1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * DVA-based Adjustable Replacement Cache 28 * 29 * While much of the theory of operation used here is 30 * based on the self-tuning, low overhead replacement cache 31 * presented by Megiddo and Modha at FAST 2003, there are some 32 * significant differences: 33 * 34 * 1. The Megiddo and Modha model assumes any page is evictable. 35 * Pages in its cache cannot be "locked" into memory. This makes 36 * the eviction algorithm simple: evict the last page in the list. 37 * This also make the performance characteristics easy to reason 38 * about. Our cache is not so simple. At any given moment, some 39 * subset of the blocks in the cache are un-evictable because we 40 * have handed out a reference to them. Blocks are only evictable 41 * when there are no external references active. This makes 42 * eviction far more problematic: we choose to evict the evictable 43 * blocks that are the "lowest" in the list. 44 * 45 * There are times when it is not possible to evict the requested 46 * space. In these circumstances we are unable to adjust the cache 47 * size. To prevent the cache growing unbounded at these times we 48 * implement a "cache throttle" that slows the flow of new data 49 * into the cache until we can make space available. 50 * 51 * 2. The Megiddo and Modha model assumes a fixed cache size. 52 * Pages are evicted when the cache is full and there is a cache 53 * miss. Our model has a variable sized cache. It grows with 54 * high use, but also tries to react to memory pressure from the 55 * operating system: decreasing its size when system memory is 56 * tight. 57 * 58 * 3. The Megiddo and Modha model assumes a fixed page size. All 59 * elements of the cache are therefor exactly the same size. So 60 * when adjusting the cache size following a cache miss, its simply 61 * a matter of choosing a single page to evict. In our model, we 62 * have variable sized cache blocks (rangeing from 512 bytes to 63 * 128K bytes). We therefor choose a set of blocks to evict to make 64 * space for a cache miss that approximates as closely as possible 65 * the space used by the new block. 66 * 67 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 68 * by N. Megiddo & D. Modha, FAST 2003 69 */ 70 71 /* 72 * The locking model: 73 * 74 * A new reference to a cache buffer can be obtained in two 75 * ways: 1) via a hash table lookup using the DVA as a key, 76 * or 2) via one of the ARC lists. The arc_read() interface 77 * uses method 1, while the internal arc algorithms for 78 * adjusting the cache use method 2. We therefor provide two 79 * types of locks: 1) the hash table lock array, and 2) the 80 * arc list locks. 81 * 82 * Buffers do not have their own mutexs, rather they rely on the 83 * hash table mutexs for the bulk of their protection (i.e. most 84 * fields in the arc_buf_hdr_t are protected by these mutexs). 85 * 86 * buf_hash_find() returns the appropriate mutex (held) when it 87 * locates the requested buffer in the hash table. It returns 88 * NULL for the mutex if the buffer was not in the table. 89 * 90 * buf_hash_remove() expects the appropriate hash mutex to be 91 * already held before it is invoked. 92 * 93 * Each arc state also has a mutex which is used to protect the 94 * buffer list associated with the state. When attempting to 95 * obtain a hash table lock while holding an arc list lock you 96 * must use: mutex_tryenter() to avoid deadlock. Also note that 97 * the active state mutex must be held before the ghost state mutex. 98 * 99 * Arc buffers may have an associated eviction callback function. 100 * This function will be invoked prior to removing the buffer (e.g. 101 * in arc_do_user_evicts()). Note however that the data associated 102 * with the buffer may be evicted prior to the callback. The callback 103 * must be made with *no locks held* (to prevent deadlock). Additionally, 104 * the users of callbacks must ensure that their private data is 105 * protected from simultaneous callbacks from arc_buf_evict() 106 * and arc_do_user_evicts(). 107 * 108 * Note that the majority of the performance stats are manipulated 109 * with atomic operations. 110 * 111 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 112 * 113 * - L2ARC buflist creation 114 * - L2ARC buflist eviction 115 * - L2ARC write completion, which walks L2ARC buflists 116 * - ARC header destruction, as it removes from L2ARC buflists 117 * - ARC header release, as it removes from L2ARC buflists 118 */ 119 120 #include <sys/spa.h> 121 #include <sys/zio.h> 122 #include <sys/zio_checksum.h> 123 #include <sys/zfs_context.h> 124 #include <sys/arc.h> 125 #include <sys/refcount.h> 126 #include <sys/vdev.h> 127 #ifdef _KERNEL 128 #include <sys/vmsystm.h> 129 #include <vm/anon.h> 130 #include <sys/fs/swapnode.h> 131 #include <sys/dnlc.h> 132 #endif 133 #include <sys/callb.h> 134 #include <sys/kstat.h> 135 136 static kmutex_t arc_reclaim_thr_lock; 137 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 138 static uint8_t arc_thread_exit; 139 140 extern int zfs_write_limit_shift; 141 extern uint64_t zfs_write_limit_max; 142 extern kmutex_t zfs_write_limit_lock; 143 144 #define ARC_REDUCE_DNLC_PERCENT 3 145 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 146 147 typedef enum arc_reclaim_strategy { 148 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 149 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 150 } arc_reclaim_strategy_t; 151 152 /* number of seconds before growing cache again */ 153 static int arc_grow_retry = 60; 154 155 /* shift of arc_c for calculating both min and max arc_p */ 156 static int arc_p_min_shift = 4; 157 158 /* log2(fraction of arc to reclaim) */ 159 static int arc_shrink_shift = 5; 160 161 /* 162 * minimum lifespan of a prefetch block in clock ticks 163 * (initialized in arc_init()) 164 */ 165 static int arc_min_prefetch_lifespan; 166 167 static int arc_dead; 168 169 /* 170 * The arc has filled available memory and has now warmed up. 171 */ 172 static boolean_t arc_warm; 173 174 /* 175 * These tunables are for performance analysis. 176 */ 177 uint64_t zfs_arc_max; 178 uint64_t zfs_arc_min; 179 uint64_t zfs_arc_meta_limit = 0; 180 int zfs_mdcomp_disable = 0; 181 int zfs_arc_grow_retry = 0; 182 int zfs_arc_shrink_shift = 0; 183 int zfs_arc_p_min_shift = 0; 184 185 /* 186 * Note that buffers can be in one of 6 states: 187 * ARC_anon - anonymous (discussed below) 188 * ARC_mru - recently used, currently cached 189 * ARC_mru_ghost - recentely used, no longer in cache 190 * ARC_mfu - frequently used, currently cached 191 * ARC_mfu_ghost - frequently used, no longer in cache 192 * ARC_l2c_only - exists in L2ARC but not other states 193 * When there are no active references to the buffer, they are 194 * are linked onto a list in one of these arc states. These are 195 * the only buffers that can be evicted or deleted. Within each 196 * state there are multiple lists, one for meta-data and one for 197 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 198 * etc.) is tracked separately so that it can be managed more 199 * explicitly: favored over data, limited explicitly. 200 * 201 * Anonymous buffers are buffers that are not associated with 202 * a DVA. These are buffers that hold dirty block copies 203 * before they are written to stable storage. By definition, 204 * they are "ref'd" and are considered part of arc_mru 205 * that cannot be freed. Generally, they will aquire a DVA 206 * as they are written and migrate onto the arc_mru list. 207 * 208 * The ARC_l2c_only state is for buffers that are in the second 209 * level ARC but no longer in any of the ARC_m* lists. The second 210 * level ARC itself may also contain buffers that are in any of 211 * the ARC_m* states - meaning that a buffer can exist in two 212 * places. The reason for the ARC_l2c_only state is to keep the 213 * buffer header in the hash table, so that reads that hit the 214 * second level ARC benefit from these fast lookups. 215 */ 216 217 typedef struct arc_state { 218 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 219 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 220 uint64_t arcs_size; /* total amount of data in this state */ 221 kmutex_t arcs_mtx; 222 } arc_state_t; 223 224 /* The 6 states: */ 225 static arc_state_t ARC_anon; 226 static arc_state_t ARC_mru; 227 static arc_state_t ARC_mru_ghost; 228 static arc_state_t ARC_mfu; 229 static arc_state_t ARC_mfu_ghost; 230 static arc_state_t ARC_l2c_only; 231 232 typedef struct arc_stats { 233 kstat_named_t arcstat_hits; 234 kstat_named_t arcstat_misses; 235 kstat_named_t arcstat_demand_data_hits; 236 kstat_named_t arcstat_demand_data_misses; 237 kstat_named_t arcstat_demand_metadata_hits; 238 kstat_named_t arcstat_demand_metadata_misses; 239 kstat_named_t arcstat_prefetch_data_hits; 240 kstat_named_t arcstat_prefetch_data_misses; 241 kstat_named_t arcstat_prefetch_metadata_hits; 242 kstat_named_t arcstat_prefetch_metadata_misses; 243 kstat_named_t arcstat_mru_hits; 244 kstat_named_t arcstat_mru_ghost_hits; 245 kstat_named_t arcstat_mfu_hits; 246 kstat_named_t arcstat_mfu_ghost_hits; 247 kstat_named_t arcstat_deleted; 248 kstat_named_t arcstat_recycle_miss; 249 kstat_named_t arcstat_mutex_miss; 250 kstat_named_t arcstat_evict_skip; 251 kstat_named_t arcstat_hash_elements; 252 kstat_named_t arcstat_hash_elements_max; 253 kstat_named_t arcstat_hash_collisions; 254 kstat_named_t arcstat_hash_chains; 255 kstat_named_t arcstat_hash_chain_max; 256 kstat_named_t arcstat_p; 257 kstat_named_t arcstat_c; 258 kstat_named_t arcstat_c_min; 259 kstat_named_t arcstat_c_max; 260 kstat_named_t arcstat_size; 261 kstat_named_t arcstat_hdr_size; 262 kstat_named_t arcstat_data_size; 263 kstat_named_t arcstat_other_size; 264 kstat_named_t arcstat_l2_hits; 265 kstat_named_t arcstat_l2_misses; 266 kstat_named_t arcstat_l2_feeds; 267 kstat_named_t arcstat_l2_rw_clash; 268 kstat_named_t arcstat_l2_read_bytes; 269 kstat_named_t arcstat_l2_write_bytes; 270 kstat_named_t arcstat_l2_writes_sent; 271 kstat_named_t arcstat_l2_writes_done; 272 kstat_named_t arcstat_l2_writes_error; 273 kstat_named_t arcstat_l2_writes_hdr_miss; 274 kstat_named_t arcstat_l2_evict_lock_retry; 275 kstat_named_t arcstat_l2_evict_reading; 276 kstat_named_t arcstat_l2_free_on_write; 277 kstat_named_t arcstat_l2_abort_lowmem; 278 kstat_named_t arcstat_l2_cksum_bad; 279 kstat_named_t arcstat_l2_io_error; 280 kstat_named_t arcstat_l2_size; 281 kstat_named_t arcstat_l2_hdr_size; 282 kstat_named_t arcstat_memory_throttle_count; 283 } arc_stats_t; 284 285 static arc_stats_t arc_stats = { 286 { "hits", KSTAT_DATA_UINT64 }, 287 { "misses", KSTAT_DATA_UINT64 }, 288 { "demand_data_hits", KSTAT_DATA_UINT64 }, 289 { "demand_data_misses", KSTAT_DATA_UINT64 }, 290 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 291 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 292 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 293 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 294 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 295 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 296 { "mru_hits", KSTAT_DATA_UINT64 }, 297 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 298 { "mfu_hits", KSTAT_DATA_UINT64 }, 299 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 300 { "deleted", KSTAT_DATA_UINT64 }, 301 { "recycle_miss", KSTAT_DATA_UINT64 }, 302 { "mutex_miss", KSTAT_DATA_UINT64 }, 303 { "evict_skip", KSTAT_DATA_UINT64 }, 304 { "hash_elements", KSTAT_DATA_UINT64 }, 305 { "hash_elements_max", KSTAT_DATA_UINT64 }, 306 { "hash_collisions", KSTAT_DATA_UINT64 }, 307 { "hash_chains", KSTAT_DATA_UINT64 }, 308 { "hash_chain_max", KSTAT_DATA_UINT64 }, 309 { "p", KSTAT_DATA_UINT64 }, 310 { "c", KSTAT_DATA_UINT64 }, 311 { "c_min", KSTAT_DATA_UINT64 }, 312 { "c_max", KSTAT_DATA_UINT64 }, 313 { "size", KSTAT_DATA_UINT64 }, 314 { "hdr_size", KSTAT_DATA_UINT64 }, 315 { "data_size", KSTAT_DATA_UINT64 }, 316 { "other_size", KSTAT_DATA_UINT64 }, 317 { "l2_hits", KSTAT_DATA_UINT64 }, 318 { "l2_misses", KSTAT_DATA_UINT64 }, 319 { "l2_feeds", KSTAT_DATA_UINT64 }, 320 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 321 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 322 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 323 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 324 { "l2_writes_done", KSTAT_DATA_UINT64 }, 325 { "l2_writes_error", KSTAT_DATA_UINT64 }, 326 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 327 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 328 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 329 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 330 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 331 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 332 { "l2_io_error", KSTAT_DATA_UINT64 }, 333 { "l2_size", KSTAT_DATA_UINT64 }, 334 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 335 { "memory_throttle_count", KSTAT_DATA_UINT64 } 336 }; 337 338 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 339 340 #define ARCSTAT_INCR(stat, val) \ 341 atomic_add_64(&arc_stats.stat.value.ui64, (val)); 342 343 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 344 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 345 346 #define ARCSTAT_MAX(stat, val) { \ 347 uint64_t m; \ 348 while ((val) > (m = arc_stats.stat.value.ui64) && \ 349 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 350 continue; \ 351 } 352 353 #define ARCSTAT_MAXSTAT(stat) \ 354 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 355 356 /* 357 * We define a macro to allow ARC hits/misses to be easily broken down by 358 * two separate conditions, giving a total of four different subtypes for 359 * each of hits and misses (so eight statistics total). 360 */ 361 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 362 if (cond1) { \ 363 if (cond2) { \ 364 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 365 } else { \ 366 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 367 } \ 368 } else { \ 369 if (cond2) { \ 370 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 371 } else { \ 372 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 373 } \ 374 } 375 376 kstat_t *arc_ksp; 377 static arc_state_t *arc_anon; 378 static arc_state_t *arc_mru; 379 static arc_state_t *arc_mru_ghost; 380 static arc_state_t *arc_mfu; 381 static arc_state_t *arc_mfu_ghost; 382 static arc_state_t *arc_l2c_only; 383 384 /* 385 * There are several ARC variables that are critical to export as kstats -- 386 * but we don't want to have to grovel around in the kstat whenever we wish to 387 * manipulate them. For these variables, we therefore define them to be in 388 * terms of the statistic variable. This assures that we are not introducing 389 * the possibility of inconsistency by having shadow copies of the variables, 390 * while still allowing the code to be readable. 391 */ 392 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 393 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 394 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 395 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 396 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 397 398 static int arc_no_grow; /* Don't try to grow cache size */ 399 static uint64_t arc_tempreserve; 400 static uint64_t arc_loaned_bytes; 401 static uint64_t arc_meta_used; 402 static uint64_t arc_meta_limit; 403 static uint64_t arc_meta_max = 0; 404 405 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 406 407 typedef struct arc_callback arc_callback_t; 408 409 struct arc_callback { 410 void *acb_private; 411 arc_done_func_t *acb_done; 412 arc_buf_t *acb_buf; 413 zio_t *acb_zio_dummy; 414 arc_callback_t *acb_next; 415 }; 416 417 typedef struct arc_write_callback arc_write_callback_t; 418 419 struct arc_write_callback { 420 void *awcb_private; 421 arc_done_func_t *awcb_ready; 422 arc_done_func_t *awcb_done; 423 arc_buf_t *awcb_buf; 424 }; 425 426 struct arc_buf_hdr { 427 /* protected by hash lock */ 428 dva_t b_dva; 429 uint64_t b_birth; 430 uint64_t b_cksum0; 431 432 kmutex_t b_freeze_lock; 433 zio_cksum_t *b_freeze_cksum; 434 435 arc_buf_hdr_t *b_hash_next; 436 arc_buf_t *b_buf; 437 uint32_t b_flags; 438 uint32_t b_datacnt; 439 440 arc_callback_t *b_acb; 441 kcondvar_t b_cv; 442 443 /* immutable */ 444 arc_buf_contents_t b_type; 445 uint64_t b_size; 446 uint64_t b_spa; 447 448 /* protected by arc state mutex */ 449 arc_state_t *b_state; 450 list_node_t b_arc_node; 451 452 /* updated atomically */ 453 clock_t b_arc_access; 454 455 /* self protecting */ 456 refcount_t b_refcnt; 457 458 l2arc_buf_hdr_t *b_l2hdr; 459 list_node_t b_l2node; 460 }; 461 462 static arc_buf_t *arc_eviction_list; 463 static kmutex_t arc_eviction_mtx; 464 static arc_buf_hdr_t arc_eviction_hdr; 465 static void arc_get_data_buf(arc_buf_t *buf); 466 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 467 static int arc_evict_needed(arc_buf_contents_t type); 468 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 469 470 #define GHOST_STATE(state) \ 471 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 472 (state) == arc_l2c_only) 473 474 /* 475 * Private ARC flags. These flags are private ARC only flags that will show up 476 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 477 * be passed in as arc_flags in things like arc_read. However, these flags 478 * should never be passed and should only be set by ARC code. When adding new 479 * public flags, make sure not to smash the private ones. 480 */ 481 482 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 483 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 484 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 485 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 486 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 487 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 488 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 489 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 490 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 491 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 492 #define ARC_STORED (1 << 19) /* has been store()d to */ 493 494 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 495 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 496 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 497 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 498 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 499 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 500 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 501 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 502 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 503 (hdr)->b_l2hdr != NULL) 504 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 505 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 506 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 507 508 /* 509 * Other sizes 510 */ 511 512 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 513 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 514 515 /* 516 * Hash table routines 517 */ 518 519 #define HT_LOCK_PAD 64 520 521 struct ht_lock { 522 kmutex_t ht_lock; 523 #ifdef _KERNEL 524 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 525 #endif 526 }; 527 528 #define BUF_LOCKS 256 529 typedef struct buf_hash_table { 530 uint64_t ht_mask; 531 arc_buf_hdr_t **ht_table; 532 struct ht_lock ht_locks[BUF_LOCKS]; 533 } buf_hash_table_t; 534 535 static buf_hash_table_t buf_hash_table; 536 537 #define BUF_HASH_INDEX(spa, dva, birth) \ 538 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 539 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 540 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 541 #define HDR_LOCK(buf) \ 542 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 543 544 uint64_t zfs_crc64_table[256]; 545 546 /* 547 * Level 2 ARC 548 */ 549 550 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 551 #define L2ARC_HEADROOM 2 /* num of writes */ 552 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 553 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 554 555 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 556 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 557 558 /* 559 * L2ARC Performance Tunables 560 */ 561 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 562 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 563 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 564 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 565 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 566 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 567 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 568 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 569 570 /* 571 * L2ARC Internals 572 */ 573 typedef struct l2arc_dev { 574 vdev_t *l2ad_vdev; /* vdev */ 575 spa_t *l2ad_spa; /* spa */ 576 uint64_t l2ad_hand; /* next write location */ 577 uint64_t l2ad_write; /* desired write size, bytes */ 578 uint64_t l2ad_boost; /* warmup write boost, bytes */ 579 uint64_t l2ad_start; /* first addr on device */ 580 uint64_t l2ad_end; /* last addr on device */ 581 uint64_t l2ad_evict; /* last addr eviction reached */ 582 boolean_t l2ad_first; /* first sweep through */ 583 boolean_t l2ad_writing; /* currently writing */ 584 list_t *l2ad_buflist; /* buffer list */ 585 list_node_t l2ad_node; /* device list node */ 586 } l2arc_dev_t; 587 588 static list_t L2ARC_dev_list; /* device list */ 589 static list_t *l2arc_dev_list; /* device list pointer */ 590 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 591 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 592 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 593 static list_t L2ARC_free_on_write; /* free after write buf list */ 594 static list_t *l2arc_free_on_write; /* free after write list ptr */ 595 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 596 static uint64_t l2arc_ndev; /* number of devices */ 597 598 typedef struct l2arc_read_callback { 599 arc_buf_t *l2rcb_buf; /* read buffer */ 600 spa_t *l2rcb_spa; /* spa */ 601 blkptr_t l2rcb_bp; /* original blkptr */ 602 zbookmark_t l2rcb_zb; /* original bookmark */ 603 int l2rcb_flags; /* original flags */ 604 } l2arc_read_callback_t; 605 606 typedef struct l2arc_write_callback { 607 l2arc_dev_t *l2wcb_dev; /* device info */ 608 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 609 } l2arc_write_callback_t; 610 611 struct l2arc_buf_hdr { 612 /* protected by arc_buf_hdr mutex */ 613 l2arc_dev_t *b_dev; /* L2ARC device */ 614 uint64_t b_daddr; /* disk address, offset byte */ 615 }; 616 617 typedef struct l2arc_data_free { 618 /* protected by l2arc_free_on_write_mtx */ 619 void *l2df_data; 620 size_t l2df_size; 621 void (*l2df_func)(void *, size_t); 622 list_node_t l2df_list_node; 623 } l2arc_data_free_t; 624 625 static kmutex_t l2arc_feed_thr_lock; 626 static kcondvar_t l2arc_feed_thr_cv; 627 static uint8_t l2arc_thread_exit; 628 629 static void l2arc_read_done(zio_t *zio); 630 static void l2arc_hdr_stat_add(void); 631 static void l2arc_hdr_stat_remove(void); 632 633 static uint64_t 634 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 635 { 636 uint8_t *vdva = (uint8_t *)dva; 637 uint64_t crc = -1ULL; 638 int i; 639 640 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 641 642 for (i = 0; i < sizeof (dva_t); i++) 643 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 644 645 crc ^= (spa>>8) ^ birth; 646 647 return (crc); 648 } 649 650 #define BUF_EMPTY(buf) \ 651 ((buf)->b_dva.dva_word[0] == 0 && \ 652 (buf)->b_dva.dva_word[1] == 0 && \ 653 (buf)->b_birth == 0) 654 655 #define BUF_EQUAL(spa, dva, birth, buf) \ 656 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 657 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 658 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 659 660 static arc_buf_hdr_t * 661 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp) 662 { 663 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 664 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 665 arc_buf_hdr_t *buf; 666 667 mutex_enter(hash_lock); 668 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 669 buf = buf->b_hash_next) { 670 if (BUF_EQUAL(spa, dva, birth, buf)) { 671 *lockp = hash_lock; 672 return (buf); 673 } 674 } 675 mutex_exit(hash_lock); 676 *lockp = NULL; 677 return (NULL); 678 } 679 680 /* 681 * Insert an entry into the hash table. If there is already an element 682 * equal to elem in the hash table, then the already existing element 683 * will be returned and the new element will not be inserted. 684 * Otherwise returns NULL. 685 */ 686 static arc_buf_hdr_t * 687 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 688 { 689 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 690 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 691 arc_buf_hdr_t *fbuf; 692 uint32_t i; 693 694 ASSERT(!HDR_IN_HASH_TABLE(buf)); 695 *lockp = hash_lock; 696 mutex_enter(hash_lock); 697 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 698 fbuf = fbuf->b_hash_next, i++) { 699 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 700 return (fbuf); 701 } 702 703 buf->b_hash_next = buf_hash_table.ht_table[idx]; 704 buf_hash_table.ht_table[idx] = buf; 705 buf->b_flags |= ARC_IN_HASH_TABLE; 706 707 /* collect some hash table performance data */ 708 if (i > 0) { 709 ARCSTAT_BUMP(arcstat_hash_collisions); 710 if (i == 1) 711 ARCSTAT_BUMP(arcstat_hash_chains); 712 713 ARCSTAT_MAX(arcstat_hash_chain_max, i); 714 } 715 716 ARCSTAT_BUMP(arcstat_hash_elements); 717 ARCSTAT_MAXSTAT(arcstat_hash_elements); 718 719 return (NULL); 720 } 721 722 static void 723 buf_hash_remove(arc_buf_hdr_t *buf) 724 { 725 arc_buf_hdr_t *fbuf, **bufp; 726 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 727 728 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 729 ASSERT(HDR_IN_HASH_TABLE(buf)); 730 731 bufp = &buf_hash_table.ht_table[idx]; 732 while ((fbuf = *bufp) != buf) { 733 ASSERT(fbuf != NULL); 734 bufp = &fbuf->b_hash_next; 735 } 736 *bufp = buf->b_hash_next; 737 buf->b_hash_next = NULL; 738 buf->b_flags &= ~ARC_IN_HASH_TABLE; 739 740 /* collect some hash table performance data */ 741 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 742 743 if (buf_hash_table.ht_table[idx] && 744 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 745 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 746 } 747 748 /* 749 * Global data structures and functions for the buf kmem cache. 750 */ 751 static kmem_cache_t *hdr_cache; 752 static kmem_cache_t *buf_cache; 753 754 static void 755 buf_fini(void) 756 { 757 int i; 758 759 kmem_free(buf_hash_table.ht_table, 760 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 761 for (i = 0; i < BUF_LOCKS; i++) 762 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 763 kmem_cache_destroy(hdr_cache); 764 kmem_cache_destroy(buf_cache); 765 } 766 767 /* 768 * Constructor callback - called when the cache is empty 769 * and a new buf is requested. 770 */ 771 /* ARGSUSED */ 772 static int 773 hdr_cons(void *vbuf, void *unused, int kmflag) 774 { 775 arc_buf_hdr_t *buf = vbuf; 776 777 bzero(buf, sizeof (arc_buf_hdr_t)); 778 refcount_create(&buf->b_refcnt); 779 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 780 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 781 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 782 783 return (0); 784 } 785 786 /* ARGSUSED */ 787 static int 788 buf_cons(void *vbuf, void *unused, int kmflag) 789 { 790 arc_buf_t *buf = vbuf; 791 792 bzero(buf, sizeof (arc_buf_t)); 793 rw_init(&buf->b_lock, NULL, RW_DEFAULT, NULL); 794 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 795 796 return (0); 797 } 798 799 /* 800 * Destructor callback - called when a cached buf is 801 * no longer required. 802 */ 803 /* ARGSUSED */ 804 static void 805 hdr_dest(void *vbuf, void *unused) 806 { 807 arc_buf_hdr_t *buf = vbuf; 808 809 refcount_destroy(&buf->b_refcnt); 810 cv_destroy(&buf->b_cv); 811 mutex_destroy(&buf->b_freeze_lock); 812 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 813 } 814 815 /* ARGSUSED */ 816 static void 817 buf_dest(void *vbuf, void *unused) 818 { 819 arc_buf_t *buf = vbuf; 820 821 rw_destroy(&buf->b_lock); 822 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 823 } 824 825 /* 826 * Reclaim callback -- invoked when memory is low. 827 */ 828 /* ARGSUSED */ 829 static void 830 hdr_recl(void *unused) 831 { 832 dprintf("hdr_recl called\n"); 833 /* 834 * umem calls the reclaim func when we destroy the buf cache, 835 * which is after we do arc_fini(). 836 */ 837 if (!arc_dead) 838 cv_signal(&arc_reclaim_thr_cv); 839 } 840 841 static void 842 buf_init(void) 843 { 844 uint64_t *ct; 845 uint64_t hsize = 1ULL << 12; 846 int i, j; 847 848 /* 849 * The hash table is big enough to fill all of physical memory 850 * with an average 64K block size. The table will take up 851 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 852 */ 853 while (hsize * 65536 < physmem * PAGESIZE) 854 hsize <<= 1; 855 retry: 856 buf_hash_table.ht_mask = hsize - 1; 857 buf_hash_table.ht_table = 858 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 859 if (buf_hash_table.ht_table == NULL) { 860 ASSERT(hsize > (1ULL << 8)); 861 hsize >>= 1; 862 goto retry; 863 } 864 865 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 866 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 867 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 868 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 869 870 for (i = 0; i < 256; i++) 871 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 872 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 873 874 for (i = 0; i < BUF_LOCKS; i++) { 875 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 876 NULL, MUTEX_DEFAULT, NULL); 877 } 878 } 879 880 #define ARC_MINTIME (hz>>4) /* 62 ms */ 881 882 static void 883 arc_cksum_verify(arc_buf_t *buf) 884 { 885 zio_cksum_t zc; 886 887 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 888 return; 889 890 mutex_enter(&buf->b_hdr->b_freeze_lock); 891 if (buf->b_hdr->b_freeze_cksum == NULL || 892 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 893 mutex_exit(&buf->b_hdr->b_freeze_lock); 894 return; 895 } 896 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 897 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 898 panic("buffer modified while frozen!"); 899 mutex_exit(&buf->b_hdr->b_freeze_lock); 900 } 901 902 static int 903 arc_cksum_equal(arc_buf_t *buf) 904 { 905 zio_cksum_t zc; 906 int equal; 907 908 mutex_enter(&buf->b_hdr->b_freeze_lock); 909 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 910 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 911 mutex_exit(&buf->b_hdr->b_freeze_lock); 912 913 return (equal); 914 } 915 916 static void 917 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 918 { 919 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 920 return; 921 922 mutex_enter(&buf->b_hdr->b_freeze_lock); 923 if (buf->b_hdr->b_freeze_cksum != NULL) { 924 mutex_exit(&buf->b_hdr->b_freeze_lock); 925 return; 926 } 927 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 928 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 929 buf->b_hdr->b_freeze_cksum); 930 mutex_exit(&buf->b_hdr->b_freeze_lock); 931 } 932 933 void 934 arc_buf_thaw(arc_buf_t *buf) 935 { 936 if (zfs_flags & ZFS_DEBUG_MODIFY) { 937 if (buf->b_hdr->b_state != arc_anon) 938 panic("modifying non-anon buffer!"); 939 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 940 panic("modifying buffer while i/o in progress!"); 941 arc_cksum_verify(buf); 942 } 943 944 mutex_enter(&buf->b_hdr->b_freeze_lock); 945 if (buf->b_hdr->b_freeze_cksum != NULL) { 946 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 947 buf->b_hdr->b_freeze_cksum = NULL; 948 } 949 mutex_exit(&buf->b_hdr->b_freeze_lock); 950 } 951 952 void 953 arc_buf_freeze(arc_buf_t *buf) 954 { 955 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 956 return; 957 958 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 959 buf->b_hdr->b_state == arc_anon); 960 arc_cksum_compute(buf, B_FALSE); 961 } 962 963 static void 964 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 965 { 966 ASSERT(MUTEX_HELD(hash_lock)); 967 968 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 969 (ab->b_state != arc_anon)) { 970 uint64_t delta = ab->b_size * ab->b_datacnt; 971 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 972 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 973 974 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 975 mutex_enter(&ab->b_state->arcs_mtx); 976 ASSERT(list_link_active(&ab->b_arc_node)); 977 list_remove(list, ab); 978 if (GHOST_STATE(ab->b_state)) { 979 ASSERT3U(ab->b_datacnt, ==, 0); 980 ASSERT3P(ab->b_buf, ==, NULL); 981 delta = ab->b_size; 982 } 983 ASSERT(delta > 0); 984 ASSERT3U(*size, >=, delta); 985 atomic_add_64(size, -delta); 986 mutex_exit(&ab->b_state->arcs_mtx); 987 /* remove the prefetch flag if we get a reference */ 988 if (ab->b_flags & ARC_PREFETCH) 989 ab->b_flags &= ~ARC_PREFETCH; 990 } 991 } 992 993 static int 994 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 995 { 996 int cnt; 997 arc_state_t *state = ab->b_state; 998 999 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1000 ASSERT(!GHOST_STATE(state)); 1001 1002 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1003 (state != arc_anon)) { 1004 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1005 1006 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1007 mutex_enter(&state->arcs_mtx); 1008 ASSERT(!list_link_active(&ab->b_arc_node)); 1009 list_insert_head(&state->arcs_list[ab->b_type], ab); 1010 ASSERT(ab->b_datacnt > 0); 1011 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1012 mutex_exit(&state->arcs_mtx); 1013 } 1014 return (cnt); 1015 } 1016 1017 /* 1018 * Move the supplied buffer to the indicated state. The mutex 1019 * for the buffer must be held by the caller. 1020 */ 1021 static void 1022 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1023 { 1024 arc_state_t *old_state = ab->b_state; 1025 int64_t refcnt = refcount_count(&ab->b_refcnt); 1026 uint64_t from_delta, to_delta; 1027 1028 ASSERT(MUTEX_HELD(hash_lock)); 1029 ASSERT(new_state != old_state); 1030 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1031 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1032 1033 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1034 1035 /* 1036 * If this buffer is evictable, transfer it from the 1037 * old state list to the new state list. 1038 */ 1039 if (refcnt == 0) { 1040 if (old_state != arc_anon) { 1041 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1042 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1043 1044 if (use_mutex) 1045 mutex_enter(&old_state->arcs_mtx); 1046 1047 ASSERT(list_link_active(&ab->b_arc_node)); 1048 list_remove(&old_state->arcs_list[ab->b_type], ab); 1049 1050 /* 1051 * If prefetching out of the ghost cache, 1052 * we will have a non-null datacnt. 1053 */ 1054 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1055 /* ghost elements have a ghost size */ 1056 ASSERT(ab->b_buf == NULL); 1057 from_delta = ab->b_size; 1058 } 1059 ASSERT3U(*size, >=, from_delta); 1060 atomic_add_64(size, -from_delta); 1061 1062 if (use_mutex) 1063 mutex_exit(&old_state->arcs_mtx); 1064 } 1065 if (new_state != arc_anon) { 1066 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1067 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1068 1069 if (use_mutex) 1070 mutex_enter(&new_state->arcs_mtx); 1071 1072 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1073 1074 /* ghost elements have a ghost size */ 1075 if (GHOST_STATE(new_state)) { 1076 ASSERT(ab->b_datacnt == 0); 1077 ASSERT(ab->b_buf == NULL); 1078 to_delta = ab->b_size; 1079 } 1080 atomic_add_64(size, to_delta); 1081 1082 if (use_mutex) 1083 mutex_exit(&new_state->arcs_mtx); 1084 } 1085 } 1086 1087 ASSERT(!BUF_EMPTY(ab)); 1088 if (new_state == arc_anon) { 1089 buf_hash_remove(ab); 1090 } 1091 1092 /* adjust state sizes */ 1093 if (to_delta) 1094 atomic_add_64(&new_state->arcs_size, to_delta); 1095 if (from_delta) { 1096 ASSERT3U(old_state->arcs_size, >=, from_delta); 1097 atomic_add_64(&old_state->arcs_size, -from_delta); 1098 } 1099 ab->b_state = new_state; 1100 1101 /* adjust l2arc hdr stats */ 1102 if (new_state == arc_l2c_only) 1103 l2arc_hdr_stat_add(); 1104 else if (old_state == arc_l2c_only) 1105 l2arc_hdr_stat_remove(); 1106 } 1107 1108 void 1109 arc_space_consume(uint64_t space, arc_space_type_t type) 1110 { 1111 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1112 1113 switch (type) { 1114 case ARC_SPACE_DATA: 1115 ARCSTAT_INCR(arcstat_data_size, space); 1116 break; 1117 case ARC_SPACE_OTHER: 1118 ARCSTAT_INCR(arcstat_other_size, space); 1119 break; 1120 case ARC_SPACE_HDRS: 1121 ARCSTAT_INCR(arcstat_hdr_size, space); 1122 break; 1123 case ARC_SPACE_L2HDRS: 1124 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1125 break; 1126 } 1127 1128 atomic_add_64(&arc_meta_used, space); 1129 atomic_add_64(&arc_size, space); 1130 } 1131 1132 void 1133 arc_space_return(uint64_t space, arc_space_type_t type) 1134 { 1135 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1136 1137 switch (type) { 1138 case ARC_SPACE_DATA: 1139 ARCSTAT_INCR(arcstat_data_size, -space); 1140 break; 1141 case ARC_SPACE_OTHER: 1142 ARCSTAT_INCR(arcstat_other_size, -space); 1143 break; 1144 case ARC_SPACE_HDRS: 1145 ARCSTAT_INCR(arcstat_hdr_size, -space); 1146 break; 1147 case ARC_SPACE_L2HDRS: 1148 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1149 break; 1150 } 1151 1152 ASSERT(arc_meta_used >= space); 1153 if (arc_meta_max < arc_meta_used) 1154 arc_meta_max = arc_meta_used; 1155 atomic_add_64(&arc_meta_used, -space); 1156 ASSERT(arc_size >= space); 1157 atomic_add_64(&arc_size, -space); 1158 } 1159 1160 void * 1161 arc_data_buf_alloc(uint64_t size) 1162 { 1163 if (arc_evict_needed(ARC_BUFC_DATA)) 1164 cv_signal(&arc_reclaim_thr_cv); 1165 atomic_add_64(&arc_size, size); 1166 return (zio_data_buf_alloc(size)); 1167 } 1168 1169 void 1170 arc_data_buf_free(void *buf, uint64_t size) 1171 { 1172 zio_data_buf_free(buf, size); 1173 ASSERT(arc_size >= size); 1174 atomic_add_64(&arc_size, -size); 1175 } 1176 1177 arc_buf_t * 1178 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1179 { 1180 arc_buf_hdr_t *hdr; 1181 arc_buf_t *buf; 1182 1183 ASSERT3U(size, >, 0); 1184 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1185 ASSERT(BUF_EMPTY(hdr)); 1186 hdr->b_size = size; 1187 hdr->b_type = type; 1188 hdr->b_spa = spa_guid(spa); 1189 hdr->b_state = arc_anon; 1190 hdr->b_arc_access = 0; 1191 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1192 buf->b_hdr = hdr; 1193 buf->b_data = NULL; 1194 buf->b_efunc = NULL; 1195 buf->b_private = NULL; 1196 buf->b_next = NULL; 1197 hdr->b_buf = buf; 1198 arc_get_data_buf(buf); 1199 hdr->b_datacnt = 1; 1200 hdr->b_flags = 0; 1201 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1202 (void) refcount_add(&hdr->b_refcnt, tag); 1203 1204 return (buf); 1205 } 1206 1207 static char *arc_onloan_tag = "onloan"; 1208 1209 /* 1210 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1211 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1212 * buffers must be returned to the arc before they can be used by the DMU or 1213 * freed. 1214 */ 1215 arc_buf_t * 1216 arc_loan_buf(spa_t *spa, int size) 1217 { 1218 arc_buf_t *buf; 1219 1220 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1221 1222 atomic_add_64(&arc_loaned_bytes, size); 1223 return (buf); 1224 } 1225 1226 /* 1227 * Return a loaned arc buffer to the arc. 1228 */ 1229 void 1230 arc_return_buf(arc_buf_t *buf, void *tag) 1231 { 1232 arc_buf_hdr_t *hdr = buf->b_hdr; 1233 1234 ASSERT(hdr->b_state == arc_anon); 1235 ASSERT(buf->b_data != NULL); 1236 VERIFY(refcount_remove(&hdr->b_refcnt, arc_onloan_tag) == 0); 1237 VERIFY(refcount_add(&hdr->b_refcnt, tag) == 1); 1238 1239 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1240 } 1241 1242 static arc_buf_t * 1243 arc_buf_clone(arc_buf_t *from) 1244 { 1245 arc_buf_t *buf; 1246 arc_buf_hdr_t *hdr = from->b_hdr; 1247 uint64_t size = hdr->b_size; 1248 1249 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1250 buf->b_hdr = hdr; 1251 buf->b_data = NULL; 1252 buf->b_efunc = NULL; 1253 buf->b_private = NULL; 1254 buf->b_next = hdr->b_buf; 1255 hdr->b_buf = buf; 1256 arc_get_data_buf(buf); 1257 bcopy(from->b_data, buf->b_data, size); 1258 hdr->b_datacnt += 1; 1259 return (buf); 1260 } 1261 1262 void 1263 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1264 { 1265 arc_buf_hdr_t *hdr; 1266 kmutex_t *hash_lock; 1267 1268 /* 1269 * Check to see if this buffer is evicted. Callers 1270 * must verify b_data != NULL to know if the add_ref 1271 * was successful. 1272 */ 1273 rw_enter(&buf->b_lock, RW_READER); 1274 if (buf->b_data == NULL) { 1275 rw_exit(&buf->b_lock); 1276 return; 1277 } 1278 hdr = buf->b_hdr; 1279 ASSERT(hdr != NULL); 1280 hash_lock = HDR_LOCK(hdr); 1281 mutex_enter(hash_lock); 1282 rw_exit(&buf->b_lock); 1283 1284 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1285 add_reference(hdr, hash_lock, tag); 1286 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1287 arc_access(hdr, hash_lock); 1288 mutex_exit(hash_lock); 1289 ARCSTAT_BUMP(arcstat_hits); 1290 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1291 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1292 data, metadata, hits); 1293 } 1294 1295 /* 1296 * Free the arc data buffer. If it is an l2arc write in progress, 1297 * the buffer is placed on l2arc_free_on_write to be freed later. 1298 */ 1299 static void 1300 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t), 1301 void *data, size_t size) 1302 { 1303 if (HDR_L2_WRITING(hdr)) { 1304 l2arc_data_free_t *df; 1305 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1306 df->l2df_data = data; 1307 df->l2df_size = size; 1308 df->l2df_func = free_func; 1309 mutex_enter(&l2arc_free_on_write_mtx); 1310 list_insert_head(l2arc_free_on_write, df); 1311 mutex_exit(&l2arc_free_on_write_mtx); 1312 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1313 } else { 1314 free_func(data, size); 1315 } 1316 } 1317 1318 static void 1319 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1320 { 1321 arc_buf_t **bufp; 1322 1323 /* free up data associated with the buf */ 1324 if (buf->b_data) { 1325 arc_state_t *state = buf->b_hdr->b_state; 1326 uint64_t size = buf->b_hdr->b_size; 1327 arc_buf_contents_t type = buf->b_hdr->b_type; 1328 1329 arc_cksum_verify(buf); 1330 if (!recycle) { 1331 if (type == ARC_BUFC_METADATA) { 1332 arc_buf_data_free(buf->b_hdr, zio_buf_free, 1333 buf->b_data, size); 1334 arc_space_return(size, ARC_SPACE_DATA); 1335 } else { 1336 ASSERT(type == ARC_BUFC_DATA); 1337 arc_buf_data_free(buf->b_hdr, 1338 zio_data_buf_free, buf->b_data, size); 1339 ARCSTAT_INCR(arcstat_data_size, -size); 1340 atomic_add_64(&arc_size, -size); 1341 } 1342 } 1343 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1344 uint64_t *cnt = &state->arcs_lsize[type]; 1345 1346 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1347 ASSERT(state != arc_anon); 1348 1349 ASSERT3U(*cnt, >=, size); 1350 atomic_add_64(cnt, -size); 1351 } 1352 ASSERT3U(state->arcs_size, >=, size); 1353 atomic_add_64(&state->arcs_size, -size); 1354 buf->b_data = NULL; 1355 ASSERT(buf->b_hdr->b_datacnt > 0); 1356 buf->b_hdr->b_datacnt -= 1; 1357 } 1358 1359 /* only remove the buf if requested */ 1360 if (!all) 1361 return; 1362 1363 /* remove the buf from the hdr list */ 1364 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1365 continue; 1366 *bufp = buf->b_next; 1367 1368 ASSERT(buf->b_efunc == NULL); 1369 1370 /* clean up the buf */ 1371 buf->b_hdr = NULL; 1372 kmem_cache_free(buf_cache, buf); 1373 } 1374 1375 static void 1376 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1377 { 1378 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1379 ASSERT3P(hdr->b_state, ==, arc_anon); 1380 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1381 ASSERT(!(hdr->b_flags & ARC_STORED)); 1382 1383 if (hdr->b_l2hdr != NULL) { 1384 if (!MUTEX_HELD(&l2arc_buflist_mtx)) { 1385 /* 1386 * To prevent arc_free() and l2arc_evict() from 1387 * attempting to free the same buffer at the same time, 1388 * a FREE_IN_PROGRESS flag is given to arc_free() to 1389 * give it priority. l2arc_evict() can't destroy this 1390 * header while we are waiting on l2arc_buflist_mtx. 1391 * 1392 * The hdr may be removed from l2ad_buflist before we 1393 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1394 */ 1395 mutex_enter(&l2arc_buflist_mtx); 1396 if (hdr->b_l2hdr != NULL) { 1397 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, 1398 hdr); 1399 } 1400 mutex_exit(&l2arc_buflist_mtx); 1401 } else { 1402 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr); 1403 } 1404 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1405 kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t)); 1406 if (hdr->b_state == arc_l2c_only) 1407 l2arc_hdr_stat_remove(); 1408 hdr->b_l2hdr = NULL; 1409 } 1410 1411 if (!BUF_EMPTY(hdr)) { 1412 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1413 bzero(&hdr->b_dva, sizeof (dva_t)); 1414 hdr->b_birth = 0; 1415 hdr->b_cksum0 = 0; 1416 } 1417 while (hdr->b_buf) { 1418 arc_buf_t *buf = hdr->b_buf; 1419 1420 if (buf->b_efunc) { 1421 mutex_enter(&arc_eviction_mtx); 1422 rw_enter(&buf->b_lock, RW_WRITER); 1423 ASSERT(buf->b_hdr != NULL); 1424 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1425 hdr->b_buf = buf->b_next; 1426 buf->b_hdr = &arc_eviction_hdr; 1427 buf->b_next = arc_eviction_list; 1428 arc_eviction_list = buf; 1429 rw_exit(&buf->b_lock); 1430 mutex_exit(&arc_eviction_mtx); 1431 } else { 1432 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1433 } 1434 } 1435 if (hdr->b_freeze_cksum != NULL) { 1436 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1437 hdr->b_freeze_cksum = NULL; 1438 } 1439 1440 ASSERT(!list_link_active(&hdr->b_arc_node)); 1441 ASSERT3P(hdr->b_hash_next, ==, NULL); 1442 ASSERT3P(hdr->b_acb, ==, NULL); 1443 kmem_cache_free(hdr_cache, hdr); 1444 } 1445 1446 void 1447 arc_buf_free(arc_buf_t *buf, void *tag) 1448 { 1449 arc_buf_hdr_t *hdr = buf->b_hdr; 1450 int hashed = hdr->b_state != arc_anon; 1451 1452 ASSERT(buf->b_efunc == NULL); 1453 ASSERT(buf->b_data != NULL); 1454 1455 if (hashed) { 1456 kmutex_t *hash_lock = HDR_LOCK(hdr); 1457 1458 mutex_enter(hash_lock); 1459 (void) remove_reference(hdr, hash_lock, tag); 1460 if (hdr->b_datacnt > 1) 1461 arc_buf_destroy(buf, FALSE, TRUE); 1462 else 1463 hdr->b_flags |= ARC_BUF_AVAILABLE; 1464 mutex_exit(hash_lock); 1465 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1466 int destroy_hdr; 1467 /* 1468 * We are in the middle of an async write. Don't destroy 1469 * this buffer unless the write completes before we finish 1470 * decrementing the reference count. 1471 */ 1472 mutex_enter(&arc_eviction_mtx); 1473 (void) remove_reference(hdr, NULL, tag); 1474 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1475 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1476 mutex_exit(&arc_eviction_mtx); 1477 if (destroy_hdr) 1478 arc_hdr_destroy(hdr); 1479 } else { 1480 if (remove_reference(hdr, NULL, tag) > 0) { 1481 ASSERT(HDR_IO_ERROR(hdr)); 1482 arc_buf_destroy(buf, FALSE, TRUE); 1483 } else { 1484 arc_hdr_destroy(hdr); 1485 } 1486 } 1487 } 1488 1489 int 1490 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1491 { 1492 arc_buf_hdr_t *hdr = buf->b_hdr; 1493 kmutex_t *hash_lock = HDR_LOCK(hdr); 1494 int no_callback = (buf->b_efunc == NULL); 1495 1496 if (hdr->b_state == arc_anon) { 1497 arc_buf_free(buf, tag); 1498 return (no_callback); 1499 } 1500 1501 mutex_enter(hash_lock); 1502 ASSERT(hdr->b_state != arc_anon); 1503 ASSERT(buf->b_data != NULL); 1504 1505 (void) remove_reference(hdr, hash_lock, tag); 1506 if (hdr->b_datacnt > 1) { 1507 if (no_callback) 1508 arc_buf_destroy(buf, FALSE, TRUE); 1509 } else if (no_callback) { 1510 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1511 hdr->b_flags |= ARC_BUF_AVAILABLE; 1512 } 1513 ASSERT(no_callback || hdr->b_datacnt > 1 || 1514 refcount_is_zero(&hdr->b_refcnt)); 1515 mutex_exit(hash_lock); 1516 return (no_callback); 1517 } 1518 1519 int 1520 arc_buf_size(arc_buf_t *buf) 1521 { 1522 return (buf->b_hdr->b_size); 1523 } 1524 1525 /* 1526 * Evict buffers from list until we've removed the specified number of 1527 * bytes. Move the removed buffers to the appropriate evict state. 1528 * If the recycle flag is set, then attempt to "recycle" a buffer: 1529 * - look for a buffer to evict that is `bytes' long. 1530 * - return the data block from this buffer rather than freeing it. 1531 * This flag is used by callers that are trying to make space for a 1532 * new buffer in a full arc cache. 1533 * 1534 * This function makes a "best effort". It skips over any buffers 1535 * it can't get a hash_lock on, and so may not catch all candidates. 1536 * It may also return without evicting as much space as requested. 1537 */ 1538 static void * 1539 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1540 arc_buf_contents_t type) 1541 { 1542 arc_state_t *evicted_state; 1543 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1544 arc_buf_hdr_t *ab, *ab_prev = NULL; 1545 list_t *list = &state->arcs_list[type]; 1546 kmutex_t *hash_lock; 1547 boolean_t have_lock; 1548 void *stolen = NULL; 1549 1550 ASSERT(state == arc_mru || state == arc_mfu); 1551 1552 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1553 1554 mutex_enter(&state->arcs_mtx); 1555 mutex_enter(&evicted_state->arcs_mtx); 1556 1557 for (ab = list_tail(list); ab; ab = ab_prev) { 1558 ab_prev = list_prev(list, ab); 1559 /* prefetch buffers have a minimum lifespan */ 1560 if (HDR_IO_IN_PROGRESS(ab) || 1561 (spa && ab->b_spa != spa) || 1562 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1563 lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) { 1564 skipped++; 1565 continue; 1566 } 1567 /* "lookahead" for better eviction candidate */ 1568 if (recycle && ab->b_size != bytes && 1569 ab_prev && ab_prev->b_size == bytes) 1570 continue; 1571 hash_lock = HDR_LOCK(ab); 1572 have_lock = MUTEX_HELD(hash_lock); 1573 if (have_lock || mutex_tryenter(hash_lock)) { 1574 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1575 ASSERT(ab->b_datacnt > 0); 1576 while (ab->b_buf) { 1577 arc_buf_t *buf = ab->b_buf; 1578 if (!rw_tryenter(&buf->b_lock, RW_WRITER)) { 1579 missed += 1; 1580 break; 1581 } 1582 if (buf->b_data) { 1583 bytes_evicted += ab->b_size; 1584 if (recycle && ab->b_type == type && 1585 ab->b_size == bytes && 1586 !HDR_L2_WRITING(ab)) { 1587 stolen = buf->b_data; 1588 recycle = FALSE; 1589 } 1590 } 1591 if (buf->b_efunc) { 1592 mutex_enter(&arc_eviction_mtx); 1593 arc_buf_destroy(buf, 1594 buf->b_data == stolen, FALSE); 1595 ab->b_buf = buf->b_next; 1596 buf->b_hdr = &arc_eviction_hdr; 1597 buf->b_next = arc_eviction_list; 1598 arc_eviction_list = buf; 1599 mutex_exit(&arc_eviction_mtx); 1600 rw_exit(&buf->b_lock); 1601 } else { 1602 rw_exit(&buf->b_lock); 1603 arc_buf_destroy(buf, 1604 buf->b_data == stolen, TRUE); 1605 } 1606 } 1607 if (ab->b_datacnt == 0) { 1608 arc_change_state(evicted_state, ab, hash_lock); 1609 ASSERT(HDR_IN_HASH_TABLE(ab)); 1610 ab->b_flags |= ARC_IN_HASH_TABLE; 1611 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1612 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1613 } 1614 if (!have_lock) 1615 mutex_exit(hash_lock); 1616 if (bytes >= 0 && bytes_evicted >= bytes) 1617 break; 1618 } else { 1619 missed += 1; 1620 } 1621 } 1622 1623 mutex_exit(&evicted_state->arcs_mtx); 1624 mutex_exit(&state->arcs_mtx); 1625 1626 if (bytes_evicted < bytes) 1627 dprintf("only evicted %lld bytes from %x", 1628 (longlong_t)bytes_evicted, state); 1629 1630 if (skipped) 1631 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1632 1633 if (missed) 1634 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1635 1636 /* 1637 * We have just evicted some date into the ghost state, make 1638 * sure we also adjust the ghost state size if necessary. 1639 */ 1640 if (arc_no_grow && 1641 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { 1642 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + 1643 arc_mru_ghost->arcs_size - arc_c; 1644 1645 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { 1646 int64_t todelete = 1647 MIN(arc_mru_ghost->arcs_lsize[type], mru_over); 1648 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1649 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { 1650 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], 1651 arc_mru_ghost->arcs_size + 1652 arc_mfu_ghost->arcs_size - arc_c); 1653 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1654 } 1655 } 1656 1657 return (stolen); 1658 } 1659 1660 /* 1661 * Remove buffers from list until we've removed the specified number of 1662 * bytes. Destroy the buffers that are removed. 1663 */ 1664 static void 1665 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1666 { 1667 arc_buf_hdr_t *ab, *ab_prev; 1668 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1669 kmutex_t *hash_lock; 1670 uint64_t bytes_deleted = 0; 1671 uint64_t bufs_skipped = 0; 1672 1673 ASSERT(GHOST_STATE(state)); 1674 top: 1675 mutex_enter(&state->arcs_mtx); 1676 for (ab = list_tail(list); ab; ab = ab_prev) { 1677 ab_prev = list_prev(list, ab); 1678 if (spa && ab->b_spa != spa) 1679 continue; 1680 hash_lock = HDR_LOCK(ab); 1681 if (mutex_tryenter(hash_lock)) { 1682 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1683 ASSERT(ab->b_buf == NULL); 1684 ARCSTAT_BUMP(arcstat_deleted); 1685 bytes_deleted += ab->b_size; 1686 1687 if (ab->b_l2hdr != NULL) { 1688 /* 1689 * This buffer is cached on the 2nd Level ARC; 1690 * don't destroy the header. 1691 */ 1692 arc_change_state(arc_l2c_only, ab, hash_lock); 1693 mutex_exit(hash_lock); 1694 } else { 1695 arc_change_state(arc_anon, ab, hash_lock); 1696 mutex_exit(hash_lock); 1697 arc_hdr_destroy(ab); 1698 } 1699 1700 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1701 if (bytes >= 0 && bytes_deleted >= bytes) 1702 break; 1703 } else { 1704 if (bytes < 0) { 1705 mutex_exit(&state->arcs_mtx); 1706 mutex_enter(hash_lock); 1707 mutex_exit(hash_lock); 1708 goto top; 1709 } 1710 bufs_skipped += 1; 1711 } 1712 } 1713 mutex_exit(&state->arcs_mtx); 1714 1715 if (list == &state->arcs_list[ARC_BUFC_DATA] && 1716 (bytes < 0 || bytes_deleted < bytes)) { 1717 list = &state->arcs_list[ARC_BUFC_METADATA]; 1718 goto top; 1719 } 1720 1721 if (bufs_skipped) { 1722 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 1723 ASSERT(bytes >= 0); 1724 } 1725 1726 if (bytes_deleted < bytes) 1727 dprintf("only deleted %lld bytes from %p", 1728 (longlong_t)bytes_deleted, state); 1729 } 1730 1731 static void 1732 arc_adjust(void) 1733 { 1734 int64_t adjustment, delta; 1735 1736 /* 1737 * Adjust MRU size 1738 */ 1739 1740 adjustment = MIN(arc_size - arc_c, 1741 arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - arc_p); 1742 1743 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 1744 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 1745 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 1746 adjustment -= delta; 1747 } 1748 1749 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1750 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 1751 (void) arc_evict(arc_mru, NULL, delta, FALSE, 1752 ARC_BUFC_METADATA); 1753 } 1754 1755 /* 1756 * Adjust MFU size 1757 */ 1758 1759 adjustment = arc_size - arc_c; 1760 1761 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 1762 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 1763 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 1764 adjustment -= delta; 1765 } 1766 1767 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1768 int64_t delta = MIN(adjustment, 1769 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 1770 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 1771 ARC_BUFC_METADATA); 1772 } 1773 1774 /* 1775 * Adjust ghost lists 1776 */ 1777 1778 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 1779 1780 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 1781 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 1782 arc_evict_ghost(arc_mru_ghost, NULL, delta); 1783 } 1784 1785 adjustment = 1786 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 1787 1788 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 1789 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 1790 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 1791 } 1792 } 1793 1794 static void 1795 arc_do_user_evicts(void) 1796 { 1797 mutex_enter(&arc_eviction_mtx); 1798 while (arc_eviction_list != NULL) { 1799 arc_buf_t *buf = arc_eviction_list; 1800 arc_eviction_list = buf->b_next; 1801 rw_enter(&buf->b_lock, RW_WRITER); 1802 buf->b_hdr = NULL; 1803 rw_exit(&buf->b_lock); 1804 mutex_exit(&arc_eviction_mtx); 1805 1806 if (buf->b_efunc != NULL) 1807 VERIFY(buf->b_efunc(buf) == 0); 1808 1809 buf->b_efunc = NULL; 1810 buf->b_private = NULL; 1811 kmem_cache_free(buf_cache, buf); 1812 mutex_enter(&arc_eviction_mtx); 1813 } 1814 mutex_exit(&arc_eviction_mtx); 1815 } 1816 1817 /* 1818 * Flush all *evictable* data from the cache for the given spa. 1819 * NOTE: this will not touch "active" (i.e. referenced) data. 1820 */ 1821 void 1822 arc_flush(spa_t *spa) 1823 { 1824 uint64_t guid = 0; 1825 1826 if (spa) 1827 guid = spa_guid(spa); 1828 1829 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 1830 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 1831 if (spa) 1832 break; 1833 } 1834 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 1835 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 1836 if (spa) 1837 break; 1838 } 1839 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 1840 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 1841 if (spa) 1842 break; 1843 } 1844 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 1845 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 1846 if (spa) 1847 break; 1848 } 1849 1850 arc_evict_ghost(arc_mru_ghost, guid, -1); 1851 arc_evict_ghost(arc_mfu_ghost, guid, -1); 1852 1853 mutex_enter(&arc_reclaim_thr_lock); 1854 arc_do_user_evicts(); 1855 mutex_exit(&arc_reclaim_thr_lock); 1856 ASSERT(spa || arc_eviction_list == NULL); 1857 } 1858 1859 void 1860 arc_shrink(void) 1861 { 1862 if (arc_c > arc_c_min) { 1863 uint64_t to_free; 1864 1865 #ifdef _KERNEL 1866 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 1867 #else 1868 to_free = arc_c >> arc_shrink_shift; 1869 #endif 1870 if (arc_c > arc_c_min + to_free) 1871 atomic_add_64(&arc_c, -to_free); 1872 else 1873 arc_c = arc_c_min; 1874 1875 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 1876 if (arc_c > arc_size) 1877 arc_c = MAX(arc_size, arc_c_min); 1878 if (arc_p > arc_c) 1879 arc_p = (arc_c >> 1); 1880 ASSERT(arc_c >= arc_c_min); 1881 ASSERT((int64_t)arc_p >= 0); 1882 } 1883 1884 if (arc_size > arc_c) 1885 arc_adjust(); 1886 } 1887 1888 static int 1889 arc_reclaim_needed(void) 1890 { 1891 uint64_t extra; 1892 1893 #ifdef _KERNEL 1894 1895 if (needfree) 1896 return (1); 1897 1898 /* 1899 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1900 */ 1901 extra = desfree; 1902 1903 /* 1904 * check that we're out of range of the pageout scanner. It starts to 1905 * schedule paging if freemem is less than lotsfree and needfree. 1906 * lotsfree is the high-water mark for pageout, and needfree is the 1907 * number of needed free pages. We add extra pages here to make sure 1908 * the scanner doesn't start up while we're freeing memory. 1909 */ 1910 if (freemem < lotsfree + needfree + extra) 1911 return (1); 1912 1913 /* 1914 * check to make sure that swapfs has enough space so that anon 1915 * reservations can still succeed. anon_resvmem() checks that the 1916 * availrmem is greater than swapfs_minfree, and the number of reserved 1917 * swap pages. We also add a bit of extra here just to prevent 1918 * circumstances from getting really dire. 1919 */ 1920 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 1921 return (1); 1922 1923 #if defined(__i386) 1924 /* 1925 * If we're on an i386 platform, it's possible that we'll exhaust the 1926 * kernel heap space before we ever run out of available physical 1927 * memory. Most checks of the size of the heap_area compare against 1928 * tune.t_minarmem, which is the minimum available real memory that we 1929 * can have in the system. However, this is generally fixed at 25 pages 1930 * which is so low that it's useless. In this comparison, we seek to 1931 * calculate the total heap-size, and reclaim if more than 3/4ths of the 1932 * heap is allocated. (Or, in the calculation, if less than 1/4th is 1933 * free) 1934 */ 1935 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 1936 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 1937 return (1); 1938 #endif 1939 1940 #else 1941 if (spa_get_random(100) == 0) 1942 return (1); 1943 #endif 1944 return (0); 1945 } 1946 1947 static void 1948 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 1949 { 1950 size_t i; 1951 kmem_cache_t *prev_cache = NULL; 1952 kmem_cache_t *prev_data_cache = NULL; 1953 extern kmem_cache_t *zio_buf_cache[]; 1954 extern kmem_cache_t *zio_data_buf_cache[]; 1955 1956 #ifdef _KERNEL 1957 if (arc_meta_used >= arc_meta_limit) { 1958 /* 1959 * We are exceeding our meta-data cache limit. 1960 * Purge some DNLC entries to release holds on meta-data. 1961 */ 1962 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 1963 } 1964 #if defined(__i386) 1965 /* 1966 * Reclaim unused memory from all kmem caches. 1967 */ 1968 kmem_reap(); 1969 #endif 1970 #endif 1971 1972 /* 1973 * An aggressive reclamation will shrink the cache size as well as 1974 * reap free buffers from the arc kmem caches. 1975 */ 1976 if (strat == ARC_RECLAIM_AGGR) 1977 arc_shrink(); 1978 1979 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 1980 if (zio_buf_cache[i] != prev_cache) { 1981 prev_cache = zio_buf_cache[i]; 1982 kmem_cache_reap_now(zio_buf_cache[i]); 1983 } 1984 if (zio_data_buf_cache[i] != prev_data_cache) { 1985 prev_data_cache = zio_data_buf_cache[i]; 1986 kmem_cache_reap_now(zio_data_buf_cache[i]); 1987 } 1988 } 1989 kmem_cache_reap_now(buf_cache); 1990 kmem_cache_reap_now(hdr_cache); 1991 } 1992 1993 static void 1994 arc_reclaim_thread(void) 1995 { 1996 clock_t growtime = 0; 1997 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 1998 callb_cpr_t cpr; 1999 2000 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2001 2002 mutex_enter(&arc_reclaim_thr_lock); 2003 while (arc_thread_exit == 0) { 2004 if (arc_reclaim_needed()) { 2005 2006 if (arc_no_grow) { 2007 if (last_reclaim == ARC_RECLAIM_CONS) { 2008 last_reclaim = ARC_RECLAIM_AGGR; 2009 } else { 2010 last_reclaim = ARC_RECLAIM_CONS; 2011 } 2012 } else { 2013 arc_no_grow = TRUE; 2014 last_reclaim = ARC_RECLAIM_AGGR; 2015 membar_producer(); 2016 } 2017 2018 /* reset the growth delay for every reclaim */ 2019 growtime = lbolt + (arc_grow_retry * hz); 2020 2021 arc_kmem_reap_now(last_reclaim); 2022 arc_warm = B_TRUE; 2023 2024 } else if (arc_no_grow && lbolt >= growtime) { 2025 arc_no_grow = FALSE; 2026 } 2027 2028 if (2 * arc_c < arc_size + 2029 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size) 2030 arc_adjust(); 2031 2032 if (arc_eviction_list != NULL) 2033 arc_do_user_evicts(); 2034 2035 /* block until needed, or one second, whichever is shorter */ 2036 CALLB_CPR_SAFE_BEGIN(&cpr); 2037 (void) cv_timedwait(&arc_reclaim_thr_cv, 2038 &arc_reclaim_thr_lock, (lbolt + hz)); 2039 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2040 } 2041 2042 arc_thread_exit = 0; 2043 cv_broadcast(&arc_reclaim_thr_cv); 2044 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2045 thread_exit(); 2046 } 2047 2048 /* 2049 * Adapt arc info given the number of bytes we are trying to add and 2050 * the state that we are comming from. This function is only called 2051 * when we are adding new content to the cache. 2052 */ 2053 static void 2054 arc_adapt(int bytes, arc_state_t *state) 2055 { 2056 int mult; 2057 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2058 2059 if (state == arc_l2c_only) 2060 return; 2061 2062 ASSERT(bytes > 0); 2063 /* 2064 * Adapt the target size of the MRU list: 2065 * - if we just hit in the MRU ghost list, then increase 2066 * the target size of the MRU list. 2067 * - if we just hit in the MFU ghost list, then increase 2068 * the target size of the MFU list by decreasing the 2069 * target size of the MRU list. 2070 */ 2071 if (state == arc_mru_ghost) { 2072 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2073 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2074 2075 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2076 } else if (state == arc_mfu_ghost) { 2077 uint64_t delta; 2078 2079 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2080 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2081 2082 delta = MIN(bytes * mult, arc_p); 2083 arc_p = MAX(arc_p_min, arc_p - delta); 2084 } 2085 ASSERT((int64_t)arc_p >= 0); 2086 2087 if (arc_reclaim_needed()) { 2088 cv_signal(&arc_reclaim_thr_cv); 2089 return; 2090 } 2091 2092 if (arc_no_grow) 2093 return; 2094 2095 if (arc_c >= arc_c_max) 2096 return; 2097 2098 /* 2099 * If we're within (2 * maxblocksize) bytes of the target 2100 * cache size, increment the target cache size 2101 */ 2102 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2103 atomic_add_64(&arc_c, (int64_t)bytes); 2104 if (arc_c > arc_c_max) 2105 arc_c = arc_c_max; 2106 else if (state == arc_anon) 2107 atomic_add_64(&arc_p, (int64_t)bytes); 2108 if (arc_p > arc_c) 2109 arc_p = arc_c; 2110 } 2111 ASSERT((int64_t)arc_p >= 0); 2112 } 2113 2114 /* 2115 * Check if the cache has reached its limits and eviction is required 2116 * prior to insert. 2117 */ 2118 static int 2119 arc_evict_needed(arc_buf_contents_t type) 2120 { 2121 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2122 return (1); 2123 2124 #ifdef _KERNEL 2125 /* 2126 * If zio data pages are being allocated out of a separate heap segment, 2127 * then enforce that the size of available vmem for this area remains 2128 * above about 1/32nd free. 2129 */ 2130 if (type == ARC_BUFC_DATA && zio_arena != NULL && 2131 vmem_size(zio_arena, VMEM_FREE) < 2132 (vmem_size(zio_arena, VMEM_ALLOC) >> 5)) 2133 return (1); 2134 #endif 2135 2136 if (arc_reclaim_needed()) 2137 return (1); 2138 2139 return (arc_size > arc_c); 2140 } 2141 2142 /* 2143 * The buffer, supplied as the first argument, needs a data block. 2144 * So, if we are at cache max, determine which cache should be victimized. 2145 * We have the following cases: 2146 * 2147 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2148 * In this situation if we're out of space, but the resident size of the MFU is 2149 * under the limit, victimize the MFU cache to satisfy this insertion request. 2150 * 2151 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2152 * Here, we've used up all of the available space for the MRU, so we need to 2153 * evict from our own cache instead. Evict from the set of resident MRU 2154 * entries. 2155 * 2156 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2157 * c minus p represents the MFU space in the cache, since p is the size of the 2158 * cache that is dedicated to the MRU. In this situation there's still space on 2159 * the MFU side, so the MRU side needs to be victimized. 2160 * 2161 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2162 * MFU's resident set is consuming more space than it has been allotted. In 2163 * this situation, we must victimize our own cache, the MFU, for this insertion. 2164 */ 2165 static void 2166 arc_get_data_buf(arc_buf_t *buf) 2167 { 2168 arc_state_t *state = buf->b_hdr->b_state; 2169 uint64_t size = buf->b_hdr->b_size; 2170 arc_buf_contents_t type = buf->b_hdr->b_type; 2171 2172 arc_adapt(size, state); 2173 2174 /* 2175 * We have not yet reached cache maximum size, 2176 * just allocate a new buffer. 2177 */ 2178 if (!arc_evict_needed(type)) { 2179 if (type == ARC_BUFC_METADATA) { 2180 buf->b_data = zio_buf_alloc(size); 2181 arc_space_consume(size, ARC_SPACE_DATA); 2182 } else { 2183 ASSERT(type == ARC_BUFC_DATA); 2184 buf->b_data = zio_data_buf_alloc(size); 2185 ARCSTAT_INCR(arcstat_data_size, size); 2186 atomic_add_64(&arc_size, size); 2187 } 2188 goto out; 2189 } 2190 2191 /* 2192 * If we are prefetching from the mfu ghost list, this buffer 2193 * will end up on the mru list; so steal space from there. 2194 */ 2195 if (state == arc_mfu_ghost) 2196 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2197 else if (state == arc_mru_ghost) 2198 state = arc_mru; 2199 2200 if (state == arc_mru || state == arc_anon) { 2201 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2202 state = (arc_mfu->arcs_lsize[type] >= size && 2203 arc_p > mru_used) ? arc_mfu : arc_mru; 2204 } else { 2205 /* MFU cases */ 2206 uint64_t mfu_space = arc_c - arc_p; 2207 state = (arc_mru->arcs_lsize[type] >= size && 2208 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2209 } 2210 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2211 if (type == ARC_BUFC_METADATA) { 2212 buf->b_data = zio_buf_alloc(size); 2213 arc_space_consume(size, ARC_SPACE_DATA); 2214 } else { 2215 ASSERT(type == ARC_BUFC_DATA); 2216 buf->b_data = zio_data_buf_alloc(size); 2217 ARCSTAT_INCR(arcstat_data_size, size); 2218 atomic_add_64(&arc_size, size); 2219 } 2220 ARCSTAT_BUMP(arcstat_recycle_miss); 2221 } 2222 ASSERT(buf->b_data != NULL); 2223 out: 2224 /* 2225 * Update the state size. Note that ghost states have a 2226 * "ghost size" and so don't need to be updated. 2227 */ 2228 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2229 arc_buf_hdr_t *hdr = buf->b_hdr; 2230 2231 atomic_add_64(&hdr->b_state->arcs_size, size); 2232 if (list_link_active(&hdr->b_arc_node)) { 2233 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2234 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2235 } 2236 /* 2237 * If we are growing the cache, and we are adding anonymous 2238 * data, and we have outgrown arc_p, update arc_p 2239 */ 2240 if (arc_size < arc_c && hdr->b_state == arc_anon && 2241 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2242 arc_p = MIN(arc_c, arc_p + size); 2243 } 2244 } 2245 2246 /* 2247 * This routine is called whenever a buffer is accessed. 2248 * NOTE: the hash lock is dropped in this function. 2249 */ 2250 static void 2251 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2252 { 2253 ASSERT(MUTEX_HELD(hash_lock)); 2254 2255 if (buf->b_state == arc_anon) { 2256 /* 2257 * This buffer is not in the cache, and does not 2258 * appear in our "ghost" list. Add the new buffer 2259 * to the MRU state. 2260 */ 2261 2262 ASSERT(buf->b_arc_access == 0); 2263 buf->b_arc_access = lbolt; 2264 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2265 arc_change_state(arc_mru, buf, hash_lock); 2266 2267 } else if (buf->b_state == arc_mru) { 2268 /* 2269 * If this buffer is here because of a prefetch, then either: 2270 * - clear the flag if this is a "referencing" read 2271 * (any subsequent access will bump this into the MFU state). 2272 * or 2273 * - move the buffer to the head of the list if this is 2274 * another prefetch (to make it less likely to be evicted). 2275 */ 2276 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2277 if (refcount_count(&buf->b_refcnt) == 0) { 2278 ASSERT(list_link_active(&buf->b_arc_node)); 2279 } else { 2280 buf->b_flags &= ~ARC_PREFETCH; 2281 ARCSTAT_BUMP(arcstat_mru_hits); 2282 } 2283 buf->b_arc_access = lbolt; 2284 return; 2285 } 2286 2287 /* 2288 * This buffer has been "accessed" only once so far, 2289 * but it is still in the cache. Move it to the MFU 2290 * state. 2291 */ 2292 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 2293 /* 2294 * More than 125ms have passed since we 2295 * instantiated this buffer. Move it to the 2296 * most frequently used state. 2297 */ 2298 buf->b_arc_access = lbolt; 2299 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2300 arc_change_state(arc_mfu, buf, hash_lock); 2301 } 2302 ARCSTAT_BUMP(arcstat_mru_hits); 2303 } else if (buf->b_state == arc_mru_ghost) { 2304 arc_state_t *new_state; 2305 /* 2306 * This buffer has been "accessed" recently, but 2307 * was evicted from the cache. Move it to the 2308 * MFU state. 2309 */ 2310 2311 if (buf->b_flags & ARC_PREFETCH) { 2312 new_state = arc_mru; 2313 if (refcount_count(&buf->b_refcnt) > 0) 2314 buf->b_flags &= ~ARC_PREFETCH; 2315 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2316 } else { 2317 new_state = arc_mfu; 2318 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2319 } 2320 2321 buf->b_arc_access = lbolt; 2322 arc_change_state(new_state, buf, hash_lock); 2323 2324 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2325 } else if (buf->b_state == arc_mfu) { 2326 /* 2327 * This buffer has been accessed more than once and is 2328 * still in the cache. Keep it in the MFU state. 2329 * 2330 * NOTE: an add_reference() that occurred when we did 2331 * the arc_read() will have kicked this off the list. 2332 * If it was a prefetch, we will explicitly move it to 2333 * the head of the list now. 2334 */ 2335 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2336 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2337 ASSERT(list_link_active(&buf->b_arc_node)); 2338 } 2339 ARCSTAT_BUMP(arcstat_mfu_hits); 2340 buf->b_arc_access = lbolt; 2341 } else if (buf->b_state == arc_mfu_ghost) { 2342 arc_state_t *new_state = arc_mfu; 2343 /* 2344 * This buffer has been accessed more than once but has 2345 * been evicted from the cache. Move it back to the 2346 * MFU state. 2347 */ 2348 2349 if (buf->b_flags & ARC_PREFETCH) { 2350 /* 2351 * This is a prefetch access... 2352 * move this block back to the MRU state. 2353 */ 2354 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 2355 new_state = arc_mru; 2356 } 2357 2358 buf->b_arc_access = lbolt; 2359 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2360 arc_change_state(new_state, buf, hash_lock); 2361 2362 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2363 } else if (buf->b_state == arc_l2c_only) { 2364 /* 2365 * This buffer is on the 2nd Level ARC. 2366 */ 2367 2368 buf->b_arc_access = lbolt; 2369 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2370 arc_change_state(arc_mfu, buf, hash_lock); 2371 } else { 2372 ASSERT(!"invalid arc state"); 2373 } 2374 } 2375 2376 /* a generic arc_done_func_t which you can use */ 2377 /* ARGSUSED */ 2378 void 2379 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2380 { 2381 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2382 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2383 } 2384 2385 /* a generic arc_done_func_t */ 2386 void 2387 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2388 { 2389 arc_buf_t **bufp = arg; 2390 if (zio && zio->io_error) { 2391 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2392 *bufp = NULL; 2393 } else { 2394 *bufp = buf; 2395 } 2396 } 2397 2398 static void 2399 arc_read_done(zio_t *zio) 2400 { 2401 arc_buf_hdr_t *hdr, *found; 2402 arc_buf_t *buf; 2403 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2404 kmutex_t *hash_lock; 2405 arc_callback_t *callback_list, *acb; 2406 int freeable = FALSE; 2407 2408 buf = zio->io_private; 2409 hdr = buf->b_hdr; 2410 2411 /* 2412 * The hdr was inserted into hash-table and removed from lists 2413 * prior to starting I/O. We should find this header, since 2414 * it's in the hash table, and it should be legit since it's 2415 * not possible to evict it during the I/O. The only possible 2416 * reason for it not to be found is if we were freed during the 2417 * read. 2418 */ 2419 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth, 2420 &hash_lock); 2421 2422 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 2423 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2424 (found == hdr && HDR_L2_READING(hdr))); 2425 2426 hdr->b_flags &= ~ARC_L2_EVICTED; 2427 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2428 hdr->b_flags &= ~ARC_L2CACHE; 2429 2430 /* byteswap if necessary */ 2431 callback_list = hdr->b_acb; 2432 ASSERT(callback_list != NULL); 2433 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 2434 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2435 byteswap_uint64_array : 2436 dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap; 2437 func(buf->b_data, hdr->b_size); 2438 } 2439 2440 arc_cksum_compute(buf, B_FALSE); 2441 2442 /* create copies of the data buffer for the callers */ 2443 abuf = buf; 2444 for (acb = callback_list; acb; acb = acb->acb_next) { 2445 if (acb->acb_done) { 2446 if (abuf == NULL) 2447 abuf = arc_buf_clone(buf); 2448 acb->acb_buf = abuf; 2449 abuf = NULL; 2450 } 2451 } 2452 hdr->b_acb = NULL; 2453 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2454 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2455 if (abuf == buf) 2456 hdr->b_flags |= ARC_BUF_AVAILABLE; 2457 2458 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2459 2460 if (zio->io_error != 0) { 2461 hdr->b_flags |= ARC_IO_ERROR; 2462 if (hdr->b_state != arc_anon) 2463 arc_change_state(arc_anon, hdr, hash_lock); 2464 if (HDR_IN_HASH_TABLE(hdr)) 2465 buf_hash_remove(hdr); 2466 freeable = refcount_is_zero(&hdr->b_refcnt); 2467 } 2468 2469 /* 2470 * Broadcast before we drop the hash_lock to avoid the possibility 2471 * that the hdr (and hence the cv) might be freed before we get to 2472 * the cv_broadcast(). 2473 */ 2474 cv_broadcast(&hdr->b_cv); 2475 2476 if (hash_lock) { 2477 /* 2478 * Only call arc_access on anonymous buffers. This is because 2479 * if we've issued an I/O for an evicted buffer, we've already 2480 * called arc_access (to prevent any simultaneous readers from 2481 * getting confused). 2482 */ 2483 if (zio->io_error == 0 && hdr->b_state == arc_anon) 2484 arc_access(hdr, hash_lock); 2485 mutex_exit(hash_lock); 2486 } else { 2487 /* 2488 * This block was freed while we waited for the read to 2489 * complete. It has been removed from the hash table and 2490 * moved to the anonymous state (so that it won't show up 2491 * in the cache). 2492 */ 2493 ASSERT3P(hdr->b_state, ==, arc_anon); 2494 freeable = refcount_is_zero(&hdr->b_refcnt); 2495 } 2496 2497 /* execute each callback and free its structure */ 2498 while ((acb = callback_list) != NULL) { 2499 if (acb->acb_done) 2500 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2501 2502 if (acb->acb_zio_dummy != NULL) { 2503 acb->acb_zio_dummy->io_error = zio->io_error; 2504 zio_nowait(acb->acb_zio_dummy); 2505 } 2506 2507 callback_list = acb->acb_next; 2508 kmem_free(acb, sizeof (arc_callback_t)); 2509 } 2510 2511 if (freeable) 2512 arc_hdr_destroy(hdr); 2513 } 2514 2515 /* 2516 * "Read" the block block at the specified DVA (in bp) via the 2517 * cache. If the block is found in the cache, invoke the provided 2518 * callback immediately and return. Note that the `zio' parameter 2519 * in the callback will be NULL in this case, since no IO was 2520 * required. If the block is not in the cache pass the read request 2521 * on to the spa with a substitute callback function, so that the 2522 * requested block will be added to the cache. 2523 * 2524 * If a read request arrives for a block that has a read in-progress, 2525 * either wait for the in-progress read to complete (and return the 2526 * results); or, if this is a read with a "done" func, add a record 2527 * to the read to invoke the "done" func when the read completes, 2528 * and return; or just return. 2529 * 2530 * arc_read_done() will invoke all the requested "done" functions 2531 * for readers of this block. 2532 * 2533 * Normal callers should use arc_read and pass the arc buffer and offset 2534 * for the bp. But if you know you don't need locking, you can use 2535 * arc_read_bp. 2536 */ 2537 int 2538 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_buf_t *pbuf, 2539 arc_done_func_t *done, void *private, int priority, int zio_flags, 2540 uint32_t *arc_flags, const zbookmark_t *zb) 2541 { 2542 int err; 2543 2544 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt)); 2545 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size); 2546 rw_enter(&pbuf->b_lock, RW_READER); 2547 2548 err = arc_read_nolock(pio, spa, bp, done, private, priority, 2549 zio_flags, arc_flags, zb); 2550 rw_exit(&pbuf->b_lock); 2551 2552 return (err); 2553 } 2554 2555 int 2556 arc_read_nolock(zio_t *pio, spa_t *spa, blkptr_t *bp, 2557 arc_done_func_t *done, void *private, int priority, int zio_flags, 2558 uint32_t *arc_flags, const zbookmark_t *zb) 2559 { 2560 arc_buf_hdr_t *hdr; 2561 arc_buf_t *buf; 2562 kmutex_t *hash_lock; 2563 zio_t *rzio; 2564 uint64_t guid = spa_guid(spa); 2565 2566 top: 2567 hdr = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 2568 if (hdr && hdr->b_datacnt > 0) { 2569 2570 *arc_flags |= ARC_CACHED; 2571 2572 if (HDR_IO_IN_PROGRESS(hdr)) { 2573 2574 if (*arc_flags & ARC_WAIT) { 2575 cv_wait(&hdr->b_cv, hash_lock); 2576 mutex_exit(hash_lock); 2577 goto top; 2578 } 2579 ASSERT(*arc_flags & ARC_NOWAIT); 2580 2581 if (done) { 2582 arc_callback_t *acb = NULL; 2583 2584 acb = kmem_zalloc(sizeof (arc_callback_t), 2585 KM_SLEEP); 2586 acb->acb_done = done; 2587 acb->acb_private = private; 2588 if (pio != NULL) 2589 acb->acb_zio_dummy = zio_null(pio, 2590 spa, NULL, NULL, NULL, zio_flags); 2591 2592 ASSERT(acb->acb_done != NULL); 2593 acb->acb_next = hdr->b_acb; 2594 hdr->b_acb = acb; 2595 add_reference(hdr, hash_lock, private); 2596 mutex_exit(hash_lock); 2597 return (0); 2598 } 2599 mutex_exit(hash_lock); 2600 return (0); 2601 } 2602 2603 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2604 2605 if (done) { 2606 add_reference(hdr, hash_lock, private); 2607 /* 2608 * If this block is already in use, create a new 2609 * copy of the data so that we will be guaranteed 2610 * that arc_release() will always succeed. 2611 */ 2612 buf = hdr->b_buf; 2613 ASSERT(buf); 2614 ASSERT(buf->b_data); 2615 if (HDR_BUF_AVAILABLE(hdr)) { 2616 ASSERT(buf->b_efunc == NULL); 2617 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2618 } else { 2619 buf = arc_buf_clone(buf); 2620 } 2621 } else if (*arc_flags & ARC_PREFETCH && 2622 refcount_count(&hdr->b_refcnt) == 0) { 2623 hdr->b_flags |= ARC_PREFETCH; 2624 } 2625 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2626 arc_access(hdr, hash_lock); 2627 if (*arc_flags & ARC_L2CACHE) 2628 hdr->b_flags |= ARC_L2CACHE; 2629 mutex_exit(hash_lock); 2630 ARCSTAT_BUMP(arcstat_hits); 2631 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2632 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2633 data, metadata, hits); 2634 2635 if (done) 2636 done(NULL, buf, private); 2637 } else { 2638 uint64_t size = BP_GET_LSIZE(bp); 2639 arc_callback_t *acb; 2640 vdev_t *vd = NULL; 2641 uint64_t addr; 2642 boolean_t devw = B_FALSE; 2643 2644 if (hdr == NULL) { 2645 /* this block is not in the cache */ 2646 arc_buf_hdr_t *exists; 2647 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2648 buf = arc_buf_alloc(spa, size, private, type); 2649 hdr = buf->b_hdr; 2650 hdr->b_dva = *BP_IDENTITY(bp); 2651 hdr->b_birth = bp->blk_birth; 2652 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 2653 exists = buf_hash_insert(hdr, &hash_lock); 2654 if (exists) { 2655 /* somebody beat us to the hash insert */ 2656 mutex_exit(hash_lock); 2657 bzero(&hdr->b_dva, sizeof (dva_t)); 2658 hdr->b_birth = 0; 2659 hdr->b_cksum0 = 0; 2660 (void) arc_buf_remove_ref(buf, private); 2661 goto top; /* restart the IO request */ 2662 } 2663 /* if this is a prefetch, we don't have a reference */ 2664 if (*arc_flags & ARC_PREFETCH) { 2665 (void) remove_reference(hdr, hash_lock, 2666 private); 2667 hdr->b_flags |= ARC_PREFETCH; 2668 } 2669 if (*arc_flags & ARC_L2CACHE) 2670 hdr->b_flags |= ARC_L2CACHE; 2671 if (BP_GET_LEVEL(bp) > 0) 2672 hdr->b_flags |= ARC_INDIRECT; 2673 } else { 2674 /* this block is in the ghost cache */ 2675 ASSERT(GHOST_STATE(hdr->b_state)); 2676 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2677 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 2678 ASSERT(hdr->b_buf == NULL); 2679 2680 /* if this is a prefetch, we don't have a reference */ 2681 if (*arc_flags & ARC_PREFETCH) 2682 hdr->b_flags |= ARC_PREFETCH; 2683 else 2684 add_reference(hdr, hash_lock, private); 2685 if (*arc_flags & ARC_L2CACHE) 2686 hdr->b_flags |= ARC_L2CACHE; 2687 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2688 buf->b_hdr = hdr; 2689 buf->b_data = NULL; 2690 buf->b_efunc = NULL; 2691 buf->b_private = NULL; 2692 buf->b_next = NULL; 2693 hdr->b_buf = buf; 2694 arc_get_data_buf(buf); 2695 ASSERT(hdr->b_datacnt == 0); 2696 hdr->b_datacnt = 1; 2697 2698 } 2699 2700 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2701 acb->acb_done = done; 2702 acb->acb_private = private; 2703 2704 ASSERT(hdr->b_acb == NULL); 2705 hdr->b_acb = acb; 2706 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2707 2708 /* 2709 * If the buffer has been evicted, migrate it to a present state 2710 * before issuing the I/O. Once we drop the hash-table lock, 2711 * the header will be marked as I/O in progress and have an 2712 * attached buffer. At this point, anybody who finds this 2713 * buffer ought to notice that it's legit but has a pending I/O. 2714 */ 2715 2716 if (GHOST_STATE(hdr->b_state)) 2717 arc_access(hdr, hash_lock); 2718 2719 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL && 2720 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 2721 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 2722 addr = hdr->b_l2hdr->b_daddr; 2723 /* 2724 * Lock out device removal. 2725 */ 2726 if (vdev_is_dead(vd) || 2727 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 2728 vd = NULL; 2729 } 2730 2731 mutex_exit(hash_lock); 2732 2733 ASSERT3U(hdr->b_size, ==, size); 2734 DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size, 2735 zbookmark_t *, zb); 2736 ARCSTAT_BUMP(arcstat_misses); 2737 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2738 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2739 data, metadata, misses); 2740 2741 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 2742 /* 2743 * Read from the L2ARC if the following are true: 2744 * 1. The L2ARC vdev was previously cached. 2745 * 2. This buffer still has L2ARC metadata. 2746 * 3. This buffer isn't currently writing to the L2ARC. 2747 * 4. The L2ARC entry wasn't evicted, which may 2748 * also have invalidated the vdev. 2749 * 5. This isn't prefetch and l2arc_noprefetch is set. 2750 */ 2751 if (hdr->b_l2hdr != NULL && 2752 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 2753 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 2754 l2arc_read_callback_t *cb; 2755 2756 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 2757 ARCSTAT_BUMP(arcstat_l2_hits); 2758 2759 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 2760 KM_SLEEP); 2761 cb->l2rcb_buf = buf; 2762 cb->l2rcb_spa = spa; 2763 cb->l2rcb_bp = *bp; 2764 cb->l2rcb_zb = *zb; 2765 cb->l2rcb_flags = zio_flags; 2766 2767 /* 2768 * l2arc read. The SCL_L2ARC lock will be 2769 * released by l2arc_read_done(). 2770 */ 2771 rzio = zio_read_phys(pio, vd, addr, size, 2772 buf->b_data, ZIO_CHECKSUM_OFF, 2773 l2arc_read_done, cb, priority, zio_flags | 2774 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 2775 ZIO_FLAG_DONT_PROPAGATE | 2776 ZIO_FLAG_DONT_RETRY, B_FALSE); 2777 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 2778 zio_t *, rzio); 2779 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 2780 2781 if (*arc_flags & ARC_NOWAIT) { 2782 zio_nowait(rzio); 2783 return (0); 2784 } 2785 2786 ASSERT(*arc_flags & ARC_WAIT); 2787 if (zio_wait(rzio) == 0) 2788 return (0); 2789 2790 /* l2arc read error; goto zio_read() */ 2791 } else { 2792 DTRACE_PROBE1(l2arc__miss, 2793 arc_buf_hdr_t *, hdr); 2794 ARCSTAT_BUMP(arcstat_l2_misses); 2795 if (HDR_L2_WRITING(hdr)) 2796 ARCSTAT_BUMP(arcstat_l2_rw_clash); 2797 spa_config_exit(spa, SCL_L2ARC, vd); 2798 } 2799 } else { 2800 if (vd != NULL) 2801 spa_config_exit(spa, SCL_L2ARC, vd); 2802 if (l2arc_ndev != 0) { 2803 DTRACE_PROBE1(l2arc__miss, 2804 arc_buf_hdr_t *, hdr); 2805 ARCSTAT_BUMP(arcstat_l2_misses); 2806 } 2807 } 2808 2809 rzio = zio_read(pio, spa, bp, buf->b_data, size, 2810 arc_read_done, buf, priority, zio_flags, zb); 2811 2812 if (*arc_flags & ARC_WAIT) 2813 return (zio_wait(rzio)); 2814 2815 ASSERT(*arc_flags & ARC_NOWAIT); 2816 zio_nowait(rzio); 2817 } 2818 return (0); 2819 } 2820 2821 /* 2822 * arc_read() variant to support pool traversal. If the block is already 2823 * in the ARC, make a copy of it; otherwise, the caller will do the I/O. 2824 * The idea is that we don't want pool traversal filling up memory, but 2825 * if the ARC already has the data anyway, we shouldn't pay for the I/O. 2826 */ 2827 int 2828 arc_tryread(spa_t *spa, blkptr_t *bp, void *data) 2829 { 2830 arc_buf_hdr_t *hdr; 2831 kmutex_t *hash_mtx; 2832 uint64_t guid = spa_guid(spa); 2833 int rc = 0; 2834 2835 hdr = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx); 2836 2837 if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) { 2838 arc_buf_t *buf = hdr->b_buf; 2839 2840 ASSERT(buf); 2841 while (buf->b_data == NULL) { 2842 buf = buf->b_next; 2843 ASSERT(buf); 2844 } 2845 bcopy(buf->b_data, data, hdr->b_size); 2846 } else { 2847 rc = ENOENT; 2848 } 2849 2850 if (hash_mtx) 2851 mutex_exit(hash_mtx); 2852 2853 return (rc); 2854 } 2855 2856 void 2857 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2858 { 2859 ASSERT(buf->b_hdr != NULL); 2860 ASSERT(buf->b_hdr->b_state != arc_anon); 2861 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2862 buf->b_efunc = func; 2863 buf->b_private = private; 2864 } 2865 2866 /* 2867 * This is used by the DMU to let the ARC know that a buffer is 2868 * being evicted, so the ARC should clean up. If this arc buf 2869 * is not yet in the evicted state, it will be put there. 2870 */ 2871 int 2872 arc_buf_evict(arc_buf_t *buf) 2873 { 2874 arc_buf_hdr_t *hdr; 2875 kmutex_t *hash_lock; 2876 arc_buf_t **bufp; 2877 2878 rw_enter(&buf->b_lock, RW_WRITER); 2879 hdr = buf->b_hdr; 2880 if (hdr == NULL) { 2881 /* 2882 * We are in arc_do_user_evicts(). 2883 */ 2884 ASSERT(buf->b_data == NULL); 2885 rw_exit(&buf->b_lock); 2886 return (0); 2887 } else if (buf->b_data == NULL) { 2888 arc_buf_t copy = *buf; /* structure assignment */ 2889 /* 2890 * We are on the eviction list; process this buffer now 2891 * but let arc_do_user_evicts() do the reaping. 2892 */ 2893 buf->b_efunc = NULL; 2894 rw_exit(&buf->b_lock); 2895 VERIFY(copy.b_efunc(©) == 0); 2896 return (1); 2897 } 2898 hash_lock = HDR_LOCK(hdr); 2899 mutex_enter(hash_lock); 2900 2901 ASSERT(buf->b_hdr == hdr); 2902 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2903 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2904 2905 /* 2906 * Pull this buffer off of the hdr 2907 */ 2908 bufp = &hdr->b_buf; 2909 while (*bufp != buf) 2910 bufp = &(*bufp)->b_next; 2911 *bufp = buf->b_next; 2912 2913 ASSERT(buf->b_data != NULL); 2914 arc_buf_destroy(buf, FALSE, FALSE); 2915 2916 if (hdr->b_datacnt == 0) { 2917 arc_state_t *old_state = hdr->b_state; 2918 arc_state_t *evicted_state; 2919 2920 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2921 2922 evicted_state = 2923 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 2924 2925 mutex_enter(&old_state->arcs_mtx); 2926 mutex_enter(&evicted_state->arcs_mtx); 2927 2928 arc_change_state(evicted_state, hdr, hash_lock); 2929 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2930 hdr->b_flags |= ARC_IN_HASH_TABLE; 2931 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2932 2933 mutex_exit(&evicted_state->arcs_mtx); 2934 mutex_exit(&old_state->arcs_mtx); 2935 } 2936 mutex_exit(hash_lock); 2937 rw_exit(&buf->b_lock); 2938 2939 VERIFY(buf->b_efunc(buf) == 0); 2940 buf->b_efunc = NULL; 2941 buf->b_private = NULL; 2942 buf->b_hdr = NULL; 2943 kmem_cache_free(buf_cache, buf); 2944 return (1); 2945 } 2946 2947 /* 2948 * Release this buffer from the cache. This must be done 2949 * after a read and prior to modifying the buffer contents. 2950 * If the buffer has more than one reference, we must make 2951 * a new hdr for the buffer. 2952 */ 2953 void 2954 arc_release(arc_buf_t *buf, void *tag) 2955 { 2956 arc_buf_hdr_t *hdr; 2957 kmutex_t *hash_lock; 2958 l2arc_buf_hdr_t *l2hdr; 2959 uint64_t buf_size; 2960 boolean_t released = B_FALSE; 2961 2962 rw_enter(&buf->b_lock, RW_WRITER); 2963 hdr = buf->b_hdr; 2964 2965 /* this buffer is not on any list */ 2966 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 2967 ASSERT(!(hdr->b_flags & ARC_STORED)); 2968 2969 if (hdr->b_state == arc_anon) { 2970 /* this buffer is already released */ 2971 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 2972 ASSERT(BUF_EMPTY(hdr)); 2973 ASSERT(buf->b_efunc == NULL); 2974 arc_buf_thaw(buf); 2975 rw_exit(&buf->b_lock); 2976 released = B_TRUE; 2977 } else { 2978 hash_lock = HDR_LOCK(hdr); 2979 mutex_enter(hash_lock); 2980 } 2981 2982 l2hdr = hdr->b_l2hdr; 2983 if (l2hdr) { 2984 mutex_enter(&l2arc_buflist_mtx); 2985 hdr->b_l2hdr = NULL; 2986 buf_size = hdr->b_size; 2987 } 2988 2989 if (released) 2990 goto out; 2991 2992 /* 2993 * Do we have more than one buf? 2994 */ 2995 if (hdr->b_datacnt > 1) { 2996 arc_buf_hdr_t *nhdr; 2997 arc_buf_t **bufp; 2998 uint64_t blksz = hdr->b_size; 2999 uint64_t spa = hdr->b_spa; 3000 arc_buf_contents_t type = hdr->b_type; 3001 uint32_t flags = hdr->b_flags; 3002 3003 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3004 /* 3005 * Pull the data off of this buf and attach it to 3006 * a new anonymous buf. 3007 */ 3008 (void) remove_reference(hdr, hash_lock, tag); 3009 bufp = &hdr->b_buf; 3010 while (*bufp != buf) 3011 bufp = &(*bufp)->b_next; 3012 *bufp = (*bufp)->b_next; 3013 buf->b_next = NULL; 3014 3015 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3016 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3017 if (refcount_is_zero(&hdr->b_refcnt)) { 3018 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3019 ASSERT3U(*size, >=, hdr->b_size); 3020 atomic_add_64(size, -hdr->b_size); 3021 } 3022 hdr->b_datacnt -= 1; 3023 arc_cksum_verify(buf); 3024 3025 mutex_exit(hash_lock); 3026 3027 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3028 nhdr->b_size = blksz; 3029 nhdr->b_spa = spa; 3030 nhdr->b_type = type; 3031 nhdr->b_buf = buf; 3032 nhdr->b_state = arc_anon; 3033 nhdr->b_arc_access = 0; 3034 nhdr->b_flags = flags & ARC_L2_WRITING; 3035 nhdr->b_l2hdr = NULL; 3036 nhdr->b_datacnt = 1; 3037 nhdr->b_freeze_cksum = NULL; 3038 (void) refcount_add(&nhdr->b_refcnt, tag); 3039 buf->b_hdr = nhdr; 3040 rw_exit(&buf->b_lock); 3041 atomic_add_64(&arc_anon->arcs_size, blksz); 3042 } else { 3043 rw_exit(&buf->b_lock); 3044 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3045 ASSERT(!list_link_active(&hdr->b_arc_node)); 3046 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3047 arc_change_state(arc_anon, hdr, hash_lock); 3048 hdr->b_arc_access = 0; 3049 mutex_exit(hash_lock); 3050 3051 bzero(&hdr->b_dva, sizeof (dva_t)); 3052 hdr->b_birth = 0; 3053 hdr->b_cksum0 = 0; 3054 arc_buf_thaw(buf); 3055 } 3056 buf->b_efunc = NULL; 3057 buf->b_private = NULL; 3058 3059 out: 3060 if (l2hdr) { 3061 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3062 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3063 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3064 mutex_exit(&l2arc_buflist_mtx); 3065 } 3066 } 3067 3068 int 3069 arc_released(arc_buf_t *buf) 3070 { 3071 int released; 3072 3073 rw_enter(&buf->b_lock, RW_READER); 3074 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3075 rw_exit(&buf->b_lock); 3076 return (released); 3077 } 3078 3079 int 3080 arc_has_callback(arc_buf_t *buf) 3081 { 3082 int callback; 3083 3084 rw_enter(&buf->b_lock, RW_READER); 3085 callback = (buf->b_efunc != NULL); 3086 rw_exit(&buf->b_lock); 3087 return (callback); 3088 } 3089 3090 #ifdef ZFS_DEBUG 3091 int 3092 arc_referenced(arc_buf_t *buf) 3093 { 3094 int referenced; 3095 3096 rw_enter(&buf->b_lock, RW_READER); 3097 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3098 rw_exit(&buf->b_lock); 3099 return (referenced); 3100 } 3101 #endif 3102 3103 static void 3104 arc_write_ready(zio_t *zio) 3105 { 3106 arc_write_callback_t *callback = zio->io_private; 3107 arc_buf_t *buf = callback->awcb_buf; 3108 arc_buf_hdr_t *hdr = buf->b_hdr; 3109 3110 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3111 callback->awcb_ready(zio, buf, callback->awcb_private); 3112 3113 /* 3114 * If the IO is already in progress, then this is a re-write 3115 * attempt, so we need to thaw and re-compute the cksum. 3116 * It is the responsibility of the callback to handle the 3117 * accounting for any re-write attempt. 3118 */ 3119 if (HDR_IO_IN_PROGRESS(hdr)) { 3120 mutex_enter(&hdr->b_freeze_lock); 3121 if (hdr->b_freeze_cksum != NULL) { 3122 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3123 hdr->b_freeze_cksum = NULL; 3124 } 3125 mutex_exit(&hdr->b_freeze_lock); 3126 } 3127 arc_cksum_compute(buf, B_FALSE); 3128 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3129 } 3130 3131 static void 3132 arc_write_done(zio_t *zio) 3133 { 3134 arc_write_callback_t *callback = zio->io_private; 3135 arc_buf_t *buf = callback->awcb_buf; 3136 arc_buf_hdr_t *hdr = buf->b_hdr; 3137 3138 hdr->b_acb = NULL; 3139 3140 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3141 hdr->b_birth = zio->io_bp->blk_birth; 3142 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3143 /* 3144 * If the block to be written was all-zero, we may have 3145 * compressed it away. In this case no write was performed 3146 * so there will be no dva/birth-date/checksum. The buffer 3147 * must therefor remain anonymous (and uncached). 3148 */ 3149 if (!BUF_EMPTY(hdr)) { 3150 arc_buf_hdr_t *exists; 3151 kmutex_t *hash_lock; 3152 3153 arc_cksum_verify(buf); 3154 3155 exists = buf_hash_insert(hdr, &hash_lock); 3156 if (exists) { 3157 /* 3158 * This can only happen if we overwrite for 3159 * sync-to-convergence, because we remove 3160 * buffers from the hash table when we arc_free(). 3161 */ 3162 ASSERT(zio->io_flags & ZIO_FLAG_IO_REWRITE); 3163 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 3164 BP_IDENTITY(zio->io_bp))); 3165 ASSERT3U(zio->io_bp_orig.blk_birth, ==, 3166 zio->io_bp->blk_birth); 3167 3168 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3169 arc_change_state(arc_anon, exists, hash_lock); 3170 mutex_exit(hash_lock); 3171 arc_hdr_destroy(exists); 3172 exists = buf_hash_insert(hdr, &hash_lock); 3173 ASSERT3P(exists, ==, NULL); 3174 } 3175 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3176 /* if it's not anon, we are doing a scrub */ 3177 if (hdr->b_state == arc_anon) 3178 arc_access(hdr, hash_lock); 3179 mutex_exit(hash_lock); 3180 } else if (callback->awcb_done == NULL) { 3181 int destroy_hdr; 3182 /* 3183 * This is an anonymous buffer with no user callback, 3184 * destroy it if there are no active references. 3185 */ 3186 mutex_enter(&arc_eviction_mtx); 3187 destroy_hdr = refcount_is_zero(&hdr->b_refcnt); 3188 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3189 mutex_exit(&arc_eviction_mtx); 3190 if (destroy_hdr) 3191 arc_hdr_destroy(hdr); 3192 } else { 3193 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3194 } 3195 hdr->b_flags &= ~ARC_STORED; 3196 3197 if (callback->awcb_done) { 3198 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3199 callback->awcb_done(zio, buf, callback->awcb_private); 3200 } 3201 3202 kmem_free(callback, sizeof (arc_write_callback_t)); 3203 } 3204 3205 void 3206 write_policy(spa_t *spa, const writeprops_t *wp, zio_prop_t *zp) 3207 { 3208 boolean_t ismd = (wp->wp_level > 0 || dmu_ot[wp->wp_type].ot_metadata); 3209 3210 /* Determine checksum setting */ 3211 if (ismd) { 3212 /* 3213 * Metadata always gets checksummed. If the data 3214 * checksum is multi-bit correctable, and it's not a 3215 * ZBT-style checksum, then it's suitable for metadata 3216 * as well. Otherwise, the metadata checksum defaults 3217 * to fletcher4. 3218 */ 3219 if (zio_checksum_table[wp->wp_oschecksum].ci_correctable && 3220 !zio_checksum_table[wp->wp_oschecksum].ci_zbt) 3221 zp->zp_checksum = wp->wp_oschecksum; 3222 else 3223 zp->zp_checksum = ZIO_CHECKSUM_FLETCHER_4; 3224 } else { 3225 zp->zp_checksum = zio_checksum_select(wp->wp_dnchecksum, 3226 wp->wp_oschecksum); 3227 } 3228 3229 /* Determine compression setting */ 3230 if (ismd) { 3231 /* 3232 * XXX -- we should design a compression algorithm 3233 * that specializes in arrays of bps. 3234 */ 3235 zp->zp_compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY : 3236 ZIO_COMPRESS_LZJB; 3237 } else { 3238 zp->zp_compress = zio_compress_select(wp->wp_dncompress, 3239 wp->wp_oscompress); 3240 } 3241 3242 zp->zp_type = wp->wp_type; 3243 zp->zp_level = wp->wp_level; 3244 zp->zp_ndvas = MIN(wp->wp_copies + ismd, spa_max_replication(spa)); 3245 } 3246 3247 zio_t * 3248 arc_write(zio_t *pio, spa_t *spa, const writeprops_t *wp, 3249 boolean_t l2arc, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 3250 arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority, 3251 int zio_flags, const zbookmark_t *zb) 3252 { 3253 arc_buf_hdr_t *hdr = buf->b_hdr; 3254 arc_write_callback_t *callback; 3255 zio_t *zio; 3256 zio_prop_t zp; 3257 3258 ASSERT(ready != NULL); 3259 ASSERT(!HDR_IO_ERROR(hdr)); 3260 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3261 ASSERT(hdr->b_acb == 0); 3262 if (l2arc) 3263 hdr->b_flags |= ARC_L2CACHE; 3264 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3265 callback->awcb_ready = ready; 3266 callback->awcb_done = done; 3267 callback->awcb_private = private; 3268 callback->awcb_buf = buf; 3269 3270 write_policy(spa, wp, &zp); 3271 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, &zp, 3272 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb); 3273 3274 return (zio); 3275 } 3276 3277 int 3278 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 3279 zio_done_func_t *done, void *private, uint32_t arc_flags) 3280 { 3281 arc_buf_hdr_t *ab; 3282 kmutex_t *hash_lock; 3283 zio_t *zio; 3284 uint64_t guid = spa_guid(spa); 3285 3286 /* 3287 * If this buffer is in the cache, release it, so it 3288 * can be re-used. 3289 */ 3290 ab = buf_hash_find(guid, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 3291 if (ab != NULL) { 3292 /* 3293 * The checksum of blocks to free is not always 3294 * preserved (eg. on the deadlist). However, if it is 3295 * nonzero, it should match what we have in the cache. 3296 */ 3297 ASSERT(bp->blk_cksum.zc_word[0] == 0 || 3298 bp->blk_cksum.zc_word[0] == ab->b_cksum0 || 3299 bp->blk_fill == BLK_FILL_ALREADY_FREED); 3300 3301 if (ab->b_state != arc_anon) 3302 arc_change_state(arc_anon, ab, hash_lock); 3303 if (HDR_IO_IN_PROGRESS(ab)) { 3304 /* 3305 * This should only happen when we prefetch. 3306 */ 3307 ASSERT(ab->b_flags & ARC_PREFETCH); 3308 ASSERT3U(ab->b_datacnt, ==, 1); 3309 ab->b_flags |= ARC_FREED_IN_READ; 3310 if (HDR_IN_HASH_TABLE(ab)) 3311 buf_hash_remove(ab); 3312 ab->b_arc_access = 0; 3313 bzero(&ab->b_dva, sizeof (dva_t)); 3314 ab->b_birth = 0; 3315 ab->b_cksum0 = 0; 3316 ab->b_buf->b_efunc = NULL; 3317 ab->b_buf->b_private = NULL; 3318 mutex_exit(hash_lock); 3319 } else if (refcount_is_zero(&ab->b_refcnt)) { 3320 ab->b_flags |= ARC_FREE_IN_PROGRESS; 3321 mutex_exit(hash_lock); 3322 arc_hdr_destroy(ab); 3323 ARCSTAT_BUMP(arcstat_deleted); 3324 } else { 3325 /* 3326 * We still have an active reference on this 3327 * buffer. This can happen, e.g., from 3328 * dbuf_unoverride(). 3329 */ 3330 ASSERT(!HDR_IN_HASH_TABLE(ab)); 3331 ab->b_arc_access = 0; 3332 bzero(&ab->b_dva, sizeof (dva_t)); 3333 ab->b_birth = 0; 3334 ab->b_cksum0 = 0; 3335 ab->b_buf->b_efunc = NULL; 3336 ab->b_buf->b_private = NULL; 3337 mutex_exit(hash_lock); 3338 } 3339 } 3340 3341 zio = zio_free(pio, spa, txg, bp, done, private, ZIO_FLAG_MUSTSUCCEED); 3342 3343 if (arc_flags & ARC_WAIT) 3344 return (zio_wait(zio)); 3345 3346 ASSERT(arc_flags & ARC_NOWAIT); 3347 zio_nowait(zio); 3348 3349 return (0); 3350 } 3351 3352 static int 3353 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg) 3354 { 3355 #ifdef _KERNEL 3356 uint64_t available_memory = ptob(freemem); 3357 static uint64_t page_load = 0; 3358 static uint64_t last_txg = 0; 3359 3360 #if defined(__i386) 3361 available_memory = 3362 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3363 #endif 3364 if (available_memory >= zfs_write_limit_max) 3365 return (0); 3366 3367 if (txg > last_txg) { 3368 last_txg = txg; 3369 page_load = 0; 3370 } 3371 /* 3372 * If we are in pageout, we know that memory is already tight, 3373 * the arc is already going to be evicting, so we just want to 3374 * continue to let page writes occur as quickly as possible. 3375 */ 3376 if (curproc == proc_pageout) { 3377 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3378 return (ERESTART); 3379 /* Note: reserve is inflated, so we deflate */ 3380 page_load += reserve / 8; 3381 return (0); 3382 } else if (page_load > 0 && arc_reclaim_needed()) { 3383 /* memory is low, delay before restarting */ 3384 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3385 return (EAGAIN); 3386 } 3387 page_load = 0; 3388 3389 if (arc_size > arc_c_min) { 3390 uint64_t evictable_memory = 3391 arc_mru->arcs_lsize[ARC_BUFC_DATA] + 3392 arc_mru->arcs_lsize[ARC_BUFC_METADATA] + 3393 arc_mfu->arcs_lsize[ARC_BUFC_DATA] + 3394 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]; 3395 available_memory += MIN(evictable_memory, arc_size - arc_c_min); 3396 } 3397 3398 if (inflight_data > available_memory / 4) { 3399 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3400 return (ERESTART); 3401 } 3402 #endif 3403 return (0); 3404 } 3405 3406 void 3407 arc_tempreserve_clear(uint64_t reserve) 3408 { 3409 atomic_add_64(&arc_tempreserve, -reserve); 3410 ASSERT((int64_t)arc_tempreserve >= 0); 3411 } 3412 3413 int 3414 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3415 { 3416 int error; 3417 uint64_t anon_size; 3418 3419 #ifdef ZFS_DEBUG 3420 /* 3421 * Once in a while, fail for no reason. Everything should cope. 3422 */ 3423 if (spa_get_random(10000) == 0) { 3424 dprintf("forcing random failure\n"); 3425 return (ERESTART); 3426 } 3427 #endif 3428 if (reserve > arc_c/4 && !arc_no_grow) 3429 arc_c = MIN(arc_c_max, reserve * 4); 3430 if (reserve > arc_c) 3431 return (ENOMEM); 3432 3433 /* 3434 * Don't count loaned bufs as in flight dirty data to prevent long 3435 * network delays from blocking transactions that are ready to be 3436 * assigned to a txg. 3437 */ 3438 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3439 3440 /* 3441 * Writes will, almost always, require additional memory allocations 3442 * in order to compress/encrypt/etc the data. We therefor need to 3443 * make sure that there is sufficient available memory for this. 3444 */ 3445 if (error = arc_memory_throttle(reserve, anon_size, txg)) 3446 return (error); 3447 3448 /* 3449 * Throttle writes when the amount of dirty data in the cache 3450 * gets too large. We try to keep the cache less than half full 3451 * of dirty blocks so that our sync times don't grow too large. 3452 * Note: if two requests come in concurrently, we might let them 3453 * both succeed, when one of them should fail. Not a huge deal. 3454 */ 3455 3456 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3457 anon_size > arc_c / 4) { 3458 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3459 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3460 arc_tempreserve>>10, 3461 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3462 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3463 reserve>>10, arc_c>>10); 3464 return (ERESTART); 3465 } 3466 atomic_add_64(&arc_tempreserve, reserve); 3467 return (0); 3468 } 3469 3470 void 3471 arc_init(void) 3472 { 3473 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3474 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3475 3476 /* Convert seconds to clock ticks */ 3477 arc_min_prefetch_lifespan = 1 * hz; 3478 3479 /* Start out with 1/8 of all memory */ 3480 arc_c = physmem * PAGESIZE / 8; 3481 3482 #ifdef _KERNEL 3483 /* 3484 * On architectures where the physical memory can be larger 3485 * than the addressable space (intel in 32-bit mode), we may 3486 * need to limit the cache to 1/8 of VM size. 3487 */ 3488 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3489 #endif 3490 3491 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3492 arc_c_min = MAX(arc_c / 4, 64<<20); 3493 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3494 if (arc_c * 8 >= 1<<30) 3495 arc_c_max = (arc_c * 8) - (1<<30); 3496 else 3497 arc_c_max = arc_c_min; 3498 arc_c_max = MAX(arc_c * 6, arc_c_max); 3499 3500 /* 3501 * Allow the tunables to override our calculations if they are 3502 * reasonable (ie. over 64MB) 3503 */ 3504 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3505 arc_c_max = zfs_arc_max; 3506 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3507 arc_c_min = zfs_arc_min; 3508 3509 arc_c = arc_c_max; 3510 arc_p = (arc_c >> 1); 3511 3512 /* limit meta-data to 1/4 of the arc capacity */ 3513 arc_meta_limit = arc_c_max / 4; 3514 3515 /* Allow the tunable to override if it is reasonable */ 3516 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3517 arc_meta_limit = zfs_arc_meta_limit; 3518 3519 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3520 arc_c_min = arc_meta_limit / 2; 3521 3522 if (zfs_arc_grow_retry > 0) 3523 arc_grow_retry = zfs_arc_grow_retry; 3524 3525 if (zfs_arc_shrink_shift > 0) 3526 arc_shrink_shift = zfs_arc_shrink_shift; 3527 3528 if (zfs_arc_p_min_shift > 0) 3529 arc_p_min_shift = zfs_arc_p_min_shift; 3530 3531 /* if kmem_flags are set, lets try to use less memory */ 3532 if (kmem_debugging()) 3533 arc_c = arc_c / 2; 3534 if (arc_c < arc_c_min) 3535 arc_c = arc_c_min; 3536 3537 arc_anon = &ARC_anon; 3538 arc_mru = &ARC_mru; 3539 arc_mru_ghost = &ARC_mru_ghost; 3540 arc_mfu = &ARC_mfu; 3541 arc_mfu_ghost = &ARC_mfu_ghost; 3542 arc_l2c_only = &ARC_l2c_only; 3543 arc_size = 0; 3544 3545 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3546 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3547 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3548 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3549 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3550 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3551 3552 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3553 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3554 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3555 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3556 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3557 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3558 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3559 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3560 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3561 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3562 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3563 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3564 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3565 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3566 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3567 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3568 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3569 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3570 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3571 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3572 3573 buf_init(); 3574 3575 arc_thread_exit = 0; 3576 arc_eviction_list = NULL; 3577 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3578 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3579 3580 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3581 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3582 3583 if (arc_ksp != NULL) { 3584 arc_ksp->ks_data = &arc_stats; 3585 kstat_install(arc_ksp); 3586 } 3587 3588 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3589 TS_RUN, minclsyspri); 3590 3591 arc_dead = FALSE; 3592 arc_warm = B_FALSE; 3593 3594 if (zfs_write_limit_max == 0) 3595 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; 3596 else 3597 zfs_write_limit_shift = 0; 3598 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL); 3599 } 3600 3601 void 3602 arc_fini(void) 3603 { 3604 mutex_enter(&arc_reclaim_thr_lock); 3605 arc_thread_exit = 1; 3606 while (arc_thread_exit != 0) 3607 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3608 mutex_exit(&arc_reclaim_thr_lock); 3609 3610 arc_flush(NULL); 3611 3612 arc_dead = TRUE; 3613 3614 if (arc_ksp != NULL) { 3615 kstat_delete(arc_ksp); 3616 arc_ksp = NULL; 3617 } 3618 3619 mutex_destroy(&arc_eviction_mtx); 3620 mutex_destroy(&arc_reclaim_thr_lock); 3621 cv_destroy(&arc_reclaim_thr_cv); 3622 3623 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3624 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3625 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3626 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3627 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3628 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3629 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3630 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3631 3632 mutex_destroy(&arc_anon->arcs_mtx); 3633 mutex_destroy(&arc_mru->arcs_mtx); 3634 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3635 mutex_destroy(&arc_mfu->arcs_mtx); 3636 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3637 mutex_destroy(&arc_l2c_only->arcs_mtx); 3638 3639 mutex_destroy(&zfs_write_limit_lock); 3640 3641 buf_fini(); 3642 3643 ASSERT(arc_loaned_bytes == 0); 3644 } 3645 3646 /* 3647 * Level 2 ARC 3648 * 3649 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3650 * It uses dedicated storage devices to hold cached data, which are populated 3651 * using large infrequent writes. The main role of this cache is to boost 3652 * the performance of random read workloads. The intended L2ARC devices 3653 * include short-stroked disks, solid state disks, and other media with 3654 * substantially faster read latency than disk. 3655 * 3656 * +-----------------------+ 3657 * | ARC | 3658 * +-----------------------+ 3659 * | ^ ^ 3660 * | | | 3661 * l2arc_feed_thread() arc_read() 3662 * | | | 3663 * | l2arc read | 3664 * V | | 3665 * +---------------+ | 3666 * | L2ARC | | 3667 * +---------------+ | 3668 * | ^ | 3669 * l2arc_write() | | 3670 * | | | 3671 * V | | 3672 * +-------+ +-------+ 3673 * | vdev | | vdev | 3674 * | cache | | cache | 3675 * +-------+ +-------+ 3676 * +=========+ .-----. 3677 * : L2ARC : |-_____-| 3678 * : devices : | Disks | 3679 * +=========+ `-_____-' 3680 * 3681 * Read requests are satisfied from the following sources, in order: 3682 * 3683 * 1) ARC 3684 * 2) vdev cache of L2ARC devices 3685 * 3) L2ARC devices 3686 * 4) vdev cache of disks 3687 * 5) disks 3688 * 3689 * Some L2ARC device types exhibit extremely slow write performance. 3690 * To accommodate for this there are some significant differences between 3691 * the L2ARC and traditional cache design: 3692 * 3693 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3694 * the ARC behave as usual, freeing buffers and placing headers on ghost 3695 * lists. The ARC does not send buffers to the L2ARC during eviction as 3696 * this would add inflated write latencies for all ARC memory pressure. 3697 * 3698 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3699 * It does this by periodically scanning buffers from the eviction-end of 3700 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3701 * not already there. It scans until a headroom of buffers is satisfied, 3702 * which itself is a buffer for ARC eviction. The thread that does this is 3703 * l2arc_feed_thread(), illustrated below; example sizes are included to 3704 * provide a better sense of ratio than this diagram: 3705 * 3706 * head --> tail 3707 * +---------------------+----------+ 3708 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3709 * +---------------------+----------+ | o L2ARC eligible 3710 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3711 * +---------------------+----------+ | 3712 * 15.9 Gbytes ^ 32 Mbytes | 3713 * headroom | 3714 * l2arc_feed_thread() 3715 * | 3716 * l2arc write hand <--[oooo]--' 3717 * | 8 Mbyte 3718 * | write max 3719 * V 3720 * +==============================+ 3721 * L2ARC dev |####|#|###|###| |####| ... | 3722 * +==============================+ 3723 * 32 Gbytes 3724 * 3725 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3726 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3727 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3728 * safe to say that this is an uncommon case, since buffers at the end of 3729 * the ARC lists have moved there due to inactivity. 3730 * 3731 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3732 * then the L2ARC simply misses copying some buffers. This serves as a 3733 * pressure valve to prevent heavy read workloads from both stalling the ARC 3734 * with waits and clogging the L2ARC with writes. This also helps prevent 3735 * the potential for the L2ARC to churn if it attempts to cache content too 3736 * quickly, such as during backups of the entire pool. 3737 * 3738 * 5. After system boot and before the ARC has filled main memory, there are 3739 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 3740 * lists can remain mostly static. Instead of searching from tail of these 3741 * lists as pictured, the l2arc_feed_thread() will search from the list heads 3742 * for eligible buffers, greatly increasing its chance of finding them. 3743 * 3744 * The L2ARC device write speed is also boosted during this time so that 3745 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 3746 * there are no L2ARC reads, and no fear of degrading read performance 3747 * through increased writes. 3748 * 3749 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3750 * the vdev queue can aggregate them into larger and fewer writes. Each 3751 * device is written to in a rotor fashion, sweeping writes through 3752 * available space then repeating. 3753 * 3754 * 7. The L2ARC does not store dirty content. It never needs to flush 3755 * write buffers back to disk based storage. 3756 * 3757 * 8. If an ARC buffer is written (and dirtied) which also exists in the 3758 * L2ARC, the now stale L2ARC buffer is immediately dropped. 3759 * 3760 * The performance of the L2ARC can be tweaked by a number of tunables, which 3761 * may be necessary for different workloads: 3762 * 3763 * l2arc_write_max max write bytes per interval 3764 * l2arc_write_boost extra write bytes during device warmup 3765 * l2arc_noprefetch skip caching prefetched buffers 3766 * l2arc_headroom number of max device writes to precache 3767 * l2arc_feed_secs seconds between L2ARC writing 3768 * 3769 * Tunables may be removed or added as future performance improvements are 3770 * integrated, and also may become zpool properties. 3771 * 3772 * There are three key functions that control how the L2ARC warms up: 3773 * 3774 * l2arc_write_eligible() check if a buffer is eligible to cache 3775 * l2arc_write_size() calculate how much to write 3776 * l2arc_write_interval() calculate sleep delay between writes 3777 * 3778 * These three functions determine what to write, how much, and how quickly 3779 * to send writes. 3780 */ 3781 3782 static boolean_t 3783 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 3784 { 3785 /* 3786 * A buffer is *not* eligible for the L2ARC if it: 3787 * 1. belongs to a different spa. 3788 * 2. has no attached buffer. 3789 * 3. is already cached on the L2ARC. 3790 * 4. has an I/O in progress (it may be an incomplete read). 3791 * 5. is flagged not eligible (zfs property). 3792 */ 3793 if (ab->b_spa != spa_guid || ab->b_buf == NULL || ab->b_l2hdr != NULL || 3794 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 3795 return (B_FALSE); 3796 3797 return (B_TRUE); 3798 } 3799 3800 static uint64_t 3801 l2arc_write_size(l2arc_dev_t *dev) 3802 { 3803 uint64_t size; 3804 3805 size = dev->l2ad_write; 3806 3807 if (arc_warm == B_FALSE) 3808 size += dev->l2ad_boost; 3809 3810 return (size); 3811 3812 } 3813 3814 static clock_t 3815 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 3816 { 3817 clock_t interval, next; 3818 3819 /* 3820 * If the ARC lists are busy, increase our write rate; if the 3821 * lists are stale, idle back. This is achieved by checking 3822 * how much we previously wrote - if it was more than half of 3823 * what we wanted, schedule the next write much sooner. 3824 */ 3825 if (l2arc_feed_again && wrote > (wanted / 2)) 3826 interval = (hz * l2arc_feed_min_ms) / 1000; 3827 else 3828 interval = hz * l2arc_feed_secs; 3829 3830 next = MAX(lbolt, MIN(lbolt + interval, began + interval)); 3831 3832 return (next); 3833 } 3834 3835 static void 3836 l2arc_hdr_stat_add(void) 3837 { 3838 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 3839 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 3840 } 3841 3842 static void 3843 l2arc_hdr_stat_remove(void) 3844 { 3845 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 3846 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 3847 } 3848 3849 /* 3850 * Cycle through L2ARC devices. This is how L2ARC load balances. 3851 * If a device is returned, this also returns holding the spa config lock. 3852 */ 3853 static l2arc_dev_t * 3854 l2arc_dev_get_next(void) 3855 { 3856 l2arc_dev_t *first, *next = NULL; 3857 3858 /* 3859 * Lock out the removal of spas (spa_namespace_lock), then removal 3860 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 3861 * both locks will be dropped and a spa config lock held instead. 3862 */ 3863 mutex_enter(&spa_namespace_lock); 3864 mutex_enter(&l2arc_dev_mtx); 3865 3866 /* if there are no vdevs, there is nothing to do */ 3867 if (l2arc_ndev == 0) 3868 goto out; 3869 3870 first = NULL; 3871 next = l2arc_dev_last; 3872 do { 3873 /* loop around the list looking for a non-faulted vdev */ 3874 if (next == NULL) { 3875 next = list_head(l2arc_dev_list); 3876 } else { 3877 next = list_next(l2arc_dev_list, next); 3878 if (next == NULL) 3879 next = list_head(l2arc_dev_list); 3880 } 3881 3882 /* if we have come back to the start, bail out */ 3883 if (first == NULL) 3884 first = next; 3885 else if (next == first) 3886 break; 3887 3888 } while (vdev_is_dead(next->l2ad_vdev)); 3889 3890 /* if we were unable to find any usable vdevs, return NULL */ 3891 if (vdev_is_dead(next->l2ad_vdev)) 3892 next = NULL; 3893 3894 l2arc_dev_last = next; 3895 3896 out: 3897 mutex_exit(&l2arc_dev_mtx); 3898 3899 /* 3900 * Grab the config lock to prevent the 'next' device from being 3901 * removed while we are writing to it. 3902 */ 3903 if (next != NULL) 3904 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 3905 mutex_exit(&spa_namespace_lock); 3906 3907 return (next); 3908 } 3909 3910 /* 3911 * Free buffers that were tagged for destruction. 3912 */ 3913 static void 3914 l2arc_do_free_on_write() 3915 { 3916 list_t *buflist; 3917 l2arc_data_free_t *df, *df_prev; 3918 3919 mutex_enter(&l2arc_free_on_write_mtx); 3920 buflist = l2arc_free_on_write; 3921 3922 for (df = list_tail(buflist); df; df = df_prev) { 3923 df_prev = list_prev(buflist, df); 3924 ASSERT(df->l2df_data != NULL); 3925 ASSERT(df->l2df_func != NULL); 3926 df->l2df_func(df->l2df_data, df->l2df_size); 3927 list_remove(buflist, df); 3928 kmem_free(df, sizeof (l2arc_data_free_t)); 3929 } 3930 3931 mutex_exit(&l2arc_free_on_write_mtx); 3932 } 3933 3934 /* 3935 * A write to a cache device has completed. Update all headers to allow 3936 * reads from these buffers to begin. 3937 */ 3938 static void 3939 l2arc_write_done(zio_t *zio) 3940 { 3941 l2arc_write_callback_t *cb; 3942 l2arc_dev_t *dev; 3943 list_t *buflist; 3944 arc_buf_hdr_t *head, *ab, *ab_prev; 3945 l2arc_buf_hdr_t *abl2; 3946 kmutex_t *hash_lock; 3947 3948 cb = zio->io_private; 3949 ASSERT(cb != NULL); 3950 dev = cb->l2wcb_dev; 3951 ASSERT(dev != NULL); 3952 head = cb->l2wcb_head; 3953 ASSERT(head != NULL); 3954 buflist = dev->l2ad_buflist; 3955 ASSERT(buflist != NULL); 3956 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 3957 l2arc_write_callback_t *, cb); 3958 3959 if (zio->io_error != 0) 3960 ARCSTAT_BUMP(arcstat_l2_writes_error); 3961 3962 mutex_enter(&l2arc_buflist_mtx); 3963 3964 /* 3965 * All writes completed, or an error was hit. 3966 */ 3967 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 3968 ab_prev = list_prev(buflist, ab); 3969 3970 hash_lock = HDR_LOCK(ab); 3971 if (!mutex_tryenter(hash_lock)) { 3972 /* 3973 * This buffer misses out. It may be in a stage 3974 * of eviction. Its ARC_L2_WRITING flag will be 3975 * left set, denying reads to this buffer. 3976 */ 3977 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 3978 continue; 3979 } 3980 3981 if (zio->io_error != 0) { 3982 /* 3983 * Error - drop L2ARC entry. 3984 */ 3985 list_remove(buflist, ab); 3986 abl2 = ab->b_l2hdr; 3987 ab->b_l2hdr = NULL; 3988 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 3989 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 3990 } 3991 3992 /* 3993 * Allow ARC to begin reads to this L2ARC entry. 3994 */ 3995 ab->b_flags &= ~ARC_L2_WRITING; 3996 3997 mutex_exit(hash_lock); 3998 } 3999 4000 atomic_inc_64(&l2arc_writes_done); 4001 list_remove(buflist, head); 4002 kmem_cache_free(hdr_cache, head); 4003 mutex_exit(&l2arc_buflist_mtx); 4004 4005 l2arc_do_free_on_write(); 4006 4007 kmem_free(cb, sizeof (l2arc_write_callback_t)); 4008 } 4009 4010 /* 4011 * A read to a cache device completed. Validate buffer contents before 4012 * handing over to the regular ARC routines. 4013 */ 4014 static void 4015 l2arc_read_done(zio_t *zio) 4016 { 4017 l2arc_read_callback_t *cb; 4018 arc_buf_hdr_t *hdr; 4019 arc_buf_t *buf; 4020 kmutex_t *hash_lock; 4021 int equal; 4022 4023 ASSERT(zio->io_vd != NULL); 4024 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 4025 4026 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 4027 4028 cb = zio->io_private; 4029 ASSERT(cb != NULL); 4030 buf = cb->l2rcb_buf; 4031 ASSERT(buf != NULL); 4032 hdr = buf->b_hdr; 4033 ASSERT(hdr != NULL); 4034 4035 hash_lock = HDR_LOCK(hdr); 4036 mutex_enter(hash_lock); 4037 4038 /* 4039 * Check this survived the L2ARC journey. 4040 */ 4041 equal = arc_cksum_equal(buf); 4042 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 4043 mutex_exit(hash_lock); 4044 zio->io_private = buf; 4045 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 4046 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4047 arc_read_done(zio); 4048 } else { 4049 mutex_exit(hash_lock); 4050 /* 4051 * Buffer didn't survive caching. Increment stats and 4052 * reissue to the original storage device. 4053 */ 4054 if (zio->io_error != 0) { 4055 ARCSTAT_BUMP(arcstat_l2_io_error); 4056 } else { 4057 zio->io_error = EIO; 4058 } 4059 if (!equal) 4060 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4061 4062 /* 4063 * If there's no waiter, issue an async i/o to the primary 4064 * storage now. If there *is* a waiter, the caller must 4065 * issue the i/o in a context where it's OK to block. 4066 */ 4067 if (zio->io_waiter == NULL) { 4068 zio_t *pio = zio_unique_parent(zio); 4069 4070 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4071 4072 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4073 buf->b_data, zio->io_size, arc_read_done, buf, 4074 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4075 } 4076 } 4077 4078 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4079 } 4080 4081 /* 4082 * This is the list priority from which the L2ARC will search for pages to 4083 * cache. This is used within loops (0..3) to cycle through lists in the 4084 * desired order. This order can have a significant effect on cache 4085 * performance. 4086 * 4087 * Currently the metadata lists are hit first, MFU then MRU, followed by 4088 * the data lists. This function returns a locked list, and also returns 4089 * the lock pointer. 4090 */ 4091 static list_t * 4092 l2arc_list_locked(int list_num, kmutex_t **lock) 4093 { 4094 list_t *list; 4095 4096 ASSERT(list_num >= 0 && list_num <= 3); 4097 4098 switch (list_num) { 4099 case 0: 4100 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4101 *lock = &arc_mfu->arcs_mtx; 4102 break; 4103 case 1: 4104 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4105 *lock = &arc_mru->arcs_mtx; 4106 break; 4107 case 2: 4108 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4109 *lock = &arc_mfu->arcs_mtx; 4110 break; 4111 case 3: 4112 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4113 *lock = &arc_mru->arcs_mtx; 4114 break; 4115 } 4116 4117 ASSERT(!(MUTEX_HELD(*lock))); 4118 mutex_enter(*lock); 4119 return (list); 4120 } 4121 4122 /* 4123 * Evict buffers from the device write hand to the distance specified in 4124 * bytes. This distance may span populated buffers, it may span nothing. 4125 * This is clearing a region on the L2ARC device ready for writing. 4126 * If the 'all' boolean is set, every buffer is evicted. 4127 */ 4128 static void 4129 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4130 { 4131 list_t *buflist; 4132 l2arc_buf_hdr_t *abl2; 4133 arc_buf_hdr_t *ab, *ab_prev; 4134 kmutex_t *hash_lock; 4135 uint64_t taddr; 4136 4137 buflist = dev->l2ad_buflist; 4138 4139 if (buflist == NULL) 4140 return; 4141 4142 if (!all && dev->l2ad_first) { 4143 /* 4144 * This is the first sweep through the device. There is 4145 * nothing to evict. 4146 */ 4147 return; 4148 } 4149 4150 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4151 /* 4152 * When nearing the end of the device, evict to the end 4153 * before the device write hand jumps to the start. 4154 */ 4155 taddr = dev->l2ad_end; 4156 } else { 4157 taddr = dev->l2ad_hand + distance; 4158 } 4159 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4160 uint64_t, taddr, boolean_t, all); 4161 4162 top: 4163 mutex_enter(&l2arc_buflist_mtx); 4164 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4165 ab_prev = list_prev(buflist, ab); 4166 4167 hash_lock = HDR_LOCK(ab); 4168 if (!mutex_tryenter(hash_lock)) { 4169 /* 4170 * Missed the hash lock. Retry. 4171 */ 4172 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4173 mutex_exit(&l2arc_buflist_mtx); 4174 mutex_enter(hash_lock); 4175 mutex_exit(hash_lock); 4176 goto top; 4177 } 4178 4179 if (HDR_L2_WRITE_HEAD(ab)) { 4180 /* 4181 * We hit a write head node. Leave it for 4182 * l2arc_write_done(). 4183 */ 4184 list_remove(buflist, ab); 4185 mutex_exit(hash_lock); 4186 continue; 4187 } 4188 4189 if (!all && ab->b_l2hdr != NULL && 4190 (ab->b_l2hdr->b_daddr > taddr || 4191 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4192 /* 4193 * We've evicted to the target address, 4194 * or the end of the device. 4195 */ 4196 mutex_exit(hash_lock); 4197 break; 4198 } 4199 4200 if (HDR_FREE_IN_PROGRESS(ab)) { 4201 /* 4202 * Already on the path to destruction. 4203 */ 4204 mutex_exit(hash_lock); 4205 continue; 4206 } 4207 4208 if (ab->b_state == arc_l2c_only) { 4209 ASSERT(!HDR_L2_READING(ab)); 4210 /* 4211 * This doesn't exist in the ARC. Destroy. 4212 * arc_hdr_destroy() will call list_remove() 4213 * and decrement arcstat_l2_size. 4214 */ 4215 arc_change_state(arc_anon, ab, hash_lock); 4216 arc_hdr_destroy(ab); 4217 } else { 4218 /* 4219 * Invalidate issued or about to be issued 4220 * reads, since we may be about to write 4221 * over this location. 4222 */ 4223 if (HDR_L2_READING(ab)) { 4224 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4225 ab->b_flags |= ARC_L2_EVICTED; 4226 } 4227 4228 /* 4229 * Tell ARC this no longer exists in L2ARC. 4230 */ 4231 if (ab->b_l2hdr != NULL) { 4232 abl2 = ab->b_l2hdr; 4233 ab->b_l2hdr = NULL; 4234 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4235 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4236 } 4237 list_remove(buflist, ab); 4238 4239 /* 4240 * This may have been leftover after a 4241 * failed write. 4242 */ 4243 ab->b_flags &= ~ARC_L2_WRITING; 4244 } 4245 mutex_exit(hash_lock); 4246 } 4247 mutex_exit(&l2arc_buflist_mtx); 4248 4249 spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict)); 4250 dev->l2ad_evict = taddr; 4251 } 4252 4253 /* 4254 * Find and write ARC buffers to the L2ARC device. 4255 * 4256 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4257 * for reading until they have completed writing. 4258 */ 4259 static uint64_t 4260 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 4261 { 4262 arc_buf_hdr_t *ab, *ab_prev, *head; 4263 l2arc_buf_hdr_t *hdrl2; 4264 list_t *list; 4265 uint64_t passed_sz, write_sz, buf_sz, headroom; 4266 void *buf_data; 4267 kmutex_t *hash_lock, *list_lock; 4268 boolean_t have_lock, full; 4269 l2arc_write_callback_t *cb; 4270 zio_t *pio, *wzio; 4271 uint64_t guid = spa_guid(spa); 4272 4273 ASSERT(dev->l2ad_vdev != NULL); 4274 4275 pio = NULL; 4276 write_sz = 0; 4277 full = B_FALSE; 4278 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4279 head->b_flags |= ARC_L2_WRITE_HEAD; 4280 4281 /* 4282 * Copy buffers for L2ARC writing. 4283 */ 4284 mutex_enter(&l2arc_buflist_mtx); 4285 for (int try = 0; try <= 3; try++) { 4286 list = l2arc_list_locked(try, &list_lock); 4287 passed_sz = 0; 4288 4289 /* 4290 * L2ARC fast warmup. 4291 * 4292 * Until the ARC is warm and starts to evict, read from the 4293 * head of the ARC lists rather than the tail. 4294 */ 4295 headroom = target_sz * l2arc_headroom; 4296 if (arc_warm == B_FALSE) 4297 ab = list_head(list); 4298 else 4299 ab = list_tail(list); 4300 4301 for (; ab; ab = ab_prev) { 4302 if (arc_warm == B_FALSE) 4303 ab_prev = list_next(list, ab); 4304 else 4305 ab_prev = list_prev(list, ab); 4306 4307 hash_lock = HDR_LOCK(ab); 4308 have_lock = MUTEX_HELD(hash_lock); 4309 if (!have_lock && !mutex_tryenter(hash_lock)) { 4310 /* 4311 * Skip this buffer rather than waiting. 4312 */ 4313 continue; 4314 } 4315 4316 passed_sz += ab->b_size; 4317 if (passed_sz > headroom) { 4318 /* 4319 * Searched too far. 4320 */ 4321 mutex_exit(hash_lock); 4322 break; 4323 } 4324 4325 if (!l2arc_write_eligible(guid, ab)) { 4326 mutex_exit(hash_lock); 4327 continue; 4328 } 4329 4330 if ((write_sz + ab->b_size) > target_sz) { 4331 full = B_TRUE; 4332 mutex_exit(hash_lock); 4333 break; 4334 } 4335 4336 if (pio == NULL) { 4337 /* 4338 * Insert a dummy header on the buflist so 4339 * l2arc_write_done() can find where the 4340 * write buffers begin without searching. 4341 */ 4342 list_insert_head(dev->l2ad_buflist, head); 4343 4344 cb = kmem_alloc( 4345 sizeof (l2arc_write_callback_t), KM_SLEEP); 4346 cb->l2wcb_dev = dev; 4347 cb->l2wcb_head = head; 4348 pio = zio_root(spa, l2arc_write_done, cb, 4349 ZIO_FLAG_CANFAIL); 4350 } 4351 4352 /* 4353 * Create and add a new L2ARC header. 4354 */ 4355 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4356 hdrl2->b_dev = dev; 4357 hdrl2->b_daddr = dev->l2ad_hand; 4358 4359 ab->b_flags |= ARC_L2_WRITING; 4360 ab->b_l2hdr = hdrl2; 4361 list_insert_head(dev->l2ad_buflist, ab); 4362 buf_data = ab->b_buf->b_data; 4363 buf_sz = ab->b_size; 4364 4365 /* 4366 * Compute and store the buffer cksum before 4367 * writing. On debug the cksum is verified first. 4368 */ 4369 arc_cksum_verify(ab->b_buf); 4370 arc_cksum_compute(ab->b_buf, B_TRUE); 4371 4372 mutex_exit(hash_lock); 4373 4374 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4375 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4376 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4377 ZIO_FLAG_CANFAIL, B_FALSE); 4378 4379 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4380 zio_t *, wzio); 4381 (void) zio_nowait(wzio); 4382 4383 /* 4384 * Keep the clock hand suitably device-aligned. 4385 */ 4386 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4387 4388 write_sz += buf_sz; 4389 dev->l2ad_hand += buf_sz; 4390 } 4391 4392 mutex_exit(list_lock); 4393 4394 if (full == B_TRUE) 4395 break; 4396 } 4397 mutex_exit(&l2arc_buflist_mtx); 4398 4399 if (pio == NULL) { 4400 ASSERT3U(write_sz, ==, 0); 4401 kmem_cache_free(hdr_cache, head); 4402 return (0); 4403 } 4404 4405 ASSERT3U(write_sz, <=, target_sz); 4406 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4407 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz); 4408 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4409 spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz); 4410 4411 /* 4412 * Bump device hand to the device start if it is approaching the end. 4413 * l2arc_evict() will already have evicted ahead for this case. 4414 */ 4415 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4416 spa_l2cache_space_update(dev->l2ad_vdev, 0, 4417 dev->l2ad_end - dev->l2ad_hand); 4418 dev->l2ad_hand = dev->l2ad_start; 4419 dev->l2ad_evict = dev->l2ad_start; 4420 dev->l2ad_first = B_FALSE; 4421 } 4422 4423 dev->l2ad_writing = B_TRUE; 4424 (void) zio_wait(pio); 4425 dev->l2ad_writing = B_FALSE; 4426 4427 return (write_sz); 4428 } 4429 4430 /* 4431 * This thread feeds the L2ARC at regular intervals. This is the beating 4432 * heart of the L2ARC. 4433 */ 4434 static void 4435 l2arc_feed_thread(void) 4436 { 4437 callb_cpr_t cpr; 4438 l2arc_dev_t *dev; 4439 spa_t *spa; 4440 uint64_t size, wrote; 4441 clock_t begin, next = lbolt; 4442 4443 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4444 4445 mutex_enter(&l2arc_feed_thr_lock); 4446 4447 while (l2arc_thread_exit == 0) { 4448 CALLB_CPR_SAFE_BEGIN(&cpr); 4449 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4450 next); 4451 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4452 next = lbolt + hz; 4453 4454 /* 4455 * Quick check for L2ARC devices. 4456 */ 4457 mutex_enter(&l2arc_dev_mtx); 4458 if (l2arc_ndev == 0) { 4459 mutex_exit(&l2arc_dev_mtx); 4460 continue; 4461 } 4462 mutex_exit(&l2arc_dev_mtx); 4463 begin = lbolt; 4464 4465 /* 4466 * This selects the next l2arc device to write to, and in 4467 * doing so the next spa to feed from: dev->l2ad_spa. This 4468 * will return NULL if there are now no l2arc devices or if 4469 * they are all faulted. 4470 * 4471 * If a device is returned, its spa's config lock is also 4472 * held to prevent device removal. l2arc_dev_get_next() 4473 * will grab and release l2arc_dev_mtx. 4474 */ 4475 if ((dev = l2arc_dev_get_next()) == NULL) 4476 continue; 4477 4478 spa = dev->l2ad_spa; 4479 ASSERT(spa != NULL); 4480 4481 /* 4482 * Avoid contributing to memory pressure. 4483 */ 4484 if (arc_reclaim_needed()) { 4485 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 4486 spa_config_exit(spa, SCL_L2ARC, dev); 4487 continue; 4488 } 4489 4490 ARCSTAT_BUMP(arcstat_l2_feeds); 4491 4492 size = l2arc_write_size(dev); 4493 4494 /* 4495 * Evict L2ARC buffers that will be overwritten. 4496 */ 4497 l2arc_evict(dev, size, B_FALSE); 4498 4499 /* 4500 * Write ARC buffers. 4501 */ 4502 wrote = l2arc_write_buffers(spa, dev, size); 4503 4504 /* 4505 * Calculate interval between writes. 4506 */ 4507 next = l2arc_write_interval(begin, size, wrote); 4508 spa_config_exit(spa, SCL_L2ARC, dev); 4509 } 4510 4511 l2arc_thread_exit = 0; 4512 cv_broadcast(&l2arc_feed_thr_cv); 4513 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 4514 thread_exit(); 4515 } 4516 4517 boolean_t 4518 l2arc_vdev_present(vdev_t *vd) 4519 { 4520 l2arc_dev_t *dev; 4521 4522 mutex_enter(&l2arc_dev_mtx); 4523 for (dev = list_head(l2arc_dev_list); dev != NULL; 4524 dev = list_next(l2arc_dev_list, dev)) { 4525 if (dev->l2ad_vdev == vd) 4526 break; 4527 } 4528 mutex_exit(&l2arc_dev_mtx); 4529 4530 return (dev != NULL); 4531 } 4532 4533 /* 4534 * Add a vdev for use by the L2ARC. By this point the spa has already 4535 * validated the vdev and opened it. 4536 */ 4537 void 4538 l2arc_add_vdev(spa_t *spa, vdev_t *vd, uint64_t start, uint64_t end) 4539 { 4540 l2arc_dev_t *adddev; 4541 4542 ASSERT(!l2arc_vdev_present(vd)); 4543 4544 /* 4545 * Create a new l2arc device entry. 4546 */ 4547 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 4548 adddev->l2ad_spa = spa; 4549 adddev->l2ad_vdev = vd; 4550 adddev->l2ad_write = l2arc_write_max; 4551 adddev->l2ad_boost = l2arc_write_boost; 4552 adddev->l2ad_start = start; 4553 adddev->l2ad_end = end; 4554 adddev->l2ad_hand = adddev->l2ad_start; 4555 adddev->l2ad_evict = adddev->l2ad_start; 4556 adddev->l2ad_first = B_TRUE; 4557 adddev->l2ad_writing = B_FALSE; 4558 ASSERT3U(adddev->l2ad_write, >, 0); 4559 4560 /* 4561 * This is a list of all ARC buffers that are still valid on the 4562 * device. 4563 */ 4564 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 4565 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 4566 offsetof(arc_buf_hdr_t, b_l2node)); 4567 4568 spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0); 4569 4570 /* 4571 * Add device to global list 4572 */ 4573 mutex_enter(&l2arc_dev_mtx); 4574 list_insert_head(l2arc_dev_list, adddev); 4575 atomic_inc_64(&l2arc_ndev); 4576 mutex_exit(&l2arc_dev_mtx); 4577 } 4578 4579 /* 4580 * Remove a vdev from the L2ARC. 4581 */ 4582 void 4583 l2arc_remove_vdev(vdev_t *vd) 4584 { 4585 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 4586 4587 /* 4588 * Find the device by vdev 4589 */ 4590 mutex_enter(&l2arc_dev_mtx); 4591 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 4592 nextdev = list_next(l2arc_dev_list, dev); 4593 if (vd == dev->l2ad_vdev) { 4594 remdev = dev; 4595 break; 4596 } 4597 } 4598 ASSERT(remdev != NULL); 4599 4600 /* 4601 * Remove device from global list 4602 */ 4603 list_remove(l2arc_dev_list, remdev); 4604 l2arc_dev_last = NULL; /* may have been invalidated */ 4605 atomic_dec_64(&l2arc_ndev); 4606 mutex_exit(&l2arc_dev_mtx); 4607 4608 /* 4609 * Clear all buflists and ARC references. L2ARC device flush. 4610 */ 4611 l2arc_evict(remdev, 0, B_TRUE); 4612 list_destroy(remdev->l2ad_buflist); 4613 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 4614 kmem_free(remdev, sizeof (l2arc_dev_t)); 4615 } 4616 4617 void 4618 l2arc_init(void) 4619 { 4620 l2arc_thread_exit = 0; 4621 l2arc_ndev = 0; 4622 l2arc_writes_sent = 0; 4623 l2arc_writes_done = 0; 4624 4625 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 4626 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 4627 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 4628 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 4629 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 4630 4631 l2arc_dev_list = &L2ARC_dev_list; 4632 l2arc_free_on_write = &L2ARC_free_on_write; 4633 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 4634 offsetof(l2arc_dev_t, l2ad_node)); 4635 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 4636 offsetof(l2arc_data_free_t, l2df_list_node)); 4637 } 4638 4639 void 4640 l2arc_fini(void) 4641 { 4642 /* 4643 * This is called from dmu_fini(), which is called from spa_fini(); 4644 * Because of this, we can assume that all l2arc devices have 4645 * already been removed when the pools themselves were removed. 4646 */ 4647 4648 l2arc_do_free_on_write(); 4649 4650 mutex_destroy(&l2arc_feed_thr_lock); 4651 cv_destroy(&l2arc_feed_thr_cv); 4652 mutex_destroy(&l2arc_dev_mtx); 4653 mutex_destroy(&l2arc_buflist_mtx); 4654 mutex_destroy(&l2arc_free_on_write_mtx); 4655 4656 list_destroy(l2arc_dev_list); 4657 list_destroy(l2arc_free_on_write); 4658 } 4659 4660 void 4661 l2arc_start(void) 4662 { 4663 if (!(spa_mode_global & FWRITE)) 4664 return; 4665 4666 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 4667 TS_RUN, minclsyspri); 4668 } 4669 4670 void 4671 l2arc_stop(void) 4672 { 4673 if (!(spa_mode_global & FWRITE)) 4674 return; 4675 4676 mutex_enter(&l2arc_feed_thr_lock); 4677 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 4678 l2arc_thread_exit = 1; 4679 while (l2arc_thread_exit != 0) 4680 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 4681 mutex_exit(&l2arc_feed_thr_lock); 4682 } 4683