1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * DVA-based Adjustable Replacement Cache 31 * 32 * While much of the theory of operation used here is 33 * based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slows the flow of new data 52 * into the cache until we can make space available. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory pressure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefore exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefore choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() interface 80 * uses method 1, while the internal ARC algorithms for 81 * adjusting the cache use method 2. We therefore provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * ARC list locks. 84 * 85 * Buffers do not have their own mutexes, rather they rely on the 86 * hash table mutexes for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexes). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each ARC state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an ARC list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the active state mutex must be held before the ghost state mutex. 101 * 102 * Note that the majority of the performance stats are manipulated 103 * with atomic operations. 104 * 105 * The L2ARC uses the l2ad_mtx on each vdev for the following: 106 * 107 * - L2ARC buflist creation 108 * - L2ARC buflist eviction 109 * - L2ARC write completion, which walks L2ARC buflists 110 * - ARC header destruction, as it removes from L2ARC buflists 111 * - ARC header release, as it removes from L2ARC buflists 112 */ 113 114 /* 115 * ARC operation: 116 * 117 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 118 * This structure can point either to a block that is still in the cache or to 119 * one that is only accessible in an L2 ARC device, or it can provide 120 * information about a block that was recently evicted. If a block is 121 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 122 * information to retrieve it from the L2ARC device. This information is 123 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 124 * that is in this state cannot access the data directly. 125 * 126 * Blocks that are actively being referenced or have not been evicted 127 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 128 * the arc_buf_hdr_t that will point to the data block in memory. A block can 129 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 130 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 131 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 132 * 133 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 134 * ability to store the physical data (b_pabd) associated with the DVA of the 135 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 136 * it will match its on-disk compression characteristics. This behavior can be 137 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 138 * compressed ARC functionality is disabled, the b_pabd will point to an 139 * uncompressed version of the on-disk data. 140 * 141 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 142 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 143 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 144 * consumer. The ARC will provide references to this data and will keep it 145 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 146 * data block and will evict any arc_buf_t that is no longer referenced. The 147 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 148 * "overhead_size" kstat. 149 * 150 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 151 * compressed form. The typical case is that consumers will want uncompressed 152 * data, and when that happens a new data buffer is allocated where the data is 153 * decompressed for them to use. Currently the only consumer who wants 154 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 155 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 156 * with the arc_buf_hdr_t. 157 * 158 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 159 * first one is owned by a compressed send consumer (and therefore references 160 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 161 * used by any other consumer (and has its own uncompressed copy of the data 162 * buffer). 163 * 164 * arc_buf_hdr_t 165 * +-----------+ 166 * | fields | 167 * | common to | 168 * | L1- and | 169 * | L2ARC | 170 * +-----------+ 171 * | l2arc_buf_hdr_t 172 * | | 173 * +-----------+ 174 * | l1arc_buf_hdr_t 175 * | | arc_buf_t 176 * | b_buf +------------>+-----------+ arc_buf_t 177 * | b_pabd +-+ |b_next +---->+-----------+ 178 * +-----------+ | |-----------| |b_next +-->NULL 179 * | |b_comp = T | +-----------+ 180 * | |b_data +-+ |b_comp = F | 181 * | +-----------+ | |b_data +-+ 182 * +->+------+ | +-----------+ | 183 * compressed | | | | 184 * data | |<--------------+ | uncompressed 185 * +------+ compressed, | data 186 * shared +-->+------+ 187 * data | | 188 * | | 189 * +------+ 190 * 191 * When a consumer reads a block, the ARC must first look to see if the 192 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 193 * arc_buf_t and either copies uncompressed data into a new data buffer from an 194 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 195 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 196 * hdr is compressed and the desired compression characteristics of the 197 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 198 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 199 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 200 * be anywhere in the hdr's list. 201 * 202 * The diagram below shows an example of an uncompressed ARC hdr that is 203 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 204 * the last element in the buf list): 205 * 206 * arc_buf_hdr_t 207 * +-----------+ 208 * | | 209 * | | 210 * | | 211 * +-----------+ 212 * l2arc_buf_hdr_t| | 213 * | | 214 * +-----------+ 215 * l1arc_buf_hdr_t| | 216 * | | arc_buf_t (shared) 217 * | b_buf +------------>+---------+ arc_buf_t 218 * | | |b_next +---->+---------+ 219 * | b_pabd +-+ |---------| |b_next +-->NULL 220 * +-----------+ | | | +---------+ 221 * | |b_data +-+ | | 222 * | +---------+ | |b_data +-+ 223 * +->+------+ | +---------+ | 224 * | | | | 225 * uncompressed | | | | 226 * data +------+ | | 227 * ^ +->+------+ | 228 * | uncompressed | | | 229 * | data | | | 230 * | +------+ | 231 * +---------------------------------+ 232 * 233 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 234 * since the physical block is about to be rewritten. The new data contents 235 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 236 * it may compress the data before writing it to disk. The ARC will be called 237 * with the transformed data and will bcopy the transformed on-disk block into 238 * a newly allocated b_pabd. Writes are always done into buffers which have 239 * either been loaned (and hence are new and don't have other readers) or 240 * buffers which have been released (and hence have their own hdr, if there 241 * were originally other readers of the buf's original hdr). This ensures that 242 * the ARC only needs to update a single buf and its hdr after a write occurs. 243 * 244 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 245 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 246 * that when compressed ARC is enabled that the L2ARC blocks are identical 247 * to the on-disk block in the main data pool. This provides a significant 248 * advantage since the ARC can leverage the bp's checksum when reading from the 249 * L2ARC to determine if the contents are valid. However, if the compressed 250 * ARC is disabled, then the L2ARC's block must be transformed to look 251 * like the physical block in the main data pool before comparing the 252 * checksum and determining its validity. 253 */ 254 255 #include <sys/spa.h> 256 #include <sys/zio.h> 257 #include <sys/spa_impl.h> 258 #include <sys/zio_compress.h> 259 #include <sys/zio_checksum.h> 260 #include <sys/zfs_context.h> 261 #include <sys/arc.h> 262 #include <sys/refcount.h> 263 #include <sys/vdev.h> 264 #include <sys/vdev_impl.h> 265 #include <sys/dsl_pool.h> 266 #include <sys/zio_checksum.h> 267 #include <sys/multilist.h> 268 #include <sys/abd.h> 269 #ifdef _KERNEL 270 #include <sys/vmsystm.h> 271 #include <vm/anon.h> 272 #include <sys/fs/swapnode.h> 273 #include <sys/dnlc.h> 274 #endif 275 #include <sys/callb.h> 276 #include <sys/kstat.h> 277 #include <sys/zthr.h> 278 #include <zfs_fletcher.h> 279 #include <sys/aggsum.h> 280 #include <sys/cityhash.h> 281 282 #ifndef _KERNEL 283 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 284 boolean_t arc_watch = B_FALSE; 285 int arc_procfd; 286 #endif 287 288 /* 289 * This thread's job is to keep enough free memory in the system, by 290 * calling arc_kmem_reap_now() plus arc_shrink(), which improves 291 * arc_available_memory(). 292 */ 293 static zthr_t *arc_reap_zthr; 294 295 /* 296 * This thread's job is to keep arc_size under arc_c, by calling 297 * arc_adjust(), which improves arc_is_overflowing(). 298 */ 299 static zthr_t *arc_adjust_zthr; 300 301 static kmutex_t arc_adjust_lock; 302 static kcondvar_t arc_adjust_waiters_cv; 303 static boolean_t arc_adjust_needed = B_FALSE; 304 305 uint_t arc_reduce_dnlc_percent = 3; 306 307 /* 308 * The number of headers to evict in arc_evict_state_impl() before 309 * dropping the sublist lock and evicting from another sublist. A lower 310 * value means we're more likely to evict the "correct" header (i.e. the 311 * oldest header in the arc state), but comes with higher overhead 312 * (i.e. more invocations of arc_evict_state_impl()). 313 */ 314 int zfs_arc_evict_batch_limit = 10; 315 316 /* number of seconds before growing cache again */ 317 int arc_grow_retry = 60; 318 319 /* 320 * Minimum time between calls to arc_kmem_reap_soon(). Note that this will 321 * be converted to ticks, so with the default hz=100, a setting of 15 ms 322 * will actually wait 2 ticks, or 20ms. 323 */ 324 int arc_kmem_cache_reap_retry_ms = 1000; 325 326 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 327 int zfs_arc_overflow_shift = 8; 328 329 /* shift of arc_c for calculating both min and max arc_p */ 330 int arc_p_min_shift = 4; 331 332 /* log2(fraction of arc to reclaim) */ 333 int arc_shrink_shift = 7; 334 335 /* 336 * log2(fraction of ARC which must be free to allow growing). 337 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 338 * when reading a new block into the ARC, we will evict an equal-sized block 339 * from the ARC. 340 * 341 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 342 * we will still not allow it to grow. 343 */ 344 int arc_no_grow_shift = 5; 345 346 347 /* 348 * minimum lifespan of a prefetch block in clock ticks 349 * (initialized in arc_init()) 350 */ 351 static int arc_min_prefetch_lifespan; 352 353 /* 354 * If this percent of memory is free, don't throttle. 355 */ 356 int arc_lotsfree_percent = 10; 357 358 static boolean_t arc_initialized; 359 360 /* 361 * The arc has filled available memory and has now warmed up. 362 */ 363 static boolean_t arc_warm; 364 365 /* 366 * log2 fraction of the zio arena to keep free. 367 */ 368 int arc_zio_arena_free_shift = 2; 369 370 /* 371 * These tunables are for performance analysis. 372 */ 373 uint64_t zfs_arc_max; 374 uint64_t zfs_arc_min; 375 uint64_t zfs_arc_meta_limit = 0; 376 uint64_t zfs_arc_meta_min = 0; 377 int zfs_arc_grow_retry = 0; 378 int zfs_arc_shrink_shift = 0; 379 int zfs_arc_p_min_shift = 0; 380 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 381 382 boolean_t zfs_compressed_arc_enabled = B_TRUE; 383 384 /* 385 * Note that buffers can be in one of 6 states: 386 * ARC_anon - anonymous (discussed below) 387 * ARC_mru - recently used, currently cached 388 * ARC_mru_ghost - recentely used, no longer in cache 389 * ARC_mfu - frequently used, currently cached 390 * ARC_mfu_ghost - frequently used, no longer in cache 391 * ARC_l2c_only - exists in L2ARC but not other states 392 * When there are no active references to the buffer, they are 393 * are linked onto a list in one of these arc states. These are 394 * the only buffers that can be evicted or deleted. Within each 395 * state there are multiple lists, one for meta-data and one for 396 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 397 * etc.) is tracked separately so that it can be managed more 398 * explicitly: favored over data, limited explicitly. 399 * 400 * Anonymous buffers are buffers that are not associated with 401 * a DVA. These are buffers that hold dirty block copies 402 * before they are written to stable storage. By definition, 403 * they are "ref'd" and are considered part of arc_mru 404 * that cannot be freed. Generally, they will aquire a DVA 405 * as they are written and migrate onto the arc_mru list. 406 * 407 * The ARC_l2c_only state is for buffers that are in the second 408 * level ARC but no longer in any of the ARC_m* lists. The second 409 * level ARC itself may also contain buffers that are in any of 410 * the ARC_m* states - meaning that a buffer can exist in two 411 * places. The reason for the ARC_l2c_only state is to keep the 412 * buffer header in the hash table, so that reads that hit the 413 * second level ARC benefit from these fast lookups. 414 */ 415 416 typedef struct arc_state { 417 /* 418 * list of evictable buffers 419 */ 420 multilist_t *arcs_list[ARC_BUFC_NUMTYPES]; 421 /* 422 * total amount of evictable data in this state 423 */ 424 refcount_t arcs_esize[ARC_BUFC_NUMTYPES]; 425 /* 426 * total amount of data in this state; this includes: evictable, 427 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA. 428 */ 429 refcount_t arcs_size; 430 } arc_state_t; 431 432 /* The 6 states: */ 433 static arc_state_t ARC_anon; 434 static arc_state_t ARC_mru; 435 static arc_state_t ARC_mru_ghost; 436 static arc_state_t ARC_mfu; 437 static arc_state_t ARC_mfu_ghost; 438 static arc_state_t ARC_l2c_only; 439 440 typedef struct arc_stats { 441 kstat_named_t arcstat_hits; 442 kstat_named_t arcstat_misses; 443 kstat_named_t arcstat_demand_data_hits; 444 kstat_named_t arcstat_demand_data_misses; 445 kstat_named_t arcstat_demand_metadata_hits; 446 kstat_named_t arcstat_demand_metadata_misses; 447 kstat_named_t arcstat_prefetch_data_hits; 448 kstat_named_t arcstat_prefetch_data_misses; 449 kstat_named_t arcstat_prefetch_metadata_hits; 450 kstat_named_t arcstat_prefetch_metadata_misses; 451 kstat_named_t arcstat_mru_hits; 452 kstat_named_t arcstat_mru_ghost_hits; 453 kstat_named_t arcstat_mfu_hits; 454 kstat_named_t arcstat_mfu_ghost_hits; 455 kstat_named_t arcstat_deleted; 456 /* 457 * Number of buffers that could not be evicted because the hash lock 458 * was held by another thread. The lock may not necessarily be held 459 * by something using the same buffer, since hash locks are shared 460 * by multiple buffers. 461 */ 462 kstat_named_t arcstat_mutex_miss; 463 /* 464 * Number of buffers skipped because they have I/O in progress, are 465 * indrect prefetch buffers that have not lived long enough, or are 466 * not from the spa we're trying to evict from. 467 */ 468 kstat_named_t arcstat_evict_skip; 469 /* 470 * Number of times arc_evict_state() was unable to evict enough 471 * buffers to reach it's target amount. 472 */ 473 kstat_named_t arcstat_evict_not_enough; 474 kstat_named_t arcstat_evict_l2_cached; 475 kstat_named_t arcstat_evict_l2_eligible; 476 kstat_named_t arcstat_evict_l2_ineligible; 477 kstat_named_t arcstat_evict_l2_skip; 478 kstat_named_t arcstat_hash_elements; 479 kstat_named_t arcstat_hash_elements_max; 480 kstat_named_t arcstat_hash_collisions; 481 kstat_named_t arcstat_hash_chains; 482 kstat_named_t arcstat_hash_chain_max; 483 kstat_named_t arcstat_p; 484 kstat_named_t arcstat_c; 485 kstat_named_t arcstat_c_min; 486 kstat_named_t arcstat_c_max; 487 /* Not updated directly; only synced in arc_kstat_update. */ 488 kstat_named_t arcstat_size; 489 /* 490 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd. 491 * Note that the compressed bytes may match the uncompressed bytes 492 * if the block is either not compressed or compressed arc is disabled. 493 */ 494 kstat_named_t arcstat_compressed_size; 495 /* 496 * Uncompressed size of the data stored in b_pabd. If compressed 497 * arc is disabled then this value will be identical to the stat 498 * above. 499 */ 500 kstat_named_t arcstat_uncompressed_size; 501 /* 502 * Number of bytes stored in all the arc_buf_t's. This is classified 503 * as "overhead" since this data is typically short-lived and will 504 * be evicted from the arc when it becomes unreferenced unless the 505 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level 506 * values have been set (see comment in dbuf.c for more information). 507 */ 508 kstat_named_t arcstat_overhead_size; 509 /* 510 * Number of bytes consumed by internal ARC structures necessary 511 * for tracking purposes; these structures are not actually 512 * backed by ARC buffers. This includes arc_buf_hdr_t structures 513 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only 514 * caches), and arc_buf_t structures (allocated via arc_buf_t 515 * cache). 516 * Not updated directly; only synced in arc_kstat_update. 517 */ 518 kstat_named_t arcstat_hdr_size; 519 /* 520 * Number of bytes consumed by ARC buffers of type equal to 521 * ARC_BUFC_DATA. This is generally consumed by buffers backing 522 * on disk user data (e.g. plain file contents). 523 * Not updated directly; only synced in arc_kstat_update. 524 */ 525 kstat_named_t arcstat_data_size; 526 /* 527 * Number of bytes consumed by ARC buffers of type equal to 528 * ARC_BUFC_METADATA. This is generally consumed by buffers 529 * backing on disk data that is used for internal ZFS 530 * structures (e.g. ZAP, dnode, indirect blocks, etc). 531 * Not updated directly; only synced in arc_kstat_update. 532 */ 533 kstat_named_t arcstat_metadata_size; 534 /* 535 * Number of bytes consumed by various buffers and structures 536 * not actually backed with ARC buffers. This includes bonus 537 * buffers (allocated directly via zio_buf_* functions), 538 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t 539 * cache), and dnode_t structures (allocated via dnode_t cache). 540 * Not updated directly; only synced in arc_kstat_update. 541 */ 542 kstat_named_t arcstat_other_size; 543 /* 544 * Total number of bytes consumed by ARC buffers residing in the 545 * arc_anon state. This includes *all* buffers in the arc_anon 546 * state; e.g. data, metadata, evictable, and unevictable buffers 547 * are all included in this value. 548 * Not updated directly; only synced in arc_kstat_update. 549 */ 550 kstat_named_t arcstat_anon_size; 551 /* 552 * Number of bytes consumed by ARC buffers that meet the 553 * following criteria: backing buffers of type ARC_BUFC_DATA, 554 * residing in the arc_anon state, and are eligible for eviction 555 * (e.g. have no outstanding holds on the buffer). 556 * Not updated directly; only synced in arc_kstat_update. 557 */ 558 kstat_named_t arcstat_anon_evictable_data; 559 /* 560 * Number of bytes consumed by ARC buffers that meet the 561 * following criteria: backing buffers of type ARC_BUFC_METADATA, 562 * residing in the arc_anon state, and are eligible for eviction 563 * (e.g. have no outstanding holds on the buffer). 564 * Not updated directly; only synced in arc_kstat_update. 565 */ 566 kstat_named_t arcstat_anon_evictable_metadata; 567 /* 568 * Total number of bytes consumed by ARC buffers residing in the 569 * arc_mru state. This includes *all* buffers in the arc_mru 570 * state; e.g. data, metadata, evictable, and unevictable buffers 571 * are all included in this value. 572 * Not updated directly; only synced in arc_kstat_update. 573 */ 574 kstat_named_t arcstat_mru_size; 575 /* 576 * Number of bytes consumed by ARC buffers that meet the 577 * following criteria: backing buffers of type ARC_BUFC_DATA, 578 * residing in the arc_mru state, and are eligible for eviction 579 * (e.g. have no outstanding holds on the buffer). 580 * Not updated directly; only synced in arc_kstat_update. 581 */ 582 kstat_named_t arcstat_mru_evictable_data; 583 /* 584 * Number of bytes consumed by ARC buffers that meet the 585 * following criteria: backing buffers of type ARC_BUFC_METADATA, 586 * residing in the arc_mru state, and are eligible for eviction 587 * (e.g. have no outstanding holds on the buffer). 588 * Not updated directly; only synced in arc_kstat_update. 589 */ 590 kstat_named_t arcstat_mru_evictable_metadata; 591 /* 592 * Total number of bytes that *would have been* consumed by ARC 593 * buffers in the arc_mru_ghost state. The key thing to note 594 * here, is the fact that this size doesn't actually indicate 595 * RAM consumption. The ghost lists only consist of headers and 596 * don't actually have ARC buffers linked off of these headers. 597 * Thus, *if* the headers had associated ARC buffers, these 598 * buffers *would have* consumed this number of bytes. 599 * Not updated directly; only synced in arc_kstat_update. 600 */ 601 kstat_named_t arcstat_mru_ghost_size; 602 /* 603 * Number of bytes that *would have been* consumed by ARC 604 * buffers that are eligible for eviction, of type 605 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state. 606 * Not updated directly; only synced in arc_kstat_update. 607 */ 608 kstat_named_t arcstat_mru_ghost_evictable_data; 609 /* 610 * Number of bytes that *would have been* consumed by ARC 611 * buffers that are eligible for eviction, of type 612 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 613 * Not updated directly; only synced in arc_kstat_update. 614 */ 615 kstat_named_t arcstat_mru_ghost_evictable_metadata; 616 /* 617 * Total number of bytes consumed by ARC buffers residing in the 618 * arc_mfu state. This includes *all* buffers in the arc_mfu 619 * state; e.g. data, metadata, evictable, and unevictable buffers 620 * are all included in this value. 621 * Not updated directly; only synced in arc_kstat_update. 622 */ 623 kstat_named_t arcstat_mfu_size; 624 /* 625 * Number of bytes consumed by ARC buffers that are eligible for 626 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu 627 * state. 628 * Not updated directly; only synced in arc_kstat_update. 629 */ 630 kstat_named_t arcstat_mfu_evictable_data; 631 /* 632 * Number of bytes consumed by ARC buffers that are eligible for 633 * eviction, of type ARC_BUFC_METADATA, and reside in the 634 * arc_mfu state. 635 * Not updated directly; only synced in arc_kstat_update. 636 */ 637 kstat_named_t arcstat_mfu_evictable_metadata; 638 /* 639 * Total number of bytes that *would have been* consumed by ARC 640 * buffers in the arc_mfu_ghost state. See the comment above 641 * arcstat_mru_ghost_size for more details. 642 * Not updated directly; only synced in arc_kstat_update. 643 */ 644 kstat_named_t arcstat_mfu_ghost_size; 645 /* 646 * Number of bytes that *would have been* consumed by ARC 647 * buffers that are eligible for eviction, of type 648 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state. 649 * Not updated directly; only synced in arc_kstat_update. 650 */ 651 kstat_named_t arcstat_mfu_ghost_evictable_data; 652 /* 653 * Number of bytes that *would have been* consumed by ARC 654 * buffers that are eligible for eviction, of type 655 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. 656 * Not updated directly; only synced in arc_kstat_update. 657 */ 658 kstat_named_t arcstat_mfu_ghost_evictable_metadata; 659 kstat_named_t arcstat_l2_hits; 660 kstat_named_t arcstat_l2_misses; 661 kstat_named_t arcstat_l2_feeds; 662 kstat_named_t arcstat_l2_rw_clash; 663 kstat_named_t arcstat_l2_read_bytes; 664 kstat_named_t arcstat_l2_write_bytes; 665 kstat_named_t arcstat_l2_writes_sent; 666 kstat_named_t arcstat_l2_writes_done; 667 kstat_named_t arcstat_l2_writes_error; 668 kstat_named_t arcstat_l2_writes_lock_retry; 669 kstat_named_t arcstat_l2_evict_lock_retry; 670 kstat_named_t arcstat_l2_evict_reading; 671 kstat_named_t arcstat_l2_evict_l1cached; 672 kstat_named_t arcstat_l2_free_on_write; 673 kstat_named_t arcstat_l2_abort_lowmem; 674 kstat_named_t arcstat_l2_cksum_bad; 675 kstat_named_t arcstat_l2_io_error; 676 kstat_named_t arcstat_l2_lsize; 677 kstat_named_t arcstat_l2_psize; 678 /* Not updated directly; only synced in arc_kstat_update. */ 679 kstat_named_t arcstat_l2_hdr_size; 680 kstat_named_t arcstat_memory_throttle_count; 681 /* Not updated directly; only synced in arc_kstat_update. */ 682 kstat_named_t arcstat_meta_used; 683 kstat_named_t arcstat_meta_limit; 684 kstat_named_t arcstat_meta_max; 685 kstat_named_t arcstat_meta_min; 686 kstat_named_t arcstat_sync_wait_for_async; 687 kstat_named_t arcstat_demand_hit_predictive_prefetch; 688 } arc_stats_t; 689 690 static arc_stats_t arc_stats = { 691 { "hits", KSTAT_DATA_UINT64 }, 692 { "misses", KSTAT_DATA_UINT64 }, 693 { "demand_data_hits", KSTAT_DATA_UINT64 }, 694 { "demand_data_misses", KSTAT_DATA_UINT64 }, 695 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 696 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 697 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 698 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 699 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 700 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 701 { "mru_hits", KSTAT_DATA_UINT64 }, 702 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 703 { "mfu_hits", KSTAT_DATA_UINT64 }, 704 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 705 { "deleted", KSTAT_DATA_UINT64 }, 706 { "mutex_miss", KSTAT_DATA_UINT64 }, 707 { "evict_skip", KSTAT_DATA_UINT64 }, 708 { "evict_not_enough", KSTAT_DATA_UINT64 }, 709 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 710 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 711 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 712 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 713 { "hash_elements", KSTAT_DATA_UINT64 }, 714 { "hash_elements_max", KSTAT_DATA_UINT64 }, 715 { "hash_collisions", KSTAT_DATA_UINT64 }, 716 { "hash_chains", KSTAT_DATA_UINT64 }, 717 { "hash_chain_max", KSTAT_DATA_UINT64 }, 718 { "p", KSTAT_DATA_UINT64 }, 719 { "c", KSTAT_DATA_UINT64 }, 720 { "c_min", KSTAT_DATA_UINT64 }, 721 { "c_max", KSTAT_DATA_UINT64 }, 722 { "size", KSTAT_DATA_UINT64 }, 723 { "compressed_size", KSTAT_DATA_UINT64 }, 724 { "uncompressed_size", KSTAT_DATA_UINT64 }, 725 { "overhead_size", KSTAT_DATA_UINT64 }, 726 { "hdr_size", KSTAT_DATA_UINT64 }, 727 { "data_size", KSTAT_DATA_UINT64 }, 728 { "metadata_size", KSTAT_DATA_UINT64 }, 729 { "other_size", KSTAT_DATA_UINT64 }, 730 { "anon_size", KSTAT_DATA_UINT64 }, 731 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 732 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 733 { "mru_size", KSTAT_DATA_UINT64 }, 734 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 735 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 736 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 737 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 738 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 739 { "mfu_size", KSTAT_DATA_UINT64 }, 740 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 741 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 742 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 743 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 744 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 745 { "l2_hits", KSTAT_DATA_UINT64 }, 746 { "l2_misses", KSTAT_DATA_UINT64 }, 747 { "l2_feeds", KSTAT_DATA_UINT64 }, 748 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 749 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 750 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 751 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 752 { "l2_writes_done", KSTAT_DATA_UINT64 }, 753 { "l2_writes_error", KSTAT_DATA_UINT64 }, 754 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 755 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 756 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 757 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 758 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 759 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 760 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 761 { "l2_io_error", KSTAT_DATA_UINT64 }, 762 { "l2_size", KSTAT_DATA_UINT64 }, 763 { "l2_asize", KSTAT_DATA_UINT64 }, 764 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 765 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 766 { "arc_meta_used", KSTAT_DATA_UINT64 }, 767 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 768 { "arc_meta_max", KSTAT_DATA_UINT64 }, 769 { "arc_meta_min", KSTAT_DATA_UINT64 }, 770 { "sync_wait_for_async", KSTAT_DATA_UINT64 }, 771 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 772 }; 773 774 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 775 776 #define ARCSTAT_INCR(stat, val) \ 777 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 778 779 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 780 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 781 782 #define ARCSTAT_MAX(stat, val) { \ 783 uint64_t m; \ 784 while ((val) > (m = arc_stats.stat.value.ui64) && \ 785 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 786 continue; \ 787 } 788 789 #define ARCSTAT_MAXSTAT(stat) \ 790 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 791 792 /* 793 * We define a macro to allow ARC hits/misses to be easily broken down by 794 * two separate conditions, giving a total of four different subtypes for 795 * each of hits and misses (so eight statistics total). 796 */ 797 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 798 if (cond1) { \ 799 if (cond2) { \ 800 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 801 } else { \ 802 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 803 } \ 804 } else { \ 805 if (cond2) { \ 806 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 807 } else { \ 808 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 809 } \ 810 } 811 812 kstat_t *arc_ksp; 813 static arc_state_t *arc_anon; 814 static arc_state_t *arc_mru; 815 static arc_state_t *arc_mru_ghost; 816 static arc_state_t *arc_mfu; 817 static arc_state_t *arc_mfu_ghost; 818 static arc_state_t *arc_l2c_only; 819 820 /* 821 * There are several ARC variables that are critical to export as kstats -- 822 * but we don't want to have to grovel around in the kstat whenever we wish to 823 * manipulate them. For these variables, we therefore define them to be in 824 * terms of the statistic variable. This assures that we are not introducing 825 * the possibility of inconsistency by having shadow copies of the variables, 826 * while still allowing the code to be readable. 827 */ 828 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 829 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 830 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 831 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 832 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 833 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 834 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 835 836 /* compressed size of entire arc */ 837 #define arc_compressed_size ARCSTAT(arcstat_compressed_size) 838 /* uncompressed size of entire arc */ 839 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size) 840 /* number of bytes in the arc from arc_buf_t's */ 841 #define arc_overhead_size ARCSTAT(arcstat_overhead_size) 842 843 /* 844 * There are also some ARC variables that we want to export, but that are 845 * updated so often that having the canonical representation be the statistic 846 * variable causes a performance bottleneck. We want to use aggsum_t's for these 847 * instead, but still be able to export the kstat in the same way as before. 848 * The solution is to always use the aggsum version, except in the kstat update 849 * callback. 850 */ 851 aggsum_t arc_size; 852 aggsum_t arc_meta_used; 853 aggsum_t astat_data_size; 854 aggsum_t astat_metadata_size; 855 aggsum_t astat_hdr_size; 856 aggsum_t astat_other_size; 857 aggsum_t astat_l2_hdr_size; 858 859 static int arc_no_grow; /* Don't try to grow cache size */ 860 static hrtime_t arc_growtime; 861 static uint64_t arc_tempreserve; 862 static uint64_t arc_loaned_bytes; 863 864 typedef struct arc_callback arc_callback_t; 865 866 struct arc_callback { 867 void *acb_private; 868 arc_done_func_t *acb_done; 869 arc_buf_t *acb_buf; 870 boolean_t acb_compressed; 871 zio_t *acb_zio_dummy; 872 arc_callback_t *acb_next; 873 }; 874 875 typedef struct arc_write_callback arc_write_callback_t; 876 877 struct arc_write_callback { 878 void *awcb_private; 879 arc_done_func_t *awcb_ready; 880 arc_done_func_t *awcb_children_ready; 881 arc_done_func_t *awcb_physdone; 882 arc_done_func_t *awcb_done; 883 arc_buf_t *awcb_buf; 884 }; 885 886 /* 887 * ARC buffers are separated into multiple structs as a memory saving measure: 888 * - Common fields struct, always defined, and embedded within it: 889 * - L2-only fields, always allocated but undefined when not in L2ARC 890 * - L1-only fields, only allocated when in L1ARC 891 * 892 * Buffer in L1 Buffer only in L2 893 * +------------------------+ +------------------------+ 894 * | arc_buf_hdr_t | | arc_buf_hdr_t | 895 * | | | | 896 * | | | | 897 * | | | | 898 * +------------------------+ +------------------------+ 899 * | l2arc_buf_hdr_t | | l2arc_buf_hdr_t | 900 * | (undefined if L1-only) | | | 901 * +------------------------+ +------------------------+ 902 * | l1arc_buf_hdr_t | 903 * | | 904 * | | 905 * | | 906 * | | 907 * +------------------------+ 908 * 909 * Because it's possible for the L2ARC to become extremely large, we can wind 910 * up eating a lot of memory in L2ARC buffer headers, so the size of a header 911 * is minimized by only allocating the fields necessary for an L1-cached buffer 912 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and 913 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple 914 * words in pointers. arc_hdr_realloc() is used to switch a header between 915 * these two allocation states. 916 */ 917 typedef struct l1arc_buf_hdr { 918 kmutex_t b_freeze_lock; 919 zio_cksum_t *b_freeze_cksum; 920 #ifdef ZFS_DEBUG 921 /* 922 * Used for debugging with kmem_flags - by allocating and freeing 923 * b_thawed when the buffer is thawed, we get a record of the stack 924 * trace that thawed it. 925 */ 926 void *b_thawed; 927 #endif 928 929 arc_buf_t *b_buf; 930 uint32_t b_bufcnt; 931 /* for waiting on writes to complete */ 932 kcondvar_t b_cv; 933 uint8_t b_byteswap; 934 935 /* protected by arc state mutex */ 936 arc_state_t *b_state; 937 multilist_node_t b_arc_node; 938 939 /* updated atomically */ 940 clock_t b_arc_access; 941 942 /* self protecting */ 943 refcount_t b_refcnt; 944 945 arc_callback_t *b_acb; 946 abd_t *b_pabd; 947 } l1arc_buf_hdr_t; 948 949 typedef struct l2arc_dev l2arc_dev_t; 950 951 typedef struct l2arc_buf_hdr { 952 /* protected by arc_buf_hdr mutex */ 953 l2arc_dev_t *b_dev; /* L2ARC device */ 954 uint64_t b_daddr; /* disk address, offset byte */ 955 956 list_node_t b_l2node; 957 } l2arc_buf_hdr_t; 958 959 struct arc_buf_hdr { 960 /* protected by hash lock */ 961 dva_t b_dva; 962 uint64_t b_birth; 963 964 arc_buf_contents_t b_type; 965 arc_buf_hdr_t *b_hash_next; 966 arc_flags_t b_flags; 967 968 /* 969 * This field stores the size of the data buffer after 970 * compression, and is set in the arc's zio completion handlers. 971 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes). 972 * 973 * While the block pointers can store up to 32MB in their psize 974 * field, we can only store up to 32MB minus 512B. This is due 975 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e. 976 * a field of zeros represents 512B in the bp). We can't use a 977 * bias of 1 since we need to reserve a psize of zero, here, to 978 * represent holes and embedded blocks. 979 * 980 * This isn't a problem in practice, since the maximum size of a 981 * buffer is limited to 16MB, so we never need to store 32MB in 982 * this field. Even in the upstream illumos code base, the 983 * maximum size of a buffer is limited to 16MB. 984 */ 985 uint16_t b_psize; 986 987 /* 988 * This field stores the size of the data buffer before 989 * compression, and cannot change once set. It is in units 990 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes) 991 */ 992 uint16_t b_lsize; /* immutable */ 993 uint64_t b_spa; /* immutable */ 994 995 /* L2ARC fields. Undefined when not in L2ARC. */ 996 l2arc_buf_hdr_t b_l2hdr; 997 /* L1ARC fields. Undefined when in l2arc_only state */ 998 l1arc_buf_hdr_t b_l1hdr; 999 }; 1000 1001 #define GHOST_STATE(state) \ 1002 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 1003 (state) == arc_l2c_only) 1004 1005 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 1006 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 1007 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 1008 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 1009 #define HDR_COMPRESSION_ENABLED(hdr) \ 1010 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 1011 1012 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 1013 #define HDR_L2_READING(hdr) \ 1014 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 1015 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 1016 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 1017 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 1018 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 1019 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 1020 1021 #define HDR_ISTYPE_METADATA(hdr) \ 1022 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 1023 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 1024 1025 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 1026 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 1027 1028 /* For storing compression mode in b_flags */ 1029 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 1030 1031 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 1032 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 1033 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 1034 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 1035 1036 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 1037 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 1038 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 1039 1040 /* 1041 * Other sizes 1042 */ 1043 1044 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 1045 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 1046 1047 /* 1048 * Hash table routines 1049 */ 1050 1051 #define HT_LOCK_PAD 64 1052 1053 struct ht_lock { 1054 kmutex_t ht_lock; 1055 #ifdef _KERNEL 1056 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 1057 #endif 1058 }; 1059 1060 #define BUF_LOCKS 256 1061 typedef struct buf_hash_table { 1062 uint64_t ht_mask; 1063 arc_buf_hdr_t **ht_table; 1064 struct ht_lock ht_locks[BUF_LOCKS]; 1065 } buf_hash_table_t; 1066 1067 static buf_hash_table_t buf_hash_table; 1068 1069 #define BUF_HASH_INDEX(spa, dva, birth) \ 1070 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 1071 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 1072 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 1073 #define HDR_LOCK(hdr) \ 1074 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 1075 1076 uint64_t zfs_crc64_table[256]; 1077 1078 /* 1079 * Level 2 ARC 1080 */ 1081 1082 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 1083 #define L2ARC_HEADROOM 2 /* num of writes */ 1084 /* 1085 * If we discover during ARC scan any buffers to be compressed, we boost 1086 * our headroom for the next scanning cycle by this percentage multiple. 1087 */ 1088 #define L2ARC_HEADROOM_BOOST 200 1089 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 1090 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 1091 1092 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 1093 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 1094 1095 /* L2ARC Performance Tunables */ 1096 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 1097 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 1098 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 1099 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 1100 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 1101 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 1102 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 1103 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 1104 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 1105 1106 /* 1107 * L2ARC Internals 1108 */ 1109 struct l2arc_dev { 1110 vdev_t *l2ad_vdev; /* vdev */ 1111 spa_t *l2ad_spa; /* spa */ 1112 uint64_t l2ad_hand; /* next write location */ 1113 uint64_t l2ad_start; /* first addr on device */ 1114 uint64_t l2ad_end; /* last addr on device */ 1115 boolean_t l2ad_first; /* first sweep through */ 1116 boolean_t l2ad_writing; /* currently writing */ 1117 kmutex_t l2ad_mtx; /* lock for buffer list */ 1118 list_t l2ad_buflist; /* buffer list */ 1119 list_node_t l2ad_node; /* device list node */ 1120 refcount_t l2ad_alloc; /* allocated bytes */ 1121 }; 1122 1123 static list_t L2ARC_dev_list; /* device list */ 1124 static list_t *l2arc_dev_list; /* device list pointer */ 1125 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 1126 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 1127 static list_t L2ARC_free_on_write; /* free after write buf list */ 1128 static list_t *l2arc_free_on_write; /* free after write list ptr */ 1129 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 1130 static uint64_t l2arc_ndev; /* number of devices */ 1131 1132 typedef struct l2arc_read_callback { 1133 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 1134 blkptr_t l2rcb_bp; /* original blkptr */ 1135 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 1136 int l2rcb_flags; /* original flags */ 1137 abd_t *l2rcb_abd; /* temporary buffer */ 1138 } l2arc_read_callback_t; 1139 1140 typedef struct l2arc_write_callback { 1141 l2arc_dev_t *l2wcb_dev; /* device info */ 1142 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 1143 } l2arc_write_callback_t; 1144 1145 typedef struct l2arc_data_free { 1146 /* protected by l2arc_free_on_write_mtx */ 1147 abd_t *l2df_abd; 1148 size_t l2df_size; 1149 arc_buf_contents_t l2df_type; 1150 list_node_t l2df_list_node; 1151 } l2arc_data_free_t; 1152 1153 static kmutex_t l2arc_feed_thr_lock; 1154 static kcondvar_t l2arc_feed_thr_cv; 1155 static uint8_t l2arc_thread_exit; 1156 1157 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *); 1158 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 1159 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *); 1160 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 1161 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 1162 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 1163 static void arc_hdr_free_pabd(arc_buf_hdr_t *); 1164 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *); 1165 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 1166 static boolean_t arc_is_overflowing(); 1167 static void arc_buf_watch(arc_buf_t *); 1168 1169 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 1170 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 1171 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 1172 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 1173 1174 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 1175 static void l2arc_read_done(zio_t *); 1176 1177 1178 /* 1179 * We use Cityhash for this. It's fast, and has good hash properties without 1180 * requiring any large static buffers. 1181 */ 1182 static uint64_t 1183 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 1184 { 1185 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 1186 } 1187 1188 #define HDR_EMPTY(hdr) \ 1189 ((hdr)->b_dva.dva_word[0] == 0 && \ 1190 (hdr)->b_dva.dva_word[1] == 0) 1191 1192 #define HDR_EQUAL(spa, dva, birth, hdr) \ 1193 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 1194 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 1195 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 1196 1197 static void 1198 buf_discard_identity(arc_buf_hdr_t *hdr) 1199 { 1200 hdr->b_dva.dva_word[0] = 0; 1201 hdr->b_dva.dva_word[1] = 0; 1202 hdr->b_birth = 0; 1203 } 1204 1205 static arc_buf_hdr_t * 1206 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 1207 { 1208 const dva_t *dva = BP_IDENTITY(bp); 1209 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 1210 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1211 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1212 arc_buf_hdr_t *hdr; 1213 1214 mutex_enter(hash_lock); 1215 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1216 hdr = hdr->b_hash_next) { 1217 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1218 *lockp = hash_lock; 1219 return (hdr); 1220 } 1221 } 1222 mutex_exit(hash_lock); 1223 *lockp = NULL; 1224 return (NULL); 1225 } 1226 1227 /* 1228 * Insert an entry into the hash table. If there is already an element 1229 * equal to elem in the hash table, then the already existing element 1230 * will be returned and the new element will not be inserted. 1231 * Otherwise returns NULL. 1232 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1233 */ 1234 static arc_buf_hdr_t * 1235 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1236 { 1237 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1238 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1239 arc_buf_hdr_t *fhdr; 1240 uint32_t i; 1241 1242 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1243 ASSERT(hdr->b_birth != 0); 1244 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1245 1246 if (lockp != NULL) { 1247 *lockp = hash_lock; 1248 mutex_enter(hash_lock); 1249 } else { 1250 ASSERT(MUTEX_HELD(hash_lock)); 1251 } 1252 1253 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1254 fhdr = fhdr->b_hash_next, i++) { 1255 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1256 return (fhdr); 1257 } 1258 1259 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1260 buf_hash_table.ht_table[idx] = hdr; 1261 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1262 1263 /* collect some hash table performance data */ 1264 if (i > 0) { 1265 ARCSTAT_BUMP(arcstat_hash_collisions); 1266 if (i == 1) 1267 ARCSTAT_BUMP(arcstat_hash_chains); 1268 1269 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1270 } 1271 1272 ARCSTAT_BUMP(arcstat_hash_elements); 1273 ARCSTAT_MAXSTAT(arcstat_hash_elements); 1274 1275 return (NULL); 1276 } 1277 1278 static void 1279 buf_hash_remove(arc_buf_hdr_t *hdr) 1280 { 1281 arc_buf_hdr_t *fhdr, **hdrp; 1282 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1283 1284 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1285 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1286 1287 hdrp = &buf_hash_table.ht_table[idx]; 1288 while ((fhdr = *hdrp) != hdr) { 1289 ASSERT3P(fhdr, !=, NULL); 1290 hdrp = &fhdr->b_hash_next; 1291 } 1292 *hdrp = hdr->b_hash_next; 1293 hdr->b_hash_next = NULL; 1294 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1295 1296 /* collect some hash table performance data */ 1297 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 1298 1299 if (buf_hash_table.ht_table[idx] && 1300 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1301 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1302 } 1303 1304 /* 1305 * Global data structures and functions for the buf kmem cache. 1306 */ 1307 static kmem_cache_t *hdr_full_cache; 1308 static kmem_cache_t *hdr_l2only_cache; 1309 static kmem_cache_t *buf_cache; 1310 1311 static void 1312 buf_fini(void) 1313 { 1314 int i; 1315 1316 kmem_free(buf_hash_table.ht_table, 1317 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1318 for (i = 0; i < BUF_LOCKS; i++) 1319 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 1320 kmem_cache_destroy(hdr_full_cache); 1321 kmem_cache_destroy(hdr_l2only_cache); 1322 kmem_cache_destroy(buf_cache); 1323 } 1324 1325 /* 1326 * Constructor callback - called when the cache is empty 1327 * and a new buf is requested. 1328 */ 1329 /* ARGSUSED */ 1330 static int 1331 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1332 { 1333 arc_buf_hdr_t *hdr = vbuf; 1334 1335 bzero(hdr, HDR_FULL_SIZE); 1336 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1337 refcount_create(&hdr->b_l1hdr.b_refcnt); 1338 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1339 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1340 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1341 1342 return (0); 1343 } 1344 1345 /* ARGSUSED */ 1346 static int 1347 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1348 { 1349 arc_buf_hdr_t *hdr = vbuf; 1350 1351 bzero(hdr, HDR_L2ONLY_SIZE); 1352 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1353 1354 return (0); 1355 } 1356 1357 /* ARGSUSED */ 1358 static int 1359 buf_cons(void *vbuf, void *unused, int kmflag) 1360 { 1361 arc_buf_t *buf = vbuf; 1362 1363 bzero(buf, sizeof (arc_buf_t)); 1364 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1365 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1366 1367 return (0); 1368 } 1369 1370 /* 1371 * Destructor callback - called when a cached buf is 1372 * no longer required. 1373 */ 1374 /* ARGSUSED */ 1375 static void 1376 hdr_full_dest(void *vbuf, void *unused) 1377 { 1378 arc_buf_hdr_t *hdr = vbuf; 1379 1380 ASSERT(HDR_EMPTY(hdr)); 1381 cv_destroy(&hdr->b_l1hdr.b_cv); 1382 refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1383 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1384 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1385 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1386 } 1387 1388 /* ARGSUSED */ 1389 static void 1390 hdr_l2only_dest(void *vbuf, void *unused) 1391 { 1392 arc_buf_hdr_t *hdr = vbuf; 1393 1394 ASSERT(HDR_EMPTY(hdr)); 1395 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1396 } 1397 1398 /* ARGSUSED */ 1399 static void 1400 buf_dest(void *vbuf, void *unused) 1401 { 1402 arc_buf_t *buf = vbuf; 1403 1404 mutex_destroy(&buf->b_evict_lock); 1405 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1406 } 1407 1408 /* 1409 * Reclaim callback -- invoked when memory is low. 1410 */ 1411 /* ARGSUSED */ 1412 static void 1413 hdr_recl(void *unused) 1414 { 1415 dprintf("hdr_recl called\n"); 1416 /* 1417 * umem calls the reclaim func when we destroy the buf cache, 1418 * which is after we do arc_fini(). 1419 */ 1420 if (arc_initialized) 1421 zthr_wakeup(arc_reap_zthr); 1422 } 1423 1424 static void 1425 buf_init(void) 1426 { 1427 uint64_t *ct; 1428 uint64_t hsize = 1ULL << 12; 1429 int i, j; 1430 1431 /* 1432 * The hash table is big enough to fill all of physical memory 1433 * with an average block size of zfs_arc_average_blocksize (default 8K). 1434 * By default, the table will take up 1435 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1436 */ 1437 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 1438 hsize <<= 1; 1439 retry: 1440 buf_hash_table.ht_mask = hsize - 1; 1441 buf_hash_table.ht_table = 1442 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1443 if (buf_hash_table.ht_table == NULL) { 1444 ASSERT(hsize > (1ULL << 8)); 1445 hsize >>= 1; 1446 goto retry; 1447 } 1448 1449 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1450 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0); 1451 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1452 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl, 1453 NULL, NULL, 0); 1454 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1455 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1456 1457 for (i = 0; i < 256; i++) 1458 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1459 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1460 1461 for (i = 0; i < BUF_LOCKS; i++) { 1462 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1463 NULL, MUTEX_DEFAULT, NULL); 1464 } 1465 } 1466 1467 /* 1468 * This is the size that the buf occupies in memory. If the buf is compressed, 1469 * it will correspond to the compressed size. You should use this method of 1470 * getting the buf size unless you explicitly need the logical size. 1471 */ 1472 int32_t 1473 arc_buf_size(arc_buf_t *buf) 1474 { 1475 return (ARC_BUF_COMPRESSED(buf) ? 1476 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1477 } 1478 1479 int32_t 1480 arc_buf_lsize(arc_buf_t *buf) 1481 { 1482 return (HDR_GET_LSIZE(buf->b_hdr)); 1483 } 1484 1485 enum zio_compress 1486 arc_get_compression(arc_buf_t *buf) 1487 { 1488 return (ARC_BUF_COMPRESSED(buf) ? 1489 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1490 } 1491 1492 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1493 1494 static inline boolean_t 1495 arc_buf_is_shared(arc_buf_t *buf) 1496 { 1497 boolean_t shared = (buf->b_data != NULL && 1498 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1499 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1500 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1501 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1502 IMPLY(shared, ARC_BUF_SHARED(buf)); 1503 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1504 1505 /* 1506 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1507 * already being shared" requirement prevents us from doing that. 1508 */ 1509 1510 return (shared); 1511 } 1512 1513 /* 1514 * Free the checksum associated with this header. If there is no checksum, this 1515 * is a no-op. 1516 */ 1517 static inline void 1518 arc_cksum_free(arc_buf_hdr_t *hdr) 1519 { 1520 ASSERT(HDR_HAS_L1HDR(hdr)); 1521 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1522 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1523 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1524 hdr->b_l1hdr.b_freeze_cksum = NULL; 1525 } 1526 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1527 } 1528 1529 /* 1530 * Return true iff at least one of the bufs on hdr is not compressed. 1531 */ 1532 static boolean_t 1533 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1534 { 1535 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1536 if (!ARC_BUF_COMPRESSED(b)) { 1537 return (B_TRUE); 1538 } 1539 } 1540 return (B_FALSE); 1541 } 1542 1543 /* 1544 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1545 * matches the checksum that is stored in the hdr. If there is no checksum, 1546 * or if the buf is compressed, this is a no-op. 1547 */ 1548 static void 1549 arc_cksum_verify(arc_buf_t *buf) 1550 { 1551 arc_buf_hdr_t *hdr = buf->b_hdr; 1552 zio_cksum_t zc; 1553 1554 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1555 return; 1556 1557 if (ARC_BUF_COMPRESSED(buf)) { 1558 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL || 1559 arc_hdr_has_uncompressed_buf(hdr)); 1560 return; 1561 } 1562 1563 ASSERT(HDR_HAS_L1HDR(hdr)); 1564 1565 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1566 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1567 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1568 return; 1569 } 1570 1571 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1572 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1573 panic("buffer modified while frozen!"); 1574 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1575 } 1576 1577 static boolean_t 1578 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1579 { 1580 enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp); 1581 boolean_t valid_cksum; 1582 1583 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1584 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1585 1586 /* 1587 * We rely on the blkptr's checksum to determine if the block 1588 * is valid or not. When compressed arc is enabled, the l2arc 1589 * writes the block to the l2arc just as it appears in the pool. 1590 * This allows us to use the blkptr's checksum to validate the 1591 * data that we just read off of the l2arc without having to store 1592 * a separate checksum in the arc_buf_hdr_t. However, if compressed 1593 * arc is disabled, then the data written to the l2arc is always 1594 * uncompressed and won't match the block as it exists in the main 1595 * pool. When this is the case, we must first compress it if it is 1596 * compressed on the main pool before we can validate the checksum. 1597 */ 1598 if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) { 1599 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1600 uint64_t lsize = HDR_GET_LSIZE(hdr); 1601 uint64_t csize; 1602 1603 abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE); 1604 csize = zio_compress_data(compress, zio->io_abd, 1605 abd_to_buf(cdata), lsize); 1606 1607 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr)); 1608 if (csize < HDR_GET_PSIZE(hdr)) { 1609 /* 1610 * Compressed blocks are always a multiple of the 1611 * smallest ashift in the pool. Ideally, we would 1612 * like to round up the csize to the next 1613 * spa_min_ashift but that value may have changed 1614 * since the block was last written. Instead, 1615 * we rely on the fact that the hdr's psize 1616 * was set to the psize of the block when it was 1617 * last written. We set the csize to that value 1618 * and zero out any part that should not contain 1619 * data. 1620 */ 1621 abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize); 1622 csize = HDR_GET_PSIZE(hdr); 1623 } 1624 zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL); 1625 } 1626 1627 /* 1628 * Block pointers always store the checksum for the logical data. 1629 * If the block pointer has the gang bit set, then the checksum 1630 * it represents is for the reconstituted data and not for an 1631 * individual gang member. The zio pipeline, however, must be able to 1632 * determine the checksum of each of the gang constituents so it 1633 * treats the checksum comparison differently than what we need 1634 * for l2arc blocks. This prevents us from using the 1635 * zio_checksum_error() interface directly. Instead we must call the 1636 * zio_checksum_error_impl() so that we can ensure the checksum is 1637 * generated using the correct checksum algorithm and accounts for the 1638 * logical I/O size and not just a gang fragment. 1639 */ 1640 valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1641 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1642 zio->io_offset, NULL) == 0); 1643 zio_pop_transforms(zio); 1644 return (valid_cksum); 1645 } 1646 1647 /* 1648 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1649 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1650 * isn't modified later on. If buf is compressed or there is already a checksum 1651 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1652 */ 1653 static void 1654 arc_cksum_compute(arc_buf_t *buf) 1655 { 1656 arc_buf_hdr_t *hdr = buf->b_hdr; 1657 1658 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1659 return; 1660 1661 ASSERT(HDR_HAS_L1HDR(hdr)); 1662 1663 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1664 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1665 ASSERT(arc_hdr_has_uncompressed_buf(hdr)); 1666 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1667 return; 1668 } else if (ARC_BUF_COMPRESSED(buf)) { 1669 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1670 return; 1671 } 1672 1673 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1674 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1675 KM_SLEEP); 1676 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1677 hdr->b_l1hdr.b_freeze_cksum); 1678 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1679 arc_buf_watch(buf); 1680 } 1681 1682 #ifndef _KERNEL 1683 typedef struct procctl { 1684 long cmd; 1685 prwatch_t prwatch; 1686 } procctl_t; 1687 #endif 1688 1689 /* ARGSUSED */ 1690 static void 1691 arc_buf_unwatch(arc_buf_t *buf) 1692 { 1693 #ifndef _KERNEL 1694 if (arc_watch) { 1695 int result; 1696 procctl_t ctl; 1697 ctl.cmd = PCWATCH; 1698 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1699 ctl.prwatch.pr_size = 0; 1700 ctl.prwatch.pr_wflags = 0; 1701 result = write(arc_procfd, &ctl, sizeof (ctl)); 1702 ASSERT3U(result, ==, sizeof (ctl)); 1703 } 1704 #endif 1705 } 1706 1707 /* ARGSUSED */ 1708 static void 1709 arc_buf_watch(arc_buf_t *buf) 1710 { 1711 #ifndef _KERNEL 1712 if (arc_watch) { 1713 int result; 1714 procctl_t ctl; 1715 ctl.cmd = PCWATCH; 1716 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1717 ctl.prwatch.pr_size = arc_buf_size(buf); 1718 ctl.prwatch.pr_wflags = WA_WRITE; 1719 result = write(arc_procfd, &ctl, sizeof (ctl)); 1720 ASSERT3U(result, ==, sizeof (ctl)); 1721 } 1722 #endif 1723 } 1724 1725 static arc_buf_contents_t 1726 arc_buf_type(arc_buf_hdr_t *hdr) 1727 { 1728 arc_buf_contents_t type; 1729 if (HDR_ISTYPE_METADATA(hdr)) { 1730 type = ARC_BUFC_METADATA; 1731 } else { 1732 type = ARC_BUFC_DATA; 1733 } 1734 VERIFY3U(hdr->b_type, ==, type); 1735 return (type); 1736 } 1737 1738 boolean_t 1739 arc_is_metadata(arc_buf_t *buf) 1740 { 1741 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1742 } 1743 1744 static uint32_t 1745 arc_bufc_to_flags(arc_buf_contents_t type) 1746 { 1747 switch (type) { 1748 case ARC_BUFC_DATA: 1749 /* metadata field is 0 if buffer contains normal data */ 1750 return (0); 1751 case ARC_BUFC_METADATA: 1752 return (ARC_FLAG_BUFC_METADATA); 1753 default: 1754 break; 1755 } 1756 panic("undefined ARC buffer type!"); 1757 return ((uint32_t)-1); 1758 } 1759 1760 void 1761 arc_buf_thaw(arc_buf_t *buf) 1762 { 1763 arc_buf_hdr_t *hdr = buf->b_hdr; 1764 1765 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1766 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1767 1768 arc_cksum_verify(buf); 1769 1770 /* 1771 * Compressed buffers do not manipulate the b_freeze_cksum or 1772 * allocate b_thawed. 1773 */ 1774 if (ARC_BUF_COMPRESSED(buf)) { 1775 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL || 1776 arc_hdr_has_uncompressed_buf(hdr)); 1777 return; 1778 } 1779 1780 ASSERT(HDR_HAS_L1HDR(hdr)); 1781 arc_cksum_free(hdr); 1782 1783 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1784 #ifdef ZFS_DEBUG 1785 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1786 if (hdr->b_l1hdr.b_thawed != NULL) 1787 kmem_free(hdr->b_l1hdr.b_thawed, 1); 1788 hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP); 1789 } 1790 #endif 1791 1792 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1793 1794 arc_buf_unwatch(buf); 1795 } 1796 1797 void 1798 arc_buf_freeze(arc_buf_t *buf) 1799 { 1800 arc_buf_hdr_t *hdr = buf->b_hdr; 1801 kmutex_t *hash_lock; 1802 1803 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1804 return; 1805 1806 if (ARC_BUF_COMPRESSED(buf)) { 1807 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL || 1808 arc_hdr_has_uncompressed_buf(hdr)); 1809 return; 1810 } 1811 1812 hash_lock = HDR_LOCK(hdr); 1813 mutex_enter(hash_lock); 1814 1815 ASSERT(HDR_HAS_L1HDR(hdr)); 1816 ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL || 1817 hdr->b_l1hdr.b_state == arc_anon); 1818 arc_cksum_compute(buf); 1819 mutex_exit(hash_lock); 1820 } 1821 1822 /* 1823 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1824 * the following functions should be used to ensure that the flags are 1825 * updated in a thread-safe way. When manipulating the flags either 1826 * the hash_lock must be held or the hdr must be undiscoverable. This 1827 * ensures that we're not racing with any other threads when updating 1828 * the flags. 1829 */ 1830 static inline void 1831 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1832 { 1833 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1834 hdr->b_flags |= flags; 1835 } 1836 1837 static inline void 1838 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1839 { 1840 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1841 hdr->b_flags &= ~flags; 1842 } 1843 1844 /* 1845 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1846 * done in a special way since we have to clear and set bits 1847 * at the same time. Consumers that wish to set the compression bits 1848 * must use this function to ensure that the flags are updated in 1849 * thread-safe manner. 1850 */ 1851 static void 1852 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1853 { 1854 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 1855 1856 /* 1857 * Holes and embedded blocks will always have a psize = 0 so 1858 * we ignore the compression of the blkptr and set the 1859 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF. 1860 * Holes and embedded blocks remain anonymous so we don't 1861 * want to uncompress them. Mark them as uncompressed. 1862 */ 1863 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1864 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1865 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 1866 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1867 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1868 } else { 1869 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1870 HDR_SET_COMPRESS(hdr, cmp); 1871 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1872 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1873 } 1874 } 1875 1876 /* 1877 * Looks for another buf on the same hdr which has the data decompressed, copies 1878 * from it, and returns true. If no such buf exists, returns false. 1879 */ 1880 static boolean_t 1881 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1882 { 1883 arc_buf_hdr_t *hdr = buf->b_hdr; 1884 boolean_t copied = B_FALSE; 1885 1886 ASSERT(HDR_HAS_L1HDR(hdr)); 1887 ASSERT3P(buf->b_data, !=, NULL); 1888 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1889 1890 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1891 from = from->b_next) { 1892 /* can't use our own data buffer */ 1893 if (from == buf) { 1894 continue; 1895 } 1896 1897 if (!ARC_BUF_COMPRESSED(from)) { 1898 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1899 copied = B_TRUE; 1900 break; 1901 } 1902 } 1903 1904 /* 1905 * There were no decompressed bufs, so there should not be a 1906 * checksum on the hdr either. 1907 */ 1908 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1909 1910 return (copied); 1911 } 1912 1913 /* 1914 * Given a buf that has a data buffer attached to it, this function will 1915 * efficiently fill the buf with data of the specified compression setting from 1916 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1917 * are already sharing a data buf, no copy is performed. 1918 * 1919 * If the buf is marked as compressed but uncompressed data was requested, this 1920 * will allocate a new data buffer for the buf, remove that flag, and fill the 1921 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1922 * uncompressed data, and (since we haven't added support for it yet) if you 1923 * want compressed data your buf must already be marked as compressed and have 1924 * the correct-sized data buffer. 1925 */ 1926 static int 1927 arc_buf_fill(arc_buf_t *buf, boolean_t compressed) 1928 { 1929 arc_buf_hdr_t *hdr = buf->b_hdr; 1930 boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF); 1931 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 1932 1933 ASSERT3P(buf->b_data, !=, NULL); 1934 IMPLY(compressed, hdr_compressed); 1935 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 1936 1937 if (hdr_compressed == compressed) { 1938 if (!arc_buf_is_shared(buf)) { 1939 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 1940 arc_buf_size(buf)); 1941 } 1942 } else { 1943 ASSERT(hdr_compressed); 1944 ASSERT(!compressed); 1945 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 1946 1947 /* 1948 * If the buf is sharing its data with the hdr, unlink it and 1949 * allocate a new data buffer for the buf. 1950 */ 1951 if (arc_buf_is_shared(buf)) { 1952 ASSERT(ARC_BUF_COMPRESSED(buf)); 1953 1954 /* We need to give the buf it's own b_data */ 1955 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 1956 buf->b_data = 1957 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 1958 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 1959 1960 /* Previously overhead was 0; just add new overhead */ 1961 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 1962 } else if (ARC_BUF_COMPRESSED(buf)) { 1963 /* We need to reallocate the buf's b_data */ 1964 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 1965 buf); 1966 buf->b_data = 1967 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 1968 1969 /* We increased the size of b_data; update overhead */ 1970 ARCSTAT_INCR(arcstat_overhead_size, 1971 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 1972 } 1973 1974 /* 1975 * Regardless of the buf's previous compression settings, it 1976 * should not be compressed at the end of this function. 1977 */ 1978 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1979 1980 /* 1981 * Try copying the data from another buf which already has a 1982 * decompressed version. If that's not possible, it's time to 1983 * bite the bullet and decompress the data from the hdr. 1984 */ 1985 if (arc_buf_try_copy_decompressed_data(buf)) { 1986 /* Skip byteswapping and checksumming (already done) */ 1987 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL); 1988 return (0); 1989 } else { 1990 int error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1991 hdr->b_l1hdr.b_pabd, buf->b_data, 1992 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 1993 1994 /* 1995 * Absent hardware errors or software bugs, this should 1996 * be impossible, but log it anyway so we can debug it. 1997 */ 1998 if (error != 0) { 1999 zfs_dbgmsg( 2000 "hdr %p, compress %d, psize %d, lsize %d", 2001 hdr, HDR_GET_COMPRESS(hdr), 2002 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2003 return (SET_ERROR(EIO)); 2004 } 2005 } 2006 } 2007 2008 /* Byteswap the buf's data if necessary */ 2009 if (bswap != DMU_BSWAP_NUMFUNCS) { 2010 ASSERT(!HDR_SHARED_DATA(hdr)); 2011 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2012 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2013 } 2014 2015 /* Compute the hdr's checksum if necessary */ 2016 arc_cksum_compute(buf); 2017 2018 return (0); 2019 } 2020 2021 int 2022 arc_decompress(arc_buf_t *buf) 2023 { 2024 return (arc_buf_fill(buf, B_FALSE)); 2025 } 2026 2027 /* 2028 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 2029 */ 2030 static uint64_t 2031 arc_hdr_size(arc_buf_hdr_t *hdr) 2032 { 2033 uint64_t size; 2034 2035 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 2036 HDR_GET_PSIZE(hdr) > 0) { 2037 size = HDR_GET_PSIZE(hdr); 2038 } else { 2039 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 2040 size = HDR_GET_LSIZE(hdr); 2041 } 2042 return (size); 2043 } 2044 2045 /* 2046 * Increment the amount of evictable space in the arc_state_t's refcount. 2047 * We account for the space used by the hdr and the arc buf individually 2048 * so that we can add and remove them from the refcount individually. 2049 */ 2050 static void 2051 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2052 { 2053 arc_buf_contents_t type = arc_buf_type(hdr); 2054 2055 ASSERT(HDR_HAS_L1HDR(hdr)); 2056 2057 if (GHOST_STATE(state)) { 2058 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2059 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2060 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2061 (void) refcount_add_many(&state->arcs_esize[type], 2062 HDR_GET_LSIZE(hdr), hdr); 2063 return; 2064 } 2065 2066 ASSERT(!GHOST_STATE(state)); 2067 if (hdr->b_l1hdr.b_pabd != NULL) { 2068 (void) refcount_add_many(&state->arcs_esize[type], 2069 arc_hdr_size(hdr), hdr); 2070 } 2071 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2072 buf = buf->b_next) { 2073 if (arc_buf_is_shared(buf)) 2074 continue; 2075 (void) refcount_add_many(&state->arcs_esize[type], 2076 arc_buf_size(buf), buf); 2077 } 2078 } 2079 2080 /* 2081 * Decrement the amount of evictable space in the arc_state_t's refcount. 2082 * We account for the space used by the hdr and the arc buf individually 2083 * so that we can add and remove them from the refcount individually. 2084 */ 2085 static void 2086 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2087 { 2088 arc_buf_contents_t type = arc_buf_type(hdr); 2089 2090 ASSERT(HDR_HAS_L1HDR(hdr)); 2091 2092 if (GHOST_STATE(state)) { 2093 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2094 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2095 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2096 (void) refcount_remove_many(&state->arcs_esize[type], 2097 HDR_GET_LSIZE(hdr), hdr); 2098 return; 2099 } 2100 2101 ASSERT(!GHOST_STATE(state)); 2102 if (hdr->b_l1hdr.b_pabd != NULL) { 2103 (void) refcount_remove_many(&state->arcs_esize[type], 2104 arc_hdr_size(hdr), hdr); 2105 } 2106 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2107 buf = buf->b_next) { 2108 if (arc_buf_is_shared(buf)) 2109 continue; 2110 (void) refcount_remove_many(&state->arcs_esize[type], 2111 arc_buf_size(buf), buf); 2112 } 2113 } 2114 2115 /* 2116 * Add a reference to this hdr indicating that someone is actively 2117 * referencing that memory. When the refcount transitions from 0 to 1, 2118 * we remove it from the respective arc_state_t list to indicate that 2119 * it is not evictable. 2120 */ 2121 static void 2122 add_reference(arc_buf_hdr_t *hdr, void *tag) 2123 { 2124 ASSERT(HDR_HAS_L1HDR(hdr)); 2125 if (!MUTEX_HELD(HDR_LOCK(hdr))) { 2126 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2127 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2128 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2129 } 2130 2131 arc_state_t *state = hdr->b_l1hdr.b_state; 2132 2133 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2134 (state != arc_anon)) { 2135 /* We don't use the L2-only state list. */ 2136 if (state != arc_l2c_only) { 2137 multilist_remove(state->arcs_list[arc_buf_type(hdr)], 2138 hdr); 2139 arc_evictable_space_decrement(hdr, state); 2140 } 2141 /* remove the prefetch flag if we get a reference */ 2142 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2143 } 2144 } 2145 2146 /* 2147 * Remove a reference from this hdr. When the reference transitions from 2148 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2149 * list making it eligible for eviction. 2150 */ 2151 static int 2152 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2153 { 2154 int cnt; 2155 arc_state_t *state = hdr->b_l1hdr.b_state; 2156 2157 ASSERT(HDR_HAS_L1HDR(hdr)); 2158 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2159 ASSERT(!GHOST_STATE(state)); 2160 2161 /* 2162 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2163 * check to prevent usage of the arc_l2c_only list. 2164 */ 2165 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2166 (state != arc_anon)) { 2167 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr); 2168 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2169 arc_evictable_space_increment(hdr, state); 2170 } 2171 return (cnt); 2172 } 2173 2174 /* 2175 * Move the supplied buffer to the indicated state. The hash lock 2176 * for the buffer must be held by the caller. 2177 */ 2178 static void 2179 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2180 kmutex_t *hash_lock) 2181 { 2182 arc_state_t *old_state; 2183 int64_t refcnt; 2184 uint32_t bufcnt; 2185 boolean_t update_old, update_new; 2186 arc_buf_contents_t buftype = arc_buf_type(hdr); 2187 2188 /* 2189 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2190 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2191 * L1 hdr doesn't always exist when we change state to arc_anon before 2192 * destroying a header, in which case reallocating to add the L1 hdr is 2193 * pointless. 2194 */ 2195 if (HDR_HAS_L1HDR(hdr)) { 2196 old_state = hdr->b_l1hdr.b_state; 2197 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt); 2198 bufcnt = hdr->b_l1hdr.b_bufcnt; 2199 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL); 2200 } else { 2201 old_state = arc_l2c_only; 2202 refcnt = 0; 2203 bufcnt = 0; 2204 update_old = B_FALSE; 2205 } 2206 update_new = update_old; 2207 2208 ASSERT(MUTEX_HELD(hash_lock)); 2209 ASSERT3P(new_state, !=, old_state); 2210 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2211 ASSERT(old_state != arc_anon || bufcnt <= 1); 2212 2213 /* 2214 * If this buffer is evictable, transfer it from the 2215 * old state list to the new state list. 2216 */ 2217 if (refcnt == 0) { 2218 if (old_state != arc_anon && old_state != arc_l2c_only) { 2219 ASSERT(HDR_HAS_L1HDR(hdr)); 2220 multilist_remove(old_state->arcs_list[buftype], hdr); 2221 2222 if (GHOST_STATE(old_state)) { 2223 ASSERT0(bufcnt); 2224 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2225 update_old = B_TRUE; 2226 } 2227 arc_evictable_space_decrement(hdr, old_state); 2228 } 2229 if (new_state != arc_anon && new_state != arc_l2c_only) { 2230 2231 /* 2232 * An L1 header always exists here, since if we're 2233 * moving to some L1-cached state (i.e. not l2c_only or 2234 * anonymous), we realloc the header to add an L1hdr 2235 * beforehand. 2236 */ 2237 ASSERT(HDR_HAS_L1HDR(hdr)); 2238 multilist_insert(new_state->arcs_list[buftype], hdr); 2239 2240 if (GHOST_STATE(new_state)) { 2241 ASSERT0(bufcnt); 2242 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2243 update_new = B_TRUE; 2244 } 2245 arc_evictable_space_increment(hdr, new_state); 2246 } 2247 } 2248 2249 ASSERT(!HDR_EMPTY(hdr)); 2250 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2251 buf_hash_remove(hdr); 2252 2253 /* adjust state sizes (ignore arc_l2c_only) */ 2254 2255 if (update_new && new_state != arc_l2c_only) { 2256 ASSERT(HDR_HAS_L1HDR(hdr)); 2257 if (GHOST_STATE(new_state)) { 2258 ASSERT0(bufcnt); 2259 2260 /* 2261 * When moving a header to a ghost state, we first 2262 * remove all arc buffers. Thus, we'll have a 2263 * bufcnt of zero, and no arc buffer to use for 2264 * the reference. As a result, we use the arc 2265 * header pointer for the reference. 2266 */ 2267 (void) refcount_add_many(&new_state->arcs_size, 2268 HDR_GET_LSIZE(hdr), hdr); 2269 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2270 } else { 2271 uint32_t buffers = 0; 2272 2273 /* 2274 * Each individual buffer holds a unique reference, 2275 * thus we must remove each of these references one 2276 * at a time. 2277 */ 2278 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2279 buf = buf->b_next) { 2280 ASSERT3U(bufcnt, !=, 0); 2281 buffers++; 2282 2283 /* 2284 * When the arc_buf_t is sharing the data 2285 * block with the hdr, the owner of the 2286 * reference belongs to the hdr. Only 2287 * add to the refcount if the arc_buf_t is 2288 * not shared. 2289 */ 2290 if (arc_buf_is_shared(buf)) 2291 continue; 2292 2293 (void) refcount_add_many(&new_state->arcs_size, 2294 arc_buf_size(buf), buf); 2295 } 2296 ASSERT3U(bufcnt, ==, buffers); 2297 2298 if (hdr->b_l1hdr.b_pabd != NULL) { 2299 (void) refcount_add_many(&new_state->arcs_size, 2300 arc_hdr_size(hdr), hdr); 2301 } else { 2302 ASSERT(GHOST_STATE(old_state)); 2303 } 2304 } 2305 } 2306 2307 if (update_old && old_state != arc_l2c_only) { 2308 ASSERT(HDR_HAS_L1HDR(hdr)); 2309 if (GHOST_STATE(old_state)) { 2310 ASSERT0(bufcnt); 2311 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2312 2313 /* 2314 * When moving a header off of a ghost state, 2315 * the header will not contain any arc buffers. 2316 * We use the arc header pointer for the reference 2317 * which is exactly what we did when we put the 2318 * header on the ghost state. 2319 */ 2320 2321 (void) refcount_remove_many(&old_state->arcs_size, 2322 HDR_GET_LSIZE(hdr), hdr); 2323 } else { 2324 uint32_t buffers = 0; 2325 2326 /* 2327 * Each individual buffer holds a unique reference, 2328 * thus we must remove each of these references one 2329 * at a time. 2330 */ 2331 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2332 buf = buf->b_next) { 2333 ASSERT3U(bufcnt, !=, 0); 2334 buffers++; 2335 2336 /* 2337 * When the arc_buf_t is sharing the data 2338 * block with the hdr, the owner of the 2339 * reference belongs to the hdr. Only 2340 * add to the refcount if the arc_buf_t is 2341 * not shared. 2342 */ 2343 if (arc_buf_is_shared(buf)) 2344 continue; 2345 2346 (void) refcount_remove_many( 2347 &old_state->arcs_size, arc_buf_size(buf), 2348 buf); 2349 } 2350 ASSERT3U(bufcnt, ==, buffers); 2351 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2352 (void) refcount_remove_many( 2353 &old_state->arcs_size, arc_hdr_size(hdr), hdr); 2354 } 2355 } 2356 2357 if (HDR_HAS_L1HDR(hdr)) 2358 hdr->b_l1hdr.b_state = new_state; 2359 2360 /* 2361 * L2 headers should never be on the L2 state list since they don't 2362 * have L1 headers allocated. 2363 */ 2364 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2365 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2366 } 2367 2368 void 2369 arc_space_consume(uint64_t space, arc_space_type_t type) 2370 { 2371 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2372 2373 switch (type) { 2374 case ARC_SPACE_DATA: 2375 aggsum_add(&astat_data_size, space); 2376 break; 2377 case ARC_SPACE_META: 2378 aggsum_add(&astat_metadata_size, space); 2379 break; 2380 case ARC_SPACE_OTHER: 2381 aggsum_add(&astat_other_size, space); 2382 break; 2383 case ARC_SPACE_HDRS: 2384 aggsum_add(&astat_hdr_size, space); 2385 break; 2386 case ARC_SPACE_L2HDRS: 2387 aggsum_add(&astat_l2_hdr_size, space); 2388 break; 2389 } 2390 2391 if (type != ARC_SPACE_DATA) 2392 aggsum_add(&arc_meta_used, space); 2393 2394 aggsum_add(&arc_size, space); 2395 } 2396 2397 void 2398 arc_space_return(uint64_t space, arc_space_type_t type) 2399 { 2400 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2401 2402 switch (type) { 2403 case ARC_SPACE_DATA: 2404 aggsum_add(&astat_data_size, -space); 2405 break; 2406 case ARC_SPACE_META: 2407 aggsum_add(&astat_metadata_size, -space); 2408 break; 2409 case ARC_SPACE_OTHER: 2410 aggsum_add(&astat_other_size, -space); 2411 break; 2412 case ARC_SPACE_HDRS: 2413 aggsum_add(&astat_hdr_size, -space); 2414 break; 2415 case ARC_SPACE_L2HDRS: 2416 aggsum_add(&astat_l2_hdr_size, -space); 2417 break; 2418 } 2419 2420 if (type != ARC_SPACE_DATA) { 2421 ASSERT(aggsum_compare(&arc_meta_used, space) >= 0); 2422 /* 2423 * We use the upper bound here rather than the precise value 2424 * because the arc_meta_max value doesn't need to be 2425 * precise. It's only consumed by humans via arcstats. 2426 */ 2427 if (arc_meta_max < aggsum_upper_bound(&arc_meta_used)) 2428 arc_meta_max = aggsum_upper_bound(&arc_meta_used); 2429 aggsum_add(&arc_meta_used, -space); 2430 } 2431 2432 ASSERT(aggsum_compare(&arc_size, space) >= 0); 2433 aggsum_add(&arc_size, -space); 2434 } 2435 2436 /* 2437 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2438 * with the hdr's b_pabd. 2439 */ 2440 static boolean_t 2441 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2442 { 2443 /* 2444 * The criteria for sharing a hdr's data are: 2445 * 1. the hdr's compression matches the buf's compression 2446 * 2. the hdr doesn't need to be byteswapped 2447 * 3. the hdr isn't already being shared 2448 * 4. the buf is either compressed or it is the last buf in the hdr list 2449 * 2450 * Criterion #4 maintains the invariant that shared uncompressed 2451 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2452 * might ask, "if a compressed buf is allocated first, won't that be the 2453 * last thing in the list?", but in that case it's impossible to create 2454 * a shared uncompressed buf anyway (because the hdr must be compressed 2455 * to have the compressed buf). You might also think that #3 is 2456 * sufficient to make this guarantee, however it's possible 2457 * (specifically in the rare L2ARC write race mentioned in 2458 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2459 * is sharable, but wasn't at the time of its allocation. Rather than 2460 * allow a new shared uncompressed buf to be created and then shuffle 2461 * the list around to make it the last element, this simply disallows 2462 * sharing if the new buf isn't the first to be added. 2463 */ 2464 ASSERT3P(buf->b_hdr, ==, hdr); 2465 boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF; 2466 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2467 return (buf_compressed == hdr_compressed && 2468 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2469 !HDR_SHARED_DATA(hdr) && 2470 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2471 } 2472 2473 /* 2474 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2475 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2476 * copy was made successfully, or an error code otherwise. 2477 */ 2478 static int 2479 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed, 2480 boolean_t fill, arc_buf_t **ret) 2481 { 2482 arc_buf_t *buf; 2483 2484 ASSERT(HDR_HAS_L1HDR(hdr)); 2485 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2486 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2487 hdr->b_type == ARC_BUFC_METADATA); 2488 ASSERT3P(ret, !=, NULL); 2489 ASSERT3P(*ret, ==, NULL); 2490 2491 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2492 buf->b_hdr = hdr; 2493 buf->b_data = NULL; 2494 buf->b_next = hdr->b_l1hdr.b_buf; 2495 buf->b_flags = 0; 2496 2497 add_reference(hdr, tag); 2498 2499 /* 2500 * We're about to change the hdr's b_flags. We must either 2501 * hold the hash_lock or be undiscoverable. 2502 */ 2503 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2504 2505 /* 2506 * Only honor requests for compressed bufs if the hdr is actually 2507 * compressed. 2508 */ 2509 if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) 2510 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2511 2512 /* 2513 * If the hdr's data can be shared then we share the data buffer and 2514 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2515 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2516 * buffer to store the buf's data. 2517 * 2518 * There are two additional restrictions here because we're sharing 2519 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2520 * actively involved in an L2ARC write, because if this buf is used by 2521 * an arc_write() then the hdr's data buffer will be released when the 2522 * write completes, even though the L2ARC write might still be using it. 2523 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2524 * need to be ABD-aware. 2525 */ 2526 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) && 2527 abd_is_linear(hdr->b_l1hdr.b_pabd); 2528 2529 /* Set up b_data and sharing */ 2530 if (can_share) { 2531 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2532 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2533 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2534 } else { 2535 buf->b_data = 2536 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2537 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2538 } 2539 VERIFY3P(buf->b_data, !=, NULL); 2540 2541 hdr->b_l1hdr.b_buf = buf; 2542 hdr->b_l1hdr.b_bufcnt += 1; 2543 2544 /* 2545 * If the user wants the data from the hdr, we need to either copy or 2546 * decompress the data. 2547 */ 2548 if (fill) { 2549 return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0)); 2550 } 2551 2552 return (0); 2553 } 2554 2555 static char *arc_onloan_tag = "onloan"; 2556 2557 static inline void 2558 arc_loaned_bytes_update(int64_t delta) 2559 { 2560 atomic_add_64(&arc_loaned_bytes, delta); 2561 2562 /* assert that it did not wrap around */ 2563 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2564 } 2565 2566 /* 2567 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2568 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2569 * buffers must be returned to the arc before they can be used by the DMU or 2570 * freed. 2571 */ 2572 arc_buf_t * 2573 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2574 { 2575 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2576 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2577 2578 arc_loaned_bytes_update(arc_buf_size(buf)); 2579 2580 return (buf); 2581 } 2582 2583 arc_buf_t * 2584 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2585 enum zio_compress compression_type) 2586 { 2587 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2588 psize, lsize, compression_type); 2589 2590 arc_loaned_bytes_update(arc_buf_size(buf)); 2591 2592 return (buf); 2593 } 2594 2595 2596 /* 2597 * Return a loaned arc buffer to the arc. 2598 */ 2599 void 2600 arc_return_buf(arc_buf_t *buf, void *tag) 2601 { 2602 arc_buf_hdr_t *hdr = buf->b_hdr; 2603 2604 ASSERT3P(buf->b_data, !=, NULL); 2605 ASSERT(HDR_HAS_L1HDR(hdr)); 2606 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2607 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2608 2609 arc_loaned_bytes_update(-arc_buf_size(buf)); 2610 } 2611 2612 /* Detach an arc_buf from a dbuf (tag) */ 2613 void 2614 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2615 { 2616 arc_buf_hdr_t *hdr = buf->b_hdr; 2617 2618 ASSERT3P(buf->b_data, !=, NULL); 2619 ASSERT(HDR_HAS_L1HDR(hdr)); 2620 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2621 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2622 2623 arc_loaned_bytes_update(arc_buf_size(buf)); 2624 } 2625 2626 static void 2627 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2628 { 2629 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2630 2631 df->l2df_abd = abd; 2632 df->l2df_size = size; 2633 df->l2df_type = type; 2634 mutex_enter(&l2arc_free_on_write_mtx); 2635 list_insert_head(l2arc_free_on_write, df); 2636 mutex_exit(&l2arc_free_on_write_mtx); 2637 } 2638 2639 static void 2640 arc_hdr_free_on_write(arc_buf_hdr_t *hdr) 2641 { 2642 arc_state_t *state = hdr->b_l1hdr.b_state; 2643 arc_buf_contents_t type = arc_buf_type(hdr); 2644 uint64_t size = arc_hdr_size(hdr); 2645 2646 /* protected by hash lock, if in the hash table */ 2647 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2648 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2649 ASSERT(state != arc_anon && state != arc_l2c_only); 2650 2651 (void) refcount_remove_many(&state->arcs_esize[type], 2652 size, hdr); 2653 } 2654 (void) refcount_remove_many(&state->arcs_size, size, hdr); 2655 if (type == ARC_BUFC_METADATA) { 2656 arc_space_return(size, ARC_SPACE_META); 2657 } else { 2658 ASSERT(type == ARC_BUFC_DATA); 2659 arc_space_return(size, ARC_SPACE_DATA); 2660 } 2661 2662 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2663 } 2664 2665 /* 2666 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2667 * data buffer, we transfer the refcount ownership to the hdr and update 2668 * the appropriate kstats. 2669 */ 2670 static void 2671 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2672 { 2673 arc_state_t *state = hdr->b_l1hdr.b_state; 2674 2675 ASSERT(arc_can_share(hdr, buf)); 2676 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2677 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2678 2679 /* 2680 * Start sharing the data buffer. We transfer the 2681 * refcount ownership to the hdr since it always owns 2682 * the refcount whenever an arc_buf_t is shared. 2683 */ 2684 refcount_transfer_ownership(&state->arcs_size, buf, hdr); 2685 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 2686 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 2687 HDR_ISTYPE_METADATA(hdr)); 2688 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2689 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2690 2691 /* 2692 * Since we've transferred ownership to the hdr we need 2693 * to increment its compressed and uncompressed kstats and 2694 * decrement the overhead size. 2695 */ 2696 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2697 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2698 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 2699 } 2700 2701 static void 2702 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2703 { 2704 arc_state_t *state = hdr->b_l1hdr.b_state; 2705 2706 ASSERT(arc_buf_is_shared(buf)); 2707 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2708 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2709 2710 /* 2711 * We are no longer sharing this buffer so we need 2712 * to transfer its ownership to the rightful owner. 2713 */ 2714 refcount_transfer_ownership(&state->arcs_size, hdr, buf); 2715 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2716 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 2717 abd_put(hdr->b_l1hdr.b_pabd); 2718 hdr->b_l1hdr.b_pabd = NULL; 2719 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2720 2721 /* 2722 * Since the buffer is no longer shared between 2723 * the arc buf and the hdr, count it as overhead. 2724 */ 2725 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2726 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2727 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2728 } 2729 2730 /* 2731 * Remove an arc_buf_t from the hdr's buf list and return the last 2732 * arc_buf_t on the list. If no buffers remain on the list then return 2733 * NULL. 2734 */ 2735 static arc_buf_t * 2736 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2737 { 2738 ASSERT(HDR_HAS_L1HDR(hdr)); 2739 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2740 2741 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 2742 arc_buf_t *lastbuf = NULL; 2743 2744 /* 2745 * Remove the buf from the hdr list and locate the last 2746 * remaining buffer on the list. 2747 */ 2748 while (*bufp != NULL) { 2749 if (*bufp == buf) 2750 *bufp = buf->b_next; 2751 2752 /* 2753 * If we've removed a buffer in the middle of 2754 * the list then update the lastbuf and update 2755 * bufp. 2756 */ 2757 if (*bufp != NULL) { 2758 lastbuf = *bufp; 2759 bufp = &(*bufp)->b_next; 2760 } 2761 } 2762 buf->b_next = NULL; 2763 ASSERT3P(lastbuf, !=, buf); 2764 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 2765 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 2766 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 2767 2768 return (lastbuf); 2769 } 2770 2771 /* 2772 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's 2773 * list and free it. 2774 */ 2775 static void 2776 arc_buf_destroy_impl(arc_buf_t *buf) 2777 { 2778 arc_buf_hdr_t *hdr = buf->b_hdr; 2779 2780 /* 2781 * Free up the data associated with the buf but only if we're not 2782 * sharing this with the hdr. If we are sharing it with the hdr, the 2783 * hdr is responsible for doing the free. 2784 */ 2785 if (buf->b_data != NULL) { 2786 /* 2787 * We're about to change the hdr's b_flags. We must either 2788 * hold the hash_lock or be undiscoverable. 2789 */ 2790 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); 2791 2792 arc_cksum_verify(buf); 2793 arc_buf_unwatch(buf); 2794 2795 if (arc_buf_is_shared(buf)) { 2796 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2797 } else { 2798 uint64_t size = arc_buf_size(buf); 2799 arc_free_data_buf(hdr, buf->b_data, size, buf); 2800 ARCSTAT_INCR(arcstat_overhead_size, -size); 2801 } 2802 buf->b_data = NULL; 2803 2804 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 2805 hdr->b_l1hdr.b_bufcnt -= 1; 2806 } 2807 2808 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 2809 2810 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 2811 /* 2812 * If the current arc_buf_t is sharing its data buffer with the 2813 * hdr, then reassign the hdr's b_pabd to share it with the new 2814 * buffer at the end of the list. The shared buffer is always 2815 * the last one on the hdr's buffer list. 2816 * 2817 * There is an equivalent case for compressed bufs, but since 2818 * they aren't guaranteed to be the last buf in the list and 2819 * that is an exceedingly rare case, we just allow that space be 2820 * wasted temporarily. 2821 */ 2822 if (lastbuf != NULL) { 2823 /* Only one buf can be shared at once */ 2824 VERIFY(!arc_buf_is_shared(lastbuf)); 2825 /* hdr is uncompressed so can't have compressed buf */ 2826 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 2827 2828 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2829 arc_hdr_free_pabd(hdr); 2830 2831 /* 2832 * We must setup a new shared block between the 2833 * last buffer and the hdr. The data would have 2834 * been allocated by the arc buf so we need to transfer 2835 * ownership to the hdr since it's now being shared. 2836 */ 2837 arc_share_buf(hdr, lastbuf); 2838 } 2839 } else if (HDR_SHARED_DATA(hdr)) { 2840 /* 2841 * Uncompressed shared buffers are always at the end 2842 * of the list. Compressed buffers don't have the 2843 * same requirements. This makes it hard to 2844 * simply assert that the lastbuf is shared so 2845 * we rely on the hdr's compression flags to determine 2846 * if we have a compressed, shared buffer. 2847 */ 2848 ASSERT3P(lastbuf, !=, NULL); 2849 ASSERT(arc_buf_is_shared(lastbuf) || 2850 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF); 2851 } 2852 2853 /* 2854 * Free the checksum if we're removing the last uncompressed buf from 2855 * this hdr. 2856 */ 2857 if (!arc_hdr_has_uncompressed_buf(hdr)) { 2858 arc_cksum_free(hdr); 2859 } 2860 2861 /* clean up the buf */ 2862 buf->b_hdr = NULL; 2863 kmem_cache_free(buf_cache, buf); 2864 } 2865 2866 static void 2867 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr) 2868 { 2869 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2870 ASSERT(HDR_HAS_L1HDR(hdr)); 2871 ASSERT(!HDR_SHARED_DATA(hdr)); 2872 2873 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2874 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr); 2875 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 2876 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2877 2878 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 2879 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 2880 } 2881 2882 static void 2883 arc_hdr_free_pabd(arc_buf_hdr_t *hdr) 2884 { 2885 ASSERT(HDR_HAS_L1HDR(hdr)); 2886 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 2887 2888 /* 2889 * If the hdr is currently being written to the l2arc then 2890 * we defer freeing the data by adding it to the l2arc_free_on_write 2891 * list. The l2arc will free the data once it's finished 2892 * writing it to the l2arc device. 2893 */ 2894 if (HDR_L2_WRITING(hdr)) { 2895 arc_hdr_free_on_write(hdr); 2896 ARCSTAT_BUMP(arcstat_l2_free_on_write); 2897 } else { 2898 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 2899 arc_hdr_size(hdr), hdr); 2900 } 2901 hdr->b_l1hdr.b_pabd = NULL; 2902 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 2903 2904 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 2905 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 2906 } 2907 2908 static arc_buf_hdr_t * 2909 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 2910 enum zio_compress compression_type, arc_buf_contents_t type) 2911 { 2912 arc_buf_hdr_t *hdr; 2913 2914 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 2915 2916 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 2917 ASSERT(HDR_EMPTY(hdr)); 2918 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 2919 ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL); 2920 HDR_SET_PSIZE(hdr, psize); 2921 HDR_SET_LSIZE(hdr, lsize); 2922 hdr->b_spa = spa; 2923 hdr->b_type = type; 2924 hdr->b_flags = 0; 2925 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 2926 arc_hdr_set_compress(hdr, compression_type); 2927 2928 hdr->b_l1hdr.b_state = arc_anon; 2929 hdr->b_l1hdr.b_arc_access = 0; 2930 hdr->b_l1hdr.b_bufcnt = 0; 2931 hdr->b_l1hdr.b_buf = NULL; 2932 2933 /* 2934 * Allocate the hdr's buffer. This will contain either 2935 * the compressed or uncompressed data depending on the block 2936 * it references and compressed arc enablement. 2937 */ 2938 arc_hdr_alloc_pabd(hdr); 2939 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2940 2941 return (hdr); 2942 } 2943 2944 /* 2945 * Transition between the two allocation states for the arc_buf_hdr struct. 2946 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 2947 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 2948 * version is used when a cache buffer is only in the L2ARC in order to reduce 2949 * memory usage. 2950 */ 2951 static arc_buf_hdr_t * 2952 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 2953 { 2954 ASSERT(HDR_HAS_L2HDR(hdr)); 2955 2956 arc_buf_hdr_t *nhdr; 2957 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 2958 2959 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 2960 (old == hdr_l2only_cache && new == hdr_full_cache)); 2961 2962 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 2963 2964 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 2965 buf_hash_remove(hdr); 2966 2967 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 2968 2969 if (new == hdr_full_cache) { 2970 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 2971 /* 2972 * arc_access and arc_change_state need to be aware that a 2973 * header has just come out of L2ARC, so we set its state to 2974 * l2c_only even though it's about to change. 2975 */ 2976 nhdr->b_l1hdr.b_state = arc_l2c_only; 2977 2978 /* Verify previous threads set to NULL before freeing */ 2979 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 2980 } else { 2981 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2982 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2983 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 2984 2985 /* 2986 * If we've reached here, We must have been called from 2987 * arc_evict_hdr(), as such we should have already been 2988 * removed from any ghost list we were previously on 2989 * (which protects us from racing with arc_evict_state), 2990 * thus no locking is needed during this check. 2991 */ 2992 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 2993 2994 /* 2995 * A buffer must not be moved into the arc_l2c_only 2996 * state if it's not finished being written out to the 2997 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 2998 * might try to be accessed, even though it was removed. 2999 */ 3000 VERIFY(!HDR_L2_WRITING(hdr)); 3001 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3002 3003 #ifdef ZFS_DEBUG 3004 if (hdr->b_l1hdr.b_thawed != NULL) { 3005 kmem_free(hdr->b_l1hdr.b_thawed, 1); 3006 hdr->b_l1hdr.b_thawed = NULL; 3007 } 3008 #endif 3009 3010 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3011 } 3012 /* 3013 * The header has been reallocated so we need to re-insert it into any 3014 * lists it was on. 3015 */ 3016 (void) buf_hash_insert(nhdr, NULL); 3017 3018 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3019 3020 mutex_enter(&dev->l2ad_mtx); 3021 3022 /* 3023 * We must place the realloc'ed header back into the list at 3024 * the same spot. Otherwise, if it's placed earlier in the list, 3025 * l2arc_write_buffers() could find it during the function's 3026 * write phase, and try to write it out to the l2arc. 3027 */ 3028 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3029 list_remove(&dev->l2ad_buflist, hdr); 3030 3031 mutex_exit(&dev->l2ad_mtx); 3032 3033 /* 3034 * Since we're using the pointer address as the tag when 3035 * incrementing and decrementing the l2ad_alloc refcount, we 3036 * must remove the old pointer (that we're about to destroy) and 3037 * add the new pointer to the refcount. Otherwise we'd remove 3038 * the wrong pointer address when calling arc_hdr_destroy() later. 3039 */ 3040 3041 (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 3042 (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr); 3043 3044 buf_discard_identity(hdr); 3045 kmem_cache_free(old, hdr); 3046 3047 return (nhdr); 3048 } 3049 3050 /* 3051 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3052 * The buf is returned thawed since we expect the consumer to modify it. 3053 */ 3054 arc_buf_t * 3055 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3056 { 3057 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3058 ZIO_COMPRESS_OFF, type); 3059 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr))); 3060 3061 arc_buf_t *buf = NULL; 3062 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf)); 3063 arc_buf_thaw(buf); 3064 3065 return (buf); 3066 } 3067 3068 /* 3069 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3070 * for bufs containing metadata. 3071 */ 3072 arc_buf_t * 3073 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3074 enum zio_compress compression_type) 3075 { 3076 ASSERT3U(lsize, >, 0); 3077 ASSERT3U(lsize, >=, psize); 3078 ASSERT(compression_type > ZIO_COMPRESS_OFF); 3079 ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS); 3080 3081 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3082 compression_type, ARC_BUFC_DATA); 3083 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr))); 3084 3085 arc_buf_t *buf = NULL; 3086 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf)); 3087 arc_buf_thaw(buf); 3088 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3089 3090 if (!arc_buf_is_shared(buf)) { 3091 /* 3092 * To ensure that the hdr has the correct data in it if we call 3093 * arc_decompress() on this buf before it's been written to 3094 * disk, it's easiest if we just set up sharing between the 3095 * buf and the hdr. 3096 */ 3097 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd)); 3098 arc_hdr_free_pabd(hdr); 3099 arc_share_buf(hdr, buf); 3100 } 3101 3102 return (buf); 3103 } 3104 3105 static void 3106 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3107 { 3108 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3109 l2arc_dev_t *dev = l2hdr->b_dev; 3110 uint64_t psize = arc_hdr_size(hdr); 3111 3112 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3113 ASSERT(HDR_HAS_L2HDR(hdr)); 3114 3115 list_remove(&dev->l2ad_buflist, hdr); 3116 3117 ARCSTAT_INCR(arcstat_l2_psize, -psize); 3118 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr)); 3119 3120 vdev_space_update(dev->l2ad_vdev, -psize, 0, 0); 3121 3122 (void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr); 3123 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3124 } 3125 3126 static void 3127 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3128 { 3129 if (HDR_HAS_L1HDR(hdr)) { 3130 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3131 hdr->b_l1hdr.b_bufcnt > 0); 3132 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3133 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3134 } 3135 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3136 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3137 3138 if (!HDR_EMPTY(hdr)) 3139 buf_discard_identity(hdr); 3140 3141 if (HDR_HAS_L2HDR(hdr)) { 3142 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3143 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3144 3145 if (!buflist_held) 3146 mutex_enter(&dev->l2ad_mtx); 3147 3148 /* 3149 * Even though we checked this conditional above, we 3150 * need to check this again now that we have the 3151 * l2ad_mtx. This is because we could be racing with 3152 * another thread calling l2arc_evict() which might have 3153 * destroyed this header's L2 portion as we were waiting 3154 * to acquire the l2ad_mtx. If that happens, we don't 3155 * want to re-destroy the header's L2 portion. 3156 */ 3157 if (HDR_HAS_L2HDR(hdr)) 3158 arc_hdr_l2hdr_destroy(hdr); 3159 3160 if (!buflist_held) 3161 mutex_exit(&dev->l2ad_mtx); 3162 } 3163 3164 if (HDR_HAS_L1HDR(hdr)) { 3165 arc_cksum_free(hdr); 3166 3167 while (hdr->b_l1hdr.b_buf != NULL) 3168 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3169 3170 #ifdef ZFS_DEBUG 3171 if (hdr->b_l1hdr.b_thawed != NULL) { 3172 kmem_free(hdr->b_l1hdr.b_thawed, 1); 3173 hdr->b_l1hdr.b_thawed = NULL; 3174 } 3175 #endif 3176 3177 if (hdr->b_l1hdr.b_pabd != NULL) { 3178 arc_hdr_free_pabd(hdr); 3179 } 3180 } 3181 3182 ASSERT3P(hdr->b_hash_next, ==, NULL); 3183 if (HDR_HAS_L1HDR(hdr)) { 3184 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3185 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3186 kmem_cache_free(hdr_full_cache, hdr); 3187 } else { 3188 kmem_cache_free(hdr_l2only_cache, hdr); 3189 } 3190 } 3191 3192 void 3193 arc_buf_destroy(arc_buf_t *buf, void* tag) 3194 { 3195 arc_buf_hdr_t *hdr = buf->b_hdr; 3196 kmutex_t *hash_lock = HDR_LOCK(hdr); 3197 3198 if (hdr->b_l1hdr.b_state == arc_anon) { 3199 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3200 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3201 VERIFY0(remove_reference(hdr, NULL, tag)); 3202 arc_hdr_destroy(hdr); 3203 return; 3204 } 3205 3206 mutex_enter(hash_lock); 3207 ASSERT3P(hdr, ==, buf->b_hdr); 3208 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3209 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3210 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3211 ASSERT3P(buf->b_data, !=, NULL); 3212 3213 (void) remove_reference(hdr, hash_lock, tag); 3214 arc_buf_destroy_impl(buf); 3215 mutex_exit(hash_lock); 3216 } 3217 3218 /* 3219 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3220 * state of the header is dependent on it's state prior to entering this 3221 * function. The following transitions are possible: 3222 * 3223 * - arc_mru -> arc_mru_ghost 3224 * - arc_mfu -> arc_mfu_ghost 3225 * - arc_mru_ghost -> arc_l2c_only 3226 * - arc_mru_ghost -> deleted 3227 * - arc_mfu_ghost -> arc_l2c_only 3228 * - arc_mfu_ghost -> deleted 3229 */ 3230 static int64_t 3231 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3232 { 3233 arc_state_t *evicted_state, *state; 3234 int64_t bytes_evicted = 0; 3235 3236 ASSERT(MUTEX_HELD(hash_lock)); 3237 ASSERT(HDR_HAS_L1HDR(hdr)); 3238 3239 state = hdr->b_l1hdr.b_state; 3240 if (GHOST_STATE(state)) { 3241 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3242 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3243 3244 /* 3245 * l2arc_write_buffers() relies on a header's L1 portion 3246 * (i.e. its b_pabd field) during it's write phase. 3247 * Thus, we cannot push a header onto the arc_l2c_only 3248 * state (removing it's L1 piece) until the header is 3249 * done being written to the l2arc. 3250 */ 3251 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3252 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3253 return (bytes_evicted); 3254 } 3255 3256 ARCSTAT_BUMP(arcstat_deleted); 3257 bytes_evicted += HDR_GET_LSIZE(hdr); 3258 3259 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3260 3261 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3262 if (HDR_HAS_L2HDR(hdr)) { 3263 /* 3264 * This buffer is cached on the 2nd Level ARC; 3265 * don't destroy the header. 3266 */ 3267 arc_change_state(arc_l2c_only, hdr, hash_lock); 3268 /* 3269 * dropping from L1+L2 cached to L2-only, 3270 * realloc to remove the L1 header. 3271 */ 3272 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3273 hdr_l2only_cache); 3274 } else { 3275 arc_change_state(arc_anon, hdr, hash_lock); 3276 arc_hdr_destroy(hdr); 3277 } 3278 return (bytes_evicted); 3279 } 3280 3281 ASSERT(state == arc_mru || state == arc_mfu); 3282 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3283 3284 /* prefetch buffers have a minimum lifespan */ 3285 if (HDR_IO_IN_PROGRESS(hdr) || 3286 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3287 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3288 arc_min_prefetch_lifespan)) { 3289 ARCSTAT_BUMP(arcstat_evict_skip); 3290 return (bytes_evicted); 3291 } 3292 3293 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 3294 while (hdr->b_l1hdr.b_buf) { 3295 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3296 if (!mutex_tryenter(&buf->b_evict_lock)) { 3297 ARCSTAT_BUMP(arcstat_mutex_miss); 3298 break; 3299 } 3300 if (buf->b_data != NULL) 3301 bytes_evicted += HDR_GET_LSIZE(hdr); 3302 mutex_exit(&buf->b_evict_lock); 3303 arc_buf_destroy_impl(buf); 3304 } 3305 3306 if (HDR_HAS_L2HDR(hdr)) { 3307 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3308 } else { 3309 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3310 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3311 HDR_GET_LSIZE(hdr)); 3312 } else { 3313 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3314 HDR_GET_LSIZE(hdr)); 3315 } 3316 } 3317 3318 if (hdr->b_l1hdr.b_bufcnt == 0) { 3319 arc_cksum_free(hdr); 3320 3321 bytes_evicted += arc_hdr_size(hdr); 3322 3323 /* 3324 * If this hdr is being evicted and has a compressed 3325 * buffer then we discard it here before we change states. 3326 * This ensures that the accounting is updated correctly 3327 * in arc_free_data_impl(). 3328 */ 3329 arc_hdr_free_pabd(hdr); 3330 3331 arc_change_state(evicted_state, hdr, hash_lock); 3332 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3333 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 3334 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3335 } 3336 3337 return (bytes_evicted); 3338 } 3339 3340 static uint64_t 3341 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 3342 uint64_t spa, int64_t bytes) 3343 { 3344 multilist_sublist_t *mls; 3345 uint64_t bytes_evicted = 0; 3346 arc_buf_hdr_t *hdr; 3347 kmutex_t *hash_lock; 3348 int evict_count = 0; 3349 3350 ASSERT3P(marker, !=, NULL); 3351 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3352 3353 mls = multilist_sublist_lock(ml, idx); 3354 3355 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 3356 hdr = multilist_sublist_prev(mls, marker)) { 3357 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 3358 (evict_count >= zfs_arc_evict_batch_limit)) 3359 break; 3360 3361 /* 3362 * To keep our iteration location, move the marker 3363 * forward. Since we're not holding hdr's hash lock, we 3364 * must be very careful and not remove 'hdr' from the 3365 * sublist. Otherwise, other consumers might mistake the 3366 * 'hdr' as not being on a sublist when they call the 3367 * multilist_link_active() function (they all rely on 3368 * the hash lock protecting concurrent insertions and 3369 * removals). multilist_sublist_move_forward() was 3370 * specifically implemented to ensure this is the case 3371 * (only 'marker' will be removed and re-inserted). 3372 */ 3373 multilist_sublist_move_forward(mls, marker); 3374 3375 /* 3376 * The only case where the b_spa field should ever be 3377 * zero, is the marker headers inserted by 3378 * arc_evict_state(). It's possible for multiple threads 3379 * to be calling arc_evict_state() concurrently (e.g. 3380 * dsl_pool_close() and zio_inject_fault()), so we must 3381 * skip any markers we see from these other threads. 3382 */ 3383 if (hdr->b_spa == 0) 3384 continue; 3385 3386 /* we're only interested in evicting buffers of a certain spa */ 3387 if (spa != 0 && hdr->b_spa != spa) { 3388 ARCSTAT_BUMP(arcstat_evict_skip); 3389 continue; 3390 } 3391 3392 hash_lock = HDR_LOCK(hdr); 3393 3394 /* 3395 * We aren't calling this function from any code path 3396 * that would already be holding a hash lock, so we're 3397 * asserting on this assumption to be defensive in case 3398 * this ever changes. Without this check, it would be 3399 * possible to incorrectly increment arcstat_mutex_miss 3400 * below (e.g. if the code changed such that we called 3401 * this function with a hash lock held). 3402 */ 3403 ASSERT(!MUTEX_HELD(hash_lock)); 3404 3405 if (mutex_tryenter(hash_lock)) { 3406 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 3407 mutex_exit(hash_lock); 3408 3409 bytes_evicted += evicted; 3410 3411 /* 3412 * If evicted is zero, arc_evict_hdr() must have 3413 * decided to skip this header, don't increment 3414 * evict_count in this case. 3415 */ 3416 if (evicted != 0) 3417 evict_count++; 3418 3419 /* 3420 * If arc_size isn't overflowing, signal any 3421 * threads that might happen to be waiting. 3422 * 3423 * For each header evicted, we wake up a single 3424 * thread. If we used cv_broadcast, we could 3425 * wake up "too many" threads causing arc_size 3426 * to significantly overflow arc_c; since 3427 * arc_get_data_impl() doesn't check for overflow 3428 * when it's woken up (it doesn't because it's 3429 * possible for the ARC to be overflowing while 3430 * full of un-evictable buffers, and the 3431 * function should proceed in this case). 3432 * 3433 * If threads are left sleeping, due to not 3434 * using cv_broadcast here, they will be woken 3435 * up via cv_broadcast in arc_adjust_cb() just 3436 * before arc_adjust_zthr sleeps. 3437 */ 3438 mutex_enter(&arc_adjust_lock); 3439 if (!arc_is_overflowing()) 3440 cv_signal(&arc_adjust_waiters_cv); 3441 mutex_exit(&arc_adjust_lock); 3442 } else { 3443 ARCSTAT_BUMP(arcstat_mutex_miss); 3444 } 3445 } 3446 3447 multilist_sublist_unlock(mls); 3448 3449 return (bytes_evicted); 3450 } 3451 3452 /* 3453 * Evict buffers from the given arc state, until we've removed the 3454 * specified number of bytes. Move the removed buffers to the 3455 * appropriate evict state. 3456 * 3457 * This function makes a "best effort". It skips over any buffers 3458 * it can't get a hash_lock on, and so, may not catch all candidates. 3459 * It may also return without evicting as much space as requested. 3460 * 3461 * If bytes is specified using the special value ARC_EVICT_ALL, this 3462 * will evict all available (i.e. unlocked and evictable) buffers from 3463 * the given arc state; which is used by arc_flush(). 3464 */ 3465 static uint64_t 3466 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 3467 arc_buf_contents_t type) 3468 { 3469 uint64_t total_evicted = 0; 3470 multilist_t *ml = state->arcs_list[type]; 3471 int num_sublists; 3472 arc_buf_hdr_t **markers; 3473 3474 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3475 3476 num_sublists = multilist_get_num_sublists(ml); 3477 3478 /* 3479 * If we've tried to evict from each sublist, made some 3480 * progress, but still have not hit the target number of bytes 3481 * to evict, we want to keep trying. The markers allow us to 3482 * pick up where we left off for each individual sublist, rather 3483 * than starting from the tail each time. 3484 */ 3485 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 3486 for (int i = 0; i < num_sublists; i++) { 3487 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 3488 3489 /* 3490 * A b_spa of 0 is used to indicate that this header is 3491 * a marker. This fact is used in arc_adjust_type() and 3492 * arc_evict_state_impl(). 3493 */ 3494 markers[i]->b_spa = 0; 3495 3496 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 3497 multilist_sublist_insert_tail(mls, markers[i]); 3498 multilist_sublist_unlock(mls); 3499 } 3500 3501 /* 3502 * While we haven't hit our target number of bytes to evict, or 3503 * we're evicting all available buffers. 3504 */ 3505 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 3506 /* 3507 * Start eviction using a randomly selected sublist, 3508 * this is to try and evenly balance eviction across all 3509 * sublists. Always starting at the same sublist 3510 * (e.g. index 0) would cause evictions to favor certain 3511 * sublists over others. 3512 */ 3513 int sublist_idx = multilist_get_random_index(ml); 3514 uint64_t scan_evicted = 0; 3515 3516 for (int i = 0; i < num_sublists; i++) { 3517 uint64_t bytes_remaining; 3518 uint64_t bytes_evicted; 3519 3520 if (bytes == ARC_EVICT_ALL) 3521 bytes_remaining = ARC_EVICT_ALL; 3522 else if (total_evicted < bytes) 3523 bytes_remaining = bytes - total_evicted; 3524 else 3525 break; 3526 3527 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 3528 markers[sublist_idx], spa, bytes_remaining); 3529 3530 scan_evicted += bytes_evicted; 3531 total_evicted += bytes_evicted; 3532 3533 /* we've reached the end, wrap to the beginning */ 3534 if (++sublist_idx >= num_sublists) 3535 sublist_idx = 0; 3536 } 3537 3538 /* 3539 * If we didn't evict anything during this scan, we have 3540 * no reason to believe we'll evict more during another 3541 * scan, so break the loop. 3542 */ 3543 if (scan_evicted == 0) { 3544 /* This isn't possible, let's make that obvious */ 3545 ASSERT3S(bytes, !=, 0); 3546 3547 /* 3548 * When bytes is ARC_EVICT_ALL, the only way to 3549 * break the loop is when scan_evicted is zero. 3550 * In that case, we actually have evicted enough, 3551 * so we don't want to increment the kstat. 3552 */ 3553 if (bytes != ARC_EVICT_ALL) { 3554 ASSERT3S(total_evicted, <, bytes); 3555 ARCSTAT_BUMP(arcstat_evict_not_enough); 3556 } 3557 3558 break; 3559 } 3560 } 3561 3562 for (int i = 0; i < num_sublists; i++) { 3563 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 3564 multilist_sublist_remove(mls, markers[i]); 3565 multilist_sublist_unlock(mls); 3566 3567 kmem_cache_free(hdr_full_cache, markers[i]); 3568 } 3569 kmem_free(markers, sizeof (*markers) * num_sublists); 3570 3571 return (total_evicted); 3572 } 3573 3574 /* 3575 * Flush all "evictable" data of the given type from the arc state 3576 * specified. This will not evict any "active" buffers (i.e. referenced). 3577 * 3578 * When 'retry' is set to B_FALSE, the function will make a single pass 3579 * over the state and evict any buffers that it can. Since it doesn't 3580 * continually retry the eviction, it might end up leaving some buffers 3581 * in the ARC due to lock misses. 3582 * 3583 * When 'retry' is set to B_TRUE, the function will continually retry the 3584 * eviction until *all* evictable buffers have been removed from the 3585 * state. As a result, if concurrent insertions into the state are 3586 * allowed (e.g. if the ARC isn't shutting down), this function might 3587 * wind up in an infinite loop, continually trying to evict buffers. 3588 */ 3589 static uint64_t 3590 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 3591 boolean_t retry) 3592 { 3593 uint64_t evicted = 0; 3594 3595 while (refcount_count(&state->arcs_esize[type]) != 0) { 3596 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 3597 3598 if (!retry) 3599 break; 3600 } 3601 3602 return (evicted); 3603 } 3604 3605 /* 3606 * Evict the specified number of bytes from the state specified, 3607 * restricting eviction to the spa and type given. This function 3608 * prevents us from trying to evict more from a state's list than 3609 * is "evictable", and to skip evicting altogether when passed a 3610 * negative value for "bytes". In contrast, arc_evict_state() will 3611 * evict everything it can, when passed a negative value for "bytes". 3612 */ 3613 static uint64_t 3614 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 3615 arc_buf_contents_t type) 3616 { 3617 int64_t delta; 3618 3619 if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) { 3620 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes); 3621 return (arc_evict_state(state, spa, delta, type)); 3622 } 3623 3624 return (0); 3625 } 3626 3627 /* 3628 * Evict metadata buffers from the cache, such that arc_meta_used is 3629 * capped by the arc_meta_limit tunable. 3630 */ 3631 static uint64_t 3632 arc_adjust_meta(uint64_t meta_used) 3633 { 3634 uint64_t total_evicted = 0; 3635 int64_t target; 3636 3637 /* 3638 * If we're over the meta limit, we want to evict enough 3639 * metadata to get back under the meta limit. We don't want to 3640 * evict so much that we drop the MRU below arc_p, though. If 3641 * we're over the meta limit more than we're over arc_p, we 3642 * evict some from the MRU here, and some from the MFU below. 3643 */ 3644 target = MIN((int64_t)(meta_used - arc_meta_limit), 3645 (int64_t)(refcount_count(&arc_anon->arcs_size) + 3646 refcount_count(&arc_mru->arcs_size) - arc_p)); 3647 3648 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3649 3650 /* 3651 * Similar to the above, we want to evict enough bytes to get us 3652 * below the meta limit, but not so much as to drop us below the 3653 * space allotted to the MFU (which is defined as arc_c - arc_p). 3654 */ 3655 target = MIN((int64_t)(meta_used - arc_meta_limit), 3656 (int64_t)(refcount_count(&arc_mfu->arcs_size) - 3657 (arc_c - arc_p))); 3658 3659 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3660 3661 return (total_evicted); 3662 } 3663 3664 /* 3665 * Return the type of the oldest buffer in the given arc state 3666 * 3667 * This function will select a random sublist of type ARC_BUFC_DATA and 3668 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 3669 * is compared, and the type which contains the "older" buffer will be 3670 * returned. 3671 */ 3672 static arc_buf_contents_t 3673 arc_adjust_type(arc_state_t *state) 3674 { 3675 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA]; 3676 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA]; 3677 int data_idx = multilist_get_random_index(data_ml); 3678 int meta_idx = multilist_get_random_index(meta_ml); 3679 multilist_sublist_t *data_mls; 3680 multilist_sublist_t *meta_mls; 3681 arc_buf_contents_t type; 3682 arc_buf_hdr_t *data_hdr; 3683 arc_buf_hdr_t *meta_hdr; 3684 3685 /* 3686 * We keep the sublist lock until we're finished, to prevent 3687 * the headers from being destroyed via arc_evict_state(). 3688 */ 3689 data_mls = multilist_sublist_lock(data_ml, data_idx); 3690 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 3691 3692 /* 3693 * These two loops are to ensure we skip any markers that 3694 * might be at the tail of the lists due to arc_evict_state(). 3695 */ 3696 3697 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 3698 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 3699 if (data_hdr->b_spa != 0) 3700 break; 3701 } 3702 3703 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 3704 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 3705 if (meta_hdr->b_spa != 0) 3706 break; 3707 } 3708 3709 if (data_hdr == NULL && meta_hdr == NULL) { 3710 type = ARC_BUFC_DATA; 3711 } else if (data_hdr == NULL) { 3712 ASSERT3P(meta_hdr, !=, NULL); 3713 type = ARC_BUFC_METADATA; 3714 } else if (meta_hdr == NULL) { 3715 ASSERT3P(data_hdr, !=, NULL); 3716 type = ARC_BUFC_DATA; 3717 } else { 3718 ASSERT3P(data_hdr, !=, NULL); 3719 ASSERT3P(meta_hdr, !=, NULL); 3720 3721 /* The headers can't be on the sublist without an L1 header */ 3722 ASSERT(HDR_HAS_L1HDR(data_hdr)); 3723 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 3724 3725 if (data_hdr->b_l1hdr.b_arc_access < 3726 meta_hdr->b_l1hdr.b_arc_access) { 3727 type = ARC_BUFC_DATA; 3728 } else { 3729 type = ARC_BUFC_METADATA; 3730 } 3731 } 3732 3733 multilist_sublist_unlock(meta_mls); 3734 multilist_sublist_unlock(data_mls); 3735 3736 return (type); 3737 } 3738 3739 /* 3740 * Evict buffers from the cache, such that arc_size is capped by arc_c. 3741 */ 3742 static uint64_t 3743 arc_adjust(void) 3744 { 3745 uint64_t total_evicted = 0; 3746 uint64_t bytes; 3747 int64_t target; 3748 uint64_t asize = aggsum_value(&arc_size); 3749 uint64_t ameta = aggsum_value(&arc_meta_used); 3750 3751 /* 3752 * If we're over arc_meta_limit, we want to correct that before 3753 * potentially evicting data buffers below. 3754 */ 3755 total_evicted += arc_adjust_meta(ameta); 3756 3757 /* 3758 * Adjust MRU size 3759 * 3760 * If we're over the target cache size, we want to evict enough 3761 * from the list to get back to our target size. We don't want 3762 * to evict too much from the MRU, such that it drops below 3763 * arc_p. So, if we're over our target cache size more than 3764 * the MRU is over arc_p, we'll evict enough to get back to 3765 * arc_p here, and then evict more from the MFU below. 3766 */ 3767 target = MIN((int64_t)(asize - arc_c), 3768 (int64_t)(refcount_count(&arc_anon->arcs_size) + 3769 refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 3770 3771 /* 3772 * If we're below arc_meta_min, always prefer to evict data. 3773 * Otherwise, try to satisfy the requested number of bytes to 3774 * evict from the type which contains older buffers; in an 3775 * effort to keep newer buffers in the cache regardless of their 3776 * type. If we cannot satisfy the number of bytes from this 3777 * type, spill over into the next type. 3778 */ 3779 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA && 3780 ameta > arc_meta_min) { 3781 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3782 total_evicted += bytes; 3783 3784 /* 3785 * If we couldn't evict our target number of bytes from 3786 * metadata, we try to get the rest from data. 3787 */ 3788 target -= bytes; 3789 3790 total_evicted += 3791 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 3792 } else { 3793 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); 3794 total_evicted += bytes; 3795 3796 /* 3797 * If we couldn't evict our target number of bytes from 3798 * data, we try to get the rest from metadata. 3799 */ 3800 target -= bytes; 3801 3802 total_evicted += 3803 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 3804 } 3805 3806 /* 3807 * Adjust MFU size 3808 * 3809 * Now that we've tried to evict enough from the MRU to get its 3810 * size back to arc_p, if we're still above the target cache 3811 * size, we evict the rest from the MFU. 3812 */ 3813 target = asize - arc_c; 3814 3815 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA && 3816 ameta > arc_meta_min) { 3817 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3818 total_evicted += bytes; 3819 3820 /* 3821 * If we couldn't evict our target number of bytes from 3822 * metadata, we try to get the rest from data. 3823 */ 3824 target -= bytes; 3825 3826 total_evicted += 3827 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 3828 } else { 3829 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 3830 total_evicted += bytes; 3831 3832 /* 3833 * If we couldn't evict our target number of bytes from 3834 * data, we try to get the rest from data. 3835 */ 3836 target -= bytes; 3837 3838 total_evicted += 3839 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 3840 } 3841 3842 /* 3843 * Adjust ghost lists 3844 * 3845 * In addition to the above, the ARC also defines target values 3846 * for the ghost lists. The sum of the mru list and mru ghost 3847 * list should never exceed the target size of the cache, and 3848 * the sum of the mru list, mfu list, mru ghost list, and mfu 3849 * ghost list should never exceed twice the target size of the 3850 * cache. The following logic enforces these limits on the ghost 3851 * caches, and evicts from them as needed. 3852 */ 3853 target = refcount_count(&arc_mru->arcs_size) + 3854 refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 3855 3856 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 3857 total_evicted += bytes; 3858 3859 target -= bytes; 3860 3861 total_evicted += 3862 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 3863 3864 /* 3865 * We assume the sum of the mru list and mfu list is less than 3866 * or equal to arc_c (we enforced this above), which means we 3867 * can use the simpler of the two equations below: 3868 * 3869 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 3870 * mru ghost + mfu ghost <= arc_c 3871 */ 3872 target = refcount_count(&arc_mru_ghost->arcs_size) + 3873 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 3874 3875 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 3876 total_evicted += bytes; 3877 3878 target -= bytes; 3879 3880 total_evicted += 3881 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 3882 3883 return (total_evicted); 3884 } 3885 3886 void 3887 arc_flush(spa_t *spa, boolean_t retry) 3888 { 3889 uint64_t guid = 0; 3890 3891 /* 3892 * If retry is B_TRUE, a spa must not be specified since we have 3893 * no good way to determine if all of a spa's buffers have been 3894 * evicted from an arc state. 3895 */ 3896 ASSERT(!retry || spa == 0); 3897 3898 if (spa != NULL) 3899 guid = spa_load_guid(spa); 3900 3901 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 3902 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 3903 3904 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 3905 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 3906 3907 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 3908 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 3909 3910 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 3911 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 3912 } 3913 3914 static void 3915 arc_reduce_target_size(int64_t to_free) 3916 { 3917 uint64_t asize = aggsum_value(&arc_size); 3918 if (arc_c > arc_c_min) { 3919 3920 if (arc_c > arc_c_min + to_free) 3921 atomic_add_64(&arc_c, -to_free); 3922 else 3923 arc_c = arc_c_min; 3924 3925 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 3926 if (asize < arc_c) 3927 arc_c = MAX(asize, arc_c_min); 3928 if (arc_p > arc_c) 3929 arc_p = (arc_c >> 1); 3930 ASSERT(arc_c >= arc_c_min); 3931 ASSERT((int64_t)arc_p >= 0); 3932 } 3933 3934 if (asize > arc_c) { 3935 /* See comment in arc_adjust_cb_check() on why lock+flag */ 3936 mutex_enter(&arc_adjust_lock); 3937 arc_adjust_needed = B_TRUE; 3938 mutex_exit(&arc_adjust_lock); 3939 zthr_wakeup(arc_adjust_zthr); 3940 } 3941 } 3942 3943 typedef enum free_memory_reason_t { 3944 FMR_UNKNOWN, 3945 FMR_NEEDFREE, 3946 FMR_LOTSFREE, 3947 FMR_SWAPFS_MINFREE, 3948 FMR_PAGES_PP_MAXIMUM, 3949 FMR_HEAP_ARENA, 3950 FMR_ZIO_ARENA, 3951 } free_memory_reason_t; 3952 3953 int64_t last_free_memory; 3954 free_memory_reason_t last_free_reason; 3955 3956 /* 3957 * Additional reserve of pages for pp_reserve. 3958 */ 3959 int64_t arc_pages_pp_reserve = 64; 3960 3961 /* 3962 * Additional reserve of pages for swapfs. 3963 */ 3964 int64_t arc_swapfs_reserve = 64; 3965 3966 /* 3967 * Return the amount of memory that can be consumed before reclaim will be 3968 * needed. Positive if there is sufficient free memory, negative indicates 3969 * the amount of memory that needs to be freed up. 3970 */ 3971 static int64_t 3972 arc_available_memory(void) 3973 { 3974 int64_t lowest = INT64_MAX; 3975 int64_t n; 3976 free_memory_reason_t r = FMR_UNKNOWN; 3977 3978 #ifdef _KERNEL 3979 if (needfree > 0) { 3980 n = PAGESIZE * (-needfree); 3981 if (n < lowest) { 3982 lowest = n; 3983 r = FMR_NEEDFREE; 3984 } 3985 } 3986 3987 /* 3988 * check that we're out of range of the pageout scanner. It starts to 3989 * schedule paging if freemem is less than lotsfree and needfree. 3990 * lotsfree is the high-water mark for pageout, and needfree is the 3991 * number of needed free pages. We add extra pages here to make sure 3992 * the scanner doesn't start up while we're freeing memory. 3993 */ 3994 n = PAGESIZE * (freemem - lotsfree - needfree - desfree); 3995 if (n < lowest) { 3996 lowest = n; 3997 r = FMR_LOTSFREE; 3998 } 3999 4000 /* 4001 * check to make sure that swapfs has enough space so that anon 4002 * reservations can still succeed. anon_resvmem() checks that the 4003 * availrmem is greater than swapfs_minfree, and the number of reserved 4004 * swap pages. We also add a bit of extra here just to prevent 4005 * circumstances from getting really dire. 4006 */ 4007 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve - 4008 desfree - arc_swapfs_reserve); 4009 if (n < lowest) { 4010 lowest = n; 4011 r = FMR_SWAPFS_MINFREE; 4012 } 4013 4014 4015 /* 4016 * Check that we have enough availrmem that memory locking (e.g., via 4017 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 4018 * stores the number of pages that cannot be locked; when availrmem 4019 * drops below pages_pp_maximum, page locking mechanisms such as 4020 * page_pp_lock() will fail.) 4021 */ 4022 n = PAGESIZE * (availrmem - pages_pp_maximum - 4023 arc_pages_pp_reserve); 4024 if (n < lowest) { 4025 lowest = n; 4026 r = FMR_PAGES_PP_MAXIMUM; 4027 } 4028 4029 #if defined(__i386) 4030 /* 4031 * If we're on an i386 platform, it's possible that we'll exhaust the 4032 * kernel heap space before we ever run out of available physical 4033 * memory. Most checks of the size of the heap_area compare against 4034 * tune.t_minarmem, which is the minimum available real memory that we 4035 * can have in the system. However, this is generally fixed at 25 pages 4036 * which is so low that it's useless. In this comparison, we seek to 4037 * calculate the total heap-size, and reclaim if more than 3/4ths of the 4038 * heap is allocated. (Or, in the calculation, if less than 1/4th is 4039 * free) 4040 */ 4041 n = (int64_t)vmem_size(heap_arena, VMEM_FREE) - 4042 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2); 4043 if (n < lowest) { 4044 lowest = n; 4045 r = FMR_HEAP_ARENA; 4046 } 4047 #endif 4048 4049 /* 4050 * If zio data pages are being allocated out of a separate heap segment, 4051 * then enforce that the size of available vmem for this arena remains 4052 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free. 4053 * 4054 * Note that reducing the arc_zio_arena_free_shift keeps more virtual 4055 * memory (in the zio_arena) free, which can avoid memory 4056 * fragmentation issues. 4057 */ 4058 if (zio_arena != NULL) { 4059 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) - 4060 (vmem_size(zio_arena, VMEM_ALLOC) >> 4061 arc_zio_arena_free_shift); 4062 if (n < lowest) { 4063 lowest = n; 4064 r = FMR_ZIO_ARENA; 4065 } 4066 } 4067 #else 4068 /* Every 100 calls, free a small amount */ 4069 if (spa_get_random(100) == 0) 4070 lowest = -1024; 4071 #endif 4072 4073 last_free_memory = lowest; 4074 last_free_reason = r; 4075 4076 return (lowest); 4077 } 4078 4079 4080 /* 4081 * Determine if the system is under memory pressure and is asking 4082 * to reclaim memory. A return value of B_TRUE indicates that the system 4083 * is under memory pressure and that the arc should adjust accordingly. 4084 */ 4085 static boolean_t 4086 arc_reclaim_needed(void) 4087 { 4088 return (arc_available_memory() < 0); 4089 } 4090 4091 static void 4092 arc_kmem_reap_soon(void) 4093 { 4094 size_t i; 4095 kmem_cache_t *prev_cache = NULL; 4096 kmem_cache_t *prev_data_cache = NULL; 4097 extern kmem_cache_t *zio_buf_cache[]; 4098 extern kmem_cache_t *zio_data_buf_cache[]; 4099 extern kmem_cache_t *range_seg_cache; 4100 extern kmem_cache_t *abd_chunk_cache; 4101 4102 #ifdef _KERNEL 4103 if (aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) { 4104 /* 4105 * We are exceeding our meta-data cache limit. 4106 * Purge some DNLC entries to release holds on meta-data. 4107 */ 4108 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 4109 } 4110 #if defined(__i386) 4111 /* 4112 * Reclaim unused memory from all kmem caches. 4113 */ 4114 kmem_reap(); 4115 #endif 4116 #endif 4117 4118 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4119 if (zio_buf_cache[i] != prev_cache) { 4120 prev_cache = zio_buf_cache[i]; 4121 kmem_cache_reap_soon(zio_buf_cache[i]); 4122 } 4123 if (zio_data_buf_cache[i] != prev_data_cache) { 4124 prev_data_cache = zio_data_buf_cache[i]; 4125 kmem_cache_reap_soon(zio_data_buf_cache[i]); 4126 } 4127 } 4128 kmem_cache_reap_soon(abd_chunk_cache); 4129 kmem_cache_reap_soon(buf_cache); 4130 kmem_cache_reap_soon(hdr_full_cache); 4131 kmem_cache_reap_soon(hdr_l2only_cache); 4132 kmem_cache_reap_soon(range_seg_cache); 4133 4134 if (zio_arena != NULL) { 4135 /* 4136 * Ask the vmem arena to reclaim unused memory from its 4137 * quantum caches. 4138 */ 4139 vmem_qcache_reap(zio_arena); 4140 } 4141 } 4142 4143 /* ARGSUSED */ 4144 static boolean_t 4145 arc_adjust_cb_check(void *arg, zthr_t *zthr) 4146 { 4147 /* 4148 * This is necessary in order for the mdb ::arc dcmd to 4149 * show up to date information. Since the ::arc command 4150 * does not call the kstat's update function, without 4151 * this call, the command may show stale stats for the 4152 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4153 * with this change, the data might be up to 1 second 4154 * out of date(the arc_adjust_zthr has a maximum sleep 4155 * time of 1 second); but that should suffice. The 4156 * arc_state_t structures can be queried directly if more 4157 * accurate information is needed. 4158 */ 4159 if (arc_ksp != NULL) 4160 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4161 4162 /* 4163 * We have to rely on arc_get_data_impl() to tell us when to adjust, 4164 * rather than checking if we are overflowing here, so that we are 4165 * sure to not leave arc_get_data_impl() waiting on 4166 * arc_adjust_waiters_cv. If we have become "not overflowing" since 4167 * arc_get_data_impl() checked, we need to wake it up. We could 4168 * broadcast the CV here, but arc_get_data_impl() may have not yet 4169 * gone to sleep. We would need to use a mutex to ensure that this 4170 * function doesn't broadcast until arc_get_data_impl() has gone to 4171 * sleep (e.g. the arc_adjust_lock). However, the lock ordering of 4172 * such a lock would necessarily be incorrect with respect to the 4173 * zthr_lock, which is held before this function is called, and is 4174 * held by arc_get_data_impl() when it calls zthr_wakeup(). 4175 */ 4176 return (arc_adjust_needed); 4177 } 4178 4179 /* 4180 * Keep arc_size under arc_c by running arc_adjust which evicts data 4181 * from the ARC. 4182 */ 4183 /* ARGSUSED */ 4184 static int 4185 arc_adjust_cb(void *arg, zthr_t *zthr) 4186 { 4187 uint64_t evicted = 0; 4188 4189 /* Evict from cache */ 4190 evicted = arc_adjust(); 4191 4192 /* 4193 * If evicted is zero, we couldn't evict anything 4194 * via arc_adjust(). This could be due to hash lock 4195 * collisions, but more likely due to the majority of 4196 * arc buffers being unevictable. Therefore, even if 4197 * arc_size is above arc_c, another pass is unlikely to 4198 * be helpful and could potentially cause us to enter an 4199 * infinite loop. Additionally, zthr_iscancelled() is 4200 * checked here so that if the arc is shutting down, the 4201 * broadcast will wake any remaining arc adjust waiters. 4202 */ 4203 mutex_enter(&arc_adjust_lock); 4204 arc_adjust_needed = !zthr_iscancelled(arc_adjust_zthr) && 4205 evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0; 4206 if (!arc_adjust_needed) { 4207 /* 4208 * We're either no longer overflowing, or we 4209 * can't evict anything more, so we should wake 4210 * up any waiters. 4211 */ 4212 cv_broadcast(&arc_adjust_waiters_cv); 4213 } 4214 mutex_exit(&arc_adjust_lock); 4215 4216 return (0); 4217 } 4218 4219 /* ARGSUSED */ 4220 static boolean_t 4221 arc_reap_cb_check(void *arg, zthr_t *zthr) 4222 { 4223 int64_t free_memory = arc_available_memory(); 4224 4225 /* 4226 * If a kmem reap is already active, don't schedule more. We must 4227 * check for this because kmem_cache_reap_soon() won't actually 4228 * block on the cache being reaped (this is to prevent callers from 4229 * becoming implicitly blocked by a system-wide kmem reap -- which, 4230 * on a system with many, many full magazines, can take minutes). 4231 */ 4232 if (!kmem_cache_reap_active() && 4233 free_memory < 0) { 4234 arc_no_grow = B_TRUE; 4235 arc_warm = B_TRUE; 4236 /* 4237 * Wait at least zfs_grow_retry (default 60) seconds 4238 * before considering growing. 4239 */ 4240 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4241 return (B_TRUE); 4242 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4243 arc_no_grow = B_TRUE; 4244 } else if (gethrtime() >= arc_growtime) { 4245 arc_no_grow = B_FALSE; 4246 } 4247 4248 return (B_FALSE); 4249 } 4250 4251 /* 4252 * Keep enough free memory in the system by reaping the ARC's kmem 4253 * caches. To cause more slabs to be reapable, we may reduce the 4254 * target size of the cache (arc_c), causing the arc_adjust_cb() 4255 * to free more buffers. 4256 */ 4257 /* ARGSUSED */ 4258 static int 4259 arc_reap_cb(void *arg, zthr_t *zthr) 4260 { 4261 int64_t free_memory; 4262 4263 /* 4264 * Kick off asynchronous kmem_reap()'s of all our caches. 4265 */ 4266 arc_kmem_reap_soon(); 4267 4268 /* 4269 * Wait at least arc_kmem_cache_reap_retry_ms between 4270 * arc_kmem_reap_soon() calls. Without this check it is possible to 4271 * end up in a situation where we spend lots of time reaping 4272 * caches, while we're near arc_c_min. Waiting here also gives the 4273 * subsequent free memory check a chance of finding that the 4274 * asynchronous reap has already freed enough memory, and we don't 4275 * need to call arc_reduce_target_size(). 4276 */ 4277 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 4278 4279 /* 4280 * Reduce the target size as needed to maintain the amount of free 4281 * memory in the system at a fraction of the arc_size (1/128th by 4282 * default). If oversubscribed (free_memory < 0) then reduce the 4283 * target arc_size by the deficit amount plus the fractional 4284 * amount. If free memory is positive but less then the fractional 4285 * amount, reduce by what is needed to hit the fractional amount. 4286 */ 4287 free_memory = arc_available_memory(); 4288 4289 int64_t to_free = 4290 (arc_c >> arc_shrink_shift) - free_memory; 4291 if (to_free > 0) { 4292 #ifdef _KERNEL 4293 to_free = MAX(to_free, ptob(needfree)); 4294 #endif 4295 arc_reduce_target_size(to_free); 4296 } 4297 4298 return (0); 4299 } 4300 4301 /* 4302 * Adapt arc info given the number of bytes we are trying to add and 4303 * the state that we are comming from. This function is only called 4304 * when we are adding new content to the cache. 4305 */ 4306 static void 4307 arc_adapt(int bytes, arc_state_t *state) 4308 { 4309 int mult; 4310 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 4311 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size); 4312 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size); 4313 4314 if (state == arc_l2c_only) 4315 return; 4316 4317 ASSERT(bytes > 0); 4318 /* 4319 * Adapt the target size of the MRU list: 4320 * - if we just hit in the MRU ghost list, then increase 4321 * the target size of the MRU list. 4322 * - if we just hit in the MFU ghost list, then increase 4323 * the target size of the MFU list by decreasing the 4324 * target size of the MRU list. 4325 */ 4326 if (state == arc_mru_ghost) { 4327 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 4328 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 4329 4330 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 4331 } else if (state == arc_mfu_ghost) { 4332 uint64_t delta; 4333 4334 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 4335 mult = MIN(mult, 10); 4336 4337 delta = MIN(bytes * mult, arc_p); 4338 arc_p = MAX(arc_p_min, arc_p - delta); 4339 } 4340 ASSERT((int64_t)arc_p >= 0); 4341 4342 /* 4343 * Wake reap thread if we do not have any available memory 4344 */ 4345 if (arc_reclaim_needed()) { 4346 zthr_wakeup(arc_reap_zthr); 4347 return; 4348 } 4349 4350 4351 if (arc_no_grow) 4352 return; 4353 4354 if (arc_c >= arc_c_max) 4355 return; 4356 4357 /* 4358 * If we're within (2 * maxblocksize) bytes of the target 4359 * cache size, increment the target cache size 4360 */ 4361 if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) > 4362 0) { 4363 atomic_add_64(&arc_c, (int64_t)bytes); 4364 if (arc_c > arc_c_max) 4365 arc_c = arc_c_max; 4366 else if (state == arc_anon) 4367 atomic_add_64(&arc_p, (int64_t)bytes); 4368 if (arc_p > arc_c) 4369 arc_p = arc_c; 4370 } 4371 ASSERT((int64_t)arc_p >= 0); 4372 } 4373 4374 /* 4375 * Check if arc_size has grown past our upper threshold, determined by 4376 * zfs_arc_overflow_shift. 4377 */ 4378 static boolean_t 4379 arc_is_overflowing(void) 4380 { 4381 /* Always allow at least one block of overflow */ 4382 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE, 4383 arc_c >> zfs_arc_overflow_shift); 4384 4385 /* 4386 * We just compare the lower bound here for performance reasons. Our 4387 * primary goals are to make sure that the arc never grows without 4388 * bound, and that it can reach its maximum size. This check 4389 * accomplishes both goals. The maximum amount we could run over by is 4390 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 4391 * in the ARC. In practice, that's in the tens of MB, which is low 4392 * enough to be safe. 4393 */ 4394 return (aggsum_lower_bound(&arc_size) >= arc_c + overflow); 4395 } 4396 4397 static abd_t * 4398 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4399 { 4400 arc_buf_contents_t type = arc_buf_type(hdr); 4401 4402 arc_get_data_impl(hdr, size, tag); 4403 if (type == ARC_BUFC_METADATA) { 4404 return (abd_alloc(size, B_TRUE)); 4405 } else { 4406 ASSERT(type == ARC_BUFC_DATA); 4407 return (abd_alloc(size, B_FALSE)); 4408 } 4409 } 4410 4411 static void * 4412 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4413 { 4414 arc_buf_contents_t type = arc_buf_type(hdr); 4415 4416 arc_get_data_impl(hdr, size, tag); 4417 if (type == ARC_BUFC_METADATA) { 4418 return (zio_buf_alloc(size)); 4419 } else { 4420 ASSERT(type == ARC_BUFC_DATA); 4421 return (zio_data_buf_alloc(size)); 4422 } 4423 } 4424 4425 /* 4426 * Allocate a block and return it to the caller. If we are hitting the 4427 * hard limit for the cache size, we must sleep, waiting for the eviction 4428 * thread to catch up. If we're past the target size but below the hard 4429 * limit, we'll only signal the reclaim thread and continue on. 4430 */ 4431 static void 4432 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4433 { 4434 arc_state_t *state = hdr->b_l1hdr.b_state; 4435 arc_buf_contents_t type = arc_buf_type(hdr); 4436 4437 arc_adapt(size, state); 4438 4439 /* 4440 * If arc_size is currently overflowing, and has grown past our 4441 * upper limit, we must be adding data faster than the evict 4442 * thread can evict. Thus, to ensure we don't compound the 4443 * problem by adding more data and forcing arc_size to grow even 4444 * further past it's target size, we halt and wait for the 4445 * eviction thread to catch up. 4446 * 4447 * It's also possible that the reclaim thread is unable to evict 4448 * enough buffers to get arc_size below the overflow limit (e.g. 4449 * due to buffers being un-evictable, or hash lock collisions). 4450 * In this case, we want to proceed regardless if we're 4451 * overflowing; thus we don't use a while loop here. 4452 */ 4453 if (arc_is_overflowing()) { 4454 mutex_enter(&arc_adjust_lock); 4455 4456 /* 4457 * Now that we've acquired the lock, we may no longer be 4458 * over the overflow limit, lets check. 4459 * 4460 * We're ignoring the case of spurious wake ups. If that 4461 * were to happen, it'd let this thread consume an ARC 4462 * buffer before it should have (i.e. before we're under 4463 * the overflow limit and were signalled by the reclaim 4464 * thread). As long as that is a rare occurrence, it 4465 * shouldn't cause any harm. 4466 */ 4467 if (arc_is_overflowing()) { 4468 arc_adjust_needed = B_TRUE; 4469 zthr_wakeup(arc_adjust_zthr); 4470 (void) cv_wait(&arc_adjust_waiters_cv, 4471 &arc_adjust_lock); 4472 } 4473 mutex_exit(&arc_adjust_lock); 4474 } 4475 4476 VERIFY3U(hdr->b_type, ==, type); 4477 if (type == ARC_BUFC_METADATA) { 4478 arc_space_consume(size, ARC_SPACE_META); 4479 } else { 4480 arc_space_consume(size, ARC_SPACE_DATA); 4481 } 4482 4483 /* 4484 * Update the state size. Note that ghost states have a 4485 * "ghost size" and so don't need to be updated. 4486 */ 4487 if (!GHOST_STATE(state)) { 4488 4489 (void) refcount_add_many(&state->arcs_size, size, tag); 4490 4491 /* 4492 * If this is reached via arc_read, the link is 4493 * protected by the hash lock. If reached via 4494 * arc_buf_alloc, the header should not be accessed by 4495 * any other thread. And, if reached via arc_read_done, 4496 * the hash lock will protect it if it's found in the 4497 * hash table; otherwise no other thread should be 4498 * trying to [add|remove]_reference it. 4499 */ 4500 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 4501 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4502 (void) refcount_add_many(&state->arcs_esize[type], 4503 size, tag); 4504 } 4505 4506 /* 4507 * If we are growing the cache, and we are adding anonymous 4508 * data, and we have outgrown arc_p, update arc_p 4509 */ 4510 if (aggsum_compare(&arc_size, arc_c) < 0 && 4511 hdr->b_l1hdr.b_state == arc_anon && 4512 (refcount_count(&arc_anon->arcs_size) + 4513 refcount_count(&arc_mru->arcs_size) > arc_p)) 4514 arc_p = MIN(arc_c, arc_p + size); 4515 } 4516 } 4517 4518 static void 4519 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 4520 { 4521 arc_free_data_impl(hdr, size, tag); 4522 abd_free(abd); 4523 } 4524 4525 static void 4526 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 4527 { 4528 arc_buf_contents_t type = arc_buf_type(hdr); 4529 4530 arc_free_data_impl(hdr, size, tag); 4531 if (type == ARC_BUFC_METADATA) { 4532 zio_buf_free(buf, size); 4533 } else { 4534 ASSERT(type == ARC_BUFC_DATA); 4535 zio_data_buf_free(buf, size); 4536 } 4537 } 4538 4539 /* 4540 * Free the arc data buffer. 4541 */ 4542 static void 4543 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 4544 { 4545 arc_state_t *state = hdr->b_l1hdr.b_state; 4546 arc_buf_contents_t type = arc_buf_type(hdr); 4547 4548 /* protected by hash lock, if in the hash table */ 4549 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 4550 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4551 ASSERT(state != arc_anon && state != arc_l2c_only); 4552 4553 (void) refcount_remove_many(&state->arcs_esize[type], 4554 size, tag); 4555 } 4556 (void) refcount_remove_many(&state->arcs_size, size, tag); 4557 4558 VERIFY3U(hdr->b_type, ==, type); 4559 if (type == ARC_BUFC_METADATA) { 4560 arc_space_return(size, ARC_SPACE_META); 4561 } else { 4562 ASSERT(type == ARC_BUFC_DATA); 4563 arc_space_return(size, ARC_SPACE_DATA); 4564 } 4565 } 4566 4567 /* 4568 * This routine is called whenever a buffer is accessed. 4569 * NOTE: the hash lock is dropped in this function. 4570 */ 4571 static void 4572 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 4573 { 4574 clock_t now; 4575 4576 ASSERT(MUTEX_HELD(hash_lock)); 4577 ASSERT(HDR_HAS_L1HDR(hdr)); 4578 4579 if (hdr->b_l1hdr.b_state == arc_anon) { 4580 /* 4581 * This buffer is not in the cache, and does not 4582 * appear in our "ghost" list. Add the new buffer 4583 * to the MRU state. 4584 */ 4585 4586 ASSERT0(hdr->b_l1hdr.b_arc_access); 4587 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4588 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 4589 arc_change_state(arc_mru, hdr, hash_lock); 4590 4591 } else if (hdr->b_l1hdr.b_state == arc_mru) { 4592 now = ddi_get_lbolt(); 4593 4594 /* 4595 * If this buffer is here because of a prefetch, then either: 4596 * - clear the flag if this is a "referencing" read 4597 * (any subsequent access will bump this into the MFU state). 4598 * or 4599 * - move the buffer to the head of the list if this is 4600 * another prefetch (to make it less likely to be evicted). 4601 */ 4602 if (HDR_PREFETCH(hdr)) { 4603 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 4604 /* link protected by hash lock */ 4605 ASSERT(multilist_link_active( 4606 &hdr->b_l1hdr.b_arc_node)); 4607 } else { 4608 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 4609 ARCSTAT_BUMP(arcstat_mru_hits); 4610 } 4611 hdr->b_l1hdr.b_arc_access = now; 4612 return; 4613 } 4614 4615 /* 4616 * This buffer has been "accessed" only once so far, 4617 * but it is still in the cache. Move it to the MFU 4618 * state. 4619 */ 4620 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) { 4621 /* 4622 * More than 125ms have passed since we 4623 * instantiated this buffer. Move it to the 4624 * most frequently used state. 4625 */ 4626 hdr->b_l1hdr.b_arc_access = now; 4627 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4628 arc_change_state(arc_mfu, hdr, hash_lock); 4629 } 4630 ARCSTAT_BUMP(arcstat_mru_hits); 4631 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 4632 arc_state_t *new_state; 4633 /* 4634 * This buffer has been "accessed" recently, but 4635 * was evicted from the cache. Move it to the 4636 * MFU state. 4637 */ 4638 4639 if (HDR_PREFETCH(hdr)) { 4640 new_state = arc_mru; 4641 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) 4642 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 4643 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 4644 } else { 4645 new_state = arc_mfu; 4646 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4647 } 4648 4649 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4650 arc_change_state(new_state, hdr, hash_lock); 4651 4652 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 4653 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 4654 /* 4655 * This buffer has been accessed more than once and is 4656 * still in the cache. Keep it in the MFU state. 4657 * 4658 * NOTE: an add_reference() that occurred when we did 4659 * the arc_read() will have kicked this off the list. 4660 * If it was a prefetch, we will explicitly move it to 4661 * the head of the list now. 4662 */ 4663 if ((HDR_PREFETCH(hdr)) != 0) { 4664 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 4665 /* link protected by hash_lock */ 4666 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 4667 } 4668 ARCSTAT_BUMP(arcstat_mfu_hits); 4669 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4670 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 4671 arc_state_t *new_state = arc_mfu; 4672 /* 4673 * This buffer has been accessed more than once but has 4674 * been evicted from the cache. Move it back to the 4675 * MFU state. 4676 */ 4677 4678 if (HDR_PREFETCH(hdr)) { 4679 /* 4680 * This is a prefetch access... 4681 * move this block back to the MRU state. 4682 */ 4683 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); 4684 new_state = arc_mru; 4685 } 4686 4687 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4688 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4689 arc_change_state(new_state, hdr, hash_lock); 4690 4691 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 4692 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 4693 /* 4694 * This buffer is on the 2nd Level ARC. 4695 */ 4696 4697 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 4698 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 4699 arc_change_state(arc_mfu, hdr, hash_lock); 4700 } else { 4701 ASSERT(!"invalid arc state"); 4702 } 4703 } 4704 4705 /* a generic arc_done_func_t which you can use */ 4706 /* ARGSUSED */ 4707 void 4708 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 4709 { 4710 if (zio == NULL || zio->io_error == 0) 4711 bcopy(buf->b_data, arg, arc_buf_size(buf)); 4712 arc_buf_destroy(buf, arg); 4713 } 4714 4715 /* a generic arc_done_func_t */ 4716 void 4717 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 4718 { 4719 arc_buf_t **bufp = arg; 4720 if (buf == NULL) { 4721 ASSERT(zio == NULL || zio->io_error != 0); 4722 *bufp = NULL; 4723 } else { 4724 ASSERT(zio == NULL || zio->io_error == 0); 4725 *bufp = buf; 4726 ASSERT(buf->b_data != NULL); 4727 } 4728 } 4729 4730 static void 4731 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 4732 { 4733 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 4734 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 4735 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 4736 } else { 4737 if (HDR_COMPRESSION_ENABLED(hdr)) { 4738 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, 4739 BP_GET_COMPRESS(bp)); 4740 } 4741 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 4742 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 4743 } 4744 } 4745 4746 static void 4747 arc_read_done(zio_t *zio) 4748 { 4749 arc_buf_hdr_t *hdr = zio->io_private; 4750 kmutex_t *hash_lock = NULL; 4751 arc_callback_t *callback_list; 4752 arc_callback_t *acb; 4753 boolean_t freeable = B_FALSE; 4754 boolean_t no_zio_error = (zio->io_error == 0); 4755 4756 /* 4757 * The hdr was inserted into hash-table and removed from lists 4758 * prior to starting I/O. We should find this header, since 4759 * it's in the hash table, and it should be legit since it's 4760 * not possible to evict it during the I/O. The only possible 4761 * reason for it not to be found is if we were freed during the 4762 * read. 4763 */ 4764 if (HDR_IN_HASH_TABLE(hdr)) { 4765 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 4766 ASSERT3U(hdr->b_dva.dva_word[0], ==, 4767 BP_IDENTITY(zio->io_bp)->dva_word[0]); 4768 ASSERT3U(hdr->b_dva.dva_word[1], ==, 4769 BP_IDENTITY(zio->io_bp)->dva_word[1]); 4770 4771 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 4772 &hash_lock); 4773 4774 ASSERT((found == hdr && 4775 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 4776 (found == hdr && HDR_L2_READING(hdr))); 4777 ASSERT3P(hash_lock, !=, NULL); 4778 } 4779 4780 if (no_zio_error) { 4781 /* byteswap if necessary */ 4782 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 4783 if (BP_GET_LEVEL(zio->io_bp) > 0) { 4784 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 4785 } else { 4786 hdr->b_l1hdr.b_byteswap = 4787 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 4788 } 4789 } else { 4790 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 4791 } 4792 } 4793 4794 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 4795 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 4796 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 4797 4798 callback_list = hdr->b_l1hdr.b_acb; 4799 ASSERT3P(callback_list, !=, NULL); 4800 4801 if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) { 4802 /* 4803 * Only call arc_access on anonymous buffers. This is because 4804 * if we've issued an I/O for an evicted buffer, we've already 4805 * called arc_access (to prevent any simultaneous readers from 4806 * getting confused). 4807 */ 4808 arc_access(hdr, hash_lock); 4809 } 4810 4811 /* 4812 * If a read request has a callback (i.e. acb_done is not NULL), then we 4813 * make a buf containing the data according to the parameters which were 4814 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 4815 * aren't needlessly decompressing the data multiple times. 4816 */ 4817 int callback_cnt = 0; 4818 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 4819 if (!acb->acb_done) 4820 continue; 4821 4822 /* This is a demand read since prefetches don't use callbacks */ 4823 callback_cnt++; 4824 4825 if (no_zio_error) { 4826 int error = arc_buf_alloc_impl(hdr, acb->acb_private, 4827 acb->acb_compressed, zio->io_error == 0, 4828 &acb->acb_buf); 4829 if (error != 0) { 4830 /* 4831 * Decompression failed. Set io_error 4832 * so that when we call acb_done (below), 4833 * we will indicate that the read failed. 4834 * Note that in the unusual case where one 4835 * callback is compressed and another 4836 * uncompressed, we will mark all of them 4837 * as failed, even though the uncompressed 4838 * one can't actually fail. In this case, 4839 * the hdr will not be anonymous, because 4840 * if there are multiple callbacks, it's 4841 * because multiple threads found the same 4842 * arc buf in the hash table. 4843 */ 4844 zio->io_error = error; 4845 } 4846 } 4847 } 4848 /* 4849 * If there are multiple callbacks, we must have the hash lock, 4850 * because the only way for multiple threads to find this hdr is 4851 * in the hash table. This ensures that if there are multiple 4852 * callbacks, the hdr is not anonymous. If it were anonymous, 4853 * we couldn't use arc_buf_destroy() in the error case below. 4854 */ 4855 ASSERT(callback_cnt < 2 || hash_lock != NULL); 4856 4857 hdr->b_l1hdr.b_acb = NULL; 4858 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 4859 if (callback_cnt == 0) { 4860 ASSERT(HDR_PREFETCH(hdr)); 4861 ASSERT0(hdr->b_l1hdr.b_bufcnt); 4862 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 4863 } 4864 4865 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 4866 callback_list != NULL); 4867 4868 if (no_zio_error) { 4869 arc_hdr_verify(hdr, zio->io_bp); 4870 } else { 4871 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 4872 if (hdr->b_l1hdr.b_state != arc_anon) 4873 arc_change_state(arc_anon, hdr, hash_lock); 4874 if (HDR_IN_HASH_TABLE(hdr)) 4875 buf_hash_remove(hdr); 4876 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 4877 } 4878 4879 /* 4880 * Broadcast before we drop the hash_lock to avoid the possibility 4881 * that the hdr (and hence the cv) might be freed before we get to 4882 * the cv_broadcast(). 4883 */ 4884 cv_broadcast(&hdr->b_l1hdr.b_cv); 4885 4886 if (hash_lock != NULL) { 4887 mutex_exit(hash_lock); 4888 } else { 4889 /* 4890 * This block was freed while we waited for the read to 4891 * complete. It has been removed from the hash table and 4892 * moved to the anonymous state (so that it won't show up 4893 * in the cache). 4894 */ 4895 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 4896 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 4897 } 4898 4899 /* execute each callback and free its structure */ 4900 while ((acb = callback_list) != NULL) { 4901 if (acb->acb_done != NULL) { 4902 if (zio->io_error != 0 && acb->acb_buf != NULL) { 4903 /* 4904 * If arc_buf_alloc_impl() fails during 4905 * decompression, the buf will still be 4906 * allocated, and needs to be freed here. 4907 */ 4908 arc_buf_destroy(acb->acb_buf, acb->acb_private); 4909 acb->acb_buf = NULL; 4910 } 4911 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 4912 } 4913 4914 if (acb->acb_zio_dummy != NULL) { 4915 acb->acb_zio_dummy->io_error = zio->io_error; 4916 zio_nowait(acb->acb_zio_dummy); 4917 } 4918 4919 callback_list = acb->acb_next; 4920 kmem_free(acb, sizeof (arc_callback_t)); 4921 } 4922 4923 if (freeable) 4924 arc_hdr_destroy(hdr); 4925 } 4926 4927 /* 4928 * "Read" the block at the specified DVA (in bp) via the 4929 * cache. If the block is found in the cache, invoke the provided 4930 * callback immediately and return. Note that the `zio' parameter 4931 * in the callback will be NULL in this case, since no IO was 4932 * required. If the block is not in the cache pass the read request 4933 * on to the spa with a substitute callback function, so that the 4934 * requested block will be added to the cache. 4935 * 4936 * If a read request arrives for a block that has a read in-progress, 4937 * either wait for the in-progress read to complete (and return the 4938 * results); or, if this is a read with a "done" func, add a record 4939 * to the read to invoke the "done" func when the read completes, 4940 * and return; or just return. 4941 * 4942 * arc_read_done() will invoke all the requested "done" functions 4943 * for readers of this block. 4944 */ 4945 int 4946 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 4947 void *private, zio_priority_t priority, int zio_flags, 4948 arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 4949 { 4950 arc_buf_hdr_t *hdr = NULL; 4951 kmutex_t *hash_lock = NULL; 4952 zio_t *rzio; 4953 uint64_t guid = spa_load_guid(spa); 4954 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0; 4955 4956 ASSERT(!BP_IS_EMBEDDED(bp) || 4957 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 4958 4959 top: 4960 if (!BP_IS_EMBEDDED(bp)) { 4961 /* 4962 * Embedded BP's have no DVA and require no I/O to "read". 4963 * Create an anonymous arc buf to back it. 4964 */ 4965 hdr = buf_hash_find(guid, bp, &hash_lock); 4966 } 4967 4968 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) { 4969 arc_buf_t *buf = NULL; 4970 *arc_flags |= ARC_FLAG_CACHED; 4971 4972 if (HDR_IO_IN_PROGRESS(hdr)) { 4973 4974 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 4975 priority == ZIO_PRIORITY_SYNC_READ) { 4976 /* 4977 * This sync read must wait for an 4978 * in-progress async read (e.g. a predictive 4979 * prefetch). Async reads are queued 4980 * separately at the vdev_queue layer, so 4981 * this is a form of priority inversion. 4982 * Ideally, we would "inherit" the demand 4983 * i/o's priority by moving the i/o from 4984 * the async queue to the synchronous queue, 4985 * but there is currently no mechanism to do 4986 * so. Track this so that we can evaluate 4987 * the magnitude of this potential performance 4988 * problem. 4989 * 4990 * Note that if the prefetch i/o is already 4991 * active (has been issued to the device), 4992 * the prefetch improved performance, because 4993 * we issued it sooner than we would have 4994 * without the prefetch. 4995 */ 4996 DTRACE_PROBE1(arc__sync__wait__for__async, 4997 arc_buf_hdr_t *, hdr); 4998 ARCSTAT_BUMP(arcstat_sync_wait_for_async); 4999 } 5000 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5001 arc_hdr_clear_flags(hdr, 5002 ARC_FLAG_PREDICTIVE_PREFETCH); 5003 } 5004 5005 if (*arc_flags & ARC_FLAG_WAIT) { 5006 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5007 mutex_exit(hash_lock); 5008 goto top; 5009 } 5010 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5011 5012 if (done) { 5013 arc_callback_t *acb = NULL; 5014 5015 acb = kmem_zalloc(sizeof (arc_callback_t), 5016 KM_SLEEP); 5017 acb->acb_done = done; 5018 acb->acb_private = private; 5019 acb->acb_compressed = compressed_read; 5020 if (pio != NULL) 5021 acb->acb_zio_dummy = zio_null(pio, 5022 spa, NULL, NULL, NULL, zio_flags); 5023 5024 ASSERT3P(acb->acb_done, !=, NULL); 5025 acb->acb_next = hdr->b_l1hdr.b_acb; 5026 hdr->b_l1hdr.b_acb = acb; 5027 mutex_exit(hash_lock); 5028 return (0); 5029 } 5030 mutex_exit(hash_lock); 5031 return (0); 5032 } 5033 5034 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5035 hdr->b_l1hdr.b_state == arc_mfu); 5036 5037 if (done) { 5038 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5039 /* 5040 * This is a demand read which does not have to 5041 * wait for i/o because we did a predictive 5042 * prefetch i/o for it, which has completed. 5043 */ 5044 DTRACE_PROBE1( 5045 arc__demand__hit__predictive__prefetch, 5046 arc_buf_hdr_t *, hdr); 5047 ARCSTAT_BUMP( 5048 arcstat_demand_hit_predictive_prefetch); 5049 arc_hdr_clear_flags(hdr, 5050 ARC_FLAG_PREDICTIVE_PREFETCH); 5051 } 5052 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp)); 5053 5054 /* Get a buf with the desired data in it. */ 5055 VERIFY0(arc_buf_alloc_impl(hdr, private, 5056 compressed_read, B_TRUE, &buf)); 5057 } else if (*arc_flags & ARC_FLAG_PREFETCH && 5058 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5059 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5060 } 5061 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5062 arc_access(hdr, hash_lock); 5063 if (*arc_flags & ARC_FLAG_L2CACHE) 5064 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5065 mutex_exit(hash_lock); 5066 ARCSTAT_BUMP(arcstat_hits); 5067 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5068 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 5069 data, metadata, hits); 5070 5071 if (done) 5072 done(NULL, buf, private); 5073 } else { 5074 uint64_t lsize = BP_GET_LSIZE(bp); 5075 uint64_t psize = BP_GET_PSIZE(bp); 5076 arc_callback_t *acb; 5077 vdev_t *vd = NULL; 5078 uint64_t addr = 0; 5079 boolean_t devw = B_FALSE; 5080 uint64_t size; 5081 5082 if (hdr == NULL) { 5083 /* this block is not in the cache */ 5084 arc_buf_hdr_t *exists = NULL; 5085 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 5086 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 5087 BP_GET_COMPRESS(bp), type); 5088 5089 if (!BP_IS_EMBEDDED(bp)) { 5090 hdr->b_dva = *BP_IDENTITY(bp); 5091 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 5092 exists = buf_hash_insert(hdr, &hash_lock); 5093 } 5094 if (exists != NULL) { 5095 /* somebody beat us to the hash insert */ 5096 mutex_exit(hash_lock); 5097 buf_discard_identity(hdr); 5098 arc_hdr_destroy(hdr); 5099 goto top; /* restart the IO request */ 5100 } 5101 } else { 5102 /* 5103 * This block is in the ghost cache. If it was L2-only 5104 * (and thus didn't have an L1 hdr), we realloc the 5105 * header to add an L1 hdr. 5106 */ 5107 if (!HDR_HAS_L1HDR(hdr)) { 5108 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 5109 hdr_full_cache); 5110 } 5111 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 5112 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state)); 5113 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5114 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5115 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 5116 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 5117 5118 /* 5119 * This is a delicate dance that we play here. 5120 * This hdr is in the ghost list so we access it 5121 * to move it out of the ghost list before we 5122 * initiate the read. If it's a prefetch then 5123 * it won't have a callback so we'll remove the 5124 * reference that arc_buf_alloc_impl() created. We 5125 * do this after we've called arc_access() to 5126 * avoid hitting an assert in remove_reference(). 5127 */ 5128 arc_access(hdr, hash_lock); 5129 arc_hdr_alloc_pabd(hdr); 5130 } 5131 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 5132 size = arc_hdr_size(hdr); 5133 5134 /* 5135 * If compression is enabled on the hdr, then will do 5136 * RAW I/O and will store the compressed data in the hdr's 5137 * data block. Otherwise, the hdr's data block will contain 5138 * the uncompressed data. 5139 */ 5140 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) { 5141 zio_flags |= ZIO_FLAG_RAW; 5142 } 5143 5144 if (*arc_flags & ARC_FLAG_PREFETCH) 5145 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5146 if (*arc_flags & ARC_FLAG_L2CACHE) 5147 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5148 if (BP_GET_LEVEL(bp) > 0) 5149 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 5150 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 5151 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 5152 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 5153 5154 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 5155 acb->acb_done = done; 5156 acb->acb_private = private; 5157 acb->acb_compressed = compressed_read; 5158 5159 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5160 hdr->b_l1hdr.b_acb = acb; 5161 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5162 5163 if (HDR_HAS_L2HDR(hdr) && 5164 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 5165 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 5166 addr = hdr->b_l2hdr.b_daddr; 5167 /* 5168 * Lock out L2ARC device removal. 5169 */ 5170 if (vdev_is_dead(vd) || 5171 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 5172 vd = NULL; 5173 } 5174 5175 if (priority == ZIO_PRIORITY_ASYNC_READ) 5176 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5177 else 5178 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 5179 5180 if (hash_lock != NULL) 5181 mutex_exit(hash_lock); 5182 5183 /* 5184 * At this point, we have a level 1 cache miss. Try again in 5185 * L2ARC if possible. 5186 */ 5187 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 5188 5189 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 5190 uint64_t, lsize, zbookmark_phys_t *, zb); 5191 ARCSTAT_BUMP(arcstat_misses); 5192 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5193 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 5194 data, metadata, misses); 5195 5196 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 5197 /* 5198 * Read from the L2ARC if the following are true: 5199 * 1. The L2ARC vdev was previously cached. 5200 * 2. This buffer still has L2ARC metadata. 5201 * 3. This buffer isn't currently writing to the L2ARC. 5202 * 4. The L2ARC entry wasn't evicted, which may 5203 * also have invalidated the vdev. 5204 * 5. This isn't prefetch and l2arc_noprefetch is set. 5205 */ 5206 if (HDR_HAS_L2HDR(hdr) && 5207 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 5208 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 5209 l2arc_read_callback_t *cb; 5210 abd_t *abd; 5211 uint64_t asize; 5212 5213 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 5214 ARCSTAT_BUMP(arcstat_l2_hits); 5215 5216 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 5217 KM_SLEEP); 5218 cb->l2rcb_hdr = hdr; 5219 cb->l2rcb_bp = *bp; 5220 cb->l2rcb_zb = *zb; 5221 cb->l2rcb_flags = zio_flags; 5222 5223 asize = vdev_psize_to_asize(vd, size); 5224 if (asize != size) { 5225 abd = abd_alloc_for_io(asize, 5226 HDR_ISTYPE_METADATA(hdr)); 5227 cb->l2rcb_abd = abd; 5228 } else { 5229 abd = hdr->b_l1hdr.b_pabd; 5230 } 5231 5232 ASSERT(addr >= VDEV_LABEL_START_SIZE && 5233 addr + asize <= vd->vdev_psize - 5234 VDEV_LABEL_END_SIZE); 5235 5236 /* 5237 * l2arc read. The SCL_L2ARC lock will be 5238 * released by l2arc_read_done(). 5239 * Issue a null zio if the underlying buffer 5240 * was squashed to zero size by compression. 5241 */ 5242 ASSERT3U(HDR_GET_COMPRESS(hdr), !=, 5243 ZIO_COMPRESS_EMPTY); 5244 rzio = zio_read_phys(pio, vd, addr, 5245 asize, abd, 5246 ZIO_CHECKSUM_OFF, 5247 l2arc_read_done, cb, priority, 5248 zio_flags | ZIO_FLAG_DONT_CACHE | 5249 ZIO_FLAG_CANFAIL | 5250 ZIO_FLAG_DONT_PROPAGATE | 5251 ZIO_FLAG_DONT_RETRY, B_FALSE); 5252 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 5253 zio_t *, rzio); 5254 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 5255 5256 if (*arc_flags & ARC_FLAG_NOWAIT) { 5257 zio_nowait(rzio); 5258 return (0); 5259 } 5260 5261 ASSERT(*arc_flags & ARC_FLAG_WAIT); 5262 if (zio_wait(rzio) == 0) 5263 return (0); 5264 5265 /* l2arc read error; goto zio_read() */ 5266 } else { 5267 DTRACE_PROBE1(l2arc__miss, 5268 arc_buf_hdr_t *, hdr); 5269 ARCSTAT_BUMP(arcstat_l2_misses); 5270 if (HDR_L2_WRITING(hdr)) 5271 ARCSTAT_BUMP(arcstat_l2_rw_clash); 5272 spa_config_exit(spa, SCL_L2ARC, vd); 5273 } 5274 } else { 5275 if (vd != NULL) 5276 spa_config_exit(spa, SCL_L2ARC, vd); 5277 if (l2arc_ndev != 0) { 5278 DTRACE_PROBE1(l2arc__miss, 5279 arc_buf_hdr_t *, hdr); 5280 ARCSTAT_BUMP(arcstat_l2_misses); 5281 } 5282 } 5283 5284 rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size, 5285 arc_read_done, hdr, priority, zio_flags, zb); 5286 5287 if (*arc_flags & ARC_FLAG_WAIT) 5288 return (zio_wait(rzio)); 5289 5290 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5291 zio_nowait(rzio); 5292 } 5293 return (0); 5294 } 5295 5296 /* 5297 * Notify the arc that a block was freed, and thus will never be used again. 5298 */ 5299 void 5300 arc_freed(spa_t *spa, const blkptr_t *bp) 5301 { 5302 arc_buf_hdr_t *hdr; 5303 kmutex_t *hash_lock; 5304 uint64_t guid = spa_load_guid(spa); 5305 5306 ASSERT(!BP_IS_EMBEDDED(bp)); 5307 5308 hdr = buf_hash_find(guid, bp, &hash_lock); 5309 if (hdr == NULL) 5310 return; 5311 5312 /* 5313 * We might be trying to free a block that is still doing I/O 5314 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 5315 * dmu_sync-ed block). If this block is being prefetched, then it 5316 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 5317 * until the I/O completes. A block may also have a reference if it is 5318 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 5319 * have written the new block to its final resting place on disk but 5320 * without the dedup flag set. This would have left the hdr in the MRU 5321 * state and discoverable. When the txg finally syncs it detects that 5322 * the block was overridden in open context and issues an override I/O. 5323 * Since this is a dedup block, the override I/O will determine if the 5324 * block is already in the DDT. If so, then it will replace the io_bp 5325 * with the bp from the DDT and allow the I/O to finish. When the I/O 5326 * reaches the done callback, dbuf_write_override_done, it will 5327 * check to see if the io_bp and io_bp_override are identical. 5328 * If they are not, then it indicates that the bp was replaced with 5329 * the bp in the DDT and the override bp is freed. This allows 5330 * us to arrive here with a reference on a block that is being 5331 * freed. So if we have an I/O in progress, or a reference to 5332 * this hdr, then we don't destroy the hdr. 5333 */ 5334 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 5335 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 5336 arc_change_state(arc_anon, hdr, hash_lock); 5337 arc_hdr_destroy(hdr); 5338 mutex_exit(hash_lock); 5339 } else { 5340 mutex_exit(hash_lock); 5341 } 5342 5343 } 5344 5345 /* 5346 * Release this buffer from the cache, making it an anonymous buffer. This 5347 * must be done after a read and prior to modifying the buffer contents. 5348 * If the buffer has more than one reference, we must make 5349 * a new hdr for the buffer. 5350 */ 5351 void 5352 arc_release(arc_buf_t *buf, void *tag) 5353 { 5354 arc_buf_hdr_t *hdr = buf->b_hdr; 5355 5356 /* 5357 * It would be nice to assert that if it's DMU metadata (level > 5358 * 0 || it's the dnode file), then it must be syncing context. 5359 * But we don't know that information at this level. 5360 */ 5361 5362 mutex_enter(&buf->b_evict_lock); 5363 5364 ASSERT(HDR_HAS_L1HDR(hdr)); 5365 5366 /* 5367 * We don't grab the hash lock prior to this check, because if 5368 * the buffer's header is in the arc_anon state, it won't be 5369 * linked into the hash table. 5370 */ 5371 if (hdr->b_l1hdr.b_state == arc_anon) { 5372 mutex_exit(&buf->b_evict_lock); 5373 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5374 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 5375 ASSERT(!HDR_HAS_L2HDR(hdr)); 5376 ASSERT(HDR_EMPTY(hdr)); 5377 5378 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 5379 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 5380 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 5381 5382 hdr->b_l1hdr.b_arc_access = 0; 5383 5384 /* 5385 * If the buf is being overridden then it may already 5386 * have a hdr that is not empty. 5387 */ 5388 buf_discard_identity(hdr); 5389 arc_buf_thaw(buf); 5390 5391 return; 5392 } 5393 5394 kmutex_t *hash_lock = HDR_LOCK(hdr); 5395 mutex_enter(hash_lock); 5396 5397 /* 5398 * This assignment is only valid as long as the hash_lock is 5399 * held, we must be careful not to reference state or the 5400 * b_state field after dropping the lock. 5401 */ 5402 arc_state_t *state = hdr->b_l1hdr.b_state; 5403 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 5404 ASSERT3P(state, !=, arc_anon); 5405 5406 /* this buffer is not on any list */ 5407 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 5408 5409 if (HDR_HAS_L2HDR(hdr)) { 5410 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 5411 5412 /* 5413 * We have to recheck this conditional again now that 5414 * we're holding the l2ad_mtx to prevent a race with 5415 * another thread which might be concurrently calling 5416 * l2arc_evict(). In that case, l2arc_evict() might have 5417 * destroyed the header's L2 portion as we were waiting 5418 * to acquire the l2ad_mtx. 5419 */ 5420 if (HDR_HAS_L2HDR(hdr)) 5421 arc_hdr_l2hdr_destroy(hdr); 5422 5423 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 5424 } 5425 5426 /* 5427 * Do we have more than one buf? 5428 */ 5429 if (hdr->b_l1hdr.b_bufcnt > 1) { 5430 arc_buf_hdr_t *nhdr; 5431 uint64_t spa = hdr->b_spa; 5432 uint64_t psize = HDR_GET_PSIZE(hdr); 5433 uint64_t lsize = HDR_GET_LSIZE(hdr); 5434 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 5435 arc_buf_contents_t type = arc_buf_type(hdr); 5436 VERIFY3U(hdr->b_type, ==, type); 5437 5438 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 5439 (void) remove_reference(hdr, hash_lock, tag); 5440 5441 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 5442 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 5443 ASSERT(ARC_BUF_LAST(buf)); 5444 } 5445 5446 /* 5447 * Pull the data off of this hdr and attach it to 5448 * a new anonymous hdr. Also find the last buffer 5449 * in the hdr's buffer list. 5450 */ 5451 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 5452 ASSERT3P(lastbuf, !=, NULL); 5453 5454 /* 5455 * If the current arc_buf_t and the hdr are sharing their data 5456 * buffer, then we must stop sharing that block. 5457 */ 5458 if (arc_buf_is_shared(buf)) { 5459 VERIFY(!arc_buf_is_shared(lastbuf)); 5460 5461 /* 5462 * First, sever the block sharing relationship between 5463 * buf and the arc_buf_hdr_t. 5464 */ 5465 arc_unshare_buf(hdr, buf); 5466 5467 /* 5468 * Now we need to recreate the hdr's b_pabd. Since we 5469 * have lastbuf handy, we try to share with it, but if 5470 * we can't then we allocate a new b_pabd and copy the 5471 * data from buf into it. 5472 */ 5473 if (arc_can_share(hdr, lastbuf)) { 5474 arc_share_buf(hdr, lastbuf); 5475 } else { 5476 arc_hdr_alloc_pabd(hdr); 5477 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 5478 buf->b_data, psize); 5479 } 5480 VERIFY3P(lastbuf->b_data, !=, NULL); 5481 } else if (HDR_SHARED_DATA(hdr)) { 5482 /* 5483 * Uncompressed shared buffers are always at the end 5484 * of the list. Compressed buffers don't have the 5485 * same requirements. This makes it hard to 5486 * simply assert that the lastbuf is shared so 5487 * we rely on the hdr's compression flags to determine 5488 * if we have a compressed, shared buffer. 5489 */ 5490 ASSERT(arc_buf_is_shared(lastbuf) || 5491 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF); 5492 ASSERT(!ARC_BUF_SHARED(buf)); 5493 } 5494 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 5495 ASSERT3P(state, !=, arc_l2c_only); 5496 5497 (void) refcount_remove_many(&state->arcs_size, 5498 arc_buf_size(buf), buf); 5499 5500 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 5501 ASSERT3P(state, !=, arc_l2c_only); 5502 (void) refcount_remove_many(&state->arcs_esize[type], 5503 arc_buf_size(buf), buf); 5504 } 5505 5506 hdr->b_l1hdr.b_bufcnt -= 1; 5507 arc_cksum_verify(buf); 5508 arc_buf_unwatch(buf); 5509 5510 mutex_exit(hash_lock); 5511 5512 /* 5513 * Allocate a new hdr. The new hdr will contain a b_pabd 5514 * buffer which will be freed in arc_write(). 5515 */ 5516 nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type); 5517 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 5518 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 5519 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt)); 5520 VERIFY3U(nhdr->b_type, ==, type); 5521 ASSERT(!HDR_SHARED_DATA(nhdr)); 5522 5523 nhdr->b_l1hdr.b_buf = buf; 5524 nhdr->b_l1hdr.b_bufcnt = 1; 5525 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 5526 buf->b_hdr = nhdr; 5527 5528 mutex_exit(&buf->b_evict_lock); 5529 (void) refcount_add_many(&arc_anon->arcs_size, 5530 arc_buf_size(buf), buf); 5531 } else { 5532 mutex_exit(&buf->b_evict_lock); 5533 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 5534 /* protected by hash lock, or hdr is on arc_anon */ 5535 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 5536 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5537 arc_change_state(arc_anon, hdr, hash_lock); 5538 hdr->b_l1hdr.b_arc_access = 0; 5539 mutex_exit(hash_lock); 5540 5541 buf_discard_identity(hdr); 5542 arc_buf_thaw(buf); 5543 } 5544 } 5545 5546 int 5547 arc_released(arc_buf_t *buf) 5548 { 5549 int released; 5550 5551 mutex_enter(&buf->b_evict_lock); 5552 released = (buf->b_data != NULL && 5553 buf->b_hdr->b_l1hdr.b_state == arc_anon); 5554 mutex_exit(&buf->b_evict_lock); 5555 return (released); 5556 } 5557 5558 #ifdef ZFS_DEBUG 5559 int 5560 arc_referenced(arc_buf_t *buf) 5561 { 5562 int referenced; 5563 5564 mutex_enter(&buf->b_evict_lock); 5565 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 5566 mutex_exit(&buf->b_evict_lock); 5567 return (referenced); 5568 } 5569 #endif 5570 5571 static void 5572 arc_write_ready(zio_t *zio) 5573 { 5574 arc_write_callback_t *callback = zio->io_private; 5575 arc_buf_t *buf = callback->awcb_buf; 5576 arc_buf_hdr_t *hdr = buf->b_hdr; 5577 uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp); 5578 5579 ASSERT(HDR_HAS_L1HDR(hdr)); 5580 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 5581 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 5582 5583 /* 5584 * If we're reexecuting this zio because the pool suspended, then 5585 * cleanup any state that was previously set the first time the 5586 * callback was invoked. 5587 */ 5588 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 5589 arc_cksum_free(hdr); 5590 arc_buf_unwatch(buf); 5591 if (hdr->b_l1hdr.b_pabd != NULL) { 5592 if (arc_buf_is_shared(buf)) { 5593 arc_unshare_buf(hdr, buf); 5594 } else { 5595 arc_hdr_free_pabd(hdr); 5596 } 5597 } 5598 } 5599 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 5600 ASSERT(!HDR_SHARED_DATA(hdr)); 5601 ASSERT(!arc_buf_is_shared(buf)); 5602 5603 callback->awcb_ready(zio, buf, callback->awcb_private); 5604 5605 if (HDR_IO_IN_PROGRESS(hdr)) 5606 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 5607 5608 arc_cksum_compute(buf); 5609 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5610 5611 enum zio_compress compress; 5612 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 5613 compress = ZIO_COMPRESS_OFF; 5614 } else { 5615 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp)); 5616 compress = BP_GET_COMPRESS(zio->io_bp); 5617 } 5618 HDR_SET_PSIZE(hdr, psize); 5619 arc_hdr_set_compress(hdr, compress); 5620 5621 5622 /* 5623 * Fill the hdr with data. If the hdr is compressed, the data we want 5624 * is available from the zio, otherwise we can take it from the buf. 5625 * 5626 * We might be able to share the buf's data with the hdr here. However, 5627 * doing so would cause the ARC to be full of linear ABDs if we write a 5628 * lot of shareable data. As a compromise, we check whether scattered 5629 * ABDs are allowed, and assume that if they are then the user wants 5630 * the ARC to be primarily filled with them regardless of the data being 5631 * written. Therefore, if they're allowed then we allocate one and copy 5632 * the data into it; otherwise, we share the data directly if we can. 5633 */ 5634 if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) { 5635 arc_hdr_alloc_pabd(hdr); 5636 5637 /* 5638 * Ideally, we would always copy the io_abd into b_pabd, but the 5639 * user may have disabled compressed ARC, thus we must check the 5640 * hdr's compression setting rather than the io_bp's. 5641 */ 5642 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) { 5643 ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=, 5644 ZIO_COMPRESS_OFF); 5645 ASSERT3U(psize, >, 0); 5646 5647 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 5648 } else { 5649 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 5650 5651 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 5652 arc_buf_size(buf)); 5653 } 5654 } else { 5655 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 5656 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 5657 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 5658 5659 arc_share_buf(hdr, buf); 5660 } 5661 5662 arc_hdr_verify(hdr, zio->io_bp); 5663 } 5664 5665 static void 5666 arc_write_children_ready(zio_t *zio) 5667 { 5668 arc_write_callback_t *callback = zio->io_private; 5669 arc_buf_t *buf = callback->awcb_buf; 5670 5671 callback->awcb_children_ready(zio, buf, callback->awcb_private); 5672 } 5673 5674 /* 5675 * The SPA calls this callback for each physical write that happens on behalf 5676 * of a logical write. See the comment in dbuf_write_physdone() for details. 5677 */ 5678 static void 5679 arc_write_physdone(zio_t *zio) 5680 { 5681 arc_write_callback_t *cb = zio->io_private; 5682 if (cb->awcb_physdone != NULL) 5683 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 5684 } 5685 5686 static void 5687 arc_write_done(zio_t *zio) 5688 { 5689 arc_write_callback_t *callback = zio->io_private; 5690 arc_buf_t *buf = callback->awcb_buf; 5691 arc_buf_hdr_t *hdr = buf->b_hdr; 5692 5693 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5694 5695 if (zio->io_error == 0) { 5696 arc_hdr_verify(hdr, zio->io_bp); 5697 5698 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 5699 buf_discard_identity(hdr); 5700 } else { 5701 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 5702 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 5703 } 5704 } else { 5705 ASSERT(HDR_EMPTY(hdr)); 5706 } 5707 5708 /* 5709 * If the block to be written was all-zero or compressed enough to be 5710 * embedded in the BP, no write was performed so there will be no 5711 * dva/birth/checksum. The buffer must therefore remain anonymous 5712 * (and uncached). 5713 */ 5714 if (!HDR_EMPTY(hdr)) { 5715 arc_buf_hdr_t *exists; 5716 kmutex_t *hash_lock; 5717 5718 ASSERT3U(zio->io_error, ==, 0); 5719 5720 arc_cksum_verify(buf); 5721 5722 exists = buf_hash_insert(hdr, &hash_lock); 5723 if (exists != NULL) { 5724 /* 5725 * This can only happen if we overwrite for 5726 * sync-to-convergence, because we remove 5727 * buffers from the hash table when we arc_free(). 5728 */ 5729 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 5730 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 5731 panic("bad overwrite, hdr=%p exists=%p", 5732 (void *)hdr, (void *)exists); 5733 ASSERT(refcount_is_zero( 5734 &exists->b_l1hdr.b_refcnt)); 5735 arc_change_state(arc_anon, exists, hash_lock); 5736 mutex_exit(hash_lock); 5737 arc_hdr_destroy(exists); 5738 exists = buf_hash_insert(hdr, &hash_lock); 5739 ASSERT3P(exists, ==, NULL); 5740 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 5741 /* nopwrite */ 5742 ASSERT(zio->io_prop.zp_nopwrite); 5743 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 5744 panic("bad nopwrite, hdr=%p exists=%p", 5745 (void *)hdr, (void *)exists); 5746 } else { 5747 /* Dedup */ 5748 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 5749 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 5750 ASSERT(BP_GET_DEDUP(zio->io_bp)); 5751 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 5752 } 5753 } 5754 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5755 /* if it's not anon, we are doing a scrub */ 5756 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 5757 arc_access(hdr, hash_lock); 5758 mutex_exit(hash_lock); 5759 } else { 5760 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5761 } 5762 5763 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5764 callback->awcb_done(zio, buf, callback->awcb_private); 5765 5766 abd_put(zio->io_abd); 5767 kmem_free(callback, sizeof (arc_write_callback_t)); 5768 } 5769 5770 zio_t * 5771 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 5772 boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready, 5773 arc_done_func_t *children_ready, arc_done_func_t *physdone, 5774 arc_done_func_t *done, void *private, zio_priority_t priority, 5775 int zio_flags, const zbookmark_phys_t *zb) 5776 { 5777 arc_buf_hdr_t *hdr = buf->b_hdr; 5778 arc_write_callback_t *callback; 5779 zio_t *zio; 5780 zio_prop_t localprop = *zp; 5781 5782 ASSERT3P(ready, !=, NULL); 5783 ASSERT3P(done, !=, NULL); 5784 ASSERT(!HDR_IO_ERROR(hdr)); 5785 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 5786 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 5787 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 5788 if (l2arc) 5789 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5790 if (ARC_BUF_COMPRESSED(buf)) { 5791 /* 5792 * We're writing a pre-compressed buffer. Make the 5793 * compression algorithm requested by the zio_prop_t match 5794 * the pre-compressed buffer's compression algorithm. 5795 */ 5796 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 5797 5798 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 5799 zio_flags |= ZIO_FLAG_RAW; 5800 } 5801 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 5802 callback->awcb_ready = ready; 5803 callback->awcb_children_ready = children_ready; 5804 callback->awcb_physdone = physdone; 5805 callback->awcb_done = done; 5806 callback->awcb_private = private; 5807 callback->awcb_buf = buf; 5808 5809 /* 5810 * The hdr's b_pabd is now stale, free it now. A new data block 5811 * will be allocated when the zio pipeline calls arc_write_ready(). 5812 */ 5813 if (hdr->b_l1hdr.b_pabd != NULL) { 5814 /* 5815 * If the buf is currently sharing the data block with 5816 * the hdr then we need to break that relationship here. 5817 * The hdr will remain with a NULL data pointer and the 5818 * buf will take sole ownership of the block. 5819 */ 5820 if (arc_buf_is_shared(buf)) { 5821 arc_unshare_buf(hdr, buf); 5822 } else { 5823 arc_hdr_free_pabd(hdr); 5824 } 5825 VERIFY3P(buf->b_data, !=, NULL); 5826 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 5827 } 5828 ASSERT(!arc_buf_is_shared(buf)); 5829 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 5830 5831 zio = zio_write(pio, spa, txg, bp, 5832 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 5833 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 5834 (children_ready != NULL) ? arc_write_children_ready : NULL, 5835 arc_write_physdone, arc_write_done, callback, 5836 priority, zio_flags, zb); 5837 5838 return (zio); 5839 } 5840 5841 static int 5842 arc_memory_throttle(uint64_t reserve, uint64_t txg) 5843 { 5844 #ifdef _KERNEL 5845 uint64_t available_memory = ptob(freemem); 5846 static uint64_t page_load = 0; 5847 static uint64_t last_txg = 0; 5848 5849 #if defined(__i386) 5850 available_memory = 5851 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 5852 #endif 5853 5854 if (freemem > physmem * arc_lotsfree_percent / 100) 5855 return (0); 5856 5857 if (txg > last_txg) { 5858 last_txg = txg; 5859 page_load = 0; 5860 } 5861 /* 5862 * If we are in pageout, we know that memory is already tight, 5863 * the arc is already going to be evicting, so we just want to 5864 * continue to let page writes occur as quickly as possible. 5865 */ 5866 if (curproc == proc_pageout) { 5867 if (page_load > MAX(ptob(minfree), available_memory) / 4) 5868 return (SET_ERROR(ERESTART)); 5869 /* Note: reserve is inflated, so we deflate */ 5870 page_load += reserve / 8; 5871 return (0); 5872 } else if (page_load > 0 && arc_reclaim_needed()) { 5873 /* memory is low, delay before restarting */ 5874 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 5875 return (SET_ERROR(EAGAIN)); 5876 } 5877 page_load = 0; 5878 #endif 5879 return (0); 5880 } 5881 5882 void 5883 arc_tempreserve_clear(uint64_t reserve) 5884 { 5885 atomic_add_64(&arc_tempreserve, -reserve); 5886 ASSERT((int64_t)arc_tempreserve >= 0); 5887 } 5888 5889 int 5890 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 5891 { 5892 int error; 5893 uint64_t anon_size; 5894 5895 if (reserve > arc_c/4 && !arc_no_grow) 5896 arc_c = MIN(arc_c_max, reserve * 4); 5897 if (reserve > arc_c) 5898 return (SET_ERROR(ENOMEM)); 5899 5900 /* 5901 * Don't count loaned bufs as in flight dirty data to prevent long 5902 * network delays from blocking transactions that are ready to be 5903 * assigned to a txg. 5904 */ 5905 5906 /* assert that it has not wrapped around */ 5907 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 5908 5909 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) - 5910 arc_loaned_bytes), 0); 5911 5912 /* 5913 * Writes will, almost always, require additional memory allocations 5914 * in order to compress/encrypt/etc the data. We therefore need to 5915 * make sure that there is sufficient available memory for this. 5916 */ 5917 error = arc_memory_throttle(reserve, txg); 5918 if (error != 0) 5919 return (error); 5920 5921 /* 5922 * Throttle writes when the amount of dirty data in the cache 5923 * gets too large. We try to keep the cache less than half full 5924 * of dirty blocks so that our sync times don't grow too large. 5925 * Note: if two requests come in concurrently, we might let them 5926 * both succeed, when one of them should fail. Not a huge deal. 5927 */ 5928 5929 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 5930 anon_size > arc_c / 4) { 5931 uint64_t meta_esize = 5932 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 5933 uint64_t data_esize = 5934 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 5935 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 5936 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 5937 arc_tempreserve >> 10, meta_esize >> 10, 5938 data_esize >> 10, reserve >> 10, arc_c >> 10); 5939 return (SET_ERROR(ERESTART)); 5940 } 5941 atomic_add_64(&arc_tempreserve, reserve); 5942 return (0); 5943 } 5944 5945 static void 5946 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 5947 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 5948 { 5949 size->value.ui64 = refcount_count(&state->arcs_size); 5950 evict_data->value.ui64 = 5951 refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 5952 evict_metadata->value.ui64 = 5953 refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 5954 } 5955 5956 static int 5957 arc_kstat_update(kstat_t *ksp, int rw) 5958 { 5959 arc_stats_t *as = ksp->ks_data; 5960 5961 if (rw == KSTAT_WRITE) { 5962 return (EACCES); 5963 } else { 5964 arc_kstat_update_state(arc_anon, 5965 &as->arcstat_anon_size, 5966 &as->arcstat_anon_evictable_data, 5967 &as->arcstat_anon_evictable_metadata); 5968 arc_kstat_update_state(arc_mru, 5969 &as->arcstat_mru_size, 5970 &as->arcstat_mru_evictable_data, 5971 &as->arcstat_mru_evictable_metadata); 5972 arc_kstat_update_state(arc_mru_ghost, 5973 &as->arcstat_mru_ghost_size, 5974 &as->arcstat_mru_ghost_evictable_data, 5975 &as->arcstat_mru_ghost_evictable_metadata); 5976 arc_kstat_update_state(arc_mfu, 5977 &as->arcstat_mfu_size, 5978 &as->arcstat_mfu_evictable_data, 5979 &as->arcstat_mfu_evictable_metadata); 5980 arc_kstat_update_state(arc_mfu_ghost, 5981 &as->arcstat_mfu_ghost_size, 5982 &as->arcstat_mfu_ghost_evictable_data, 5983 &as->arcstat_mfu_ghost_evictable_metadata); 5984 5985 ARCSTAT(arcstat_size) = aggsum_value(&arc_size); 5986 ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used); 5987 ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size); 5988 ARCSTAT(arcstat_metadata_size) = 5989 aggsum_value(&astat_metadata_size); 5990 ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size); 5991 ARCSTAT(arcstat_other_size) = aggsum_value(&astat_other_size); 5992 ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size); 5993 } 5994 5995 return (0); 5996 } 5997 5998 /* 5999 * This function *must* return indices evenly distributed between all 6000 * sublists of the multilist. This is needed due to how the ARC eviction 6001 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 6002 * distributed between all sublists and uses this assumption when 6003 * deciding which sublist to evict from and how much to evict from it. 6004 */ 6005 unsigned int 6006 arc_state_multilist_index_func(multilist_t *ml, void *obj) 6007 { 6008 arc_buf_hdr_t *hdr = obj; 6009 6010 /* 6011 * We rely on b_dva to generate evenly distributed index 6012 * numbers using buf_hash below. So, as an added precaution, 6013 * let's make sure we never add empty buffers to the arc lists. 6014 */ 6015 ASSERT(!HDR_EMPTY(hdr)); 6016 6017 /* 6018 * The assumption here, is the hash value for a given 6019 * arc_buf_hdr_t will remain constant throughout it's lifetime 6020 * (i.e. it's b_spa, b_dva, and b_birth fields don't change). 6021 * Thus, we don't need to store the header's sublist index 6022 * on insertion, as this index can be recalculated on removal. 6023 * 6024 * Also, the low order bits of the hash value are thought to be 6025 * distributed evenly. Otherwise, in the case that the multilist 6026 * has a power of two number of sublists, each sublists' usage 6027 * would not be evenly distributed. 6028 */ 6029 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 6030 multilist_get_num_sublists(ml)); 6031 } 6032 6033 static void 6034 arc_state_init(void) 6035 { 6036 arc_anon = &ARC_anon; 6037 arc_mru = &ARC_mru; 6038 arc_mru_ghost = &ARC_mru_ghost; 6039 arc_mfu = &ARC_mfu; 6040 arc_mfu_ghost = &ARC_mfu_ghost; 6041 arc_l2c_only = &ARC_l2c_only; 6042 6043 arc_mru->arcs_list[ARC_BUFC_METADATA] = 6044 multilist_create(sizeof (arc_buf_hdr_t), 6045 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6046 arc_state_multilist_index_func); 6047 arc_mru->arcs_list[ARC_BUFC_DATA] = 6048 multilist_create(sizeof (arc_buf_hdr_t), 6049 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6050 arc_state_multilist_index_func); 6051 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] = 6052 multilist_create(sizeof (arc_buf_hdr_t), 6053 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6054 arc_state_multilist_index_func); 6055 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] = 6056 multilist_create(sizeof (arc_buf_hdr_t), 6057 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6058 arc_state_multilist_index_func); 6059 arc_mfu->arcs_list[ARC_BUFC_METADATA] = 6060 multilist_create(sizeof (arc_buf_hdr_t), 6061 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6062 arc_state_multilist_index_func); 6063 arc_mfu->arcs_list[ARC_BUFC_DATA] = 6064 multilist_create(sizeof (arc_buf_hdr_t), 6065 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6066 arc_state_multilist_index_func); 6067 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] = 6068 multilist_create(sizeof (arc_buf_hdr_t), 6069 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6070 arc_state_multilist_index_func); 6071 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] = 6072 multilist_create(sizeof (arc_buf_hdr_t), 6073 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6074 arc_state_multilist_index_func); 6075 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] = 6076 multilist_create(sizeof (arc_buf_hdr_t), 6077 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6078 arc_state_multilist_index_func); 6079 arc_l2c_only->arcs_list[ARC_BUFC_DATA] = 6080 multilist_create(sizeof (arc_buf_hdr_t), 6081 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 6082 arc_state_multilist_index_func); 6083 6084 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 6085 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 6086 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 6087 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 6088 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 6089 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 6090 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 6091 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 6092 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 6093 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 6094 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 6095 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 6096 6097 refcount_create(&arc_anon->arcs_size); 6098 refcount_create(&arc_mru->arcs_size); 6099 refcount_create(&arc_mru_ghost->arcs_size); 6100 refcount_create(&arc_mfu->arcs_size); 6101 refcount_create(&arc_mfu_ghost->arcs_size); 6102 refcount_create(&arc_l2c_only->arcs_size); 6103 6104 aggsum_init(&arc_meta_used, 0); 6105 aggsum_init(&arc_size, 0); 6106 aggsum_init(&astat_data_size, 0); 6107 aggsum_init(&astat_metadata_size, 0); 6108 aggsum_init(&astat_hdr_size, 0); 6109 aggsum_init(&astat_other_size, 0); 6110 aggsum_init(&astat_l2_hdr_size, 0); 6111 } 6112 6113 static void 6114 arc_state_fini(void) 6115 { 6116 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 6117 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 6118 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 6119 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 6120 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 6121 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 6122 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 6123 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 6124 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 6125 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 6126 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 6127 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 6128 6129 refcount_destroy(&arc_anon->arcs_size); 6130 refcount_destroy(&arc_mru->arcs_size); 6131 refcount_destroy(&arc_mru_ghost->arcs_size); 6132 refcount_destroy(&arc_mfu->arcs_size); 6133 refcount_destroy(&arc_mfu_ghost->arcs_size); 6134 refcount_destroy(&arc_l2c_only->arcs_size); 6135 6136 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]); 6137 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 6138 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]); 6139 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 6140 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]); 6141 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 6142 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]); 6143 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 6144 } 6145 6146 uint64_t 6147 arc_max_bytes(void) 6148 { 6149 return (arc_c_max); 6150 } 6151 6152 void 6153 arc_init(void) 6154 { 6155 /* 6156 * allmem is "all memory that we could possibly use". 6157 */ 6158 #ifdef _KERNEL 6159 uint64_t allmem = ptob(physmem - swapfs_minfree); 6160 #else 6161 uint64_t allmem = (physmem * PAGESIZE) / 2; 6162 #endif 6163 mutex_init(&arc_adjust_lock, NULL, MUTEX_DEFAULT, NULL); 6164 cv_init(&arc_adjust_waiters_cv, NULL, CV_DEFAULT, NULL); 6165 6166 /* Convert seconds to clock ticks */ 6167 arc_min_prefetch_lifespan = 1 * hz; 6168 6169 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 6170 arc_c_min = MAX(allmem / 32, 64 << 20); 6171 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 6172 if (allmem >= 1 << 30) 6173 arc_c_max = allmem - (1 << 30); 6174 else 6175 arc_c_max = arc_c_min; 6176 arc_c_max = MAX(allmem * 3 / 4, arc_c_max); 6177 6178 /* 6179 * In userland, there's only the memory pressure that we artificially 6180 * create (see arc_available_memory()). Don't let arc_c get too 6181 * small, because it can cause transactions to be larger than 6182 * arc_c, causing arc_tempreserve_space() to fail. 6183 */ 6184 #ifndef _KERNEL 6185 arc_c_min = arc_c_max / 2; 6186 #endif 6187 6188 /* 6189 * Allow the tunables to override our calculations if they are 6190 * reasonable (ie. over 64MB) 6191 */ 6192 if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem) { 6193 arc_c_max = zfs_arc_max; 6194 arc_c_min = MIN(arc_c_min, arc_c_max); 6195 } 6196 if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max) 6197 arc_c_min = zfs_arc_min; 6198 6199 arc_c = arc_c_max; 6200 arc_p = (arc_c >> 1); 6201 6202 /* limit meta-data to 1/4 of the arc capacity */ 6203 arc_meta_limit = arc_c_max / 4; 6204 6205 #ifdef _KERNEL 6206 /* 6207 * Metadata is stored in the kernel's heap. Don't let us 6208 * use more than half the heap for the ARC. 6209 */ 6210 arc_meta_limit = MIN(arc_meta_limit, 6211 vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2); 6212 #endif 6213 6214 /* Allow the tunable to override if it is reasonable */ 6215 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 6216 arc_meta_limit = zfs_arc_meta_limit; 6217 6218 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 6219 arc_c_min = arc_meta_limit / 2; 6220 6221 if (zfs_arc_meta_min > 0) { 6222 arc_meta_min = zfs_arc_meta_min; 6223 } else { 6224 arc_meta_min = arc_c_min / 2; 6225 } 6226 6227 if (zfs_arc_grow_retry > 0) 6228 arc_grow_retry = zfs_arc_grow_retry; 6229 6230 if (zfs_arc_shrink_shift > 0) 6231 arc_shrink_shift = zfs_arc_shrink_shift; 6232 6233 /* 6234 * Ensure that arc_no_grow_shift is less than arc_shrink_shift. 6235 */ 6236 if (arc_no_grow_shift >= arc_shrink_shift) 6237 arc_no_grow_shift = arc_shrink_shift - 1; 6238 6239 if (zfs_arc_p_min_shift > 0) 6240 arc_p_min_shift = zfs_arc_p_min_shift; 6241 6242 /* if kmem_flags are set, lets try to use less memory */ 6243 if (kmem_debugging()) 6244 arc_c = arc_c / 2; 6245 if (arc_c < arc_c_min) 6246 arc_c = arc_c_min; 6247 6248 arc_state_init(); 6249 6250 /* 6251 * The arc must be "uninitialized", so that hdr_recl() (which is 6252 * registered by buf_init()) will not access arc_reap_zthr before 6253 * it is created. 6254 */ 6255 ASSERT(!arc_initialized); 6256 buf_init(); 6257 6258 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 6259 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 6260 6261 if (arc_ksp != NULL) { 6262 arc_ksp->ks_data = &arc_stats; 6263 arc_ksp->ks_update = arc_kstat_update; 6264 kstat_install(arc_ksp); 6265 } 6266 6267 arc_adjust_zthr = zthr_create(arc_adjust_cb_check, 6268 arc_adjust_cb, NULL); 6269 arc_reap_zthr = zthr_create_timer(arc_reap_cb_check, 6270 arc_reap_cb, NULL, SEC2NSEC(1)); 6271 6272 arc_initialized = B_TRUE; 6273 arc_warm = B_FALSE; 6274 6275 /* 6276 * Calculate maximum amount of dirty data per pool. 6277 * 6278 * If it has been set by /etc/system, take that. 6279 * Otherwise, use a percentage of physical memory defined by 6280 * zfs_dirty_data_max_percent (default 10%) with a cap at 6281 * zfs_dirty_data_max_max (default 4GB). 6282 */ 6283 if (zfs_dirty_data_max == 0) { 6284 zfs_dirty_data_max = physmem * PAGESIZE * 6285 zfs_dirty_data_max_percent / 100; 6286 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 6287 zfs_dirty_data_max_max); 6288 } 6289 } 6290 6291 void 6292 arc_fini(void) 6293 { 6294 /* Use B_TRUE to ensure *all* buffers are evicted */ 6295 arc_flush(NULL, B_TRUE); 6296 6297 arc_initialized = B_FALSE; 6298 6299 if (arc_ksp != NULL) { 6300 kstat_delete(arc_ksp); 6301 arc_ksp = NULL; 6302 } 6303 6304 (void) zthr_cancel(arc_adjust_zthr); 6305 zthr_destroy(arc_adjust_zthr); 6306 6307 (void) zthr_cancel(arc_reap_zthr); 6308 zthr_destroy(arc_reap_zthr); 6309 6310 mutex_destroy(&arc_adjust_lock); 6311 cv_destroy(&arc_adjust_waiters_cv); 6312 6313 arc_state_fini(); 6314 buf_fini(); 6315 6316 ASSERT0(arc_loaned_bytes); 6317 } 6318 6319 /* 6320 * Level 2 ARC 6321 * 6322 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 6323 * It uses dedicated storage devices to hold cached data, which are populated 6324 * using large infrequent writes. The main role of this cache is to boost 6325 * the performance of random read workloads. The intended L2ARC devices 6326 * include short-stroked disks, solid state disks, and other media with 6327 * substantially faster read latency than disk. 6328 * 6329 * +-----------------------+ 6330 * | ARC | 6331 * +-----------------------+ 6332 * | ^ ^ 6333 * | | | 6334 * l2arc_feed_thread() arc_read() 6335 * | | | 6336 * | l2arc read | 6337 * V | | 6338 * +---------------+ | 6339 * | L2ARC | | 6340 * +---------------+ | 6341 * | ^ | 6342 * l2arc_write() | | 6343 * | | | 6344 * V | | 6345 * +-------+ +-------+ 6346 * | vdev | | vdev | 6347 * | cache | | cache | 6348 * +-------+ +-------+ 6349 * +=========+ .-----. 6350 * : L2ARC : |-_____-| 6351 * : devices : | Disks | 6352 * +=========+ `-_____-' 6353 * 6354 * Read requests are satisfied from the following sources, in order: 6355 * 6356 * 1) ARC 6357 * 2) vdev cache of L2ARC devices 6358 * 3) L2ARC devices 6359 * 4) vdev cache of disks 6360 * 5) disks 6361 * 6362 * Some L2ARC device types exhibit extremely slow write performance. 6363 * To accommodate for this there are some significant differences between 6364 * the L2ARC and traditional cache design: 6365 * 6366 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 6367 * the ARC behave as usual, freeing buffers and placing headers on ghost 6368 * lists. The ARC does not send buffers to the L2ARC during eviction as 6369 * this would add inflated write latencies for all ARC memory pressure. 6370 * 6371 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 6372 * It does this by periodically scanning buffers from the eviction-end of 6373 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 6374 * not already there. It scans until a headroom of buffers is satisfied, 6375 * which itself is a buffer for ARC eviction. If a compressible buffer is 6376 * found during scanning and selected for writing to an L2ARC device, we 6377 * temporarily boost scanning headroom during the next scan cycle to make 6378 * sure we adapt to compression effects (which might significantly reduce 6379 * the data volume we write to L2ARC). The thread that does this is 6380 * l2arc_feed_thread(), illustrated below; example sizes are included to 6381 * provide a better sense of ratio than this diagram: 6382 * 6383 * head --> tail 6384 * +---------------------+----------+ 6385 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 6386 * +---------------------+----------+ | o L2ARC eligible 6387 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 6388 * +---------------------+----------+ | 6389 * 15.9 Gbytes ^ 32 Mbytes | 6390 * headroom | 6391 * l2arc_feed_thread() 6392 * | 6393 * l2arc write hand <--[oooo]--' 6394 * | 8 Mbyte 6395 * | write max 6396 * V 6397 * +==============================+ 6398 * L2ARC dev |####|#|###|###| |####| ... | 6399 * +==============================+ 6400 * 32 Gbytes 6401 * 6402 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 6403 * evicted, then the L2ARC has cached a buffer much sooner than it probably 6404 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 6405 * safe to say that this is an uncommon case, since buffers at the end of 6406 * the ARC lists have moved there due to inactivity. 6407 * 6408 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 6409 * then the L2ARC simply misses copying some buffers. This serves as a 6410 * pressure valve to prevent heavy read workloads from both stalling the ARC 6411 * with waits and clogging the L2ARC with writes. This also helps prevent 6412 * the potential for the L2ARC to churn if it attempts to cache content too 6413 * quickly, such as during backups of the entire pool. 6414 * 6415 * 5. After system boot and before the ARC has filled main memory, there are 6416 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 6417 * lists can remain mostly static. Instead of searching from tail of these 6418 * lists as pictured, the l2arc_feed_thread() will search from the list heads 6419 * for eligible buffers, greatly increasing its chance of finding them. 6420 * 6421 * The L2ARC device write speed is also boosted during this time so that 6422 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 6423 * there are no L2ARC reads, and no fear of degrading read performance 6424 * through increased writes. 6425 * 6426 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 6427 * the vdev queue can aggregate them into larger and fewer writes. Each 6428 * device is written to in a rotor fashion, sweeping writes through 6429 * available space then repeating. 6430 * 6431 * 7. The L2ARC does not store dirty content. It never needs to flush 6432 * write buffers back to disk based storage. 6433 * 6434 * 8. If an ARC buffer is written (and dirtied) which also exists in the 6435 * L2ARC, the now stale L2ARC buffer is immediately dropped. 6436 * 6437 * The performance of the L2ARC can be tweaked by a number of tunables, which 6438 * may be necessary for different workloads: 6439 * 6440 * l2arc_write_max max write bytes per interval 6441 * l2arc_write_boost extra write bytes during device warmup 6442 * l2arc_noprefetch skip caching prefetched buffers 6443 * l2arc_headroom number of max device writes to precache 6444 * l2arc_headroom_boost when we find compressed buffers during ARC 6445 * scanning, we multiply headroom by this 6446 * percentage factor for the next scan cycle, 6447 * since more compressed buffers are likely to 6448 * be present 6449 * l2arc_feed_secs seconds between L2ARC writing 6450 * 6451 * Tunables may be removed or added as future performance improvements are 6452 * integrated, and also may become zpool properties. 6453 * 6454 * There are three key functions that control how the L2ARC warms up: 6455 * 6456 * l2arc_write_eligible() check if a buffer is eligible to cache 6457 * l2arc_write_size() calculate how much to write 6458 * l2arc_write_interval() calculate sleep delay between writes 6459 * 6460 * These three functions determine what to write, how much, and how quickly 6461 * to send writes. 6462 */ 6463 6464 static boolean_t 6465 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 6466 { 6467 /* 6468 * A buffer is *not* eligible for the L2ARC if it: 6469 * 1. belongs to a different spa. 6470 * 2. is already cached on the L2ARC. 6471 * 3. has an I/O in progress (it may be an incomplete read). 6472 * 4. is flagged not eligible (zfs property). 6473 */ 6474 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 6475 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 6476 return (B_FALSE); 6477 6478 return (B_TRUE); 6479 } 6480 6481 static uint64_t 6482 l2arc_write_size(void) 6483 { 6484 uint64_t size; 6485 6486 /* 6487 * Make sure our globals have meaningful values in case the user 6488 * altered them. 6489 */ 6490 size = l2arc_write_max; 6491 if (size == 0) { 6492 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 6493 "be greater than zero, resetting it to the default (%d)", 6494 L2ARC_WRITE_SIZE); 6495 size = l2arc_write_max = L2ARC_WRITE_SIZE; 6496 } 6497 6498 if (arc_warm == B_FALSE) 6499 size += l2arc_write_boost; 6500 6501 return (size); 6502 6503 } 6504 6505 static clock_t 6506 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 6507 { 6508 clock_t interval, next, now; 6509 6510 /* 6511 * If the ARC lists are busy, increase our write rate; if the 6512 * lists are stale, idle back. This is achieved by checking 6513 * how much we previously wrote - if it was more than half of 6514 * what we wanted, schedule the next write much sooner. 6515 */ 6516 if (l2arc_feed_again && wrote > (wanted / 2)) 6517 interval = (hz * l2arc_feed_min_ms) / 1000; 6518 else 6519 interval = hz * l2arc_feed_secs; 6520 6521 now = ddi_get_lbolt(); 6522 next = MAX(now, MIN(now + interval, began + interval)); 6523 6524 return (next); 6525 } 6526 6527 /* 6528 * Cycle through L2ARC devices. This is how L2ARC load balances. 6529 * If a device is returned, this also returns holding the spa config lock. 6530 */ 6531 static l2arc_dev_t * 6532 l2arc_dev_get_next(void) 6533 { 6534 l2arc_dev_t *first, *next = NULL; 6535 6536 /* 6537 * Lock out the removal of spas (spa_namespace_lock), then removal 6538 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 6539 * both locks will be dropped and a spa config lock held instead. 6540 */ 6541 mutex_enter(&spa_namespace_lock); 6542 mutex_enter(&l2arc_dev_mtx); 6543 6544 /* if there are no vdevs, there is nothing to do */ 6545 if (l2arc_ndev == 0) 6546 goto out; 6547 6548 first = NULL; 6549 next = l2arc_dev_last; 6550 do { 6551 /* loop around the list looking for a non-faulted vdev */ 6552 if (next == NULL) { 6553 next = list_head(l2arc_dev_list); 6554 } else { 6555 next = list_next(l2arc_dev_list, next); 6556 if (next == NULL) 6557 next = list_head(l2arc_dev_list); 6558 } 6559 6560 /* if we have come back to the start, bail out */ 6561 if (first == NULL) 6562 first = next; 6563 else if (next == first) 6564 break; 6565 6566 } while (vdev_is_dead(next->l2ad_vdev)); 6567 6568 /* if we were unable to find any usable vdevs, return NULL */ 6569 if (vdev_is_dead(next->l2ad_vdev)) 6570 next = NULL; 6571 6572 l2arc_dev_last = next; 6573 6574 out: 6575 mutex_exit(&l2arc_dev_mtx); 6576 6577 /* 6578 * Grab the config lock to prevent the 'next' device from being 6579 * removed while we are writing to it. 6580 */ 6581 if (next != NULL) 6582 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 6583 mutex_exit(&spa_namespace_lock); 6584 6585 return (next); 6586 } 6587 6588 /* 6589 * Free buffers that were tagged for destruction. 6590 */ 6591 static void 6592 l2arc_do_free_on_write() 6593 { 6594 list_t *buflist; 6595 l2arc_data_free_t *df, *df_prev; 6596 6597 mutex_enter(&l2arc_free_on_write_mtx); 6598 buflist = l2arc_free_on_write; 6599 6600 for (df = list_tail(buflist); df; df = df_prev) { 6601 df_prev = list_prev(buflist, df); 6602 ASSERT3P(df->l2df_abd, !=, NULL); 6603 abd_free(df->l2df_abd); 6604 list_remove(buflist, df); 6605 kmem_free(df, sizeof (l2arc_data_free_t)); 6606 } 6607 6608 mutex_exit(&l2arc_free_on_write_mtx); 6609 } 6610 6611 /* 6612 * A write to a cache device has completed. Update all headers to allow 6613 * reads from these buffers to begin. 6614 */ 6615 static void 6616 l2arc_write_done(zio_t *zio) 6617 { 6618 l2arc_write_callback_t *cb; 6619 l2arc_dev_t *dev; 6620 list_t *buflist; 6621 arc_buf_hdr_t *head, *hdr, *hdr_prev; 6622 kmutex_t *hash_lock; 6623 int64_t bytes_dropped = 0; 6624 6625 cb = zio->io_private; 6626 ASSERT3P(cb, !=, NULL); 6627 dev = cb->l2wcb_dev; 6628 ASSERT3P(dev, !=, NULL); 6629 head = cb->l2wcb_head; 6630 ASSERT3P(head, !=, NULL); 6631 buflist = &dev->l2ad_buflist; 6632 ASSERT3P(buflist, !=, NULL); 6633 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 6634 l2arc_write_callback_t *, cb); 6635 6636 if (zio->io_error != 0) 6637 ARCSTAT_BUMP(arcstat_l2_writes_error); 6638 6639 /* 6640 * All writes completed, or an error was hit. 6641 */ 6642 top: 6643 mutex_enter(&dev->l2ad_mtx); 6644 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 6645 hdr_prev = list_prev(buflist, hdr); 6646 6647 hash_lock = HDR_LOCK(hdr); 6648 6649 /* 6650 * We cannot use mutex_enter or else we can deadlock 6651 * with l2arc_write_buffers (due to swapping the order 6652 * the hash lock and l2ad_mtx are taken). 6653 */ 6654 if (!mutex_tryenter(hash_lock)) { 6655 /* 6656 * Missed the hash lock. We must retry so we 6657 * don't leave the ARC_FLAG_L2_WRITING bit set. 6658 */ 6659 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 6660 6661 /* 6662 * We don't want to rescan the headers we've 6663 * already marked as having been written out, so 6664 * we reinsert the head node so we can pick up 6665 * where we left off. 6666 */ 6667 list_remove(buflist, head); 6668 list_insert_after(buflist, hdr, head); 6669 6670 mutex_exit(&dev->l2ad_mtx); 6671 6672 /* 6673 * We wait for the hash lock to become available 6674 * to try and prevent busy waiting, and increase 6675 * the chance we'll be able to acquire the lock 6676 * the next time around. 6677 */ 6678 mutex_enter(hash_lock); 6679 mutex_exit(hash_lock); 6680 goto top; 6681 } 6682 6683 /* 6684 * We could not have been moved into the arc_l2c_only 6685 * state while in-flight due to our ARC_FLAG_L2_WRITING 6686 * bit being set. Let's just ensure that's being enforced. 6687 */ 6688 ASSERT(HDR_HAS_L1HDR(hdr)); 6689 6690 if (zio->io_error != 0) { 6691 /* 6692 * Error - drop L2ARC entry. 6693 */ 6694 list_remove(buflist, hdr); 6695 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 6696 6697 ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr)); 6698 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr)); 6699 6700 bytes_dropped += arc_hdr_size(hdr); 6701 (void) refcount_remove_many(&dev->l2ad_alloc, 6702 arc_hdr_size(hdr), hdr); 6703 } 6704 6705 /* 6706 * Allow ARC to begin reads and ghost list evictions to 6707 * this L2ARC entry. 6708 */ 6709 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 6710 6711 mutex_exit(hash_lock); 6712 } 6713 6714 atomic_inc_64(&l2arc_writes_done); 6715 list_remove(buflist, head); 6716 ASSERT(!HDR_HAS_L1HDR(head)); 6717 kmem_cache_free(hdr_l2only_cache, head); 6718 mutex_exit(&dev->l2ad_mtx); 6719 6720 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 6721 6722 l2arc_do_free_on_write(); 6723 6724 kmem_free(cb, sizeof (l2arc_write_callback_t)); 6725 } 6726 6727 /* 6728 * A read to a cache device completed. Validate buffer contents before 6729 * handing over to the regular ARC routines. 6730 */ 6731 static void 6732 l2arc_read_done(zio_t *zio) 6733 { 6734 l2arc_read_callback_t *cb; 6735 arc_buf_hdr_t *hdr; 6736 kmutex_t *hash_lock; 6737 boolean_t valid_cksum; 6738 6739 ASSERT3P(zio->io_vd, !=, NULL); 6740 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 6741 6742 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 6743 6744 cb = zio->io_private; 6745 ASSERT3P(cb, !=, NULL); 6746 hdr = cb->l2rcb_hdr; 6747 ASSERT3P(hdr, !=, NULL); 6748 6749 hash_lock = HDR_LOCK(hdr); 6750 mutex_enter(hash_lock); 6751 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6752 6753 /* 6754 * If the data was read into a temporary buffer, 6755 * move it and free the buffer. 6756 */ 6757 if (cb->l2rcb_abd != NULL) { 6758 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 6759 if (zio->io_error == 0) { 6760 abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd, 6761 arc_hdr_size(hdr)); 6762 } 6763 6764 /* 6765 * The following must be done regardless of whether 6766 * there was an error: 6767 * - free the temporary buffer 6768 * - point zio to the real ARC buffer 6769 * - set zio size accordingly 6770 * These are required because zio is either re-used for 6771 * an I/O of the block in the case of the error 6772 * or the zio is passed to arc_read_done() and it 6773 * needs real data. 6774 */ 6775 abd_free(cb->l2rcb_abd); 6776 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 6777 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 6778 } 6779 6780 ASSERT3P(zio->io_abd, !=, NULL); 6781 6782 /* 6783 * Check this survived the L2ARC journey. 6784 */ 6785 ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd); 6786 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 6787 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 6788 6789 valid_cksum = arc_cksum_is_equal(hdr, zio); 6790 if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 6791 mutex_exit(hash_lock); 6792 zio->io_private = hdr; 6793 arc_read_done(zio); 6794 } else { 6795 mutex_exit(hash_lock); 6796 /* 6797 * Buffer didn't survive caching. Increment stats and 6798 * reissue to the original storage device. 6799 */ 6800 if (zio->io_error != 0) { 6801 ARCSTAT_BUMP(arcstat_l2_io_error); 6802 } else { 6803 zio->io_error = SET_ERROR(EIO); 6804 } 6805 if (!valid_cksum) 6806 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 6807 6808 /* 6809 * If there's no waiter, issue an async i/o to the primary 6810 * storage now. If there *is* a waiter, the caller must 6811 * issue the i/o in a context where it's OK to block. 6812 */ 6813 if (zio->io_waiter == NULL) { 6814 zio_t *pio = zio_unique_parent(zio); 6815 6816 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 6817 6818 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp, 6819 hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done, 6820 hdr, zio->io_priority, cb->l2rcb_flags, 6821 &cb->l2rcb_zb)); 6822 } 6823 } 6824 6825 kmem_free(cb, sizeof (l2arc_read_callback_t)); 6826 } 6827 6828 /* 6829 * This is the list priority from which the L2ARC will search for pages to 6830 * cache. This is used within loops (0..3) to cycle through lists in the 6831 * desired order. This order can have a significant effect on cache 6832 * performance. 6833 * 6834 * Currently the metadata lists are hit first, MFU then MRU, followed by 6835 * the data lists. This function returns a locked list, and also returns 6836 * the lock pointer. 6837 */ 6838 static multilist_sublist_t * 6839 l2arc_sublist_lock(int list_num) 6840 { 6841 multilist_t *ml = NULL; 6842 unsigned int idx; 6843 6844 ASSERT(list_num >= 0 && list_num <= 3); 6845 6846 switch (list_num) { 6847 case 0: 6848 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA]; 6849 break; 6850 case 1: 6851 ml = arc_mru->arcs_list[ARC_BUFC_METADATA]; 6852 break; 6853 case 2: 6854 ml = arc_mfu->arcs_list[ARC_BUFC_DATA]; 6855 break; 6856 case 3: 6857 ml = arc_mru->arcs_list[ARC_BUFC_DATA]; 6858 break; 6859 } 6860 6861 /* 6862 * Return a randomly-selected sublist. This is acceptable 6863 * because the caller feeds only a little bit of data for each 6864 * call (8MB). Subsequent calls will result in different 6865 * sublists being selected. 6866 */ 6867 idx = multilist_get_random_index(ml); 6868 return (multilist_sublist_lock(ml, idx)); 6869 } 6870 6871 /* 6872 * Evict buffers from the device write hand to the distance specified in 6873 * bytes. This distance may span populated buffers, it may span nothing. 6874 * This is clearing a region on the L2ARC device ready for writing. 6875 * If the 'all' boolean is set, every buffer is evicted. 6876 */ 6877 static void 6878 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 6879 { 6880 list_t *buflist; 6881 arc_buf_hdr_t *hdr, *hdr_prev; 6882 kmutex_t *hash_lock; 6883 uint64_t taddr; 6884 6885 buflist = &dev->l2ad_buflist; 6886 6887 if (!all && dev->l2ad_first) { 6888 /* 6889 * This is the first sweep through the device. There is 6890 * nothing to evict. 6891 */ 6892 return; 6893 } 6894 6895 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 6896 /* 6897 * When nearing the end of the device, evict to the end 6898 * before the device write hand jumps to the start. 6899 */ 6900 taddr = dev->l2ad_end; 6901 } else { 6902 taddr = dev->l2ad_hand + distance; 6903 } 6904 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 6905 uint64_t, taddr, boolean_t, all); 6906 6907 top: 6908 mutex_enter(&dev->l2ad_mtx); 6909 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 6910 hdr_prev = list_prev(buflist, hdr); 6911 6912 hash_lock = HDR_LOCK(hdr); 6913 6914 /* 6915 * We cannot use mutex_enter or else we can deadlock 6916 * with l2arc_write_buffers (due to swapping the order 6917 * the hash lock and l2ad_mtx are taken). 6918 */ 6919 if (!mutex_tryenter(hash_lock)) { 6920 /* 6921 * Missed the hash lock. Retry. 6922 */ 6923 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 6924 mutex_exit(&dev->l2ad_mtx); 6925 mutex_enter(hash_lock); 6926 mutex_exit(hash_lock); 6927 goto top; 6928 } 6929 6930 /* 6931 * A header can't be on this list if it doesn't have L2 header. 6932 */ 6933 ASSERT(HDR_HAS_L2HDR(hdr)); 6934 6935 /* Ensure this header has finished being written. */ 6936 ASSERT(!HDR_L2_WRITING(hdr)); 6937 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 6938 6939 if (!all && (hdr->b_l2hdr.b_daddr >= taddr || 6940 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 6941 /* 6942 * We've evicted to the target address, 6943 * or the end of the device. 6944 */ 6945 mutex_exit(hash_lock); 6946 break; 6947 } 6948 6949 if (!HDR_HAS_L1HDR(hdr)) { 6950 ASSERT(!HDR_L2_READING(hdr)); 6951 /* 6952 * This doesn't exist in the ARC. Destroy. 6953 * arc_hdr_destroy() will call list_remove() 6954 * and decrement arcstat_l2_lsize. 6955 */ 6956 arc_change_state(arc_anon, hdr, hash_lock); 6957 arc_hdr_destroy(hdr); 6958 } else { 6959 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 6960 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 6961 /* 6962 * Invalidate issued or about to be issued 6963 * reads, since we may be about to write 6964 * over this location. 6965 */ 6966 if (HDR_L2_READING(hdr)) { 6967 ARCSTAT_BUMP(arcstat_l2_evict_reading); 6968 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 6969 } 6970 6971 arc_hdr_l2hdr_destroy(hdr); 6972 } 6973 mutex_exit(hash_lock); 6974 } 6975 mutex_exit(&dev->l2ad_mtx); 6976 } 6977 6978 /* 6979 * Find and write ARC buffers to the L2ARC device. 6980 * 6981 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 6982 * for reading until they have completed writing. 6983 * The headroom_boost is an in-out parameter used to maintain headroom boost 6984 * state between calls to this function. 6985 * 6986 * Returns the number of bytes actually written (which may be smaller than 6987 * the delta by which the device hand has changed due to alignment). 6988 */ 6989 static uint64_t 6990 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 6991 { 6992 arc_buf_hdr_t *hdr, *hdr_prev, *head; 6993 uint64_t write_asize, write_psize, write_lsize, headroom; 6994 boolean_t full; 6995 l2arc_write_callback_t *cb; 6996 zio_t *pio, *wzio; 6997 uint64_t guid = spa_load_guid(spa); 6998 6999 ASSERT3P(dev->l2ad_vdev, !=, NULL); 7000 7001 pio = NULL; 7002 write_lsize = write_asize = write_psize = 0; 7003 full = B_FALSE; 7004 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 7005 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 7006 7007 /* 7008 * Copy buffers for L2ARC writing. 7009 */ 7010 for (int try = 0; try <= 3; try++) { 7011 multilist_sublist_t *mls = l2arc_sublist_lock(try); 7012 uint64_t passed_sz = 0; 7013 7014 /* 7015 * L2ARC fast warmup. 7016 * 7017 * Until the ARC is warm and starts to evict, read from the 7018 * head of the ARC lists rather than the tail. 7019 */ 7020 if (arc_warm == B_FALSE) 7021 hdr = multilist_sublist_head(mls); 7022 else 7023 hdr = multilist_sublist_tail(mls); 7024 7025 headroom = target_sz * l2arc_headroom; 7026 if (zfs_compressed_arc_enabled) 7027 headroom = (headroom * l2arc_headroom_boost) / 100; 7028 7029 for (; hdr; hdr = hdr_prev) { 7030 kmutex_t *hash_lock; 7031 7032 if (arc_warm == B_FALSE) 7033 hdr_prev = multilist_sublist_next(mls, hdr); 7034 else 7035 hdr_prev = multilist_sublist_prev(mls, hdr); 7036 7037 hash_lock = HDR_LOCK(hdr); 7038 if (!mutex_tryenter(hash_lock)) { 7039 /* 7040 * Skip this buffer rather than waiting. 7041 */ 7042 continue; 7043 } 7044 7045 passed_sz += HDR_GET_LSIZE(hdr); 7046 if (passed_sz > headroom) { 7047 /* 7048 * Searched too far. 7049 */ 7050 mutex_exit(hash_lock); 7051 break; 7052 } 7053 7054 if (!l2arc_write_eligible(guid, hdr)) { 7055 mutex_exit(hash_lock); 7056 continue; 7057 } 7058 7059 /* 7060 * We rely on the L1 portion of the header below, so 7061 * it's invalid for this header to have been evicted out 7062 * of the ghost cache, prior to being written out. The 7063 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 7064 */ 7065 ASSERT(HDR_HAS_L1HDR(hdr)); 7066 7067 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 7068 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 7069 ASSERT3U(arc_hdr_size(hdr), >, 0); 7070 uint64_t psize = arc_hdr_size(hdr); 7071 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 7072 psize); 7073 7074 if ((write_asize + asize) > target_sz) { 7075 full = B_TRUE; 7076 mutex_exit(hash_lock); 7077 break; 7078 } 7079 7080 if (pio == NULL) { 7081 /* 7082 * Insert a dummy header on the buflist so 7083 * l2arc_write_done() can find where the 7084 * write buffers begin without searching. 7085 */ 7086 mutex_enter(&dev->l2ad_mtx); 7087 list_insert_head(&dev->l2ad_buflist, head); 7088 mutex_exit(&dev->l2ad_mtx); 7089 7090 cb = kmem_alloc( 7091 sizeof (l2arc_write_callback_t), KM_SLEEP); 7092 cb->l2wcb_dev = dev; 7093 cb->l2wcb_head = head; 7094 pio = zio_root(spa, l2arc_write_done, cb, 7095 ZIO_FLAG_CANFAIL); 7096 } 7097 7098 hdr->b_l2hdr.b_dev = dev; 7099 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 7100 arc_hdr_set_flags(hdr, 7101 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR); 7102 7103 mutex_enter(&dev->l2ad_mtx); 7104 list_insert_head(&dev->l2ad_buflist, hdr); 7105 mutex_exit(&dev->l2ad_mtx); 7106 7107 (void) refcount_add_many(&dev->l2ad_alloc, psize, hdr); 7108 7109 /* 7110 * Normally the L2ARC can use the hdr's data, but if 7111 * we're sharing data between the hdr and one of its 7112 * bufs, L2ARC needs its own copy of the data so that 7113 * the ZIO below can't race with the buf consumer. 7114 * Another case where we need to create a copy of the 7115 * data is when the buffer size is not device-aligned 7116 * and we need to pad the block to make it such. 7117 * That also keeps the clock hand suitably aligned. 7118 * 7119 * To ensure that the copy will be available for the 7120 * lifetime of the ZIO and be cleaned up afterwards, we 7121 * add it to the l2arc_free_on_write queue. 7122 */ 7123 abd_t *to_write; 7124 if (!HDR_SHARED_DATA(hdr) && psize == asize) { 7125 to_write = hdr->b_l1hdr.b_pabd; 7126 } else { 7127 to_write = abd_alloc_for_io(asize, 7128 HDR_ISTYPE_METADATA(hdr)); 7129 abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize); 7130 if (asize != psize) { 7131 abd_zero_off(to_write, psize, 7132 asize - psize); 7133 } 7134 l2arc_free_abd_on_write(to_write, asize, 7135 arc_buf_type(hdr)); 7136 } 7137 wzio = zio_write_phys(pio, dev->l2ad_vdev, 7138 hdr->b_l2hdr.b_daddr, asize, to_write, 7139 ZIO_CHECKSUM_OFF, NULL, hdr, 7140 ZIO_PRIORITY_ASYNC_WRITE, 7141 ZIO_FLAG_CANFAIL, B_FALSE); 7142 7143 write_lsize += HDR_GET_LSIZE(hdr); 7144 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 7145 zio_t *, wzio); 7146 7147 write_psize += psize; 7148 write_asize += asize; 7149 dev->l2ad_hand += asize; 7150 7151 mutex_exit(hash_lock); 7152 7153 (void) zio_nowait(wzio); 7154 } 7155 7156 multilist_sublist_unlock(mls); 7157 7158 if (full == B_TRUE) 7159 break; 7160 } 7161 7162 /* No buffers selected for writing? */ 7163 if (pio == NULL) { 7164 ASSERT0(write_lsize); 7165 ASSERT(!HDR_HAS_L1HDR(head)); 7166 kmem_cache_free(hdr_l2only_cache, head); 7167 return (0); 7168 } 7169 7170 ASSERT3U(write_asize, <=, target_sz); 7171 ARCSTAT_BUMP(arcstat_l2_writes_sent); 7172 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 7173 ARCSTAT_INCR(arcstat_l2_lsize, write_lsize); 7174 ARCSTAT_INCR(arcstat_l2_psize, write_psize); 7175 vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0); 7176 7177 /* 7178 * Bump device hand to the device start if it is approaching the end. 7179 * l2arc_evict() will already have evicted ahead for this case. 7180 */ 7181 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 7182 dev->l2ad_hand = dev->l2ad_start; 7183 dev->l2ad_first = B_FALSE; 7184 } 7185 7186 dev->l2ad_writing = B_TRUE; 7187 (void) zio_wait(pio); 7188 dev->l2ad_writing = B_FALSE; 7189 7190 return (write_asize); 7191 } 7192 7193 /* 7194 * This thread feeds the L2ARC at regular intervals. This is the beating 7195 * heart of the L2ARC. 7196 */ 7197 /* ARGSUSED */ 7198 static void 7199 l2arc_feed_thread(void *unused) 7200 { 7201 callb_cpr_t cpr; 7202 l2arc_dev_t *dev; 7203 spa_t *spa; 7204 uint64_t size, wrote; 7205 clock_t begin, next = ddi_get_lbolt(); 7206 7207 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 7208 7209 mutex_enter(&l2arc_feed_thr_lock); 7210 7211 while (l2arc_thread_exit == 0) { 7212 CALLB_CPR_SAFE_BEGIN(&cpr); 7213 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 7214 next); 7215 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 7216 next = ddi_get_lbolt() + hz; 7217 7218 /* 7219 * Quick check for L2ARC devices. 7220 */ 7221 mutex_enter(&l2arc_dev_mtx); 7222 if (l2arc_ndev == 0) { 7223 mutex_exit(&l2arc_dev_mtx); 7224 continue; 7225 } 7226 mutex_exit(&l2arc_dev_mtx); 7227 begin = ddi_get_lbolt(); 7228 7229 /* 7230 * This selects the next l2arc device to write to, and in 7231 * doing so the next spa to feed from: dev->l2ad_spa. This 7232 * will return NULL if there are now no l2arc devices or if 7233 * they are all faulted. 7234 * 7235 * If a device is returned, its spa's config lock is also 7236 * held to prevent device removal. l2arc_dev_get_next() 7237 * will grab and release l2arc_dev_mtx. 7238 */ 7239 if ((dev = l2arc_dev_get_next()) == NULL) 7240 continue; 7241 7242 spa = dev->l2ad_spa; 7243 ASSERT3P(spa, !=, NULL); 7244 7245 /* 7246 * If the pool is read-only then force the feed thread to 7247 * sleep a little longer. 7248 */ 7249 if (!spa_writeable(spa)) { 7250 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 7251 spa_config_exit(spa, SCL_L2ARC, dev); 7252 continue; 7253 } 7254 7255 /* 7256 * Avoid contributing to memory pressure. 7257 */ 7258 if (arc_reclaim_needed()) { 7259 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 7260 spa_config_exit(spa, SCL_L2ARC, dev); 7261 continue; 7262 } 7263 7264 ARCSTAT_BUMP(arcstat_l2_feeds); 7265 7266 size = l2arc_write_size(); 7267 7268 /* 7269 * Evict L2ARC buffers that will be overwritten. 7270 */ 7271 l2arc_evict(dev, size, B_FALSE); 7272 7273 /* 7274 * Write ARC buffers. 7275 */ 7276 wrote = l2arc_write_buffers(spa, dev, size); 7277 7278 /* 7279 * Calculate interval between writes. 7280 */ 7281 next = l2arc_write_interval(begin, size, wrote); 7282 spa_config_exit(spa, SCL_L2ARC, dev); 7283 } 7284 7285 l2arc_thread_exit = 0; 7286 cv_broadcast(&l2arc_feed_thr_cv); 7287 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 7288 thread_exit(); 7289 } 7290 7291 boolean_t 7292 l2arc_vdev_present(vdev_t *vd) 7293 { 7294 l2arc_dev_t *dev; 7295 7296 mutex_enter(&l2arc_dev_mtx); 7297 for (dev = list_head(l2arc_dev_list); dev != NULL; 7298 dev = list_next(l2arc_dev_list, dev)) { 7299 if (dev->l2ad_vdev == vd) 7300 break; 7301 } 7302 mutex_exit(&l2arc_dev_mtx); 7303 7304 return (dev != NULL); 7305 } 7306 7307 /* 7308 * Add a vdev for use by the L2ARC. By this point the spa has already 7309 * validated the vdev and opened it. 7310 */ 7311 void 7312 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 7313 { 7314 l2arc_dev_t *adddev; 7315 7316 ASSERT(!l2arc_vdev_present(vd)); 7317 7318 /* 7319 * Create a new l2arc device entry. 7320 */ 7321 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 7322 adddev->l2ad_spa = spa; 7323 adddev->l2ad_vdev = vd; 7324 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 7325 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 7326 adddev->l2ad_hand = adddev->l2ad_start; 7327 adddev->l2ad_first = B_TRUE; 7328 adddev->l2ad_writing = B_FALSE; 7329 7330 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 7331 /* 7332 * This is a list of all ARC buffers that are still valid on the 7333 * device. 7334 */ 7335 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 7336 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 7337 7338 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 7339 refcount_create(&adddev->l2ad_alloc); 7340 7341 /* 7342 * Add device to global list 7343 */ 7344 mutex_enter(&l2arc_dev_mtx); 7345 list_insert_head(l2arc_dev_list, adddev); 7346 atomic_inc_64(&l2arc_ndev); 7347 mutex_exit(&l2arc_dev_mtx); 7348 } 7349 7350 /* 7351 * Remove a vdev from the L2ARC. 7352 */ 7353 void 7354 l2arc_remove_vdev(vdev_t *vd) 7355 { 7356 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 7357 7358 /* 7359 * Find the device by vdev 7360 */ 7361 mutex_enter(&l2arc_dev_mtx); 7362 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 7363 nextdev = list_next(l2arc_dev_list, dev); 7364 if (vd == dev->l2ad_vdev) { 7365 remdev = dev; 7366 break; 7367 } 7368 } 7369 ASSERT3P(remdev, !=, NULL); 7370 7371 /* 7372 * Remove device from global list 7373 */ 7374 list_remove(l2arc_dev_list, remdev); 7375 l2arc_dev_last = NULL; /* may have been invalidated */ 7376 atomic_dec_64(&l2arc_ndev); 7377 mutex_exit(&l2arc_dev_mtx); 7378 7379 /* 7380 * Clear all buflists and ARC references. L2ARC device flush. 7381 */ 7382 l2arc_evict(remdev, 0, B_TRUE); 7383 list_destroy(&remdev->l2ad_buflist); 7384 mutex_destroy(&remdev->l2ad_mtx); 7385 refcount_destroy(&remdev->l2ad_alloc); 7386 kmem_free(remdev, sizeof (l2arc_dev_t)); 7387 } 7388 7389 void 7390 l2arc_init(void) 7391 { 7392 l2arc_thread_exit = 0; 7393 l2arc_ndev = 0; 7394 l2arc_writes_sent = 0; 7395 l2arc_writes_done = 0; 7396 7397 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 7398 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 7399 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 7400 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 7401 7402 l2arc_dev_list = &L2ARC_dev_list; 7403 l2arc_free_on_write = &L2ARC_free_on_write; 7404 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 7405 offsetof(l2arc_dev_t, l2ad_node)); 7406 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 7407 offsetof(l2arc_data_free_t, l2df_list_node)); 7408 } 7409 7410 void 7411 l2arc_fini(void) 7412 { 7413 /* 7414 * This is called from dmu_fini(), which is called from spa_fini(); 7415 * Because of this, we can assume that all l2arc devices have 7416 * already been removed when the pools themselves were removed. 7417 */ 7418 7419 l2arc_do_free_on_write(); 7420 7421 mutex_destroy(&l2arc_feed_thr_lock); 7422 cv_destroy(&l2arc_feed_thr_cv); 7423 mutex_destroy(&l2arc_dev_mtx); 7424 mutex_destroy(&l2arc_free_on_write_mtx); 7425 7426 list_destroy(l2arc_dev_list); 7427 list_destroy(l2arc_free_on_write); 7428 } 7429 7430 void 7431 l2arc_start(void) 7432 { 7433 if (!(spa_mode_global & FWRITE)) 7434 return; 7435 7436 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 7437 TS_RUN, minclsyspri); 7438 } 7439 7440 void 7441 l2arc_stop(void) 7442 { 7443 if (!(spa_mode_global & FWRITE)) 7444 return; 7445 7446 mutex_enter(&l2arc_feed_thr_lock); 7447 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 7448 l2arc_thread_exit = 1; 7449 while (l2arc_thread_exit != 0) 7450 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 7451 mutex_exit(&l2arc_feed_thr_lock); 7452 } 7453