1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * DVA-based Adjustable Replacement Cache 28 * 29 * While much of the theory of operation used here is 30 * based on the self-tuning, low overhead replacement cache 31 * presented by Megiddo and Modha at FAST 2003, there are some 32 * significant differences: 33 * 34 * 1. The Megiddo and Modha model assumes any page is evictable. 35 * Pages in its cache cannot be "locked" into memory. This makes 36 * the eviction algorithm simple: evict the last page in the list. 37 * This also make the performance characteristics easy to reason 38 * about. Our cache is not so simple. At any given moment, some 39 * subset of the blocks in the cache are un-evictable because we 40 * have handed out a reference to them. Blocks are only evictable 41 * when there are no external references active. This makes 42 * eviction far more problematic: we choose to evict the evictable 43 * blocks that are the "lowest" in the list. 44 * 45 * There are times when it is not possible to evict the requested 46 * space. In these circumstances we are unable to adjust the cache 47 * size. To prevent the cache growing unbounded at these times we 48 * implement a "cache throttle" that slows the flow of new data 49 * into the cache until we can make space available. 50 * 51 * 2. The Megiddo and Modha model assumes a fixed cache size. 52 * Pages are evicted when the cache is full and there is a cache 53 * miss. Our model has a variable sized cache. It grows with 54 * high use, but also tries to react to memory pressure from the 55 * operating system: decreasing its size when system memory is 56 * tight. 57 * 58 * 3. The Megiddo and Modha model assumes a fixed page size. All 59 * elements of the cache are therefor exactly the same size. So 60 * when adjusting the cache size following a cache miss, its simply 61 * a matter of choosing a single page to evict. In our model, we 62 * have variable sized cache blocks (rangeing from 512 bytes to 63 * 128K bytes). We therefor choose a set of blocks to evict to make 64 * space for a cache miss that approximates as closely as possible 65 * the space used by the new block. 66 * 67 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 68 * by N. Megiddo & D. Modha, FAST 2003 69 */ 70 71 /* 72 * The locking model: 73 * 74 * A new reference to a cache buffer can be obtained in two 75 * ways: 1) via a hash table lookup using the DVA as a key, 76 * or 2) via one of the ARC lists. The arc_read() interface 77 * uses method 1, while the internal arc algorithms for 78 * adjusting the cache use method 2. We therefor provide two 79 * types of locks: 1) the hash table lock array, and 2) the 80 * arc list locks. 81 * 82 * Buffers do not have their own mutexs, rather they rely on the 83 * hash table mutexs for the bulk of their protection (i.e. most 84 * fields in the arc_buf_hdr_t are protected by these mutexs). 85 * 86 * buf_hash_find() returns the appropriate mutex (held) when it 87 * locates the requested buffer in the hash table. It returns 88 * NULL for the mutex if the buffer was not in the table. 89 * 90 * buf_hash_remove() expects the appropriate hash mutex to be 91 * already held before it is invoked. 92 * 93 * Each arc state also has a mutex which is used to protect the 94 * buffer list associated with the state. When attempting to 95 * obtain a hash table lock while holding an arc list lock you 96 * must use: mutex_tryenter() to avoid deadlock. Also note that 97 * the active state mutex must be held before the ghost state mutex. 98 * 99 * Arc buffers may have an associated eviction callback function. 100 * This function will be invoked prior to removing the buffer (e.g. 101 * in arc_do_user_evicts()). Note however that the data associated 102 * with the buffer may be evicted prior to the callback. The callback 103 * must be made with *no locks held* (to prevent deadlock). Additionally, 104 * the users of callbacks must ensure that their private data is 105 * protected from simultaneous callbacks from arc_buf_evict() 106 * and arc_do_user_evicts(). 107 * 108 * Note that the majority of the performance stats are manipulated 109 * with atomic operations. 110 * 111 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 112 * 113 * - L2ARC buflist creation 114 * - L2ARC buflist eviction 115 * - L2ARC write completion, which walks L2ARC buflists 116 * - ARC header destruction, as it removes from L2ARC buflists 117 * - ARC header release, as it removes from L2ARC buflists 118 */ 119 120 #include <sys/spa.h> 121 #include <sys/zio.h> 122 #include <sys/zio_checksum.h> 123 #include <sys/zfs_context.h> 124 #include <sys/arc.h> 125 #include <sys/refcount.h> 126 #include <sys/vdev.h> 127 #ifdef _KERNEL 128 #include <sys/vmsystm.h> 129 #include <vm/anon.h> 130 #include <sys/fs/swapnode.h> 131 #include <sys/dnlc.h> 132 #endif 133 #include <sys/callb.h> 134 #include <sys/kstat.h> 135 136 static kmutex_t arc_reclaim_thr_lock; 137 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 138 static uint8_t arc_thread_exit; 139 140 extern int zfs_write_limit_shift; 141 extern uint64_t zfs_write_limit_max; 142 extern kmutex_t zfs_write_limit_lock; 143 144 #define ARC_REDUCE_DNLC_PERCENT 3 145 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 146 147 typedef enum arc_reclaim_strategy { 148 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 149 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 150 } arc_reclaim_strategy_t; 151 152 /* number of seconds before growing cache again */ 153 static int arc_grow_retry = 60; 154 155 /* shift of arc_c for calculating both min and max arc_p */ 156 static int arc_p_min_shift = 4; 157 158 /* log2(fraction of arc to reclaim) */ 159 static int arc_shrink_shift = 5; 160 161 /* 162 * minimum lifespan of a prefetch block in clock ticks 163 * (initialized in arc_init()) 164 */ 165 static int arc_min_prefetch_lifespan; 166 167 static int arc_dead; 168 169 /* 170 * The arc has filled available memory and has now warmed up. 171 */ 172 static boolean_t arc_warm; 173 174 /* 175 * These tunables are for performance analysis. 176 */ 177 uint64_t zfs_arc_max; 178 uint64_t zfs_arc_min; 179 uint64_t zfs_arc_meta_limit = 0; 180 int zfs_mdcomp_disable = 0; 181 int zfs_arc_grow_retry = 0; 182 int zfs_arc_shrink_shift = 0; 183 int zfs_arc_p_min_shift = 0; 184 185 /* 186 * Note that buffers can be in one of 6 states: 187 * ARC_anon - anonymous (discussed below) 188 * ARC_mru - recently used, currently cached 189 * ARC_mru_ghost - recentely used, no longer in cache 190 * ARC_mfu - frequently used, currently cached 191 * ARC_mfu_ghost - frequently used, no longer in cache 192 * ARC_l2c_only - exists in L2ARC but not other states 193 * When there are no active references to the buffer, they are 194 * are linked onto a list in one of these arc states. These are 195 * the only buffers that can be evicted or deleted. Within each 196 * state there are multiple lists, one for meta-data and one for 197 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 198 * etc.) is tracked separately so that it can be managed more 199 * explicitly: favored over data, limited explicitly. 200 * 201 * Anonymous buffers are buffers that are not associated with 202 * a DVA. These are buffers that hold dirty block copies 203 * before they are written to stable storage. By definition, 204 * they are "ref'd" and are considered part of arc_mru 205 * that cannot be freed. Generally, they will aquire a DVA 206 * as they are written and migrate onto the arc_mru list. 207 * 208 * The ARC_l2c_only state is for buffers that are in the second 209 * level ARC but no longer in any of the ARC_m* lists. The second 210 * level ARC itself may also contain buffers that are in any of 211 * the ARC_m* states - meaning that a buffer can exist in two 212 * places. The reason for the ARC_l2c_only state is to keep the 213 * buffer header in the hash table, so that reads that hit the 214 * second level ARC benefit from these fast lookups. 215 */ 216 217 typedef struct arc_state { 218 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 219 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 220 uint64_t arcs_size; /* total amount of data in this state */ 221 kmutex_t arcs_mtx; 222 } arc_state_t; 223 224 /* The 6 states: */ 225 static arc_state_t ARC_anon; 226 static arc_state_t ARC_mru; 227 static arc_state_t ARC_mru_ghost; 228 static arc_state_t ARC_mfu; 229 static arc_state_t ARC_mfu_ghost; 230 static arc_state_t ARC_l2c_only; 231 232 typedef struct arc_stats { 233 kstat_named_t arcstat_hits; 234 kstat_named_t arcstat_misses; 235 kstat_named_t arcstat_demand_data_hits; 236 kstat_named_t arcstat_demand_data_misses; 237 kstat_named_t arcstat_demand_metadata_hits; 238 kstat_named_t arcstat_demand_metadata_misses; 239 kstat_named_t arcstat_prefetch_data_hits; 240 kstat_named_t arcstat_prefetch_data_misses; 241 kstat_named_t arcstat_prefetch_metadata_hits; 242 kstat_named_t arcstat_prefetch_metadata_misses; 243 kstat_named_t arcstat_mru_hits; 244 kstat_named_t arcstat_mru_ghost_hits; 245 kstat_named_t arcstat_mfu_hits; 246 kstat_named_t arcstat_mfu_ghost_hits; 247 kstat_named_t arcstat_deleted; 248 kstat_named_t arcstat_recycle_miss; 249 kstat_named_t arcstat_mutex_miss; 250 kstat_named_t arcstat_evict_skip; 251 kstat_named_t arcstat_hash_elements; 252 kstat_named_t arcstat_hash_elements_max; 253 kstat_named_t arcstat_hash_collisions; 254 kstat_named_t arcstat_hash_chains; 255 kstat_named_t arcstat_hash_chain_max; 256 kstat_named_t arcstat_p; 257 kstat_named_t arcstat_c; 258 kstat_named_t arcstat_c_min; 259 kstat_named_t arcstat_c_max; 260 kstat_named_t arcstat_size; 261 kstat_named_t arcstat_hdr_size; 262 kstat_named_t arcstat_data_size; 263 kstat_named_t arcstat_other_size; 264 kstat_named_t arcstat_l2_hits; 265 kstat_named_t arcstat_l2_misses; 266 kstat_named_t arcstat_l2_feeds; 267 kstat_named_t arcstat_l2_rw_clash; 268 kstat_named_t arcstat_l2_read_bytes; 269 kstat_named_t arcstat_l2_write_bytes; 270 kstat_named_t arcstat_l2_writes_sent; 271 kstat_named_t arcstat_l2_writes_done; 272 kstat_named_t arcstat_l2_writes_error; 273 kstat_named_t arcstat_l2_writes_hdr_miss; 274 kstat_named_t arcstat_l2_evict_lock_retry; 275 kstat_named_t arcstat_l2_evict_reading; 276 kstat_named_t arcstat_l2_free_on_write; 277 kstat_named_t arcstat_l2_abort_lowmem; 278 kstat_named_t arcstat_l2_cksum_bad; 279 kstat_named_t arcstat_l2_io_error; 280 kstat_named_t arcstat_l2_size; 281 kstat_named_t arcstat_l2_hdr_size; 282 kstat_named_t arcstat_memory_throttle_count; 283 } arc_stats_t; 284 285 static arc_stats_t arc_stats = { 286 { "hits", KSTAT_DATA_UINT64 }, 287 { "misses", KSTAT_DATA_UINT64 }, 288 { "demand_data_hits", KSTAT_DATA_UINT64 }, 289 { "demand_data_misses", KSTAT_DATA_UINT64 }, 290 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 291 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 292 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 293 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 294 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 295 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 296 { "mru_hits", KSTAT_DATA_UINT64 }, 297 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 298 { "mfu_hits", KSTAT_DATA_UINT64 }, 299 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 300 { "deleted", KSTAT_DATA_UINT64 }, 301 { "recycle_miss", KSTAT_DATA_UINT64 }, 302 { "mutex_miss", KSTAT_DATA_UINT64 }, 303 { "evict_skip", KSTAT_DATA_UINT64 }, 304 { "hash_elements", KSTAT_DATA_UINT64 }, 305 { "hash_elements_max", KSTAT_DATA_UINT64 }, 306 { "hash_collisions", KSTAT_DATA_UINT64 }, 307 { "hash_chains", KSTAT_DATA_UINT64 }, 308 { "hash_chain_max", KSTAT_DATA_UINT64 }, 309 { "p", KSTAT_DATA_UINT64 }, 310 { "c", KSTAT_DATA_UINT64 }, 311 { "c_min", KSTAT_DATA_UINT64 }, 312 { "c_max", KSTAT_DATA_UINT64 }, 313 { "size", KSTAT_DATA_UINT64 }, 314 { "hdr_size", KSTAT_DATA_UINT64 }, 315 { "data_size", KSTAT_DATA_UINT64 }, 316 { "other_size", KSTAT_DATA_UINT64 }, 317 { "l2_hits", KSTAT_DATA_UINT64 }, 318 { "l2_misses", KSTAT_DATA_UINT64 }, 319 { "l2_feeds", KSTAT_DATA_UINT64 }, 320 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 321 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 322 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 323 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 324 { "l2_writes_done", KSTAT_DATA_UINT64 }, 325 { "l2_writes_error", KSTAT_DATA_UINT64 }, 326 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 327 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 328 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 329 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 330 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 331 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 332 { "l2_io_error", KSTAT_DATA_UINT64 }, 333 { "l2_size", KSTAT_DATA_UINT64 }, 334 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 335 { "memory_throttle_count", KSTAT_DATA_UINT64 } 336 }; 337 338 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 339 340 #define ARCSTAT_INCR(stat, val) \ 341 atomic_add_64(&arc_stats.stat.value.ui64, (val)); 342 343 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 344 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 345 346 #define ARCSTAT_MAX(stat, val) { \ 347 uint64_t m; \ 348 while ((val) > (m = arc_stats.stat.value.ui64) && \ 349 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 350 continue; \ 351 } 352 353 #define ARCSTAT_MAXSTAT(stat) \ 354 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 355 356 /* 357 * We define a macro to allow ARC hits/misses to be easily broken down by 358 * two separate conditions, giving a total of four different subtypes for 359 * each of hits and misses (so eight statistics total). 360 */ 361 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 362 if (cond1) { \ 363 if (cond2) { \ 364 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 365 } else { \ 366 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 367 } \ 368 } else { \ 369 if (cond2) { \ 370 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 371 } else { \ 372 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 373 } \ 374 } 375 376 kstat_t *arc_ksp; 377 static arc_state_t *arc_anon; 378 static arc_state_t *arc_mru; 379 static arc_state_t *arc_mru_ghost; 380 static arc_state_t *arc_mfu; 381 static arc_state_t *arc_mfu_ghost; 382 static arc_state_t *arc_l2c_only; 383 384 /* 385 * There are several ARC variables that are critical to export as kstats -- 386 * but we don't want to have to grovel around in the kstat whenever we wish to 387 * manipulate them. For these variables, we therefore define them to be in 388 * terms of the statistic variable. This assures that we are not introducing 389 * the possibility of inconsistency by having shadow copies of the variables, 390 * while still allowing the code to be readable. 391 */ 392 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 393 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 394 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 395 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 396 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 397 398 static int arc_no_grow; /* Don't try to grow cache size */ 399 static uint64_t arc_tempreserve; 400 static uint64_t arc_meta_used; 401 static uint64_t arc_meta_limit; 402 static uint64_t arc_meta_max = 0; 403 404 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 405 406 typedef struct arc_callback arc_callback_t; 407 408 struct arc_callback { 409 void *acb_private; 410 arc_done_func_t *acb_done; 411 arc_buf_t *acb_buf; 412 zio_t *acb_zio_dummy; 413 arc_callback_t *acb_next; 414 }; 415 416 typedef struct arc_write_callback arc_write_callback_t; 417 418 struct arc_write_callback { 419 void *awcb_private; 420 arc_done_func_t *awcb_ready; 421 arc_done_func_t *awcb_done; 422 arc_buf_t *awcb_buf; 423 }; 424 425 struct arc_buf_hdr { 426 /* protected by hash lock */ 427 dva_t b_dva; 428 uint64_t b_birth; 429 uint64_t b_cksum0; 430 431 kmutex_t b_freeze_lock; 432 zio_cksum_t *b_freeze_cksum; 433 434 arc_buf_hdr_t *b_hash_next; 435 arc_buf_t *b_buf; 436 uint32_t b_flags; 437 uint32_t b_datacnt; 438 439 arc_callback_t *b_acb; 440 kcondvar_t b_cv; 441 442 /* immutable */ 443 arc_buf_contents_t b_type; 444 uint64_t b_size; 445 uint64_t b_spa; 446 447 /* protected by arc state mutex */ 448 arc_state_t *b_state; 449 list_node_t b_arc_node; 450 451 /* updated atomically */ 452 clock_t b_arc_access; 453 454 /* self protecting */ 455 refcount_t b_refcnt; 456 457 l2arc_buf_hdr_t *b_l2hdr; 458 list_node_t b_l2node; 459 }; 460 461 static arc_buf_t *arc_eviction_list; 462 static kmutex_t arc_eviction_mtx; 463 static arc_buf_hdr_t arc_eviction_hdr; 464 static void arc_get_data_buf(arc_buf_t *buf); 465 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 466 static int arc_evict_needed(arc_buf_contents_t type); 467 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 468 469 #define GHOST_STATE(state) \ 470 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 471 (state) == arc_l2c_only) 472 473 /* 474 * Private ARC flags. These flags are private ARC only flags that will show up 475 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 476 * be passed in as arc_flags in things like arc_read. However, these flags 477 * should never be passed and should only be set by ARC code. When adding new 478 * public flags, make sure not to smash the private ones. 479 */ 480 481 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 482 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 483 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 484 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 485 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 486 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 487 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 488 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 489 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 490 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 491 #define ARC_STORED (1 << 19) /* has been store()d to */ 492 493 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 494 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 495 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 496 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 497 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 498 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 499 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 500 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 501 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 502 (hdr)->b_l2hdr != NULL) 503 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 504 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 505 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 506 507 /* 508 * Other sizes 509 */ 510 511 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 512 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 513 514 /* 515 * Hash table routines 516 */ 517 518 #define HT_LOCK_PAD 64 519 520 struct ht_lock { 521 kmutex_t ht_lock; 522 #ifdef _KERNEL 523 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 524 #endif 525 }; 526 527 #define BUF_LOCKS 256 528 typedef struct buf_hash_table { 529 uint64_t ht_mask; 530 arc_buf_hdr_t **ht_table; 531 struct ht_lock ht_locks[BUF_LOCKS]; 532 } buf_hash_table_t; 533 534 static buf_hash_table_t buf_hash_table; 535 536 #define BUF_HASH_INDEX(spa, dva, birth) \ 537 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 538 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 539 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 540 #define HDR_LOCK(buf) \ 541 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 542 543 uint64_t zfs_crc64_table[256]; 544 545 /* 546 * Level 2 ARC 547 */ 548 549 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 550 #define L2ARC_HEADROOM 2 /* num of writes */ 551 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 552 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 553 554 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 555 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 556 557 /* 558 * L2ARC Performance Tunables 559 */ 560 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 561 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 562 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 563 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 564 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 565 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 566 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 567 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 568 569 /* 570 * L2ARC Internals 571 */ 572 typedef struct l2arc_dev { 573 vdev_t *l2ad_vdev; /* vdev */ 574 spa_t *l2ad_spa; /* spa */ 575 uint64_t l2ad_hand; /* next write location */ 576 uint64_t l2ad_write; /* desired write size, bytes */ 577 uint64_t l2ad_boost; /* warmup write boost, bytes */ 578 uint64_t l2ad_start; /* first addr on device */ 579 uint64_t l2ad_end; /* last addr on device */ 580 uint64_t l2ad_evict; /* last addr eviction reached */ 581 boolean_t l2ad_first; /* first sweep through */ 582 boolean_t l2ad_writing; /* currently writing */ 583 list_t *l2ad_buflist; /* buffer list */ 584 list_node_t l2ad_node; /* device list node */ 585 } l2arc_dev_t; 586 587 static list_t L2ARC_dev_list; /* device list */ 588 static list_t *l2arc_dev_list; /* device list pointer */ 589 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 590 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 591 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 592 static list_t L2ARC_free_on_write; /* free after write buf list */ 593 static list_t *l2arc_free_on_write; /* free after write list ptr */ 594 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 595 static uint64_t l2arc_ndev; /* number of devices */ 596 597 typedef struct l2arc_read_callback { 598 arc_buf_t *l2rcb_buf; /* read buffer */ 599 spa_t *l2rcb_spa; /* spa */ 600 blkptr_t l2rcb_bp; /* original blkptr */ 601 zbookmark_t l2rcb_zb; /* original bookmark */ 602 int l2rcb_flags; /* original flags */ 603 } l2arc_read_callback_t; 604 605 typedef struct l2arc_write_callback { 606 l2arc_dev_t *l2wcb_dev; /* device info */ 607 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 608 } l2arc_write_callback_t; 609 610 struct l2arc_buf_hdr { 611 /* protected by arc_buf_hdr mutex */ 612 l2arc_dev_t *b_dev; /* L2ARC device */ 613 daddr_t b_daddr; /* disk address, offset byte */ 614 }; 615 616 typedef struct l2arc_data_free { 617 /* protected by l2arc_free_on_write_mtx */ 618 void *l2df_data; 619 size_t l2df_size; 620 void (*l2df_func)(void *, size_t); 621 list_node_t l2df_list_node; 622 } l2arc_data_free_t; 623 624 static kmutex_t l2arc_feed_thr_lock; 625 static kcondvar_t l2arc_feed_thr_cv; 626 static uint8_t l2arc_thread_exit; 627 628 static void l2arc_read_done(zio_t *zio); 629 static void l2arc_hdr_stat_add(void); 630 static void l2arc_hdr_stat_remove(void); 631 632 static uint64_t 633 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 634 { 635 uint8_t *vdva = (uint8_t *)dva; 636 uint64_t crc = -1ULL; 637 int i; 638 639 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 640 641 for (i = 0; i < sizeof (dva_t); i++) 642 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 643 644 crc ^= (spa>>8) ^ birth; 645 646 return (crc); 647 } 648 649 #define BUF_EMPTY(buf) \ 650 ((buf)->b_dva.dva_word[0] == 0 && \ 651 (buf)->b_dva.dva_word[1] == 0 && \ 652 (buf)->b_birth == 0) 653 654 #define BUF_EQUAL(spa, dva, birth, buf) \ 655 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 656 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 657 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 658 659 static arc_buf_hdr_t * 660 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp) 661 { 662 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 663 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 664 arc_buf_hdr_t *buf; 665 666 mutex_enter(hash_lock); 667 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 668 buf = buf->b_hash_next) { 669 if (BUF_EQUAL(spa, dva, birth, buf)) { 670 *lockp = hash_lock; 671 return (buf); 672 } 673 } 674 mutex_exit(hash_lock); 675 *lockp = NULL; 676 return (NULL); 677 } 678 679 /* 680 * Insert an entry into the hash table. If there is already an element 681 * equal to elem in the hash table, then the already existing element 682 * will be returned and the new element will not be inserted. 683 * Otherwise returns NULL. 684 */ 685 static arc_buf_hdr_t * 686 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 687 { 688 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 689 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 690 arc_buf_hdr_t *fbuf; 691 uint32_t i; 692 693 ASSERT(!HDR_IN_HASH_TABLE(buf)); 694 *lockp = hash_lock; 695 mutex_enter(hash_lock); 696 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 697 fbuf = fbuf->b_hash_next, i++) { 698 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 699 return (fbuf); 700 } 701 702 buf->b_hash_next = buf_hash_table.ht_table[idx]; 703 buf_hash_table.ht_table[idx] = buf; 704 buf->b_flags |= ARC_IN_HASH_TABLE; 705 706 /* collect some hash table performance data */ 707 if (i > 0) { 708 ARCSTAT_BUMP(arcstat_hash_collisions); 709 if (i == 1) 710 ARCSTAT_BUMP(arcstat_hash_chains); 711 712 ARCSTAT_MAX(arcstat_hash_chain_max, i); 713 } 714 715 ARCSTAT_BUMP(arcstat_hash_elements); 716 ARCSTAT_MAXSTAT(arcstat_hash_elements); 717 718 return (NULL); 719 } 720 721 static void 722 buf_hash_remove(arc_buf_hdr_t *buf) 723 { 724 arc_buf_hdr_t *fbuf, **bufp; 725 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 726 727 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 728 ASSERT(HDR_IN_HASH_TABLE(buf)); 729 730 bufp = &buf_hash_table.ht_table[idx]; 731 while ((fbuf = *bufp) != buf) { 732 ASSERT(fbuf != NULL); 733 bufp = &fbuf->b_hash_next; 734 } 735 *bufp = buf->b_hash_next; 736 buf->b_hash_next = NULL; 737 buf->b_flags &= ~ARC_IN_HASH_TABLE; 738 739 /* collect some hash table performance data */ 740 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 741 742 if (buf_hash_table.ht_table[idx] && 743 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 744 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 745 } 746 747 /* 748 * Global data structures and functions for the buf kmem cache. 749 */ 750 static kmem_cache_t *hdr_cache; 751 static kmem_cache_t *buf_cache; 752 753 static void 754 buf_fini(void) 755 { 756 int i; 757 758 kmem_free(buf_hash_table.ht_table, 759 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 760 for (i = 0; i < BUF_LOCKS; i++) 761 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 762 kmem_cache_destroy(hdr_cache); 763 kmem_cache_destroy(buf_cache); 764 } 765 766 /* 767 * Constructor callback - called when the cache is empty 768 * and a new buf is requested. 769 */ 770 /* ARGSUSED */ 771 static int 772 hdr_cons(void *vbuf, void *unused, int kmflag) 773 { 774 arc_buf_hdr_t *buf = vbuf; 775 776 bzero(buf, sizeof (arc_buf_hdr_t)); 777 refcount_create(&buf->b_refcnt); 778 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 779 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 780 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 781 782 return (0); 783 } 784 785 /* ARGSUSED */ 786 static int 787 buf_cons(void *vbuf, void *unused, int kmflag) 788 { 789 arc_buf_t *buf = vbuf; 790 791 bzero(buf, sizeof (arc_buf_t)); 792 rw_init(&buf->b_lock, NULL, RW_DEFAULT, NULL); 793 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 794 795 return (0); 796 } 797 798 /* 799 * Destructor callback - called when a cached buf is 800 * no longer required. 801 */ 802 /* ARGSUSED */ 803 static void 804 hdr_dest(void *vbuf, void *unused) 805 { 806 arc_buf_hdr_t *buf = vbuf; 807 808 refcount_destroy(&buf->b_refcnt); 809 cv_destroy(&buf->b_cv); 810 mutex_destroy(&buf->b_freeze_lock); 811 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 812 } 813 814 /* ARGSUSED */ 815 static void 816 buf_dest(void *vbuf, void *unused) 817 { 818 arc_buf_t *buf = vbuf; 819 820 rw_destroy(&buf->b_lock); 821 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 822 } 823 824 /* 825 * Reclaim callback -- invoked when memory is low. 826 */ 827 /* ARGSUSED */ 828 static void 829 hdr_recl(void *unused) 830 { 831 dprintf("hdr_recl called\n"); 832 /* 833 * umem calls the reclaim func when we destroy the buf cache, 834 * which is after we do arc_fini(). 835 */ 836 if (!arc_dead) 837 cv_signal(&arc_reclaim_thr_cv); 838 } 839 840 static void 841 buf_init(void) 842 { 843 uint64_t *ct; 844 uint64_t hsize = 1ULL << 12; 845 int i, j; 846 847 /* 848 * The hash table is big enough to fill all of physical memory 849 * with an average 64K block size. The table will take up 850 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 851 */ 852 while (hsize * 65536 < physmem * PAGESIZE) 853 hsize <<= 1; 854 retry: 855 buf_hash_table.ht_mask = hsize - 1; 856 buf_hash_table.ht_table = 857 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 858 if (buf_hash_table.ht_table == NULL) { 859 ASSERT(hsize > (1ULL << 8)); 860 hsize >>= 1; 861 goto retry; 862 } 863 864 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 865 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 866 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 867 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 868 869 for (i = 0; i < 256; i++) 870 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 871 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 872 873 for (i = 0; i < BUF_LOCKS; i++) { 874 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 875 NULL, MUTEX_DEFAULT, NULL); 876 } 877 } 878 879 #define ARC_MINTIME (hz>>4) /* 62 ms */ 880 881 static void 882 arc_cksum_verify(arc_buf_t *buf) 883 { 884 zio_cksum_t zc; 885 886 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 887 return; 888 889 mutex_enter(&buf->b_hdr->b_freeze_lock); 890 if (buf->b_hdr->b_freeze_cksum == NULL || 891 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 892 mutex_exit(&buf->b_hdr->b_freeze_lock); 893 return; 894 } 895 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 896 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 897 panic("buffer modified while frozen!"); 898 mutex_exit(&buf->b_hdr->b_freeze_lock); 899 } 900 901 static int 902 arc_cksum_equal(arc_buf_t *buf) 903 { 904 zio_cksum_t zc; 905 int equal; 906 907 mutex_enter(&buf->b_hdr->b_freeze_lock); 908 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 909 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 910 mutex_exit(&buf->b_hdr->b_freeze_lock); 911 912 return (equal); 913 } 914 915 static void 916 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 917 { 918 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 919 return; 920 921 mutex_enter(&buf->b_hdr->b_freeze_lock); 922 if (buf->b_hdr->b_freeze_cksum != NULL) { 923 mutex_exit(&buf->b_hdr->b_freeze_lock); 924 return; 925 } 926 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 927 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 928 buf->b_hdr->b_freeze_cksum); 929 mutex_exit(&buf->b_hdr->b_freeze_lock); 930 } 931 932 void 933 arc_buf_thaw(arc_buf_t *buf) 934 { 935 if (zfs_flags & ZFS_DEBUG_MODIFY) { 936 if (buf->b_hdr->b_state != arc_anon) 937 panic("modifying non-anon buffer!"); 938 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 939 panic("modifying buffer while i/o in progress!"); 940 arc_cksum_verify(buf); 941 } 942 943 mutex_enter(&buf->b_hdr->b_freeze_lock); 944 if (buf->b_hdr->b_freeze_cksum != NULL) { 945 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 946 buf->b_hdr->b_freeze_cksum = NULL; 947 } 948 mutex_exit(&buf->b_hdr->b_freeze_lock); 949 } 950 951 void 952 arc_buf_freeze(arc_buf_t *buf) 953 { 954 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 955 return; 956 957 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 958 buf->b_hdr->b_state == arc_anon); 959 arc_cksum_compute(buf, B_FALSE); 960 } 961 962 static void 963 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 964 { 965 ASSERT(MUTEX_HELD(hash_lock)); 966 967 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 968 (ab->b_state != arc_anon)) { 969 uint64_t delta = ab->b_size * ab->b_datacnt; 970 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 971 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 972 973 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 974 mutex_enter(&ab->b_state->arcs_mtx); 975 ASSERT(list_link_active(&ab->b_arc_node)); 976 list_remove(list, ab); 977 if (GHOST_STATE(ab->b_state)) { 978 ASSERT3U(ab->b_datacnt, ==, 0); 979 ASSERT3P(ab->b_buf, ==, NULL); 980 delta = ab->b_size; 981 } 982 ASSERT(delta > 0); 983 ASSERT3U(*size, >=, delta); 984 atomic_add_64(size, -delta); 985 mutex_exit(&ab->b_state->arcs_mtx); 986 /* remove the prefetch flag if we get a reference */ 987 if (ab->b_flags & ARC_PREFETCH) 988 ab->b_flags &= ~ARC_PREFETCH; 989 } 990 } 991 992 static int 993 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 994 { 995 int cnt; 996 arc_state_t *state = ab->b_state; 997 998 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 999 ASSERT(!GHOST_STATE(state)); 1000 1001 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1002 (state != arc_anon)) { 1003 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1004 1005 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1006 mutex_enter(&state->arcs_mtx); 1007 ASSERT(!list_link_active(&ab->b_arc_node)); 1008 list_insert_head(&state->arcs_list[ab->b_type], ab); 1009 ASSERT(ab->b_datacnt > 0); 1010 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1011 mutex_exit(&state->arcs_mtx); 1012 } 1013 return (cnt); 1014 } 1015 1016 /* 1017 * Move the supplied buffer to the indicated state. The mutex 1018 * for the buffer must be held by the caller. 1019 */ 1020 static void 1021 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1022 { 1023 arc_state_t *old_state = ab->b_state; 1024 int64_t refcnt = refcount_count(&ab->b_refcnt); 1025 uint64_t from_delta, to_delta; 1026 1027 ASSERT(MUTEX_HELD(hash_lock)); 1028 ASSERT(new_state != old_state); 1029 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1030 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1031 1032 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1033 1034 /* 1035 * If this buffer is evictable, transfer it from the 1036 * old state list to the new state list. 1037 */ 1038 if (refcnt == 0) { 1039 if (old_state != arc_anon) { 1040 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1041 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1042 1043 if (use_mutex) 1044 mutex_enter(&old_state->arcs_mtx); 1045 1046 ASSERT(list_link_active(&ab->b_arc_node)); 1047 list_remove(&old_state->arcs_list[ab->b_type], ab); 1048 1049 /* 1050 * If prefetching out of the ghost cache, 1051 * we will have a non-null datacnt. 1052 */ 1053 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1054 /* ghost elements have a ghost size */ 1055 ASSERT(ab->b_buf == NULL); 1056 from_delta = ab->b_size; 1057 } 1058 ASSERT3U(*size, >=, from_delta); 1059 atomic_add_64(size, -from_delta); 1060 1061 if (use_mutex) 1062 mutex_exit(&old_state->arcs_mtx); 1063 } 1064 if (new_state != arc_anon) { 1065 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1066 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1067 1068 if (use_mutex) 1069 mutex_enter(&new_state->arcs_mtx); 1070 1071 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1072 1073 /* ghost elements have a ghost size */ 1074 if (GHOST_STATE(new_state)) { 1075 ASSERT(ab->b_datacnt == 0); 1076 ASSERT(ab->b_buf == NULL); 1077 to_delta = ab->b_size; 1078 } 1079 atomic_add_64(size, to_delta); 1080 1081 if (use_mutex) 1082 mutex_exit(&new_state->arcs_mtx); 1083 } 1084 } 1085 1086 ASSERT(!BUF_EMPTY(ab)); 1087 if (new_state == arc_anon) { 1088 buf_hash_remove(ab); 1089 } 1090 1091 /* adjust state sizes */ 1092 if (to_delta) 1093 atomic_add_64(&new_state->arcs_size, to_delta); 1094 if (from_delta) { 1095 ASSERT3U(old_state->arcs_size, >=, from_delta); 1096 atomic_add_64(&old_state->arcs_size, -from_delta); 1097 } 1098 ab->b_state = new_state; 1099 1100 /* adjust l2arc hdr stats */ 1101 if (new_state == arc_l2c_only) 1102 l2arc_hdr_stat_add(); 1103 else if (old_state == arc_l2c_only) 1104 l2arc_hdr_stat_remove(); 1105 } 1106 1107 void 1108 arc_space_consume(uint64_t space, arc_space_type_t type) 1109 { 1110 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1111 1112 switch (type) { 1113 case ARC_SPACE_DATA: 1114 ARCSTAT_INCR(arcstat_data_size, space); 1115 break; 1116 case ARC_SPACE_OTHER: 1117 ARCSTAT_INCR(arcstat_other_size, space); 1118 break; 1119 case ARC_SPACE_HDRS: 1120 ARCSTAT_INCR(arcstat_hdr_size, space); 1121 break; 1122 case ARC_SPACE_L2HDRS: 1123 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1124 break; 1125 } 1126 1127 atomic_add_64(&arc_meta_used, space); 1128 atomic_add_64(&arc_size, space); 1129 } 1130 1131 void 1132 arc_space_return(uint64_t space, arc_space_type_t type) 1133 { 1134 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1135 1136 switch (type) { 1137 case ARC_SPACE_DATA: 1138 ARCSTAT_INCR(arcstat_data_size, -space); 1139 break; 1140 case ARC_SPACE_OTHER: 1141 ARCSTAT_INCR(arcstat_other_size, -space); 1142 break; 1143 case ARC_SPACE_HDRS: 1144 ARCSTAT_INCR(arcstat_hdr_size, -space); 1145 break; 1146 case ARC_SPACE_L2HDRS: 1147 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1148 break; 1149 } 1150 1151 ASSERT(arc_meta_used >= space); 1152 if (arc_meta_max < arc_meta_used) 1153 arc_meta_max = arc_meta_used; 1154 atomic_add_64(&arc_meta_used, -space); 1155 ASSERT(arc_size >= space); 1156 atomic_add_64(&arc_size, -space); 1157 } 1158 1159 void * 1160 arc_data_buf_alloc(uint64_t size) 1161 { 1162 if (arc_evict_needed(ARC_BUFC_DATA)) 1163 cv_signal(&arc_reclaim_thr_cv); 1164 atomic_add_64(&arc_size, size); 1165 return (zio_data_buf_alloc(size)); 1166 } 1167 1168 void 1169 arc_data_buf_free(void *buf, uint64_t size) 1170 { 1171 zio_data_buf_free(buf, size); 1172 ASSERT(arc_size >= size); 1173 atomic_add_64(&arc_size, -size); 1174 } 1175 1176 arc_buf_t * 1177 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1178 { 1179 arc_buf_hdr_t *hdr; 1180 arc_buf_t *buf; 1181 1182 ASSERT3U(size, >, 0); 1183 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1184 ASSERT(BUF_EMPTY(hdr)); 1185 hdr->b_size = size; 1186 hdr->b_type = type; 1187 hdr->b_spa = spa_guid(spa); 1188 hdr->b_state = arc_anon; 1189 hdr->b_arc_access = 0; 1190 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1191 buf->b_hdr = hdr; 1192 buf->b_data = NULL; 1193 buf->b_efunc = NULL; 1194 buf->b_private = NULL; 1195 buf->b_next = NULL; 1196 hdr->b_buf = buf; 1197 arc_get_data_buf(buf); 1198 hdr->b_datacnt = 1; 1199 hdr->b_flags = 0; 1200 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1201 (void) refcount_add(&hdr->b_refcnt, tag); 1202 1203 return (buf); 1204 } 1205 1206 static arc_buf_t * 1207 arc_buf_clone(arc_buf_t *from) 1208 { 1209 arc_buf_t *buf; 1210 arc_buf_hdr_t *hdr = from->b_hdr; 1211 uint64_t size = hdr->b_size; 1212 1213 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1214 buf->b_hdr = hdr; 1215 buf->b_data = NULL; 1216 buf->b_efunc = NULL; 1217 buf->b_private = NULL; 1218 buf->b_next = hdr->b_buf; 1219 hdr->b_buf = buf; 1220 arc_get_data_buf(buf); 1221 bcopy(from->b_data, buf->b_data, size); 1222 hdr->b_datacnt += 1; 1223 return (buf); 1224 } 1225 1226 void 1227 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1228 { 1229 arc_buf_hdr_t *hdr; 1230 kmutex_t *hash_lock; 1231 1232 /* 1233 * Check to see if this buffer is evicted. Callers 1234 * must verify b_data != NULL to know if the add_ref 1235 * was successful. 1236 */ 1237 rw_enter(&buf->b_lock, RW_READER); 1238 if (buf->b_data == NULL) { 1239 rw_exit(&buf->b_lock); 1240 return; 1241 } 1242 hdr = buf->b_hdr; 1243 ASSERT(hdr != NULL); 1244 hash_lock = HDR_LOCK(hdr); 1245 mutex_enter(hash_lock); 1246 rw_exit(&buf->b_lock); 1247 1248 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1249 add_reference(hdr, hash_lock, tag); 1250 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1251 arc_access(hdr, hash_lock); 1252 mutex_exit(hash_lock); 1253 ARCSTAT_BUMP(arcstat_hits); 1254 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1255 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1256 data, metadata, hits); 1257 } 1258 1259 /* 1260 * Free the arc data buffer. If it is an l2arc write in progress, 1261 * the buffer is placed on l2arc_free_on_write to be freed later. 1262 */ 1263 static void 1264 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t), 1265 void *data, size_t size) 1266 { 1267 if (HDR_L2_WRITING(hdr)) { 1268 l2arc_data_free_t *df; 1269 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1270 df->l2df_data = data; 1271 df->l2df_size = size; 1272 df->l2df_func = free_func; 1273 mutex_enter(&l2arc_free_on_write_mtx); 1274 list_insert_head(l2arc_free_on_write, df); 1275 mutex_exit(&l2arc_free_on_write_mtx); 1276 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1277 } else { 1278 free_func(data, size); 1279 } 1280 } 1281 1282 static void 1283 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1284 { 1285 arc_buf_t **bufp; 1286 1287 /* free up data associated with the buf */ 1288 if (buf->b_data) { 1289 arc_state_t *state = buf->b_hdr->b_state; 1290 uint64_t size = buf->b_hdr->b_size; 1291 arc_buf_contents_t type = buf->b_hdr->b_type; 1292 1293 arc_cksum_verify(buf); 1294 if (!recycle) { 1295 if (type == ARC_BUFC_METADATA) { 1296 arc_buf_data_free(buf->b_hdr, zio_buf_free, 1297 buf->b_data, size); 1298 arc_space_return(size, ARC_SPACE_DATA); 1299 } else { 1300 ASSERT(type == ARC_BUFC_DATA); 1301 arc_buf_data_free(buf->b_hdr, 1302 zio_data_buf_free, buf->b_data, size); 1303 ARCSTAT_INCR(arcstat_data_size, -size); 1304 atomic_add_64(&arc_size, -size); 1305 } 1306 } 1307 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1308 uint64_t *cnt = &state->arcs_lsize[type]; 1309 1310 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1311 ASSERT(state != arc_anon); 1312 1313 ASSERT3U(*cnt, >=, size); 1314 atomic_add_64(cnt, -size); 1315 } 1316 ASSERT3U(state->arcs_size, >=, size); 1317 atomic_add_64(&state->arcs_size, -size); 1318 buf->b_data = NULL; 1319 ASSERT(buf->b_hdr->b_datacnt > 0); 1320 buf->b_hdr->b_datacnt -= 1; 1321 } 1322 1323 /* only remove the buf if requested */ 1324 if (!all) 1325 return; 1326 1327 /* remove the buf from the hdr list */ 1328 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1329 continue; 1330 *bufp = buf->b_next; 1331 1332 ASSERT(buf->b_efunc == NULL); 1333 1334 /* clean up the buf */ 1335 buf->b_hdr = NULL; 1336 kmem_cache_free(buf_cache, buf); 1337 } 1338 1339 static void 1340 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1341 { 1342 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1343 ASSERT3P(hdr->b_state, ==, arc_anon); 1344 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1345 ASSERT(!(hdr->b_flags & ARC_STORED)); 1346 1347 if (hdr->b_l2hdr != NULL) { 1348 if (!MUTEX_HELD(&l2arc_buflist_mtx)) { 1349 /* 1350 * To prevent arc_free() and l2arc_evict() from 1351 * attempting to free the same buffer at the same time, 1352 * a FREE_IN_PROGRESS flag is given to arc_free() to 1353 * give it priority. l2arc_evict() can't destroy this 1354 * header while we are waiting on l2arc_buflist_mtx. 1355 * 1356 * The hdr may be removed from l2ad_buflist before we 1357 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1358 */ 1359 mutex_enter(&l2arc_buflist_mtx); 1360 if (hdr->b_l2hdr != NULL) { 1361 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, 1362 hdr); 1363 } 1364 mutex_exit(&l2arc_buflist_mtx); 1365 } else { 1366 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr); 1367 } 1368 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1369 kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t)); 1370 if (hdr->b_state == arc_l2c_only) 1371 l2arc_hdr_stat_remove(); 1372 hdr->b_l2hdr = NULL; 1373 } 1374 1375 if (!BUF_EMPTY(hdr)) { 1376 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1377 bzero(&hdr->b_dva, sizeof (dva_t)); 1378 hdr->b_birth = 0; 1379 hdr->b_cksum0 = 0; 1380 } 1381 while (hdr->b_buf) { 1382 arc_buf_t *buf = hdr->b_buf; 1383 1384 if (buf->b_efunc) { 1385 mutex_enter(&arc_eviction_mtx); 1386 rw_enter(&buf->b_lock, RW_WRITER); 1387 ASSERT(buf->b_hdr != NULL); 1388 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1389 hdr->b_buf = buf->b_next; 1390 buf->b_hdr = &arc_eviction_hdr; 1391 buf->b_next = arc_eviction_list; 1392 arc_eviction_list = buf; 1393 rw_exit(&buf->b_lock); 1394 mutex_exit(&arc_eviction_mtx); 1395 } else { 1396 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1397 } 1398 } 1399 if (hdr->b_freeze_cksum != NULL) { 1400 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1401 hdr->b_freeze_cksum = NULL; 1402 } 1403 1404 ASSERT(!list_link_active(&hdr->b_arc_node)); 1405 ASSERT3P(hdr->b_hash_next, ==, NULL); 1406 ASSERT3P(hdr->b_acb, ==, NULL); 1407 kmem_cache_free(hdr_cache, hdr); 1408 } 1409 1410 void 1411 arc_buf_free(arc_buf_t *buf, void *tag) 1412 { 1413 arc_buf_hdr_t *hdr = buf->b_hdr; 1414 int hashed = hdr->b_state != arc_anon; 1415 1416 ASSERT(buf->b_efunc == NULL); 1417 ASSERT(buf->b_data != NULL); 1418 1419 if (hashed) { 1420 kmutex_t *hash_lock = HDR_LOCK(hdr); 1421 1422 mutex_enter(hash_lock); 1423 (void) remove_reference(hdr, hash_lock, tag); 1424 if (hdr->b_datacnt > 1) 1425 arc_buf_destroy(buf, FALSE, TRUE); 1426 else 1427 hdr->b_flags |= ARC_BUF_AVAILABLE; 1428 mutex_exit(hash_lock); 1429 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1430 int destroy_hdr; 1431 /* 1432 * We are in the middle of an async write. Don't destroy 1433 * this buffer unless the write completes before we finish 1434 * decrementing the reference count. 1435 */ 1436 mutex_enter(&arc_eviction_mtx); 1437 (void) remove_reference(hdr, NULL, tag); 1438 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1439 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1440 mutex_exit(&arc_eviction_mtx); 1441 if (destroy_hdr) 1442 arc_hdr_destroy(hdr); 1443 } else { 1444 if (remove_reference(hdr, NULL, tag) > 0) { 1445 ASSERT(HDR_IO_ERROR(hdr)); 1446 arc_buf_destroy(buf, FALSE, TRUE); 1447 } else { 1448 arc_hdr_destroy(hdr); 1449 } 1450 } 1451 } 1452 1453 int 1454 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1455 { 1456 arc_buf_hdr_t *hdr = buf->b_hdr; 1457 kmutex_t *hash_lock = HDR_LOCK(hdr); 1458 int no_callback = (buf->b_efunc == NULL); 1459 1460 if (hdr->b_state == arc_anon) { 1461 arc_buf_free(buf, tag); 1462 return (no_callback); 1463 } 1464 1465 mutex_enter(hash_lock); 1466 ASSERT(hdr->b_state != arc_anon); 1467 ASSERT(buf->b_data != NULL); 1468 1469 (void) remove_reference(hdr, hash_lock, tag); 1470 if (hdr->b_datacnt > 1) { 1471 if (no_callback) 1472 arc_buf_destroy(buf, FALSE, TRUE); 1473 } else if (no_callback) { 1474 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1475 hdr->b_flags |= ARC_BUF_AVAILABLE; 1476 } 1477 ASSERT(no_callback || hdr->b_datacnt > 1 || 1478 refcount_is_zero(&hdr->b_refcnt)); 1479 mutex_exit(hash_lock); 1480 return (no_callback); 1481 } 1482 1483 int 1484 arc_buf_size(arc_buf_t *buf) 1485 { 1486 return (buf->b_hdr->b_size); 1487 } 1488 1489 /* 1490 * Evict buffers from list until we've removed the specified number of 1491 * bytes. Move the removed buffers to the appropriate evict state. 1492 * If the recycle flag is set, then attempt to "recycle" a buffer: 1493 * - look for a buffer to evict that is `bytes' long. 1494 * - return the data block from this buffer rather than freeing it. 1495 * This flag is used by callers that are trying to make space for a 1496 * new buffer in a full arc cache. 1497 * 1498 * This function makes a "best effort". It skips over any buffers 1499 * it can't get a hash_lock on, and so may not catch all candidates. 1500 * It may also return without evicting as much space as requested. 1501 */ 1502 static void * 1503 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1504 arc_buf_contents_t type) 1505 { 1506 arc_state_t *evicted_state; 1507 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1508 arc_buf_hdr_t *ab, *ab_prev = NULL; 1509 list_t *list = &state->arcs_list[type]; 1510 kmutex_t *hash_lock; 1511 boolean_t have_lock; 1512 void *stolen = NULL; 1513 1514 ASSERT(state == arc_mru || state == arc_mfu); 1515 1516 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1517 1518 mutex_enter(&state->arcs_mtx); 1519 mutex_enter(&evicted_state->arcs_mtx); 1520 1521 for (ab = list_tail(list); ab; ab = ab_prev) { 1522 ab_prev = list_prev(list, ab); 1523 /* prefetch buffers have a minimum lifespan */ 1524 if (HDR_IO_IN_PROGRESS(ab) || 1525 (spa && ab->b_spa != spa) || 1526 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1527 lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) { 1528 skipped++; 1529 continue; 1530 } 1531 /* "lookahead" for better eviction candidate */ 1532 if (recycle && ab->b_size != bytes && 1533 ab_prev && ab_prev->b_size == bytes) 1534 continue; 1535 hash_lock = HDR_LOCK(ab); 1536 have_lock = MUTEX_HELD(hash_lock); 1537 if (have_lock || mutex_tryenter(hash_lock)) { 1538 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1539 ASSERT(ab->b_datacnt > 0); 1540 while (ab->b_buf) { 1541 arc_buf_t *buf = ab->b_buf; 1542 if (!rw_tryenter(&buf->b_lock, RW_WRITER)) { 1543 missed += 1; 1544 break; 1545 } 1546 if (buf->b_data) { 1547 bytes_evicted += ab->b_size; 1548 if (recycle && ab->b_type == type && 1549 ab->b_size == bytes && 1550 !HDR_L2_WRITING(ab)) { 1551 stolen = buf->b_data; 1552 recycle = FALSE; 1553 } 1554 } 1555 if (buf->b_efunc) { 1556 mutex_enter(&arc_eviction_mtx); 1557 arc_buf_destroy(buf, 1558 buf->b_data == stolen, FALSE); 1559 ab->b_buf = buf->b_next; 1560 buf->b_hdr = &arc_eviction_hdr; 1561 buf->b_next = arc_eviction_list; 1562 arc_eviction_list = buf; 1563 mutex_exit(&arc_eviction_mtx); 1564 rw_exit(&buf->b_lock); 1565 } else { 1566 rw_exit(&buf->b_lock); 1567 arc_buf_destroy(buf, 1568 buf->b_data == stolen, TRUE); 1569 } 1570 } 1571 if (ab->b_datacnt == 0) { 1572 arc_change_state(evicted_state, ab, hash_lock); 1573 ASSERT(HDR_IN_HASH_TABLE(ab)); 1574 ab->b_flags |= ARC_IN_HASH_TABLE; 1575 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1576 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1577 } 1578 if (!have_lock) 1579 mutex_exit(hash_lock); 1580 if (bytes >= 0 && bytes_evicted >= bytes) 1581 break; 1582 } else { 1583 missed += 1; 1584 } 1585 } 1586 1587 mutex_exit(&evicted_state->arcs_mtx); 1588 mutex_exit(&state->arcs_mtx); 1589 1590 if (bytes_evicted < bytes) 1591 dprintf("only evicted %lld bytes from %x", 1592 (longlong_t)bytes_evicted, state); 1593 1594 if (skipped) 1595 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1596 1597 if (missed) 1598 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1599 1600 /* 1601 * We have just evicted some date into the ghost state, make 1602 * sure we also adjust the ghost state size if necessary. 1603 */ 1604 if (arc_no_grow && 1605 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { 1606 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + 1607 arc_mru_ghost->arcs_size - arc_c; 1608 1609 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { 1610 int64_t todelete = 1611 MIN(arc_mru_ghost->arcs_lsize[type], mru_over); 1612 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1613 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { 1614 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], 1615 arc_mru_ghost->arcs_size + 1616 arc_mfu_ghost->arcs_size - arc_c); 1617 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1618 } 1619 } 1620 1621 return (stolen); 1622 } 1623 1624 /* 1625 * Remove buffers from list until we've removed the specified number of 1626 * bytes. Destroy the buffers that are removed. 1627 */ 1628 static void 1629 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1630 { 1631 arc_buf_hdr_t *ab, *ab_prev; 1632 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1633 kmutex_t *hash_lock; 1634 uint64_t bytes_deleted = 0; 1635 uint64_t bufs_skipped = 0; 1636 1637 ASSERT(GHOST_STATE(state)); 1638 top: 1639 mutex_enter(&state->arcs_mtx); 1640 for (ab = list_tail(list); ab; ab = ab_prev) { 1641 ab_prev = list_prev(list, ab); 1642 if (spa && ab->b_spa != spa) 1643 continue; 1644 hash_lock = HDR_LOCK(ab); 1645 if (mutex_tryenter(hash_lock)) { 1646 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1647 ASSERT(ab->b_buf == NULL); 1648 ARCSTAT_BUMP(arcstat_deleted); 1649 bytes_deleted += ab->b_size; 1650 1651 if (ab->b_l2hdr != NULL) { 1652 /* 1653 * This buffer is cached on the 2nd Level ARC; 1654 * don't destroy the header. 1655 */ 1656 arc_change_state(arc_l2c_only, ab, hash_lock); 1657 mutex_exit(hash_lock); 1658 } else { 1659 arc_change_state(arc_anon, ab, hash_lock); 1660 mutex_exit(hash_lock); 1661 arc_hdr_destroy(ab); 1662 } 1663 1664 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1665 if (bytes >= 0 && bytes_deleted >= bytes) 1666 break; 1667 } else { 1668 if (bytes < 0) { 1669 mutex_exit(&state->arcs_mtx); 1670 mutex_enter(hash_lock); 1671 mutex_exit(hash_lock); 1672 goto top; 1673 } 1674 bufs_skipped += 1; 1675 } 1676 } 1677 mutex_exit(&state->arcs_mtx); 1678 1679 if (list == &state->arcs_list[ARC_BUFC_DATA] && 1680 (bytes < 0 || bytes_deleted < bytes)) { 1681 list = &state->arcs_list[ARC_BUFC_METADATA]; 1682 goto top; 1683 } 1684 1685 if (bufs_skipped) { 1686 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 1687 ASSERT(bytes >= 0); 1688 } 1689 1690 if (bytes_deleted < bytes) 1691 dprintf("only deleted %lld bytes from %p", 1692 (longlong_t)bytes_deleted, state); 1693 } 1694 1695 static void 1696 arc_adjust(void) 1697 { 1698 int64_t adjustment, delta; 1699 1700 /* 1701 * Adjust MRU size 1702 */ 1703 1704 adjustment = MIN(arc_size - arc_c, 1705 arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - arc_p); 1706 1707 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 1708 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 1709 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 1710 adjustment -= delta; 1711 } 1712 1713 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1714 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 1715 (void) arc_evict(arc_mru, NULL, delta, FALSE, 1716 ARC_BUFC_METADATA); 1717 } 1718 1719 /* 1720 * Adjust MFU size 1721 */ 1722 1723 adjustment = arc_size - arc_c; 1724 1725 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 1726 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 1727 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 1728 adjustment -= delta; 1729 } 1730 1731 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1732 int64_t delta = MIN(adjustment, 1733 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 1734 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 1735 ARC_BUFC_METADATA); 1736 } 1737 1738 /* 1739 * Adjust ghost lists 1740 */ 1741 1742 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 1743 1744 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 1745 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 1746 arc_evict_ghost(arc_mru_ghost, NULL, delta); 1747 } 1748 1749 adjustment = 1750 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 1751 1752 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 1753 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 1754 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 1755 } 1756 } 1757 1758 static void 1759 arc_do_user_evicts(void) 1760 { 1761 mutex_enter(&arc_eviction_mtx); 1762 while (arc_eviction_list != NULL) { 1763 arc_buf_t *buf = arc_eviction_list; 1764 arc_eviction_list = buf->b_next; 1765 rw_enter(&buf->b_lock, RW_WRITER); 1766 buf->b_hdr = NULL; 1767 rw_exit(&buf->b_lock); 1768 mutex_exit(&arc_eviction_mtx); 1769 1770 if (buf->b_efunc != NULL) 1771 VERIFY(buf->b_efunc(buf) == 0); 1772 1773 buf->b_efunc = NULL; 1774 buf->b_private = NULL; 1775 kmem_cache_free(buf_cache, buf); 1776 mutex_enter(&arc_eviction_mtx); 1777 } 1778 mutex_exit(&arc_eviction_mtx); 1779 } 1780 1781 /* 1782 * Flush all *evictable* data from the cache for the given spa. 1783 * NOTE: this will not touch "active" (i.e. referenced) data. 1784 */ 1785 void 1786 arc_flush(spa_t *spa) 1787 { 1788 uint64_t guid = 0; 1789 1790 if (spa) 1791 guid = spa_guid(spa); 1792 1793 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 1794 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 1795 if (spa) 1796 break; 1797 } 1798 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 1799 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 1800 if (spa) 1801 break; 1802 } 1803 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 1804 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 1805 if (spa) 1806 break; 1807 } 1808 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 1809 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 1810 if (spa) 1811 break; 1812 } 1813 1814 arc_evict_ghost(arc_mru_ghost, guid, -1); 1815 arc_evict_ghost(arc_mfu_ghost, guid, -1); 1816 1817 mutex_enter(&arc_reclaim_thr_lock); 1818 arc_do_user_evicts(); 1819 mutex_exit(&arc_reclaim_thr_lock); 1820 ASSERT(spa || arc_eviction_list == NULL); 1821 } 1822 1823 void 1824 arc_shrink(void) 1825 { 1826 if (arc_c > arc_c_min) { 1827 uint64_t to_free; 1828 1829 #ifdef _KERNEL 1830 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 1831 #else 1832 to_free = arc_c >> arc_shrink_shift; 1833 #endif 1834 if (arc_c > arc_c_min + to_free) 1835 atomic_add_64(&arc_c, -to_free); 1836 else 1837 arc_c = arc_c_min; 1838 1839 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 1840 if (arc_c > arc_size) 1841 arc_c = MAX(arc_size, arc_c_min); 1842 if (arc_p > arc_c) 1843 arc_p = (arc_c >> 1); 1844 ASSERT(arc_c >= arc_c_min); 1845 ASSERT((int64_t)arc_p >= 0); 1846 } 1847 1848 if (arc_size > arc_c) 1849 arc_adjust(); 1850 } 1851 1852 static int 1853 arc_reclaim_needed(void) 1854 { 1855 uint64_t extra; 1856 1857 #ifdef _KERNEL 1858 1859 if (needfree) 1860 return (1); 1861 1862 /* 1863 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1864 */ 1865 extra = desfree; 1866 1867 /* 1868 * check that we're out of range of the pageout scanner. It starts to 1869 * schedule paging if freemem is less than lotsfree and needfree. 1870 * lotsfree is the high-water mark for pageout, and needfree is the 1871 * number of needed free pages. We add extra pages here to make sure 1872 * the scanner doesn't start up while we're freeing memory. 1873 */ 1874 if (freemem < lotsfree + needfree + extra) 1875 return (1); 1876 1877 /* 1878 * check to make sure that swapfs has enough space so that anon 1879 * reservations can still succeed. anon_resvmem() checks that the 1880 * availrmem is greater than swapfs_minfree, and the number of reserved 1881 * swap pages. We also add a bit of extra here just to prevent 1882 * circumstances from getting really dire. 1883 */ 1884 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 1885 return (1); 1886 1887 #if defined(__i386) 1888 /* 1889 * If we're on an i386 platform, it's possible that we'll exhaust the 1890 * kernel heap space before we ever run out of available physical 1891 * memory. Most checks of the size of the heap_area compare against 1892 * tune.t_minarmem, which is the minimum available real memory that we 1893 * can have in the system. However, this is generally fixed at 25 pages 1894 * which is so low that it's useless. In this comparison, we seek to 1895 * calculate the total heap-size, and reclaim if more than 3/4ths of the 1896 * heap is allocated. (Or, in the calculation, if less than 1/4th is 1897 * free) 1898 */ 1899 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 1900 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 1901 return (1); 1902 #endif 1903 1904 #else 1905 if (spa_get_random(100) == 0) 1906 return (1); 1907 #endif 1908 return (0); 1909 } 1910 1911 static void 1912 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 1913 { 1914 size_t i; 1915 kmem_cache_t *prev_cache = NULL; 1916 kmem_cache_t *prev_data_cache = NULL; 1917 extern kmem_cache_t *zio_buf_cache[]; 1918 extern kmem_cache_t *zio_data_buf_cache[]; 1919 1920 #ifdef _KERNEL 1921 if (arc_meta_used >= arc_meta_limit) { 1922 /* 1923 * We are exceeding our meta-data cache limit. 1924 * Purge some DNLC entries to release holds on meta-data. 1925 */ 1926 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 1927 } 1928 #if defined(__i386) 1929 /* 1930 * Reclaim unused memory from all kmem caches. 1931 */ 1932 kmem_reap(); 1933 #endif 1934 #endif 1935 1936 /* 1937 * An aggressive reclamation will shrink the cache size as well as 1938 * reap free buffers from the arc kmem caches. 1939 */ 1940 if (strat == ARC_RECLAIM_AGGR) 1941 arc_shrink(); 1942 1943 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 1944 if (zio_buf_cache[i] != prev_cache) { 1945 prev_cache = zio_buf_cache[i]; 1946 kmem_cache_reap_now(zio_buf_cache[i]); 1947 } 1948 if (zio_data_buf_cache[i] != prev_data_cache) { 1949 prev_data_cache = zio_data_buf_cache[i]; 1950 kmem_cache_reap_now(zio_data_buf_cache[i]); 1951 } 1952 } 1953 kmem_cache_reap_now(buf_cache); 1954 kmem_cache_reap_now(hdr_cache); 1955 } 1956 1957 static void 1958 arc_reclaim_thread(void) 1959 { 1960 clock_t growtime = 0; 1961 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 1962 callb_cpr_t cpr; 1963 1964 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 1965 1966 mutex_enter(&arc_reclaim_thr_lock); 1967 while (arc_thread_exit == 0) { 1968 if (arc_reclaim_needed()) { 1969 1970 if (arc_no_grow) { 1971 if (last_reclaim == ARC_RECLAIM_CONS) { 1972 last_reclaim = ARC_RECLAIM_AGGR; 1973 } else { 1974 last_reclaim = ARC_RECLAIM_CONS; 1975 } 1976 } else { 1977 arc_no_grow = TRUE; 1978 last_reclaim = ARC_RECLAIM_AGGR; 1979 membar_producer(); 1980 } 1981 1982 /* reset the growth delay for every reclaim */ 1983 growtime = lbolt + (arc_grow_retry * hz); 1984 1985 arc_kmem_reap_now(last_reclaim); 1986 arc_warm = B_TRUE; 1987 1988 } else if (arc_no_grow && lbolt >= growtime) { 1989 arc_no_grow = FALSE; 1990 } 1991 1992 if (2 * arc_c < arc_size + 1993 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size) 1994 arc_adjust(); 1995 1996 if (arc_eviction_list != NULL) 1997 arc_do_user_evicts(); 1998 1999 /* block until needed, or one second, whichever is shorter */ 2000 CALLB_CPR_SAFE_BEGIN(&cpr); 2001 (void) cv_timedwait(&arc_reclaim_thr_cv, 2002 &arc_reclaim_thr_lock, (lbolt + hz)); 2003 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2004 } 2005 2006 arc_thread_exit = 0; 2007 cv_broadcast(&arc_reclaim_thr_cv); 2008 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2009 thread_exit(); 2010 } 2011 2012 /* 2013 * Adapt arc info given the number of bytes we are trying to add and 2014 * the state that we are comming from. This function is only called 2015 * when we are adding new content to the cache. 2016 */ 2017 static void 2018 arc_adapt(int bytes, arc_state_t *state) 2019 { 2020 int mult; 2021 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2022 2023 if (state == arc_l2c_only) 2024 return; 2025 2026 ASSERT(bytes > 0); 2027 /* 2028 * Adapt the target size of the MRU list: 2029 * - if we just hit in the MRU ghost list, then increase 2030 * the target size of the MRU list. 2031 * - if we just hit in the MFU ghost list, then increase 2032 * the target size of the MFU list by decreasing the 2033 * target size of the MRU list. 2034 */ 2035 if (state == arc_mru_ghost) { 2036 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2037 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2038 2039 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2040 } else if (state == arc_mfu_ghost) { 2041 uint64_t delta; 2042 2043 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2044 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2045 2046 delta = MIN(bytes * mult, arc_p); 2047 arc_p = MAX(arc_p_min, arc_p - delta); 2048 } 2049 ASSERT((int64_t)arc_p >= 0); 2050 2051 if (arc_reclaim_needed()) { 2052 cv_signal(&arc_reclaim_thr_cv); 2053 return; 2054 } 2055 2056 if (arc_no_grow) 2057 return; 2058 2059 if (arc_c >= arc_c_max) 2060 return; 2061 2062 /* 2063 * If we're within (2 * maxblocksize) bytes of the target 2064 * cache size, increment the target cache size 2065 */ 2066 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2067 atomic_add_64(&arc_c, (int64_t)bytes); 2068 if (arc_c > arc_c_max) 2069 arc_c = arc_c_max; 2070 else if (state == arc_anon) 2071 atomic_add_64(&arc_p, (int64_t)bytes); 2072 if (arc_p > arc_c) 2073 arc_p = arc_c; 2074 } 2075 ASSERT((int64_t)arc_p >= 0); 2076 } 2077 2078 /* 2079 * Check if the cache has reached its limits and eviction is required 2080 * prior to insert. 2081 */ 2082 static int 2083 arc_evict_needed(arc_buf_contents_t type) 2084 { 2085 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2086 return (1); 2087 2088 #ifdef _KERNEL 2089 /* 2090 * If zio data pages are being allocated out of a separate heap segment, 2091 * then enforce that the size of available vmem for this area remains 2092 * above about 1/32nd free. 2093 */ 2094 if (type == ARC_BUFC_DATA && zio_arena != NULL && 2095 vmem_size(zio_arena, VMEM_FREE) < 2096 (vmem_size(zio_arena, VMEM_ALLOC) >> 5)) 2097 return (1); 2098 #endif 2099 2100 if (arc_reclaim_needed()) 2101 return (1); 2102 2103 return (arc_size > arc_c); 2104 } 2105 2106 /* 2107 * The buffer, supplied as the first argument, needs a data block. 2108 * So, if we are at cache max, determine which cache should be victimized. 2109 * We have the following cases: 2110 * 2111 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2112 * In this situation if we're out of space, but the resident size of the MFU is 2113 * under the limit, victimize the MFU cache to satisfy this insertion request. 2114 * 2115 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2116 * Here, we've used up all of the available space for the MRU, so we need to 2117 * evict from our own cache instead. Evict from the set of resident MRU 2118 * entries. 2119 * 2120 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2121 * c minus p represents the MFU space in the cache, since p is the size of the 2122 * cache that is dedicated to the MRU. In this situation there's still space on 2123 * the MFU side, so the MRU side needs to be victimized. 2124 * 2125 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2126 * MFU's resident set is consuming more space than it has been allotted. In 2127 * this situation, we must victimize our own cache, the MFU, for this insertion. 2128 */ 2129 static void 2130 arc_get_data_buf(arc_buf_t *buf) 2131 { 2132 arc_state_t *state = buf->b_hdr->b_state; 2133 uint64_t size = buf->b_hdr->b_size; 2134 arc_buf_contents_t type = buf->b_hdr->b_type; 2135 2136 arc_adapt(size, state); 2137 2138 /* 2139 * We have not yet reached cache maximum size, 2140 * just allocate a new buffer. 2141 */ 2142 if (!arc_evict_needed(type)) { 2143 if (type == ARC_BUFC_METADATA) { 2144 buf->b_data = zio_buf_alloc(size); 2145 arc_space_consume(size, ARC_SPACE_DATA); 2146 } else { 2147 ASSERT(type == ARC_BUFC_DATA); 2148 buf->b_data = zio_data_buf_alloc(size); 2149 ARCSTAT_INCR(arcstat_data_size, size); 2150 atomic_add_64(&arc_size, size); 2151 } 2152 goto out; 2153 } 2154 2155 /* 2156 * If we are prefetching from the mfu ghost list, this buffer 2157 * will end up on the mru list; so steal space from there. 2158 */ 2159 if (state == arc_mfu_ghost) 2160 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2161 else if (state == arc_mru_ghost) 2162 state = arc_mru; 2163 2164 if (state == arc_mru || state == arc_anon) { 2165 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2166 state = (arc_mfu->arcs_lsize[type] >= size && 2167 arc_p > mru_used) ? arc_mfu : arc_mru; 2168 } else { 2169 /* MFU cases */ 2170 uint64_t mfu_space = arc_c - arc_p; 2171 state = (arc_mru->arcs_lsize[type] >= size && 2172 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2173 } 2174 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2175 if (type == ARC_BUFC_METADATA) { 2176 buf->b_data = zio_buf_alloc(size); 2177 arc_space_consume(size, ARC_SPACE_DATA); 2178 } else { 2179 ASSERT(type == ARC_BUFC_DATA); 2180 buf->b_data = zio_data_buf_alloc(size); 2181 ARCSTAT_INCR(arcstat_data_size, size); 2182 atomic_add_64(&arc_size, size); 2183 } 2184 ARCSTAT_BUMP(arcstat_recycle_miss); 2185 } 2186 ASSERT(buf->b_data != NULL); 2187 out: 2188 /* 2189 * Update the state size. Note that ghost states have a 2190 * "ghost size" and so don't need to be updated. 2191 */ 2192 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2193 arc_buf_hdr_t *hdr = buf->b_hdr; 2194 2195 atomic_add_64(&hdr->b_state->arcs_size, size); 2196 if (list_link_active(&hdr->b_arc_node)) { 2197 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2198 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2199 } 2200 /* 2201 * If we are growing the cache, and we are adding anonymous 2202 * data, and we have outgrown arc_p, update arc_p 2203 */ 2204 if (arc_size < arc_c && hdr->b_state == arc_anon && 2205 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2206 arc_p = MIN(arc_c, arc_p + size); 2207 } 2208 } 2209 2210 /* 2211 * This routine is called whenever a buffer is accessed. 2212 * NOTE: the hash lock is dropped in this function. 2213 */ 2214 static void 2215 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2216 { 2217 ASSERT(MUTEX_HELD(hash_lock)); 2218 2219 if (buf->b_state == arc_anon) { 2220 /* 2221 * This buffer is not in the cache, and does not 2222 * appear in our "ghost" list. Add the new buffer 2223 * to the MRU state. 2224 */ 2225 2226 ASSERT(buf->b_arc_access == 0); 2227 buf->b_arc_access = lbolt; 2228 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2229 arc_change_state(arc_mru, buf, hash_lock); 2230 2231 } else if (buf->b_state == arc_mru) { 2232 /* 2233 * If this buffer is here because of a prefetch, then either: 2234 * - clear the flag if this is a "referencing" read 2235 * (any subsequent access will bump this into the MFU state). 2236 * or 2237 * - move the buffer to the head of the list if this is 2238 * another prefetch (to make it less likely to be evicted). 2239 */ 2240 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2241 if (refcount_count(&buf->b_refcnt) == 0) { 2242 ASSERT(list_link_active(&buf->b_arc_node)); 2243 } else { 2244 buf->b_flags &= ~ARC_PREFETCH; 2245 ARCSTAT_BUMP(arcstat_mru_hits); 2246 } 2247 buf->b_arc_access = lbolt; 2248 return; 2249 } 2250 2251 /* 2252 * This buffer has been "accessed" only once so far, 2253 * but it is still in the cache. Move it to the MFU 2254 * state. 2255 */ 2256 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 2257 /* 2258 * More than 125ms have passed since we 2259 * instantiated this buffer. Move it to the 2260 * most frequently used state. 2261 */ 2262 buf->b_arc_access = lbolt; 2263 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2264 arc_change_state(arc_mfu, buf, hash_lock); 2265 } 2266 ARCSTAT_BUMP(arcstat_mru_hits); 2267 } else if (buf->b_state == arc_mru_ghost) { 2268 arc_state_t *new_state; 2269 /* 2270 * This buffer has been "accessed" recently, but 2271 * was evicted from the cache. Move it to the 2272 * MFU state. 2273 */ 2274 2275 if (buf->b_flags & ARC_PREFETCH) { 2276 new_state = arc_mru; 2277 if (refcount_count(&buf->b_refcnt) > 0) 2278 buf->b_flags &= ~ARC_PREFETCH; 2279 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2280 } else { 2281 new_state = arc_mfu; 2282 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2283 } 2284 2285 buf->b_arc_access = lbolt; 2286 arc_change_state(new_state, buf, hash_lock); 2287 2288 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2289 } else if (buf->b_state == arc_mfu) { 2290 /* 2291 * This buffer has been accessed more than once and is 2292 * still in the cache. Keep it in the MFU state. 2293 * 2294 * NOTE: an add_reference() that occurred when we did 2295 * the arc_read() will have kicked this off the list. 2296 * If it was a prefetch, we will explicitly move it to 2297 * the head of the list now. 2298 */ 2299 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2300 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2301 ASSERT(list_link_active(&buf->b_arc_node)); 2302 } 2303 ARCSTAT_BUMP(arcstat_mfu_hits); 2304 buf->b_arc_access = lbolt; 2305 } else if (buf->b_state == arc_mfu_ghost) { 2306 arc_state_t *new_state = arc_mfu; 2307 /* 2308 * This buffer has been accessed more than once but has 2309 * been evicted from the cache. Move it back to the 2310 * MFU state. 2311 */ 2312 2313 if (buf->b_flags & ARC_PREFETCH) { 2314 /* 2315 * This is a prefetch access... 2316 * move this block back to the MRU state. 2317 */ 2318 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 2319 new_state = arc_mru; 2320 } 2321 2322 buf->b_arc_access = lbolt; 2323 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2324 arc_change_state(new_state, buf, hash_lock); 2325 2326 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2327 } else if (buf->b_state == arc_l2c_only) { 2328 /* 2329 * This buffer is on the 2nd Level ARC. 2330 */ 2331 2332 buf->b_arc_access = lbolt; 2333 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2334 arc_change_state(arc_mfu, buf, hash_lock); 2335 } else { 2336 ASSERT(!"invalid arc state"); 2337 } 2338 } 2339 2340 /* a generic arc_done_func_t which you can use */ 2341 /* ARGSUSED */ 2342 void 2343 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2344 { 2345 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2346 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2347 } 2348 2349 /* a generic arc_done_func_t */ 2350 void 2351 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2352 { 2353 arc_buf_t **bufp = arg; 2354 if (zio && zio->io_error) { 2355 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2356 *bufp = NULL; 2357 } else { 2358 *bufp = buf; 2359 } 2360 } 2361 2362 static void 2363 arc_read_done(zio_t *zio) 2364 { 2365 arc_buf_hdr_t *hdr, *found; 2366 arc_buf_t *buf; 2367 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2368 kmutex_t *hash_lock; 2369 arc_callback_t *callback_list, *acb; 2370 int freeable = FALSE; 2371 2372 buf = zio->io_private; 2373 hdr = buf->b_hdr; 2374 2375 /* 2376 * The hdr was inserted into hash-table and removed from lists 2377 * prior to starting I/O. We should find this header, since 2378 * it's in the hash table, and it should be legit since it's 2379 * not possible to evict it during the I/O. The only possible 2380 * reason for it not to be found is if we were freed during the 2381 * read. 2382 */ 2383 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth, 2384 &hash_lock); 2385 2386 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 2387 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2388 (found == hdr && HDR_L2_READING(hdr))); 2389 2390 hdr->b_flags &= ~ARC_L2_EVICTED; 2391 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2392 hdr->b_flags &= ~ARC_L2CACHE; 2393 2394 /* byteswap if necessary */ 2395 callback_list = hdr->b_acb; 2396 ASSERT(callback_list != NULL); 2397 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 2398 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2399 byteswap_uint64_array : 2400 dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap; 2401 func(buf->b_data, hdr->b_size); 2402 } 2403 2404 arc_cksum_compute(buf, B_FALSE); 2405 2406 /* create copies of the data buffer for the callers */ 2407 abuf = buf; 2408 for (acb = callback_list; acb; acb = acb->acb_next) { 2409 if (acb->acb_done) { 2410 if (abuf == NULL) 2411 abuf = arc_buf_clone(buf); 2412 acb->acb_buf = abuf; 2413 abuf = NULL; 2414 } 2415 } 2416 hdr->b_acb = NULL; 2417 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2418 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2419 if (abuf == buf) 2420 hdr->b_flags |= ARC_BUF_AVAILABLE; 2421 2422 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2423 2424 if (zio->io_error != 0) { 2425 hdr->b_flags |= ARC_IO_ERROR; 2426 if (hdr->b_state != arc_anon) 2427 arc_change_state(arc_anon, hdr, hash_lock); 2428 if (HDR_IN_HASH_TABLE(hdr)) 2429 buf_hash_remove(hdr); 2430 freeable = refcount_is_zero(&hdr->b_refcnt); 2431 } 2432 2433 /* 2434 * Broadcast before we drop the hash_lock to avoid the possibility 2435 * that the hdr (and hence the cv) might be freed before we get to 2436 * the cv_broadcast(). 2437 */ 2438 cv_broadcast(&hdr->b_cv); 2439 2440 if (hash_lock) { 2441 /* 2442 * Only call arc_access on anonymous buffers. This is because 2443 * if we've issued an I/O for an evicted buffer, we've already 2444 * called arc_access (to prevent any simultaneous readers from 2445 * getting confused). 2446 */ 2447 if (zio->io_error == 0 && hdr->b_state == arc_anon) 2448 arc_access(hdr, hash_lock); 2449 mutex_exit(hash_lock); 2450 } else { 2451 /* 2452 * This block was freed while we waited for the read to 2453 * complete. It has been removed from the hash table and 2454 * moved to the anonymous state (so that it won't show up 2455 * in the cache). 2456 */ 2457 ASSERT3P(hdr->b_state, ==, arc_anon); 2458 freeable = refcount_is_zero(&hdr->b_refcnt); 2459 } 2460 2461 /* execute each callback and free its structure */ 2462 while ((acb = callback_list) != NULL) { 2463 if (acb->acb_done) 2464 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2465 2466 if (acb->acb_zio_dummy != NULL) { 2467 acb->acb_zio_dummy->io_error = zio->io_error; 2468 zio_nowait(acb->acb_zio_dummy); 2469 } 2470 2471 callback_list = acb->acb_next; 2472 kmem_free(acb, sizeof (arc_callback_t)); 2473 } 2474 2475 if (freeable) 2476 arc_hdr_destroy(hdr); 2477 } 2478 2479 /* 2480 * "Read" the block block at the specified DVA (in bp) via the 2481 * cache. If the block is found in the cache, invoke the provided 2482 * callback immediately and return. Note that the `zio' parameter 2483 * in the callback will be NULL in this case, since no IO was 2484 * required. If the block is not in the cache pass the read request 2485 * on to the spa with a substitute callback function, so that the 2486 * requested block will be added to the cache. 2487 * 2488 * If a read request arrives for a block that has a read in-progress, 2489 * either wait for the in-progress read to complete (and return the 2490 * results); or, if this is a read with a "done" func, add a record 2491 * to the read to invoke the "done" func when the read completes, 2492 * and return; or just return. 2493 * 2494 * arc_read_done() will invoke all the requested "done" functions 2495 * for readers of this block. 2496 * 2497 * Normal callers should use arc_read and pass the arc buffer and offset 2498 * for the bp. But if you know you don't need locking, you can use 2499 * arc_read_bp. 2500 */ 2501 int 2502 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_buf_t *pbuf, 2503 arc_done_func_t *done, void *private, int priority, int zio_flags, 2504 uint32_t *arc_flags, const zbookmark_t *zb) 2505 { 2506 int err; 2507 arc_buf_hdr_t *hdr = pbuf->b_hdr; 2508 2509 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt)); 2510 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size); 2511 rw_enter(&pbuf->b_lock, RW_READER); 2512 2513 err = arc_read_nolock(pio, spa, bp, done, private, priority, 2514 zio_flags, arc_flags, zb); 2515 2516 ASSERT3P(hdr, ==, pbuf->b_hdr); 2517 rw_exit(&pbuf->b_lock); 2518 return (err); 2519 } 2520 2521 int 2522 arc_read_nolock(zio_t *pio, spa_t *spa, blkptr_t *bp, 2523 arc_done_func_t *done, void *private, int priority, int zio_flags, 2524 uint32_t *arc_flags, const zbookmark_t *zb) 2525 { 2526 arc_buf_hdr_t *hdr; 2527 arc_buf_t *buf; 2528 kmutex_t *hash_lock; 2529 zio_t *rzio; 2530 uint64_t guid = spa_guid(spa); 2531 2532 top: 2533 hdr = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 2534 if (hdr && hdr->b_datacnt > 0) { 2535 2536 *arc_flags |= ARC_CACHED; 2537 2538 if (HDR_IO_IN_PROGRESS(hdr)) { 2539 2540 if (*arc_flags & ARC_WAIT) { 2541 cv_wait(&hdr->b_cv, hash_lock); 2542 mutex_exit(hash_lock); 2543 goto top; 2544 } 2545 ASSERT(*arc_flags & ARC_NOWAIT); 2546 2547 if (done) { 2548 arc_callback_t *acb = NULL; 2549 2550 acb = kmem_zalloc(sizeof (arc_callback_t), 2551 KM_SLEEP); 2552 acb->acb_done = done; 2553 acb->acb_private = private; 2554 if (pio != NULL) 2555 acb->acb_zio_dummy = zio_null(pio, 2556 spa, NULL, NULL, NULL, zio_flags); 2557 2558 ASSERT(acb->acb_done != NULL); 2559 acb->acb_next = hdr->b_acb; 2560 hdr->b_acb = acb; 2561 add_reference(hdr, hash_lock, private); 2562 mutex_exit(hash_lock); 2563 return (0); 2564 } 2565 mutex_exit(hash_lock); 2566 return (0); 2567 } 2568 2569 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2570 2571 if (done) { 2572 add_reference(hdr, hash_lock, private); 2573 /* 2574 * If this block is already in use, create a new 2575 * copy of the data so that we will be guaranteed 2576 * that arc_release() will always succeed. 2577 */ 2578 buf = hdr->b_buf; 2579 ASSERT(buf); 2580 ASSERT(buf->b_data); 2581 if (HDR_BUF_AVAILABLE(hdr)) { 2582 ASSERT(buf->b_efunc == NULL); 2583 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2584 } else { 2585 buf = arc_buf_clone(buf); 2586 } 2587 } else if (*arc_flags & ARC_PREFETCH && 2588 refcount_count(&hdr->b_refcnt) == 0) { 2589 hdr->b_flags |= ARC_PREFETCH; 2590 } 2591 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2592 arc_access(hdr, hash_lock); 2593 if (*arc_flags & ARC_L2CACHE) 2594 hdr->b_flags |= ARC_L2CACHE; 2595 mutex_exit(hash_lock); 2596 ARCSTAT_BUMP(arcstat_hits); 2597 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2598 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2599 data, metadata, hits); 2600 2601 if (done) 2602 done(NULL, buf, private); 2603 } else { 2604 uint64_t size = BP_GET_LSIZE(bp); 2605 arc_callback_t *acb; 2606 vdev_t *vd = NULL; 2607 daddr_t addr; 2608 boolean_t devw = B_FALSE; 2609 2610 if (hdr == NULL) { 2611 /* this block is not in the cache */ 2612 arc_buf_hdr_t *exists; 2613 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2614 buf = arc_buf_alloc(spa, size, private, type); 2615 hdr = buf->b_hdr; 2616 hdr->b_dva = *BP_IDENTITY(bp); 2617 hdr->b_birth = bp->blk_birth; 2618 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 2619 exists = buf_hash_insert(hdr, &hash_lock); 2620 if (exists) { 2621 /* somebody beat us to the hash insert */ 2622 mutex_exit(hash_lock); 2623 bzero(&hdr->b_dva, sizeof (dva_t)); 2624 hdr->b_birth = 0; 2625 hdr->b_cksum0 = 0; 2626 (void) arc_buf_remove_ref(buf, private); 2627 goto top; /* restart the IO request */ 2628 } 2629 /* if this is a prefetch, we don't have a reference */ 2630 if (*arc_flags & ARC_PREFETCH) { 2631 (void) remove_reference(hdr, hash_lock, 2632 private); 2633 hdr->b_flags |= ARC_PREFETCH; 2634 } 2635 if (*arc_flags & ARC_L2CACHE) 2636 hdr->b_flags |= ARC_L2CACHE; 2637 if (BP_GET_LEVEL(bp) > 0) 2638 hdr->b_flags |= ARC_INDIRECT; 2639 } else { 2640 /* this block is in the ghost cache */ 2641 ASSERT(GHOST_STATE(hdr->b_state)); 2642 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2643 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 2644 ASSERT(hdr->b_buf == NULL); 2645 2646 /* if this is a prefetch, we don't have a reference */ 2647 if (*arc_flags & ARC_PREFETCH) 2648 hdr->b_flags |= ARC_PREFETCH; 2649 else 2650 add_reference(hdr, hash_lock, private); 2651 if (*arc_flags & ARC_L2CACHE) 2652 hdr->b_flags |= ARC_L2CACHE; 2653 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2654 buf->b_hdr = hdr; 2655 buf->b_data = NULL; 2656 buf->b_efunc = NULL; 2657 buf->b_private = NULL; 2658 buf->b_next = NULL; 2659 hdr->b_buf = buf; 2660 arc_get_data_buf(buf); 2661 ASSERT(hdr->b_datacnt == 0); 2662 hdr->b_datacnt = 1; 2663 2664 } 2665 2666 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2667 acb->acb_done = done; 2668 acb->acb_private = private; 2669 2670 ASSERT(hdr->b_acb == NULL); 2671 hdr->b_acb = acb; 2672 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2673 2674 /* 2675 * If the buffer has been evicted, migrate it to a present state 2676 * before issuing the I/O. Once we drop the hash-table lock, 2677 * the header will be marked as I/O in progress and have an 2678 * attached buffer. At this point, anybody who finds this 2679 * buffer ought to notice that it's legit but has a pending I/O. 2680 */ 2681 2682 if (GHOST_STATE(hdr->b_state)) 2683 arc_access(hdr, hash_lock); 2684 2685 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL && 2686 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 2687 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 2688 addr = hdr->b_l2hdr->b_daddr; 2689 /* 2690 * Lock out device removal. 2691 */ 2692 if (vdev_is_dead(vd) || 2693 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 2694 vd = NULL; 2695 } 2696 2697 mutex_exit(hash_lock); 2698 2699 ASSERT3U(hdr->b_size, ==, size); 2700 DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size, 2701 zbookmark_t *, zb); 2702 ARCSTAT_BUMP(arcstat_misses); 2703 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2704 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2705 data, metadata, misses); 2706 2707 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 2708 /* 2709 * Read from the L2ARC if the following are true: 2710 * 1. The L2ARC vdev was previously cached. 2711 * 2. This buffer still has L2ARC metadata. 2712 * 3. This buffer isn't currently writing to the L2ARC. 2713 * 4. The L2ARC entry wasn't evicted, which may 2714 * also have invalidated the vdev. 2715 * 5. This isn't prefetch and l2arc_noprefetch is set. 2716 */ 2717 if (hdr->b_l2hdr != NULL && 2718 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 2719 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 2720 l2arc_read_callback_t *cb; 2721 2722 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 2723 ARCSTAT_BUMP(arcstat_l2_hits); 2724 2725 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 2726 KM_SLEEP); 2727 cb->l2rcb_buf = buf; 2728 cb->l2rcb_spa = spa; 2729 cb->l2rcb_bp = *bp; 2730 cb->l2rcb_zb = *zb; 2731 cb->l2rcb_flags = zio_flags; 2732 2733 /* 2734 * l2arc read. The SCL_L2ARC lock will be 2735 * released by l2arc_read_done(). 2736 */ 2737 rzio = zio_read_phys(pio, vd, addr, size, 2738 buf->b_data, ZIO_CHECKSUM_OFF, 2739 l2arc_read_done, cb, priority, zio_flags | 2740 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 2741 ZIO_FLAG_DONT_PROPAGATE | 2742 ZIO_FLAG_DONT_RETRY, B_FALSE); 2743 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 2744 zio_t *, rzio); 2745 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 2746 2747 if (*arc_flags & ARC_NOWAIT) { 2748 zio_nowait(rzio); 2749 return (0); 2750 } 2751 2752 ASSERT(*arc_flags & ARC_WAIT); 2753 if (zio_wait(rzio) == 0) 2754 return (0); 2755 2756 /* l2arc read error; goto zio_read() */ 2757 } else { 2758 DTRACE_PROBE1(l2arc__miss, 2759 arc_buf_hdr_t *, hdr); 2760 ARCSTAT_BUMP(arcstat_l2_misses); 2761 if (HDR_L2_WRITING(hdr)) 2762 ARCSTAT_BUMP(arcstat_l2_rw_clash); 2763 spa_config_exit(spa, SCL_L2ARC, vd); 2764 } 2765 } else { 2766 if (vd != NULL) 2767 spa_config_exit(spa, SCL_L2ARC, vd); 2768 if (l2arc_ndev != 0) { 2769 DTRACE_PROBE1(l2arc__miss, 2770 arc_buf_hdr_t *, hdr); 2771 ARCSTAT_BUMP(arcstat_l2_misses); 2772 } 2773 } 2774 2775 rzio = zio_read(pio, spa, bp, buf->b_data, size, 2776 arc_read_done, buf, priority, zio_flags, zb); 2777 2778 if (*arc_flags & ARC_WAIT) 2779 return (zio_wait(rzio)); 2780 2781 ASSERT(*arc_flags & ARC_NOWAIT); 2782 zio_nowait(rzio); 2783 } 2784 return (0); 2785 } 2786 2787 /* 2788 * arc_read() variant to support pool traversal. If the block is already 2789 * in the ARC, make a copy of it; otherwise, the caller will do the I/O. 2790 * The idea is that we don't want pool traversal filling up memory, but 2791 * if the ARC already has the data anyway, we shouldn't pay for the I/O. 2792 */ 2793 int 2794 arc_tryread(spa_t *spa, blkptr_t *bp, void *data) 2795 { 2796 arc_buf_hdr_t *hdr; 2797 kmutex_t *hash_mtx; 2798 uint64_t guid = spa_guid(spa); 2799 int rc = 0; 2800 2801 hdr = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx); 2802 2803 if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) { 2804 arc_buf_t *buf = hdr->b_buf; 2805 2806 ASSERT(buf); 2807 while (buf->b_data == NULL) { 2808 buf = buf->b_next; 2809 ASSERT(buf); 2810 } 2811 bcopy(buf->b_data, data, hdr->b_size); 2812 } else { 2813 rc = ENOENT; 2814 } 2815 2816 if (hash_mtx) 2817 mutex_exit(hash_mtx); 2818 2819 return (rc); 2820 } 2821 2822 void 2823 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2824 { 2825 ASSERT(buf->b_hdr != NULL); 2826 ASSERT(buf->b_hdr->b_state != arc_anon); 2827 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2828 buf->b_efunc = func; 2829 buf->b_private = private; 2830 } 2831 2832 /* 2833 * This is used by the DMU to let the ARC know that a buffer is 2834 * being evicted, so the ARC should clean up. If this arc buf 2835 * is not yet in the evicted state, it will be put there. 2836 */ 2837 int 2838 arc_buf_evict(arc_buf_t *buf) 2839 { 2840 arc_buf_hdr_t *hdr; 2841 kmutex_t *hash_lock; 2842 arc_buf_t **bufp; 2843 2844 rw_enter(&buf->b_lock, RW_WRITER); 2845 hdr = buf->b_hdr; 2846 if (hdr == NULL) { 2847 /* 2848 * We are in arc_do_user_evicts(). 2849 */ 2850 ASSERT(buf->b_data == NULL); 2851 rw_exit(&buf->b_lock); 2852 return (0); 2853 } else if (buf->b_data == NULL) { 2854 arc_buf_t copy = *buf; /* structure assignment */ 2855 /* 2856 * We are on the eviction list; process this buffer now 2857 * but let arc_do_user_evicts() do the reaping. 2858 */ 2859 buf->b_efunc = NULL; 2860 rw_exit(&buf->b_lock); 2861 VERIFY(copy.b_efunc(©) == 0); 2862 return (1); 2863 } 2864 hash_lock = HDR_LOCK(hdr); 2865 mutex_enter(hash_lock); 2866 2867 ASSERT(buf->b_hdr == hdr); 2868 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2869 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2870 2871 /* 2872 * Pull this buffer off of the hdr 2873 */ 2874 bufp = &hdr->b_buf; 2875 while (*bufp != buf) 2876 bufp = &(*bufp)->b_next; 2877 *bufp = buf->b_next; 2878 2879 ASSERT(buf->b_data != NULL); 2880 arc_buf_destroy(buf, FALSE, FALSE); 2881 2882 if (hdr->b_datacnt == 0) { 2883 arc_state_t *old_state = hdr->b_state; 2884 arc_state_t *evicted_state; 2885 2886 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2887 2888 evicted_state = 2889 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 2890 2891 mutex_enter(&old_state->arcs_mtx); 2892 mutex_enter(&evicted_state->arcs_mtx); 2893 2894 arc_change_state(evicted_state, hdr, hash_lock); 2895 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2896 hdr->b_flags |= ARC_IN_HASH_TABLE; 2897 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2898 2899 mutex_exit(&evicted_state->arcs_mtx); 2900 mutex_exit(&old_state->arcs_mtx); 2901 } 2902 mutex_exit(hash_lock); 2903 rw_exit(&buf->b_lock); 2904 2905 VERIFY(buf->b_efunc(buf) == 0); 2906 buf->b_efunc = NULL; 2907 buf->b_private = NULL; 2908 buf->b_hdr = NULL; 2909 kmem_cache_free(buf_cache, buf); 2910 return (1); 2911 } 2912 2913 /* 2914 * Release this buffer from the cache. This must be done 2915 * after a read and prior to modifying the buffer contents. 2916 * If the buffer has more than one reference, we must make 2917 * a new hdr for the buffer. 2918 */ 2919 void 2920 arc_release(arc_buf_t *buf, void *tag) 2921 { 2922 arc_buf_hdr_t *hdr; 2923 kmutex_t *hash_lock; 2924 l2arc_buf_hdr_t *l2hdr; 2925 uint64_t buf_size; 2926 2927 rw_enter(&buf->b_lock, RW_WRITER); 2928 hdr = buf->b_hdr; 2929 2930 /* this buffer is not on any list */ 2931 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 2932 ASSERT(!(hdr->b_flags & ARC_STORED)); 2933 2934 if (hdr->b_state == arc_anon) { 2935 /* this buffer is already released */ 2936 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 2937 ASSERT(BUF_EMPTY(hdr)); 2938 ASSERT(buf->b_efunc == NULL); 2939 arc_buf_thaw(buf); 2940 rw_exit(&buf->b_lock); 2941 return; 2942 } 2943 2944 hash_lock = HDR_LOCK(hdr); 2945 mutex_enter(hash_lock); 2946 2947 l2hdr = hdr->b_l2hdr; 2948 if (l2hdr) { 2949 mutex_enter(&l2arc_buflist_mtx); 2950 hdr->b_l2hdr = NULL; 2951 buf_size = hdr->b_size; 2952 } 2953 2954 /* 2955 * Do we have more than one buf? 2956 */ 2957 if (hdr->b_datacnt > 1) { 2958 arc_buf_hdr_t *nhdr; 2959 arc_buf_t **bufp; 2960 uint64_t blksz = hdr->b_size; 2961 uint64_t spa = hdr->b_spa; 2962 arc_buf_contents_t type = hdr->b_type; 2963 uint32_t flags = hdr->b_flags; 2964 2965 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 2966 /* 2967 * Pull the data off of this buf and attach it to 2968 * a new anonymous buf. 2969 */ 2970 (void) remove_reference(hdr, hash_lock, tag); 2971 bufp = &hdr->b_buf; 2972 while (*bufp != buf) 2973 bufp = &(*bufp)->b_next; 2974 *bufp = (*bufp)->b_next; 2975 buf->b_next = NULL; 2976 2977 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 2978 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 2979 if (refcount_is_zero(&hdr->b_refcnt)) { 2980 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 2981 ASSERT3U(*size, >=, hdr->b_size); 2982 atomic_add_64(size, -hdr->b_size); 2983 } 2984 hdr->b_datacnt -= 1; 2985 arc_cksum_verify(buf); 2986 2987 mutex_exit(hash_lock); 2988 2989 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 2990 nhdr->b_size = blksz; 2991 nhdr->b_spa = spa; 2992 nhdr->b_type = type; 2993 nhdr->b_buf = buf; 2994 nhdr->b_state = arc_anon; 2995 nhdr->b_arc_access = 0; 2996 nhdr->b_flags = flags & ARC_L2_WRITING; 2997 nhdr->b_l2hdr = NULL; 2998 nhdr->b_datacnt = 1; 2999 nhdr->b_freeze_cksum = NULL; 3000 (void) refcount_add(&nhdr->b_refcnt, tag); 3001 buf->b_hdr = nhdr; 3002 rw_exit(&buf->b_lock); 3003 atomic_add_64(&arc_anon->arcs_size, blksz); 3004 } else { 3005 rw_exit(&buf->b_lock); 3006 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3007 ASSERT(!list_link_active(&hdr->b_arc_node)); 3008 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3009 arc_change_state(arc_anon, hdr, hash_lock); 3010 hdr->b_arc_access = 0; 3011 mutex_exit(hash_lock); 3012 3013 bzero(&hdr->b_dva, sizeof (dva_t)); 3014 hdr->b_birth = 0; 3015 hdr->b_cksum0 = 0; 3016 arc_buf_thaw(buf); 3017 } 3018 buf->b_efunc = NULL; 3019 buf->b_private = NULL; 3020 3021 if (l2hdr) { 3022 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3023 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3024 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3025 mutex_exit(&l2arc_buflist_mtx); 3026 } 3027 } 3028 3029 int 3030 arc_released(arc_buf_t *buf) 3031 { 3032 int released; 3033 3034 rw_enter(&buf->b_lock, RW_READER); 3035 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3036 rw_exit(&buf->b_lock); 3037 return (released); 3038 } 3039 3040 int 3041 arc_has_callback(arc_buf_t *buf) 3042 { 3043 int callback; 3044 3045 rw_enter(&buf->b_lock, RW_READER); 3046 callback = (buf->b_efunc != NULL); 3047 rw_exit(&buf->b_lock); 3048 return (callback); 3049 } 3050 3051 #ifdef ZFS_DEBUG 3052 int 3053 arc_referenced(arc_buf_t *buf) 3054 { 3055 int referenced; 3056 3057 rw_enter(&buf->b_lock, RW_READER); 3058 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3059 rw_exit(&buf->b_lock); 3060 return (referenced); 3061 } 3062 #endif 3063 3064 static void 3065 arc_write_ready(zio_t *zio) 3066 { 3067 arc_write_callback_t *callback = zio->io_private; 3068 arc_buf_t *buf = callback->awcb_buf; 3069 arc_buf_hdr_t *hdr = buf->b_hdr; 3070 3071 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3072 callback->awcb_ready(zio, buf, callback->awcb_private); 3073 3074 /* 3075 * If the IO is already in progress, then this is a re-write 3076 * attempt, so we need to thaw and re-compute the cksum. 3077 * It is the responsibility of the callback to handle the 3078 * accounting for any re-write attempt. 3079 */ 3080 if (HDR_IO_IN_PROGRESS(hdr)) { 3081 mutex_enter(&hdr->b_freeze_lock); 3082 if (hdr->b_freeze_cksum != NULL) { 3083 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3084 hdr->b_freeze_cksum = NULL; 3085 } 3086 mutex_exit(&hdr->b_freeze_lock); 3087 } 3088 arc_cksum_compute(buf, B_FALSE); 3089 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3090 } 3091 3092 static void 3093 arc_write_done(zio_t *zio) 3094 { 3095 arc_write_callback_t *callback = zio->io_private; 3096 arc_buf_t *buf = callback->awcb_buf; 3097 arc_buf_hdr_t *hdr = buf->b_hdr; 3098 3099 hdr->b_acb = NULL; 3100 3101 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3102 hdr->b_birth = zio->io_bp->blk_birth; 3103 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3104 /* 3105 * If the block to be written was all-zero, we may have 3106 * compressed it away. In this case no write was performed 3107 * so there will be no dva/birth-date/checksum. The buffer 3108 * must therefor remain anonymous (and uncached). 3109 */ 3110 if (!BUF_EMPTY(hdr)) { 3111 arc_buf_hdr_t *exists; 3112 kmutex_t *hash_lock; 3113 3114 arc_cksum_verify(buf); 3115 3116 exists = buf_hash_insert(hdr, &hash_lock); 3117 if (exists) { 3118 /* 3119 * This can only happen if we overwrite for 3120 * sync-to-convergence, because we remove 3121 * buffers from the hash table when we arc_free(). 3122 */ 3123 ASSERT(zio->io_flags & ZIO_FLAG_IO_REWRITE); 3124 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 3125 BP_IDENTITY(zio->io_bp))); 3126 ASSERT3U(zio->io_bp_orig.blk_birth, ==, 3127 zio->io_bp->blk_birth); 3128 3129 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3130 arc_change_state(arc_anon, exists, hash_lock); 3131 mutex_exit(hash_lock); 3132 arc_hdr_destroy(exists); 3133 exists = buf_hash_insert(hdr, &hash_lock); 3134 ASSERT3P(exists, ==, NULL); 3135 } 3136 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3137 /* if it's not anon, we are doing a scrub */ 3138 if (hdr->b_state == arc_anon) 3139 arc_access(hdr, hash_lock); 3140 mutex_exit(hash_lock); 3141 } else if (callback->awcb_done == NULL) { 3142 int destroy_hdr; 3143 /* 3144 * This is an anonymous buffer with no user callback, 3145 * destroy it if there are no active references. 3146 */ 3147 mutex_enter(&arc_eviction_mtx); 3148 destroy_hdr = refcount_is_zero(&hdr->b_refcnt); 3149 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3150 mutex_exit(&arc_eviction_mtx); 3151 if (destroy_hdr) 3152 arc_hdr_destroy(hdr); 3153 } else { 3154 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3155 } 3156 hdr->b_flags &= ~ARC_STORED; 3157 3158 if (callback->awcb_done) { 3159 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3160 callback->awcb_done(zio, buf, callback->awcb_private); 3161 } 3162 3163 kmem_free(callback, sizeof (arc_write_callback_t)); 3164 } 3165 3166 void 3167 write_policy(spa_t *spa, const writeprops_t *wp, zio_prop_t *zp) 3168 { 3169 boolean_t ismd = (wp->wp_level > 0 || dmu_ot[wp->wp_type].ot_metadata); 3170 3171 /* Determine checksum setting */ 3172 if (ismd) { 3173 /* 3174 * Metadata always gets checksummed. If the data 3175 * checksum is multi-bit correctable, and it's not a 3176 * ZBT-style checksum, then it's suitable for metadata 3177 * as well. Otherwise, the metadata checksum defaults 3178 * to fletcher4. 3179 */ 3180 if (zio_checksum_table[wp->wp_oschecksum].ci_correctable && 3181 !zio_checksum_table[wp->wp_oschecksum].ci_zbt) 3182 zp->zp_checksum = wp->wp_oschecksum; 3183 else 3184 zp->zp_checksum = ZIO_CHECKSUM_FLETCHER_4; 3185 } else { 3186 zp->zp_checksum = zio_checksum_select(wp->wp_dnchecksum, 3187 wp->wp_oschecksum); 3188 } 3189 3190 /* Determine compression setting */ 3191 if (ismd) { 3192 /* 3193 * XXX -- we should design a compression algorithm 3194 * that specializes in arrays of bps. 3195 */ 3196 zp->zp_compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY : 3197 ZIO_COMPRESS_LZJB; 3198 } else { 3199 zp->zp_compress = zio_compress_select(wp->wp_dncompress, 3200 wp->wp_oscompress); 3201 } 3202 3203 zp->zp_type = wp->wp_type; 3204 zp->zp_level = wp->wp_level; 3205 zp->zp_ndvas = MIN(wp->wp_copies + ismd, spa_max_replication(spa)); 3206 } 3207 3208 zio_t * 3209 arc_write(zio_t *pio, spa_t *spa, const writeprops_t *wp, 3210 boolean_t l2arc, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 3211 arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority, 3212 int zio_flags, const zbookmark_t *zb) 3213 { 3214 arc_buf_hdr_t *hdr = buf->b_hdr; 3215 arc_write_callback_t *callback; 3216 zio_t *zio; 3217 zio_prop_t zp; 3218 3219 ASSERT(ready != NULL); 3220 ASSERT(!HDR_IO_ERROR(hdr)); 3221 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3222 ASSERT(hdr->b_acb == 0); 3223 if (l2arc) 3224 hdr->b_flags |= ARC_L2CACHE; 3225 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3226 callback->awcb_ready = ready; 3227 callback->awcb_done = done; 3228 callback->awcb_private = private; 3229 callback->awcb_buf = buf; 3230 3231 write_policy(spa, wp, &zp); 3232 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, &zp, 3233 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb); 3234 3235 return (zio); 3236 } 3237 3238 int 3239 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 3240 zio_done_func_t *done, void *private, uint32_t arc_flags) 3241 { 3242 arc_buf_hdr_t *ab; 3243 kmutex_t *hash_lock; 3244 zio_t *zio; 3245 uint64_t guid = spa_guid(spa); 3246 3247 /* 3248 * If this buffer is in the cache, release it, so it 3249 * can be re-used. 3250 */ 3251 ab = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 3252 if (ab != NULL) { 3253 /* 3254 * The checksum of blocks to free is not always 3255 * preserved (eg. on the deadlist). However, if it is 3256 * nonzero, it should match what we have in the cache. 3257 */ 3258 ASSERT(bp->blk_cksum.zc_word[0] == 0 || 3259 bp->blk_cksum.zc_word[0] == ab->b_cksum0 || 3260 bp->blk_fill == BLK_FILL_ALREADY_FREED); 3261 3262 if (ab->b_state != arc_anon) 3263 arc_change_state(arc_anon, ab, hash_lock); 3264 if (HDR_IO_IN_PROGRESS(ab)) { 3265 /* 3266 * This should only happen when we prefetch. 3267 */ 3268 ASSERT(ab->b_flags & ARC_PREFETCH); 3269 ASSERT3U(ab->b_datacnt, ==, 1); 3270 ab->b_flags |= ARC_FREED_IN_READ; 3271 if (HDR_IN_HASH_TABLE(ab)) 3272 buf_hash_remove(ab); 3273 ab->b_arc_access = 0; 3274 bzero(&ab->b_dva, sizeof (dva_t)); 3275 ab->b_birth = 0; 3276 ab->b_cksum0 = 0; 3277 ab->b_buf->b_efunc = NULL; 3278 ab->b_buf->b_private = NULL; 3279 mutex_exit(hash_lock); 3280 } else if (refcount_is_zero(&ab->b_refcnt)) { 3281 ab->b_flags |= ARC_FREE_IN_PROGRESS; 3282 mutex_exit(hash_lock); 3283 arc_hdr_destroy(ab); 3284 ARCSTAT_BUMP(arcstat_deleted); 3285 } else { 3286 /* 3287 * We still have an active reference on this 3288 * buffer. This can happen, e.g., from 3289 * dbuf_unoverride(). 3290 */ 3291 ASSERT(!HDR_IN_HASH_TABLE(ab)); 3292 ab->b_arc_access = 0; 3293 bzero(&ab->b_dva, sizeof (dva_t)); 3294 ab->b_birth = 0; 3295 ab->b_cksum0 = 0; 3296 ab->b_buf->b_efunc = NULL; 3297 ab->b_buf->b_private = NULL; 3298 mutex_exit(hash_lock); 3299 } 3300 } 3301 3302 zio = zio_free(pio, spa, txg, bp, done, private, ZIO_FLAG_MUSTSUCCEED); 3303 3304 if (arc_flags & ARC_WAIT) 3305 return (zio_wait(zio)); 3306 3307 ASSERT(arc_flags & ARC_NOWAIT); 3308 zio_nowait(zio); 3309 3310 return (0); 3311 } 3312 3313 static int 3314 arc_memory_throttle(uint64_t reserve, uint64_t txg) 3315 { 3316 #ifdef _KERNEL 3317 uint64_t inflight_data = arc_anon->arcs_size; 3318 uint64_t available_memory = ptob(freemem); 3319 static uint64_t page_load = 0; 3320 static uint64_t last_txg = 0; 3321 3322 #if defined(__i386) 3323 available_memory = 3324 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3325 #endif 3326 if (available_memory >= zfs_write_limit_max) 3327 return (0); 3328 3329 if (txg > last_txg) { 3330 last_txg = txg; 3331 page_load = 0; 3332 } 3333 /* 3334 * If we are in pageout, we know that memory is already tight, 3335 * the arc is already going to be evicting, so we just want to 3336 * continue to let page writes occur as quickly as possible. 3337 */ 3338 if (curproc == proc_pageout) { 3339 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3340 return (ERESTART); 3341 /* Note: reserve is inflated, so we deflate */ 3342 page_load += reserve / 8; 3343 return (0); 3344 } else if (page_load > 0 && arc_reclaim_needed()) { 3345 /* memory is low, delay before restarting */ 3346 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3347 return (EAGAIN); 3348 } 3349 page_load = 0; 3350 3351 if (arc_size > arc_c_min) { 3352 uint64_t evictable_memory = 3353 arc_mru->arcs_lsize[ARC_BUFC_DATA] + 3354 arc_mru->arcs_lsize[ARC_BUFC_METADATA] + 3355 arc_mfu->arcs_lsize[ARC_BUFC_DATA] + 3356 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]; 3357 available_memory += MIN(evictable_memory, arc_size - arc_c_min); 3358 } 3359 3360 if (inflight_data > available_memory / 4) { 3361 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3362 return (ERESTART); 3363 } 3364 #endif 3365 return (0); 3366 } 3367 3368 void 3369 arc_tempreserve_clear(uint64_t reserve) 3370 { 3371 atomic_add_64(&arc_tempreserve, -reserve); 3372 ASSERT((int64_t)arc_tempreserve >= 0); 3373 } 3374 3375 int 3376 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3377 { 3378 int error; 3379 3380 #ifdef ZFS_DEBUG 3381 /* 3382 * Once in a while, fail for no reason. Everything should cope. 3383 */ 3384 if (spa_get_random(10000) == 0) { 3385 dprintf("forcing random failure\n"); 3386 return (ERESTART); 3387 } 3388 #endif 3389 if (reserve > arc_c/4 && !arc_no_grow) 3390 arc_c = MIN(arc_c_max, reserve * 4); 3391 if (reserve > arc_c) 3392 return (ENOMEM); 3393 3394 /* 3395 * Writes will, almost always, require additional memory allocations 3396 * in order to compress/encrypt/etc the data. We therefor need to 3397 * make sure that there is sufficient available memory for this. 3398 */ 3399 if (error = arc_memory_throttle(reserve, txg)) 3400 return (error); 3401 3402 /* 3403 * Throttle writes when the amount of dirty data in the cache 3404 * gets too large. We try to keep the cache less than half full 3405 * of dirty blocks so that our sync times don't grow too large. 3406 * Note: if two requests come in concurrently, we might let them 3407 * both succeed, when one of them should fail. Not a huge deal. 3408 */ 3409 if (reserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 && 3410 arc_anon->arcs_size > arc_c / 4) { 3411 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3412 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3413 arc_tempreserve>>10, 3414 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3415 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3416 reserve>>10, arc_c>>10); 3417 return (ERESTART); 3418 } 3419 atomic_add_64(&arc_tempreserve, reserve); 3420 return (0); 3421 } 3422 3423 void 3424 arc_init(void) 3425 { 3426 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3427 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3428 3429 /* Convert seconds to clock ticks */ 3430 arc_min_prefetch_lifespan = 1 * hz; 3431 3432 /* Start out with 1/8 of all memory */ 3433 arc_c = physmem * PAGESIZE / 8; 3434 3435 #ifdef _KERNEL 3436 /* 3437 * On architectures where the physical memory can be larger 3438 * than the addressable space (intel in 32-bit mode), we may 3439 * need to limit the cache to 1/8 of VM size. 3440 */ 3441 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3442 #endif 3443 3444 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3445 arc_c_min = MAX(arc_c / 4, 64<<20); 3446 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3447 if (arc_c * 8 >= 1<<30) 3448 arc_c_max = (arc_c * 8) - (1<<30); 3449 else 3450 arc_c_max = arc_c_min; 3451 arc_c_max = MAX(arc_c * 6, arc_c_max); 3452 3453 /* 3454 * Allow the tunables to override our calculations if they are 3455 * reasonable (ie. over 64MB) 3456 */ 3457 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3458 arc_c_max = zfs_arc_max; 3459 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3460 arc_c_min = zfs_arc_min; 3461 3462 arc_c = arc_c_max; 3463 arc_p = (arc_c >> 1); 3464 3465 /* limit meta-data to 1/4 of the arc capacity */ 3466 arc_meta_limit = arc_c_max / 4; 3467 3468 /* Allow the tunable to override if it is reasonable */ 3469 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3470 arc_meta_limit = zfs_arc_meta_limit; 3471 3472 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3473 arc_c_min = arc_meta_limit / 2; 3474 3475 if (zfs_arc_grow_retry > 0) 3476 arc_grow_retry = zfs_arc_grow_retry; 3477 3478 if (zfs_arc_shrink_shift > 0) 3479 arc_shrink_shift = zfs_arc_shrink_shift; 3480 3481 if (zfs_arc_p_min_shift > 0) 3482 arc_p_min_shift = zfs_arc_p_min_shift; 3483 3484 /* if kmem_flags are set, lets try to use less memory */ 3485 if (kmem_debugging()) 3486 arc_c = arc_c / 2; 3487 if (arc_c < arc_c_min) 3488 arc_c = arc_c_min; 3489 3490 arc_anon = &ARC_anon; 3491 arc_mru = &ARC_mru; 3492 arc_mru_ghost = &ARC_mru_ghost; 3493 arc_mfu = &ARC_mfu; 3494 arc_mfu_ghost = &ARC_mfu_ghost; 3495 arc_l2c_only = &ARC_l2c_only; 3496 arc_size = 0; 3497 3498 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3499 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3500 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3501 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3502 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3503 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3504 3505 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3506 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3507 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3508 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3509 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3510 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3511 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3512 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3513 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3514 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3515 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3516 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3517 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3518 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3519 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3520 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3521 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3522 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3523 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3524 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3525 3526 buf_init(); 3527 3528 arc_thread_exit = 0; 3529 arc_eviction_list = NULL; 3530 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3531 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3532 3533 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3534 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3535 3536 if (arc_ksp != NULL) { 3537 arc_ksp->ks_data = &arc_stats; 3538 kstat_install(arc_ksp); 3539 } 3540 3541 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3542 TS_RUN, minclsyspri); 3543 3544 arc_dead = FALSE; 3545 arc_warm = B_FALSE; 3546 3547 if (zfs_write_limit_max == 0) 3548 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; 3549 else 3550 zfs_write_limit_shift = 0; 3551 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL); 3552 } 3553 3554 void 3555 arc_fini(void) 3556 { 3557 mutex_enter(&arc_reclaim_thr_lock); 3558 arc_thread_exit = 1; 3559 while (arc_thread_exit != 0) 3560 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3561 mutex_exit(&arc_reclaim_thr_lock); 3562 3563 arc_flush(NULL); 3564 3565 arc_dead = TRUE; 3566 3567 if (arc_ksp != NULL) { 3568 kstat_delete(arc_ksp); 3569 arc_ksp = NULL; 3570 } 3571 3572 mutex_destroy(&arc_eviction_mtx); 3573 mutex_destroy(&arc_reclaim_thr_lock); 3574 cv_destroy(&arc_reclaim_thr_cv); 3575 3576 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3577 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3578 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3579 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3580 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3581 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3582 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3583 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3584 3585 mutex_destroy(&arc_anon->arcs_mtx); 3586 mutex_destroy(&arc_mru->arcs_mtx); 3587 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3588 mutex_destroy(&arc_mfu->arcs_mtx); 3589 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3590 mutex_destroy(&arc_l2c_only->arcs_mtx); 3591 3592 mutex_destroy(&zfs_write_limit_lock); 3593 3594 buf_fini(); 3595 } 3596 3597 /* 3598 * Level 2 ARC 3599 * 3600 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3601 * It uses dedicated storage devices to hold cached data, which are populated 3602 * using large infrequent writes. The main role of this cache is to boost 3603 * the performance of random read workloads. The intended L2ARC devices 3604 * include short-stroked disks, solid state disks, and other media with 3605 * substantially faster read latency than disk. 3606 * 3607 * +-----------------------+ 3608 * | ARC | 3609 * +-----------------------+ 3610 * | ^ ^ 3611 * | | | 3612 * l2arc_feed_thread() arc_read() 3613 * | | | 3614 * | l2arc read | 3615 * V | | 3616 * +---------------+ | 3617 * | L2ARC | | 3618 * +---------------+ | 3619 * | ^ | 3620 * l2arc_write() | | 3621 * | | | 3622 * V | | 3623 * +-------+ +-------+ 3624 * | vdev | | vdev | 3625 * | cache | | cache | 3626 * +-------+ +-------+ 3627 * +=========+ .-----. 3628 * : L2ARC : |-_____-| 3629 * : devices : | Disks | 3630 * +=========+ `-_____-' 3631 * 3632 * Read requests are satisfied from the following sources, in order: 3633 * 3634 * 1) ARC 3635 * 2) vdev cache of L2ARC devices 3636 * 3) L2ARC devices 3637 * 4) vdev cache of disks 3638 * 5) disks 3639 * 3640 * Some L2ARC device types exhibit extremely slow write performance. 3641 * To accommodate for this there are some significant differences between 3642 * the L2ARC and traditional cache design: 3643 * 3644 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3645 * the ARC behave as usual, freeing buffers and placing headers on ghost 3646 * lists. The ARC does not send buffers to the L2ARC during eviction as 3647 * this would add inflated write latencies for all ARC memory pressure. 3648 * 3649 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3650 * It does this by periodically scanning buffers from the eviction-end of 3651 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3652 * not already there. It scans until a headroom of buffers is satisfied, 3653 * which itself is a buffer for ARC eviction. The thread that does this is 3654 * l2arc_feed_thread(), illustrated below; example sizes are included to 3655 * provide a better sense of ratio than this diagram: 3656 * 3657 * head --> tail 3658 * +---------------------+----------+ 3659 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3660 * +---------------------+----------+ | o L2ARC eligible 3661 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3662 * +---------------------+----------+ | 3663 * 15.9 Gbytes ^ 32 Mbytes | 3664 * headroom | 3665 * l2arc_feed_thread() 3666 * | 3667 * l2arc write hand <--[oooo]--' 3668 * | 8 Mbyte 3669 * | write max 3670 * V 3671 * +==============================+ 3672 * L2ARC dev |####|#|###|###| |####| ... | 3673 * +==============================+ 3674 * 32 Gbytes 3675 * 3676 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3677 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3678 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3679 * safe to say that this is an uncommon case, since buffers at the end of 3680 * the ARC lists have moved there due to inactivity. 3681 * 3682 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3683 * then the L2ARC simply misses copying some buffers. This serves as a 3684 * pressure valve to prevent heavy read workloads from both stalling the ARC 3685 * with waits and clogging the L2ARC with writes. This also helps prevent 3686 * the potential for the L2ARC to churn if it attempts to cache content too 3687 * quickly, such as during backups of the entire pool. 3688 * 3689 * 5. After system boot and before the ARC has filled main memory, there are 3690 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 3691 * lists can remain mostly static. Instead of searching from tail of these 3692 * lists as pictured, the l2arc_feed_thread() will search from the list heads 3693 * for eligible buffers, greatly increasing its chance of finding them. 3694 * 3695 * The L2ARC device write speed is also boosted during this time so that 3696 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 3697 * there are no L2ARC reads, and no fear of degrading read performance 3698 * through increased writes. 3699 * 3700 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3701 * the vdev queue can aggregate them into larger and fewer writes. Each 3702 * device is written to in a rotor fashion, sweeping writes through 3703 * available space then repeating. 3704 * 3705 * 7. The L2ARC does not store dirty content. It never needs to flush 3706 * write buffers back to disk based storage. 3707 * 3708 * 8. If an ARC buffer is written (and dirtied) which also exists in the 3709 * L2ARC, the now stale L2ARC buffer is immediately dropped. 3710 * 3711 * The performance of the L2ARC can be tweaked by a number of tunables, which 3712 * may be necessary for different workloads: 3713 * 3714 * l2arc_write_max max write bytes per interval 3715 * l2arc_write_boost extra write bytes during device warmup 3716 * l2arc_noprefetch skip caching prefetched buffers 3717 * l2arc_headroom number of max device writes to precache 3718 * l2arc_feed_secs seconds between L2ARC writing 3719 * 3720 * Tunables may be removed or added as future performance improvements are 3721 * integrated, and also may become zpool properties. 3722 * 3723 * There are three key functions that control how the L2ARC warms up: 3724 * 3725 * l2arc_write_eligible() check if a buffer is eligible to cache 3726 * l2arc_write_size() calculate how much to write 3727 * l2arc_write_interval() calculate sleep delay between writes 3728 * 3729 * These three functions determine what to write, how much, and how quickly 3730 * to send writes. 3731 */ 3732 3733 static boolean_t 3734 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 3735 { 3736 /* 3737 * A buffer is *not* eligible for the L2ARC if it: 3738 * 1. belongs to a different spa. 3739 * 2. has no attached buffer. 3740 * 3. is already cached on the L2ARC. 3741 * 4. has an I/O in progress (it may be an incomplete read). 3742 * 5. is flagged not eligible (zfs property). 3743 */ 3744 if (ab->b_spa != spa_guid || ab->b_buf == NULL || ab->b_l2hdr != NULL || 3745 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 3746 return (B_FALSE); 3747 3748 return (B_TRUE); 3749 } 3750 3751 static uint64_t 3752 l2arc_write_size(l2arc_dev_t *dev) 3753 { 3754 uint64_t size; 3755 3756 size = dev->l2ad_write; 3757 3758 if (arc_warm == B_FALSE) 3759 size += dev->l2ad_boost; 3760 3761 return (size); 3762 3763 } 3764 3765 static clock_t 3766 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 3767 { 3768 clock_t interval, next; 3769 3770 /* 3771 * If the ARC lists are busy, increase our write rate; if the 3772 * lists are stale, idle back. This is achieved by checking 3773 * how much we previously wrote - if it was more than half of 3774 * what we wanted, schedule the next write much sooner. 3775 */ 3776 if (l2arc_feed_again && wrote > (wanted / 2)) 3777 interval = (hz * l2arc_feed_min_ms) / 1000; 3778 else 3779 interval = hz * l2arc_feed_secs; 3780 3781 next = MAX(lbolt, MIN(lbolt + interval, began + interval)); 3782 3783 return (next); 3784 } 3785 3786 static void 3787 l2arc_hdr_stat_add(void) 3788 { 3789 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 3790 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 3791 } 3792 3793 static void 3794 l2arc_hdr_stat_remove(void) 3795 { 3796 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 3797 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 3798 } 3799 3800 /* 3801 * Cycle through L2ARC devices. This is how L2ARC load balances. 3802 * If a device is returned, this also returns holding the spa config lock. 3803 */ 3804 static l2arc_dev_t * 3805 l2arc_dev_get_next(void) 3806 { 3807 l2arc_dev_t *first, *next = NULL; 3808 3809 /* 3810 * Lock out the removal of spas (spa_namespace_lock), then removal 3811 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 3812 * both locks will be dropped and a spa config lock held instead. 3813 */ 3814 mutex_enter(&spa_namespace_lock); 3815 mutex_enter(&l2arc_dev_mtx); 3816 3817 /* if there are no vdevs, there is nothing to do */ 3818 if (l2arc_ndev == 0) 3819 goto out; 3820 3821 first = NULL; 3822 next = l2arc_dev_last; 3823 do { 3824 /* loop around the list looking for a non-faulted vdev */ 3825 if (next == NULL) { 3826 next = list_head(l2arc_dev_list); 3827 } else { 3828 next = list_next(l2arc_dev_list, next); 3829 if (next == NULL) 3830 next = list_head(l2arc_dev_list); 3831 } 3832 3833 /* if we have come back to the start, bail out */ 3834 if (first == NULL) 3835 first = next; 3836 else if (next == first) 3837 break; 3838 3839 } while (vdev_is_dead(next->l2ad_vdev)); 3840 3841 /* if we were unable to find any usable vdevs, return NULL */ 3842 if (vdev_is_dead(next->l2ad_vdev)) 3843 next = NULL; 3844 3845 l2arc_dev_last = next; 3846 3847 out: 3848 mutex_exit(&l2arc_dev_mtx); 3849 3850 /* 3851 * Grab the config lock to prevent the 'next' device from being 3852 * removed while we are writing to it. 3853 */ 3854 if (next != NULL) 3855 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 3856 mutex_exit(&spa_namespace_lock); 3857 3858 return (next); 3859 } 3860 3861 /* 3862 * Free buffers that were tagged for destruction. 3863 */ 3864 static void 3865 l2arc_do_free_on_write() 3866 { 3867 list_t *buflist; 3868 l2arc_data_free_t *df, *df_prev; 3869 3870 mutex_enter(&l2arc_free_on_write_mtx); 3871 buflist = l2arc_free_on_write; 3872 3873 for (df = list_tail(buflist); df; df = df_prev) { 3874 df_prev = list_prev(buflist, df); 3875 ASSERT(df->l2df_data != NULL); 3876 ASSERT(df->l2df_func != NULL); 3877 df->l2df_func(df->l2df_data, df->l2df_size); 3878 list_remove(buflist, df); 3879 kmem_free(df, sizeof (l2arc_data_free_t)); 3880 } 3881 3882 mutex_exit(&l2arc_free_on_write_mtx); 3883 } 3884 3885 /* 3886 * A write to a cache device has completed. Update all headers to allow 3887 * reads from these buffers to begin. 3888 */ 3889 static void 3890 l2arc_write_done(zio_t *zio) 3891 { 3892 l2arc_write_callback_t *cb; 3893 l2arc_dev_t *dev; 3894 list_t *buflist; 3895 arc_buf_hdr_t *head, *ab, *ab_prev; 3896 l2arc_buf_hdr_t *abl2; 3897 kmutex_t *hash_lock; 3898 3899 cb = zio->io_private; 3900 ASSERT(cb != NULL); 3901 dev = cb->l2wcb_dev; 3902 ASSERT(dev != NULL); 3903 head = cb->l2wcb_head; 3904 ASSERT(head != NULL); 3905 buflist = dev->l2ad_buflist; 3906 ASSERT(buflist != NULL); 3907 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 3908 l2arc_write_callback_t *, cb); 3909 3910 if (zio->io_error != 0) 3911 ARCSTAT_BUMP(arcstat_l2_writes_error); 3912 3913 mutex_enter(&l2arc_buflist_mtx); 3914 3915 /* 3916 * All writes completed, or an error was hit. 3917 */ 3918 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 3919 ab_prev = list_prev(buflist, ab); 3920 3921 hash_lock = HDR_LOCK(ab); 3922 if (!mutex_tryenter(hash_lock)) { 3923 /* 3924 * This buffer misses out. It may be in a stage 3925 * of eviction. Its ARC_L2_WRITING flag will be 3926 * left set, denying reads to this buffer. 3927 */ 3928 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 3929 continue; 3930 } 3931 3932 if (zio->io_error != 0) { 3933 /* 3934 * Error - drop L2ARC entry. 3935 */ 3936 list_remove(buflist, ab); 3937 abl2 = ab->b_l2hdr; 3938 ab->b_l2hdr = NULL; 3939 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 3940 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 3941 } 3942 3943 /* 3944 * Allow ARC to begin reads to this L2ARC entry. 3945 */ 3946 ab->b_flags &= ~ARC_L2_WRITING; 3947 3948 mutex_exit(hash_lock); 3949 } 3950 3951 atomic_inc_64(&l2arc_writes_done); 3952 list_remove(buflist, head); 3953 kmem_cache_free(hdr_cache, head); 3954 mutex_exit(&l2arc_buflist_mtx); 3955 3956 l2arc_do_free_on_write(); 3957 3958 kmem_free(cb, sizeof (l2arc_write_callback_t)); 3959 } 3960 3961 /* 3962 * A read to a cache device completed. Validate buffer contents before 3963 * handing over to the regular ARC routines. 3964 */ 3965 static void 3966 l2arc_read_done(zio_t *zio) 3967 { 3968 l2arc_read_callback_t *cb; 3969 arc_buf_hdr_t *hdr; 3970 arc_buf_t *buf; 3971 kmutex_t *hash_lock; 3972 int equal; 3973 3974 ASSERT(zio->io_vd != NULL); 3975 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 3976 3977 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 3978 3979 cb = zio->io_private; 3980 ASSERT(cb != NULL); 3981 buf = cb->l2rcb_buf; 3982 ASSERT(buf != NULL); 3983 hdr = buf->b_hdr; 3984 ASSERT(hdr != NULL); 3985 3986 hash_lock = HDR_LOCK(hdr); 3987 mutex_enter(hash_lock); 3988 3989 /* 3990 * Check this survived the L2ARC journey. 3991 */ 3992 equal = arc_cksum_equal(buf); 3993 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 3994 mutex_exit(hash_lock); 3995 zio->io_private = buf; 3996 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 3997 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 3998 arc_read_done(zio); 3999 } else { 4000 mutex_exit(hash_lock); 4001 /* 4002 * Buffer didn't survive caching. Increment stats and 4003 * reissue to the original storage device. 4004 */ 4005 if (zio->io_error != 0) { 4006 ARCSTAT_BUMP(arcstat_l2_io_error); 4007 } else { 4008 zio->io_error = EIO; 4009 } 4010 if (!equal) 4011 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4012 4013 /* 4014 * If there's no waiter, issue an async i/o to the primary 4015 * storage now. If there *is* a waiter, the caller must 4016 * issue the i/o in a context where it's OK to block. 4017 */ 4018 if (zio->io_waiter == NULL) { 4019 zio_t *pio = zio_unique_parent(zio); 4020 4021 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4022 4023 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4024 buf->b_data, zio->io_size, arc_read_done, buf, 4025 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4026 } 4027 } 4028 4029 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4030 } 4031 4032 /* 4033 * This is the list priority from which the L2ARC will search for pages to 4034 * cache. This is used within loops (0..3) to cycle through lists in the 4035 * desired order. This order can have a significant effect on cache 4036 * performance. 4037 * 4038 * Currently the metadata lists are hit first, MFU then MRU, followed by 4039 * the data lists. This function returns a locked list, and also returns 4040 * the lock pointer. 4041 */ 4042 static list_t * 4043 l2arc_list_locked(int list_num, kmutex_t **lock) 4044 { 4045 list_t *list; 4046 4047 ASSERT(list_num >= 0 && list_num <= 3); 4048 4049 switch (list_num) { 4050 case 0: 4051 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4052 *lock = &arc_mfu->arcs_mtx; 4053 break; 4054 case 1: 4055 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4056 *lock = &arc_mru->arcs_mtx; 4057 break; 4058 case 2: 4059 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4060 *lock = &arc_mfu->arcs_mtx; 4061 break; 4062 case 3: 4063 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4064 *lock = &arc_mru->arcs_mtx; 4065 break; 4066 } 4067 4068 ASSERT(!(MUTEX_HELD(*lock))); 4069 mutex_enter(*lock); 4070 return (list); 4071 } 4072 4073 /* 4074 * Evict buffers from the device write hand to the distance specified in 4075 * bytes. This distance may span populated buffers, it may span nothing. 4076 * This is clearing a region on the L2ARC device ready for writing. 4077 * If the 'all' boolean is set, every buffer is evicted. 4078 */ 4079 static void 4080 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4081 { 4082 list_t *buflist; 4083 l2arc_buf_hdr_t *abl2; 4084 arc_buf_hdr_t *ab, *ab_prev; 4085 kmutex_t *hash_lock; 4086 uint64_t taddr; 4087 4088 buflist = dev->l2ad_buflist; 4089 4090 if (buflist == NULL) 4091 return; 4092 4093 if (!all && dev->l2ad_first) { 4094 /* 4095 * This is the first sweep through the device. There is 4096 * nothing to evict. 4097 */ 4098 return; 4099 } 4100 4101 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4102 /* 4103 * When nearing the end of the device, evict to the end 4104 * before the device write hand jumps to the start. 4105 */ 4106 taddr = dev->l2ad_end; 4107 } else { 4108 taddr = dev->l2ad_hand + distance; 4109 } 4110 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4111 uint64_t, taddr, boolean_t, all); 4112 4113 top: 4114 mutex_enter(&l2arc_buflist_mtx); 4115 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4116 ab_prev = list_prev(buflist, ab); 4117 4118 hash_lock = HDR_LOCK(ab); 4119 if (!mutex_tryenter(hash_lock)) { 4120 /* 4121 * Missed the hash lock. Retry. 4122 */ 4123 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4124 mutex_exit(&l2arc_buflist_mtx); 4125 mutex_enter(hash_lock); 4126 mutex_exit(hash_lock); 4127 goto top; 4128 } 4129 4130 if (HDR_L2_WRITE_HEAD(ab)) { 4131 /* 4132 * We hit a write head node. Leave it for 4133 * l2arc_write_done(). 4134 */ 4135 list_remove(buflist, ab); 4136 mutex_exit(hash_lock); 4137 continue; 4138 } 4139 4140 if (!all && ab->b_l2hdr != NULL && 4141 (ab->b_l2hdr->b_daddr > taddr || 4142 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4143 /* 4144 * We've evicted to the target address, 4145 * or the end of the device. 4146 */ 4147 mutex_exit(hash_lock); 4148 break; 4149 } 4150 4151 if (HDR_FREE_IN_PROGRESS(ab)) { 4152 /* 4153 * Already on the path to destruction. 4154 */ 4155 mutex_exit(hash_lock); 4156 continue; 4157 } 4158 4159 if (ab->b_state == arc_l2c_only) { 4160 ASSERT(!HDR_L2_READING(ab)); 4161 /* 4162 * This doesn't exist in the ARC. Destroy. 4163 * arc_hdr_destroy() will call list_remove() 4164 * and decrement arcstat_l2_size. 4165 */ 4166 arc_change_state(arc_anon, ab, hash_lock); 4167 arc_hdr_destroy(ab); 4168 } else { 4169 /* 4170 * Invalidate issued or about to be issued 4171 * reads, since we may be about to write 4172 * over this location. 4173 */ 4174 if (HDR_L2_READING(ab)) { 4175 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4176 ab->b_flags |= ARC_L2_EVICTED; 4177 } 4178 4179 /* 4180 * Tell ARC this no longer exists in L2ARC. 4181 */ 4182 if (ab->b_l2hdr != NULL) { 4183 abl2 = ab->b_l2hdr; 4184 ab->b_l2hdr = NULL; 4185 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4186 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4187 } 4188 list_remove(buflist, ab); 4189 4190 /* 4191 * This may have been leftover after a 4192 * failed write. 4193 */ 4194 ab->b_flags &= ~ARC_L2_WRITING; 4195 } 4196 mutex_exit(hash_lock); 4197 } 4198 mutex_exit(&l2arc_buflist_mtx); 4199 4200 spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict)); 4201 dev->l2ad_evict = taddr; 4202 } 4203 4204 /* 4205 * Find and write ARC buffers to the L2ARC device. 4206 * 4207 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4208 * for reading until they have completed writing. 4209 */ 4210 static uint64_t 4211 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 4212 { 4213 arc_buf_hdr_t *ab, *ab_prev, *head; 4214 l2arc_buf_hdr_t *hdrl2; 4215 list_t *list; 4216 uint64_t passed_sz, write_sz, buf_sz, headroom; 4217 void *buf_data; 4218 kmutex_t *hash_lock, *list_lock; 4219 boolean_t have_lock, full; 4220 l2arc_write_callback_t *cb; 4221 zio_t *pio, *wzio; 4222 uint64_t guid = spa_guid(spa); 4223 4224 ASSERT(dev->l2ad_vdev != NULL); 4225 4226 pio = NULL; 4227 write_sz = 0; 4228 full = B_FALSE; 4229 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4230 head->b_flags |= ARC_L2_WRITE_HEAD; 4231 4232 /* 4233 * Copy buffers for L2ARC writing. 4234 */ 4235 mutex_enter(&l2arc_buflist_mtx); 4236 for (int try = 0; try <= 3; try++) { 4237 list = l2arc_list_locked(try, &list_lock); 4238 passed_sz = 0; 4239 4240 /* 4241 * L2ARC fast warmup. 4242 * 4243 * Until the ARC is warm and starts to evict, read from the 4244 * head of the ARC lists rather than the tail. 4245 */ 4246 headroom = target_sz * l2arc_headroom; 4247 if (arc_warm == B_FALSE) 4248 ab = list_head(list); 4249 else 4250 ab = list_tail(list); 4251 4252 for (; ab; ab = ab_prev) { 4253 if (arc_warm == B_FALSE) 4254 ab_prev = list_next(list, ab); 4255 else 4256 ab_prev = list_prev(list, ab); 4257 4258 hash_lock = HDR_LOCK(ab); 4259 have_lock = MUTEX_HELD(hash_lock); 4260 if (!have_lock && !mutex_tryenter(hash_lock)) { 4261 /* 4262 * Skip this buffer rather than waiting. 4263 */ 4264 continue; 4265 } 4266 4267 passed_sz += ab->b_size; 4268 if (passed_sz > headroom) { 4269 /* 4270 * Searched too far. 4271 */ 4272 mutex_exit(hash_lock); 4273 break; 4274 } 4275 4276 if (!l2arc_write_eligible(guid, ab)) { 4277 mutex_exit(hash_lock); 4278 continue; 4279 } 4280 4281 if ((write_sz + ab->b_size) > target_sz) { 4282 full = B_TRUE; 4283 mutex_exit(hash_lock); 4284 break; 4285 } 4286 4287 if (pio == NULL) { 4288 /* 4289 * Insert a dummy header on the buflist so 4290 * l2arc_write_done() can find where the 4291 * write buffers begin without searching. 4292 */ 4293 list_insert_head(dev->l2ad_buflist, head); 4294 4295 cb = kmem_alloc( 4296 sizeof (l2arc_write_callback_t), KM_SLEEP); 4297 cb->l2wcb_dev = dev; 4298 cb->l2wcb_head = head; 4299 pio = zio_root(spa, l2arc_write_done, cb, 4300 ZIO_FLAG_CANFAIL); 4301 } 4302 4303 /* 4304 * Create and add a new L2ARC header. 4305 */ 4306 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4307 hdrl2->b_dev = dev; 4308 hdrl2->b_daddr = dev->l2ad_hand; 4309 4310 ab->b_flags |= ARC_L2_WRITING; 4311 ab->b_l2hdr = hdrl2; 4312 list_insert_head(dev->l2ad_buflist, ab); 4313 buf_data = ab->b_buf->b_data; 4314 buf_sz = ab->b_size; 4315 4316 /* 4317 * Compute and store the buffer cksum before 4318 * writing. On debug the cksum is verified first. 4319 */ 4320 arc_cksum_verify(ab->b_buf); 4321 arc_cksum_compute(ab->b_buf, B_TRUE); 4322 4323 mutex_exit(hash_lock); 4324 4325 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4326 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4327 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4328 ZIO_FLAG_CANFAIL, B_FALSE); 4329 4330 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4331 zio_t *, wzio); 4332 (void) zio_nowait(wzio); 4333 4334 /* 4335 * Keep the clock hand suitably device-aligned. 4336 */ 4337 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4338 4339 write_sz += buf_sz; 4340 dev->l2ad_hand += buf_sz; 4341 } 4342 4343 mutex_exit(list_lock); 4344 4345 if (full == B_TRUE) 4346 break; 4347 } 4348 mutex_exit(&l2arc_buflist_mtx); 4349 4350 if (pio == NULL) { 4351 ASSERT3U(write_sz, ==, 0); 4352 kmem_cache_free(hdr_cache, head); 4353 return (0); 4354 } 4355 4356 ASSERT3U(write_sz, <=, target_sz); 4357 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4358 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz); 4359 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4360 spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz); 4361 4362 /* 4363 * Bump device hand to the device start if it is approaching the end. 4364 * l2arc_evict() will already have evicted ahead for this case. 4365 */ 4366 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4367 spa_l2cache_space_update(dev->l2ad_vdev, 0, 4368 dev->l2ad_end - dev->l2ad_hand); 4369 dev->l2ad_hand = dev->l2ad_start; 4370 dev->l2ad_evict = dev->l2ad_start; 4371 dev->l2ad_first = B_FALSE; 4372 } 4373 4374 dev->l2ad_writing = B_TRUE; 4375 (void) zio_wait(pio); 4376 dev->l2ad_writing = B_FALSE; 4377 4378 return (write_sz); 4379 } 4380 4381 /* 4382 * This thread feeds the L2ARC at regular intervals. This is the beating 4383 * heart of the L2ARC. 4384 */ 4385 static void 4386 l2arc_feed_thread(void) 4387 { 4388 callb_cpr_t cpr; 4389 l2arc_dev_t *dev; 4390 spa_t *spa; 4391 uint64_t size, wrote; 4392 clock_t begin, next = lbolt; 4393 4394 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4395 4396 mutex_enter(&l2arc_feed_thr_lock); 4397 4398 while (l2arc_thread_exit == 0) { 4399 CALLB_CPR_SAFE_BEGIN(&cpr); 4400 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4401 next); 4402 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4403 next = lbolt + hz; 4404 4405 /* 4406 * Quick check for L2ARC devices. 4407 */ 4408 mutex_enter(&l2arc_dev_mtx); 4409 if (l2arc_ndev == 0) { 4410 mutex_exit(&l2arc_dev_mtx); 4411 continue; 4412 } 4413 mutex_exit(&l2arc_dev_mtx); 4414 begin = lbolt; 4415 4416 /* 4417 * This selects the next l2arc device to write to, and in 4418 * doing so the next spa to feed from: dev->l2ad_spa. This 4419 * will return NULL if there are now no l2arc devices or if 4420 * they are all faulted. 4421 * 4422 * If a device is returned, its spa's config lock is also 4423 * held to prevent device removal. l2arc_dev_get_next() 4424 * will grab and release l2arc_dev_mtx. 4425 */ 4426 if ((dev = l2arc_dev_get_next()) == NULL) 4427 continue; 4428 4429 spa = dev->l2ad_spa; 4430 ASSERT(spa != NULL); 4431 4432 /* 4433 * Avoid contributing to memory pressure. 4434 */ 4435 if (arc_reclaim_needed()) { 4436 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 4437 spa_config_exit(spa, SCL_L2ARC, dev); 4438 continue; 4439 } 4440 4441 ARCSTAT_BUMP(arcstat_l2_feeds); 4442 4443 size = l2arc_write_size(dev); 4444 4445 /* 4446 * Evict L2ARC buffers that will be overwritten. 4447 */ 4448 l2arc_evict(dev, size, B_FALSE); 4449 4450 /* 4451 * Write ARC buffers. 4452 */ 4453 wrote = l2arc_write_buffers(spa, dev, size); 4454 4455 /* 4456 * Calculate interval between writes. 4457 */ 4458 next = l2arc_write_interval(begin, size, wrote); 4459 spa_config_exit(spa, SCL_L2ARC, dev); 4460 } 4461 4462 l2arc_thread_exit = 0; 4463 cv_broadcast(&l2arc_feed_thr_cv); 4464 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 4465 thread_exit(); 4466 } 4467 4468 boolean_t 4469 l2arc_vdev_present(vdev_t *vd) 4470 { 4471 l2arc_dev_t *dev; 4472 4473 mutex_enter(&l2arc_dev_mtx); 4474 for (dev = list_head(l2arc_dev_list); dev != NULL; 4475 dev = list_next(l2arc_dev_list, dev)) { 4476 if (dev->l2ad_vdev == vd) 4477 break; 4478 } 4479 mutex_exit(&l2arc_dev_mtx); 4480 4481 return (dev != NULL); 4482 } 4483 4484 /* 4485 * Add a vdev for use by the L2ARC. By this point the spa has already 4486 * validated the vdev and opened it. 4487 */ 4488 void 4489 l2arc_add_vdev(spa_t *spa, vdev_t *vd, uint64_t start, uint64_t end) 4490 { 4491 l2arc_dev_t *adddev; 4492 4493 ASSERT(!l2arc_vdev_present(vd)); 4494 4495 /* 4496 * Create a new l2arc device entry. 4497 */ 4498 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 4499 adddev->l2ad_spa = spa; 4500 adddev->l2ad_vdev = vd; 4501 adddev->l2ad_write = l2arc_write_max; 4502 adddev->l2ad_boost = l2arc_write_boost; 4503 adddev->l2ad_start = start; 4504 adddev->l2ad_end = end; 4505 adddev->l2ad_hand = adddev->l2ad_start; 4506 adddev->l2ad_evict = adddev->l2ad_start; 4507 adddev->l2ad_first = B_TRUE; 4508 adddev->l2ad_writing = B_FALSE; 4509 ASSERT3U(adddev->l2ad_write, >, 0); 4510 4511 /* 4512 * This is a list of all ARC buffers that are still valid on the 4513 * device. 4514 */ 4515 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 4516 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 4517 offsetof(arc_buf_hdr_t, b_l2node)); 4518 4519 spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0); 4520 4521 /* 4522 * Add device to global list 4523 */ 4524 mutex_enter(&l2arc_dev_mtx); 4525 list_insert_head(l2arc_dev_list, adddev); 4526 atomic_inc_64(&l2arc_ndev); 4527 mutex_exit(&l2arc_dev_mtx); 4528 } 4529 4530 /* 4531 * Remove a vdev from the L2ARC. 4532 */ 4533 void 4534 l2arc_remove_vdev(vdev_t *vd) 4535 { 4536 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 4537 4538 /* 4539 * Find the device by vdev 4540 */ 4541 mutex_enter(&l2arc_dev_mtx); 4542 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 4543 nextdev = list_next(l2arc_dev_list, dev); 4544 if (vd == dev->l2ad_vdev) { 4545 remdev = dev; 4546 break; 4547 } 4548 } 4549 ASSERT(remdev != NULL); 4550 4551 /* 4552 * Remove device from global list 4553 */ 4554 list_remove(l2arc_dev_list, remdev); 4555 l2arc_dev_last = NULL; /* may have been invalidated */ 4556 atomic_dec_64(&l2arc_ndev); 4557 mutex_exit(&l2arc_dev_mtx); 4558 4559 /* 4560 * Clear all buflists and ARC references. L2ARC device flush. 4561 */ 4562 l2arc_evict(remdev, 0, B_TRUE); 4563 list_destroy(remdev->l2ad_buflist); 4564 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 4565 kmem_free(remdev, sizeof (l2arc_dev_t)); 4566 } 4567 4568 void 4569 l2arc_init(void) 4570 { 4571 l2arc_thread_exit = 0; 4572 l2arc_ndev = 0; 4573 l2arc_writes_sent = 0; 4574 l2arc_writes_done = 0; 4575 4576 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 4577 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 4578 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 4579 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 4580 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 4581 4582 l2arc_dev_list = &L2ARC_dev_list; 4583 l2arc_free_on_write = &L2ARC_free_on_write; 4584 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 4585 offsetof(l2arc_dev_t, l2ad_node)); 4586 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 4587 offsetof(l2arc_data_free_t, l2df_list_node)); 4588 } 4589 4590 void 4591 l2arc_fini(void) 4592 { 4593 /* 4594 * This is called from dmu_fini(), which is called from spa_fini(); 4595 * Because of this, we can assume that all l2arc devices have 4596 * already been removed when the pools themselves were removed. 4597 */ 4598 4599 l2arc_do_free_on_write(); 4600 4601 mutex_destroy(&l2arc_feed_thr_lock); 4602 cv_destroy(&l2arc_feed_thr_cv); 4603 mutex_destroy(&l2arc_dev_mtx); 4604 mutex_destroy(&l2arc_buflist_mtx); 4605 mutex_destroy(&l2arc_free_on_write_mtx); 4606 4607 list_destroy(l2arc_dev_list); 4608 list_destroy(l2arc_free_on_write); 4609 } 4610 4611 void 4612 l2arc_start(void) 4613 { 4614 if (!(spa_mode_global & FWRITE)) 4615 return; 4616 4617 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 4618 TS_RUN, minclsyspri); 4619 } 4620 4621 void 4622 l2arc_stop(void) 4623 { 4624 if (!(spa_mode_global & FWRITE)) 4625 return; 4626 4627 mutex_enter(&l2arc_feed_thr_lock); 4628 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 4629 l2arc_thread_exit = 1; 4630 while (l2arc_thread_exit != 0) 4631 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 4632 mutex_exit(&l2arc_feed_thr_lock); 4633 } 4634