1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * DVA-based Adjustable Replacement Cache 31 * 32 * While much of the theory of operation used here is 33 * based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slows the flow of new data 52 * into the cache until we can make space available. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory pressure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefore exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefore choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() interface 80 * uses method 1, while the internal arc algorithms for 81 * adjusting the cache use method 2. We therefore provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * arc list locks. 84 * 85 * Buffers do not have their own mutexes, rather they rely on the 86 * hash table mutexes for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexes). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each arc state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an arc list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the active state mutex must be held before the ghost state mutex. 101 * 102 * Arc buffers may have an associated eviction callback function. 103 * This function will be invoked prior to removing the buffer (e.g. 104 * in arc_do_user_evicts()). Note however that the data associated 105 * with the buffer may be evicted prior to the callback. The callback 106 * must be made with *no locks held* (to prevent deadlock). Additionally, 107 * the users of callbacks must ensure that their private data is 108 * protected from simultaneous callbacks from arc_clear_callback() 109 * and arc_do_user_evicts(). 110 * 111 * Note that the majority of the performance stats are manipulated 112 * with atomic operations. 113 * 114 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 115 * 116 * - L2ARC buflist creation 117 * - L2ARC buflist eviction 118 * - L2ARC write completion, which walks L2ARC buflists 119 * - ARC header destruction, as it removes from L2ARC buflists 120 * - ARC header release, as it removes from L2ARC buflists 121 */ 122 123 #include <sys/spa.h> 124 #include <sys/zio.h> 125 #include <sys/zio_compress.h> 126 #include <sys/zfs_context.h> 127 #include <sys/arc.h> 128 #include <sys/refcount.h> 129 #include <sys/vdev.h> 130 #include <sys/vdev_impl.h> 131 #include <sys/dsl_pool.h> 132 #ifdef _KERNEL 133 #include <sys/vmsystm.h> 134 #include <vm/anon.h> 135 #include <sys/fs/swapnode.h> 136 #include <sys/dnlc.h> 137 #endif 138 #include <sys/callb.h> 139 #include <sys/kstat.h> 140 #include <zfs_fletcher.h> 141 142 #ifndef _KERNEL 143 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 144 boolean_t arc_watch = B_FALSE; 145 int arc_procfd; 146 #endif 147 148 static kmutex_t arc_reclaim_thr_lock; 149 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 150 static uint8_t arc_thread_exit; 151 152 uint_t arc_reduce_dnlc_percent = 3; 153 154 /* 155 * The number of iterations through arc_evict_*() before we 156 * drop & reacquire the lock. 157 */ 158 int arc_evict_iterations = 100; 159 160 /* number of seconds before growing cache again */ 161 static int arc_grow_retry = 60; 162 163 /* shift of arc_c for calculating both min and max arc_p */ 164 static int arc_p_min_shift = 4; 165 166 /* log2(fraction of arc to reclaim) */ 167 static int arc_shrink_shift = 7; 168 169 /* 170 * log2(fraction of ARC which must be free to allow growing). 171 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 172 * when reading a new block into the ARC, we will evict an equal-sized block 173 * from the ARC. 174 * 175 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 176 * we will still not allow it to grow. 177 */ 178 int arc_no_grow_shift = 5; 179 180 181 /* 182 * minimum lifespan of a prefetch block in clock ticks 183 * (initialized in arc_init()) 184 */ 185 static int arc_min_prefetch_lifespan; 186 187 /* 188 * If this percent of memory is free, don't throttle. 189 */ 190 int arc_lotsfree_percent = 10; 191 192 static int arc_dead; 193 194 /* 195 * The arc has filled available memory and has now warmed up. 196 */ 197 static boolean_t arc_warm; 198 199 /* 200 * These tunables are for performance analysis. 201 */ 202 uint64_t zfs_arc_max; 203 uint64_t zfs_arc_min; 204 uint64_t zfs_arc_meta_limit = 0; 205 uint64_t zfs_arc_meta_min = 0; 206 int zfs_arc_grow_retry = 0; 207 int zfs_arc_shrink_shift = 0; 208 int zfs_arc_p_min_shift = 0; 209 int zfs_disable_dup_eviction = 0; 210 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 211 212 /* 213 * Note that buffers can be in one of 6 states: 214 * ARC_anon - anonymous (discussed below) 215 * ARC_mru - recently used, currently cached 216 * ARC_mru_ghost - recentely used, no longer in cache 217 * ARC_mfu - frequently used, currently cached 218 * ARC_mfu_ghost - frequently used, no longer in cache 219 * ARC_l2c_only - exists in L2ARC but not other states 220 * When there are no active references to the buffer, they are 221 * are linked onto a list in one of these arc states. These are 222 * the only buffers that can be evicted or deleted. Within each 223 * state there are multiple lists, one for meta-data and one for 224 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 225 * etc.) is tracked separately so that it can be managed more 226 * explicitly: favored over data, limited explicitly. 227 * 228 * Anonymous buffers are buffers that are not associated with 229 * a DVA. These are buffers that hold dirty block copies 230 * before they are written to stable storage. By definition, 231 * they are "ref'd" and are considered part of arc_mru 232 * that cannot be freed. Generally, they will aquire a DVA 233 * as they are written and migrate onto the arc_mru list. 234 * 235 * The ARC_l2c_only state is for buffers that are in the second 236 * level ARC but no longer in any of the ARC_m* lists. The second 237 * level ARC itself may also contain buffers that are in any of 238 * the ARC_m* states - meaning that a buffer can exist in two 239 * places. The reason for the ARC_l2c_only state is to keep the 240 * buffer header in the hash table, so that reads that hit the 241 * second level ARC benefit from these fast lookups. 242 */ 243 244 typedef struct arc_state { 245 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 246 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 247 uint64_t arcs_size; /* total amount of data in this state */ 248 kmutex_t arcs_mtx; 249 } arc_state_t; 250 251 /* The 6 states: */ 252 static arc_state_t ARC_anon; 253 static arc_state_t ARC_mru; 254 static arc_state_t ARC_mru_ghost; 255 static arc_state_t ARC_mfu; 256 static arc_state_t ARC_mfu_ghost; 257 static arc_state_t ARC_l2c_only; 258 259 typedef struct arc_stats { 260 kstat_named_t arcstat_hits; 261 kstat_named_t arcstat_misses; 262 kstat_named_t arcstat_demand_data_hits; 263 kstat_named_t arcstat_demand_data_misses; 264 kstat_named_t arcstat_demand_metadata_hits; 265 kstat_named_t arcstat_demand_metadata_misses; 266 kstat_named_t arcstat_prefetch_data_hits; 267 kstat_named_t arcstat_prefetch_data_misses; 268 kstat_named_t arcstat_prefetch_metadata_hits; 269 kstat_named_t arcstat_prefetch_metadata_misses; 270 kstat_named_t arcstat_mru_hits; 271 kstat_named_t arcstat_mru_ghost_hits; 272 kstat_named_t arcstat_mfu_hits; 273 kstat_named_t arcstat_mfu_ghost_hits; 274 kstat_named_t arcstat_deleted; 275 kstat_named_t arcstat_recycle_miss; 276 /* 277 * Number of buffers that could not be evicted because the hash lock 278 * was held by another thread. The lock may not necessarily be held 279 * by something using the same buffer, since hash locks are shared 280 * by multiple buffers. 281 */ 282 kstat_named_t arcstat_mutex_miss; 283 /* 284 * Number of buffers skipped because they have I/O in progress, are 285 * indrect prefetch buffers that have not lived long enough, or are 286 * not from the spa we're trying to evict from. 287 */ 288 kstat_named_t arcstat_evict_skip; 289 kstat_named_t arcstat_evict_l2_cached; 290 kstat_named_t arcstat_evict_l2_eligible; 291 kstat_named_t arcstat_evict_l2_ineligible; 292 kstat_named_t arcstat_hash_elements; 293 kstat_named_t arcstat_hash_elements_max; 294 kstat_named_t arcstat_hash_collisions; 295 kstat_named_t arcstat_hash_chains; 296 kstat_named_t arcstat_hash_chain_max; 297 kstat_named_t arcstat_p; 298 kstat_named_t arcstat_c; 299 kstat_named_t arcstat_c_min; 300 kstat_named_t arcstat_c_max; 301 kstat_named_t arcstat_size; 302 kstat_named_t arcstat_hdr_size; 303 kstat_named_t arcstat_data_size; 304 kstat_named_t arcstat_other_size; 305 kstat_named_t arcstat_l2_hits; 306 kstat_named_t arcstat_l2_misses; 307 kstat_named_t arcstat_l2_feeds; 308 kstat_named_t arcstat_l2_rw_clash; 309 kstat_named_t arcstat_l2_read_bytes; 310 kstat_named_t arcstat_l2_write_bytes; 311 kstat_named_t arcstat_l2_writes_sent; 312 kstat_named_t arcstat_l2_writes_done; 313 kstat_named_t arcstat_l2_writes_error; 314 kstat_named_t arcstat_l2_writes_hdr_miss; 315 kstat_named_t arcstat_l2_evict_lock_retry; 316 kstat_named_t arcstat_l2_evict_reading; 317 kstat_named_t arcstat_l2_free_on_write; 318 kstat_named_t arcstat_l2_abort_lowmem; 319 kstat_named_t arcstat_l2_cksum_bad; 320 kstat_named_t arcstat_l2_io_error; 321 kstat_named_t arcstat_l2_size; 322 kstat_named_t arcstat_l2_asize; 323 kstat_named_t arcstat_l2_hdr_size; 324 kstat_named_t arcstat_l2_compress_successes; 325 kstat_named_t arcstat_l2_compress_zeros; 326 kstat_named_t arcstat_l2_compress_failures; 327 kstat_named_t arcstat_memory_throttle_count; 328 kstat_named_t arcstat_duplicate_buffers; 329 kstat_named_t arcstat_duplicate_buffers_size; 330 kstat_named_t arcstat_duplicate_reads; 331 kstat_named_t arcstat_meta_used; 332 kstat_named_t arcstat_meta_limit; 333 kstat_named_t arcstat_meta_max; 334 kstat_named_t arcstat_meta_min; 335 } arc_stats_t; 336 337 static arc_stats_t arc_stats = { 338 { "hits", KSTAT_DATA_UINT64 }, 339 { "misses", KSTAT_DATA_UINT64 }, 340 { "demand_data_hits", KSTAT_DATA_UINT64 }, 341 { "demand_data_misses", KSTAT_DATA_UINT64 }, 342 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 343 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 344 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 345 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 346 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 347 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 348 { "mru_hits", KSTAT_DATA_UINT64 }, 349 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 350 { "mfu_hits", KSTAT_DATA_UINT64 }, 351 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 352 { "deleted", KSTAT_DATA_UINT64 }, 353 { "recycle_miss", KSTAT_DATA_UINT64 }, 354 { "mutex_miss", KSTAT_DATA_UINT64 }, 355 { "evict_skip", KSTAT_DATA_UINT64 }, 356 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 357 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 358 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 359 { "hash_elements", KSTAT_DATA_UINT64 }, 360 { "hash_elements_max", KSTAT_DATA_UINT64 }, 361 { "hash_collisions", KSTAT_DATA_UINT64 }, 362 { "hash_chains", KSTAT_DATA_UINT64 }, 363 { "hash_chain_max", KSTAT_DATA_UINT64 }, 364 { "p", KSTAT_DATA_UINT64 }, 365 { "c", KSTAT_DATA_UINT64 }, 366 { "c_min", KSTAT_DATA_UINT64 }, 367 { "c_max", KSTAT_DATA_UINT64 }, 368 { "size", KSTAT_DATA_UINT64 }, 369 { "hdr_size", KSTAT_DATA_UINT64 }, 370 { "data_size", KSTAT_DATA_UINT64 }, 371 { "other_size", KSTAT_DATA_UINT64 }, 372 { "l2_hits", KSTAT_DATA_UINT64 }, 373 { "l2_misses", KSTAT_DATA_UINT64 }, 374 { "l2_feeds", KSTAT_DATA_UINT64 }, 375 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 376 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 377 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 378 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 379 { "l2_writes_done", KSTAT_DATA_UINT64 }, 380 { "l2_writes_error", KSTAT_DATA_UINT64 }, 381 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 382 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 383 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 384 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 385 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 386 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 387 { "l2_io_error", KSTAT_DATA_UINT64 }, 388 { "l2_size", KSTAT_DATA_UINT64 }, 389 { "l2_asize", KSTAT_DATA_UINT64 }, 390 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 391 { "l2_compress_successes", KSTAT_DATA_UINT64 }, 392 { "l2_compress_zeros", KSTAT_DATA_UINT64 }, 393 { "l2_compress_failures", KSTAT_DATA_UINT64 }, 394 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 395 { "duplicate_buffers", KSTAT_DATA_UINT64 }, 396 { "duplicate_buffers_size", KSTAT_DATA_UINT64 }, 397 { "duplicate_reads", KSTAT_DATA_UINT64 }, 398 { "arc_meta_used", KSTAT_DATA_UINT64 }, 399 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 400 { "arc_meta_max", KSTAT_DATA_UINT64 }, 401 { "arc_meta_min", KSTAT_DATA_UINT64 } 402 }; 403 404 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 405 406 #define ARCSTAT_INCR(stat, val) \ 407 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 408 409 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 410 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 411 412 #define ARCSTAT_MAX(stat, val) { \ 413 uint64_t m; \ 414 while ((val) > (m = arc_stats.stat.value.ui64) && \ 415 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 416 continue; \ 417 } 418 419 #define ARCSTAT_MAXSTAT(stat) \ 420 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 421 422 /* 423 * We define a macro to allow ARC hits/misses to be easily broken down by 424 * two separate conditions, giving a total of four different subtypes for 425 * each of hits and misses (so eight statistics total). 426 */ 427 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 428 if (cond1) { \ 429 if (cond2) { \ 430 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 431 } else { \ 432 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 433 } \ 434 } else { \ 435 if (cond2) { \ 436 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 437 } else { \ 438 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 439 } \ 440 } 441 442 kstat_t *arc_ksp; 443 static arc_state_t *arc_anon; 444 static arc_state_t *arc_mru; 445 static arc_state_t *arc_mru_ghost; 446 static arc_state_t *arc_mfu; 447 static arc_state_t *arc_mfu_ghost; 448 static arc_state_t *arc_l2c_only; 449 450 /* 451 * There are several ARC variables that are critical to export as kstats -- 452 * but we don't want to have to grovel around in the kstat whenever we wish to 453 * manipulate them. For these variables, we therefore define them to be in 454 * terms of the statistic variable. This assures that we are not introducing 455 * the possibility of inconsistency by having shadow copies of the variables, 456 * while still allowing the code to be readable. 457 */ 458 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 459 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 460 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 461 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 462 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 463 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 464 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 465 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ 466 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 467 468 #define L2ARC_IS_VALID_COMPRESS(_c_) \ 469 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY) 470 471 static int arc_no_grow; /* Don't try to grow cache size */ 472 static uint64_t arc_tempreserve; 473 static uint64_t arc_loaned_bytes; 474 475 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 476 477 typedef struct arc_callback arc_callback_t; 478 479 struct arc_callback { 480 void *acb_private; 481 arc_done_func_t *acb_done; 482 arc_buf_t *acb_buf; 483 zio_t *acb_zio_dummy; 484 arc_callback_t *acb_next; 485 }; 486 487 typedef struct arc_write_callback arc_write_callback_t; 488 489 struct arc_write_callback { 490 void *awcb_private; 491 arc_done_func_t *awcb_ready; 492 arc_done_func_t *awcb_physdone; 493 arc_done_func_t *awcb_done; 494 arc_buf_t *awcb_buf; 495 }; 496 497 struct arc_buf_hdr { 498 /* protected by hash lock */ 499 dva_t b_dva; 500 uint64_t b_birth; 501 uint64_t b_cksum0; 502 503 kmutex_t b_freeze_lock; 504 zio_cksum_t *b_freeze_cksum; 505 void *b_thawed; 506 507 arc_buf_hdr_t *b_hash_next; 508 arc_buf_t *b_buf; 509 arc_flags_t b_flags; 510 uint32_t b_datacnt; 511 512 arc_callback_t *b_acb; 513 kcondvar_t b_cv; 514 515 /* immutable */ 516 arc_buf_contents_t b_type; 517 uint64_t b_size; 518 uint64_t b_spa; 519 520 /* protected by arc state mutex */ 521 arc_state_t *b_state; 522 list_node_t b_arc_node; 523 524 /* updated atomically */ 525 clock_t b_arc_access; 526 527 /* self protecting */ 528 refcount_t b_refcnt; 529 530 l2arc_buf_hdr_t *b_l2hdr; 531 list_node_t b_l2node; 532 }; 533 534 static arc_buf_t *arc_eviction_list; 535 static kmutex_t arc_eviction_mtx; 536 static arc_buf_hdr_t arc_eviction_hdr; 537 538 #define GHOST_STATE(state) \ 539 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 540 (state) == arc_l2c_only) 541 542 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 543 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 544 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 545 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 546 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FLAG_FREED_IN_READ) 547 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE) 548 #define HDR_FREE_IN_PROGRESS(hdr) \ 549 ((hdr)->b_flags & ARC_FLAG_FREE_IN_PROGRESS) 550 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 551 #define HDR_L2_READING(hdr) \ 552 ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS && \ 553 (hdr)->b_l2hdr != NULL) 554 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 555 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 556 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 557 558 /* 559 * Other sizes 560 */ 561 562 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 563 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 564 565 /* 566 * Hash table routines 567 */ 568 569 #define HT_LOCK_PAD 64 570 571 struct ht_lock { 572 kmutex_t ht_lock; 573 #ifdef _KERNEL 574 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 575 #endif 576 }; 577 578 #define BUF_LOCKS 256 579 typedef struct buf_hash_table { 580 uint64_t ht_mask; 581 arc_buf_hdr_t **ht_table; 582 struct ht_lock ht_locks[BUF_LOCKS]; 583 } buf_hash_table_t; 584 585 static buf_hash_table_t buf_hash_table; 586 587 #define BUF_HASH_INDEX(spa, dva, birth) \ 588 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 589 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 590 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 591 #define HDR_LOCK(hdr) \ 592 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 593 594 uint64_t zfs_crc64_table[256]; 595 596 /* 597 * Level 2 ARC 598 */ 599 600 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 601 #define L2ARC_HEADROOM 2 /* num of writes */ 602 /* 603 * If we discover during ARC scan any buffers to be compressed, we boost 604 * our headroom for the next scanning cycle by this percentage multiple. 605 */ 606 #define L2ARC_HEADROOM_BOOST 200 607 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 608 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 609 610 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 611 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 612 613 /* L2ARC Performance Tunables */ 614 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 615 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 616 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 617 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 618 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 619 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 620 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 621 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 622 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 623 624 /* 625 * L2ARC Internals 626 */ 627 typedef struct l2arc_dev { 628 vdev_t *l2ad_vdev; /* vdev */ 629 spa_t *l2ad_spa; /* spa */ 630 uint64_t l2ad_hand; /* next write location */ 631 uint64_t l2ad_start; /* first addr on device */ 632 uint64_t l2ad_end; /* last addr on device */ 633 uint64_t l2ad_evict; /* last addr eviction reached */ 634 boolean_t l2ad_first; /* first sweep through */ 635 boolean_t l2ad_writing; /* currently writing */ 636 list_t *l2ad_buflist; /* buffer list */ 637 list_node_t l2ad_node; /* device list node */ 638 } l2arc_dev_t; 639 640 static list_t L2ARC_dev_list; /* device list */ 641 static list_t *l2arc_dev_list; /* device list pointer */ 642 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 643 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 644 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 645 static list_t L2ARC_free_on_write; /* free after write buf list */ 646 static list_t *l2arc_free_on_write; /* free after write list ptr */ 647 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 648 static uint64_t l2arc_ndev; /* number of devices */ 649 650 typedef struct l2arc_read_callback { 651 arc_buf_t *l2rcb_buf; /* read buffer */ 652 spa_t *l2rcb_spa; /* spa */ 653 blkptr_t l2rcb_bp; /* original blkptr */ 654 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 655 int l2rcb_flags; /* original flags */ 656 enum zio_compress l2rcb_compress; /* applied compress */ 657 } l2arc_read_callback_t; 658 659 typedef struct l2arc_write_callback { 660 l2arc_dev_t *l2wcb_dev; /* device info */ 661 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 662 } l2arc_write_callback_t; 663 664 struct l2arc_buf_hdr { 665 /* protected by arc_buf_hdr mutex */ 666 l2arc_dev_t *b_dev; /* L2ARC device */ 667 uint64_t b_daddr; /* disk address, offset byte */ 668 /* compression applied to buffer data */ 669 enum zio_compress b_compress; 670 /* real alloc'd buffer size depending on b_compress applied */ 671 int b_asize; 672 /* temporary buffer holder for in-flight compressed data */ 673 void *b_tmp_cdata; 674 }; 675 676 typedef struct l2arc_data_free { 677 /* protected by l2arc_free_on_write_mtx */ 678 void *l2df_data; 679 size_t l2df_size; 680 void (*l2df_func)(void *, size_t); 681 list_node_t l2df_list_node; 682 } l2arc_data_free_t; 683 684 static kmutex_t l2arc_feed_thr_lock; 685 static kcondvar_t l2arc_feed_thr_cv; 686 static uint8_t l2arc_thread_exit; 687 688 static void arc_get_data_buf(arc_buf_t *); 689 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 690 static int arc_evict_needed(arc_buf_contents_t); 691 static void arc_evict_ghost(arc_state_t *, uint64_t, int64_t); 692 static void arc_buf_watch(arc_buf_t *); 693 694 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 695 static void l2arc_read_done(zio_t *); 696 static void l2arc_hdr_stat_add(void); 697 static void l2arc_hdr_stat_remove(void); 698 699 static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *); 700 static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress); 701 static void l2arc_release_cdata_buf(arc_buf_hdr_t *); 702 703 static uint64_t 704 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 705 { 706 uint8_t *vdva = (uint8_t *)dva; 707 uint64_t crc = -1ULL; 708 int i; 709 710 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 711 712 for (i = 0; i < sizeof (dva_t); i++) 713 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 714 715 crc ^= (spa>>8) ^ birth; 716 717 return (crc); 718 } 719 720 #define BUF_EMPTY(buf) \ 721 ((buf)->b_dva.dva_word[0] == 0 && \ 722 (buf)->b_dva.dva_word[1] == 0 && \ 723 (buf)->b_cksum0 == 0) 724 725 #define BUF_EQUAL(spa, dva, birth, buf) \ 726 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 727 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 728 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 729 730 static void 731 buf_discard_identity(arc_buf_hdr_t *hdr) 732 { 733 hdr->b_dva.dva_word[0] = 0; 734 hdr->b_dva.dva_word[1] = 0; 735 hdr->b_birth = 0; 736 hdr->b_cksum0 = 0; 737 } 738 739 static arc_buf_hdr_t * 740 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 741 { 742 const dva_t *dva = BP_IDENTITY(bp); 743 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 744 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 745 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 746 arc_buf_hdr_t *hdr; 747 748 mutex_enter(hash_lock); 749 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 750 hdr = hdr->b_hash_next) { 751 if (BUF_EQUAL(spa, dva, birth, hdr)) { 752 *lockp = hash_lock; 753 return (hdr); 754 } 755 } 756 mutex_exit(hash_lock); 757 *lockp = NULL; 758 return (NULL); 759 } 760 761 /* 762 * Insert an entry into the hash table. If there is already an element 763 * equal to elem in the hash table, then the already existing element 764 * will be returned and the new element will not be inserted. 765 * Otherwise returns NULL. 766 */ 767 static arc_buf_hdr_t * 768 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 769 { 770 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 771 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 772 arc_buf_hdr_t *fhdr; 773 uint32_t i; 774 775 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 776 ASSERT(hdr->b_birth != 0); 777 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 778 *lockp = hash_lock; 779 mutex_enter(hash_lock); 780 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 781 fhdr = fhdr->b_hash_next, i++) { 782 if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 783 return (fhdr); 784 } 785 786 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 787 buf_hash_table.ht_table[idx] = hdr; 788 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE; 789 790 /* collect some hash table performance data */ 791 if (i > 0) { 792 ARCSTAT_BUMP(arcstat_hash_collisions); 793 if (i == 1) 794 ARCSTAT_BUMP(arcstat_hash_chains); 795 796 ARCSTAT_MAX(arcstat_hash_chain_max, i); 797 } 798 799 ARCSTAT_BUMP(arcstat_hash_elements); 800 ARCSTAT_MAXSTAT(arcstat_hash_elements); 801 802 return (NULL); 803 } 804 805 static void 806 buf_hash_remove(arc_buf_hdr_t *hdr) 807 { 808 arc_buf_hdr_t *fhdr, **hdrp; 809 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 810 811 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 812 ASSERT(HDR_IN_HASH_TABLE(hdr)); 813 814 hdrp = &buf_hash_table.ht_table[idx]; 815 while ((fhdr = *hdrp) != hdr) { 816 ASSERT(fhdr != NULL); 817 hdrp = &fhdr->b_hash_next; 818 } 819 *hdrp = hdr->b_hash_next; 820 hdr->b_hash_next = NULL; 821 hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE; 822 823 /* collect some hash table performance data */ 824 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 825 826 if (buf_hash_table.ht_table[idx] && 827 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 828 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 829 } 830 831 /* 832 * Global data structures and functions for the buf kmem cache. 833 */ 834 static kmem_cache_t *hdr_cache; 835 static kmem_cache_t *buf_cache; 836 837 static void 838 buf_fini(void) 839 { 840 int i; 841 842 kmem_free(buf_hash_table.ht_table, 843 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 844 for (i = 0; i < BUF_LOCKS; i++) 845 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 846 kmem_cache_destroy(hdr_cache); 847 kmem_cache_destroy(buf_cache); 848 } 849 850 /* 851 * Constructor callback - called when the cache is empty 852 * and a new buf is requested. 853 */ 854 /* ARGSUSED */ 855 static int 856 hdr_cons(void *vbuf, void *unused, int kmflag) 857 { 858 arc_buf_hdr_t *hdr = vbuf; 859 860 bzero(hdr, sizeof (arc_buf_hdr_t)); 861 refcount_create(&hdr->b_refcnt); 862 cv_init(&hdr->b_cv, NULL, CV_DEFAULT, NULL); 863 mutex_init(&hdr->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 864 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 865 866 return (0); 867 } 868 869 /* ARGSUSED */ 870 static int 871 buf_cons(void *vbuf, void *unused, int kmflag) 872 { 873 arc_buf_t *buf = vbuf; 874 875 bzero(buf, sizeof (arc_buf_t)); 876 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 877 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 878 879 return (0); 880 } 881 882 /* 883 * Destructor callback - called when a cached buf is 884 * no longer required. 885 */ 886 /* ARGSUSED */ 887 static void 888 hdr_dest(void *vbuf, void *unused) 889 { 890 arc_buf_hdr_t *hdr = vbuf; 891 892 ASSERT(BUF_EMPTY(hdr)); 893 refcount_destroy(&hdr->b_refcnt); 894 cv_destroy(&hdr->b_cv); 895 mutex_destroy(&hdr->b_freeze_lock); 896 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 897 } 898 899 /* ARGSUSED */ 900 static void 901 buf_dest(void *vbuf, void *unused) 902 { 903 arc_buf_t *buf = vbuf; 904 905 mutex_destroy(&buf->b_evict_lock); 906 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 907 } 908 909 /* 910 * Reclaim callback -- invoked when memory is low. 911 */ 912 /* ARGSUSED */ 913 static void 914 hdr_recl(void *unused) 915 { 916 dprintf("hdr_recl called\n"); 917 /* 918 * umem calls the reclaim func when we destroy the buf cache, 919 * which is after we do arc_fini(). 920 */ 921 if (!arc_dead) 922 cv_signal(&arc_reclaim_thr_cv); 923 } 924 925 static void 926 buf_init(void) 927 { 928 uint64_t *ct; 929 uint64_t hsize = 1ULL << 12; 930 int i, j; 931 932 /* 933 * The hash table is big enough to fill all of physical memory 934 * with an average block size of zfs_arc_average_blocksize (default 8K). 935 * By default, the table will take up 936 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 937 */ 938 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 939 hsize <<= 1; 940 retry: 941 buf_hash_table.ht_mask = hsize - 1; 942 buf_hash_table.ht_table = 943 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 944 if (buf_hash_table.ht_table == NULL) { 945 ASSERT(hsize > (1ULL << 8)); 946 hsize >>= 1; 947 goto retry; 948 } 949 950 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 951 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 952 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 953 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 954 955 for (i = 0; i < 256; i++) 956 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 957 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 958 959 for (i = 0; i < BUF_LOCKS; i++) { 960 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 961 NULL, MUTEX_DEFAULT, NULL); 962 } 963 } 964 965 #define ARC_MINTIME (hz>>4) /* 62 ms */ 966 967 static void 968 arc_cksum_verify(arc_buf_t *buf) 969 { 970 zio_cksum_t zc; 971 972 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 973 return; 974 975 mutex_enter(&buf->b_hdr->b_freeze_lock); 976 if (buf->b_hdr->b_freeze_cksum == NULL || 977 (buf->b_hdr->b_flags & ARC_FLAG_IO_ERROR)) { 978 mutex_exit(&buf->b_hdr->b_freeze_lock); 979 return; 980 } 981 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 982 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 983 panic("buffer modified while frozen!"); 984 mutex_exit(&buf->b_hdr->b_freeze_lock); 985 } 986 987 static int 988 arc_cksum_equal(arc_buf_t *buf) 989 { 990 zio_cksum_t zc; 991 int equal; 992 993 mutex_enter(&buf->b_hdr->b_freeze_lock); 994 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 995 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 996 mutex_exit(&buf->b_hdr->b_freeze_lock); 997 998 return (equal); 999 } 1000 1001 static void 1002 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 1003 { 1004 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 1005 return; 1006 1007 mutex_enter(&buf->b_hdr->b_freeze_lock); 1008 if (buf->b_hdr->b_freeze_cksum != NULL) { 1009 mutex_exit(&buf->b_hdr->b_freeze_lock); 1010 return; 1011 } 1012 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 1013 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 1014 buf->b_hdr->b_freeze_cksum); 1015 mutex_exit(&buf->b_hdr->b_freeze_lock); 1016 arc_buf_watch(buf); 1017 } 1018 1019 #ifndef _KERNEL 1020 typedef struct procctl { 1021 long cmd; 1022 prwatch_t prwatch; 1023 } procctl_t; 1024 #endif 1025 1026 /* ARGSUSED */ 1027 static void 1028 arc_buf_unwatch(arc_buf_t *buf) 1029 { 1030 #ifndef _KERNEL 1031 if (arc_watch) { 1032 int result; 1033 procctl_t ctl; 1034 ctl.cmd = PCWATCH; 1035 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1036 ctl.prwatch.pr_size = 0; 1037 ctl.prwatch.pr_wflags = 0; 1038 result = write(arc_procfd, &ctl, sizeof (ctl)); 1039 ASSERT3U(result, ==, sizeof (ctl)); 1040 } 1041 #endif 1042 } 1043 1044 /* ARGSUSED */ 1045 static void 1046 arc_buf_watch(arc_buf_t *buf) 1047 { 1048 #ifndef _KERNEL 1049 if (arc_watch) { 1050 int result; 1051 procctl_t ctl; 1052 ctl.cmd = PCWATCH; 1053 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1054 ctl.prwatch.pr_size = buf->b_hdr->b_size; 1055 ctl.prwatch.pr_wflags = WA_WRITE; 1056 result = write(arc_procfd, &ctl, sizeof (ctl)); 1057 ASSERT3U(result, ==, sizeof (ctl)); 1058 } 1059 #endif 1060 } 1061 1062 void 1063 arc_buf_thaw(arc_buf_t *buf) 1064 { 1065 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1066 if (buf->b_hdr->b_state != arc_anon) 1067 panic("modifying non-anon buffer!"); 1068 if (buf->b_hdr->b_flags & ARC_FLAG_IO_IN_PROGRESS) 1069 panic("modifying buffer while i/o in progress!"); 1070 arc_cksum_verify(buf); 1071 } 1072 1073 mutex_enter(&buf->b_hdr->b_freeze_lock); 1074 if (buf->b_hdr->b_freeze_cksum != NULL) { 1075 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1076 buf->b_hdr->b_freeze_cksum = NULL; 1077 } 1078 1079 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1080 if (buf->b_hdr->b_thawed) 1081 kmem_free(buf->b_hdr->b_thawed, 1); 1082 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP); 1083 } 1084 1085 mutex_exit(&buf->b_hdr->b_freeze_lock); 1086 1087 arc_buf_unwatch(buf); 1088 } 1089 1090 void 1091 arc_buf_freeze(arc_buf_t *buf) 1092 { 1093 kmutex_t *hash_lock; 1094 1095 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1096 return; 1097 1098 hash_lock = HDR_LOCK(buf->b_hdr); 1099 mutex_enter(hash_lock); 1100 1101 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 1102 buf->b_hdr->b_state == arc_anon); 1103 arc_cksum_compute(buf, B_FALSE); 1104 mutex_exit(hash_lock); 1105 1106 } 1107 1108 static void 1109 add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 1110 { 1111 ASSERT(MUTEX_HELD(hash_lock)); 1112 1113 if ((refcount_add(&hdr->b_refcnt, tag) == 1) && 1114 (hdr->b_state != arc_anon)) { 1115 uint64_t delta = hdr->b_size * hdr->b_datacnt; 1116 list_t *list = &hdr->b_state->arcs_list[hdr->b_type]; 1117 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 1118 1119 ASSERT(!MUTEX_HELD(&hdr->b_state->arcs_mtx)); 1120 mutex_enter(&hdr->b_state->arcs_mtx); 1121 ASSERT(list_link_active(&hdr->b_arc_node)); 1122 list_remove(list, hdr); 1123 if (GHOST_STATE(hdr->b_state)) { 1124 ASSERT0(hdr->b_datacnt); 1125 ASSERT3P(hdr->b_buf, ==, NULL); 1126 delta = hdr->b_size; 1127 } 1128 ASSERT(delta > 0); 1129 ASSERT3U(*size, >=, delta); 1130 atomic_add_64(size, -delta); 1131 mutex_exit(&hdr->b_state->arcs_mtx); 1132 /* remove the prefetch flag if we get a reference */ 1133 if (hdr->b_flags & ARC_FLAG_PREFETCH) 1134 hdr->b_flags &= ~ARC_FLAG_PREFETCH; 1135 } 1136 } 1137 1138 static int 1139 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 1140 { 1141 int cnt; 1142 arc_state_t *state = hdr->b_state; 1143 1144 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1145 ASSERT(!GHOST_STATE(state)); 1146 1147 if (((cnt = refcount_remove(&hdr->b_refcnt, tag)) == 0) && 1148 (state != arc_anon)) { 1149 uint64_t *size = &state->arcs_lsize[hdr->b_type]; 1150 1151 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1152 mutex_enter(&state->arcs_mtx); 1153 ASSERT(!list_link_active(&hdr->b_arc_node)); 1154 list_insert_head(&state->arcs_list[hdr->b_type], hdr); 1155 ASSERT(hdr->b_datacnt > 0); 1156 atomic_add_64(size, hdr->b_size * hdr->b_datacnt); 1157 mutex_exit(&state->arcs_mtx); 1158 } 1159 return (cnt); 1160 } 1161 1162 /* 1163 * Move the supplied buffer to the indicated state. The mutex 1164 * for the buffer must be held by the caller. 1165 */ 1166 static void 1167 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 1168 kmutex_t *hash_lock) 1169 { 1170 arc_state_t *old_state = hdr->b_state; 1171 int64_t refcnt = refcount_count(&hdr->b_refcnt); 1172 uint64_t from_delta, to_delta; 1173 1174 ASSERT(MUTEX_HELD(hash_lock)); 1175 ASSERT3P(new_state, !=, old_state); 1176 ASSERT(refcnt == 0 || hdr->b_datacnt > 0); 1177 ASSERT(hdr->b_datacnt == 0 || !GHOST_STATE(new_state)); 1178 ASSERT(hdr->b_datacnt <= 1 || old_state != arc_anon); 1179 1180 from_delta = to_delta = hdr->b_datacnt * hdr->b_size; 1181 1182 /* 1183 * If this buffer is evictable, transfer it from the 1184 * old state list to the new state list. 1185 */ 1186 if (refcnt == 0) { 1187 if (old_state != arc_anon) { 1188 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1189 uint64_t *size = &old_state->arcs_lsize[hdr->b_type]; 1190 1191 if (use_mutex) 1192 mutex_enter(&old_state->arcs_mtx); 1193 1194 ASSERT(list_link_active(&hdr->b_arc_node)); 1195 list_remove(&old_state->arcs_list[hdr->b_type], hdr); 1196 1197 /* 1198 * If prefetching out of the ghost cache, 1199 * we will have a non-zero datacnt. 1200 */ 1201 if (GHOST_STATE(old_state) && hdr->b_datacnt == 0) { 1202 /* ghost elements have a ghost size */ 1203 ASSERT(hdr->b_buf == NULL); 1204 from_delta = hdr->b_size; 1205 } 1206 ASSERT3U(*size, >=, from_delta); 1207 atomic_add_64(size, -from_delta); 1208 1209 if (use_mutex) 1210 mutex_exit(&old_state->arcs_mtx); 1211 } 1212 if (new_state != arc_anon) { 1213 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1214 uint64_t *size = &new_state->arcs_lsize[hdr->b_type]; 1215 1216 if (use_mutex) 1217 mutex_enter(&new_state->arcs_mtx); 1218 1219 list_insert_head(&new_state->arcs_list[hdr->b_type], 1220 hdr); 1221 1222 /* ghost elements have a ghost size */ 1223 if (GHOST_STATE(new_state)) { 1224 ASSERT(hdr->b_datacnt == 0); 1225 ASSERT(hdr->b_buf == NULL); 1226 to_delta = hdr->b_size; 1227 } 1228 atomic_add_64(size, to_delta); 1229 1230 if (use_mutex) 1231 mutex_exit(&new_state->arcs_mtx); 1232 } 1233 } 1234 1235 ASSERT(!BUF_EMPTY(hdr)); 1236 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 1237 buf_hash_remove(hdr); 1238 1239 /* adjust state sizes */ 1240 if (to_delta) 1241 atomic_add_64(&new_state->arcs_size, to_delta); 1242 if (from_delta) { 1243 ASSERT3U(old_state->arcs_size, >=, from_delta); 1244 atomic_add_64(&old_state->arcs_size, -from_delta); 1245 } 1246 hdr->b_state = new_state; 1247 1248 /* adjust l2arc hdr stats */ 1249 if (new_state == arc_l2c_only) 1250 l2arc_hdr_stat_add(); 1251 else if (old_state == arc_l2c_only) 1252 l2arc_hdr_stat_remove(); 1253 } 1254 1255 void 1256 arc_space_consume(uint64_t space, arc_space_type_t type) 1257 { 1258 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1259 1260 switch (type) { 1261 case ARC_SPACE_DATA: 1262 ARCSTAT_INCR(arcstat_data_size, space); 1263 break; 1264 case ARC_SPACE_OTHER: 1265 ARCSTAT_INCR(arcstat_other_size, space); 1266 break; 1267 case ARC_SPACE_HDRS: 1268 ARCSTAT_INCR(arcstat_hdr_size, space); 1269 break; 1270 case ARC_SPACE_L2HDRS: 1271 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1272 break; 1273 } 1274 1275 ARCSTAT_INCR(arcstat_meta_used, space); 1276 atomic_add_64(&arc_size, space); 1277 } 1278 1279 void 1280 arc_space_return(uint64_t space, arc_space_type_t type) 1281 { 1282 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1283 1284 switch (type) { 1285 case ARC_SPACE_DATA: 1286 ARCSTAT_INCR(arcstat_data_size, -space); 1287 break; 1288 case ARC_SPACE_OTHER: 1289 ARCSTAT_INCR(arcstat_other_size, -space); 1290 break; 1291 case ARC_SPACE_HDRS: 1292 ARCSTAT_INCR(arcstat_hdr_size, -space); 1293 break; 1294 case ARC_SPACE_L2HDRS: 1295 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1296 break; 1297 } 1298 1299 ASSERT(arc_meta_used >= space); 1300 if (arc_meta_max < arc_meta_used) 1301 arc_meta_max = arc_meta_used; 1302 ARCSTAT_INCR(arcstat_meta_used, -space); 1303 ASSERT(arc_size >= space); 1304 atomic_add_64(&arc_size, -space); 1305 } 1306 1307 arc_buf_t * 1308 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1309 { 1310 arc_buf_hdr_t *hdr; 1311 arc_buf_t *buf; 1312 1313 ASSERT3U(size, >, 0); 1314 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1315 ASSERT(BUF_EMPTY(hdr)); 1316 hdr->b_size = size; 1317 hdr->b_type = type; 1318 hdr->b_spa = spa_load_guid(spa); 1319 hdr->b_state = arc_anon; 1320 hdr->b_arc_access = 0; 1321 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1322 buf->b_hdr = hdr; 1323 buf->b_data = NULL; 1324 buf->b_efunc = NULL; 1325 buf->b_private = NULL; 1326 buf->b_next = NULL; 1327 hdr->b_buf = buf; 1328 arc_get_data_buf(buf); 1329 hdr->b_datacnt = 1; 1330 hdr->b_flags = 0; 1331 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1332 (void) refcount_add(&hdr->b_refcnt, tag); 1333 1334 return (buf); 1335 } 1336 1337 static char *arc_onloan_tag = "onloan"; 1338 1339 /* 1340 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1341 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1342 * buffers must be returned to the arc before they can be used by the DMU or 1343 * freed. 1344 */ 1345 arc_buf_t * 1346 arc_loan_buf(spa_t *spa, int size) 1347 { 1348 arc_buf_t *buf; 1349 1350 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1351 1352 atomic_add_64(&arc_loaned_bytes, size); 1353 return (buf); 1354 } 1355 1356 /* 1357 * Return a loaned arc buffer to the arc. 1358 */ 1359 void 1360 arc_return_buf(arc_buf_t *buf, void *tag) 1361 { 1362 arc_buf_hdr_t *hdr = buf->b_hdr; 1363 1364 ASSERT(buf->b_data != NULL); 1365 (void) refcount_add(&hdr->b_refcnt, tag); 1366 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); 1367 1368 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1369 } 1370 1371 /* Detach an arc_buf from a dbuf (tag) */ 1372 void 1373 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1374 { 1375 arc_buf_hdr_t *hdr; 1376 1377 ASSERT(buf->b_data != NULL); 1378 hdr = buf->b_hdr; 1379 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); 1380 (void) refcount_remove(&hdr->b_refcnt, tag); 1381 buf->b_efunc = NULL; 1382 buf->b_private = NULL; 1383 1384 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1385 } 1386 1387 static arc_buf_t * 1388 arc_buf_clone(arc_buf_t *from) 1389 { 1390 arc_buf_t *buf; 1391 arc_buf_hdr_t *hdr = from->b_hdr; 1392 uint64_t size = hdr->b_size; 1393 1394 ASSERT(hdr->b_state != arc_anon); 1395 1396 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1397 buf->b_hdr = hdr; 1398 buf->b_data = NULL; 1399 buf->b_efunc = NULL; 1400 buf->b_private = NULL; 1401 buf->b_next = hdr->b_buf; 1402 hdr->b_buf = buf; 1403 arc_get_data_buf(buf); 1404 bcopy(from->b_data, buf->b_data, size); 1405 1406 /* 1407 * This buffer already exists in the arc so create a duplicate 1408 * copy for the caller. If the buffer is associated with user data 1409 * then track the size and number of duplicates. These stats will be 1410 * updated as duplicate buffers are created and destroyed. 1411 */ 1412 if (hdr->b_type == ARC_BUFC_DATA) { 1413 ARCSTAT_BUMP(arcstat_duplicate_buffers); 1414 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size); 1415 } 1416 hdr->b_datacnt += 1; 1417 return (buf); 1418 } 1419 1420 void 1421 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1422 { 1423 arc_buf_hdr_t *hdr; 1424 kmutex_t *hash_lock; 1425 1426 /* 1427 * Check to see if this buffer is evicted. Callers 1428 * must verify b_data != NULL to know if the add_ref 1429 * was successful. 1430 */ 1431 mutex_enter(&buf->b_evict_lock); 1432 if (buf->b_data == NULL) { 1433 mutex_exit(&buf->b_evict_lock); 1434 return; 1435 } 1436 hash_lock = HDR_LOCK(buf->b_hdr); 1437 mutex_enter(hash_lock); 1438 hdr = buf->b_hdr; 1439 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1440 mutex_exit(&buf->b_evict_lock); 1441 1442 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1443 add_reference(hdr, hash_lock, tag); 1444 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1445 arc_access(hdr, hash_lock); 1446 mutex_exit(hash_lock); 1447 ARCSTAT_BUMP(arcstat_hits); 1448 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_FLAG_PREFETCH), 1449 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1450 data, metadata, hits); 1451 } 1452 1453 /* 1454 * Free the arc data buffer. If it is an l2arc write in progress, 1455 * the buffer is placed on l2arc_free_on_write to be freed later. 1456 */ 1457 static void 1458 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t)) 1459 { 1460 arc_buf_hdr_t *hdr = buf->b_hdr; 1461 1462 if (HDR_L2_WRITING(hdr)) { 1463 l2arc_data_free_t *df; 1464 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1465 df->l2df_data = buf->b_data; 1466 df->l2df_size = hdr->b_size; 1467 df->l2df_func = free_func; 1468 mutex_enter(&l2arc_free_on_write_mtx); 1469 list_insert_head(l2arc_free_on_write, df); 1470 mutex_exit(&l2arc_free_on_write_mtx); 1471 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1472 } else { 1473 free_func(buf->b_data, hdr->b_size); 1474 } 1475 } 1476 1477 /* 1478 * Free up buf->b_data and if 'remove' is set, then pull the 1479 * arc_buf_t off of the the arc_buf_hdr_t's list and free it. 1480 */ 1481 static void 1482 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t remove) 1483 { 1484 arc_buf_t **bufp; 1485 1486 /* free up data associated with the buf */ 1487 if (buf->b_data) { 1488 arc_state_t *state = buf->b_hdr->b_state; 1489 uint64_t size = buf->b_hdr->b_size; 1490 arc_buf_contents_t type = buf->b_hdr->b_type; 1491 1492 arc_cksum_verify(buf); 1493 arc_buf_unwatch(buf); 1494 1495 if (!recycle) { 1496 if (type == ARC_BUFC_METADATA) { 1497 arc_buf_data_free(buf, zio_buf_free); 1498 arc_space_return(size, ARC_SPACE_DATA); 1499 } else { 1500 ASSERT(type == ARC_BUFC_DATA); 1501 arc_buf_data_free(buf, zio_data_buf_free); 1502 ARCSTAT_INCR(arcstat_data_size, -size); 1503 atomic_add_64(&arc_size, -size); 1504 } 1505 } 1506 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1507 uint64_t *cnt = &state->arcs_lsize[type]; 1508 1509 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1510 ASSERT(state != arc_anon); 1511 1512 ASSERT3U(*cnt, >=, size); 1513 atomic_add_64(cnt, -size); 1514 } 1515 ASSERT3U(state->arcs_size, >=, size); 1516 atomic_add_64(&state->arcs_size, -size); 1517 buf->b_data = NULL; 1518 1519 /* 1520 * If we're destroying a duplicate buffer make sure 1521 * that the appropriate statistics are updated. 1522 */ 1523 if (buf->b_hdr->b_datacnt > 1 && 1524 buf->b_hdr->b_type == ARC_BUFC_DATA) { 1525 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 1526 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size); 1527 } 1528 ASSERT(buf->b_hdr->b_datacnt > 0); 1529 buf->b_hdr->b_datacnt -= 1; 1530 } 1531 1532 /* only remove the buf if requested */ 1533 if (!remove) 1534 return; 1535 1536 /* remove the buf from the hdr list */ 1537 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1538 continue; 1539 *bufp = buf->b_next; 1540 buf->b_next = NULL; 1541 1542 ASSERT(buf->b_efunc == NULL); 1543 1544 /* clean up the buf */ 1545 buf->b_hdr = NULL; 1546 kmem_cache_free(buf_cache, buf); 1547 } 1548 1549 static void 1550 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1551 { 1552 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1553 ASSERT3P(hdr->b_state, ==, arc_anon); 1554 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1555 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1556 1557 if (l2hdr != NULL) { 1558 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); 1559 /* 1560 * To prevent arc_free() and l2arc_evict() from 1561 * attempting to free the same buffer at the same time, 1562 * a FREE_IN_PROGRESS flag is given to arc_free() to 1563 * give it priority. l2arc_evict() can't destroy this 1564 * header while we are waiting on l2arc_buflist_mtx. 1565 * 1566 * The hdr may be removed from l2ad_buflist before we 1567 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1568 */ 1569 if (!buflist_held) { 1570 mutex_enter(&l2arc_buflist_mtx); 1571 l2hdr = hdr->b_l2hdr; 1572 } 1573 1574 if (l2hdr != NULL) { 1575 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 1576 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1577 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 1578 vdev_space_update(l2hdr->b_dev->l2ad_vdev, 1579 -l2hdr->b_asize, 0, 0); 1580 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 1581 if (hdr->b_state == arc_l2c_only) 1582 l2arc_hdr_stat_remove(); 1583 hdr->b_l2hdr = NULL; 1584 } 1585 1586 if (!buflist_held) 1587 mutex_exit(&l2arc_buflist_mtx); 1588 } 1589 1590 if (!BUF_EMPTY(hdr)) { 1591 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1592 buf_discard_identity(hdr); 1593 } 1594 while (hdr->b_buf) { 1595 arc_buf_t *buf = hdr->b_buf; 1596 1597 if (buf->b_efunc) { 1598 mutex_enter(&arc_eviction_mtx); 1599 mutex_enter(&buf->b_evict_lock); 1600 ASSERT(buf->b_hdr != NULL); 1601 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1602 hdr->b_buf = buf->b_next; 1603 buf->b_hdr = &arc_eviction_hdr; 1604 buf->b_next = arc_eviction_list; 1605 arc_eviction_list = buf; 1606 mutex_exit(&buf->b_evict_lock); 1607 mutex_exit(&arc_eviction_mtx); 1608 } else { 1609 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1610 } 1611 } 1612 if (hdr->b_freeze_cksum != NULL) { 1613 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1614 hdr->b_freeze_cksum = NULL; 1615 } 1616 if (hdr->b_thawed) { 1617 kmem_free(hdr->b_thawed, 1); 1618 hdr->b_thawed = NULL; 1619 } 1620 1621 ASSERT(!list_link_active(&hdr->b_arc_node)); 1622 ASSERT3P(hdr->b_hash_next, ==, NULL); 1623 ASSERT3P(hdr->b_acb, ==, NULL); 1624 kmem_cache_free(hdr_cache, hdr); 1625 } 1626 1627 void 1628 arc_buf_free(arc_buf_t *buf, void *tag) 1629 { 1630 arc_buf_hdr_t *hdr = buf->b_hdr; 1631 int hashed = hdr->b_state != arc_anon; 1632 1633 ASSERT(buf->b_efunc == NULL); 1634 ASSERT(buf->b_data != NULL); 1635 1636 if (hashed) { 1637 kmutex_t *hash_lock = HDR_LOCK(hdr); 1638 1639 mutex_enter(hash_lock); 1640 hdr = buf->b_hdr; 1641 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1642 1643 (void) remove_reference(hdr, hash_lock, tag); 1644 if (hdr->b_datacnt > 1) { 1645 arc_buf_destroy(buf, FALSE, TRUE); 1646 } else { 1647 ASSERT(buf == hdr->b_buf); 1648 ASSERT(buf->b_efunc == NULL); 1649 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE; 1650 } 1651 mutex_exit(hash_lock); 1652 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1653 int destroy_hdr; 1654 /* 1655 * We are in the middle of an async write. Don't destroy 1656 * this buffer unless the write completes before we finish 1657 * decrementing the reference count. 1658 */ 1659 mutex_enter(&arc_eviction_mtx); 1660 (void) remove_reference(hdr, NULL, tag); 1661 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1662 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1663 mutex_exit(&arc_eviction_mtx); 1664 if (destroy_hdr) 1665 arc_hdr_destroy(hdr); 1666 } else { 1667 if (remove_reference(hdr, NULL, tag) > 0) 1668 arc_buf_destroy(buf, FALSE, TRUE); 1669 else 1670 arc_hdr_destroy(hdr); 1671 } 1672 } 1673 1674 boolean_t 1675 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1676 { 1677 arc_buf_hdr_t *hdr = buf->b_hdr; 1678 kmutex_t *hash_lock = HDR_LOCK(hdr); 1679 boolean_t no_callback = (buf->b_efunc == NULL); 1680 1681 if (hdr->b_state == arc_anon) { 1682 ASSERT(hdr->b_datacnt == 1); 1683 arc_buf_free(buf, tag); 1684 return (no_callback); 1685 } 1686 1687 mutex_enter(hash_lock); 1688 hdr = buf->b_hdr; 1689 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1690 ASSERT(hdr->b_state != arc_anon); 1691 ASSERT(buf->b_data != NULL); 1692 1693 (void) remove_reference(hdr, hash_lock, tag); 1694 if (hdr->b_datacnt > 1) { 1695 if (no_callback) 1696 arc_buf_destroy(buf, FALSE, TRUE); 1697 } else if (no_callback) { 1698 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1699 ASSERT(buf->b_efunc == NULL); 1700 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE; 1701 } 1702 ASSERT(no_callback || hdr->b_datacnt > 1 || 1703 refcount_is_zero(&hdr->b_refcnt)); 1704 mutex_exit(hash_lock); 1705 return (no_callback); 1706 } 1707 1708 int 1709 arc_buf_size(arc_buf_t *buf) 1710 { 1711 return (buf->b_hdr->b_size); 1712 } 1713 1714 /* 1715 * Called from the DMU to determine if the current buffer should be 1716 * evicted. In order to ensure proper locking, the eviction must be initiated 1717 * from the DMU. Return true if the buffer is associated with user data and 1718 * duplicate buffers still exist. 1719 */ 1720 boolean_t 1721 arc_buf_eviction_needed(arc_buf_t *buf) 1722 { 1723 arc_buf_hdr_t *hdr; 1724 boolean_t evict_needed = B_FALSE; 1725 1726 if (zfs_disable_dup_eviction) 1727 return (B_FALSE); 1728 1729 mutex_enter(&buf->b_evict_lock); 1730 hdr = buf->b_hdr; 1731 if (hdr == NULL) { 1732 /* 1733 * We are in arc_do_user_evicts(); let that function 1734 * perform the eviction. 1735 */ 1736 ASSERT(buf->b_data == NULL); 1737 mutex_exit(&buf->b_evict_lock); 1738 return (B_FALSE); 1739 } else if (buf->b_data == NULL) { 1740 /* 1741 * We have already been added to the arc eviction list; 1742 * recommend eviction. 1743 */ 1744 ASSERT3P(hdr, ==, &arc_eviction_hdr); 1745 mutex_exit(&buf->b_evict_lock); 1746 return (B_TRUE); 1747 } 1748 1749 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA) 1750 evict_needed = B_TRUE; 1751 1752 mutex_exit(&buf->b_evict_lock); 1753 return (evict_needed); 1754 } 1755 1756 /* 1757 * Evict buffers from list until we've removed the specified number of 1758 * bytes. Move the removed buffers to the appropriate evict state. 1759 * If the recycle flag is set, then attempt to "recycle" a buffer: 1760 * - look for a buffer to evict that is `bytes' long. 1761 * - return the data block from this buffer rather than freeing it. 1762 * This flag is used by callers that are trying to make space for a 1763 * new buffer in a full arc cache. 1764 * 1765 * This function makes a "best effort". It skips over any buffers 1766 * it can't get a hash_lock on, and so may not catch all candidates. 1767 * It may also return without evicting as much space as requested. 1768 */ 1769 static void * 1770 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1771 arc_buf_contents_t type) 1772 { 1773 arc_state_t *evicted_state; 1774 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1775 arc_buf_hdr_t *hdr, *hdr_prev = NULL; 1776 kmutex_t *hash_lock; 1777 boolean_t have_lock; 1778 void *stolen = NULL; 1779 arc_buf_hdr_t marker = { 0 }; 1780 int count = 0; 1781 1782 ASSERT(state == arc_mru || state == arc_mfu); 1783 1784 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1785 1786 mutex_enter(&state->arcs_mtx); 1787 mutex_enter(&evicted_state->arcs_mtx); 1788 1789 /* 1790 * Decide which "type" (data vs metadata) to recycle from. 1791 * 1792 * If we are over the metadata limit, recycle from metadata. 1793 * If we are under the metadata minimum, recycle from data. 1794 * Otherwise, recycle from whichever type has the oldest (least 1795 * recently accessed) header. 1796 */ 1797 if (recycle) { 1798 arc_buf_hdr_t *data_hdr = 1799 list_tail(&state->arcs_list[ARC_BUFC_DATA]); 1800 arc_buf_hdr_t *metadata_hdr = 1801 list_tail(&state->arcs_list[ARC_BUFC_METADATA]); 1802 arc_buf_contents_t realtype; 1803 if (data_hdr == NULL) { 1804 realtype = ARC_BUFC_METADATA; 1805 } else if (metadata_hdr == NULL) { 1806 realtype = ARC_BUFC_DATA; 1807 } else if (arc_meta_used >= arc_meta_limit) { 1808 realtype = ARC_BUFC_METADATA; 1809 } else if (arc_meta_used <= arc_meta_min) { 1810 realtype = ARC_BUFC_DATA; 1811 } else { 1812 if (data_hdr->b_arc_access < 1813 metadata_hdr->b_arc_access) { 1814 realtype = ARC_BUFC_DATA; 1815 } else { 1816 realtype = ARC_BUFC_METADATA; 1817 } 1818 } 1819 if (realtype != type) { 1820 /* 1821 * If we want to evict from a different list, 1822 * we can not recycle, because DATA vs METADATA 1823 * buffers are segregated into different kmem 1824 * caches (and vmem arenas). 1825 */ 1826 type = realtype; 1827 recycle = B_FALSE; 1828 } 1829 } 1830 1831 list_t *list = &state->arcs_list[type]; 1832 1833 for (hdr = list_tail(list); hdr; hdr = hdr_prev) { 1834 hdr_prev = list_prev(list, hdr); 1835 /* prefetch buffers have a minimum lifespan */ 1836 if (HDR_IO_IN_PROGRESS(hdr) || 1837 (spa && hdr->b_spa != spa) || 1838 (hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT) && 1839 ddi_get_lbolt() - hdr->b_arc_access < 1840 arc_min_prefetch_lifespan)) { 1841 skipped++; 1842 continue; 1843 } 1844 /* "lookahead" for better eviction candidate */ 1845 if (recycle && hdr->b_size != bytes && 1846 hdr_prev && hdr_prev->b_size == bytes) 1847 continue; 1848 1849 /* ignore markers */ 1850 if (hdr->b_spa == 0) 1851 continue; 1852 1853 /* 1854 * It may take a long time to evict all the bufs requested. 1855 * To avoid blocking all arc activity, periodically drop 1856 * the arcs_mtx and give other threads a chance to run 1857 * before reacquiring the lock. 1858 * 1859 * If we are looking for a buffer to recycle, we are in 1860 * the hot code path, so don't sleep. 1861 */ 1862 if (!recycle && count++ > arc_evict_iterations) { 1863 list_insert_after(list, hdr, &marker); 1864 mutex_exit(&evicted_state->arcs_mtx); 1865 mutex_exit(&state->arcs_mtx); 1866 kpreempt(KPREEMPT_SYNC); 1867 mutex_enter(&state->arcs_mtx); 1868 mutex_enter(&evicted_state->arcs_mtx); 1869 hdr_prev = list_prev(list, &marker); 1870 list_remove(list, &marker); 1871 count = 0; 1872 continue; 1873 } 1874 1875 hash_lock = HDR_LOCK(hdr); 1876 have_lock = MUTEX_HELD(hash_lock); 1877 if (have_lock || mutex_tryenter(hash_lock)) { 1878 ASSERT0(refcount_count(&hdr->b_refcnt)); 1879 ASSERT(hdr->b_datacnt > 0); 1880 while (hdr->b_buf) { 1881 arc_buf_t *buf = hdr->b_buf; 1882 if (!mutex_tryenter(&buf->b_evict_lock)) { 1883 missed += 1; 1884 break; 1885 } 1886 if (buf->b_data) { 1887 bytes_evicted += hdr->b_size; 1888 if (recycle && hdr->b_type == type && 1889 hdr->b_size == bytes && 1890 !HDR_L2_WRITING(hdr)) { 1891 stolen = buf->b_data; 1892 recycle = FALSE; 1893 } 1894 } 1895 if (buf->b_efunc) { 1896 mutex_enter(&arc_eviction_mtx); 1897 arc_buf_destroy(buf, 1898 buf->b_data == stolen, FALSE); 1899 hdr->b_buf = buf->b_next; 1900 buf->b_hdr = &arc_eviction_hdr; 1901 buf->b_next = arc_eviction_list; 1902 arc_eviction_list = buf; 1903 mutex_exit(&arc_eviction_mtx); 1904 mutex_exit(&buf->b_evict_lock); 1905 } else { 1906 mutex_exit(&buf->b_evict_lock); 1907 arc_buf_destroy(buf, 1908 buf->b_data == stolen, TRUE); 1909 } 1910 } 1911 1912 if (hdr->b_l2hdr) { 1913 ARCSTAT_INCR(arcstat_evict_l2_cached, 1914 hdr->b_size); 1915 } else { 1916 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 1917 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1918 hdr->b_size); 1919 } else { 1920 ARCSTAT_INCR( 1921 arcstat_evict_l2_ineligible, 1922 hdr->b_size); 1923 } 1924 } 1925 1926 if (hdr->b_datacnt == 0) { 1927 arc_change_state(evicted_state, hdr, hash_lock); 1928 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1929 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE; 1930 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE; 1931 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 1932 } 1933 if (!have_lock) 1934 mutex_exit(hash_lock); 1935 if (bytes >= 0 && bytes_evicted >= bytes) 1936 break; 1937 } else { 1938 missed += 1; 1939 } 1940 } 1941 1942 mutex_exit(&evicted_state->arcs_mtx); 1943 mutex_exit(&state->arcs_mtx); 1944 1945 if (bytes_evicted < bytes) 1946 dprintf("only evicted %lld bytes from %x", 1947 (longlong_t)bytes_evicted, state); 1948 1949 if (skipped) 1950 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1951 1952 if (missed) 1953 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1954 1955 /* 1956 * Note: we have just evicted some data into the ghost state, 1957 * potentially putting the ghost size over the desired size. Rather 1958 * that evicting from the ghost list in this hot code path, leave 1959 * this chore to the arc_reclaim_thread(). 1960 */ 1961 1962 return (stolen); 1963 } 1964 1965 /* 1966 * Remove buffers from list until we've removed the specified number of 1967 * bytes. Destroy the buffers that are removed. 1968 */ 1969 static void 1970 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1971 { 1972 arc_buf_hdr_t *hdr, *hdr_prev; 1973 arc_buf_hdr_t marker = { 0 }; 1974 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1975 kmutex_t *hash_lock; 1976 uint64_t bytes_deleted = 0; 1977 uint64_t bufs_skipped = 0; 1978 int count = 0; 1979 1980 ASSERT(GHOST_STATE(state)); 1981 top: 1982 mutex_enter(&state->arcs_mtx); 1983 for (hdr = list_tail(list); hdr; hdr = hdr_prev) { 1984 hdr_prev = list_prev(list, hdr); 1985 if (hdr->b_type > ARC_BUFC_NUMTYPES) 1986 panic("invalid hdr=%p", (void *)hdr); 1987 if (spa && hdr->b_spa != spa) 1988 continue; 1989 1990 /* ignore markers */ 1991 if (hdr->b_spa == 0) 1992 continue; 1993 1994 hash_lock = HDR_LOCK(hdr); 1995 /* caller may be trying to modify this buffer, skip it */ 1996 if (MUTEX_HELD(hash_lock)) 1997 continue; 1998 1999 /* 2000 * It may take a long time to evict all the bufs requested. 2001 * To avoid blocking all arc activity, periodically drop 2002 * the arcs_mtx and give other threads a chance to run 2003 * before reacquiring the lock. 2004 */ 2005 if (count++ > arc_evict_iterations) { 2006 list_insert_after(list, hdr, &marker); 2007 mutex_exit(&state->arcs_mtx); 2008 kpreempt(KPREEMPT_SYNC); 2009 mutex_enter(&state->arcs_mtx); 2010 hdr_prev = list_prev(list, &marker); 2011 list_remove(list, &marker); 2012 count = 0; 2013 continue; 2014 } 2015 if (mutex_tryenter(hash_lock)) { 2016 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2017 ASSERT(hdr->b_buf == NULL); 2018 ARCSTAT_BUMP(arcstat_deleted); 2019 bytes_deleted += hdr->b_size; 2020 2021 if (hdr->b_l2hdr != NULL) { 2022 /* 2023 * This buffer is cached on the 2nd Level ARC; 2024 * don't destroy the header. 2025 */ 2026 arc_change_state(arc_l2c_only, hdr, hash_lock); 2027 mutex_exit(hash_lock); 2028 } else { 2029 arc_change_state(arc_anon, hdr, hash_lock); 2030 mutex_exit(hash_lock); 2031 arc_hdr_destroy(hdr); 2032 } 2033 2034 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 2035 if (bytes >= 0 && bytes_deleted >= bytes) 2036 break; 2037 } else if (bytes < 0) { 2038 /* 2039 * Insert a list marker and then wait for the 2040 * hash lock to become available. Once its 2041 * available, restart from where we left off. 2042 */ 2043 list_insert_after(list, hdr, &marker); 2044 mutex_exit(&state->arcs_mtx); 2045 mutex_enter(hash_lock); 2046 mutex_exit(hash_lock); 2047 mutex_enter(&state->arcs_mtx); 2048 hdr_prev = list_prev(list, &marker); 2049 list_remove(list, &marker); 2050 } else { 2051 bufs_skipped += 1; 2052 } 2053 2054 } 2055 mutex_exit(&state->arcs_mtx); 2056 2057 if (list == &state->arcs_list[ARC_BUFC_DATA] && 2058 (bytes < 0 || bytes_deleted < bytes)) { 2059 list = &state->arcs_list[ARC_BUFC_METADATA]; 2060 goto top; 2061 } 2062 2063 if (bufs_skipped) { 2064 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 2065 ASSERT(bytes >= 0); 2066 } 2067 2068 if (bytes_deleted < bytes) 2069 dprintf("only deleted %lld bytes from %p", 2070 (longlong_t)bytes_deleted, state); 2071 } 2072 2073 static void 2074 arc_adjust(void) 2075 { 2076 int64_t adjustment, delta; 2077 2078 /* 2079 * Adjust MRU size 2080 */ 2081 2082 adjustment = MIN((int64_t)(arc_size - arc_c), 2083 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - 2084 arc_p)); 2085 2086 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 2087 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 2088 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 2089 adjustment -= delta; 2090 } 2091 2092 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2093 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 2094 (void) arc_evict(arc_mru, NULL, delta, FALSE, 2095 ARC_BUFC_METADATA); 2096 } 2097 2098 /* 2099 * Adjust MFU size 2100 */ 2101 2102 adjustment = arc_size - arc_c; 2103 2104 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 2105 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 2106 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 2107 adjustment -= delta; 2108 } 2109 2110 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2111 int64_t delta = MIN(adjustment, 2112 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 2113 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 2114 ARC_BUFC_METADATA); 2115 } 2116 2117 /* 2118 * Adjust ghost lists 2119 */ 2120 2121 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 2122 2123 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 2124 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 2125 arc_evict_ghost(arc_mru_ghost, NULL, delta); 2126 } 2127 2128 adjustment = 2129 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 2130 2131 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 2132 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 2133 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 2134 } 2135 } 2136 2137 static void 2138 arc_do_user_evicts(void) 2139 { 2140 mutex_enter(&arc_eviction_mtx); 2141 while (arc_eviction_list != NULL) { 2142 arc_buf_t *buf = arc_eviction_list; 2143 arc_eviction_list = buf->b_next; 2144 mutex_enter(&buf->b_evict_lock); 2145 buf->b_hdr = NULL; 2146 mutex_exit(&buf->b_evict_lock); 2147 mutex_exit(&arc_eviction_mtx); 2148 2149 if (buf->b_efunc != NULL) 2150 VERIFY0(buf->b_efunc(buf->b_private)); 2151 2152 buf->b_efunc = NULL; 2153 buf->b_private = NULL; 2154 kmem_cache_free(buf_cache, buf); 2155 mutex_enter(&arc_eviction_mtx); 2156 } 2157 mutex_exit(&arc_eviction_mtx); 2158 } 2159 2160 /* 2161 * Flush all *evictable* data from the cache for the given spa. 2162 * NOTE: this will not touch "active" (i.e. referenced) data. 2163 */ 2164 void 2165 arc_flush(spa_t *spa) 2166 { 2167 uint64_t guid = 0; 2168 2169 if (spa) 2170 guid = spa_load_guid(spa); 2171 2172 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 2173 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 2174 if (spa) 2175 break; 2176 } 2177 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 2178 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 2179 if (spa) 2180 break; 2181 } 2182 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 2183 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 2184 if (spa) 2185 break; 2186 } 2187 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 2188 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 2189 if (spa) 2190 break; 2191 } 2192 2193 arc_evict_ghost(arc_mru_ghost, guid, -1); 2194 arc_evict_ghost(arc_mfu_ghost, guid, -1); 2195 2196 mutex_enter(&arc_reclaim_thr_lock); 2197 arc_do_user_evicts(); 2198 mutex_exit(&arc_reclaim_thr_lock); 2199 ASSERT(spa || arc_eviction_list == NULL); 2200 } 2201 2202 void 2203 arc_shrink(int64_t to_free) 2204 { 2205 if (arc_c > arc_c_min) { 2206 2207 if (arc_c > arc_c_min + to_free) 2208 atomic_add_64(&arc_c, -to_free); 2209 else 2210 arc_c = arc_c_min; 2211 2212 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 2213 if (arc_c > arc_size) 2214 arc_c = MAX(arc_size, arc_c_min); 2215 if (arc_p > arc_c) 2216 arc_p = (arc_c >> 1); 2217 ASSERT(arc_c >= arc_c_min); 2218 ASSERT((int64_t)arc_p >= 0); 2219 } 2220 2221 if (arc_size > arc_c) 2222 arc_adjust(); 2223 } 2224 2225 typedef enum free_memory_reason_t { 2226 FMR_UNKNOWN, 2227 FMR_NEEDFREE, 2228 FMR_LOTSFREE, 2229 FMR_SWAPFS_MINFREE, 2230 FMR_PAGES_PP_MAXIMUM, 2231 FMR_HEAP_ARENA, 2232 FMR_ZIO_ARENA, 2233 } free_memory_reason_t; 2234 2235 int64_t last_free_memory; 2236 free_memory_reason_t last_free_reason; 2237 2238 /* 2239 * Additional reserve of pages for pp_reserve. 2240 */ 2241 int64_t arc_pages_pp_reserve = 64; 2242 2243 /* 2244 * Additional reserve of pages for swapfs. 2245 */ 2246 int64_t arc_swapfs_reserve = 64; 2247 2248 /* 2249 * Return the amount of memory that can be consumed before reclaim will be 2250 * needed. Positive if there is sufficient free memory, negative indicates 2251 * the amount of memory that needs to be freed up. 2252 */ 2253 static int64_t 2254 arc_available_memory(void) 2255 { 2256 int64_t lowest = INT64_MAX; 2257 int64_t n; 2258 free_memory_reason_t r = FMR_UNKNOWN; 2259 2260 #ifdef _KERNEL 2261 if (needfree > 0) { 2262 n = PAGESIZE * (-needfree); 2263 if (n < lowest) { 2264 lowest = n; 2265 r = FMR_NEEDFREE; 2266 } 2267 } 2268 2269 /* 2270 * check that we're out of range of the pageout scanner. It starts to 2271 * schedule paging if freemem is less than lotsfree and needfree. 2272 * lotsfree is the high-water mark for pageout, and needfree is the 2273 * number of needed free pages. We add extra pages here to make sure 2274 * the scanner doesn't start up while we're freeing memory. 2275 */ 2276 n = PAGESIZE * (freemem - lotsfree - needfree - desfree); 2277 if (n < lowest) { 2278 lowest = n; 2279 r = FMR_LOTSFREE; 2280 } 2281 2282 /* 2283 * check to make sure that swapfs has enough space so that anon 2284 * reservations can still succeed. anon_resvmem() checks that the 2285 * availrmem is greater than swapfs_minfree, and the number of reserved 2286 * swap pages. We also add a bit of extra here just to prevent 2287 * circumstances from getting really dire. 2288 */ 2289 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve - 2290 desfree - arc_swapfs_reserve); 2291 if (n < lowest) { 2292 lowest = n; 2293 r = FMR_SWAPFS_MINFREE; 2294 } 2295 2296 2297 /* 2298 * Check that we have enough availrmem that memory locking (e.g., via 2299 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 2300 * stores the number of pages that cannot be locked; when availrmem 2301 * drops below pages_pp_maximum, page locking mechanisms such as 2302 * page_pp_lock() will fail.) 2303 */ 2304 n = PAGESIZE * (availrmem - pages_pp_maximum - 2305 arc_pages_pp_reserve); 2306 if (n < lowest) { 2307 lowest = n; 2308 r = FMR_PAGES_PP_MAXIMUM; 2309 } 2310 2311 #if defined(__i386) 2312 /* 2313 * If we're on an i386 platform, it's possible that we'll exhaust the 2314 * kernel heap space before we ever run out of available physical 2315 * memory. Most checks of the size of the heap_area compare against 2316 * tune.t_minarmem, which is the minimum available real memory that we 2317 * can have in the system. However, this is generally fixed at 25 pages 2318 * which is so low that it's useless. In this comparison, we seek to 2319 * calculate the total heap-size, and reclaim if more than 3/4ths of the 2320 * heap is allocated. (Or, in the calculation, if less than 1/4th is 2321 * free) 2322 */ 2323 n = vmem_size(heap_arena, VMEM_FREE) - 2324 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2); 2325 if (n < lowest) { 2326 lowest = n; 2327 r = FMR_HEAP_ARENA; 2328 } 2329 #endif 2330 2331 /* 2332 * If zio data pages are being allocated out of a separate heap segment, 2333 * then enforce that the size of available vmem for this arena remains 2334 * above about 1/16th free. 2335 * 2336 * Note: The 1/16th arena free requirement was put in place 2337 * to aggressively evict memory from the arc in order to avoid 2338 * memory fragmentation issues. 2339 */ 2340 if (zio_arena != NULL) { 2341 n = vmem_size(zio_arena, VMEM_FREE) - 2342 (vmem_size(zio_arena, VMEM_ALLOC) >> 4); 2343 if (n < lowest) { 2344 lowest = n; 2345 r = FMR_ZIO_ARENA; 2346 } 2347 } 2348 #else 2349 /* Every 100 calls, free a small amount */ 2350 if (spa_get_random(100) == 0) 2351 lowest = -1024; 2352 #endif 2353 2354 last_free_memory = lowest; 2355 last_free_reason = r; 2356 2357 return (lowest); 2358 } 2359 2360 2361 /* 2362 * Determine if the system is under memory pressure and is asking 2363 * to reclaim memory. A return value of TRUE indicates that the system 2364 * is under memory pressure and that the arc should adjust accordingly. 2365 */ 2366 static boolean_t 2367 arc_reclaim_needed(void) 2368 { 2369 return (arc_available_memory() < 0); 2370 } 2371 2372 static void 2373 arc_kmem_reap_now(void) 2374 { 2375 size_t i; 2376 kmem_cache_t *prev_cache = NULL; 2377 kmem_cache_t *prev_data_cache = NULL; 2378 extern kmem_cache_t *zio_buf_cache[]; 2379 extern kmem_cache_t *zio_data_buf_cache[]; 2380 extern kmem_cache_t *range_seg_cache; 2381 2382 #ifdef _KERNEL 2383 if (arc_meta_used >= arc_meta_limit) { 2384 /* 2385 * We are exceeding our meta-data cache limit. 2386 * Purge some DNLC entries to release holds on meta-data. 2387 */ 2388 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 2389 } 2390 #if defined(__i386) 2391 /* 2392 * Reclaim unused memory from all kmem caches. 2393 */ 2394 kmem_reap(); 2395 #endif 2396 #endif 2397 2398 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2399 if (zio_buf_cache[i] != prev_cache) { 2400 prev_cache = zio_buf_cache[i]; 2401 kmem_cache_reap_now(zio_buf_cache[i]); 2402 } 2403 if (zio_data_buf_cache[i] != prev_data_cache) { 2404 prev_data_cache = zio_data_buf_cache[i]; 2405 kmem_cache_reap_now(zio_data_buf_cache[i]); 2406 } 2407 } 2408 kmem_cache_reap_now(buf_cache); 2409 kmem_cache_reap_now(hdr_cache); 2410 kmem_cache_reap_now(range_seg_cache); 2411 2412 if (zio_arena != NULL) { 2413 /* 2414 * Ask the vmem arena to reclaim unused memory from its 2415 * quantum caches. 2416 */ 2417 vmem_qcache_reap(zio_arena); 2418 } 2419 } 2420 2421 static void 2422 arc_reclaim_thread(void) 2423 { 2424 clock_t growtime = 0; 2425 callb_cpr_t cpr; 2426 2427 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2428 2429 mutex_enter(&arc_reclaim_thr_lock); 2430 while (arc_thread_exit == 0) { 2431 int64_t free_memory = arc_available_memory(); 2432 if (free_memory < 0) { 2433 2434 arc_no_grow = B_TRUE; 2435 arc_warm = B_TRUE; 2436 2437 /* 2438 * Wait at least zfs_grow_retry (default 60) seconds 2439 * before considering growing. 2440 */ 2441 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 2442 2443 arc_kmem_reap_now(); 2444 2445 /* 2446 * If we are still low on memory, shrink the ARC 2447 * so that we have arc_shrink_min free space. 2448 */ 2449 free_memory = arc_available_memory(); 2450 2451 int64_t to_free = 2452 (arc_c >> arc_shrink_shift) - free_memory; 2453 if (to_free > 0) { 2454 #ifdef _KERNEL 2455 to_free = MAX(to_free, ptob(needfree)); 2456 #endif 2457 arc_shrink(to_free); 2458 } 2459 } else if (free_memory < arc_c >> arc_no_grow_shift) { 2460 arc_no_grow = B_TRUE; 2461 } else if (ddi_get_lbolt() >= growtime) { 2462 arc_no_grow = B_FALSE; 2463 } 2464 2465 arc_adjust(); 2466 2467 if (arc_eviction_list != NULL) 2468 arc_do_user_evicts(); 2469 2470 /* block until needed, or one second, whichever is shorter */ 2471 CALLB_CPR_SAFE_BEGIN(&cpr); 2472 (void) cv_timedwait(&arc_reclaim_thr_cv, 2473 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz)); 2474 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2475 } 2476 2477 arc_thread_exit = 0; 2478 cv_broadcast(&arc_reclaim_thr_cv); 2479 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2480 thread_exit(); 2481 } 2482 2483 /* 2484 * Adapt arc info given the number of bytes we are trying to add and 2485 * the state that we are comming from. This function is only called 2486 * when we are adding new content to the cache. 2487 */ 2488 static void 2489 arc_adapt(int bytes, arc_state_t *state) 2490 { 2491 int mult; 2492 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2493 2494 if (state == arc_l2c_only) 2495 return; 2496 2497 ASSERT(bytes > 0); 2498 /* 2499 * Adapt the target size of the MRU list: 2500 * - if we just hit in the MRU ghost list, then increase 2501 * the target size of the MRU list. 2502 * - if we just hit in the MFU ghost list, then increase 2503 * the target size of the MFU list by decreasing the 2504 * target size of the MRU list. 2505 */ 2506 if (state == arc_mru_ghost) { 2507 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2508 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2509 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 2510 2511 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2512 } else if (state == arc_mfu_ghost) { 2513 uint64_t delta; 2514 2515 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2516 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2517 mult = MIN(mult, 10); 2518 2519 delta = MIN(bytes * mult, arc_p); 2520 arc_p = MAX(arc_p_min, arc_p - delta); 2521 } 2522 ASSERT((int64_t)arc_p >= 0); 2523 2524 if (arc_reclaim_needed()) { 2525 cv_signal(&arc_reclaim_thr_cv); 2526 return; 2527 } 2528 2529 if (arc_no_grow) 2530 return; 2531 2532 if (arc_c >= arc_c_max) 2533 return; 2534 2535 /* 2536 * If we're within (2 * maxblocksize) bytes of the target 2537 * cache size, increment the target cache size 2538 */ 2539 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2540 atomic_add_64(&arc_c, (int64_t)bytes); 2541 if (arc_c > arc_c_max) 2542 arc_c = arc_c_max; 2543 else if (state == arc_anon) 2544 atomic_add_64(&arc_p, (int64_t)bytes); 2545 if (arc_p > arc_c) 2546 arc_p = arc_c; 2547 } 2548 ASSERT((int64_t)arc_p >= 0); 2549 } 2550 2551 /* 2552 * Check if the cache has reached its limits and eviction is required 2553 * prior to insert. 2554 */ 2555 static int 2556 arc_evict_needed(arc_buf_contents_t type) 2557 { 2558 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2559 return (1); 2560 2561 if (arc_reclaim_needed()) 2562 return (1); 2563 2564 return (arc_size > arc_c); 2565 } 2566 2567 /* 2568 * The buffer, supplied as the first argument, needs a data block. 2569 * So, if we are at cache max, determine which cache should be victimized. 2570 * We have the following cases: 2571 * 2572 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2573 * In this situation if we're out of space, but the resident size of the MFU is 2574 * under the limit, victimize the MFU cache to satisfy this insertion request. 2575 * 2576 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2577 * Here, we've used up all of the available space for the MRU, so we need to 2578 * evict from our own cache instead. Evict from the set of resident MRU 2579 * entries. 2580 * 2581 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2582 * c minus p represents the MFU space in the cache, since p is the size of the 2583 * cache that is dedicated to the MRU. In this situation there's still space on 2584 * the MFU side, so the MRU side needs to be victimized. 2585 * 2586 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2587 * MFU's resident set is consuming more space than it has been allotted. In 2588 * this situation, we must victimize our own cache, the MFU, for this insertion. 2589 */ 2590 static void 2591 arc_get_data_buf(arc_buf_t *buf) 2592 { 2593 arc_state_t *state = buf->b_hdr->b_state; 2594 uint64_t size = buf->b_hdr->b_size; 2595 arc_buf_contents_t type = buf->b_hdr->b_type; 2596 2597 arc_adapt(size, state); 2598 2599 /* 2600 * We have not yet reached cache maximum size, 2601 * just allocate a new buffer. 2602 */ 2603 if (!arc_evict_needed(type)) { 2604 if (type == ARC_BUFC_METADATA) { 2605 buf->b_data = zio_buf_alloc(size); 2606 arc_space_consume(size, ARC_SPACE_DATA); 2607 } else { 2608 ASSERT(type == ARC_BUFC_DATA); 2609 buf->b_data = zio_data_buf_alloc(size); 2610 ARCSTAT_INCR(arcstat_data_size, size); 2611 atomic_add_64(&arc_size, size); 2612 } 2613 goto out; 2614 } 2615 2616 /* 2617 * If we are prefetching from the mfu ghost list, this buffer 2618 * will end up on the mru list; so steal space from there. 2619 */ 2620 if (state == arc_mfu_ghost) 2621 state = buf->b_hdr->b_flags & ARC_FLAG_PREFETCH ? 2622 arc_mru : arc_mfu; 2623 else if (state == arc_mru_ghost) 2624 state = arc_mru; 2625 2626 if (state == arc_mru || state == arc_anon) { 2627 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2628 state = (arc_mfu->arcs_lsize[type] >= size && 2629 arc_p > mru_used) ? arc_mfu : arc_mru; 2630 } else { 2631 /* MFU cases */ 2632 uint64_t mfu_space = arc_c - arc_p; 2633 state = (arc_mru->arcs_lsize[type] >= size && 2634 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2635 } 2636 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2637 if (type == ARC_BUFC_METADATA) { 2638 buf->b_data = zio_buf_alloc(size); 2639 arc_space_consume(size, ARC_SPACE_DATA); 2640 } else { 2641 ASSERT(type == ARC_BUFC_DATA); 2642 buf->b_data = zio_data_buf_alloc(size); 2643 ARCSTAT_INCR(arcstat_data_size, size); 2644 atomic_add_64(&arc_size, size); 2645 } 2646 ARCSTAT_BUMP(arcstat_recycle_miss); 2647 } 2648 ASSERT(buf->b_data != NULL); 2649 out: 2650 /* 2651 * Update the state size. Note that ghost states have a 2652 * "ghost size" and so don't need to be updated. 2653 */ 2654 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2655 arc_buf_hdr_t *hdr = buf->b_hdr; 2656 2657 atomic_add_64(&hdr->b_state->arcs_size, size); 2658 if (list_link_active(&hdr->b_arc_node)) { 2659 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2660 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2661 } 2662 /* 2663 * If we are growing the cache, and we are adding anonymous 2664 * data, and we have outgrown arc_p, update arc_p 2665 */ 2666 if (arc_size < arc_c && hdr->b_state == arc_anon && 2667 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2668 arc_p = MIN(arc_c, arc_p + size); 2669 } 2670 } 2671 2672 /* 2673 * This routine is called whenever a buffer is accessed. 2674 * NOTE: the hash lock is dropped in this function. 2675 */ 2676 static void 2677 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 2678 { 2679 clock_t now; 2680 2681 ASSERT(MUTEX_HELD(hash_lock)); 2682 2683 if (hdr->b_state == arc_anon) { 2684 /* 2685 * This buffer is not in the cache, and does not 2686 * appear in our "ghost" list. Add the new buffer 2687 * to the MRU state. 2688 */ 2689 2690 ASSERT(hdr->b_arc_access == 0); 2691 hdr->b_arc_access = ddi_get_lbolt(); 2692 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 2693 arc_change_state(arc_mru, hdr, hash_lock); 2694 2695 } else if (hdr->b_state == arc_mru) { 2696 now = ddi_get_lbolt(); 2697 2698 /* 2699 * If this buffer is here because of a prefetch, then either: 2700 * - clear the flag if this is a "referencing" read 2701 * (any subsequent access will bump this into the MFU state). 2702 * or 2703 * - move the buffer to the head of the list if this is 2704 * another prefetch (to make it less likely to be evicted). 2705 */ 2706 if ((hdr->b_flags & ARC_FLAG_PREFETCH) != 0) { 2707 if (refcount_count(&hdr->b_refcnt) == 0) { 2708 ASSERT(list_link_active(&hdr->b_arc_node)); 2709 } else { 2710 hdr->b_flags &= ~ARC_FLAG_PREFETCH; 2711 ARCSTAT_BUMP(arcstat_mru_hits); 2712 } 2713 hdr->b_arc_access = now; 2714 return; 2715 } 2716 2717 /* 2718 * This buffer has been "accessed" only once so far, 2719 * but it is still in the cache. Move it to the MFU 2720 * state. 2721 */ 2722 if (now > hdr->b_arc_access + ARC_MINTIME) { 2723 /* 2724 * More than 125ms have passed since we 2725 * instantiated this buffer. Move it to the 2726 * most frequently used state. 2727 */ 2728 hdr->b_arc_access = now; 2729 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 2730 arc_change_state(arc_mfu, hdr, hash_lock); 2731 } 2732 ARCSTAT_BUMP(arcstat_mru_hits); 2733 } else if (hdr->b_state == arc_mru_ghost) { 2734 arc_state_t *new_state; 2735 /* 2736 * This buffer has been "accessed" recently, but 2737 * was evicted from the cache. Move it to the 2738 * MFU state. 2739 */ 2740 2741 if (hdr->b_flags & ARC_FLAG_PREFETCH) { 2742 new_state = arc_mru; 2743 if (refcount_count(&hdr->b_refcnt) > 0) 2744 hdr->b_flags &= ~ARC_FLAG_PREFETCH; 2745 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 2746 } else { 2747 new_state = arc_mfu; 2748 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 2749 } 2750 2751 hdr->b_arc_access = ddi_get_lbolt(); 2752 arc_change_state(new_state, hdr, hash_lock); 2753 2754 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2755 } else if (hdr->b_state == arc_mfu) { 2756 /* 2757 * This buffer has been accessed more than once and is 2758 * still in the cache. Keep it in the MFU state. 2759 * 2760 * NOTE: an add_reference() that occurred when we did 2761 * the arc_read() will have kicked this off the list. 2762 * If it was a prefetch, we will explicitly move it to 2763 * the head of the list now. 2764 */ 2765 if ((hdr->b_flags & ARC_FLAG_PREFETCH) != 0) { 2766 ASSERT(refcount_count(&hdr->b_refcnt) == 0); 2767 ASSERT(list_link_active(&hdr->b_arc_node)); 2768 } 2769 ARCSTAT_BUMP(arcstat_mfu_hits); 2770 hdr->b_arc_access = ddi_get_lbolt(); 2771 } else if (hdr->b_state == arc_mfu_ghost) { 2772 arc_state_t *new_state = arc_mfu; 2773 /* 2774 * This buffer has been accessed more than once but has 2775 * been evicted from the cache. Move it back to the 2776 * MFU state. 2777 */ 2778 2779 if (hdr->b_flags & ARC_FLAG_PREFETCH) { 2780 /* 2781 * This is a prefetch access... 2782 * move this block back to the MRU state. 2783 */ 2784 ASSERT0(refcount_count(&hdr->b_refcnt)); 2785 new_state = arc_mru; 2786 } 2787 2788 hdr->b_arc_access = ddi_get_lbolt(); 2789 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 2790 arc_change_state(new_state, hdr, hash_lock); 2791 2792 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2793 } else if (hdr->b_state == arc_l2c_only) { 2794 /* 2795 * This buffer is on the 2nd Level ARC. 2796 */ 2797 2798 hdr->b_arc_access = ddi_get_lbolt(); 2799 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 2800 arc_change_state(arc_mfu, hdr, hash_lock); 2801 } else { 2802 ASSERT(!"invalid arc state"); 2803 } 2804 } 2805 2806 /* a generic arc_done_func_t which you can use */ 2807 /* ARGSUSED */ 2808 void 2809 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2810 { 2811 if (zio == NULL || zio->io_error == 0) 2812 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2813 VERIFY(arc_buf_remove_ref(buf, arg)); 2814 } 2815 2816 /* a generic arc_done_func_t */ 2817 void 2818 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2819 { 2820 arc_buf_t **bufp = arg; 2821 if (zio && zio->io_error) { 2822 VERIFY(arc_buf_remove_ref(buf, arg)); 2823 *bufp = NULL; 2824 } else { 2825 *bufp = buf; 2826 ASSERT(buf->b_data); 2827 } 2828 } 2829 2830 static void 2831 arc_read_done(zio_t *zio) 2832 { 2833 arc_buf_hdr_t *hdr; 2834 arc_buf_t *buf; 2835 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2836 kmutex_t *hash_lock = NULL; 2837 arc_callback_t *callback_list, *acb; 2838 int freeable = FALSE; 2839 2840 buf = zio->io_private; 2841 hdr = buf->b_hdr; 2842 2843 /* 2844 * The hdr was inserted into hash-table and removed from lists 2845 * prior to starting I/O. We should find this header, since 2846 * it's in the hash table, and it should be legit since it's 2847 * not possible to evict it during the I/O. The only possible 2848 * reason for it not to be found is if we were freed during the 2849 * read. 2850 */ 2851 if (HDR_IN_HASH_TABLE(hdr)) { 2852 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 2853 ASSERT3U(hdr->b_dva.dva_word[0], ==, 2854 BP_IDENTITY(zio->io_bp)->dva_word[0]); 2855 ASSERT3U(hdr->b_dva.dva_word[1], ==, 2856 BP_IDENTITY(zio->io_bp)->dva_word[1]); 2857 2858 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 2859 &hash_lock); 2860 2861 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && 2862 hash_lock == NULL) || 2863 (found == hdr && 2864 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2865 (found == hdr && HDR_L2_READING(hdr))); 2866 } 2867 2868 hdr->b_flags &= ~ARC_FLAG_L2_EVICTED; 2869 if (l2arc_noprefetch && (hdr->b_flags & ARC_FLAG_PREFETCH)) 2870 hdr->b_flags &= ~ARC_FLAG_L2CACHE; 2871 2872 /* byteswap if necessary */ 2873 callback_list = hdr->b_acb; 2874 ASSERT(callback_list != NULL); 2875 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2876 dmu_object_byteswap_t bswap = 2877 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 2878 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2879 byteswap_uint64_array : 2880 dmu_ot_byteswap[bswap].ob_func; 2881 func(buf->b_data, hdr->b_size); 2882 } 2883 2884 arc_cksum_compute(buf, B_FALSE); 2885 arc_buf_watch(buf); 2886 2887 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { 2888 /* 2889 * Only call arc_access on anonymous buffers. This is because 2890 * if we've issued an I/O for an evicted buffer, we've already 2891 * called arc_access (to prevent any simultaneous readers from 2892 * getting confused). 2893 */ 2894 arc_access(hdr, hash_lock); 2895 } 2896 2897 /* create copies of the data buffer for the callers */ 2898 abuf = buf; 2899 for (acb = callback_list; acb; acb = acb->acb_next) { 2900 if (acb->acb_done) { 2901 if (abuf == NULL) { 2902 ARCSTAT_BUMP(arcstat_duplicate_reads); 2903 abuf = arc_buf_clone(buf); 2904 } 2905 acb->acb_buf = abuf; 2906 abuf = NULL; 2907 } 2908 } 2909 hdr->b_acb = NULL; 2910 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS; 2911 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2912 if (abuf == buf) { 2913 ASSERT(buf->b_efunc == NULL); 2914 ASSERT(hdr->b_datacnt == 1); 2915 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE; 2916 } 2917 2918 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2919 2920 if (zio->io_error != 0) { 2921 hdr->b_flags |= ARC_FLAG_IO_ERROR; 2922 if (hdr->b_state != arc_anon) 2923 arc_change_state(arc_anon, hdr, hash_lock); 2924 if (HDR_IN_HASH_TABLE(hdr)) 2925 buf_hash_remove(hdr); 2926 freeable = refcount_is_zero(&hdr->b_refcnt); 2927 } 2928 2929 /* 2930 * Broadcast before we drop the hash_lock to avoid the possibility 2931 * that the hdr (and hence the cv) might be freed before we get to 2932 * the cv_broadcast(). 2933 */ 2934 cv_broadcast(&hdr->b_cv); 2935 2936 if (hash_lock) { 2937 mutex_exit(hash_lock); 2938 } else { 2939 /* 2940 * This block was freed while we waited for the read to 2941 * complete. It has been removed from the hash table and 2942 * moved to the anonymous state (so that it won't show up 2943 * in the cache). 2944 */ 2945 ASSERT3P(hdr->b_state, ==, arc_anon); 2946 freeable = refcount_is_zero(&hdr->b_refcnt); 2947 } 2948 2949 /* execute each callback and free its structure */ 2950 while ((acb = callback_list) != NULL) { 2951 if (acb->acb_done) 2952 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2953 2954 if (acb->acb_zio_dummy != NULL) { 2955 acb->acb_zio_dummy->io_error = zio->io_error; 2956 zio_nowait(acb->acb_zio_dummy); 2957 } 2958 2959 callback_list = acb->acb_next; 2960 kmem_free(acb, sizeof (arc_callback_t)); 2961 } 2962 2963 if (freeable) 2964 arc_hdr_destroy(hdr); 2965 } 2966 2967 /* 2968 * "Read" the block at the specified DVA (in bp) via the 2969 * cache. If the block is found in the cache, invoke the provided 2970 * callback immediately and return. Note that the `zio' parameter 2971 * in the callback will be NULL in this case, since no IO was 2972 * required. If the block is not in the cache pass the read request 2973 * on to the spa with a substitute callback function, so that the 2974 * requested block will be added to the cache. 2975 * 2976 * If a read request arrives for a block that has a read in-progress, 2977 * either wait for the in-progress read to complete (and return the 2978 * results); or, if this is a read with a "done" func, add a record 2979 * to the read to invoke the "done" func when the read completes, 2980 * and return; or just return. 2981 * 2982 * arc_read_done() will invoke all the requested "done" functions 2983 * for readers of this block. 2984 */ 2985 int 2986 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 2987 void *private, zio_priority_t priority, int zio_flags, 2988 arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 2989 { 2990 arc_buf_hdr_t *hdr = NULL; 2991 arc_buf_t *buf = NULL; 2992 kmutex_t *hash_lock = NULL; 2993 zio_t *rzio; 2994 uint64_t guid = spa_load_guid(spa); 2995 2996 ASSERT(!BP_IS_EMBEDDED(bp) || 2997 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 2998 2999 top: 3000 if (!BP_IS_EMBEDDED(bp)) { 3001 /* 3002 * Embedded BP's have no DVA and require no I/O to "read". 3003 * Create an anonymous arc buf to back it. 3004 */ 3005 hdr = buf_hash_find(guid, bp, &hash_lock); 3006 } 3007 3008 if (hdr != NULL && hdr->b_datacnt > 0) { 3009 3010 *arc_flags |= ARC_FLAG_CACHED; 3011 3012 if (HDR_IO_IN_PROGRESS(hdr)) { 3013 3014 if (*arc_flags & ARC_FLAG_WAIT) { 3015 cv_wait(&hdr->b_cv, hash_lock); 3016 mutex_exit(hash_lock); 3017 goto top; 3018 } 3019 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 3020 3021 if (done) { 3022 arc_callback_t *acb = NULL; 3023 3024 acb = kmem_zalloc(sizeof (arc_callback_t), 3025 KM_SLEEP); 3026 acb->acb_done = done; 3027 acb->acb_private = private; 3028 if (pio != NULL) 3029 acb->acb_zio_dummy = zio_null(pio, 3030 spa, NULL, NULL, NULL, zio_flags); 3031 3032 ASSERT(acb->acb_done != NULL); 3033 acb->acb_next = hdr->b_acb; 3034 hdr->b_acb = acb; 3035 add_reference(hdr, hash_lock, private); 3036 mutex_exit(hash_lock); 3037 return (0); 3038 } 3039 mutex_exit(hash_lock); 3040 return (0); 3041 } 3042 3043 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 3044 3045 if (done) { 3046 add_reference(hdr, hash_lock, private); 3047 /* 3048 * If this block is already in use, create a new 3049 * copy of the data so that we will be guaranteed 3050 * that arc_release() will always succeed. 3051 */ 3052 buf = hdr->b_buf; 3053 ASSERT(buf); 3054 ASSERT(buf->b_data); 3055 if (HDR_BUF_AVAILABLE(hdr)) { 3056 ASSERT(buf->b_efunc == NULL); 3057 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE; 3058 } else { 3059 buf = arc_buf_clone(buf); 3060 } 3061 3062 } else if (*arc_flags & ARC_FLAG_PREFETCH && 3063 refcount_count(&hdr->b_refcnt) == 0) { 3064 hdr->b_flags |= ARC_FLAG_PREFETCH; 3065 } 3066 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 3067 arc_access(hdr, hash_lock); 3068 if (*arc_flags & ARC_FLAG_L2CACHE) 3069 hdr->b_flags |= ARC_FLAG_L2CACHE; 3070 if (*arc_flags & ARC_FLAG_L2COMPRESS) 3071 hdr->b_flags |= ARC_FLAG_L2COMPRESS; 3072 mutex_exit(hash_lock); 3073 ARCSTAT_BUMP(arcstat_hits); 3074 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_FLAG_PREFETCH), 3075 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 3076 data, metadata, hits); 3077 3078 if (done) 3079 done(NULL, buf, private); 3080 } else { 3081 uint64_t size = BP_GET_LSIZE(bp); 3082 arc_callback_t *acb; 3083 vdev_t *vd = NULL; 3084 uint64_t addr = 0; 3085 boolean_t devw = B_FALSE; 3086 enum zio_compress b_compress = ZIO_COMPRESS_OFF; 3087 uint64_t b_asize = 0; 3088 3089 if (hdr == NULL) { 3090 /* this block is not in the cache */ 3091 arc_buf_hdr_t *exists = NULL; 3092 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 3093 buf = arc_buf_alloc(spa, size, private, type); 3094 hdr = buf->b_hdr; 3095 if (!BP_IS_EMBEDDED(bp)) { 3096 hdr->b_dva = *BP_IDENTITY(bp); 3097 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 3098 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 3099 exists = buf_hash_insert(hdr, &hash_lock); 3100 } 3101 if (exists != NULL) { 3102 /* somebody beat us to the hash insert */ 3103 mutex_exit(hash_lock); 3104 buf_discard_identity(hdr); 3105 (void) arc_buf_remove_ref(buf, private); 3106 goto top; /* restart the IO request */ 3107 } 3108 3109 /* if this is a prefetch, we don't have a reference */ 3110 if (*arc_flags & ARC_FLAG_PREFETCH) { 3111 (void) remove_reference(hdr, hash_lock, 3112 private); 3113 hdr->b_flags |= ARC_FLAG_PREFETCH; 3114 } 3115 if (*arc_flags & ARC_FLAG_L2CACHE) 3116 hdr->b_flags |= ARC_FLAG_L2CACHE; 3117 if (*arc_flags & ARC_FLAG_L2COMPRESS) 3118 hdr->b_flags |= ARC_FLAG_L2COMPRESS; 3119 if (BP_GET_LEVEL(bp) > 0) 3120 hdr->b_flags |= ARC_FLAG_INDIRECT; 3121 } else { 3122 /* this block is in the ghost cache */ 3123 ASSERT(GHOST_STATE(hdr->b_state)); 3124 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3125 ASSERT0(refcount_count(&hdr->b_refcnt)); 3126 ASSERT(hdr->b_buf == NULL); 3127 3128 /* if this is a prefetch, we don't have a reference */ 3129 if (*arc_flags & ARC_FLAG_PREFETCH) 3130 hdr->b_flags |= ARC_FLAG_PREFETCH; 3131 else 3132 add_reference(hdr, hash_lock, private); 3133 if (*arc_flags & ARC_FLAG_L2CACHE) 3134 hdr->b_flags |= ARC_FLAG_L2CACHE; 3135 if (*arc_flags & ARC_FLAG_L2COMPRESS) 3136 hdr->b_flags |= ARC_FLAG_L2COMPRESS; 3137 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 3138 buf->b_hdr = hdr; 3139 buf->b_data = NULL; 3140 buf->b_efunc = NULL; 3141 buf->b_private = NULL; 3142 buf->b_next = NULL; 3143 hdr->b_buf = buf; 3144 ASSERT(hdr->b_datacnt == 0); 3145 hdr->b_datacnt = 1; 3146 arc_get_data_buf(buf); 3147 arc_access(hdr, hash_lock); 3148 } 3149 3150 ASSERT(!GHOST_STATE(hdr->b_state)); 3151 3152 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 3153 acb->acb_done = done; 3154 acb->acb_private = private; 3155 3156 ASSERT(hdr->b_acb == NULL); 3157 hdr->b_acb = acb; 3158 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS; 3159 3160 if (hdr->b_l2hdr != NULL && 3161 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 3162 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 3163 addr = hdr->b_l2hdr->b_daddr; 3164 b_compress = hdr->b_l2hdr->b_compress; 3165 b_asize = hdr->b_l2hdr->b_asize; 3166 /* 3167 * Lock out device removal. 3168 */ 3169 if (vdev_is_dead(vd) || 3170 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 3171 vd = NULL; 3172 } 3173 3174 if (hash_lock != NULL) 3175 mutex_exit(hash_lock); 3176 3177 /* 3178 * At this point, we have a level 1 cache miss. Try again in 3179 * L2ARC if possible. 3180 */ 3181 ASSERT3U(hdr->b_size, ==, size); 3182 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 3183 uint64_t, size, zbookmark_phys_t *, zb); 3184 ARCSTAT_BUMP(arcstat_misses); 3185 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_FLAG_PREFETCH), 3186 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 3187 data, metadata, misses); 3188 3189 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 3190 /* 3191 * Read from the L2ARC if the following are true: 3192 * 1. The L2ARC vdev was previously cached. 3193 * 2. This buffer still has L2ARC metadata. 3194 * 3. This buffer isn't currently writing to the L2ARC. 3195 * 4. The L2ARC entry wasn't evicted, which may 3196 * also have invalidated the vdev. 3197 * 5. This isn't prefetch and l2arc_noprefetch is set. 3198 */ 3199 if (hdr->b_l2hdr != NULL && 3200 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 3201 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 3202 l2arc_read_callback_t *cb; 3203 3204 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 3205 ARCSTAT_BUMP(arcstat_l2_hits); 3206 3207 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 3208 KM_SLEEP); 3209 cb->l2rcb_buf = buf; 3210 cb->l2rcb_spa = spa; 3211 cb->l2rcb_bp = *bp; 3212 cb->l2rcb_zb = *zb; 3213 cb->l2rcb_flags = zio_flags; 3214 cb->l2rcb_compress = b_compress; 3215 3216 ASSERT(addr >= VDEV_LABEL_START_SIZE && 3217 addr + size < vd->vdev_psize - 3218 VDEV_LABEL_END_SIZE); 3219 3220 /* 3221 * l2arc read. The SCL_L2ARC lock will be 3222 * released by l2arc_read_done(). 3223 * Issue a null zio if the underlying buffer 3224 * was squashed to zero size by compression. 3225 */ 3226 if (b_compress == ZIO_COMPRESS_EMPTY) { 3227 rzio = zio_null(pio, spa, vd, 3228 l2arc_read_done, cb, 3229 zio_flags | ZIO_FLAG_DONT_CACHE | 3230 ZIO_FLAG_CANFAIL | 3231 ZIO_FLAG_DONT_PROPAGATE | 3232 ZIO_FLAG_DONT_RETRY); 3233 } else { 3234 rzio = zio_read_phys(pio, vd, addr, 3235 b_asize, buf->b_data, 3236 ZIO_CHECKSUM_OFF, 3237 l2arc_read_done, cb, priority, 3238 zio_flags | ZIO_FLAG_DONT_CACHE | 3239 ZIO_FLAG_CANFAIL | 3240 ZIO_FLAG_DONT_PROPAGATE | 3241 ZIO_FLAG_DONT_RETRY, B_FALSE); 3242 } 3243 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 3244 zio_t *, rzio); 3245 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize); 3246 3247 if (*arc_flags & ARC_FLAG_NOWAIT) { 3248 zio_nowait(rzio); 3249 return (0); 3250 } 3251 3252 ASSERT(*arc_flags & ARC_FLAG_WAIT); 3253 if (zio_wait(rzio) == 0) 3254 return (0); 3255 3256 /* l2arc read error; goto zio_read() */ 3257 } else { 3258 DTRACE_PROBE1(l2arc__miss, 3259 arc_buf_hdr_t *, hdr); 3260 ARCSTAT_BUMP(arcstat_l2_misses); 3261 if (HDR_L2_WRITING(hdr)) 3262 ARCSTAT_BUMP(arcstat_l2_rw_clash); 3263 spa_config_exit(spa, SCL_L2ARC, vd); 3264 } 3265 } else { 3266 if (vd != NULL) 3267 spa_config_exit(spa, SCL_L2ARC, vd); 3268 if (l2arc_ndev != 0) { 3269 DTRACE_PROBE1(l2arc__miss, 3270 arc_buf_hdr_t *, hdr); 3271 ARCSTAT_BUMP(arcstat_l2_misses); 3272 } 3273 } 3274 3275 rzio = zio_read(pio, spa, bp, buf->b_data, size, 3276 arc_read_done, buf, priority, zio_flags, zb); 3277 3278 if (*arc_flags & ARC_FLAG_WAIT) 3279 return (zio_wait(rzio)); 3280 3281 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 3282 zio_nowait(rzio); 3283 } 3284 return (0); 3285 } 3286 3287 void 3288 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 3289 { 3290 ASSERT(buf->b_hdr != NULL); 3291 ASSERT(buf->b_hdr->b_state != arc_anon); 3292 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 3293 ASSERT(buf->b_efunc == NULL); 3294 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 3295 3296 buf->b_efunc = func; 3297 buf->b_private = private; 3298 } 3299 3300 /* 3301 * Notify the arc that a block was freed, and thus will never be used again. 3302 */ 3303 void 3304 arc_freed(spa_t *spa, const blkptr_t *bp) 3305 { 3306 arc_buf_hdr_t *hdr; 3307 kmutex_t *hash_lock; 3308 uint64_t guid = spa_load_guid(spa); 3309 3310 ASSERT(!BP_IS_EMBEDDED(bp)); 3311 3312 hdr = buf_hash_find(guid, bp, &hash_lock); 3313 if (hdr == NULL) 3314 return; 3315 if (HDR_BUF_AVAILABLE(hdr)) { 3316 arc_buf_t *buf = hdr->b_buf; 3317 add_reference(hdr, hash_lock, FTAG); 3318 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE; 3319 mutex_exit(hash_lock); 3320 3321 arc_release(buf, FTAG); 3322 (void) arc_buf_remove_ref(buf, FTAG); 3323 } else { 3324 mutex_exit(hash_lock); 3325 } 3326 3327 } 3328 3329 /* 3330 * Clear the user eviction callback set by arc_set_callback(), first calling 3331 * it if it exists. Because the presence of a callback keeps an arc_buf cached 3332 * clearing the callback may result in the arc_buf being destroyed. However, 3333 * it will not result in the *last* arc_buf being destroyed, hence the data 3334 * will remain cached in the ARC. We make a copy of the arc buffer here so 3335 * that we can process the callback without holding any locks. 3336 * 3337 * It's possible that the callback is already in the process of being cleared 3338 * by another thread. In this case we can not clear the callback. 3339 * 3340 * Returns B_TRUE if the callback was successfully called and cleared. 3341 */ 3342 boolean_t 3343 arc_clear_callback(arc_buf_t *buf) 3344 { 3345 arc_buf_hdr_t *hdr; 3346 kmutex_t *hash_lock; 3347 arc_evict_func_t *efunc = buf->b_efunc; 3348 void *private = buf->b_private; 3349 3350 mutex_enter(&buf->b_evict_lock); 3351 hdr = buf->b_hdr; 3352 if (hdr == NULL) { 3353 /* 3354 * We are in arc_do_user_evicts(). 3355 */ 3356 ASSERT(buf->b_data == NULL); 3357 mutex_exit(&buf->b_evict_lock); 3358 return (B_FALSE); 3359 } else if (buf->b_data == NULL) { 3360 /* 3361 * We are on the eviction list; process this buffer now 3362 * but let arc_do_user_evicts() do the reaping. 3363 */ 3364 buf->b_efunc = NULL; 3365 mutex_exit(&buf->b_evict_lock); 3366 VERIFY0(efunc(private)); 3367 return (B_TRUE); 3368 } 3369 hash_lock = HDR_LOCK(hdr); 3370 mutex_enter(hash_lock); 3371 hdr = buf->b_hdr; 3372 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3373 3374 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 3375 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 3376 3377 buf->b_efunc = NULL; 3378 buf->b_private = NULL; 3379 3380 if (hdr->b_datacnt > 1) { 3381 mutex_exit(&buf->b_evict_lock); 3382 arc_buf_destroy(buf, FALSE, TRUE); 3383 } else { 3384 ASSERT(buf == hdr->b_buf); 3385 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE; 3386 mutex_exit(&buf->b_evict_lock); 3387 } 3388 3389 mutex_exit(hash_lock); 3390 VERIFY0(efunc(private)); 3391 return (B_TRUE); 3392 } 3393 3394 /* 3395 * Release this buffer from the cache, making it an anonymous buffer. This 3396 * must be done after a read and prior to modifying the buffer contents. 3397 * If the buffer has more than one reference, we must make 3398 * a new hdr for the buffer. 3399 */ 3400 void 3401 arc_release(arc_buf_t *buf, void *tag) 3402 { 3403 arc_buf_hdr_t *hdr; 3404 kmutex_t *hash_lock = NULL; 3405 l2arc_buf_hdr_t *l2hdr; 3406 uint64_t buf_size; 3407 3408 /* 3409 * It would be nice to assert that if it's DMU metadata (level > 3410 * 0 || it's the dnode file), then it must be syncing context. 3411 * But we don't know that information at this level. 3412 */ 3413 3414 mutex_enter(&buf->b_evict_lock); 3415 hdr = buf->b_hdr; 3416 3417 /* this buffer is not on any list */ 3418 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 3419 3420 if (hdr->b_state == arc_anon) { 3421 /* this buffer is already released */ 3422 ASSERT(buf->b_efunc == NULL); 3423 } else { 3424 hash_lock = HDR_LOCK(hdr); 3425 mutex_enter(hash_lock); 3426 hdr = buf->b_hdr; 3427 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3428 } 3429 3430 l2hdr = hdr->b_l2hdr; 3431 if (l2hdr) { 3432 mutex_enter(&l2arc_buflist_mtx); 3433 hdr->b_l2hdr = NULL; 3434 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3435 } 3436 buf_size = hdr->b_size; 3437 3438 /* 3439 * Do we have more than one buf? 3440 */ 3441 if (hdr->b_datacnt > 1) { 3442 arc_buf_hdr_t *nhdr; 3443 arc_buf_t **bufp; 3444 uint64_t blksz = hdr->b_size; 3445 uint64_t spa = hdr->b_spa; 3446 arc_buf_contents_t type = hdr->b_type; 3447 uint32_t flags = hdr->b_flags; 3448 3449 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3450 /* 3451 * Pull the data off of this hdr and attach it to 3452 * a new anonymous hdr. 3453 */ 3454 (void) remove_reference(hdr, hash_lock, tag); 3455 bufp = &hdr->b_buf; 3456 while (*bufp != buf) 3457 bufp = &(*bufp)->b_next; 3458 *bufp = buf->b_next; 3459 buf->b_next = NULL; 3460 3461 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3462 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3463 if (refcount_is_zero(&hdr->b_refcnt)) { 3464 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3465 ASSERT3U(*size, >=, hdr->b_size); 3466 atomic_add_64(size, -hdr->b_size); 3467 } 3468 3469 /* 3470 * We're releasing a duplicate user data buffer, update 3471 * our statistics accordingly. 3472 */ 3473 if (hdr->b_type == ARC_BUFC_DATA) { 3474 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 3475 ARCSTAT_INCR(arcstat_duplicate_buffers_size, 3476 -hdr->b_size); 3477 } 3478 hdr->b_datacnt -= 1; 3479 arc_cksum_verify(buf); 3480 arc_buf_unwatch(buf); 3481 3482 mutex_exit(hash_lock); 3483 3484 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3485 nhdr->b_size = blksz; 3486 nhdr->b_spa = spa; 3487 nhdr->b_type = type; 3488 nhdr->b_buf = buf; 3489 nhdr->b_state = arc_anon; 3490 nhdr->b_arc_access = 0; 3491 nhdr->b_flags = flags & ARC_FLAG_L2_WRITING; 3492 nhdr->b_l2hdr = NULL; 3493 nhdr->b_datacnt = 1; 3494 nhdr->b_freeze_cksum = NULL; 3495 (void) refcount_add(&nhdr->b_refcnt, tag); 3496 buf->b_hdr = nhdr; 3497 mutex_exit(&buf->b_evict_lock); 3498 atomic_add_64(&arc_anon->arcs_size, blksz); 3499 } else { 3500 mutex_exit(&buf->b_evict_lock); 3501 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3502 ASSERT(!list_link_active(&hdr->b_arc_node)); 3503 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3504 if (hdr->b_state != arc_anon) 3505 arc_change_state(arc_anon, hdr, hash_lock); 3506 hdr->b_arc_access = 0; 3507 if (hash_lock) 3508 mutex_exit(hash_lock); 3509 3510 buf_discard_identity(hdr); 3511 arc_buf_thaw(buf); 3512 } 3513 buf->b_efunc = NULL; 3514 buf->b_private = NULL; 3515 3516 if (l2hdr) { 3517 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 3518 vdev_space_update(l2hdr->b_dev->l2ad_vdev, 3519 -l2hdr->b_asize, 0, 0); 3520 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3521 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3522 mutex_exit(&l2arc_buflist_mtx); 3523 } 3524 } 3525 3526 int 3527 arc_released(arc_buf_t *buf) 3528 { 3529 int released; 3530 3531 mutex_enter(&buf->b_evict_lock); 3532 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3533 mutex_exit(&buf->b_evict_lock); 3534 return (released); 3535 } 3536 3537 #ifdef ZFS_DEBUG 3538 int 3539 arc_referenced(arc_buf_t *buf) 3540 { 3541 int referenced; 3542 3543 mutex_enter(&buf->b_evict_lock); 3544 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3545 mutex_exit(&buf->b_evict_lock); 3546 return (referenced); 3547 } 3548 #endif 3549 3550 static void 3551 arc_write_ready(zio_t *zio) 3552 { 3553 arc_write_callback_t *callback = zio->io_private; 3554 arc_buf_t *buf = callback->awcb_buf; 3555 arc_buf_hdr_t *hdr = buf->b_hdr; 3556 3557 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3558 callback->awcb_ready(zio, buf, callback->awcb_private); 3559 3560 /* 3561 * If the IO is already in progress, then this is a re-write 3562 * attempt, so we need to thaw and re-compute the cksum. 3563 * It is the responsibility of the callback to handle the 3564 * accounting for any re-write attempt. 3565 */ 3566 if (HDR_IO_IN_PROGRESS(hdr)) { 3567 mutex_enter(&hdr->b_freeze_lock); 3568 if (hdr->b_freeze_cksum != NULL) { 3569 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3570 hdr->b_freeze_cksum = NULL; 3571 } 3572 mutex_exit(&hdr->b_freeze_lock); 3573 } 3574 arc_cksum_compute(buf, B_FALSE); 3575 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS; 3576 } 3577 3578 /* 3579 * The SPA calls this callback for each physical write that happens on behalf 3580 * of a logical write. See the comment in dbuf_write_physdone() for details. 3581 */ 3582 static void 3583 arc_write_physdone(zio_t *zio) 3584 { 3585 arc_write_callback_t *cb = zio->io_private; 3586 if (cb->awcb_physdone != NULL) 3587 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 3588 } 3589 3590 static void 3591 arc_write_done(zio_t *zio) 3592 { 3593 arc_write_callback_t *callback = zio->io_private; 3594 arc_buf_t *buf = callback->awcb_buf; 3595 arc_buf_hdr_t *hdr = buf->b_hdr; 3596 3597 ASSERT(hdr->b_acb == NULL); 3598 3599 if (zio->io_error == 0) { 3600 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 3601 buf_discard_identity(hdr); 3602 } else { 3603 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3604 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 3605 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3606 } 3607 } else { 3608 ASSERT(BUF_EMPTY(hdr)); 3609 } 3610 3611 /* 3612 * If the block to be written was all-zero or compressed enough to be 3613 * embedded in the BP, no write was performed so there will be no 3614 * dva/birth/checksum. The buffer must therefore remain anonymous 3615 * (and uncached). 3616 */ 3617 if (!BUF_EMPTY(hdr)) { 3618 arc_buf_hdr_t *exists; 3619 kmutex_t *hash_lock; 3620 3621 ASSERT(zio->io_error == 0); 3622 3623 arc_cksum_verify(buf); 3624 3625 exists = buf_hash_insert(hdr, &hash_lock); 3626 if (exists) { 3627 /* 3628 * This can only happen if we overwrite for 3629 * sync-to-convergence, because we remove 3630 * buffers from the hash table when we arc_free(). 3631 */ 3632 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 3633 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3634 panic("bad overwrite, hdr=%p exists=%p", 3635 (void *)hdr, (void *)exists); 3636 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3637 arc_change_state(arc_anon, exists, hash_lock); 3638 mutex_exit(hash_lock); 3639 arc_hdr_destroy(exists); 3640 exists = buf_hash_insert(hdr, &hash_lock); 3641 ASSERT3P(exists, ==, NULL); 3642 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 3643 /* nopwrite */ 3644 ASSERT(zio->io_prop.zp_nopwrite); 3645 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3646 panic("bad nopwrite, hdr=%p exists=%p", 3647 (void *)hdr, (void *)exists); 3648 } else { 3649 /* Dedup */ 3650 ASSERT(hdr->b_datacnt == 1); 3651 ASSERT(hdr->b_state == arc_anon); 3652 ASSERT(BP_GET_DEDUP(zio->io_bp)); 3653 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 3654 } 3655 } 3656 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS; 3657 /* if it's not anon, we are doing a scrub */ 3658 if (!exists && hdr->b_state == arc_anon) 3659 arc_access(hdr, hash_lock); 3660 mutex_exit(hash_lock); 3661 } else { 3662 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS; 3663 } 3664 3665 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3666 callback->awcb_done(zio, buf, callback->awcb_private); 3667 3668 kmem_free(callback, sizeof (arc_write_callback_t)); 3669 } 3670 3671 zio_t * 3672 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 3673 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress, 3674 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone, 3675 arc_done_func_t *done, void *private, zio_priority_t priority, 3676 int zio_flags, const zbookmark_phys_t *zb) 3677 { 3678 arc_buf_hdr_t *hdr = buf->b_hdr; 3679 arc_write_callback_t *callback; 3680 zio_t *zio; 3681 3682 ASSERT(ready != NULL); 3683 ASSERT(done != NULL); 3684 ASSERT(!HDR_IO_ERROR(hdr)); 3685 ASSERT((hdr->b_flags & ARC_FLAG_IO_IN_PROGRESS) == 0); 3686 ASSERT(hdr->b_acb == NULL); 3687 if (l2arc) 3688 hdr->b_flags |= ARC_FLAG_L2CACHE; 3689 if (l2arc_compress) 3690 hdr->b_flags |= ARC_FLAG_L2COMPRESS; 3691 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3692 callback->awcb_ready = ready; 3693 callback->awcb_physdone = physdone; 3694 callback->awcb_done = done; 3695 callback->awcb_private = private; 3696 callback->awcb_buf = buf; 3697 3698 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 3699 arc_write_ready, arc_write_physdone, arc_write_done, callback, 3700 priority, zio_flags, zb); 3701 3702 return (zio); 3703 } 3704 3705 static int 3706 arc_memory_throttle(uint64_t reserve, uint64_t txg) 3707 { 3708 #ifdef _KERNEL 3709 uint64_t available_memory = ptob(freemem); 3710 static uint64_t page_load = 0; 3711 static uint64_t last_txg = 0; 3712 3713 #if defined(__i386) 3714 available_memory = 3715 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3716 #endif 3717 3718 if (freemem > physmem * arc_lotsfree_percent / 100) 3719 return (0); 3720 3721 if (txg > last_txg) { 3722 last_txg = txg; 3723 page_load = 0; 3724 } 3725 /* 3726 * If we are in pageout, we know that memory is already tight, 3727 * the arc is already going to be evicting, so we just want to 3728 * continue to let page writes occur as quickly as possible. 3729 */ 3730 if (curproc == proc_pageout) { 3731 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3732 return (SET_ERROR(ERESTART)); 3733 /* Note: reserve is inflated, so we deflate */ 3734 page_load += reserve / 8; 3735 return (0); 3736 } else if (page_load > 0 && arc_reclaim_needed()) { 3737 /* memory is low, delay before restarting */ 3738 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3739 return (SET_ERROR(EAGAIN)); 3740 } 3741 page_load = 0; 3742 #endif 3743 return (0); 3744 } 3745 3746 void 3747 arc_tempreserve_clear(uint64_t reserve) 3748 { 3749 atomic_add_64(&arc_tempreserve, -reserve); 3750 ASSERT((int64_t)arc_tempreserve >= 0); 3751 } 3752 3753 int 3754 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3755 { 3756 int error; 3757 uint64_t anon_size; 3758 3759 if (reserve > arc_c/4 && !arc_no_grow) 3760 arc_c = MIN(arc_c_max, reserve * 4); 3761 if (reserve > arc_c) 3762 return (SET_ERROR(ENOMEM)); 3763 3764 /* 3765 * Don't count loaned bufs as in flight dirty data to prevent long 3766 * network delays from blocking transactions that are ready to be 3767 * assigned to a txg. 3768 */ 3769 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3770 3771 /* 3772 * Writes will, almost always, require additional memory allocations 3773 * in order to compress/encrypt/etc the data. We therefore need to 3774 * make sure that there is sufficient available memory for this. 3775 */ 3776 error = arc_memory_throttle(reserve, txg); 3777 if (error != 0) 3778 return (error); 3779 3780 /* 3781 * Throttle writes when the amount of dirty data in the cache 3782 * gets too large. We try to keep the cache less than half full 3783 * of dirty blocks so that our sync times don't grow too large. 3784 * Note: if two requests come in concurrently, we might let them 3785 * both succeed, when one of them should fail. Not a huge deal. 3786 */ 3787 3788 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3789 anon_size > arc_c / 4) { 3790 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3791 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3792 arc_tempreserve>>10, 3793 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3794 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3795 reserve>>10, arc_c>>10); 3796 return (SET_ERROR(ERESTART)); 3797 } 3798 atomic_add_64(&arc_tempreserve, reserve); 3799 return (0); 3800 } 3801 3802 void 3803 arc_init(void) 3804 { 3805 /* 3806 * allmem is "all memory that we could possibly use". 3807 */ 3808 #ifdef _KERNEL 3809 uint64_t allmem = ptob(physmem - swapfs_minfree); 3810 #else 3811 uint64_t allmem = (physmem * PAGESIZE) / 2; 3812 #endif 3813 3814 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3815 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3816 3817 /* Convert seconds to clock ticks */ 3818 arc_min_prefetch_lifespan = 1 * hz; 3819 3820 /* Start out with 1/8 of all memory */ 3821 arc_c = allmem / 8; 3822 3823 #ifdef _KERNEL 3824 /* 3825 * On architectures where the physical memory can be larger 3826 * than the addressable space (intel in 32-bit mode), we may 3827 * need to limit the cache to 1/8 of VM size. 3828 */ 3829 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3830 #endif 3831 3832 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3833 arc_c_min = MAX(allmem / 32, 64 << 20); 3834 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3835 if (allmem >= 1 << 30) 3836 arc_c_max = allmem - (1 << 30); 3837 else 3838 arc_c_max = arc_c_min; 3839 arc_c_max = MAX(allmem * 3 / 4, arc_c_max); 3840 3841 /* 3842 * Allow the tunables to override our calculations if they are 3843 * reasonable (ie. over 64MB) 3844 */ 3845 if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) 3846 arc_c_max = zfs_arc_max; 3847 if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max) 3848 arc_c_min = zfs_arc_min; 3849 3850 arc_c = arc_c_max; 3851 arc_p = (arc_c >> 1); 3852 3853 /* limit meta-data to 1/4 of the arc capacity */ 3854 arc_meta_limit = arc_c_max / 4; 3855 3856 /* Allow the tunable to override if it is reasonable */ 3857 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3858 arc_meta_limit = zfs_arc_meta_limit; 3859 3860 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3861 arc_c_min = arc_meta_limit / 2; 3862 3863 if (zfs_arc_meta_min > 0) { 3864 arc_meta_min = zfs_arc_meta_min; 3865 } else { 3866 arc_meta_min = arc_c_min / 2; 3867 } 3868 3869 if (zfs_arc_grow_retry > 0) 3870 arc_grow_retry = zfs_arc_grow_retry; 3871 3872 if (zfs_arc_shrink_shift > 0) 3873 arc_shrink_shift = zfs_arc_shrink_shift; 3874 3875 /* 3876 * Ensure that arc_no_grow_shift is less than arc_shrink_shift. 3877 */ 3878 if (arc_no_grow_shift >= arc_shrink_shift) 3879 arc_no_grow_shift = arc_shrink_shift - 1; 3880 3881 if (zfs_arc_p_min_shift > 0) 3882 arc_p_min_shift = zfs_arc_p_min_shift; 3883 3884 /* if kmem_flags are set, lets try to use less memory */ 3885 if (kmem_debugging()) 3886 arc_c = arc_c / 2; 3887 if (arc_c < arc_c_min) 3888 arc_c = arc_c_min; 3889 3890 arc_anon = &ARC_anon; 3891 arc_mru = &ARC_mru; 3892 arc_mru_ghost = &ARC_mru_ghost; 3893 arc_mfu = &ARC_mfu; 3894 arc_mfu_ghost = &ARC_mfu_ghost; 3895 arc_l2c_only = &ARC_l2c_only; 3896 arc_size = 0; 3897 3898 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3899 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3900 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3901 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3902 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3903 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3904 3905 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3906 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3907 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3908 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3909 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3910 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3911 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3912 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3913 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3914 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3915 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3916 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3917 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3918 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3919 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3920 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3921 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3922 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3923 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3924 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3925 3926 buf_init(); 3927 3928 arc_thread_exit = 0; 3929 arc_eviction_list = NULL; 3930 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3931 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3932 3933 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3934 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3935 3936 if (arc_ksp != NULL) { 3937 arc_ksp->ks_data = &arc_stats; 3938 kstat_install(arc_ksp); 3939 } 3940 3941 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3942 TS_RUN, minclsyspri); 3943 3944 arc_dead = FALSE; 3945 arc_warm = B_FALSE; 3946 3947 /* 3948 * Calculate maximum amount of dirty data per pool. 3949 * 3950 * If it has been set by /etc/system, take that. 3951 * Otherwise, use a percentage of physical memory defined by 3952 * zfs_dirty_data_max_percent (default 10%) with a cap at 3953 * zfs_dirty_data_max_max (default 4GB). 3954 */ 3955 if (zfs_dirty_data_max == 0) { 3956 zfs_dirty_data_max = physmem * PAGESIZE * 3957 zfs_dirty_data_max_percent / 100; 3958 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 3959 zfs_dirty_data_max_max); 3960 } 3961 } 3962 3963 void 3964 arc_fini(void) 3965 { 3966 mutex_enter(&arc_reclaim_thr_lock); 3967 arc_thread_exit = 1; 3968 while (arc_thread_exit != 0) 3969 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3970 mutex_exit(&arc_reclaim_thr_lock); 3971 3972 arc_flush(NULL); 3973 3974 arc_dead = TRUE; 3975 3976 if (arc_ksp != NULL) { 3977 kstat_delete(arc_ksp); 3978 arc_ksp = NULL; 3979 } 3980 3981 mutex_destroy(&arc_eviction_mtx); 3982 mutex_destroy(&arc_reclaim_thr_lock); 3983 cv_destroy(&arc_reclaim_thr_cv); 3984 3985 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3986 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3987 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3988 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3989 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3990 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3991 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3992 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3993 3994 mutex_destroy(&arc_anon->arcs_mtx); 3995 mutex_destroy(&arc_mru->arcs_mtx); 3996 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3997 mutex_destroy(&arc_mfu->arcs_mtx); 3998 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3999 mutex_destroy(&arc_l2c_only->arcs_mtx); 4000 4001 buf_fini(); 4002 4003 ASSERT(arc_loaned_bytes == 0); 4004 } 4005 4006 /* 4007 * Level 2 ARC 4008 * 4009 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 4010 * It uses dedicated storage devices to hold cached data, which are populated 4011 * using large infrequent writes. The main role of this cache is to boost 4012 * the performance of random read workloads. The intended L2ARC devices 4013 * include short-stroked disks, solid state disks, and other media with 4014 * substantially faster read latency than disk. 4015 * 4016 * +-----------------------+ 4017 * | ARC | 4018 * +-----------------------+ 4019 * | ^ ^ 4020 * | | | 4021 * l2arc_feed_thread() arc_read() 4022 * | | | 4023 * | l2arc read | 4024 * V | | 4025 * +---------------+ | 4026 * | L2ARC | | 4027 * +---------------+ | 4028 * | ^ | 4029 * l2arc_write() | | 4030 * | | | 4031 * V | | 4032 * +-------+ +-------+ 4033 * | vdev | | vdev | 4034 * | cache | | cache | 4035 * +-------+ +-------+ 4036 * +=========+ .-----. 4037 * : L2ARC : |-_____-| 4038 * : devices : | Disks | 4039 * +=========+ `-_____-' 4040 * 4041 * Read requests are satisfied from the following sources, in order: 4042 * 4043 * 1) ARC 4044 * 2) vdev cache of L2ARC devices 4045 * 3) L2ARC devices 4046 * 4) vdev cache of disks 4047 * 5) disks 4048 * 4049 * Some L2ARC device types exhibit extremely slow write performance. 4050 * To accommodate for this there are some significant differences between 4051 * the L2ARC and traditional cache design: 4052 * 4053 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 4054 * the ARC behave as usual, freeing buffers and placing headers on ghost 4055 * lists. The ARC does not send buffers to the L2ARC during eviction as 4056 * this would add inflated write latencies for all ARC memory pressure. 4057 * 4058 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 4059 * It does this by periodically scanning buffers from the eviction-end of 4060 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 4061 * not already there. It scans until a headroom of buffers is satisfied, 4062 * which itself is a buffer for ARC eviction. If a compressible buffer is 4063 * found during scanning and selected for writing to an L2ARC device, we 4064 * temporarily boost scanning headroom during the next scan cycle to make 4065 * sure we adapt to compression effects (which might significantly reduce 4066 * the data volume we write to L2ARC). The thread that does this is 4067 * l2arc_feed_thread(), illustrated below; example sizes are included to 4068 * provide a better sense of ratio than this diagram: 4069 * 4070 * head --> tail 4071 * +---------------------+----------+ 4072 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 4073 * +---------------------+----------+ | o L2ARC eligible 4074 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 4075 * +---------------------+----------+ | 4076 * 15.9 Gbytes ^ 32 Mbytes | 4077 * headroom | 4078 * l2arc_feed_thread() 4079 * | 4080 * l2arc write hand <--[oooo]--' 4081 * | 8 Mbyte 4082 * | write max 4083 * V 4084 * +==============================+ 4085 * L2ARC dev |####|#|###|###| |####| ... | 4086 * +==============================+ 4087 * 32 Gbytes 4088 * 4089 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 4090 * evicted, then the L2ARC has cached a buffer much sooner than it probably 4091 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 4092 * safe to say that this is an uncommon case, since buffers at the end of 4093 * the ARC lists have moved there due to inactivity. 4094 * 4095 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 4096 * then the L2ARC simply misses copying some buffers. This serves as a 4097 * pressure valve to prevent heavy read workloads from both stalling the ARC 4098 * with waits and clogging the L2ARC with writes. This also helps prevent 4099 * the potential for the L2ARC to churn if it attempts to cache content too 4100 * quickly, such as during backups of the entire pool. 4101 * 4102 * 5. After system boot and before the ARC has filled main memory, there are 4103 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 4104 * lists can remain mostly static. Instead of searching from tail of these 4105 * lists as pictured, the l2arc_feed_thread() will search from the list heads 4106 * for eligible buffers, greatly increasing its chance of finding them. 4107 * 4108 * The L2ARC device write speed is also boosted during this time so that 4109 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 4110 * there are no L2ARC reads, and no fear of degrading read performance 4111 * through increased writes. 4112 * 4113 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 4114 * the vdev queue can aggregate them into larger and fewer writes. Each 4115 * device is written to in a rotor fashion, sweeping writes through 4116 * available space then repeating. 4117 * 4118 * 7. The L2ARC does not store dirty content. It never needs to flush 4119 * write buffers back to disk based storage. 4120 * 4121 * 8. If an ARC buffer is written (and dirtied) which also exists in the 4122 * L2ARC, the now stale L2ARC buffer is immediately dropped. 4123 * 4124 * The performance of the L2ARC can be tweaked by a number of tunables, which 4125 * may be necessary for different workloads: 4126 * 4127 * l2arc_write_max max write bytes per interval 4128 * l2arc_write_boost extra write bytes during device warmup 4129 * l2arc_noprefetch skip caching prefetched buffers 4130 * l2arc_headroom number of max device writes to precache 4131 * l2arc_headroom_boost when we find compressed buffers during ARC 4132 * scanning, we multiply headroom by this 4133 * percentage factor for the next scan cycle, 4134 * since more compressed buffers are likely to 4135 * be present 4136 * l2arc_feed_secs seconds between L2ARC writing 4137 * 4138 * Tunables may be removed or added as future performance improvements are 4139 * integrated, and also may become zpool properties. 4140 * 4141 * There are three key functions that control how the L2ARC warms up: 4142 * 4143 * l2arc_write_eligible() check if a buffer is eligible to cache 4144 * l2arc_write_size() calculate how much to write 4145 * l2arc_write_interval() calculate sleep delay between writes 4146 * 4147 * These three functions determine what to write, how much, and how quickly 4148 * to send writes. 4149 */ 4150 4151 static boolean_t 4152 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 4153 { 4154 /* 4155 * A buffer is *not* eligible for the L2ARC if it: 4156 * 1. belongs to a different spa. 4157 * 2. is already cached on the L2ARC. 4158 * 3. has an I/O in progress (it may be an incomplete read). 4159 * 4. is flagged not eligible (zfs property). 4160 */ 4161 if (hdr->b_spa != spa_guid || hdr->b_l2hdr != NULL || 4162 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 4163 return (B_FALSE); 4164 4165 return (B_TRUE); 4166 } 4167 4168 static uint64_t 4169 l2arc_write_size(void) 4170 { 4171 uint64_t size; 4172 4173 /* 4174 * Make sure our globals have meaningful values in case the user 4175 * altered them. 4176 */ 4177 size = l2arc_write_max; 4178 if (size == 0) { 4179 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 4180 "be greater than zero, resetting it to the default (%d)", 4181 L2ARC_WRITE_SIZE); 4182 size = l2arc_write_max = L2ARC_WRITE_SIZE; 4183 } 4184 4185 if (arc_warm == B_FALSE) 4186 size += l2arc_write_boost; 4187 4188 return (size); 4189 4190 } 4191 4192 static clock_t 4193 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 4194 { 4195 clock_t interval, next, now; 4196 4197 /* 4198 * If the ARC lists are busy, increase our write rate; if the 4199 * lists are stale, idle back. This is achieved by checking 4200 * how much we previously wrote - if it was more than half of 4201 * what we wanted, schedule the next write much sooner. 4202 */ 4203 if (l2arc_feed_again && wrote > (wanted / 2)) 4204 interval = (hz * l2arc_feed_min_ms) / 1000; 4205 else 4206 interval = hz * l2arc_feed_secs; 4207 4208 now = ddi_get_lbolt(); 4209 next = MAX(now, MIN(now + interval, began + interval)); 4210 4211 return (next); 4212 } 4213 4214 static void 4215 l2arc_hdr_stat_add(void) 4216 { 4217 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 4218 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 4219 } 4220 4221 static void 4222 l2arc_hdr_stat_remove(void) 4223 { 4224 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 4225 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 4226 } 4227 4228 /* 4229 * Cycle through L2ARC devices. This is how L2ARC load balances. 4230 * If a device is returned, this also returns holding the spa config lock. 4231 */ 4232 static l2arc_dev_t * 4233 l2arc_dev_get_next(void) 4234 { 4235 l2arc_dev_t *first, *next = NULL; 4236 4237 /* 4238 * Lock out the removal of spas (spa_namespace_lock), then removal 4239 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 4240 * both locks will be dropped and a spa config lock held instead. 4241 */ 4242 mutex_enter(&spa_namespace_lock); 4243 mutex_enter(&l2arc_dev_mtx); 4244 4245 /* if there are no vdevs, there is nothing to do */ 4246 if (l2arc_ndev == 0) 4247 goto out; 4248 4249 first = NULL; 4250 next = l2arc_dev_last; 4251 do { 4252 /* loop around the list looking for a non-faulted vdev */ 4253 if (next == NULL) { 4254 next = list_head(l2arc_dev_list); 4255 } else { 4256 next = list_next(l2arc_dev_list, next); 4257 if (next == NULL) 4258 next = list_head(l2arc_dev_list); 4259 } 4260 4261 /* if we have come back to the start, bail out */ 4262 if (first == NULL) 4263 first = next; 4264 else if (next == first) 4265 break; 4266 4267 } while (vdev_is_dead(next->l2ad_vdev)); 4268 4269 /* if we were unable to find any usable vdevs, return NULL */ 4270 if (vdev_is_dead(next->l2ad_vdev)) 4271 next = NULL; 4272 4273 l2arc_dev_last = next; 4274 4275 out: 4276 mutex_exit(&l2arc_dev_mtx); 4277 4278 /* 4279 * Grab the config lock to prevent the 'next' device from being 4280 * removed while we are writing to it. 4281 */ 4282 if (next != NULL) 4283 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 4284 mutex_exit(&spa_namespace_lock); 4285 4286 return (next); 4287 } 4288 4289 /* 4290 * Free buffers that were tagged for destruction. 4291 */ 4292 static void 4293 l2arc_do_free_on_write() 4294 { 4295 list_t *buflist; 4296 l2arc_data_free_t *df, *df_prev; 4297 4298 mutex_enter(&l2arc_free_on_write_mtx); 4299 buflist = l2arc_free_on_write; 4300 4301 for (df = list_tail(buflist); df; df = df_prev) { 4302 df_prev = list_prev(buflist, df); 4303 ASSERT(df->l2df_data != NULL); 4304 ASSERT(df->l2df_func != NULL); 4305 df->l2df_func(df->l2df_data, df->l2df_size); 4306 list_remove(buflist, df); 4307 kmem_free(df, sizeof (l2arc_data_free_t)); 4308 } 4309 4310 mutex_exit(&l2arc_free_on_write_mtx); 4311 } 4312 4313 /* 4314 * A write to a cache device has completed. Update all headers to allow 4315 * reads from these buffers to begin. 4316 */ 4317 static void 4318 l2arc_write_done(zio_t *zio) 4319 { 4320 l2arc_write_callback_t *cb; 4321 l2arc_dev_t *dev; 4322 list_t *buflist; 4323 arc_buf_hdr_t *head, *hdr, *hdr_prev; 4324 l2arc_buf_hdr_t *abl2; 4325 kmutex_t *hash_lock; 4326 int64_t bytes_dropped = 0; 4327 4328 cb = zio->io_private; 4329 ASSERT(cb != NULL); 4330 dev = cb->l2wcb_dev; 4331 ASSERT(dev != NULL); 4332 head = cb->l2wcb_head; 4333 ASSERT(head != NULL); 4334 buflist = dev->l2ad_buflist; 4335 ASSERT(buflist != NULL); 4336 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 4337 l2arc_write_callback_t *, cb); 4338 4339 if (zio->io_error != 0) 4340 ARCSTAT_BUMP(arcstat_l2_writes_error); 4341 4342 mutex_enter(&l2arc_buflist_mtx); 4343 4344 /* 4345 * All writes completed, or an error was hit. 4346 */ 4347 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 4348 hdr_prev = list_prev(buflist, hdr); 4349 abl2 = hdr->b_l2hdr; 4350 4351 /* 4352 * Release the temporary compressed buffer as soon as possible. 4353 */ 4354 if (abl2->b_compress != ZIO_COMPRESS_OFF) 4355 l2arc_release_cdata_buf(hdr); 4356 4357 hash_lock = HDR_LOCK(hdr); 4358 if (!mutex_tryenter(hash_lock)) { 4359 /* 4360 * This buffer misses out. It may be in a stage 4361 * of eviction. Its ARC_L2_WRITING flag will be 4362 * left set, denying reads to this buffer. 4363 */ 4364 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 4365 continue; 4366 } 4367 4368 if (zio->io_error != 0) { 4369 /* 4370 * Error - drop L2ARC entry. 4371 */ 4372 list_remove(buflist, hdr); 4373 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); 4374 bytes_dropped += abl2->b_asize; 4375 hdr->b_l2hdr = NULL; 4376 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4377 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 4378 } 4379 4380 /* 4381 * Allow ARC to begin reads to this L2ARC entry. 4382 */ 4383 hdr->b_flags &= ~ARC_FLAG_L2_WRITING; 4384 4385 mutex_exit(hash_lock); 4386 } 4387 4388 atomic_inc_64(&l2arc_writes_done); 4389 list_remove(buflist, head); 4390 kmem_cache_free(hdr_cache, head); 4391 mutex_exit(&l2arc_buflist_mtx); 4392 4393 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 4394 4395 l2arc_do_free_on_write(); 4396 4397 kmem_free(cb, sizeof (l2arc_write_callback_t)); 4398 } 4399 4400 /* 4401 * A read to a cache device completed. Validate buffer contents before 4402 * handing over to the regular ARC routines. 4403 */ 4404 static void 4405 l2arc_read_done(zio_t *zio) 4406 { 4407 l2arc_read_callback_t *cb; 4408 arc_buf_hdr_t *hdr; 4409 arc_buf_t *buf; 4410 kmutex_t *hash_lock; 4411 int equal; 4412 4413 ASSERT(zio->io_vd != NULL); 4414 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 4415 4416 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 4417 4418 cb = zio->io_private; 4419 ASSERT(cb != NULL); 4420 buf = cb->l2rcb_buf; 4421 ASSERT(buf != NULL); 4422 4423 hash_lock = HDR_LOCK(buf->b_hdr); 4424 mutex_enter(hash_lock); 4425 hdr = buf->b_hdr; 4426 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 4427 4428 /* 4429 * If the buffer was compressed, decompress it first. 4430 */ 4431 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF) 4432 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress); 4433 ASSERT(zio->io_data != NULL); 4434 4435 /* 4436 * Check this survived the L2ARC journey. 4437 */ 4438 equal = arc_cksum_equal(buf); 4439 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 4440 mutex_exit(hash_lock); 4441 zio->io_private = buf; 4442 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 4443 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4444 arc_read_done(zio); 4445 } else { 4446 mutex_exit(hash_lock); 4447 /* 4448 * Buffer didn't survive caching. Increment stats and 4449 * reissue to the original storage device. 4450 */ 4451 if (zio->io_error != 0) { 4452 ARCSTAT_BUMP(arcstat_l2_io_error); 4453 } else { 4454 zio->io_error = SET_ERROR(EIO); 4455 } 4456 if (!equal) 4457 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4458 4459 /* 4460 * If there's no waiter, issue an async i/o to the primary 4461 * storage now. If there *is* a waiter, the caller must 4462 * issue the i/o in a context where it's OK to block. 4463 */ 4464 if (zio->io_waiter == NULL) { 4465 zio_t *pio = zio_unique_parent(zio); 4466 4467 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4468 4469 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4470 buf->b_data, zio->io_size, arc_read_done, buf, 4471 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4472 } 4473 } 4474 4475 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4476 } 4477 4478 /* 4479 * This is the list priority from which the L2ARC will search for pages to 4480 * cache. This is used within loops (0..3) to cycle through lists in the 4481 * desired order. This order can have a significant effect on cache 4482 * performance. 4483 * 4484 * Currently the metadata lists are hit first, MFU then MRU, followed by 4485 * the data lists. This function returns a locked list, and also returns 4486 * the lock pointer. 4487 */ 4488 static list_t * 4489 l2arc_list_locked(int list_num, kmutex_t **lock) 4490 { 4491 list_t *list = NULL; 4492 4493 ASSERT(list_num >= 0 && list_num <= 3); 4494 4495 switch (list_num) { 4496 case 0: 4497 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4498 *lock = &arc_mfu->arcs_mtx; 4499 break; 4500 case 1: 4501 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4502 *lock = &arc_mru->arcs_mtx; 4503 break; 4504 case 2: 4505 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4506 *lock = &arc_mfu->arcs_mtx; 4507 break; 4508 case 3: 4509 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4510 *lock = &arc_mru->arcs_mtx; 4511 break; 4512 } 4513 4514 ASSERT(!(MUTEX_HELD(*lock))); 4515 mutex_enter(*lock); 4516 return (list); 4517 } 4518 4519 /* 4520 * Evict buffers from the device write hand to the distance specified in 4521 * bytes. This distance may span populated buffers, it may span nothing. 4522 * This is clearing a region on the L2ARC device ready for writing. 4523 * If the 'all' boolean is set, every buffer is evicted. 4524 */ 4525 static void 4526 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4527 { 4528 list_t *buflist; 4529 l2arc_buf_hdr_t *abl2; 4530 arc_buf_hdr_t *hdr, *hdr_prev; 4531 kmutex_t *hash_lock; 4532 uint64_t taddr; 4533 int64_t bytes_evicted = 0; 4534 4535 buflist = dev->l2ad_buflist; 4536 4537 if (buflist == NULL) 4538 return; 4539 4540 if (!all && dev->l2ad_first) { 4541 /* 4542 * This is the first sweep through the device. There is 4543 * nothing to evict. 4544 */ 4545 return; 4546 } 4547 4548 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4549 /* 4550 * When nearing the end of the device, evict to the end 4551 * before the device write hand jumps to the start. 4552 */ 4553 taddr = dev->l2ad_end; 4554 } else { 4555 taddr = dev->l2ad_hand + distance; 4556 } 4557 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4558 uint64_t, taddr, boolean_t, all); 4559 4560 top: 4561 mutex_enter(&l2arc_buflist_mtx); 4562 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 4563 hdr_prev = list_prev(buflist, hdr); 4564 4565 hash_lock = HDR_LOCK(hdr); 4566 if (!mutex_tryenter(hash_lock)) { 4567 /* 4568 * Missed the hash lock. Retry. 4569 */ 4570 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4571 mutex_exit(&l2arc_buflist_mtx); 4572 mutex_enter(hash_lock); 4573 mutex_exit(hash_lock); 4574 goto top; 4575 } 4576 4577 if (HDR_L2_WRITE_HEAD(hdr)) { 4578 /* 4579 * We hit a write head node. Leave it for 4580 * l2arc_write_done(). 4581 */ 4582 list_remove(buflist, hdr); 4583 mutex_exit(hash_lock); 4584 continue; 4585 } 4586 4587 if (!all && hdr->b_l2hdr != NULL && 4588 (hdr->b_l2hdr->b_daddr > taddr || 4589 hdr->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4590 /* 4591 * We've evicted to the target address, 4592 * or the end of the device. 4593 */ 4594 mutex_exit(hash_lock); 4595 break; 4596 } 4597 4598 if (HDR_FREE_IN_PROGRESS(hdr)) { 4599 /* 4600 * Already on the path to destruction. 4601 */ 4602 mutex_exit(hash_lock); 4603 continue; 4604 } 4605 4606 if (hdr->b_state == arc_l2c_only) { 4607 ASSERT(!HDR_L2_READING(hdr)); 4608 /* 4609 * This doesn't exist in the ARC. Destroy. 4610 * arc_hdr_destroy() will call list_remove() 4611 * and decrement arcstat_l2_size. 4612 */ 4613 arc_change_state(arc_anon, hdr, hash_lock); 4614 arc_hdr_destroy(hdr); 4615 } else { 4616 /* 4617 * Invalidate issued or about to be issued 4618 * reads, since we may be about to write 4619 * over this location. 4620 */ 4621 if (HDR_L2_READING(hdr)) { 4622 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4623 hdr->b_flags |= ARC_FLAG_L2_EVICTED; 4624 } 4625 4626 /* 4627 * Tell ARC this no longer exists in L2ARC. 4628 */ 4629 if (hdr->b_l2hdr != NULL) { 4630 abl2 = hdr->b_l2hdr; 4631 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); 4632 bytes_evicted += abl2->b_asize; 4633 hdr->b_l2hdr = NULL; 4634 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4635 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 4636 } 4637 list_remove(buflist, hdr); 4638 4639 /* 4640 * This may have been leftover after a 4641 * failed write. 4642 */ 4643 hdr->b_flags &= ~ARC_FLAG_L2_WRITING; 4644 } 4645 mutex_exit(hash_lock); 4646 } 4647 mutex_exit(&l2arc_buflist_mtx); 4648 4649 vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0); 4650 dev->l2ad_evict = taddr; 4651 } 4652 4653 /* 4654 * Find and write ARC buffers to the L2ARC device. 4655 * 4656 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 4657 * for reading until they have completed writing. 4658 * The headroom_boost is an in-out parameter used to maintain headroom boost 4659 * state between calls to this function. 4660 * 4661 * Returns the number of bytes actually written (which may be smaller than 4662 * the delta by which the device hand has changed due to alignment). 4663 */ 4664 static uint64_t 4665 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz, 4666 boolean_t *headroom_boost) 4667 { 4668 arc_buf_hdr_t *hdr, *hdr_prev, *head; 4669 list_t *list; 4670 uint64_t write_asize, write_psize, write_sz, headroom, 4671 buf_compress_minsz; 4672 void *buf_data; 4673 kmutex_t *list_lock; 4674 boolean_t full; 4675 l2arc_write_callback_t *cb; 4676 zio_t *pio, *wzio; 4677 uint64_t guid = spa_load_guid(spa); 4678 const boolean_t do_headroom_boost = *headroom_boost; 4679 4680 ASSERT(dev->l2ad_vdev != NULL); 4681 4682 /* Lower the flag now, we might want to raise it again later. */ 4683 *headroom_boost = B_FALSE; 4684 4685 pio = NULL; 4686 write_sz = write_asize = write_psize = 0; 4687 full = B_FALSE; 4688 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4689 head->b_flags |= ARC_FLAG_L2_WRITE_HEAD; 4690 4691 /* 4692 * We will want to try to compress buffers that are at least 2x the 4693 * device sector size. 4694 */ 4695 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift; 4696 4697 /* 4698 * Copy buffers for L2ARC writing. 4699 */ 4700 mutex_enter(&l2arc_buflist_mtx); 4701 for (int try = 0; try <= 3; try++) { 4702 uint64_t passed_sz = 0; 4703 4704 list = l2arc_list_locked(try, &list_lock); 4705 4706 /* 4707 * L2ARC fast warmup. 4708 * 4709 * Until the ARC is warm and starts to evict, read from the 4710 * head of the ARC lists rather than the tail. 4711 */ 4712 if (arc_warm == B_FALSE) 4713 hdr = list_head(list); 4714 else 4715 hdr = list_tail(list); 4716 4717 headroom = target_sz * l2arc_headroom; 4718 if (do_headroom_boost) 4719 headroom = (headroom * l2arc_headroom_boost) / 100; 4720 4721 for (; hdr; hdr = hdr_prev) { 4722 l2arc_buf_hdr_t *l2hdr; 4723 kmutex_t *hash_lock; 4724 uint64_t buf_sz; 4725 4726 if (arc_warm == B_FALSE) 4727 hdr_prev = list_next(list, hdr); 4728 else 4729 hdr_prev = list_prev(list, hdr); 4730 4731 hash_lock = HDR_LOCK(hdr); 4732 if (!mutex_tryenter(hash_lock)) { 4733 /* 4734 * Skip this buffer rather than waiting. 4735 */ 4736 continue; 4737 } 4738 4739 passed_sz += hdr->b_size; 4740 if (passed_sz > headroom) { 4741 /* 4742 * Searched too far. 4743 */ 4744 mutex_exit(hash_lock); 4745 break; 4746 } 4747 4748 if (!l2arc_write_eligible(guid, hdr)) { 4749 mutex_exit(hash_lock); 4750 continue; 4751 } 4752 4753 if ((write_sz + hdr->b_size) > target_sz) { 4754 full = B_TRUE; 4755 mutex_exit(hash_lock); 4756 break; 4757 } 4758 4759 if (pio == NULL) { 4760 /* 4761 * Insert a dummy header on the buflist so 4762 * l2arc_write_done() can find where the 4763 * write buffers begin without searching. 4764 */ 4765 list_insert_head(dev->l2ad_buflist, head); 4766 4767 cb = kmem_alloc( 4768 sizeof (l2arc_write_callback_t), KM_SLEEP); 4769 cb->l2wcb_dev = dev; 4770 cb->l2wcb_head = head; 4771 pio = zio_root(spa, l2arc_write_done, cb, 4772 ZIO_FLAG_CANFAIL); 4773 } 4774 4775 /* 4776 * Create and add a new L2ARC header. 4777 */ 4778 l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4779 l2hdr->b_dev = dev; 4780 hdr->b_flags |= ARC_FLAG_L2_WRITING; 4781 4782 /* 4783 * Temporarily stash the data buffer in b_tmp_cdata. 4784 * The subsequent write step will pick it up from 4785 * there. This is because can't access hdr->b_buf 4786 * without holding the hash_lock, which we in turn 4787 * can't access without holding the ARC list locks 4788 * (which we want to avoid during compression/writing). 4789 */ 4790 l2hdr->b_compress = ZIO_COMPRESS_OFF; 4791 l2hdr->b_asize = hdr->b_size; 4792 l2hdr->b_tmp_cdata = hdr->b_buf->b_data; 4793 4794 buf_sz = hdr->b_size; 4795 hdr->b_l2hdr = l2hdr; 4796 4797 list_insert_head(dev->l2ad_buflist, hdr); 4798 4799 /* 4800 * Compute and store the buffer cksum before 4801 * writing. On debug the cksum is verified first. 4802 */ 4803 arc_cksum_verify(hdr->b_buf); 4804 arc_cksum_compute(hdr->b_buf, B_TRUE); 4805 4806 mutex_exit(hash_lock); 4807 4808 write_sz += buf_sz; 4809 } 4810 4811 mutex_exit(list_lock); 4812 4813 if (full == B_TRUE) 4814 break; 4815 } 4816 4817 /* No buffers selected for writing? */ 4818 if (pio == NULL) { 4819 ASSERT0(write_sz); 4820 mutex_exit(&l2arc_buflist_mtx); 4821 kmem_cache_free(hdr_cache, head); 4822 return (0); 4823 } 4824 4825 /* 4826 * Now start writing the buffers. We're starting at the write head 4827 * and work backwards, retracing the course of the buffer selector 4828 * loop above. 4829 */ 4830 for (hdr = list_prev(dev->l2ad_buflist, head); hdr; 4831 hdr = list_prev(dev->l2ad_buflist, hdr)) { 4832 l2arc_buf_hdr_t *l2hdr; 4833 uint64_t buf_sz; 4834 4835 /* 4836 * We shouldn't need to lock the buffer here, since we flagged 4837 * it as ARC_FLAG_L2_WRITING in the previous step, but we must 4838 * take care to only access its L2 cache parameters. In 4839 * particular, hdr->b_buf may be invalid by now due to 4840 * ARC eviction. 4841 */ 4842 l2hdr = hdr->b_l2hdr; 4843 l2hdr->b_daddr = dev->l2ad_hand; 4844 4845 if ((hdr->b_flags & ARC_FLAG_L2COMPRESS) && 4846 l2hdr->b_asize >= buf_compress_minsz) { 4847 if (l2arc_compress_buf(l2hdr)) { 4848 /* 4849 * If compression succeeded, enable headroom 4850 * boost on the next scan cycle. 4851 */ 4852 *headroom_boost = B_TRUE; 4853 } 4854 } 4855 4856 /* 4857 * Pick up the buffer data we had previously stashed away 4858 * (and now potentially also compressed). 4859 */ 4860 buf_data = l2hdr->b_tmp_cdata; 4861 buf_sz = l2hdr->b_asize; 4862 4863 /* Compression may have squashed the buffer to zero length. */ 4864 if (buf_sz != 0) { 4865 uint64_t buf_p_sz; 4866 4867 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4868 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4869 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4870 ZIO_FLAG_CANFAIL, B_FALSE); 4871 4872 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4873 zio_t *, wzio); 4874 (void) zio_nowait(wzio); 4875 4876 write_asize += buf_sz; 4877 /* 4878 * Keep the clock hand suitably device-aligned. 4879 */ 4880 buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4881 write_psize += buf_p_sz; 4882 dev->l2ad_hand += buf_p_sz; 4883 } 4884 } 4885 4886 mutex_exit(&l2arc_buflist_mtx); 4887 4888 ASSERT3U(write_asize, <=, target_sz); 4889 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4890 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize); 4891 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4892 ARCSTAT_INCR(arcstat_l2_asize, write_asize); 4893 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0); 4894 4895 /* 4896 * Bump device hand to the device start if it is approaching the end. 4897 * l2arc_evict() will already have evicted ahead for this case. 4898 */ 4899 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4900 dev->l2ad_hand = dev->l2ad_start; 4901 dev->l2ad_evict = dev->l2ad_start; 4902 dev->l2ad_first = B_FALSE; 4903 } 4904 4905 dev->l2ad_writing = B_TRUE; 4906 (void) zio_wait(pio); 4907 dev->l2ad_writing = B_FALSE; 4908 4909 return (write_asize); 4910 } 4911 4912 /* 4913 * Compresses an L2ARC buffer. 4914 * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its 4915 * size in l2hdr->b_asize. This routine tries to compress the data and 4916 * depending on the compression result there are three possible outcomes: 4917 * *) The buffer was incompressible. The original l2hdr contents were left 4918 * untouched and are ready for writing to an L2 device. 4919 * *) The buffer was all-zeros, so there is no need to write it to an L2 4920 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is 4921 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY. 4922 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary 4923 * data buffer which holds the compressed data to be written, and b_asize 4924 * tells us how much data there is. b_compress is set to the appropriate 4925 * compression algorithm. Once writing is done, invoke 4926 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer. 4927 * 4928 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the 4929 * buffer was incompressible). 4930 */ 4931 static boolean_t 4932 l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr) 4933 { 4934 void *cdata; 4935 size_t csize, len, rounded; 4936 4937 ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF); 4938 ASSERT(l2hdr->b_tmp_cdata != NULL); 4939 4940 len = l2hdr->b_asize; 4941 cdata = zio_data_buf_alloc(len); 4942 csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata, 4943 cdata, l2hdr->b_asize); 4944 4945 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE); 4946 if (rounded > csize) { 4947 bzero((char *)cdata + csize, rounded - csize); 4948 csize = rounded; 4949 } 4950 4951 if (csize == 0) { 4952 /* zero block, indicate that there's nothing to write */ 4953 zio_data_buf_free(cdata, len); 4954 l2hdr->b_compress = ZIO_COMPRESS_EMPTY; 4955 l2hdr->b_asize = 0; 4956 l2hdr->b_tmp_cdata = NULL; 4957 ARCSTAT_BUMP(arcstat_l2_compress_zeros); 4958 return (B_TRUE); 4959 } else if (csize > 0 && csize < len) { 4960 /* 4961 * Compression succeeded, we'll keep the cdata around for 4962 * writing and release it afterwards. 4963 */ 4964 l2hdr->b_compress = ZIO_COMPRESS_LZ4; 4965 l2hdr->b_asize = csize; 4966 l2hdr->b_tmp_cdata = cdata; 4967 ARCSTAT_BUMP(arcstat_l2_compress_successes); 4968 return (B_TRUE); 4969 } else { 4970 /* 4971 * Compression failed, release the compressed buffer. 4972 * l2hdr will be left unmodified. 4973 */ 4974 zio_data_buf_free(cdata, len); 4975 ARCSTAT_BUMP(arcstat_l2_compress_failures); 4976 return (B_FALSE); 4977 } 4978 } 4979 4980 /* 4981 * Decompresses a zio read back from an l2arc device. On success, the 4982 * underlying zio's io_data buffer is overwritten by the uncompressed 4983 * version. On decompression error (corrupt compressed stream), the 4984 * zio->io_error value is set to signal an I/O error. 4985 * 4986 * Please note that the compressed data stream is not checksummed, so 4987 * if the underlying device is experiencing data corruption, we may feed 4988 * corrupt data to the decompressor, so the decompressor needs to be 4989 * able to handle this situation (LZ4 does). 4990 */ 4991 static void 4992 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c) 4993 { 4994 ASSERT(L2ARC_IS_VALID_COMPRESS(c)); 4995 4996 if (zio->io_error != 0) { 4997 /* 4998 * An io error has occured, just restore the original io 4999 * size in preparation for a main pool read. 5000 */ 5001 zio->io_orig_size = zio->io_size = hdr->b_size; 5002 return; 5003 } 5004 5005 if (c == ZIO_COMPRESS_EMPTY) { 5006 /* 5007 * An empty buffer results in a null zio, which means we 5008 * need to fill its io_data after we're done restoring the 5009 * buffer's contents. 5010 */ 5011 ASSERT(hdr->b_buf != NULL); 5012 bzero(hdr->b_buf->b_data, hdr->b_size); 5013 zio->io_data = zio->io_orig_data = hdr->b_buf->b_data; 5014 } else { 5015 ASSERT(zio->io_data != NULL); 5016 /* 5017 * We copy the compressed data from the start of the arc buffer 5018 * (the zio_read will have pulled in only what we need, the 5019 * rest is garbage which we will overwrite at decompression) 5020 * and then decompress back to the ARC data buffer. This way we 5021 * can minimize copying by simply decompressing back over the 5022 * original compressed data (rather than decompressing to an 5023 * aux buffer and then copying back the uncompressed buffer, 5024 * which is likely to be much larger). 5025 */ 5026 uint64_t csize; 5027 void *cdata; 5028 5029 csize = zio->io_size; 5030 cdata = zio_data_buf_alloc(csize); 5031 bcopy(zio->io_data, cdata, csize); 5032 if (zio_decompress_data(c, cdata, zio->io_data, csize, 5033 hdr->b_size) != 0) 5034 zio->io_error = EIO; 5035 zio_data_buf_free(cdata, csize); 5036 } 5037 5038 /* Restore the expected uncompressed IO size. */ 5039 zio->io_orig_size = zio->io_size = hdr->b_size; 5040 } 5041 5042 /* 5043 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure. 5044 * This buffer serves as a temporary holder of compressed data while 5045 * the buffer entry is being written to an l2arc device. Once that is 5046 * done, we can dispose of it. 5047 */ 5048 static void 5049 l2arc_release_cdata_buf(arc_buf_hdr_t *hdr) 5050 { 5051 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 5052 5053 if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) { 5054 /* 5055 * If the data was compressed, then we've allocated a 5056 * temporary buffer for it, so now we need to release it. 5057 */ 5058 ASSERT(l2hdr->b_tmp_cdata != NULL); 5059 zio_data_buf_free(l2hdr->b_tmp_cdata, hdr->b_size); 5060 } 5061 l2hdr->b_tmp_cdata = NULL; 5062 } 5063 5064 /* 5065 * This thread feeds the L2ARC at regular intervals. This is the beating 5066 * heart of the L2ARC. 5067 */ 5068 static void 5069 l2arc_feed_thread(void) 5070 { 5071 callb_cpr_t cpr; 5072 l2arc_dev_t *dev; 5073 spa_t *spa; 5074 uint64_t size, wrote; 5075 clock_t begin, next = ddi_get_lbolt(); 5076 boolean_t headroom_boost = B_FALSE; 5077 5078 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 5079 5080 mutex_enter(&l2arc_feed_thr_lock); 5081 5082 while (l2arc_thread_exit == 0) { 5083 CALLB_CPR_SAFE_BEGIN(&cpr); 5084 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 5085 next); 5086 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 5087 next = ddi_get_lbolt() + hz; 5088 5089 /* 5090 * Quick check for L2ARC devices. 5091 */ 5092 mutex_enter(&l2arc_dev_mtx); 5093 if (l2arc_ndev == 0) { 5094 mutex_exit(&l2arc_dev_mtx); 5095 continue; 5096 } 5097 mutex_exit(&l2arc_dev_mtx); 5098 begin = ddi_get_lbolt(); 5099 5100 /* 5101 * This selects the next l2arc device to write to, and in 5102 * doing so the next spa to feed from: dev->l2ad_spa. This 5103 * will return NULL if there are now no l2arc devices or if 5104 * they are all faulted. 5105 * 5106 * If a device is returned, its spa's config lock is also 5107 * held to prevent device removal. l2arc_dev_get_next() 5108 * will grab and release l2arc_dev_mtx. 5109 */ 5110 if ((dev = l2arc_dev_get_next()) == NULL) 5111 continue; 5112 5113 spa = dev->l2ad_spa; 5114 ASSERT(spa != NULL); 5115 5116 /* 5117 * If the pool is read-only then force the feed thread to 5118 * sleep a little longer. 5119 */ 5120 if (!spa_writeable(spa)) { 5121 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 5122 spa_config_exit(spa, SCL_L2ARC, dev); 5123 continue; 5124 } 5125 5126 /* 5127 * Avoid contributing to memory pressure. 5128 */ 5129 if (arc_reclaim_needed()) { 5130 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 5131 spa_config_exit(spa, SCL_L2ARC, dev); 5132 continue; 5133 } 5134 5135 ARCSTAT_BUMP(arcstat_l2_feeds); 5136 5137 size = l2arc_write_size(); 5138 5139 /* 5140 * Evict L2ARC buffers that will be overwritten. 5141 */ 5142 l2arc_evict(dev, size, B_FALSE); 5143 5144 /* 5145 * Write ARC buffers. 5146 */ 5147 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost); 5148 5149 /* 5150 * Calculate interval between writes. 5151 */ 5152 next = l2arc_write_interval(begin, size, wrote); 5153 spa_config_exit(spa, SCL_L2ARC, dev); 5154 } 5155 5156 l2arc_thread_exit = 0; 5157 cv_broadcast(&l2arc_feed_thr_cv); 5158 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 5159 thread_exit(); 5160 } 5161 5162 boolean_t 5163 l2arc_vdev_present(vdev_t *vd) 5164 { 5165 l2arc_dev_t *dev; 5166 5167 mutex_enter(&l2arc_dev_mtx); 5168 for (dev = list_head(l2arc_dev_list); dev != NULL; 5169 dev = list_next(l2arc_dev_list, dev)) { 5170 if (dev->l2ad_vdev == vd) 5171 break; 5172 } 5173 mutex_exit(&l2arc_dev_mtx); 5174 5175 return (dev != NULL); 5176 } 5177 5178 /* 5179 * Add a vdev for use by the L2ARC. By this point the spa has already 5180 * validated the vdev and opened it. 5181 */ 5182 void 5183 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 5184 { 5185 l2arc_dev_t *adddev; 5186 5187 ASSERT(!l2arc_vdev_present(vd)); 5188 5189 /* 5190 * Create a new l2arc device entry. 5191 */ 5192 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 5193 adddev->l2ad_spa = spa; 5194 adddev->l2ad_vdev = vd; 5195 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 5196 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 5197 adddev->l2ad_hand = adddev->l2ad_start; 5198 adddev->l2ad_evict = adddev->l2ad_start; 5199 adddev->l2ad_first = B_TRUE; 5200 adddev->l2ad_writing = B_FALSE; 5201 5202 /* 5203 * This is a list of all ARC buffers that are still valid on the 5204 * device. 5205 */ 5206 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 5207 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 5208 offsetof(arc_buf_hdr_t, b_l2node)); 5209 5210 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 5211 5212 /* 5213 * Add device to global list 5214 */ 5215 mutex_enter(&l2arc_dev_mtx); 5216 list_insert_head(l2arc_dev_list, adddev); 5217 atomic_inc_64(&l2arc_ndev); 5218 mutex_exit(&l2arc_dev_mtx); 5219 } 5220 5221 /* 5222 * Remove a vdev from the L2ARC. 5223 */ 5224 void 5225 l2arc_remove_vdev(vdev_t *vd) 5226 { 5227 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 5228 5229 /* 5230 * Find the device by vdev 5231 */ 5232 mutex_enter(&l2arc_dev_mtx); 5233 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 5234 nextdev = list_next(l2arc_dev_list, dev); 5235 if (vd == dev->l2ad_vdev) { 5236 remdev = dev; 5237 break; 5238 } 5239 } 5240 ASSERT(remdev != NULL); 5241 5242 /* 5243 * Remove device from global list 5244 */ 5245 list_remove(l2arc_dev_list, remdev); 5246 l2arc_dev_last = NULL; /* may have been invalidated */ 5247 atomic_dec_64(&l2arc_ndev); 5248 mutex_exit(&l2arc_dev_mtx); 5249 5250 /* 5251 * Clear all buflists and ARC references. L2ARC device flush. 5252 */ 5253 l2arc_evict(remdev, 0, B_TRUE); 5254 list_destroy(remdev->l2ad_buflist); 5255 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 5256 kmem_free(remdev, sizeof (l2arc_dev_t)); 5257 } 5258 5259 void 5260 l2arc_init(void) 5261 { 5262 l2arc_thread_exit = 0; 5263 l2arc_ndev = 0; 5264 l2arc_writes_sent = 0; 5265 l2arc_writes_done = 0; 5266 5267 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 5268 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 5269 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 5270 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 5271 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 5272 5273 l2arc_dev_list = &L2ARC_dev_list; 5274 l2arc_free_on_write = &L2ARC_free_on_write; 5275 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 5276 offsetof(l2arc_dev_t, l2ad_node)); 5277 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 5278 offsetof(l2arc_data_free_t, l2df_list_node)); 5279 } 5280 5281 void 5282 l2arc_fini(void) 5283 { 5284 /* 5285 * This is called from dmu_fini(), which is called from spa_fini(); 5286 * Because of this, we can assume that all l2arc devices have 5287 * already been removed when the pools themselves were removed. 5288 */ 5289 5290 l2arc_do_free_on_write(); 5291 5292 mutex_destroy(&l2arc_feed_thr_lock); 5293 cv_destroy(&l2arc_feed_thr_cv); 5294 mutex_destroy(&l2arc_dev_mtx); 5295 mutex_destroy(&l2arc_buflist_mtx); 5296 mutex_destroy(&l2arc_free_on_write_mtx); 5297 5298 list_destroy(l2arc_dev_list); 5299 list_destroy(l2arc_free_on_write); 5300 } 5301 5302 void 5303 l2arc_start(void) 5304 { 5305 if (!(spa_mode_global & FWRITE)) 5306 return; 5307 5308 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 5309 TS_RUN, minclsyspri); 5310 } 5311 5312 void 5313 l2arc_stop(void) 5314 { 5315 if (!(spa_mode_global & FWRITE)) 5316 return; 5317 5318 mutex_enter(&l2arc_feed_thr_lock); 5319 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 5320 l2arc_thread_exit = 1; 5321 while (l2arc_thread_exit != 0) 5322 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 5323 mutex_exit(&l2arc_feed_thr_lock); 5324 } 5325