xref: /illumos-gate/usr/src/uts/common/fs/zfs/arc.c (revision 60405de4d8688d96dd05157c28db3ade5c9bc234)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * DVA-based Adjustable Relpacement Cache
30  *
31  * While much of the theory of operation used here is
32  * based on the self-tuning, low overhead replacement cache
33  * presented by Megiddo and Modha at FAST 2003, there are some
34  * significant differences:
35  *
36  * 1. The Megiddo and Modha model assumes any page is evictable.
37  * Pages in its cache cannot be "locked" into memory.  This makes
38  * the eviction algorithm simple: evict the last page in the list.
39  * This also make the performance characteristics easy to reason
40  * about.  Our cache is not so simple.  At any given moment, some
41  * subset of the blocks in the cache are un-evictable because we
42  * have handed out a reference to them.  Blocks are only evictable
43  * when there are no external references active.  This makes
44  * eviction far more problematic:  we choose to evict the evictable
45  * blocks that are the "lowest" in the list.
46  *
47  * There are times when it is not possible to evict the requested
48  * space.  In these circumstances we are unable to adjust the cache
49  * size.  To prevent the cache growing unbounded at these times we
50  * implement a "cache throttle" that slowes the flow of new data
51  * into the cache until we can make space avaiable.
52  *
53  * 2. The Megiddo and Modha model assumes a fixed cache size.
54  * Pages are evicted when the cache is full and there is a cache
55  * miss.  Our model has a variable sized cache.  It grows with
56  * high use, but also tries to react to memory preasure from the
57  * operating system: decreasing its size when system memory is
58  * tight.
59  *
60  * 3. The Megiddo and Modha model assumes a fixed page size. All
61  * elements of the cache are therefor exactly the same size.  So
62  * when adjusting the cache size following a cache miss, its simply
63  * a matter of choosing a single page to evict.  In our model, we
64  * have variable sized cache blocks (rangeing from 512 bytes to
65  * 128K bytes).  We therefor choose a set of blocks to evict to make
66  * space for a cache miss that approximates as closely as possible
67  * the space used by the new block.
68  *
69  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70  * by N. Megiddo & D. Modha, FAST 2003
71  */
72 
73 /*
74  * The locking model:
75  *
76  * A new reference to a cache buffer can be obtained in two
77  * ways: 1) via a hash table lookup using the DVA as a key,
78  * or 2) via one of the ARC lists.  The arc_read() inerface
79  * uses method 1, while the internal arc algorithms for
80  * adjusting the cache use method 2.  We therefor provide two
81  * types of locks: 1) the hash table lock array, and 2) the
82  * arc list locks.
83  *
84  * Buffers do not have their own mutexs, rather they rely on the
85  * hash table mutexs for the bulk of their protection (i.e. most
86  * fields in the arc_buf_hdr_t are protected by these mutexs).
87  *
88  * buf_hash_find() returns the appropriate mutex (held) when it
89  * locates the requested buffer in the hash table.  It returns
90  * NULL for the mutex if the buffer was not in the table.
91  *
92  * buf_hash_remove() expects the appropriate hash mutex to be
93  * already held before it is invoked.
94  *
95  * Each arc state also has a mutex which is used to protect the
96  * buffer list associated with the state.  When attempting to
97  * obtain a hash table lock while holding an arc list lock you
98  * must use: mutex_tryenter() to avoid deadlock.  Also note that
99  * the active state mutex must be held before the ghost state mutex.
100  *
101  * Arc buffers may have an associated eviction callback function.
102  * This function will be invoked prior to removing the buffer (e.g.
103  * in arc_do_user_evicts()).  Note however that the data associated
104  * with the buffer may be evicted prior to the callback.  The callback
105  * must be made with *no locks held* (to prevent deadlock).  Additionally,
106  * the users of callbacks must ensure that their private data is
107  * protected from simultaneous callbacks from arc_buf_evict()
108  * and arc_do_user_evicts().
109  *
110  * Note that the majority of the performance stats are manipulated
111  * with atomic operations.
112  */
113 
114 #include <sys/spa.h>
115 #include <sys/zio.h>
116 #include <sys/zfs_context.h>
117 #include <sys/arc.h>
118 #include <sys/refcount.h>
119 #ifdef _KERNEL
120 #include <sys/vmsystm.h>
121 #include <vm/anon.h>
122 #include <sys/fs/swapnode.h>
123 #include <sys/dnlc.h>
124 #endif
125 #include <sys/callb.h>
126 
127 static kmutex_t		arc_reclaim_thr_lock;
128 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
129 static uint8_t		arc_thread_exit;
130 
131 #define	ARC_REDUCE_DNLC_PERCENT	3
132 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
133 
134 typedef enum arc_reclaim_strategy {
135 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
136 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
137 } arc_reclaim_strategy_t;
138 
139 /* number of seconds before growing cache again */
140 static int		arc_grow_retry = 60;
141 
142 /*
143  * minimum lifespan of a prefetch block in clock ticks
144  * (initialized in arc_init())
145  */
146 static int		arc_min_prefetch_lifespan;
147 
148 static kmutex_t arc_reclaim_lock;
149 static int arc_dead;
150 
151 /*
152  * Note that buffers can be on one of 5 states:
153  *	ARC_anon	- anonymous (discussed below)
154  *	ARC_mru		- recently used, currently cached
155  *	ARC_mru_ghost	- recentely used, no longer in cache
156  *	ARC_mfu		- frequently used, currently cached
157  *	ARC_mfu_ghost	- frequently used, no longer in cache
158  * When there are no active references to the buffer, they
159  * are linked onto one of the lists in arc.  These are the
160  * only buffers that can be evicted or deleted.
161  *
162  * Anonymous buffers are buffers that are not associated with
163  * a DVA.  These are buffers that hold dirty block copies
164  * before they are written to stable storage.  By definition,
165  * they are "ref'd" and are considered part of arc_mru
166  * that cannot be freed.  Generally, they will aquire a DVA
167  * as they are written and migrate onto the arc_mru list.
168  */
169 
170 typedef struct arc_state {
171 	list_t	list;	/* linked list of evictable buffer in state */
172 	uint64_t lsize;	/* total size of buffers in the linked list */
173 	uint64_t size;	/* total size of all buffers in this state */
174 	uint64_t hits;
175 	kmutex_t mtx;
176 } arc_state_t;
177 
178 /* The 5 states: */
179 static arc_state_t ARC_anon;
180 static arc_state_t ARC_mru;
181 static arc_state_t ARC_mru_ghost;
182 static arc_state_t ARC_mfu;
183 static arc_state_t ARC_mfu_ghost;
184 
185 static struct arc {
186 	arc_state_t 	*anon;
187 	arc_state_t	*mru;
188 	arc_state_t	*mru_ghost;
189 	arc_state_t	*mfu;
190 	arc_state_t	*mfu_ghost;
191 	uint64_t	size;		/* Actual total arc size */
192 	uint64_t	p;		/* Target size (in bytes) of mru */
193 	uint64_t	c;		/* Target size of cache (in bytes) */
194 	uint64_t	c_min;		/* Minimum target cache size */
195 	uint64_t	c_max;		/* Maximum target cache size */
196 
197 	/* performance stats */
198 	uint64_t	hits;
199 	uint64_t	misses;
200 	uint64_t	deleted;
201 	uint64_t	recycle_miss;
202 	uint64_t	mutex_miss;
203 	uint64_t	evict_skip;
204 	uint64_t	hash_elements;
205 	uint64_t	hash_elements_max;
206 	uint64_t	hash_collisions;
207 	uint64_t	hash_chains;
208 	uint32_t	hash_chain_max;
209 
210 	int		no_grow;	/* Don't try to grow cache size */
211 } arc;
212 
213 static uint64_t arc_tempreserve;
214 
215 typedef struct arc_callback arc_callback_t;
216 
217 struct arc_callback {
218 	arc_done_func_t		*acb_done;
219 	void			*acb_private;
220 	arc_byteswap_func_t	*acb_byteswap;
221 	arc_buf_t		*acb_buf;
222 	zio_t			*acb_zio_dummy;
223 	arc_callback_t		*acb_next;
224 };
225 
226 struct arc_buf_hdr {
227 	/* immutable */
228 	uint64_t		b_size;
229 	spa_t			*b_spa;
230 
231 	/* protected by hash lock */
232 	dva_t			b_dva;
233 	uint64_t		b_birth;
234 	uint64_t		b_cksum0;
235 
236 	arc_buf_hdr_t		*b_hash_next;
237 	arc_buf_t		*b_buf;
238 	uint32_t		b_flags;
239 	uint32_t		b_datacnt;
240 
241 	kcondvar_t		b_cv;
242 	arc_callback_t		*b_acb;
243 
244 	/* protected by arc state mutex */
245 	arc_state_t		*b_state;
246 	list_node_t		b_arc_node;
247 
248 	/* updated atomically */
249 	clock_t			b_arc_access;
250 
251 	/* self protecting */
252 	refcount_t		b_refcnt;
253 };
254 
255 static arc_buf_t *arc_eviction_list;
256 static kmutex_t arc_eviction_mtx;
257 static void arc_get_data_buf(arc_buf_t *buf);
258 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
259 
260 #define	GHOST_STATE(state)	\
261 	((state) == arc.mru_ghost || (state) == arc.mfu_ghost)
262 
263 /*
264  * Private ARC flags.  These flags are private ARC only flags that will show up
265  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
266  * be passed in as arc_flags in things like arc_read.  However, these flags
267  * should never be passed and should only be set by ARC code.  When adding new
268  * public flags, make sure not to smash the private ones.
269  */
270 
271 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
272 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
273 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
274 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
275 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
276 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
277 
278 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
279 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
280 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
281 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
282 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
283 
284 /*
285  * Hash table routines
286  */
287 
288 #define	HT_LOCK_PAD	64
289 
290 struct ht_lock {
291 	kmutex_t	ht_lock;
292 #ifdef _KERNEL
293 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
294 #endif
295 };
296 
297 #define	BUF_LOCKS 256
298 typedef struct buf_hash_table {
299 	uint64_t ht_mask;
300 	arc_buf_hdr_t **ht_table;
301 	struct ht_lock ht_locks[BUF_LOCKS];
302 } buf_hash_table_t;
303 
304 static buf_hash_table_t buf_hash_table;
305 
306 #define	BUF_HASH_INDEX(spa, dva, birth) \
307 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
308 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
309 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
310 #define	HDR_LOCK(buf) \
311 	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
312 
313 uint64_t zfs_crc64_table[256];
314 
315 static uint64_t
316 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth)
317 {
318 	uintptr_t spav = (uintptr_t)spa;
319 	uint8_t *vdva = (uint8_t *)dva;
320 	uint64_t crc = -1ULL;
321 	int i;
322 
323 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
324 
325 	for (i = 0; i < sizeof (dva_t); i++)
326 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
327 
328 	crc ^= (spav>>8) ^ birth;
329 
330 	return (crc);
331 }
332 
333 #define	BUF_EMPTY(buf)						\
334 	((buf)->b_dva.dva_word[0] == 0 &&			\
335 	(buf)->b_dva.dva_word[1] == 0 &&			\
336 	(buf)->b_birth == 0)
337 
338 #define	BUF_EQUAL(spa, dva, birth, buf)				\
339 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
340 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
341 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
342 
343 static arc_buf_hdr_t *
344 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp)
345 {
346 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
347 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
348 	arc_buf_hdr_t *buf;
349 
350 	mutex_enter(hash_lock);
351 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
352 	    buf = buf->b_hash_next) {
353 		if (BUF_EQUAL(spa, dva, birth, buf)) {
354 			*lockp = hash_lock;
355 			return (buf);
356 		}
357 	}
358 	mutex_exit(hash_lock);
359 	*lockp = NULL;
360 	return (NULL);
361 }
362 
363 /*
364  * Insert an entry into the hash table.  If there is already an element
365  * equal to elem in the hash table, then the already existing element
366  * will be returned and the new element will not be inserted.
367  * Otherwise returns NULL.
368  */
369 static arc_buf_hdr_t *
370 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
371 {
372 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
373 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
374 	arc_buf_hdr_t *fbuf;
375 	uint32_t max, i;
376 
377 	ASSERT(!HDR_IN_HASH_TABLE(buf));
378 	*lockp = hash_lock;
379 	mutex_enter(hash_lock);
380 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
381 	    fbuf = fbuf->b_hash_next, i++) {
382 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
383 			return (fbuf);
384 	}
385 
386 	buf->b_hash_next = buf_hash_table.ht_table[idx];
387 	buf_hash_table.ht_table[idx] = buf;
388 	buf->b_flags |= ARC_IN_HASH_TABLE;
389 
390 	/* collect some hash table performance data */
391 	if (i > 0) {
392 		atomic_add_64(&arc.hash_collisions, 1);
393 		if (i == 1)
394 			atomic_add_64(&arc.hash_chains, 1);
395 	}
396 	while (i > (max = arc.hash_chain_max) &&
397 	    max != atomic_cas_32(&arc.hash_chain_max, max, i)) {
398 		continue;
399 	}
400 	atomic_add_64(&arc.hash_elements, 1);
401 	if (arc.hash_elements > arc.hash_elements_max)
402 		atomic_add_64(&arc.hash_elements_max, 1);
403 
404 	return (NULL);
405 }
406 
407 static void
408 buf_hash_remove(arc_buf_hdr_t *buf)
409 {
410 	arc_buf_hdr_t *fbuf, **bufp;
411 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
412 
413 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
414 	ASSERT(HDR_IN_HASH_TABLE(buf));
415 
416 	bufp = &buf_hash_table.ht_table[idx];
417 	while ((fbuf = *bufp) != buf) {
418 		ASSERT(fbuf != NULL);
419 		bufp = &fbuf->b_hash_next;
420 	}
421 	*bufp = buf->b_hash_next;
422 	buf->b_hash_next = NULL;
423 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
424 
425 	/* collect some hash table performance data */
426 	atomic_add_64(&arc.hash_elements, -1);
427 	if (buf_hash_table.ht_table[idx] &&
428 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
429 		atomic_add_64(&arc.hash_chains, -1);
430 }
431 
432 /*
433  * Global data structures and functions for the buf kmem cache.
434  */
435 static kmem_cache_t *hdr_cache;
436 static kmem_cache_t *buf_cache;
437 
438 static void
439 buf_fini(void)
440 {
441 	int i;
442 
443 	kmem_free(buf_hash_table.ht_table,
444 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
445 	for (i = 0; i < BUF_LOCKS; i++)
446 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
447 	kmem_cache_destroy(hdr_cache);
448 	kmem_cache_destroy(buf_cache);
449 }
450 
451 /*
452  * Constructor callback - called when the cache is empty
453  * and a new buf is requested.
454  */
455 /* ARGSUSED */
456 static int
457 hdr_cons(void *vbuf, void *unused, int kmflag)
458 {
459 	arc_buf_hdr_t *buf = vbuf;
460 
461 	bzero(buf, sizeof (arc_buf_hdr_t));
462 	refcount_create(&buf->b_refcnt);
463 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
464 	return (0);
465 }
466 
467 /*
468  * Destructor callback - called when a cached buf is
469  * no longer required.
470  */
471 /* ARGSUSED */
472 static void
473 hdr_dest(void *vbuf, void *unused)
474 {
475 	arc_buf_hdr_t *buf = vbuf;
476 
477 	refcount_destroy(&buf->b_refcnt);
478 	cv_destroy(&buf->b_cv);
479 }
480 
481 static int arc_reclaim_needed(void);
482 void arc_kmem_reclaim(void);
483 
484 /*
485  * Reclaim callback -- invoked when memory is low.
486  */
487 /* ARGSUSED */
488 static void
489 hdr_recl(void *unused)
490 {
491 	dprintf("hdr_recl called\n");
492 	if (arc_reclaim_needed())
493 		arc_kmem_reclaim();
494 }
495 
496 static void
497 buf_init(void)
498 {
499 	uint64_t *ct;
500 	uint64_t hsize = 1ULL << 12;
501 	int i, j;
502 
503 	/*
504 	 * The hash table is big enough to fill all of physical memory
505 	 * with an average 64K block size.  The table will take up
506 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
507 	 */
508 	while (hsize * 65536 < physmem * PAGESIZE)
509 		hsize <<= 1;
510 retry:
511 	buf_hash_table.ht_mask = hsize - 1;
512 	buf_hash_table.ht_table =
513 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
514 	if (buf_hash_table.ht_table == NULL) {
515 		ASSERT(hsize > (1ULL << 8));
516 		hsize >>= 1;
517 		goto retry;
518 	}
519 
520 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
521 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
522 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
523 	    0, NULL, NULL, NULL, NULL, NULL, 0);
524 
525 	for (i = 0; i < 256; i++)
526 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
527 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
528 
529 	for (i = 0; i < BUF_LOCKS; i++) {
530 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
531 		    NULL, MUTEX_DEFAULT, NULL);
532 	}
533 }
534 
535 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
536 
537 static void
538 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
539 {
540 	ASSERT(MUTEX_HELD(hash_lock));
541 
542 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
543 	    (ab->b_state != arc.anon)) {
544 		int delta = ab->b_size * ab->b_datacnt;
545 
546 		ASSERT(!MUTEX_HELD(&ab->b_state->mtx));
547 		mutex_enter(&ab->b_state->mtx);
548 		ASSERT(list_link_active(&ab->b_arc_node));
549 		list_remove(&ab->b_state->list, ab);
550 		if (GHOST_STATE(ab->b_state)) {
551 			ASSERT3U(ab->b_datacnt, ==, 0);
552 			ASSERT3P(ab->b_buf, ==, NULL);
553 			delta = ab->b_size;
554 		}
555 		ASSERT(delta > 0);
556 		ASSERT3U(ab->b_state->lsize, >=, delta);
557 		atomic_add_64(&ab->b_state->lsize, -delta);
558 		mutex_exit(&ab->b_state->mtx);
559 		/* remove the prefetch flag is we get a reference */
560 		if (ab->b_flags & ARC_PREFETCH)
561 			ab->b_flags &= ~ARC_PREFETCH;
562 	}
563 }
564 
565 static int
566 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
567 {
568 	int cnt;
569 
570 	ASSERT(ab->b_state == arc.anon || MUTEX_HELD(hash_lock));
571 	ASSERT(!GHOST_STATE(ab->b_state));
572 
573 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
574 	    (ab->b_state != arc.anon)) {
575 
576 		ASSERT(!MUTEX_HELD(&ab->b_state->mtx));
577 		mutex_enter(&ab->b_state->mtx);
578 		ASSERT(!list_link_active(&ab->b_arc_node));
579 		list_insert_head(&ab->b_state->list, ab);
580 		ASSERT(ab->b_datacnt > 0);
581 		atomic_add_64(&ab->b_state->lsize, ab->b_size * ab->b_datacnt);
582 		ASSERT3U(ab->b_state->size, >=, ab->b_state->lsize);
583 		mutex_exit(&ab->b_state->mtx);
584 	}
585 	return (cnt);
586 }
587 
588 /*
589  * Move the supplied buffer to the indicated state.  The mutex
590  * for the buffer must be held by the caller.
591  */
592 static void
593 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
594 {
595 	arc_state_t *old_state = ab->b_state;
596 	int refcnt = refcount_count(&ab->b_refcnt);
597 	int from_delta, to_delta;
598 
599 	ASSERT(MUTEX_HELD(hash_lock));
600 	ASSERT(new_state != old_state);
601 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
602 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
603 
604 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
605 
606 	/*
607 	 * If this buffer is evictable, transfer it from the
608 	 * old state list to the new state list.
609 	 */
610 	if (refcnt == 0) {
611 		if (old_state != arc.anon) {
612 			int use_mutex = !MUTEX_HELD(&old_state->mtx);
613 
614 			if (use_mutex)
615 				mutex_enter(&old_state->mtx);
616 
617 			ASSERT(list_link_active(&ab->b_arc_node));
618 			list_remove(&old_state->list, ab);
619 
620 			/*
621 			 * If prefetching out of the ghost cache,
622 			 * we will have a non-null datacnt.
623 			 */
624 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
625 				/* ghost elements have a ghost size */
626 				ASSERT(ab->b_buf == NULL);
627 				from_delta = ab->b_size;
628 			}
629 			ASSERT3U(old_state->lsize, >=, from_delta);
630 			atomic_add_64(&old_state->lsize, -from_delta);
631 
632 			if (use_mutex)
633 				mutex_exit(&old_state->mtx);
634 		}
635 		if (new_state != arc.anon) {
636 			int use_mutex = !MUTEX_HELD(&new_state->mtx);
637 
638 			if (use_mutex)
639 				mutex_enter(&new_state->mtx);
640 
641 			list_insert_head(&new_state->list, ab);
642 
643 			/* ghost elements have a ghost size */
644 			if (GHOST_STATE(new_state)) {
645 				ASSERT(ab->b_datacnt == 0);
646 				ASSERT(ab->b_buf == NULL);
647 				to_delta = ab->b_size;
648 			}
649 			atomic_add_64(&new_state->lsize, to_delta);
650 			ASSERT3U(new_state->size + to_delta, >=,
651 			    new_state->lsize);
652 
653 			if (use_mutex)
654 				mutex_exit(&new_state->mtx);
655 		}
656 	}
657 
658 	ASSERT(!BUF_EMPTY(ab));
659 	if (new_state == arc.anon && old_state != arc.anon) {
660 		buf_hash_remove(ab);
661 	}
662 
663 	/* adjust state sizes */
664 	if (to_delta)
665 		atomic_add_64(&new_state->size, to_delta);
666 	if (from_delta) {
667 		ASSERT3U(old_state->size, >=, from_delta);
668 		atomic_add_64(&old_state->size, -from_delta);
669 	}
670 	ab->b_state = new_state;
671 }
672 
673 arc_buf_t *
674 arc_buf_alloc(spa_t *spa, int size, void *tag)
675 {
676 	arc_buf_hdr_t *hdr;
677 	arc_buf_t *buf;
678 
679 	ASSERT3U(size, >, 0);
680 	hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP);
681 	ASSERT(BUF_EMPTY(hdr));
682 	hdr->b_size = size;
683 	hdr->b_spa = spa;
684 	hdr->b_state = arc.anon;
685 	hdr->b_arc_access = 0;
686 	buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
687 	buf->b_hdr = hdr;
688 	buf->b_data = NULL;
689 	buf->b_efunc = NULL;
690 	buf->b_private = NULL;
691 	buf->b_next = NULL;
692 	hdr->b_buf = buf;
693 	arc_get_data_buf(buf);
694 	hdr->b_datacnt = 1;
695 	hdr->b_flags = 0;
696 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
697 	(void) refcount_add(&hdr->b_refcnt, tag);
698 
699 	return (buf);
700 }
701 
702 static arc_buf_t *
703 arc_buf_clone(arc_buf_t *from)
704 {
705 	arc_buf_t *buf;
706 	arc_buf_hdr_t *hdr = from->b_hdr;
707 	uint64_t size = hdr->b_size;
708 
709 	buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
710 	buf->b_hdr = hdr;
711 	buf->b_data = NULL;
712 	buf->b_efunc = NULL;
713 	buf->b_private = NULL;
714 	buf->b_next = hdr->b_buf;
715 	hdr->b_buf = buf;
716 	arc_get_data_buf(buf);
717 	bcopy(from->b_data, buf->b_data, size);
718 	hdr->b_datacnt += 1;
719 	return (buf);
720 }
721 
722 void
723 arc_buf_add_ref(arc_buf_t *buf, void* tag)
724 {
725 	arc_buf_hdr_t *hdr = buf->b_hdr;
726 	kmutex_t *hash_lock;
727 
728 	/*
729 	 * Check to see if this buffer is currently being evicted via
730 	 * arc_do_user_evicts().  We can do this without holding any
731 	 * locks because if we happen to obtain the header before its
732 	 * cleared, we will find b_data is NULL later.
733 	 */
734 	if (hdr == NULL)
735 		return;
736 
737 	hash_lock = HDR_LOCK(hdr);
738 	mutex_enter(hash_lock);
739 	if (buf->b_data == NULL) {
740 		/*
741 		 * This buffer is evicted.
742 		 */
743 		mutex_exit(hash_lock);
744 		return;
745 	}
746 
747 	ASSERT(buf->b_hdr == hdr);
748 	ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu);
749 	add_reference(hdr, hash_lock, tag);
750 	arc_access(hdr, hash_lock);
751 	mutex_exit(hash_lock);
752 	atomic_add_64(&arc.hits, 1);
753 }
754 
755 static void
756 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
757 {
758 	arc_buf_t **bufp;
759 
760 	/* free up data associated with the buf */
761 	if (buf->b_data) {
762 		arc_state_t *state = buf->b_hdr->b_state;
763 		uint64_t size = buf->b_hdr->b_size;
764 
765 		if (!recycle) {
766 			zio_buf_free(buf->b_data, size);
767 			atomic_add_64(&arc.size, -size);
768 		}
769 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
770 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
771 			ASSERT(state != arc.anon);
772 			ASSERT3U(state->lsize, >=, size);
773 			atomic_add_64(&state->lsize, -size);
774 		}
775 		ASSERT3U(state->size, >=, size);
776 		atomic_add_64(&state->size, -size);
777 		buf->b_data = NULL;
778 		ASSERT(buf->b_hdr->b_datacnt > 0);
779 		buf->b_hdr->b_datacnt -= 1;
780 	}
781 
782 	/* only remove the buf if requested */
783 	if (!all)
784 		return;
785 
786 	/* remove the buf from the hdr list */
787 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
788 		continue;
789 	*bufp = buf->b_next;
790 
791 	ASSERT(buf->b_efunc == NULL);
792 
793 	/* clean up the buf */
794 	buf->b_hdr = NULL;
795 	kmem_cache_free(buf_cache, buf);
796 }
797 
798 static void
799 arc_hdr_destroy(arc_buf_hdr_t *hdr)
800 {
801 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
802 	ASSERT3P(hdr->b_state, ==, arc.anon);
803 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
804 
805 	if (!BUF_EMPTY(hdr)) {
806 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
807 		bzero(&hdr->b_dva, sizeof (dva_t));
808 		hdr->b_birth = 0;
809 		hdr->b_cksum0 = 0;
810 	}
811 	while (hdr->b_buf) {
812 		arc_buf_t *buf = hdr->b_buf;
813 
814 		if (buf->b_efunc) {
815 			mutex_enter(&arc_eviction_mtx);
816 			ASSERT(buf->b_hdr != NULL);
817 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
818 			hdr->b_buf = buf->b_next;
819 			buf->b_next = arc_eviction_list;
820 			arc_eviction_list = buf;
821 			mutex_exit(&arc_eviction_mtx);
822 		} else {
823 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
824 		}
825 	}
826 
827 	ASSERT(!list_link_active(&hdr->b_arc_node));
828 	ASSERT3P(hdr->b_hash_next, ==, NULL);
829 	ASSERT3P(hdr->b_acb, ==, NULL);
830 	kmem_cache_free(hdr_cache, hdr);
831 }
832 
833 void
834 arc_buf_free(arc_buf_t *buf, void *tag)
835 {
836 	arc_buf_hdr_t *hdr = buf->b_hdr;
837 	int hashed = hdr->b_state != arc.anon;
838 
839 	ASSERT(buf->b_efunc == NULL);
840 	ASSERT(buf->b_data != NULL);
841 
842 	if (hashed) {
843 		kmutex_t *hash_lock = HDR_LOCK(hdr);
844 
845 		mutex_enter(hash_lock);
846 		(void) remove_reference(hdr, hash_lock, tag);
847 		if (hdr->b_datacnt > 1)
848 			arc_buf_destroy(buf, FALSE, TRUE);
849 		else
850 			hdr->b_flags |= ARC_BUF_AVAILABLE;
851 		mutex_exit(hash_lock);
852 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
853 		int destroy_hdr;
854 		/*
855 		 * We are in the middle of an async write.  Don't destroy
856 		 * this buffer unless the write completes before we finish
857 		 * decrementing the reference count.
858 		 */
859 		mutex_enter(&arc_eviction_mtx);
860 		(void) remove_reference(hdr, NULL, tag);
861 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
862 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
863 		mutex_exit(&arc_eviction_mtx);
864 		if (destroy_hdr)
865 			arc_hdr_destroy(hdr);
866 	} else {
867 		if (remove_reference(hdr, NULL, tag) > 0) {
868 			ASSERT(HDR_IO_ERROR(hdr));
869 			arc_buf_destroy(buf, FALSE, TRUE);
870 		} else {
871 			arc_hdr_destroy(hdr);
872 		}
873 	}
874 }
875 
876 int
877 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
878 {
879 	arc_buf_hdr_t *hdr = buf->b_hdr;
880 	kmutex_t *hash_lock = HDR_LOCK(hdr);
881 	int no_callback = (buf->b_efunc == NULL);
882 
883 	if (hdr->b_state == arc.anon) {
884 		arc_buf_free(buf, tag);
885 		return (no_callback);
886 	}
887 
888 	mutex_enter(hash_lock);
889 	ASSERT(hdr->b_state != arc.anon);
890 	ASSERT(buf->b_data != NULL);
891 
892 	(void) remove_reference(hdr, hash_lock, tag);
893 	if (hdr->b_datacnt > 1) {
894 		if (no_callback)
895 			arc_buf_destroy(buf, FALSE, TRUE);
896 	} else if (no_callback) {
897 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
898 		hdr->b_flags |= ARC_BUF_AVAILABLE;
899 	}
900 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
901 	    refcount_is_zero(&hdr->b_refcnt));
902 	mutex_exit(hash_lock);
903 	return (no_callback);
904 }
905 
906 int
907 arc_buf_size(arc_buf_t *buf)
908 {
909 	return (buf->b_hdr->b_size);
910 }
911 
912 /*
913  * Evict buffers from list until we've removed the specified number of
914  * bytes.  Move the removed buffers to the appropriate evict state.
915  * If the recycle flag is set, then attempt to "recycle" a buffer:
916  * - look for a buffer to evict that is `bytes' long.
917  * - return the data block from this buffer rather than freeing it.
918  * This flag is used by callers that are trying to make space for a
919  * new buffer in a full arc cache.
920  */
921 static void *
922 arc_evict(arc_state_t *state, int64_t bytes, boolean_t recycle)
923 {
924 	arc_state_t *evicted_state;
925 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
926 	arc_buf_hdr_t *ab, *ab_prev;
927 	kmutex_t *hash_lock;
928 	boolean_t have_lock;
929 	void *steal = NULL;
930 
931 	ASSERT(state == arc.mru || state == arc.mfu);
932 
933 	evicted_state = (state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost;
934 
935 	mutex_enter(&state->mtx);
936 	mutex_enter(&evicted_state->mtx);
937 
938 	for (ab = list_tail(&state->list); ab; ab = ab_prev) {
939 		ab_prev = list_prev(&state->list, ab);
940 		/* prefetch buffers have a minimum lifespan */
941 		if (HDR_IO_IN_PROGRESS(ab) ||
942 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
943 		    lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) {
944 			skipped++;
945 			continue;
946 		}
947 		if (recycle && (ab->b_size != bytes || ab->b_datacnt > 1))
948 			continue;
949 		hash_lock = HDR_LOCK(ab);
950 		have_lock = MUTEX_HELD(hash_lock);
951 		if (have_lock || mutex_tryenter(hash_lock)) {
952 			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
953 			ASSERT(ab->b_datacnt > 0);
954 			while (ab->b_buf) {
955 				arc_buf_t *buf = ab->b_buf;
956 				if (buf->b_data) {
957 					bytes_evicted += ab->b_size;
958 					if (recycle)
959 						steal = buf->b_data;
960 				}
961 				if (buf->b_efunc) {
962 					mutex_enter(&arc_eviction_mtx);
963 					arc_buf_destroy(buf, recycle, FALSE);
964 					ab->b_buf = buf->b_next;
965 					buf->b_next = arc_eviction_list;
966 					arc_eviction_list = buf;
967 					mutex_exit(&arc_eviction_mtx);
968 				} else {
969 					arc_buf_destroy(buf, recycle, TRUE);
970 				}
971 			}
972 			ASSERT(ab->b_datacnt == 0);
973 			arc_change_state(evicted_state, ab, hash_lock);
974 			ASSERT(HDR_IN_HASH_TABLE(ab));
975 			ab->b_flags = ARC_IN_HASH_TABLE;
976 			DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
977 			if (!have_lock)
978 				mutex_exit(hash_lock);
979 			if (bytes >= 0 && bytes_evicted >= bytes)
980 				break;
981 		} else {
982 			missed += 1;
983 		}
984 	}
985 	mutex_exit(&evicted_state->mtx);
986 	mutex_exit(&state->mtx);
987 
988 	if (bytes_evicted < bytes)
989 		dprintf("only evicted %lld bytes from %x",
990 		    (longlong_t)bytes_evicted, state);
991 
992 	if (skipped)
993 		atomic_add_64(&arc.evict_skip, skipped);
994 	if (missed)
995 		atomic_add_64(&arc.mutex_miss, missed);
996 	return (steal);
997 }
998 
999 /*
1000  * Remove buffers from list until we've removed the specified number of
1001  * bytes.  Destroy the buffers that are removed.
1002  */
1003 static void
1004 arc_evict_ghost(arc_state_t *state, int64_t bytes)
1005 {
1006 	arc_buf_hdr_t *ab, *ab_prev;
1007 	kmutex_t *hash_lock;
1008 	uint64_t bytes_deleted = 0;
1009 	uint_t bufs_skipped = 0;
1010 
1011 	ASSERT(GHOST_STATE(state));
1012 top:
1013 	mutex_enter(&state->mtx);
1014 	for (ab = list_tail(&state->list); ab; ab = ab_prev) {
1015 		ab_prev = list_prev(&state->list, ab);
1016 		hash_lock = HDR_LOCK(ab);
1017 		if (mutex_tryenter(hash_lock)) {
1018 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1019 			ASSERT(ab->b_buf == NULL);
1020 			arc_change_state(arc.anon, ab, hash_lock);
1021 			mutex_exit(hash_lock);
1022 			atomic_add_64(&arc.deleted, 1);
1023 			bytes_deleted += ab->b_size;
1024 			arc_hdr_destroy(ab);
1025 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1026 			if (bytes >= 0 && bytes_deleted >= bytes)
1027 				break;
1028 		} else {
1029 			if (bytes < 0) {
1030 				mutex_exit(&state->mtx);
1031 				mutex_enter(hash_lock);
1032 				mutex_exit(hash_lock);
1033 				goto top;
1034 			}
1035 			bufs_skipped += 1;
1036 		}
1037 	}
1038 	mutex_exit(&state->mtx);
1039 
1040 	if (bufs_skipped) {
1041 		atomic_add_64(&arc.mutex_miss, bufs_skipped);
1042 		ASSERT(bytes >= 0);
1043 	}
1044 
1045 	if (bytes_deleted < bytes)
1046 		dprintf("only deleted %lld bytes from %p",
1047 		    (longlong_t)bytes_deleted, state);
1048 }
1049 
1050 static void
1051 arc_adjust(void)
1052 {
1053 	int64_t top_sz, mru_over, arc_over;
1054 
1055 	top_sz = arc.anon->size + arc.mru->size;
1056 
1057 	if (top_sz > arc.p && arc.mru->lsize > 0) {
1058 		int64_t toevict = MIN(arc.mru->lsize, top_sz-arc.p);
1059 		(void) arc_evict(arc.mru, toevict, FALSE);
1060 		top_sz = arc.anon->size + arc.mru->size;
1061 	}
1062 
1063 	mru_over = top_sz + arc.mru_ghost->size - arc.c;
1064 
1065 	if (mru_over > 0) {
1066 		if (arc.mru_ghost->lsize > 0) {
1067 			int64_t todelete = MIN(arc.mru_ghost->lsize, mru_over);
1068 			arc_evict_ghost(arc.mru_ghost, todelete);
1069 		}
1070 	}
1071 
1072 	if ((arc_over = arc.size - arc.c) > 0) {
1073 		int64_t tbl_over;
1074 
1075 		if (arc.mfu->lsize > 0) {
1076 			int64_t toevict = MIN(arc.mfu->lsize, arc_over);
1077 			(void) arc_evict(arc.mfu, toevict, FALSE);
1078 		}
1079 
1080 		tbl_over = arc.size + arc.mru_ghost->lsize +
1081 		    arc.mfu_ghost->lsize - arc.c*2;
1082 
1083 		if (tbl_over > 0 && arc.mfu_ghost->lsize > 0) {
1084 			int64_t todelete = MIN(arc.mfu_ghost->lsize, tbl_over);
1085 			arc_evict_ghost(arc.mfu_ghost, todelete);
1086 		}
1087 	}
1088 }
1089 
1090 static void
1091 arc_do_user_evicts(void)
1092 {
1093 	mutex_enter(&arc_eviction_mtx);
1094 	while (arc_eviction_list != NULL) {
1095 		arc_buf_t *buf = arc_eviction_list;
1096 		arc_eviction_list = buf->b_next;
1097 		buf->b_hdr = NULL;
1098 		mutex_exit(&arc_eviction_mtx);
1099 
1100 		if (buf->b_efunc != NULL)
1101 			VERIFY(buf->b_efunc(buf) == 0);
1102 
1103 		buf->b_efunc = NULL;
1104 		buf->b_private = NULL;
1105 		kmem_cache_free(buf_cache, buf);
1106 		mutex_enter(&arc_eviction_mtx);
1107 	}
1108 	mutex_exit(&arc_eviction_mtx);
1109 }
1110 
1111 /*
1112  * Flush all *evictable* data from the cache.
1113  * NOTE: this will not touch "active" (i.e. referenced) data.
1114  */
1115 void
1116 arc_flush(void)
1117 {
1118 	while (list_head(&arc.mru->list))
1119 		(void) arc_evict(arc.mru, -1, FALSE);
1120 	while (list_head(&arc.mfu->list))
1121 		(void) arc_evict(arc.mfu, -1, FALSE);
1122 
1123 	arc_evict_ghost(arc.mru_ghost, -1);
1124 	arc_evict_ghost(arc.mfu_ghost, -1);
1125 
1126 	mutex_enter(&arc_reclaim_thr_lock);
1127 	arc_do_user_evicts();
1128 	mutex_exit(&arc_reclaim_thr_lock);
1129 	ASSERT(arc_eviction_list == NULL);
1130 }
1131 
1132 int arc_kmem_reclaim_shift = 5;		/* log2(fraction of arc to reclaim) */
1133 
1134 void
1135 arc_kmem_reclaim(void)
1136 {
1137 	uint64_t to_free;
1138 
1139 	/*
1140 	 * We need arc_reclaim_lock because we don't want multiple
1141 	 * threads trying to reclaim concurrently.
1142 	 */
1143 
1144 	/*
1145 	 * umem calls the reclaim func when we destroy the buf cache,
1146 	 * which is after we do arc_fini().  So we set a flag to prevent
1147 	 * accessing the destroyed mutexes and lists.
1148 	 */
1149 	if (arc_dead)
1150 		return;
1151 
1152 	if (arc.c <= arc.c_min)
1153 		return;
1154 
1155 	mutex_enter(&arc_reclaim_lock);
1156 
1157 #ifdef _KERNEL
1158 	to_free = MAX(arc.c >> arc_kmem_reclaim_shift, ptob(needfree));
1159 #else
1160 	to_free = arc.c >> arc_kmem_reclaim_shift;
1161 #endif
1162 	if (arc.c > to_free)
1163 		atomic_add_64(&arc.c, -to_free);
1164 	else
1165 		arc.c = arc.c_min;
1166 
1167 	atomic_add_64(&arc.p, -(arc.p >> arc_kmem_reclaim_shift));
1168 	if (arc.c > arc.size)
1169 		arc.c = arc.size;
1170 	if (arc.c < arc.c_min)
1171 		arc.c = arc.c_min;
1172 	if (arc.p > arc.c)
1173 		arc.p = (arc.c >> 1);
1174 	ASSERT((int64_t)arc.p >= 0);
1175 
1176 	arc_adjust();
1177 
1178 	mutex_exit(&arc_reclaim_lock);
1179 }
1180 
1181 static int
1182 arc_reclaim_needed(void)
1183 {
1184 	uint64_t extra;
1185 
1186 #ifdef _KERNEL
1187 
1188 	if (needfree)
1189 		return (1);
1190 
1191 	/*
1192 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1193 	 */
1194 	extra = desfree;
1195 
1196 	/*
1197 	 * check that we're out of range of the pageout scanner.  It starts to
1198 	 * schedule paging if freemem is less than lotsfree and needfree.
1199 	 * lotsfree is the high-water mark for pageout, and needfree is the
1200 	 * number of needed free pages.  We add extra pages here to make sure
1201 	 * the scanner doesn't start up while we're freeing memory.
1202 	 */
1203 	if (freemem < lotsfree + needfree + extra)
1204 		return (1);
1205 
1206 	/*
1207 	 * check to make sure that swapfs has enough space so that anon
1208 	 * reservations can still succeeed. anon_resvmem() checks that the
1209 	 * availrmem is greater than swapfs_minfree, and the number of reserved
1210 	 * swap pages.  We also add a bit of extra here just to prevent
1211 	 * circumstances from getting really dire.
1212 	 */
1213 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
1214 		return (1);
1215 
1216 #if defined(__i386)
1217 	/*
1218 	 * If we're on an i386 platform, it's possible that we'll exhaust the
1219 	 * kernel heap space before we ever run out of available physical
1220 	 * memory.  Most checks of the size of the heap_area compare against
1221 	 * tune.t_minarmem, which is the minimum available real memory that we
1222 	 * can have in the system.  However, this is generally fixed at 25 pages
1223 	 * which is so low that it's useless.  In this comparison, we seek to
1224 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
1225 	 * heap is allocated.  (Or, in the caclulation, if less than 1/4th is
1226 	 * free)
1227 	 */
1228 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
1229 	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
1230 		return (1);
1231 #endif
1232 
1233 #else
1234 	if (spa_get_random(100) == 0)
1235 		return (1);
1236 #endif
1237 	return (0);
1238 }
1239 
1240 static void
1241 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
1242 {
1243 	size_t			i;
1244 	kmem_cache_t		*prev_cache = NULL;
1245 	extern kmem_cache_t	*zio_buf_cache[];
1246 
1247 #ifdef _KERNEL
1248 	/*
1249 	 * First purge some DNLC entries, in case the DNLC is using
1250 	 * up too much memory.
1251 	 */
1252 	dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
1253 
1254 #if defined(__i386)
1255 	/*
1256 	 * Reclaim unused memory from all kmem caches.
1257 	 */
1258 	kmem_reap();
1259 #endif
1260 #endif
1261 
1262 	/*
1263 	 * An agressive reclamation will shrink the cache size as well as
1264 	 * reap free buffers from the arc kmem caches.
1265 	 */
1266 	if (strat == ARC_RECLAIM_AGGR)
1267 		arc_kmem_reclaim();
1268 
1269 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
1270 		if (zio_buf_cache[i] != prev_cache) {
1271 			prev_cache = zio_buf_cache[i];
1272 			kmem_cache_reap_now(zio_buf_cache[i]);
1273 		}
1274 	}
1275 	kmem_cache_reap_now(buf_cache);
1276 	kmem_cache_reap_now(hdr_cache);
1277 }
1278 
1279 static void
1280 arc_reclaim_thread(void)
1281 {
1282 	clock_t			growtime = 0;
1283 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
1284 	callb_cpr_t		cpr;
1285 
1286 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
1287 
1288 	mutex_enter(&arc_reclaim_thr_lock);
1289 	while (arc_thread_exit == 0) {
1290 		if (arc_reclaim_needed()) {
1291 
1292 			if (arc.no_grow) {
1293 				if (last_reclaim == ARC_RECLAIM_CONS) {
1294 					last_reclaim = ARC_RECLAIM_AGGR;
1295 				} else {
1296 					last_reclaim = ARC_RECLAIM_CONS;
1297 				}
1298 			} else {
1299 				arc.no_grow = TRUE;
1300 				last_reclaim = ARC_RECLAIM_AGGR;
1301 				membar_producer();
1302 			}
1303 
1304 			/* reset the growth delay for every reclaim */
1305 			growtime = lbolt + (arc_grow_retry * hz);
1306 
1307 			arc_kmem_reap_now(last_reclaim);
1308 
1309 		} else if ((growtime > 0) && ((growtime - lbolt) <= 0)) {
1310 			arc.no_grow = FALSE;
1311 		}
1312 
1313 		if (arc_eviction_list != NULL)
1314 			arc_do_user_evicts();
1315 
1316 		/* block until needed, or one second, whichever is shorter */
1317 		CALLB_CPR_SAFE_BEGIN(&cpr);
1318 		(void) cv_timedwait(&arc_reclaim_thr_cv,
1319 		    &arc_reclaim_thr_lock, (lbolt + hz));
1320 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
1321 	}
1322 
1323 	arc_thread_exit = 0;
1324 	cv_broadcast(&arc_reclaim_thr_cv);
1325 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
1326 	thread_exit();
1327 }
1328 
1329 /*
1330  * Adapt arc info given the number of bytes we are trying to add and
1331  * the state that we are comming from.  This function is only called
1332  * when we are adding new content to the cache.
1333  */
1334 static void
1335 arc_adapt(int bytes, arc_state_t *state)
1336 {
1337 	int mult;
1338 
1339 	ASSERT(bytes > 0);
1340 	/*
1341 	 * Adapt the target size of the MRU list:
1342 	 *	- if we just hit in the MRU ghost list, then increase
1343 	 *	  the target size of the MRU list.
1344 	 *	- if we just hit in the MFU ghost list, then increase
1345 	 *	  the target size of the MFU list by decreasing the
1346 	 *	  target size of the MRU list.
1347 	 */
1348 	if (state == arc.mru_ghost) {
1349 		mult = ((arc.mru_ghost->size >= arc.mfu_ghost->size) ?
1350 		    1 : (arc.mfu_ghost->size/arc.mru_ghost->size));
1351 
1352 		arc.p = MIN(arc.c, arc.p + bytes * mult);
1353 	} else if (state == arc.mfu_ghost) {
1354 		mult = ((arc.mfu_ghost->size >= arc.mru_ghost->size) ?
1355 		    1 : (arc.mru_ghost->size/arc.mfu_ghost->size));
1356 
1357 		arc.p = MAX(0, (int64_t)arc.p - bytes * mult);
1358 	}
1359 	ASSERT((int64_t)arc.p >= 0);
1360 
1361 	if (arc_reclaim_needed()) {
1362 		cv_signal(&arc_reclaim_thr_cv);
1363 		return;
1364 	}
1365 
1366 	if (arc.no_grow)
1367 		return;
1368 
1369 	if (arc.c >= arc.c_max)
1370 		return;
1371 
1372 	/*
1373 	 * If we're within (2 * maxblocksize) bytes of the target
1374 	 * cache size, increment the target cache size
1375 	 */
1376 	if (arc.size > arc.c - (2ULL << SPA_MAXBLOCKSHIFT)) {
1377 		atomic_add_64(&arc.c, (int64_t)bytes);
1378 		if (arc.c > arc.c_max)
1379 			arc.c = arc.c_max;
1380 		else if (state == arc.anon)
1381 			atomic_add_64(&arc.p, (int64_t)bytes);
1382 		if (arc.p > arc.c)
1383 			arc.p = arc.c;
1384 	}
1385 	ASSERT((int64_t)arc.p >= 0);
1386 }
1387 
1388 /*
1389  * Check if the cache has reached its limits and eviction is required
1390  * prior to insert.
1391  */
1392 static int
1393 arc_evict_needed()
1394 {
1395 	if (arc_reclaim_needed())
1396 		return (1);
1397 
1398 	return (arc.size > arc.c);
1399 }
1400 
1401 /*
1402  * The buffer, supplied as the first argument, needs a data block.
1403  * So, if we are at cache max, determine which cache should be victimized.
1404  * We have the following cases:
1405  *
1406  * 1. Insert for MRU, p > sizeof(arc.anon + arc.mru) ->
1407  * In this situation if we're out of space, but the resident size of the MFU is
1408  * under the limit, victimize the MFU cache to satisfy this insertion request.
1409  *
1410  * 2. Insert for MRU, p <= sizeof(arc.anon + arc.mru) ->
1411  * Here, we've used up all of the available space for the MRU, so we need to
1412  * evict from our own cache instead.  Evict from the set of resident MRU
1413  * entries.
1414  *
1415  * 3. Insert for MFU (c - p) > sizeof(arc.mfu) ->
1416  * c minus p represents the MFU space in the cache, since p is the size of the
1417  * cache that is dedicated to the MRU.  In this situation there's still space on
1418  * the MFU side, so the MRU side needs to be victimized.
1419  *
1420  * 4. Insert for MFU (c - p) < sizeof(arc.mfu) ->
1421  * MFU's resident set is consuming more space than it has been allotted.  In
1422  * this situation, we must victimize our own cache, the MFU, for this insertion.
1423  */
1424 static void
1425 arc_get_data_buf(arc_buf_t *buf)
1426 {
1427 	arc_state_t	*state = buf->b_hdr->b_state;
1428 	uint64_t	size = buf->b_hdr->b_size;
1429 
1430 	arc_adapt(size, state);
1431 
1432 	/*
1433 	 * We have not yet reached cache maximum size,
1434 	 * just allocate a new buffer.
1435 	 */
1436 	if (!arc_evict_needed()) {
1437 		buf->b_data = zio_buf_alloc(size);
1438 		atomic_add_64(&arc.size, size);
1439 		goto out;
1440 	}
1441 
1442 	/*
1443 	 * If we are prefetching from the mfu ghost list, this buffer
1444 	 * will end up on the mru list; so steal space from there.
1445 	 */
1446 	if (state == arc.mfu_ghost)
1447 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc.mru : arc.mfu;
1448 	else if (state == arc.mru_ghost)
1449 		state = arc.mru;
1450 
1451 	if (state == arc.mru || state == arc.anon) {
1452 		uint64_t mru_used = arc.anon->size + arc.mru->size;
1453 		state = (arc.p > mru_used) ? arc.mfu : arc.mru;
1454 	} else {
1455 		/* MFU cases */
1456 		uint64_t mfu_space = arc.c - arc.p;
1457 		state =  (mfu_space > arc.mfu->size) ? arc.mru : arc.mfu;
1458 	}
1459 	if ((buf->b_data = arc_evict(state, size, TRUE)) == NULL) {
1460 		(void) arc_evict(state, size, FALSE);
1461 		buf->b_data = zio_buf_alloc(size);
1462 		atomic_add_64(&arc.size, size);
1463 		atomic_add_64(&arc.recycle_miss, 1);
1464 		if (arc.size > arc.c)
1465 			arc_adjust();
1466 	}
1467 	ASSERT(buf->b_data != NULL);
1468 out:
1469 	/*
1470 	 * Update the state size.  Note that ghost states have a
1471 	 * "ghost size" and so don't need to be updated.
1472 	 */
1473 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
1474 		arc_buf_hdr_t *hdr = buf->b_hdr;
1475 
1476 		atomic_add_64(&hdr->b_state->size, size);
1477 		if (list_link_active(&hdr->b_arc_node)) {
1478 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
1479 			atomic_add_64(&hdr->b_state->lsize, size);
1480 		}
1481 	}
1482 }
1483 
1484 /*
1485  * This routine is called whenever a buffer is accessed.
1486  * NOTE: the hash lock is dropped in this function.
1487  */
1488 static void
1489 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
1490 {
1491 	ASSERT(MUTEX_HELD(hash_lock));
1492 
1493 	if (buf->b_state == arc.anon) {
1494 		/*
1495 		 * This buffer is not in the cache, and does not
1496 		 * appear in our "ghost" list.  Add the new buffer
1497 		 * to the MRU state.
1498 		 */
1499 
1500 		ASSERT(buf->b_arc_access == 0);
1501 		buf->b_arc_access = lbolt;
1502 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
1503 		arc_change_state(arc.mru, buf, hash_lock);
1504 
1505 	} else if (buf->b_state == arc.mru) {
1506 		/*
1507 		 * If this buffer is here because of a prefetch, then either:
1508 		 * - clear the flag if this is a "referencing" read
1509 		 *   (any subsequent access will bump this into the MFU state).
1510 		 * or
1511 		 * - move the buffer to the head of the list if this is
1512 		 *   another prefetch (to make it less likely to be evicted).
1513 		 */
1514 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
1515 			if (refcount_count(&buf->b_refcnt) == 0) {
1516 				ASSERT(list_link_active(&buf->b_arc_node));
1517 				mutex_enter(&arc.mru->mtx);
1518 				list_remove(&arc.mru->list, buf);
1519 				list_insert_head(&arc.mru->list, buf);
1520 				mutex_exit(&arc.mru->mtx);
1521 			} else {
1522 				buf->b_flags &= ~ARC_PREFETCH;
1523 				atomic_add_64(&arc.mru->hits, 1);
1524 			}
1525 			buf->b_arc_access = lbolt;
1526 			return;
1527 		}
1528 
1529 		/*
1530 		 * This buffer has been "accessed" only once so far,
1531 		 * but it is still in the cache. Move it to the MFU
1532 		 * state.
1533 		 */
1534 		if (lbolt > buf->b_arc_access + ARC_MINTIME) {
1535 			/*
1536 			 * More than 125ms have passed since we
1537 			 * instantiated this buffer.  Move it to the
1538 			 * most frequently used state.
1539 			 */
1540 			buf->b_arc_access = lbolt;
1541 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1542 			arc_change_state(arc.mfu, buf, hash_lock);
1543 		}
1544 		atomic_add_64(&arc.mru->hits, 1);
1545 	} else if (buf->b_state == arc.mru_ghost) {
1546 		arc_state_t	*new_state;
1547 		/*
1548 		 * This buffer has been "accessed" recently, but
1549 		 * was evicted from the cache.  Move it to the
1550 		 * MFU state.
1551 		 */
1552 
1553 		if (buf->b_flags & ARC_PREFETCH) {
1554 			new_state = arc.mru;
1555 			if (refcount_count(&buf->b_refcnt) > 0)
1556 				buf->b_flags &= ~ARC_PREFETCH;
1557 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
1558 		} else {
1559 			new_state = arc.mfu;
1560 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1561 		}
1562 
1563 		buf->b_arc_access = lbolt;
1564 		arc_change_state(new_state, buf, hash_lock);
1565 
1566 		atomic_add_64(&arc.mru_ghost->hits, 1);
1567 	} else if (buf->b_state == arc.mfu) {
1568 		/*
1569 		 * This buffer has been accessed more than once and is
1570 		 * still in the cache.  Keep it in the MFU state.
1571 		 *
1572 		 * NOTE: an add_reference() that occurred when we did
1573 		 * the arc_read() will have kicked this off the list.
1574 		 * If it was a prefetch, we will explicitly move it to
1575 		 * the head of the list now.
1576 		 */
1577 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
1578 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
1579 			ASSERT(list_link_active(&buf->b_arc_node));
1580 			mutex_enter(&arc.mfu->mtx);
1581 			list_remove(&arc.mfu->list, buf);
1582 			list_insert_head(&arc.mfu->list, buf);
1583 			mutex_exit(&arc.mfu->mtx);
1584 		}
1585 		atomic_add_64(&arc.mfu->hits, 1);
1586 		buf->b_arc_access = lbolt;
1587 	} else if (buf->b_state == arc.mfu_ghost) {
1588 		arc_state_t	*new_state = arc.mfu;
1589 		/*
1590 		 * This buffer has been accessed more than once but has
1591 		 * been evicted from the cache.  Move it back to the
1592 		 * MFU state.
1593 		 */
1594 
1595 		if (buf->b_flags & ARC_PREFETCH) {
1596 			/*
1597 			 * This is a prefetch access...
1598 			 * move this block back to the MRU state.
1599 			 */
1600 			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
1601 			new_state = arc.mru;
1602 		}
1603 
1604 		buf->b_arc_access = lbolt;
1605 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1606 		arc_change_state(new_state, buf, hash_lock);
1607 
1608 		atomic_add_64(&arc.mfu_ghost->hits, 1);
1609 	} else {
1610 		ASSERT(!"invalid arc state");
1611 	}
1612 }
1613 
1614 /* a generic arc_done_func_t which you can use */
1615 /* ARGSUSED */
1616 void
1617 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
1618 {
1619 	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
1620 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
1621 }
1622 
1623 /* a generic arc_done_func_t which you can use */
1624 void
1625 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
1626 {
1627 	arc_buf_t **bufp = arg;
1628 	if (zio && zio->io_error) {
1629 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
1630 		*bufp = NULL;
1631 	} else {
1632 		*bufp = buf;
1633 	}
1634 }
1635 
1636 static void
1637 arc_read_done(zio_t *zio)
1638 {
1639 	arc_buf_hdr_t	*hdr, *found;
1640 	arc_buf_t	*buf;
1641 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
1642 	kmutex_t	*hash_lock;
1643 	arc_callback_t	*callback_list, *acb;
1644 	int		freeable = FALSE;
1645 
1646 	buf = zio->io_private;
1647 	hdr = buf->b_hdr;
1648 
1649 	/*
1650 	 * The hdr was inserted into hash-table and removed from lists
1651 	 * prior to starting I/O.  We should find this header, since
1652 	 * it's in the hash table, and it should be legit since it's
1653 	 * not possible to evict it during the I/O.  The only possible
1654 	 * reason for it not to be found is if we were freed during the
1655 	 * read.
1656 	 */
1657 	found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth,
1658 		    &hash_lock);
1659 
1660 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
1661 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))));
1662 
1663 	/* byteswap if necessary */
1664 	callback_list = hdr->b_acb;
1665 	ASSERT(callback_list != NULL);
1666 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap)
1667 		callback_list->acb_byteswap(buf->b_data, hdr->b_size);
1668 
1669 	/* create copies of the data buffer for the callers */
1670 	abuf = buf;
1671 	for (acb = callback_list; acb; acb = acb->acb_next) {
1672 		if (acb->acb_done) {
1673 			if (abuf == NULL)
1674 				abuf = arc_buf_clone(buf);
1675 			acb->acb_buf = abuf;
1676 			abuf = NULL;
1677 		}
1678 	}
1679 	hdr->b_acb = NULL;
1680 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
1681 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
1682 	if (abuf == buf)
1683 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1684 
1685 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
1686 
1687 	if (zio->io_error != 0) {
1688 		hdr->b_flags |= ARC_IO_ERROR;
1689 		if (hdr->b_state != arc.anon)
1690 			arc_change_state(arc.anon, hdr, hash_lock);
1691 		if (HDR_IN_HASH_TABLE(hdr))
1692 			buf_hash_remove(hdr);
1693 		freeable = refcount_is_zero(&hdr->b_refcnt);
1694 		/* convert checksum errors into IO errors */
1695 		if (zio->io_error == ECKSUM)
1696 			zio->io_error = EIO;
1697 	}
1698 
1699 	/*
1700 	 * Broadcast before we drop the hash_lock to avoid the possibility
1701 	 * that the hdr (and hence the cv) might be freed before we get to
1702 	 * the cv_broadcast().
1703 	 */
1704 	cv_broadcast(&hdr->b_cv);
1705 
1706 	if (hash_lock) {
1707 		/*
1708 		 * Only call arc_access on anonymous buffers.  This is because
1709 		 * if we've issued an I/O for an evicted buffer, we've already
1710 		 * called arc_access (to prevent any simultaneous readers from
1711 		 * getting confused).
1712 		 */
1713 		if (zio->io_error == 0 && hdr->b_state == arc.anon)
1714 			arc_access(hdr, hash_lock);
1715 		mutex_exit(hash_lock);
1716 	} else {
1717 		/*
1718 		 * This block was freed while we waited for the read to
1719 		 * complete.  It has been removed from the hash table and
1720 		 * moved to the anonymous state (so that it won't show up
1721 		 * in the cache).
1722 		 */
1723 		ASSERT3P(hdr->b_state, ==, arc.anon);
1724 		freeable = refcount_is_zero(&hdr->b_refcnt);
1725 	}
1726 
1727 	/* execute each callback and free its structure */
1728 	while ((acb = callback_list) != NULL) {
1729 		if (acb->acb_done)
1730 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
1731 
1732 		if (acb->acb_zio_dummy != NULL) {
1733 			acb->acb_zio_dummy->io_error = zio->io_error;
1734 			zio_nowait(acb->acb_zio_dummy);
1735 		}
1736 
1737 		callback_list = acb->acb_next;
1738 		kmem_free(acb, sizeof (arc_callback_t));
1739 	}
1740 
1741 	if (freeable)
1742 		arc_hdr_destroy(hdr);
1743 }
1744 
1745 /*
1746  * "Read" the block block at the specified DVA (in bp) via the
1747  * cache.  If the block is found in the cache, invoke the provided
1748  * callback immediately and return.  Note that the `zio' parameter
1749  * in the callback will be NULL in this case, since no IO was
1750  * required.  If the block is not in the cache pass the read request
1751  * on to the spa with a substitute callback function, so that the
1752  * requested block will be added to the cache.
1753  *
1754  * If a read request arrives for a block that has a read in-progress,
1755  * either wait for the in-progress read to complete (and return the
1756  * results); or, if this is a read with a "done" func, add a record
1757  * to the read to invoke the "done" func when the read completes,
1758  * and return; or just return.
1759  *
1760  * arc_read_done() will invoke all the requested "done" functions
1761  * for readers of this block.
1762  */
1763 int
1764 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap,
1765     arc_done_func_t *done, void *private, int priority, int flags,
1766     uint32_t *arc_flags, zbookmark_t *zb)
1767 {
1768 	arc_buf_hdr_t *hdr;
1769 	arc_buf_t *buf;
1770 	kmutex_t *hash_lock;
1771 	zio_t	*rzio;
1772 
1773 top:
1774 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
1775 	if (hdr && hdr->b_datacnt > 0) {
1776 
1777 		*arc_flags |= ARC_CACHED;
1778 
1779 		if (HDR_IO_IN_PROGRESS(hdr)) {
1780 
1781 			if (*arc_flags & ARC_WAIT) {
1782 				cv_wait(&hdr->b_cv, hash_lock);
1783 				mutex_exit(hash_lock);
1784 				goto top;
1785 			}
1786 			ASSERT(*arc_flags & ARC_NOWAIT);
1787 
1788 			if (done) {
1789 				arc_callback_t	*acb = NULL;
1790 
1791 				acb = kmem_zalloc(sizeof (arc_callback_t),
1792 				    KM_SLEEP);
1793 				acb->acb_done = done;
1794 				acb->acb_private = private;
1795 				acb->acb_byteswap = swap;
1796 				if (pio != NULL)
1797 					acb->acb_zio_dummy = zio_null(pio,
1798 					    spa, NULL, NULL, flags);
1799 
1800 				ASSERT(acb->acb_done != NULL);
1801 				acb->acb_next = hdr->b_acb;
1802 				hdr->b_acb = acb;
1803 				add_reference(hdr, hash_lock, private);
1804 				mutex_exit(hash_lock);
1805 				return (0);
1806 			}
1807 			mutex_exit(hash_lock);
1808 			return (0);
1809 		}
1810 
1811 		ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu);
1812 
1813 		if (done) {
1814 			add_reference(hdr, hash_lock, private);
1815 			/*
1816 			 * If this block is already in use, create a new
1817 			 * copy of the data so that we will be guaranteed
1818 			 * that arc_release() will always succeed.
1819 			 */
1820 			buf = hdr->b_buf;
1821 			ASSERT(buf);
1822 			ASSERT(buf->b_data);
1823 			if (HDR_BUF_AVAILABLE(hdr)) {
1824 				ASSERT(buf->b_efunc == NULL);
1825 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
1826 			} else {
1827 				buf = arc_buf_clone(buf);
1828 			}
1829 		} else if (*arc_flags & ARC_PREFETCH &&
1830 		    refcount_count(&hdr->b_refcnt) == 0) {
1831 			hdr->b_flags |= ARC_PREFETCH;
1832 		}
1833 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1834 		arc_access(hdr, hash_lock);
1835 		mutex_exit(hash_lock);
1836 		atomic_add_64(&arc.hits, 1);
1837 		if (done)
1838 			done(NULL, buf, private);
1839 	} else {
1840 		uint64_t size = BP_GET_LSIZE(bp);
1841 		arc_callback_t	*acb;
1842 
1843 		if (hdr == NULL) {
1844 			/* this block is not in the cache */
1845 			arc_buf_hdr_t	*exists;
1846 
1847 			buf = arc_buf_alloc(spa, size, private);
1848 			hdr = buf->b_hdr;
1849 			hdr->b_dva = *BP_IDENTITY(bp);
1850 			hdr->b_birth = bp->blk_birth;
1851 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
1852 			exists = buf_hash_insert(hdr, &hash_lock);
1853 			if (exists) {
1854 				/* somebody beat us to the hash insert */
1855 				mutex_exit(hash_lock);
1856 				bzero(&hdr->b_dva, sizeof (dva_t));
1857 				hdr->b_birth = 0;
1858 				hdr->b_cksum0 = 0;
1859 				(void) arc_buf_remove_ref(buf, private);
1860 				goto top; /* restart the IO request */
1861 			}
1862 			/* if this is a prefetch, we don't have a reference */
1863 			if (*arc_flags & ARC_PREFETCH) {
1864 				(void) remove_reference(hdr, hash_lock,
1865 				    private);
1866 				hdr->b_flags |= ARC_PREFETCH;
1867 			}
1868 			if (BP_GET_LEVEL(bp) > 0)
1869 				hdr->b_flags |= ARC_INDIRECT;
1870 		} else {
1871 			/* this block is in the ghost cache */
1872 			ASSERT(GHOST_STATE(hdr->b_state));
1873 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1874 			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
1875 			ASSERT(hdr->b_buf == NULL);
1876 
1877 			/* if this is a prefetch, we don't have a reference */
1878 			if (*arc_flags & ARC_PREFETCH)
1879 				hdr->b_flags |= ARC_PREFETCH;
1880 			else
1881 				add_reference(hdr, hash_lock, private);
1882 			buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
1883 			buf->b_hdr = hdr;
1884 			buf->b_data = NULL;
1885 			buf->b_efunc = NULL;
1886 			buf->b_private = NULL;
1887 			buf->b_next = NULL;
1888 			hdr->b_buf = buf;
1889 			arc_get_data_buf(buf);
1890 			ASSERT(hdr->b_datacnt == 0);
1891 			hdr->b_datacnt = 1;
1892 
1893 		}
1894 
1895 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
1896 		acb->acb_done = done;
1897 		acb->acb_private = private;
1898 		acb->acb_byteswap = swap;
1899 
1900 		ASSERT(hdr->b_acb == NULL);
1901 		hdr->b_acb = acb;
1902 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
1903 
1904 		/*
1905 		 * If the buffer has been evicted, migrate it to a present state
1906 		 * before issuing the I/O.  Once we drop the hash-table lock,
1907 		 * the header will be marked as I/O in progress and have an
1908 		 * attached buffer.  At this point, anybody who finds this
1909 		 * buffer ought to notice that it's legit but has a pending I/O.
1910 		 */
1911 
1912 		if (GHOST_STATE(hdr->b_state))
1913 			arc_access(hdr, hash_lock);
1914 		mutex_exit(hash_lock);
1915 
1916 		ASSERT3U(hdr->b_size, ==, size);
1917 		DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
1918 		    zbookmark_t *, zb);
1919 		atomic_add_64(&arc.misses, 1);
1920 
1921 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
1922 		    arc_read_done, buf, priority, flags, zb);
1923 
1924 		if (*arc_flags & ARC_WAIT)
1925 			return (zio_wait(rzio));
1926 
1927 		ASSERT(*arc_flags & ARC_NOWAIT);
1928 		zio_nowait(rzio);
1929 	}
1930 	return (0);
1931 }
1932 
1933 /*
1934  * arc_read() variant to support pool traversal.  If the block is already
1935  * in the ARC, make a copy of it; otherwise, the caller will do the I/O.
1936  * The idea is that we don't want pool traversal filling up memory, but
1937  * if the ARC already has the data anyway, we shouldn't pay for the I/O.
1938  */
1939 int
1940 arc_tryread(spa_t *spa, blkptr_t *bp, void *data)
1941 {
1942 	arc_buf_hdr_t *hdr;
1943 	kmutex_t *hash_mtx;
1944 	int rc = 0;
1945 
1946 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);
1947 
1948 	if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
1949 		arc_buf_t *buf = hdr->b_buf;
1950 
1951 		ASSERT(buf);
1952 		while (buf->b_data == NULL) {
1953 			buf = buf->b_next;
1954 			ASSERT(buf);
1955 		}
1956 		bcopy(buf->b_data, data, hdr->b_size);
1957 	} else {
1958 		rc = ENOENT;
1959 	}
1960 
1961 	if (hash_mtx)
1962 		mutex_exit(hash_mtx);
1963 
1964 	return (rc);
1965 }
1966 
1967 void
1968 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
1969 {
1970 	ASSERT(buf->b_hdr != NULL);
1971 	ASSERT(buf->b_hdr->b_state != arc.anon);
1972 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
1973 	buf->b_efunc = func;
1974 	buf->b_private = private;
1975 }
1976 
1977 /*
1978  * This is used by the DMU to let the ARC know that a buffer is
1979  * being evicted, so the ARC should clean up.  If this arc buf
1980  * is not yet in the evicted state, it will be put there.
1981  */
1982 int
1983 arc_buf_evict(arc_buf_t *buf)
1984 {
1985 	arc_buf_hdr_t *hdr = buf->b_hdr;
1986 	kmutex_t *hash_lock;
1987 	arc_buf_t **bufp;
1988 
1989 	if (hdr == NULL) {
1990 		/*
1991 		 * We are in arc_do_user_evicts().
1992 		 */
1993 		ASSERT(buf->b_data == NULL);
1994 		return (0);
1995 	}
1996 
1997 	hash_lock = HDR_LOCK(hdr);
1998 	mutex_enter(hash_lock);
1999 
2000 	if (buf->b_data == NULL) {
2001 		/*
2002 		 * We are on the eviction list.
2003 		 */
2004 		mutex_exit(hash_lock);
2005 		mutex_enter(&arc_eviction_mtx);
2006 		if (buf->b_hdr == NULL) {
2007 			/*
2008 			 * We are already in arc_do_user_evicts().
2009 			 */
2010 			mutex_exit(&arc_eviction_mtx);
2011 			return (0);
2012 		} else {
2013 			arc_buf_t copy = *buf; /* structure assignment */
2014 			/*
2015 			 * Process this buffer now
2016 			 * but let arc_do_user_evicts() do the reaping.
2017 			 */
2018 			buf->b_efunc = NULL;
2019 			mutex_exit(&arc_eviction_mtx);
2020 			VERIFY(copy.b_efunc(&copy) == 0);
2021 			return (1);
2022 		}
2023 	}
2024 
2025 	ASSERT(buf->b_hdr == hdr);
2026 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2027 	ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu);
2028 
2029 	/*
2030 	 * Pull this buffer off of the hdr
2031 	 */
2032 	bufp = &hdr->b_buf;
2033 	while (*bufp != buf)
2034 		bufp = &(*bufp)->b_next;
2035 	*bufp = buf->b_next;
2036 
2037 	ASSERT(buf->b_data != NULL);
2038 	buf->b_hdr = hdr;
2039 	arc_buf_destroy(buf, FALSE, FALSE);
2040 
2041 	if (hdr->b_datacnt == 0) {
2042 		arc_state_t *old_state = hdr->b_state;
2043 		arc_state_t *evicted_state;
2044 
2045 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2046 
2047 		evicted_state =
2048 		    (old_state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost;
2049 
2050 		mutex_enter(&old_state->mtx);
2051 		mutex_enter(&evicted_state->mtx);
2052 
2053 		arc_change_state(evicted_state, hdr, hash_lock);
2054 		ASSERT(HDR_IN_HASH_TABLE(hdr));
2055 		hdr->b_flags = ARC_IN_HASH_TABLE;
2056 
2057 		mutex_exit(&evicted_state->mtx);
2058 		mutex_exit(&old_state->mtx);
2059 	}
2060 	mutex_exit(hash_lock);
2061 
2062 	VERIFY(buf->b_efunc(buf) == 0);
2063 	buf->b_efunc = NULL;
2064 	buf->b_private = NULL;
2065 	buf->b_hdr = NULL;
2066 	kmem_cache_free(buf_cache, buf);
2067 	return (1);
2068 }
2069 
2070 /*
2071  * Release this buffer from the cache.  This must be done
2072  * after a read and prior to modifying the buffer contents.
2073  * If the buffer has more than one reference, we must make
2074  * make a new hdr for the buffer.
2075  */
2076 void
2077 arc_release(arc_buf_t *buf, void *tag)
2078 {
2079 	arc_buf_hdr_t *hdr = buf->b_hdr;
2080 	kmutex_t *hash_lock = HDR_LOCK(hdr);
2081 
2082 	/* this buffer is not on any list */
2083 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
2084 
2085 	if (hdr->b_state == arc.anon) {
2086 		/* this buffer is already released */
2087 		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
2088 		ASSERT(BUF_EMPTY(hdr));
2089 		ASSERT(buf->b_efunc == NULL);
2090 		return;
2091 	}
2092 
2093 	mutex_enter(hash_lock);
2094 
2095 	/*
2096 	 * Do we have more than one buf?
2097 	 */
2098 	if (hdr->b_buf != buf || buf->b_next != NULL) {
2099 		arc_buf_hdr_t *nhdr;
2100 		arc_buf_t **bufp;
2101 		uint64_t blksz = hdr->b_size;
2102 		spa_t *spa = hdr->b_spa;
2103 
2104 		ASSERT(hdr->b_datacnt > 1);
2105 		/*
2106 		 * Pull the data off of this buf and attach it to
2107 		 * a new anonymous buf.
2108 		 */
2109 		(void) remove_reference(hdr, hash_lock, tag);
2110 		bufp = &hdr->b_buf;
2111 		while (*bufp != buf)
2112 			bufp = &(*bufp)->b_next;
2113 		*bufp = (*bufp)->b_next;
2114 
2115 		ASSERT3U(hdr->b_state->size, >=, hdr->b_size);
2116 		atomic_add_64(&hdr->b_state->size, -hdr->b_size);
2117 		if (refcount_is_zero(&hdr->b_refcnt)) {
2118 			ASSERT3U(hdr->b_state->lsize, >=, hdr->b_size);
2119 			atomic_add_64(&hdr->b_state->lsize, -hdr->b_size);
2120 		}
2121 		hdr->b_datacnt -= 1;
2122 
2123 		mutex_exit(hash_lock);
2124 
2125 		nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP);
2126 		nhdr->b_size = blksz;
2127 		nhdr->b_spa = spa;
2128 		nhdr->b_buf = buf;
2129 		nhdr->b_state = arc.anon;
2130 		nhdr->b_arc_access = 0;
2131 		nhdr->b_flags = 0;
2132 		nhdr->b_datacnt = 1;
2133 		buf->b_hdr = nhdr;
2134 		buf->b_next = NULL;
2135 		(void) refcount_add(&nhdr->b_refcnt, tag);
2136 		atomic_add_64(&arc.anon->size, blksz);
2137 
2138 		hdr = nhdr;
2139 	} else {
2140 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
2141 		ASSERT(!list_link_active(&hdr->b_arc_node));
2142 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2143 		arc_change_state(arc.anon, hdr, hash_lock);
2144 		hdr->b_arc_access = 0;
2145 		mutex_exit(hash_lock);
2146 		bzero(&hdr->b_dva, sizeof (dva_t));
2147 		hdr->b_birth = 0;
2148 		hdr->b_cksum0 = 0;
2149 	}
2150 	buf->b_efunc = NULL;
2151 	buf->b_private = NULL;
2152 }
2153 
2154 int
2155 arc_released(arc_buf_t *buf)
2156 {
2157 	return (buf->b_data != NULL && buf->b_hdr->b_state == arc.anon);
2158 }
2159 
2160 int
2161 arc_has_callback(arc_buf_t *buf)
2162 {
2163 	return (buf->b_efunc != NULL);
2164 }
2165 
2166 #ifdef ZFS_DEBUG
2167 int
2168 arc_referenced(arc_buf_t *buf)
2169 {
2170 	return (refcount_count(&buf->b_hdr->b_refcnt));
2171 }
2172 #endif
2173 
2174 static void
2175 arc_write_done(zio_t *zio)
2176 {
2177 	arc_buf_t *buf;
2178 	arc_buf_hdr_t *hdr;
2179 	arc_callback_t *acb;
2180 
2181 	buf = zio->io_private;
2182 	hdr = buf->b_hdr;
2183 	acb = hdr->b_acb;
2184 	hdr->b_acb = NULL;
2185 	ASSERT(acb != NULL);
2186 
2187 	/* this buffer is on no lists and is not in the hash table */
2188 	ASSERT3P(hdr->b_state, ==, arc.anon);
2189 
2190 	hdr->b_dva = *BP_IDENTITY(zio->io_bp);
2191 	hdr->b_birth = zio->io_bp->blk_birth;
2192 	hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
2193 	/*
2194 	 * If the block to be written was all-zero, we may have
2195 	 * compressed it away.  In this case no write was performed
2196 	 * so there will be no dva/birth-date/checksum.  The buffer
2197 	 * must therefor remain anonymous (and uncached).
2198 	 */
2199 	if (!BUF_EMPTY(hdr)) {
2200 		arc_buf_hdr_t *exists;
2201 		kmutex_t *hash_lock;
2202 
2203 		exists = buf_hash_insert(hdr, &hash_lock);
2204 		if (exists) {
2205 			/*
2206 			 * This can only happen if we overwrite for
2207 			 * sync-to-convergence, because we remove
2208 			 * buffers from the hash table when we arc_free().
2209 			 */
2210 			ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
2211 			    BP_IDENTITY(zio->io_bp)));
2212 			ASSERT3U(zio->io_bp_orig.blk_birth, ==,
2213 			    zio->io_bp->blk_birth);
2214 
2215 			ASSERT(refcount_is_zero(&exists->b_refcnt));
2216 			arc_change_state(arc.anon, exists, hash_lock);
2217 			mutex_exit(hash_lock);
2218 			arc_hdr_destroy(exists);
2219 			exists = buf_hash_insert(hdr, &hash_lock);
2220 			ASSERT3P(exists, ==, NULL);
2221 		}
2222 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2223 		arc_access(hdr, hash_lock);
2224 		mutex_exit(hash_lock);
2225 	} else if (acb->acb_done == NULL) {
2226 		int destroy_hdr;
2227 		/*
2228 		 * This is an anonymous buffer with no user callback,
2229 		 * destroy it if there are no active references.
2230 		 */
2231 		mutex_enter(&arc_eviction_mtx);
2232 		destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
2233 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2234 		mutex_exit(&arc_eviction_mtx);
2235 		if (destroy_hdr)
2236 			arc_hdr_destroy(hdr);
2237 	} else {
2238 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2239 	}
2240 
2241 	if (acb->acb_done) {
2242 		ASSERT(!refcount_is_zero(&hdr->b_refcnt));
2243 		acb->acb_done(zio, buf, acb->acb_private);
2244 	}
2245 
2246 	kmem_free(acb, sizeof (arc_callback_t));
2247 }
2248 
2249 int
2250 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies,
2251     uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
2252     arc_done_func_t *done, void *private, int priority, int flags,
2253     uint32_t arc_flags, zbookmark_t *zb)
2254 {
2255 	arc_buf_hdr_t *hdr = buf->b_hdr;
2256 	arc_callback_t	*acb;
2257 	zio_t	*rzio;
2258 
2259 	/* this is a private buffer - no locking required */
2260 	ASSERT3P(hdr->b_state, ==, arc.anon);
2261 	ASSERT(BUF_EMPTY(hdr));
2262 	ASSERT(!HDR_IO_ERROR(hdr));
2263 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
2264 	ASSERT(hdr->b_acb == 0);
2265 	acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2266 	acb->acb_done = done;
2267 	acb->acb_private = private;
2268 	acb->acb_byteswap = (arc_byteswap_func_t *)-1;
2269 	hdr->b_acb = acb;
2270 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
2271 	rzio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp,
2272 	    buf->b_data, hdr->b_size, arc_write_done, buf, priority, flags, zb);
2273 
2274 	if (arc_flags & ARC_WAIT)
2275 		return (zio_wait(rzio));
2276 
2277 	ASSERT(arc_flags & ARC_NOWAIT);
2278 	zio_nowait(rzio);
2279 
2280 	return (0);
2281 }
2282 
2283 int
2284 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
2285     zio_done_func_t *done, void *private, uint32_t arc_flags)
2286 {
2287 	arc_buf_hdr_t *ab;
2288 	kmutex_t *hash_lock;
2289 	zio_t	*zio;
2290 
2291 	/*
2292 	 * If this buffer is in the cache, release it, so it
2293 	 * can be re-used.
2294 	 */
2295 	ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2296 	if (ab != NULL) {
2297 		/*
2298 		 * The checksum of blocks to free is not always
2299 		 * preserved (eg. on the deadlist).  However, if it is
2300 		 * nonzero, it should match what we have in the cache.
2301 		 */
2302 		ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
2303 		    ab->b_cksum0 == bp->blk_cksum.zc_word[0]);
2304 		if (ab->b_state != arc.anon)
2305 			arc_change_state(arc.anon, ab, hash_lock);
2306 		if (HDR_IO_IN_PROGRESS(ab)) {
2307 			/*
2308 			 * This should only happen when we prefetch.
2309 			 */
2310 			ASSERT(ab->b_flags & ARC_PREFETCH);
2311 			ASSERT3U(ab->b_datacnt, ==, 1);
2312 			ab->b_flags |= ARC_FREED_IN_READ;
2313 			if (HDR_IN_HASH_TABLE(ab))
2314 				buf_hash_remove(ab);
2315 			ab->b_arc_access = 0;
2316 			bzero(&ab->b_dva, sizeof (dva_t));
2317 			ab->b_birth = 0;
2318 			ab->b_cksum0 = 0;
2319 			ab->b_buf->b_efunc = NULL;
2320 			ab->b_buf->b_private = NULL;
2321 			mutex_exit(hash_lock);
2322 		} else if (refcount_is_zero(&ab->b_refcnt)) {
2323 			mutex_exit(hash_lock);
2324 			arc_hdr_destroy(ab);
2325 			atomic_add_64(&arc.deleted, 1);
2326 		} else {
2327 			/*
2328 			 * We still have an active reference on this
2329 			 * buffer.  This can happen, e.g., from
2330 			 * dbuf_unoverride().
2331 			 */
2332 			ASSERT(!HDR_IN_HASH_TABLE(ab));
2333 			ab->b_arc_access = 0;
2334 			bzero(&ab->b_dva, sizeof (dva_t));
2335 			ab->b_birth = 0;
2336 			ab->b_cksum0 = 0;
2337 			ab->b_buf->b_efunc = NULL;
2338 			ab->b_buf->b_private = NULL;
2339 			mutex_exit(hash_lock);
2340 		}
2341 	}
2342 
2343 	zio = zio_free(pio, spa, txg, bp, done, private);
2344 
2345 	if (arc_flags & ARC_WAIT)
2346 		return (zio_wait(zio));
2347 
2348 	ASSERT(arc_flags & ARC_NOWAIT);
2349 	zio_nowait(zio);
2350 
2351 	return (0);
2352 }
2353 
2354 void
2355 arc_tempreserve_clear(uint64_t tempreserve)
2356 {
2357 	atomic_add_64(&arc_tempreserve, -tempreserve);
2358 	ASSERT((int64_t)arc_tempreserve >= 0);
2359 }
2360 
2361 int
2362 arc_tempreserve_space(uint64_t tempreserve)
2363 {
2364 #ifdef ZFS_DEBUG
2365 	/*
2366 	 * Once in a while, fail for no reason.  Everything should cope.
2367 	 */
2368 	if (spa_get_random(10000) == 0) {
2369 		dprintf("forcing random failure\n");
2370 		return (ERESTART);
2371 	}
2372 #endif
2373 	if (tempreserve > arc.c/4 && !arc.no_grow)
2374 		arc.c = MIN(arc.c_max, tempreserve * 4);
2375 	if (tempreserve > arc.c)
2376 		return (ENOMEM);
2377 
2378 	/*
2379 	 * Throttle writes when the amount of dirty data in the cache
2380 	 * gets too large.  We try to keep the cache less than half full
2381 	 * of dirty blocks so that our sync times don't grow too large.
2382 	 * Note: if two requests come in concurrently, we might let them
2383 	 * both succeed, when one of them should fail.  Not a huge deal.
2384 	 *
2385 	 * XXX The limit should be adjusted dynamically to keep the time
2386 	 * to sync a dataset fixed (around 1-5 seconds?).
2387 	 */
2388 
2389 	if (tempreserve + arc_tempreserve + arc.anon->size > arc.c / 2 &&
2390 	    arc_tempreserve + arc.anon->size > arc.c / 4) {
2391 		dprintf("failing, arc_tempreserve=%lluK anon=%lluK "
2392 		    "tempreserve=%lluK arc.c=%lluK\n",
2393 		    arc_tempreserve>>10, arc.anon->lsize>>10,
2394 		    tempreserve>>10, arc.c>>10);
2395 		return (ERESTART);
2396 	}
2397 	atomic_add_64(&arc_tempreserve, tempreserve);
2398 	return (0);
2399 }
2400 
2401 void
2402 arc_init(void)
2403 {
2404 	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
2405 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
2406 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
2407 
2408 	/* Convert seconds to clock ticks */
2409 	arc_min_prefetch_lifespan = 1 * hz;
2410 
2411 	/* Start out with 1/8 of all memory */
2412 	arc.c = physmem * PAGESIZE / 8;
2413 
2414 #ifdef _KERNEL
2415 	/*
2416 	 * On architectures where the physical memory can be larger
2417 	 * than the addressable space (intel in 32-bit mode), we may
2418 	 * need to limit the cache to 1/8 of VM size.
2419 	 */
2420 	arc.c = MIN(arc.c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
2421 #endif
2422 
2423 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
2424 	arc.c_min = MAX(arc.c / 4, 64<<20);
2425 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
2426 	if (arc.c * 8 >= 1<<30)
2427 		arc.c_max = (arc.c * 8) - (1<<30);
2428 	else
2429 		arc.c_max = arc.c_min;
2430 	arc.c_max = MAX(arc.c * 6, arc.c_max);
2431 	arc.c = arc.c_max;
2432 	arc.p = (arc.c >> 1);
2433 
2434 	/* if kmem_flags are set, lets try to use less memory */
2435 	if (kmem_debugging())
2436 		arc.c = arc.c / 2;
2437 	if (arc.c < arc.c_min)
2438 		arc.c = arc.c_min;
2439 
2440 	arc.anon = &ARC_anon;
2441 	arc.mru = &ARC_mru;
2442 	arc.mru_ghost = &ARC_mru_ghost;
2443 	arc.mfu = &ARC_mfu;
2444 	arc.mfu_ghost = &ARC_mfu_ghost;
2445 	arc.size = 0;
2446 
2447 	arc.hits = 0;
2448 	arc.recycle_miss = 0;
2449 	arc.evict_skip = 0;
2450 	arc.mutex_miss = 0;
2451 
2452 	list_create(&arc.mru->list, sizeof (arc_buf_hdr_t),
2453 	    offsetof(arc_buf_hdr_t, b_arc_node));
2454 	list_create(&arc.mru_ghost->list, sizeof (arc_buf_hdr_t),
2455 	    offsetof(arc_buf_hdr_t, b_arc_node));
2456 	list_create(&arc.mfu->list, sizeof (arc_buf_hdr_t),
2457 	    offsetof(arc_buf_hdr_t, b_arc_node));
2458 	list_create(&arc.mfu_ghost->list, sizeof (arc_buf_hdr_t),
2459 	    offsetof(arc_buf_hdr_t, b_arc_node));
2460 
2461 	buf_init();
2462 
2463 	arc_thread_exit = 0;
2464 	arc_eviction_list = NULL;
2465 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
2466 
2467 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
2468 	    TS_RUN, minclsyspri);
2469 }
2470 
2471 void
2472 arc_fini(void)
2473 {
2474 	mutex_enter(&arc_reclaim_thr_lock);
2475 	arc_thread_exit = 1;
2476 	while (arc_thread_exit != 0)
2477 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
2478 	mutex_exit(&arc_reclaim_thr_lock);
2479 
2480 	arc_flush();
2481 
2482 	arc_dead = TRUE;
2483 
2484 	mutex_destroy(&arc_eviction_mtx);
2485 	mutex_destroy(&arc_reclaim_lock);
2486 	mutex_destroy(&arc_reclaim_thr_lock);
2487 	cv_destroy(&arc_reclaim_thr_cv);
2488 
2489 	list_destroy(&arc.mru->list);
2490 	list_destroy(&arc.mru_ghost->list);
2491 	list_destroy(&arc.mfu->list);
2492 	list_destroy(&arc.mfu_ghost->list);
2493 
2494 	buf_fini();
2495 }
2496