5123 			 * 4. The L2ARC entry wasn't evicted, which may
5124 			 *    also have invalidated the vdev.
5125 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
5126 			 */
5127 			if (HDR_HAS_L2HDR(hdr) &&
5128 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5129 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5130 				l2arc_read_callback_t *cb;
5131 				abd_t *abd;
5132 				uint64_t asize;
5133 
5134 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5135 				ARCSTAT_BUMP(arcstat_l2_hits);
5136 
5137 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5138 				    KM_SLEEP);
5139 				cb->l2rcb_hdr = hdr;
5140 				cb->l2rcb_bp = *bp;
5141 				cb->l2rcb_zb = *zb;
5142 				cb->l2rcb_flags = zio_flags;
5143 
5144 				asize = vdev_psize_to_asize(vd, size);
5145 				if (asize != size) {
5146 					abd = abd_alloc_for_io(asize,
5147 					    HDR_ISTYPE_METADATA(hdr));
5148 					cb->l2rcb_abd = abd;
5149 				} else {
5150 					abd = hdr->b_l1hdr.b_pabd;
5151 				}
5152 
5153 				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5154 				    addr + asize <= vd->vdev_psize -
5155 				    VDEV_LABEL_END_SIZE);
5156 
5157 				/*
5158 				 * l2arc read.  The SCL_L2ARC lock will be
5159 				 * released by l2arc_read_done().
5160 				 * Issue a null zio if the underlying buffer
5161 				 * was squashed to zero size by compression.
5162 				 */
5163 				ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5164 				    ZIO_COMPRESS_EMPTY);
5165 				rzio = zio_read_phys(pio, vd, addr,
5166 				    asize, abd,
5167 				    ZIO_CHECKSUM_OFF,
5168 				    l2arc_read_done, cb, priority,
5169 				    zio_flags | ZIO_FLAG_DONT_CACHE |
5170 				    ZIO_FLAG_CANFAIL |
5171 				    ZIO_FLAG_DONT_PROPAGATE |
5172 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
5173 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5174 				    zio_t *, rzio);
5175 				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5176 
5177 				if (*arc_flags & ARC_FLAG_NOWAIT) {
5178 					zio_nowait(rzio);
5179 					return (0);
5180 				}
5181 
5182 				ASSERT(*arc_flags & ARC_FLAG_WAIT);
5183 				if (zio_wait(rzio) == 0)
5184 					return (0);
5185 
5186 				/* l2arc read error; goto zio_read() */
5187 			} else {
5188 				DTRACE_PROBE1(l2arc__miss,
5189 				    arc_buf_hdr_t *, hdr);
5190 				ARCSTAT_BUMP(arcstat_l2_misses);
5191 				if (HDR_L2_WRITING(hdr))
5192 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
5193 				spa_config_exit(spa, SCL_L2ARC, vd);
5194 			}
5195 		} else {
5196 			if (vd != NULL)
5197 				spa_config_exit(spa, SCL_L2ARC, vd);
5198 			if (l2arc_ndev != 0) {
5199 				DTRACE_PROBE1(l2arc__miss,
5200 				    arc_buf_hdr_t *, hdr);
5201 				ARCSTAT_BUMP(arcstat_l2_misses);
5202 			}
5203 		}
5204 
5205 		rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size,
5206 		    arc_read_done, hdr, priority, zio_flags, zb);
5207 
5208 		if (*arc_flags & ARC_FLAG_WAIT)
5209 			return (zio_wait(rzio));
5210 
5211 		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5212 		zio_nowait(rzio);
5213 	}
5214 	return (0);
5215 }
5216 
5217 /*
5218  * Notify the arc that a block was freed, and thus will never be used again.
5219  */
5220 void
5221 arc_freed(spa_t *spa, const blkptr_t *bp)
5222 {
5223 	arc_buf_hdr_t *hdr;
5224 	kmutex_t *hash_lock;
5225 	uint64_t guid = spa_load_guid(spa);
5226 
5227 	ASSERT(!BP_IS_EMBEDDED(bp));
5228 
5229 	hdr = buf_hash_find(guid, bp, &hash_lock);
5230 	if (hdr == NULL)
5231 		return;
5232 
5233 	/*
5234 	 * We might be trying to free a block that is still doing I/O
5235 	 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5236 	 * dmu_sync-ed block). If this block is being prefetched, then it
5237 	 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5238 	 * until the I/O completes. A block may also have a reference if it is
5239 	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5240 	 * have written the new block to its final resting place on disk but
5241 	 * without the dedup flag set. This would have left the hdr in the MRU
5242 	 * state and discoverable. When the txg finally syncs it detects that
5243 	 * the block was overridden in open context and issues an override I/O.
5244 	 * Since this is a dedup block, the override I/O will determine if the
5245 	 * block is already in the DDT. If so, then it will replace the io_bp
5246 	 * with the bp from the DDT and allow the I/O to finish. When the I/O
5247 	 * reaches the done callback, dbuf_write_override_done, it will
5248 	 * check to see if the io_bp and io_bp_override are identical.
5249 	 * If they are not, then it indicates that the bp was replaced with
5250 	 * the bp in the DDT and the override bp is freed. This allows
5251 	 * us to arrive here with a reference on a block that is being
5252 	 * freed. So if we have an I/O in progress, or a reference to
5253 	 * this hdr, then we don't destroy the hdr.
5254 	 */
5255 	if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5256 	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5257 		arc_change_state(arc_anon, hdr, hash_lock);
5258 		arc_hdr_destroy(hdr);
5259 		mutex_exit(hash_lock);
5260 	} else {
5261 		mutex_exit(hash_lock);
5262 	}
5263 
5264 }
5265 
5266 /*
5267  * Release this buffer from the cache, making it an anonymous buffer.  This
5268  * must be done after a read and prior to modifying the buffer contents.
5269  * If the buffer has more than one reference, we must make
5270  * a new hdr for the buffer.
5271  */
5272 void
5273 arc_release(arc_buf_t *buf, void *tag)
5274 {
5275 	arc_buf_hdr_t *hdr = buf->b_hdr;
5276 
5277 	/*
5278 	 * It would be nice to assert that if it's DMU metadata (level >
5279 	 * 0 || it's the dnode file), then it must be syncing context.
5280 	 * But we don't know that information at this level.
5281 	 */
5282 
5283 	mutex_enter(&buf->b_evict_lock);
5284 
5285 	ASSERT(HDR_HAS_L1HDR(hdr));
5286 
5287 	/*
5288 	 * We don't grab the hash lock prior to this check, because if
5289 	 * the buffer's header is in the arc_anon state, it won't be
5290 	 * linked into the hash table.
5291 	 */
5292 	if (hdr->b_l1hdr.b_state == arc_anon) {
5293 		mutex_exit(&buf->b_evict_lock);
5294 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5295 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
5296 		ASSERT(!HDR_HAS_L2HDR(hdr));
5297 		ASSERT(HDR_EMPTY(hdr));
5298 
5299 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5300 		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5301 		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5302 
5303 		hdr->b_l1hdr.b_arc_access = 0;
5304 
5305 		/*
5306 		 * If the buf is being overridden then it may already
5307 		 * have a hdr that is not empty.
5308 		 */
5309 		buf_discard_identity(hdr);
5310 		arc_buf_thaw(buf);
5311 
5312 		return;
5313 	}
5314 
5315 	kmutex_t *hash_lock = HDR_LOCK(hdr);
5316 	mutex_enter(hash_lock);
5317 
5318 	/*
5319 	 * This assignment is only valid as long as the hash_lock is
5320 	 * held, we must be careful not to reference state or the
5321 	 * b_state field after dropping the lock.
5322 	 */
5323 	arc_state_t *state = hdr->b_l1hdr.b_state;
5324 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5325 	ASSERT3P(state, !=, arc_anon);
5326 
5327 	/* this buffer is not on any list */
5328 	ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
5329 
5330 	if (HDR_HAS_L2HDR(hdr)) {
5331 		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5332 
5333 		/*
5334 		 * We have to recheck this conditional again now that
5335 		 * we're holding the l2ad_mtx to prevent a race with
5336 		 * another thread which might be concurrently calling
5337 		 * l2arc_evict(). In that case, l2arc_evict() might have
5338 		 * destroyed the header's L2 portion as we were waiting
5339 		 * to acquire the l2ad_mtx.
5340 		 */
5341 		if (HDR_HAS_L2HDR(hdr))
5342 			arc_hdr_l2hdr_destroy(hdr);
5343 
5344 		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5345 	}
5346 
5347 	/*
5348 	 * Do we have more than one buf?
5349 	 */
5350 	if (hdr->b_l1hdr.b_bufcnt > 1) {
5351 		arc_buf_hdr_t *nhdr;
5352 		uint64_t spa = hdr->b_spa;
5353 		uint64_t psize = HDR_GET_PSIZE(hdr);
5354 		uint64_t lsize = HDR_GET_LSIZE(hdr);
5355 		enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5356 		arc_buf_contents_t type = arc_buf_type(hdr);
5357 		VERIFY3U(hdr->b_type, ==, type);
5358 
5359 		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5360 		(void) remove_reference(hdr, hash_lock, tag);
5361 
5362 		if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
5363 			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5364 			ASSERT(ARC_BUF_LAST(buf));
5365 		}
5366 
5367 		/*
5368 		 * Pull the data off of this hdr and attach it to
5369 		 * a new anonymous hdr. Also find the last buffer
5370 		 * in the hdr's buffer list.
5371 		 */
5372 		arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
5373 		ASSERT3P(lastbuf, !=, NULL);
5374 
5375 		/*
5376 		 * If the current arc_buf_t and the hdr are sharing their data
5377 		 * buffer, then we must stop sharing that block.
5378 		 */
5379 		if (arc_buf_is_shared(buf)) {
5380 			VERIFY(!arc_buf_is_shared(lastbuf));
5381 
5382 			/*
5383 			 * First, sever the block sharing relationship between
5384 			 * buf and the arc_buf_hdr_t.
5385 			 */
5386 			arc_unshare_buf(hdr, buf);
5387 
5388 			/*
5389 			 * Now we need to recreate the hdr's b_pabd. Since we
5390 			 * have lastbuf handy, we try to share with it, but if
5391 			 * we can't then we allocate a new b_pabd and copy the
5392 			 * data from buf into it.
5393 			 */
5394 			if (arc_can_share(hdr, lastbuf)) {
5395 				arc_share_buf(hdr, lastbuf);
5396 			} else {
5397 				arc_hdr_alloc_pabd(hdr);
5398 				abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
5399 				    buf->b_data, psize);
5400 			}
5401 			VERIFY3P(lastbuf->b_data, !=, NULL);
5402 		} else if (HDR_SHARED_DATA(hdr)) {
5403 			/*
5404 			 * Uncompressed shared buffers are always at the end
5405 			 * of the list. Compressed buffers don't have the
5406 			 * same requirements. This makes it hard to
5407 			 * simply assert that the lastbuf is shared so
5408 			 * we rely on the hdr's compression flags to determine
5409 			 * if we have a compressed, shared buffer.
5410 			 */
5411 			ASSERT(arc_buf_is_shared(lastbuf) ||
5412 			    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
5413 			ASSERT(!ARC_BUF_SHARED(buf));
5414 		}
5415 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5416 		ASSERT3P(state, !=, arc_l2c_only);
5417 
5418 		(void) refcount_remove_many(&state->arcs_size,
5419 		    arc_buf_size(buf), buf);
5420 
5421 		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5422 			ASSERT3P(state, !=, arc_l2c_only);
5423 			(void) refcount_remove_many(&state->arcs_esize[type],
5424 			    arc_buf_size(buf), buf);
5425 		}
5426 
5427 		hdr->b_l1hdr.b_bufcnt -= 1;
5428 		arc_cksum_verify(buf);
5429 		arc_buf_unwatch(buf);
5430 
5431 		mutex_exit(hash_lock);
5432 
5433 		/*
5434 		 * Allocate a new hdr. The new hdr will contain a b_pabd
5435 		 * buffer which will be freed in arc_write().
5436 		 */
5437 		nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5438 		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5439 		ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5440 		ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5441 		VERIFY3U(nhdr->b_type, ==, type);
5442 		ASSERT(!HDR_SHARED_DATA(nhdr));
5443 
5444 		nhdr->b_l1hdr.b_buf = buf;
5445 		nhdr->b_l1hdr.b_bufcnt = 1;
5446 		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5447 		buf->b_hdr = nhdr;
5448 
5449 		mutex_exit(&buf->b_evict_lock);
5450 		(void) refcount_add_many(&arc_anon->arcs_size,
5451 		    arc_buf_size(buf), buf);
5452 	} else {
5453 		mutex_exit(&buf->b_evict_lock);
5454 		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5455 		/* protected by hash lock, or hdr is on arc_anon */
5456 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5457 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5458 		arc_change_state(arc_anon, hdr, hash_lock);
5459 		hdr->b_l1hdr.b_arc_access = 0;
5460 		mutex_exit(hash_lock);
5461 
5462 		buf_discard_identity(hdr);
5463 		arc_buf_thaw(buf);
5464 	}
5465 }
5466 
5467 int
5468 arc_released(arc_buf_t *buf)
5469 {
5470 	int released;
5471 
5472 	mutex_enter(&buf->b_evict_lock);
5473 	released = (buf->b_data != NULL &&
5474 	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
5475 	mutex_exit(&buf->b_evict_lock);
5476 	return (released);
5477 }
5478 
5479 #ifdef ZFS_DEBUG
5480 int
5481 arc_referenced(arc_buf_t *buf)
5482 {
5483 	int referenced;
5484 
5485 	mutex_enter(&buf->b_evict_lock);
5486 	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5487 	mutex_exit(&buf->b_evict_lock);
5488 	return (referenced);
5489 }
5490 #endif
5491 
5492 static void
5493 arc_write_ready(zio_t *zio)
5494 {
5495 	arc_write_callback_t *callback = zio->io_private;
5496 	arc_buf_t *buf = callback->awcb_buf;
5497 	arc_buf_hdr_t *hdr = buf->b_hdr;
5498 	uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5499 
5500 	ASSERT(HDR_HAS_L1HDR(hdr));
5501 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5502 	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5503 
5504 	/*
5505 	 * If we're reexecuting this zio because the pool suspended, then
5506 	 * cleanup any state that was previously set the first time the
5507 	 * callback was invoked.
5508 	 */
5509 	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5510 		arc_cksum_free(hdr);
5511 		arc_buf_unwatch(buf);
5512 		if (hdr->b_l1hdr.b_pabd != NULL) {
5513 			if (arc_buf_is_shared(buf)) {
5514 				arc_unshare_buf(hdr, buf);
5515 			} else {
5516 				arc_hdr_free_pabd(hdr);
5517 			}
5518 		}
5519 	}
5520 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5521 	ASSERT(!HDR_SHARED_DATA(hdr));
5522 	ASSERT(!arc_buf_is_shared(buf));
5523 
5524 	callback->awcb_ready(zio, buf, callback->awcb_private);
5525 
5526 	if (HDR_IO_IN_PROGRESS(hdr))
5527 		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5528 
5529 	arc_cksum_compute(buf);
5530 	arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5531 
5532 	enum zio_compress compress;
5533 	if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5534 		compress = ZIO_COMPRESS_OFF;
5535 	} else {
5536 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5537 		compress = BP_GET_COMPRESS(zio->io_bp);
5538 	}
5539 	HDR_SET_PSIZE(hdr, psize);
5540 	arc_hdr_set_compress(hdr, compress);
5541 
5542 
5543 	/*
5544 	 * Fill the hdr with data. If the hdr is compressed, the data we want
5545 	 * is available from the zio, otherwise we can take it from the buf.
5546 	 *
5547 	 * We might be able to share the buf's data with the hdr here. However,
5548 	 * doing so would cause the ARC to be full of linear ABDs if we write a
5549 	 * lot of shareable data. As a compromise, we check whether scattered
5550 	 * ABDs are allowed, and assume that if they are then the user wants
5551 	 * the ARC to be primarily filled with them regardless of the data being
5552 	 * written. Therefore, if they're allowed then we allocate one and copy
5553 	 * the data into it; otherwise, we share the data directly if we can.
5554 	 */
5555 	if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
5556 		arc_hdr_alloc_pabd(hdr);
5557 
5558 		/*
5559 		 * Ideally, we would always copy the io_abd into b_pabd, but the
5560 		 * user may have disabled compressed ARC, thus we must check the
5561 		 * hdr's compression setting rather than the io_bp's.
5562 		 */
5563 		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5564 			ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=,
5565 			    ZIO_COMPRESS_OFF);
5566 			ASSERT3U(psize, >, 0);
5567 
5568 			abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
5569 		} else {
5570 			ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
5571 
5572 			abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
5573 			    arc_buf_size(buf));
5574 		}
5575 	} else {
5576 		ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
5577 		ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
5578 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5579 
5580 		arc_share_buf(hdr, buf);
5581 	}
5582 
5583 	arc_hdr_verify(hdr, zio->io_bp);
5584 }
5585 
5586 static void
5587 arc_write_children_ready(zio_t *zio)
5588 {
5589 	arc_write_callback_t *callback = zio->io_private;
5590 	arc_buf_t *buf = callback->awcb_buf;
5591 
5592 	callback->awcb_children_ready(zio, buf, callback->awcb_private);
5593 }
5594 
5595 /*
5596  * The SPA calls this callback for each physical write that happens on behalf
5597  * of a logical write.  See the comment in dbuf_write_physdone() for details.
5598  */
5599 static void
5600 arc_write_physdone(zio_t *zio)
5601 {
5602 	arc_write_callback_t *cb = zio->io_private;
5603 	if (cb->awcb_physdone != NULL)
5604 		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5605 }
5606 
5607 static void
5608 arc_write_done(zio_t *zio)
5609 {
5610 	arc_write_callback_t *callback = zio->io_private;
5611 	arc_buf_t *buf = callback->awcb_buf;
5612 	arc_buf_hdr_t *hdr = buf->b_hdr;
5613 
5614 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5615 
5616 	if (zio->io_error == 0) {
5617 		arc_hdr_verify(hdr, zio->io_bp);
5618 
5619 		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5620 			buf_discard_identity(hdr);
5621 		} else {
5622 			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5623 			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5624 		}
5625 	} else {
5626 		ASSERT(HDR_EMPTY(hdr));
5627 	}
5628 
5629 	/*
5630 	 * If the block to be written was all-zero or compressed enough to be
5631 	 * embedded in the BP, no write was performed so there will be no
5632 	 * dva/birth/checksum.  The buffer must therefore remain anonymous
5633 	 * (and uncached).
5634 	 */
5635 	if (!HDR_EMPTY(hdr)) {
5636 		arc_buf_hdr_t *exists;
5637 		kmutex_t *hash_lock;
5638 
5639 		ASSERT3U(zio->io_error, ==, 0);
5640 
5641 		arc_cksum_verify(buf);
5642 
5643 		exists = buf_hash_insert(hdr, &hash_lock);
5644 		if (exists != NULL) {
5645 			/*
5646 			 * This can only happen if we overwrite for
5647 			 * sync-to-convergence, because we remove
5648 			 * buffers from the hash table when we arc_free().
5649 			 */
5650 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5651 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5652 					panic("bad overwrite, hdr=%p exists=%p",
5653 					    (void *)hdr, (void *)exists);
5654 				ASSERT(refcount_is_zero(
5655 				    &exists->b_l1hdr.b_refcnt));
5656 				arc_change_state(arc_anon, exists, hash_lock);
5657 				mutex_exit(hash_lock);
5658 				arc_hdr_destroy(exists);
5659 				exists = buf_hash_insert(hdr, &hash_lock);
5660 				ASSERT3P(exists, ==, NULL);
5661 			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5662 				/* nopwrite */
5663 				ASSERT(zio->io_prop.zp_nopwrite);
5664 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5665 					panic("bad nopwrite, hdr=%p exists=%p",
5666 					    (void *)hdr, (void *)exists);
5667 			} else {
5668 				/* Dedup */
5669 				ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
5670 				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5671 				ASSERT(BP_GET_DEDUP(zio->io_bp));
5672 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5673 			}
5674 		}
5675 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5676 		/* if it's not anon, we are doing a scrub */
5677 		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5678 			arc_access(hdr, hash_lock);
5679 		mutex_exit(hash_lock);
5680 	} else {
5681 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5682 	}
5683 
5684 	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5685 	callback->awcb_done(zio, buf, callback->awcb_private);
5686 
5687 	abd_put(zio->io_abd);
5688 	kmem_free(callback, sizeof (arc_write_callback_t));
5689 }
5690 
5691 zio_t *
5692 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
5693     boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready,
5694     arc_done_func_t *children_ready, arc_done_func_t *physdone,
5695     arc_done_func_t *done, void *private, zio_priority_t priority,
5696     int zio_flags, const zbookmark_phys_t *zb)
5697 {
5698 	arc_buf_hdr_t *hdr = buf->b_hdr;
5699 	arc_write_callback_t *callback;
5700 	zio_t *zio;
5701 	zio_prop_t localprop = *zp;
5702 
5703 	ASSERT3P(ready, !=, NULL);
5704 	ASSERT3P(done, !=, NULL);
5705 	ASSERT(!HDR_IO_ERROR(hdr));
5706 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5707 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5708 	ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
5709 	if (l2arc)
5710 		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5711 	if (ARC_BUF_COMPRESSED(buf)) {
5712 		/*
5713 		 * We're writing a pre-compressed buffer.  Make the
5714 		 * compression algorithm requested by the zio_prop_t match
5715 		 * the pre-compressed buffer's compression algorithm.
5716 		 */
5717 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
5718 
5719 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
5720 		zio_flags |= ZIO_FLAG_RAW;
5721 	}
5722 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5723 	callback->awcb_ready = ready;
5724 	callback->awcb_children_ready = children_ready;
5725 	callback->awcb_physdone = physdone;
5726 	callback->awcb_done = done;
5727 	callback->awcb_private = private;
5728 	callback->awcb_buf = buf;
5729 
5730 	/*
5731 	 * The hdr's b_pabd is now stale, free it now. A new data block
5732 	 * will be allocated when the zio pipeline calls arc_write_ready().
5733 	 */
5734 	if (hdr->b_l1hdr.b_pabd != NULL) {
5735 		/*
5736 		 * If the buf is currently sharing the data block with
5737 		 * the hdr then we need to break that relationship here.
5738 		 * The hdr will remain with a NULL data pointer and the
5739 		 * buf will take sole ownership of the block.
5740 		 */
5741 		if (arc_buf_is_shared(buf)) {
5742 			arc_unshare_buf(hdr, buf);
5743 		} else {
5744 			arc_hdr_free_pabd(hdr);
5745 		}
5746 		VERIFY3P(buf->b_data, !=, NULL);
5747 		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
5748 	}
5749 	ASSERT(!arc_buf_is_shared(buf));
5750 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5751 
5752 	zio = zio_write(pio, spa, txg, bp,
5753 	    abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
5754 	    HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
5755 	    (children_ready != NULL) ? arc_write_children_ready : NULL,
5756 	    arc_write_physdone, arc_write_done, callback,
5757 	    priority, zio_flags, zb);
5758 
5759 	return (zio);
5760 }
5761 
5762 static int
5763 arc_memory_throttle(uint64_t reserve, uint64_t txg)
5764 {
5765 #ifdef _KERNEL
5766 	uint64_t available_memory = ptob(freemem);
5767 	static uint64_t page_load = 0;
5768 	static uint64_t last_txg = 0;
5769 
5770 #if defined(__i386)
5771 	available_memory =
5772 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
5773 #endif
5774 
5775 	if (freemem > physmem * arc_lotsfree_percent / 100)
5776 		return (0);
5777 
5778 	if (txg > last_txg) {
5779 		last_txg = txg;
5780 		page_load = 0;
5781 	}
5782 	/*
5783 	 * If we are in pageout, we know that memory is already tight,
5784 	 * the arc is already going to be evicting, so we just want to
5785 	 * continue to let page writes occur as quickly as possible.
5786 	 */
5787 	if (curproc == proc_pageout) {
5788 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
5789 			return (SET_ERROR(ERESTART));
5790 		/* Note: reserve is inflated, so we deflate */
5791 		page_load += reserve / 8;
5792 		return (0);
5793 	} else if (page_load > 0 && arc_reclaim_needed()) {
5794 		/* memory is low, delay before restarting */
5795 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5796 		return (SET_ERROR(EAGAIN));
5797 	}
5798 	page_load = 0;
5799 #endif
5800 	return (0);
5801 }
5802 
5803 void
5804 arc_tempreserve_clear(uint64_t reserve)
5805 {
5806 	atomic_add_64(&arc_tempreserve, -reserve);
5807 	ASSERT((int64_t)arc_tempreserve >= 0);
5808 }
5809 
5810 int
5811 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5812 {
5813 	int error;
5814 	uint64_t anon_size;
5815 
5816 	if (reserve > arc_c/4 && !arc_no_grow)
5817 		arc_c = MIN(arc_c_max, reserve * 4);
5818 	if (reserve > arc_c)
5819 		return (SET_ERROR(ENOMEM));
5820 
5821 	/*
5822 	 * Don't count loaned bufs as in flight dirty data to prevent long
5823 	 * network delays from blocking transactions that are ready to be
5824 	 * assigned to a txg.
5825 	 */
5826 
5827 	/* assert that it has not wrapped around */
5828 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
5829 
5830 	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5831 	    arc_loaned_bytes), 0);
5832 
5833 	/*
5834 	 * Writes will, almost always, require additional memory allocations
5835 	 * in order to compress/encrypt/etc the data.  We therefore need to
5836 	 * make sure that there is sufficient available memory for this.
5837 	 */
5838 	error = arc_memory_throttle(reserve, txg);
5839 	if (error != 0)
5840 		return (error);
5841 
5842 	/*
5843 	 * Throttle writes when the amount of dirty data in the cache
5844 	 * gets too large.  We try to keep the cache less than half full
5845 	 * of dirty blocks so that our sync times don't grow too large.
5846 	 * Note: if two requests come in concurrently, we might let them
5847 	 * both succeed, when one of them should fail.  Not a huge deal.
5848 	 */
5849 
5850 	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5851 	    anon_size > arc_c / 4) {
5852 		uint64_t meta_esize =
5853 		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
5854 		uint64_t data_esize =
5855 		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
5856 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5857 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5858 		    arc_tempreserve >> 10, meta_esize >> 10,
5859 		    data_esize >> 10, reserve >> 10, arc_c >> 10);
5860 		return (SET_ERROR(ERESTART));
5861 	}
5862 	atomic_add_64(&arc_tempreserve, reserve);
5863 	return (0);
5864 }
5865 
5866 static void
5867 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5868     kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5869 {
5870 	size->value.ui64 = refcount_count(&state->arcs_size);
5871 	evict_data->value.ui64 =
5872 	    refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
5873 	evict_metadata->value.ui64 =
5874 	    refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
5875 }
5876 
5877 static int
5878 arc_kstat_update(kstat_t *ksp, int rw)
5879 {
5880 	arc_stats_t *as = ksp->ks_data;
5881 
5882 	if (rw == KSTAT_WRITE) {
5883 		return (EACCES);
5884 	} else {
5885 		arc_kstat_update_state(arc_anon,
5886 		    &as->arcstat_anon_size,
5887 		    &as->arcstat_anon_evictable_data,
5888 		    &as->arcstat_anon_evictable_metadata);
5889 		arc_kstat_update_state(arc_mru,
5890 		    &as->arcstat_mru_size,
5891 		    &as->arcstat_mru_evictable_data,
5892 		    &as->arcstat_mru_evictable_metadata);
5893 		arc_kstat_update_state(arc_mru_ghost,
5894 		    &as->arcstat_mru_ghost_size,
5895 		    &as->arcstat_mru_ghost_evictable_data,
5896 		    &as->arcstat_mru_ghost_evictable_metadata);
5897 		arc_kstat_update_state(arc_mfu,
5898 		    &as->arcstat_mfu_size,
5899 		    &as->arcstat_mfu_evictable_data,
5900 		    &as->arcstat_mfu_evictable_metadata);
5901 		arc_kstat_update_state(arc_mfu_ghost,
5902 		    &as->arcstat_mfu_ghost_size,
5903 		    &as->arcstat_mfu_ghost_evictable_data,
5904 		    &as->arcstat_mfu_ghost_evictable_metadata);
5905 
5906 		ARCSTAT(arcstat_size) = aggsum_value(&arc_size);
5907 		ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used);
5908 		ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size);
5909 		ARCSTAT(arcstat_metadata_size) =
5910 		    aggsum_value(&astat_metadata_size);
5911 		ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size);
5912 		ARCSTAT(arcstat_other_size) = aggsum_value(&astat_other_size);
5913 		ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size);
5914 	}
5915 
5916 	return (0);
5917 }
5918 
5919 /*
5920  * This function *must* return indices evenly distributed between all
5921  * sublists of the multilist. This is needed due to how the ARC eviction
5922  * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5923  * distributed between all sublists and uses this assumption when
5924  * deciding which sublist to evict from and how much to evict from it.
5925  */
5926 unsigned int
5927 arc_state_multilist_index_func(multilist_t *ml, void *obj)
5928 {
5929 	arc_buf_hdr_t *hdr = obj;
5930 
5931 	/*
5932 	 * We rely on b_dva to generate evenly distributed index
5933 	 * numbers using buf_hash below. So, as an added precaution,
5934 	 * let's make sure we never add empty buffers to the arc lists.
5935 	 */
5936 	ASSERT(!HDR_EMPTY(hdr));
5937 
5938 	/*
5939 	 * The assumption here, is the hash value for a given
5940 	 * arc_buf_hdr_t will remain constant throughout it's lifetime
5941 	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5942 	 * Thus, we don't need to store the header's sublist index
5943 	 * on insertion, as this index can be recalculated on removal.
5944 	 *
5945 	 * Also, the low order bits of the hash value are thought to be
5946 	 * distributed evenly. Otherwise, in the case that the multilist
5947 	 * has a power of two number of sublists, each sublists' usage
5948 	 * would not be evenly distributed.
5949 	 */
5950 	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5951 	    multilist_get_num_sublists(ml));
5952 }
5953 
5954 static void
5955 arc_state_init(void)
5956 {
5957 	arc_anon = &ARC_anon;
5958 	arc_mru = &ARC_mru;
5959 	arc_mru_ghost = &ARC_mru_ghost;
5960 	arc_mfu = &ARC_mfu;
5961 	arc_mfu_ghost = &ARC_mfu_ghost;
5962 	arc_l2c_only = &ARC_l2c_only;
5963 
5964 	arc_mru->arcs_list[ARC_BUFC_METADATA] =
5965 	    multilist_create(sizeof (arc_buf_hdr_t),
5966 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5967 	    arc_state_multilist_index_func);
5968 	arc_mru->arcs_list[ARC_BUFC_DATA] =
5969 	    multilist_create(sizeof (arc_buf_hdr_t),
5970 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5971 	    arc_state_multilist_index_func);
5972 	arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
5973 	    multilist_create(sizeof (arc_buf_hdr_t),
5974 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5975 	    arc_state_multilist_index_func);
5976 	arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
5977 	    multilist_create(sizeof (arc_buf_hdr_t),
5978 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5979 	    arc_state_multilist_index_func);
5980 	arc_mfu->arcs_list[ARC_BUFC_METADATA] =
5981 	    multilist_create(sizeof (arc_buf_hdr_t),
5982 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5983 	    arc_state_multilist_index_func);
5984 	arc_mfu->arcs_list[ARC_BUFC_DATA] =
5985 	    multilist_create(sizeof (arc_buf_hdr_t),
5986 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5987 	    arc_state_multilist_index_func);
5988 	arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
5989 	    multilist_create(sizeof (arc_buf_hdr_t),
5990 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5991 	    arc_state_multilist_index_func);
5992 	arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
5993 	    multilist_create(sizeof (arc_buf_hdr_t),
5994 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5995 	    arc_state_multilist_index_func);
5996 	arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
5997 	    multilist_create(sizeof (arc_buf_hdr_t),
5998 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5999 	    arc_state_multilist_index_func);
6000 	arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
6001 	    multilist_create(sizeof (arc_buf_hdr_t),
6002 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6003 	    arc_state_multilist_index_func);
6004 
6005 	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6006 	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6007 	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6008 	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6009 	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6010 	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6011 	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6012 	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6013 	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6014 	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6015 	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6016 	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6017 
6018 	refcount_create(&arc_anon->arcs_size);
6019 	refcount_create(&arc_mru->arcs_size);
6020 	refcount_create(&arc_mru_ghost->arcs_size);
6021 	refcount_create(&arc_mfu->arcs_size);
6022 	refcount_create(&arc_mfu_ghost->arcs_size);
6023 	refcount_create(&arc_l2c_only->arcs_size);
6024 
6025 	aggsum_init(&arc_meta_used, 0);
6026 	aggsum_init(&arc_size, 0);
6027 	aggsum_init(&astat_data_size, 0);
6028 	aggsum_init(&astat_metadata_size, 0);
6029 	aggsum_init(&astat_hdr_size, 0);
6030 	aggsum_init(&astat_other_size, 0);
6031 	aggsum_init(&astat_l2_hdr_size, 0);
6032 }
6033 
6034 static void
6035 arc_state_fini(void)
6036 {
6037 	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6038 	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6039 	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6040 	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6041 	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6042 	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6043 	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6044 	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6045 	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6046 	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6047 	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6048 	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6049 
6050 	refcount_destroy(&arc_anon->arcs_size);
6051 	refcount_destroy(&arc_mru->arcs_size);
6052 	refcount_destroy(&arc_mru_ghost->arcs_size);
6053 	refcount_destroy(&arc_mfu->arcs_size);
6054 	refcount_destroy(&arc_mfu_ghost->arcs_size);
6055 	refcount_destroy(&arc_l2c_only->arcs_size);
6056 
6057 	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
6058 	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
6059 	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
6060 	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
6061 	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
6062 	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
6063 	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
6064 	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
6065 }
6066 
6067 uint64_t
6068 arc_max_bytes(void)
6069 {
6070 	return (arc_c_max);
6071 }
6072 
6073 void
6074 arc_init(void)
6075 {
6076 	/*
6077 	 * allmem is "all memory that we could possibly use".
6078 	 */
6079 #ifdef _KERNEL
6080 	uint64_t allmem = ptob(physmem - swapfs_minfree);
6081 #else
6082 	uint64_t allmem = (physmem * PAGESIZE) / 2;
6083 #endif
6084 
6085 	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
6086 	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
6087 	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
6088 
6089 	/* Convert seconds to clock ticks */
6090 	arc_min_prefetch_lifespan = 1 * hz;
6091 
6092 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
6093 	arc_c_min = MAX(allmem / 32, 64 << 20);
6094 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
6095 	if (allmem >= 1 << 30)
6096 		arc_c_max = allmem - (1 << 30);
6097 	else
6098 		arc_c_max = arc_c_min;
6099 	arc_c_max = MAX(allmem * 3 / 4, arc_c_max);
6100 
6101 	/*
6102 	 * In userland, there's only the memory pressure that we artificially
6103 	 * create (see arc_available_memory()).  Don't let arc_c get too
6104 	 * small, because it can cause transactions to be larger than
6105 	 * arc_c, causing arc_tempreserve_space() to fail.
6106 	 */
6107 #ifndef _KERNEL
6108 	arc_c_min = arc_c_max / 2;
6109 #endif
6110 
6111 	/*
6112 	 * Allow the tunables to override our calculations if they are
6113 	 * reasonable (ie. over 64MB)
6114 	 */
6115 	if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) {
6116 		arc_c_max = zfs_arc_max;
6117 		arc_c_min = MIN(arc_c_min, arc_c_max);
6118 	}
6119 	if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max)
6120 		arc_c_min = zfs_arc_min;
6121 
6122 	arc_c = arc_c_max;
6123 	arc_p = (arc_c >> 1);
6124 
6125 	/* limit meta-data to 1/4 of the arc capacity */
6126 	arc_meta_limit = arc_c_max / 4;
6127 
6128 #ifdef _KERNEL
6129 	/*
6130 	 * Metadata is stored in the kernel's heap.  Don't let us
6131 	 * use more than half the heap for the ARC.
6132 	 */
6133 	arc_meta_limit = MIN(arc_meta_limit,
6134 	    vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
6135 #endif
6136 
6137 	/* Allow the tunable to override if it is reasonable */
6138 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
6139 		arc_meta_limit = zfs_arc_meta_limit;
6140 
6141 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
6142 		arc_c_min = arc_meta_limit / 2;
6143 
6144 	if (zfs_arc_meta_min > 0) {
6145 		arc_meta_min = zfs_arc_meta_min;
6146 	} else {
6147 		arc_meta_min = arc_c_min / 2;
6148 	}
6149 
6150 	if (zfs_arc_grow_retry > 0)
6151 		arc_grow_retry = zfs_arc_grow_retry;
6152 
6153 	if (zfs_arc_shrink_shift > 0)
6154 		arc_shrink_shift = zfs_arc_shrink_shift;
6155 
6156 	/*
6157 	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
6158 	 */
6159 	if (arc_no_grow_shift >= arc_shrink_shift)
6160 		arc_no_grow_shift = arc_shrink_shift - 1;
6161 
6162 	if (zfs_arc_p_min_shift > 0)
6163 		arc_p_min_shift = zfs_arc_p_min_shift;
6164 
6165 	/* if kmem_flags are set, lets try to use less memory */
6166 	if (kmem_debugging())
6167 		arc_c = arc_c / 2;
6168 	if (arc_c < arc_c_min)
6169 		arc_c = arc_c_min;
6170 
6171 	arc_state_init();
6172 	buf_init();
6173 
6174 	arc_reclaim_thread_exit = B_FALSE;
6175 
6176 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6177 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6178 
6179 	if (arc_ksp != NULL) {
6180 		arc_ksp->ks_data = &arc_stats;
6181 		arc_ksp->ks_update = arc_kstat_update;
6182 		kstat_install(arc_ksp);
6183 	}
6184 
6185 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
6186 	    TS_RUN, minclsyspri);
6187 
6188 	arc_dead = B_FALSE;
6189 	arc_warm = B_FALSE;
6190 
6191 	/*
6192 	 * Calculate maximum amount of dirty data per pool.
6193 	 *
6194 	 * If it has been set by /etc/system, take that.
6195 	 * Otherwise, use a percentage of physical memory defined by
6196 	 * zfs_dirty_data_max_percent (default 10%) with a cap at
6197 	 * zfs_dirty_data_max_max (default 4GB).
6198 	 */
6199 	if (zfs_dirty_data_max == 0) {
6200 		zfs_dirty_data_max = physmem * PAGESIZE *
6201 		    zfs_dirty_data_max_percent / 100;
6202 		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6203 		    zfs_dirty_data_max_max);
6204 	}
6205 }
6206 
6207 void
6208 arc_fini(void)
6209 {
6210 	mutex_enter(&arc_reclaim_lock);
6211 	arc_reclaim_thread_exit = B_TRUE;
6212 	/*
6213 	 * The reclaim thread will set arc_reclaim_thread_exit back to
6214 	 * B_FALSE when it is finished exiting; we're waiting for that.
6215 	 */
6216 	while (arc_reclaim_thread_exit) {
6217 		cv_signal(&arc_reclaim_thread_cv);
6218 		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
6219 	}
6220 	mutex_exit(&arc_reclaim_lock);
6221 
6222 	/* Use B_TRUE to ensure *all* buffers are evicted */
6223 	arc_flush(NULL, B_TRUE);
6224 
6225 	arc_dead = B_TRUE;
6226 
6227 	if (arc_ksp != NULL) {
6228 		kstat_delete(arc_ksp);
6229 		arc_ksp = NULL;
6230 	}
6231 
6232 	mutex_destroy(&arc_reclaim_lock);
6233 	cv_destroy(&arc_reclaim_thread_cv);
6234 	cv_destroy(&arc_reclaim_waiters_cv);
6235 
6236 	arc_state_fini();
6237 	buf_fini();
6238 
6239 	ASSERT0(arc_loaned_bytes);
6240 }
6241 
6242 /*
6243  * Level 2 ARC
6244  *
6245  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6246  * It uses dedicated storage devices to hold cached data, which are populated
6247  * using large infrequent writes.  The main role of this cache is to boost
6248  * the performance of random read workloads.  The intended L2ARC devices
6249  * include short-stroked disks, solid state disks, and other media with
6250  * substantially faster read latency than disk.
6251  *
6252  *                 +-----------------------+
6253  *                 |         ARC           |
6254  *                 +-----------------------+
6255  *                    |         ^     ^
6256  *                    |         |     |
6257  *      l2arc_feed_thread()    arc_read()
6258  *                    |         |     |
6259  *                    |  l2arc read   |
6260  *                    V         |     |
6261  *               +---------------+    |
6262  *               |     L2ARC     |    |
6263  *               +---------------+    |
6264  *                   |    ^           |
6265  *          l2arc_write() |           |
6266  *                   |    |           |
6267  *                   V    |           |
6268  *                 +-------+      +-------+
6269  *                 | vdev  |      | vdev  |
6270  *                 | cache |      | cache |
6271  *                 +-------+      +-------+
6272  *                 +=========+     .-----.
6273  *                 :  L2ARC  :    |-_____-|
6274  *                 : devices :    | Disks |
6275  *                 +=========+    `-_____-'
6276  *
6277  * Read requests are satisfied from the following sources, in order:
6278  *
6279  *	1) ARC
6280  *	2) vdev cache of L2ARC devices
6281  *	3) L2ARC devices
6282  *	4) vdev cache of disks
6283  *	5) disks
6284  *
6285  * Some L2ARC device types exhibit extremely slow write performance.
6286  * To accommodate for this there are some significant differences between
6287  * the L2ARC and traditional cache design:
6288  *
6289  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
6290  * the ARC behave as usual, freeing buffers and placing headers on ghost
6291  * lists.  The ARC does not send buffers to the L2ARC during eviction as
6292  * this would add inflated write latencies for all ARC memory pressure.
6293  *
6294  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6295  * It does this by periodically scanning buffers from the eviction-end of
6296  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6297  * not already there. It scans until a headroom of buffers is satisfied,
6298  * which itself is a buffer for ARC eviction. If a compressible buffer is
6299  * found during scanning and selected for writing to an L2ARC device, we
6300  * temporarily boost scanning headroom during the next scan cycle to make
6301  * sure we adapt to compression effects (which might significantly reduce
6302  * the data volume we write to L2ARC). The thread that does this is
6303  * l2arc_feed_thread(), illustrated below; example sizes are included to
6304  * provide a better sense of ratio than this diagram:
6305  *
6306  *	       head -->                        tail
6307  *	        +---------------------+----------+
6308  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
6309  *	        +---------------------+----------+   |   o L2ARC eligible
6310  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
6311  *	        +---------------------+----------+   |
6312  *	             15.9 Gbytes      ^ 32 Mbytes    |
6313  *	                           headroom          |
6314  *	                                      l2arc_feed_thread()
6315  *	                                             |
6316  *	                 l2arc write hand <--[oooo]--'
6317  *	                         |           8 Mbyte
6318  *	                         |          write max
6319  *	                         V
6320  *		  +==============================+
6321  *	L2ARC dev |####|#|###|###|    |####| ... |
6322  *	          +==============================+
6323  *	                     32 Gbytes
6324  *
6325  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6326  * evicted, then the L2ARC has cached a buffer much sooner than it probably
6327  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
6328  * safe to say that this is an uncommon case, since buffers at the end of
6329  * the ARC lists have moved there due to inactivity.
6330  *
6331  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6332  * then the L2ARC simply misses copying some buffers.  This serves as a
6333  * pressure valve to prevent heavy read workloads from both stalling the ARC
6334  * with waits and clogging the L2ARC with writes.  This also helps prevent
6335  * the potential for the L2ARC to churn if it attempts to cache content too
6336  * quickly, such as during backups of the entire pool.
6337  *
6338  * 5. After system boot and before the ARC has filled main memory, there are
6339  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6340  * lists can remain mostly static.  Instead of searching from tail of these
6341  * lists as pictured, the l2arc_feed_thread() will search from the list heads
6342  * for eligible buffers, greatly increasing its chance of finding them.
6343  *
6344  * The L2ARC device write speed is also boosted during this time so that
6345  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
6346  * there are no L2ARC reads, and no fear of degrading read performance
6347  * through increased writes.
6348  *
6349  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6350  * the vdev queue can aggregate them into larger and fewer writes.  Each
6351  * device is written to in a rotor fashion, sweeping writes through
6352  * available space then repeating.
6353  *
6354  * 7. The L2ARC does not store dirty content.  It never needs to flush
6355  * write buffers back to disk based storage.
6356  *
6357  * 8. If an ARC buffer is written (and dirtied) which also exists in the
6358  * L2ARC, the now stale L2ARC buffer is immediately dropped.
6359  *
6360  * The performance of the L2ARC can be tweaked by a number of tunables, which
6361  * may be necessary for different workloads:
6362  *
6363  *	l2arc_write_max		max write bytes per interval
6364  *	l2arc_write_boost	extra write bytes during device warmup
6365  *	l2arc_noprefetch	skip caching prefetched buffers
6366  *	l2arc_headroom		number of max device writes to precache
6367  *	l2arc_headroom_boost	when we find compressed buffers during ARC
6368  *				scanning, we multiply headroom by this
6369  *				percentage factor for the next scan cycle,
6370  *				since more compressed buffers are likely to
6371  *				be present
6372  *	l2arc_feed_secs		seconds between L2ARC writing
6373  *
6374  * Tunables may be removed or added as future performance improvements are
6375  * integrated, and also may become zpool properties.
6376  *
6377  * There are three key functions that control how the L2ARC warms up:
6378  *
6379  *	l2arc_write_eligible()	check if a buffer is eligible to cache
6380  *	l2arc_write_size()	calculate how much to write
6381  *	l2arc_write_interval()	calculate sleep delay between writes
6382  *
6383  * These three functions determine what to write, how much, and how quickly
6384  * to send writes.
6385  */
6386 
6387 static boolean_t
6388 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6389 {
6390 	/*
6391 	 * A buffer is *not* eligible for the L2ARC if it:
6392 	 * 1. belongs to a different spa.
6393 	 * 2. is already cached on the L2ARC.
6394 	 * 3. has an I/O in progress (it may be an incomplete read).
6395 	 * 4. is flagged not eligible (zfs property).
6396 	 */
6397 	if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
6398 	    HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
6399 		return (B_FALSE);
6400 
6401 	return (B_TRUE);
6402 }
6403 
6404 static uint64_t
6405 l2arc_write_size(void)
6406 {
6407 	uint64_t size;
6408 
6409 	/*
6410 	 * Make sure our globals have meaningful values in case the user
6411 	 * altered them.
6412 	 */
6413 	size = l2arc_write_max;
6414 	if (size == 0) {
6415 		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6416 		    "be greater than zero, resetting it to the default (%d)",
6417 		    L2ARC_WRITE_SIZE);
6418 		size = l2arc_write_max = L2ARC_WRITE_SIZE;
6419 	}
6420 
6421 	if (arc_warm == B_FALSE)
6422 		size += l2arc_write_boost;
6423 
6424 	return (size);
6425 
6426 }
6427 
6428 static clock_t
6429 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6430 {
6431 	clock_t interval, next, now;
6432 
6433 	/*
6434 	 * If the ARC lists are busy, increase our write rate; if the
6435 	 * lists are stale, idle back.  This is achieved by checking
6436 	 * how much we previously wrote - if it was more than half of
6437 	 * what we wanted, schedule the next write much sooner.
6438 	 */
6439 	if (l2arc_feed_again && wrote > (wanted / 2))
6440 		interval = (hz * l2arc_feed_min_ms) / 1000;
6441 	else
6442 		interval = hz * l2arc_feed_secs;
6443 
6444 	now = ddi_get_lbolt();
6445 	next = MAX(now, MIN(now + interval, began + interval));
6446 
6447 	return (next);
6448 }
6449 
6450 /*
6451  * Cycle through L2ARC devices.  This is how L2ARC load balances.
6452  * If a device is returned, this also returns holding the spa config lock.
6453  */
6454 static l2arc_dev_t *
6455 l2arc_dev_get_next(void)
6456 {
6457 	l2arc_dev_t *first, *next = NULL;
6458 
6459 	/*
6460 	 * Lock out the removal of spas (spa_namespace_lock), then removal
6461 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
6462 	 * both locks will be dropped and a spa config lock held instead.
6463 	 */
6464 	mutex_enter(&spa_namespace_lock);
6465 	mutex_enter(&l2arc_dev_mtx);
6466 
6467 	/* if there are no vdevs, there is nothing to do */
6468 	if (l2arc_ndev == 0)
6469 		goto out;
6470 
6471 	first = NULL;
6472 	next = l2arc_dev_last;
6473 	do {
6474 		/* loop around the list looking for a non-faulted vdev */
6475 		if (next == NULL) {
6476 			next = list_head(l2arc_dev_list);
6477 		} else {
6478 			next = list_next(l2arc_dev_list, next);
6479 			if (next == NULL)
6480 				next = list_head(l2arc_dev_list);
6481 		}
6482 
6483 		/* if we have come back to the start, bail out */
6484 		if (first == NULL)
6485 			first = next;
6486 		else if (next == first)
6487 			break;
6488 
6489 	} while (vdev_is_dead(next->l2ad_vdev));
6490 
6491 	/* if we were unable to find any usable vdevs, return NULL */
6492 	if (vdev_is_dead(next->l2ad_vdev))
6493 		next = NULL;
6494 
6495 	l2arc_dev_last = next;
6496 
6497 out:
6498 	mutex_exit(&l2arc_dev_mtx);
6499 
6500 	/*
6501 	 * Grab the config lock to prevent the 'next' device from being
6502 	 * removed while we are writing to it.
6503 	 */
6504 	if (next != NULL)
6505 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6506 	mutex_exit(&spa_namespace_lock);
6507 
6508 	return (next);
6509 }
6510 
6511 /*
6512  * Free buffers that were tagged for destruction.
6513  */
6514 static void
6515 l2arc_do_free_on_write()
6516 {
6517 	list_t *buflist;
6518 	l2arc_data_free_t *df, *df_prev;
6519 
6520 	mutex_enter(&l2arc_free_on_write_mtx);
6521 	buflist = l2arc_free_on_write;
6522 
6523 	for (df = list_tail(buflist); df; df = df_prev) {
6524 		df_prev = list_prev(buflist, df);
6525 		ASSERT3P(df->l2df_abd, !=, NULL);
6526 		abd_free(df->l2df_abd);
6527 		list_remove(buflist, df);
6528 		kmem_free(df, sizeof (l2arc_data_free_t));
6529 	}
6530 
6531 	mutex_exit(&l2arc_free_on_write_mtx);
6532 }
6533 
6534 /*
6535  * A write to a cache device has completed.  Update all headers to allow
6536  * reads from these buffers to begin.
6537  */
6538 static void
6539 l2arc_write_done(zio_t *zio)
6540 {
6541 	l2arc_write_callback_t *cb;
6542 	l2arc_dev_t *dev;
6543 	list_t *buflist;
6544 	arc_buf_hdr_t *head, *hdr, *hdr_prev;
6545 	kmutex_t *hash_lock;
6546 	int64_t bytes_dropped = 0;
6547 
6548 	cb = zio->io_private;
6549 	ASSERT3P(cb, !=, NULL);
6550 	dev = cb->l2wcb_dev;
6551 	ASSERT3P(dev, !=, NULL);
6552 	head = cb->l2wcb_head;
6553 	ASSERT3P(head, !=, NULL);
6554 	buflist = &dev->l2ad_buflist;
6555 	ASSERT3P(buflist, !=, NULL);
6556 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6557 	    l2arc_write_callback_t *, cb);
6558 
6559 	if (zio->io_error != 0)
6560 		ARCSTAT_BUMP(arcstat_l2_writes_error);
6561 
6562 	/*
6563 	 * All writes completed, or an error was hit.
6564 	 */
6565 top:
6566 	mutex_enter(&dev->l2ad_mtx);
6567 	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6568 		hdr_prev = list_prev(buflist, hdr);
6569 
6570 		hash_lock = HDR_LOCK(hdr);
6571 
6572 		/*
6573 		 * We cannot use mutex_enter or else we can deadlock
6574 		 * with l2arc_write_buffers (due to swapping the order
6575 		 * the hash lock and l2ad_mtx are taken).
6576 		 */
6577 		if (!mutex_tryenter(hash_lock)) {
6578 			/*
6579 			 * Missed the hash lock. We must retry so we
6580 			 * don't leave the ARC_FLAG_L2_WRITING bit set.
6581 			 */
6582 			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6583 
6584 			/*
6585 			 * We don't want to rescan the headers we've
6586 			 * already marked as having been written out, so
6587 			 * we reinsert the head node so we can pick up
6588 			 * where we left off.
6589 			 */
6590 			list_remove(buflist, head);
6591 			list_insert_after(buflist, hdr, head);
6592 
6593 			mutex_exit(&dev->l2ad_mtx);
6594 
6595 			/*
6596 			 * We wait for the hash lock to become available
6597 			 * to try and prevent busy waiting, and increase
6598 			 * the chance we'll be able to acquire the lock
6599 			 * the next time around.
6600 			 */
6601 			mutex_enter(hash_lock);
6602 			mutex_exit(hash_lock);
6603 			goto top;
6604 		}
6605 
6606 		/*
6607 		 * We could not have been moved into the arc_l2c_only
6608 		 * state while in-flight due to our ARC_FLAG_L2_WRITING
6609 		 * bit being set. Let's just ensure that's being enforced.
6610 		 */
6611 		ASSERT(HDR_HAS_L1HDR(hdr));
6612 
6613 		if (zio->io_error != 0) {
6614 			/*
6615 			 * Error - drop L2ARC entry.
6616 			 */
6617 			list_remove(buflist, hdr);
6618 			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
6619 
6620 			ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr));
6621 			ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
6622 
6623 			bytes_dropped += arc_hdr_size(hdr);
6624 			(void) refcount_remove_many(&dev->l2ad_alloc,
6625 			    arc_hdr_size(hdr), hdr);
6626 		}
6627 
6628 		/*
6629 		 * Allow ARC to begin reads and ghost list evictions to
6630 		 * this L2ARC entry.
6631 		 */
6632 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
6633 
6634 		mutex_exit(hash_lock);
6635 	}
6636 
6637 	atomic_inc_64(&l2arc_writes_done);
6638 	list_remove(buflist, head);
6639 	ASSERT(!HDR_HAS_L1HDR(head));
6640 	kmem_cache_free(hdr_l2only_cache, head);
6641 	mutex_exit(&dev->l2ad_mtx);
6642 
6643 	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6644 
6645 	l2arc_do_free_on_write();
6646 
6647 	kmem_free(cb, sizeof (l2arc_write_callback_t));
6648 }
6649 
6650 /*
6651  * A read to a cache device completed.  Validate buffer contents before
6652  * handing over to the regular ARC routines.
6653  */
6654 static void
6655 l2arc_read_done(zio_t *zio)
6656 {
6657 	l2arc_read_callback_t *cb;
6658 	arc_buf_hdr_t *hdr;
6659 	kmutex_t *hash_lock;
6660 	boolean_t valid_cksum;
6661 
6662 	ASSERT3P(zio->io_vd, !=, NULL);
6663 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6664 
6665 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6666 
6667 	cb = zio->io_private;
6668 	ASSERT3P(cb, !=, NULL);
6669 	hdr = cb->l2rcb_hdr;
6670 	ASSERT3P(hdr, !=, NULL);
6671 
6672 	hash_lock = HDR_LOCK(hdr);
6673 	mutex_enter(hash_lock);
6674 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6675 
6676 	/*
6677 	 * If the data was read into a temporary buffer,
6678 	 * move it and free the buffer.
6679 	 */
6680 	if (cb->l2rcb_abd != NULL) {
6681 		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
6682 		if (zio->io_error == 0) {
6683 			abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
6684 			    arc_hdr_size(hdr));
6685 		}
6686 
6687 		/*
6688 		 * The following must be done regardless of whether
6689 		 * there was an error:
6690 		 * - free the temporary buffer
6691 		 * - point zio to the real ARC buffer
6692 		 * - set zio size accordingly
6693 		 * These are required because zio is either re-used for
6694 		 * an I/O of the block in the case of the error
6695 		 * or the zio is passed to arc_read_done() and it
6696 		 * needs real data.
6697 		 */
6698 		abd_free(cb->l2rcb_abd);
6699 		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
6700 		zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
6701 	}
6702 
6703 	ASSERT3P(zio->io_abd, !=, NULL);
6704 
6705 	/*
6706 	 * Check this survived the L2ARC journey.
6707 	 */
6708 	ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd);
6709 	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
6710 	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
6711 
6712 	valid_cksum = arc_cksum_is_equal(hdr, zio);
6713 	if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6714 		mutex_exit(hash_lock);
6715 		zio->io_private = hdr;
6716 		arc_read_done(zio);
6717 	} else {
6718 		mutex_exit(hash_lock);
6719 		/*
6720 		 * Buffer didn't survive caching.  Increment stats and
6721 		 * reissue to the original storage device.
6722 		 */
6723 		if (zio->io_error != 0) {
6724 			ARCSTAT_BUMP(arcstat_l2_io_error);
6725 		} else {
6726 			zio->io_error = SET_ERROR(EIO);
6727 		}
6728 		if (!valid_cksum)
6729 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6730 
6731 		/*
6732 		 * If there's no waiter, issue an async i/o to the primary
6733 		 * storage now.  If there *is* a waiter, the caller must
6734 		 * issue the i/o in a context where it's OK to block.
6735 		 */
6736 		if (zio->io_waiter == NULL) {
6737 			zio_t *pio = zio_unique_parent(zio);
6738 
6739 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6740 
6741 			zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
6742 			    hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done,
6743 			    hdr, zio->io_priority, cb->l2rcb_flags,
6744 			    &cb->l2rcb_zb));
6745 		}
6746 	}
6747 
6748 	kmem_free(cb, sizeof (l2arc_read_callback_t));
6749 }
6750 
6751 /*
6752  * This is the list priority from which the L2ARC will search for pages to
6753  * cache.  This is used within loops (0..3) to cycle through lists in the
6754  * desired order.  This order can have a significant effect on cache
6755  * performance.
6756  *
6757  * Currently the metadata lists are hit first, MFU then MRU, followed by
6758  * the data lists.  This function returns a locked list, and also returns
6759  * the lock pointer.
6760  */
6761 static multilist_sublist_t *
6762 l2arc_sublist_lock(int list_num)
6763 {
6764 	multilist_t *ml = NULL;
6765 	unsigned int idx;
6766 
6767 	ASSERT(list_num >= 0 && list_num <= 3);
6768 
6769 	switch (list_num) {
6770 	case 0:
6771 		ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
6772 		break;
6773 	case 1:
6774 		ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
6775 		break;
6776 	case 2:
6777 		ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
6778 		break;
6779 	case 3:
6780 		ml = arc_mru->arcs_list[ARC_BUFC_DATA];
6781 		break;
6782 	}
6783 
6784 	/*
6785 	 * Return a randomly-selected sublist. This is acceptable
6786 	 * because the caller feeds only a little bit of data for each
6787 	 * call (8MB). Subsequent calls will result in different
6788 	 * sublists being selected.
6789 	 */
6790 	idx = multilist_get_random_index(ml);
6791 	return (multilist_sublist_lock(ml, idx));
6792 }
6793 
6794 /*
6795  * Evict buffers from the device write hand to the distance specified in
6796  * bytes.  This distance may span populated buffers, it may span nothing.
6797  * This is clearing a region on the L2ARC device ready for writing.
6798  * If the 'all' boolean is set, every buffer is evicted.
6799  */
6800 static void
6801 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6802 {
6803 	list_t *buflist;
6804 	arc_buf_hdr_t *hdr, *hdr_prev;
6805 	kmutex_t *hash_lock;
6806 	uint64_t taddr;
6807 
6808 	buflist = &dev->l2ad_buflist;
6809 
6810 	if (!all && dev->l2ad_first) {
6811 		/*
6812 		 * This is the first sweep through the device.  There is
6813 		 * nothing to evict.
6814 		 */
6815 		return;
6816 	}
6817 
6818 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6819 		/*
6820 		 * When nearing the end of the device, evict to the end
6821 		 * before the device write hand jumps to the start.
6822 		 */
6823 		taddr = dev->l2ad_end;
6824 	} else {
6825 		taddr = dev->l2ad_hand + distance;
6826 	}
6827 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6828 	    uint64_t, taddr, boolean_t, all);
6829 
6830 top:
6831 	mutex_enter(&dev->l2ad_mtx);
6832 	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6833 		hdr_prev = list_prev(buflist, hdr);
6834 
6835 		hash_lock = HDR_LOCK(hdr);
6836 
6837 		/*
6838 		 * We cannot use mutex_enter or else we can deadlock
6839 		 * with l2arc_write_buffers (due to swapping the order
6840 		 * the hash lock and l2ad_mtx are taken).
6841 		 */
6842 		if (!mutex_tryenter(hash_lock)) {
6843 			/*
6844 			 * Missed the hash lock.  Retry.
6845 			 */
6846 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6847 			mutex_exit(&dev->l2ad_mtx);
6848 			mutex_enter(hash_lock);
6849 			mutex_exit(hash_lock);
6850 			goto top;
6851 		}
6852 
6853 		/*
6854 		 * A header can't be on this list if it doesn't have L2 header.
6855 		 */
6856 		ASSERT(HDR_HAS_L2HDR(hdr));
6857 
6858 		/* Ensure this header has finished being written. */
6859 		ASSERT(!HDR_L2_WRITING(hdr));
6860 		ASSERT(!HDR_L2_WRITE_HEAD(hdr));
6861 
6862 		if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
6863 		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6864 			/*
6865 			 * We've evicted to the target address,
6866 			 * or the end of the device.
6867 			 */
6868 			mutex_exit(hash_lock);
6869 			break;
6870 		}
6871 
6872 		if (!HDR_HAS_L1HDR(hdr)) {
6873 			ASSERT(!HDR_L2_READING(hdr));
6874 			/*
6875 			 * This doesn't exist in the ARC.  Destroy.
6876 			 * arc_hdr_destroy() will call list_remove()
6877 			 * and decrement arcstat_l2_lsize.
6878 			 */
6879 			arc_change_state(arc_anon, hdr, hash_lock);
6880 			arc_hdr_destroy(hdr);
6881 		} else {
6882 			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6883 			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6884 			/*
6885 			 * Invalidate issued or about to be issued
6886 			 * reads, since we may be about to write
6887 			 * over this location.
6888 			 */
6889 			if (HDR_L2_READING(hdr)) {
6890 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
6891 				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
6892 			}
6893 
6894 			arc_hdr_l2hdr_destroy(hdr);
6895 		}
6896 		mutex_exit(hash_lock);
6897 	}
6898 	mutex_exit(&dev->l2ad_mtx);
6899 }
6900 
6901 /*
6902  * Find and write ARC buffers to the L2ARC device.
6903  *
6904  * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6905  * for reading until they have completed writing.
6906  * The headroom_boost is an in-out parameter used to maintain headroom boost
6907  * state between calls to this function.
6908  *
6909  * Returns the number of bytes actually written (which may be smaller than
6910  * the delta by which the device hand has changed due to alignment).
6911  */
6912 static uint64_t
6913 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
6914 {
6915 	arc_buf_hdr_t *hdr, *hdr_prev, *head;
6916 	uint64_t write_asize, write_psize, write_lsize, headroom;
6917 	boolean_t full;
6918 	l2arc_write_callback_t *cb;
6919 	zio_t *pio, *wzio;
6920 	uint64_t guid = spa_load_guid(spa);
6921 
6922 	ASSERT3P(dev->l2ad_vdev, !=, NULL);
6923 
6924 	pio = NULL;
6925 	write_lsize = write_asize = write_psize = 0;
6926 	full = B_FALSE;
6927 	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6928 	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
6929 
6930 	/*
6931 	 * Copy buffers for L2ARC writing.
6932 	 */
6933 	for (int try = 0; try <= 3; try++) {
6934 		multilist_sublist_t *mls = l2arc_sublist_lock(try);
6935 		uint64_t passed_sz = 0;
6936 
6937 		/*
6938 		 * L2ARC fast warmup.
6939 		 *
6940 		 * Until the ARC is warm and starts to evict, read from the
6941 		 * head of the ARC lists rather than the tail.
6942 		 */
6943 		if (arc_warm == B_FALSE)
6944 			hdr = multilist_sublist_head(mls);
6945 		else
6946 			hdr = multilist_sublist_tail(mls);
6947 
6948 		headroom = target_sz * l2arc_headroom;
6949 		if (zfs_compressed_arc_enabled)
6950 			headroom = (headroom * l2arc_headroom_boost) / 100;
6951 
6952 		for (; hdr; hdr = hdr_prev) {
6953 			kmutex_t *hash_lock;
6954 
6955 			if (arc_warm == B_FALSE)
6956 				hdr_prev = multilist_sublist_next(mls, hdr);
6957 			else
6958 				hdr_prev = multilist_sublist_prev(mls, hdr);
6959 
6960 			hash_lock = HDR_LOCK(hdr);
6961 			if (!mutex_tryenter(hash_lock)) {
6962 				/*
6963 				 * Skip this buffer rather than waiting.
6964 				 */
6965 				continue;
6966 			}
6967 
6968 			passed_sz += HDR_GET_LSIZE(hdr);
6969 			if (passed_sz > headroom) {
6970 				/*
6971 				 * Searched too far.
6972 				 */
6973 				mutex_exit(hash_lock);
6974 				break;
6975 			}
6976 
6977 			if (!l2arc_write_eligible(guid, hdr)) {
6978 				mutex_exit(hash_lock);
6979 				continue;
6980 			}
6981 
6982 			/*
6983 			 * We rely on the L1 portion of the header below, so
6984 			 * it's invalid for this header to have been evicted out
6985 			 * of the ghost cache, prior to being written out. The
6986 			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6987 			 */
6988 			ASSERT(HDR_HAS_L1HDR(hdr));
6989 
6990 			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
6991 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6992 			ASSERT3U(arc_hdr_size(hdr), >, 0);
6993 			uint64_t psize = arc_hdr_size(hdr);
6994 			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
6995 			    psize);
6996 
6997 			if ((write_asize + asize) > target_sz) {
6998 				full = B_TRUE;
6999 				mutex_exit(hash_lock);
7000 				break;
7001 			}
7002 
7003 			if (pio == NULL) {
7004 				/*
7005 				 * Insert a dummy header on the buflist so
7006 				 * l2arc_write_done() can find where the
7007 				 * write buffers begin without searching.
7008 				 */
7009 				mutex_enter(&dev->l2ad_mtx);
7010 				list_insert_head(&dev->l2ad_buflist, head);
7011 				mutex_exit(&dev->l2ad_mtx);
7012 
7013 				cb = kmem_alloc(
7014 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
7015 				cb->l2wcb_dev = dev;
7016 				cb->l2wcb_head = head;
7017 				pio = zio_root(spa, l2arc_write_done, cb,
7018 				    ZIO_FLAG_CANFAIL);
7019 			}
7020 
7021 			hdr->b_l2hdr.b_dev = dev;
7022 			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
7023 			arc_hdr_set_flags(hdr,
7024 			    ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
7025 
7026 			mutex_enter(&dev->l2ad_mtx);
7027 			list_insert_head(&dev->l2ad_buflist, hdr);
7028 			mutex_exit(&dev->l2ad_mtx);
7029 
7030 			(void) refcount_add_many(&dev->l2ad_alloc, psize, hdr);
7031 
7032 			/*
7033 			 * Normally the L2ARC can use the hdr's data, but if
7034 			 * we're sharing data between the hdr and one of its
7035 			 * bufs, L2ARC needs its own copy of the data so that
7036 			 * the ZIO below can't race with the buf consumer.
7037 			 * Another case where we need to create a copy of the
7038 			 * data is when the buffer size is not device-aligned
7039 			 * and we need to pad the block to make it such.
7040 			 * That also keeps the clock hand suitably aligned.
7041 			 *
7042 			 * To ensure that the copy will be available for the
7043 			 * lifetime of the ZIO and be cleaned up afterwards, we
7044 			 * add it to the l2arc_free_on_write queue.
7045 			 */
7046 			abd_t *to_write;
7047 			if (!HDR_SHARED_DATA(hdr) && psize == asize) {
7048 				to_write = hdr->b_l1hdr.b_pabd;
7049 			} else {
7050 				to_write = abd_alloc_for_io(asize,
7051 				    HDR_ISTYPE_METADATA(hdr));
7052 				abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize);
7053 				if (asize != psize) {
7054 					abd_zero_off(to_write, psize,
7055 					    asize - psize);
7056 				}
7057 				l2arc_free_abd_on_write(to_write, asize,
7058 				    arc_buf_type(hdr));
7059 			}
7060 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
7061 			    hdr->b_l2hdr.b_daddr, asize, to_write,
7062 			    ZIO_CHECKSUM_OFF, NULL, hdr,
7063 			    ZIO_PRIORITY_ASYNC_WRITE,
7064 			    ZIO_FLAG_CANFAIL, B_FALSE);
7065 
7066 			write_lsize += HDR_GET_LSIZE(hdr);
7067 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
7068 			    zio_t *, wzio);
7069 
7070 			write_psize += psize;
7071 			write_asize += asize;
7072 			dev->l2ad_hand += asize;
7073 
7074 			mutex_exit(hash_lock);
7075 
7076 			(void) zio_nowait(wzio);
7077 		}
7078 
7079 		multilist_sublist_unlock(mls);
7080 
7081 		if (full == B_TRUE)
7082 			break;
7083 	}
7084 
7085 	/* No buffers selected for writing? */
7086 	if (pio == NULL) {
7087 		ASSERT0(write_lsize);
7088 		ASSERT(!HDR_HAS_L1HDR(head));
7089 		kmem_cache_free(hdr_l2only_cache, head);
7090 		return (0);
7091 	}
7092 
7093 	ASSERT3U(write_asize, <=, target_sz);
7094 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
7095 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
7096 	ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
7097 	ARCSTAT_INCR(arcstat_l2_psize, write_psize);
7098 	vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
7099 
7100 	/*
7101 	 * Bump device hand to the device start if it is approaching the end.
7102 	 * l2arc_evict() will already have evicted ahead for this case.
7103 	 */
7104 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7105 		dev->l2ad_hand = dev->l2ad_start;
7106 		dev->l2ad_first = B_FALSE;
7107 	}
7108 
7109 	dev->l2ad_writing = B_TRUE;
7110 	(void) zio_wait(pio);
7111 	dev->l2ad_writing = B_FALSE;
7112 
7113 	return (write_asize);
7114 }
7115 
7116 /*
7117  * This thread feeds the L2ARC at regular intervals.  This is the beating
7118  * heart of the L2ARC.
7119  */
7120 /* ARGSUSED */
7121 static void
7122 l2arc_feed_thread(void *unused)
7123 {
7124 	callb_cpr_t cpr;
7125 	l2arc_dev_t *dev;
7126 	spa_t *spa;
7127 	uint64_t size, wrote;
7128 	clock_t begin, next = ddi_get_lbolt();
7129 
7130 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7131 
7132 	mutex_enter(&l2arc_feed_thr_lock);
7133 
7134 	while (l2arc_thread_exit == 0) {
7135 		CALLB_CPR_SAFE_BEGIN(&cpr);
7136 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
7137 		    next);
7138 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7139 		next = ddi_get_lbolt() + hz;
7140 
7141 		/*
7142 		 * Quick check for L2ARC devices.
7143 		 */
7144 		mutex_enter(&l2arc_dev_mtx);
7145 		if (l2arc_ndev == 0) {
7146 			mutex_exit(&l2arc_dev_mtx);
7147 			continue;
7148 		}
7149 		mutex_exit(&l2arc_dev_mtx);
7150 		begin = ddi_get_lbolt();
7151 
7152 		/*
7153 		 * This selects the next l2arc device to write to, and in
7154 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
7155 		 * will return NULL if there are now no l2arc devices or if
7156 		 * they are all faulted.
7157 		 *
7158 		 * If a device is returned, its spa's config lock is also
7159 		 * held to prevent device removal.  l2arc_dev_get_next()
7160 		 * will grab and release l2arc_dev_mtx.
7161 		 */
7162 		if ((dev = l2arc_dev_get_next()) == NULL)
7163 			continue;
7164 
7165 		spa = dev->l2ad_spa;
7166 		ASSERT3P(spa, !=, NULL);
7167 
7168 		/*
7169 		 * If the pool is read-only then force the feed thread to
7170 		 * sleep a little longer.
7171 		 */
7172 		if (!spa_writeable(spa)) {
7173 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7174 			spa_config_exit(spa, SCL_L2ARC, dev);
7175 			continue;
7176 		}
7177 
7178 		/*
7179 		 * Avoid contributing to memory pressure.
7180 		 */
7181 		if (arc_reclaim_needed()) {
7182 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7183 			spa_config_exit(spa, SCL_L2ARC, dev);
7184 			continue;
7185 		}
7186 
7187 		ARCSTAT_BUMP(arcstat_l2_feeds);
7188 
7189 		size = l2arc_write_size();
7190 
7191 		/*
7192 		 * Evict L2ARC buffers that will be overwritten.
7193 		 */
7194 		l2arc_evict(dev, size, B_FALSE);
7195 
7196 		/*
7197 		 * Write ARC buffers.
7198 		 */
7199 		wrote = l2arc_write_buffers(spa, dev, size);
7200 
7201 		/*
7202 		 * Calculate interval between writes.
7203 		 */
7204 		next = l2arc_write_interval(begin, size, wrote);
7205 		spa_config_exit(spa, SCL_L2ARC, dev);
7206 	}
7207 
7208 	l2arc_thread_exit = 0;
7209 	cv_broadcast(&l2arc_feed_thr_cv);
7210 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
7211 	thread_exit();
7212 }
7213 
7214 boolean_t
7215 l2arc_vdev_present(vdev_t *vd)
7216 {
7217 	l2arc_dev_t *dev;
7218 
7219 	mutex_enter(&l2arc_dev_mtx);
7220 	for (dev = list_head(l2arc_dev_list); dev != NULL;
7221 	    dev = list_next(l2arc_dev_list, dev)) {
7222 		if (dev->l2ad_vdev == vd)
7223 			break;
7224 	}
7225 	mutex_exit(&l2arc_dev_mtx);
7226 
7227 	return (dev != NULL);
7228 }
7229 
7230 /*
7231  * Add a vdev for use by the L2ARC.  By this point the spa has already
7232  * validated the vdev and opened it.
7233  */
7234 void
7235 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7236 {
7237 	l2arc_dev_t *adddev;
7238 
7239 	ASSERT(!l2arc_vdev_present(vd));
7240 
7241 	/*
7242 	 * Create a new l2arc device entry.
7243 	 */
7244 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7245 	adddev->l2ad_spa = spa;
7246 	adddev->l2ad_vdev = vd;
7247 	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7248 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7249 	adddev->l2ad_hand = adddev->l2ad_start;
7250 	adddev->l2ad_first = B_TRUE;
7251 	adddev->l2ad_writing = B_FALSE;
7252 
7253 	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7254 	/*
7255 	 * This is a list of all ARC buffers that are still valid on the
7256 	 * device.
7257 	 */
7258 	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7259 	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7260 
7261 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7262 	refcount_create(&adddev->l2ad_alloc);
7263 
7264 	/*
7265 	 * Add device to global list
7266 	 */
7267 	mutex_enter(&l2arc_dev_mtx);
7268 	list_insert_head(l2arc_dev_list, adddev);
7269 	atomic_inc_64(&l2arc_ndev);
7270 	mutex_exit(&l2arc_dev_mtx);
7271 }
7272 
7273 /*
7274  * Remove a vdev from the L2ARC.
7275  */
7276 void
7277 l2arc_remove_vdev(vdev_t *vd)
7278 {
7279 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7280 
7281 	/*
7282 	 * Find the device by vdev
7283 	 */
7284 	mutex_enter(&l2arc_dev_mtx);
7285 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7286 		nextdev = list_next(l2arc_dev_list, dev);
7287 		if (vd == dev->l2ad_vdev) {
7288 			remdev = dev;
7289 			break;
7290 		}
7291 	}
7292 	ASSERT3P(remdev, !=, NULL);
7293 
7294 	/*
7295 	 * Remove device from global list
7296 	 */
7297 	list_remove(l2arc_dev_list, remdev);
7298 	l2arc_dev_last = NULL;		/* may have been invalidated */
7299 	atomic_dec_64(&l2arc_ndev);
7300 	mutex_exit(&l2arc_dev_mtx);
7301 
7302 	/*
7303 	 * Clear all buflists and ARC references.  L2ARC device flush.
7304 	 */
7305 	l2arc_evict(remdev, 0, B_TRUE);
7306 	list_destroy(&remdev->l2ad_buflist);
7307 	mutex_destroy(&remdev->l2ad_mtx);
7308 	refcount_destroy(&remdev->l2ad_alloc);
7309 	kmem_free(remdev, sizeof (l2arc_dev_t));
7310 }
7311 
7312 void
7313 l2arc_init(void)
7314 {
7315 	l2arc_thread_exit = 0;
7316 	l2arc_ndev = 0;
7317 	l2arc_writes_sent = 0;
7318 	l2arc_writes_done = 0;
7319 
7320 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7321 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7322 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7323 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7324 
7325 	l2arc_dev_list = &L2ARC_dev_list;
7326 	l2arc_free_on_write = &L2ARC_free_on_write;
7327 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7328 	    offsetof(l2arc_dev_t, l2ad_node));
7329 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7330 	    offsetof(l2arc_data_free_t, l2df_list_node));
7331 }
7332 
7333 void
7334 l2arc_fini(void)
7335 {
7336 	/*
7337 	 * This is called from dmu_fini(), which is called from spa_fini();
7338 	 * Because of this, we can assume that all l2arc devices have
7339 	 * already been removed when the pools themselves were removed.
7340 	 */
7341 
7342 	l2arc_do_free_on_write();
7343 
7344 	mutex_destroy(&l2arc_feed_thr_lock);
7345 	cv_destroy(&l2arc_feed_thr_cv);
7346 	mutex_destroy(&l2arc_dev_mtx);
7347 	mutex_destroy(&l2arc_free_on_write_mtx);
7348 
7349 	list_destroy(l2arc_dev_list);
7350 	list_destroy(l2arc_free_on_write);
7351 }
7352 
7353 void
7354 l2arc_start(void)
7355 {
7356 	if (!(spa_mode_global & FWRITE))
7357 		return;
7358 
7359 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7360 	    TS_RUN, minclsyspri);
7361 }
7362 
7363 void
7364 l2arc_stop(void)
7365 {
7366 	if (!(spa_mode_global & FWRITE))
7367 		return;
7368 
7369 	mutex_enter(&l2arc_feed_thr_lock);
7370 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
7371 	l2arc_thread_exit = 1;
7372 	while (l2arc_thread_exit != 0)
7373 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7374 	mutex_exit(&l2arc_feed_thr_lock);
7375 }
7376