xref: /illumos-gate/usr/src/uts/common/fs/zfs/arc.c (revision 4e93fb0f6383eaac21897dcdae56b87118131e4d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * DVA-based Adjustable Replacement Cache
30  *
31  * While much of the theory of operation used here is
32  * based on the self-tuning, low overhead replacement cache
33  * presented by Megiddo and Modha at FAST 2003, there are some
34  * significant differences:
35  *
36  * 1. The Megiddo and Modha model assumes any page is evictable.
37  * Pages in its cache cannot be "locked" into memory.  This makes
38  * the eviction algorithm simple: evict the last page in the list.
39  * This also make the performance characteristics easy to reason
40  * about.  Our cache is not so simple.  At any given moment, some
41  * subset of the blocks in the cache are un-evictable because we
42  * have handed out a reference to them.  Blocks are only evictable
43  * when there are no external references active.  This makes
44  * eviction far more problematic:  we choose to evict the evictable
45  * blocks that are the "lowest" in the list.
46  *
47  * There are times when it is not possible to evict the requested
48  * space.  In these circumstances we are unable to adjust the cache
49  * size.  To prevent the cache growing unbounded at these times we
50  * implement a "cache throttle" that slowes the flow of new data
51  * into the cache until we can make space avaiable.
52  *
53  * 2. The Megiddo and Modha model assumes a fixed cache size.
54  * Pages are evicted when the cache is full and there is a cache
55  * miss.  Our model has a variable sized cache.  It grows with
56  * high use, but also tries to react to memory preasure from the
57  * operating system: decreasing its size when system memory is
58  * tight.
59  *
60  * 3. The Megiddo and Modha model assumes a fixed page size. All
61  * elements of the cache are therefor exactly the same size.  So
62  * when adjusting the cache size following a cache miss, its simply
63  * a matter of choosing a single page to evict.  In our model, we
64  * have variable sized cache blocks (rangeing from 512 bytes to
65  * 128K bytes).  We therefor choose a set of blocks to evict to make
66  * space for a cache miss that approximates as closely as possible
67  * the space used by the new block.
68  *
69  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70  * by N. Megiddo & D. Modha, FAST 2003
71  */
72 
73 /*
74  * The locking model:
75  *
76  * A new reference to a cache buffer can be obtained in two
77  * ways: 1) via a hash table lookup using the DVA as a key,
78  * or 2) via one of the ARC lists.  The arc_read() inerface
79  * uses method 1, while the internal arc algorithms for
80  * adjusting the cache use method 2.  We therefor provide two
81  * types of locks: 1) the hash table lock array, and 2) the
82  * arc list locks.
83  *
84  * Buffers do not have their own mutexs, rather they rely on the
85  * hash table mutexs for the bulk of their protection (i.e. most
86  * fields in the arc_buf_hdr_t are protected by these mutexs).
87  *
88  * buf_hash_find() returns the appropriate mutex (held) when it
89  * locates the requested buffer in the hash table.  It returns
90  * NULL for the mutex if the buffer was not in the table.
91  *
92  * buf_hash_remove() expects the appropriate hash mutex to be
93  * already held before it is invoked.
94  *
95  * Each arc state also has a mutex which is used to protect the
96  * buffer list associated with the state.  When attempting to
97  * obtain a hash table lock while holding an arc list lock you
98  * must use: mutex_tryenter() to avoid deadlock.  Also note that
99  * the active state mutex must be held before the ghost state mutex.
100  *
101  * Arc buffers may have an associated eviction callback function.
102  * This function will be invoked prior to removing the buffer (e.g.
103  * in arc_do_user_evicts()).  Note however that the data associated
104  * with the buffer may be evicted prior to the callback.  The callback
105  * must be made with *no locks held* (to prevent deadlock).  Additionally,
106  * the users of callbacks must ensure that their private data is
107  * protected from simultaneous callbacks from arc_buf_evict()
108  * and arc_do_user_evicts().
109  *
110  * Note that the majority of the performance stats are manipulated
111  * with atomic operations.
112  */
113 
114 #include <sys/spa.h>
115 #include <sys/zio.h>
116 #include <sys/zio_checksum.h>
117 #include <sys/zfs_context.h>
118 #include <sys/arc.h>
119 #include <sys/refcount.h>
120 #ifdef _KERNEL
121 #include <sys/vmsystm.h>
122 #include <vm/anon.h>
123 #include <sys/fs/swapnode.h>
124 #include <sys/dnlc.h>
125 #endif
126 #include <sys/callb.h>
127 #include <sys/kstat.h>
128 
129 static kmutex_t		arc_reclaim_thr_lock;
130 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
131 static uint8_t		arc_thread_exit;
132 
133 #define	ARC_REDUCE_DNLC_PERCENT	3
134 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
135 
136 typedef enum arc_reclaim_strategy {
137 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
138 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
139 } arc_reclaim_strategy_t;
140 
141 /* number of seconds before growing cache again */
142 static int		arc_grow_retry = 60;
143 
144 /*
145  * minimum lifespan of a prefetch block in clock ticks
146  * (initialized in arc_init())
147  */
148 static int		arc_min_prefetch_lifespan;
149 
150 static int arc_dead;
151 
152 /*
153  * These tunables are for performance analysis.
154  */
155 uint64_t zfs_arc_max;
156 uint64_t zfs_arc_min;
157 
158 /*
159  * Note that buffers can be on one of 5 states:
160  *	ARC_anon	- anonymous (discussed below)
161  *	ARC_mru		- recently used, currently cached
162  *	ARC_mru_ghost	- recentely used, no longer in cache
163  *	ARC_mfu		- frequently used, currently cached
164  *	ARC_mfu_ghost	- frequently used, no longer in cache
165  * When there are no active references to the buffer, they
166  * are linked onto one of the lists in arc.  These are the
167  * only buffers that can be evicted or deleted.
168  *
169  * Anonymous buffers are buffers that are not associated with
170  * a DVA.  These are buffers that hold dirty block copies
171  * before they are written to stable storage.  By definition,
172  * they are "ref'd" and are considered part of arc_mru
173  * that cannot be freed.  Generally, they will aquire a DVA
174  * as they are written and migrate onto the arc_mru list.
175  */
176 
177 typedef struct arc_state {
178 	list_t	arcs_list;	/* linked list of evictable buffer in state */
179 	uint64_t arcs_lsize;	/* total size of buffers in the linked list */
180 	uint64_t arcs_size;	/* total size of all buffers in this state */
181 	kmutex_t arcs_mtx;
182 } arc_state_t;
183 
184 /* The 5 states: */
185 static arc_state_t ARC_anon;
186 static arc_state_t ARC_mru;
187 static arc_state_t ARC_mru_ghost;
188 static arc_state_t ARC_mfu;
189 static arc_state_t ARC_mfu_ghost;
190 
191 typedef struct arc_stats {
192 	kstat_named_t arcstat_hits;
193 	kstat_named_t arcstat_misses;
194 	kstat_named_t arcstat_demand_data_hits;
195 	kstat_named_t arcstat_demand_data_misses;
196 	kstat_named_t arcstat_demand_metadata_hits;
197 	kstat_named_t arcstat_demand_metadata_misses;
198 	kstat_named_t arcstat_prefetch_data_hits;
199 	kstat_named_t arcstat_prefetch_data_misses;
200 	kstat_named_t arcstat_prefetch_metadata_hits;
201 	kstat_named_t arcstat_prefetch_metadata_misses;
202 	kstat_named_t arcstat_mru_hits;
203 	kstat_named_t arcstat_mru_ghost_hits;
204 	kstat_named_t arcstat_mfu_hits;
205 	kstat_named_t arcstat_mfu_ghost_hits;
206 	kstat_named_t arcstat_deleted;
207 	kstat_named_t arcstat_recycle_miss;
208 	kstat_named_t arcstat_mutex_miss;
209 	kstat_named_t arcstat_evict_skip;
210 	kstat_named_t arcstat_hash_elements;
211 	kstat_named_t arcstat_hash_elements_max;
212 	kstat_named_t arcstat_hash_collisions;
213 	kstat_named_t arcstat_hash_chains;
214 	kstat_named_t arcstat_hash_chain_max;
215 	kstat_named_t arcstat_p;
216 	kstat_named_t arcstat_c;
217 	kstat_named_t arcstat_c_min;
218 	kstat_named_t arcstat_c_max;
219 	kstat_named_t arcstat_size;
220 } arc_stats_t;
221 
222 static arc_stats_t arc_stats = {
223 	{ "hits",			KSTAT_DATA_UINT64 },
224 	{ "misses",			KSTAT_DATA_UINT64 },
225 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
226 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
227 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
228 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
229 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
230 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
231 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
232 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
233 	{ "mru_hits",			KSTAT_DATA_UINT64 },
234 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
235 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
236 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
237 	{ "deleted",			KSTAT_DATA_UINT64 },
238 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
239 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
240 	{ "evict_skip",			KSTAT_DATA_UINT64 },
241 	{ "hash_elements",		KSTAT_DATA_UINT64 },
242 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
243 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
244 	{ "hash_chains",		KSTAT_DATA_UINT64 },
245 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
246 	{ "p",				KSTAT_DATA_UINT64 },
247 	{ "c",				KSTAT_DATA_UINT64 },
248 	{ "c_min",			KSTAT_DATA_UINT64 },
249 	{ "c_max",			KSTAT_DATA_UINT64 },
250 	{ "size",			KSTAT_DATA_UINT64 }
251 };
252 
253 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
254 
255 #define	ARCSTAT_INCR(stat, val) \
256 	atomic_add_64(&arc_stats.stat.value.ui64, (val));
257 
258 #define	ARCSTAT_BUMP(stat) 	ARCSTAT_INCR(stat, 1)
259 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
260 
261 #define	ARCSTAT_MAX(stat, val) {					\
262 	uint64_t m;							\
263 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
264 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
265 		continue;						\
266 }
267 
268 #define	ARCSTAT_MAXSTAT(stat) \
269 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
270 
271 /*
272  * We define a macro to allow ARC hits/misses to be easily broken down by
273  * two separate conditions, giving a total of four different subtypes for
274  * each of hits and misses (so eight statistics total).
275  */
276 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
277 	if (cond1) {							\
278 		if (cond2) {						\
279 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
280 		} else {						\
281 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
282 		}							\
283 	} else {							\
284 		if (cond2) {						\
285 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
286 		} else {						\
287 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
288 		}							\
289 	}
290 
291 kstat_t			*arc_ksp;
292 static arc_state_t 	*arc_anon;
293 static arc_state_t	*arc_mru;
294 static arc_state_t	*arc_mru_ghost;
295 static arc_state_t	*arc_mfu;
296 static arc_state_t	*arc_mfu_ghost;
297 
298 /*
299  * There are several ARC variables that are critical to export as kstats --
300  * but we don't want to have to grovel around in the kstat whenever we wish to
301  * manipulate them.  For these variables, we therefore define them to be in
302  * terms of the statistic variable.  This assures that we are not introducing
303  * the possibility of inconsistency by having shadow copies of the variables,
304  * while still allowing the code to be readable.
305  */
306 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
307 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
308 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
309 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
310 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
311 
312 static int		arc_no_grow;	/* Don't try to grow cache size */
313 static uint64_t		arc_tempreserve;
314 
315 typedef struct arc_callback arc_callback_t;
316 
317 struct arc_callback {
318 	arc_done_func_t		*acb_done;
319 	void			*acb_private;
320 	arc_byteswap_func_t	*acb_byteswap;
321 	arc_buf_t		*acb_buf;
322 	zio_t			*acb_zio_dummy;
323 	arc_callback_t		*acb_next;
324 };
325 
326 struct arc_buf_hdr {
327 	/* protected by hash lock */
328 	dva_t			b_dva;
329 	uint64_t		b_birth;
330 	uint64_t		b_cksum0;
331 
332 	kmutex_t		b_freeze_lock;
333 	zio_cksum_t		*b_freeze_cksum;
334 
335 	arc_buf_hdr_t		*b_hash_next;
336 	arc_buf_t		*b_buf;
337 	uint32_t		b_flags;
338 	uint32_t		b_datacnt;
339 
340 	arc_callback_t		*b_acb;
341 	kcondvar_t		b_cv;
342 
343 	/* immutable */
344 	arc_buf_contents_t	b_type;
345 	uint64_t		b_size;
346 	spa_t			*b_spa;
347 
348 	/* protected by arc state mutex */
349 	arc_state_t		*b_state;
350 	list_node_t		b_arc_node;
351 
352 	/* updated atomically */
353 	clock_t			b_arc_access;
354 
355 	/* self protecting */
356 	refcount_t		b_refcnt;
357 };
358 
359 static arc_buf_t *arc_eviction_list;
360 static kmutex_t arc_eviction_mtx;
361 static arc_buf_hdr_t arc_eviction_hdr;
362 static void arc_get_data_buf(arc_buf_t *buf);
363 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
364 
365 #define	GHOST_STATE(state)	\
366 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost)
367 
368 /*
369  * Private ARC flags.  These flags are private ARC only flags that will show up
370  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
371  * be passed in as arc_flags in things like arc_read.  However, these flags
372  * should never be passed and should only be set by ARC code.  When adding new
373  * public flags, make sure not to smash the private ones.
374  */
375 
376 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
377 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
378 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
379 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
380 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
381 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
382 
383 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
384 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
385 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
386 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
387 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
388 
389 /*
390  * Hash table routines
391  */
392 
393 #define	HT_LOCK_PAD	64
394 
395 struct ht_lock {
396 	kmutex_t	ht_lock;
397 #ifdef _KERNEL
398 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
399 #endif
400 };
401 
402 #define	BUF_LOCKS 256
403 typedef struct buf_hash_table {
404 	uint64_t ht_mask;
405 	arc_buf_hdr_t **ht_table;
406 	struct ht_lock ht_locks[BUF_LOCKS];
407 } buf_hash_table_t;
408 
409 static buf_hash_table_t buf_hash_table;
410 
411 #define	BUF_HASH_INDEX(spa, dva, birth) \
412 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
413 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
414 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
415 #define	HDR_LOCK(buf) \
416 	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
417 
418 uint64_t zfs_crc64_table[256];
419 
420 static uint64_t
421 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth)
422 {
423 	uintptr_t spav = (uintptr_t)spa;
424 	uint8_t *vdva = (uint8_t *)dva;
425 	uint64_t crc = -1ULL;
426 	int i;
427 
428 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
429 
430 	for (i = 0; i < sizeof (dva_t); i++)
431 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
432 
433 	crc ^= (spav>>8) ^ birth;
434 
435 	return (crc);
436 }
437 
438 #define	BUF_EMPTY(buf)						\
439 	((buf)->b_dva.dva_word[0] == 0 &&			\
440 	(buf)->b_dva.dva_word[1] == 0 &&			\
441 	(buf)->b_birth == 0)
442 
443 #define	BUF_EQUAL(spa, dva, birth, buf)				\
444 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
445 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
446 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
447 
448 static arc_buf_hdr_t *
449 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp)
450 {
451 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
452 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
453 	arc_buf_hdr_t *buf;
454 
455 	mutex_enter(hash_lock);
456 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
457 	    buf = buf->b_hash_next) {
458 		if (BUF_EQUAL(spa, dva, birth, buf)) {
459 			*lockp = hash_lock;
460 			return (buf);
461 		}
462 	}
463 	mutex_exit(hash_lock);
464 	*lockp = NULL;
465 	return (NULL);
466 }
467 
468 /*
469  * Insert an entry into the hash table.  If there is already an element
470  * equal to elem in the hash table, then the already existing element
471  * will be returned and the new element will not be inserted.
472  * Otherwise returns NULL.
473  */
474 static arc_buf_hdr_t *
475 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
476 {
477 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
478 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
479 	arc_buf_hdr_t *fbuf;
480 	uint32_t i;
481 
482 	ASSERT(!HDR_IN_HASH_TABLE(buf));
483 	*lockp = hash_lock;
484 	mutex_enter(hash_lock);
485 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
486 	    fbuf = fbuf->b_hash_next, i++) {
487 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
488 			return (fbuf);
489 	}
490 
491 	buf->b_hash_next = buf_hash_table.ht_table[idx];
492 	buf_hash_table.ht_table[idx] = buf;
493 	buf->b_flags |= ARC_IN_HASH_TABLE;
494 
495 	/* collect some hash table performance data */
496 	if (i > 0) {
497 		ARCSTAT_BUMP(arcstat_hash_collisions);
498 		if (i == 1)
499 			ARCSTAT_BUMP(arcstat_hash_chains);
500 
501 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
502 	}
503 
504 	ARCSTAT_BUMP(arcstat_hash_elements);
505 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
506 
507 	return (NULL);
508 }
509 
510 static void
511 buf_hash_remove(arc_buf_hdr_t *buf)
512 {
513 	arc_buf_hdr_t *fbuf, **bufp;
514 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
515 
516 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
517 	ASSERT(HDR_IN_HASH_TABLE(buf));
518 
519 	bufp = &buf_hash_table.ht_table[idx];
520 	while ((fbuf = *bufp) != buf) {
521 		ASSERT(fbuf != NULL);
522 		bufp = &fbuf->b_hash_next;
523 	}
524 	*bufp = buf->b_hash_next;
525 	buf->b_hash_next = NULL;
526 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
527 
528 	/* collect some hash table performance data */
529 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
530 
531 	if (buf_hash_table.ht_table[idx] &&
532 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
533 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
534 }
535 
536 /*
537  * Global data structures and functions for the buf kmem cache.
538  */
539 static kmem_cache_t *hdr_cache;
540 static kmem_cache_t *buf_cache;
541 
542 static void
543 buf_fini(void)
544 {
545 	int i;
546 
547 	kmem_free(buf_hash_table.ht_table,
548 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
549 	for (i = 0; i < BUF_LOCKS; i++)
550 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
551 	kmem_cache_destroy(hdr_cache);
552 	kmem_cache_destroy(buf_cache);
553 }
554 
555 /*
556  * Constructor callback - called when the cache is empty
557  * and a new buf is requested.
558  */
559 /* ARGSUSED */
560 static int
561 hdr_cons(void *vbuf, void *unused, int kmflag)
562 {
563 	arc_buf_hdr_t *buf = vbuf;
564 
565 	bzero(buf, sizeof (arc_buf_hdr_t));
566 	refcount_create(&buf->b_refcnt);
567 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
568 	return (0);
569 }
570 
571 /*
572  * Destructor callback - called when a cached buf is
573  * no longer required.
574  */
575 /* ARGSUSED */
576 static void
577 hdr_dest(void *vbuf, void *unused)
578 {
579 	arc_buf_hdr_t *buf = vbuf;
580 
581 	refcount_destroy(&buf->b_refcnt);
582 	cv_destroy(&buf->b_cv);
583 }
584 
585 /*
586  * Reclaim callback -- invoked when memory is low.
587  */
588 /* ARGSUSED */
589 static void
590 hdr_recl(void *unused)
591 {
592 	dprintf("hdr_recl called\n");
593 	/*
594 	 * umem calls the reclaim func when we destroy the buf cache,
595 	 * which is after we do arc_fini().
596 	 */
597 	if (!arc_dead)
598 		cv_signal(&arc_reclaim_thr_cv);
599 }
600 
601 static void
602 buf_init(void)
603 {
604 	uint64_t *ct;
605 	uint64_t hsize = 1ULL << 12;
606 	int i, j;
607 
608 	/*
609 	 * The hash table is big enough to fill all of physical memory
610 	 * with an average 64K block size.  The table will take up
611 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
612 	 */
613 	while (hsize * 65536 < physmem * PAGESIZE)
614 		hsize <<= 1;
615 retry:
616 	buf_hash_table.ht_mask = hsize - 1;
617 	buf_hash_table.ht_table =
618 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
619 	if (buf_hash_table.ht_table == NULL) {
620 		ASSERT(hsize > (1ULL << 8));
621 		hsize >>= 1;
622 		goto retry;
623 	}
624 
625 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
626 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
627 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
628 	    0, NULL, NULL, NULL, NULL, NULL, 0);
629 
630 	for (i = 0; i < 256; i++)
631 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
632 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
633 
634 	for (i = 0; i < BUF_LOCKS; i++) {
635 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
636 		    NULL, MUTEX_DEFAULT, NULL);
637 	}
638 }
639 
640 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
641 
642 static void
643 arc_cksum_verify(arc_buf_t *buf)
644 {
645 	zio_cksum_t zc;
646 
647 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
648 		return;
649 
650 	mutex_enter(&buf->b_hdr->b_freeze_lock);
651 	if (buf->b_hdr->b_freeze_cksum == NULL ||
652 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
653 		mutex_exit(&buf->b_hdr->b_freeze_lock);
654 		return;
655 	}
656 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
657 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
658 		panic("buffer modified while frozen!");
659 	mutex_exit(&buf->b_hdr->b_freeze_lock);
660 }
661 
662 static void
663 arc_cksum_compute(arc_buf_t *buf)
664 {
665 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
666 		return;
667 
668 	mutex_enter(&buf->b_hdr->b_freeze_lock);
669 	if (buf->b_hdr->b_freeze_cksum != NULL) {
670 		mutex_exit(&buf->b_hdr->b_freeze_lock);
671 		return;
672 	}
673 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
674 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
675 	    buf->b_hdr->b_freeze_cksum);
676 	mutex_exit(&buf->b_hdr->b_freeze_lock);
677 }
678 
679 void
680 arc_buf_thaw(arc_buf_t *buf)
681 {
682 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
683 		return;
684 
685 	if (buf->b_hdr->b_state != arc_anon)
686 		panic("modifying non-anon buffer!");
687 	if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
688 		panic("modifying buffer while i/o in progress!");
689 	arc_cksum_verify(buf);
690 	mutex_enter(&buf->b_hdr->b_freeze_lock);
691 	if (buf->b_hdr->b_freeze_cksum != NULL) {
692 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
693 		buf->b_hdr->b_freeze_cksum = NULL;
694 	}
695 	mutex_exit(&buf->b_hdr->b_freeze_lock);
696 }
697 
698 void
699 arc_buf_freeze(arc_buf_t *buf)
700 {
701 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
702 		return;
703 
704 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
705 	    buf->b_hdr->b_state == arc_anon);
706 	arc_cksum_compute(buf);
707 }
708 
709 static void
710 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
711 {
712 	ASSERT(MUTEX_HELD(hash_lock));
713 
714 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
715 	    (ab->b_state != arc_anon)) {
716 		int delta = ab->b_size * ab->b_datacnt;
717 
718 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
719 		mutex_enter(&ab->b_state->arcs_mtx);
720 		ASSERT(list_link_active(&ab->b_arc_node));
721 		list_remove(&ab->b_state->arcs_list, ab);
722 		if (GHOST_STATE(ab->b_state)) {
723 			ASSERT3U(ab->b_datacnt, ==, 0);
724 			ASSERT3P(ab->b_buf, ==, NULL);
725 			delta = ab->b_size;
726 		}
727 		ASSERT(delta > 0);
728 		ASSERT3U(ab->b_state->arcs_lsize, >=, delta);
729 		atomic_add_64(&ab->b_state->arcs_lsize, -delta);
730 		mutex_exit(&ab->b_state->arcs_mtx);
731 		/* remove the prefetch flag is we get a reference */
732 		if (ab->b_flags & ARC_PREFETCH)
733 			ab->b_flags &= ~ARC_PREFETCH;
734 	}
735 }
736 
737 static int
738 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
739 {
740 	int cnt;
741 	arc_state_t *state = ab->b_state;
742 
743 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
744 	ASSERT(!GHOST_STATE(state));
745 
746 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
747 	    (state != arc_anon)) {
748 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
749 		mutex_enter(&state->arcs_mtx);
750 		ASSERT(!list_link_active(&ab->b_arc_node));
751 		list_insert_head(&state->arcs_list, ab);
752 		ASSERT(ab->b_datacnt > 0);
753 		atomic_add_64(&state->arcs_lsize, ab->b_size * ab->b_datacnt);
754 		ASSERT3U(state->arcs_size, >=, state->arcs_lsize);
755 		mutex_exit(&state->arcs_mtx);
756 	}
757 	return (cnt);
758 }
759 
760 /*
761  * Move the supplied buffer to the indicated state.  The mutex
762  * for the buffer must be held by the caller.
763  */
764 static void
765 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
766 {
767 	arc_state_t *old_state = ab->b_state;
768 	int refcnt = refcount_count(&ab->b_refcnt);
769 	int from_delta, to_delta;
770 
771 	ASSERT(MUTEX_HELD(hash_lock));
772 	ASSERT(new_state != old_state);
773 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
774 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
775 
776 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
777 
778 	/*
779 	 * If this buffer is evictable, transfer it from the
780 	 * old state list to the new state list.
781 	 */
782 	if (refcnt == 0) {
783 		if (old_state != arc_anon) {
784 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
785 
786 			if (use_mutex)
787 				mutex_enter(&old_state->arcs_mtx);
788 
789 			ASSERT(list_link_active(&ab->b_arc_node));
790 			list_remove(&old_state->arcs_list, ab);
791 
792 			/*
793 			 * If prefetching out of the ghost cache,
794 			 * we will have a non-null datacnt.
795 			 */
796 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
797 				/* ghost elements have a ghost size */
798 				ASSERT(ab->b_buf == NULL);
799 				from_delta = ab->b_size;
800 			}
801 			ASSERT3U(old_state->arcs_lsize, >=, from_delta);
802 			atomic_add_64(&old_state->arcs_lsize, -from_delta);
803 
804 			if (use_mutex)
805 				mutex_exit(&old_state->arcs_mtx);
806 		}
807 		if (new_state != arc_anon) {
808 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
809 
810 			if (use_mutex)
811 				mutex_enter(&new_state->arcs_mtx);
812 
813 			list_insert_head(&new_state->arcs_list, ab);
814 
815 			/* ghost elements have a ghost size */
816 			if (GHOST_STATE(new_state)) {
817 				ASSERT(ab->b_datacnt == 0);
818 				ASSERT(ab->b_buf == NULL);
819 				to_delta = ab->b_size;
820 			}
821 			atomic_add_64(&new_state->arcs_lsize, to_delta);
822 			ASSERT3U(new_state->arcs_size + to_delta, >=,
823 			    new_state->arcs_lsize);
824 
825 			if (use_mutex)
826 				mutex_exit(&new_state->arcs_mtx);
827 		}
828 	}
829 
830 	ASSERT(!BUF_EMPTY(ab));
831 	if (new_state == arc_anon && old_state != arc_anon) {
832 		buf_hash_remove(ab);
833 	}
834 
835 	/* adjust state sizes */
836 	if (to_delta)
837 		atomic_add_64(&new_state->arcs_size, to_delta);
838 	if (from_delta) {
839 		ASSERT3U(old_state->arcs_size, >=, from_delta);
840 		atomic_add_64(&old_state->arcs_size, -from_delta);
841 	}
842 	ab->b_state = new_state;
843 }
844 
845 arc_buf_t *
846 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
847 {
848 	arc_buf_hdr_t *hdr;
849 	arc_buf_t *buf;
850 
851 	ASSERT3U(size, >, 0);
852 	hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP);
853 	ASSERT(BUF_EMPTY(hdr));
854 	hdr->b_size = size;
855 	hdr->b_type = type;
856 	hdr->b_spa = spa;
857 	hdr->b_state = arc_anon;
858 	hdr->b_arc_access = 0;
859 	buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
860 	buf->b_hdr = hdr;
861 	buf->b_data = NULL;
862 	buf->b_efunc = NULL;
863 	buf->b_private = NULL;
864 	buf->b_next = NULL;
865 	hdr->b_buf = buf;
866 	arc_get_data_buf(buf);
867 	hdr->b_datacnt = 1;
868 	hdr->b_flags = 0;
869 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
870 	(void) refcount_add(&hdr->b_refcnt, tag);
871 
872 	return (buf);
873 }
874 
875 static arc_buf_t *
876 arc_buf_clone(arc_buf_t *from)
877 {
878 	arc_buf_t *buf;
879 	arc_buf_hdr_t *hdr = from->b_hdr;
880 	uint64_t size = hdr->b_size;
881 
882 	buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
883 	buf->b_hdr = hdr;
884 	buf->b_data = NULL;
885 	buf->b_efunc = NULL;
886 	buf->b_private = NULL;
887 	buf->b_next = hdr->b_buf;
888 	hdr->b_buf = buf;
889 	arc_get_data_buf(buf);
890 	bcopy(from->b_data, buf->b_data, size);
891 	hdr->b_datacnt += 1;
892 	return (buf);
893 }
894 
895 void
896 arc_buf_add_ref(arc_buf_t *buf, void* tag)
897 {
898 	arc_buf_hdr_t *hdr;
899 	kmutex_t *hash_lock;
900 
901 	/*
902 	 * Check to see if this buffer is currently being evicted via
903 	 * arc_do_user_evicts().
904 	 */
905 	mutex_enter(&arc_eviction_mtx);
906 	hdr = buf->b_hdr;
907 	if (hdr == NULL) {
908 		mutex_exit(&arc_eviction_mtx);
909 		return;
910 	}
911 	hash_lock = HDR_LOCK(hdr);
912 	mutex_exit(&arc_eviction_mtx);
913 
914 	mutex_enter(hash_lock);
915 	if (buf->b_data == NULL) {
916 		/*
917 		 * This buffer is evicted.
918 		 */
919 		mutex_exit(hash_lock);
920 		return;
921 	}
922 
923 	ASSERT(buf->b_hdr == hdr);
924 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
925 	add_reference(hdr, hash_lock, tag);
926 	arc_access(hdr, hash_lock);
927 	mutex_exit(hash_lock);
928 	ARCSTAT_BUMP(arcstat_hits);
929 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
930 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
931 	    data, metadata, hits);
932 }
933 
934 static void
935 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
936 {
937 	arc_buf_t **bufp;
938 
939 	/* free up data associated with the buf */
940 	if (buf->b_data) {
941 		arc_state_t *state = buf->b_hdr->b_state;
942 		uint64_t size = buf->b_hdr->b_size;
943 		arc_buf_contents_t type = buf->b_hdr->b_type;
944 
945 		arc_cksum_verify(buf);
946 		if (!recycle) {
947 			if (type == ARC_BUFC_METADATA) {
948 				zio_buf_free(buf->b_data, size);
949 			} else {
950 				ASSERT(type == ARC_BUFC_DATA);
951 				zio_data_buf_free(buf->b_data, size);
952 			}
953 			atomic_add_64(&arc_size, -size);
954 		}
955 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
956 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
957 			ASSERT(state != arc_anon);
958 			ASSERT3U(state->arcs_lsize, >=, size);
959 			atomic_add_64(&state->arcs_lsize, -size);
960 		}
961 		ASSERT3U(state->arcs_size, >=, size);
962 		atomic_add_64(&state->arcs_size, -size);
963 		buf->b_data = NULL;
964 		ASSERT(buf->b_hdr->b_datacnt > 0);
965 		buf->b_hdr->b_datacnt -= 1;
966 	}
967 
968 	/* only remove the buf if requested */
969 	if (!all)
970 		return;
971 
972 	/* remove the buf from the hdr list */
973 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
974 		continue;
975 	*bufp = buf->b_next;
976 
977 	ASSERT(buf->b_efunc == NULL);
978 
979 	/* clean up the buf */
980 	buf->b_hdr = NULL;
981 	kmem_cache_free(buf_cache, buf);
982 }
983 
984 static void
985 arc_hdr_destroy(arc_buf_hdr_t *hdr)
986 {
987 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
988 	ASSERT3P(hdr->b_state, ==, arc_anon);
989 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
990 
991 	if (!BUF_EMPTY(hdr)) {
992 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
993 		bzero(&hdr->b_dva, sizeof (dva_t));
994 		hdr->b_birth = 0;
995 		hdr->b_cksum0 = 0;
996 	}
997 	while (hdr->b_buf) {
998 		arc_buf_t *buf = hdr->b_buf;
999 
1000 		if (buf->b_efunc) {
1001 			mutex_enter(&arc_eviction_mtx);
1002 			ASSERT(buf->b_hdr != NULL);
1003 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1004 			hdr->b_buf = buf->b_next;
1005 			buf->b_hdr = &arc_eviction_hdr;
1006 			buf->b_next = arc_eviction_list;
1007 			arc_eviction_list = buf;
1008 			mutex_exit(&arc_eviction_mtx);
1009 		} else {
1010 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1011 		}
1012 	}
1013 	if (hdr->b_freeze_cksum != NULL) {
1014 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1015 		hdr->b_freeze_cksum = NULL;
1016 	}
1017 
1018 	ASSERT(!list_link_active(&hdr->b_arc_node));
1019 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1020 	ASSERT3P(hdr->b_acb, ==, NULL);
1021 	kmem_cache_free(hdr_cache, hdr);
1022 }
1023 
1024 void
1025 arc_buf_free(arc_buf_t *buf, void *tag)
1026 {
1027 	arc_buf_hdr_t *hdr = buf->b_hdr;
1028 	int hashed = hdr->b_state != arc_anon;
1029 
1030 	ASSERT(buf->b_efunc == NULL);
1031 	ASSERT(buf->b_data != NULL);
1032 
1033 	if (hashed) {
1034 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1035 
1036 		mutex_enter(hash_lock);
1037 		(void) remove_reference(hdr, hash_lock, tag);
1038 		if (hdr->b_datacnt > 1)
1039 			arc_buf_destroy(buf, FALSE, TRUE);
1040 		else
1041 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1042 		mutex_exit(hash_lock);
1043 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1044 		int destroy_hdr;
1045 		/*
1046 		 * We are in the middle of an async write.  Don't destroy
1047 		 * this buffer unless the write completes before we finish
1048 		 * decrementing the reference count.
1049 		 */
1050 		mutex_enter(&arc_eviction_mtx);
1051 		(void) remove_reference(hdr, NULL, tag);
1052 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1053 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1054 		mutex_exit(&arc_eviction_mtx);
1055 		if (destroy_hdr)
1056 			arc_hdr_destroy(hdr);
1057 	} else {
1058 		if (remove_reference(hdr, NULL, tag) > 0) {
1059 			ASSERT(HDR_IO_ERROR(hdr));
1060 			arc_buf_destroy(buf, FALSE, TRUE);
1061 		} else {
1062 			arc_hdr_destroy(hdr);
1063 		}
1064 	}
1065 }
1066 
1067 int
1068 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1069 {
1070 	arc_buf_hdr_t *hdr = buf->b_hdr;
1071 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1072 	int no_callback = (buf->b_efunc == NULL);
1073 
1074 	if (hdr->b_state == arc_anon) {
1075 		arc_buf_free(buf, tag);
1076 		return (no_callback);
1077 	}
1078 
1079 	mutex_enter(hash_lock);
1080 	ASSERT(hdr->b_state != arc_anon);
1081 	ASSERT(buf->b_data != NULL);
1082 
1083 	(void) remove_reference(hdr, hash_lock, tag);
1084 	if (hdr->b_datacnt > 1) {
1085 		if (no_callback)
1086 			arc_buf_destroy(buf, FALSE, TRUE);
1087 	} else if (no_callback) {
1088 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1089 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1090 	}
1091 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1092 	    refcount_is_zero(&hdr->b_refcnt));
1093 	mutex_exit(hash_lock);
1094 	return (no_callback);
1095 }
1096 
1097 int
1098 arc_buf_size(arc_buf_t *buf)
1099 {
1100 	return (buf->b_hdr->b_size);
1101 }
1102 
1103 /*
1104  * Evict buffers from list until we've removed the specified number of
1105  * bytes.  Move the removed buffers to the appropriate evict state.
1106  * If the recycle flag is set, then attempt to "recycle" a buffer:
1107  * - look for a buffer to evict that is `bytes' long.
1108  * - return the data block from this buffer rather than freeing it.
1109  * This flag is used by callers that are trying to make space for a
1110  * new buffer in a full arc cache.
1111  */
1112 static void *
1113 arc_evict(arc_state_t *state, int64_t bytes, boolean_t recycle,
1114     arc_buf_contents_t type)
1115 {
1116 	arc_state_t *evicted_state;
1117 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1118 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1119 	kmutex_t *hash_lock;
1120 	boolean_t have_lock;
1121 	void *stolen = NULL;
1122 
1123 	ASSERT(state == arc_mru || state == arc_mfu);
1124 
1125 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1126 
1127 	mutex_enter(&state->arcs_mtx);
1128 	mutex_enter(&evicted_state->arcs_mtx);
1129 
1130 	for (ab = list_tail(&state->arcs_list); ab; ab = ab_prev) {
1131 		ab_prev = list_prev(&state->arcs_list, ab);
1132 		/* prefetch buffers have a minimum lifespan */
1133 		if (HDR_IO_IN_PROGRESS(ab) ||
1134 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1135 		    lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) {
1136 			skipped++;
1137 			continue;
1138 		}
1139 		/* "lookahead" for better eviction candidate */
1140 		if (recycle && ab->b_size != bytes &&
1141 		    ab_prev && ab_prev->b_size == bytes)
1142 			continue;
1143 		hash_lock = HDR_LOCK(ab);
1144 		have_lock = MUTEX_HELD(hash_lock);
1145 		if (have_lock || mutex_tryenter(hash_lock)) {
1146 			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1147 			ASSERT(ab->b_datacnt > 0);
1148 			while (ab->b_buf) {
1149 				arc_buf_t *buf = ab->b_buf;
1150 				if (buf->b_data) {
1151 					bytes_evicted += ab->b_size;
1152 					if (recycle && ab->b_type == type &&
1153 					    ab->b_size == bytes) {
1154 						stolen = buf->b_data;
1155 						recycle = FALSE;
1156 					}
1157 				}
1158 				if (buf->b_efunc) {
1159 					mutex_enter(&arc_eviction_mtx);
1160 					arc_buf_destroy(buf,
1161 					    buf->b_data == stolen, FALSE);
1162 					ab->b_buf = buf->b_next;
1163 					buf->b_hdr = &arc_eviction_hdr;
1164 					buf->b_next = arc_eviction_list;
1165 					arc_eviction_list = buf;
1166 					mutex_exit(&arc_eviction_mtx);
1167 				} else {
1168 					arc_buf_destroy(buf,
1169 					    buf->b_data == stolen, TRUE);
1170 				}
1171 			}
1172 			ASSERT(ab->b_datacnt == 0);
1173 			arc_change_state(evicted_state, ab, hash_lock);
1174 			ASSERT(HDR_IN_HASH_TABLE(ab));
1175 			ab->b_flags = ARC_IN_HASH_TABLE;
1176 			DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1177 			if (!have_lock)
1178 				mutex_exit(hash_lock);
1179 			if (bytes >= 0 && bytes_evicted >= bytes)
1180 				break;
1181 		} else {
1182 			missed += 1;
1183 		}
1184 	}
1185 
1186 	mutex_exit(&evicted_state->arcs_mtx);
1187 	mutex_exit(&state->arcs_mtx);
1188 
1189 	if (bytes_evicted < bytes)
1190 		dprintf("only evicted %lld bytes from %x",
1191 		    (longlong_t)bytes_evicted, state);
1192 
1193 	if (skipped)
1194 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1195 
1196 	if (missed)
1197 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1198 
1199 	return (stolen);
1200 }
1201 
1202 /*
1203  * Remove buffers from list until we've removed the specified number of
1204  * bytes.  Destroy the buffers that are removed.
1205  */
1206 static void
1207 arc_evict_ghost(arc_state_t *state, int64_t bytes)
1208 {
1209 	arc_buf_hdr_t *ab, *ab_prev;
1210 	kmutex_t *hash_lock;
1211 	uint64_t bytes_deleted = 0;
1212 	uint_t bufs_skipped = 0;
1213 
1214 	ASSERT(GHOST_STATE(state));
1215 top:
1216 	mutex_enter(&state->arcs_mtx);
1217 	for (ab = list_tail(&state->arcs_list); ab; ab = ab_prev) {
1218 		ab_prev = list_prev(&state->arcs_list, ab);
1219 		hash_lock = HDR_LOCK(ab);
1220 		if (mutex_tryenter(hash_lock)) {
1221 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1222 			ASSERT(ab->b_buf == NULL);
1223 			arc_change_state(arc_anon, ab, hash_lock);
1224 			mutex_exit(hash_lock);
1225 			ARCSTAT_BUMP(arcstat_deleted);
1226 			bytes_deleted += ab->b_size;
1227 			arc_hdr_destroy(ab);
1228 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1229 			if (bytes >= 0 && bytes_deleted >= bytes)
1230 				break;
1231 		} else {
1232 			if (bytes < 0) {
1233 				mutex_exit(&state->arcs_mtx);
1234 				mutex_enter(hash_lock);
1235 				mutex_exit(hash_lock);
1236 				goto top;
1237 			}
1238 			bufs_skipped += 1;
1239 		}
1240 	}
1241 	mutex_exit(&state->arcs_mtx);
1242 
1243 	if (bufs_skipped) {
1244 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1245 		ASSERT(bytes >= 0);
1246 	}
1247 
1248 	if (bytes_deleted < bytes)
1249 		dprintf("only deleted %lld bytes from %p",
1250 		    (longlong_t)bytes_deleted, state);
1251 }
1252 
1253 static void
1254 arc_adjust(void)
1255 {
1256 	int64_t top_sz, mru_over, arc_over, todelete;
1257 
1258 	top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1259 
1260 	if (top_sz > arc_p && arc_mru->arcs_lsize > 0) {
1261 		int64_t toevict = MIN(arc_mru->arcs_lsize, top_sz - arc_p);
1262 		(void) arc_evict(arc_mru, toevict, FALSE, ARC_BUFC_UNDEF);
1263 		top_sz = arc_anon->arcs_size + arc_mru->arcs_size;
1264 	}
1265 
1266 	mru_over = top_sz + arc_mru_ghost->arcs_size - arc_c;
1267 
1268 	if (mru_over > 0) {
1269 		if (arc_mru_ghost->arcs_lsize > 0) {
1270 			todelete = MIN(arc_mru_ghost->arcs_lsize, mru_over);
1271 			arc_evict_ghost(arc_mru_ghost, todelete);
1272 		}
1273 	}
1274 
1275 	if ((arc_over = arc_size - arc_c) > 0) {
1276 		int64_t tbl_over;
1277 
1278 		if (arc_mfu->arcs_lsize > 0) {
1279 			int64_t toevict = MIN(arc_mfu->arcs_lsize, arc_over);
1280 			(void) arc_evict(arc_mfu, toevict, FALSE,
1281 			    ARC_BUFC_UNDEF);
1282 		}
1283 
1284 		tbl_over = arc_size + arc_mru_ghost->arcs_lsize +
1285 		    arc_mfu_ghost->arcs_lsize - arc_c*2;
1286 
1287 		if (tbl_over > 0 && arc_mfu_ghost->arcs_lsize > 0) {
1288 			todelete = MIN(arc_mfu_ghost->arcs_lsize, tbl_over);
1289 			arc_evict_ghost(arc_mfu_ghost, todelete);
1290 		}
1291 	}
1292 }
1293 
1294 static void
1295 arc_do_user_evicts(void)
1296 {
1297 	mutex_enter(&arc_eviction_mtx);
1298 	while (arc_eviction_list != NULL) {
1299 		arc_buf_t *buf = arc_eviction_list;
1300 		arc_eviction_list = buf->b_next;
1301 		buf->b_hdr = NULL;
1302 		mutex_exit(&arc_eviction_mtx);
1303 
1304 		if (buf->b_efunc != NULL)
1305 			VERIFY(buf->b_efunc(buf) == 0);
1306 
1307 		buf->b_efunc = NULL;
1308 		buf->b_private = NULL;
1309 		kmem_cache_free(buf_cache, buf);
1310 		mutex_enter(&arc_eviction_mtx);
1311 	}
1312 	mutex_exit(&arc_eviction_mtx);
1313 }
1314 
1315 /*
1316  * Flush all *evictable* data from the cache.
1317  * NOTE: this will not touch "active" (i.e. referenced) data.
1318  */
1319 void
1320 arc_flush(void)
1321 {
1322 	while (list_head(&arc_mru->arcs_list))
1323 		(void) arc_evict(arc_mru, -1, FALSE, ARC_BUFC_UNDEF);
1324 	while (list_head(&arc_mfu->arcs_list))
1325 		(void) arc_evict(arc_mfu, -1, FALSE, ARC_BUFC_UNDEF);
1326 
1327 	arc_evict_ghost(arc_mru_ghost, -1);
1328 	arc_evict_ghost(arc_mfu_ghost, -1);
1329 
1330 	mutex_enter(&arc_reclaim_thr_lock);
1331 	arc_do_user_evicts();
1332 	mutex_exit(&arc_reclaim_thr_lock);
1333 	ASSERT(arc_eviction_list == NULL);
1334 }
1335 
1336 int arc_shrink_shift = 5;		/* log2(fraction of arc to reclaim) */
1337 
1338 void
1339 arc_shrink(void)
1340 {
1341 	if (arc_c > arc_c_min) {
1342 		uint64_t to_free;
1343 
1344 #ifdef _KERNEL
1345 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
1346 #else
1347 		to_free = arc_c >> arc_shrink_shift;
1348 #endif
1349 		if (arc_c > arc_c_min + to_free)
1350 			atomic_add_64(&arc_c, -to_free);
1351 		else
1352 			arc_c = arc_c_min;
1353 
1354 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1355 		if (arc_c > arc_size)
1356 			arc_c = MAX(arc_size, arc_c_min);
1357 		if (arc_p > arc_c)
1358 			arc_p = (arc_c >> 1);
1359 		ASSERT(arc_c >= arc_c_min);
1360 		ASSERT((int64_t)arc_p >= 0);
1361 	}
1362 
1363 	if (arc_size > arc_c)
1364 		arc_adjust();
1365 }
1366 
1367 static int
1368 arc_reclaim_needed(void)
1369 {
1370 	uint64_t extra;
1371 
1372 #ifdef _KERNEL
1373 
1374 	if (needfree)
1375 		return (1);
1376 
1377 	/*
1378 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1379 	 */
1380 	extra = desfree;
1381 
1382 	/*
1383 	 * check that we're out of range of the pageout scanner.  It starts to
1384 	 * schedule paging if freemem is less than lotsfree and needfree.
1385 	 * lotsfree is the high-water mark for pageout, and needfree is the
1386 	 * number of needed free pages.  We add extra pages here to make sure
1387 	 * the scanner doesn't start up while we're freeing memory.
1388 	 */
1389 	if (freemem < lotsfree + needfree + extra)
1390 		return (1);
1391 
1392 	/*
1393 	 * check to make sure that swapfs has enough space so that anon
1394 	 * reservations can still succeeed. anon_resvmem() checks that the
1395 	 * availrmem is greater than swapfs_minfree, and the number of reserved
1396 	 * swap pages.  We also add a bit of extra here just to prevent
1397 	 * circumstances from getting really dire.
1398 	 */
1399 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
1400 		return (1);
1401 
1402 	/*
1403 	 * If zio data pages are being allocated out of a separate heap segment,
1404 	 * then check that the size of available vmem for this area remains
1405 	 * above 1/4th free.  This needs to be done since the size of the
1406 	 * non-default segment is smaller than physical memory, so we could
1407 	 * conceivably run out of VA in that segment before running out of
1408 	 * physical memory.
1409 	 */
1410 	if ((zio_arena != NULL) && (btop(vmem_size(zio_arena, VMEM_FREE)) <
1411 	    (btop(vmem_size(zio_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)))
1412 		return (1);
1413 
1414 #if defined(__i386)
1415 	/*
1416 	 * If we're on an i386 platform, it's possible that we'll exhaust the
1417 	 * kernel heap space before we ever run out of available physical
1418 	 * memory.  Most checks of the size of the heap_area compare against
1419 	 * tune.t_minarmem, which is the minimum available real memory that we
1420 	 * can have in the system.  However, this is generally fixed at 25 pages
1421 	 * which is so low that it's useless.  In this comparison, we seek to
1422 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
1423 	 * heap is allocated.  (Or, in the caclulation, if less than 1/4th is
1424 	 * free)
1425 	 */
1426 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
1427 	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
1428 		return (1);
1429 #endif
1430 
1431 #else
1432 	if (spa_get_random(100) == 0)
1433 		return (1);
1434 #endif
1435 	return (0);
1436 }
1437 
1438 static void
1439 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
1440 {
1441 	size_t			i;
1442 	kmem_cache_t		*prev_cache = NULL;
1443 	kmem_cache_t		*prev_data_cache = NULL;
1444 	extern kmem_cache_t	*zio_buf_cache[];
1445 	extern kmem_cache_t	*zio_data_buf_cache[];
1446 
1447 #ifdef _KERNEL
1448 	/*
1449 	 * First purge some DNLC entries, in case the DNLC is using
1450 	 * up too much memory.
1451 	 */
1452 	dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
1453 
1454 #if defined(__i386)
1455 	/*
1456 	 * Reclaim unused memory from all kmem caches.
1457 	 */
1458 	kmem_reap();
1459 #endif
1460 #endif
1461 
1462 	/*
1463 	 * An agressive reclamation will shrink the cache size as well as
1464 	 * reap free buffers from the arc kmem caches.
1465 	 */
1466 	if (strat == ARC_RECLAIM_AGGR)
1467 		arc_shrink();
1468 
1469 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
1470 		if (zio_buf_cache[i] != prev_cache) {
1471 			prev_cache = zio_buf_cache[i];
1472 			kmem_cache_reap_now(zio_buf_cache[i]);
1473 		}
1474 		if (zio_data_buf_cache[i] != prev_data_cache) {
1475 			prev_data_cache = zio_data_buf_cache[i];
1476 			kmem_cache_reap_now(zio_data_buf_cache[i]);
1477 		}
1478 	}
1479 	kmem_cache_reap_now(buf_cache);
1480 	kmem_cache_reap_now(hdr_cache);
1481 }
1482 
1483 static void
1484 arc_reclaim_thread(void)
1485 {
1486 	clock_t			growtime = 0;
1487 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
1488 	callb_cpr_t		cpr;
1489 
1490 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
1491 
1492 	mutex_enter(&arc_reclaim_thr_lock);
1493 	while (arc_thread_exit == 0) {
1494 		if (arc_reclaim_needed()) {
1495 
1496 			if (arc_no_grow) {
1497 				if (last_reclaim == ARC_RECLAIM_CONS) {
1498 					last_reclaim = ARC_RECLAIM_AGGR;
1499 				} else {
1500 					last_reclaim = ARC_RECLAIM_CONS;
1501 				}
1502 			} else {
1503 				arc_no_grow = TRUE;
1504 				last_reclaim = ARC_RECLAIM_AGGR;
1505 				membar_producer();
1506 			}
1507 
1508 			/* reset the growth delay for every reclaim */
1509 			growtime = lbolt + (arc_grow_retry * hz);
1510 			ASSERT(growtime > 0);
1511 
1512 			arc_kmem_reap_now(last_reclaim);
1513 
1514 		} else if ((growtime > 0) && ((growtime - lbolt) <= 0)) {
1515 			arc_no_grow = FALSE;
1516 		}
1517 
1518 		if (2 * arc_c < arc_size +
1519 		    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size)
1520 			arc_adjust();
1521 
1522 		if (arc_eviction_list != NULL)
1523 			arc_do_user_evicts();
1524 
1525 		/* block until needed, or one second, whichever is shorter */
1526 		CALLB_CPR_SAFE_BEGIN(&cpr);
1527 		(void) cv_timedwait(&arc_reclaim_thr_cv,
1528 		    &arc_reclaim_thr_lock, (lbolt + hz));
1529 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
1530 	}
1531 
1532 	arc_thread_exit = 0;
1533 	cv_broadcast(&arc_reclaim_thr_cv);
1534 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
1535 	thread_exit();
1536 }
1537 
1538 /*
1539  * Adapt arc info given the number of bytes we are trying to add and
1540  * the state that we are comming from.  This function is only called
1541  * when we are adding new content to the cache.
1542  */
1543 static void
1544 arc_adapt(int bytes, arc_state_t *state)
1545 {
1546 	int mult;
1547 
1548 	ASSERT(bytes > 0);
1549 	/*
1550 	 * Adapt the target size of the MRU list:
1551 	 *	- if we just hit in the MRU ghost list, then increase
1552 	 *	  the target size of the MRU list.
1553 	 *	- if we just hit in the MFU ghost list, then increase
1554 	 *	  the target size of the MFU list by decreasing the
1555 	 *	  target size of the MRU list.
1556 	 */
1557 	if (state == arc_mru_ghost) {
1558 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
1559 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
1560 
1561 		arc_p = MIN(arc_c, arc_p + bytes * mult);
1562 	} else if (state == arc_mfu_ghost) {
1563 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
1564 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
1565 
1566 		arc_p = MAX(0, (int64_t)arc_p - bytes * mult);
1567 	}
1568 	ASSERT((int64_t)arc_p >= 0);
1569 
1570 	if (arc_reclaim_needed()) {
1571 		cv_signal(&arc_reclaim_thr_cv);
1572 		return;
1573 	}
1574 
1575 	if (arc_no_grow)
1576 		return;
1577 
1578 	if (arc_c >= arc_c_max)
1579 		return;
1580 
1581 	/*
1582 	 * If we're within (2 * maxblocksize) bytes of the target
1583 	 * cache size, increment the target cache size
1584 	 */
1585 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
1586 		atomic_add_64(&arc_c, (int64_t)bytes);
1587 		if (arc_c > arc_c_max)
1588 			arc_c = arc_c_max;
1589 		else if (state == arc_anon)
1590 			atomic_add_64(&arc_p, (int64_t)bytes);
1591 		if (arc_p > arc_c)
1592 			arc_p = arc_c;
1593 	}
1594 	ASSERT((int64_t)arc_p >= 0);
1595 }
1596 
1597 /*
1598  * Check if the cache has reached its limits and eviction is required
1599  * prior to insert.
1600  */
1601 static int
1602 arc_evict_needed()
1603 {
1604 	if (arc_reclaim_needed())
1605 		return (1);
1606 
1607 	return (arc_size > arc_c);
1608 }
1609 
1610 /*
1611  * The buffer, supplied as the first argument, needs a data block.
1612  * So, if we are at cache max, determine which cache should be victimized.
1613  * We have the following cases:
1614  *
1615  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
1616  * In this situation if we're out of space, but the resident size of the MFU is
1617  * under the limit, victimize the MFU cache to satisfy this insertion request.
1618  *
1619  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
1620  * Here, we've used up all of the available space for the MRU, so we need to
1621  * evict from our own cache instead.  Evict from the set of resident MRU
1622  * entries.
1623  *
1624  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
1625  * c minus p represents the MFU space in the cache, since p is the size of the
1626  * cache that is dedicated to the MRU.  In this situation there's still space on
1627  * the MFU side, so the MRU side needs to be victimized.
1628  *
1629  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
1630  * MFU's resident set is consuming more space than it has been allotted.  In
1631  * this situation, we must victimize our own cache, the MFU, for this insertion.
1632  */
1633 static void
1634 arc_get_data_buf(arc_buf_t *buf)
1635 {
1636 	arc_state_t		*state = buf->b_hdr->b_state;
1637 	uint64_t		size = buf->b_hdr->b_size;
1638 	arc_buf_contents_t	type = buf->b_hdr->b_type;
1639 
1640 	arc_adapt(size, state);
1641 
1642 	/*
1643 	 * We have not yet reached cache maximum size,
1644 	 * just allocate a new buffer.
1645 	 */
1646 	if (!arc_evict_needed()) {
1647 		if (type == ARC_BUFC_METADATA) {
1648 			buf->b_data = zio_buf_alloc(size);
1649 		} else {
1650 			ASSERT(type == ARC_BUFC_DATA);
1651 			buf->b_data = zio_data_buf_alloc(size);
1652 		}
1653 		atomic_add_64(&arc_size, size);
1654 		goto out;
1655 	}
1656 
1657 	/*
1658 	 * If we are prefetching from the mfu ghost list, this buffer
1659 	 * will end up on the mru list; so steal space from there.
1660 	 */
1661 	if (state == arc_mfu_ghost)
1662 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
1663 	else if (state == arc_mru_ghost)
1664 		state = arc_mru;
1665 
1666 	if (state == arc_mru || state == arc_anon) {
1667 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
1668 		state = (arc_p > mru_used) ? arc_mfu : arc_mru;
1669 	} else {
1670 		/* MFU cases */
1671 		uint64_t mfu_space = arc_c - arc_p;
1672 		state =  (mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
1673 	}
1674 	if ((buf->b_data = arc_evict(state, size, TRUE, type)) == NULL) {
1675 		if (type == ARC_BUFC_METADATA) {
1676 			buf->b_data = zio_buf_alloc(size);
1677 		} else {
1678 			ASSERT(type == ARC_BUFC_DATA);
1679 			buf->b_data = zio_data_buf_alloc(size);
1680 		}
1681 		atomic_add_64(&arc_size, size);
1682 		ARCSTAT_BUMP(arcstat_recycle_miss);
1683 	}
1684 	ASSERT(buf->b_data != NULL);
1685 out:
1686 	/*
1687 	 * Update the state size.  Note that ghost states have a
1688 	 * "ghost size" and so don't need to be updated.
1689 	 */
1690 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
1691 		arc_buf_hdr_t *hdr = buf->b_hdr;
1692 
1693 		atomic_add_64(&hdr->b_state->arcs_size, size);
1694 		if (list_link_active(&hdr->b_arc_node)) {
1695 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
1696 			atomic_add_64(&hdr->b_state->arcs_lsize, size);
1697 		}
1698 		/*
1699 		 * If we are growing the cache, and we are adding anonymous
1700 		 * data, and we have outgrown arc_p, update arc_p
1701 		 */
1702 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
1703 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
1704 			arc_p = MIN(arc_c, arc_p + size);
1705 	}
1706 }
1707 
1708 /*
1709  * This routine is called whenever a buffer is accessed.
1710  * NOTE: the hash lock is dropped in this function.
1711  */
1712 static void
1713 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
1714 {
1715 	ASSERT(MUTEX_HELD(hash_lock));
1716 
1717 	if (buf->b_state == arc_anon) {
1718 		/*
1719 		 * This buffer is not in the cache, and does not
1720 		 * appear in our "ghost" list.  Add the new buffer
1721 		 * to the MRU state.
1722 		 */
1723 
1724 		ASSERT(buf->b_arc_access == 0);
1725 		buf->b_arc_access = lbolt;
1726 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
1727 		arc_change_state(arc_mru, buf, hash_lock);
1728 
1729 	} else if (buf->b_state == arc_mru) {
1730 		/*
1731 		 * If this buffer is here because of a prefetch, then either:
1732 		 * - clear the flag if this is a "referencing" read
1733 		 *   (any subsequent access will bump this into the MFU state).
1734 		 * or
1735 		 * - move the buffer to the head of the list if this is
1736 		 *   another prefetch (to make it less likely to be evicted).
1737 		 */
1738 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
1739 			if (refcount_count(&buf->b_refcnt) == 0) {
1740 				ASSERT(list_link_active(&buf->b_arc_node));
1741 				mutex_enter(&arc_mru->arcs_mtx);
1742 				list_remove(&arc_mru->arcs_list, buf);
1743 				list_insert_head(&arc_mru->arcs_list, buf);
1744 				mutex_exit(&arc_mru->arcs_mtx);
1745 			} else {
1746 				buf->b_flags &= ~ARC_PREFETCH;
1747 				ARCSTAT_BUMP(arcstat_mru_hits);
1748 			}
1749 			buf->b_arc_access = lbolt;
1750 			return;
1751 		}
1752 
1753 		/*
1754 		 * This buffer has been "accessed" only once so far,
1755 		 * but it is still in the cache. Move it to the MFU
1756 		 * state.
1757 		 */
1758 		if (lbolt > buf->b_arc_access + ARC_MINTIME) {
1759 			/*
1760 			 * More than 125ms have passed since we
1761 			 * instantiated this buffer.  Move it to the
1762 			 * most frequently used state.
1763 			 */
1764 			buf->b_arc_access = lbolt;
1765 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1766 			arc_change_state(arc_mfu, buf, hash_lock);
1767 		}
1768 		ARCSTAT_BUMP(arcstat_mru_hits);
1769 	} else if (buf->b_state == arc_mru_ghost) {
1770 		arc_state_t	*new_state;
1771 		/*
1772 		 * This buffer has been "accessed" recently, but
1773 		 * was evicted from the cache.  Move it to the
1774 		 * MFU state.
1775 		 */
1776 
1777 		if (buf->b_flags & ARC_PREFETCH) {
1778 			new_state = arc_mru;
1779 			if (refcount_count(&buf->b_refcnt) > 0)
1780 				buf->b_flags &= ~ARC_PREFETCH;
1781 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
1782 		} else {
1783 			new_state = arc_mfu;
1784 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1785 		}
1786 
1787 		buf->b_arc_access = lbolt;
1788 		arc_change_state(new_state, buf, hash_lock);
1789 
1790 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
1791 	} else if (buf->b_state == arc_mfu) {
1792 		/*
1793 		 * This buffer has been accessed more than once and is
1794 		 * still in the cache.  Keep it in the MFU state.
1795 		 *
1796 		 * NOTE: an add_reference() that occurred when we did
1797 		 * the arc_read() will have kicked this off the list.
1798 		 * If it was a prefetch, we will explicitly move it to
1799 		 * the head of the list now.
1800 		 */
1801 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
1802 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
1803 			ASSERT(list_link_active(&buf->b_arc_node));
1804 			mutex_enter(&arc_mfu->arcs_mtx);
1805 			list_remove(&arc_mfu->arcs_list, buf);
1806 			list_insert_head(&arc_mfu->arcs_list, buf);
1807 			mutex_exit(&arc_mfu->arcs_mtx);
1808 		}
1809 		ARCSTAT_BUMP(arcstat_mfu_hits);
1810 		buf->b_arc_access = lbolt;
1811 	} else if (buf->b_state == arc_mfu_ghost) {
1812 		arc_state_t	*new_state = arc_mfu;
1813 		/*
1814 		 * This buffer has been accessed more than once but has
1815 		 * been evicted from the cache.  Move it back to the
1816 		 * MFU state.
1817 		 */
1818 
1819 		if (buf->b_flags & ARC_PREFETCH) {
1820 			/*
1821 			 * This is a prefetch access...
1822 			 * move this block back to the MRU state.
1823 			 */
1824 			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
1825 			new_state = arc_mru;
1826 		}
1827 
1828 		buf->b_arc_access = lbolt;
1829 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
1830 		arc_change_state(new_state, buf, hash_lock);
1831 
1832 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
1833 	} else {
1834 		ASSERT(!"invalid arc state");
1835 	}
1836 }
1837 
1838 /* a generic arc_done_func_t which you can use */
1839 /* ARGSUSED */
1840 void
1841 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
1842 {
1843 	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
1844 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
1845 }
1846 
1847 /* a generic arc_done_func_t which you can use */
1848 void
1849 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
1850 {
1851 	arc_buf_t **bufp = arg;
1852 	if (zio && zio->io_error) {
1853 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
1854 		*bufp = NULL;
1855 	} else {
1856 		*bufp = buf;
1857 	}
1858 }
1859 
1860 static void
1861 arc_read_done(zio_t *zio)
1862 {
1863 	arc_buf_hdr_t	*hdr, *found;
1864 	arc_buf_t	*buf;
1865 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
1866 	kmutex_t	*hash_lock;
1867 	arc_callback_t	*callback_list, *acb;
1868 	int		freeable = FALSE;
1869 
1870 	buf = zio->io_private;
1871 	hdr = buf->b_hdr;
1872 
1873 	/*
1874 	 * The hdr was inserted into hash-table and removed from lists
1875 	 * prior to starting I/O.  We should find this header, since
1876 	 * it's in the hash table, and it should be legit since it's
1877 	 * not possible to evict it during the I/O.  The only possible
1878 	 * reason for it not to be found is if we were freed during the
1879 	 * read.
1880 	 */
1881 	found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth,
1882 	    &hash_lock);
1883 
1884 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
1885 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))));
1886 
1887 	/* byteswap if necessary */
1888 	callback_list = hdr->b_acb;
1889 	ASSERT(callback_list != NULL);
1890 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap)
1891 		callback_list->acb_byteswap(buf->b_data, hdr->b_size);
1892 
1893 	arc_cksum_compute(buf);
1894 
1895 	/* create copies of the data buffer for the callers */
1896 	abuf = buf;
1897 	for (acb = callback_list; acb; acb = acb->acb_next) {
1898 		if (acb->acb_done) {
1899 			if (abuf == NULL)
1900 				abuf = arc_buf_clone(buf);
1901 			acb->acb_buf = abuf;
1902 			abuf = NULL;
1903 		}
1904 	}
1905 	hdr->b_acb = NULL;
1906 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
1907 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
1908 	if (abuf == buf)
1909 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1910 
1911 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
1912 
1913 	if (zio->io_error != 0) {
1914 		hdr->b_flags |= ARC_IO_ERROR;
1915 		if (hdr->b_state != arc_anon)
1916 			arc_change_state(arc_anon, hdr, hash_lock);
1917 		if (HDR_IN_HASH_TABLE(hdr))
1918 			buf_hash_remove(hdr);
1919 		freeable = refcount_is_zero(&hdr->b_refcnt);
1920 		/* convert checksum errors into IO errors */
1921 		if (zio->io_error == ECKSUM)
1922 			zio->io_error = EIO;
1923 	}
1924 
1925 	/*
1926 	 * Broadcast before we drop the hash_lock to avoid the possibility
1927 	 * that the hdr (and hence the cv) might be freed before we get to
1928 	 * the cv_broadcast().
1929 	 */
1930 	cv_broadcast(&hdr->b_cv);
1931 
1932 	if (hash_lock) {
1933 		/*
1934 		 * Only call arc_access on anonymous buffers.  This is because
1935 		 * if we've issued an I/O for an evicted buffer, we've already
1936 		 * called arc_access (to prevent any simultaneous readers from
1937 		 * getting confused).
1938 		 */
1939 		if (zio->io_error == 0 && hdr->b_state == arc_anon)
1940 			arc_access(hdr, hash_lock);
1941 		mutex_exit(hash_lock);
1942 	} else {
1943 		/*
1944 		 * This block was freed while we waited for the read to
1945 		 * complete.  It has been removed from the hash table and
1946 		 * moved to the anonymous state (so that it won't show up
1947 		 * in the cache).
1948 		 */
1949 		ASSERT3P(hdr->b_state, ==, arc_anon);
1950 		freeable = refcount_is_zero(&hdr->b_refcnt);
1951 	}
1952 
1953 	/* execute each callback and free its structure */
1954 	while ((acb = callback_list) != NULL) {
1955 		if (acb->acb_done)
1956 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
1957 
1958 		if (acb->acb_zio_dummy != NULL) {
1959 			acb->acb_zio_dummy->io_error = zio->io_error;
1960 			zio_nowait(acb->acb_zio_dummy);
1961 		}
1962 
1963 		callback_list = acb->acb_next;
1964 		kmem_free(acb, sizeof (arc_callback_t));
1965 	}
1966 
1967 	if (freeable)
1968 		arc_hdr_destroy(hdr);
1969 }
1970 
1971 /*
1972  * "Read" the block block at the specified DVA (in bp) via the
1973  * cache.  If the block is found in the cache, invoke the provided
1974  * callback immediately and return.  Note that the `zio' parameter
1975  * in the callback will be NULL in this case, since no IO was
1976  * required.  If the block is not in the cache pass the read request
1977  * on to the spa with a substitute callback function, so that the
1978  * requested block will be added to the cache.
1979  *
1980  * If a read request arrives for a block that has a read in-progress,
1981  * either wait for the in-progress read to complete (and return the
1982  * results); or, if this is a read with a "done" func, add a record
1983  * to the read to invoke the "done" func when the read completes,
1984  * and return; or just return.
1985  *
1986  * arc_read_done() will invoke all the requested "done" functions
1987  * for readers of this block.
1988  */
1989 int
1990 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap,
1991     arc_done_func_t *done, void *private, int priority, int flags,
1992     uint32_t *arc_flags, zbookmark_t *zb)
1993 {
1994 	arc_buf_hdr_t *hdr;
1995 	arc_buf_t *buf;
1996 	kmutex_t *hash_lock;
1997 	zio_t	*rzio;
1998 
1999 top:
2000 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2001 	if (hdr && hdr->b_datacnt > 0) {
2002 
2003 		*arc_flags |= ARC_CACHED;
2004 
2005 		if (HDR_IO_IN_PROGRESS(hdr)) {
2006 
2007 			if (*arc_flags & ARC_WAIT) {
2008 				cv_wait(&hdr->b_cv, hash_lock);
2009 				mutex_exit(hash_lock);
2010 				goto top;
2011 			}
2012 			ASSERT(*arc_flags & ARC_NOWAIT);
2013 
2014 			if (done) {
2015 				arc_callback_t	*acb = NULL;
2016 
2017 				acb = kmem_zalloc(sizeof (arc_callback_t),
2018 				    KM_SLEEP);
2019 				acb->acb_done = done;
2020 				acb->acb_private = private;
2021 				acb->acb_byteswap = swap;
2022 				if (pio != NULL)
2023 					acb->acb_zio_dummy = zio_null(pio,
2024 					    spa, NULL, NULL, flags);
2025 
2026 				ASSERT(acb->acb_done != NULL);
2027 				acb->acb_next = hdr->b_acb;
2028 				hdr->b_acb = acb;
2029 				add_reference(hdr, hash_lock, private);
2030 				mutex_exit(hash_lock);
2031 				return (0);
2032 			}
2033 			mutex_exit(hash_lock);
2034 			return (0);
2035 		}
2036 
2037 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2038 
2039 		if (done) {
2040 			add_reference(hdr, hash_lock, private);
2041 			/*
2042 			 * If this block is already in use, create a new
2043 			 * copy of the data so that we will be guaranteed
2044 			 * that arc_release() will always succeed.
2045 			 */
2046 			buf = hdr->b_buf;
2047 			ASSERT(buf);
2048 			ASSERT(buf->b_data);
2049 			if (HDR_BUF_AVAILABLE(hdr)) {
2050 				ASSERT(buf->b_efunc == NULL);
2051 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2052 			} else {
2053 				buf = arc_buf_clone(buf);
2054 			}
2055 		} else if (*arc_flags & ARC_PREFETCH &&
2056 		    refcount_count(&hdr->b_refcnt) == 0) {
2057 			hdr->b_flags |= ARC_PREFETCH;
2058 		}
2059 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2060 		arc_access(hdr, hash_lock);
2061 		mutex_exit(hash_lock);
2062 		ARCSTAT_BUMP(arcstat_hits);
2063 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2064 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2065 		    data, metadata, hits);
2066 
2067 		if (done)
2068 			done(NULL, buf, private);
2069 	} else {
2070 		uint64_t size = BP_GET_LSIZE(bp);
2071 		arc_callback_t	*acb;
2072 
2073 		if (hdr == NULL) {
2074 			/* this block is not in the cache */
2075 			arc_buf_hdr_t	*exists;
2076 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2077 			buf = arc_buf_alloc(spa, size, private, type);
2078 			hdr = buf->b_hdr;
2079 			hdr->b_dva = *BP_IDENTITY(bp);
2080 			hdr->b_birth = bp->blk_birth;
2081 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2082 			exists = buf_hash_insert(hdr, &hash_lock);
2083 			if (exists) {
2084 				/* somebody beat us to the hash insert */
2085 				mutex_exit(hash_lock);
2086 				bzero(&hdr->b_dva, sizeof (dva_t));
2087 				hdr->b_birth = 0;
2088 				hdr->b_cksum0 = 0;
2089 				(void) arc_buf_remove_ref(buf, private);
2090 				goto top; /* restart the IO request */
2091 			}
2092 			/* if this is a prefetch, we don't have a reference */
2093 			if (*arc_flags & ARC_PREFETCH) {
2094 				(void) remove_reference(hdr, hash_lock,
2095 				    private);
2096 				hdr->b_flags |= ARC_PREFETCH;
2097 			}
2098 			if (BP_GET_LEVEL(bp) > 0)
2099 				hdr->b_flags |= ARC_INDIRECT;
2100 		} else {
2101 			/* this block is in the ghost cache */
2102 			ASSERT(GHOST_STATE(hdr->b_state));
2103 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2104 			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2105 			ASSERT(hdr->b_buf == NULL);
2106 
2107 			/* if this is a prefetch, we don't have a reference */
2108 			if (*arc_flags & ARC_PREFETCH)
2109 				hdr->b_flags |= ARC_PREFETCH;
2110 			else
2111 				add_reference(hdr, hash_lock, private);
2112 			buf = kmem_cache_alloc(buf_cache, KM_SLEEP);
2113 			buf->b_hdr = hdr;
2114 			buf->b_data = NULL;
2115 			buf->b_efunc = NULL;
2116 			buf->b_private = NULL;
2117 			buf->b_next = NULL;
2118 			hdr->b_buf = buf;
2119 			arc_get_data_buf(buf);
2120 			ASSERT(hdr->b_datacnt == 0);
2121 			hdr->b_datacnt = 1;
2122 
2123 		}
2124 
2125 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2126 		acb->acb_done = done;
2127 		acb->acb_private = private;
2128 		acb->acb_byteswap = swap;
2129 
2130 		ASSERT(hdr->b_acb == NULL);
2131 		hdr->b_acb = acb;
2132 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2133 
2134 		/*
2135 		 * If the buffer has been evicted, migrate it to a present state
2136 		 * before issuing the I/O.  Once we drop the hash-table lock,
2137 		 * the header will be marked as I/O in progress and have an
2138 		 * attached buffer.  At this point, anybody who finds this
2139 		 * buffer ought to notice that it's legit but has a pending I/O.
2140 		 */
2141 
2142 		if (GHOST_STATE(hdr->b_state))
2143 			arc_access(hdr, hash_lock);
2144 		mutex_exit(hash_lock);
2145 
2146 		ASSERT3U(hdr->b_size, ==, size);
2147 		DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size,
2148 		    zbookmark_t *, zb);
2149 		ARCSTAT_BUMP(arcstat_misses);
2150 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2151 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2152 		    data, metadata, misses);
2153 
2154 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
2155 		    arc_read_done, buf, priority, flags, zb);
2156 
2157 		if (*arc_flags & ARC_WAIT)
2158 			return (zio_wait(rzio));
2159 
2160 		ASSERT(*arc_flags & ARC_NOWAIT);
2161 		zio_nowait(rzio);
2162 	}
2163 	return (0);
2164 }
2165 
2166 /*
2167  * arc_read() variant to support pool traversal.  If the block is already
2168  * in the ARC, make a copy of it; otherwise, the caller will do the I/O.
2169  * The idea is that we don't want pool traversal filling up memory, but
2170  * if the ARC already has the data anyway, we shouldn't pay for the I/O.
2171  */
2172 int
2173 arc_tryread(spa_t *spa, blkptr_t *bp, void *data)
2174 {
2175 	arc_buf_hdr_t *hdr;
2176 	kmutex_t *hash_mtx;
2177 	int rc = 0;
2178 
2179 	hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx);
2180 
2181 	if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) {
2182 		arc_buf_t *buf = hdr->b_buf;
2183 
2184 		ASSERT(buf);
2185 		while (buf->b_data == NULL) {
2186 			buf = buf->b_next;
2187 			ASSERT(buf);
2188 		}
2189 		bcopy(buf->b_data, data, hdr->b_size);
2190 	} else {
2191 		rc = ENOENT;
2192 	}
2193 
2194 	if (hash_mtx)
2195 		mutex_exit(hash_mtx);
2196 
2197 	return (rc);
2198 }
2199 
2200 void
2201 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2202 {
2203 	ASSERT(buf->b_hdr != NULL);
2204 	ASSERT(buf->b_hdr->b_state != arc_anon);
2205 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2206 	buf->b_efunc = func;
2207 	buf->b_private = private;
2208 }
2209 
2210 /*
2211  * This is used by the DMU to let the ARC know that a buffer is
2212  * being evicted, so the ARC should clean up.  If this arc buf
2213  * is not yet in the evicted state, it will be put there.
2214  */
2215 int
2216 arc_buf_evict(arc_buf_t *buf)
2217 {
2218 	arc_buf_hdr_t *hdr;
2219 	kmutex_t *hash_lock;
2220 	arc_buf_t **bufp;
2221 
2222 	mutex_enter(&arc_eviction_mtx);
2223 	hdr = buf->b_hdr;
2224 	if (hdr == NULL) {
2225 		/*
2226 		 * We are in arc_do_user_evicts().
2227 		 */
2228 		ASSERT(buf->b_data == NULL);
2229 		mutex_exit(&arc_eviction_mtx);
2230 		return (0);
2231 	}
2232 	hash_lock = HDR_LOCK(hdr);
2233 	mutex_exit(&arc_eviction_mtx);
2234 
2235 	mutex_enter(hash_lock);
2236 
2237 	if (buf->b_data == NULL) {
2238 		/*
2239 		 * We are on the eviction list.
2240 		 */
2241 		mutex_exit(hash_lock);
2242 		mutex_enter(&arc_eviction_mtx);
2243 		if (buf->b_hdr == NULL) {
2244 			/*
2245 			 * We are already in arc_do_user_evicts().
2246 			 */
2247 			mutex_exit(&arc_eviction_mtx);
2248 			return (0);
2249 		} else {
2250 			arc_buf_t copy = *buf; /* structure assignment */
2251 			/*
2252 			 * Process this buffer now
2253 			 * but let arc_do_user_evicts() do the reaping.
2254 			 */
2255 			buf->b_efunc = NULL;
2256 			mutex_exit(&arc_eviction_mtx);
2257 			VERIFY(copy.b_efunc(&copy) == 0);
2258 			return (1);
2259 		}
2260 	}
2261 
2262 	ASSERT(buf->b_hdr == hdr);
2263 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2264 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2265 
2266 	/*
2267 	 * Pull this buffer off of the hdr
2268 	 */
2269 	bufp = &hdr->b_buf;
2270 	while (*bufp != buf)
2271 		bufp = &(*bufp)->b_next;
2272 	*bufp = buf->b_next;
2273 
2274 	ASSERT(buf->b_data != NULL);
2275 	arc_buf_destroy(buf, FALSE, FALSE);
2276 
2277 	if (hdr->b_datacnt == 0) {
2278 		arc_state_t *old_state = hdr->b_state;
2279 		arc_state_t *evicted_state;
2280 
2281 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2282 
2283 		evicted_state =
2284 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2285 
2286 		mutex_enter(&old_state->arcs_mtx);
2287 		mutex_enter(&evicted_state->arcs_mtx);
2288 
2289 		arc_change_state(evicted_state, hdr, hash_lock);
2290 		ASSERT(HDR_IN_HASH_TABLE(hdr));
2291 		hdr->b_flags = ARC_IN_HASH_TABLE;
2292 
2293 		mutex_exit(&evicted_state->arcs_mtx);
2294 		mutex_exit(&old_state->arcs_mtx);
2295 	}
2296 	mutex_exit(hash_lock);
2297 
2298 	VERIFY(buf->b_efunc(buf) == 0);
2299 	buf->b_efunc = NULL;
2300 	buf->b_private = NULL;
2301 	buf->b_hdr = NULL;
2302 	kmem_cache_free(buf_cache, buf);
2303 	return (1);
2304 }
2305 
2306 /*
2307  * Release this buffer from the cache.  This must be done
2308  * after a read and prior to modifying the buffer contents.
2309  * If the buffer has more than one reference, we must make
2310  * make a new hdr for the buffer.
2311  */
2312 void
2313 arc_release(arc_buf_t *buf, void *tag)
2314 {
2315 	arc_buf_hdr_t *hdr = buf->b_hdr;
2316 	kmutex_t *hash_lock = HDR_LOCK(hdr);
2317 
2318 	/* this buffer is not on any list */
2319 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
2320 
2321 	if (hdr->b_state == arc_anon) {
2322 		/* this buffer is already released */
2323 		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
2324 		ASSERT(BUF_EMPTY(hdr));
2325 		ASSERT(buf->b_efunc == NULL);
2326 		arc_buf_thaw(buf);
2327 		return;
2328 	}
2329 
2330 	mutex_enter(hash_lock);
2331 
2332 	/*
2333 	 * Do we have more than one buf?
2334 	 */
2335 	if (hdr->b_buf != buf || buf->b_next != NULL) {
2336 		arc_buf_hdr_t *nhdr;
2337 		arc_buf_t **bufp;
2338 		uint64_t blksz = hdr->b_size;
2339 		spa_t *spa = hdr->b_spa;
2340 		arc_buf_contents_t type = hdr->b_type;
2341 
2342 		ASSERT(hdr->b_datacnt > 1);
2343 		/*
2344 		 * Pull the data off of this buf and attach it to
2345 		 * a new anonymous buf.
2346 		 */
2347 		(void) remove_reference(hdr, hash_lock, tag);
2348 		bufp = &hdr->b_buf;
2349 		while (*bufp != buf)
2350 			bufp = &(*bufp)->b_next;
2351 		*bufp = (*bufp)->b_next;
2352 
2353 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
2354 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
2355 		if (refcount_is_zero(&hdr->b_refcnt)) {
2356 			ASSERT3U(hdr->b_state->arcs_lsize, >=, hdr->b_size);
2357 			atomic_add_64(&hdr->b_state->arcs_lsize, -hdr->b_size);
2358 		}
2359 		hdr->b_datacnt -= 1;
2360 
2361 		mutex_exit(hash_lock);
2362 
2363 		nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP);
2364 		nhdr->b_size = blksz;
2365 		nhdr->b_spa = spa;
2366 		nhdr->b_type = type;
2367 		nhdr->b_buf = buf;
2368 		nhdr->b_state = arc_anon;
2369 		nhdr->b_arc_access = 0;
2370 		nhdr->b_flags = 0;
2371 		nhdr->b_datacnt = 1;
2372 		if (hdr->b_freeze_cksum != NULL) {
2373 			nhdr->b_freeze_cksum =
2374 			    kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
2375 			*nhdr->b_freeze_cksum = *hdr->b_freeze_cksum;
2376 		}
2377 		buf->b_hdr = nhdr;
2378 		buf->b_next = NULL;
2379 		(void) refcount_add(&nhdr->b_refcnt, tag);
2380 		atomic_add_64(&arc_anon->arcs_size, blksz);
2381 
2382 		hdr = nhdr;
2383 	} else {
2384 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
2385 		ASSERT(!list_link_active(&hdr->b_arc_node));
2386 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2387 		arc_change_state(arc_anon, hdr, hash_lock);
2388 		hdr->b_arc_access = 0;
2389 		mutex_exit(hash_lock);
2390 		bzero(&hdr->b_dva, sizeof (dva_t));
2391 		hdr->b_birth = 0;
2392 		hdr->b_cksum0 = 0;
2393 	}
2394 	buf->b_efunc = NULL;
2395 	buf->b_private = NULL;
2396 	arc_buf_thaw(buf);
2397 }
2398 
2399 int
2400 arc_released(arc_buf_t *buf)
2401 {
2402 	return (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
2403 }
2404 
2405 int
2406 arc_has_callback(arc_buf_t *buf)
2407 {
2408 	return (buf->b_efunc != NULL);
2409 }
2410 
2411 #ifdef ZFS_DEBUG
2412 int
2413 arc_referenced(arc_buf_t *buf)
2414 {
2415 	return (refcount_count(&buf->b_hdr->b_refcnt));
2416 }
2417 #endif
2418 
2419 static void
2420 arc_write_done(zio_t *zio)
2421 {
2422 	arc_buf_t *buf;
2423 	arc_buf_hdr_t *hdr;
2424 	arc_callback_t *acb;
2425 
2426 	buf = zio->io_private;
2427 	hdr = buf->b_hdr;
2428 	acb = hdr->b_acb;
2429 	hdr->b_acb = NULL;
2430 	ASSERT(acb != NULL);
2431 
2432 	/* this buffer is on no lists and is not in the hash table */
2433 	ASSERT3P(hdr->b_state, ==, arc_anon);
2434 
2435 	hdr->b_dva = *BP_IDENTITY(zio->io_bp);
2436 	hdr->b_birth = zio->io_bp->blk_birth;
2437 	hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
2438 	/*
2439 	 * If the block to be written was all-zero, we may have
2440 	 * compressed it away.  In this case no write was performed
2441 	 * so there will be no dva/birth-date/checksum.  The buffer
2442 	 * must therefor remain anonymous (and uncached).
2443 	 */
2444 	if (!BUF_EMPTY(hdr)) {
2445 		arc_buf_hdr_t *exists;
2446 		kmutex_t *hash_lock;
2447 
2448 		arc_cksum_verify(buf);
2449 
2450 		exists = buf_hash_insert(hdr, &hash_lock);
2451 		if (exists) {
2452 			/*
2453 			 * This can only happen if we overwrite for
2454 			 * sync-to-convergence, because we remove
2455 			 * buffers from the hash table when we arc_free().
2456 			 */
2457 			ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig),
2458 			    BP_IDENTITY(zio->io_bp)));
2459 			ASSERT3U(zio->io_bp_orig.blk_birth, ==,
2460 			    zio->io_bp->blk_birth);
2461 
2462 			ASSERT(refcount_is_zero(&exists->b_refcnt));
2463 			arc_change_state(arc_anon, exists, hash_lock);
2464 			mutex_exit(hash_lock);
2465 			arc_hdr_destroy(exists);
2466 			exists = buf_hash_insert(hdr, &hash_lock);
2467 			ASSERT3P(exists, ==, NULL);
2468 		}
2469 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2470 		arc_access(hdr, hash_lock);
2471 		mutex_exit(hash_lock);
2472 	} else if (acb->acb_done == NULL) {
2473 		int destroy_hdr;
2474 		/*
2475 		 * This is an anonymous buffer with no user callback,
2476 		 * destroy it if there are no active references.
2477 		 */
2478 		mutex_enter(&arc_eviction_mtx);
2479 		destroy_hdr = refcount_is_zero(&hdr->b_refcnt);
2480 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2481 		mutex_exit(&arc_eviction_mtx);
2482 		if (destroy_hdr)
2483 			arc_hdr_destroy(hdr);
2484 	} else {
2485 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2486 	}
2487 
2488 	if (acb->acb_done) {
2489 		ASSERT(!refcount_is_zero(&hdr->b_refcnt));
2490 		acb->acb_done(zio, buf, acb->acb_private);
2491 	}
2492 
2493 	kmem_free(acb, sizeof (arc_callback_t));
2494 }
2495 
2496 int
2497 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies,
2498     uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
2499     arc_done_func_t *done, void *private, int priority, int flags,
2500     uint32_t arc_flags, zbookmark_t *zb)
2501 {
2502 	arc_buf_hdr_t *hdr = buf->b_hdr;
2503 	arc_callback_t	*acb;
2504 	zio_t	*rzio;
2505 
2506 	/* this is a private buffer - no locking required */
2507 	ASSERT3P(hdr->b_state, ==, arc_anon);
2508 	ASSERT(BUF_EMPTY(hdr));
2509 	ASSERT(!HDR_IO_ERROR(hdr));
2510 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
2511 	ASSERT(hdr->b_acb == 0);
2512 	acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2513 	acb->acb_done = done;
2514 	acb->acb_private = private;
2515 	acb->acb_byteswap = (arc_byteswap_func_t *)-1;
2516 	hdr->b_acb = acb;
2517 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
2518 	arc_cksum_compute(buf);
2519 	rzio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp,
2520 	    buf->b_data, hdr->b_size, arc_write_done, buf, priority, flags, zb);
2521 
2522 	if (arc_flags & ARC_WAIT)
2523 		return (zio_wait(rzio));
2524 
2525 	ASSERT(arc_flags & ARC_NOWAIT);
2526 	zio_nowait(rzio);
2527 
2528 	return (0);
2529 }
2530 
2531 int
2532 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
2533     zio_done_func_t *done, void *private, uint32_t arc_flags)
2534 {
2535 	arc_buf_hdr_t *ab;
2536 	kmutex_t *hash_lock;
2537 	zio_t	*zio;
2538 
2539 	/*
2540 	 * If this buffer is in the cache, release it, so it
2541 	 * can be re-used.
2542 	 */
2543 	ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock);
2544 	if (ab != NULL) {
2545 		/*
2546 		 * The checksum of blocks to free is not always
2547 		 * preserved (eg. on the deadlist).  However, if it is
2548 		 * nonzero, it should match what we have in the cache.
2549 		 */
2550 		ASSERT(bp->blk_cksum.zc_word[0] == 0 ||
2551 		    ab->b_cksum0 == bp->blk_cksum.zc_word[0]);
2552 		if (ab->b_state != arc_anon)
2553 			arc_change_state(arc_anon, ab, hash_lock);
2554 		if (HDR_IO_IN_PROGRESS(ab)) {
2555 			/*
2556 			 * This should only happen when we prefetch.
2557 			 */
2558 			ASSERT(ab->b_flags & ARC_PREFETCH);
2559 			ASSERT3U(ab->b_datacnt, ==, 1);
2560 			ab->b_flags |= ARC_FREED_IN_READ;
2561 			if (HDR_IN_HASH_TABLE(ab))
2562 				buf_hash_remove(ab);
2563 			ab->b_arc_access = 0;
2564 			bzero(&ab->b_dva, sizeof (dva_t));
2565 			ab->b_birth = 0;
2566 			ab->b_cksum0 = 0;
2567 			ab->b_buf->b_efunc = NULL;
2568 			ab->b_buf->b_private = NULL;
2569 			mutex_exit(hash_lock);
2570 		} else if (refcount_is_zero(&ab->b_refcnt)) {
2571 			mutex_exit(hash_lock);
2572 			arc_hdr_destroy(ab);
2573 			ARCSTAT_BUMP(arcstat_deleted);
2574 		} else {
2575 			/*
2576 			 * We still have an active reference on this
2577 			 * buffer.  This can happen, e.g., from
2578 			 * dbuf_unoverride().
2579 			 */
2580 			ASSERT(!HDR_IN_HASH_TABLE(ab));
2581 			ab->b_arc_access = 0;
2582 			bzero(&ab->b_dva, sizeof (dva_t));
2583 			ab->b_birth = 0;
2584 			ab->b_cksum0 = 0;
2585 			ab->b_buf->b_efunc = NULL;
2586 			ab->b_buf->b_private = NULL;
2587 			mutex_exit(hash_lock);
2588 		}
2589 	}
2590 
2591 	zio = zio_free(pio, spa, txg, bp, done, private);
2592 
2593 	if (arc_flags & ARC_WAIT)
2594 		return (zio_wait(zio));
2595 
2596 	ASSERT(arc_flags & ARC_NOWAIT);
2597 	zio_nowait(zio);
2598 
2599 	return (0);
2600 }
2601 
2602 void
2603 arc_tempreserve_clear(uint64_t tempreserve)
2604 {
2605 	atomic_add_64(&arc_tempreserve, -tempreserve);
2606 	ASSERT((int64_t)arc_tempreserve >= 0);
2607 }
2608 
2609 int
2610 arc_tempreserve_space(uint64_t tempreserve)
2611 {
2612 #ifdef ZFS_DEBUG
2613 	/*
2614 	 * Once in a while, fail for no reason.  Everything should cope.
2615 	 */
2616 	if (spa_get_random(10000) == 0) {
2617 		dprintf("forcing random failure\n");
2618 		return (ERESTART);
2619 	}
2620 #endif
2621 	if (tempreserve > arc_c/4 && !arc_no_grow)
2622 		arc_c = MIN(arc_c_max, tempreserve * 4);
2623 	if (tempreserve > arc_c)
2624 		return (ENOMEM);
2625 
2626 	/*
2627 	 * Throttle writes when the amount of dirty data in the cache
2628 	 * gets too large.  We try to keep the cache less than half full
2629 	 * of dirty blocks so that our sync times don't grow too large.
2630 	 * Note: if two requests come in concurrently, we might let them
2631 	 * both succeed, when one of them should fail.  Not a huge deal.
2632 	 *
2633 	 * XXX The limit should be adjusted dynamically to keep the time
2634 	 * to sync a dataset fixed (around 1-5 seconds?).
2635 	 */
2636 
2637 	if (tempreserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 &&
2638 	    arc_tempreserve + arc_anon->arcs_size > arc_c / 4) {
2639 		dprintf("failing, arc_tempreserve=%lluK anon=%lluK "
2640 		    "tempreserve=%lluK arc_c=%lluK\n",
2641 		    arc_tempreserve>>10, arc_anon->arcs_lsize>>10,
2642 		    tempreserve>>10, arc_c>>10);
2643 		return (ERESTART);
2644 	}
2645 	atomic_add_64(&arc_tempreserve, tempreserve);
2646 	return (0);
2647 }
2648 
2649 void
2650 arc_init(void)
2651 {
2652 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
2653 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
2654 
2655 	/* Convert seconds to clock ticks */
2656 	arc_min_prefetch_lifespan = 1 * hz;
2657 
2658 	/* Start out with 1/8 of all memory */
2659 	arc_c = physmem * PAGESIZE / 8;
2660 
2661 #ifdef _KERNEL
2662 	/*
2663 	 * On architectures where the physical memory can be larger
2664 	 * than the addressable space (intel in 32-bit mode), we may
2665 	 * need to limit the cache to 1/8 of VM size.
2666 	 */
2667 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
2668 #endif
2669 
2670 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
2671 	arc_c_min = MAX(arc_c / 4, 64<<20);
2672 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
2673 	if (arc_c * 8 >= 1<<30)
2674 		arc_c_max = (arc_c * 8) - (1<<30);
2675 	else
2676 		arc_c_max = arc_c_min;
2677 	arc_c_max = MAX(arc_c * 6, arc_c_max);
2678 
2679 	/*
2680 	 * Allow the tunables to override our calculations if they are
2681 	 * reasonable (ie. over 64MB)
2682 	 */
2683 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
2684 		arc_c_max = zfs_arc_max;
2685 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
2686 		arc_c_min = zfs_arc_min;
2687 
2688 	arc_c = arc_c_max;
2689 	arc_p = (arc_c >> 1);
2690 
2691 	/* if kmem_flags are set, lets try to use less memory */
2692 	if (kmem_debugging())
2693 		arc_c = arc_c / 2;
2694 	if (arc_c < arc_c_min)
2695 		arc_c = arc_c_min;
2696 
2697 	arc_anon = &ARC_anon;
2698 	arc_mru = &ARC_mru;
2699 	arc_mru_ghost = &ARC_mru_ghost;
2700 	arc_mfu = &ARC_mfu;
2701 	arc_mfu_ghost = &ARC_mfu_ghost;
2702 	arc_size = 0;
2703 
2704 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
2705 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
2706 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
2707 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
2708 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
2709 
2710 	list_create(&arc_mru->arcs_list, sizeof (arc_buf_hdr_t),
2711 	    offsetof(arc_buf_hdr_t, b_arc_node));
2712 	list_create(&arc_mru_ghost->arcs_list, sizeof (arc_buf_hdr_t),
2713 	    offsetof(arc_buf_hdr_t, b_arc_node));
2714 	list_create(&arc_mfu->arcs_list, sizeof (arc_buf_hdr_t),
2715 	    offsetof(arc_buf_hdr_t, b_arc_node));
2716 	list_create(&arc_mfu_ghost->arcs_list, sizeof (arc_buf_hdr_t),
2717 	    offsetof(arc_buf_hdr_t, b_arc_node));
2718 
2719 	buf_init();
2720 
2721 	arc_thread_exit = 0;
2722 	arc_eviction_list = NULL;
2723 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
2724 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
2725 
2726 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
2727 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
2728 
2729 	if (arc_ksp != NULL) {
2730 		arc_ksp->ks_data = &arc_stats;
2731 		kstat_install(arc_ksp);
2732 	}
2733 
2734 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
2735 	    TS_RUN, minclsyspri);
2736 
2737 	arc_dead = FALSE;
2738 }
2739 
2740 void
2741 arc_fini(void)
2742 {
2743 	mutex_enter(&arc_reclaim_thr_lock);
2744 	arc_thread_exit = 1;
2745 	while (arc_thread_exit != 0)
2746 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
2747 	mutex_exit(&arc_reclaim_thr_lock);
2748 
2749 	arc_flush();
2750 
2751 	arc_dead = TRUE;
2752 
2753 	if (arc_ksp != NULL) {
2754 		kstat_delete(arc_ksp);
2755 		arc_ksp = NULL;
2756 	}
2757 
2758 	mutex_destroy(&arc_eviction_mtx);
2759 	mutex_destroy(&arc_reclaim_thr_lock);
2760 	cv_destroy(&arc_reclaim_thr_cv);
2761 
2762 	list_destroy(&arc_mru->arcs_list);
2763 	list_destroy(&arc_mru_ghost->arcs_list);
2764 	list_destroy(&arc_mfu->arcs_list);
2765 	list_destroy(&arc_mfu_ghost->arcs_list);
2766 
2767 	mutex_destroy(&arc_anon->arcs_mtx);
2768 	mutex_destroy(&arc_mru->arcs_mtx);
2769 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
2770 	mutex_destroy(&arc_mfu->arcs_mtx);
2771 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
2772 
2773 	buf_fini();
2774 }
2775