xref: /illumos-gate/usr/src/uts/common/fs/zfs/arc.c (revision 5328fc53d11d7151861fa272e4fb0248b8f0e145)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2019, Joyent, Inc.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
27  */
28 
29 /*
30  * DVA-based Adjustable Replacement Cache
31  *
32  * While much of the theory of operation used here is
33  * based on the self-tuning, low overhead replacement cache
34  * presented by Megiddo and Modha at FAST 2003, there are some
35  * significant differences:
36  *
37  * 1. The Megiddo and Modha model assumes any page is evictable.
38  * Pages in its cache cannot be "locked" into memory.  This makes
39  * the eviction algorithm simple: evict the last page in the list.
40  * This also make the performance characteristics easy to reason
41  * about.  Our cache is not so simple.  At any given moment, some
42  * subset of the blocks in the cache are un-evictable because we
43  * have handed out a reference to them.  Blocks are only evictable
44  * when there are no external references active.  This makes
45  * eviction far more problematic:  we choose to evict the evictable
46  * blocks that are the "lowest" in the list.
47  *
48  * There are times when it is not possible to evict the requested
49  * space.  In these circumstances we are unable to adjust the cache
50  * size.  To prevent the cache growing unbounded at these times we
51  * implement a "cache throttle" that slows the flow of new data
52  * into the cache until we can make space available.
53  *
54  * 2. The Megiddo and Modha model assumes a fixed cache size.
55  * Pages are evicted when the cache is full and there is a cache
56  * miss.  Our model has a variable sized cache.  It grows with
57  * high use, but also tries to react to memory pressure from the
58  * operating system: decreasing its size when system memory is
59  * tight.
60  *
61  * 3. The Megiddo and Modha model assumes a fixed page size. All
62  * elements of the cache are therefore exactly the same size.  So
63  * when adjusting the cache size following a cache miss, its simply
64  * a matter of choosing a single page to evict.  In our model, we
65  * have variable sized cache blocks (rangeing from 512 bytes to
66  * 128K bytes).  We therefore choose a set of blocks to evict to make
67  * space for a cache miss that approximates as closely as possible
68  * the space used by the new block.
69  *
70  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71  * by N. Megiddo & D. Modha, FAST 2003
72  */
73 
74 /*
75  * The locking model:
76  *
77  * A new reference to a cache buffer can be obtained in two
78  * ways: 1) via a hash table lookup using the DVA as a key,
79  * or 2) via one of the ARC lists.  The arc_read() interface
80  * uses method 1, while the internal ARC algorithms for
81  * adjusting the cache use method 2.  We therefore provide two
82  * types of locks: 1) the hash table lock array, and 2) the
83  * ARC list locks.
84  *
85  * Buffers do not have their own mutexes, rather they rely on the
86  * hash table mutexes for the bulk of their protection (i.e. most
87  * fields in the arc_buf_hdr_t are protected by these mutexes).
88  *
89  * buf_hash_find() returns the appropriate mutex (held) when it
90  * locates the requested buffer in the hash table.  It returns
91  * NULL for the mutex if the buffer was not in the table.
92  *
93  * buf_hash_remove() expects the appropriate hash mutex to be
94  * already held before it is invoked.
95  *
96  * Each ARC state also has a mutex which is used to protect the
97  * buffer list associated with the state.  When attempting to
98  * obtain a hash table lock while holding an ARC list lock you
99  * must use: mutex_tryenter() to avoid deadlock.  Also note that
100  * the active state mutex must be held before the ghost state mutex.
101  *
102  * Note that the majority of the performance stats are manipulated
103  * with atomic operations.
104  *
105  * The L2ARC uses the l2ad_mtx on each vdev for the following:
106  *
107  *	- L2ARC buflist creation
108  *	- L2ARC buflist eviction
109  *	- L2ARC write completion, which walks L2ARC buflists
110  *	- ARC header destruction, as it removes from L2ARC buflists
111  *	- ARC header release, as it removes from L2ARC buflists
112  */
113 
114 /*
115  * ARC operation:
116  *
117  * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
118  * This structure can point either to a block that is still in the cache or to
119  * one that is only accessible in an L2 ARC device, or it can provide
120  * information about a block that was recently evicted. If a block is
121  * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
122  * information to retrieve it from the L2ARC device. This information is
123  * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
124  * that is in this state cannot access the data directly.
125  *
126  * Blocks that are actively being referenced or have not been evicted
127  * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
128  * the arc_buf_hdr_t that will point to the data block in memory. A block can
129  * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
130  * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
131  * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
132  *
133  * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
134  * ability to store the physical data (b_pabd) associated with the DVA of the
135  * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
136  * it will match its on-disk compression characteristics. This behavior can be
137  * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
138  * compressed ARC functionality is disabled, the b_pabd will point to an
139  * uncompressed version of the on-disk data.
140  *
141  * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
142  * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
143  * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
144  * consumer. The ARC will provide references to this data and will keep it
145  * cached until it is no longer in use. The ARC caches only the L1ARC's physical
146  * data block and will evict any arc_buf_t that is no longer referenced. The
147  * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
148  * "overhead_size" kstat.
149  *
150  * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
151  * compressed form. The typical case is that consumers will want uncompressed
152  * data, and when that happens a new data buffer is allocated where the data is
153  * decompressed for them to use. Currently the only consumer who wants
154  * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
155  * exists on disk. When this happens, the arc_buf_t's data buffer is shared
156  * with the arc_buf_hdr_t.
157  *
158  * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
159  * first one is owned by a compressed send consumer (and therefore references
160  * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
161  * used by any other consumer (and has its own uncompressed copy of the data
162  * buffer).
163  *
164  *   arc_buf_hdr_t
165  *   +-----------+
166  *   | fields    |
167  *   | common to |
168  *   | L1- and   |
169  *   | L2ARC     |
170  *   +-----------+
171  *   | l2arc_buf_hdr_t
172  *   |           |
173  *   +-----------+
174  *   | l1arc_buf_hdr_t
175  *   |           |              arc_buf_t
176  *   | b_buf     +------------>+-----------+      arc_buf_t
177  *   | b_pabd    +-+           |b_next     +---->+-----------+
178  *   +-----------+ |           |-----------|     |b_next     +-->NULL
179  *                 |           |b_comp = T |     +-----------+
180  *                 |           |b_data     +-+   |b_comp = F |
181  *                 |           +-----------+ |   |b_data     +-+
182  *                 +->+------+               |   +-----------+ |
183  *        compressed  |      |               |                 |
184  *           data     |      |<--------------+                 | uncompressed
185  *                    +------+          compressed,            |     data
186  *                                        shared               +-->+------+
187  *                                         data                    |      |
188  *                                                                 |      |
189  *                                                                 +------+
190  *
191  * When a consumer reads a block, the ARC must first look to see if the
192  * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
193  * arc_buf_t and either copies uncompressed data into a new data buffer from an
194  * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
195  * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
196  * hdr is compressed and the desired compression characteristics of the
197  * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
198  * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
199  * the last buffer in the hdr's b_buf list, however a shared compressed buf can
200  * be anywhere in the hdr's list.
201  *
202  * The diagram below shows an example of an uncompressed ARC hdr that is
203  * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
204  * the last element in the buf list):
205  *
206  *                arc_buf_hdr_t
207  *                +-----------+
208  *                |           |
209  *                |           |
210  *                |           |
211  *                +-----------+
212  * l2arc_buf_hdr_t|           |
213  *                |           |
214  *                +-----------+
215  * l1arc_buf_hdr_t|           |
216  *                |           |                 arc_buf_t    (shared)
217  *                |    b_buf  +------------>+---------+      arc_buf_t
218  *                |           |             |b_next   +---->+---------+
219  *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
220  *                +-----------+ |           |         |     +---------+
221  *                              |           |b_data   +-+   |         |
222  *                              |           +---------+ |   |b_data   +-+
223  *                              +->+------+             |   +---------+ |
224  *                                 |      |             |               |
225  *                   uncompressed  |      |             |               |
226  *                        data     +------+             |               |
227  *                                    ^                 +->+------+     |
228  *                                    |       uncompressed |      |     |
229  *                                    |           data     |      |     |
230  *                                    |                    +------+     |
231  *                                    +---------------------------------+
232  *
233  * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
234  * since the physical block is about to be rewritten. The new data contents
235  * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
236  * it may compress the data before writing it to disk. The ARC will be called
237  * with the transformed data and will bcopy the transformed on-disk block into
238  * a newly allocated b_pabd. Writes are always done into buffers which have
239  * either been loaned (and hence are new and don't have other readers) or
240  * buffers which have been released (and hence have their own hdr, if there
241  * were originally other readers of the buf's original hdr). This ensures that
242  * the ARC only needs to update a single buf and its hdr after a write occurs.
243  *
244  * When the L2ARC is in use, it will also take advantage of the b_pabd. The
245  * L2ARC will always write the contents of b_pabd to the L2ARC. This means
246  * that when compressed ARC is enabled that the L2ARC blocks are identical
247  * to the on-disk block in the main data pool. This provides a significant
248  * advantage since the ARC can leverage the bp's checksum when reading from the
249  * L2ARC to determine if the contents are valid. However, if the compressed
250  * ARC is disabled, then the L2ARC's block must be transformed to look
251  * like the physical block in the main data pool before comparing the
252  * checksum and determining its validity.
253  *
254  * The L1ARC has a slightly different system for storing encrypted data.
255  * Raw (encrypted + possibly compressed) data has a few subtle differences from
256  * data that is just compressed. The biggest difference is that it is not
257  * possible to decrypt encrypted data (or visa versa) if the keys aren't loaded.
258  * The other difference is that encryption cannot be treated as a suggestion.
259  * If a caller would prefer compressed data, but they actually wind up with
260  * uncompressed data the worst thing that could happen is there might be a
261  * performance hit. If the caller requests encrypted data, however, we must be
262  * sure they actually get it or else secret information could be leaked. Raw
263  * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
264  * may have both an encrypted version and a decrypted version of its data at
265  * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
266  * copied out of this header. To avoid complications with b_pabd, raw buffers
267  * cannot be shared.
268  */
269 
270 #include <sys/spa.h>
271 #include <sys/zio.h>
272 #include <sys/spa_impl.h>
273 #include <sys/zio_compress.h>
274 #include <sys/zio_checksum.h>
275 #include <sys/zfs_context.h>
276 #include <sys/arc.h>
277 #include <sys/refcount.h>
278 #include <sys/vdev.h>
279 #include <sys/vdev_impl.h>
280 #include <sys/dsl_pool.h>
281 #include <sys/zio_checksum.h>
282 #include <sys/multilist.h>
283 #include <sys/abd.h>
284 #include <sys/zil.h>
285 #include <sys/fm/fs/zfs.h>
286 #ifdef _KERNEL
287 #include <sys/vmsystm.h>
288 #include <vm/anon.h>
289 #include <sys/fs/swapnode.h>
290 #include <sys/dnlc.h>
291 #endif
292 #include <sys/callb.h>
293 #include <sys/kstat.h>
294 #include <sys/zthr.h>
295 #include <zfs_fletcher.h>
296 #include <sys/aggsum.h>
297 #include <sys/cityhash.h>
298 #include <sys/param.h>
299 
300 #ifndef _KERNEL
301 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
302 boolean_t arc_watch = B_FALSE;
303 int arc_procfd;
304 #endif
305 
306 /*
307  * This thread's job is to keep enough free memory in the system, by
308  * calling arc_kmem_reap_now() plus arc_shrink(), which improves
309  * arc_available_memory().
310  */
311 static zthr_t		*arc_reap_zthr;
312 
313 /*
314  * This thread's job is to keep arc_size under arc_c, by calling
315  * arc_adjust(), which improves arc_is_overflowing().
316  */
317 static zthr_t		*arc_adjust_zthr;
318 
319 static kmutex_t		arc_adjust_lock;
320 static kcondvar_t	arc_adjust_waiters_cv;
321 static boolean_t	arc_adjust_needed = B_FALSE;
322 
323 uint_t arc_reduce_dnlc_percent = 3;
324 
325 /*
326  * The number of headers to evict in arc_evict_state_impl() before
327  * dropping the sublist lock and evicting from another sublist. A lower
328  * value means we're more likely to evict the "correct" header (i.e. the
329  * oldest header in the arc state), but comes with higher overhead
330  * (i.e. more invocations of arc_evict_state_impl()).
331  */
332 int zfs_arc_evict_batch_limit = 10;
333 
334 /* number of seconds before growing cache again */
335 int arc_grow_retry = 60;
336 
337 /*
338  * Minimum time between calls to arc_kmem_reap_soon().  Note that this will
339  * be converted to ticks, so with the default hz=100, a setting of 15 ms
340  * will actually wait 2 ticks, or 20ms.
341  */
342 int arc_kmem_cache_reap_retry_ms = 1000;
343 
344 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
345 int zfs_arc_overflow_shift = 8;
346 
347 /* shift of arc_c for calculating both min and max arc_p */
348 int arc_p_min_shift = 4;
349 
350 /* log2(fraction of arc to reclaim) */
351 int arc_shrink_shift = 7;
352 
353 /*
354  * log2(fraction of ARC which must be free to allow growing).
355  * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
356  * when reading a new block into the ARC, we will evict an equal-sized block
357  * from the ARC.
358  *
359  * This must be less than arc_shrink_shift, so that when we shrink the ARC,
360  * we will still not allow it to grow.
361  */
362 int			arc_no_grow_shift = 5;
363 
364 
365 /*
366  * minimum lifespan of a prefetch block in clock ticks
367  * (initialized in arc_init())
368  */
369 static int		zfs_arc_min_prefetch_ms = 1;
370 static int		zfs_arc_min_prescient_prefetch_ms = 6;
371 
372 /*
373  * If this percent of memory is free, don't throttle.
374  */
375 int arc_lotsfree_percent = 10;
376 
377 static boolean_t arc_initialized;
378 
379 /*
380  * The arc has filled available memory and has now warmed up.
381  */
382 static boolean_t arc_warm;
383 
384 /*
385  * log2 fraction of the zio arena to keep free.
386  */
387 int arc_zio_arena_free_shift = 2;
388 
389 /*
390  * These tunables are for performance analysis.
391  */
392 uint64_t zfs_arc_max;
393 uint64_t zfs_arc_min;
394 uint64_t zfs_arc_meta_limit = 0;
395 uint64_t zfs_arc_meta_min = 0;
396 int zfs_arc_grow_retry = 0;
397 int zfs_arc_shrink_shift = 0;
398 int zfs_arc_p_min_shift = 0;
399 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
400 
401 /*
402  * ARC dirty data constraints for arc_tempreserve_space() throttle
403  */
404 uint_t zfs_arc_dirty_limit_percent = 50;	/* total dirty data limit */
405 uint_t zfs_arc_anon_limit_percent = 25;		/* anon block dirty limit */
406 uint_t zfs_arc_pool_dirty_percent = 20;		/* each pool's anon allowance */
407 
408 boolean_t zfs_compressed_arc_enabled = B_TRUE;
409 
410 /*
411  * Note that buffers can be in one of 6 states:
412  *	ARC_anon	- anonymous (discussed below)
413  *	ARC_mru		- recently used, currently cached
414  *	ARC_mru_ghost	- recentely used, no longer in cache
415  *	ARC_mfu		- frequently used, currently cached
416  *	ARC_mfu_ghost	- frequently used, no longer in cache
417  *	ARC_l2c_only	- exists in L2ARC but not other states
418  * When there are no active references to the buffer, they are
419  * are linked onto a list in one of these arc states.  These are
420  * the only buffers that can be evicted or deleted.  Within each
421  * state there are multiple lists, one for meta-data and one for
422  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
423  * etc.) is tracked separately so that it can be managed more
424  * explicitly: favored over data, limited explicitly.
425  *
426  * Anonymous buffers are buffers that are not associated with
427  * a DVA.  These are buffers that hold dirty block copies
428  * before they are written to stable storage.  By definition,
429  * they are "ref'd" and are considered part of arc_mru
430  * that cannot be freed.  Generally, they will aquire a DVA
431  * as they are written and migrate onto the arc_mru list.
432  *
433  * The ARC_l2c_only state is for buffers that are in the second
434  * level ARC but no longer in any of the ARC_m* lists.  The second
435  * level ARC itself may also contain buffers that are in any of
436  * the ARC_m* states - meaning that a buffer can exist in two
437  * places.  The reason for the ARC_l2c_only state is to keep the
438  * buffer header in the hash table, so that reads that hit the
439  * second level ARC benefit from these fast lookups.
440  */
441 
442 typedef struct arc_state {
443 	/*
444 	 * list of evictable buffers
445 	 */
446 	multilist_t *arcs_list[ARC_BUFC_NUMTYPES];
447 	/*
448 	 * total amount of evictable data in this state
449 	 */
450 	zfs_refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
451 	/*
452 	 * total amount of data in this state; this includes: evictable,
453 	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
454 	 */
455 	zfs_refcount_t arcs_size;
456 } arc_state_t;
457 
458 /* The 6 states: */
459 static arc_state_t ARC_anon;
460 static arc_state_t ARC_mru;
461 static arc_state_t ARC_mru_ghost;
462 static arc_state_t ARC_mfu;
463 static arc_state_t ARC_mfu_ghost;
464 static arc_state_t ARC_l2c_only;
465 
466 typedef struct arc_stats {
467 	kstat_named_t arcstat_hits;
468 	kstat_named_t arcstat_misses;
469 	kstat_named_t arcstat_demand_data_hits;
470 	kstat_named_t arcstat_demand_data_misses;
471 	kstat_named_t arcstat_demand_metadata_hits;
472 	kstat_named_t arcstat_demand_metadata_misses;
473 	kstat_named_t arcstat_prefetch_data_hits;
474 	kstat_named_t arcstat_prefetch_data_misses;
475 	kstat_named_t arcstat_prefetch_metadata_hits;
476 	kstat_named_t arcstat_prefetch_metadata_misses;
477 	kstat_named_t arcstat_mru_hits;
478 	kstat_named_t arcstat_mru_ghost_hits;
479 	kstat_named_t arcstat_mfu_hits;
480 	kstat_named_t arcstat_mfu_ghost_hits;
481 	kstat_named_t arcstat_deleted;
482 	/*
483 	 * Number of buffers that could not be evicted because the hash lock
484 	 * was held by another thread.  The lock may not necessarily be held
485 	 * by something using the same buffer, since hash locks are shared
486 	 * by multiple buffers.
487 	 */
488 	kstat_named_t arcstat_mutex_miss;
489 	/*
490 	 * Number of buffers skipped when updating the access state due to the
491 	 * header having already been released after acquiring the hash lock.
492 	 */
493 	kstat_named_t arcstat_access_skip;
494 	/*
495 	 * Number of buffers skipped because they have I/O in progress, are
496 	 * indirect prefetch buffers that have not lived long enough, or are
497 	 * not from the spa we're trying to evict from.
498 	 */
499 	kstat_named_t arcstat_evict_skip;
500 	/*
501 	 * Number of times arc_evict_state() was unable to evict enough
502 	 * buffers to reach its target amount.
503 	 */
504 	kstat_named_t arcstat_evict_not_enough;
505 	kstat_named_t arcstat_evict_l2_cached;
506 	kstat_named_t arcstat_evict_l2_eligible;
507 	kstat_named_t arcstat_evict_l2_ineligible;
508 	kstat_named_t arcstat_evict_l2_skip;
509 	kstat_named_t arcstat_hash_elements;
510 	kstat_named_t arcstat_hash_elements_max;
511 	kstat_named_t arcstat_hash_collisions;
512 	kstat_named_t arcstat_hash_chains;
513 	kstat_named_t arcstat_hash_chain_max;
514 	kstat_named_t arcstat_p;
515 	kstat_named_t arcstat_c;
516 	kstat_named_t arcstat_c_min;
517 	kstat_named_t arcstat_c_max;
518 	/* Not updated directly; only synced in arc_kstat_update. */
519 	kstat_named_t arcstat_size;
520 	/*
521 	 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
522 	 * Note that the compressed bytes may match the uncompressed bytes
523 	 * if the block is either not compressed or compressed arc is disabled.
524 	 */
525 	kstat_named_t arcstat_compressed_size;
526 	/*
527 	 * Uncompressed size of the data stored in b_pabd. If compressed
528 	 * arc is disabled then this value will be identical to the stat
529 	 * above.
530 	 */
531 	kstat_named_t arcstat_uncompressed_size;
532 	/*
533 	 * Number of bytes stored in all the arc_buf_t's. This is classified
534 	 * as "overhead" since this data is typically short-lived and will
535 	 * be evicted from the arc when it becomes unreferenced unless the
536 	 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
537 	 * values have been set (see comment in dbuf.c for more information).
538 	 */
539 	kstat_named_t arcstat_overhead_size;
540 	/*
541 	 * Number of bytes consumed by internal ARC structures necessary
542 	 * for tracking purposes; these structures are not actually
543 	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
544 	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
545 	 * caches), and arc_buf_t structures (allocated via arc_buf_t
546 	 * cache).
547 	 * Not updated directly; only synced in arc_kstat_update.
548 	 */
549 	kstat_named_t arcstat_hdr_size;
550 	/*
551 	 * Number of bytes consumed by ARC buffers of type equal to
552 	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
553 	 * on disk user data (e.g. plain file contents).
554 	 * Not updated directly; only synced in arc_kstat_update.
555 	 */
556 	kstat_named_t arcstat_data_size;
557 	/*
558 	 * Number of bytes consumed by ARC buffers of type equal to
559 	 * ARC_BUFC_METADATA. This is generally consumed by buffers
560 	 * backing on disk data that is used for internal ZFS
561 	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
562 	 * Not updated directly; only synced in arc_kstat_update.
563 	 */
564 	kstat_named_t arcstat_metadata_size;
565 	/*
566 	 * Number of bytes consumed by various buffers and structures
567 	 * not actually backed with ARC buffers. This includes bonus
568 	 * buffers (allocated directly via zio_buf_* functions),
569 	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
570 	 * cache), and dnode_t structures (allocated via dnode_t cache).
571 	 * Not updated directly; only synced in arc_kstat_update.
572 	 */
573 	kstat_named_t arcstat_other_size;
574 	/*
575 	 * Total number of bytes consumed by ARC buffers residing in the
576 	 * arc_anon state. This includes *all* buffers in the arc_anon
577 	 * state; e.g. data, metadata, evictable, and unevictable buffers
578 	 * are all included in this value.
579 	 * Not updated directly; only synced in arc_kstat_update.
580 	 */
581 	kstat_named_t arcstat_anon_size;
582 	/*
583 	 * Number of bytes consumed by ARC buffers that meet the
584 	 * following criteria: backing buffers of type ARC_BUFC_DATA,
585 	 * residing in the arc_anon state, and are eligible for eviction
586 	 * (e.g. have no outstanding holds on the buffer).
587 	 * Not updated directly; only synced in arc_kstat_update.
588 	 */
589 	kstat_named_t arcstat_anon_evictable_data;
590 	/*
591 	 * Number of bytes consumed by ARC buffers that meet the
592 	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
593 	 * residing in the arc_anon state, and are eligible for eviction
594 	 * (e.g. have no outstanding holds on the buffer).
595 	 * Not updated directly; only synced in arc_kstat_update.
596 	 */
597 	kstat_named_t arcstat_anon_evictable_metadata;
598 	/*
599 	 * Total number of bytes consumed by ARC buffers residing in the
600 	 * arc_mru state. This includes *all* buffers in the arc_mru
601 	 * state; e.g. data, metadata, evictable, and unevictable buffers
602 	 * are all included in this value.
603 	 * Not updated directly; only synced in arc_kstat_update.
604 	 */
605 	kstat_named_t arcstat_mru_size;
606 	/*
607 	 * Number of bytes consumed by ARC buffers that meet the
608 	 * following criteria: backing buffers of type ARC_BUFC_DATA,
609 	 * residing in the arc_mru state, and are eligible for eviction
610 	 * (e.g. have no outstanding holds on the buffer).
611 	 * Not updated directly; only synced in arc_kstat_update.
612 	 */
613 	kstat_named_t arcstat_mru_evictable_data;
614 	/*
615 	 * Number of bytes consumed by ARC buffers that meet the
616 	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
617 	 * residing in the arc_mru state, and are eligible for eviction
618 	 * (e.g. have no outstanding holds on the buffer).
619 	 * Not updated directly; only synced in arc_kstat_update.
620 	 */
621 	kstat_named_t arcstat_mru_evictable_metadata;
622 	/*
623 	 * Total number of bytes that *would have been* consumed by ARC
624 	 * buffers in the arc_mru_ghost state. The key thing to note
625 	 * here, is the fact that this size doesn't actually indicate
626 	 * RAM consumption. The ghost lists only consist of headers and
627 	 * don't actually have ARC buffers linked off of these headers.
628 	 * Thus, *if* the headers had associated ARC buffers, these
629 	 * buffers *would have* consumed this number of bytes.
630 	 * Not updated directly; only synced in arc_kstat_update.
631 	 */
632 	kstat_named_t arcstat_mru_ghost_size;
633 	/*
634 	 * Number of bytes that *would have been* consumed by ARC
635 	 * buffers that are eligible for eviction, of type
636 	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
637 	 * Not updated directly; only synced in arc_kstat_update.
638 	 */
639 	kstat_named_t arcstat_mru_ghost_evictable_data;
640 	/*
641 	 * Number of bytes that *would have been* consumed by ARC
642 	 * buffers that are eligible for eviction, of type
643 	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
644 	 * Not updated directly; only synced in arc_kstat_update.
645 	 */
646 	kstat_named_t arcstat_mru_ghost_evictable_metadata;
647 	/*
648 	 * Total number of bytes consumed by ARC buffers residing in the
649 	 * arc_mfu state. This includes *all* buffers in the arc_mfu
650 	 * state; e.g. data, metadata, evictable, and unevictable buffers
651 	 * are all included in this value.
652 	 * Not updated directly; only synced in arc_kstat_update.
653 	 */
654 	kstat_named_t arcstat_mfu_size;
655 	/*
656 	 * Number of bytes consumed by ARC buffers that are eligible for
657 	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
658 	 * state.
659 	 * Not updated directly; only synced in arc_kstat_update.
660 	 */
661 	kstat_named_t arcstat_mfu_evictable_data;
662 	/*
663 	 * Number of bytes consumed by ARC buffers that are eligible for
664 	 * eviction, of type ARC_BUFC_METADATA, and reside in the
665 	 * arc_mfu state.
666 	 * Not updated directly; only synced in arc_kstat_update.
667 	 */
668 	kstat_named_t arcstat_mfu_evictable_metadata;
669 	/*
670 	 * Total number of bytes that *would have been* consumed by ARC
671 	 * buffers in the arc_mfu_ghost state. See the comment above
672 	 * arcstat_mru_ghost_size for more details.
673 	 * Not updated directly; only synced in arc_kstat_update.
674 	 */
675 	kstat_named_t arcstat_mfu_ghost_size;
676 	/*
677 	 * Number of bytes that *would have been* consumed by ARC
678 	 * buffers that are eligible for eviction, of type
679 	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
680 	 * Not updated directly; only synced in arc_kstat_update.
681 	 */
682 	kstat_named_t arcstat_mfu_ghost_evictable_data;
683 	/*
684 	 * Number of bytes that *would have been* consumed by ARC
685 	 * buffers that are eligible for eviction, of type
686 	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
687 	 * Not updated directly; only synced in arc_kstat_update.
688 	 */
689 	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
690 	kstat_named_t arcstat_l2_hits;
691 	kstat_named_t arcstat_l2_misses;
692 	kstat_named_t arcstat_l2_feeds;
693 	kstat_named_t arcstat_l2_rw_clash;
694 	kstat_named_t arcstat_l2_read_bytes;
695 	kstat_named_t arcstat_l2_write_bytes;
696 	kstat_named_t arcstat_l2_writes_sent;
697 	kstat_named_t arcstat_l2_writes_done;
698 	kstat_named_t arcstat_l2_writes_error;
699 	kstat_named_t arcstat_l2_writes_lock_retry;
700 	kstat_named_t arcstat_l2_evict_lock_retry;
701 	kstat_named_t arcstat_l2_evict_reading;
702 	kstat_named_t arcstat_l2_evict_l1cached;
703 	kstat_named_t arcstat_l2_free_on_write;
704 	kstat_named_t arcstat_l2_abort_lowmem;
705 	kstat_named_t arcstat_l2_cksum_bad;
706 	kstat_named_t arcstat_l2_io_error;
707 	kstat_named_t arcstat_l2_lsize;
708 	kstat_named_t arcstat_l2_psize;
709 	/* Not updated directly; only synced in arc_kstat_update. */
710 	kstat_named_t arcstat_l2_hdr_size;
711 	kstat_named_t arcstat_memory_throttle_count;
712 	/* Not updated directly; only synced in arc_kstat_update. */
713 	kstat_named_t arcstat_meta_used;
714 	kstat_named_t arcstat_meta_limit;
715 	kstat_named_t arcstat_meta_max;
716 	kstat_named_t arcstat_meta_min;
717 	kstat_named_t arcstat_async_upgrade_sync;
718 	kstat_named_t arcstat_demand_hit_predictive_prefetch;
719 	kstat_named_t arcstat_demand_hit_prescient_prefetch;
720 } arc_stats_t;
721 
722 static arc_stats_t arc_stats = {
723 	{ "hits",			KSTAT_DATA_UINT64 },
724 	{ "misses",			KSTAT_DATA_UINT64 },
725 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
726 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
727 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
728 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
729 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
730 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
731 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
732 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
733 	{ "mru_hits",			KSTAT_DATA_UINT64 },
734 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
735 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
736 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
737 	{ "deleted",			KSTAT_DATA_UINT64 },
738 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
739 	{ "access_skip",		KSTAT_DATA_UINT64 },
740 	{ "evict_skip",			KSTAT_DATA_UINT64 },
741 	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
742 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
743 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
744 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
745 	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
746 	{ "hash_elements",		KSTAT_DATA_UINT64 },
747 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
748 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
749 	{ "hash_chains",		KSTAT_DATA_UINT64 },
750 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
751 	{ "p",				KSTAT_DATA_UINT64 },
752 	{ "c",				KSTAT_DATA_UINT64 },
753 	{ "c_min",			KSTAT_DATA_UINT64 },
754 	{ "c_max",			KSTAT_DATA_UINT64 },
755 	{ "size",			KSTAT_DATA_UINT64 },
756 	{ "compressed_size",		KSTAT_DATA_UINT64 },
757 	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
758 	{ "overhead_size",		KSTAT_DATA_UINT64 },
759 	{ "hdr_size",			KSTAT_DATA_UINT64 },
760 	{ "data_size",			KSTAT_DATA_UINT64 },
761 	{ "metadata_size",		KSTAT_DATA_UINT64 },
762 	{ "other_size",			KSTAT_DATA_UINT64 },
763 	{ "anon_size",			KSTAT_DATA_UINT64 },
764 	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
765 	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
766 	{ "mru_size",			KSTAT_DATA_UINT64 },
767 	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
768 	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
769 	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
770 	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
771 	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
772 	{ "mfu_size",			KSTAT_DATA_UINT64 },
773 	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
774 	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
775 	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
776 	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
777 	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
778 	{ "l2_hits",			KSTAT_DATA_UINT64 },
779 	{ "l2_misses",			KSTAT_DATA_UINT64 },
780 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
781 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
782 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
783 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
784 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
785 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
786 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
787 	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
788 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
789 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
790 	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
791 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
792 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
793 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
794 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
795 	{ "l2_size",			KSTAT_DATA_UINT64 },
796 	{ "l2_asize",			KSTAT_DATA_UINT64 },
797 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
798 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
799 	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
800 	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
801 	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
802 	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
803 	{ "async_upgrade_sync",		KSTAT_DATA_UINT64 },
804 	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
805 	{ "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
806 };
807 
808 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
809 
810 #define	ARCSTAT_INCR(stat, val) \
811 	atomic_add_64(&arc_stats.stat.value.ui64, (val))
812 
813 #define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
814 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
815 
816 #define	ARCSTAT_MAX(stat, val) {					\
817 	uint64_t m;							\
818 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
819 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
820 		continue;						\
821 }
822 
823 #define	ARCSTAT_MAXSTAT(stat) \
824 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
825 
826 /*
827  * We define a macro to allow ARC hits/misses to be easily broken down by
828  * two separate conditions, giving a total of four different subtypes for
829  * each of hits and misses (so eight statistics total).
830  */
831 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
832 	if (cond1) {							\
833 		if (cond2) {						\
834 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
835 		} else {						\
836 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
837 		}							\
838 	} else {							\
839 		if (cond2) {						\
840 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
841 		} else {						\
842 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
843 		}							\
844 	}
845 
846 kstat_t			*arc_ksp;
847 static arc_state_t	*arc_anon;
848 static arc_state_t	*arc_mru;
849 static arc_state_t	*arc_mru_ghost;
850 static arc_state_t	*arc_mfu;
851 static arc_state_t	*arc_mfu_ghost;
852 static arc_state_t	*arc_l2c_only;
853 
854 /*
855  * There are several ARC variables that are critical to export as kstats --
856  * but we don't want to have to grovel around in the kstat whenever we wish to
857  * manipulate them.  For these variables, we therefore define them to be in
858  * terms of the statistic variable.  This assures that we are not introducing
859  * the possibility of inconsistency by having shadow copies of the variables,
860  * while still allowing the code to be readable.
861  */
862 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
863 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
864 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
865 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
866 #define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
867 #define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
868 #define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
869 
870 /* compressed size of entire arc */
871 #define	arc_compressed_size	ARCSTAT(arcstat_compressed_size)
872 /* uncompressed size of entire arc */
873 #define	arc_uncompressed_size	ARCSTAT(arcstat_uncompressed_size)
874 /* number of bytes in the arc from arc_buf_t's */
875 #define	arc_overhead_size	ARCSTAT(arcstat_overhead_size)
876 
877 /*
878  * There are also some ARC variables that we want to export, but that are
879  * updated so often that having the canonical representation be the statistic
880  * variable causes a performance bottleneck. We want to use aggsum_t's for these
881  * instead, but still be able to export the kstat in the same way as before.
882  * The solution is to always use the aggsum version, except in the kstat update
883  * callback.
884  */
885 aggsum_t arc_size;
886 aggsum_t arc_meta_used;
887 aggsum_t astat_data_size;
888 aggsum_t astat_metadata_size;
889 aggsum_t astat_hdr_size;
890 aggsum_t astat_other_size;
891 aggsum_t astat_l2_hdr_size;
892 
893 static int		arc_no_grow;	/* Don't try to grow cache size */
894 static hrtime_t		arc_growtime;
895 static uint64_t		arc_tempreserve;
896 static uint64_t		arc_loaned_bytes;
897 
898 typedef struct arc_callback arc_callback_t;
899 
900 struct arc_callback {
901 	void			*acb_private;
902 	arc_read_done_func_t	*acb_done;
903 	arc_buf_t		*acb_buf;
904 	boolean_t		acb_encrypted;
905 	boolean_t		acb_compressed;
906 	boolean_t		acb_noauth;
907 	zbookmark_phys_t	acb_zb;
908 	zio_t			*acb_zio_dummy;
909 	zio_t			*acb_zio_head;
910 	arc_callback_t		*acb_next;
911 };
912 
913 typedef struct arc_write_callback arc_write_callback_t;
914 
915 struct arc_write_callback {
916 	void			*awcb_private;
917 	arc_write_done_func_t	*awcb_ready;
918 	arc_write_done_func_t	*awcb_children_ready;
919 	arc_write_done_func_t	*awcb_physdone;
920 	arc_write_done_func_t	*awcb_done;
921 	arc_buf_t		*awcb_buf;
922 };
923 
924 /*
925  * ARC buffers are separated into multiple structs as a memory saving measure:
926  *   - Common fields struct, always defined, and embedded within it:
927  *       - L2-only fields, always allocated but undefined when not in L2ARC
928  *       - L1-only fields, only allocated when in L1ARC
929  *
930  *           Buffer in L1                     Buffer only in L2
931  *    +------------------------+          +------------------------+
932  *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
933  *    |                        |          |                        |
934  *    |                        |          |                        |
935  *    |                        |          |                        |
936  *    +------------------------+          +------------------------+
937  *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
938  *    | (undefined if L1-only) |          |                        |
939  *    +------------------------+          +------------------------+
940  *    | l1arc_buf_hdr_t        |
941  *    |                        |
942  *    |                        |
943  *    |                        |
944  *    |                        |
945  *    +------------------------+
946  *
947  * Because it's possible for the L2ARC to become extremely large, we can wind
948  * up eating a lot of memory in L2ARC buffer headers, so the size of a header
949  * is minimized by only allocating the fields necessary for an L1-cached buffer
950  * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
951  * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
952  * words in pointers. arc_hdr_realloc() is used to switch a header between
953  * these two allocation states.
954  */
955 typedef struct l1arc_buf_hdr {
956 	kmutex_t		b_freeze_lock;
957 	zio_cksum_t		*b_freeze_cksum;
958 #ifdef ZFS_DEBUG
959 	/*
960 	 * Used for debugging with kmem_flags - by allocating and freeing
961 	 * b_thawed when the buffer is thawed, we get a record of the stack
962 	 * trace that thawed it.
963 	 */
964 	void			*b_thawed;
965 #endif
966 
967 	arc_buf_t		*b_buf;
968 	uint32_t		b_bufcnt;
969 	/* for waiting on writes to complete */
970 	kcondvar_t		b_cv;
971 	uint8_t			b_byteswap;
972 
973 	/* protected by arc state mutex */
974 	arc_state_t		*b_state;
975 	multilist_node_t	b_arc_node;
976 
977 	/* updated atomically */
978 	clock_t			b_arc_access;
979 
980 	/* self protecting */
981 	zfs_refcount_t		b_refcnt;
982 
983 	arc_callback_t		*b_acb;
984 	abd_t			*b_pabd;
985 } l1arc_buf_hdr_t;
986 
987 /*
988  * Encrypted blocks will need to be stored encrypted on the L2ARC
989  * disk as they appear in the main pool. In order for this to work we
990  * need to pass around the encryption parameters so they can be used
991  * to write data to the L2ARC. This struct is only defined in the
992  * arc_buf_hdr_t if the L1 header is defined and has the ARC_FLAG_ENCRYPTED
993  * flag set.
994  */
995 typedef struct arc_buf_hdr_crypt {
996 	abd_t		*b_rabd;		/* raw encrypted data */
997 	dmu_object_type_t	b_ot;		/* object type */
998 	uint32_t		b_ebufcnt;	/* number or encryped buffers */
999 
1000 	/* dsobj for looking up encryption key for l2arc encryption */
1001 	uint64_t		b_dsobj;	/* for looking up key */
1002 
1003 	/* encryption parameters */
1004 	uint8_t		b_salt[ZIO_DATA_SALT_LEN];
1005 	uint8_t		b_iv[ZIO_DATA_IV_LEN];
1006 
1007 	/*
1008 	 * Technically this could be removed since we will always be able to
1009 	 * get the mac from the bp when we need it. However, it is inconvenient
1010 	 * for callers of arc code to have to pass a bp in all the time. This
1011 	 * also allows us to assert that L2ARC data is properly encrypted to
1012 	 * match the data in the main storage pool.
1013 	 */
1014 	uint8_t		b_mac[ZIO_DATA_MAC_LEN];
1015 } arc_buf_hdr_crypt_t;
1016 
1017 typedef struct l2arc_dev l2arc_dev_t;
1018 
1019 typedef struct l2arc_buf_hdr {
1020 	/* protected by arc_buf_hdr mutex */
1021 	l2arc_dev_t		*b_dev;		/* L2ARC device */
1022 	uint64_t		b_daddr;	/* disk address, offset byte */
1023 
1024 	list_node_t		b_l2node;
1025 } l2arc_buf_hdr_t;
1026 
1027 struct arc_buf_hdr {
1028 	/* protected by hash lock */
1029 	dva_t			b_dva;
1030 	uint64_t		b_birth;
1031 
1032 	arc_buf_contents_t	b_type;
1033 	arc_buf_hdr_t		*b_hash_next;
1034 	arc_flags_t		b_flags;
1035 
1036 	/*
1037 	 * This field stores the size of the data buffer after
1038 	 * compression, and is set in the arc's zio completion handlers.
1039 	 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
1040 	 *
1041 	 * While the block pointers can store up to 32MB in their psize
1042 	 * field, we can only store up to 32MB minus 512B. This is due
1043 	 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
1044 	 * a field of zeros represents 512B in the bp). We can't use a
1045 	 * bias of 1 since we need to reserve a psize of zero, here, to
1046 	 * represent holes and embedded blocks.
1047 	 *
1048 	 * This isn't a problem in practice, since the maximum size of a
1049 	 * buffer is limited to 16MB, so we never need to store 32MB in
1050 	 * this field. Even in the upstream illumos code base, the
1051 	 * maximum size of a buffer is limited to 16MB.
1052 	 */
1053 	uint16_t		b_psize;
1054 
1055 	/*
1056 	 * This field stores the size of the data buffer before
1057 	 * compression, and cannot change once set. It is in units
1058 	 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
1059 	 */
1060 	uint16_t		b_lsize;	/* immutable */
1061 	uint64_t		b_spa;		/* immutable */
1062 
1063 	/* L2ARC fields. Undefined when not in L2ARC. */
1064 	l2arc_buf_hdr_t		b_l2hdr;
1065 	/* L1ARC fields. Undefined when in l2arc_only state */
1066 	l1arc_buf_hdr_t		b_l1hdr;
1067 	/*
1068 	 * Encryption parameters. Defined only when ARC_FLAG_ENCRYPTED
1069 	 * is set and the L1 header exists.
1070 	 */
1071 	arc_buf_hdr_crypt_t b_crypt_hdr;
1072 };
1073 
1074 #define	GHOST_STATE(state)	\
1075 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
1076 	(state) == arc_l2c_only)
1077 
1078 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
1079 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
1080 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
1081 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
1082 #define	HDR_PRESCIENT_PREFETCH(hdr)	\
1083 	((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
1084 #define	HDR_COMPRESSION_ENABLED(hdr)	\
1085 	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
1086 
1087 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
1088 #define	HDR_L2_READING(hdr)	\
1089 	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
1090 	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
1091 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
1092 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
1093 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
1094 #define	HDR_PROTECTED(hdr)	((hdr)->b_flags & ARC_FLAG_PROTECTED)
1095 #define	HDR_NOAUTH(hdr)		((hdr)->b_flags & ARC_FLAG_NOAUTH)
1096 #define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
1097 
1098 #define	HDR_ISTYPE_METADATA(hdr)	\
1099 	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1100 #define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
1101 
1102 #define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1103 #define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1104 #define	HDR_HAS_RABD(hdr)	\
1105 	(HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) &&	\
1106 	(hdr)->b_crypt_hdr.b_rabd != NULL)
1107 #define	HDR_ENCRYPTED(hdr)	\
1108 	(HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
1109 #define	HDR_AUTHENTICATED(hdr)	\
1110 	(HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
1111 
1112 /* For storing compression mode in b_flags */
1113 #define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
1114 
1115 #define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
1116 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
1117 #define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
1118 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
1119 
1120 #define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
1121 #define	ARC_BUF_SHARED(buf)	((buf)->b_flags & ARC_BUF_FLAG_SHARED)
1122 #define	ARC_BUF_COMPRESSED(buf)	((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
1123 #define	ARC_BUF_ENCRYPTED(buf)	((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
1124 
1125 /*
1126  * Other sizes
1127  */
1128 
1129 #define	HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1130 #define	HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
1131 #define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1132 
1133 /*
1134  * Hash table routines
1135  */
1136 
1137 #define	HT_LOCK_PAD	64
1138 
1139 struct ht_lock {
1140 	kmutex_t	ht_lock;
1141 #ifdef _KERNEL
1142 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1143 #endif
1144 };
1145 
1146 #define	BUF_LOCKS 256
1147 typedef struct buf_hash_table {
1148 	uint64_t ht_mask;
1149 	arc_buf_hdr_t **ht_table;
1150 	struct ht_lock ht_locks[BUF_LOCKS];
1151 } buf_hash_table_t;
1152 
1153 static buf_hash_table_t buf_hash_table;
1154 
1155 #define	BUF_HASH_INDEX(spa, dva, birth) \
1156 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1157 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1158 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1159 #define	HDR_LOCK(hdr) \
1160 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1161 
1162 uint64_t zfs_crc64_table[256];
1163 
1164 /*
1165  * Level 2 ARC
1166  */
1167 
1168 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
1169 #define	L2ARC_HEADROOM		2			/* num of writes */
1170 /*
1171  * If we discover during ARC scan any buffers to be compressed, we boost
1172  * our headroom for the next scanning cycle by this percentage multiple.
1173  */
1174 #define	L2ARC_HEADROOM_BOOST	200
1175 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
1176 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
1177 
1178 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1179 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1180 
1181 /* L2ARC Performance Tunables */
1182 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1183 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1184 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1185 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1186 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1187 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1188 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1189 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1190 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1191 
1192 /*
1193  * L2ARC Internals
1194  */
1195 struct l2arc_dev {
1196 	vdev_t			*l2ad_vdev;	/* vdev */
1197 	spa_t			*l2ad_spa;	/* spa */
1198 	uint64_t		l2ad_hand;	/* next write location */
1199 	uint64_t		l2ad_start;	/* first addr on device */
1200 	uint64_t		l2ad_end;	/* last addr on device */
1201 	boolean_t		l2ad_first;	/* first sweep through */
1202 	boolean_t		l2ad_writing;	/* currently writing */
1203 	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1204 	list_t			l2ad_buflist;	/* buffer list */
1205 	list_node_t		l2ad_node;	/* device list node */
1206 	zfs_refcount_t		l2ad_alloc;	/* allocated bytes */
1207 };
1208 
1209 static list_t L2ARC_dev_list;			/* device list */
1210 static list_t *l2arc_dev_list;			/* device list pointer */
1211 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1212 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1213 static list_t L2ARC_free_on_write;		/* free after write buf list */
1214 static list_t *l2arc_free_on_write;		/* free after write list ptr */
1215 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1216 static uint64_t l2arc_ndev;			/* number of devices */
1217 
1218 typedef struct l2arc_read_callback {
1219 	arc_buf_hdr_t		*l2rcb_hdr;		/* read header */
1220 	blkptr_t		l2rcb_bp;		/* original blkptr */
1221 	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1222 	int			l2rcb_flags;		/* original flags */
1223 	abd_t			*l2rcb_abd;		/* temporary buffer */
1224 } l2arc_read_callback_t;
1225 
1226 typedef struct l2arc_write_callback {
1227 	l2arc_dev_t	*l2wcb_dev;		/* device info */
1228 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1229 } l2arc_write_callback_t;
1230 
1231 typedef struct l2arc_data_free {
1232 	/* protected by l2arc_free_on_write_mtx */
1233 	abd_t		*l2df_abd;
1234 	size_t		l2df_size;
1235 	arc_buf_contents_t l2df_type;
1236 	list_node_t	l2df_list_node;
1237 } l2arc_data_free_t;
1238 
1239 static kmutex_t l2arc_feed_thr_lock;
1240 static kcondvar_t l2arc_feed_thr_cv;
1241 static uint8_t l2arc_thread_exit;
1242 
1243 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
1244 typedef enum arc_fill_flags {
1245 	ARC_FILL_LOCKED		= 1 << 0, /* hdr lock is held */
1246 	ARC_FILL_COMPRESSED	= 1 << 1, /* fill with compressed data */
1247 	ARC_FILL_ENCRYPTED	= 1 << 2, /* fill with encrypted data */
1248 	ARC_FILL_NOAUTH		= 1 << 3, /* don't attempt to authenticate */
1249 	ARC_FILL_IN_PLACE	= 1 << 4  /* fill in place (special case) */
1250 } arc_fill_flags_t;
1251 
1252 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1253 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
1254 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
1255 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1256 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
1257 static void arc_hdr_free_pabd(arc_buf_hdr_t *, boolean_t);
1258 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *, boolean_t);
1259 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1260 static boolean_t arc_is_overflowing();
1261 static void arc_buf_watch(arc_buf_t *);
1262 
1263 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1264 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1265 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1266 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1267 
1268 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1269 static void l2arc_read_done(zio_t *);
1270 
1271 /*
1272  * The arc_all_memory function is a ZoL enhancement that lives in their OSL
1273  * code. In user-space code, which is used primarily for testing, we return
1274  * half of all memory.
1275  */
1276 uint64_t
1277 arc_all_memory(void)
1278 {
1279 #ifdef _KERNEL
1280 	return (ptob(physmem));
1281 #else
1282 	return ((sysconf(_SC_PAGESIZE) * sysconf(_SC_PHYS_PAGES)) / 2);
1283 #endif
1284 }
1285 
1286 /*
1287  * We use Cityhash for this. It's fast, and has good hash properties without
1288  * requiring any large static buffers.
1289  */
1290 static uint64_t
1291 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1292 {
1293 	return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
1294 }
1295 
1296 #define	HDR_EMPTY(hdr)						\
1297 	((hdr)->b_dva.dva_word[0] == 0 &&			\
1298 	(hdr)->b_dva.dva_word[1] == 0)
1299 
1300 #define	HDR_EQUAL(spa, dva, birth, hdr)				\
1301 	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1302 	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1303 	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1304 
1305 static void
1306 buf_discard_identity(arc_buf_hdr_t *hdr)
1307 {
1308 	hdr->b_dva.dva_word[0] = 0;
1309 	hdr->b_dva.dva_word[1] = 0;
1310 	hdr->b_birth = 0;
1311 }
1312 
1313 static arc_buf_hdr_t *
1314 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1315 {
1316 	const dva_t *dva = BP_IDENTITY(bp);
1317 	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1318 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1319 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1320 	arc_buf_hdr_t *hdr;
1321 
1322 	mutex_enter(hash_lock);
1323 	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1324 	    hdr = hdr->b_hash_next) {
1325 		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1326 			*lockp = hash_lock;
1327 			return (hdr);
1328 		}
1329 	}
1330 	mutex_exit(hash_lock);
1331 	*lockp = NULL;
1332 	return (NULL);
1333 }
1334 
1335 /*
1336  * Insert an entry into the hash table.  If there is already an element
1337  * equal to elem in the hash table, then the already existing element
1338  * will be returned and the new element will not be inserted.
1339  * Otherwise returns NULL.
1340  * If lockp == NULL, the caller is assumed to already hold the hash lock.
1341  */
1342 static arc_buf_hdr_t *
1343 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1344 {
1345 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1346 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1347 	arc_buf_hdr_t *fhdr;
1348 	uint32_t i;
1349 
1350 	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1351 	ASSERT(hdr->b_birth != 0);
1352 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1353 
1354 	if (lockp != NULL) {
1355 		*lockp = hash_lock;
1356 		mutex_enter(hash_lock);
1357 	} else {
1358 		ASSERT(MUTEX_HELD(hash_lock));
1359 	}
1360 
1361 	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1362 	    fhdr = fhdr->b_hash_next, i++) {
1363 		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1364 			return (fhdr);
1365 	}
1366 
1367 	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1368 	buf_hash_table.ht_table[idx] = hdr;
1369 	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1370 
1371 	/* collect some hash table performance data */
1372 	if (i > 0) {
1373 		ARCSTAT_BUMP(arcstat_hash_collisions);
1374 		if (i == 1)
1375 			ARCSTAT_BUMP(arcstat_hash_chains);
1376 
1377 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1378 	}
1379 
1380 	ARCSTAT_BUMP(arcstat_hash_elements);
1381 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1382 
1383 	return (NULL);
1384 }
1385 
1386 static void
1387 buf_hash_remove(arc_buf_hdr_t *hdr)
1388 {
1389 	arc_buf_hdr_t *fhdr, **hdrp;
1390 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1391 
1392 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1393 	ASSERT(HDR_IN_HASH_TABLE(hdr));
1394 
1395 	hdrp = &buf_hash_table.ht_table[idx];
1396 	while ((fhdr = *hdrp) != hdr) {
1397 		ASSERT3P(fhdr, !=, NULL);
1398 		hdrp = &fhdr->b_hash_next;
1399 	}
1400 	*hdrp = hdr->b_hash_next;
1401 	hdr->b_hash_next = NULL;
1402 	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1403 
1404 	/* collect some hash table performance data */
1405 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1406 
1407 	if (buf_hash_table.ht_table[idx] &&
1408 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1409 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1410 }
1411 
1412 /*
1413  * Global data structures and functions for the buf kmem cache.
1414  */
1415 
1416 static kmem_cache_t *hdr_full_cache;
1417 static kmem_cache_t *hdr_full_crypt_cache;
1418 static kmem_cache_t *hdr_l2only_cache;
1419 static kmem_cache_t *buf_cache;
1420 
1421 static void
1422 buf_fini(void)
1423 {
1424 	int i;
1425 
1426 	kmem_free(buf_hash_table.ht_table,
1427 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1428 	for (i = 0; i < BUF_LOCKS; i++)
1429 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1430 	kmem_cache_destroy(hdr_full_cache);
1431 	kmem_cache_destroy(hdr_full_crypt_cache);
1432 	kmem_cache_destroy(hdr_l2only_cache);
1433 	kmem_cache_destroy(buf_cache);
1434 }
1435 
1436 /*
1437  * Constructor callback - called when the cache is empty
1438  * and a new buf is requested.
1439  */
1440 /* ARGSUSED */
1441 static int
1442 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1443 {
1444 	arc_buf_hdr_t *hdr = vbuf;
1445 
1446 	bzero(hdr, HDR_FULL_SIZE);
1447 	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1448 	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1449 	zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1450 	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1451 	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1452 	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1453 
1454 	return (0);
1455 }
1456 
1457 /* ARGSUSED */
1458 static int
1459 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag)
1460 {
1461 	arc_buf_hdr_t *hdr = vbuf;
1462 
1463 	(void) hdr_full_cons(vbuf, unused, kmflag);
1464 	bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr));
1465 	arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1466 
1467 	return (0);
1468 }
1469 
1470 /* ARGSUSED */
1471 static int
1472 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1473 {
1474 	arc_buf_hdr_t *hdr = vbuf;
1475 
1476 	bzero(hdr, HDR_L2ONLY_SIZE);
1477 	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1478 
1479 	return (0);
1480 }
1481 
1482 /* ARGSUSED */
1483 static int
1484 buf_cons(void *vbuf, void *unused, int kmflag)
1485 {
1486 	arc_buf_t *buf = vbuf;
1487 
1488 	bzero(buf, sizeof (arc_buf_t));
1489 	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1490 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1491 
1492 	return (0);
1493 }
1494 
1495 /*
1496  * Destructor callback - called when a cached buf is
1497  * no longer required.
1498  */
1499 /* ARGSUSED */
1500 static void
1501 hdr_full_dest(void *vbuf, void *unused)
1502 {
1503 	arc_buf_hdr_t *hdr = vbuf;
1504 
1505 	ASSERT(HDR_EMPTY(hdr));
1506 	cv_destroy(&hdr->b_l1hdr.b_cv);
1507 	zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1508 	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1509 	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1510 	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1511 }
1512 
1513 /* ARGSUSED */
1514 static void
1515 hdr_full_crypt_dest(void *vbuf, void *unused)
1516 {
1517 	arc_buf_hdr_t *hdr = vbuf;
1518 
1519 	hdr_full_dest(hdr, unused);
1520 	arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1521 }
1522 
1523 /* ARGSUSED */
1524 static void
1525 hdr_l2only_dest(void *vbuf, void *unused)
1526 {
1527 	arc_buf_hdr_t *hdr = vbuf;
1528 
1529 	ASSERT(HDR_EMPTY(hdr));
1530 	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1531 }
1532 
1533 /* ARGSUSED */
1534 static void
1535 buf_dest(void *vbuf, void *unused)
1536 {
1537 	arc_buf_t *buf = vbuf;
1538 
1539 	mutex_destroy(&buf->b_evict_lock);
1540 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1541 }
1542 
1543 /*
1544  * Reclaim callback -- invoked when memory is low.
1545  */
1546 /* ARGSUSED */
1547 static void
1548 hdr_recl(void *unused)
1549 {
1550 	dprintf("hdr_recl called\n");
1551 	/*
1552 	 * umem calls the reclaim func when we destroy the buf cache,
1553 	 * which is after we do arc_fini().
1554 	 */
1555 	if (arc_initialized)
1556 		zthr_wakeup(arc_reap_zthr);
1557 }
1558 
1559 static void
1560 buf_init(void)
1561 {
1562 	uint64_t *ct;
1563 	uint64_t hsize = 1ULL << 12;
1564 	int i, j;
1565 
1566 	/*
1567 	 * The hash table is big enough to fill all of physical memory
1568 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1569 	 * By default, the table will take up
1570 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1571 	 */
1572 	while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1573 		hsize <<= 1;
1574 retry:
1575 	buf_hash_table.ht_mask = hsize - 1;
1576 	buf_hash_table.ht_table =
1577 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1578 	if (buf_hash_table.ht_table == NULL) {
1579 		ASSERT(hsize > (1ULL << 8));
1580 		hsize >>= 1;
1581 		goto retry;
1582 	}
1583 
1584 	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1585 	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1586 	hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt",
1587 	    HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest,
1588 	    hdr_recl, NULL, NULL, 0);
1589 	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1590 	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1591 	    NULL, NULL, 0);
1592 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1593 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1594 
1595 	for (i = 0; i < 256; i++)
1596 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1597 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1598 
1599 	for (i = 0; i < BUF_LOCKS; i++) {
1600 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1601 		    NULL, MUTEX_DEFAULT, NULL);
1602 	}
1603 }
1604 
1605 /*
1606  * This is the size that the buf occupies in memory. If the buf is compressed,
1607  * it will correspond to the compressed size. You should use this method of
1608  * getting the buf size unless you explicitly need the logical size.
1609  */
1610 int32_t
1611 arc_buf_size(arc_buf_t *buf)
1612 {
1613 	return (ARC_BUF_COMPRESSED(buf) ?
1614 	    HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1615 }
1616 
1617 int32_t
1618 arc_buf_lsize(arc_buf_t *buf)
1619 {
1620 	return (HDR_GET_LSIZE(buf->b_hdr));
1621 }
1622 
1623 /*
1624  * This function will return B_TRUE if the buffer is encrypted in memory.
1625  * This buffer can be decrypted by calling arc_untransform().
1626  */
1627 boolean_t
1628 arc_is_encrypted(arc_buf_t *buf)
1629 {
1630 	return (ARC_BUF_ENCRYPTED(buf) != 0);
1631 }
1632 
1633 /*
1634  * Returns B_TRUE if the buffer represents data that has not had its MAC
1635  * verified yet.
1636  */
1637 boolean_t
1638 arc_is_unauthenticated(arc_buf_t *buf)
1639 {
1640 	return (HDR_NOAUTH(buf->b_hdr) != 0);
1641 }
1642 
1643 void
1644 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1645     uint8_t *iv, uint8_t *mac)
1646 {
1647 	arc_buf_hdr_t *hdr = buf->b_hdr;
1648 
1649 	ASSERT(HDR_PROTECTED(hdr));
1650 
1651 	bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
1652 	bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
1653 	bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
1654 	*byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1655 	    /* CONSTCOND */
1656 	    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1657 }
1658 
1659 /*
1660  * Indicates how this buffer is compressed in memory. If it is not compressed
1661  * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1662  * arc_untransform() as long as it is also unencrypted.
1663  */
1664 enum zio_compress
1665 arc_get_compression(arc_buf_t *buf)
1666 {
1667 	return (ARC_BUF_COMPRESSED(buf) ?
1668 	    HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1669 }
1670 
1671 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
1672 
1673 /*
1674  * Return the compression algorithm used to store this data in the ARC. If ARC
1675  * compression is enabled or this is an encrypted block, this will be the same
1676  * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1677  */
1678 static inline enum zio_compress
1679 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1680 {
1681 	return (HDR_COMPRESSION_ENABLED(hdr) ?
1682 	    HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1683 }
1684 
1685 static inline boolean_t
1686 arc_buf_is_shared(arc_buf_t *buf)
1687 {
1688 	boolean_t shared = (buf->b_data != NULL &&
1689 	    buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1690 	    abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1691 	    buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1692 	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1693 	IMPLY(shared, ARC_BUF_SHARED(buf));
1694 	IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1695 
1696 	/*
1697 	 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1698 	 * already being shared" requirement prevents us from doing that.
1699 	 */
1700 
1701 	return (shared);
1702 }
1703 
1704 /*
1705  * Free the checksum associated with this header. If there is no checksum, this
1706  * is a no-op.
1707  */
1708 static inline void
1709 arc_cksum_free(arc_buf_hdr_t *hdr)
1710 {
1711 	ASSERT(HDR_HAS_L1HDR(hdr));
1712 
1713 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1714 	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1715 		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1716 		hdr->b_l1hdr.b_freeze_cksum = NULL;
1717 	}
1718 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1719 }
1720 
1721 /*
1722  * Return true iff at least one of the bufs on hdr is not compressed.
1723  * Encrypted buffers count as compressed.
1724  */
1725 static boolean_t
1726 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1727 {
1728 	ASSERT(hdr->b_l1hdr.b_state == arc_anon ||
1729 	    MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1730 
1731 	for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1732 		if (!ARC_BUF_COMPRESSED(b)) {
1733 			return (B_TRUE);
1734 		}
1735 	}
1736 	return (B_FALSE);
1737 }
1738 
1739 /*
1740  * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1741  * matches the checksum that is stored in the hdr. If there is no checksum,
1742  * or if the buf is compressed, this is a no-op.
1743  */
1744 static void
1745 arc_cksum_verify(arc_buf_t *buf)
1746 {
1747 	arc_buf_hdr_t *hdr = buf->b_hdr;
1748 	zio_cksum_t zc;
1749 
1750 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1751 		return;
1752 
1753 	if (ARC_BUF_COMPRESSED(buf))
1754 		return;
1755 
1756 	ASSERT(HDR_HAS_L1HDR(hdr));
1757 
1758 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1759 
1760 	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1761 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1762 		return;
1763 	}
1764 
1765 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1766 	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1767 		panic("buffer modified while frozen!");
1768 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1769 }
1770 
1771 /*
1772  * This function makes the assumption that data stored in the L2ARC
1773  * will be transformed exactly as it is in the main pool. Because of
1774  * this we can verify the checksum against the reading process's bp.
1775  */
1776 static boolean_t
1777 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1778 {
1779 	enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1780 	boolean_t valid_cksum;
1781 
1782 	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1783 	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1784 
1785 	/*
1786 	 * We rely on the blkptr's checksum to determine if the block
1787 	 * is valid or not. When compressed arc is enabled, the l2arc
1788 	 * writes the block to the l2arc just as it appears in the pool.
1789 	 * This allows us to use the blkptr's checksum to validate the
1790 	 * data that we just read off of the l2arc without having to store
1791 	 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1792 	 * arc is disabled, then the data written to the l2arc is always
1793 	 * uncompressed and won't match the block as it exists in the main
1794 	 * pool. When this is the case, we must first compress it if it is
1795 	 * compressed on the main pool before we can validate the checksum.
1796 	 */
1797 	if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1798 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1799 		uint64_t lsize = HDR_GET_LSIZE(hdr);
1800 		uint64_t csize;
1801 
1802 		abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE);
1803 		csize = zio_compress_data(compress, zio->io_abd,
1804 		    abd_to_buf(cdata), lsize);
1805 
1806 		ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1807 		if (csize < HDR_GET_PSIZE(hdr)) {
1808 			/*
1809 			 * Compressed blocks are always a multiple of the
1810 			 * smallest ashift in the pool. Ideally, we would
1811 			 * like to round up the csize to the next
1812 			 * spa_min_ashift but that value may have changed
1813 			 * since the block was last written. Instead,
1814 			 * we rely on the fact that the hdr's psize
1815 			 * was set to the psize of the block when it was
1816 			 * last written. We set the csize to that value
1817 			 * and zero out any part that should not contain
1818 			 * data.
1819 			 */
1820 			abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize);
1821 			csize = HDR_GET_PSIZE(hdr);
1822 		}
1823 		zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL);
1824 	}
1825 
1826 	/*
1827 	 * Block pointers always store the checksum for the logical data.
1828 	 * If the block pointer has the gang bit set, then the checksum
1829 	 * it represents is for the reconstituted data and not for an
1830 	 * individual gang member. The zio pipeline, however, must be able to
1831 	 * determine the checksum of each of the gang constituents so it
1832 	 * treats the checksum comparison differently than what we need
1833 	 * for l2arc blocks. This prevents us from using the
1834 	 * zio_checksum_error() interface directly. Instead we must call the
1835 	 * zio_checksum_error_impl() so that we can ensure the checksum is
1836 	 * generated using the correct checksum algorithm and accounts for the
1837 	 * logical I/O size and not just a gang fragment.
1838 	 */
1839 	valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1840 	    BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1841 	    zio->io_offset, NULL) == 0);
1842 	zio_pop_transforms(zio);
1843 	return (valid_cksum);
1844 }
1845 
1846 /*
1847  * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1848  * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1849  * isn't modified later on. If buf is compressed or there is already a checksum
1850  * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1851  */
1852 static void
1853 arc_cksum_compute(arc_buf_t *buf)
1854 {
1855 	arc_buf_hdr_t *hdr = buf->b_hdr;
1856 
1857 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1858 		return;
1859 
1860 	ASSERT(HDR_HAS_L1HDR(hdr));
1861 
1862 	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1863 	if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1864 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1865 		return;
1866 	}
1867 
1868 	ASSERT(!ARC_BUF_ENCRYPTED(buf));
1869 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1870 	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1871 	    KM_SLEEP);
1872 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1873 	    hdr->b_l1hdr.b_freeze_cksum);
1874 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1875 	arc_buf_watch(buf);
1876 }
1877 
1878 #ifndef _KERNEL
1879 typedef struct procctl {
1880 	long cmd;
1881 	prwatch_t prwatch;
1882 } procctl_t;
1883 #endif
1884 
1885 /* ARGSUSED */
1886 static void
1887 arc_buf_unwatch(arc_buf_t *buf)
1888 {
1889 #ifndef _KERNEL
1890 	if (arc_watch) {
1891 		int result;
1892 		procctl_t ctl;
1893 		ctl.cmd = PCWATCH;
1894 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1895 		ctl.prwatch.pr_size = 0;
1896 		ctl.prwatch.pr_wflags = 0;
1897 		result = write(arc_procfd, &ctl, sizeof (ctl));
1898 		ASSERT3U(result, ==, sizeof (ctl));
1899 	}
1900 #endif
1901 }
1902 
1903 /* ARGSUSED */
1904 static void
1905 arc_buf_watch(arc_buf_t *buf)
1906 {
1907 #ifndef _KERNEL
1908 	if (arc_watch) {
1909 		int result;
1910 		procctl_t ctl;
1911 		ctl.cmd = PCWATCH;
1912 		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1913 		ctl.prwatch.pr_size = arc_buf_size(buf);
1914 		ctl.prwatch.pr_wflags = WA_WRITE;
1915 		result = write(arc_procfd, &ctl, sizeof (ctl));
1916 		ASSERT3U(result, ==, sizeof (ctl));
1917 	}
1918 #endif
1919 }
1920 
1921 static arc_buf_contents_t
1922 arc_buf_type(arc_buf_hdr_t *hdr)
1923 {
1924 	arc_buf_contents_t type;
1925 	if (HDR_ISTYPE_METADATA(hdr)) {
1926 		type = ARC_BUFC_METADATA;
1927 	} else {
1928 		type = ARC_BUFC_DATA;
1929 	}
1930 	VERIFY3U(hdr->b_type, ==, type);
1931 	return (type);
1932 }
1933 
1934 boolean_t
1935 arc_is_metadata(arc_buf_t *buf)
1936 {
1937 	return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1938 }
1939 
1940 static uint32_t
1941 arc_bufc_to_flags(arc_buf_contents_t type)
1942 {
1943 	switch (type) {
1944 	case ARC_BUFC_DATA:
1945 		/* metadata field is 0 if buffer contains normal data */
1946 		return (0);
1947 	case ARC_BUFC_METADATA:
1948 		return (ARC_FLAG_BUFC_METADATA);
1949 	default:
1950 		break;
1951 	}
1952 	panic("undefined ARC buffer type!");
1953 	return ((uint32_t)-1);
1954 }
1955 
1956 void
1957 arc_buf_thaw(arc_buf_t *buf)
1958 {
1959 	arc_buf_hdr_t *hdr = buf->b_hdr;
1960 
1961 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1962 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1963 
1964 	arc_cksum_verify(buf);
1965 
1966 	/*
1967 	 * Compressed buffers do not manipulate the b_freeze_cksum.
1968 	 */
1969 	if (ARC_BUF_COMPRESSED(buf))
1970 		return;
1971 
1972 	ASSERT(HDR_HAS_L1HDR(hdr));
1973 	arc_cksum_free(hdr);
1974 
1975 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1976 #ifdef ZFS_DEBUG
1977 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
1978 		if (hdr->b_l1hdr.b_thawed != NULL)
1979 			kmem_free(hdr->b_l1hdr.b_thawed, 1);
1980 		hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1981 	}
1982 #endif
1983 
1984 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1985 
1986 	arc_buf_unwatch(buf);
1987 }
1988 
1989 void
1990 arc_buf_freeze(arc_buf_t *buf)
1991 {
1992 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1993 		return;
1994 
1995 	if (ARC_BUF_COMPRESSED(buf))
1996 		return;
1997 
1998 	ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1999 	arc_cksum_compute(buf);
2000 }
2001 
2002 /*
2003  * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
2004  * the following functions should be used to ensure that the flags are
2005  * updated in a thread-safe way. When manipulating the flags either
2006  * the hash_lock must be held or the hdr must be undiscoverable. This
2007  * ensures that we're not racing with any other threads when updating
2008  * the flags.
2009  */
2010 static inline void
2011 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
2012 {
2013 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2014 	hdr->b_flags |= flags;
2015 }
2016 
2017 static inline void
2018 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
2019 {
2020 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2021 	hdr->b_flags &= ~flags;
2022 }
2023 
2024 /*
2025  * Setting the compression bits in the arc_buf_hdr_t's b_flags is
2026  * done in a special way since we have to clear and set bits
2027  * at the same time. Consumers that wish to set the compression bits
2028  * must use this function to ensure that the flags are updated in
2029  * thread-safe manner.
2030  */
2031 static void
2032 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
2033 {
2034 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2035 
2036 	/*
2037 	 * Holes and embedded blocks will always have a psize = 0 so
2038 	 * we ignore the compression of the blkptr and set the
2039 	 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
2040 	 * Holes and embedded blocks remain anonymous so we don't
2041 	 * want to uncompress them. Mark them as uncompressed.
2042 	 */
2043 	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
2044 		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
2045 		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
2046 	} else {
2047 		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
2048 		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
2049 	}
2050 
2051 	HDR_SET_COMPRESS(hdr, cmp);
2052 	ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
2053 }
2054 
2055 /*
2056  * Looks for another buf on the same hdr which has the data decompressed, copies
2057  * from it, and returns true. If no such buf exists, returns false.
2058  */
2059 static boolean_t
2060 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
2061 {
2062 	arc_buf_hdr_t *hdr = buf->b_hdr;
2063 	boolean_t copied = B_FALSE;
2064 
2065 	ASSERT(HDR_HAS_L1HDR(hdr));
2066 	ASSERT3P(buf->b_data, !=, NULL);
2067 	ASSERT(!ARC_BUF_COMPRESSED(buf));
2068 
2069 	for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
2070 	    from = from->b_next) {
2071 		/* can't use our own data buffer */
2072 		if (from == buf) {
2073 			continue;
2074 		}
2075 
2076 		if (!ARC_BUF_COMPRESSED(from)) {
2077 			bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
2078 			copied = B_TRUE;
2079 			break;
2080 		}
2081 	}
2082 
2083 	/*
2084 	 * Note: With encryption support, the following assertion is no longer
2085 	 * necessarily valid. If we receive two back to back raw snapshots
2086 	 * (send -w), the second receive can use a hdr with a cksum already
2087 	 * calculated. This happens via:
2088 	 *    dmu_recv_stream() -> receive_read_record() -> arc_loan_raw_buf()
2089 	 * The rsend/send_mixed_raw test case exercises this code path.
2090 	 *
2091 	 * There were no decompressed bufs, so there should not be a
2092 	 * checksum on the hdr either.
2093 	 * EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
2094 	 */
2095 
2096 	return (copied);
2097 }
2098 
2099 /*
2100  * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
2101  */
2102 static uint64_t
2103 arc_hdr_size(arc_buf_hdr_t *hdr)
2104 {
2105 	uint64_t size;
2106 
2107 	if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
2108 	    HDR_GET_PSIZE(hdr) > 0) {
2109 		size = HDR_GET_PSIZE(hdr);
2110 	} else {
2111 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
2112 		size = HDR_GET_LSIZE(hdr);
2113 	}
2114 	return (size);
2115 }
2116 
2117 static int
2118 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
2119 {
2120 	int ret;
2121 	uint64_t csize;
2122 	uint64_t lsize = HDR_GET_LSIZE(hdr);
2123 	uint64_t psize = HDR_GET_PSIZE(hdr);
2124 	void *tmpbuf = NULL;
2125 	abd_t *abd = hdr->b_l1hdr.b_pabd;
2126 
2127 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2128 	ASSERT(HDR_AUTHENTICATED(hdr));
2129 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2130 
2131 	/*
2132 	 * The MAC is calculated on the compressed data that is stored on disk.
2133 	 * However, if compressed arc is disabled we will only have the
2134 	 * decompressed data available to us now. Compress it into a temporary
2135 	 * abd so we can verify the MAC. The performance overhead of this will
2136 	 * be relatively low, since most objects in an encrypted objset will
2137 	 * be encrypted (instead of authenticated) anyway.
2138 	 */
2139 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
2140 	    !HDR_COMPRESSION_ENABLED(hdr)) {
2141 		tmpbuf = zio_buf_alloc(lsize);
2142 		abd = abd_get_from_buf(tmpbuf, lsize);
2143 		abd_take_ownership_of_buf(abd, B_TRUE);
2144 
2145 		csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
2146 		    hdr->b_l1hdr.b_pabd, tmpbuf, lsize);
2147 		ASSERT3U(csize, <=, psize);
2148 		abd_zero_off(abd, csize, psize - csize);
2149 	}
2150 
2151 	/*
2152 	 * Authentication is best effort. We authenticate whenever the key is
2153 	 * available. If we succeed we clear ARC_FLAG_NOAUTH.
2154 	 */
2155 	if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
2156 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
2157 		ASSERT3U(lsize, ==, psize);
2158 		ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
2159 		    psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
2160 	} else {
2161 		ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
2162 		    hdr->b_crypt_hdr.b_mac);
2163 	}
2164 
2165 	if (ret == 0)
2166 		arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
2167 	else if (ret != ENOENT)
2168 		goto error;
2169 
2170 	if (tmpbuf != NULL)
2171 		abd_free(abd);
2172 
2173 	return (0);
2174 
2175 error:
2176 	if (tmpbuf != NULL)
2177 		abd_free(abd);
2178 
2179 	return (ret);
2180 }
2181 
2182 /*
2183  * This function will take a header that only has raw encrypted data in
2184  * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
2185  * b_l1hdr.b_pabd. If designated in the header flags, this function will
2186  * also decompress the data.
2187  */
2188 static int
2189 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
2190 {
2191 	int ret;
2192 	abd_t *cabd = NULL;
2193 	void *tmp = NULL;
2194 	boolean_t no_crypt = B_FALSE;
2195 	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
2196 
2197 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2198 	ASSERT(HDR_ENCRYPTED(hdr));
2199 
2200 	arc_hdr_alloc_pabd(hdr, B_FALSE);
2201 
2202 	ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
2203 	    B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
2204 	    hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
2205 	    hdr->b_crypt_hdr.b_rabd, &no_crypt);
2206 	if (ret != 0)
2207 		goto error;
2208 
2209 	if (no_crypt) {
2210 		abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
2211 		    HDR_GET_PSIZE(hdr));
2212 	}
2213 
2214 	/*
2215 	 * If this header has disabled arc compression but the b_pabd is
2216 	 * compressed after decrypting it, we need to decompress the newly
2217 	 * decrypted data.
2218 	 */
2219 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
2220 	    !HDR_COMPRESSION_ENABLED(hdr)) {
2221 		/*
2222 		 * We want to make sure that we are correctly honoring the
2223 		 * zfs_abd_scatter_enabled setting, so we allocate an abd here
2224 		 * and then loan a buffer from it, rather than allocating a
2225 		 * linear buffer and wrapping it in an abd later.
2226 		 */
2227 		cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
2228 		tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
2229 
2230 		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2231 		    hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
2232 		    HDR_GET_LSIZE(hdr));
2233 		if (ret != 0) {
2234 			abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
2235 			goto error;
2236 		}
2237 
2238 		abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
2239 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
2240 		    arc_hdr_size(hdr), hdr);
2241 		hdr->b_l1hdr.b_pabd = cabd;
2242 	}
2243 
2244 	return (0);
2245 
2246 error:
2247 	arc_hdr_free_pabd(hdr, B_FALSE);
2248 	if (cabd != NULL)
2249 		arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
2250 
2251 	return (ret);
2252 }
2253 
2254 /*
2255  * This function is called during arc_buf_fill() to prepare the header's
2256  * abd plaintext pointer for use. This involves authenticated protected
2257  * data and decrypting encrypted data into the plaintext abd.
2258  */
2259 static int
2260 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
2261     const zbookmark_phys_t *zb, boolean_t noauth)
2262 {
2263 	int ret;
2264 
2265 	ASSERT(HDR_PROTECTED(hdr));
2266 
2267 	if (hash_lock != NULL)
2268 		mutex_enter(hash_lock);
2269 
2270 	if (HDR_NOAUTH(hdr) && !noauth) {
2271 		/*
2272 		 * The caller requested authenticated data but our data has
2273 		 * not been authenticated yet. Verify the MAC now if we can.
2274 		 */
2275 		ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
2276 		if (ret != 0)
2277 			goto error;
2278 	} else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
2279 		/*
2280 		 * If we only have the encrypted version of the data, but the
2281 		 * unencrypted version was requested we take this opportunity
2282 		 * to store the decrypted version in the header for future use.
2283 		 */
2284 		ret = arc_hdr_decrypt(hdr, spa, zb);
2285 		if (ret != 0)
2286 			goto error;
2287 	}
2288 
2289 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2290 
2291 	if (hash_lock != NULL)
2292 		mutex_exit(hash_lock);
2293 
2294 	return (0);
2295 
2296 error:
2297 	if (hash_lock != NULL)
2298 		mutex_exit(hash_lock);
2299 
2300 	return (ret);
2301 }
2302 
2303 /*
2304  * This function is used by the dbuf code to decrypt bonus buffers in place.
2305  * The dbuf code itself doesn't have any locking for decrypting a shared dnode
2306  * block, so we use the hash lock here to protect against concurrent calls to
2307  * arc_buf_fill().
2308  */
2309 /* ARGSUSED */
2310 static void
2311 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock)
2312 {
2313 	arc_buf_hdr_t *hdr = buf->b_hdr;
2314 
2315 	ASSERT(HDR_ENCRYPTED(hdr));
2316 	ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2317 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2318 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2319 
2320 	zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
2321 	    arc_buf_size(buf));
2322 	buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
2323 	buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2324 	hdr->b_crypt_hdr.b_ebufcnt -= 1;
2325 }
2326 
2327 /*
2328  * Given a buf that has a data buffer attached to it, this function will
2329  * efficiently fill the buf with data of the specified compression setting from
2330  * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
2331  * are already sharing a data buf, no copy is performed.
2332  *
2333  * If the buf is marked as compressed but uncompressed data was requested, this
2334  * will allocate a new data buffer for the buf, remove that flag, and fill the
2335  * buf with uncompressed data. You can't request a compressed buf on a hdr with
2336  * uncompressed data, and (since we haven't added support for it yet) if you
2337  * want compressed data your buf must already be marked as compressed and have
2338  * the correct-sized data buffer.
2339  */
2340 static int
2341 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2342     arc_fill_flags_t flags)
2343 {
2344 	int error = 0;
2345 	arc_buf_hdr_t *hdr = buf->b_hdr;
2346 	boolean_t hdr_compressed =
2347 	    (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
2348 	boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
2349 	boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
2350 	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2351 	kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
2352 
2353 	ASSERT3P(buf->b_data, !=, NULL);
2354 	IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
2355 	IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2356 	IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2357 	IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2358 	IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2359 	IMPLY(encrypted, !ARC_BUF_SHARED(buf));
2360 
2361 	/*
2362 	 * If the caller wanted encrypted data we just need to copy it from
2363 	 * b_rabd and potentially byteswap it. We won't be able to do any
2364 	 * further transforms on it.
2365 	 */
2366 	if (encrypted) {
2367 		ASSERT(HDR_HAS_RABD(hdr));
2368 		abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2369 		    HDR_GET_PSIZE(hdr));
2370 		goto byteswap;
2371 	}
2372 
2373 	/*
2374 	 * Adjust encrypted and authenticated headers to accomodate
2375 	 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2376 	 * allowed to fail decryption due to keys not being loaded
2377 	 * without being marked as an IO error.
2378 	 */
2379 	if (HDR_PROTECTED(hdr)) {
2380 		error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2381 		    zb, !!(flags & ARC_FILL_NOAUTH));
2382 		if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2383 			return (error);
2384 		} else if (error != 0) {
2385 			if (hash_lock != NULL)
2386 				mutex_enter(hash_lock);
2387 			arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2388 			if (hash_lock != NULL)
2389 				mutex_exit(hash_lock);
2390 			return (error);
2391 		}
2392 	}
2393 
2394 	/*
2395 	 * There is a special case here for dnode blocks which are
2396 	 * decrypting their bonus buffers. These blocks may request to
2397 	 * be decrypted in-place. This is necessary because there may
2398 	 * be many dnodes pointing into this buffer and there is
2399 	 * currently no method to synchronize replacing the backing
2400 	 * b_data buffer and updating all of the pointers. Here we use
2401 	 * the hash lock to ensure there are no races. If the need
2402 	 * arises for other types to be decrypted in-place, they must
2403 	 * add handling here as well.
2404 	 */
2405 	if ((flags & ARC_FILL_IN_PLACE) != 0) {
2406 		ASSERT(!hdr_compressed);
2407 		ASSERT(!compressed);
2408 		ASSERT(!encrypted);
2409 
2410 		if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2411 			ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2412 
2413 			if (hash_lock != NULL)
2414 				mutex_enter(hash_lock);
2415 			arc_buf_untransform_in_place(buf, hash_lock);
2416 			if (hash_lock != NULL)
2417 				mutex_exit(hash_lock);
2418 
2419 			/* Compute the hdr's checksum if necessary */
2420 			arc_cksum_compute(buf);
2421 		}
2422 
2423 		return (0);
2424 	}
2425 
2426 	if (hdr_compressed == compressed) {
2427 		if (!arc_buf_is_shared(buf)) {
2428 			abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2429 			    arc_buf_size(buf));
2430 		}
2431 	} else {
2432 		ASSERT(hdr_compressed);
2433 		ASSERT(!compressed);
2434 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2435 
2436 		/*
2437 		 * If the buf is sharing its data with the hdr, unlink it and
2438 		 * allocate a new data buffer for the buf.
2439 		 */
2440 		if (arc_buf_is_shared(buf)) {
2441 			ASSERT(ARC_BUF_COMPRESSED(buf));
2442 
2443 			/* We need to give the buf its own b_data */
2444 			buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2445 			buf->b_data =
2446 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2447 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2448 
2449 			/* Previously overhead was 0; just add new overhead */
2450 			ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2451 		} else if (ARC_BUF_COMPRESSED(buf)) {
2452 			/* We need to reallocate the buf's b_data */
2453 			arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2454 			    buf);
2455 			buf->b_data =
2456 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2457 
2458 			/* We increased the size of b_data; update overhead */
2459 			ARCSTAT_INCR(arcstat_overhead_size,
2460 			    HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2461 		}
2462 
2463 		/*
2464 		 * Regardless of the buf's previous compression settings, it
2465 		 * should not be compressed at the end of this function.
2466 		 */
2467 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2468 
2469 		/*
2470 		 * Try copying the data from another buf which already has a
2471 		 * decompressed version. If that's not possible, it's time to
2472 		 * bite the bullet and decompress the data from the hdr.
2473 		 */
2474 		if (arc_buf_try_copy_decompressed_data(buf)) {
2475 			/* Skip byteswapping and checksumming (already done) */
2476 			ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
2477 			return (0);
2478 		} else {
2479 			error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2480 			    hdr->b_l1hdr.b_pabd, buf->b_data,
2481 			    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2482 
2483 			/*
2484 			 * Absent hardware errors or software bugs, this should
2485 			 * be impossible, but log it anyway so we can debug it.
2486 			 */
2487 			if (error != 0) {
2488 				zfs_dbgmsg(
2489 				    "hdr %p, compress %d, psize %d, lsize %d",
2490 				    hdr, arc_hdr_get_compress(hdr),
2491 				    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2492 				if (hash_lock != NULL)
2493 					mutex_enter(hash_lock);
2494 				arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2495 				if (hash_lock != NULL)
2496 					mutex_exit(hash_lock);
2497 				return (SET_ERROR(EIO));
2498 			}
2499 		}
2500 	}
2501 
2502 byteswap:
2503 	/* Byteswap the buf's data if necessary */
2504 	if (bswap != DMU_BSWAP_NUMFUNCS) {
2505 		ASSERT(!HDR_SHARED_DATA(hdr));
2506 		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2507 		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2508 	}
2509 
2510 	/* Compute the hdr's checksum if necessary */
2511 	arc_cksum_compute(buf);
2512 
2513 	return (0);
2514 }
2515 
2516 /*
2517  * If this function is being called to decrypt an encrypted buffer or verify an
2518  * authenticated one, the key must be loaded and a mapping must be made
2519  * available in the keystore via spa_keystore_create_mapping() or one of its
2520  * callers.
2521  */
2522 int
2523 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2524     boolean_t in_place)
2525 {
2526 	int ret;
2527 	arc_fill_flags_t flags = 0;
2528 
2529 	if (in_place)
2530 		flags |= ARC_FILL_IN_PLACE;
2531 
2532 	ret = arc_buf_fill(buf, spa, zb, flags);
2533 	if (ret == ECKSUM) {
2534 		/*
2535 		 * Convert authentication and decryption errors to EIO
2536 		 * (and generate an ereport) before leaving the ARC.
2537 		 */
2538 		ret = SET_ERROR(EIO);
2539 		spa_log_error(spa, zb);
2540 		zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2541 		    spa, NULL, zb, NULL, 0, 0);
2542 	}
2543 
2544 	return (ret);
2545 }
2546 
2547 /*
2548  * Increment the amount of evictable space in the arc_state_t's refcount.
2549  * We account for the space used by the hdr and the arc buf individually
2550  * so that we can add and remove them from the refcount individually.
2551  */
2552 static void
2553 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2554 {
2555 	arc_buf_contents_t type = arc_buf_type(hdr);
2556 
2557 	ASSERT(HDR_HAS_L1HDR(hdr));
2558 
2559 	if (GHOST_STATE(state)) {
2560 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2561 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2562 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2563 		ASSERT(!HDR_HAS_RABD(hdr));
2564 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2565 		    HDR_GET_LSIZE(hdr), hdr);
2566 		return;
2567 	}
2568 
2569 	ASSERT(!GHOST_STATE(state));
2570 	if (hdr->b_l1hdr.b_pabd != NULL) {
2571 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2572 		    arc_hdr_size(hdr), hdr);
2573 	}
2574 	if (HDR_HAS_RABD(hdr)) {
2575 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2576 		    HDR_GET_PSIZE(hdr), hdr);
2577 	}
2578 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2579 	    buf = buf->b_next) {
2580 		if (arc_buf_is_shared(buf))
2581 			continue;
2582 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2583 		    arc_buf_size(buf), buf);
2584 	}
2585 }
2586 
2587 /*
2588  * Decrement the amount of evictable space in the arc_state_t's refcount.
2589  * We account for the space used by the hdr and the arc buf individually
2590  * so that we can add and remove them from the refcount individually.
2591  */
2592 static void
2593 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2594 {
2595 	arc_buf_contents_t type = arc_buf_type(hdr);
2596 
2597 	ASSERT(HDR_HAS_L1HDR(hdr));
2598 
2599 	if (GHOST_STATE(state)) {
2600 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2601 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2602 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2603 		ASSERT(!HDR_HAS_RABD(hdr));
2604 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2605 		    HDR_GET_LSIZE(hdr), hdr);
2606 		return;
2607 	}
2608 
2609 	ASSERT(!GHOST_STATE(state));
2610 	if (hdr->b_l1hdr.b_pabd != NULL) {
2611 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2612 		    arc_hdr_size(hdr), hdr);
2613 	}
2614 	if (HDR_HAS_RABD(hdr)) {
2615 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2616 		    HDR_GET_PSIZE(hdr), hdr);
2617 	}
2618 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2619 	    buf = buf->b_next) {
2620 		if (arc_buf_is_shared(buf))
2621 			continue;
2622 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2623 		    arc_buf_size(buf), buf);
2624 	}
2625 }
2626 
2627 /*
2628  * Add a reference to this hdr indicating that someone is actively
2629  * referencing that memory. When the refcount transitions from 0 to 1,
2630  * we remove it from the respective arc_state_t list to indicate that
2631  * it is not evictable.
2632  */
2633 static void
2634 add_reference(arc_buf_hdr_t *hdr, void *tag)
2635 {
2636 	ASSERT(HDR_HAS_L1HDR(hdr));
2637 	if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2638 		ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2639 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2640 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2641 	}
2642 
2643 	arc_state_t *state = hdr->b_l1hdr.b_state;
2644 
2645 	if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2646 	    (state != arc_anon)) {
2647 		/* We don't use the L2-only state list. */
2648 		if (state != arc_l2c_only) {
2649 			multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2650 			    hdr);
2651 			arc_evictable_space_decrement(hdr, state);
2652 		}
2653 		/* remove the prefetch flag if we get a reference */
2654 		arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2655 	}
2656 }
2657 
2658 /*
2659  * Remove a reference from this hdr. When the reference transitions from
2660  * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2661  * list making it eligible for eviction.
2662  */
2663 static int
2664 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2665 {
2666 	int cnt;
2667 	arc_state_t *state = hdr->b_l1hdr.b_state;
2668 
2669 	ASSERT(HDR_HAS_L1HDR(hdr));
2670 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2671 	ASSERT(!GHOST_STATE(state));
2672 
2673 	/*
2674 	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2675 	 * check to prevent usage of the arc_l2c_only list.
2676 	 */
2677 	if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2678 	    (state != arc_anon)) {
2679 		multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2680 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2681 		arc_evictable_space_increment(hdr, state);
2682 	}
2683 	return (cnt);
2684 }
2685 
2686 /*
2687  * Move the supplied buffer to the indicated state. The hash lock
2688  * for the buffer must be held by the caller.
2689  */
2690 static void
2691 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2692     kmutex_t *hash_lock)
2693 {
2694 	arc_state_t *old_state;
2695 	int64_t refcnt;
2696 	uint32_t bufcnt;
2697 	boolean_t update_old, update_new;
2698 	arc_buf_contents_t buftype = arc_buf_type(hdr);
2699 
2700 	/*
2701 	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2702 	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2703 	 * L1 hdr doesn't always exist when we change state to arc_anon before
2704 	 * destroying a header, in which case reallocating to add the L1 hdr is
2705 	 * pointless.
2706 	 */
2707 	if (HDR_HAS_L1HDR(hdr)) {
2708 		old_state = hdr->b_l1hdr.b_state;
2709 		refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2710 		bufcnt = hdr->b_l1hdr.b_bufcnt;
2711 
2712 		update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL ||
2713 		    HDR_HAS_RABD(hdr));
2714 	} else {
2715 		old_state = arc_l2c_only;
2716 		refcnt = 0;
2717 		bufcnt = 0;
2718 		update_old = B_FALSE;
2719 	}
2720 	update_new = update_old;
2721 
2722 	ASSERT(MUTEX_HELD(hash_lock));
2723 	ASSERT3P(new_state, !=, old_state);
2724 	ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2725 	ASSERT(old_state != arc_anon || bufcnt <= 1);
2726 
2727 	/*
2728 	 * If this buffer is evictable, transfer it from the
2729 	 * old state list to the new state list.
2730 	 */
2731 	if (refcnt == 0) {
2732 		if (old_state != arc_anon && old_state != arc_l2c_only) {
2733 			ASSERT(HDR_HAS_L1HDR(hdr));
2734 			multilist_remove(old_state->arcs_list[buftype], hdr);
2735 
2736 			if (GHOST_STATE(old_state)) {
2737 				ASSERT0(bufcnt);
2738 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2739 				update_old = B_TRUE;
2740 			}
2741 			arc_evictable_space_decrement(hdr, old_state);
2742 		}
2743 		if (new_state != arc_anon && new_state != arc_l2c_only) {
2744 
2745 			/*
2746 			 * An L1 header always exists here, since if we're
2747 			 * moving to some L1-cached state (i.e. not l2c_only or
2748 			 * anonymous), we realloc the header to add an L1hdr
2749 			 * beforehand.
2750 			 */
2751 			ASSERT(HDR_HAS_L1HDR(hdr));
2752 			multilist_insert(new_state->arcs_list[buftype], hdr);
2753 
2754 			if (GHOST_STATE(new_state)) {
2755 				ASSERT0(bufcnt);
2756 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2757 				update_new = B_TRUE;
2758 			}
2759 			arc_evictable_space_increment(hdr, new_state);
2760 		}
2761 	}
2762 
2763 	ASSERT(!HDR_EMPTY(hdr));
2764 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2765 		buf_hash_remove(hdr);
2766 
2767 	/* adjust state sizes (ignore arc_l2c_only) */
2768 
2769 	if (update_new && new_state != arc_l2c_only) {
2770 		ASSERT(HDR_HAS_L1HDR(hdr));
2771 		if (GHOST_STATE(new_state)) {
2772 			ASSERT0(bufcnt);
2773 
2774 			/*
2775 			 * When moving a header to a ghost state, we first
2776 			 * remove all arc buffers. Thus, we'll have a
2777 			 * bufcnt of zero, and no arc buffer to use for
2778 			 * the reference. As a result, we use the arc
2779 			 * header pointer for the reference.
2780 			 */
2781 			(void) zfs_refcount_add_many(&new_state->arcs_size,
2782 			    HDR_GET_LSIZE(hdr), hdr);
2783 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2784 			ASSERT(!HDR_HAS_RABD(hdr));
2785 		} else {
2786 			uint32_t buffers = 0;
2787 
2788 			/*
2789 			 * Each individual buffer holds a unique reference,
2790 			 * thus we must remove each of these references one
2791 			 * at a time.
2792 			 */
2793 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2794 			    buf = buf->b_next) {
2795 				ASSERT3U(bufcnt, !=, 0);
2796 				buffers++;
2797 
2798 				/*
2799 				 * When the arc_buf_t is sharing the data
2800 				 * block with the hdr, the owner of the
2801 				 * reference belongs to the hdr. Only
2802 				 * add to the refcount if the arc_buf_t is
2803 				 * not shared.
2804 				 */
2805 				if (arc_buf_is_shared(buf))
2806 					continue;
2807 
2808 				(void) zfs_refcount_add_many(
2809 				    &new_state->arcs_size,
2810 				    arc_buf_size(buf), buf);
2811 			}
2812 			ASSERT3U(bufcnt, ==, buffers);
2813 
2814 			if (hdr->b_l1hdr.b_pabd != NULL) {
2815 				(void) zfs_refcount_add_many(
2816 				    &new_state->arcs_size,
2817 				    arc_hdr_size(hdr), hdr);
2818 			}
2819 
2820 			if (HDR_HAS_RABD(hdr)) {
2821 				(void) zfs_refcount_add_many(
2822 				    &new_state->arcs_size,
2823 				    HDR_GET_PSIZE(hdr), hdr);
2824 			}
2825 		}
2826 	}
2827 
2828 	if (update_old && old_state != arc_l2c_only) {
2829 		ASSERT(HDR_HAS_L1HDR(hdr));
2830 		if (GHOST_STATE(old_state)) {
2831 			ASSERT0(bufcnt);
2832 			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2833 			ASSERT(!HDR_HAS_RABD(hdr));
2834 
2835 			/*
2836 			 * When moving a header off of a ghost state,
2837 			 * the header will not contain any arc buffers.
2838 			 * We use the arc header pointer for the reference
2839 			 * which is exactly what we did when we put the
2840 			 * header on the ghost state.
2841 			 */
2842 
2843 			(void) zfs_refcount_remove_many(&old_state->arcs_size,
2844 			    HDR_GET_LSIZE(hdr), hdr);
2845 		} else {
2846 			uint32_t buffers = 0;
2847 
2848 			/*
2849 			 * Each individual buffer holds a unique reference,
2850 			 * thus we must remove each of these references one
2851 			 * at a time.
2852 			 */
2853 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2854 			    buf = buf->b_next) {
2855 				ASSERT3U(bufcnt, !=, 0);
2856 				buffers++;
2857 
2858 				/*
2859 				 * When the arc_buf_t is sharing the data
2860 				 * block with the hdr, the owner of the
2861 				 * reference belongs to the hdr. Only
2862 				 * add to the refcount if the arc_buf_t is
2863 				 * not shared.
2864 				 */
2865 				if (arc_buf_is_shared(buf))
2866 					continue;
2867 
2868 				(void) zfs_refcount_remove_many(
2869 				    &old_state->arcs_size, arc_buf_size(buf),
2870 				    buf);
2871 			}
2872 			ASSERT3U(bufcnt, ==, buffers);
2873 			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2874 			    HDR_HAS_RABD(hdr));
2875 
2876 			if (hdr->b_l1hdr.b_pabd != NULL) {
2877 				(void) zfs_refcount_remove_many(
2878 				    &old_state->arcs_size, arc_hdr_size(hdr),
2879 				    hdr);
2880 			}
2881 
2882 			if (HDR_HAS_RABD(hdr)) {
2883 				(void) zfs_refcount_remove_many(
2884 				    &old_state->arcs_size, HDR_GET_PSIZE(hdr),
2885 				    hdr);
2886 			}
2887 		}
2888 	}
2889 
2890 	if (HDR_HAS_L1HDR(hdr))
2891 		hdr->b_l1hdr.b_state = new_state;
2892 
2893 	/*
2894 	 * L2 headers should never be on the L2 state list since they don't
2895 	 * have L1 headers allocated.
2896 	 */
2897 	ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2898 	    multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2899 }
2900 
2901 void
2902 arc_space_consume(uint64_t space, arc_space_type_t type)
2903 {
2904 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2905 
2906 	switch (type) {
2907 	case ARC_SPACE_DATA:
2908 		aggsum_add(&astat_data_size, space);
2909 		break;
2910 	case ARC_SPACE_META:
2911 		aggsum_add(&astat_metadata_size, space);
2912 		break;
2913 	case ARC_SPACE_OTHER:
2914 		aggsum_add(&astat_other_size, space);
2915 		break;
2916 	case ARC_SPACE_HDRS:
2917 		aggsum_add(&astat_hdr_size, space);
2918 		break;
2919 	case ARC_SPACE_L2HDRS:
2920 		aggsum_add(&astat_l2_hdr_size, space);
2921 		break;
2922 	}
2923 
2924 	if (type != ARC_SPACE_DATA)
2925 		aggsum_add(&arc_meta_used, space);
2926 
2927 	aggsum_add(&arc_size, space);
2928 }
2929 
2930 void
2931 arc_space_return(uint64_t space, arc_space_type_t type)
2932 {
2933 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2934 
2935 	switch (type) {
2936 	case ARC_SPACE_DATA:
2937 		aggsum_add(&astat_data_size, -space);
2938 		break;
2939 	case ARC_SPACE_META:
2940 		aggsum_add(&astat_metadata_size, -space);
2941 		break;
2942 	case ARC_SPACE_OTHER:
2943 		aggsum_add(&astat_other_size, -space);
2944 		break;
2945 	case ARC_SPACE_HDRS:
2946 		aggsum_add(&astat_hdr_size, -space);
2947 		break;
2948 	case ARC_SPACE_L2HDRS:
2949 		aggsum_add(&astat_l2_hdr_size, -space);
2950 		break;
2951 	}
2952 
2953 	if (type != ARC_SPACE_DATA) {
2954 		ASSERT(aggsum_compare(&arc_meta_used, space) >= 0);
2955 		/*
2956 		 * We use the upper bound here rather than the precise value
2957 		 * because the arc_meta_max value doesn't need to be
2958 		 * precise. It's only consumed by humans via arcstats.
2959 		 */
2960 		if (arc_meta_max < aggsum_upper_bound(&arc_meta_used))
2961 			arc_meta_max = aggsum_upper_bound(&arc_meta_used);
2962 		aggsum_add(&arc_meta_used, -space);
2963 	}
2964 
2965 	ASSERT(aggsum_compare(&arc_size, space) >= 0);
2966 	aggsum_add(&arc_size, -space);
2967 }
2968 
2969 /*
2970  * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2971  * with the hdr's b_pabd.
2972  */
2973 static boolean_t
2974 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2975 {
2976 	/*
2977 	 * The criteria for sharing a hdr's data are:
2978 	 * 1. the buffer is not encrypted
2979 	 * 2. the hdr's compression matches the buf's compression
2980 	 * 3. the hdr doesn't need to be byteswapped
2981 	 * 4. the hdr isn't already being shared
2982 	 * 5. the buf is either compressed or it is the last buf in the hdr list
2983 	 *
2984 	 * Criterion #5 maintains the invariant that shared uncompressed
2985 	 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2986 	 * might ask, "if a compressed buf is allocated first, won't that be the
2987 	 * last thing in the list?", but in that case it's impossible to create
2988 	 * a shared uncompressed buf anyway (because the hdr must be compressed
2989 	 * to have the compressed buf). You might also think that #3 is
2990 	 * sufficient to make this guarantee, however it's possible
2991 	 * (specifically in the rare L2ARC write race mentioned in
2992 	 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2993 	 * is sharable, but wasn't at the time of its allocation. Rather than
2994 	 * allow a new shared uncompressed buf to be created and then shuffle
2995 	 * the list around to make it the last element, this simply disallows
2996 	 * sharing if the new buf isn't the first to be added.
2997 	 */
2998 	ASSERT3P(buf->b_hdr, ==, hdr);
2999 	boolean_t hdr_compressed = arc_hdr_get_compress(hdr) !=
3000 	    ZIO_COMPRESS_OFF;
3001 	boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
3002 	return (!ARC_BUF_ENCRYPTED(buf) &&
3003 	    buf_compressed == hdr_compressed &&
3004 	    hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
3005 	    !HDR_SHARED_DATA(hdr) &&
3006 	    (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
3007 }
3008 
3009 /*
3010  * Allocate a buf for this hdr. If you care about the data that's in the hdr,
3011  * or if you want a compressed buffer, pass those flags in. Returns 0 if the
3012  * copy was made successfully, or an error code otherwise.
3013  */
3014 static int
3015 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
3016     void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth,
3017     boolean_t fill, arc_buf_t **ret)
3018 {
3019 	arc_buf_t *buf;
3020 	arc_fill_flags_t flags = ARC_FILL_LOCKED;
3021 
3022 	ASSERT(HDR_HAS_L1HDR(hdr));
3023 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3024 	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
3025 	    hdr->b_type == ARC_BUFC_METADATA);
3026 	ASSERT3P(ret, !=, NULL);
3027 	ASSERT3P(*ret, ==, NULL);
3028 	IMPLY(encrypted, compressed);
3029 
3030 	buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3031 	buf->b_hdr = hdr;
3032 	buf->b_data = NULL;
3033 	buf->b_next = hdr->b_l1hdr.b_buf;
3034 	buf->b_flags = 0;
3035 
3036 	add_reference(hdr, tag);
3037 
3038 	/*
3039 	 * We're about to change the hdr's b_flags. We must either
3040 	 * hold the hash_lock or be undiscoverable.
3041 	 */
3042 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3043 
3044 	/*
3045 	 * Only honor requests for compressed bufs if the hdr is actually
3046 	 * compressed. This must be overriden if the buffer is encrypted since
3047 	 * encrypted buffers cannot be decompressed.
3048 	 */
3049 	if (encrypted) {
3050 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
3051 		buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
3052 		flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
3053 	} else if (compressed &&
3054 	    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
3055 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
3056 		flags |= ARC_FILL_COMPRESSED;
3057 	}
3058 
3059 	if (noauth) {
3060 		ASSERT0(encrypted);
3061 		flags |= ARC_FILL_NOAUTH;
3062 	}
3063 
3064 	/*
3065 	 * If the hdr's data can be shared then we share the data buffer and
3066 	 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
3067 	 * allocate a new buffer to store the buf's data.
3068 	 *
3069 	 * There are two additional restrictions here because we're sharing
3070 	 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
3071 	 * actively involved in an L2ARC write, because if this buf is used by
3072 	 * an arc_write() then the hdr's data buffer will be released when the
3073 	 * write completes, even though the L2ARC write might still be using it.
3074 	 * Second, the hdr's ABD must be linear so that the buf's user doesn't
3075 	 * need to be ABD-aware.
3076 	 */
3077 	boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
3078 	    hdr->b_l1hdr.b_pabd != NULL && abd_is_linear(hdr->b_l1hdr.b_pabd);
3079 
3080 	/* Set up b_data and sharing */
3081 	if (can_share) {
3082 		buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
3083 		buf->b_flags |= ARC_BUF_FLAG_SHARED;
3084 		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
3085 	} else {
3086 		buf->b_data =
3087 		    arc_get_data_buf(hdr, arc_buf_size(buf), buf);
3088 		ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3089 	}
3090 	VERIFY3P(buf->b_data, !=, NULL);
3091 
3092 	hdr->b_l1hdr.b_buf = buf;
3093 	hdr->b_l1hdr.b_bufcnt += 1;
3094 	if (encrypted)
3095 		hdr->b_crypt_hdr.b_ebufcnt += 1;
3096 
3097 	/*
3098 	 * If the user wants the data from the hdr, we need to either copy or
3099 	 * decompress the data.
3100 	 */
3101 	if (fill) {
3102 		ASSERT3P(zb, !=, NULL);
3103 		return (arc_buf_fill(buf, spa, zb, flags));
3104 	}
3105 
3106 	return (0);
3107 }
3108 
3109 static char *arc_onloan_tag = "onloan";
3110 
3111 static inline void
3112 arc_loaned_bytes_update(int64_t delta)
3113 {
3114 	atomic_add_64(&arc_loaned_bytes, delta);
3115 
3116 	/* assert that it did not wrap around */
3117 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
3118 }
3119 
3120 /*
3121  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
3122  * flight data by arc_tempreserve_space() until they are "returned". Loaned
3123  * buffers must be returned to the arc before they can be used by the DMU or
3124  * freed.
3125  */
3126 arc_buf_t *
3127 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
3128 {
3129 	arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
3130 	    is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
3131 
3132 	arc_loaned_bytes_update(arc_buf_size(buf));
3133 
3134 	return (buf);
3135 }
3136 
3137 arc_buf_t *
3138 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
3139     enum zio_compress compression_type)
3140 {
3141 	arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
3142 	    psize, lsize, compression_type);
3143 
3144 	arc_loaned_bytes_update(arc_buf_size(buf));
3145 
3146 	return (buf);
3147 }
3148 
3149 arc_buf_t *
3150 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
3151     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
3152     dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3153     enum zio_compress compression_type)
3154 {
3155 	arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
3156 	    byteorder, salt, iv, mac, ot, psize, lsize, compression_type);
3157 
3158 	atomic_add_64(&arc_loaned_bytes, psize);
3159 	return (buf);
3160 }
3161 
3162 
3163 /*
3164  * Return a loaned arc buffer to the arc.
3165  */
3166 void
3167 arc_return_buf(arc_buf_t *buf, void *tag)
3168 {
3169 	arc_buf_hdr_t *hdr = buf->b_hdr;
3170 
3171 	ASSERT3P(buf->b_data, !=, NULL);
3172 	ASSERT(HDR_HAS_L1HDR(hdr));
3173 	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
3174 	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
3175 
3176 	arc_loaned_bytes_update(-arc_buf_size(buf));
3177 }
3178 
3179 /* Detach an arc_buf from a dbuf (tag) */
3180 void
3181 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
3182 {
3183 	arc_buf_hdr_t *hdr = buf->b_hdr;
3184 
3185 	ASSERT3P(buf->b_data, !=, NULL);
3186 	ASSERT(HDR_HAS_L1HDR(hdr));
3187 	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
3188 	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
3189 
3190 	arc_loaned_bytes_update(arc_buf_size(buf));
3191 }
3192 
3193 static void
3194 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
3195 {
3196 	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
3197 
3198 	df->l2df_abd = abd;
3199 	df->l2df_size = size;
3200 	df->l2df_type = type;
3201 	mutex_enter(&l2arc_free_on_write_mtx);
3202 	list_insert_head(l2arc_free_on_write, df);
3203 	mutex_exit(&l2arc_free_on_write_mtx);
3204 }
3205 
3206 static void
3207 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3208 {
3209 	arc_state_t *state = hdr->b_l1hdr.b_state;
3210 	arc_buf_contents_t type = arc_buf_type(hdr);
3211 	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3212 
3213 	/* protected by hash lock, if in the hash table */
3214 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
3215 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3216 		ASSERT(state != arc_anon && state != arc_l2c_only);
3217 
3218 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
3219 		    size, hdr);
3220 	}
3221 	(void) zfs_refcount_remove_many(&state->arcs_size, size, hdr);
3222 	if (type == ARC_BUFC_METADATA) {
3223 		arc_space_return(size, ARC_SPACE_META);
3224 	} else {
3225 		ASSERT(type == ARC_BUFC_DATA);
3226 		arc_space_return(size, ARC_SPACE_DATA);
3227 	}
3228 
3229 	if (free_rdata) {
3230 		l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
3231 	} else {
3232 		l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
3233 	}
3234 }
3235 
3236 /*
3237  * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
3238  * data buffer, we transfer the refcount ownership to the hdr and update
3239  * the appropriate kstats.
3240  */
3241 static void
3242 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3243 {
3244 	/* LINTED */
3245 	arc_state_t *state = hdr->b_l1hdr.b_state;
3246 
3247 	ASSERT(arc_can_share(hdr, buf));
3248 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3249 	ASSERT(!ARC_BUF_ENCRYPTED(buf));
3250 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3251 
3252 	/*
3253 	 * Start sharing the data buffer. We transfer the
3254 	 * refcount ownership to the hdr since it always owns
3255 	 * the refcount whenever an arc_buf_t is shared.
3256 	 */
3257 	zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
3258 	    arc_hdr_size(hdr), buf, hdr);
3259 	hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
3260 	abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
3261 	    HDR_ISTYPE_METADATA(hdr));
3262 	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
3263 	buf->b_flags |= ARC_BUF_FLAG_SHARED;
3264 
3265 	/*
3266 	 * Since we've transferred ownership to the hdr we need
3267 	 * to increment its compressed and uncompressed kstats and
3268 	 * decrement the overhead size.
3269 	 */
3270 	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3271 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3272 	ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
3273 }
3274 
3275 static void
3276 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3277 {
3278 	/* LINTED */
3279 	arc_state_t *state = hdr->b_l1hdr.b_state;
3280 
3281 	ASSERT(arc_buf_is_shared(buf));
3282 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3283 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3284 
3285 	/*
3286 	 * We are no longer sharing this buffer so we need
3287 	 * to transfer its ownership to the rightful owner.
3288 	 */
3289 	zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
3290 	    arc_hdr_size(hdr), hdr, buf);
3291 	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3292 	abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3293 	abd_put(hdr->b_l1hdr.b_pabd);
3294 	hdr->b_l1hdr.b_pabd = NULL;
3295 	buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
3296 
3297 	/*
3298 	 * Since the buffer is no longer shared between
3299 	 * the arc buf and the hdr, count it as overhead.
3300 	 */
3301 	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3302 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3303 	ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3304 }
3305 
3306 /*
3307  * Remove an arc_buf_t from the hdr's buf list and return the last
3308  * arc_buf_t on the list. If no buffers remain on the list then return
3309  * NULL.
3310  */
3311 static arc_buf_t *
3312 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3313 {
3314 	arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3315 	arc_buf_t *lastbuf = NULL;
3316 
3317 	ASSERT(HDR_HAS_L1HDR(hdr));
3318 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3319 
3320 	/*
3321 	 * Remove the buf from the hdr list and locate the last
3322 	 * remaining buffer on the list.
3323 	 */
3324 	while (*bufp != NULL) {
3325 		if (*bufp == buf)
3326 			*bufp = buf->b_next;
3327 
3328 		/*
3329 		 * If we've removed a buffer in the middle of
3330 		 * the list then update the lastbuf and update
3331 		 * bufp.
3332 		 */
3333 		if (*bufp != NULL) {
3334 			lastbuf = *bufp;
3335 			bufp = &(*bufp)->b_next;
3336 		}
3337 	}
3338 	buf->b_next = NULL;
3339 	ASSERT3P(lastbuf, !=, buf);
3340 	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
3341 	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
3342 	IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3343 
3344 	return (lastbuf);
3345 }
3346 
3347 /*
3348  * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
3349  * list and free it.
3350  */
3351 static void
3352 arc_buf_destroy_impl(arc_buf_t *buf)
3353 {
3354 	arc_buf_hdr_t *hdr = buf->b_hdr;
3355 
3356 	/*
3357 	 * Free up the data associated with the buf but only if we're not
3358 	 * sharing this with the hdr. If we are sharing it with the hdr, the
3359 	 * hdr is responsible for doing the free.
3360 	 */
3361 	if (buf->b_data != NULL) {
3362 		/*
3363 		 * We're about to change the hdr's b_flags. We must either
3364 		 * hold the hash_lock or be undiscoverable.
3365 		 */
3366 		ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3367 
3368 		arc_cksum_verify(buf);
3369 		arc_buf_unwatch(buf);
3370 
3371 		if (arc_buf_is_shared(buf)) {
3372 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3373 		} else {
3374 			uint64_t size = arc_buf_size(buf);
3375 			arc_free_data_buf(hdr, buf->b_data, size, buf);
3376 			ARCSTAT_INCR(arcstat_overhead_size, -size);
3377 		}
3378 		buf->b_data = NULL;
3379 
3380 		ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3381 		hdr->b_l1hdr.b_bufcnt -= 1;
3382 
3383 		if (ARC_BUF_ENCRYPTED(buf)) {
3384 			hdr->b_crypt_hdr.b_ebufcnt -= 1;
3385 
3386 			/*
3387 			 * If we have no more encrypted buffers and we've
3388 			 * already gotten a copy of the decrypted data we can
3389 			 * free b_rabd to save some space.
3390 			 */
3391 			if (hdr->b_crypt_hdr.b_ebufcnt == 0 &&
3392 			    HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL &&
3393 			    !HDR_IO_IN_PROGRESS(hdr)) {
3394 				arc_hdr_free_pabd(hdr, B_TRUE);
3395 			}
3396 		}
3397 	}
3398 
3399 	arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3400 
3401 	if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3402 		/*
3403 		 * If the current arc_buf_t is sharing its data buffer with the
3404 		 * hdr, then reassign the hdr's b_pabd to share it with the new
3405 		 * buffer at the end of the list. The shared buffer is always
3406 		 * the last one on the hdr's buffer list.
3407 		 *
3408 		 * There is an equivalent case for compressed bufs, but since
3409 		 * they aren't guaranteed to be the last buf in the list and
3410 		 * that is an exceedingly rare case, we just allow that space be
3411 		 * wasted temporarily. We must also be careful not to share
3412 		 * encrypted buffers, since they cannot be shared.
3413 		 */
3414 		if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3415 			/* Only one buf can be shared at once */
3416 			VERIFY(!arc_buf_is_shared(lastbuf));
3417 			/* hdr is uncompressed so can't have compressed buf */
3418 			VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
3419 
3420 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3421 			arc_hdr_free_pabd(hdr, B_FALSE);
3422 
3423 			/*
3424 			 * We must setup a new shared block between the
3425 			 * last buffer and the hdr. The data would have
3426 			 * been allocated by the arc buf so we need to transfer
3427 			 * ownership to the hdr since it's now being shared.
3428 			 */
3429 			arc_share_buf(hdr, lastbuf);
3430 		}
3431 	} else if (HDR_SHARED_DATA(hdr)) {
3432 		/*
3433 		 * Uncompressed shared buffers are always at the end
3434 		 * of the list. Compressed buffers don't have the
3435 		 * same requirements. This makes it hard to
3436 		 * simply assert that the lastbuf is shared so
3437 		 * we rely on the hdr's compression flags to determine
3438 		 * if we have a compressed, shared buffer.
3439 		 */
3440 		ASSERT3P(lastbuf, !=, NULL);
3441 		ASSERT(arc_buf_is_shared(lastbuf) ||
3442 		    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3443 	}
3444 
3445 	/*
3446 	 * Free the checksum if we're removing the last uncompressed buf from
3447 	 * this hdr.
3448 	 */
3449 	if (!arc_hdr_has_uncompressed_buf(hdr)) {
3450 		arc_cksum_free(hdr);
3451 	}
3452 
3453 	/* clean up the buf */
3454 	buf->b_hdr = NULL;
3455 	kmem_cache_free(buf_cache, buf);
3456 }
3457 
3458 static void
3459 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr, boolean_t alloc_rdata)
3460 {
3461 	uint64_t size;
3462 
3463 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3464 	ASSERT(HDR_HAS_L1HDR(hdr));
3465 	ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3466 	IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3467 
3468 	if (alloc_rdata) {
3469 		size = HDR_GET_PSIZE(hdr);
3470 		ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3471 		hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr);
3472 		ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3473 	} else {
3474 		size = arc_hdr_size(hdr);
3475 		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3476 		hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr);
3477 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3478 	}
3479 
3480 	ARCSTAT_INCR(arcstat_compressed_size, size);
3481 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3482 }
3483 
3484 static void
3485 arc_hdr_free_pabd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3486 {
3487 	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3488 
3489 	ASSERT(HDR_HAS_L1HDR(hdr));
3490 	ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3491 	IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3492 
3493 
3494 	/*
3495 	 * If the hdr is currently being written to the l2arc then
3496 	 * we defer freeing the data by adding it to the l2arc_free_on_write
3497 	 * list. The l2arc will free the data once it's finished
3498 	 * writing it to the l2arc device.
3499 	 */
3500 	if (HDR_L2_WRITING(hdr)) {
3501 		arc_hdr_free_on_write(hdr, free_rdata);
3502 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
3503 	} else if (free_rdata) {
3504 		arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3505 	} else {
3506 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
3507 		    size, hdr);
3508 	}
3509 
3510 	if (free_rdata) {
3511 		hdr->b_crypt_hdr.b_rabd = NULL;
3512 	} else {
3513 		hdr->b_l1hdr.b_pabd = NULL;
3514 	}
3515 
3516 	if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3517 		hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3518 
3519 	ARCSTAT_INCR(arcstat_compressed_size, -size);
3520 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3521 }
3522 
3523 static arc_buf_hdr_t *
3524 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3525     boolean_t protected, enum zio_compress compression_type,
3526     arc_buf_contents_t type, boolean_t alloc_rdata)
3527 {
3528 	arc_buf_hdr_t *hdr;
3529 
3530 	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3531 	if (protected) {
3532 		hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE);
3533 	} else {
3534 		hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3535 	}
3536 	ASSERT(HDR_EMPTY(hdr));
3537 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3538 	ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
3539 	HDR_SET_PSIZE(hdr, psize);
3540 	HDR_SET_LSIZE(hdr, lsize);
3541 	hdr->b_spa = spa;
3542 	hdr->b_type = type;
3543 	hdr->b_flags = 0;
3544 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3545 	arc_hdr_set_compress(hdr, compression_type);
3546 	if (protected)
3547 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3548 
3549 	hdr->b_l1hdr.b_state = arc_anon;
3550 	hdr->b_l1hdr.b_arc_access = 0;
3551 	hdr->b_l1hdr.b_bufcnt = 0;
3552 	hdr->b_l1hdr.b_buf = NULL;
3553 
3554 	/*
3555 	 * Allocate the hdr's buffer. This will contain either
3556 	 * the compressed or uncompressed data depending on the block
3557 	 * it references and compressed arc enablement.
3558 	 */
3559 	arc_hdr_alloc_pabd(hdr, alloc_rdata);
3560 	ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3561 
3562 	return (hdr);
3563 }
3564 
3565 /*
3566  * Transition between the two allocation states for the arc_buf_hdr struct.
3567  * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3568  * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3569  * version is used when a cache buffer is only in the L2ARC in order to reduce
3570  * memory usage.
3571  */
3572 static arc_buf_hdr_t *
3573 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3574 {
3575 	ASSERT(HDR_HAS_L2HDR(hdr));
3576 
3577 	arc_buf_hdr_t *nhdr;
3578 	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3579 
3580 	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3581 	    (old == hdr_l2only_cache && new == hdr_full_cache));
3582 
3583 	/*
3584 	 * if the caller wanted a new full header and the header is to be
3585 	 * encrypted we will actually allocate the header from the full crypt
3586 	 * cache instead. The same applies to freeing from the old cache.
3587 	 */
3588 	if (HDR_PROTECTED(hdr) && new == hdr_full_cache)
3589 		new = hdr_full_crypt_cache;
3590 	if (HDR_PROTECTED(hdr) && old == hdr_full_cache)
3591 		old = hdr_full_crypt_cache;
3592 
3593 	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3594 
3595 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3596 	buf_hash_remove(hdr);
3597 
3598 	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3599 
3600 	if (new == hdr_full_cache || new == hdr_full_crypt_cache) {
3601 		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3602 		/*
3603 		 * arc_access and arc_change_state need to be aware that a
3604 		 * header has just come out of L2ARC, so we set its state to
3605 		 * l2c_only even though it's about to change.
3606 		 */
3607 		nhdr->b_l1hdr.b_state = arc_l2c_only;
3608 
3609 		/* Verify previous threads set to NULL before freeing */
3610 		ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3611 		ASSERT(!HDR_HAS_RABD(hdr));
3612 	} else {
3613 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3614 		ASSERT0(hdr->b_l1hdr.b_bufcnt);
3615 		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3616 
3617 		/*
3618 		 * If we've reached here, We must have been called from
3619 		 * arc_evict_hdr(), as such we should have already been
3620 		 * removed from any ghost list we were previously on
3621 		 * (which protects us from racing with arc_evict_state),
3622 		 * thus no locking is needed during this check.
3623 		 */
3624 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3625 
3626 		/*
3627 		 * A buffer must not be moved into the arc_l2c_only
3628 		 * state if it's not finished being written out to the
3629 		 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3630 		 * might try to be accessed, even though it was removed.
3631 		 */
3632 		VERIFY(!HDR_L2_WRITING(hdr));
3633 		VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3634 		ASSERT(!HDR_HAS_RABD(hdr));
3635 
3636 #ifdef ZFS_DEBUG
3637 		if (hdr->b_l1hdr.b_thawed != NULL) {
3638 			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3639 			hdr->b_l1hdr.b_thawed = NULL;
3640 		}
3641 #endif
3642 
3643 		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3644 	}
3645 	/*
3646 	 * The header has been reallocated so we need to re-insert it into any
3647 	 * lists it was on.
3648 	 */
3649 	(void) buf_hash_insert(nhdr, NULL);
3650 
3651 	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3652 
3653 	mutex_enter(&dev->l2ad_mtx);
3654 
3655 	/*
3656 	 * We must place the realloc'ed header back into the list at
3657 	 * the same spot. Otherwise, if it's placed earlier in the list,
3658 	 * l2arc_write_buffers() could find it during the function's
3659 	 * write phase, and try to write it out to the l2arc.
3660 	 */
3661 	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3662 	list_remove(&dev->l2ad_buflist, hdr);
3663 
3664 	mutex_exit(&dev->l2ad_mtx);
3665 
3666 	/*
3667 	 * Since we're using the pointer address as the tag when
3668 	 * incrementing and decrementing the l2ad_alloc refcount, we
3669 	 * must remove the old pointer (that we're about to destroy) and
3670 	 * add the new pointer to the refcount. Otherwise we'd remove
3671 	 * the wrong pointer address when calling arc_hdr_destroy() later.
3672 	 */
3673 
3674 	(void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3675 	    hdr);
3676 	(void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr),
3677 	    nhdr);
3678 
3679 	buf_discard_identity(hdr);
3680 	kmem_cache_free(old, hdr);
3681 
3682 	return (nhdr);
3683 }
3684 
3685 /*
3686  * This function allows an L1 header to be reallocated as a crypt
3687  * header and vice versa. If we are going to a crypt header, the
3688  * new fields will be zeroed out.
3689  */
3690 static arc_buf_hdr_t *
3691 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt)
3692 {
3693 	arc_buf_hdr_t *nhdr;
3694 	arc_buf_t *buf;
3695 	kmem_cache_t *ncache, *ocache;
3696 
3697 	ASSERT(HDR_HAS_L1HDR(hdr));
3698 	ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt);
3699 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3700 	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3701 	ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node));
3702 	ASSERT3P(hdr->b_hash_next, ==, NULL);
3703 
3704 	if (need_crypt) {
3705 		ncache = hdr_full_crypt_cache;
3706 		ocache = hdr_full_cache;
3707 	} else {
3708 		ncache = hdr_full_cache;
3709 		ocache = hdr_full_crypt_cache;
3710 	}
3711 
3712 	nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE);
3713 
3714 	/*
3715 	 * Copy all members that aren't locks or condvars to the new header.
3716 	 * No lists are pointing to us (as we asserted above), so we don't
3717 	 * need to worry about the list nodes.
3718 	 */
3719 	nhdr->b_dva = hdr->b_dva;
3720 	nhdr->b_birth = hdr->b_birth;
3721 	nhdr->b_type = hdr->b_type;
3722 	nhdr->b_flags = hdr->b_flags;
3723 	nhdr->b_psize = hdr->b_psize;
3724 	nhdr->b_lsize = hdr->b_lsize;
3725 	nhdr->b_spa = hdr->b_spa;
3726 	nhdr->b_l2hdr.b_dev = hdr->b_l2hdr.b_dev;
3727 	nhdr->b_l2hdr.b_daddr = hdr->b_l2hdr.b_daddr;
3728 	nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum;
3729 	nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt;
3730 	nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap;
3731 	nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state;
3732 	nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access;
3733 	nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb;
3734 	nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd;
3735 #ifdef ZFS_DEBUG
3736 	if (hdr->b_l1hdr.b_thawed != NULL) {
3737 		nhdr->b_l1hdr.b_thawed = hdr->b_l1hdr.b_thawed;
3738 		hdr->b_l1hdr.b_thawed = NULL;
3739 	}
3740 #endif
3741 
3742 	/*
3743 	 * This refcount_add() exists only to ensure that the individual
3744 	 * arc buffers always point to a header that is referenced, avoiding
3745 	 * a small race condition that could trigger ASSERTs.
3746 	 */
3747 	(void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG);
3748 	nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf;
3749 	for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
3750 		mutex_enter(&buf->b_evict_lock);
3751 		buf->b_hdr = nhdr;
3752 		mutex_exit(&buf->b_evict_lock);
3753 	}
3754 	zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt);
3755 	(void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG);
3756 	ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3757 
3758 	if (need_crypt) {
3759 		arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED);
3760 	} else {
3761 		arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED);
3762 	}
3763 
3764 	/* unset all members of the original hdr */
3765 	bzero(&hdr->b_dva, sizeof (dva_t));
3766 	hdr->b_birth = 0;
3767 	hdr->b_type = ARC_BUFC_INVALID;
3768 	hdr->b_flags = 0;
3769 	hdr->b_psize = 0;
3770 	hdr->b_lsize = 0;
3771 	hdr->b_spa = 0;
3772 	hdr->b_l2hdr.b_dev = NULL;
3773 	hdr->b_l2hdr.b_daddr = 0;
3774 	hdr->b_l1hdr.b_freeze_cksum = NULL;
3775 	hdr->b_l1hdr.b_buf = NULL;
3776 	hdr->b_l1hdr.b_bufcnt = 0;
3777 	hdr->b_l1hdr.b_byteswap = 0;
3778 	hdr->b_l1hdr.b_state = NULL;
3779 	hdr->b_l1hdr.b_arc_access = 0;
3780 	hdr->b_l1hdr.b_acb = NULL;
3781 	hdr->b_l1hdr.b_pabd = NULL;
3782 
3783 	if (ocache == hdr_full_crypt_cache) {
3784 		ASSERT(!HDR_HAS_RABD(hdr));
3785 		hdr->b_crypt_hdr.b_ot = DMU_OT_NONE;
3786 		hdr->b_crypt_hdr.b_ebufcnt = 0;
3787 		hdr->b_crypt_hdr.b_dsobj = 0;
3788 		bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3789 		bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3790 		bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3791 	}
3792 
3793 	buf_discard_identity(hdr);
3794 	kmem_cache_free(ocache, hdr);
3795 
3796 	return (nhdr);
3797 }
3798 
3799 /*
3800  * This function is used by the send / receive code to convert a newly
3801  * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3802  * is also used to allow the root objset block to be uupdated without altering
3803  * its embedded MACs. Both block types will always be uncompressed so we do not
3804  * have to worry about compression type or psize.
3805  */
3806 void
3807 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3808     dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3809     const uint8_t *mac)
3810 {
3811 	arc_buf_hdr_t *hdr = buf->b_hdr;
3812 
3813 	ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3814 	ASSERT(HDR_HAS_L1HDR(hdr));
3815 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3816 
3817 	buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3818 	if (!HDR_PROTECTED(hdr))
3819 		hdr = arc_hdr_realloc_crypt(hdr, B_TRUE);
3820 	hdr->b_crypt_hdr.b_dsobj = dsobj;
3821 	hdr->b_crypt_hdr.b_ot = ot;
3822 	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3823 	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3824 	if (!arc_hdr_has_uncompressed_buf(hdr))
3825 		arc_cksum_free(hdr);
3826 
3827 	if (salt != NULL)
3828 		bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3829 	if (iv != NULL)
3830 		bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3831 	if (mac != NULL)
3832 		bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3833 }
3834 
3835 /*
3836  * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3837  * The buf is returned thawed since we expect the consumer to modify it.
3838  */
3839 arc_buf_t *
3840 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3841 {
3842 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3843 	    B_FALSE, ZIO_COMPRESS_OFF, type, B_FALSE);
3844 	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3845 
3846 	arc_buf_t *buf = NULL;
3847 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3848 	    B_FALSE, B_FALSE, &buf));
3849 	arc_buf_thaw(buf);
3850 
3851 	return (buf);
3852 }
3853 
3854 /*
3855  * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3856  * for bufs containing metadata.
3857  */
3858 arc_buf_t *
3859 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3860     enum zio_compress compression_type)
3861 {
3862 	ASSERT3U(lsize, >, 0);
3863 	ASSERT3U(lsize, >=, psize);
3864 	ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3865 	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3866 
3867 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3868 	    B_FALSE, compression_type, ARC_BUFC_DATA, B_FALSE);
3869 	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3870 
3871 	arc_buf_t *buf = NULL;
3872 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3873 	    B_TRUE, B_FALSE, B_FALSE, &buf));
3874 	arc_buf_thaw(buf);
3875 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3876 
3877 	if (!arc_buf_is_shared(buf)) {
3878 		/*
3879 		 * To ensure that the hdr has the correct data in it if we call
3880 		 * arc_untransform() on this buf before it's been written to
3881 		 * disk, it's easiest if we just set up sharing between the
3882 		 * buf and the hdr.
3883 		 */
3884 		ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3885 		arc_hdr_free_pabd(hdr, B_FALSE);
3886 		arc_share_buf(hdr, buf);
3887 	}
3888 
3889 	return (buf);
3890 }
3891 
3892 arc_buf_t *
3893 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder,
3894     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
3895     dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3896     enum zio_compress compression_type)
3897 {
3898 	arc_buf_hdr_t *hdr;
3899 	arc_buf_t *buf;
3900 	arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3901 	    ARC_BUFC_METADATA : ARC_BUFC_DATA;
3902 
3903 	ASSERT3U(lsize, >, 0);
3904 	ASSERT3U(lsize, >=, psize);
3905 	ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3906 	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3907 
3908 	hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3909 	    compression_type, type, B_TRUE);
3910 	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3911 
3912 	hdr->b_crypt_hdr.b_dsobj = dsobj;
3913 	hdr->b_crypt_hdr.b_ot = ot;
3914 	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3915 	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3916 	bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3917 	bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3918 	bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3919 
3920 	/*
3921 	 * This buffer will be considered encrypted even if the ot is not an
3922 	 * encrypted type. It will become authenticated instead in
3923 	 * arc_write_ready().
3924 	 */
3925 	buf = NULL;
3926 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3927 	    B_FALSE, B_FALSE, &buf));
3928 	arc_buf_thaw(buf);
3929 	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3930 
3931 	return (buf);
3932 }
3933 
3934 static void
3935 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3936 {
3937 	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3938 	l2arc_dev_t *dev = l2hdr->b_dev;
3939 	uint64_t psize = HDR_GET_PSIZE(hdr);
3940 	uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3941 
3942 	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3943 	ASSERT(HDR_HAS_L2HDR(hdr));
3944 
3945 	list_remove(&dev->l2ad_buflist, hdr);
3946 
3947 	ARCSTAT_INCR(arcstat_l2_psize, -psize);
3948 	ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3949 
3950 	vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3951 
3952 	(void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3953 	    hdr);
3954 	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3955 }
3956 
3957 static void
3958 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3959 {
3960 	if (HDR_HAS_L1HDR(hdr)) {
3961 		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3962 		    hdr->b_l1hdr.b_bufcnt > 0);
3963 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3964 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3965 	}
3966 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3967 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3968 
3969 	if (!HDR_EMPTY(hdr))
3970 		buf_discard_identity(hdr);
3971 
3972 	if (HDR_HAS_L2HDR(hdr)) {
3973 		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3974 		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3975 
3976 		if (!buflist_held)
3977 			mutex_enter(&dev->l2ad_mtx);
3978 
3979 		/*
3980 		 * Even though we checked this conditional above, we
3981 		 * need to check this again now that we have the
3982 		 * l2ad_mtx. This is because we could be racing with
3983 		 * another thread calling l2arc_evict() which might have
3984 		 * destroyed this header's L2 portion as we were waiting
3985 		 * to acquire the l2ad_mtx. If that happens, we don't
3986 		 * want to re-destroy the header's L2 portion.
3987 		 */
3988 		if (HDR_HAS_L2HDR(hdr))
3989 			arc_hdr_l2hdr_destroy(hdr);
3990 
3991 		if (!buflist_held)
3992 			mutex_exit(&dev->l2ad_mtx);
3993 	}
3994 
3995 	if (HDR_HAS_L1HDR(hdr)) {
3996 		arc_cksum_free(hdr);
3997 
3998 		while (hdr->b_l1hdr.b_buf != NULL)
3999 			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
4000 
4001 #ifdef ZFS_DEBUG
4002 		if (hdr->b_l1hdr.b_thawed != NULL) {
4003 			kmem_free(hdr->b_l1hdr.b_thawed, 1);
4004 			hdr->b_l1hdr.b_thawed = NULL;
4005 		}
4006 #endif
4007 
4008 		if (hdr->b_l1hdr.b_pabd != NULL) {
4009 			arc_hdr_free_pabd(hdr, B_FALSE);
4010 		}
4011 
4012 		if (HDR_HAS_RABD(hdr))
4013 			arc_hdr_free_pabd(hdr, B_TRUE);
4014 	}
4015 
4016 	ASSERT3P(hdr->b_hash_next, ==, NULL);
4017 	if (HDR_HAS_L1HDR(hdr)) {
4018 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4019 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
4020 
4021 		if (!HDR_PROTECTED(hdr)) {
4022 			kmem_cache_free(hdr_full_cache, hdr);
4023 		} else {
4024 			kmem_cache_free(hdr_full_crypt_cache, hdr);
4025 		}
4026 	} else {
4027 		kmem_cache_free(hdr_l2only_cache, hdr);
4028 	}
4029 }
4030 
4031 void
4032 arc_buf_destroy(arc_buf_t *buf, void* tag)
4033 {
4034 	arc_buf_hdr_t *hdr = buf->b_hdr;
4035 	kmutex_t *hash_lock = HDR_LOCK(hdr);
4036 
4037 	if (hdr->b_l1hdr.b_state == arc_anon) {
4038 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
4039 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4040 		VERIFY0(remove_reference(hdr, NULL, tag));
4041 		arc_hdr_destroy(hdr);
4042 		return;
4043 	}
4044 
4045 	mutex_enter(hash_lock);
4046 	ASSERT3P(hdr, ==, buf->b_hdr);
4047 	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
4048 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4049 	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
4050 	ASSERT3P(buf->b_data, !=, NULL);
4051 
4052 	(void) remove_reference(hdr, hash_lock, tag);
4053 	arc_buf_destroy_impl(buf);
4054 	mutex_exit(hash_lock);
4055 }
4056 
4057 /*
4058  * Evict the arc_buf_hdr that is provided as a parameter. The resultant
4059  * state of the header is dependent on its state prior to entering this
4060  * function. The following transitions are possible:
4061  *
4062  *    - arc_mru -> arc_mru_ghost
4063  *    - arc_mfu -> arc_mfu_ghost
4064  *    - arc_mru_ghost -> arc_l2c_only
4065  *    - arc_mru_ghost -> deleted
4066  *    - arc_mfu_ghost -> arc_l2c_only
4067  *    - arc_mfu_ghost -> deleted
4068  */
4069 static int64_t
4070 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4071 {
4072 	arc_state_t *evicted_state, *state;
4073 	int64_t bytes_evicted = 0;
4074 	int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
4075 	    zfs_arc_min_prescient_prefetch_ms : zfs_arc_min_prefetch_ms;
4076 
4077 	ASSERT(MUTEX_HELD(hash_lock));
4078 	ASSERT(HDR_HAS_L1HDR(hdr));
4079 
4080 	state = hdr->b_l1hdr.b_state;
4081 	if (GHOST_STATE(state)) {
4082 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4083 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4084 
4085 		/*
4086 		 * l2arc_write_buffers() relies on a header's L1 portion
4087 		 * (i.e. its b_pabd field) during its write phase.
4088 		 * Thus, we cannot push a header onto the arc_l2c_only
4089 		 * state (removing its L1 piece) until the header is
4090 		 * done being written to the l2arc.
4091 		 */
4092 		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
4093 			ARCSTAT_BUMP(arcstat_evict_l2_skip);
4094 			return (bytes_evicted);
4095 		}
4096 
4097 		ARCSTAT_BUMP(arcstat_deleted);
4098 		bytes_evicted += HDR_GET_LSIZE(hdr);
4099 
4100 		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
4101 
4102 		if (HDR_HAS_L2HDR(hdr)) {
4103 			ASSERT(hdr->b_l1hdr.b_pabd == NULL);
4104 			ASSERT(!HDR_HAS_RABD(hdr));
4105 			/*
4106 			 * This buffer is cached on the 2nd Level ARC;
4107 			 * don't destroy the header.
4108 			 */
4109 			arc_change_state(arc_l2c_only, hdr, hash_lock);
4110 			/*
4111 			 * dropping from L1+L2 cached to L2-only,
4112 			 * realloc to remove the L1 header.
4113 			 */
4114 			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
4115 			    hdr_l2only_cache);
4116 		} else {
4117 			arc_change_state(arc_anon, hdr, hash_lock);
4118 			arc_hdr_destroy(hdr);
4119 		}
4120 		return (bytes_evicted);
4121 	}
4122 
4123 	ASSERT(state == arc_mru || state == arc_mfu);
4124 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
4125 
4126 	/* prefetch buffers have a minimum lifespan */
4127 	if (HDR_IO_IN_PROGRESS(hdr) ||
4128 	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
4129 	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < min_lifetime * hz)) {
4130 		ARCSTAT_BUMP(arcstat_evict_skip);
4131 		return (bytes_evicted);
4132 	}
4133 
4134 	ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
4135 	while (hdr->b_l1hdr.b_buf) {
4136 		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
4137 		if (!mutex_tryenter(&buf->b_evict_lock)) {
4138 			ARCSTAT_BUMP(arcstat_mutex_miss);
4139 			break;
4140 		}
4141 		if (buf->b_data != NULL)
4142 			bytes_evicted += HDR_GET_LSIZE(hdr);
4143 		mutex_exit(&buf->b_evict_lock);
4144 		arc_buf_destroy_impl(buf);
4145 	}
4146 
4147 	if (HDR_HAS_L2HDR(hdr)) {
4148 		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
4149 	} else {
4150 		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
4151 			ARCSTAT_INCR(arcstat_evict_l2_eligible,
4152 			    HDR_GET_LSIZE(hdr));
4153 		} else {
4154 			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
4155 			    HDR_GET_LSIZE(hdr));
4156 		}
4157 	}
4158 
4159 	if (hdr->b_l1hdr.b_bufcnt == 0) {
4160 		arc_cksum_free(hdr);
4161 
4162 		bytes_evicted += arc_hdr_size(hdr);
4163 
4164 		/*
4165 		 * If this hdr is being evicted and has a compressed
4166 		 * buffer then we discard it here before we change states.
4167 		 * This ensures that the accounting is updated correctly
4168 		 * in arc_free_data_impl().
4169 		 */
4170 		if (hdr->b_l1hdr.b_pabd != NULL)
4171 			arc_hdr_free_pabd(hdr, B_FALSE);
4172 
4173 		if (HDR_HAS_RABD(hdr))
4174 			arc_hdr_free_pabd(hdr, B_TRUE);
4175 
4176 		arc_change_state(evicted_state, hdr, hash_lock);
4177 		ASSERT(HDR_IN_HASH_TABLE(hdr));
4178 		arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
4179 		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
4180 	}
4181 
4182 	return (bytes_evicted);
4183 }
4184 
4185 static uint64_t
4186 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
4187     uint64_t spa, int64_t bytes)
4188 {
4189 	multilist_sublist_t *mls;
4190 	uint64_t bytes_evicted = 0;
4191 	arc_buf_hdr_t *hdr;
4192 	kmutex_t *hash_lock;
4193 	int evict_count = 0;
4194 
4195 	ASSERT3P(marker, !=, NULL);
4196 	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
4197 
4198 	mls = multilist_sublist_lock(ml, idx);
4199 
4200 	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
4201 	    hdr = multilist_sublist_prev(mls, marker)) {
4202 		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
4203 		    (evict_count >= zfs_arc_evict_batch_limit))
4204 			break;
4205 
4206 		/*
4207 		 * To keep our iteration location, move the marker
4208 		 * forward. Since we're not holding hdr's hash lock, we
4209 		 * must be very careful and not remove 'hdr' from the
4210 		 * sublist. Otherwise, other consumers might mistake the
4211 		 * 'hdr' as not being on a sublist when they call the
4212 		 * multilist_link_active() function (they all rely on
4213 		 * the hash lock protecting concurrent insertions and
4214 		 * removals). multilist_sublist_move_forward() was
4215 		 * specifically implemented to ensure this is the case
4216 		 * (only 'marker' will be removed and re-inserted).
4217 		 */
4218 		multilist_sublist_move_forward(mls, marker);
4219 
4220 		/*
4221 		 * The only case where the b_spa field should ever be
4222 		 * zero, is the marker headers inserted by
4223 		 * arc_evict_state(). It's possible for multiple threads
4224 		 * to be calling arc_evict_state() concurrently (e.g.
4225 		 * dsl_pool_close() and zio_inject_fault()), so we must
4226 		 * skip any markers we see from these other threads.
4227 		 */
4228 		if (hdr->b_spa == 0)
4229 			continue;
4230 
4231 		/* we're only interested in evicting buffers of a certain spa */
4232 		if (spa != 0 && hdr->b_spa != spa) {
4233 			ARCSTAT_BUMP(arcstat_evict_skip);
4234 			continue;
4235 		}
4236 
4237 		hash_lock = HDR_LOCK(hdr);
4238 
4239 		/*
4240 		 * We aren't calling this function from any code path
4241 		 * that would already be holding a hash lock, so we're
4242 		 * asserting on this assumption to be defensive in case
4243 		 * this ever changes. Without this check, it would be
4244 		 * possible to incorrectly increment arcstat_mutex_miss
4245 		 * below (e.g. if the code changed such that we called
4246 		 * this function with a hash lock held).
4247 		 */
4248 		ASSERT(!MUTEX_HELD(hash_lock));
4249 
4250 		if (mutex_tryenter(hash_lock)) {
4251 			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
4252 			mutex_exit(hash_lock);
4253 
4254 			bytes_evicted += evicted;
4255 
4256 			/*
4257 			 * If evicted is zero, arc_evict_hdr() must have
4258 			 * decided to skip this header, don't increment
4259 			 * evict_count in this case.
4260 			 */
4261 			if (evicted != 0)
4262 				evict_count++;
4263 
4264 			/*
4265 			 * If arc_size isn't overflowing, signal any
4266 			 * threads that might happen to be waiting.
4267 			 *
4268 			 * For each header evicted, we wake up a single
4269 			 * thread. If we used cv_broadcast, we could
4270 			 * wake up "too many" threads causing arc_size
4271 			 * to significantly overflow arc_c; since
4272 			 * arc_get_data_impl() doesn't check for overflow
4273 			 * when it's woken up (it doesn't because it's
4274 			 * possible for the ARC to be overflowing while
4275 			 * full of un-evictable buffers, and the
4276 			 * function should proceed in this case).
4277 			 *
4278 			 * If threads are left sleeping, due to not
4279 			 * using cv_broadcast here, they will be woken
4280 			 * up via cv_broadcast in arc_adjust_cb() just
4281 			 * before arc_adjust_zthr sleeps.
4282 			 */
4283 			mutex_enter(&arc_adjust_lock);
4284 			if (!arc_is_overflowing())
4285 				cv_signal(&arc_adjust_waiters_cv);
4286 			mutex_exit(&arc_adjust_lock);
4287 		} else {
4288 			ARCSTAT_BUMP(arcstat_mutex_miss);
4289 		}
4290 	}
4291 
4292 	multilist_sublist_unlock(mls);
4293 
4294 	return (bytes_evicted);
4295 }
4296 
4297 /*
4298  * Evict buffers from the given arc state, until we've removed the
4299  * specified number of bytes. Move the removed buffers to the
4300  * appropriate evict state.
4301  *
4302  * This function makes a "best effort". It skips over any buffers
4303  * it can't get a hash_lock on, and so, may not catch all candidates.
4304  * It may also return without evicting as much space as requested.
4305  *
4306  * If bytes is specified using the special value ARC_EVICT_ALL, this
4307  * will evict all available (i.e. unlocked and evictable) buffers from
4308  * the given arc state; which is used by arc_flush().
4309  */
4310 static uint64_t
4311 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
4312     arc_buf_contents_t type)
4313 {
4314 	uint64_t total_evicted = 0;
4315 	multilist_t *ml = state->arcs_list[type];
4316 	int num_sublists;
4317 	arc_buf_hdr_t **markers;
4318 
4319 	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
4320 
4321 	num_sublists = multilist_get_num_sublists(ml);
4322 
4323 	/*
4324 	 * If we've tried to evict from each sublist, made some
4325 	 * progress, but still have not hit the target number of bytes
4326 	 * to evict, we want to keep trying. The markers allow us to
4327 	 * pick up where we left off for each individual sublist, rather
4328 	 * than starting from the tail each time.
4329 	 */
4330 	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
4331 	for (int i = 0; i < num_sublists; i++) {
4332 		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4333 
4334 		/*
4335 		 * A b_spa of 0 is used to indicate that this header is
4336 		 * a marker. This fact is used in arc_adjust_type() and
4337 		 * arc_evict_state_impl().
4338 		 */
4339 		markers[i]->b_spa = 0;
4340 
4341 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4342 		multilist_sublist_insert_tail(mls, markers[i]);
4343 		multilist_sublist_unlock(mls);
4344 	}
4345 
4346 	/*
4347 	 * While we haven't hit our target number of bytes to evict, or
4348 	 * we're evicting all available buffers.
4349 	 */
4350 	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
4351 		/*
4352 		 * Start eviction using a randomly selected sublist,
4353 		 * this is to try and evenly balance eviction across all
4354 		 * sublists. Always starting at the same sublist
4355 		 * (e.g. index 0) would cause evictions to favor certain
4356 		 * sublists over others.
4357 		 */
4358 		int sublist_idx = multilist_get_random_index(ml);
4359 		uint64_t scan_evicted = 0;
4360 
4361 		for (int i = 0; i < num_sublists; i++) {
4362 			uint64_t bytes_remaining;
4363 			uint64_t bytes_evicted;
4364 
4365 			if (bytes == ARC_EVICT_ALL)
4366 				bytes_remaining = ARC_EVICT_ALL;
4367 			else if (total_evicted < bytes)
4368 				bytes_remaining = bytes - total_evicted;
4369 			else
4370 				break;
4371 
4372 			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4373 			    markers[sublist_idx], spa, bytes_remaining);
4374 
4375 			scan_evicted += bytes_evicted;
4376 			total_evicted += bytes_evicted;
4377 
4378 			/* we've reached the end, wrap to the beginning */
4379 			if (++sublist_idx >= num_sublists)
4380 				sublist_idx = 0;
4381 		}
4382 
4383 		/*
4384 		 * If we didn't evict anything during this scan, we have
4385 		 * no reason to believe we'll evict more during another
4386 		 * scan, so break the loop.
4387 		 */
4388 		if (scan_evicted == 0) {
4389 			/* This isn't possible, let's make that obvious */
4390 			ASSERT3S(bytes, !=, 0);
4391 
4392 			/*
4393 			 * When bytes is ARC_EVICT_ALL, the only way to
4394 			 * break the loop is when scan_evicted is zero.
4395 			 * In that case, we actually have evicted enough,
4396 			 * so we don't want to increment the kstat.
4397 			 */
4398 			if (bytes != ARC_EVICT_ALL) {
4399 				ASSERT3S(total_evicted, <, bytes);
4400 				ARCSTAT_BUMP(arcstat_evict_not_enough);
4401 			}
4402 
4403 			break;
4404 		}
4405 	}
4406 
4407 	for (int i = 0; i < num_sublists; i++) {
4408 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4409 		multilist_sublist_remove(mls, markers[i]);
4410 		multilist_sublist_unlock(mls);
4411 
4412 		kmem_cache_free(hdr_full_cache, markers[i]);
4413 	}
4414 	kmem_free(markers, sizeof (*markers) * num_sublists);
4415 
4416 	return (total_evicted);
4417 }
4418 
4419 /*
4420  * Flush all "evictable" data of the given type from the arc state
4421  * specified. This will not evict any "active" buffers (i.e. referenced).
4422  *
4423  * When 'retry' is set to B_FALSE, the function will make a single pass
4424  * over the state and evict any buffers that it can. Since it doesn't
4425  * continually retry the eviction, it might end up leaving some buffers
4426  * in the ARC due to lock misses.
4427  *
4428  * When 'retry' is set to B_TRUE, the function will continually retry the
4429  * eviction until *all* evictable buffers have been removed from the
4430  * state. As a result, if concurrent insertions into the state are
4431  * allowed (e.g. if the ARC isn't shutting down), this function might
4432  * wind up in an infinite loop, continually trying to evict buffers.
4433  */
4434 static uint64_t
4435 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4436     boolean_t retry)
4437 {
4438 	uint64_t evicted = 0;
4439 
4440 	while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4441 		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
4442 
4443 		if (!retry)
4444 			break;
4445 	}
4446 
4447 	return (evicted);
4448 }
4449 
4450 /*
4451  * Evict the specified number of bytes from the state specified,
4452  * restricting eviction to the spa and type given. This function
4453  * prevents us from trying to evict more from a state's list than
4454  * is "evictable", and to skip evicting altogether when passed a
4455  * negative value for "bytes". In contrast, arc_evict_state() will
4456  * evict everything it can, when passed a negative value for "bytes".
4457  */
4458 static uint64_t
4459 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
4460     arc_buf_contents_t type)
4461 {
4462 	int64_t delta;
4463 
4464 	if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4465 		delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4466 		    bytes);
4467 		return (arc_evict_state(state, spa, delta, type));
4468 	}
4469 
4470 	return (0);
4471 }
4472 
4473 /*
4474  * Evict metadata buffers from the cache, such that arc_meta_used is
4475  * capped by the arc_meta_limit tunable.
4476  */
4477 static uint64_t
4478 arc_adjust_meta(uint64_t meta_used)
4479 {
4480 	uint64_t total_evicted = 0;
4481 	int64_t target;
4482 
4483 	/*
4484 	 * If we're over the meta limit, we want to evict enough
4485 	 * metadata to get back under the meta limit. We don't want to
4486 	 * evict so much that we drop the MRU below arc_p, though. If
4487 	 * we're over the meta limit more than we're over arc_p, we
4488 	 * evict some from the MRU here, and some from the MFU below.
4489 	 */
4490 	target = MIN((int64_t)(meta_used - arc_meta_limit),
4491 	    (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4492 	    zfs_refcount_count(&arc_mru->arcs_size) - arc_p));
4493 
4494 	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4495 
4496 	/*
4497 	 * Similar to the above, we want to evict enough bytes to get us
4498 	 * below the meta limit, but not so much as to drop us below the
4499 	 * space allotted to the MFU (which is defined as arc_c - arc_p).
4500 	 */
4501 	target = MIN((int64_t)(meta_used - arc_meta_limit),
4502 	    (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) -
4503 	    (arc_c - arc_p)));
4504 
4505 	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4506 
4507 	return (total_evicted);
4508 }
4509 
4510 /*
4511  * Return the type of the oldest buffer in the given arc state
4512  *
4513  * This function will select a random sublist of type ARC_BUFC_DATA and
4514  * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4515  * is compared, and the type which contains the "older" buffer will be
4516  * returned.
4517  */
4518 static arc_buf_contents_t
4519 arc_adjust_type(arc_state_t *state)
4520 {
4521 	multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
4522 	multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
4523 	int data_idx = multilist_get_random_index(data_ml);
4524 	int meta_idx = multilist_get_random_index(meta_ml);
4525 	multilist_sublist_t *data_mls;
4526 	multilist_sublist_t *meta_mls;
4527 	arc_buf_contents_t type;
4528 	arc_buf_hdr_t *data_hdr;
4529 	arc_buf_hdr_t *meta_hdr;
4530 
4531 	/*
4532 	 * We keep the sublist lock until we're finished, to prevent
4533 	 * the headers from being destroyed via arc_evict_state().
4534 	 */
4535 	data_mls = multilist_sublist_lock(data_ml, data_idx);
4536 	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4537 
4538 	/*
4539 	 * These two loops are to ensure we skip any markers that
4540 	 * might be at the tail of the lists due to arc_evict_state().
4541 	 */
4542 
4543 	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4544 	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4545 		if (data_hdr->b_spa != 0)
4546 			break;
4547 	}
4548 
4549 	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4550 	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4551 		if (meta_hdr->b_spa != 0)
4552 			break;
4553 	}
4554 
4555 	if (data_hdr == NULL && meta_hdr == NULL) {
4556 		type = ARC_BUFC_DATA;
4557 	} else if (data_hdr == NULL) {
4558 		ASSERT3P(meta_hdr, !=, NULL);
4559 		type = ARC_BUFC_METADATA;
4560 	} else if (meta_hdr == NULL) {
4561 		ASSERT3P(data_hdr, !=, NULL);
4562 		type = ARC_BUFC_DATA;
4563 	} else {
4564 		ASSERT3P(data_hdr, !=, NULL);
4565 		ASSERT3P(meta_hdr, !=, NULL);
4566 
4567 		/* The headers can't be on the sublist without an L1 header */
4568 		ASSERT(HDR_HAS_L1HDR(data_hdr));
4569 		ASSERT(HDR_HAS_L1HDR(meta_hdr));
4570 
4571 		if (data_hdr->b_l1hdr.b_arc_access <
4572 		    meta_hdr->b_l1hdr.b_arc_access) {
4573 			type = ARC_BUFC_DATA;
4574 		} else {
4575 			type = ARC_BUFC_METADATA;
4576 		}
4577 	}
4578 
4579 	multilist_sublist_unlock(meta_mls);
4580 	multilist_sublist_unlock(data_mls);
4581 
4582 	return (type);
4583 }
4584 
4585 /*
4586  * Evict buffers from the cache, such that arc_size is capped by arc_c.
4587  */
4588 static uint64_t
4589 arc_adjust(void)
4590 {
4591 	uint64_t total_evicted = 0;
4592 	uint64_t bytes;
4593 	int64_t target;
4594 	uint64_t asize = aggsum_value(&arc_size);
4595 	uint64_t ameta = aggsum_value(&arc_meta_used);
4596 
4597 	/*
4598 	 * If we're over arc_meta_limit, we want to correct that before
4599 	 * potentially evicting data buffers below.
4600 	 */
4601 	total_evicted += arc_adjust_meta(ameta);
4602 
4603 	/*
4604 	 * Adjust MRU size
4605 	 *
4606 	 * If we're over the target cache size, we want to evict enough
4607 	 * from the list to get back to our target size. We don't want
4608 	 * to evict too much from the MRU, such that it drops below
4609 	 * arc_p. So, if we're over our target cache size more than
4610 	 * the MRU is over arc_p, we'll evict enough to get back to
4611 	 * arc_p here, and then evict more from the MFU below.
4612 	 */
4613 	target = MIN((int64_t)(asize - arc_c),
4614 	    (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4615 	    zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
4616 
4617 	/*
4618 	 * If we're below arc_meta_min, always prefer to evict data.
4619 	 * Otherwise, try to satisfy the requested number of bytes to
4620 	 * evict from the type which contains older buffers; in an
4621 	 * effort to keep newer buffers in the cache regardless of their
4622 	 * type. If we cannot satisfy the number of bytes from this
4623 	 * type, spill over into the next type.
4624 	 */
4625 	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
4626 	    ameta > arc_meta_min) {
4627 		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4628 		total_evicted += bytes;
4629 
4630 		/*
4631 		 * If we couldn't evict our target number of bytes from
4632 		 * metadata, we try to get the rest from data.
4633 		 */
4634 		target -= bytes;
4635 
4636 		total_evicted +=
4637 		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4638 	} else {
4639 		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4640 		total_evicted += bytes;
4641 
4642 		/*
4643 		 * If we couldn't evict our target number of bytes from
4644 		 * data, we try to get the rest from metadata.
4645 		 */
4646 		target -= bytes;
4647 
4648 		total_evicted +=
4649 		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4650 	}
4651 
4652 	/*
4653 	 * Adjust MFU size
4654 	 *
4655 	 * Now that we've tried to evict enough from the MRU to get its
4656 	 * size back to arc_p, if we're still above the target cache
4657 	 * size, we evict the rest from the MFU.
4658 	 */
4659 	target = asize - arc_c;
4660 
4661 	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
4662 	    ameta > arc_meta_min) {
4663 		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4664 		total_evicted += bytes;
4665 
4666 		/*
4667 		 * If we couldn't evict our target number of bytes from
4668 		 * metadata, we try to get the rest from data.
4669 		 */
4670 		target -= bytes;
4671 
4672 		total_evicted +=
4673 		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4674 	} else {
4675 		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4676 		total_evicted += bytes;
4677 
4678 		/*
4679 		 * If we couldn't evict our target number of bytes from
4680 		 * data, we try to get the rest from data.
4681 		 */
4682 		target -= bytes;
4683 
4684 		total_evicted +=
4685 		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4686 	}
4687 
4688 	/*
4689 	 * Adjust ghost lists
4690 	 *
4691 	 * In addition to the above, the ARC also defines target values
4692 	 * for the ghost lists. The sum of the mru list and mru ghost
4693 	 * list should never exceed the target size of the cache, and
4694 	 * the sum of the mru list, mfu list, mru ghost list, and mfu
4695 	 * ghost list should never exceed twice the target size of the
4696 	 * cache. The following logic enforces these limits on the ghost
4697 	 * caches, and evicts from them as needed.
4698 	 */
4699 	target = zfs_refcount_count(&arc_mru->arcs_size) +
4700 	    zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
4701 
4702 	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4703 	total_evicted += bytes;
4704 
4705 	target -= bytes;
4706 
4707 	total_evicted +=
4708 	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4709 
4710 	/*
4711 	 * We assume the sum of the mru list and mfu list is less than
4712 	 * or equal to arc_c (we enforced this above), which means we
4713 	 * can use the simpler of the two equations below:
4714 	 *
4715 	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4716 	 *		    mru ghost + mfu ghost <= arc_c
4717 	 */
4718 	target = zfs_refcount_count(&arc_mru_ghost->arcs_size) +
4719 	    zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
4720 
4721 	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4722 	total_evicted += bytes;
4723 
4724 	target -= bytes;
4725 
4726 	total_evicted +=
4727 	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4728 
4729 	return (total_evicted);
4730 }
4731 
4732 void
4733 arc_flush(spa_t *spa, boolean_t retry)
4734 {
4735 	uint64_t guid = 0;
4736 
4737 	/*
4738 	 * If retry is B_TRUE, a spa must not be specified since we have
4739 	 * no good way to determine if all of a spa's buffers have been
4740 	 * evicted from an arc state.
4741 	 */
4742 	ASSERT(!retry || spa == 0);
4743 
4744 	if (spa != NULL)
4745 		guid = spa_load_guid(spa);
4746 
4747 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4748 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4749 
4750 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4751 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4752 
4753 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4754 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4755 
4756 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4757 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4758 }
4759 
4760 static void
4761 arc_reduce_target_size(int64_t to_free)
4762 {
4763 	uint64_t asize = aggsum_value(&arc_size);
4764 	if (arc_c > arc_c_min) {
4765 
4766 		if (arc_c > arc_c_min + to_free)
4767 			atomic_add_64(&arc_c, -to_free);
4768 		else
4769 			arc_c = arc_c_min;
4770 
4771 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
4772 		if (asize < arc_c)
4773 			arc_c = MAX(asize, arc_c_min);
4774 		if (arc_p > arc_c)
4775 			arc_p = (arc_c >> 1);
4776 		ASSERT(arc_c >= arc_c_min);
4777 		ASSERT((int64_t)arc_p >= 0);
4778 	}
4779 
4780 	if (asize > arc_c) {
4781 		/* See comment in arc_adjust_cb_check() on why lock+flag */
4782 		mutex_enter(&arc_adjust_lock);
4783 		arc_adjust_needed = B_TRUE;
4784 		mutex_exit(&arc_adjust_lock);
4785 		zthr_wakeup(arc_adjust_zthr);
4786 	}
4787 }
4788 
4789 typedef enum free_memory_reason_t {
4790 	FMR_UNKNOWN,
4791 	FMR_NEEDFREE,
4792 	FMR_LOTSFREE,
4793 	FMR_SWAPFS_MINFREE,
4794 	FMR_PAGES_PP_MAXIMUM,
4795 	FMR_HEAP_ARENA,
4796 	FMR_ZIO_ARENA,
4797 } free_memory_reason_t;
4798 
4799 int64_t last_free_memory;
4800 free_memory_reason_t last_free_reason;
4801 
4802 /*
4803  * Additional reserve of pages for pp_reserve.
4804  */
4805 int64_t arc_pages_pp_reserve = 64;
4806 
4807 /*
4808  * Additional reserve of pages for swapfs.
4809  */
4810 int64_t arc_swapfs_reserve = 64;
4811 
4812 /*
4813  * Return the amount of memory that can be consumed before reclaim will be
4814  * needed.  Positive if there is sufficient free memory, negative indicates
4815  * the amount of memory that needs to be freed up.
4816  */
4817 static int64_t
4818 arc_available_memory(void)
4819 {
4820 	int64_t lowest = INT64_MAX;
4821 	int64_t n;
4822 	free_memory_reason_t r = FMR_UNKNOWN;
4823 
4824 #ifdef _KERNEL
4825 	if (needfree > 0) {
4826 		n = PAGESIZE * (-needfree);
4827 		if (n < lowest) {
4828 			lowest = n;
4829 			r = FMR_NEEDFREE;
4830 		}
4831 	}
4832 
4833 	/*
4834 	 * check that we're out of range of the pageout scanner.  It starts to
4835 	 * schedule paging if freemem is less than lotsfree and needfree.
4836 	 * lotsfree is the high-water mark for pageout, and needfree is the
4837 	 * number of needed free pages.  We add extra pages here to make sure
4838 	 * the scanner doesn't start up while we're freeing memory.
4839 	 */
4840 	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
4841 	if (n < lowest) {
4842 		lowest = n;
4843 		r = FMR_LOTSFREE;
4844 	}
4845 
4846 	/*
4847 	 * check to make sure that swapfs has enough space so that anon
4848 	 * reservations can still succeed. anon_resvmem() checks that the
4849 	 * availrmem is greater than swapfs_minfree, and the number of reserved
4850 	 * swap pages.  We also add a bit of extra here just to prevent
4851 	 * circumstances from getting really dire.
4852 	 */
4853 	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4854 	    desfree - arc_swapfs_reserve);
4855 	if (n < lowest) {
4856 		lowest = n;
4857 		r = FMR_SWAPFS_MINFREE;
4858 	}
4859 
4860 
4861 	/*
4862 	 * Check that we have enough availrmem that memory locking (e.g., via
4863 	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
4864 	 * stores the number of pages that cannot be locked; when availrmem
4865 	 * drops below pages_pp_maximum, page locking mechanisms such as
4866 	 * page_pp_lock() will fail.)
4867 	 */
4868 	n = PAGESIZE * (availrmem - pages_pp_maximum -
4869 	    arc_pages_pp_reserve);
4870 	if (n < lowest) {
4871 		lowest = n;
4872 		r = FMR_PAGES_PP_MAXIMUM;
4873 	}
4874 
4875 #if defined(__i386)
4876 	/*
4877 	 * If we're on an i386 platform, it's possible that we'll exhaust the
4878 	 * kernel heap space before we ever run out of available physical
4879 	 * memory.  Most checks of the size of the heap_area compare against
4880 	 * tune.t_minarmem, which is the minimum available real memory that we
4881 	 * can have in the system.  However, this is generally fixed at 25 pages
4882 	 * which is so low that it's useless.  In this comparison, we seek to
4883 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4884 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
4885 	 * free)
4886 	 */
4887 	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
4888 	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4889 	if (n < lowest) {
4890 		lowest = n;
4891 		r = FMR_HEAP_ARENA;
4892 	}
4893 #endif
4894 
4895 	/*
4896 	 * If zio data pages are being allocated out of a separate heap segment,
4897 	 * then enforce that the size of available vmem for this arena remains
4898 	 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4899 	 *
4900 	 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4901 	 * memory (in the zio_arena) free, which can avoid memory
4902 	 * fragmentation issues.
4903 	 */
4904 	if (zio_arena != NULL) {
4905 		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4906 		    (vmem_size(zio_arena, VMEM_ALLOC) >>
4907 		    arc_zio_arena_free_shift);
4908 		if (n < lowest) {
4909 			lowest = n;
4910 			r = FMR_ZIO_ARENA;
4911 		}
4912 	}
4913 #else
4914 	/* Every 100 calls, free a small amount */
4915 	if (spa_get_random(100) == 0)
4916 		lowest = -1024;
4917 #endif
4918 
4919 	last_free_memory = lowest;
4920 	last_free_reason = r;
4921 
4922 	return (lowest);
4923 }
4924 
4925 
4926 /*
4927  * Determine if the system is under memory pressure and is asking
4928  * to reclaim memory. A return value of B_TRUE indicates that the system
4929  * is under memory pressure and that the arc should adjust accordingly.
4930  */
4931 static boolean_t
4932 arc_reclaim_needed(void)
4933 {
4934 	return (arc_available_memory() < 0);
4935 }
4936 
4937 static void
4938 arc_kmem_reap_soon(void)
4939 {
4940 	size_t			i;
4941 	kmem_cache_t		*prev_cache = NULL;
4942 	kmem_cache_t		*prev_data_cache = NULL;
4943 	extern kmem_cache_t	*zio_buf_cache[];
4944 	extern kmem_cache_t	*zio_data_buf_cache[];
4945 	extern kmem_cache_t	*range_seg_cache;
4946 	extern kmem_cache_t	*abd_chunk_cache;
4947 
4948 #ifdef _KERNEL
4949 	if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) {
4950 		/*
4951 		 * We are exceeding our meta-data cache limit.
4952 		 * Purge some DNLC entries to release holds on meta-data.
4953 		 */
4954 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4955 	}
4956 #if defined(__i386)
4957 	/*
4958 	 * Reclaim unused memory from all kmem caches.
4959 	 */
4960 	kmem_reap();
4961 #endif
4962 #endif
4963 
4964 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4965 		if (zio_buf_cache[i] != prev_cache) {
4966 			prev_cache = zio_buf_cache[i];
4967 			kmem_cache_reap_soon(zio_buf_cache[i]);
4968 		}
4969 		if (zio_data_buf_cache[i] != prev_data_cache) {
4970 			prev_data_cache = zio_data_buf_cache[i];
4971 			kmem_cache_reap_soon(zio_data_buf_cache[i]);
4972 		}
4973 	}
4974 	kmem_cache_reap_soon(abd_chunk_cache);
4975 	kmem_cache_reap_soon(buf_cache);
4976 	kmem_cache_reap_soon(hdr_full_cache);
4977 	kmem_cache_reap_soon(hdr_l2only_cache);
4978 	kmem_cache_reap_soon(range_seg_cache);
4979 
4980 	if (zio_arena != NULL) {
4981 		/*
4982 		 * Ask the vmem arena to reclaim unused memory from its
4983 		 * quantum caches.
4984 		 */
4985 		vmem_qcache_reap(zio_arena);
4986 	}
4987 }
4988 
4989 /* ARGSUSED */
4990 static boolean_t
4991 arc_adjust_cb_check(void *arg, zthr_t *zthr)
4992 {
4993 	/*
4994 	 * This is necessary in order for the mdb ::arc dcmd to
4995 	 * show up to date information. Since the ::arc command
4996 	 * does not call the kstat's update function, without
4997 	 * this call, the command may show stale stats for the
4998 	 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4999 	 * with this change, the data might be up to 1 second
5000 	 * out of date(the arc_adjust_zthr has a maximum sleep
5001 	 * time of 1 second); but that should suffice.  The
5002 	 * arc_state_t structures can be queried directly if more
5003 	 * accurate information is needed.
5004 	 */
5005 	if (arc_ksp != NULL)
5006 		arc_ksp->ks_update(arc_ksp, KSTAT_READ);
5007 
5008 	/*
5009 	 * We have to rely on arc_get_data_impl() to tell us when to adjust,
5010 	 * rather than checking if we are overflowing here, so that we are
5011 	 * sure to not leave arc_get_data_impl() waiting on
5012 	 * arc_adjust_waiters_cv.  If we have become "not overflowing" since
5013 	 * arc_get_data_impl() checked, we need to wake it up.  We could
5014 	 * broadcast the CV here, but arc_get_data_impl() may have not yet
5015 	 * gone to sleep.  We would need to use a mutex to ensure that this
5016 	 * function doesn't broadcast until arc_get_data_impl() has gone to
5017 	 * sleep (e.g. the arc_adjust_lock).  However, the lock ordering of
5018 	 * such a lock would necessarily be incorrect with respect to the
5019 	 * zthr_lock, which is held before this function is called, and is
5020 	 * held by arc_get_data_impl() when it calls zthr_wakeup().
5021 	 */
5022 	return (arc_adjust_needed);
5023 }
5024 
5025 /*
5026  * Keep arc_size under arc_c by running arc_adjust which evicts data
5027  * from the ARC.
5028  */
5029 /* ARGSUSED */
5030 static void
5031 arc_adjust_cb(void *arg, zthr_t *zthr)
5032 {
5033 	uint64_t evicted = 0;
5034 
5035 	/* Evict from cache */
5036 	evicted = arc_adjust();
5037 
5038 	/*
5039 	 * If evicted is zero, we couldn't evict anything
5040 	 * via arc_adjust(). This could be due to hash lock
5041 	 * collisions, but more likely due to the majority of
5042 	 * arc buffers being unevictable. Therefore, even if
5043 	 * arc_size is above arc_c, another pass is unlikely to
5044 	 * be helpful and could potentially cause us to enter an
5045 	 * infinite loop.  Additionally, zthr_iscancelled() is
5046 	 * checked here so that if the arc is shutting down, the
5047 	 * broadcast will wake any remaining arc adjust waiters.
5048 	 */
5049 	mutex_enter(&arc_adjust_lock);
5050 	arc_adjust_needed = !zthr_iscancelled(arc_adjust_zthr) &&
5051 	    evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0;
5052 	if (!arc_adjust_needed) {
5053 		/*
5054 		 * We're either no longer overflowing, or we
5055 		 * can't evict anything more, so we should wake
5056 		 * up any waiters.
5057 		 */
5058 		cv_broadcast(&arc_adjust_waiters_cv);
5059 	}
5060 	mutex_exit(&arc_adjust_lock);
5061 }
5062 
5063 /* ARGSUSED */
5064 static boolean_t
5065 arc_reap_cb_check(void *arg, zthr_t *zthr)
5066 {
5067 	int64_t free_memory = arc_available_memory();
5068 
5069 	/*
5070 	 * If a kmem reap is already active, don't schedule more.  We must
5071 	 * check for this because kmem_cache_reap_soon() won't actually
5072 	 * block on the cache being reaped (this is to prevent callers from
5073 	 * becoming implicitly blocked by a system-wide kmem reap -- which,
5074 	 * on a system with many, many full magazines, can take minutes).
5075 	 */
5076 	if (!kmem_cache_reap_active() &&
5077 	    free_memory < 0) {
5078 		arc_no_grow = B_TRUE;
5079 		arc_warm = B_TRUE;
5080 		/*
5081 		 * Wait at least zfs_grow_retry (default 60) seconds
5082 		 * before considering growing.
5083 		 */
5084 		arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
5085 		return (B_TRUE);
5086 	} else if (free_memory < arc_c >> arc_no_grow_shift) {
5087 		arc_no_grow = B_TRUE;
5088 	} else if (gethrtime() >= arc_growtime) {
5089 		arc_no_grow = B_FALSE;
5090 	}
5091 
5092 	return (B_FALSE);
5093 }
5094 
5095 /*
5096  * Keep enough free memory in the system by reaping the ARC's kmem
5097  * caches.  To cause more slabs to be reapable, we may reduce the
5098  * target size of the cache (arc_c), causing the arc_adjust_cb()
5099  * to free more buffers.
5100  */
5101 /* ARGSUSED */
5102 static void
5103 arc_reap_cb(void *arg, zthr_t *zthr)
5104 {
5105 	int64_t free_memory;
5106 
5107 	/*
5108 	 * Kick off asynchronous kmem_reap()'s of all our caches.
5109 	 */
5110 	arc_kmem_reap_soon();
5111 
5112 	/*
5113 	 * Wait at least arc_kmem_cache_reap_retry_ms between
5114 	 * arc_kmem_reap_soon() calls. Without this check it is possible to
5115 	 * end up in a situation where we spend lots of time reaping
5116 	 * caches, while we're near arc_c_min.  Waiting here also gives the
5117 	 * subsequent free memory check a chance of finding that the
5118 	 * asynchronous reap has already freed enough memory, and we don't
5119 	 * need to call arc_reduce_target_size().
5120 	 */
5121 	delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
5122 
5123 	/*
5124 	 * Reduce the target size as needed to maintain the amount of free
5125 	 * memory in the system at a fraction of the arc_size (1/128th by
5126 	 * default).  If oversubscribed (free_memory < 0) then reduce the
5127 	 * target arc_size by the deficit amount plus the fractional
5128 	 * amount.  If free memory is positive but less then the fractional
5129 	 * amount, reduce by what is needed to hit the fractional amount.
5130 	 */
5131 	free_memory = arc_available_memory();
5132 
5133 	int64_t to_free =
5134 	    (arc_c >> arc_shrink_shift) - free_memory;
5135 	if (to_free > 0) {
5136 #ifdef _KERNEL
5137 		to_free = MAX(to_free, ptob(needfree));
5138 #endif
5139 		arc_reduce_target_size(to_free);
5140 	}
5141 }
5142 
5143 /*
5144  * Adapt arc info given the number of bytes we are trying to add and
5145  * the state that we are coming from.  This function is only called
5146  * when we are adding new content to the cache.
5147  */
5148 static void
5149 arc_adapt(int bytes, arc_state_t *state)
5150 {
5151 	int mult;
5152 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
5153 	int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size);
5154 	int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size);
5155 
5156 	if (state == arc_l2c_only)
5157 		return;
5158 
5159 	ASSERT(bytes > 0);
5160 	/*
5161 	 * Adapt the target size of the MRU list:
5162 	 *	- if we just hit in the MRU ghost list, then increase
5163 	 *	  the target size of the MRU list.
5164 	 *	- if we just hit in the MFU ghost list, then increase
5165 	 *	  the target size of the MFU list by decreasing the
5166 	 *	  target size of the MRU list.
5167 	 */
5168 	if (state == arc_mru_ghost) {
5169 		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
5170 		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
5171 
5172 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
5173 	} else if (state == arc_mfu_ghost) {
5174 		uint64_t delta;
5175 
5176 		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
5177 		mult = MIN(mult, 10);
5178 
5179 		delta = MIN(bytes * mult, arc_p);
5180 		arc_p = MAX(arc_p_min, arc_p - delta);
5181 	}
5182 	ASSERT((int64_t)arc_p >= 0);
5183 
5184 	/*
5185 	 * Wake reap thread if we do not have any available memory
5186 	 */
5187 	if (arc_reclaim_needed()) {
5188 		zthr_wakeup(arc_reap_zthr);
5189 		return;
5190 	}
5191 
5192 
5193 	if (arc_no_grow)
5194 		return;
5195 
5196 	if (arc_c >= arc_c_max)
5197 		return;
5198 
5199 	/*
5200 	 * If we're within (2 * maxblocksize) bytes of the target
5201 	 * cache size, increment the target cache size
5202 	 */
5203 	if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) >
5204 	    0) {
5205 		atomic_add_64(&arc_c, (int64_t)bytes);
5206 		if (arc_c > arc_c_max)
5207 			arc_c = arc_c_max;
5208 		else if (state == arc_anon)
5209 			atomic_add_64(&arc_p, (int64_t)bytes);
5210 		if (arc_p > arc_c)
5211 			arc_p = arc_c;
5212 	}
5213 	ASSERT((int64_t)arc_p >= 0);
5214 }
5215 
5216 /*
5217  * Check if arc_size has grown past our upper threshold, determined by
5218  * zfs_arc_overflow_shift.
5219  */
5220 static boolean_t
5221 arc_is_overflowing(void)
5222 {
5223 	/* Always allow at least one block of overflow */
5224 	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
5225 	    arc_c >> zfs_arc_overflow_shift);
5226 
5227 	/*
5228 	 * We just compare the lower bound here for performance reasons. Our
5229 	 * primary goals are to make sure that the arc never grows without
5230 	 * bound, and that it can reach its maximum size. This check
5231 	 * accomplishes both goals. The maximum amount we could run over by is
5232 	 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
5233 	 * in the ARC. In practice, that's in the tens of MB, which is low
5234 	 * enough to be safe.
5235 	 */
5236 	return (aggsum_lower_bound(&arc_size) >= arc_c + overflow);
5237 }
5238 
5239 static abd_t *
5240 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5241 {
5242 	arc_buf_contents_t type = arc_buf_type(hdr);
5243 
5244 	arc_get_data_impl(hdr, size, tag);
5245 	if (type == ARC_BUFC_METADATA) {
5246 		return (abd_alloc(size, B_TRUE));
5247 	} else {
5248 		ASSERT(type == ARC_BUFC_DATA);
5249 		return (abd_alloc(size, B_FALSE));
5250 	}
5251 }
5252 
5253 static void *
5254 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5255 {
5256 	arc_buf_contents_t type = arc_buf_type(hdr);
5257 
5258 	arc_get_data_impl(hdr, size, tag);
5259 	if (type == ARC_BUFC_METADATA) {
5260 		return (zio_buf_alloc(size));
5261 	} else {
5262 		ASSERT(type == ARC_BUFC_DATA);
5263 		return (zio_data_buf_alloc(size));
5264 	}
5265 }
5266 
5267 /*
5268  * Allocate a block and return it to the caller. If we are hitting the
5269  * hard limit for the cache size, we must sleep, waiting for the eviction
5270  * thread to catch up. If we're past the target size but below the hard
5271  * limit, we'll only signal the reclaim thread and continue on.
5272  */
5273 static void
5274 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5275 {
5276 	arc_state_t *state = hdr->b_l1hdr.b_state;
5277 	arc_buf_contents_t type = arc_buf_type(hdr);
5278 
5279 	arc_adapt(size, state);
5280 
5281 	/*
5282 	 * If arc_size is currently overflowing, and has grown past our
5283 	 * upper limit, we must be adding data faster than the evict
5284 	 * thread can evict. Thus, to ensure we don't compound the
5285 	 * problem by adding more data and forcing arc_size to grow even
5286 	 * further past its target size, we halt and wait for the
5287 	 * eviction thread to catch up.
5288 	 *
5289 	 * It's also possible that the reclaim thread is unable to evict
5290 	 * enough buffers to get arc_size below the overflow limit (e.g.
5291 	 * due to buffers being un-evictable, or hash lock collisions).
5292 	 * In this case, we want to proceed regardless if we're
5293 	 * overflowing; thus we don't use a while loop here.
5294 	 */
5295 	if (arc_is_overflowing()) {
5296 		mutex_enter(&arc_adjust_lock);
5297 
5298 		/*
5299 		 * Now that we've acquired the lock, we may no longer be
5300 		 * over the overflow limit, lets check.
5301 		 *
5302 		 * We're ignoring the case of spurious wake ups. If that
5303 		 * were to happen, it'd let this thread consume an ARC
5304 		 * buffer before it should have (i.e. before we're under
5305 		 * the overflow limit and were signalled by the reclaim
5306 		 * thread). As long as that is a rare occurrence, it
5307 		 * shouldn't cause any harm.
5308 		 */
5309 		if (arc_is_overflowing()) {
5310 			arc_adjust_needed = B_TRUE;
5311 			zthr_wakeup(arc_adjust_zthr);
5312 			(void) cv_wait(&arc_adjust_waiters_cv,
5313 			    &arc_adjust_lock);
5314 		}
5315 		mutex_exit(&arc_adjust_lock);
5316 	}
5317 
5318 	VERIFY3U(hdr->b_type, ==, type);
5319 	if (type == ARC_BUFC_METADATA) {
5320 		arc_space_consume(size, ARC_SPACE_META);
5321 	} else {
5322 		arc_space_consume(size, ARC_SPACE_DATA);
5323 	}
5324 
5325 	/*
5326 	 * Update the state size.  Note that ghost states have a
5327 	 * "ghost size" and so don't need to be updated.
5328 	 */
5329 	if (!GHOST_STATE(state)) {
5330 
5331 		(void) zfs_refcount_add_many(&state->arcs_size, size, tag);
5332 
5333 		/*
5334 		 * If this is reached via arc_read, the link is
5335 		 * protected by the hash lock. If reached via
5336 		 * arc_buf_alloc, the header should not be accessed by
5337 		 * any other thread. And, if reached via arc_read_done,
5338 		 * the hash lock will protect it if it's found in the
5339 		 * hash table; otherwise no other thread should be
5340 		 * trying to [add|remove]_reference it.
5341 		 */
5342 		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5343 			ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5344 			(void) zfs_refcount_add_many(&state->arcs_esize[type],
5345 			    size, tag);
5346 		}
5347 
5348 		/*
5349 		 * If we are growing the cache, and we are adding anonymous
5350 		 * data, and we have outgrown arc_p, update arc_p
5351 		 */
5352 		if (aggsum_compare(&arc_size, arc_c) < 0 &&
5353 		    hdr->b_l1hdr.b_state == arc_anon &&
5354 		    (zfs_refcount_count(&arc_anon->arcs_size) +
5355 		    zfs_refcount_count(&arc_mru->arcs_size) > arc_p))
5356 			arc_p = MIN(arc_c, arc_p + size);
5357 	}
5358 }
5359 
5360 static void
5361 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
5362 {
5363 	arc_free_data_impl(hdr, size, tag);
5364 	abd_free(abd);
5365 }
5366 
5367 static void
5368 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
5369 {
5370 	arc_buf_contents_t type = arc_buf_type(hdr);
5371 
5372 	arc_free_data_impl(hdr, size, tag);
5373 	if (type == ARC_BUFC_METADATA) {
5374 		zio_buf_free(buf, size);
5375 	} else {
5376 		ASSERT(type == ARC_BUFC_DATA);
5377 		zio_data_buf_free(buf, size);
5378 	}
5379 }
5380 
5381 /*
5382  * Free the arc data buffer.
5383  */
5384 static void
5385 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5386 {
5387 	arc_state_t *state = hdr->b_l1hdr.b_state;
5388 	arc_buf_contents_t type = arc_buf_type(hdr);
5389 
5390 	/* protected by hash lock, if in the hash table */
5391 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5392 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5393 		ASSERT(state != arc_anon && state != arc_l2c_only);
5394 
5395 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
5396 		    size, tag);
5397 	}
5398 	(void) zfs_refcount_remove_many(&state->arcs_size, size, tag);
5399 
5400 	VERIFY3U(hdr->b_type, ==, type);
5401 	if (type == ARC_BUFC_METADATA) {
5402 		arc_space_return(size, ARC_SPACE_META);
5403 	} else {
5404 		ASSERT(type == ARC_BUFC_DATA);
5405 		arc_space_return(size, ARC_SPACE_DATA);
5406 	}
5407 }
5408 
5409 /*
5410  * This routine is called whenever a buffer is accessed.
5411  * NOTE: the hash lock is dropped in this function.
5412  */
5413 static void
5414 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
5415 {
5416 	clock_t now;
5417 
5418 	ASSERT(MUTEX_HELD(hash_lock));
5419 	ASSERT(HDR_HAS_L1HDR(hdr));
5420 
5421 	if (hdr->b_l1hdr.b_state == arc_anon) {
5422 		/*
5423 		 * This buffer is not in the cache, and does not
5424 		 * appear in our "ghost" list.  Add the new buffer
5425 		 * to the MRU state.
5426 		 */
5427 
5428 		ASSERT0(hdr->b_l1hdr.b_arc_access);
5429 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5430 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5431 		arc_change_state(arc_mru, hdr, hash_lock);
5432 
5433 	} else if (hdr->b_l1hdr.b_state == arc_mru) {
5434 		now = ddi_get_lbolt();
5435 
5436 		/*
5437 		 * If this buffer is here because of a prefetch, then either:
5438 		 * - clear the flag if this is a "referencing" read
5439 		 *   (any subsequent access will bump this into the MFU state).
5440 		 * or
5441 		 * - move the buffer to the head of the list if this is
5442 		 *   another prefetch (to make it less likely to be evicted).
5443 		 */
5444 		if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5445 			if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5446 				/* link protected by hash lock */
5447 				ASSERT(multilist_link_active(
5448 				    &hdr->b_l1hdr.b_arc_node));
5449 			} else {
5450 				arc_hdr_clear_flags(hdr,
5451 				    ARC_FLAG_PREFETCH |
5452 				    ARC_FLAG_PRESCIENT_PREFETCH);
5453 				ARCSTAT_BUMP(arcstat_mru_hits);
5454 			}
5455 			hdr->b_l1hdr.b_arc_access = now;
5456 			return;
5457 		}
5458 
5459 		/*
5460 		 * This buffer has been "accessed" only once so far,
5461 		 * but it is still in the cache. Move it to the MFU
5462 		 * state.
5463 		 */
5464 		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
5465 			/*
5466 			 * More than 125ms have passed since we
5467 			 * instantiated this buffer.  Move it to the
5468 			 * most frequently used state.
5469 			 */
5470 			hdr->b_l1hdr.b_arc_access = now;
5471 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5472 			arc_change_state(arc_mfu, hdr, hash_lock);
5473 		}
5474 		ARCSTAT_BUMP(arcstat_mru_hits);
5475 	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5476 		arc_state_t	*new_state;
5477 		/*
5478 		 * This buffer has been "accessed" recently, but
5479 		 * was evicted from the cache.  Move it to the
5480 		 * MFU state.
5481 		 */
5482 
5483 		if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5484 			new_state = arc_mru;
5485 			if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) {
5486 				arc_hdr_clear_flags(hdr,
5487 				    ARC_FLAG_PREFETCH |
5488 				    ARC_FLAG_PRESCIENT_PREFETCH);
5489 			}
5490 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5491 		} else {
5492 			new_state = arc_mfu;
5493 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5494 		}
5495 
5496 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5497 		arc_change_state(new_state, hdr, hash_lock);
5498 
5499 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5500 	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
5501 		/*
5502 		 * This buffer has been accessed more than once and is
5503 		 * still in the cache.  Keep it in the MFU state.
5504 		 *
5505 		 * NOTE: an add_reference() that occurred when we did
5506 		 * the arc_read() will have kicked this off the list.
5507 		 * If it was a prefetch, we will explicitly move it to
5508 		 * the head of the list now.
5509 		 */
5510 		ARCSTAT_BUMP(arcstat_mfu_hits);
5511 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5512 	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5513 		arc_state_t	*new_state = arc_mfu;
5514 		/*
5515 		 * This buffer has been accessed more than once but has
5516 		 * been evicted from the cache.  Move it back to the
5517 		 * MFU state.
5518 		 */
5519 
5520 		if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
5521 			/*
5522 			 * This is a prefetch access...
5523 			 * move this block back to the MRU state.
5524 			 */
5525 			new_state = arc_mru;
5526 		}
5527 
5528 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5529 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5530 		arc_change_state(new_state, hdr, hash_lock);
5531 
5532 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5533 	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5534 		/*
5535 		 * This buffer is on the 2nd Level ARC.
5536 		 */
5537 
5538 		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5539 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5540 		arc_change_state(arc_mfu, hdr, hash_lock);
5541 	} else {
5542 		ASSERT(!"invalid arc state");
5543 	}
5544 }
5545 
5546 /*
5547  * This routine is called by dbuf_hold() to update the arc_access() state
5548  * which otherwise would be skipped for entries in the dbuf cache.
5549  */
5550 void
5551 arc_buf_access(arc_buf_t *buf)
5552 {
5553 	mutex_enter(&buf->b_evict_lock);
5554 	arc_buf_hdr_t *hdr = buf->b_hdr;
5555 
5556 	/*
5557 	 * Avoid taking the hash_lock when possible as an optimization.
5558 	 * The header must be checked again under the hash_lock in order
5559 	 * to handle the case where it is concurrently being released.
5560 	 */
5561 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5562 		mutex_exit(&buf->b_evict_lock);
5563 		return;
5564 	}
5565 
5566 	kmutex_t *hash_lock = HDR_LOCK(hdr);
5567 	mutex_enter(hash_lock);
5568 
5569 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5570 		mutex_exit(hash_lock);
5571 		mutex_exit(&buf->b_evict_lock);
5572 		ARCSTAT_BUMP(arcstat_access_skip);
5573 		return;
5574 	}
5575 
5576 	mutex_exit(&buf->b_evict_lock);
5577 
5578 	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5579 	    hdr->b_l1hdr.b_state == arc_mfu);
5580 
5581 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5582 	arc_access(hdr, hash_lock);
5583 	mutex_exit(hash_lock);
5584 
5585 	ARCSTAT_BUMP(arcstat_hits);
5586 	ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5587 	    demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5588 }
5589 
5590 /* a generic arc_read_done_func_t which you can use */
5591 /* ARGSUSED */
5592 void
5593 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5594     arc_buf_t *buf, void *arg)
5595 {
5596 	if (buf == NULL)
5597 		return;
5598 
5599 	bcopy(buf->b_data, arg, arc_buf_size(buf));
5600 	arc_buf_destroy(buf, arg);
5601 }
5602 
5603 /* a generic arc_read_done_func_t */
5604 void
5605 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5606     arc_buf_t *buf, void *arg)
5607 {
5608 	arc_buf_t **bufp = arg;
5609 
5610 	if (buf == NULL) {
5611 		ASSERT(zio == NULL || zio->io_error != 0);
5612 		*bufp = NULL;
5613 	} else {
5614 		ASSERT(zio == NULL || zio->io_error == 0);
5615 		*bufp = buf;
5616 		ASSERT(buf->b_data != NULL);
5617 	}
5618 }
5619 
5620 static void
5621 arc_hdr_verify(arc_buf_hdr_t *hdr, const blkptr_t *bp)
5622 {
5623 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5624 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5625 		ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5626 	} else {
5627 		if (HDR_COMPRESSION_ENABLED(hdr)) {
5628 			ASSERT3U(arc_hdr_get_compress(hdr), ==,
5629 			    BP_GET_COMPRESS(bp));
5630 		}
5631 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5632 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5633 		ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5634 	}
5635 }
5636 
5637 /*
5638  * XXX this should be changed to return an error, and callers
5639  * re-read from disk on failure (on nondebug bits).
5640  */
5641 static void
5642 arc_hdr_verify_checksum(spa_t *spa, arc_buf_hdr_t *hdr, const blkptr_t *bp)
5643 {
5644 	arc_hdr_verify(hdr, bp);
5645 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
5646 		return;
5647 	int err = 0;
5648 	abd_t *abd = NULL;
5649 	if (BP_IS_ENCRYPTED(bp)) {
5650 		if (HDR_HAS_RABD(hdr)) {
5651 			abd = hdr->b_crypt_hdr.b_rabd;
5652 		}
5653 	} else if (HDR_COMPRESSION_ENABLED(hdr)) {
5654 		abd = hdr->b_l1hdr.b_pabd;
5655 	}
5656 	if (abd != NULL) {
5657 		/*
5658 		 * The offset is only used for labels, which are not
5659 		 * cached in the ARC, so it doesn't matter what we
5660 		 * pass for the offset parameter.
5661 		 */
5662 		int psize = HDR_GET_PSIZE(hdr);
5663 		err = zio_checksum_error_impl(spa, bp,
5664 		    BP_GET_CHECKSUM(bp), abd, psize, 0, NULL);
5665 		if (err != 0) {
5666 			/*
5667 			 * Use abd_copy_to_buf() rather than
5668 			 * abd_borrow_buf_copy() so that we are sure to
5669 			 * include the buf in crash dumps.
5670 			 */
5671 			void *buf = kmem_alloc(psize, KM_SLEEP);
5672 			abd_copy_to_buf(buf, abd, psize);
5673 			panic("checksum of cached data doesn't match BP "
5674 			    "err=%u hdr=%p bp=%p abd=%p buf=%p",
5675 			    err, (void *)hdr, (void *)bp, (void *)abd, buf);
5676 		}
5677 	}
5678 }
5679 
5680 static void
5681 arc_read_done(zio_t *zio)
5682 {
5683 	blkptr_t	*bp = zio->io_bp;
5684 	arc_buf_hdr_t	*hdr = zio->io_private;
5685 	kmutex_t	*hash_lock = NULL;
5686 	arc_callback_t	*callback_list;
5687 	arc_callback_t	*acb;
5688 	boolean_t	freeable = B_FALSE;
5689 
5690 	/*
5691 	 * The hdr was inserted into hash-table and removed from lists
5692 	 * prior to starting I/O.  We should find this header, since
5693 	 * it's in the hash table, and it should be legit since it's
5694 	 * not possible to evict it during the I/O.  The only possible
5695 	 * reason for it not to be found is if we were freed during the
5696 	 * read.
5697 	 */
5698 	if (HDR_IN_HASH_TABLE(hdr)) {
5699 		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5700 		ASSERT3U(hdr->b_dva.dva_word[0], ==,
5701 		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
5702 		ASSERT3U(hdr->b_dva.dva_word[1], ==,
5703 		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
5704 
5705 		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
5706 		    &hash_lock);
5707 
5708 		ASSERT((found == hdr &&
5709 		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5710 		    (found == hdr && HDR_L2_READING(hdr)));
5711 		ASSERT3P(hash_lock, !=, NULL);
5712 	}
5713 
5714 	if (BP_IS_PROTECTED(bp)) {
5715 		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5716 		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5717 		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5718 		    hdr->b_crypt_hdr.b_iv);
5719 
5720 		if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5721 			void *tmpbuf;
5722 
5723 			tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5724 			    sizeof (zil_chain_t));
5725 			zio_crypt_decode_mac_zil(tmpbuf,
5726 			    hdr->b_crypt_hdr.b_mac);
5727 			abd_return_buf(zio->io_abd, tmpbuf,
5728 			    sizeof (zil_chain_t));
5729 		} else {
5730 			zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
5731 		}
5732 	}
5733 
5734 	if (zio->io_error == 0) {
5735 		/* byteswap if necessary */
5736 		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5737 			if (BP_GET_LEVEL(zio->io_bp) > 0) {
5738 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5739 			} else {
5740 				hdr->b_l1hdr.b_byteswap =
5741 				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5742 			}
5743 		} else {
5744 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5745 		}
5746 	}
5747 
5748 	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5749 	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5750 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5751 
5752 	callback_list = hdr->b_l1hdr.b_acb;
5753 	ASSERT3P(callback_list, !=, NULL);
5754 
5755 	if (hash_lock && zio->io_error == 0 &&
5756 	    hdr->b_l1hdr.b_state == arc_anon) {
5757 		/*
5758 		 * Only call arc_access on anonymous buffers.  This is because
5759 		 * if we've issued an I/O for an evicted buffer, we've already
5760 		 * called arc_access (to prevent any simultaneous readers from
5761 		 * getting confused).
5762 		 */
5763 		arc_access(hdr, hash_lock);
5764 	}
5765 
5766 	/*
5767 	 * If a read request has a callback (i.e. acb_done is not NULL), then we
5768 	 * make a buf containing the data according to the parameters which were
5769 	 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5770 	 * aren't needlessly decompressing the data multiple times.
5771 	 */
5772 	int callback_cnt = 0;
5773 	for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5774 		if (!acb->acb_done)
5775 			continue;
5776 
5777 		callback_cnt++;
5778 
5779 		if (zio->io_error != 0)
5780 			continue;
5781 
5782 		int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5783 		    &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5784 		    acb->acb_compressed, acb->acb_noauth, B_TRUE,
5785 		    &acb->acb_buf);
5786 
5787 		/*
5788 		 * Assert non-speculative zios didn't fail because an
5789 		 * encryption key wasn't loaded
5790 		 */
5791 		ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5792 		    error != EACCES);
5793 
5794 		/*
5795 		 * If we failed to decrypt, report an error now (as the zio
5796 		 * layer would have done if it had done the transforms).
5797 		 */
5798 		if (error == ECKSUM) {
5799 			ASSERT(BP_IS_PROTECTED(bp));
5800 			error = SET_ERROR(EIO);
5801 			if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5802 				spa_log_error(zio->io_spa, &acb->acb_zb);
5803 				zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
5804 				    zio->io_spa, NULL, &acb->acb_zb, zio, 0, 0);
5805 			}
5806 		}
5807 
5808 		if (error != 0) {
5809 			/*
5810 			 * Decompression failed.  Set io_error
5811 			 * so that when we call acb_done (below),
5812 			 * we will indicate that the read failed.
5813 			 * Note that in the unusual case where one
5814 			 * callback is compressed and another
5815 			 * uncompressed, we will mark all of them
5816 			 * as failed, even though the uncompressed
5817 			 * one can't actually fail.  In this case,
5818 			 * the hdr will not be anonymous, because
5819 			 * if there are multiple callbacks, it's
5820 			 * because multiple threads found the same
5821 			 * arc buf in the hash table.
5822 			 */
5823 			zio->io_error = error;
5824 		}
5825 	}
5826 
5827 	/*
5828 	 * If there are multiple callbacks, we must have the hash lock,
5829 	 * because the only way for multiple threads to find this hdr is
5830 	 * in the hash table.  This ensures that if there are multiple
5831 	 * callbacks, the hdr is not anonymous.  If it were anonymous,
5832 	 * we couldn't use arc_buf_destroy() in the error case below.
5833 	 */
5834 	ASSERT(callback_cnt < 2 || hash_lock != NULL);
5835 
5836 	hdr->b_l1hdr.b_acb = NULL;
5837 	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5838 	if (callback_cnt == 0)
5839 		ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
5840 
5841 	ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5842 	    callback_list != NULL);
5843 
5844 	if (zio->io_error == 0) {
5845 		arc_hdr_verify(hdr, zio->io_bp);
5846 	} else {
5847 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5848 		if (hdr->b_l1hdr.b_state != arc_anon)
5849 			arc_change_state(arc_anon, hdr, hash_lock);
5850 		if (HDR_IN_HASH_TABLE(hdr))
5851 			buf_hash_remove(hdr);
5852 		freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5853 	}
5854 
5855 	/*
5856 	 * Broadcast before we drop the hash_lock to avoid the possibility
5857 	 * that the hdr (and hence the cv) might be freed before we get to
5858 	 * the cv_broadcast().
5859 	 */
5860 	cv_broadcast(&hdr->b_l1hdr.b_cv);
5861 
5862 	if (hash_lock != NULL) {
5863 		mutex_exit(hash_lock);
5864 	} else {
5865 		/*
5866 		 * This block was freed while we waited for the read to
5867 		 * complete.  It has been removed from the hash table and
5868 		 * moved to the anonymous state (so that it won't show up
5869 		 * in the cache).
5870 		 */
5871 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5872 		freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5873 	}
5874 
5875 	/* execute each callback and free its structure */
5876 	while ((acb = callback_list) != NULL) {
5877 
5878 		if (acb->acb_done != NULL) {
5879 			if (zio->io_error != 0 && acb->acb_buf != NULL) {
5880 				/*
5881 				 * If arc_buf_alloc_impl() fails during
5882 				 * decompression, the buf will still be
5883 				 * allocated, and needs to be freed here.
5884 				 */
5885 				arc_buf_destroy(acb->acb_buf, acb->acb_private);
5886 				acb->acb_buf = NULL;
5887 			}
5888 			acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5889 			    acb->acb_buf, acb->acb_private);
5890 		}
5891 
5892 		if (acb->acb_zio_dummy != NULL) {
5893 			acb->acb_zio_dummy->io_error = zio->io_error;
5894 			zio_nowait(acb->acb_zio_dummy);
5895 		}
5896 
5897 		callback_list = acb->acb_next;
5898 		kmem_free(acb, sizeof (arc_callback_t));
5899 	}
5900 
5901 	if (freeable)
5902 		arc_hdr_destroy(hdr);
5903 }
5904 
5905 /*
5906  * "Read" the block at the specified DVA (in bp) via the
5907  * cache.  If the block is found in the cache, invoke the provided
5908  * callback immediately and return.  Note that the `zio' parameter
5909  * in the callback will be NULL in this case, since no IO was
5910  * required.  If the block is not in the cache pass the read request
5911  * on to the spa with a substitute callback function, so that the
5912  * requested block will be added to the cache.
5913  *
5914  * If a read request arrives for a block that has a read in-progress,
5915  * either wait for the in-progress read to complete (and return the
5916  * results); or, if this is a read with a "done" func, add a record
5917  * to the read to invoke the "done" func when the read completes,
5918  * and return; or just return.
5919  *
5920  * arc_read_done() will invoke all the requested "done" functions
5921  * for readers of this block.
5922  */
5923 int
5924 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_read_done_func_t *done,
5925     void *private, zio_priority_t priority, int zio_flags,
5926     arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5927 {
5928 	arc_buf_hdr_t *hdr = NULL;
5929 	kmutex_t *hash_lock = NULL;
5930 	zio_t *rzio;
5931 	uint64_t guid = spa_load_guid(spa);
5932 	boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5933 	boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5934 	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5935 	boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5936 	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5937 	int rc = 0;
5938 
5939 	ASSERT(!BP_IS_EMBEDDED(bp) ||
5940 	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5941 
5942 top:
5943 	if (!BP_IS_EMBEDDED(bp)) {
5944 		/*
5945 		 * Embedded BP's have no DVA and require no I/O to "read".
5946 		 * Create an anonymous arc buf to back it.
5947 		 */
5948 		hdr = buf_hash_find(guid, bp, &hash_lock);
5949 	}
5950 
5951 	/*
5952 	 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5953 	 * we maintain encrypted data seperately from compressed / uncompressed
5954 	 * data. If the user is requesting raw encrypted data and we don't have
5955 	 * that in the header we will read from disk to guarantee that we can
5956 	 * get it even if the encryption keys aren't loaded.
5957 	 */
5958 	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5959 	    (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5960 		arc_buf_t *buf = NULL;
5961 		*arc_flags |= ARC_FLAG_CACHED;
5962 
5963 		if (HDR_IO_IN_PROGRESS(hdr)) {
5964 			zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5965 
5966 			ASSERT3P(head_zio, !=, NULL);
5967 			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5968 			    priority == ZIO_PRIORITY_SYNC_READ) {
5969 				/*
5970 				 * This is a sync read that needs to wait for
5971 				 * an in-flight async read. Request that the
5972 				 * zio have its priority upgraded.
5973 				 */
5974 				zio_change_priority(head_zio, priority);
5975 				DTRACE_PROBE1(arc__async__upgrade__sync,
5976 				    arc_buf_hdr_t *, hdr);
5977 				ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5978 			}
5979 			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5980 				arc_hdr_clear_flags(hdr,
5981 				    ARC_FLAG_PREDICTIVE_PREFETCH);
5982 			}
5983 
5984 			if (*arc_flags & ARC_FLAG_WAIT) {
5985 				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5986 				mutex_exit(hash_lock);
5987 				goto top;
5988 			}
5989 			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5990 
5991 			if (done) {
5992 				arc_callback_t *acb = NULL;
5993 
5994 				acb = kmem_zalloc(sizeof (arc_callback_t),
5995 				    KM_SLEEP);
5996 				acb->acb_done = done;
5997 				acb->acb_private = private;
5998 				acb->acb_compressed = compressed_read;
5999 				acb->acb_encrypted = encrypted_read;
6000 				acb->acb_noauth = noauth_read;
6001 				acb->acb_zb = *zb;
6002 				if (pio != NULL)
6003 					acb->acb_zio_dummy = zio_null(pio,
6004 					    spa, NULL, NULL, NULL, zio_flags);
6005 
6006 				ASSERT3P(acb->acb_done, !=, NULL);
6007 				acb->acb_zio_head = head_zio;
6008 				acb->acb_next = hdr->b_l1hdr.b_acb;
6009 				hdr->b_l1hdr.b_acb = acb;
6010 				mutex_exit(hash_lock);
6011 				return (0);
6012 			}
6013 			mutex_exit(hash_lock);
6014 			return (0);
6015 		}
6016 
6017 		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
6018 		    hdr->b_l1hdr.b_state == arc_mfu);
6019 
6020 		if (done) {
6021 			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
6022 				/*
6023 				 * This is a demand read which does not have to
6024 				 * wait for i/o because we did a predictive
6025 				 * prefetch i/o for it, which has completed.
6026 				 */
6027 				DTRACE_PROBE1(
6028 				    arc__demand__hit__predictive__prefetch,
6029 				    arc_buf_hdr_t *, hdr);
6030 				ARCSTAT_BUMP(
6031 				    arcstat_demand_hit_predictive_prefetch);
6032 				arc_hdr_clear_flags(hdr,
6033 				    ARC_FLAG_PREDICTIVE_PREFETCH);
6034 			}
6035 
6036 			if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
6037 				ARCSTAT_BUMP(
6038 				    arcstat_demand_hit_prescient_prefetch);
6039 				arc_hdr_clear_flags(hdr,
6040 				    ARC_FLAG_PRESCIENT_PREFETCH);
6041 			}
6042 
6043 			ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
6044 
6045 			arc_hdr_verify_checksum(spa, hdr, bp);
6046 
6047 			/* Get a buf with the desired data in it. */
6048 			rc = arc_buf_alloc_impl(hdr, spa, zb, private,
6049 			    encrypted_read, compressed_read, noauth_read,
6050 			    B_TRUE, &buf);
6051 			if (rc == ECKSUM) {
6052 				/*
6053 				 * Convert authentication and decryption errors
6054 				 * to EIO (and generate an ereport if needed)
6055 				 * before leaving the ARC.
6056 				 */
6057 				rc = SET_ERROR(EIO);
6058 				if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
6059 					spa_log_error(spa, zb);
6060 					zfs_ereport_post(
6061 					    FM_EREPORT_ZFS_AUTHENTICATION,
6062 					    spa, NULL, zb, NULL, 0, 0);
6063 				}
6064 			}
6065 			if (rc != 0) {
6066 				(void) remove_reference(hdr, hash_lock,
6067 				    private);
6068 				arc_buf_destroy_impl(buf);
6069 				buf = NULL;
6070 			}
6071 			/* assert any errors weren't due to unloaded keys */
6072 			ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
6073 			    rc != EACCES);
6074 		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
6075 		    zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
6076 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
6077 		}
6078 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
6079 		arc_access(hdr, hash_lock);
6080 		if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6081 			arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
6082 		if (*arc_flags & ARC_FLAG_L2CACHE)
6083 			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6084 		mutex_exit(hash_lock);
6085 		ARCSTAT_BUMP(arcstat_hits);
6086 		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6087 		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
6088 		    data, metadata, hits);
6089 
6090 		if (done)
6091 			done(NULL, zb, bp, buf, private);
6092 	} else {
6093 		uint64_t lsize = BP_GET_LSIZE(bp);
6094 		uint64_t psize = BP_GET_PSIZE(bp);
6095 		arc_callback_t *acb;
6096 		vdev_t *vd = NULL;
6097 		uint64_t addr = 0;
6098 		boolean_t devw = B_FALSE;
6099 		uint64_t size;
6100 		abd_t *hdr_abd;
6101 
6102 		if (hdr == NULL) {
6103 			/* this block is not in the cache */
6104 			arc_buf_hdr_t *exists = NULL;
6105 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
6106 			hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
6107 			    BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), type,
6108 			    encrypted_read);
6109 
6110 			if (!BP_IS_EMBEDDED(bp)) {
6111 				hdr->b_dva = *BP_IDENTITY(bp);
6112 				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
6113 				exists = buf_hash_insert(hdr, &hash_lock);
6114 			}
6115 			if (exists != NULL) {
6116 				/* somebody beat us to the hash insert */
6117 				mutex_exit(hash_lock);
6118 				buf_discard_identity(hdr);
6119 				arc_hdr_destroy(hdr);
6120 				goto top; /* restart the IO request */
6121 			}
6122 		} else {
6123 			/*
6124 			 * This block is in the ghost cache or encrypted data
6125 			 * was requested and we didn't have it. If it was
6126 			 * L2-only (and thus didn't have an L1 hdr),
6127 			 * we realloc the header to add an L1 hdr.
6128 			 */
6129 			if (!HDR_HAS_L1HDR(hdr)) {
6130 				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
6131 				    hdr_full_cache);
6132 			}
6133 
6134 			if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
6135 				ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6136 				ASSERT(!HDR_HAS_RABD(hdr));
6137 				ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6138 				ASSERT0(zfs_refcount_count(
6139 				    &hdr->b_l1hdr.b_refcnt));
6140 				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
6141 				ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
6142 			} else if (HDR_IO_IN_PROGRESS(hdr)) {
6143 				/*
6144 				 * If this header already had an IO in progress
6145 				 * and we are performing another IO to fetch
6146 				 * encrypted data we must wait until the first
6147 				 * IO completes so as not to confuse
6148 				 * arc_read_done(). This should be very rare
6149 				 * and so the performance impact shouldn't
6150 				 * matter.
6151 				 */
6152 				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
6153 				mutex_exit(hash_lock);
6154 				goto top;
6155 			}
6156 
6157 			/*
6158 			 * This is a delicate dance that we play here.
6159 			 * This hdr might be in the ghost list so we access
6160 			 * it to move it out of the ghost list before we
6161 			 * initiate the read. If it's a prefetch then
6162 			 * it won't have a callback so we'll remove the
6163 			 * reference that arc_buf_alloc_impl() created. We
6164 			 * do this after we've called arc_access() to
6165 			 * avoid hitting an assert in remove_reference().
6166 			 */
6167 			arc_access(hdr, hash_lock);
6168 			arc_hdr_alloc_pabd(hdr, encrypted_read);
6169 		}
6170 
6171 		if (encrypted_read) {
6172 			ASSERT(HDR_HAS_RABD(hdr));
6173 			size = HDR_GET_PSIZE(hdr);
6174 			hdr_abd = hdr->b_crypt_hdr.b_rabd;
6175 			zio_flags |= ZIO_FLAG_RAW;
6176 		} else {
6177 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6178 			size = arc_hdr_size(hdr);
6179 			hdr_abd = hdr->b_l1hdr.b_pabd;
6180 
6181 			if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
6182 				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6183 			}
6184 
6185 			/*
6186 			 * For authenticated bp's, we do not ask the ZIO layer
6187 			 * to authenticate them since this will cause the entire
6188 			 * IO to fail if the key isn't loaded. Instead, we
6189 			 * defer authentication until arc_buf_fill(), which will
6190 			 * verify the data when the key is available.
6191 			 */
6192 			if (BP_IS_AUTHENTICATED(bp))
6193 				zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
6194 		}
6195 
6196 		if (*arc_flags & ARC_FLAG_PREFETCH &&
6197 		    zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))
6198 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
6199 		if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6200 			arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
6201 
6202 		if (*arc_flags & ARC_FLAG_L2CACHE)
6203 			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6204 		if (BP_IS_AUTHENTICATED(bp))
6205 			arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6206 		if (BP_GET_LEVEL(bp) > 0)
6207 			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
6208 		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
6209 			arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
6210 		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
6211 
6212 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
6213 		acb->acb_done = done;
6214 		acb->acb_private = private;
6215 		acb->acb_compressed = compressed_read;
6216 		acb->acb_encrypted = encrypted_read;
6217 		acb->acb_noauth = noauth_read;
6218 		acb->acb_zb = *zb;
6219 
6220 		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6221 		hdr->b_l1hdr.b_acb = acb;
6222 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6223 
6224 		if (HDR_HAS_L2HDR(hdr) &&
6225 		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6226 			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6227 			addr = hdr->b_l2hdr.b_daddr;
6228 			/*
6229 			 * Lock out L2ARC device removal.
6230 			 */
6231 			if (vdev_is_dead(vd) ||
6232 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6233 				vd = NULL;
6234 		}
6235 
6236 		/*
6237 		 * We count both async reads and scrub IOs as asynchronous so
6238 		 * that both can be upgraded in the event of a cache hit while
6239 		 * the read IO is still in-flight.
6240 		 */
6241 		if (priority == ZIO_PRIORITY_ASYNC_READ ||
6242 		    priority == ZIO_PRIORITY_SCRUB)
6243 			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6244 		else
6245 			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6246 
6247 		/*
6248 		 * At this point, we have a level 1 cache miss.  Try again in
6249 		 * L2ARC if possible.
6250 		 */
6251 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6252 
6253 		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
6254 		    uint64_t, lsize, zbookmark_phys_t *, zb);
6255 		ARCSTAT_BUMP(arcstat_misses);
6256 		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6257 		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
6258 		    data, metadata, misses);
6259 
6260 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
6261 			/*
6262 			 * Read from the L2ARC if the following are true:
6263 			 * 1. The L2ARC vdev was previously cached.
6264 			 * 2. This buffer still has L2ARC metadata.
6265 			 * 3. This buffer isn't currently writing to the L2ARC.
6266 			 * 4. The L2ARC entry wasn't evicted, which may
6267 			 *    also have invalidated the vdev.
6268 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
6269 			 */
6270 			if (HDR_HAS_L2HDR(hdr) &&
6271 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
6272 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
6273 				l2arc_read_callback_t *cb;
6274 				abd_t *abd;
6275 				uint64_t asize;
6276 
6277 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6278 				ARCSTAT_BUMP(arcstat_l2_hits);
6279 
6280 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
6281 				    KM_SLEEP);
6282 				cb->l2rcb_hdr = hdr;
6283 				cb->l2rcb_bp = *bp;
6284 				cb->l2rcb_zb = *zb;
6285 				cb->l2rcb_flags = zio_flags;
6286 
6287 				asize = vdev_psize_to_asize(vd, size);
6288 				if (asize != size) {
6289 					abd = abd_alloc_for_io(asize,
6290 					    HDR_ISTYPE_METADATA(hdr));
6291 					cb->l2rcb_abd = abd;
6292 				} else {
6293 					abd = hdr_abd;
6294 				}
6295 
6296 				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6297 				    addr + asize <= vd->vdev_psize -
6298 				    VDEV_LABEL_END_SIZE);
6299 
6300 				/*
6301 				 * l2arc read.  The SCL_L2ARC lock will be
6302 				 * released by l2arc_read_done().
6303 				 * Issue a null zio if the underlying buffer
6304 				 * was squashed to zero size by compression.
6305 				 */
6306 				ASSERT3U(arc_hdr_get_compress(hdr), !=,
6307 				    ZIO_COMPRESS_EMPTY);
6308 				rzio = zio_read_phys(pio, vd, addr,
6309 				    asize, abd,
6310 				    ZIO_CHECKSUM_OFF,
6311 				    l2arc_read_done, cb, priority,
6312 				    zio_flags | ZIO_FLAG_DONT_CACHE |
6313 				    ZIO_FLAG_CANFAIL |
6314 				    ZIO_FLAG_DONT_PROPAGATE |
6315 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
6316 				acb->acb_zio_head = rzio;
6317 
6318 				if (hash_lock != NULL)
6319 					mutex_exit(hash_lock);
6320 
6321 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6322 				    zio_t *, rzio);
6323 				ARCSTAT_INCR(arcstat_l2_read_bytes,
6324 				    HDR_GET_PSIZE(hdr));
6325 
6326 				if (*arc_flags & ARC_FLAG_NOWAIT) {
6327 					zio_nowait(rzio);
6328 					return (0);
6329 				}
6330 
6331 				ASSERT(*arc_flags & ARC_FLAG_WAIT);
6332 				if (zio_wait(rzio) == 0)
6333 					return (0);
6334 
6335 				/* l2arc read error; goto zio_read() */
6336 				if (hash_lock != NULL)
6337 					mutex_enter(hash_lock);
6338 			} else {
6339 				DTRACE_PROBE1(l2arc__miss,
6340 				    arc_buf_hdr_t *, hdr);
6341 				ARCSTAT_BUMP(arcstat_l2_misses);
6342 				if (HDR_L2_WRITING(hdr))
6343 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
6344 				spa_config_exit(spa, SCL_L2ARC, vd);
6345 			}
6346 		} else {
6347 			if (vd != NULL)
6348 				spa_config_exit(spa, SCL_L2ARC, vd);
6349 			if (l2arc_ndev != 0) {
6350 				DTRACE_PROBE1(l2arc__miss,
6351 				    arc_buf_hdr_t *, hdr);
6352 				ARCSTAT_BUMP(arcstat_l2_misses);
6353 			}
6354 		}
6355 
6356 		rzio = zio_read(pio, spa, bp, hdr_abd, size,
6357 		    arc_read_done, hdr, priority, zio_flags, zb);
6358 		acb->acb_zio_head = rzio;
6359 
6360 		if (hash_lock != NULL)
6361 			mutex_exit(hash_lock);
6362 
6363 		if (*arc_flags & ARC_FLAG_WAIT)
6364 			return (zio_wait(rzio));
6365 
6366 		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6367 		zio_nowait(rzio);
6368 	}
6369 	return (rc);
6370 }
6371 
6372 /*
6373  * Notify the arc that a block was freed, and thus will never be used again.
6374  */
6375 void
6376 arc_freed(spa_t *spa, const blkptr_t *bp)
6377 {
6378 	arc_buf_hdr_t *hdr;
6379 	kmutex_t *hash_lock;
6380 	uint64_t guid = spa_load_guid(spa);
6381 
6382 	ASSERT(!BP_IS_EMBEDDED(bp));
6383 
6384 	hdr = buf_hash_find(guid, bp, &hash_lock);
6385 	if (hdr == NULL)
6386 		return;
6387 
6388 	/*
6389 	 * We might be trying to free a block that is still doing I/O
6390 	 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
6391 	 * dmu_sync-ed block). If this block is being prefetched, then it
6392 	 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
6393 	 * until the I/O completes. A block may also have a reference if it is
6394 	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6395 	 * have written the new block to its final resting place on disk but
6396 	 * without the dedup flag set. This would have left the hdr in the MRU
6397 	 * state and discoverable. When the txg finally syncs it detects that
6398 	 * the block was overridden in open context and issues an override I/O.
6399 	 * Since this is a dedup block, the override I/O will determine if the
6400 	 * block is already in the DDT. If so, then it will replace the io_bp
6401 	 * with the bp from the DDT and allow the I/O to finish. When the I/O
6402 	 * reaches the done callback, dbuf_write_override_done, it will
6403 	 * check to see if the io_bp and io_bp_override are identical.
6404 	 * If they are not, then it indicates that the bp was replaced with
6405 	 * the bp in the DDT and the override bp is freed. This allows
6406 	 * us to arrive here with a reference on a block that is being
6407 	 * freed. So if we have an I/O in progress, or a reference to
6408 	 * this hdr, then we don't destroy the hdr.
6409 	 */
6410 	if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
6411 	    zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
6412 		arc_change_state(arc_anon, hdr, hash_lock);
6413 		arc_hdr_destroy(hdr);
6414 		mutex_exit(hash_lock);
6415 	} else {
6416 		mutex_exit(hash_lock);
6417 	}
6418 
6419 }
6420 
6421 /*
6422  * Release this buffer from the cache, making it an anonymous buffer.  This
6423  * must be done after a read and prior to modifying the buffer contents.
6424  * If the buffer has more than one reference, we must make
6425  * a new hdr for the buffer.
6426  */
6427 void
6428 arc_release(arc_buf_t *buf, void *tag)
6429 {
6430 	arc_buf_hdr_t *hdr = buf->b_hdr;
6431 
6432 	/*
6433 	 * It would be nice to assert that if its DMU metadata (level >
6434 	 * 0 || it's the dnode file), then it must be syncing context.
6435 	 * But we don't know that information at this level.
6436 	 */
6437 
6438 	mutex_enter(&buf->b_evict_lock);
6439 
6440 	ASSERT(HDR_HAS_L1HDR(hdr));
6441 
6442 	/*
6443 	 * We don't grab the hash lock prior to this check, because if
6444 	 * the buffer's header is in the arc_anon state, it won't be
6445 	 * linked into the hash table.
6446 	 */
6447 	if (hdr->b_l1hdr.b_state == arc_anon) {
6448 		mutex_exit(&buf->b_evict_lock);
6449 		/*
6450 		 * If we are called from dmu_convert_mdn_block_to_raw(),
6451 		 * a write might be in progress.  This is OK because
6452 		 * the caller won't change the content of this buffer,
6453 		 * only the flags (via arc_convert_to_raw()).
6454 		 */
6455 		/* ASSERT(!HDR_IO_IN_PROGRESS(hdr)); */
6456 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
6457 		ASSERT(!HDR_HAS_L2HDR(hdr));
6458 		ASSERT(HDR_EMPTY(hdr));
6459 
6460 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6461 		ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6462 		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
6463 
6464 		hdr->b_l1hdr.b_arc_access = 0;
6465 
6466 		/*
6467 		 * If the buf is being overridden then it may already
6468 		 * have a hdr that is not empty.
6469 		 */
6470 		buf_discard_identity(hdr);
6471 		arc_buf_thaw(buf);
6472 
6473 		return;
6474 	}
6475 
6476 	kmutex_t *hash_lock = HDR_LOCK(hdr);
6477 	mutex_enter(hash_lock);
6478 
6479 	/*
6480 	 * This assignment is only valid as long as the hash_lock is
6481 	 * held, we must be careful not to reference state or the
6482 	 * b_state field after dropping the lock.
6483 	 */
6484 	arc_state_t *state = hdr->b_l1hdr.b_state;
6485 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6486 	ASSERT3P(state, !=, arc_anon);
6487 
6488 	/* this buffer is not on any list */
6489 	ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6490 
6491 	if (HDR_HAS_L2HDR(hdr)) {
6492 		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6493 
6494 		/*
6495 		 * We have to recheck this conditional again now that
6496 		 * we're holding the l2ad_mtx to prevent a race with
6497 		 * another thread which might be concurrently calling
6498 		 * l2arc_evict(). In that case, l2arc_evict() might have
6499 		 * destroyed the header's L2 portion as we were waiting
6500 		 * to acquire the l2ad_mtx.
6501 		 */
6502 		if (HDR_HAS_L2HDR(hdr))
6503 			arc_hdr_l2hdr_destroy(hdr);
6504 
6505 		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6506 	}
6507 
6508 	/*
6509 	 * Do we have more than one buf?
6510 	 */
6511 	if (hdr->b_l1hdr.b_bufcnt > 1) {
6512 		arc_buf_hdr_t *nhdr;
6513 		uint64_t spa = hdr->b_spa;
6514 		uint64_t psize = HDR_GET_PSIZE(hdr);
6515 		uint64_t lsize = HDR_GET_LSIZE(hdr);
6516 		boolean_t protected = HDR_PROTECTED(hdr);
6517 		enum zio_compress compress = arc_hdr_get_compress(hdr);
6518 		arc_buf_contents_t type = arc_buf_type(hdr);
6519 		VERIFY3U(hdr->b_type, ==, type);
6520 
6521 		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6522 		(void) remove_reference(hdr, hash_lock, tag);
6523 
6524 		if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
6525 			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6526 			ASSERT(ARC_BUF_LAST(buf));
6527 		}
6528 
6529 		/*
6530 		 * Pull the data off of this hdr and attach it to
6531 		 * a new anonymous hdr. Also find the last buffer
6532 		 * in the hdr's buffer list.
6533 		 */
6534 		arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6535 		ASSERT3P(lastbuf, !=, NULL);
6536 
6537 		/*
6538 		 * If the current arc_buf_t and the hdr are sharing their data
6539 		 * buffer, then we must stop sharing that block.
6540 		 */
6541 		if (arc_buf_is_shared(buf)) {
6542 			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6543 			VERIFY(!arc_buf_is_shared(lastbuf));
6544 
6545 			/*
6546 			 * First, sever the block sharing relationship between
6547 			 * buf and the arc_buf_hdr_t.
6548 			 */
6549 			arc_unshare_buf(hdr, buf);
6550 
6551 			/*
6552 			 * Now we need to recreate the hdr's b_pabd. Since we
6553 			 * have lastbuf handy, we try to share with it, but if
6554 			 * we can't then we allocate a new b_pabd and copy the
6555 			 * data from buf into it.
6556 			 */
6557 			if (arc_can_share(hdr, lastbuf)) {
6558 				arc_share_buf(hdr, lastbuf);
6559 			} else {
6560 				arc_hdr_alloc_pabd(hdr, B_FALSE);
6561 				abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6562 				    buf->b_data, psize);
6563 			}
6564 			VERIFY3P(lastbuf->b_data, !=, NULL);
6565 		} else if (HDR_SHARED_DATA(hdr)) {
6566 			/*
6567 			 * Uncompressed shared buffers are always at the end
6568 			 * of the list. Compressed buffers don't have the
6569 			 * same requirements. This makes it hard to
6570 			 * simply assert that the lastbuf is shared so
6571 			 * we rely on the hdr's compression flags to determine
6572 			 * if we have a compressed, shared buffer.
6573 			 */
6574 			ASSERT(arc_buf_is_shared(lastbuf) ||
6575 			    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6576 			ASSERT(!ARC_BUF_SHARED(buf));
6577 		}
6578 		ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6579 		ASSERT3P(state, !=, arc_l2c_only);
6580 
6581 		(void) zfs_refcount_remove_many(&state->arcs_size,
6582 		    arc_buf_size(buf), buf);
6583 
6584 		if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6585 			ASSERT3P(state, !=, arc_l2c_only);
6586 			(void) zfs_refcount_remove_many(
6587 			    &state->arcs_esize[type],
6588 			    arc_buf_size(buf), buf);
6589 		}
6590 
6591 		hdr->b_l1hdr.b_bufcnt -= 1;
6592 		if (ARC_BUF_ENCRYPTED(buf))
6593 			hdr->b_crypt_hdr.b_ebufcnt -= 1;
6594 
6595 		arc_cksum_verify(buf);
6596 		arc_buf_unwatch(buf);
6597 
6598 		/* if this is the last uncompressed buf free the checksum */
6599 		if (!arc_hdr_has_uncompressed_buf(hdr))
6600 			arc_cksum_free(hdr);
6601 
6602 		mutex_exit(hash_lock);
6603 
6604 		/*
6605 		 * Allocate a new hdr. The new hdr will contain a b_pabd
6606 		 * buffer which will be freed in arc_write().
6607 		 */
6608 		nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6609 		    compress, type, HDR_HAS_RABD(hdr));
6610 		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6611 		ASSERT0(nhdr->b_l1hdr.b_bufcnt);
6612 		ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6613 		VERIFY3U(nhdr->b_type, ==, type);
6614 		ASSERT(!HDR_SHARED_DATA(nhdr));
6615 
6616 		nhdr->b_l1hdr.b_buf = buf;
6617 		nhdr->b_l1hdr.b_bufcnt = 1;
6618 		if (ARC_BUF_ENCRYPTED(buf))
6619 			nhdr->b_crypt_hdr.b_ebufcnt = 1;
6620 		(void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6621 		buf->b_hdr = nhdr;
6622 
6623 		mutex_exit(&buf->b_evict_lock);
6624 		(void) zfs_refcount_add_many(&arc_anon->arcs_size,
6625 		    arc_buf_size(buf), buf);
6626 	} else {
6627 		mutex_exit(&buf->b_evict_lock);
6628 		ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6629 		/* protected by hash lock, or hdr is on arc_anon */
6630 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6631 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6632 		arc_change_state(arc_anon, hdr, hash_lock);
6633 		hdr->b_l1hdr.b_arc_access = 0;
6634 
6635 		mutex_exit(hash_lock);
6636 		buf_discard_identity(hdr);
6637 		arc_buf_thaw(buf);
6638 	}
6639 }
6640 
6641 int
6642 arc_released(arc_buf_t *buf)
6643 {
6644 	int released;
6645 
6646 	mutex_enter(&buf->b_evict_lock);
6647 	released = (buf->b_data != NULL &&
6648 	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
6649 	mutex_exit(&buf->b_evict_lock);
6650 	return (released);
6651 }
6652 
6653 #ifdef ZFS_DEBUG
6654 int
6655 arc_referenced(arc_buf_t *buf)
6656 {
6657 	int referenced;
6658 
6659 	mutex_enter(&buf->b_evict_lock);
6660 	referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6661 	mutex_exit(&buf->b_evict_lock);
6662 	return (referenced);
6663 }
6664 #endif
6665 
6666 static void
6667 arc_write_ready(zio_t *zio)
6668 {
6669 	arc_write_callback_t *callback = zio->io_private;
6670 	arc_buf_t *buf = callback->awcb_buf;
6671 	arc_buf_hdr_t *hdr = buf->b_hdr;
6672 	blkptr_t *bp = zio->io_bp;
6673 	uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6674 
6675 	ASSERT(HDR_HAS_L1HDR(hdr));
6676 	ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6677 	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
6678 
6679 	/*
6680 	 * If we're reexecuting this zio because the pool suspended, then
6681 	 * cleanup any state that was previously set the first time the
6682 	 * callback was invoked.
6683 	 */
6684 	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6685 		arc_cksum_free(hdr);
6686 		arc_buf_unwatch(buf);
6687 		if (hdr->b_l1hdr.b_pabd != NULL) {
6688 			if (arc_buf_is_shared(buf)) {
6689 				arc_unshare_buf(hdr, buf);
6690 			} else {
6691 				arc_hdr_free_pabd(hdr, B_FALSE);
6692 			}
6693 		}
6694 
6695 		if (HDR_HAS_RABD(hdr))
6696 			arc_hdr_free_pabd(hdr, B_TRUE);
6697 	}
6698 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6699 	ASSERT(!HDR_HAS_RABD(hdr));
6700 	ASSERT(!HDR_SHARED_DATA(hdr));
6701 	ASSERT(!arc_buf_is_shared(buf));
6702 
6703 	callback->awcb_ready(zio, buf, callback->awcb_private);
6704 
6705 	if (HDR_IO_IN_PROGRESS(hdr))
6706 		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6707 
6708 	arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6709 
6710 	if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr))
6711 		hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp));
6712 
6713 	if (BP_IS_PROTECTED(bp)) {
6714 		/* ZIL blocks are written through zio_rewrite */
6715 		ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6716 		ASSERT(HDR_PROTECTED(hdr));
6717 
6718 		if (BP_SHOULD_BYTESWAP(bp)) {
6719 			if (BP_GET_LEVEL(bp) > 0) {
6720 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6721 			} else {
6722 				hdr->b_l1hdr.b_byteswap =
6723 				    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6724 			}
6725 		} else {
6726 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6727 		}
6728 
6729 		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6730 		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6731 		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6732 		    hdr->b_crypt_hdr.b_iv);
6733 		zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6734 	}
6735 
6736 	/*
6737 	 * If this block was written for raw encryption but the zio layer
6738 	 * ended up only authenticating it, adjust the buffer flags now.
6739 	 */
6740 	if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6741 		arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6742 		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6743 		if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6744 			buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6745 	} else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6746 		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6747 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6748 	}
6749 
6750 	/* this must be done after the buffer flags are adjusted */
6751 	arc_cksum_compute(buf);
6752 
6753 	enum zio_compress compress;
6754 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6755 		compress = ZIO_COMPRESS_OFF;
6756 	} else {
6757 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6758 		compress = BP_GET_COMPRESS(bp);
6759 	}
6760 	HDR_SET_PSIZE(hdr, psize);
6761 	arc_hdr_set_compress(hdr, compress);
6762 
6763 	if (zio->io_error != 0 || psize == 0)
6764 		goto out;
6765 
6766 	/*
6767 	 * Fill the hdr with data. If the buffer is encrypted we have no choice
6768 	 * but to copy the data into b_rabd. If the hdr is compressed, the data
6769 	 * we want is available from the zio, otherwise we can take it from
6770 	 * the buf.
6771 	 *
6772 	 * We might be able to share the buf's data with the hdr here. However,
6773 	 * doing so would cause the ARC to be full of linear ABDs if we write a
6774 	 * lot of shareable data. As a compromise, we check whether scattered
6775 	 * ABDs are allowed, and assume that if they are then the user wants
6776 	 * the ARC to be primarily filled with them regardless of the data being
6777 	 * written. Therefore, if they're allowed then we allocate one and copy
6778 	 * the data into it; otherwise, we share the data directly if we can.
6779 	 */
6780 	if (ARC_BUF_ENCRYPTED(buf)) {
6781 		ASSERT3U(psize, >, 0);
6782 		ASSERT(ARC_BUF_COMPRESSED(buf));
6783 		arc_hdr_alloc_pabd(hdr, B_TRUE);
6784 		abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6785 	} else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
6786 		/*
6787 		 * Ideally, we would always copy the io_abd into b_pabd, but the
6788 		 * user may have disabled compressed ARC, thus we must check the
6789 		 * hdr's compression setting rather than the io_bp's.
6790 		 */
6791 		if (BP_IS_ENCRYPTED(bp)) {
6792 			ASSERT3U(psize, >, 0);
6793 			arc_hdr_alloc_pabd(hdr, B_TRUE);
6794 			abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6795 		} else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6796 		    !ARC_BUF_COMPRESSED(buf)) {
6797 			ASSERT3U(psize, >, 0);
6798 			arc_hdr_alloc_pabd(hdr, B_FALSE);
6799 			abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6800 		} else {
6801 			ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6802 			arc_hdr_alloc_pabd(hdr, B_FALSE);
6803 			abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6804 			    arc_buf_size(buf));
6805 		}
6806 	} else {
6807 		ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6808 		ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6809 		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6810 		arc_share_buf(hdr, buf);
6811 	}
6812 
6813 out:
6814 	arc_hdr_verify(hdr, bp);
6815 }
6816 
6817 static void
6818 arc_write_children_ready(zio_t *zio)
6819 {
6820 	arc_write_callback_t *callback = zio->io_private;
6821 	arc_buf_t *buf = callback->awcb_buf;
6822 
6823 	callback->awcb_children_ready(zio, buf, callback->awcb_private);
6824 }
6825 
6826 /*
6827  * The SPA calls this callback for each physical write that happens on behalf
6828  * of a logical write.  See the comment in dbuf_write_physdone() for details.
6829  */
6830 static void
6831 arc_write_physdone(zio_t *zio)
6832 {
6833 	arc_write_callback_t *cb = zio->io_private;
6834 	if (cb->awcb_physdone != NULL)
6835 		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
6836 }
6837 
6838 static void
6839 arc_write_done(zio_t *zio)
6840 {
6841 	arc_write_callback_t *callback = zio->io_private;
6842 	arc_buf_t *buf = callback->awcb_buf;
6843 	arc_buf_hdr_t *hdr = buf->b_hdr;
6844 
6845 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6846 
6847 	if (zio->io_error == 0) {
6848 		arc_hdr_verify(hdr, zio->io_bp);
6849 
6850 		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6851 			buf_discard_identity(hdr);
6852 		} else {
6853 			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6854 			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
6855 		}
6856 	} else {
6857 		ASSERT(HDR_EMPTY(hdr));
6858 	}
6859 
6860 	/*
6861 	 * If the block to be written was all-zero or compressed enough to be
6862 	 * embedded in the BP, no write was performed so there will be no
6863 	 * dva/birth/checksum.  The buffer must therefore remain anonymous
6864 	 * (and uncached).
6865 	 */
6866 	if (!HDR_EMPTY(hdr)) {
6867 		arc_buf_hdr_t *exists;
6868 		kmutex_t *hash_lock;
6869 
6870 		ASSERT3U(zio->io_error, ==, 0);
6871 
6872 		arc_cksum_verify(buf);
6873 
6874 		exists = buf_hash_insert(hdr, &hash_lock);
6875 		if (exists != NULL) {
6876 			/*
6877 			 * This can only happen if we overwrite for
6878 			 * sync-to-convergence, because we remove
6879 			 * buffers from the hash table when we arc_free().
6880 			 */
6881 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6882 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6883 					panic("bad overwrite, hdr=%p exists=%p",
6884 					    (void *)hdr, (void *)exists);
6885 				ASSERT(zfs_refcount_is_zero(
6886 				    &exists->b_l1hdr.b_refcnt));
6887 				arc_change_state(arc_anon, exists, hash_lock);
6888 				mutex_exit(hash_lock);
6889 				arc_hdr_destroy(exists);
6890 				exists = buf_hash_insert(hdr, &hash_lock);
6891 				ASSERT3P(exists, ==, NULL);
6892 			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6893 				/* nopwrite */
6894 				ASSERT(zio->io_prop.zp_nopwrite);
6895 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6896 					panic("bad nopwrite, hdr=%p exists=%p",
6897 					    (void *)hdr, (void *)exists);
6898 			} else {
6899 				/* Dedup */
6900 				ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
6901 				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6902 				ASSERT(BP_GET_DEDUP(zio->io_bp));
6903 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6904 			}
6905 		}
6906 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6907 		/* if it's not anon, we are doing a scrub */
6908 		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6909 			arc_access(hdr, hash_lock);
6910 		mutex_exit(hash_lock);
6911 	} else {
6912 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6913 	}
6914 
6915 	ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
6916 	callback->awcb_done(zio, buf, callback->awcb_private);
6917 
6918 	abd_put(zio->io_abd);
6919 	kmem_free(callback, sizeof (arc_write_callback_t));
6920 }
6921 
6922 zio_t *
6923 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
6924     boolean_t l2arc, const zio_prop_t *zp, arc_write_done_func_t *ready,
6925     arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
6926     arc_write_done_func_t *done, void *private, zio_priority_t priority,
6927     int zio_flags, const zbookmark_phys_t *zb)
6928 {
6929 	arc_buf_hdr_t *hdr = buf->b_hdr;
6930 	arc_write_callback_t *callback;
6931 	zio_t *zio;
6932 	zio_prop_t localprop = *zp;
6933 
6934 	ASSERT3P(ready, !=, NULL);
6935 	ASSERT3P(done, !=, NULL);
6936 	ASSERT(!HDR_IO_ERROR(hdr));
6937 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6938 	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6939 	ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
6940 	if (l2arc)
6941 		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6942 
6943 	if (ARC_BUF_ENCRYPTED(buf)) {
6944 		ASSERT(ARC_BUF_COMPRESSED(buf));
6945 		localprop.zp_encrypt = B_TRUE;
6946 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6947 		/* CONSTCOND */
6948 		localprop.zp_byteorder =
6949 		    (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
6950 		    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
6951 		bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt,
6952 		    ZIO_DATA_SALT_LEN);
6953 		bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv,
6954 		    ZIO_DATA_IV_LEN);
6955 		bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac,
6956 		    ZIO_DATA_MAC_LEN);
6957 		if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
6958 			localprop.zp_nopwrite = B_FALSE;
6959 			localprop.zp_copies =
6960 			    MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
6961 		}
6962 		zio_flags |= ZIO_FLAG_RAW;
6963 	} else if (ARC_BUF_COMPRESSED(buf)) {
6964 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6965 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6966 		zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6967 	}
6968 
6969 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6970 	callback->awcb_ready = ready;
6971 	callback->awcb_children_ready = children_ready;
6972 	callback->awcb_physdone = physdone;
6973 	callback->awcb_done = done;
6974 	callback->awcb_private = private;
6975 	callback->awcb_buf = buf;
6976 
6977 	/*
6978 	 * The hdr's b_pabd is now stale, free it now. A new data block
6979 	 * will be allocated when the zio pipeline calls arc_write_ready().
6980 	 */
6981 	if (hdr->b_l1hdr.b_pabd != NULL) {
6982 		/*
6983 		 * If the buf is currently sharing the data block with
6984 		 * the hdr then we need to break that relationship here.
6985 		 * The hdr will remain with a NULL data pointer and the
6986 		 * buf will take sole ownership of the block.
6987 		 */
6988 		if (arc_buf_is_shared(buf)) {
6989 			arc_unshare_buf(hdr, buf);
6990 		} else {
6991 			arc_hdr_free_pabd(hdr, B_FALSE);
6992 		}
6993 		VERIFY3P(buf->b_data, !=, NULL);
6994 	}
6995 
6996 	if (HDR_HAS_RABD(hdr))
6997 		arc_hdr_free_pabd(hdr, B_TRUE);
6998 
6999 	if (!(zio_flags & ZIO_FLAG_RAW))
7000 		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
7001 
7002 	ASSERT(!arc_buf_is_shared(buf));
7003 	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
7004 
7005 	zio = zio_write(pio, spa, txg, bp,
7006 	    abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
7007 	    HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
7008 	    (children_ready != NULL) ? arc_write_children_ready : NULL,
7009 	    arc_write_physdone, arc_write_done, callback,
7010 	    priority, zio_flags, zb);
7011 
7012 	return (zio);
7013 }
7014 
7015 static int
7016 arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
7017 {
7018 #ifdef _KERNEL
7019 	uint64_t available_memory = ptob(freemem);
7020 
7021 #if defined(__i386)
7022 	available_memory =
7023 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
7024 #endif
7025 
7026 	if (freemem > physmem * arc_lotsfree_percent / 100)
7027 		return (0);
7028 
7029 	if (txg > spa->spa_lowmem_last_txg) {
7030 		spa->spa_lowmem_last_txg = txg;
7031 		spa->spa_lowmem_page_load = 0;
7032 	}
7033 	/*
7034 	 * If we are in pageout, we know that memory is already tight,
7035 	 * the arc is already going to be evicting, so we just want to
7036 	 * continue to let page writes occur as quickly as possible.
7037 	 */
7038 	if (curproc == proc_pageout) {
7039 		if (spa->spa_lowmem_page_load >
7040 		    MAX(ptob(minfree), available_memory) / 4)
7041 			return (SET_ERROR(ERESTART));
7042 		/* Note: reserve is inflated, so we deflate */
7043 		atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
7044 		return (0);
7045 	} else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
7046 		/* memory is low, delay before restarting */
7047 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
7048 		return (SET_ERROR(EAGAIN));
7049 	}
7050 	spa->spa_lowmem_page_load = 0;
7051 #endif /* _KERNEL */
7052 	return (0);
7053 }
7054 
7055 void
7056 arc_tempreserve_clear(uint64_t reserve)
7057 {
7058 	atomic_add_64(&arc_tempreserve, -reserve);
7059 	ASSERT((int64_t)arc_tempreserve >= 0);
7060 }
7061 
7062 int
7063 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
7064 {
7065 	int error;
7066 	uint64_t anon_size;
7067 
7068 	if (reserve > arc_c/4 && !arc_no_grow)
7069 		arc_c = MIN(arc_c_max, reserve * 4);
7070 	if (reserve > arc_c)
7071 		return (SET_ERROR(ENOMEM));
7072 
7073 	/*
7074 	 * Don't count loaned bufs as in flight dirty data to prevent long
7075 	 * network delays from blocking transactions that are ready to be
7076 	 * assigned to a txg.
7077 	 */
7078 
7079 	/* assert that it has not wrapped around */
7080 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
7081 
7082 	anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) -
7083 	    arc_loaned_bytes), 0);
7084 
7085 	/*
7086 	 * Writes will, almost always, require additional memory allocations
7087 	 * in order to compress/encrypt/etc the data.  We therefore need to
7088 	 * make sure that there is sufficient available memory for this.
7089 	 */
7090 	error = arc_memory_throttle(spa, reserve, txg);
7091 	if (error != 0)
7092 		return (error);
7093 
7094 	/*
7095 	 * Throttle writes when the amount of dirty data in the cache
7096 	 * gets too large.  We try to keep the cache less than half full
7097 	 * of dirty blocks so that our sync times don't grow too large.
7098 	 *
7099 	 * In the case of one pool being built on another pool, we want
7100 	 * to make sure we don't end up throttling the lower (backing)
7101 	 * pool when the upper pool is the majority contributor to dirty
7102 	 * data. To insure we make forward progress during throttling, we
7103 	 * also check the current pool's net dirty data and only throttle
7104 	 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
7105 	 * data in the cache.
7106 	 *
7107 	 * Note: if two requests come in concurrently, we might let them
7108 	 * both succeed, when one of them should fail.  Not a huge deal.
7109 	 */
7110 	uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
7111 	uint64_t spa_dirty_anon = spa_dirty_data(spa);
7112 
7113 	if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 &&
7114 	    anon_size > arc_c * zfs_arc_anon_limit_percent / 100 &&
7115 	    spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
7116 		uint64_t meta_esize =
7117 		    zfs_refcount_count(
7118 		    &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7119 		uint64_t data_esize =
7120 		    zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7121 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7122 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
7123 		    arc_tempreserve >> 10, meta_esize >> 10,
7124 		    data_esize >> 10, reserve >> 10, arc_c >> 10);
7125 		return (SET_ERROR(ERESTART));
7126 	}
7127 	atomic_add_64(&arc_tempreserve, reserve);
7128 	return (0);
7129 }
7130 
7131 static void
7132 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
7133     kstat_named_t *evict_data, kstat_named_t *evict_metadata)
7134 {
7135 	size->value.ui64 = zfs_refcount_count(&state->arcs_size);
7136 	evict_data->value.ui64 =
7137 	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
7138 	evict_metadata->value.ui64 =
7139 	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
7140 }
7141 
7142 static int
7143 arc_kstat_update(kstat_t *ksp, int rw)
7144 {
7145 	arc_stats_t *as = ksp->ks_data;
7146 
7147 	if (rw == KSTAT_WRITE) {
7148 		return (EACCES);
7149 	} else {
7150 		arc_kstat_update_state(arc_anon,
7151 		    &as->arcstat_anon_size,
7152 		    &as->arcstat_anon_evictable_data,
7153 		    &as->arcstat_anon_evictable_metadata);
7154 		arc_kstat_update_state(arc_mru,
7155 		    &as->arcstat_mru_size,
7156 		    &as->arcstat_mru_evictable_data,
7157 		    &as->arcstat_mru_evictable_metadata);
7158 		arc_kstat_update_state(arc_mru_ghost,
7159 		    &as->arcstat_mru_ghost_size,
7160 		    &as->arcstat_mru_ghost_evictable_data,
7161 		    &as->arcstat_mru_ghost_evictable_metadata);
7162 		arc_kstat_update_state(arc_mfu,
7163 		    &as->arcstat_mfu_size,
7164 		    &as->arcstat_mfu_evictable_data,
7165 		    &as->arcstat_mfu_evictable_metadata);
7166 		arc_kstat_update_state(arc_mfu_ghost,
7167 		    &as->arcstat_mfu_ghost_size,
7168 		    &as->arcstat_mfu_ghost_evictable_data,
7169 		    &as->arcstat_mfu_ghost_evictable_metadata);
7170 
7171 		ARCSTAT(arcstat_size) = aggsum_value(&arc_size);
7172 		ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used);
7173 		ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size);
7174 		ARCSTAT(arcstat_metadata_size) =
7175 		    aggsum_value(&astat_metadata_size);
7176 		ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size);
7177 		ARCSTAT(arcstat_other_size) = aggsum_value(&astat_other_size);
7178 		ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size);
7179 	}
7180 
7181 	return (0);
7182 }
7183 
7184 /*
7185  * This function *must* return indices evenly distributed between all
7186  * sublists of the multilist. This is needed due to how the ARC eviction
7187  * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7188  * distributed between all sublists and uses this assumption when
7189  * deciding which sublist to evict from and how much to evict from it.
7190  */
7191 unsigned int
7192 arc_state_multilist_index_func(multilist_t *ml, void *obj)
7193 {
7194 	arc_buf_hdr_t *hdr = obj;
7195 
7196 	/*
7197 	 * We rely on b_dva to generate evenly distributed index
7198 	 * numbers using buf_hash below. So, as an added precaution,
7199 	 * let's make sure we never add empty buffers to the arc lists.
7200 	 */
7201 	ASSERT(!HDR_EMPTY(hdr));
7202 
7203 	/*
7204 	 * The assumption here, is the hash value for a given
7205 	 * arc_buf_hdr_t will remain constant throughout its lifetime
7206 	 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7207 	 * Thus, we don't need to store the header's sublist index
7208 	 * on insertion, as this index can be recalculated on removal.
7209 	 *
7210 	 * Also, the low order bits of the hash value are thought to be
7211 	 * distributed evenly. Otherwise, in the case that the multilist
7212 	 * has a power of two number of sublists, each sublists' usage
7213 	 * would not be evenly distributed.
7214 	 */
7215 	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7216 	    multilist_get_num_sublists(ml));
7217 }
7218 
7219 static void
7220 arc_state_init(void)
7221 {
7222 	arc_anon = &ARC_anon;
7223 	arc_mru = &ARC_mru;
7224 	arc_mru_ghost = &ARC_mru_ghost;
7225 	arc_mfu = &ARC_mfu;
7226 	arc_mfu_ghost = &ARC_mfu_ghost;
7227 	arc_l2c_only = &ARC_l2c_only;
7228 
7229 	arc_mru->arcs_list[ARC_BUFC_METADATA] =
7230 	    multilist_create(sizeof (arc_buf_hdr_t),
7231 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7232 	    arc_state_multilist_index_func);
7233 	arc_mru->arcs_list[ARC_BUFC_DATA] =
7234 	    multilist_create(sizeof (arc_buf_hdr_t),
7235 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7236 	    arc_state_multilist_index_func);
7237 	arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
7238 	    multilist_create(sizeof (arc_buf_hdr_t),
7239 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7240 	    arc_state_multilist_index_func);
7241 	arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
7242 	    multilist_create(sizeof (arc_buf_hdr_t),
7243 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7244 	    arc_state_multilist_index_func);
7245 	arc_mfu->arcs_list[ARC_BUFC_METADATA] =
7246 	    multilist_create(sizeof (arc_buf_hdr_t),
7247 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7248 	    arc_state_multilist_index_func);
7249 	arc_mfu->arcs_list[ARC_BUFC_DATA] =
7250 	    multilist_create(sizeof (arc_buf_hdr_t),
7251 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7252 	    arc_state_multilist_index_func);
7253 	arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
7254 	    multilist_create(sizeof (arc_buf_hdr_t),
7255 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7256 	    arc_state_multilist_index_func);
7257 	arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
7258 	    multilist_create(sizeof (arc_buf_hdr_t),
7259 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7260 	    arc_state_multilist_index_func);
7261 	arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
7262 	    multilist_create(sizeof (arc_buf_hdr_t),
7263 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7264 	    arc_state_multilist_index_func);
7265 	arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
7266 	    multilist_create(sizeof (arc_buf_hdr_t),
7267 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
7268 	    arc_state_multilist_index_func);
7269 
7270 	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7271 	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7272 	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7273 	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7274 	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7275 	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7276 	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7277 	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7278 	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7279 	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7280 	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7281 	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7282 
7283 	zfs_refcount_create(&arc_anon->arcs_size);
7284 	zfs_refcount_create(&arc_mru->arcs_size);
7285 	zfs_refcount_create(&arc_mru_ghost->arcs_size);
7286 	zfs_refcount_create(&arc_mfu->arcs_size);
7287 	zfs_refcount_create(&arc_mfu_ghost->arcs_size);
7288 	zfs_refcount_create(&arc_l2c_only->arcs_size);
7289 
7290 	aggsum_init(&arc_meta_used, 0);
7291 	aggsum_init(&arc_size, 0);
7292 	aggsum_init(&astat_data_size, 0);
7293 	aggsum_init(&astat_metadata_size, 0);
7294 	aggsum_init(&astat_hdr_size, 0);
7295 	aggsum_init(&astat_other_size, 0);
7296 	aggsum_init(&astat_l2_hdr_size, 0);
7297 }
7298 
7299 static void
7300 arc_state_fini(void)
7301 {
7302 	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7303 	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7304 	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7305 	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7306 	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7307 	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7308 	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7309 	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7310 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7311 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7312 	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7313 	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7314 
7315 	zfs_refcount_destroy(&arc_anon->arcs_size);
7316 	zfs_refcount_destroy(&arc_mru->arcs_size);
7317 	zfs_refcount_destroy(&arc_mru_ghost->arcs_size);
7318 	zfs_refcount_destroy(&arc_mfu->arcs_size);
7319 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_size);
7320 	zfs_refcount_destroy(&arc_l2c_only->arcs_size);
7321 
7322 	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
7323 	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7324 	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7325 	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7326 	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
7327 	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7328 	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
7329 	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7330 	multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7331 	multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7332 
7333 	aggsum_fini(&arc_meta_used);
7334 	aggsum_fini(&arc_size);
7335 	aggsum_fini(&astat_data_size);
7336 	aggsum_fini(&astat_metadata_size);
7337 	aggsum_fini(&astat_hdr_size);
7338 	aggsum_fini(&astat_other_size);
7339 	aggsum_fini(&astat_l2_hdr_size);
7340 
7341 }
7342 
7343 uint64_t
7344 arc_max_bytes(void)
7345 {
7346 	return (arc_c_max);
7347 }
7348 
7349 void
7350 arc_init(void)
7351 {
7352 	/*
7353 	 * allmem is "all memory that we could possibly use".
7354 	 */
7355 #ifdef _KERNEL
7356 	uint64_t allmem = ptob(physmem - swapfs_minfree);
7357 #else
7358 	uint64_t allmem = (physmem * PAGESIZE) / 2;
7359 #endif
7360 	mutex_init(&arc_adjust_lock, NULL, MUTEX_DEFAULT, NULL);
7361 	cv_init(&arc_adjust_waiters_cv, NULL, CV_DEFAULT, NULL);
7362 
7363 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
7364 	arc_c_min = MAX(allmem / 32, 64 << 20);
7365 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
7366 	if (allmem >= 1 << 30)
7367 		arc_c_max = allmem - (1 << 30);
7368 	else
7369 		arc_c_max = arc_c_min;
7370 	arc_c_max = MAX(allmem * 3 / 4, arc_c_max);
7371 
7372 	/*
7373 	 * In userland, there's only the memory pressure that we artificially
7374 	 * create (see arc_available_memory()).  Don't let arc_c get too
7375 	 * small, because it can cause transactions to be larger than
7376 	 * arc_c, causing arc_tempreserve_space() to fail.
7377 	 */
7378 #ifndef _KERNEL
7379 	arc_c_min = arc_c_max / 2;
7380 #endif
7381 
7382 	/*
7383 	 * Allow the tunables to override our calculations if they are
7384 	 * reasonable (ie. over 64MB)
7385 	 */
7386 	if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) {
7387 		arc_c_max = zfs_arc_max;
7388 		arc_c_min = MIN(arc_c_min, arc_c_max);
7389 	}
7390 	if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max)
7391 		arc_c_min = zfs_arc_min;
7392 
7393 	arc_c = arc_c_max;
7394 	arc_p = (arc_c >> 1);
7395 
7396 	/* limit meta-data to 1/4 of the arc capacity */
7397 	arc_meta_limit = arc_c_max / 4;
7398 
7399 #ifdef _KERNEL
7400 	/*
7401 	 * Metadata is stored in the kernel's heap.  Don't let us
7402 	 * use more than half the heap for the ARC.
7403 	 */
7404 	arc_meta_limit = MIN(arc_meta_limit,
7405 	    vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
7406 #endif
7407 
7408 	/* Allow the tunable to override if it is reasonable */
7409 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
7410 		arc_meta_limit = zfs_arc_meta_limit;
7411 
7412 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
7413 		arc_c_min = arc_meta_limit / 2;
7414 
7415 	if (zfs_arc_meta_min > 0) {
7416 		arc_meta_min = zfs_arc_meta_min;
7417 	} else {
7418 		arc_meta_min = arc_c_min / 2;
7419 	}
7420 
7421 	if (zfs_arc_grow_retry > 0)
7422 		arc_grow_retry = zfs_arc_grow_retry;
7423 
7424 	if (zfs_arc_shrink_shift > 0)
7425 		arc_shrink_shift = zfs_arc_shrink_shift;
7426 
7427 	/*
7428 	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
7429 	 */
7430 	if (arc_no_grow_shift >= arc_shrink_shift)
7431 		arc_no_grow_shift = arc_shrink_shift - 1;
7432 
7433 	if (zfs_arc_p_min_shift > 0)
7434 		arc_p_min_shift = zfs_arc_p_min_shift;
7435 
7436 	/* if kmem_flags are set, lets try to use less memory */
7437 	if (kmem_debugging())
7438 		arc_c = arc_c / 2;
7439 	if (arc_c < arc_c_min)
7440 		arc_c = arc_c_min;
7441 
7442 	arc_state_init();
7443 
7444 	/*
7445 	 * The arc must be "uninitialized", so that hdr_recl() (which is
7446 	 * registered by buf_init()) will not access arc_reap_zthr before
7447 	 * it is created.
7448 	 */
7449 	ASSERT(!arc_initialized);
7450 	buf_init();
7451 
7452 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7453 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7454 
7455 	if (arc_ksp != NULL) {
7456 		arc_ksp->ks_data = &arc_stats;
7457 		arc_ksp->ks_update = arc_kstat_update;
7458 		kstat_install(arc_ksp);
7459 	}
7460 
7461 	arc_adjust_zthr = zthr_create(arc_adjust_cb_check,
7462 	    arc_adjust_cb, NULL);
7463 	arc_reap_zthr = zthr_create_timer(arc_reap_cb_check,
7464 	    arc_reap_cb, NULL, SEC2NSEC(1));
7465 
7466 	arc_initialized = B_TRUE;
7467 	arc_warm = B_FALSE;
7468 
7469 	/*
7470 	 * Calculate maximum amount of dirty data per pool.
7471 	 *
7472 	 * If it has been set by /etc/system, take that.
7473 	 * Otherwise, use a percentage of physical memory defined by
7474 	 * zfs_dirty_data_max_percent (default 10%) with a cap at
7475 	 * zfs_dirty_data_max_max (default 4GB).
7476 	 */
7477 	if (zfs_dirty_data_max == 0) {
7478 		zfs_dirty_data_max = physmem * PAGESIZE *
7479 		    zfs_dirty_data_max_percent / 100;
7480 		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7481 		    zfs_dirty_data_max_max);
7482 	}
7483 }
7484 
7485 void
7486 arc_fini(void)
7487 {
7488 	/* Use B_TRUE to ensure *all* buffers are evicted */
7489 	arc_flush(NULL, B_TRUE);
7490 
7491 	arc_initialized = B_FALSE;
7492 
7493 	if (arc_ksp != NULL) {
7494 		kstat_delete(arc_ksp);
7495 		arc_ksp = NULL;
7496 	}
7497 
7498 	(void) zthr_cancel(arc_adjust_zthr);
7499 	zthr_destroy(arc_adjust_zthr);
7500 
7501 	(void) zthr_cancel(arc_reap_zthr);
7502 	zthr_destroy(arc_reap_zthr);
7503 
7504 	mutex_destroy(&arc_adjust_lock);
7505 	cv_destroy(&arc_adjust_waiters_cv);
7506 
7507 	/*
7508 	 * buf_fini() must proceed arc_state_fini() because buf_fin() may
7509 	 * trigger the release of kmem magazines, which can callback to
7510 	 * arc_space_return() which accesses aggsums freed in act_state_fini().
7511 	 */
7512 	buf_fini();
7513 	arc_state_fini();
7514 
7515 	ASSERT0(arc_loaned_bytes);
7516 }
7517 
7518 /*
7519  * Level 2 ARC
7520  *
7521  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7522  * It uses dedicated storage devices to hold cached data, which are populated
7523  * using large infrequent writes.  The main role of this cache is to boost
7524  * the performance of random read workloads.  The intended L2ARC devices
7525  * include short-stroked disks, solid state disks, and other media with
7526  * substantially faster read latency than disk.
7527  *
7528  *                 +-----------------------+
7529  *                 |         ARC           |
7530  *                 +-----------------------+
7531  *                    |         ^     ^
7532  *                    |         |     |
7533  *      l2arc_feed_thread()    arc_read()
7534  *                    |         |     |
7535  *                    |  l2arc read   |
7536  *                    V         |     |
7537  *               +---------------+    |
7538  *               |     L2ARC     |    |
7539  *               +---------------+    |
7540  *                   |    ^           |
7541  *          l2arc_write() |           |
7542  *                   |    |           |
7543  *                   V    |           |
7544  *                 +-------+      +-------+
7545  *                 | vdev  |      | vdev  |
7546  *                 | cache |      | cache |
7547  *                 +-------+      +-------+
7548  *                 +=========+     .-----.
7549  *                 :  L2ARC  :    |-_____-|
7550  *                 : devices :    | Disks |
7551  *                 +=========+    `-_____-'
7552  *
7553  * Read requests are satisfied from the following sources, in order:
7554  *
7555  *	1) ARC
7556  *	2) vdev cache of L2ARC devices
7557  *	3) L2ARC devices
7558  *	4) vdev cache of disks
7559  *	5) disks
7560  *
7561  * Some L2ARC device types exhibit extremely slow write performance.
7562  * To accommodate for this there are some significant differences between
7563  * the L2ARC and traditional cache design:
7564  *
7565  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
7566  * the ARC behave as usual, freeing buffers and placing headers on ghost
7567  * lists.  The ARC does not send buffers to the L2ARC during eviction as
7568  * this would add inflated write latencies for all ARC memory pressure.
7569  *
7570  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7571  * It does this by periodically scanning buffers from the eviction-end of
7572  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
7573  * not already there. It scans until a headroom of buffers is satisfied,
7574  * which itself is a buffer for ARC eviction. If a compressible buffer is
7575  * found during scanning and selected for writing to an L2ARC device, we
7576  * temporarily boost scanning headroom during the next scan cycle to make
7577  * sure we adapt to compression effects (which might significantly reduce
7578  * the data volume we write to L2ARC). The thread that does this is
7579  * l2arc_feed_thread(), illustrated below; example sizes are included to
7580  * provide a better sense of ratio than this diagram:
7581  *
7582  *	       head -->                        tail
7583  *	        +---------------------+----------+
7584  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
7585  *	        +---------------------+----------+   |   o L2ARC eligible
7586  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
7587  *	        +---------------------+----------+   |
7588  *	             15.9 Gbytes      ^ 32 Mbytes    |
7589  *	                           headroom          |
7590  *	                                      l2arc_feed_thread()
7591  *	                                             |
7592  *	                 l2arc write hand <--[oooo]--'
7593  *	                         |           8 Mbyte
7594  *	                         |          write max
7595  *	                         V
7596  *		  +==============================+
7597  *	L2ARC dev |####|#|###|###|    |####| ... |
7598  *	          +==============================+
7599  *	                     32 Gbytes
7600  *
7601  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7602  * evicted, then the L2ARC has cached a buffer much sooner than it probably
7603  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
7604  * safe to say that this is an uncommon case, since buffers at the end of
7605  * the ARC lists have moved there due to inactivity.
7606  *
7607  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7608  * then the L2ARC simply misses copying some buffers.  This serves as a
7609  * pressure valve to prevent heavy read workloads from both stalling the ARC
7610  * with waits and clogging the L2ARC with writes.  This also helps prevent
7611  * the potential for the L2ARC to churn if it attempts to cache content too
7612  * quickly, such as during backups of the entire pool.
7613  *
7614  * 5. After system boot and before the ARC has filled main memory, there are
7615  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7616  * lists can remain mostly static.  Instead of searching from tail of these
7617  * lists as pictured, the l2arc_feed_thread() will search from the list heads
7618  * for eligible buffers, greatly increasing its chance of finding them.
7619  *
7620  * The L2ARC device write speed is also boosted during this time so that
7621  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
7622  * there are no L2ARC reads, and no fear of degrading read performance
7623  * through increased writes.
7624  *
7625  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
7626  * the vdev queue can aggregate them into larger and fewer writes.  Each
7627  * device is written to in a rotor fashion, sweeping writes through
7628  * available space then repeating.
7629  *
7630  * 7. The L2ARC does not store dirty content.  It never needs to flush
7631  * write buffers back to disk based storage.
7632  *
7633  * 8. If an ARC buffer is written (and dirtied) which also exists in the
7634  * L2ARC, the now stale L2ARC buffer is immediately dropped.
7635  *
7636  * The performance of the L2ARC can be tweaked by a number of tunables, which
7637  * may be necessary for different workloads:
7638  *
7639  *	l2arc_write_max		max write bytes per interval
7640  *	l2arc_write_boost	extra write bytes during device warmup
7641  *	l2arc_noprefetch	skip caching prefetched buffers
7642  *	l2arc_headroom		number of max device writes to precache
7643  *	l2arc_headroom_boost	when we find compressed buffers during ARC
7644  *				scanning, we multiply headroom by this
7645  *				percentage factor for the next scan cycle,
7646  *				since more compressed buffers are likely to
7647  *				be present
7648  *	l2arc_feed_secs		seconds between L2ARC writing
7649  *
7650  * Tunables may be removed or added as future performance improvements are
7651  * integrated, and also may become zpool properties.
7652  *
7653  * There are three key functions that control how the L2ARC warms up:
7654  *
7655  *	l2arc_write_eligible()	check if a buffer is eligible to cache
7656  *	l2arc_write_size()	calculate how much to write
7657  *	l2arc_write_interval()	calculate sleep delay between writes
7658  *
7659  * These three functions determine what to write, how much, and how quickly
7660  * to send writes.
7661  */
7662 
7663 static boolean_t
7664 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
7665 {
7666 	/*
7667 	 * A buffer is *not* eligible for the L2ARC if it:
7668 	 * 1. belongs to a different spa.
7669 	 * 2. is already cached on the L2ARC.
7670 	 * 3. has an I/O in progress (it may be an incomplete read).
7671 	 * 4. is flagged not eligible (zfs property).
7672 	 */
7673 	if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
7674 	    HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
7675 		return (B_FALSE);
7676 
7677 	return (B_TRUE);
7678 }
7679 
7680 static uint64_t
7681 l2arc_write_size(void)
7682 {
7683 	uint64_t size;
7684 
7685 	/*
7686 	 * Make sure our globals have meaningful values in case the user
7687 	 * altered them.
7688 	 */
7689 	size = l2arc_write_max;
7690 	if (size == 0) {
7691 		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
7692 		    "be greater than zero, resetting it to the default (%d)",
7693 		    L2ARC_WRITE_SIZE);
7694 		size = l2arc_write_max = L2ARC_WRITE_SIZE;
7695 	}
7696 
7697 	if (arc_warm == B_FALSE)
7698 		size += l2arc_write_boost;
7699 
7700 	return (size);
7701 
7702 }
7703 
7704 static clock_t
7705 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
7706 {
7707 	clock_t interval, next, now;
7708 
7709 	/*
7710 	 * If the ARC lists are busy, increase our write rate; if the
7711 	 * lists are stale, idle back.  This is achieved by checking
7712 	 * how much we previously wrote - if it was more than half of
7713 	 * what we wanted, schedule the next write much sooner.
7714 	 */
7715 	if (l2arc_feed_again && wrote > (wanted / 2))
7716 		interval = (hz * l2arc_feed_min_ms) / 1000;
7717 	else
7718 		interval = hz * l2arc_feed_secs;
7719 
7720 	now = ddi_get_lbolt();
7721 	next = MAX(now, MIN(now + interval, began + interval));
7722 
7723 	return (next);
7724 }
7725 
7726 /*
7727  * Cycle through L2ARC devices.  This is how L2ARC load balances.
7728  * If a device is returned, this also returns holding the spa config lock.
7729  */
7730 static l2arc_dev_t *
7731 l2arc_dev_get_next(void)
7732 {
7733 	l2arc_dev_t *first, *next = NULL;
7734 
7735 	/*
7736 	 * Lock out the removal of spas (spa_namespace_lock), then removal
7737 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
7738 	 * both locks will be dropped and a spa config lock held instead.
7739 	 */
7740 	mutex_enter(&spa_namespace_lock);
7741 	mutex_enter(&l2arc_dev_mtx);
7742 
7743 	/* if there are no vdevs, there is nothing to do */
7744 	if (l2arc_ndev == 0)
7745 		goto out;
7746 
7747 	first = NULL;
7748 	next = l2arc_dev_last;
7749 	do {
7750 		/* loop around the list looking for a non-faulted vdev */
7751 		if (next == NULL) {
7752 			next = list_head(l2arc_dev_list);
7753 		} else {
7754 			next = list_next(l2arc_dev_list, next);
7755 			if (next == NULL)
7756 				next = list_head(l2arc_dev_list);
7757 		}
7758 
7759 		/* if we have come back to the start, bail out */
7760 		if (first == NULL)
7761 			first = next;
7762 		else if (next == first)
7763 			break;
7764 
7765 	} while (vdev_is_dead(next->l2ad_vdev));
7766 
7767 	/* if we were unable to find any usable vdevs, return NULL */
7768 	if (vdev_is_dead(next->l2ad_vdev))
7769 		next = NULL;
7770 
7771 	l2arc_dev_last = next;
7772 
7773 out:
7774 	mutex_exit(&l2arc_dev_mtx);
7775 
7776 	/*
7777 	 * Grab the config lock to prevent the 'next' device from being
7778 	 * removed while we are writing to it.
7779 	 */
7780 	if (next != NULL)
7781 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
7782 	mutex_exit(&spa_namespace_lock);
7783 
7784 	return (next);
7785 }
7786 
7787 /*
7788  * Free buffers that were tagged for destruction.
7789  */
7790 static void
7791 l2arc_do_free_on_write()
7792 {
7793 	list_t *buflist;
7794 	l2arc_data_free_t *df, *df_prev;
7795 
7796 	mutex_enter(&l2arc_free_on_write_mtx);
7797 	buflist = l2arc_free_on_write;
7798 
7799 	for (df = list_tail(buflist); df; df = df_prev) {
7800 		df_prev = list_prev(buflist, df);
7801 		ASSERT3P(df->l2df_abd, !=, NULL);
7802 		abd_free(df->l2df_abd);
7803 		list_remove(buflist, df);
7804 		kmem_free(df, sizeof (l2arc_data_free_t));
7805 	}
7806 
7807 	mutex_exit(&l2arc_free_on_write_mtx);
7808 }
7809 
7810 /*
7811  * A write to a cache device has completed.  Update all headers to allow
7812  * reads from these buffers to begin.
7813  */
7814 static void
7815 l2arc_write_done(zio_t *zio)
7816 {
7817 	l2arc_write_callback_t *cb;
7818 	l2arc_dev_t *dev;
7819 	list_t *buflist;
7820 	arc_buf_hdr_t *head, *hdr, *hdr_prev;
7821 	kmutex_t *hash_lock;
7822 	int64_t bytes_dropped = 0;
7823 
7824 	cb = zio->io_private;
7825 	ASSERT3P(cb, !=, NULL);
7826 	dev = cb->l2wcb_dev;
7827 	ASSERT3P(dev, !=, NULL);
7828 	head = cb->l2wcb_head;
7829 	ASSERT3P(head, !=, NULL);
7830 	buflist = &dev->l2ad_buflist;
7831 	ASSERT3P(buflist, !=, NULL);
7832 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
7833 	    l2arc_write_callback_t *, cb);
7834 
7835 	if (zio->io_error != 0)
7836 		ARCSTAT_BUMP(arcstat_l2_writes_error);
7837 
7838 	/*
7839 	 * All writes completed, or an error was hit.
7840 	 */
7841 top:
7842 	mutex_enter(&dev->l2ad_mtx);
7843 	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
7844 		hdr_prev = list_prev(buflist, hdr);
7845 
7846 		hash_lock = HDR_LOCK(hdr);
7847 
7848 		/*
7849 		 * We cannot use mutex_enter or else we can deadlock
7850 		 * with l2arc_write_buffers (due to swapping the order
7851 		 * the hash lock and l2ad_mtx are taken).
7852 		 */
7853 		if (!mutex_tryenter(hash_lock)) {
7854 			/*
7855 			 * Missed the hash lock. We must retry so we
7856 			 * don't leave the ARC_FLAG_L2_WRITING bit set.
7857 			 */
7858 			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
7859 
7860 			/*
7861 			 * We don't want to rescan the headers we've
7862 			 * already marked as having been written out, so
7863 			 * we reinsert the head node so we can pick up
7864 			 * where we left off.
7865 			 */
7866 			list_remove(buflist, head);
7867 			list_insert_after(buflist, hdr, head);
7868 
7869 			mutex_exit(&dev->l2ad_mtx);
7870 
7871 			/*
7872 			 * We wait for the hash lock to become available
7873 			 * to try and prevent busy waiting, and increase
7874 			 * the chance we'll be able to acquire the lock
7875 			 * the next time around.
7876 			 */
7877 			mutex_enter(hash_lock);
7878 			mutex_exit(hash_lock);
7879 			goto top;
7880 		}
7881 
7882 		/*
7883 		 * We could not have been moved into the arc_l2c_only
7884 		 * state while in-flight due to our ARC_FLAG_L2_WRITING
7885 		 * bit being set. Let's just ensure that's being enforced.
7886 		 */
7887 		ASSERT(HDR_HAS_L1HDR(hdr));
7888 
7889 		if (zio->io_error != 0) {
7890 			/*
7891 			 * Error - drop L2ARC entry.
7892 			 */
7893 			list_remove(buflist, hdr);
7894 			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
7895 
7896 			uint64_t psize = HDR_GET_PSIZE(hdr);
7897 			ARCSTAT_INCR(arcstat_l2_psize, -psize);
7898 			ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
7899 
7900 			bytes_dropped +=
7901 			    vdev_psize_to_asize(dev->l2ad_vdev, psize);
7902 			(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
7903 			    arc_hdr_size(hdr), hdr);
7904 		}
7905 
7906 		/*
7907 		 * Allow ARC to begin reads and ghost list evictions to
7908 		 * this L2ARC entry.
7909 		 */
7910 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
7911 
7912 		mutex_exit(hash_lock);
7913 	}
7914 
7915 	atomic_inc_64(&l2arc_writes_done);
7916 	list_remove(buflist, head);
7917 	ASSERT(!HDR_HAS_L1HDR(head));
7918 	kmem_cache_free(hdr_l2only_cache, head);
7919 	mutex_exit(&dev->l2ad_mtx);
7920 
7921 	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
7922 
7923 	l2arc_do_free_on_write();
7924 
7925 	kmem_free(cb, sizeof (l2arc_write_callback_t));
7926 }
7927 
7928 static int
7929 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
7930 {
7931 	int ret;
7932 	spa_t *spa = zio->io_spa;
7933 	arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
7934 	blkptr_t *bp = zio->io_bp;
7935 	uint8_t salt[ZIO_DATA_SALT_LEN];
7936 	uint8_t iv[ZIO_DATA_IV_LEN];
7937 	uint8_t mac[ZIO_DATA_MAC_LEN];
7938 	boolean_t no_crypt = B_FALSE;
7939 
7940 	/*
7941 	 * ZIL data is never be written to the L2ARC, so we don't need
7942 	 * special handling for its unique MAC storage.
7943 	 */
7944 	ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
7945 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
7946 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
7947 
7948 	/*
7949 	 * If the data was encrypted, decrypt it now. Note that
7950 	 * we must check the bp here and not the hdr, since the
7951 	 * hdr does not have its encryption parameters updated
7952 	 * until arc_read_done().
7953 	 */
7954 	if (BP_IS_ENCRYPTED(bp)) {
7955 		abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
7956 
7957 		zio_crypt_decode_params_bp(bp, salt, iv);
7958 		zio_crypt_decode_mac_bp(bp, mac);
7959 
7960 		ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
7961 		    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
7962 		    salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
7963 		    hdr->b_l1hdr.b_pabd, &no_crypt);
7964 		if (ret != 0) {
7965 			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
7966 			goto error;
7967 		}
7968 
7969 		/*
7970 		 * If we actually performed decryption, replace b_pabd
7971 		 * with the decrypted data. Otherwise we can just throw
7972 		 * our decryption buffer away.
7973 		 */
7974 		if (!no_crypt) {
7975 			arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
7976 			    arc_hdr_size(hdr), hdr);
7977 			hdr->b_l1hdr.b_pabd = eabd;
7978 			zio->io_abd = eabd;
7979 		} else {
7980 			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
7981 		}
7982 	}
7983 
7984 	/*
7985 	 * If the L2ARC block was compressed, but ARC compression
7986 	 * is disabled we decompress the data into a new buffer and
7987 	 * replace the existing data.
7988 	 */
7989 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
7990 	    !HDR_COMPRESSION_ENABLED(hdr)) {
7991 		abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
7992 		void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
7993 
7994 		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
7995 		    hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
7996 		    HDR_GET_LSIZE(hdr));
7997 		if (ret != 0) {
7998 			abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
7999 			arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8000 			goto error;
8001 		}
8002 
8003 		abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8004 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8005 		    arc_hdr_size(hdr), hdr);
8006 		hdr->b_l1hdr.b_pabd = cabd;
8007 		zio->io_abd = cabd;
8008 		zio->io_size = HDR_GET_LSIZE(hdr);
8009 	}
8010 
8011 	return (0);
8012 
8013 error:
8014 	return (ret);
8015 }
8016 
8017 
8018 /*
8019  * A read to a cache device completed.  Validate buffer contents before
8020  * handing over to the regular ARC routines.
8021  */
8022 static void
8023 l2arc_read_done(zio_t *zio)
8024 {
8025 	int tfm_error = 0;
8026 	l2arc_read_callback_t *cb = zio->io_private;
8027 	arc_buf_hdr_t *hdr;
8028 	kmutex_t *hash_lock;
8029 	boolean_t valid_cksum;
8030 	boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8031 	    (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
8032 
8033 	ASSERT3P(zio->io_vd, !=, NULL);
8034 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8035 
8036 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8037 
8038 	ASSERT3P(cb, !=, NULL);
8039 	hdr = cb->l2rcb_hdr;
8040 	ASSERT3P(hdr, !=, NULL);
8041 
8042 	hash_lock = HDR_LOCK(hdr);
8043 	mutex_enter(hash_lock);
8044 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8045 
8046 	/*
8047 	 * If the data was read into a temporary buffer,
8048 	 * move it and free the buffer.
8049 	 */
8050 	if (cb->l2rcb_abd != NULL) {
8051 		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8052 		if (zio->io_error == 0) {
8053 			if (using_rdata) {
8054 				abd_copy(hdr->b_crypt_hdr.b_rabd,
8055 				    cb->l2rcb_abd, arc_hdr_size(hdr));
8056 			} else {
8057 				abd_copy(hdr->b_l1hdr.b_pabd,
8058 				    cb->l2rcb_abd, arc_hdr_size(hdr));
8059 			}
8060 		}
8061 
8062 		/*
8063 		 * The following must be done regardless of whether
8064 		 * there was an error:
8065 		 * - free the temporary buffer
8066 		 * - point zio to the real ARC buffer
8067 		 * - set zio size accordingly
8068 		 * These are required because zio is either re-used for
8069 		 * an I/O of the block in the case of the error
8070 		 * or the zio is passed to arc_read_done() and it
8071 		 * needs real data.
8072 		 */
8073 		abd_free(cb->l2rcb_abd);
8074 		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8075 
8076 		if (using_rdata) {
8077 			ASSERT(HDR_HAS_RABD(hdr));
8078 			zio->io_abd = zio->io_orig_abd =
8079 			    hdr->b_crypt_hdr.b_rabd;
8080 		} else {
8081 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8082 			zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8083 		}
8084 	}
8085 
8086 	ASSERT3P(zio->io_abd, !=, NULL);
8087 
8088 	/*
8089 	 * Check this survived the L2ARC journey.
8090 	 */
8091 	ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8092 	    (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8093 	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
8094 	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
8095 
8096 	valid_cksum = arc_cksum_is_equal(hdr, zio);
8097 
8098 	/*
8099 	 * b_rabd will always match the data as it exists on disk if it is
8100 	 * being used. Therefore if we are reading into b_rabd we do not
8101 	 * attempt to untransform the data.
8102 	 */
8103 	if (valid_cksum && !using_rdata)
8104 		tfm_error = l2arc_untransform(zio, cb);
8105 
8106 	if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8107 	    !HDR_L2_EVICTED(hdr)) {
8108 		mutex_exit(hash_lock);
8109 		zio->io_private = hdr;
8110 		arc_read_done(zio);
8111 	} else {
8112 		mutex_exit(hash_lock);
8113 		/*
8114 		 * Buffer didn't survive caching.  Increment stats and
8115 		 * reissue to the original storage device.
8116 		 */
8117 		if (zio->io_error != 0) {
8118 			ARCSTAT_BUMP(arcstat_l2_io_error);
8119 		} else {
8120 			zio->io_error = SET_ERROR(EIO);
8121 		}
8122 		if (!valid_cksum || tfm_error != 0)
8123 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8124 
8125 		/*
8126 		 * If there's no waiter, issue an async i/o to the primary
8127 		 * storage now.  If there *is* a waiter, the caller must
8128 		 * issue the i/o in a context where it's OK to block.
8129 		 */
8130 		if (zio->io_waiter == NULL) {
8131 			zio_t *pio = zio_unique_parent(zio);
8132 			void *abd = (using_rdata) ?
8133 			    hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
8134 
8135 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8136 
8137 			zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
8138 			    abd, zio->io_size, arc_read_done,
8139 			    hdr, zio->io_priority, cb->l2rcb_flags,
8140 			    &cb->l2rcb_zb));
8141 		}
8142 	}
8143 
8144 	kmem_free(cb, sizeof (l2arc_read_callback_t));
8145 }
8146 
8147 /*
8148  * This is the list priority from which the L2ARC will search for pages to
8149  * cache.  This is used within loops (0..3) to cycle through lists in the
8150  * desired order.  This order can have a significant effect on cache
8151  * performance.
8152  *
8153  * Currently the metadata lists are hit first, MFU then MRU, followed by
8154  * the data lists.  This function returns a locked list, and also returns
8155  * the lock pointer.
8156  */
8157 static multilist_sublist_t *
8158 l2arc_sublist_lock(int list_num)
8159 {
8160 	multilist_t *ml = NULL;
8161 	unsigned int idx;
8162 
8163 	ASSERT(list_num >= 0 && list_num <= 3);
8164 
8165 	switch (list_num) {
8166 	case 0:
8167 		ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
8168 		break;
8169 	case 1:
8170 		ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
8171 		break;
8172 	case 2:
8173 		ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
8174 		break;
8175 	case 3:
8176 		ml = arc_mru->arcs_list[ARC_BUFC_DATA];
8177 		break;
8178 	}
8179 
8180 	/*
8181 	 * Return a randomly-selected sublist. This is acceptable
8182 	 * because the caller feeds only a little bit of data for each
8183 	 * call (8MB). Subsequent calls will result in different
8184 	 * sublists being selected.
8185 	 */
8186 	idx = multilist_get_random_index(ml);
8187 	return (multilist_sublist_lock(ml, idx));
8188 }
8189 
8190 /*
8191  * Evict buffers from the device write hand to the distance specified in
8192  * bytes.  This distance may span populated buffers, it may span nothing.
8193  * This is clearing a region on the L2ARC device ready for writing.
8194  * If the 'all' boolean is set, every buffer is evicted.
8195  */
8196 static void
8197 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8198 {
8199 	list_t *buflist;
8200 	arc_buf_hdr_t *hdr, *hdr_prev;
8201 	kmutex_t *hash_lock;
8202 	uint64_t taddr;
8203 
8204 	buflist = &dev->l2ad_buflist;
8205 
8206 	if (!all && dev->l2ad_first) {
8207 		/*
8208 		 * This is the first sweep through the device.  There is
8209 		 * nothing to evict.
8210 		 */
8211 		return;
8212 	}
8213 
8214 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
8215 		/*
8216 		 * When nearing the end of the device, evict to the end
8217 		 * before the device write hand jumps to the start.
8218 		 */
8219 		taddr = dev->l2ad_end;
8220 	} else {
8221 		taddr = dev->l2ad_hand + distance;
8222 	}
8223 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8224 	    uint64_t, taddr, boolean_t, all);
8225 
8226 top:
8227 	mutex_enter(&dev->l2ad_mtx);
8228 	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
8229 		hdr_prev = list_prev(buflist, hdr);
8230 
8231 		hash_lock = HDR_LOCK(hdr);
8232 
8233 		/*
8234 		 * We cannot use mutex_enter or else we can deadlock
8235 		 * with l2arc_write_buffers (due to swapping the order
8236 		 * the hash lock and l2ad_mtx are taken).
8237 		 */
8238 		if (!mutex_tryenter(hash_lock)) {
8239 			/*
8240 			 * Missed the hash lock.  Retry.
8241 			 */
8242 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
8243 			mutex_exit(&dev->l2ad_mtx);
8244 			mutex_enter(hash_lock);
8245 			mutex_exit(hash_lock);
8246 			goto top;
8247 		}
8248 
8249 		/*
8250 		 * A header can't be on this list if it doesn't have L2 header.
8251 		 */
8252 		ASSERT(HDR_HAS_L2HDR(hdr));
8253 
8254 		/* Ensure this header has finished being written. */
8255 		ASSERT(!HDR_L2_WRITING(hdr));
8256 		ASSERT(!HDR_L2_WRITE_HEAD(hdr));
8257 
8258 		if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
8259 		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
8260 			/*
8261 			 * We've evicted to the target address,
8262 			 * or the end of the device.
8263 			 */
8264 			mutex_exit(hash_lock);
8265 			break;
8266 		}
8267 
8268 		if (!HDR_HAS_L1HDR(hdr)) {
8269 			ASSERT(!HDR_L2_READING(hdr));
8270 			/*
8271 			 * This doesn't exist in the ARC.  Destroy.
8272 			 * arc_hdr_destroy() will call list_remove()
8273 			 * and decrement arcstat_l2_lsize.
8274 			 */
8275 			arc_change_state(arc_anon, hdr, hash_lock);
8276 			arc_hdr_destroy(hdr);
8277 		} else {
8278 			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
8279 			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
8280 			/*
8281 			 * Invalidate issued or about to be issued
8282 			 * reads, since we may be about to write
8283 			 * over this location.
8284 			 */
8285 			if (HDR_L2_READING(hdr)) {
8286 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
8287 				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
8288 			}
8289 
8290 			arc_hdr_l2hdr_destroy(hdr);
8291 		}
8292 		mutex_exit(hash_lock);
8293 	}
8294 	mutex_exit(&dev->l2ad_mtx);
8295 }
8296 
8297 /*
8298  * Handle any abd transforms that might be required for writing to the L2ARC.
8299  * If successful, this function will always return an abd with the data
8300  * transformed as it is on disk in a new abd of asize bytes.
8301  */
8302 static int
8303 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
8304     abd_t **abd_out)
8305 {
8306 	int ret;
8307 	void *tmp = NULL;
8308 	abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
8309 	enum zio_compress compress = HDR_GET_COMPRESS(hdr);
8310 	uint64_t psize = HDR_GET_PSIZE(hdr);
8311 	uint64_t size = arc_hdr_size(hdr);
8312 	boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
8313 	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
8314 	dsl_crypto_key_t *dck = NULL;
8315 	uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
8316 	boolean_t no_crypt = B_FALSE;
8317 
8318 	ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8319 	    !HDR_COMPRESSION_ENABLED(hdr)) ||
8320 	    HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
8321 	ASSERT3U(psize, <=, asize);
8322 
8323 	/*
8324 	 * If this data simply needs its own buffer, we simply allocate it
8325 	 * and copy the data. This may be done to eliminate a dependency on a
8326 	 * shared buffer or to reallocate the buffer to match asize.
8327 	 */
8328 	if (HDR_HAS_RABD(hdr) && asize != psize) {
8329 		ASSERT3U(asize, >=, psize);
8330 		to_write = abd_alloc_for_io(asize, ismd);
8331 		abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
8332 		if (psize != asize)
8333 			abd_zero_off(to_write, psize, asize - psize);
8334 		goto out;
8335 	}
8336 
8337 	if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
8338 	    !HDR_ENCRYPTED(hdr)) {
8339 		ASSERT3U(size, ==, psize);
8340 		to_write = abd_alloc_for_io(asize, ismd);
8341 		abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
8342 		if (size != asize)
8343 			abd_zero_off(to_write, size, asize - size);
8344 		goto out;
8345 	}
8346 
8347 	if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
8348 		cabd = abd_alloc_for_io(asize, ismd);
8349 		tmp = abd_borrow_buf(cabd, asize);
8350 
8351 		psize = zio_compress_data(compress, to_write, tmp, size);
8352 		ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr));
8353 		if (psize < asize)
8354 			bzero((char *)tmp + psize, asize - psize);
8355 		psize = HDR_GET_PSIZE(hdr);
8356 		abd_return_buf_copy(cabd, tmp, asize);
8357 		to_write = cabd;
8358 	}
8359 
8360 	if (HDR_ENCRYPTED(hdr)) {
8361 		eabd = abd_alloc_for_io(asize, ismd);
8362 
8363 		/*
8364 		 * If the dataset was disowned before the buffer
8365 		 * made it to this point, the key to re-encrypt
8366 		 * it won't be available. In this case we simply
8367 		 * won't write the buffer to the L2ARC.
8368 		 */
8369 		ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
8370 		    FTAG, &dck);
8371 		if (ret != 0)
8372 			goto error;
8373 
8374 		ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
8375 		    hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
8376 		    hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
8377 		    &no_crypt);
8378 		if (ret != 0)
8379 			goto error;
8380 
8381 		if (no_crypt)
8382 			abd_copy(eabd, to_write, psize);
8383 
8384 		if (psize != asize)
8385 			abd_zero_off(eabd, psize, asize - psize);
8386 
8387 		/* assert that the MAC we got here matches the one we saved */
8388 		ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
8389 		spa_keystore_dsl_key_rele(spa, dck, FTAG);
8390 
8391 		if (to_write == cabd)
8392 			abd_free(cabd);
8393 
8394 		to_write = eabd;
8395 	}
8396 
8397 out:
8398 	ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
8399 	*abd_out = to_write;
8400 	return (0);
8401 
8402 error:
8403 	if (dck != NULL)
8404 		spa_keystore_dsl_key_rele(spa, dck, FTAG);
8405 	if (cabd != NULL)
8406 		abd_free(cabd);
8407 	if (eabd != NULL)
8408 		abd_free(eabd);
8409 
8410 	*abd_out = NULL;
8411 	return (ret);
8412 }
8413 
8414 /*
8415  * Find and write ARC buffers to the L2ARC device.
8416  *
8417  * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
8418  * for reading until they have completed writing.
8419  * The headroom_boost is an in-out parameter used to maintain headroom boost
8420  * state between calls to this function.
8421  *
8422  * Returns the number of bytes actually written (which may be smaller than
8423  * the delta by which the device hand has changed due to alignment).
8424  */
8425 static uint64_t
8426 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
8427 {
8428 	arc_buf_hdr_t *hdr, *hdr_prev, *head;
8429 	uint64_t write_asize, write_psize, write_lsize, headroom;
8430 	boolean_t full;
8431 	l2arc_write_callback_t *cb;
8432 	zio_t *pio, *wzio;
8433 	uint64_t guid = spa_load_guid(spa);
8434 
8435 	ASSERT3P(dev->l2ad_vdev, !=, NULL);
8436 
8437 	pio = NULL;
8438 	write_lsize = write_asize = write_psize = 0;
8439 	full = B_FALSE;
8440 	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
8441 	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
8442 
8443 	/*
8444 	 * Copy buffers for L2ARC writing.
8445 	 */
8446 	for (int try = 0; try <= 3; try++) {
8447 		multilist_sublist_t *mls = l2arc_sublist_lock(try);
8448 		uint64_t passed_sz = 0;
8449 
8450 		VERIFY3P(mls, !=, NULL);
8451 
8452 		/*
8453 		 * L2ARC fast warmup.
8454 		 *
8455 		 * Until the ARC is warm and starts to evict, read from the
8456 		 * head of the ARC lists rather than the tail.
8457 		 */
8458 		if (arc_warm == B_FALSE)
8459 			hdr = multilist_sublist_head(mls);
8460 		else
8461 			hdr = multilist_sublist_tail(mls);
8462 
8463 		headroom = target_sz * l2arc_headroom;
8464 		if (zfs_compressed_arc_enabled)
8465 			headroom = (headroom * l2arc_headroom_boost) / 100;
8466 
8467 		for (; hdr; hdr = hdr_prev) {
8468 			kmutex_t *hash_lock;
8469 			abd_t *to_write = NULL;
8470 
8471 			if (arc_warm == B_FALSE)
8472 				hdr_prev = multilist_sublist_next(mls, hdr);
8473 			else
8474 				hdr_prev = multilist_sublist_prev(mls, hdr);
8475 
8476 			hash_lock = HDR_LOCK(hdr);
8477 			if (!mutex_tryenter(hash_lock)) {
8478 				/*
8479 				 * Skip this buffer rather than waiting.
8480 				 */
8481 				continue;
8482 			}
8483 
8484 			passed_sz += HDR_GET_LSIZE(hdr);
8485 			if (passed_sz > headroom) {
8486 				/*
8487 				 * Searched too far.
8488 				 */
8489 				mutex_exit(hash_lock);
8490 				break;
8491 			}
8492 
8493 			if (!l2arc_write_eligible(guid, hdr)) {
8494 				mutex_exit(hash_lock);
8495 				continue;
8496 			}
8497 
8498 			/*
8499 			 * We rely on the L1 portion of the header below, so
8500 			 * it's invalid for this header to have been evicted out
8501 			 * of the ghost cache, prior to being written out. The
8502 			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8503 			 */
8504 			ASSERT(HDR_HAS_L1HDR(hdr));
8505 
8506 			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8507 			ASSERT3U(arc_hdr_size(hdr), >, 0);
8508 			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8509 			    HDR_HAS_RABD(hdr));
8510 			uint64_t psize = HDR_GET_PSIZE(hdr);
8511 			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
8512 			    psize);
8513 
8514 			if ((write_asize + asize) > target_sz) {
8515 				full = B_TRUE;
8516 				mutex_exit(hash_lock);
8517 				break;
8518 			}
8519 
8520 			/*
8521 			 * We rely on the L1 portion of the header below, so
8522 			 * it's invalid for this header to have been evicted out
8523 			 * of the ghost cache, prior to being written out. The
8524 			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8525 			 */
8526 			arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING);
8527 			ASSERT(HDR_HAS_L1HDR(hdr));
8528 
8529 			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8530 			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8531 			    HDR_HAS_RABD(hdr));
8532 			ASSERT3U(arc_hdr_size(hdr), >, 0);
8533 
8534 			/*
8535 			 * If this header has b_rabd, we can use this since it
8536 			 * must always match the data exactly as it exists on
8537 			 * disk. Otherwise, the L2ARC can normally use the
8538 			 * hdr's data, but if we're sharing data between the
8539 			 * hdr and one of its bufs, L2ARC needs its own copy of
8540 			 * the data so that the ZIO below can't race with the
8541 			 * buf consumer. To ensure that this copy will be
8542 			 * available for the lifetime of the ZIO and be cleaned
8543 			 * up afterwards, we add it to the l2arc_free_on_write
8544 			 * queue. If we need to apply any transforms to the
8545 			 * data (compression, encryption) we will also need the
8546 			 * extra buffer.
8547 			 */
8548 			if (HDR_HAS_RABD(hdr) && psize == asize) {
8549 				to_write = hdr->b_crypt_hdr.b_rabd;
8550 			} else if ((HDR_COMPRESSION_ENABLED(hdr) ||
8551 			    HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
8552 			    !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
8553 			    psize == asize) {
8554 				to_write = hdr->b_l1hdr.b_pabd;
8555 			} else {
8556 				int ret;
8557 				arc_buf_contents_t type = arc_buf_type(hdr);
8558 
8559 				ret = l2arc_apply_transforms(spa, hdr, asize,
8560 				    &to_write);
8561 				if (ret != 0) {
8562 					arc_hdr_clear_flags(hdr,
8563 					    ARC_FLAG_L2_WRITING);
8564 					mutex_exit(hash_lock);
8565 					continue;
8566 				}
8567 
8568 				l2arc_free_abd_on_write(to_write, asize, type);
8569 			}
8570 
8571 			if (pio == NULL) {
8572 				/*
8573 				 * Insert a dummy header on the buflist so
8574 				 * l2arc_write_done() can find where the
8575 				 * write buffers begin without searching.
8576 				 */
8577 				mutex_enter(&dev->l2ad_mtx);
8578 				list_insert_head(&dev->l2ad_buflist, head);
8579 				mutex_exit(&dev->l2ad_mtx);
8580 
8581 				cb = kmem_alloc(
8582 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
8583 				cb->l2wcb_dev = dev;
8584 				cb->l2wcb_head = head;
8585 				pio = zio_root(spa, l2arc_write_done, cb,
8586 				    ZIO_FLAG_CANFAIL);
8587 			}
8588 
8589 			hdr->b_l2hdr.b_dev = dev;
8590 			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
8591 			arc_hdr_set_flags(hdr,
8592 			    ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
8593 
8594 			mutex_enter(&dev->l2ad_mtx);
8595 			list_insert_head(&dev->l2ad_buflist, hdr);
8596 			mutex_exit(&dev->l2ad_mtx);
8597 
8598 			(void) zfs_refcount_add_many(&dev->l2ad_alloc,
8599 			    arc_hdr_size(hdr), hdr);
8600 
8601 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
8602 			    hdr->b_l2hdr.b_daddr, asize, to_write,
8603 			    ZIO_CHECKSUM_OFF, NULL, hdr,
8604 			    ZIO_PRIORITY_ASYNC_WRITE,
8605 			    ZIO_FLAG_CANFAIL, B_FALSE);
8606 
8607 			write_lsize += HDR_GET_LSIZE(hdr);
8608 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
8609 			    zio_t *, wzio);
8610 
8611 			write_psize += psize;
8612 			write_asize += asize;
8613 			dev->l2ad_hand += asize;
8614 			vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
8615 
8616 			mutex_exit(hash_lock);
8617 
8618 			(void) zio_nowait(wzio);
8619 		}
8620 
8621 		multilist_sublist_unlock(mls);
8622 
8623 		if (full == B_TRUE)
8624 			break;
8625 	}
8626 
8627 	/* No buffers selected for writing? */
8628 	if (pio == NULL) {
8629 		ASSERT0(write_lsize);
8630 		ASSERT(!HDR_HAS_L1HDR(head));
8631 		kmem_cache_free(hdr_l2only_cache, head);
8632 		return (0);
8633 	}
8634 
8635 	ASSERT3U(write_asize, <=, target_sz);
8636 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
8637 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
8638 	ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
8639 	ARCSTAT_INCR(arcstat_l2_psize, write_psize);
8640 
8641 	/*
8642 	 * Bump device hand to the device start if it is approaching the end.
8643 	 * l2arc_evict() will already have evicted ahead for this case.
8644 	 */
8645 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
8646 		dev->l2ad_hand = dev->l2ad_start;
8647 		dev->l2ad_first = B_FALSE;
8648 	}
8649 
8650 	dev->l2ad_writing = B_TRUE;
8651 	(void) zio_wait(pio);
8652 	dev->l2ad_writing = B_FALSE;
8653 
8654 	return (write_asize);
8655 }
8656 
8657 /*
8658  * This thread feeds the L2ARC at regular intervals.  This is the beating
8659  * heart of the L2ARC.
8660  */
8661 /* ARGSUSED */
8662 static void
8663 l2arc_feed_thread(void *unused)
8664 {
8665 	callb_cpr_t cpr;
8666 	l2arc_dev_t *dev;
8667 	spa_t *spa;
8668 	uint64_t size, wrote;
8669 	clock_t begin, next = ddi_get_lbolt();
8670 
8671 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
8672 
8673 	mutex_enter(&l2arc_feed_thr_lock);
8674 
8675 	while (l2arc_thread_exit == 0) {
8676 		CALLB_CPR_SAFE_BEGIN(&cpr);
8677 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
8678 		    next);
8679 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
8680 		next = ddi_get_lbolt() + hz;
8681 
8682 		/*
8683 		 * Quick check for L2ARC devices.
8684 		 */
8685 		mutex_enter(&l2arc_dev_mtx);
8686 		if (l2arc_ndev == 0) {
8687 			mutex_exit(&l2arc_dev_mtx);
8688 			continue;
8689 		}
8690 		mutex_exit(&l2arc_dev_mtx);
8691 		begin = ddi_get_lbolt();
8692 
8693 		/*
8694 		 * This selects the next l2arc device to write to, and in
8695 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
8696 		 * will return NULL if there are now no l2arc devices or if
8697 		 * they are all faulted.
8698 		 *
8699 		 * If a device is returned, its spa's config lock is also
8700 		 * held to prevent device removal.  l2arc_dev_get_next()
8701 		 * will grab and release l2arc_dev_mtx.
8702 		 */
8703 		if ((dev = l2arc_dev_get_next()) == NULL)
8704 			continue;
8705 
8706 		spa = dev->l2ad_spa;
8707 		ASSERT3P(spa, !=, NULL);
8708 
8709 		/*
8710 		 * If the pool is read-only then force the feed thread to
8711 		 * sleep a little longer.
8712 		 */
8713 		if (!spa_writeable(spa)) {
8714 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
8715 			spa_config_exit(spa, SCL_L2ARC, dev);
8716 			continue;
8717 		}
8718 
8719 		/*
8720 		 * Avoid contributing to memory pressure.
8721 		 */
8722 		if (arc_reclaim_needed()) {
8723 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
8724 			spa_config_exit(spa, SCL_L2ARC, dev);
8725 			continue;
8726 		}
8727 
8728 		ARCSTAT_BUMP(arcstat_l2_feeds);
8729 
8730 		size = l2arc_write_size();
8731 
8732 		/*
8733 		 * Evict L2ARC buffers that will be overwritten.
8734 		 */
8735 		l2arc_evict(dev, size, B_FALSE);
8736 
8737 		/*
8738 		 * Write ARC buffers.
8739 		 */
8740 		wrote = l2arc_write_buffers(spa, dev, size);
8741 
8742 		/*
8743 		 * Calculate interval between writes.
8744 		 */
8745 		next = l2arc_write_interval(begin, size, wrote);
8746 		spa_config_exit(spa, SCL_L2ARC, dev);
8747 	}
8748 
8749 	l2arc_thread_exit = 0;
8750 	cv_broadcast(&l2arc_feed_thr_cv);
8751 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
8752 	thread_exit();
8753 }
8754 
8755 boolean_t
8756 l2arc_vdev_present(vdev_t *vd)
8757 {
8758 	l2arc_dev_t *dev;
8759 
8760 	mutex_enter(&l2arc_dev_mtx);
8761 	for (dev = list_head(l2arc_dev_list); dev != NULL;
8762 	    dev = list_next(l2arc_dev_list, dev)) {
8763 		if (dev->l2ad_vdev == vd)
8764 			break;
8765 	}
8766 	mutex_exit(&l2arc_dev_mtx);
8767 
8768 	return (dev != NULL);
8769 }
8770 
8771 /*
8772  * Add a vdev for use by the L2ARC.  By this point the spa has already
8773  * validated the vdev and opened it.
8774  */
8775 void
8776 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
8777 {
8778 	l2arc_dev_t *adddev;
8779 
8780 	ASSERT(!l2arc_vdev_present(vd));
8781 
8782 	/*
8783 	 * Create a new l2arc device entry.
8784 	 */
8785 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
8786 	adddev->l2ad_spa = spa;
8787 	adddev->l2ad_vdev = vd;
8788 	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
8789 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
8790 	adddev->l2ad_hand = adddev->l2ad_start;
8791 	adddev->l2ad_first = B_TRUE;
8792 	adddev->l2ad_writing = B_FALSE;
8793 
8794 	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
8795 	/*
8796 	 * This is a list of all ARC buffers that are still valid on the
8797 	 * device.
8798 	 */
8799 	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
8800 	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
8801 
8802 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
8803 	zfs_refcount_create(&adddev->l2ad_alloc);
8804 
8805 	/*
8806 	 * Add device to global list
8807 	 */
8808 	mutex_enter(&l2arc_dev_mtx);
8809 	list_insert_head(l2arc_dev_list, adddev);
8810 	atomic_inc_64(&l2arc_ndev);
8811 	mutex_exit(&l2arc_dev_mtx);
8812 }
8813 
8814 /*
8815  * Remove a vdev from the L2ARC.
8816  */
8817 void
8818 l2arc_remove_vdev(vdev_t *vd)
8819 {
8820 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
8821 
8822 	/*
8823 	 * Find the device by vdev
8824 	 */
8825 	mutex_enter(&l2arc_dev_mtx);
8826 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
8827 		nextdev = list_next(l2arc_dev_list, dev);
8828 		if (vd == dev->l2ad_vdev) {
8829 			remdev = dev;
8830 			break;
8831 		}
8832 	}
8833 	ASSERT3P(remdev, !=, NULL);
8834 
8835 	/*
8836 	 * Remove device from global list
8837 	 */
8838 	list_remove(l2arc_dev_list, remdev);
8839 	l2arc_dev_last = NULL;		/* may have been invalidated */
8840 	atomic_dec_64(&l2arc_ndev);
8841 	mutex_exit(&l2arc_dev_mtx);
8842 
8843 	/*
8844 	 * Clear all buflists and ARC references.  L2ARC device flush.
8845 	 */
8846 	l2arc_evict(remdev, 0, B_TRUE);
8847 	list_destroy(&remdev->l2ad_buflist);
8848 	mutex_destroy(&remdev->l2ad_mtx);
8849 	zfs_refcount_destroy(&remdev->l2ad_alloc);
8850 	kmem_free(remdev, sizeof (l2arc_dev_t));
8851 }
8852 
8853 void
8854 l2arc_init(void)
8855 {
8856 	l2arc_thread_exit = 0;
8857 	l2arc_ndev = 0;
8858 	l2arc_writes_sent = 0;
8859 	l2arc_writes_done = 0;
8860 
8861 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
8862 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
8863 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
8864 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
8865 
8866 	l2arc_dev_list = &L2ARC_dev_list;
8867 	l2arc_free_on_write = &L2ARC_free_on_write;
8868 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
8869 	    offsetof(l2arc_dev_t, l2ad_node));
8870 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
8871 	    offsetof(l2arc_data_free_t, l2df_list_node));
8872 }
8873 
8874 void
8875 l2arc_fini(void)
8876 {
8877 	/*
8878 	 * This is called from dmu_fini(), which is called from spa_fini();
8879 	 * Because of this, we can assume that all l2arc devices have
8880 	 * already been removed when the pools themselves were removed.
8881 	 */
8882 
8883 	l2arc_do_free_on_write();
8884 
8885 	mutex_destroy(&l2arc_feed_thr_lock);
8886 	cv_destroy(&l2arc_feed_thr_cv);
8887 	mutex_destroy(&l2arc_dev_mtx);
8888 	mutex_destroy(&l2arc_free_on_write_mtx);
8889 
8890 	list_destroy(l2arc_dev_list);
8891 	list_destroy(l2arc_free_on_write);
8892 }
8893 
8894 void
8895 l2arc_start(void)
8896 {
8897 	if (!(spa_mode_global & FWRITE))
8898 		return;
8899 
8900 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
8901 	    TS_RUN, minclsyspri);
8902 }
8903 
8904 void
8905 l2arc_stop(void)
8906 {
8907 	if (!(spa_mode_global & FWRITE))
8908 		return;
8909 
8910 	mutex_enter(&l2arc_feed_thr_lock);
8911 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
8912 	l2arc_thread_exit = 1;
8913 	while (l2arc_thread_exit != 0)
8914 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
8915 	mutex_exit(&l2arc_feed_thr_lock);
8916 }
8917