1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * DVA-based Adjustable Replacement Cache 31 * 32 * While much of the theory of operation used here is 33 * based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slows the flow of new data 52 * into the cache until we can make space available. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory pressure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefore exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefore choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() interface 80 * uses method 1, while the internal arc algorithms for 81 * adjusting the cache use method 2. We therefore provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * arc list locks. 84 * 85 * Buffers do not have their own mutexes, rather they rely on the 86 * hash table mutexes for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexes). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each arc state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an arc list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the active state mutex must be held before the ghost state mutex. 101 * 102 * Arc buffers may have an associated eviction callback function. 103 * This function will be invoked prior to removing the buffer (e.g. 104 * in arc_do_user_evicts()). Note however that the data associated 105 * with the buffer may be evicted prior to the callback. The callback 106 * must be made with *no locks held* (to prevent deadlock). Additionally, 107 * the users of callbacks must ensure that their private data is 108 * protected from simultaneous callbacks from arc_clear_callback() 109 * and arc_do_user_evicts(). 110 * 111 * Note that the majority of the performance stats are manipulated 112 * with atomic operations. 113 * 114 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 115 * 116 * - L2ARC buflist creation 117 * - L2ARC buflist eviction 118 * - L2ARC write completion, which walks L2ARC buflists 119 * - ARC header destruction, as it removes from L2ARC buflists 120 * - ARC header release, as it removes from L2ARC buflists 121 */ 122 123 #include <sys/spa.h> 124 #include <sys/zio.h> 125 #include <sys/zio_compress.h> 126 #include <sys/zfs_context.h> 127 #include <sys/arc.h> 128 #include <sys/refcount.h> 129 #include <sys/vdev.h> 130 #include <sys/vdev_impl.h> 131 #include <sys/dsl_pool.h> 132 #ifdef _KERNEL 133 #include <sys/vmsystm.h> 134 #include <vm/anon.h> 135 #include <sys/fs/swapnode.h> 136 #include <sys/dnlc.h> 137 #endif 138 #include <sys/callb.h> 139 #include <sys/kstat.h> 140 #include <zfs_fletcher.h> 141 142 #ifndef _KERNEL 143 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 144 boolean_t arc_watch = B_FALSE; 145 int arc_procfd; 146 #endif 147 148 static kmutex_t arc_reclaim_thr_lock; 149 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 150 static uint8_t arc_thread_exit; 151 152 #define ARC_REDUCE_DNLC_PERCENT 3 153 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 154 155 typedef enum arc_reclaim_strategy { 156 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 157 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 158 } arc_reclaim_strategy_t; 159 160 /* 161 * The number of iterations through arc_evict_*() before we 162 * drop & reacquire the lock. 163 */ 164 int arc_evict_iterations = 100; 165 166 /* number of seconds before growing cache again */ 167 static int arc_grow_retry = 60; 168 169 /* shift of arc_c for calculating both min and max arc_p */ 170 static int arc_p_min_shift = 4; 171 172 /* log2(fraction of arc to reclaim) */ 173 static int arc_shrink_shift = 5; 174 175 /* 176 * minimum lifespan of a prefetch block in clock ticks 177 * (initialized in arc_init()) 178 */ 179 static int arc_min_prefetch_lifespan; 180 181 /* 182 * If this percent of memory is free, don't throttle. 183 */ 184 int arc_lotsfree_percent = 10; 185 186 static int arc_dead; 187 188 /* 189 * The arc has filled available memory and has now warmed up. 190 */ 191 static boolean_t arc_warm; 192 193 /* 194 * These tunables are for performance analysis. 195 */ 196 uint64_t zfs_arc_max; 197 uint64_t zfs_arc_min; 198 uint64_t zfs_arc_meta_limit = 0; 199 uint64_t zfs_arc_meta_min = 0; 200 int zfs_arc_grow_retry = 0; 201 int zfs_arc_shrink_shift = 0; 202 int zfs_arc_p_min_shift = 0; 203 int zfs_disable_dup_eviction = 0; 204 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 205 206 /* 207 * Note that buffers can be in one of 6 states: 208 * ARC_anon - anonymous (discussed below) 209 * ARC_mru - recently used, currently cached 210 * ARC_mru_ghost - recentely used, no longer in cache 211 * ARC_mfu - frequently used, currently cached 212 * ARC_mfu_ghost - frequently used, no longer in cache 213 * ARC_l2c_only - exists in L2ARC but not other states 214 * When there are no active references to the buffer, they are 215 * are linked onto a list in one of these arc states. These are 216 * the only buffers that can be evicted or deleted. Within each 217 * state there are multiple lists, one for meta-data and one for 218 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 219 * etc.) is tracked separately so that it can be managed more 220 * explicitly: favored over data, limited explicitly. 221 * 222 * Anonymous buffers are buffers that are not associated with 223 * a DVA. These are buffers that hold dirty block copies 224 * before they are written to stable storage. By definition, 225 * they are "ref'd" and are considered part of arc_mru 226 * that cannot be freed. Generally, they will aquire a DVA 227 * as they are written and migrate onto the arc_mru list. 228 * 229 * The ARC_l2c_only state is for buffers that are in the second 230 * level ARC but no longer in any of the ARC_m* lists. The second 231 * level ARC itself may also contain buffers that are in any of 232 * the ARC_m* states - meaning that a buffer can exist in two 233 * places. The reason for the ARC_l2c_only state is to keep the 234 * buffer header in the hash table, so that reads that hit the 235 * second level ARC benefit from these fast lookups. 236 */ 237 238 typedef struct arc_state { 239 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 240 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 241 uint64_t arcs_size; /* total amount of data in this state */ 242 kmutex_t arcs_mtx; 243 } arc_state_t; 244 245 /* The 6 states: */ 246 static arc_state_t ARC_anon; 247 static arc_state_t ARC_mru; 248 static arc_state_t ARC_mru_ghost; 249 static arc_state_t ARC_mfu; 250 static arc_state_t ARC_mfu_ghost; 251 static arc_state_t ARC_l2c_only; 252 253 typedef struct arc_stats { 254 kstat_named_t arcstat_hits; 255 kstat_named_t arcstat_misses; 256 kstat_named_t arcstat_demand_data_hits; 257 kstat_named_t arcstat_demand_data_misses; 258 kstat_named_t arcstat_demand_metadata_hits; 259 kstat_named_t arcstat_demand_metadata_misses; 260 kstat_named_t arcstat_prefetch_data_hits; 261 kstat_named_t arcstat_prefetch_data_misses; 262 kstat_named_t arcstat_prefetch_metadata_hits; 263 kstat_named_t arcstat_prefetch_metadata_misses; 264 kstat_named_t arcstat_mru_hits; 265 kstat_named_t arcstat_mru_ghost_hits; 266 kstat_named_t arcstat_mfu_hits; 267 kstat_named_t arcstat_mfu_ghost_hits; 268 kstat_named_t arcstat_deleted; 269 kstat_named_t arcstat_recycle_miss; 270 /* 271 * Number of buffers that could not be evicted because the hash lock 272 * was held by another thread. The lock may not necessarily be held 273 * by something using the same buffer, since hash locks are shared 274 * by multiple buffers. 275 */ 276 kstat_named_t arcstat_mutex_miss; 277 /* 278 * Number of buffers skipped because they have I/O in progress, are 279 * indrect prefetch buffers that have not lived long enough, or are 280 * not from the spa we're trying to evict from. 281 */ 282 kstat_named_t arcstat_evict_skip; 283 kstat_named_t arcstat_evict_l2_cached; 284 kstat_named_t arcstat_evict_l2_eligible; 285 kstat_named_t arcstat_evict_l2_ineligible; 286 kstat_named_t arcstat_hash_elements; 287 kstat_named_t arcstat_hash_elements_max; 288 kstat_named_t arcstat_hash_collisions; 289 kstat_named_t arcstat_hash_chains; 290 kstat_named_t arcstat_hash_chain_max; 291 kstat_named_t arcstat_p; 292 kstat_named_t arcstat_c; 293 kstat_named_t arcstat_c_min; 294 kstat_named_t arcstat_c_max; 295 kstat_named_t arcstat_size; 296 kstat_named_t arcstat_hdr_size; 297 kstat_named_t arcstat_data_size; 298 kstat_named_t arcstat_other_size; 299 kstat_named_t arcstat_l2_hits; 300 kstat_named_t arcstat_l2_misses; 301 kstat_named_t arcstat_l2_feeds; 302 kstat_named_t arcstat_l2_rw_clash; 303 kstat_named_t arcstat_l2_read_bytes; 304 kstat_named_t arcstat_l2_write_bytes; 305 kstat_named_t arcstat_l2_writes_sent; 306 kstat_named_t arcstat_l2_writes_done; 307 kstat_named_t arcstat_l2_writes_error; 308 kstat_named_t arcstat_l2_writes_hdr_miss; 309 kstat_named_t arcstat_l2_evict_lock_retry; 310 kstat_named_t arcstat_l2_evict_reading; 311 kstat_named_t arcstat_l2_free_on_write; 312 kstat_named_t arcstat_l2_abort_lowmem; 313 kstat_named_t arcstat_l2_cksum_bad; 314 kstat_named_t arcstat_l2_io_error; 315 kstat_named_t arcstat_l2_size; 316 kstat_named_t arcstat_l2_asize; 317 kstat_named_t arcstat_l2_hdr_size; 318 kstat_named_t arcstat_l2_compress_successes; 319 kstat_named_t arcstat_l2_compress_zeros; 320 kstat_named_t arcstat_l2_compress_failures; 321 kstat_named_t arcstat_memory_throttle_count; 322 kstat_named_t arcstat_duplicate_buffers; 323 kstat_named_t arcstat_duplicate_buffers_size; 324 kstat_named_t arcstat_duplicate_reads; 325 kstat_named_t arcstat_meta_used; 326 kstat_named_t arcstat_meta_limit; 327 kstat_named_t arcstat_meta_max; 328 kstat_named_t arcstat_meta_min; 329 } arc_stats_t; 330 331 static arc_stats_t arc_stats = { 332 { "hits", KSTAT_DATA_UINT64 }, 333 { "misses", KSTAT_DATA_UINT64 }, 334 { "demand_data_hits", KSTAT_DATA_UINT64 }, 335 { "demand_data_misses", KSTAT_DATA_UINT64 }, 336 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 337 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 338 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 339 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 340 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 341 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 342 { "mru_hits", KSTAT_DATA_UINT64 }, 343 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 344 { "mfu_hits", KSTAT_DATA_UINT64 }, 345 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 346 { "deleted", KSTAT_DATA_UINT64 }, 347 { "recycle_miss", KSTAT_DATA_UINT64 }, 348 { "mutex_miss", KSTAT_DATA_UINT64 }, 349 { "evict_skip", KSTAT_DATA_UINT64 }, 350 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 351 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 352 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 353 { "hash_elements", KSTAT_DATA_UINT64 }, 354 { "hash_elements_max", KSTAT_DATA_UINT64 }, 355 { "hash_collisions", KSTAT_DATA_UINT64 }, 356 { "hash_chains", KSTAT_DATA_UINT64 }, 357 { "hash_chain_max", KSTAT_DATA_UINT64 }, 358 { "p", KSTAT_DATA_UINT64 }, 359 { "c", KSTAT_DATA_UINT64 }, 360 { "c_min", KSTAT_DATA_UINT64 }, 361 { "c_max", KSTAT_DATA_UINT64 }, 362 { "size", KSTAT_DATA_UINT64 }, 363 { "hdr_size", KSTAT_DATA_UINT64 }, 364 { "data_size", KSTAT_DATA_UINT64 }, 365 { "other_size", KSTAT_DATA_UINT64 }, 366 { "l2_hits", KSTAT_DATA_UINT64 }, 367 { "l2_misses", KSTAT_DATA_UINT64 }, 368 { "l2_feeds", KSTAT_DATA_UINT64 }, 369 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 370 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 371 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 372 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 373 { "l2_writes_done", KSTAT_DATA_UINT64 }, 374 { "l2_writes_error", KSTAT_DATA_UINT64 }, 375 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 376 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 377 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 378 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 379 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 380 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 381 { "l2_io_error", KSTAT_DATA_UINT64 }, 382 { "l2_size", KSTAT_DATA_UINT64 }, 383 { "l2_asize", KSTAT_DATA_UINT64 }, 384 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 385 { "l2_compress_successes", KSTAT_DATA_UINT64 }, 386 { "l2_compress_zeros", KSTAT_DATA_UINT64 }, 387 { "l2_compress_failures", KSTAT_DATA_UINT64 }, 388 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 389 { "duplicate_buffers", KSTAT_DATA_UINT64 }, 390 { "duplicate_buffers_size", KSTAT_DATA_UINT64 }, 391 { "duplicate_reads", KSTAT_DATA_UINT64 }, 392 { "arc_meta_used", KSTAT_DATA_UINT64 }, 393 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 394 { "arc_meta_max", KSTAT_DATA_UINT64 }, 395 { "arc_meta_min", KSTAT_DATA_UINT64 } 396 }; 397 398 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 399 400 #define ARCSTAT_INCR(stat, val) \ 401 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 402 403 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 404 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 405 406 #define ARCSTAT_MAX(stat, val) { \ 407 uint64_t m; \ 408 while ((val) > (m = arc_stats.stat.value.ui64) && \ 409 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 410 continue; \ 411 } 412 413 #define ARCSTAT_MAXSTAT(stat) \ 414 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 415 416 /* 417 * We define a macro to allow ARC hits/misses to be easily broken down by 418 * two separate conditions, giving a total of four different subtypes for 419 * each of hits and misses (so eight statistics total). 420 */ 421 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 422 if (cond1) { \ 423 if (cond2) { \ 424 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 425 } else { \ 426 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 427 } \ 428 } else { \ 429 if (cond2) { \ 430 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 431 } else { \ 432 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 433 } \ 434 } 435 436 kstat_t *arc_ksp; 437 static arc_state_t *arc_anon; 438 static arc_state_t *arc_mru; 439 static arc_state_t *arc_mru_ghost; 440 static arc_state_t *arc_mfu; 441 static arc_state_t *arc_mfu_ghost; 442 static arc_state_t *arc_l2c_only; 443 444 /* 445 * There are several ARC variables that are critical to export as kstats -- 446 * but we don't want to have to grovel around in the kstat whenever we wish to 447 * manipulate them. For these variables, we therefore define them to be in 448 * terms of the statistic variable. This assures that we are not introducing 449 * the possibility of inconsistency by having shadow copies of the variables, 450 * while still allowing the code to be readable. 451 */ 452 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 453 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 454 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 455 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 456 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 457 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 458 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 459 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ 460 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 461 462 #define L2ARC_IS_VALID_COMPRESS(_c_) \ 463 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY) 464 465 static int arc_no_grow; /* Don't try to grow cache size */ 466 static uint64_t arc_tempreserve; 467 static uint64_t arc_loaned_bytes; 468 469 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 470 471 typedef struct arc_callback arc_callback_t; 472 473 struct arc_callback { 474 void *acb_private; 475 arc_done_func_t *acb_done; 476 arc_buf_t *acb_buf; 477 zio_t *acb_zio_dummy; 478 arc_callback_t *acb_next; 479 }; 480 481 typedef struct arc_write_callback arc_write_callback_t; 482 483 struct arc_write_callback { 484 void *awcb_private; 485 arc_done_func_t *awcb_ready; 486 arc_done_func_t *awcb_physdone; 487 arc_done_func_t *awcb_done; 488 arc_buf_t *awcb_buf; 489 }; 490 491 struct arc_buf_hdr { 492 /* protected by hash lock */ 493 dva_t b_dva; 494 uint64_t b_birth; 495 uint64_t b_cksum0; 496 497 kmutex_t b_freeze_lock; 498 zio_cksum_t *b_freeze_cksum; 499 void *b_thawed; 500 501 arc_buf_hdr_t *b_hash_next; 502 arc_buf_t *b_buf; 503 uint32_t b_flags; 504 uint32_t b_datacnt; 505 506 arc_callback_t *b_acb; 507 kcondvar_t b_cv; 508 509 /* immutable */ 510 arc_buf_contents_t b_type; 511 uint64_t b_size; 512 uint64_t b_spa; 513 514 /* protected by arc state mutex */ 515 arc_state_t *b_state; 516 list_node_t b_arc_node; 517 518 /* updated atomically */ 519 clock_t b_arc_access; 520 521 /* self protecting */ 522 refcount_t b_refcnt; 523 524 l2arc_buf_hdr_t *b_l2hdr; 525 list_node_t b_l2node; 526 }; 527 528 static arc_buf_t *arc_eviction_list; 529 static kmutex_t arc_eviction_mtx; 530 static arc_buf_hdr_t arc_eviction_hdr; 531 static void arc_get_data_buf(arc_buf_t *buf); 532 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 533 static int arc_evict_needed(arc_buf_contents_t type); 534 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 535 static void arc_buf_watch(arc_buf_t *buf); 536 537 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); 538 539 #define GHOST_STATE(state) \ 540 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 541 (state) == arc_l2c_only) 542 543 /* 544 * Private ARC flags. These flags are private ARC only flags that will show up 545 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 546 * be passed in as arc_flags in things like arc_read. However, these flags 547 * should never be passed and should only be set by ARC code. When adding new 548 * public flags, make sure not to smash the private ones. 549 */ 550 551 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 552 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 553 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 554 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 555 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 556 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 557 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 558 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 559 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 560 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 561 562 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 563 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 564 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 565 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 566 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 567 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 568 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 569 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 570 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 571 (hdr)->b_l2hdr != NULL) 572 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 573 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 574 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 575 576 /* 577 * Other sizes 578 */ 579 580 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 581 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 582 583 /* 584 * Hash table routines 585 */ 586 587 #define HT_LOCK_PAD 64 588 589 struct ht_lock { 590 kmutex_t ht_lock; 591 #ifdef _KERNEL 592 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 593 #endif 594 }; 595 596 #define BUF_LOCKS 256 597 typedef struct buf_hash_table { 598 uint64_t ht_mask; 599 arc_buf_hdr_t **ht_table; 600 struct ht_lock ht_locks[BUF_LOCKS]; 601 } buf_hash_table_t; 602 603 static buf_hash_table_t buf_hash_table; 604 605 #define BUF_HASH_INDEX(spa, dva, birth) \ 606 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 607 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 608 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 609 #define HDR_LOCK(hdr) \ 610 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 611 612 uint64_t zfs_crc64_table[256]; 613 614 /* 615 * Level 2 ARC 616 */ 617 618 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 619 #define L2ARC_HEADROOM 2 /* num of writes */ 620 /* 621 * If we discover during ARC scan any buffers to be compressed, we boost 622 * our headroom for the next scanning cycle by this percentage multiple. 623 */ 624 #define L2ARC_HEADROOM_BOOST 200 625 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 626 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 627 628 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 629 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 630 631 /* L2ARC Performance Tunables */ 632 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 633 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 634 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 635 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 636 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 637 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 638 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 639 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 640 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 641 642 /* 643 * L2ARC Internals 644 */ 645 typedef struct l2arc_dev { 646 vdev_t *l2ad_vdev; /* vdev */ 647 spa_t *l2ad_spa; /* spa */ 648 uint64_t l2ad_hand; /* next write location */ 649 uint64_t l2ad_start; /* first addr on device */ 650 uint64_t l2ad_end; /* last addr on device */ 651 uint64_t l2ad_evict; /* last addr eviction reached */ 652 boolean_t l2ad_first; /* first sweep through */ 653 boolean_t l2ad_writing; /* currently writing */ 654 list_t *l2ad_buflist; /* buffer list */ 655 list_node_t l2ad_node; /* device list node */ 656 } l2arc_dev_t; 657 658 static list_t L2ARC_dev_list; /* device list */ 659 static list_t *l2arc_dev_list; /* device list pointer */ 660 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 661 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 662 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 663 static list_t L2ARC_free_on_write; /* free after write buf list */ 664 static list_t *l2arc_free_on_write; /* free after write list ptr */ 665 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 666 static uint64_t l2arc_ndev; /* number of devices */ 667 668 typedef struct l2arc_read_callback { 669 arc_buf_t *l2rcb_buf; /* read buffer */ 670 spa_t *l2rcb_spa; /* spa */ 671 blkptr_t l2rcb_bp; /* original blkptr */ 672 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 673 int l2rcb_flags; /* original flags */ 674 enum zio_compress l2rcb_compress; /* applied compress */ 675 } l2arc_read_callback_t; 676 677 typedef struct l2arc_write_callback { 678 l2arc_dev_t *l2wcb_dev; /* device info */ 679 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 680 } l2arc_write_callback_t; 681 682 struct l2arc_buf_hdr { 683 /* protected by arc_buf_hdr mutex */ 684 l2arc_dev_t *b_dev; /* L2ARC device */ 685 uint64_t b_daddr; /* disk address, offset byte */ 686 /* compression applied to buffer data */ 687 enum zio_compress b_compress; 688 /* real alloc'd buffer size depending on b_compress applied */ 689 int b_asize; 690 /* temporary buffer holder for in-flight compressed data */ 691 void *b_tmp_cdata; 692 }; 693 694 typedef struct l2arc_data_free { 695 /* protected by l2arc_free_on_write_mtx */ 696 void *l2df_data; 697 size_t l2df_size; 698 void (*l2df_func)(void *, size_t); 699 list_node_t l2df_list_node; 700 } l2arc_data_free_t; 701 702 static kmutex_t l2arc_feed_thr_lock; 703 static kcondvar_t l2arc_feed_thr_cv; 704 static uint8_t l2arc_thread_exit; 705 706 static void l2arc_read_done(zio_t *zio); 707 static void l2arc_hdr_stat_add(void); 708 static void l2arc_hdr_stat_remove(void); 709 710 static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr); 711 static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, 712 enum zio_compress c); 713 static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab); 714 715 static uint64_t 716 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 717 { 718 uint8_t *vdva = (uint8_t *)dva; 719 uint64_t crc = -1ULL; 720 int i; 721 722 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 723 724 for (i = 0; i < sizeof (dva_t); i++) 725 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 726 727 crc ^= (spa>>8) ^ birth; 728 729 return (crc); 730 } 731 732 #define BUF_EMPTY(buf) \ 733 ((buf)->b_dva.dva_word[0] == 0 && \ 734 (buf)->b_dva.dva_word[1] == 0 && \ 735 (buf)->b_cksum0 == 0) 736 737 #define BUF_EQUAL(spa, dva, birth, buf) \ 738 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 739 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 740 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 741 742 static void 743 buf_discard_identity(arc_buf_hdr_t *hdr) 744 { 745 hdr->b_dva.dva_word[0] = 0; 746 hdr->b_dva.dva_word[1] = 0; 747 hdr->b_birth = 0; 748 hdr->b_cksum0 = 0; 749 } 750 751 static arc_buf_hdr_t * 752 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 753 { 754 const dva_t *dva = BP_IDENTITY(bp); 755 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 756 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 757 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 758 arc_buf_hdr_t *buf; 759 760 mutex_enter(hash_lock); 761 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 762 buf = buf->b_hash_next) { 763 if (BUF_EQUAL(spa, dva, birth, buf)) { 764 *lockp = hash_lock; 765 return (buf); 766 } 767 } 768 mutex_exit(hash_lock); 769 *lockp = NULL; 770 return (NULL); 771 } 772 773 /* 774 * Insert an entry into the hash table. If there is already an element 775 * equal to elem in the hash table, then the already existing element 776 * will be returned and the new element will not be inserted. 777 * Otherwise returns NULL. 778 */ 779 static arc_buf_hdr_t * 780 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 781 { 782 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 783 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 784 arc_buf_hdr_t *fbuf; 785 uint32_t i; 786 787 ASSERT(!DVA_IS_EMPTY(&buf->b_dva)); 788 ASSERT(buf->b_birth != 0); 789 ASSERT(!HDR_IN_HASH_TABLE(buf)); 790 *lockp = hash_lock; 791 mutex_enter(hash_lock); 792 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 793 fbuf = fbuf->b_hash_next, i++) { 794 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 795 return (fbuf); 796 } 797 798 buf->b_hash_next = buf_hash_table.ht_table[idx]; 799 buf_hash_table.ht_table[idx] = buf; 800 buf->b_flags |= ARC_IN_HASH_TABLE; 801 802 /* collect some hash table performance data */ 803 if (i > 0) { 804 ARCSTAT_BUMP(arcstat_hash_collisions); 805 if (i == 1) 806 ARCSTAT_BUMP(arcstat_hash_chains); 807 808 ARCSTAT_MAX(arcstat_hash_chain_max, i); 809 } 810 811 ARCSTAT_BUMP(arcstat_hash_elements); 812 ARCSTAT_MAXSTAT(arcstat_hash_elements); 813 814 return (NULL); 815 } 816 817 static void 818 buf_hash_remove(arc_buf_hdr_t *buf) 819 { 820 arc_buf_hdr_t *fbuf, **bufp; 821 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 822 823 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 824 ASSERT(HDR_IN_HASH_TABLE(buf)); 825 826 bufp = &buf_hash_table.ht_table[idx]; 827 while ((fbuf = *bufp) != buf) { 828 ASSERT(fbuf != NULL); 829 bufp = &fbuf->b_hash_next; 830 } 831 *bufp = buf->b_hash_next; 832 buf->b_hash_next = NULL; 833 buf->b_flags &= ~ARC_IN_HASH_TABLE; 834 835 /* collect some hash table performance data */ 836 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 837 838 if (buf_hash_table.ht_table[idx] && 839 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 840 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 841 } 842 843 /* 844 * Global data structures and functions for the buf kmem cache. 845 */ 846 static kmem_cache_t *hdr_cache; 847 static kmem_cache_t *buf_cache; 848 849 static void 850 buf_fini(void) 851 { 852 int i; 853 854 kmem_free(buf_hash_table.ht_table, 855 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 856 for (i = 0; i < BUF_LOCKS; i++) 857 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 858 kmem_cache_destroy(hdr_cache); 859 kmem_cache_destroy(buf_cache); 860 } 861 862 /* 863 * Constructor callback - called when the cache is empty 864 * and a new buf is requested. 865 */ 866 /* ARGSUSED */ 867 static int 868 hdr_cons(void *vbuf, void *unused, int kmflag) 869 { 870 arc_buf_hdr_t *buf = vbuf; 871 872 bzero(buf, sizeof (arc_buf_hdr_t)); 873 refcount_create(&buf->b_refcnt); 874 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 875 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 876 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 877 878 return (0); 879 } 880 881 /* ARGSUSED */ 882 static int 883 buf_cons(void *vbuf, void *unused, int kmflag) 884 { 885 arc_buf_t *buf = vbuf; 886 887 bzero(buf, sizeof (arc_buf_t)); 888 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 889 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 890 891 return (0); 892 } 893 894 /* 895 * Destructor callback - called when a cached buf is 896 * no longer required. 897 */ 898 /* ARGSUSED */ 899 static void 900 hdr_dest(void *vbuf, void *unused) 901 { 902 arc_buf_hdr_t *buf = vbuf; 903 904 ASSERT(BUF_EMPTY(buf)); 905 refcount_destroy(&buf->b_refcnt); 906 cv_destroy(&buf->b_cv); 907 mutex_destroy(&buf->b_freeze_lock); 908 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 909 } 910 911 /* ARGSUSED */ 912 static void 913 buf_dest(void *vbuf, void *unused) 914 { 915 arc_buf_t *buf = vbuf; 916 917 mutex_destroy(&buf->b_evict_lock); 918 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 919 } 920 921 /* 922 * Reclaim callback -- invoked when memory is low. 923 */ 924 /* ARGSUSED */ 925 static void 926 hdr_recl(void *unused) 927 { 928 dprintf("hdr_recl called\n"); 929 /* 930 * umem calls the reclaim func when we destroy the buf cache, 931 * which is after we do arc_fini(). 932 */ 933 if (!arc_dead) 934 cv_signal(&arc_reclaim_thr_cv); 935 } 936 937 static void 938 buf_init(void) 939 { 940 uint64_t *ct; 941 uint64_t hsize = 1ULL << 12; 942 int i, j; 943 944 /* 945 * The hash table is big enough to fill all of physical memory 946 * with an average block size of zfs_arc_average_blocksize (default 8K). 947 * By default, the table will take up 948 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 949 */ 950 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE) 951 hsize <<= 1; 952 retry: 953 buf_hash_table.ht_mask = hsize - 1; 954 buf_hash_table.ht_table = 955 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 956 if (buf_hash_table.ht_table == NULL) { 957 ASSERT(hsize > (1ULL << 8)); 958 hsize >>= 1; 959 goto retry; 960 } 961 962 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 963 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 964 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 965 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 966 967 for (i = 0; i < 256; i++) 968 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 969 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 970 971 for (i = 0; i < BUF_LOCKS; i++) { 972 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 973 NULL, MUTEX_DEFAULT, NULL); 974 } 975 } 976 977 #define ARC_MINTIME (hz>>4) /* 62 ms */ 978 979 static void 980 arc_cksum_verify(arc_buf_t *buf) 981 { 982 zio_cksum_t zc; 983 984 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 985 return; 986 987 mutex_enter(&buf->b_hdr->b_freeze_lock); 988 if (buf->b_hdr->b_freeze_cksum == NULL || 989 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 990 mutex_exit(&buf->b_hdr->b_freeze_lock); 991 return; 992 } 993 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 994 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 995 panic("buffer modified while frozen!"); 996 mutex_exit(&buf->b_hdr->b_freeze_lock); 997 } 998 999 static int 1000 arc_cksum_equal(arc_buf_t *buf) 1001 { 1002 zio_cksum_t zc; 1003 int equal; 1004 1005 mutex_enter(&buf->b_hdr->b_freeze_lock); 1006 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 1007 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 1008 mutex_exit(&buf->b_hdr->b_freeze_lock); 1009 1010 return (equal); 1011 } 1012 1013 static void 1014 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 1015 { 1016 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 1017 return; 1018 1019 mutex_enter(&buf->b_hdr->b_freeze_lock); 1020 if (buf->b_hdr->b_freeze_cksum != NULL) { 1021 mutex_exit(&buf->b_hdr->b_freeze_lock); 1022 return; 1023 } 1024 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 1025 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 1026 buf->b_hdr->b_freeze_cksum); 1027 mutex_exit(&buf->b_hdr->b_freeze_lock); 1028 arc_buf_watch(buf); 1029 } 1030 1031 #ifndef _KERNEL 1032 typedef struct procctl { 1033 long cmd; 1034 prwatch_t prwatch; 1035 } procctl_t; 1036 #endif 1037 1038 /* ARGSUSED */ 1039 static void 1040 arc_buf_unwatch(arc_buf_t *buf) 1041 { 1042 #ifndef _KERNEL 1043 if (arc_watch) { 1044 int result; 1045 procctl_t ctl; 1046 ctl.cmd = PCWATCH; 1047 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1048 ctl.prwatch.pr_size = 0; 1049 ctl.prwatch.pr_wflags = 0; 1050 result = write(arc_procfd, &ctl, sizeof (ctl)); 1051 ASSERT3U(result, ==, sizeof (ctl)); 1052 } 1053 #endif 1054 } 1055 1056 /* ARGSUSED */ 1057 static void 1058 arc_buf_watch(arc_buf_t *buf) 1059 { 1060 #ifndef _KERNEL 1061 if (arc_watch) { 1062 int result; 1063 procctl_t ctl; 1064 ctl.cmd = PCWATCH; 1065 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1066 ctl.prwatch.pr_size = buf->b_hdr->b_size; 1067 ctl.prwatch.pr_wflags = WA_WRITE; 1068 result = write(arc_procfd, &ctl, sizeof (ctl)); 1069 ASSERT3U(result, ==, sizeof (ctl)); 1070 } 1071 #endif 1072 } 1073 1074 void 1075 arc_buf_thaw(arc_buf_t *buf) 1076 { 1077 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1078 if (buf->b_hdr->b_state != arc_anon) 1079 panic("modifying non-anon buffer!"); 1080 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 1081 panic("modifying buffer while i/o in progress!"); 1082 arc_cksum_verify(buf); 1083 } 1084 1085 mutex_enter(&buf->b_hdr->b_freeze_lock); 1086 if (buf->b_hdr->b_freeze_cksum != NULL) { 1087 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1088 buf->b_hdr->b_freeze_cksum = NULL; 1089 } 1090 1091 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1092 if (buf->b_hdr->b_thawed) 1093 kmem_free(buf->b_hdr->b_thawed, 1); 1094 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP); 1095 } 1096 1097 mutex_exit(&buf->b_hdr->b_freeze_lock); 1098 1099 arc_buf_unwatch(buf); 1100 } 1101 1102 void 1103 arc_buf_freeze(arc_buf_t *buf) 1104 { 1105 kmutex_t *hash_lock; 1106 1107 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1108 return; 1109 1110 hash_lock = HDR_LOCK(buf->b_hdr); 1111 mutex_enter(hash_lock); 1112 1113 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 1114 buf->b_hdr->b_state == arc_anon); 1115 arc_cksum_compute(buf, B_FALSE); 1116 mutex_exit(hash_lock); 1117 1118 } 1119 1120 static void 1121 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1122 { 1123 ASSERT(MUTEX_HELD(hash_lock)); 1124 1125 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 1126 (ab->b_state != arc_anon)) { 1127 uint64_t delta = ab->b_size * ab->b_datacnt; 1128 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 1129 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 1130 1131 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 1132 mutex_enter(&ab->b_state->arcs_mtx); 1133 ASSERT(list_link_active(&ab->b_arc_node)); 1134 list_remove(list, ab); 1135 if (GHOST_STATE(ab->b_state)) { 1136 ASSERT0(ab->b_datacnt); 1137 ASSERT3P(ab->b_buf, ==, NULL); 1138 delta = ab->b_size; 1139 } 1140 ASSERT(delta > 0); 1141 ASSERT3U(*size, >=, delta); 1142 atomic_add_64(size, -delta); 1143 mutex_exit(&ab->b_state->arcs_mtx); 1144 /* remove the prefetch flag if we get a reference */ 1145 if (ab->b_flags & ARC_PREFETCH) 1146 ab->b_flags &= ~ARC_PREFETCH; 1147 } 1148 } 1149 1150 static int 1151 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1152 { 1153 int cnt; 1154 arc_state_t *state = ab->b_state; 1155 1156 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1157 ASSERT(!GHOST_STATE(state)); 1158 1159 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1160 (state != arc_anon)) { 1161 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1162 1163 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1164 mutex_enter(&state->arcs_mtx); 1165 ASSERT(!list_link_active(&ab->b_arc_node)); 1166 list_insert_head(&state->arcs_list[ab->b_type], ab); 1167 ASSERT(ab->b_datacnt > 0); 1168 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1169 mutex_exit(&state->arcs_mtx); 1170 } 1171 return (cnt); 1172 } 1173 1174 /* 1175 * Move the supplied buffer to the indicated state. The mutex 1176 * for the buffer must be held by the caller. 1177 */ 1178 static void 1179 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1180 { 1181 arc_state_t *old_state = ab->b_state; 1182 int64_t refcnt = refcount_count(&ab->b_refcnt); 1183 uint64_t from_delta, to_delta; 1184 1185 ASSERT(MUTEX_HELD(hash_lock)); 1186 ASSERT3P(new_state, !=, old_state); 1187 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1188 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1189 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon); 1190 1191 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1192 1193 /* 1194 * If this buffer is evictable, transfer it from the 1195 * old state list to the new state list. 1196 */ 1197 if (refcnt == 0) { 1198 if (old_state != arc_anon) { 1199 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1200 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1201 1202 if (use_mutex) 1203 mutex_enter(&old_state->arcs_mtx); 1204 1205 ASSERT(list_link_active(&ab->b_arc_node)); 1206 list_remove(&old_state->arcs_list[ab->b_type], ab); 1207 1208 /* 1209 * If prefetching out of the ghost cache, 1210 * we will have a non-zero datacnt. 1211 */ 1212 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1213 /* ghost elements have a ghost size */ 1214 ASSERT(ab->b_buf == NULL); 1215 from_delta = ab->b_size; 1216 } 1217 ASSERT3U(*size, >=, from_delta); 1218 atomic_add_64(size, -from_delta); 1219 1220 if (use_mutex) 1221 mutex_exit(&old_state->arcs_mtx); 1222 } 1223 if (new_state != arc_anon) { 1224 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1225 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1226 1227 if (use_mutex) 1228 mutex_enter(&new_state->arcs_mtx); 1229 1230 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1231 1232 /* ghost elements have a ghost size */ 1233 if (GHOST_STATE(new_state)) { 1234 ASSERT(ab->b_datacnt == 0); 1235 ASSERT(ab->b_buf == NULL); 1236 to_delta = ab->b_size; 1237 } 1238 atomic_add_64(size, to_delta); 1239 1240 if (use_mutex) 1241 mutex_exit(&new_state->arcs_mtx); 1242 } 1243 } 1244 1245 ASSERT(!BUF_EMPTY(ab)); 1246 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab)) 1247 buf_hash_remove(ab); 1248 1249 /* adjust state sizes */ 1250 if (to_delta) 1251 atomic_add_64(&new_state->arcs_size, to_delta); 1252 if (from_delta) { 1253 ASSERT3U(old_state->arcs_size, >=, from_delta); 1254 atomic_add_64(&old_state->arcs_size, -from_delta); 1255 } 1256 ab->b_state = new_state; 1257 1258 /* adjust l2arc hdr stats */ 1259 if (new_state == arc_l2c_only) 1260 l2arc_hdr_stat_add(); 1261 else if (old_state == arc_l2c_only) 1262 l2arc_hdr_stat_remove(); 1263 } 1264 1265 void 1266 arc_space_consume(uint64_t space, arc_space_type_t type) 1267 { 1268 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1269 1270 switch (type) { 1271 case ARC_SPACE_DATA: 1272 ARCSTAT_INCR(arcstat_data_size, space); 1273 break; 1274 case ARC_SPACE_OTHER: 1275 ARCSTAT_INCR(arcstat_other_size, space); 1276 break; 1277 case ARC_SPACE_HDRS: 1278 ARCSTAT_INCR(arcstat_hdr_size, space); 1279 break; 1280 case ARC_SPACE_L2HDRS: 1281 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1282 break; 1283 } 1284 1285 ARCSTAT_INCR(arcstat_meta_used, space); 1286 atomic_add_64(&arc_size, space); 1287 } 1288 1289 void 1290 arc_space_return(uint64_t space, arc_space_type_t type) 1291 { 1292 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1293 1294 switch (type) { 1295 case ARC_SPACE_DATA: 1296 ARCSTAT_INCR(arcstat_data_size, -space); 1297 break; 1298 case ARC_SPACE_OTHER: 1299 ARCSTAT_INCR(arcstat_other_size, -space); 1300 break; 1301 case ARC_SPACE_HDRS: 1302 ARCSTAT_INCR(arcstat_hdr_size, -space); 1303 break; 1304 case ARC_SPACE_L2HDRS: 1305 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1306 break; 1307 } 1308 1309 ASSERT(arc_meta_used >= space); 1310 if (arc_meta_max < arc_meta_used) 1311 arc_meta_max = arc_meta_used; 1312 ARCSTAT_INCR(arcstat_meta_used, -space); 1313 ASSERT(arc_size >= space); 1314 atomic_add_64(&arc_size, -space); 1315 } 1316 1317 arc_buf_t * 1318 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1319 { 1320 arc_buf_hdr_t *hdr; 1321 arc_buf_t *buf; 1322 1323 ASSERT3U(size, >, 0); 1324 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1325 ASSERT(BUF_EMPTY(hdr)); 1326 hdr->b_size = size; 1327 hdr->b_type = type; 1328 hdr->b_spa = spa_load_guid(spa); 1329 hdr->b_state = arc_anon; 1330 hdr->b_arc_access = 0; 1331 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1332 buf->b_hdr = hdr; 1333 buf->b_data = NULL; 1334 buf->b_efunc = NULL; 1335 buf->b_private = NULL; 1336 buf->b_next = NULL; 1337 hdr->b_buf = buf; 1338 arc_get_data_buf(buf); 1339 hdr->b_datacnt = 1; 1340 hdr->b_flags = 0; 1341 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1342 (void) refcount_add(&hdr->b_refcnt, tag); 1343 1344 return (buf); 1345 } 1346 1347 static char *arc_onloan_tag = "onloan"; 1348 1349 /* 1350 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1351 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1352 * buffers must be returned to the arc before they can be used by the DMU or 1353 * freed. 1354 */ 1355 arc_buf_t * 1356 arc_loan_buf(spa_t *spa, int size) 1357 { 1358 arc_buf_t *buf; 1359 1360 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1361 1362 atomic_add_64(&arc_loaned_bytes, size); 1363 return (buf); 1364 } 1365 1366 /* 1367 * Return a loaned arc buffer to the arc. 1368 */ 1369 void 1370 arc_return_buf(arc_buf_t *buf, void *tag) 1371 { 1372 arc_buf_hdr_t *hdr = buf->b_hdr; 1373 1374 ASSERT(buf->b_data != NULL); 1375 (void) refcount_add(&hdr->b_refcnt, tag); 1376 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); 1377 1378 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1379 } 1380 1381 /* Detach an arc_buf from a dbuf (tag) */ 1382 void 1383 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1384 { 1385 arc_buf_hdr_t *hdr; 1386 1387 ASSERT(buf->b_data != NULL); 1388 hdr = buf->b_hdr; 1389 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); 1390 (void) refcount_remove(&hdr->b_refcnt, tag); 1391 buf->b_efunc = NULL; 1392 buf->b_private = NULL; 1393 1394 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1395 } 1396 1397 static arc_buf_t * 1398 arc_buf_clone(arc_buf_t *from) 1399 { 1400 arc_buf_t *buf; 1401 arc_buf_hdr_t *hdr = from->b_hdr; 1402 uint64_t size = hdr->b_size; 1403 1404 ASSERT(hdr->b_state != arc_anon); 1405 1406 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1407 buf->b_hdr = hdr; 1408 buf->b_data = NULL; 1409 buf->b_efunc = NULL; 1410 buf->b_private = NULL; 1411 buf->b_next = hdr->b_buf; 1412 hdr->b_buf = buf; 1413 arc_get_data_buf(buf); 1414 bcopy(from->b_data, buf->b_data, size); 1415 1416 /* 1417 * This buffer already exists in the arc so create a duplicate 1418 * copy for the caller. If the buffer is associated with user data 1419 * then track the size and number of duplicates. These stats will be 1420 * updated as duplicate buffers are created and destroyed. 1421 */ 1422 if (hdr->b_type == ARC_BUFC_DATA) { 1423 ARCSTAT_BUMP(arcstat_duplicate_buffers); 1424 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size); 1425 } 1426 hdr->b_datacnt += 1; 1427 return (buf); 1428 } 1429 1430 void 1431 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1432 { 1433 arc_buf_hdr_t *hdr; 1434 kmutex_t *hash_lock; 1435 1436 /* 1437 * Check to see if this buffer is evicted. Callers 1438 * must verify b_data != NULL to know if the add_ref 1439 * was successful. 1440 */ 1441 mutex_enter(&buf->b_evict_lock); 1442 if (buf->b_data == NULL) { 1443 mutex_exit(&buf->b_evict_lock); 1444 return; 1445 } 1446 hash_lock = HDR_LOCK(buf->b_hdr); 1447 mutex_enter(hash_lock); 1448 hdr = buf->b_hdr; 1449 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1450 mutex_exit(&buf->b_evict_lock); 1451 1452 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1453 add_reference(hdr, hash_lock, tag); 1454 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1455 arc_access(hdr, hash_lock); 1456 mutex_exit(hash_lock); 1457 ARCSTAT_BUMP(arcstat_hits); 1458 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1459 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1460 data, metadata, hits); 1461 } 1462 1463 /* 1464 * Free the arc data buffer. If it is an l2arc write in progress, 1465 * the buffer is placed on l2arc_free_on_write to be freed later. 1466 */ 1467 static void 1468 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t)) 1469 { 1470 arc_buf_hdr_t *hdr = buf->b_hdr; 1471 1472 if (HDR_L2_WRITING(hdr)) { 1473 l2arc_data_free_t *df; 1474 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1475 df->l2df_data = buf->b_data; 1476 df->l2df_size = hdr->b_size; 1477 df->l2df_func = free_func; 1478 mutex_enter(&l2arc_free_on_write_mtx); 1479 list_insert_head(l2arc_free_on_write, df); 1480 mutex_exit(&l2arc_free_on_write_mtx); 1481 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1482 } else { 1483 free_func(buf->b_data, hdr->b_size); 1484 } 1485 } 1486 1487 /* 1488 * Free up buf->b_data and if 'remove' is set, then pull the 1489 * arc_buf_t off of the the arc_buf_hdr_t's list and free it. 1490 */ 1491 static void 1492 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t remove) 1493 { 1494 arc_buf_t **bufp; 1495 1496 /* free up data associated with the buf */ 1497 if (buf->b_data) { 1498 arc_state_t *state = buf->b_hdr->b_state; 1499 uint64_t size = buf->b_hdr->b_size; 1500 arc_buf_contents_t type = buf->b_hdr->b_type; 1501 1502 arc_cksum_verify(buf); 1503 arc_buf_unwatch(buf); 1504 1505 if (!recycle) { 1506 if (type == ARC_BUFC_METADATA) { 1507 arc_buf_data_free(buf, zio_buf_free); 1508 arc_space_return(size, ARC_SPACE_DATA); 1509 } else { 1510 ASSERT(type == ARC_BUFC_DATA); 1511 arc_buf_data_free(buf, zio_data_buf_free); 1512 ARCSTAT_INCR(arcstat_data_size, -size); 1513 atomic_add_64(&arc_size, -size); 1514 } 1515 } 1516 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1517 uint64_t *cnt = &state->arcs_lsize[type]; 1518 1519 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1520 ASSERT(state != arc_anon); 1521 1522 ASSERT3U(*cnt, >=, size); 1523 atomic_add_64(cnt, -size); 1524 } 1525 ASSERT3U(state->arcs_size, >=, size); 1526 atomic_add_64(&state->arcs_size, -size); 1527 buf->b_data = NULL; 1528 1529 /* 1530 * If we're destroying a duplicate buffer make sure 1531 * that the appropriate statistics are updated. 1532 */ 1533 if (buf->b_hdr->b_datacnt > 1 && 1534 buf->b_hdr->b_type == ARC_BUFC_DATA) { 1535 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 1536 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size); 1537 } 1538 ASSERT(buf->b_hdr->b_datacnt > 0); 1539 buf->b_hdr->b_datacnt -= 1; 1540 } 1541 1542 /* only remove the buf if requested */ 1543 if (!remove) 1544 return; 1545 1546 /* remove the buf from the hdr list */ 1547 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1548 continue; 1549 *bufp = buf->b_next; 1550 buf->b_next = NULL; 1551 1552 ASSERT(buf->b_efunc == NULL); 1553 1554 /* clean up the buf */ 1555 buf->b_hdr = NULL; 1556 kmem_cache_free(buf_cache, buf); 1557 } 1558 1559 static void 1560 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1561 { 1562 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1563 ASSERT3P(hdr->b_state, ==, arc_anon); 1564 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1565 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1566 1567 if (l2hdr != NULL) { 1568 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); 1569 /* 1570 * To prevent arc_free() and l2arc_evict() from 1571 * attempting to free the same buffer at the same time, 1572 * a FREE_IN_PROGRESS flag is given to arc_free() to 1573 * give it priority. l2arc_evict() can't destroy this 1574 * header while we are waiting on l2arc_buflist_mtx. 1575 * 1576 * The hdr may be removed from l2ad_buflist before we 1577 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1578 */ 1579 if (!buflist_held) { 1580 mutex_enter(&l2arc_buflist_mtx); 1581 l2hdr = hdr->b_l2hdr; 1582 } 1583 1584 if (l2hdr != NULL) { 1585 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 1586 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1587 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 1588 vdev_space_update(l2hdr->b_dev->l2ad_vdev, 1589 -l2hdr->b_asize, 0, 0); 1590 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 1591 if (hdr->b_state == arc_l2c_only) 1592 l2arc_hdr_stat_remove(); 1593 hdr->b_l2hdr = NULL; 1594 } 1595 1596 if (!buflist_held) 1597 mutex_exit(&l2arc_buflist_mtx); 1598 } 1599 1600 if (!BUF_EMPTY(hdr)) { 1601 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1602 buf_discard_identity(hdr); 1603 } 1604 while (hdr->b_buf) { 1605 arc_buf_t *buf = hdr->b_buf; 1606 1607 if (buf->b_efunc) { 1608 mutex_enter(&arc_eviction_mtx); 1609 mutex_enter(&buf->b_evict_lock); 1610 ASSERT(buf->b_hdr != NULL); 1611 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1612 hdr->b_buf = buf->b_next; 1613 buf->b_hdr = &arc_eviction_hdr; 1614 buf->b_next = arc_eviction_list; 1615 arc_eviction_list = buf; 1616 mutex_exit(&buf->b_evict_lock); 1617 mutex_exit(&arc_eviction_mtx); 1618 } else { 1619 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1620 } 1621 } 1622 if (hdr->b_freeze_cksum != NULL) { 1623 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1624 hdr->b_freeze_cksum = NULL; 1625 } 1626 if (hdr->b_thawed) { 1627 kmem_free(hdr->b_thawed, 1); 1628 hdr->b_thawed = NULL; 1629 } 1630 1631 ASSERT(!list_link_active(&hdr->b_arc_node)); 1632 ASSERT3P(hdr->b_hash_next, ==, NULL); 1633 ASSERT3P(hdr->b_acb, ==, NULL); 1634 kmem_cache_free(hdr_cache, hdr); 1635 } 1636 1637 void 1638 arc_buf_free(arc_buf_t *buf, void *tag) 1639 { 1640 arc_buf_hdr_t *hdr = buf->b_hdr; 1641 int hashed = hdr->b_state != arc_anon; 1642 1643 ASSERT(buf->b_efunc == NULL); 1644 ASSERT(buf->b_data != NULL); 1645 1646 if (hashed) { 1647 kmutex_t *hash_lock = HDR_LOCK(hdr); 1648 1649 mutex_enter(hash_lock); 1650 hdr = buf->b_hdr; 1651 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1652 1653 (void) remove_reference(hdr, hash_lock, tag); 1654 if (hdr->b_datacnt > 1) { 1655 arc_buf_destroy(buf, FALSE, TRUE); 1656 } else { 1657 ASSERT(buf == hdr->b_buf); 1658 ASSERT(buf->b_efunc == NULL); 1659 hdr->b_flags |= ARC_BUF_AVAILABLE; 1660 } 1661 mutex_exit(hash_lock); 1662 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1663 int destroy_hdr; 1664 /* 1665 * We are in the middle of an async write. Don't destroy 1666 * this buffer unless the write completes before we finish 1667 * decrementing the reference count. 1668 */ 1669 mutex_enter(&arc_eviction_mtx); 1670 (void) remove_reference(hdr, NULL, tag); 1671 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1672 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1673 mutex_exit(&arc_eviction_mtx); 1674 if (destroy_hdr) 1675 arc_hdr_destroy(hdr); 1676 } else { 1677 if (remove_reference(hdr, NULL, tag) > 0) 1678 arc_buf_destroy(buf, FALSE, TRUE); 1679 else 1680 arc_hdr_destroy(hdr); 1681 } 1682 } 1683 1684 boolean_t 1685 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1686 { 1687 arc_buf_hdr_t *hdr = buf->b_hdr; 1688 kmutex_t *hash_lock = HDR_LOCK(hdr); 1689 boolean_t no_callback = (buf->b_efunc == NULL); 1690 1691 if (hdr->b_state == arc_anon) { 1692 ASSERT(hdr->b_datacnt == 1); 1693 arc_buf_free(buf, tag); 1694 return (no_callback); 1695 } 1696 1697 mutex_enter(hash_lock); 1698 hdr = buf->b_hdr; 1699 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1700 ASSERT(hdr->b_state != arc_anon); 1701 ASSERT(buf->b_data != NULL); 1702 1703 (void) remove_reference(hdr, hash_lock, tag); 1704 if (hdr->b_datacnt > 1) { 1705 if (no_callback) 1706 arc_buf_destroy(buf, FALSE, TRUE); 1707 } else if (no_callback) { 1708 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1709 ASSERT(buf->b_efunc == NULL); 1710 hdr->b_flags |= ARC_BUF_AVAILABLE; 1711 } 1712 ASSERT(no_callback || hdr->b_datacnt > 1 || 1713 refcount_is_zero(&hdr->b_refcnt)); 1714 mutex_exit(hash_lock); 1715 return (no_callback); 1716 } 1717 1718 int 1719 arc_buf_size(arc_buf_t *buf) 1720 { 1721 return (buf->b_hdr->b_size); 1722 } 1723 1724 /* 1725 * Called from the DMU to determine if the current buffer should be 1726 * evicted. In order to ensure proper locking, the eviction must be initiated 1727 * from the DMU. Return true if the buffer is associated with user data and 1728 * duplicate buffers still exist. 1729 */ 1730 boolean_t 1731 arc_buf_eviction_needed(arc_buf_t *buf) 1732 { 1733 arc_buf_hdr_t *hdr; 1734 boolean_t evict_needed = B_FALSE; 1735 1736 if (zfs_disable_dup_eviction) 1737 return (B_FALSE); 1738 1739 mutex_enter(&buf->b_evict_lock); 1740 hdr = buf->b_hdr; 1741 if (hdr == NULL) { 1742 /* 1743 * We are in arc_do_user_evicts(); let that function 1744 * perform the eviction. 1745 */ 1746 ASSERT(buf->b_data == NULL); 1747 mutex_exit(&buf->b_evict_lock); 1748 return (B_FALSE); 1749 } else if (buf->b_data == NULL) { 1750 /* 1751 * We have already been added to the arc eviction list; 1752 * recommend eviction. 1753 */ 1754 ASSERT3P(hdr, ==, &arc_eviction_hdr); 1755 mutex_exit(&buf->b_evict_lock); 1756 return (B_TRUE); 1757 } 1758 1759 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA) 1760 evict_needed = B_TRUE; 1761 1762 mutex_exit(&buf->b_evict_lock); 1763 return (evict_needed); 1764 } 1765 1766 /* 1767 * Evict buffers from list until we've removed the specified number of 1768 * bytes. Move the removed buffers to the appropriate evict state. 1769 * If the recycle flag is set, then attempt to "recycle" a buffer: 1770 * - look for a buffer to evict that is `bytes' long. 1771 * - return the data block from this buffer rather than freeing it. 1772 * This flag is used by callers that are trying to make space for a 1773 * new buffer in a full arc cache. 1774 * 1775 * This function makes a "best effort". It skips over any buffers 1776 * it can't get a hash_lock on, and so may not catch all candidates. 1777 * It may also return without evicting as much space as requested. 1778 */ 1779 static void * 1780 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1781 arc_buf_contents_t type) 1782 { 1783 arc_state_t *evicted_state; 1784 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1785 arc_buf_hdr_t *ab, *ab_prev = NULL; 1786 kmutex_t *hash_lock; 1787 boolean_t have_lock; 1788 void *stolen = NULL; 1789 arc_buf_hdr_t marker = { 0 }; 1790 int count = 0; 1791 1792 ASSERT(state == arc_mru || state == arc_mfu); 1793 1794 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1795 1796 mutex_enter(&state->arcs_mtx); 1797 mutex_enter(&evicted_state->arcs_mtx); 1798 1799 /* 1800 * Decide which "type" (data vs metadata) to recycle from. 1801 * 1802 * If we are over the metadata limit, recycle from metadata. 1803 * If we are under the metadata minimum, recycle from data. 1804 * Otherwise, recycle from whichever type has the oldest (least 1805 * recently accessed) header. 1806 */ 1807 if (recycle) { 1808 arc_buf_hdr_t *data_hdr = 1809 list_tail(&state->arcs_list[ARC_BUFC_DATA]); 1810 arc_buf_hdr_t *metadata_hdr = 1811 list_tail(&state->arcs_list[ARC_BUFC_METADATA]); 1812 arc_buf_contents_t realtype; 1813 if (data_hdr == NULL) { 1814 realtype = ARC_BUFC_METADATA; 1815 } else if (metadata_hdr == NULL) { 1816 realtype = ARC_BUFC_DATA; 1817 } else if (arc_meta_used >= arc_meta_limit) { 1818 realtype = ARC_BUFC_METADATA; 1819 } else if (arc_meta_used <= arc_meta_min) { 1820 realtype = ARC_BUFC_DATA; 1821 } else { 1822 if (data_hdr->b_arc_access < 1823 metadata_hdr->b_arc_access) { 1824 realtype = ARC_BUFC_DATA; 1825 } else { 1826 realtype = ARC_BUFC_METADATA; 1827 } 1828 } 1829 if (realtype != type) { 1830 /* 1831 * If we want to evict from a different list, 1832 * we can not recycle, because DATA vs METADATA 1833 * buffers are segregated into different kmem 1834 * caches (and vmem arenas). 1835 */ 1836 type = realtype; 1837 recycle = B_FALSE; 1838 } 1839 } 1840 1841 list_t *list = &state->arcs_list[type]; 1842 1843 for (ab = list_tail(list); ab; ab = ab_prev) { 1844 ab_prev = list_prev(list, ab); 1845 /* prefetch buffers have a minimum lifespan */ 1846 if (HDR_IO_IN_PROGRESS(ab) || 1847 (spa && ab->b_spa != spa) || 1848 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1849 ddi_get_lbolt() - ab->b_arc_access < 1850 arc_min_prefetch_lifespan)) { 1851 skipped++; 1852 continue; 1853 } 1854 /* "lookahead" for better eviction candidate */ 1855 if (recycle && ab->b_size != bytes && 1856 ab_prev && ab_prev->b_size == bytes) 1857 continue; 1858 1859 /* ignore markers */ 1860 if (ab->b_spa == 0) 1861 continue; 1862 1863 /* 1864 * It may take a long time to evict all the bufs requested. 1865 * To avoid blocking all arc activity, periodically drop 1866 * the arcs_mtx and give other threads a chance to run 1867 * before reacquiring the lock. 1868 * 1869 * If we are looking for a buffer to recycle, we are in 1870 * the hot code path, so don't sleep. 1871 */ 1872 if (!recycle && count++ > arc_evict_iterations) { 1873 list_insert_after(list, ab, &marker); 1874 mutex_exit(&evicted_state->arcs_mtx); 1875 mutex_exit(&state->arcs_mtx); 1876 kpreempt(KPREEMPT_SYNC); 1877 mutex_enter(&state->arcs_mtx); 1878 mutex_enter(&evicted_state->arcs_mtx); 1879 ab_prev = list_prev(list, &marker); 1880 list_remove(list, &marker); 1881 count = 0; 1882 continue; 1883 } 1884 1885 hash_lock = HDR_LOCK(ab); 1886 have_lock = MUTEX_HELD(hash_lock); 1887 if (have_lock || mutex_tryenter(hash_lock)) { 1888 ASSERT0(refcount_count(&ab->b_refcnt)); 1889 ASSERT(ab->b_datacnt > 0); 1890 while (ab->b_buf) { 1891 arc_buf_t *buf = ab->b_buf; 1892 if (!mutex_tryenter(&buf->b_evict_lock)) { 1893 missed += 1; 1894 break; 1895 } 1896 if (buf->b_data) { 1897 bytes_evicted += ab->b_size; 1898 if (recycle && ab->b_type == type && 1899 ab->b_size == bytes && 1900 !HDR_L2_WRITING(ab)) { 1901 stolen = buf->b_data; 1902 recycle = FALSE; 1903 } 1904 } 1905 if (buf->b_efunc) { 1906 mutex_enter(&arc_eviction_mtx); 1907 arc_buf_destroy(buf, 1908 buf->b_data == stolen, FALSE); 1909 ab->b_buf = buf->b_next; 1910 buf->b_hdr = &arc_eviction_hdr; 1911 buf->b_next = arc_eviction_list; 1912 arc_eviction_list = buf; 1913 mutex_exit(&arc_eviction_mtx); 1914 mutex_exit(&buf->b_evict_lock); 1915 } else { 1916 mutex_exit(&buf->b_evict_lock); 1917 arc_buf_destroy(buf, 1918 buf->b_data == stolen, TRUE); 1919 } 1920 } 1921 1922 if (ab->b_l2hdr) { 1923 ARCSTAT_INCR(arcstat_evict_l2_cached, 1924 ab->b_size); 1925 } else { 1926 if (l2arc_write_eligible(ab->b_spa, ab)) { 1927 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1928 ab->b_size); 1929 } else { 1930 ARCSTAT_INCR( 1931 arcstat_evict_l2_ineligible, 1932 ab->b_size); 1933 } 1934 } 1935 1936 if (ab->b_datacnt == 0) { 1937 arc_change_state(evicted_state, ab, hash_lock); 1938 ASSERT(HDR_IN_HASH_TABLE(ab)); 1939 ab->b_flags |= ARC_IN_HASH_TABLE; 1940 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1941 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1942 } 1943 if (!have_lock) 1944 mutex_exit(hash_lock); 1945 if (bytes >= 0 && bytes_evicted >= bytes) 1946 break; 1947 } else { 1948 missed += 1; 1949 } 1950 } 1951 1952 mutex_exit(&evicted_state->arcs_mtx); 1953 mutex_exit(&state->arcs_mtx); 1954 1955 if (bytes_evicted < bytes) 1956 dprintf("only evicted %lld bytes from %x", 1957 (longlong_t)bytes_evicted, state); 1958 1959 if (skipped) 1960 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1961 1962 if (missed) 1963 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1964 1965 /* 1966 * Note: we have just evicted some data into the ghost state, 1967 * potentially putting the ghost size over the desired size. Rather 1968 * that evicting from the ghost list in this hot code path, leave 1969 * this chore to the arc_reclaim_thread(). 1970 */ 1971 1972 return (stolen); 1973 } 1974 1975 /* 1976 * Remove buffers from list until we've removed the specified number of 1977 * bytes. Destroy the buffers that are removed. 1978 */ 1979 static void 1980 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1981 { 1982 arc_buf_hdr_t *ab, *ab_prev; 1983 arc_buf_hdr_t marker = { 0 }; 1984 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1985 kmutex_t *hash_lock; 1986 uint64_t bytes_deleted = 0; 1987 uint64_t bufs_skipped = 0; 1988 int count = 0; 1989 1990 ASSERT(GHOST_STATE(state)); 1991 top: 1992 mutex_enter(&state->arcs_mtx); 1993 for (ab = list_tail(list); ab; ab = ab_prev) { 1994 ab_prev = list_prev(list, ab); 1995 if (ab->b_type > ARC_BUFC_NUMTYPES) 1996 panic("invalid ab=%p", (void *)ab); 1997 if (spa && ab->b_spa != spa) 1998 continue; 1999 2000 /* ignore markers */ 2001 if (ab->b_spa == 0) 2002 continue; 2003 2004 hash_lock = HDR_LOCK(ab); 2005 /* caller may be trying to modify this buffer, skip it */ 2006 if (MUTEX_HELD(hash_lock)) 2007 continue; 2008 2009 /* 2010 * It may take a long time to evict all the bufs requested. 2011 * To avoid blocking all arc activity, periodically drop 2012 * the arcs_mtx and give other threads a chance to run 2013 * before reacquiring the lock. 2014 */ 2015 if (count++ > arc_evict_iterations) { 2016 list_insert_after(list, ab, &marker); 2017 mutex_exit(&state->arcs_mtx); 2018 kpreempt(KPREEMPT_SYNC); 2019 mutex_enter(&state->arcs_mtx); 2020 ab_prev = list_prev(list, &marker); 2021 list_remove(list, &marker); 2022 count = 0; 2023 continue; 2024 } 2025 if (mutex_tryenter(hash_lock)) { 2026 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 2027 ASSERT(ab->b_buf == NULL); 2028 ARCSTAT_BUMP(arcstat_deleted); 2029 bytes_deleted += ab->b_size; 2030 2031 if (ab->b_l2hdr != NULL) { 2032 /* 2033 * This buffer is cached on the 2nd Level ARC; 2034 * don't destroy the header. 2035 */ 2036 arc_change_state(arc_l2c_only, ab, hash_lock); 2037 mutex_exit(hash_lock); 2038 } else { 2039 arc_change_state(arc_anon, ab, hash_lock); 2040 mutex_exit(hash_lock); 2041 arc_hdr_destroy(ab); 2042 } 2043 2044 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 2045 if (bytes >= 0 && bytes_deleted >= bytes) 2046 break; 2047 } else if (bytes < 0) { 2048 /* 2049 * Insert a list marker and then wait for the 2050 * hash lock to become available. Once its 2051 * available, restart from where we left off. 2052 */ 2053 list_insert_after(list, ab, &marker); 2054 mutex_exit(&state->arcs_mtx); 2055 mutex_enter(hash_lock); 2056 mutex_exit(hash_lock); 2057 mutex_enter(&state->arcs_mtx); 2058 ab_prev = list_prev(list, &marker); 2059 list_remove(list, &marker); 2060 } else { 2061 bufs_skipped += 1; 2062 } 2063 2064 } 2065 mutex_exit(&state->arcs_mtx); 2066 2067 if (list == &state->arcs_list[ARC_BUFC_DATA] && 2068 (bytes < 0 || bytes_deleted < bytes)) { 2069 list = &state->arcs_list[ARC_BUFC_METADATA]; 2070 goto top; 2071 } 2072 2073 if (bufs_skipped) { 2074 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 2075 ASSERT(bytes >= 0); 2076 } 2077 2078 if (bytes_deleted < bytes) 2079 dprintf("only deleted %lld bytes from %p", 2080 (longlong_t)bytes_deleted, state); 2081 } 2082 2083 static void 2084 arc_adjust(void) 2085 { 2086 int64_t adjustment, delta; 2087 2088 /* 2089 * Adjust MRU size 2090 */ 2091 2092 adjustment = MIN((int64_t)(arc_size - arc_c), 2093 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - 2094 arc_p)); 2095 2096 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 2097 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 2098 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 2099 adjustment -= delta; 2100 } 2101 2102 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2103 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 2104 (void) arc_evict(arc_mru, NULL, delta, FALSE, 2105 ARC_BUFC_METADATA); 2106 } 2107 2108 /* 2109 * Adjust MFU size 2110 */ 2111 2112 adjustment = arc_size - arc_c; 2113 2114 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 2115 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 2116 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 2117 adjustment -= delta; 2118 } 2119 2120 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2121 int64_t delta = MIN(adjustment, 2122 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 2123 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 2124 ARC_BUFC_METADATA); 2125 } 2126 2127 /* 2128 * Adjust ghost lists 2129 */ 2130 2131 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 2132 2133 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 2134 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 2135 arc_evict_ghost(arc_mru_ghost, NULL, delta); 2136 } 2137 2138 adjustment = 2139 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 2140 2141 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 2142 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 2143 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 2144 } 2145 } 2146 2147 static void 2148 arc_do_user_evicts(void) 2149 { 2150 mutex_enter(&arc_eviction_mtx); 2151 while (arc_eviction_list != NULL) { 2152 arc_buf_t *buf = arc_eviction_list; 2153 arc_eviction_list = buf->b_next; 2154 mutex_enter(&buf->b_evict_lock); 2155 buf->b_hdr = NULL; 2156 mutex_exit(&buf->b_evict_lock); 2157 mutex_exit(&arc_eviction_mtx); 2158 2159 if (buf->b_efunc != NULL) 2160 VERIFY0(buf->b_efunc(buf->b_private)); 2161 2162 buf->b_efunc = NULL; 2163 buf->b_private = NULL; 2164 kmem_cache_free(buf_cache, buf); 2165 mutex_enter(&arc_eviction_mtx); 2166 } 2167 mutex_exit(&arc_eviction_mtx); 2168 } 2169 2170 /* 2171 * Flush all *evictable* data from the cache for the given spa. 2172 * NOTE: this will not touch "active" (i.e. referenced) data. 2173 */ 2174 void 2175 arc_flush(spa_t *spa) 2176 { 2177 uint64_t guid = 0; 2178 2179 if (spa) 2180 guid = spa_load_guid(spa); 2181 2182 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 2183 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 2184 if (spa) 2185 break; 2186 } 2187 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 2188 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 2189 if (spa) 2190 break; 2191 } 2192 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 2193 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 2194 if (spa) 2195 break; 2196 } 2197 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 2198 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 2199 if (spa) 2200 break; 2201 } 2202 2203 arc_evict_ghost(arc_mru_ghost, guid, -1); 2204 arc_evict_ghost(arc_mfu_ghost, guid, -1); 2205 2206 mutex_enter(&arc_reclaim_thr_lock); 2207 arc_do_user_evicts(); 2208 mutex_exit(&arc_reclaim_thr_lock); 2209 ASSERT(spa || arc_eviction_list == NULL); 2210 } 2211 2212 void 2213 arc_shrink(void) 2214 { 2215 if (arc_c > arc_c_min) { 2216 uint64_t to_free; 2217 2218 #ifdef _KERNEL 2219 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 2220 #else 2221 to_free = arc_c >> arc_shrink_shift; 2222 #endif 2223 if (arc_c > arc_c_min + to_free) 2224 atomic_add_64(&arc_c, -to_free); 2225 else 2226 arc_c = arc_c_min; 2227 2228 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 2229 if (arc_c > arc_size) 2230 arc_c = MAX(arc_size, arc_c_min); 2231 if (arc_p > arc_c) 2232 arc_p = (arc_c >> 1); 2233 ASSERT(arc_c >= arc_c_min); 2234 ASSERT((int64_t)arc_p >= 0); 2235 } 2236 2237 if (arc_size > arc_c) 2238 arc_adjust(); 2239 } 2240 2241 /* 2242 * Determine if the system is under memory pressure and is asking 2243 * to reclaim memory. A return value of 1 indicates that the system 2244 * is under memory pressure and that the arc should adjust accordingly. 2245 */ 2246 static int 2247 arc_reclaim_needed(void) 2248 { 2249 uint64_t extra; 2250 2251 #ifdef _KERNEL 2252 2253 if (needfree) 2254 return (1); 2255 2256 /* 2257 * take 'desfree' extra pages, so we reclaim sooner, rather than later 2258 */ 2259 extra = desfree; 2260 2261 /* 2262 * check that we're out of range of the pageout scanner. It starts to 2263 * schedule paging if freemem is less than lotsfree and needfree. 2264 * lotsfree is the high-water mark for pageout, and needfree is the 2265 * number of needed free pages. We add extra pages here to make sure 2266 * the scanner doesn't start up while we're freeing memory. 2267 */ 2268 if (freemem < lotsfree + needfree + extra) 2269 return (1); 2270 2271 /* 2272 * check to make sure that swapfs has enough space so that anon 2273 * reservations can still succeed. anon_resvmem() checks that the 2274 * availrmem is greater than swapfs_minfree, and the number of reserved 2275 * swap pages. We also add a bit of extra here just to prevent 2276 * circumstances from getting really dire. 2277 */ 2278 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 2279 return (1); 2280 2281 /* 2282 * Check that we have enough availrmem that memory locking (e.g., via 2283 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 2284 * stores the number of pages that cannot be locked; when availrmem 2285 * drops below pages_pp_maximum, page locking mechanisms such as 2286 * page_pp_lock() will fail.) 2287 */ 2288 if (availrmem <= pages_pp_maximum) 2289 return (1); 2290 2291 #if defined(__i386) 2292 /* 2293 * If we're on an i386 platform, it's possible that we'll exhaust the 2294 * kernel heap space before we ever run out of available physical 2295 * memory. Most checks of the size of the heap_area compare against 2296 * tune.t_minarmem, which is the minimum available real memory that we 2297 * can have in the system. However, this is generally fixed at 25 pages 2298 * which is so low that it's useless. In this comparison, we seek to 2299 * calculate the total heap-size, and reclaim if more than 3/4ths of the 2300 * heap is allocated. (Or, in the calculation, if less than 1/4th is 2301 * free) 2302 */ 2303 if (vmem_size(heap_arena, VMEM_FREE) < 2304 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2)) 2305 return (1); 2306 #endif 2307 2308 /* 2309 * If zio data pages are being allocated out of a separate heap segment, 2310 * then enforce that the size of available vmem for this arena remains 2311 * above about 1/16th free. 2312 * 2313 * Note: The 1/16th arena free requirement was put in place 2314 * to aggressively evict memory from the arc in order to avoid 2315 * memory fragmentation issues. 2316 */ 2317 if (zio_arena != NULL && 2318 vmem_size(zio_arena, VMEM_FREE) < 2319 (vmem_size(zio_arena, VMEM_ALLOC) >> 4)) 2320 return (1); 2321 #else 2322 if (spa_get_random(100) == 0) 2323 return (1); 2324 #endif 2325 return (0); 2326 } 2327 2328 static void 2329 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 2330 { 2331 size_t i; 2332 kmem_cache_t *prev_cache = NULL; 2333 kmem_cache_t *prev_data_cache = NULL; 2334 extern kmem_cache_t *zio_buf_cache[]; 2335 extern kmem_cache_t *zio_data_buf_cache[]; 2336 extern kmem_cache_t *range_seg_cache; 2337 2338 #ifdef _KERNEL 2339 if (arc_meta_used >= arc_meta_limit) { 2340 /* 2341 * We are exceeding our meta-data cache limit. 2342 * Purge some DNLC entries to release holds on meta-data. 2343 */ 2344 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 2345 } 2346 #if defined(__i386) 2347 /* 2348 * Reclaim unused memory from all kmem caches. 2349 */ 2350 kmem_reap(); 2351 #endif 2352 #endif 2353 2354 /* 2355 * An aggressive reclamation will shrink the cache size as well as 2356 * reap free buffers from the arc kmem caches. 2357 */ 2358 if (strat == ARC_RECLAIM_AGGR) 2359 arc_shrink(); 2360 2361 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2362 if (zio_buf_cache[i] != prev_cache) { 2363 prev_cache = zio_buf_cache[i]; 2364 kmem_cache_reap_now(zio_buf_cache[i]); 2365 } 2366 if (zio_data_buf_cache[i] != prev_data_cache) { 2367 prev_data_cache = zio_data_buf_cache[i]; 2368 kmem_cache_reap_now(zio_data_buf_cache[i]); 2369 } 2370 } 2371 kmem_cache_reap_now(buf_cache); 2372 kmem_cache_reap_now(hdr_cache); 2373 kmem_cache_reap_now(range_seg_cache); 2374 2375 /* 2376 * Ask the vmem areana to reclaim unused memory from its 2377 * quantum caches. 2378 */ 2379 if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR) 2380 vmem_qcache_reap(zio_arena); 2381 } 2382 2383 static void 2384 arc_reclaim_thread(void) 2385 { 2386 clock_t growtime = 0; 2387 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 2388 callb_cpr_t cpr; 2389 2390 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2391 2392 mutex_enter(&arc_reclaim_thr_lock); 2393 while (arc_thread_exit == 0) { 2394 if (arc_reclaim_needed()) { 2395 2396 if (arc_no_grow) { 2397 if (last_reclaim == ARC_RECLAIM_CONS) { 2398 last_reclaim = ARC_RECLAIM_AGGR; 2399 } else { 2400 last_reclaim = ARC_RECLAIM_CONS; 2401 } 2402 } else { 2403 arc_no_grow = TRUE; 2404 last_reclaim = ARC_RECLAIM_AGGR; 2405 membar_producer(); 2406 } 2407 2408 /* reset the growth delay for every reclaim */ 2409 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 2410 2411 arc_kmem_reap_now(last_reclaim); 2412 arc_warm = B_TRUE; 2413 2414 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) { 2415 arc_no_grow = FALSE; 2416 } 2417 2418 arc_adjust(); 2419 2420 if (arc_eviction_list != NULL) 2421 arc_do_user_evicts(); 2422 2423 /* block until needed, or one second, whichever is shorter */ 2424 CALLB_CPR_SAFE_BEGIN(&cpr); 2425 (void) cv_timedwait(&arc_reclaim_thr_cv, 2426 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz)); 2427 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2428 } 2429 2430 arc_thread_exit = 0; 2431 cv_broadcast(&arc_reclaim_thr_cv); 2432 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2433 thread_exit(); 2434 } 2435 2436 /* 2437 * Adapt arc info given the number of bytes we are trying to add and 2438 * the state that we are comming from. This function is only called 2439 * when we are adding new content to the cache. 2440 */ 2441 static void 2442 arc_adapt(int bytes, arc_state_t *state) 2443 { 2444 int mult; 2445 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2446 2447 if (state == arc_l2c_only) 2448 return; 2449 2450 ASSERT(bytes > 0); 2451 /* 2452 * Adapt the target size of the MRU list: 2453 * - if we just hit in the MRU ghost list, then increase 2454 * the target size of the MRU list. 2455 * - if we just hit in the MFU ghost list, then increase 2456 * the target size of the MFU list by decreasing the 2457 * target size of the MRU list. 2458 */ 2459 if (state == arc_mru_ghost) { 2460 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2461 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2462 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 2463 2464 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2465 } else if (state == arc_mfu_ghost) { 2466 uint64_t delta; 2467 2468 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2469 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2470 mult = MIN(mult, 10); 2471 2472 delta = MIN(bytes * mult, arc_p); 2473 arc_p = MAX(arc_p_min, arc_p - delta); 2474 } 2475 ASSERT((int64_t)arc_p >= 0); 2476 2477 if (arc_reclaim_needed()) { 2478 cv_signal(&arc_reclaim_thr_cv); 2479 return; 2480 } 2481 2482 if (arc_no_grow) 2483 return; 2484 2485 if (arc_c >= arc_c_max) 2486 return; 2487 2488 /* 2489 * If we're within (2 * maxblocksize) bytes of the target 2490 * cache size, increment the target cache size 2491 */ 2492 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2493 atomic_add_64(&arc_c, (int64_t)bytes); 2494 if (arc_c > arc_c_max) 2495 arc_c = arc_c_max; 2496 else if (state == arc_anon) 2497 atomic_add_64(&arc_p, (int64_t)bytes); 2498 if (arc_p > arc_c) 2499 arc_p = arc_c; 2500 } 2501 ASSERT((int64_t)arc_p >= 0); 2502 } 2503 2504 /* 2505 * Check if the cache has reached its limits and eviction is required 2506 * prior to insert. 2507 */ 2508 static int 2509 arc_evict_needed(arc_buf_contents_t type) 2510 { 2511 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2512 return (1); 2513 2514 if (arc_reclaim_needed()) 2515 return (1); 2516 2517 return (arc_size > arc_c); 2518 } 2519 2520 /* 2521 * The buffer, supplied as the first argument, needs a data block. 2522 * So, if we are at cache max, determine which cache should be victimized. 2523 * We have the following cases: 2524 * 2525 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2526 * In this situation if we're out of space, but the resident size of the MFU is 2527 * under the limit, victimize the MFU cache to satisfy this insertion request. 2528 * 2529 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2530 * Here, we've used up all of the available space for the MRU, so we need to 2531 * evict from our own cache instead. Evict from the set of resident MRU 2532 * entries. 2533 * 2534 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2535 * c minus p represents the MFU space in the cache, since p is the size of the 2536 * cache that is dedicated to the MRU. In this situation there's still space on 2537 * the MFU side, so the MRU side needs to be victimized. 2538 * 2539 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2540 * MFU's resident set is consuming more space than it has been allotted. In 2541 * this situation, we must victimize our own cache, the MFU, for this insertion. 2542 */ 2543 static void 2544 arc_get_data_buf(arc_buf_t *buf) 2545 { 2546 arc_state_t *state = buf->b_hdr->b_state; 2547 uint64_t size = buf->b_hdr->b_size; 2548 arc_buf_contents_t type = buf->b_hdr->b_type; 2549 2550 arc_adapt(size, state); 2551 2552 /* 2553 * We have not yet reached cache maximum size, 2554 * just allocate a new buffer. 2555 */ 2556 if (!arc_evict_needed(type)) { 2557 if (type == ARC_BUFC_METADATA) { 2558 buf->b_data = zio_buf_alloc(size); 2559 arc_space_consume(size, ARC_SPACE_DATA); 2560 } else { 2561 ASSERT(type == ARC_BUFC_DATA); 2562 buf->b_data = zio_data_buf_alloc(size); 2563 ARCSTAT_INCR(arcstat_data_size, size); 2564 atomic_add_64(&arc_size, size); 2565 } 2566 goto out; 2567 } 2568 2569 /* 2570 * If we are prefetching from the mfu ghost list, this buffer 2571 * will end up on the mru list; so steal space from there. 2572 */ 2573 if (state == arc_mfu_ghost) 2574 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2575 else if (state == arc_mru_ghost) 2576 state = arc_mru; 2577 2578 if (state == arc_mru || state == arc_anon) { 2579 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2580 state = (arc_mfu->arcs_lsize[type] >= size && 2581 arc_p > mru_used) ? arc_mfu : arc_mru; 2582 } else { 2583 /* MFU cases */ 2584 uint64_t mfu_space = arc_c - arc_p; 2585 state = (arc_mru->arcs_lsize[type] >= size && 2586 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2587 } 2588 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2589 if (type == ARC_BUFC_METADATA) { 2590 buf->b_data = zio_buf_alloc(size); 2591 arc_space_consume(size, ARC_SPACE_DATA); 2592 } else { 2593 ASSERT(type == ARC_BUFC_DATA); 2594 buf->b_data = zio_data_buf_alloc(size); 2595 ARCSTAT_INCR(arcstat_data_size, size); 2596 atomic_add_64(&arc_size, size); 2597 } 2598 ARCSTAT_BUMP(arcstat_recycle_miss); 2599 } 2600 ASSERT(buf->b_data != NULL); 2601 out: 2602 /* 2603 * Update the state size. Note that ghost states have a 2604 * "ghost size" and so don't need to be updated. 2605 */ 2606 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2607 arc_buf_hdr_t *hdr = buf->b_hdr; 2608 2609 atomic_add_64(&hdr->b_state->arcs_size, size); 2610 if (list_link_active(&hdr->b_arc_node)) { 2611 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2612 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2613 } 2614 /* 2615 * If we are growing the cache, and we are adding anonymous 2616 * data, and we have outgrown arc_p, update arc_p 2617 */ 2618 if (arc_size < arc_c && hdr->b_state == arc_anon && 2619 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2620 arc_p = MIN(arc_c, arc_p + size); 2621 } 2622 } 2623 2624 /* 2625 * This routine is called whenever a buffer is accessed. 2626 * NOTE: the hash lock is dropped in this function. 2627 */ 2628 static void 2629 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2630 { 2631 clock_t now; 2632 2633 ASSERT(MUTEX_HELD(hash_lock)); 2634 2635 if (buf->b_state == arc_anon) { 2636 /* 2637 * This buffer is not in the cache, and does not 2638 * appear in our "ghost" list. Add the new buffer 2639 * to the MRU state. 2640 */ 2641 2642 ASSERT(buf->b_arc_access == 0); 2643 buf->b_arc_access = ddi_get_lbolt(); 2644 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2645 arc_change_state(arc_mru, buf, hash_lock); 2646 2647 } else if (buf->b_state == arc_mru) { 2648 now = ddi_get_lbolt(); 2649 2650 /* 2651 * If this buffer is here because of a prefetch, then either: 2652 * - clear the flag if this is a "referencing" read 2653 * (any subsequent access will bump this into the MFU state). 2654 * or 2655 * - move the buffer to the head of the list if this is 2656 * another prefetch (to make it less likely to be evicted). 2657 */ 2658 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2659 if (refcount_count(&buf->b_refcnt) == 0) { 2660 ASSERT(list_link_active(&buf->b_arc_node)); 2661 } else { 2662 buf->b_flags &= ~ARC_PREFETCH; 2663 ARCSTAT_BUMP(arcstat_mru_hits); 2664 } 2665 buf->b_arc_access = now; 2666 return; 2667 } 2668 2669 /* 2670 * This buffer has been "accessed" only once so far, 2671 * but it is still in the cache. Move it to the MFU 2672 * state. 2673 */ 2674 if (now > buf->b_arc_access + ARC_MINTIME) { 2675 /* 2676 * More than 125ms have passed since we 2677 * instantiated this buffer. Move it to the 2678 * most frequently used state. 2679 */ 2680 buf->b_arc_access = now; 2681 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2682 arc_change_state(arc_mfu, buf, hash_lock); 2683 } 2684 ARCSTAT_BUMP(arcstat_mru_hits); 2685 } else if (buf->b_state == arc_mru_ghost) { 2686 arc_state_t *new_state; 2687 /* 2688 * This buffer has been "accessed" recently, but 2689 * was evicted from the cache. Move it to the 2690 * MFU state. 2691 */ 2692 2693 if (buf->b_flags & ARC_PREFETCH) { 2694 new_state = arc_mru; 2695 if (refcount_count(&buf->b_refcnt) > 0) 2696 buf->b_flags &= ~ARC_PREFETCH; 2697 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2698 } else { 2699 new_state = arc_mfu; 2700 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2701 } 2702 2703 buf->b_arc_access = ddi_get_lbolt(); 2704 arc_change_state(new_state, buf, hash_lock); 2705 2706 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2707 } else if (buf->b_state == arc_mfu) { 2708 /* 2709 * This buffer has been accessed more than once and is 2710 * still in the cache. Keep it in the MFU state. 2711 * 2712 * NOTE: an add_reference() that occurred when we did 2713 * the arc_read() will have kicked this off the list. 2714 * If it was a prefetch, we will explicitly move it to 2715 * the head of the list now. 2716 */ 2717 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2718 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2719 ASSERT(list_link_active(&buf->b_arc_node)); 2720 } 2721 ARCSTAT_BUMP(arcstat_mfu_hits); 2722 buf->b_arc_access = ddi_get_lbolt(); 2723 } else if (buf->b_state == arc_mfu_ghost) { 2724 arc_state_t *new_state = arc_mfu; 2725 /* 2726 * This buffer has been accessed more than once but has 2727 * been evicted from the cache. Move it back to the 2728 * MFU state. 2729 */ 2730 2731 if (buf->b_flags & ARC_PREFETCH) { 2732 /* 2733 * This is a prefetch access... 2734 * move this block back to the MRU state. 2735 */ 2736 ASSERT0(refcount_count(&buf->b_refcnt)); 2737 new_state = arc_mru; 2738 } 2739 2740 buf->b_arc_access = ddi_get_lbolt(); 2741 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2742 arc_change_state(new_state, buf, hash_lock); 2743 2744 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2745 } else if (buf->b_state == arc_l2c_only) { 2746 /* 2747 * This buffer is on the 2nd Level ARC. 2748 */ 2749 2750 buf->b_arc_access = ddi_get_lbolt(); 2751 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2752 arc_change_state(arc_mfu, buf, hash_lock); 2753 } else { 2754 ASSERT(!"invalid arc state"); 2755 } 2756 } 2757 2758 /* a generic arc_done_func_t which you can use */ 2759 /* ARGSUSED */ 2760 void 2761 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2762 { 2763 if (zio == NULL || zio->io_error == 0) 2764 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2765 VERIFY(arc_buf_remove_ref(buf, arg)); 2766 } 2767 2768 /* a generic arc_done_func_t */ 2769 void 2770 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2771 { 2772 arc_buf_t **bufp = arg; 2773 if (zio && zio->io_error) { 2774 VERIFY(arc_buf_remove_ref(buf, arg)); 2775 *bufp = NULL; 2776 } else { 2777 *bufp = buf; 2778 ASSERT(buf->b_data); 2779 } 2780 } 2781 2782 static void 2783 arc_read_done(zio_t *zio) 2784 { 2785 arc_buf_hdr_t *hdr; 2786 arc_buf_t *buf; 2787 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2788 kmutex_t *hash_lock = NULL; 2789 arc_callback_t *callback_list, *acb; 2790 int freeable = FALSE; 2791 2792 buf = zio->io_private; 2793 hdr = buf->b_hdr; 2794 2795 /* 2796 * The hdr was inserted into hash-table and removed from lists 2797 * prior to starting I/O. We should find this header, since 2798 * it's in the hash table, and it should be legit since it's 2799 * not possible to evict it during the I/O. The only possible 2800 * reason for it not to be found is if we were freed during the 2801 * read. 2802 */ 2803 if (HDR_IN_HASH_TABLE(hdr)) { 2804 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 2805 ASSERT3U(hdr->b_dva.dva_word[0], ==, 2806 BP_IDENTITY(zio->io_bp)->dva_word[0]); 2807 ASSERT3U(hdr->b_dva.dva_word[1], ==, 2808 BP_IDENTITY(zio->io_bp)->dva_word[1]); 2809 2810 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 2811 &hash_lock); 2812 2813 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && 2814 hash_lock == NULL) || 2815 (found == hdr && 2816 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2817 (found == hdr && HDR_L2_READING(hdr))); 2818 } 2819 2820 hdr->b_flags &= ~ARC_L2_EVICTED; 2821 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2822 hdr->b_flags &= ~ARC_L2CACHE; 2823 2824 /* byteswap if necessary */ 2825 callback_list = hdr->b_acb; 2826 ASSERT(callback_list != NULL); 2827 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2828 dmu_object_byteswap_t bswap = 2829 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 2830 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2831 byteswap_uint64_array : 2832 dmu_ot_byteswap[bswap].ob_func; 2833 func(buf->b_data, hdr->b_size); 2834 } 2835 2836 arc_cksum_compute(buf, B_FALSE); 2837 arc_buf_watch(buf); 2838 2839 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { 2840 /* 2841 * Only call arc_access on anonymous buffers. This is because 2842 * if we've issued an I/O for an evicted buffer, we've already 2843 * called arc_access (to prevent any simultaneous readers from 2844 * getting confused). 2845 */ 2846 arc_access(hdr, hash_lock); 2847 } 2848 2849 /* create copies of the data buffer for the callers */ 2850 abuf = buf; 2851 for (acb = callback_list; acb; acb = acb->acb_next) { 2852 if (acb->acb_done) { 2853 if (abuf == NULL) { 2854 ARCSTAT_BUMP(arcstat_duplicate_reads); 2855 abuf = arc_buf_clone(buf); 2856 } 2857 acb->acb_buf = abuf; 2858 abuf = NULL; 2859 } 2860 } 2861 hdr->b_acb = NULL; 2862 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2863 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2864 if (abuf == buf) { 2865 ASSERT(buf->b_efunc == NULL); 2866 ASSERT(hdr->b_datacnt == 1); 2867 hdr->b_flags |= ARC_BUF_AVAILABLE; 2868 } 2869 2870 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2871 2872 if (zio->io_error != 0) { 2873 hdr->b_flags |= ARC_IO_ERROR; 2874 if (hdr->b_state != arc_anon) 2875 arc_change_state(arc_anon, hdr, hash_lock); 2876 if (HDR_IN_HASH_TABLE(hdr)) 2877 buf_hash_remove(hdr); 2878 freeable = refcount_is_zero(&hdr->b_refcnt); 2879 } 2880 2881 /* 2882 * Broadcast before we drop the hash_lock to avoid the possibility 2883 * that the hdr (and hence the cv) might be freed before we get to 2884 * the cv_broadcast(). 2885 */ 2886 cv_broadcast(&hdr->b_cv); 2887 2888 if (hash_lock) { 2889 mutex_exit(hash_lock); 2890 } else { 2891 /* 2892 * This block was freed while we waited for the read to 2893 * complete. It has been removed from the hash table and 2894 * moved to the anonymous state (so that it won't show up 2895 * in the cache). 2896 */ 2897 ASSERT3P(hdr->b_state, ==, arc_anon); 2898 freeable = refcount_is_zero(&hdr->b_refcnt); 2899 } 2900 2901 /* execute each callback and free its structure */ 2902 while ((acb = callback_list) != NULL) { 2903 if (acb->acb_done) 2904 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2905 2906 if (acb->acb_zio_dummy != NULL) { 2907 acb->acb_zio_dummy->io_error = zio->io_error; 2908 zio_nowait(acb->acb_zio_dummy); 2909 } 2910 2911 callback_list = acb->acb_next; 2912 kmem_free(acb, sizeof (arc_callback_t)); 2913 } 2914 2915 if (freeable) 2916 arc_hdr_destroy(hdr); 2917 } 2918 2919 /* 2920 * "Read" the block at the specified DVA (in bp) via the 2921 * cache. If the block is found in the cache, invoke the provided 2922 * callback immediately and return. Note that the `zio' parameter 2923 * in the callback will be NULL in this case, since no IO was 2924 * required. If the block is not in the cache pass the read request 2925 * on to the spa with a substitute callback function, so that the 2926 * requested block will be added to the cache. 2927 * 2928 * If a read request arrives for a block that has a read in-progress, 2929 * either wait for the in-progress read to complete (and return the 2930 * results); or, if this is a read with a "done" func, add a record 2931 * to the read to invoke the "done" func when the read completes, 2932 * and return; or just return. 2933 * 2934 * arc_read_done() will invoke all the requested "done" functions 2935 * for readers of this block. 2936 */ 2937 int 2938 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 2939 void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags, 2940 const zbookmark_phys_t *zb) 2941 { 2942 arc_buf_hdr_t *hdr = NULL; 2943 arc_buf_t *buf = NULL; 2944 kmutex_t *hash_lock = NULL; 2945 zio_t *rzio; 2946 uint64_t guid = spa_load_guid(spa); 2947 2948 ASSERT(!BP_IS_EMBEDDED(bp) || 2949 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 2950 2951 top: 2952 if (!BP_IS_EMBEDDED(bp)) { 2953 /* 2954 * Embedded BP's have no DVA and require no I/O to "read". 2955 * Create an anonymous arc buf to back it. 2956 */ 2957 hdr = buf_hash_find(guid, bp, &hash_lock); 2958 } 2959 2960 if (hdr != NULL && hdr->b_datacnt > 0) { 2961 2962 *arc_flags |= ARC_CACHED; 2963 2964 if (HDR_IO_IN_PROGRESS(hdr)) { 2965 2966 if (*arc_flags & ARC_WAIT) { 2967 cv_wait(&hdr->b_cv, hash_lock); 2968 mutex_exit(hash_lock); 2969 goto top; 2970 } 2971 ASSERT(*arc_flags & ARC_NOWAIT); 2972 2973 if (done) { 2974 arc_callback_t *acb = NULL; 2975 2976 acb = kmem_zalloc(sizeof (arc_callback_t), 2977 KM_SLEEP); 2978 acb->acb_done = done; 2979 acb->acb_private = private; 2980 if (pio != NULL) 2981 acb->acb_zio_dummy = zio_null(pio, 2982 spa, NULL, NULL, NULL, zio_flags); 2983 2984 ASSERT(acb->acb_done != NULL); 2985 acb->acb_next = hdr->b_acb; 2986 hdr->b_acb = acb; 2987 add_reference(hdr, hash_lock, private); 2988 mutex_exit(hash_lock); 2989 return (0); 2990 } 2991 mutex_exit(hash_lock); 2992 return (0); 2993 } 2994 2995 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2996 2997 if (done) { 2998 add_reference(hdr, hash_lock, private); 2999 /* 3000 * If this block is already in use, create a new 3001 * copy of the data so that we will be guaranteed 3002 * that arc_release() will always succeed. 3003 */ 3004 buf = hdr->b_buf; 3005 ASSERT(buf); 3006 ASSERT(buf->b_data); 3007 if (HDR_BUF_AVAILABLE(hdr)) { 3008 ASSERT(buf->b_efunc == NULL); 3009 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3010 } else { 3011 buf = arc_buf_clone(buf); 3012 } 3013 3014 } else if (*arc_flags & ARC_PREFETCH && 3015 refcount_count(&hdr->b_refcnt) == 0) { 3016 hdr->b_flags |= ARC_PREFETCH; 3017 } 3018 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 3019 arc_access(hdr, hash_lock); 3020 if (*arc_flags & ARC_L2CACHE) 3021 hdr->b_flags |= ARC_L2CACHE; 3022 if (*arc_flags & ARC_L2COMPRESS) 3023 hdr->b_flags |= ARC_L2COMPRESS; 3024 mutex_exit(hash_lock); 3025 ARCSTAT_BUMP(arcstat_hits); 3026 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 3027 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 3028 data, metadata, hits); 3029 3030 if (done) 3031 done(NULL, buf, private); 3032 } else { 3033 uint64_t size = BP_GET_LSIZE(bp); 3034 arc_callback_t *acb; 3035 vdev_t *vd = NULL; 3036 uint64_t addr = 0; 3037 boolean_t devw = B_FALSE; 3038 enum zio_compress b_compress = ZIO_COMPRESS_OFF; 3039 uint64_t b_asize = 0; 3040 3041 if (hdr == NULL) { 3042 /* this block is not in the cache */ 3043 arc_buf_hdr_t *exists = NULL; 3044 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 3045 buf = arc_buf_alloc(spa, size, private, type); 3046 hdr = buf->b_hdr; 3047 if (!BP_IS_EMBEDDED(bp)) { 3048 hdr->b_dva = *BP_IDENTITY(bp); 3049 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 3050 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 3051 exists = buf_hash_insert(hdr, &hash_lock); 3052 } 3053 if (exists != NULL) { 3054 /* somebody beat us to the hash insert */ 3055 mutex_exit(hash_lock); 3056 buf_discard_identity(hdr); 3057 (void) arc_buf_remove_ref(buf, private); 3058 goto top; /* restart the IO request */ 3059 } 3060 /* if this is a prefetch, we don't have a reference */ 3061 if (*arc_flags & ARC_PREFETCH) { 3062 (void) remove_reference(hdr, hash_lock, 3063 private); 3064 hdr->b_flags |= ARC_PREFETCH; 3065 } 3066 if (*arc_flags & ARC_L2CACHE) 3067 hdr->b_flags |= ARC_L2CACHE; 3068 if (*arc_flags & ARC_L2COMPRESS) 3069 hdr->b_flags |= ARC_L2COMPRESS; 3070 if (BP_GET_LEVEL(bp) > 0) 3071 hdr->b_flags |= ARC_INDIRECT; 3072 } else { 3073 /* this block is in the ghost cache */ 3074 ASSERT(GHOST_STATE(hdr->b_state)); 3075 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3076 ASSERT0(refcount_count(&hdr->b_refcnt)); 3077 ASSERT(hdr->b_buf == NULL); 3078 3079 /* if this is a prefetch, we don't have a reference */ 3080 if (*arc_flags & ARC_PREFETCH) 3081 hdr->b_flags |= ARC_PREFETCH; 3082 else 3083 add_reference(hdr, hash_lock, private); 3084 if (*arc_flags & ARC_L2CACHE) 3085 hdr->b_flags |= ARC_L2CACHE; 3086 if (*arc_flags & ARC_L2COMPRESS) 3087 hdr->b_flags |= ARC_L2COMPRESS; 3088 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 3089 buf->b_hdr = hdr; 3090 buf->b_data = NULL; 3091 buf->b_efunc = NULL; 3092 buf->b_private = NULL; 3093 buf->b_next = NULL; 3094 hdr->b_buf = buf; 3095 ASSERT(hdr->b_datacnt == 0); 3096 hdr->b_datacnt = 1; 3097 arc_get_data_buf(buf); 3098 arc_access(hdr, hash_lock); 3099 } 3100 3101 ASSERT(!GHOST_STATE(hdr->b_state)); 3102 3103 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 3104 acb->acb_done = done; 3105 acb->acb_private = private; 3106 3107 ASSERT(hdr->b_acb == NULL); 3108 hdr->b_acb = acb; 3109 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3110 3111 if (hdr->b_l2hdr != NULL && 3112 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 3113 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 3114 addr = hdr->b_l2hdr->b_daddr; 3115 b_compress = hdr->b_l2hdr->b_compress; 3116 b_asize = hdr->b_l2hdr->b_asize; 3117 /* 3118 * Lock out device removal. 3119 */ 3120 if (vdev_is_dead(vd) || 3121 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 3122 vd = NULL; 3123 } 3124 3125 if (hash_lock != NULL) 3126 mutex_exit(hash_lock); 3127 3128 /* 3129 * At this point, we have a level 1 cache miss. Try again in 3130 * L2ARC if possible. 3131 */ 3132 ASSERT3U(hdr->b_size, ==, size); 3133 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 3134 uint64_t, size, zbookmark_phys_t *, zb); 3135 ARCSTAT_BUMP(arcstat_misses); 3136 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 3137 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 3138 data, metadata, misses); 3139 3140 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 3141 /* 3142 * Read from the L2ARC if the following are true: 3143 * 1. The L2ARC vdev was previously cached. 3144 * 2. This buffer still has L2ARC metadata. 3145 * 3. This buffer isn't currently writing to the L2ARC. 3146 * 4. The L2ARC entry wasn't evicted, which may 3147 * also have invalidated the vdev. 3148 * 5. This isn't prefetch and l2arc_noprefetch is set. 3149 */ 3150 if (hdr->b_l2hdr != NULL && 3151 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 3152 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 3153 l2arc_read_callback_t *cb; 3154 3155 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 3156 ARCSTAT_BUMP(arcstat_l2_hits); 3157 3158 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 3159 KM_SLEEP); 3160 cb->l2rcb_buf = buf; 3161 cb->l2rcb_spa = spa; 3162 cb->l2rcb_bp = *bp; 3163 cb->l2rcb_zb = *zb; 3164 cb->l2rcb_flags = zio_flags; 3165 cb->l2rcb_compress = b_compress; 3166 3167 ASSERT(addr >= VDEV_LABEL_START_SIZE && 3168 addr + size < vd->vdev_psize - 3169 VDEV_LABEL_END_SIZE); 3170 3171 /* 3172 * l2arc read. The SCL_L2ARC lock will be 3173 * released by l2arc_read_done(). 3174 * Issue a null zio if the underlying buffer 3175 * was squashed to zero size by compression. 3176 */ 3177 if (b_compress == ZIO_COMPRESS_EMPTY) { 3178 rzio = zio_null(pio, spa, vd, 3179 l2arc_read_done, cb, 3180 zio_flags | ZIO_FLAG_DONT_CACHE | 3181 ZIO_FLAG_CANFAIL | 3182 ZIO_FLAG_DONT_PROPAGATE | 3183 ZIO_FLAG_DONT_RETRY); 3184 } else { 3185 rzio = zio_read_phys(pio, vd, addr, 3186 b_asize, buf->b_data, 3187 ZIO_CHECKSUM_OFF, 3188 l2arc_read_done, cb, priority, 3189 zio_flags | ZIO_FLAG_DONT_CACHE | 3190 ZIO_FLAG_CANFAIL | 3191 ZIO_FLAG_DONT_PROPAGATE | 3192 ZIO_FLAG_DONT_RETRY, B_FALSE); 3193 } 3194 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 3195 zio_t *, rzio); 3196 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize); 3197 3198 if (*arc_flags & ARC_NOWAIT) { 3199 zio_nowait(rzio); 3200 return (0); 3201 } 3202 3203 ASSERT(*arc_flags & ARC_WAIT); 3204 if (zio_wait(rzio) == 0) 3205 return (0); 3206 3207 /* l2arc read error; goto zio_read() */ 3208 } else { 3209 DTRACE_PROBE1(l2arc__miss, 3210 arc_buf_hdr_t *, hdr); 3211 ARCSTAT_BUMP(arcstat_l2_misses); 3212 if (HDR_L2_WRITING(hdr)) 3213 ARCSTAT_BUMP(arcstat_l2_rw_clash); 3214 spa_config_exit(spa, SCL_L2ARC, vd); 3215 } 3216 } else { 3217 if (vd != NULL) 3218 spa_config_exit(spa, SCL_L2ARC, vd); 3219 if (l2arc_ndev != 0) { 3220 DTRACE_PROBE1(l2arc__miss, 3221 arc_buf_hdr_t *, hdr); 3222 ARCSTAT_BUMP(arcstat_l2_misses); 3223 } 3224 } 3225 3226 rzio = zio_read(pio, spa, bp, buf->b_data, size, 3227 arc_read_done, buf, priority, zio_flags, zb); 3228 3229 if (*arc_flags & ARC_WAIT) 3230 return (zio_wait(rzio)); 3231 3232 ASSERT(*arc_flags & ARC_NOWAIT); 3233 zio_nowait(rzio); 3234 } 3235 return (0); 3236 } 3237 3238 void 3239 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 3240 { 3241 ASSERT(buf->b_hdr != NULL); 3242 ASSERT(buf->b_hdr->b_state != arc_anon); 3243 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 3244 ASSERT(buf->b_efunc == NULL); 3245 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 3246 3247 buf->b_efunc = func; 3248 buf->b_private = private; 3249 } 3250 3251 /* 3252 * Notify the arc that a block was freed, and thus will never be used again. 3253 */ 3254 void 3255 arc_freed(spa_t *spa, const blkptr_t *bp) 3256 { 3257 arc_buf_hdr_t *hdr; 3258 kmutex_t *hash_lock; 3259 uint64_t guid = spa_load_guid(spa); 3260 3261 ASSERT(!BP_IS_EMBEDDED(bp)); 3262 3263 hdr = buf_hash_find(guid, bp, &hash_lock); 3264 if (hdr == NULL) 3265 return; 3266 if (HDR_BUF_AVAILABLE(hdr)) { 3267 arc_buf_t *buf = hdr->b_buf; 3268 add_reference(hdr, hash_lock, FTAG); 3269 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3270 mutex_exit(hash_lock); 3271 3272 arc_release(buf, FTAG); 3273 (void) arc_buf_remove_ref(buf, FTAG); 3274 } else { 3275 mutex_exit(hash_lock); 3276 } 3277 3278 } 3279 3280 /* 3281 * Clear the user eviction callback set by arc_set_callback(), first calling 3282 * it if it exists. Because the presence of a callback keeps an arc_buf cached 3283 * clearing the callback may result in the arc_buf being destroyed. However, 3284 * it will not result in the *last* arc_buf being destroyed, hence the data 3285 * will remain cached in the ARC. We make a copy of the arc buffer here so 3286 * that we can process the callback without holding any locks. 3287 * 3288 * It's possible that the callback is already in the process of being cleared 3289 * by another thread. In this case we can not clear the callback. 3290 * 3291 * Returns B_TRUE if the callback was successfully called and cleared. 3292 */ 3293 boolean_t 3294 arc_clear_callback(arc_buf_t *buf) 3295 { 3296 arc_buf_hdr_t *hdr; 3297 kmutex_t *hash_lock; 3298 arc_evict_func_t *efunc = buf->b_efunc; 3299 void *private = buf->b_private; 3300 3301 mutex_enter(&buf->b_evict_lock); 3302 hdr = buf->b_hdr; 3303 if (hdr == NULL) { 3304 /* 3305 * We are in arc_do_user_evicts(). 3306 */ 3307 ASSERT(buf->b_data == NULL); 3308 mutex_exit(&buf->b_evict_lock); 3309 return (B_FALSE); 3310 } else if (buf->b_data == NULL) { 3311 /* 3312 * We are on the eviction list; process this buffer now 3313 * but let arc_do_user_evicts() do the reaping. 3314 */ 3315 buf->b_efunc = NULL; 3316 mutex_exit(&buf->b_evict_lock); 3317 VERIFY0(efunc(private)); 3318 return (B_TRUE); 3319 } 3320 hash_lock = HDR_LOCK(hdr); 3321 mutex_enter(hash_lock); 3322 hdr = buf->b_hdr; 3323 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3324 3325 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 3326 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 3327 3328 buf->b_efunc = NULL; 3329 buf->b_private = NULL; 3330 3331 if (hdr->b_datacnt > 1) { 3332 mutex_exit(&buf->b_evict_lock); 3333 arc_buf_destroy(buf, FALSE, TRUE); 3334 } else { 3335 ASSERT(buf == hdr->b_buf); 3336 hdr->b_flags |= ARC_BUF_AVAILABLE; 3337 mutex_exit(&buf->b_evict_lock); 3338 } 3339 3340 mutex_exit(hash_lock); 3341 VERIFY0(efunc(private)); 3342 return (B_TRUE); 3343 } 3344 3345 /* 3346 * Release this buffer from the cache, making it an anonymous buffer. This 3347 * must be done after a read and prior to modifying the buffer contents. 3348 * If the buffer has more than one reference, we must make 3349 * a new hdr for the buffer. 3350 */ 3351 void 3352 arc_release(arc_buf_t *buf, void *tag) 3353 { 3354 arc_buf_hdr_t *hdr; 3355 kmutex_t *hash_lock = NULL; 3356 l2arc_buf_hdr_t *l2hdr; 3357 uint64_t buf_size; 3358 3359 /* 3360 * It would be nice to assert that if it's DMU metadata (level > 3361 * 0 || it's the dnode file), then it must be syncing context. 3362 * But we don't know that information at this level. 3363 */ 3364 3365 mutex_enter(&buf->b_evict_lock); 3366 hdr = buf->b_hdr; 3367 3368 /* this buffer is not on any list */ 3369 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 3370 3371 if (hdr->b_state == arc_anon) { 3372 /* this buffer is already released */ 3373 ASSERT(buf->b_efunc == NULL); 3374 } else { 3375 hash_lock = HDR_LOCK(hdr); 3376 mutex_enter(hash_lock); 3377 hdr = buf->b_hdr; 3378 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3379 } 3380 3381 l2hdr = hdr->b_l2hdr; 3382 if (l2hdr) { 3383 mutex_enter(&l2arc_buflist_mtx); 3384 hdr->b_l2hdr = NULL; 3385 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3386 } 3387 buf_size = hdr->b_size; 3388 3389 /* 3390 * Do we have more than one buf? 3391 */ 3392 if (hdr->b_datacnt > 1) { 3393 arc_buf_hdr_t *nhdr; 3394 arc_buf_t **bufp; 3395 uint64_t blksz = hdr->b_size; 3396 uint64_t spa = hdr->b_spa; 3397 arc_buf_contents_t type = hdr->b_type; 3398 uint32_t flags = hdr->b_flags; 3399 3400 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3401 /* 3402 * Pull the data off of this hdr and attach it to 3403 * a new anonymous hdr. 3404 */ 3405 (void) remove_reference(hdr, hash_lock, tag); 3406 bufp = &hdr->b_buf; 3407 while (*bufp != buf) 3408 bufp = &(*bufp)->b_next; 3409 *bufp = buf->b_next; 3410 buf->b_next = NULL; 3411 3412 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3413 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3414 if (refcount_is_zero(&hdr->b_refcnt)) { 3415 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3416 ASSERT3U(*size, >=, hdr->b_size); 3417 atomic_add_64(size, -hdr->b_size); 3418 } 3419 3420 /* 3421 * We're releasing a duplicate user data buffer, update 3422 * our statistics accordingly. 3423 */ 3424 if (hdr->b_type == ARC_BUFC_DATA) { 3425 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 3426 ARCSTAT_INCR(arcstat_duplicate_buffers_size, 3427 -hdr->b_size); 3428 } 3429 hdr->b_datacnt -= 1; 3430 arc_cksum_verify(buf); 3431 arc_buf_unwatch(buf); 3432 3433 mutex_exit(hash_lock); 3434 3435 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3436 nhdr->b_size = blksz; 3437 nhdr->b_spa = spa; 3438 nhdr->b_type = type; 3439 nhdr->b_buf = buf; 3440 nhdr->b_state = arc_anon; 3441 nhdr->b_arc_access = 0; 3442 nhdr->b_flags = flags & ARC_L2_WRITING; 3443 nhdr->b_l2hdr = NULL; 3444 nhdr->b_datacnt = 1; 3445 nhdr->b_freeze_cksum = NULL; 3446 (void) refcount_add(&nhdr->b_refcnt, tag); 3447 buf->b_hdr = nhdr; 3448 mutex_exit(&buf->b_evict_lock); 3449 atomic_add_64(&arc_anon->arcs_size, blksz); 3450 } else { 3451 mutex_exit(&buf->b_evict_lock); 3452 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3453 ASSERT(!list_link_active(&hdr->b_arc_node)); 3454 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3455 if (hdr->b_state != arc_anon) 3456 arc_change_state(arc_anon, hdr, hash_lock); 3457 hdr->b_arc_access = 0; 3458 if (hash_lock) 3459 mutex_exit(hash_lock); 3460 3461 buf_discard_identity(hdr); 3462 arc_buf_thaw(buf); 3463 } 3464 buf->b_efunc = NULL; 3465 buf->b_private = NULL; 3466 3467 if (l2hdr) { 3468 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 3469 vdev_space_update(l2hdr->b_dev->l2ad_vdev, 3470 -l2hdr->b_asize, 0, 0); 3471 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3472 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3473 mutex_exit(&l2arc_buflist_mtx); 3474 } 3475 } 3476 3477 int 3478 arc_released(arc_buf_t *buf) 3479 { 3480 int released; 3481 3482 mutex_enter(&buf->b_evict_lock); 3483 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3484 mutex_exit(&buf->b_evict_lock); 3485 return (released); 3486 } 3487 3488 #ifdef ZFS_DEBUG 3489 int 3490 arc_referenced(arc_buf_t *buf) 3491 { 3492 int referenced; 3493 3494 mutex_enter(&buf->b_evict_lock); 3495 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3496 mutex_exit(&buf->b_evict_lock); 3497 return (referenced); 3498 } 3499 #endif 3500 3501 static void 3502 arc_write_ready(zio_t *zio) 3503 { 3504 arc_write_callback_t *callback = zio->io_private; 3505 arc_buf_t *buf = callback->awcb_buf; 3506 arc_buf_hdr_t *hdr = buf->b_hdr; 3507 3508 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3509 callback->awcb_ready(zio, buf, callback->awcb_private); 3510 3511 /* 3512 * If the IO is already in progress, then this is a re-write 3513 * attempt, so we need to thaw and re-compute the cksum. 3514 * It is the responsibility of the callback to handle the 3515 * accounting for any re-write attempt. 3516 */ 3517 if (HDR_IO_IN_PROGRESS(hdr)) { 3518 mutex_enter(&hdr->b_freeze_lock); 3519 if (hdr->b_freeze_cksum != NULL) { 3520 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3521 hdr->b_freeze_cksum = NULL; 3522 } 3523 mutex_exit(&hdr->b_freeze_lock); 3524 } 3525 arc_cksum_compute(buf, B_FALSE); 3526 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3527 } 3528 3529 /* 3530 * The SPA calls this callback for each physical write that happens on behalf 3531 * of a logical write. See the comment in dbuf_write_physdone() for details. 3532 */ 3533 static void 3534 arc_write_physdone(zio_t *zio) 3535 { 3536 arc_write_callback_t *cb = zio->io_private; 3537 if (cb->awcb_physdone != NULL) 3538 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 3539 } 3540 3541 static void 3542 arc_write_done(zio_t *zio) 3543 { 3544 arc_write_callback_t *callback = zio->io_private; 3545 arc_buf_t *buf = callback->awcb_buf; 3546 arc_buf_hdr_t *hdr = buf->b_hdr; 3547 3548 ASSERT(hdr->b_acb == NULL); 3549 3550 if (zio->io_error == 0) { 3551 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 3552 buf_discard_identity(hdr); 3553 } else { 3554 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3555 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 3556 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3557 } 3558 } else { 3559 ASSERT(BUF_EMPTY(hdr)); 3560 } 3561 3562 /* 3563 * If the block to be written was all-zero or compressed enough to be 3564 * embedded in the BP, no write was performed so there will be no 3565 * dva/birth/checksum. The buffer must therefore remain anonymous 3566 * (and uncached). 3567 */ 3568 if (!BUF_EMPTY(hdr)) { 3569 arc_buf_hdr_t *exists; 3570 kmutex_t *hash_lock; 3571 3572 ASSERT(zio->io_error == 0); 3573 3574 arc_cksum_verify(buf); 3575 3576 exists = buf_hash_insert(hdr, &hash_lock); 3577 if (exists) { 3578 /* 3579 * This can only happen if we overwrite for 3580 * sync-to-convergence, because we remove 3581 * buffers from the hash table when we arc_free(). 3582 */ 3583 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 3584 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3585 panic("bad overwrite, hdr=%p exists=%p", 3586 (void *)hdr, (void *)exists); 3587 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3588 arc_change_state(arc_anon, exists, hash_lock); 3589 mutex_exit(hash_lock); 3590 arc_hdr_destroy(exists); 3591 exists = buf_hash_insert(hdr, &hash_lock); 3592 ASSERT3P(exists, ==, NULL); 3593 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 3594 /* nopwrite */ 3595 ASSERT(zio->io_prop.zp_nopwrite); 3596 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3597 panic("bad nopwrite, hdr=%p exists=%p", 3598 (void *)hdr, (void *)exists); 3599 } else { 3600 /* Dedup */ 3601 ASSERT(hdr->b_datacnt == 1); 3602 ASSERT(hdr->b_state == arc_anon); 3603 ASSERT(BP_GET_DEDUP(zio->io_bp)); 3604 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 3605 } 3606 } 3607 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3608 /* if it's not anon, we are doing a scrub */ 3609 if (!exists && hdr->b_state == arc_anon) 3610 arc_access(hdr, hash_lock); 3611 mutex_exit(hash_lock); 3612 } else { 3613 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3614 } 3615 3616 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3617 callback->awcb_done(zio, buf, callback->awcb_private); 3618 3619 kmem_free(callback, sizeof (arc_write_callback_t)); 3620 } 3621 3622 zio_t * 3623 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 3624 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress, 3625 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone, 3626 arc_done_func_t *done, void *private, zio_priority_t priority, 3627 int zio_flags, const zbookmark_phys_t *zb) 3628 { 3629 arc_buf_hdr_t *hdr = buf->b_hdr; 3630 arc_write_callback_t *callback; 3631 zio_t *zio; 3632 3633 ASSERT(ready != NULL); 3634 ASSERT(done != NULL); 3635 ASSERT(!HDR_IO_ERROR(hdr)); 3636 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3637 ASSERT(hdr->b_acb == NULL); 3638 if (l2arc) 3639 hdr->b_flags |= ARC_L2CACHE; 3640 if (l2arc_compress) 3641 hdr->b_flags |= ARC_L2COMPRESS; 3642 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3643 callback->awcb_ready = ready; 3644 callback->awcb_physdone = physdone; 3645 callback->awcb_done = done; 3646 callback->awcb_private = private; 3647 callback->awcb_buf = buf; 3648 3649 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 3650 arc_write_ready, arc_write_physdone, arc_write_done, callback, 3651 priority, zio_flags, zb); 3652 3653 return (zio); 3654 } 3655 3656 static int 3657 arc_memory_throttle(uint64_t reserve, uint64_t txg) 3658 { 3659 #ifdef _KERNEL 3660 uint64_t available_memory = ptob(freemem); 3661 static uint64_t page_load = 0; 3662 static uint64_t last_txg = 0; 3663 3664 #if defined(__i386) 3665 available_memory = 3666 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3667 #endif 3668 3669 if (freemem > physmem * arc_lotsfree_percent / 100) 3670 return (0); 3671 3672 if (txg > last_txg) { 3673 last_txg = txg; 3674 page_load = 0; 3675 } 3676 /* 3677 * If we are in pageout, we know that memory is already tight, 3678 * the arc is already going to be evicting, so we just want to 3679 * continue to let page writes occur as quickly as possible. 3680 */ 3681 if (curproc == proc_pageout) { 3682 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3683 return (SET_ERROR(ERESTART)); 3684 /* Note: reserve is inflated, so we deflate */ 3685 page_load += reserve / 8; 3686 return (0); 3687 } else if (page_load > 0 && arc_reclaim_needed()) { 3688 /* memory is low, delay before restarting */ 3689 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3690 return (SET_ERROR(EAGAIN)); 3691 } 3692 page_load = 0; 3693 #endif 3694 return (0); 3695 } 3696 3697 void 3698 arc_tempreserve_clear(uint64_t reserve) 3699 { 3700 atomic_add_64(&arc_tempreserve, -reserve); 3701 ASSERT((int64_t)arc_tempreserve >= 0); 3702 } 3703 3704 int 3705 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3706 { 3707 int error; 3708 uint64_t anon_size; 3709 3710 if (reserve > arc_c/4 && !arc_no_grow) 3711 arc_c = MIN(arc_c_max, reserve * 4); 3712 if (reserve > arc_c) 3713 return (SET_ERROR(ENOMEM)); 3714 3715 /* 3716 * Don't count loaned bufs as in flight dirty data to prevent long 3717 * network delays from blocking transactions that are ready to be 3718 * assigned to a txg. 3719 */ 3720 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3721 3722 /* 3723 * Writes will, almost always, require additional memory allocations 3724 * in order to compress/encrypt/etc the data. We therefore need to 3725 * make sure that there is sufficient available memory for this. 3726 */ 3727 error = arc_memory_throttle(reserve, txg); 3728 if (error != 0) 3729 return (error); 3730 3731 /* 3732 * Throttle writes when the amount of dirty data in the cache 3733 * gets too large. We try to keep the cache less than half full 3734 * of dirty blocks so that our sync times don't grow too large. 3735 * Note: if two requests come in concurrently, we might let them 3736 * both succeed, when one of them should fail. Not a huge deal. 3737 */ 3738 3739 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3740 anon_size > arc_c / 4) { 3741 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3742 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3743 arc_tempreserve>>10, 3744 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3745 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3746 reserve>>10, arc_c>>10); 3747 return (SET_ERROR(ERESTART)); 3748 } 3749 atomic_add_64(&arc_tempreserve, reserve); 3750 return (0); 3751 } 3752 3753 void 3754 arc_init(void) 3755 { 3756 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3757 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3758 3759 /* Convert seconds to clock ticks */ 3760 arc_min_prefetch_lifespan = 1 * hz; 3761 3762 /* Start out with 1/8 of all memory */ 3763 arc_c = physmem * PAGESIZE / 8; 3764 3765 #ifdef _KERNEL 3766 /* 3767 * On architectures where the physical memory can be larger 3768 * than the addressable space (intel in 32-bit mode), we may 3769 * need to limit the cache to 1/8 of VM size. 3770 */ 3771 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3772 #endif 3773 3774 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3775 arc_c_min = MAX(arc_c / 4, 64<<20); 3776 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3777 if (arc_c * 8 >= 1<<30) 3778 arc_c_max = (arc_c * 8) - (1<<30); 3779 else 3780 arc_c_max = arc_c_min; 3781 arc_c_max = MAX(arc_c * 6, arc_c_max); 3782 3783 /* 3784 * Allow the tunables to override our calculations if they are 3785 * reasonable (ie. over 64MB) 3786 */ 3787 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3788 arc_c_max = zfs_arc_max; 3789 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3790 arc_c_min = zfs_arc_min; 3791 3792 arc_c = arc_c_max; 3793 arc_p = (arc_c >> 1); 3794 3795 /* limit meta-data to 1/4 of the arc capacity */ 3796 arc_meta_limit = arc_c_max / 4; 3797 3798 /* Allow the tunable to override if it is reasonable */ 3799 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3800 arc_meta_limit = zfs_arc_meta_limit; 3801 3802 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3803 arc_c_min = arc_meta_limit / 2; 3804 3805 if (zfs_arc_meta_min > 0) { 3806 arc_meta_min = zfs_arc_meta_min; 3807 } else { 3808 arc_meta_min = arc_c_min / 2; 3809 } 3810 3811 if (zfs_arc_grow_retry > 0) 3812 arc_grow_retry = zfs_arc_grow_retry; 3813 3814 if (zfs_arc_shrink_shift > 0) 3815 arc_shrink_shift = zfs_arc_shrink_shift; 3816 3817 if (zfs_arc_p_min_shift > 0) 3818 arc_p_min_shift = zfs_arc_p_min_shift; 3819 3820 /* if kmem_flags are set, lets try to use less memory */ 3821 if (kmem_debugging()) 3822 arc_c = arc_c / 2; 3823 if (arc_c < arc_c_min) 3824 arc_c = arc_c_min; 3825 3826 arc_anon = &ARC_anon; 3827 arc_mru = &ARC_mru; 3828 arc_mru_ghost = &ARC_mru_ghost; 3829 arc_mfu = &ARC_mfu; 3830 arc_mfu_ghost = &ARC_mfu_ghost; 3831 arc_l2c_only = &ARC_l2c_only; 3832 arc_size = 0; 3833 3834 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3835 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3836 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3837 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3838 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3839 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3840 3841 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3842 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3843 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3844 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3845 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3846 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3847 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3848 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3849 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3850 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3851 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3852 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3853 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3854 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3855 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3856 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3857 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3858 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3859 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3860 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3861 3862 buf_init(); 3863 3864 arc_thread_exit = 0; 3865 arc_eviction_list = NULL; 3866 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3867 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3868 3869 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3870 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3871 3872 if (arc_ksp != NULL) { 3873 arc_ksp->ks_data = &arc_stats; 3874 kstat_install(arc_ksp); 3875 } 3876 3877 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3878 TS_RUN, minclsyspri); 3879 3880 arc_dead = FALSE; 3881 arc_warm = B_FALSE; 3882 3883 /* 3884 * Calculate maximum amount of dirty data per pool. 3885 * 3886 * If it has been set by /etc/system, take that. 3887 * Otherwise, use a percentage of physical memory defined by 3888 * zfs_dirty_data_max_percent (default 10%) with a cap at 3889 * zfs_dirty_data_max_max (default 4GB). 3890 */ 3891 if (zfs_dirty_data_max == 0) { 3892 zfs_dirty_data_max = physmem * PAGESIZE * 3893 zfs_dirty_data_max_percent / 100; 3894 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 3895 zfs_dirty_data_max_max); 3896 } 3897 } 3898 3899 void 3900 arc_fini(void) 3901 { 3902 mutex_enter(&arc_reclaim_thr_lock); 3903 arc_thread_exit = 1; 3904 while (arc_thread_exit != 0) 3905 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3906 mutex_exit(&arc_reclaim_thr_lock); 3907 3908 arc_flush(NULL); 3909 3910 arc_dead = TRUE; 3911 3912 if (arc_ksp != NULL) { 3913 kstat_delete(arc_ksp); 3914 arc_ksp = NULL; 3915 } 3916 3917 mutex_destroy(&arc_eviction_mtx); 3918 mutex_destroy(&arc_reclaim_thr_lock); 3919 cv_destroy(&arc_reclaim_thr_cv); 3920 3921 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3922 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3923 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3924 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3925 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3926 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3927 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3928 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3929 3930 mutex_destroy(&arc_anon->arcs_mtx); 3931 mutex_destroy(&arc_mru->arcs_mtx); 3932 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3933 mutex_destroy(&arc_mfu->arcs_mtx); 3934 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3935 mutex_destroy(&arc_l2c_only->arcs_mtx); 3936 3937 buf_fini(); 3938 3939 ASSERT(arc_loaned_bytes == 0); 3940 } 3941 3942 /* 3943 * Level 2 ARC 3944 * 3945 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3946 * It uses dedicated storage devices to hold cached data, which are populated 3947 * using large infrequent writes. The main role of this cache is to boost 3948 * the performance of random read workloads. The intended L2ARC devices 3949 * include short-stroked disks, solid state disks, and other media with 3950 * substantially faster read latency than disk. 3951 * 3952 * +-----------------------+ 3953 * | ARC | 3954 * +-----------------------+ 3955 * | ^ ^ 3956 * | | | 3957 * l2arc_feed_thread() arc_read() 3958 * | | | 3959 * | l2arc read | 3960 * V | | 3961 * +---------------+ | 3962 * | L2ARC | | 3963 * +---------------+ | 3964 * | ^ | 3965 * l2arc_write() | | 3966 * | | | 3967 * V | | 3968 * +-------+ +-------+ 3969 * | vdev | | vdev | 3970 * | cache | | cache | 3971 * +-------+ +-------+ 3972 * +=========+ .-----. 3973 * : L2ARC : |-_____-| 3974 * : devices : | Disks | 3975 * +=========+ `-_____-' 3976 * 3977 * Read requests are satisfied from the following sources, in order: 3978 * 3979 * 1) ARC 3980 * 2) vdev cache of L2ARC devices 3981 * 3) L2ARC devices 3982 * 4) vdev cache of disks 3983 * 5) disks 3984 * 3985 * Some L2ARC device types exhibit extremely slow write performance. 3986 * To accommodate for this there are some significant differences between 3987 * the L2ARC and traditional cache design: 3988 * 3989 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3990 * the ARC behave as usual, freeing buffers and placing headers on ghost 3991 * lists. The ARC does not send buffers to the L2ARC during eviction as 3992 * this would add inflated write latencies for all ARC memory pressure. 3993 * 3994 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3995 * It does this by periodically scanning buffers from the eviction-end of 3996 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3997 * not already there. It scans until a headroom of buffers is satisfied, 3998 * which itself is a buffer for ARC eviction. If a compressible buffer is 3999 * found during scanning and selected for writing to an L2ARC device, we 4000 * temporarily boost scanning headroom during the next scan cycle to make 4001 * sure we adapt to compression effects (which might significantly reduce 4002 * the data volume we write to L2ARC). The thread that does this is 4003 * l2arc_feed_thread(), illustrated below; example sizes are included to 4004 * provide a better sense of ratio than this diagram: 4005 * 4006 * head --> tail 4007 * +---------------------+----------+ 4008 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 4009 * +---------------------+----------+ | o L2ARC eligible 4010 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 4011 * +---------------------+----------+ | 4012 * 15.9 Gbytes ^ 32 Mbytes | 4013 * headroom | 4014 * l2arc_feed_thread() 4015 * | 4016 * l2arc write hand <--[oooo]--' 4017 * | 8 Mbyte 4018 * | write max 4019 * V 4020 * +==============================+ 4021 * L2ARC dev |####|#|###|###| |####| ... | 4022 * +==============================+ 4023 * 32 Gbytes 4024 * 4025 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 4026 * evicted, then the L2ARC has cached a buffer much sooner than it probably 4027 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 4028 * safe to say that this is an uncommon case, since buffers at the end of 4029 * the ARC lists have moved there due to inactivity. 4030 * 4031 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 4032 * then the L2ARC simply misses copying some buffers. This serves as a 4033 * pressure valve to prevent heavy read workloads from both stalling the ARC 4034 * with waits and clogging the L2ARC with writes. This also helps prevent 4035 * the potential for the L2ARC to churn if it attempts to cache content too 4036 * quickly, such as during backups of the entire pool. 4037 * 4038 * 5. After system boot and before the ARC has filled main memory, there are 4039 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 4040 * lists can remain mostly static. Instead of searching from tail of these 4041 * lists as pictured, the l2arc_feed_thread() will search from the list heads 4042 * for eligible buffers, greatly increasing its chance of finding them. 4043 * 4044 * The L2ARC device write speed is also boosted during this time so that 4045 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 4046 * there are no L2ARC reads, and no fear of degrading read performance 4047 * through increased writes. 4048 * 4049 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 4050 * the vdev queue can aggregate them into larger and fewer writes. Each 4051 * device is written to in a rotor fashion, sweeping writes through 4052 * available space then repeating. 4053 * 4054 * 7. The L2ARC does not store dirty content. It never needs to flush 4055 * write buffers back to disk based storage. 4056 * 4057 * 8. If an ARC buffer is written (and dirtied) which also exists in the 4058 * L2ARC, the now stale L2ARC buffer is immediately dropped. 4059 * 4060 * The performance of the L2ARC can be tweaked by a number of tunables, which 4061 * may be necessary for different workloads: 4062 * 4063 * l2arc_write_max max write bytes per interval 4064 * l2arc_write_boost extra write bytes during device warmup 4065 * l2arc_noprefetch skip caching prefetched buffers 4066 * l2arc_headroom number of max device writes to precache 4067 * l2arc_headroom_boost when we find compressed buffers during ARC 4068 * scanning, we multiply headroom by this 4069 * percentage factor for the next scan cycle, 4070 * since more compressed buffers are likely to 4071 * be present 4072 * l2arc_feed_secs seconds between L2ARC writing 4073 * 4074 * Tunables may be removed or added as future performance improvements are 4075 * integrated, and also may become zpool properties. 4076 * 4077 * There are three key functions that control how the L2ARC warms up: 4078 * 4079 * l2arc_write_eligible() check if a buffer is eligible to cache 4080 * l2arc_write_size() calculate how much to write 4081 * l2arc_write_interval() calculate sleep delay between writes 4082 * 4083 * These three functions determine what to write, how much, and how quickly 4084 * to send writes. 4085 */ 4086 4087 static boolean_t 4088 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 4089 { 4090 /* 4091 * A buffer is *not* eligible for the L2ARC if it: 4092 * 1. belongs to a different spa. 4093 * 2. is already cached on the L2ARC. 4094 * 3. has an I/O in progress (it may be an incomplete read). 4095 * 4. is flagged not eligible (zfs property). 4096 */ 4097 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || 4098 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 4099 return (B_FALSE); 4100 4101 return (B_TRUE); 4102 } 4103 4104 static uint64_t 4105 l2arc_write_size(void) 4106 { 4107 uint64_t size; 4108 4109 /* 4110 * Make sure our globals have meaningful values in case the user 4111 * altered them. 4112 */ 4113 size = l2arc_write_max; 4114 if (size == 0) { 4115 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 4116 "be greater than zero, resetting it to the default (%d)", 4117 L2ARC_WRITE_SIZE); 4118 size = l2arc_write_max = L2ARC_WRITE_SIZE; 4119 } 4120 4121 if (arc_warm == B_FALSE) 4122 size += l2arc_write_boost; 4123 4124 return (size); 4125 4126 } 4127 4128 static clock_t 4129 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 4130 { 4131 clock_t interval, next, now; 4132 4133 /* 4134 * If the ARC lists are busy, increase our write rate; if the 4135 * lists are stale, idle back. This is achieved by checking 4136 * how much we previously wrote - if it was more than half of 4137 * what we wanted, schedule the next write much sooner. 4138 */ 4139 if (l2arc_feed_again && wrote > (wanted / 2)) 4140 interval = (hz * l2arc_feed_min_ms) / 1000; 4141 else 4142 interval = hz * l2arc_feed_secs; 4143 4144 now = ddi_get_lbolt(); 4145 next = MAX(now, MIN(now + interval, began + interval)); 4146 4147 return (next); 4148 } 4149 4150 static void 4151 l2arc_hdr_stat_add(void) 4152 { 4153 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 4154 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 4155 } 4156 4157 static void 4158 l2arc_hdr_stat_remove(void) 4159 { 4160 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 4161 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 4162 } 4163 4164 /* 4165 * Cycle through L2ARC devices. This is how L2ARC load balances. 4166 * If a device is returned, this also returns holding the spa config lock. 4167 */ 4168 static l2arc_dev_t * 4169 l2arc_dev_get_next(void) 4170 { 4171 l2arc_dev_t *first, *next = NULL; 4172 4173 /* 4174 * Lock out the removal of spas (spa_namespace_lock), then removal 4175 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 4176 * both locks will be dropped and a spa config lock held instead. 4177 */ 4178 mutex_enter(&spa_namespace_lock); 4179 mutex_enter(&l2arc_dev_mtx); 4180 4181 /* if there are no vdevs, there is nothing to do */ 4182 if (l2arc_ndev == 0) 4183 goto out; 4184 4185 first = NULL; 4186 next = l2arc_dev_last; 4187 do { 4188 /* loop around the list looking for a non-faulted vdev */ 4189 if (next == NULL) { 4190 next = list_head(l2arc_dev_list); 4191 } else { 4192 next = list_next(l2arc_dev_list, next); 4193 if (next == NULL) 4194 next = list_head(l2arc_dev_list); 4195 } 4196 4197 /* if we have come back to the start, bail out */ 4198 if (first == NULL) 4199 first = next; 4200 else if (next == first) 4201 break; 4202 4203 } while (vdev_is_dead(next->l2ad_vdev)); 4204 4205 /* if we were unable to find any usable vdevs, return NULL */ 4206 if (vdev_is_dead(next->l2ad_vdev)) 4207 next = NULL; 4208 4209 l2arc_dev_last = next; 4210 4211 out: 4212 mutex_exit(&l2arc_dev_mtx); 4213 4214 /* 4215 * Grab the config lock to prevent the 'next' device from being 4216 * removed while we are writing to it. 4217 */ 4218 if (next != NULL) 4219 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 4220 mutex_exit(&spa_namespace_lock); 4221 4222 return (next); 4223 } 4224 4225 /* 4226 * Free buffers that were tagged for destruction. 4227 */ 4228 static void 4229 l2arc_do_free_on_write() 4230 { 4231 list_t *buflist; 4232 l2arc_data_free_t *df, *df_prev; 4233 4234 mutex_enter(&l2arc_free_on_write_mtx); 4235 buflist = l2arc_free_on_write; 4236 4237 for (df = list_tail(buflist); df; df = df_prev) { 4238 df_prev = list_prev(buflist, df); 4239 ASSERT(df->l2df_data != NULL); 4240 ASSERT(df->l2df_func != NULL); 4241 df->l2df_func(df->l2df_data, df->l2df_size); 4242 list_remove(buflist, df); 4243 kmem_free(df, sizeof (l2arc_data_free_t)); 4244 } 4245 4246 mutex_exit(&l2arc_free_on_write_mtx); 4247 } 4248 4249 /* 4250 * A write to a cache device has completed. Update all headers to allow 4251 * reads from these buffers to begin. 4252 */ 4253 static void 4254 l2arc_write_done(zio_t *zio) 4255 { 4256 l2arc_write_callback_t *cb; 4257 l2arc_dev_t *dev; 4258 list_t *buflist; 4259 arc_buf_hdr_t *head, *ab, *ab_prev; 4260 l2arc_buf_hdr_t *abl2; 4261 kmutex_t *hash_lock; 4262 int64_t bytes_dropped = 0; 4263 4264 cb = zio->io_private; 4265 ASSERT(cb != NULL); 4266 dev = cb->l2wcb_dev; 4267 ASSERT(dev != NULL); 4268 head = cb->l2wcb_head; 4269 ASSERT(head != NULL); 4270 buflist = dev->l2ad_buflist; 4271 ASSERT(buflist != NULL); 4272 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 4273 l2arc_write_callback_t *, cb); 4274 4275 if (zio->io_error != 0) 4276 ARCSTAT_BUMP(arcstat_l2_writes_error); 4277 4278 mutex_enter(&l2arc_buflist_mtx); 4279 4280 /* 4281 * All writes completed, or an error was hit. 4282 */ 4283 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 4284 ab_prev = list_prev(buflist, ab); 4285 abl2 = ab->b_l2hdr; 4286 4287 /* 4288 * Release the temporary compressed buffer as soon as possible. 4289 */ 4290 if (abl2->b_compress != ZIO_COMPRESS_OFF) 4291 l2arc_release_cdata_buf(ab); 4292 4293 hash_lock = HDR_LOCK(ab); 4294 if (!mutex_tryenter(hash_lock)) { 4295 /* 4296 * This buffer misses out. It may be in a stage 4297 * of eviction. Its ARC_L2_WRITING flag will be 4298 * left set, denying reads to this buffer. 4299 */ 4300 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 4301 continue; 4302 } 4303 4304 if (zio->io_error != 0) { 4305 /* 4306 * Error - drop L2ARC entry. 4307 */ 4308 list_remove(buflist, ab); 4309 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); 4310 bytes_dropped += abl2->b_asize; 4311 ab->b_l2hdr = NULL; 4312 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4313 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4314 } 4315 4316 /* 4317 * Allow ARC to begin reads to this L2ARC entry. 4318 */ 4319 ab->b_flags &= ~ARC_L2_WRITING; 4320 4321 mutex_exit(hash_lock); 4322 } 4323 4324 atomic_inc_64(&l2arc_writes_done); 4325 list_remove(buflist, head); 4326 kmem_cache_free(hdr_cache, head); 4327 mutex_exit(&l2arc_buflist_mtx); 4328 4329 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 4330 4331 l2arc_do_free_on_write(); 4332 4333 kmem_free(cb, sizeof (l2arc_write_callback_t)); 4334 } 4335 4336 /* 4337 * A read to a cache device completed. Validate buffer contents before 4338 * handing over to the regular ARC routines. 4339 */ 4340 static void 4341 l2arc_read_done(zio_t *zio) 4342 { 4343 l2arc_read_callback_t *cb; 4344 arc_buf_hdr_t *hdr; 4345 arc_buf_t *buf; 4346 kmutex_t *hash_lock; 4347 int equal; 4348 4349 ASSERT(zio->io_vd != NULL); 4350 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 4351 4352 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 4353 4354 cb = zio->io_private; 4355 ASSERT(cb != NULL); 4356 buf = cb->l2rcb_buf; 4357 ASSERT(buf != NULL); 4358 4359 hash_lock = HDR_LOCK(buf->b_hdr); 4360 mutex_enter(hash_lock); 4361 hdr = buf->b_hdr; 4362 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 4363 4364 /* 4365 * If the buffer was compressed, decompress it first. 4366 */ 4367 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF) 4368 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress); 4369 ASSERT(zio->io_data != NULL); 4370 4371 /* 4372 * Check this survived the L2ARC journey. 4373 */ 4374 equal = arc_cksum_equal(buf); 4375 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 4376 mutex_exit(hash_lock); 4377 zio->io_private = buf; 4378 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 4379 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4380 arc_read_done(zio); 4381 } else { 4382 mutex_exit(hash_lock); 4383 /* 4384 * Buffer didn't survive caching. Increment stats and 4385 * reissue to the original storage device. 4386 */ 4387 if (zio->io_error != 0) { 4388 ARCSTAT_BUMP(arcstat_l2_io_error); 4389 } else { 4390 zio->io_error = SET_ERROR(EIO); 4391 } 4392 if (!equal) 4393 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4394 4395 /* 4396 * If there's no waiter, issue an async i/o to the primary 4397 * storage now. If there *is* a waiter, the caller must 4398 * issue the i/o in a context where it's OK to block. 4399 */ 4400 if (zio->io_waiter == NULL) { 4401 zio_t *pio = zio_unique_parent(zio); 4402 4403 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4404 4405 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4406 buf->b_data, zio->io_size, arc_read_done, buf, 4407 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4408 } 4409 } 4410 4411 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4412 } 4413 4414 /* 4415 * This is the list priority from which the L2ARC will search for pages to 4416 * cache. This is used within loops (0..3) to cycle through lists in the 4417 * desired order. This order can have a significant effect on cache 4418 * performance. 4419 * 4420 * Currently the metadata lists are hit first, MFU then MRU, followed by 4421 * the data lists. This function returns a locked list, and also returns 4422 * the lock pointer. 4423 */ 4424 static list_t * 4425 l2arc_list_locked(int list_num, kmutex_t **lock) 4426 { 4427 list_t *list = NULL; 4428 4429 ASSERT(list_num >= 0 && list_num <= 3); 4430 4431 switch (list_num) { 4432 case 0: 4433 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4434 *lock = &arc_mfu->arcs_mtx; 4435 break; 4436 case 1: 4437 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4438 *lock = &arc_mru->arcs_mtx; 4439 break; 4440 case 2: 4441 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4442 *lock = &arc_mfu->arcs_mtx; 4443 break; 4444 case 3: 4445 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4446 *lock = &arc_mru->arcs_mtx; 4447 break; 4448 } 4449 4450 ASSERT(!(MUTEX_HELD(*lock))); 4451 mutex_enter(*lock); 4452 return (list); 4453 } 4454 4455 /* 4456 * Evict buffers from the device write hand to the distance specified in 4457 * bytes. This distance may span populated buffers, it may span nothing. 4458 * This is clearing a region on the L2ARC device ready for writing. 4459 * If the 'all' boolean is set, every buffer is evicted. 4460 */ 4461 static void 4462 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4463 { 4464 list_t *buflist; 4465 l2arc_buf_hdr_t *abl2; 4466 arc_buf_hdr_t *ab, *ab_prev; 4467 kmutex_t *hash_lock; 4468 uint64_t taddr; 4469 int64_t bytes_evicted = 0; 4470 4471 buflist = dev->l2ad_buflist; 4472 4473 if (buflist == NULL) 4474 return; 4475 4476 if (!all && dev->l2ad_first) { 4477 /* 4478 * This is the first sweep through the device. There is 4479 * nothing to evict. 4480 */ 4481 return; 4482 } 4483 4484 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4485 /* 4486 * When nearing the end of the device, evict to the end 4487 * before the device write hand jumps to the start. 4488 */ 4489 taddr = dev->l2ad_end; 4490 } else { 4491 taddr = dev->l2ad_hand + distance; 4492 } 4493 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4494 uint64_t, taddr, boolean_t, all); 4495 4496 top: 4497 mutex_enter(&l2arc_buflist_mtx); 4498 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4499 ab_prev = list_prev(buflist, ab); 4500 4501 hash_lock = HDR_LOCK(ab); 4502 if (!mutex_tryenter(hash_lock)) { 4503 /* 4504 * Missed the hash lock. Retry. 4505 */ 4506 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4507 mutex_exit(&l2arc_buflist_mtx); 4508 mutex_enter(hash_lock); 4509 mutex_exit(hash_lock); 4510 goto top; 4511 } 4512 4513 if (HDR_L2_WRITE_HEAD(ab)) { 4514 /* 4515 * We hit a write head node. Leave it for 4516 * l2arc_write_done(). 4517 */ 4518 list_remove(buflist, ab); 4519 mutex_exit(hash_lock); 4520 continue; 4521 } 4522 4523 if (!all && ab->b_l2hdr != NULL && 4524 (ab->b_l2hdr->b_daddr > taddr || 4525 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4526 /* 4527 * We've evicted to the target address, 4528 * or the end of the device. 4529 */ 4530 mutex_exit(hash_lock); 4531 break; 4532 } 4533 4534 if (HDR_FREE_IN_PROGRESS(ab)) { 4535 /* 4536 * Already on the path to destruction. 4537 */ 4538 mutex_exit(hash_lock); 4539 continue; 4540 } 4541 4542 if (ab->b_state == arc_l2c_only) { 4543 ASSERT(!HDR_L2_READING(ab)); 4544 /* 4545 * This doesn't exist in the ARC. Destroy. 4546 * arc_hdr_destroy() will call list_remove() 4547 * and decrement arcstat_l2_size. 4548 */ 4549 arc_change_state(arc_anon, ab, hash_lock); 4550 arc_hdr_destroy(ab); 4551 } else { 4552 /* 4553 * Invalidate issued or about to be issued 4554 * reads, since we may be about to write 4555 * over this location. 4556 */ 4557 if (HDR_L2_READING(ab)) { 4558 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4559 ab->b_flags |= ARC_L2_EVICTED; 4560 } 4561 4562 /* 4563 * Tell ARC this no longer exists in L2ARC. 4564 */ 4565 if (ab->b_l2hdr != NULL) { 4566 abl2 = ab->b_l2hdr; 4567 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); 4568 bytes_evicted += abl2->b_asize; 4569 ab->b_l2hdr = NULL; 4570 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4571 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4572 } 4573 list_remove(buflist, ab); 4574 4575 /* 4576 * This may have been leftover after a 4577 * failed write. 4578 */ 4579 ab->b_flags &= ~ARC_L2_WRITING; 4580 } 4581 mutex_exit(hash_lock); 4582 } 4583 mutex_exit(&l2arc_buflist_mtx); 4584 4585 vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0); 4586 dev->l2ad_evict = taddr; 4587 } 4588 4589 /* 4590 * Find and write ARC buffers to the L2ARC device. 4591 * 4592 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4593 * for reading until they have completed writing. 4594 * The headroom_boost is an in-out parameter used to maintain headroom boost 4595 * state between calls to this function. 4596 * 4597 * Returns the number of bytes actually written (which may be smaller than 4598 * the delta by which the device hand has changed due to alignment). 4599 */ 4600 static uint64_t 4601 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz, 4602 boolean_t *headroom_boost) 4603 { 4604 arc_buf_hdr_t *ab, *ab_prev, *head; 4605 list_t *list; 4606 uint64_t write_asize, write_psize, write_sz, headroom, 4607 buf_compress_minsz; 4608 void *buf_data; 4609 kmutex_t *list_lock; 4610 boolean_t full; 4611 l2arc_write_callback_t *cb; 4612 zio_t *pio, *wzio; 4613 uint64_t guid = spa_load_guid(spa); 4614 const boolean_t do_headroom_boost = *headroom_boost; 4615 4616 ASSERT(dev->l2ad_vdev != NULL); 4617 4618 /* Lower the flag now, we might want to raise it again later. */ 4619 *headroom_boost = B_FALSE; 4620 4621 pio = NULL; 4622 write_sz = write_asize = write_psize = 0; 4623 full = B_FALSE; 4624 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4625 head->b_flags |= ARC_L2_WRITE_HEAD; 4626 4627 /* 4628 * We will want to try to compress buffers that are at least 2x the 4629 * device sector size. 4630 */ 4631 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift; 4632 4633 /* 4634 * Copy buffers for L2ARC writing. 4635 */ 4636 mutex_enter(&l2arc_buflist_mtx); 4637 for (int try = 0; try <= 3; try++) { 4638 uint64_t passed_sz = 0; 4639 4640 list = l2arc_list_locked(try, &list_lock); 4641 4642 /* 4643 * L2ARC fast warmup. 4644 * 4645 * Until the ARC is warm and starts to evict, read from the 4646 * head of the ARC lists rather than the tail. 4647 */ 4648 if (arc_warm == B_FALSE) 4649 ab = list_head(list); 4650 else 4651 ab = list_tail(list); 4652 4653 headroom = target_sz * l2arc_headroom; 4654 if (do_headroom_boost) 4655 headroom = (headroom * l2arc_headroom_boost) / 100; 4656 4657 for (; ab; ab = ab_prev) { 4658 l2arc_buf_hdr_t *l2hdr; 4659 kmutex_t *hash_lock; 4660 uint64_t buf_sz; 4661 4662 if (arc_warm == B_FALSE) 4663 ab_prev = list_next(list, ab); 4664 else 4665 ab_prev = list_prev(list, ab); 4666 4667 hash_lock = HDR_LOCK(ab); 4668 if (!mutex_tryenter(hash_lock)) { 4669 /* 4670 * Skip this buffer rather than waiting. 4671 */ 4672 continue; 4673 } 4674 4675 passed_sz += ab->b_size; 4676 if (passed_sz > headroom) { 4677 /* 4678 * Searched too far. 4679 */ 4680 mutex_exit(hash_lock); 4681 break; 4682 } 4683 4684 if (!l2arc_write_eligible(guid, ab)) { 4685 mutex_exit(hash_lock); 4686 continue; 4687 } 4688 4689 if ((write_sz + ab->b_size) > target_sz) { 4690 full = B_TRUE; 4691 mutex_exit(hash_lock); 4692 break; 4693 } 4694 4695 if (pio == NULL) { 4696 /* 4697 * Insert a dummy header on the buflist so 4698 * l2arc_write_done() can find where the 4699 * write buffers begin without searching. 4700 */ 4701 list_insert_head(dev->l2ad_buflist, head); 4702 4703 cb = kmem_alloc( 4704 sizeof (l2arc_write_callback_t), KM_SLEEP); 4705 cb->l2wcb_dev = dev; 4706 cb->l2wcb_head = head; 4707 pio = zio_root(spa, l2arc_write_done, cb, 4708 ZIO_FLAG_CANFAIL); 4709 } 4710 4711 /* 4712 * Create and add a new L2ARC header. 4713 */ 4714 l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4715 l2hdr->b_dev = dev; 4716 ab->b_flags |= ARC_L2_WRITING; 4717 4718 /* 4719 * Temporarily stash the data buffer in b_tmp_cdata. 4720 * The subsequent write step will pick it up from 4721 * there. This is because can't access ab->b_buf 4722 * without holding the hash_lock, which we in turn 4723 * can't access without holding the ARC list locks 4724 * (which we want to avoid during compression/writing). 4725 */ 4726 l2hdr->b_compress = ZIO_COMPRESS_OFF; 4727 l2hdr->b_asize = ab->b_size; 4728 l2hdr->b_tmp_cdata = ab->b_buf->b_data; 4729 4730 buf_sz = ab->b_size; 4731 ab->b_l2hdr = l2hdr; 4732 4733 list_insert_head(dev->l2ad_buflist, ab); 4734 4735 /* 4736 * Compute and store the buffer cksum before 4737 * writing. On debug the cksum is verified first. 4738 */ 4739 arc_cksum_verify(ab->b_buf); 4740 arc_cksum_compute(ab->b_buf, B_TRUE); 4741 4742 mutex_exit(hash_lock); 4743 4744 write_sz += buf_sz; 4745 } 4746 4747 mutex_exit(list_lock); 4748 4749 if (full == B_TRUE) 4750 break; 4751 } 4752 4753 /* No buffers selected for writing? */ 4754 if (pio == NULL) { 4755 ASSERT0(write_sz); 4756 mutex_exit(&l2arc_buflist_mtx); 4757 kmem_cache_free(hdr_cache, head); 4758 return (0); 4759 } 4760 4761 /* 4762 * Now start writing the buffers. We're starting at the write head 4763 * and work backwards, retracing the course of the buffer selector 4764 * loop above. 4765 */ 4766 for (ab = list_prev(dev->l2ad_buflist, head); ab; 4767 ab = list_prev(dev->l2ad_buflist, ab)) { 4768 l2arc_buf_hdr_t *l2hdr; 4769 uint64_t buf_sz; 4770 4771 /* 4772 * We shouldn't need to lock the buffer here, since we flagged 4773 * it as ARC_L2_WRITING in the previous step, but we must take 4774 * care to only access its L2 cache parameters. In particular, 4775 * ab->b_buf may be invalid by now due to ARC eviction. 4776 */ 4777 l2hdr = ab->b_l2hdr; 4778 l2hdr->b_daddr = dev->l2ad_hand; 4779 4780 if ((ab->b_flags & ARC_L2COMPRESS) && 4781 l2hdr->b_asize >= buf_compress_minsz) { 4782 if (l2arc_compress_buf(l2hdr)) { 4783 /* 4784 * If compression succeeded, enable headroom 4785 * boost on the next scan cycle. 4786 */ 4787 *headroom_boost = B_TRUE; 4788 } 4789 } 4790 4791 /* 4792 * Pick up the buffer data we had previously stashed away 4793 * (and now potentially also compressed). 4794 */ 4795 buf_data = l2hdr->b_tmp_cdata; 4796 buf_sz = l2hdr->b_asize; 4797 4798 /* Compression may have squashed the buffer to zero length. */ 4799 if (buf_sz != 0) { 4800 uint64_t buf_p_sz; 4801 4802 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4803 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4804 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4805 ZIO_FLAG_CANFAIL, B_FALSE); 4806 4807 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4808 zio_t *, wzio); 4809 (void) zio_nowait(wzio); 4810 4811 write_asize += buf_sz; 4812 /* 4813 * Keep the clock hand suitably device-aligned. 4814 */ 4815 buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4816 write_psize += buf_p_sz; 4817 dev->l2ad_hand += buf_p_sz; 4818 } 4819 } 4820 4821 mutex_exit(&l2arc_buflist_mtx); 4822 4823 ASSERT3U(write_asize, <=, target_sz); 4824 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4825 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize); 4826 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4827 ARCSTAT_INCR(arcstat_l2_asize, write_asize); 4828 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0); 4829 4830 /* 4831 * Bump device hand to the device start if it is approaching the end. 4832 * l2arc_evict() will already have evicted ahead for this case. 4833 */ 4834 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4835 dev->l2ad_hand = dev->l2ad_start; 4836 dev->l2ad_evict = dev->l2ad_start; 4837 dev->l2ad_first = B_FALSE; 4838 } 4839 4840 dev->l2ad_writing = B_TRUE; 4841 (void) zio_wait(pio); 4842 dev->l2ad_writing = B_FALSE; 4843 4844 return (write_asize); 4845 } 4846 4847 /* 4848 * Compresses an L2ARC buffer. 4849 * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its 4850 * size in l2hdr->b_asize. This routine tries to compress the data and 4851 * depending on the compression result there are three possible outcomes: 4852 * *) The buffer was incompressible. The original l2hdr contents were left 4853 * untouched and are ready for writing to an L2 device. 4854 * *) The buffer was all-zeros, so there is no need to write it to an L2 4855 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is 4856 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY. 4857 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary 4858 * data buffer which holds the compressed data to be written, and b_asize 4859 * tells us how much data there is. b_compress is set to the appropriate 4860 * compression algorithm. Once writing is done, invoke 4861 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer. 4862 * 4863 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the 4864 * buffer was incompressible). 4865 */ 4866 static boolean_t 4867 l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr) 4868 { 4869 void *cdata; 4870 size_t csize, len, rounded; 4871 4872 ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF); 4873 ASSERT(l2hdr->b_tmp_cdata != NULL); 4874 4875 len = l2hdr->b_asize; 4876 cdata = zio_data_buf_alloc(len); 4877 csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata, 4878 cdata, l2hdr->b_asize); 4879 4880 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE); 4881 if (rounded > csize) { 4882 bzero((char *)cdata + csize, rounded - csize); 4883 csize = rounded; 4884 } 4885 4886 if (csize == 0) { 4887 /* zero block, indicate that there's nothing to write */ 4888 zio_data_buf_free(cdata, len); 4889 l2hdr->b_compress = ZIO_COMPRESS_EMPTY; 4890 l2hdr->b_asize = 0; 4891 l2hdr->b_tmp_cdata = NULL; 4892 ARCSTAT_BUMP(arcstat_l2_compress_zeros); 4893 return (B_TRUE); 4894 } else if (csize > 0 && csize < len) { 4895 /* 4896 * Compression succeeded, we'll keep the cdata around for 4897 * writing and release it afterwards. 4898 */ 4899 l2hdr->b_compress = ZIO_COMPRESS_LZ4; 4900 l2hdr->b_asize = csize; 4901 l2hdr->b_tmp_cdata = cdata; 4902 ARCSTAT_BUMP(arcstat_l2_compress_successes); 4903 return (B_TRUE); 4904 } else { 4905 /* 4906 * Compression failed, release the compressed buffer. 4907 * l2hdr will be left unmodified. 4908 */ 4909 zio_data_buf_free(cdata, len); 4910 ARCSTAT_BUMP(arcstat_l2_compress_failures); 4911 return (B_FALSE); 4912 } 4913 } 4914 4915 /* 4916 * Decompresses a zio read back from an l2arc device. On success, the 4917 * underlying zio's io_data buffer is overwritten by the uncompressed 4918 * version. On decompression error (corrupt compressed stream), the 4919 * zio->io_error value is set to signal an I/O error. 4920 * 4921 * Please note that the compressed data stream is not checksummed, so 4922 * if the underlying device is experiencing data corruption, we may feed 4923 * corrupt data to the decompressor, so the decompressor needs to be 4924 * able to handle this situation (LZ4 does). 4925 */ 4926 static void 4927 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c) 4928 { 4929 ASSERT(L2ARC_IS_VALID_COMPRESS(c)); 4930 4931 if (zio->io_error != 0) { 4932 /* 4933 * An io error has occured, just restore the original io 4934 * size in preparation for a main pool read. 4935 */ 4936 zio->io_orig_size = zio->io_size = hdr->b_size; 4937 return; 4938 } 4939 4940 if (c == ZIO_COMPRESS_EMPTY) { 4941 /* 4942 * An empty buffer results in a null zio, which means we 4943 * need to fill its io_data after we're done restoring the 4944 * buffer's contents. 4945 */ 4946 ASSERT(hdr->b_buf != NULL); 4947 bzero(hdr->b_buf->b_data, hdr->b_size); 4948 zio->io_data = zio->io_orig_data = hdr->b_buf->b_data; 4949 } else { 4950 ASSERT(zio->io_data != NULL); 4951 /* 4952 * We copy the compressed data from the start of the arc buffer 4953 * (the zio_read will have pulled in only what we need, the 4954 * rest is garbage which we will overwrite at decompression) 4955 * and then decompress back to the ARC data buffer. This way we 4956 * can minimize copying by simply decompressing back over the 4957 * original compressed data (rather than decompressing to an 4958 * aux buffer and then copying back the uncompressed buffer, 4959 * which is likely to be much larger). 4960 */ 4961 uint64_t csize; 4962 void *cdata; 4963 4964 csize = zio->io_size; 4965 cdata = zio_data_buf_alloc(csize); 4966 bcopy(zio->io_data, cdata, csize); 4967 if (zio_decompress_data(c, cdata, zio->io_data, csize, 4968 hdr->b_size) != 0) 4969 zio->io_error = EIO; 4970 zio_data_buf_free(cdata, csize); 4971 } 4972 4973 /* Restore the expected uncompressed IO size. */ 4974 zio->io_orig_size = zio->io_size = hdr->b_size; 4975 } 4976 4977 /* 4978 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure. 4979 * This buffer serves as a temporary holder of compressed data while 4980 * the buffer entry is being written to an l2arc device. Once that is 4981 * done, we can dispose of it. 4982 */ 4983 static void 4984 l2arc_release_cdata_buf(arc_buf_hdr_t *ab) 4985 { 4986 l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr; 4987 4988 if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) { 4989 /* 4990 * If the data was compressed, then we've allocated a 4991 * temporary buffer for it, so now we need to release it. 4992 */ 4993 ASSERT(l2hdr->b_tmp_cdata != NULL); 4994 zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size); 4995 } 4996 l2hdr->b_tmp_cdata = NULL; 4997 } 4998 4999 /* 5000 * This thread feeds the L2ARC at regular intervals. This is the beating 5001 * heart of the L2ARC. 5002 */ 5003 static void 5004 l2arc_feed_thread(void) 5005 { 5006 callb_cpr_t cpr; 5007 l2arc_dev_t *dev; 5008 spa_t *spa; 5009 uint64_t size, wrote; 5010 clock_t begin, next = ddi_get_lbolt(); 5011 boolean_t headroom_boost = B_FALSE; 5012 5013 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 5014 5015 mutex_enter(&l2arc_feed_thr_lock); 5016 5017 while (l2arc_thread_exit == 0) { 5018 CALLB_CPR_SAFE_BEGIN(&cpr); 5019 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 5020 next); 5021 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 5022 next = ddi_get_lbolt() + hz; 5023 5024 /* 5025 * Quick check for L2ARC devices. 5026 */ 5027 mutex_enter(&l2arc_dev_mtx); 5028 if (l2arc_ndev == 0) { 5029 mutex_exit(&l2arc_dev_mtx); 5030 continue; 5031 } 5032 mutex_exit(&l2arc_dev_mtx); 5033 begin = ddi_get_lbolt(); 5034 5035 /* 5036 * This selects the next l2arc device to write to, and in 5037 * doing so the next spa to feed from: dev->l2ad_spa. This 5038 * will return NULL if there are now no l2arc devices or if 5039 * they are all faulted. 5040 * 5041 * If a device is returned, its spa's config lock is also 5042 * held to prevent device removal. l2arc_dev_get_next() 5043 * will grab and release l2arc_dev_mtx. 5044 */ 5045 if ((dev = l2arc_dev_get_next()) == NULL) 5046 continue; 5047 5048 spa = dev->l2ad_spa; 5049 ASSERT(spa != NULL); 5050 5051 /* 5052 * If the pool is read-only then force the feed thread to 5053 * sleep a little longer. 5054 */ 5055 if (!spa_writeable(spa)) { 5056 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 5057 spa_config_exit(spa, SCL_L2ARC, dev); 5058 continue; 5059 } 5060 5061 /* 5062 * Avoid contributing to memory pressure. 5063 */ 5064 if (arc_reclaim_needed()) { 5065 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 5066 spa_config_exit(spa, SCL_L2ARC, dev); 5067 continue; 5068 } 5069 5070 ARCSTAT_BUMP(arcstat_l2_feeds); 5071 5072 size = l2arc_write_size(); 5073 5074 /* 5075 * Evict L2ARC buffers that will be overwritten. 5076 */ 5077 l2arc_evict(dev, size, B_FALSE); 5078 5079 /* 5080 * Write ARC buffers. 5081 */ 5082 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost); 5083 5084 /* 5085 * Calculate interval between writes. 5086 */ 5087 next = l2arc_write_interval(begin, size, wrote); 5088 spa_config_exit(spa, SCL_L2ARC, dev); 5089 } 5090 5091 l2arc_thread_exit = 0; 5092 cv_broadcast(&l2arc_feed_thr_cv); 5093 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 5094 thread_exit(); 5095 } 5096 5097 boolean_t 5098 l2arc_vdev_present(vdev_t *vd) 5099 { 5100 l2arc_dev_t *dev; 5101 5102 mutex_enter(&l2arc_dev_mtx); 5103 for (dev = list_head(l2arc_dev_list); dev != NULL; 5104 dev = list_next(l2arc_dev_list, dev)) { 5105 if (dev->l2ad_vdev == vd) 5106 break; 5107 } 5108 mutex_exit(&l2arc_dev_mtx); 5109 5110 return (dev != NULL); 5111 } 5112 5113 /* 5114 * Add a vdev for use by the L2ARC. By this point the spa has already 5115 * validated the vdev and opened it. 5116 */ 5117 void 5118 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 5119 { 5120 l2arc_dev_t *adddev; 5121 5122 ASSERT(!l2arc_vdev_present(vd)); 5123 5124 /* 5125 * Create a new l2arc device entry. 5126 */ 5127 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 5128 adddev->l2ad_spa = spa; 5129 adddev->l2ad_vdev = vd; 5130 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 5131 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 5132 adddev->l2ad_hand = adddev->l2ad_start; 5133 adddev->l2ad_evict = adddev->l2ad_start; 5134 adddev->l2ad_first = B_TRUE; 5135 adddev->l2ad_writing = B_FALSE; 5136 5137 /* 5138 * This is a list of all ARC buffers that are still valid on the 5139 * device. 5140 */ 5141 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 5142 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 5143 offsetof(arc_buf_hdr_t, b_l2node)); 5144 5145 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 5146 5147 /* 5148 * Add device to global list 5149 */ 5150 mutex_enter(&l2arc_dev_mtx); 5151 list_insert_head(l2arc_dev_list, adddev); 5152 atomic_inc_64(&l2arc_ndev); 5153 mutex_exit(&l2arc_dev_mtx); 5154 } 5155 5156 /* 5157 * Remove a vdev from the L2ARC. 5158 */ 5159 void 5160 l2arc_remove_vdev(vdev_t *vd) 5161 { 5162 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 5163 5164 /* 5165 * Find the device by vdev 5166 */ 5167 mutex_enter(&l2arc_dev_mtx); 5168 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 5169 nextdev = list_next(l2arc_dev_list, dev); 5170 if (vd == dev->l2ad_vdev) { 5171 remdev = dev; 5172 break; 5173 } 5174 } 5175 ASSERT(remdev != NULL); 5176 5177 /* 5178 * Remove device from global list 5179 */ 5180 list_remove(l2arc_dev_list, remdev); 5181 l2arc_dev_last = NULL; /* may have been invalidated */ 5182 atomic_dec_64(&l2arc_ndev); 5183 mutex_exit(&l2arc_dev_mtx); 5184 5185 /* 5186 * Clear all buflists and ARC references. L2ARC device flush. 5187 */ 5188 l2arc_evict(remdev, 0, B_TRUE); 5189 list_destroy(remdev->l2ad_buflist); 5190 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 5191 kmem_free(remdev, sizeof (l2arc_dev_t)); 5192 } 5193 5194 void 5195 l2arc_init(void) 5196 { 5197 l2arc_thread_exit = 0; 5198 l2arc_ndev = 0; 5199 l2arc_writes_sent = 0; 5200 l2arc_writes_done = 0; 5201 5202 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 5203 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 5204 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 5205 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 5206 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 5207 5208 l2arc_dev_list = &L2ARC_dev_list; 5209 l2arc_free_on_write = &L2ARC_free_on_write; 5210 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 5211 offsetof(l2arc_dev_t, l2ad_node)); 5212 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 5213 offsetof(l2arc_data_free_t, l2df_list_node)); 5214 } 5215 5216 void 5217 l2arc_fini(void) 5218 { 5219 /* 5220 * This is called from dmu_fini(), which is called from spa_fini(); 5221 * Because of this, we can assume that all l2arc devices have 5222 * already been removed when the pools themselves were removed. 5223 */ 5224 5225 l2arc_do_free_on_write(); 5226 5227 mutex_destroy(&l2arc_feed_thr_lock); 5228 cv_destroy(&l2arc_feed_thr_cv); 5229 mutex_destroy(&l2arc_dev_mtx); 5230 mutex_destroy(&l2arc_buflist_mtx); 5231 mutex_destroy(&l2arc_free_on_write_mtx); 5232 5233 list_destroy(l2arc_dev_list); 5234 list_destroy(l2arc_free_on_write); 5235 } 5236 5237 void 5238 l2arc_start(void) 5239 { 5240 if (!(spa_mode_global & FWRITE)) 5241 return; 5242 5243 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 5244 TS_RUN, minclsyspri); 5245 } 5246 5247 void 5248 l2arc_stop(void) 5249 { 5250 if (!(spa_mode_global & FWRITE)) 5251 return; 5252 5253 mutex_enter(&l2arc_feed_thr_lock); 5254 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 5255 l2arc_thread_exit = 1; 5256 while (l2arc_thread_exit != 0) 5257 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 5258 mutex_exit(&l2arc_feed_thr_lock); 5259 } 5260