1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * DVA-based Adjustable Relpacement Cache 30 * 31 * While much of the theory of operation used here is 32 * based on the self-tuning, low overhead replacement cache 33 * presented by Megiddo and Modha at FAST 2003, there are some 34 * significant differences: 35 * 36 * 1. The Megiddo and Modha model assumes any page is evictable. 37 * Pages in its cache cannot be "locked" into memory. This makes 38 * the eviction algorithm simple: evict the last page in the list. 39 * This also make the performance characteristics easy to reason 40 * about. Our cache is not so simple. At any given moment, some 41 * subset of the blocks in the cache are un-evictable because we 42 * have handed out a reference to them. Blocks are only evictable 43 * when there are no external references active. This makes 44 * eviction far more problematic: we choose to evict the evictable 45 * blocks that are the "lowest" in the list. 46 * 47 * There are times when it is not possible to evict the requested 48 * space. In these circumstances we are unable to adjust the cache 49 * size. To prevent the cache growing unbounded at these times we 50 * implement a "cache throttle" that slowes the flow of new data 51 * into the cache until we can make space avaiable. 52 * 53 * 2. The Megiddo and Modha model assumes a fixed cache size. 54 * Pages are evicted when the cache is full and there is a cache 55 * miss. Our model has a variable sized cache. It grows with 56 * high use, but also tries to react to memory preasure from the 57 * operating system: decreasing its size when system memory is 58 * tight. 59 * 60 * 3. The Megiddo and Modha model assumes a fixed page size. All 61 * elements of the cache are therefor exactly the same size. So 62 * when adjusting the cache size following a cache miss, its simply 63 * a matter of choosing a single page to evict. In our model, we 64 * have variable sized cache blocks (rangeing from 512 bytes to 65 * 128K bytes). We therefor choose a set of blocks to evict to make 66 * space for a cache miss that approximates as closely as possible 67 * the space used by the new block. 68 * 69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 70 * by N. Megiddo & D. Modha, FAST 2003 71 */ 72 73 /* 74 * The locking model: 75 * 76 * A new reference to a cache buffer can be obtained in two 77 * ways: 1) via a hash table lookup using the DVA as a key, 78 * or 2) via one of the ARC lists. The arc_read() inerface 79 * uses method 1, while the internal arc algorithms for 80 * adjusting the cache use method 2. We therefor provide two 81 * types of locks: 1) the hash table lock array, and 2) the 82 * arc list locks. 83 * 84 * Buffers do not have their own mutexs, rather they rely on the 85 * hash table mutexs for the bulk of their protection (i.e. most 86 * fields in the arc_buf_hdr_t are protected by these mutexs). 87 * 88 * buf_hash_find() returns the appropriate mutex (held) when it 89 * locates the requested buffer in the hash table. It returns 90 * NULL for the mutex if the buffer was not in the table. 91 * 92 * buf_hash_remove() expects the appropriate hash mutex to be 93 * already held before it is invoked. 94 * 95 * Each arc state also has a mutex which is used to protect the 96 * buffer list associated with the state. When attempting to 97 * obtain a hash table lock while holding an arc list lock you 98 * must use: mutex_tryenter() to avoid deadlock. Also note that 99 * the active state mutex must be held before the ghost state mutex. 100 * 101 * Arc buffers may have an associated eviction callback function. 102 * This function will be invoked prior to removing the buffer (e.g. 103 * in arc_do_user_evicts()). Note however that the data associated 104 * with the buffer may be evicted prior to the callback. The callback 105 * must be made with *no locks held* (to prevent deadlock). Additionally, 106 * the users of callbacks must ensure that their private data is 107 * protected from simultaneous callbacks from arc_buf_evict() 108 * and arc_do_user_evicts(). 109 * 110 * Note that the majority of the performance stats are manipulated 111 * with atomic operations. 112 */ 113 114 #include <sys/spa.h> 115 #include <sys/zio.h> 116 #include <sys/zio_checksum.h> 117 #include <sys/zfs_context.h> 118 #include <sys/arc.h> 119 #include <sys/refcount.h> 120 #ifdef _KERNEL 121 #include <sys/vmsystm.h> 122 #include <vm/anon.h> 123 #include <sys/fs/swapnode.h> 124 #include <sys/dnlc.h> 125 #endif 126 #include <sys/callb.h> 127 128 static kmutex_t arc_reclaim_thr_lock; 129 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 130 static uint8_t arc_thread_exit; 131 132 #define ARC_REDUCE_DNLC_PERCENT 3 133 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 134 135 typedef enum arc_reclaim_strategy { 136 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 137 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 138 } arc_reclaim_strategy_t; 139 140 /* number of seconds before growing cache again */ 141 static int arc_grow_retry = 60; 142 143 /* 144 * minimum lifespan of a prefetch block in clock ticks 145 * (initialized in arc_init()) 146 */ 147 static int arc_min_prefetch_lifespan; 148 149 static int arc_dead; 150 151 /* 152 * These tunables are for performance analysis. 153 */ 154 uint64_t zfs_arc_max; 155 uint64_t zfs_arc_min; 156 157 /* 158 * Note that buffers can be on one of 5 states: 159 * ARC_anon - anonymous (discussed below) 160 * ARC_mru - recently used, currently cached 161 * ARC_mru_ghost - recentely used, no longer in cache 162 * ARC_mfu - frequently used, currently cached 163 * ARC_mfu_ghost - frequently used, no longer in cache 164 * When there are no active references to the buffer, they 165 * are linked onto one of the lists in arc. These are the 166 * only buffers that can be evicted or deleted. 167 * 168 * Anonymous buffers are buffers that are not associated with 169 * a DVA. These are buffers that hold dirty block copies 170 * before they are written to stable storage. By definition, 171 * they are "ref'd" and are considered part of arc_mru 172 * that cannot be freed. Generally, they will aquire a DVA 173 * as they are written and migrate onto the arc_mru list. 174 */ 175 176 typedef struct arc_state { 177 list_t list; /* linked list of evictable buffer in state */ 178 uint64_t lsize; /* total size of buffers in the linked list */ 179 uint64_t size; /* total size of all buffers in this state */ 180 uint64_t hits; 181 kmutex_t mtx; 182 } arc_state_t; 183 184 /* The 5 states: */ 185 static arc_state_t ARC_anon; 186 static arc_state_t ARC_mru; 187 static arc_state_t ARC_mru_ghost; 188 static arc_state_t ARC_mfu; 189 static arc_state_t ARC_mfu_ghost; 190 191 static struct arc { 192 arc_state_t *anon; 193 arc_state_t *mru; 194 arc_state_t *mru_ghost; 195 arc_state_t *mfu; 196 arc_state_t *mfu_ghost; 197 uint64_t size; /* Actual total arc size */ 198 uint64_t p; /* Target size (in bytes) of mru */ 199 uint64_t c; /* Target size of cache (in bytes) */ 200 uint64_t c_min; /* Minimum target cache size */ 201 uint64_t c_max; /* Maximum target cache size */ 202 203 /* performance stats */ 204 uint64_t hits; 205 uint64_t misses; 206 uint64_t deleted; 207 uint64_t recycle_miss; 208 uint64_t mutex_miss; 209 uint64_t evict_skip; 210 uint64_t hash_elements; 211 uint64_t hash_elements_max; 212 uint64_t hash_collisions; 213 uint64_t hash_chains; 214 uint32_t hash_chain_max; 215 216 int no_grow; /* Don't try to grow cache size */ 217 } arc; 218 219 static uint64_t arc_tempreserve; 220 221 typedef struct arc_callback arc_callback_t; 222 223 struct arc_callback { 224 arc_done_func_t *acb_done; 225 void *acb_private; 226 arc_byteswap_func_t *acb_byteswap; 227 arc_buf_t *acb_buf; 228 zio_t *acb_zio_dummy; 229 arc_callback_t *acb_next; 230 }; 231 232 struct arc_buf_hdr { 233 /* protected by hash lock */ 234 dva_t b_dva; 235 uint64_t b_birth; 236 uint64_t b_cksum0; 237 238 kmutex_t b_freeze_lock; 239 zio_cksum_t *b_freeze_cksum; 240 241 arc_buf_hdr_t *b_hash_next; 242 arc_buf_t *b_buf; 243 uint32_t b_flags; 244 uint32_t b_datacnt; 245 246 arc_callback_t *b_acb; 247 kcondvar_t b_cv; 248 249 /* immutable */ 250 arc_buf_contents_t b_type; 251 uint64_t b_size; 252 spa_t *b_spa; 253 254 /* protected by arc state mutex */ 255 arc_state_t *b_state; 256 list_node_t b_arc_node; 257 258 /* updated atomically */ 259 clock_t b_arc_access; 260 261 /* self protecting */ 262 refcount_t b_refcnt; 263 }; 264 265 static arc_buf_t *arc_eviction_list; 266 static kmutex_t arc_eviction_mtx; 267 static arc_buf_hdr_t arc_eviction_hdr; 268 static void arc_get_data_buf(arc_buf_t *buf); 269 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 270 271 #define GHOST_STATE(state) \ 272 ((state) == arc.mru_ghost || (state) == arc.mfu_ghost) 273 274 /* 275 * Private ARC flags. These flags are private ARC only flags that will show up 276 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 277 * be passed in as arc_flags in things like arc_read. However, these flags 278 * should never be passed and should only be set by ARC code. When adding new 279 * public flags, make sure not to smash the private ones. 280 */ 281 282 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 283 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 284 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 285 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 286 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 287 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 288 289 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 290 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 291 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 292 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 293 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 294 295 /* 296 * Hash table routines 297 */ 298 299 #define HT_LOCK_PAD 64 300 301 struct ht_lock { 302 kmutex_t ht_lock; 303 #ifdef _KERNEL 304 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 305 #endif 306 }; 307 308 #define BUF_LOCKS 256 309 typedef struct buf_hash_table { 310 uint64_t ht_mask; 311 arc_buf_hdr_t **ht_table; 312 struct ht_lock ht_locks[BUF_LOCKS]; 313 } buf_hash_table_t; 314 315 static buf_hash_table_t buf_hash_table; 316 317 #define BUF_HASH_INDEX(spa, dva, birth) \ 318 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 319 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 320 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 321 #define HDR_LOCK(buf) \ 322 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 323 324 uint64_t zfs_crc64_table[256]; 325 326 static uint64_t 327 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth) 328 { 329 uintptr_t spav = (uintptr_t)spa; 330 uint8_t *vdva = (uint8_t *)dva; 331 uint64_t crc = -1ULL; 332 int i; 333 334 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 335 336 for (i = 0; i < sizeof (dva_t); i++) 337 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 338 339 crc ^= (spav>>8) ^ birth; 340 341 return (crc); 342 } 343 344 #define BUF_EMPTY(buf) \ 345 ((buf)->b_dva.dva_word[0] == 0 && \ 346 (buf)->b_dva.dva_word[1] == 0 && \ 347 (buf)->b_birth == 0) 348 349 #define BUF_EQUAL(spa, dva, birth, buf) \ 350 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 351 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 352 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 353 354 static arc_buf_hdr_t * 355 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp) 356 { 357 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 358 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 359 arc_buf_hdr_t *buf; 360 361 mutex_enter(hash_lock); 362 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 363 buf = buf->b_hash_next) { 364 if (BUF_EQUAL(spa, dva, birth, buf)) { 365 *lockp = hash_lock; 366 return (buf); 367 } 368 } 369 mutex_exit(hash_lock); 370 *lockp = NULL; 371 return (NULL); 372 } 373 374 /* 375 * Insert an entry into the hash table. If there is already an element 376 * equal to elem in the hash table, then the already existing element 377 * will be returned and the new element will not be inserted. 378 * Otherwise returns NULL. 379 */ 380 static arc_buf_hdr_t * 381 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 382 { 383 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 384 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 385 arc_buf_hdr_t *fbuf; 386 uint32_t max, i; 387 388 ASSERT(!HDR_IN_HASH_TABLE(buf)); 389 *lockp = hash_lock; 390 mutex_enter(hash_lock); 391 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 392 fbuf = fbuf->b_hash_next, i++) { 393 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 394 return (fbuf); 395 } 396 397 buf->b_hash_next = buf_hash_table.ht_table[idx]; 398 buf_hash_table.ht_table[idx] = buf; 399 buf->b_flags |= ARC_IN_HASH_TABLE; 400 401 /* collect some hash table performance data */ 402 if (i > 0) { 403 atomic_add_64(&arc.hash_collisions, 1); 404 if (i == 1) 405 atomic_add_64(&arc.hash_chains, 1); 406 } 407 while (i > (max = arc.hash_chain_max) && 408 max != atomic_cas_32(&arc.hash_chain_max, max, i)) { 409 continue; 410 } 411 atomic_add_64(&arc.hash_elements, 1); 412 if (arc.hash_elements > arc.hash_elements_max) 413 atomic_add_64(&arc.hash_elements_max, 1); 414 415 return (NULL); 416 } 417 418 static void 419 buf_hash_remove(arc_buf_hdr_t *buf) 420 { 421 arc_buf_hdr_t *fbuf, **bufp; 422 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 423 424 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 425 ASSERT(HDR_IN_HASH_TABLE(buf)); 426 427 bufp = &buf_hash_table.ht_table[idx]; 428 while ((fbuf = *bufp) != buf) { 429 ASSERT(fbuf != NULL); 430 bufp = &fbuf->b_hash_next; 431 } 432 *bufp = buf->b_hash_next; 433 buf->b_hash_next = NULL; 434 buf->b_flags &= ~ARC_IN_HASH_TABLE; 435 436 /* collect some hash table performance data */ 437 atomic_add_64(&arc.hash_elements, -1); 438 if (buf_hash_table.ht_table[idx] && 439 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 440 atomic_add_64(&arc.hash_chains, -1); 441 } 442 443 /* 444 * Global data structures and functions for the buf kmem cache. 445 */ 446 static kmem_cache_t *hdr_cache; 447 static kmem_cache_t *buf_cache; 448 449 static void 450 buf_fini(void) 451 { 452 int i; 453 454 kmem_free(buf_hash_table.ht_table, 455 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 456 for (i = 0; i < BUF_LOCKS; i++) 457 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 458 kmem_cache_destroy(hdr_cache); 459 kmem_cache_destroy(buf_cache); 460 } 461 462 /* 463 * Constructor callback - called when the cache is empty 464 * and a new buf is requested. 465 */ 466 /* ARGSUSED */ 467 static int 468 hdr_cons(void *vbuf, void *unused, int kmflag) 469 { 470 arc_buf_hdr_t *buf = vbuf; 471 472 bzero(buf, sizeof (arc_buf_hdr_t)); 473 refcount_create(&buf->b_refcnt); 474 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 475 return (0); 476 } 477 478 /* 479 * Destructor callback - called when a cached buf is 480 * no longer required. 481 */ 482 /* ARGSUSED */ 483 static void 484 hdr_dest(void *vbuf, void *unused) 485 { 486 arc_buf_hdr_t *buf = vbuf; 487 488 refcount_destroy(&buf->b_refcnt); 489 cv_destroy(&buf->b_cv); 490 } 491 492 /* 493 * Reclaim callback -- invoked when memory is low. 494 */ 495 /* ARGSUSED */ 496 static void 497 hdr_recl(void *unused) 498 { 499 dprintf("hdr_recl called\n"); 500 /* 501 * umem calls the reclaim func when we destroy the buf cache, 502 * which is after we do arc_fini(). 503 */ 504 if (!arc_dead) 505 cv_signal(&arc_reclaim_thr_cv); 506 } 507 508 static void 509 buf_init(void) 510 { 511 uint64_t *ct; 512 uint64_t hsize = 1ULL << 12; 513 int i, j; 514 515 /* 516 * The hash table is big enough to fill all of physical memory 517 * with an average 64K block size. The table will take up 518 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 519 */ 520 while (hsize * 65536 < physmem * PAGESIZE) 521 hsize <<= 1; 522 retry: 523 buf_hash_table.ht_mask = hsize - 1; 524 buf_hash_table.ht_table = 525 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 526 if (buf_hash_table.ht_table == NULL) { 527 ASSERT(hsize > (1ULL << 8)); 528 hsize >>= 1; 529 goto retry; 530 } 531 532 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 533 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 534 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 535 0, NULL, NULL, NULL, NULL, NULL, 0); 536 537 for (i = 0; i < 256; i++) 538 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 539 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 540 541 for (i = 0; i < BUF_LOCKS; i++) { 542 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 543 NULL, MUTEX_DEFAULT, NULL); 544 } 545 } 546 547 #define ARC_MINTIME (hz>>4) /* 62 ms */ 548 549 static void 550 arc_cksum_verify(arc_buf_t *buf) 551 { 552 zio_cksum_t zc; 553 554 if (!zfs_flags & ZFS_DEBUG_MODIFY) 555 return; 556 557 mutex_enter(&buf->b_hdr->b_freeze_lock); 558 if (buf->b_hdr->b_freeze_cksum == NULL || 559 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 560 mutex_exit(&buf->b_hdr->b_freeze_lock); 561 return; 562 } 563 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 564 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 565 panic("buffer modified while frozen!"); 566 mutex_exit(&buf->b_hdr->b_freeze_lock); 567 } 568 569 static void 570 arc_cksum_compute(arc_buf_t *buf) 571 { 572 if (!zfs_flags & ZFS_DEBUG_MODIFY) 573 return; 574 575 mutex_enter(&buf->b_hdr->b_freeze_lock); 576 if (buf->b_hdr->b_freeze_cksum != NULL) { 577 mutex_exit(&buf->b_hdr->b_freeze_lock); 578 return; 579 } 580 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 581 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 582 buf->b_hdr->b_freeze_cksum); 583 mutex_exit(&buf->b_hdr->b_freeze_lock); 584 } 585 586 void 587 arc_buf_thaw(arc_buf_t *buf) 588 { 589 if (!zfs_flags & ZFS_DEBUG_MODIFY) 590 return; 591 592 if (buf->b_hdr->b_state != arc.anon) 593 panic("modifying non-anon buffer!"); 594 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 595 panic("modifying buffer while i/o in progress!"); 596 arc_cksum_verify(buf); 597 mutex_enter(&buf->b_hdr->b_freeze_lock); 598 if (buf->b_hdr->b_freeze_cksum != NULL) { 599 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 600 buf->b_hdr->b_freeze_cksum = NULL; 601 } 602 mutex_exit(&buf->b_hdr->b_freeze_lock); 603 } 604 605 void 606 arc_buf_freeze(arc_buf_t *buf) 607 { 608 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 609 buf->b_hdr->b_state == arc.anon); 610 arc_cksum_compute(buf); 611 } 612 613 static void 614 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 615 { 616 ASSERT(MUTEX_HELD(hash_lock)); 617 618 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 619 (ab->b_state != arc.anon)) { 620 int delta = ab->b_size * ab->b_datacnt; 621 622 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 623 mutex_enter(&ab->b_state->mtx); 624 ASSERT(list_link_active(&ab->b_arc_node)); 625 list_remove(&ab->b_state->list, ab); 626 if (GHOST_STATE(ab->b_state)) { 627 ASSERT3U(ab->b_datacnt, ==, 0); 628 ASSERT3P(ab->b_buf, ==, NULL); 629 delta = ab->b_size; 630 } 631 ASSERT(delta > 0); 632 ASSERT3U(ab->b_state->lsize, >=, delta); 633 atomic_add_64(&ab->b_state->lsize, -delta); 634 mutex_exit(&ab->b_state->mtx); 635 /* remove the prefetch flag is we get a reference */ 636 if (ab->b_flags & ARC_PREFETCH) 637 ab->b_flags &= ~ARC_PREFETCH; 638 } 639 } 640 641 static int 642 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 643 { 644 int cnt; 645 646 ASSERT(ab->b_state == arc.anon || MUTEX_HELD(hash_lock)); 647 ASSERT(!GHOST_STATE(ab->b_state)); 648 649 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 650 (ab->b_state != arc.anon)) { 651 652 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 653 mutex_enter(&ab->b_state->mtx); 654 ASSERT(!list_link_active(&ab->b_arc_node)); 655 list_insert_head(&ab->b_state->list, ab); 656 ASSERT(ab->b_datacnt > 0); 657 atomic_add_64(&ab->b_state->lsize, ab->b_size * ab->b_datacnt); 658 ASSERT3U(ab->b_state->size, >=, ab->b_state->lsize); 659 mutex_exit(&ab->b_state->mtx); 660 } 661 return (cnt); 662 } 663 664 /* 665 * Move the supplied buffer to the indicated state. The mutex 666 * for the buffer must be held by the caller. 667 */ 668 static void 669 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 670 { 671 arc_state_t *old_state = ab->b_state; 672 int refcnt = refcount_count(&ab->b_refcnt); 673 int from_delta, to_delta; 674 675 ASSERT(MUTEX_HELD(hash_lock)); 676 ASSERT(new_state != old_state); 677 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 678 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 679 680 from_delta = to_delta = ab->b_datacnt * ab->b_size; 681 682 /* 683 * If this buffer is evictable, transfer it from the 684 * old state list to the new state list. 685 */ 686 if (refcnt == 0) { 687 if (old_state != arc.anon) { 688 int use_mutex = !MUTEX_HELD(&old_state->mtx); 689 690 if (use_mutex) 691 mutex_enter(&old_state->mtx); 692 693 ASSERT(list_link_active(&ab->b_arc_node)); 694 list_remove(&old_state->list, ab); 695 696 /* 697 * If prefetching out of the ghost cache, 698 * we will have a non-null datacnt. 699 */ 700 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 701 /* ghost elements have a ghost size */ 702 ASSERT(ab->b_buf == NULL); 703 from_delta = ab->b_size; 704 } 705 ASSERT3U(old_state->lsize, >=, from_delta); 706 atomic_add_64(&old_state->lsize, -from_delta); 707 708 if (use_mutex) 709 mutex_exit(&old_state->mtx); 710 } 711 if (new_state != arc.anon) { 712 int use_mutex = !MUTEX_HELD(&new_state->mtx); 713 714 if (use_mutex) 715 mutex_enter(&new_state->mtx); 716 717 list_insert_head(&new_state->list, ab); 718 719 /* ghost elements have a ghost size */ 720 if (GHOST_STATE(new_state)) { 721 ASSERT(ab->b_datacnt == 0); 722 ASSERT(ab->b_buf == NULL); 723 to_delta = ab->b_size; 724 } 725 atomic_add_64(&new_state->lsize, to_delta); 726 ASSERT3U(new_state->size + to_delta, >=, 727 new_state->lsize); 728 729 if (use_mutex) 730 mutex_exit(&new_state->mtx); 731 } 732 } 733 734 ASSERT(!BUF_EMPTY(ab)); 735 if (new_state == arc.anon && old_state != arc.anon) { 736 buf_hash_remove(ab); 737 } 738 739 /* adjust state sizes */ 740 if (to_delta) 741 atomic_add_64(&new_state->size, to_delta); 742 if (from_delta) { 743 ASSERT3U(old_state->size, >=, from_delta); 744 atomic_add_64(&old_state->size, -from_delta); 745 } 746 ab->b_state = new_state; 747 } 748 749 arc_buf_t * 750 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 751 { 752 arc_buf_hdr_t *hdr; 753 arc_buf_t *buf; 754 755 ASSERT3U(size, >, 0); 756 hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 757 ASSERT(BUF_EMPTY(hdr)); 758 hdr->b_size = size; 759 hdr->b_type = type; 760 hdr->b_spa = spa; 761 hdr->b_state = arc.anon; 762 hdr->b_arc_access = 0; 763 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 764 buf->b_hdr = hdr; 765 buf->b_data = NULL; 766 buf->b_efunc = NULL; 767 buf->b_private = NULL; 768 buf->b_next = NULL; 769 hdr->b_buf = buf; 770 arc_get_data_buf(buf); 771 hdr->b_datacnt = 1; 772 hdr->b_flags = 0; 773 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 774 (void) refcount_add(&hdr->b_refcnt, tag); 775 776 return (buf); 777 } 778 779 static arc_buf_t * 780 arc_buf_clone(arc_buf_t *from) 781 { 782 arc_buf_t *buf; 783 arc_buf_hdr_t *hdr = from->b_hdr; 784 uint64_t size = hdr->b_size; 785 786 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 787 buf->b_hdr = hdr; 788 buf->b_data = NULL; 789 buf->b_efunc = NULL; 790 buf->b_private = NULL; 791 buf->b_next = hdr->b_buf; 792 hdr->b_buf = buf; 793 arc_get_data_buf(buf); 794 bcopy(from->b_data, buf->b_data, size); 795 hdr->b_datacnt += 1; 796 return (buf); 797 } 798 799 void 800 arc_buf_add_ref(arc_buf_t *buf, void* tag) 801 { 802 arc_buf_hdr_t *hdr; 803 kmutex_t *hash_lock; 804 805 /* 806 * Check to see if this buffer is currently being evicted via 807 * arc_do_user_evicts(). 808 */ 809 mutex_enter(&arc_eviction_mtx); 810 hdr = buf->b_hdr; 811 if (hdr == NULL) { 812 mutex_exit(&arc_eviction_mtx); 813 return; 814 } 815 hash_lock = HDR_LOCK(hdr); 816 mutex_exit(&arc_eviction_mtx); 817 818 mutex_enter(hash_lock); 819 if (buf->b_data == NULL) { 820 /* 821 * This buffer is evicted. 822 */ 823 mutex_exit(hash_lock); 824 return; 825 } 826 827 ASSERT(buf->b_hdr == hdr); 828 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 829 add_reference(hdr, hash_lock, tag); 830 arc_access(hdr, hash_lock); 831 mutex_exit(hash_lock); 832 atomic_add_64(&arc.hits, 1); 833 } 834 835 static void 836 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 837 { 838 arc_buf_t **bufp; 839 840 /* free up data associated with the buf */ 841 if (buf->b_data) { 842 arc_state_t *state = buf->b_hdr->b_state; 843 uint64_t size = buf->b_hdr->b_size; 844 arc_buf_contents_t type = buf->b_hdr->b_type; 845 846 arc_cksum_verify(buf); 847 if (!recycle) { 848 if (type == ARC_BUFC_METADATA) { 849 zio_buf_free(buf->b_data, size); 850 } else { 851 ASSERT(type == ARC_BUFC_DATA); 852 zio_data_buf_free(buf->b_data, size); 853 } 854 atomic_add_64(&arc.size, -size); 855 } 856 if (list_link_active(&buf->b_hdr->b_arc_node)) { 857 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 858 ASSERT(state != arc.anon); 859 ASSERT3U(state->lsize, >=, size); 860 atomic_add_64(&state->lsize, -size); 861 } 862 ASSERT3U(state->size, >=, size); 863 atomic_add_64(&state->size, -size); 864 buf->b_data = NULL; 865 ASSERT(buf->b_hdr->b_datacnt > 0); 866 buf->b_hdr->b_datacnt -= 1; 867 } 868 869 /* only remove the buf if requested */ 870 if (!all) 871 return; 872 873 /* remove the buf from the hdr list */ 874 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 875 continue; 876 *bufp = buf->b_next; 877 878 ASSERT(buf->b_efunc == NULL); 879 880 /* clean up the buf */ 881 buf->b_hdr = NULL; 882 kmem_cache_free(buf_cache, buf); 883 } 884 885 static void 886 arc_hdr_destroy(arc_buf_hdr_t *hdr) 887 { 888 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 889 ASSERT3P(hdr->b_state, ==, arc.anon); 890 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 891 892 if (!BUF_EMPTY(hdr)) { 893 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 894 bzero(&hdr->b_dva, sizeof (dva_t)); 895 hdr->b_birth = 0; 896 hdr->b_cksum0 = 0; 897 } 898 while (hdr->b_buf) { 899 arc_buf_t *buf = hdr->b_buf; 900 901 if (buf->b_efunc) { 902 mutex_enter(&arc_eviction_mtx); 903 ASSERT(buf->b_hdr != NULL); 904 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 905 hdr->b_buf = buf->b_next; 906 buf->b_hdr = &arc_eviction_hdr; 907 buf->b_next = arc_eviction_list; 908 arc_eviction_list = buf; 909 mutex_exit(&arc_eviction_mtx); 910 } else { 911 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 912 } 913 } 914 if (hdr->b_freeze_cksum != NULL) { 915 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 916 hdr->b_freeze_cksum = NULL; 917 } 918 919 ASSERT(!list_link_active(&hdr->b_arc_node)); 920 ASSERT3P(hdr->b_hash_next, ==, NULL); 921 ASSERT3P(hdr->b_acb, ==, NULL); 922 kmem_cache_free(hdr_cache, hdr); 923 } 924 925 void 926 arc_buf_free(arc_buf_t *buf, void *tag) 927 { 928 arc_buf_hdr_t *hdr = buf->b_hdr; 929 int hashed = hdr->b_state != arc.anon; 930 931 ASSERT(buf->b_efunc == NULL); 932 ASSERT(buf->b_data != NULL); 933 934 if (hashed) { 935 kmutex_t *hash_lock = HDR_LOCK(hdr); 936 937 mutex_enter(hash_lock); 938 (void) remove_reference(hdr, hash_lock, tag); 939 if (hdr->b_datacnt > 1) 940 arc_buf_destroy(buf, FALSE, TRUE); 941 else 942 hdr->b_flags |= ARC_BUF_AVAILABLE; 943 mutex_exit(hash_lock); 944 } else if (HDR_IO_IN_PROGRESS(hdr)) { 945 int destroy_hdr; 946 /* 947 * We are in the middle of an async write. Don't destroy 948 * this buffer unless the write completes before we finish 949 * decrementing the reference count. 950 */ 951 mutex_enter(&arc_eviction_mtx); 952 (void) remove_reference(hdr, NULL, tag); 953 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 954 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 955 mutex_exit(&arc_eviction_mtx); 956 if (destroy_hdr) 957 arc_hdr_destroy(hdr); 958 } else { 959 if (remove_reference(hdr, NULL, tag) > 0) { 960 ASSERT(HDR_IO_ERROR(hdr)); 961 arc_buf_destroy(buf, FALSE, TRUE); 962 } else { 963 arc_hdr_destroy(hdr); 964 } 965 } 966 } 967 968 int 969 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 970 { 971 arc_buf_hdr_t *hdr = buf->b_hdr; 972 kmutex_t *hash_lock = HDR_LOCK(hdr); 973 int no_callback = (buf->b_efunc == NULL); 974 975 if (hdr->b_state == arc.anon) { 976 arc_buf_free(buf, tag); 977 return (no_callback); 978 } 979 980 mutex_enter(hash_lock); 981 ASSERT(hdr->b_state != arc.anon); 982 ASSERT(buf->b_data != NULL); 983 984 (void) remove_reference(hdr, hash_lock, tag); 985 if (hdr->b_datacnt > 1) { 986 if (no_callback) 987 arc_buf_destroy(buf, FALSE, TRUE); 988 } else if (no_callback) { 989 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 990 hdr->b_flags |= ARC_BUF_AVAILABLE; 991 } 992 ASSERT(no_callback || hdr->b_datacnt > 1 || 993 refcount_is_zero(&hdr->b_refcnt)); 994 mutex_exit(hash_lock); 995 return (no_callback); 996 } 997 998 int 999 arc_buf_size(arc_buf_t *buf) 1000 { 1001 return (buf->b_hdr->b_size); 1002 } 1003 1004 /* 1005 * Evict buffers from list until we've removed the specified number of 1006 * bytes. Move the removed buffers to the appropriate evict state. 1007 * If the recycle flag is set, then attempt to "recycle" a buffer: 1008 * - look for a buffer to evict that is `bytes' long. 1009 * - return the data block from this buffer rather than freeing it. 1010 * This flag is used by callers that are trying to make space for a 1011 * new buffer in a full arc cache. 1012 */ 1013 static void * 1014 arc_evict(arc_state_t *state, int64_t bytes, boolean_t recycle, 1015 arc_buf_contents_t type) 1016 { 1017 arc_state_t *evicted_state; 1018 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1019 arc_buf_hdr_t *ab, *ab_prev = NULL; 1020 kmutex_t *hash_lock; 1021 boolean_t have_lock; 1022 void *stolen = NULL; 1023 1024 ASSERT(state == arc.mru || state == arc.mfu); 1025 1026 evicted_state = (state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost; 1027 1028 mutex_enter(&state->mtx); 1029 mutex_enter(&evicted_state->mtx); 1030 1031 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 1032 ab_prev = list_prev(&state->list, ab); 1033 /* prefetch buffers have a minimum lifespan */ 1034 if (HDR_IO_IN_PROGRESS(ab) || 1035 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1036 lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) { 1037 skipped++; 1038 continue; 1039 } 1040 /* "lookahead" for better eviction candidate */ 1041 if (recycle && ab->b_size != bytes && 1042 ab_prev && ab_prev->b_size == bytes) 1043 continue; 1044 hash_lock = HDR_LOCK(ab); 1045 have_lock = MUTEX_HELD(hash_lock); 1046 if (have_lock || mutex_tryenter(hash_lock)) { 1047 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1048 ASSERT(ab->b_datacnt > 0); 1049 while (ab->b_buf) { 1050 arc_buf_t *buf = ab->b_buf; 1051 if (buf->b_data) { 1052 bytes_evicted += ab->b_size; 1053 if (recycle && ab->b_type == type && 1054 ab->b_size == bytes) { 1055 stolen = buf->b_data; 1056 recycle = FALSE; 1057 } 1058 } 1059 if (buf->b_efunc) { 1060 mutex_enter(&arc_eviction_mtx); 1061 arc_buf_destroy(buf, 1062 buf->b_data == stolen, FALSE); 1063 ab->b_buf = buf->b_next; 1064 buf->b_hdr = &arc_eviction_hdr; 1065 buf->b_next = arc_eviction_list; 1066 arc_eviction_list = buf; 1067 mutex_exit(&arc_eviction_mtx); 1068 } else { 1069 arc_buf_destroy(buf, 1070 buf->b_data == stolen, TRUE); 1071 } 1072 } 1073 ASSERT(ab->b_datacnt == 0); 1074 arc_change_state(evicted_state, ab, hash_lock); 1075 ASSERT(HDR_IN_HASH_TABLE(ab)); 1076 ab->b_flags = ARC_IN_HASH_TABLE; 1077 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1078 if (!have_lock) 1079 mutex_exit(hash_lock); 1080 if (bytes >= 0 && bytes_evicted >= bytes) 1081 break; 1082 } else { 1083 missed += 1; 1084 } 1085 } 1086 mutex_exit(&evicted_state->mtx); 1087 mutex_exit(&state->mtx); 1088 1089 if (bytes_evicted < bytes) 1090 dprintf("only evicted %lld bytes from %x", 1091 (longlong_t)bytes_evicted, state); 1092 1093 if (skipped) 1094 atomic_add_64(&arc.evict_skip, skipped); 1095 if (missed) 1096 atomic_add_64(&arc.mutex_miss, missed); 1097 return (stolen); 1098 } 1099 1100 /* 1101 * Remove buffers from list until we've removed the specified number of 1102 * bytes. Destroy the buffers that are removed. 1103 */ 1104 static void 1105 arc_evict_ghost(arc_state_t *state, int64_t bytes) 1106 { 1107 arc_buf_hdr_t *ab, *ab_prev; 1108 kmutex_t *hash_lock; 1109 uint64_t bytes_deleted = 0; 1110 uint_t bufs_skipped = 0; 1111 1112 ASSERT(GHOST_STATE(state)); 1113 top: 1114 mutex_enter(&state->mtx); 1115 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 1116 ab_prev = list_prev(&state->list, ab); 1117 hash_lock = HDR_LOCK(ab); 1118 if (mutex_tryenter(hash_lock)) { 1119 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1120 ASSERT(ab->b_buf == NULL); 1121 arc_change_state(arc.anon, ab, hash_lock); 1122 mutex_exit(hash_lock); 1123 atomic_add_64(&arc.deleted, 1); 1124 bytes_deleted += ab->b_size; 1125 arc_hdr_destroy(ab); 1126 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1127 if (bytes >= 0 && bytes_deleted >= bytes) 1128 break; 1129 } else { 1130 if (bytes < 0) { 1131 mutex_exit(&state->mtx); 1132 mutex_enter(hash_lock); 1133 mutex_exit(hash_lock); 1134 goto top; 1135 } 1136 bufs_skipped += 1; 1137 } 1138 } 1139 mutex_exit(&state->mtx); 1140 1141 if (bufs_skipped) { 1142 atomic_add_64(&arc.mutex_miss, bufs_skipped); 1143 ASSERT(bytes >= 0); 1144 } 1145 1146 if (bytes_deleted < bytes) 1147 dprintf("only deleted %lld bytes from %p", 1148 (longlong_t)bytes_deleted, state); 1149 } 1150 1151 static void 1152 arc_adjust(void) 1153 { 1154 int64_t top_sz, mru_over, arc_over; 1155 1156 top_sz = arc.anon->size + arc.mru->size; 1157 1158 if (top_sz > arc.p && arc.mru->lsize > 0) { 1159 int64_t toevict = MIN(arc.mru->lsize, top_sz-arc.p); 1160 (void) arc_evict(arc.mru, toevict, FALSE, ARC_BUFC_UNDEF); 1161 top_sz = arc.anon->size + arc.mru->size; 1162 } 1163 1164 mru_over = top_sz + arc.mru_ghost->size - arc.c; 1165 1166 if (mru_over > 0) { 1167 if (arc.mru_ghost->lsize > 0) { 1168 int64_t todelete = MIN(arc.mru_ghost->lsize, mru_over); 1169 arc_evict_ghost(arc.mru_ghost, todelete); 1170 } 1171 } 1172 1173 if ((arc_over = arc.size - arc.c) > 0) { 1174 int64_t tbl_over; 1175 1176 if (arc.mfu->lsize > 0) { 1177 int64_t toevict = MIN(arc.mfu->lsize, arc_over); 1178 (void) arc_evict(arc.mfu, toevict, FALSE, 1179 ARC_BUFC_UNDEF); 1180 } 1181 1182 tbl_over = arc.size + arc.mru_ghost->lsize + 1183 arc.mfu_ghost->lsize - arc.c*2; 1184 1185 if (tbl_over > 0 && arc.mfu_ghost->lsize > 0) { 1186 int64_t todelete = MIN(arc.mfu_ghost->lsize, tbl_over); 1187 arc_evict_ghost(arc.mfu_ghost, todelete); 1188 } 1189 } 1190 } 1191 1192 static void 1193 arc_do_user_evicts(void) 1194 { 1195 mutex_enter(&arc_eviction_mtx); 1196 while (arc_eviction_list != NULL) { 1197 arc_buf_t *buf = arc_eviction_list; 1198 arc_eviction_list = buf->b_next; 1199 buf->b_hdr = NULL; 1200 mutex_exit(&arc_eviction_mtx); 1201 1202 if (buf->b_efunc != NULL) 1203 VERIFY(buf->b_efunc(buf) == 0); 1204 1205 buf->b_efunc = NULL; 1206 buf->b_private = NULL; 1207 kmem_cache_free(buf_cache, buf); 1208 mutex_enter(&arc_eviction_mtx); 1209 } 1210 mutex_exit(&arc_eviction_mtx); 1211 } 1212 1213 /* 1214 * Flush all *evictable* data from the cache. 1215 * NOTE: this will not touch "active" (i.e. referenced) data. 1216 */ 1217 void 1218 arc_flush(void) 1219 { 1220 while (list_head(&arc.mru->list)) 1221 (void) arc_evict(arc.mru, -1, FALSE, ARC_BUFC_UNDEF); 1222 while (list_head(&arc.mfu->list)) 1223 (void) arc_evict(arc.mfu, -1, FALSE, ARC_BUFC_UNDEF); 1224 1225 arc_evict_ghost(arc.mru_ghost, -1); 1226 arc_evict_ghost(arc.mfu_ghost, -1); 1227 1228 mutex_enter(&arc_reclaim_thr_lock); 1229 arc_do_user_evicts(); 1230 mutex_exit(&arc_reclaim_thr_lock); 1231 ASSERT(arc_eviction_list == NULL); 1232 } 1233 1234 int arc_shrink_shift = 5; /* log2(fraction of arc to reclaim) */ 1235 1236 void 1237 arc_shrink(void) 1238 { 1239 if (arc.c > arc.c_min) { 1240 uint64_t to_free; 1241 1242 #ifdef _KERNEL 1243 to_free = MAX(arc.c >> arc_shrink_shift, ptob(needfree)); 1244 #else 1245 to_free = arc.c >> arc_shrink_shift; 1246 #endif 1247 if (arc.c > arc.c_min + to_free) 1248 atomic_add_64(&arc.c, -to_free); 1249 else 1250 arc.c = arc.c_min; 1251 1252 atomic_add_64(&arc.p, -(arc.p >> arc_shrink_shift)); 1253 if (arc.c > arc.size) 1254 arc.c = MAX(arc.size, arc.c_min); 1255 if (arc.p > arc.c) 1256 arc.p = (arc.c >> 1); 1257 ASSERT(arc.c >= arc.c_min); 1258 ASSERT((int64_t)arc.p >= 0); 1259 } 1260 1261 if (arc.size > arc.c) 1262 arc_adjust(); 1263 } 1264 1265 static int 1266 arc_reclaim_needed(void) 1267 { 1268 uint64_t extra; 1269 1270 #ifdef _KERNEL 1271 1272 if (needfree) 1273 return (1); 1274 1275 /* 1276 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1277 */ 1278 extra = desfree; 1279 1280 /* 1281 * check that we're out of range of the pageout scanner. It starts to 1282 * schedule paging if freemem is less than lotsfree and needfree. 1283 * lotsfree is the high-water mark for pageout, and needfree is the 1284 * number of needed free pages. We add extra pages here to make sure 1285 * the scanner doesn't start up while we're freeing memory. 1286 */ 1287 if (freemem < lotsfree + needfree + extra) 1288 return (1); 1289 1290 /* 1291 * check to make sure that swapfs has enough space so that anon 1292 * reservations can still succeeed. anon_resvmem() checks that the 1293 * availrmem is greater than swapfs_minfree, and the number of reserved 1294 * swap pages. We also add a bit of extra here just to prevent 1295 * circumstances from getting really dire. 1296 */ 1297 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 1298 return (1); 1299 1300 #if defined(__i386) 1301 /* 1302 * If we're on an i386 platform, it's possible that we'll exhaust the 1303 * kernel heap space before we ever run out of available physical 1304 * memory. Most checks of the size of the heap_area compare against 1305 * tune.t_minarmem, which is the minimum available real memory that we 1306 * can have in the system. However, this is generally fixed at 25 pages 1307 * which is so low that it's useless. In this comparison, we seek to 1308 * calculate the total heap-size, and reclaim if more than 3/4ths of the 1309 * heap is allocated. (Or, in the caclulation, if less than 1/4th is 1310 * free) 1311 */ 1312 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 1313 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 1314 return (1); 1315 #endif 1316 1317 #else 1318 if (spa_get_random(100) == 0) 1319 return (1); 1320 #endif 1321 return (0); 1322 } 1323 1324 static void 1325 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 1326 { 1327 size_t i; 1328 kmem_cache_t *prev_cache = NULL; 1329 kmem_cache_t *prev_data_cache = NULL; 1330 extern kmem_cache_t *zio_buf_cache[]; 1331 extern kmem_cache_t *zio_data_buf_cache[]; 1332 1333 #ifdef _KERNEL 1334 /* 1335 * First purge some DNLC entries, in case the DNLC is using 1336 * up too much memory. 1337 */ 1338 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 1339 1340 #if defined(__i386) 1341 /* 1342 * Reclaim unused memory from all kmem caches. 1343 */ 1344 kmem_reap(); 1345 #endif 1346 #endif 1347 1348 /* 1349 * An agressive reclamation will shrink the cache size as well as 1350 * reap free buffers from the arc kmem caches. 1351 */ 1352 if (strat == ARC_RECLAIM_AGGR) 1353 arc_shrink(); 1354 1355 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 1356 if (zio_buf_cache[i] != prev_cache) { 1357 prev_cache = zio_buf_cache[i]; 1358 kmem_cache_reap_now(zio_buf_cache[i]); 1359 } 1360 if (zio_data_buf_cache[i] != prev_data_cache) { 1361 prev_data_cache = zio_data_buf_cache[i]; 1362 kmem_cache_reap_now(zio_data_buf_cache[i]); 1363 } 1364 } 1365 kmem_cache_reap_now(buf_cache); 1366 kmem_cache_reap_now(hdr_cache); 1367 } 1368 1369 static void 1370 arc_reclaim_thread(void) 1371 { 1372 clock_t growtime = 0; 1373 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 1374 callb_cpr_t cpr; 1375 1376 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 1377 1378 mutex_enter(&arc_reclaim_thr_lock); 1379 while (arc_thread_exit == 0) { 1380 if (arc_reclaim_needed()) { 1381 1382 if (arc.no_grow) { 1383 if (last_reclaim == ARC_RECLAIM_CONS) { 1384 last_reclaim = ARC_RECLAIM_AGGR; 1385 } else { 1386 last_reclaim = ARC_RECLAIM_CONS; 1387 } 1388 } else { 1389 arc.no_grow = TRUE; 1390 last_reclaim = ARC_RECLAIM_AGGR; 1391 membar_producer(); 1392 } 1393 1394 /* reset the growth delay for every reclaim */ 1395 growtime = lbolt + (arc_grow_retry * hz); 1396 ASSERT(growtime > 0); 1397 1398 arc_kmem_reap_now(last_reclaim); 1399 1400 } else if ((growtime > 0) && ((growtime - lbolt) <= 0)) { 1401 arc.no_grow = FALSE; 1402 } 1403 1404 if (2 * arc.c < 1405 arc.size + arc.mru_ghost->size + arc.mfu_ghost->size) 1406 arc_adjust(); 1407 1408 if (arc_eviction_list != NULL) 1409 arc_do_user_evicts(); 1410 1411 /* block until needed, or one second, whichever is shorter */ 1412 CALLB_CPR_SAFE_BEGIN(&cpr); 1413 (void) cv_timedwait(&arc_reclaim_thr_cv, 1414 &arc_reclaim_thr_lock, (lbolt + hz)); 1415 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 1416 } 1417 1418 arc_thread_exit = 0; 1419 cv_broadcast(&arc_reclaim_thr_cv); 1420 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 1421 thread_exit(); 1422 } 1423 1424 /* 1425 * Adapt arc info given the number of bytes we are trying to add and 1426 * the state that we are comming from. This function is only called 1427 * when we are adding new content to the cache. 1428 */ 1429 static void 1430 arc_adapt(int bytes, arc_state_t *state) 1431 { 1432 int mult; 1433 1434 ASSERT(bytes > 0); 1435 /* 1436 * Adapt the target size of the MRU list: 1437 * - if we just hit in the MRU ghost list, then increase 1438 * the target size of the MRU list. 1439 * - if we just hit in the MFU ghost list, then increase 1440 * the target size of the MFU list by decreasing the 1441 * target size of the MRU list. 1442 */ 1443 if (state == arc.mru_ghost) { 1444 mult = ((arc.mru_ghost->size >= arc.mfu_ghost->size) ? 1445 1 : (arc.mfu_ghost->size/arc.mru_ghost->size)); 1446 1447 arc.p = MIN(arc.c, arc.p + bytes * mult); 1448 } else if (state == arc.mfu_ghost) { 1449 mult = ((arc.mfu_ghost->size >= arc.mru_ghost->size) ? 1450 1 : (arc.mru_ghost->size/arc.mfu_ghost->size)); 1451 1452 arc.p = MAX(0, (int64_t)arc.p - bytes * mult); 1453 } 1454 ASSERT((int64_t)arc.p >= 0); 1455 1456 if (arc_reclaim_needed()) { 1457 cv_signal(&arc_reclaim_thr_cv); 1458 return; 1459 } 1460 1461 if (arc.no_grow) 1462 return; 1463 1464 if (arc.c >= arc.c_max) 1465 return; 1466 1467 /* 1468 * If we're within (2 * maxblocksize) bytes of the target 1469 * cache size, increment the target cache size 1470 */ 1471 if (arc.size > arc.c - (2ULL << SPA_MAXBLOCKSHIFT)) { 1472 atomic_add_64(&arc.c, (int64_t)bytes); 1473 if (arc.c > arc.c_max) 1474 arc.c = arc.c_max; 1475 else if (state == arc.anon) 1476 atomic_add_64(&arc.p, (int64_t)bytes); 1477 if (arc.p > arc.c) 1478 arc.p = arc.c; 1479 } 1480 ASSERT((int64_t)arc.p >= 0); 1481 } 1482 1483 /* 1484 * Check if the cache has reached its limits and eviction is required 1485 * prior to insert. 1486 */ 1487 static int 1488 arc_evict_needed() 1489 { 1490 if (arc_reclaim_needed()) 1491 return (1); 1492 1493 return (arc.size > arc.c); 1494 } 1495 1496 /* 1497 * The buffer, supplied as the first argument, needs a data block. 1498 * So, if we are at cache max, determine which cache should be victimized. 1499 * We have the following cases: 1500 * 1501 * 1. Insert for MRU, p > sizeof(arc.anon + arc.mru) -> 1502 * In this situation if we're out of space, but the resident size of the MFU is 1503 * under the limit, victimize the MFU cache to satisfy this insertion request. 1504 * 1505 * 2. Insert for MRU, p <= sizeof(arc.anon + arc.mru) -> 1506 * Here, we've used up all of the available space for the MRU, so we need to 1507 * evict from our own cache instead. Evict from the set of resident MRU 1508 * entries. 1509 * 1510 * 3. Insert for MFU (c - p) > sizeof(arc.mfu) -> 1511 * c minus p represents the MFU space in the cache, since p is the size of the 1512 * cache that is dedicated to the MRU. In this situation there's still space on 1513 * the MFU side, so the MRU side needs to be victimized. 1514 * 1515 * 4. Insert for MFU (c - p) < sizeof(arc.mfu) -> 1516 * MFU's resident set is consuming more space than it has been allotted. In 1517 * this situation, we must victimize our own cache, the MFU, for this insertion. 1518 */ 1519 static void 1520 arc_get_data_buf(arc_buf_t *buf) 1521 { 1522 arc_state_t *state = buf->b_hdr->b_state; 1523 uint64_t size = buf->b_hdr->b_size; 1524 arc_buf_contents_t type = buf->b_hdr->b_type; 1525 1526 arc_adapt(size, state); 1527 1528 /* 1529 * We have not yet reached cache maximum size, 1530 * just allocate a new buffer. 1531 */ 1532 if (!arc_evict_needed()) { 1533 if (type == ARC_BUFC_METADATA) { 1534 buf->b_data = zio_buf_alloc(size); 1535 } else { 1536 ASSERT(type == ARC_BUFC_DATA); 1537 buf->b_data = zio_data_buf_alloc(size); 1538 } 1539 atomic_add_64(&arc.size, size); 1540 goto out; 1541 } 1542 1543 /* 1544 * If we are prefetching from the mfu ghost list, this buffer 1545 * will end up on the mru list; so steal space from there. 1546 */ 1547 if (state == arc.mfu_ghost) 1548 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc.mru : arc.mfu; 1549 else if (state == arc.mru_ghost) 1550 state = arc.mru; 1551 1552 if (state == arc.mru || state == arc.anon) { 1553 uint64_t mru_used = arc.anon->size + arc.mru->size; 1554 state = (arc.p > mru_used) ? arc.mfu : arc.mru; 1555 } else { 1556 /* MFU cases */ 1557 uint64_t mfu_space = arc.c - arc.p; 1558 state = (mfu_space > arc.mfu->size) ? arc.mru : arc.mfu; 1559 } 1560 if ((buf->b_data = arc_evict(state, size, TRUE, type)) == NULL) { 1561 if (type == ARC_BUFC_METADATA) { 1562 buf->b_data = zio_buf_alloc(size); 1563 } else { 1564 ASSERT(type == ARC_BUFC_DATA); 1565 buf->b_data = zio_data_buf_alloc(size); 1566 } 1567 atomic_add_64(&arc.size, size); 1568 atomic_add_64(&arc.recycle_miss, 1); 1569 } 1570 ASSERT(buf->b_data != NULL); 1571 out: 1572 /* 1573 * Update the state size. Note that ghost states have a 1574 * "ghost size" and so don't need to be updated. 1575 */ 1576 if (!GHOST_STATE(buf->b_hdr->b_state)) { 1577 arc_buf_hdr_t *hdr = buf->b_hdr; 1578 1579 atomic_add_64(&hdr->b_state->size, size); 1580 if (list_link_active(&hdr->b_arc_node)) { 1581 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1582 atomic_add_64(&hdr->b_state->lsize, size); 1583 } 1584 /* 1585 * If we are growing the cache, and we are adding anonymous 1586 * data, and we have outgrown arc.p, update arc.p 1587 */ 1588 if (arc.size < arc.c && hdr->b_state == arc.anon && 1589 arc.anon->size + arc.mru->size > arc.p) 1590 arc.p = MIN(arc.c, arc.p + size); 1591 } 1592 } 1593 1594 /* 1595 * This routine is called whenever a buffer is accessed. 1596 * NOTE: the hash lock is dropped in this function. 1597 */ 1598 static void 1599 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 1600 { 1601 ASSERT(MUTEX_HELD(hash_lock)); 1602 1603 if (buf->b_state == arc.anon) { 1604 /* 1605 * This buffer is not in the cache, and does not 1606 * appear in our "ghost" list. Add the new buffer 1607 * to the MRU state. 1608 */ 1609 1610 ASSERT(buf->b_arc_access == 0); 1611 buf->b_arc_access = lbolt; 1612 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 1613 arc_change_state(arc.mru, buf, hash_lock); 1614 1615 } else if (buf->b_state == arc.mru) { 1616 /* 1617 * If this buffer is here because of a prefetch, then either: 1618 * - clear the flag if this is a "referencing" read 1619 * (any subsequent access will bump this into the MFU state). 1620 * or 1621 * - move the buffer to the head of the list if this is 1622 * another prefetch (to make it less likely to be evicted). 1623 */ 1624 if ((buf->b_flags & ARC_PREFETCH) != 0) { 1625 if (refcount_count(&buf->b_refcnt) == 0) { 1626 ASSERT(list_link_active(&buf->b_arc_node)); 1627 mutex_enter(&arc.mru->mtx); 1628 list_remove(&arc.mru->list, buf); 1629 list_insert_head(&arc.mru->list, buf); 1630 mutex_exit(&arc.mru->mtx); 1631 } else { 1632 buf->b_flags &= ~ARC_PREFETCH; 1633 atomic_add_64(&arc.mru->hits, 1); 1634 } 1635 buf->b_arc_access = lbolt; 1636 return; 1637 } 1638 1639 /* 1640 * This buffer has been "accessed" only once so far, 1641 * but it is still in the cache. Move it to the MFU 1642 * state. 1643 */ 1644 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 1645 /* 1646 * More than 125ms have passed since we 1647 * instantiated this buffer. Move it to the 1648 * most frequently used state. 1649 */ 1650 buf->b_arc_access = lbolt; 1651 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1652 arc_change_state(arc.mfu, buf, hash_lock); 1653 } 1654 atomic_add_64(&arc.mru->hits, 1); 1655 } else if (buf->b_state == arc.mru_ghost) { 1656 arc_state_t *new_state; 1657 /* 1658 * This buffer has been "accessed" recently, but 1659 * was evicted from the cache. Move it to the 1660 * MFU state. 1661 */ 1662 1663 if (buf->b_flags & ARC_PREFETCH) { 1664 new_state = arc.mru; 1665 if (refcount_count(&buf->b_refcnt) > 0) 1666 buf->b_flags &= ~ARC_PREFETCH; 1667 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 1668 } else { 1669 new_state = arc.mfu; 1670 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1671 } 1672 1673 buf->b_arc_access = lbolt; 1674 arc_change_state(new_state, buf, hash_lock); 1675 1676 atomic_add_64(&arc.mru_ghost->hits, 1); 1677 } else if (buf->b_state == arc.mfu) { 1678 /* 1679 * This buffer has been accessed more than once and is 1680 * still in the cache. Keep it in the MFU state. 1681 * 1682 * NOTE: an add_reference() that occurred when we did 1683 * the arc_read() will have kicked this off the list. 1684 * If it was a prefetch, we will explicitly move it to 1685 * the head of the list now. 1686 */ 1687 if ((buf->b_flags & ARC_PREFETCH) != 0) { 1688 ASSERT(refcount_count(&buf->b_refcnt) == 0); 1689 ASSERT(list_link_active(&buf->b_arc_node)); 1690 mutex_enter(&arc.mfu->mtx); 1691 list_remove(&arc.mfu->list, buf); 1692 list_insert_head(&arc.mfu->list, buf); 1693 mutex_exit(&arc.mfu->mtx); 1694 } 1695 atomic_add_64(&arc.mfu->hits, 1); 1696 buf->b_arc_access = lbolt; 1697 } else if (buf->b_state == arc.mfu_ghost) { 1698 arc_state_t *new_state = arc.mfu; 1699 /* 1700 * This buffer has been accessed more than once but has 1701 * been evicted from the cache. Move it back to the 1702 * MFU state. 1703 */ 1704 1705 if (buf->b_flags & ARC_PREFETCH) { 1706 /* 1707 * This is a prefetch access... 1708 * move this block back to the MRU state. 1709 */ 1710 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 1711 new_state = arc.mru; 1712 } 1713 1714 buf->b_arc_access = lbolt; 1715 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1716 arc_change_state(new_state, buf, hash_lock); 1717 1718 atomic_add_64(&arc.mfu_ghost->hits, 1); 1719 } else { 1720 ASSERT(!"invalid arc state"); 1721 } 1722 } 1723 1724 /* a generic arc_done_func_t which you can use */ 1725 /* ARGSUSED */ 1726 void 1727 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 1728 { 1729 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 1730 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 1731 } 1732 1733 /* a generic arc_done_func_t which you can use */ 1734 void 1735 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 1736 { 1737 arc_buf_t **bufp = arg; 1738 if (zio && zio->io_error) { 1739 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 1740 *bufp = NULL; 1741 } else { 1742 *bufp = buf; 1743 } 1744 } 1745 1746 static void 1747 arc_read_done(zio_t *zio) 1748 { 1749 arc_buf_hdr_t *hdr, *found; 1750 arc_buf_t *buf; 1751 arc_buf_t *abuf; /* buffer we're assigning to callback */ 1752 kmutex_t *hash_lock; 1753 arc_callback_t *callback_list, *acb; 1754 int freeable = FALSE; 1755 1756 buf = zio->io_private; 1757 hdr = buf->b_hdr; 1758 1759 /* 1760 * The hdr was inserted into hash-table and removed from lists 1761 * prior to starting I/O. We should find this header, since 1762 * it's in the hash table, and it should be legit since it's 1763 * not possible to evict it during the I/O. The only possible 1764 * reason for it not to be found is if we were freed during the 1765 * read. 1766 */ 1767 found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth, 1768 &hash_lock); 1769 1770 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 1771 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp)))); 1772 1773 /* byteswap if necessary */ 1774 callback_list = hdr->b_acb; 1775 ASSERT(callback_list != NULL); 1776 if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap) 1777 callback_list->acb_byteswap(buf->b_data, hdr->b_size); 1778 1779 arc_cksum_compute(buf); 1780 1781 /* create copies of the data buffer for the callers */ 1782 abuf = buf; 1783 for (acb = callback_list; acb; acb = acb->acb_next) { 1784 if (acb->acb_done) { 1785 if (abuf == NULL) 1786 abuf = arc_buf_clone(buf); 1787 acb->acb_buf = abuf; 1788 abuf = NULL; 1789 } 1790 } 1791 hdr->b_acb = NULL; 1792 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 1793 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 1794 if (abuf == buf) 1795 hdr->b_flags |= ARC_BUF_AVAILABLE; 1796 1797 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 1798 1799 if (zio->io_error != 0) { 1800 hdr->b_flags |= ARC_IO_ERROR; 1801 if (hdr->b_state != arc.anon) 1802 arc_change_state(arc.anon, hdr, hash_lock); 1803 if (HDR_IN_HASH_TABLE(hdr)) 1804 buf_hash_remove(hdr); 1805 freeable = refcount_is_zero(&hdr->b_refcnt); 1806 /* convert checksum errors into IO errors */ 1807 if (zio->io_error == ECKSUM) 1808 zio->io_error = EIO; 1809 } 1810 1811 /* 1812 * Broadcast before we drop the hash_lock to avoid the possibility 1813 * that the hdr (and hence the cv) might be freed before we get to 1814 * the cv_broadcast(). 1815 */ 1816 cv_broadcast(&hdr->b_cv); 1817 1818 if (hash_lock) { 1819 /* 1820 * Only call arc_access on anonymous buffers. This is because 1821 * if we've issued an I/O for an evicted buffer, we've already 1822 * called arc_access (to prevent any simultaneous readers from 1823 * getting confused). 1824 */ 1825 if (zio->io_error == 0 && hdr->b_state == arc.anon) 1826 arc_access(hdr, hash_lock); 1827 mutex_exit(hash_lock); 1828 } else { 1829 /* 1830 * This block was freed while we waited for the read to 1831 * complete. It has been removed from the hash table and 1832 * moved to the anonymous state (so that it won't show up 1833 * in the cache). 1834 */ 1835 ASSERT3P(hdr->b_state, ==, arc.anon); 1836 freeable = refcount_is_zero(&hdr->b_refcnt); 1837 } 1838 1839 /* execute each callback and free its structure */ 1840 while ((acb = callback_list) != NULL) { 1841 if (acb->acb_done) 1842 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 1843 1844 if (acb->acb_zio_dummy != NULL) { 1845 acb->acb_zio_dummy->io_error = zio->io_error; 1846 zio_nowait(acb->acb_zio_dummy); 1847 } 1848 1849 callback_list = acb->acb_next; 1850 kmem_free(acb, sizeof (arc_callback_t)); 1851 } 1852 1853 if (freeable) 1854 arc_hdr_destroy(hdr); 1855 } 1856 1857 /* 1858 * "Read" the block block at the specified DVA (in bp) via the 1859 * cache. If the block is found in the cache, invoke the provided 1860 * callback immediately and return. Note that the `zio' parameter 1861 * in the callback will be NULL in this case, since no IO was 1862 * required. If the block is not in the cache pass the read request 1863 * on to the spa with a substitute callback function, so that the 1864 * requested block will be added to the cache. 1865 * 1866 * If a read request arrives for a block that has a read in-progress, 1867 * either wait for the in-progress read to complete (and return the 1868 * results); or, if this is a read with a "done" func, add a record 1869 * to the read to invoke the "done" func when the read completes, 1870 * and return; or just return. 1871 * 1872 * arc_read_done() will invoke all the requested "done" functions 1873 * for readers of this block. 1874 */ 1875 int 1876 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap, 1877 arc_done_func_t *done, void *private, int priority, int flags, 1878 uint32_t *arc_flags, zbookmark_t *zb) 1879 { 1880 arc_buf_hdr_t *hdr; 1881 arc_buf_t *buf; 1882 kmutex_t *hash_lock; 1883 zio_t *rzio; 1884 1885 top: 1886 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 1887 if (hdr && hdr->b_datacnt > 0) { 1888 1889 *arc_flags |= ARC_CACHED; 1890 1891 if (HDR_IO_IN_PROGRESS(hdr)) { 1892 1893 if (*arc_flags & ARC_WAIT) { 1894 cv_wait(&hdr->b_cv, hash_lock); 1895 mutex_exit(hash_lock); 1896 goto top; 1897 } 1898 ASSERT(*arc_flags & ARC_NOWAIT); 1899 1900 if (done) { 1901 arc_callback_t *acb = NULL; 1902 1903 acb = kmem_zalloc(sizeof (arc_callback_t), 1904 KM_SLEEP); 1905 acb->acb_done = done; 1906 acb->acb_private = private; 1907 acb->acb_byteswap = swap; 1908 if (pio != NULL) 1909 acb->acb_zio_dummy = zio_null(pio, 1910 spa, NULL, NULL, flags); 1911 1912 ASSERT(acb->acb_done != NULL); 1913 acb->acb_next = hdr->b_acb; 1914 hdr->b_acb = acb; 1915 add_reference(hdr, hash_lock, private); 1916 mutex_exit(hash_lock); 1917 return (0); 1918 } 1919 mutex_exit(hash_lock); 1920 return (0); 1921 } 1922 1923 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 1924 1925 if (done) { 1926 add_reference(hdr, hash_lock, private); 1927 /* 1928 * If this block is already in use, create a new 1929 * copy of the data so that we will be guaranteed 1930 * that arc_release() will always succeed. 1931 */ 1932 buf = hdr->b_buf; 1933 ASSERT(buf); 1934 ASSERT(buf->b_data); 1935 if (HDR_BUF_AVAILABLE(hdr)) { 1936 ASSERT(buf->b_efunc == NULL); 1937 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 1938 } else { 1939 buf = arc_buf_clone(buf); 1940 } 1941 } else if (*arc_flags & ARC_PREFETCH && 1942 refcount_count(&hdr->b_refcnt) == 0) { 1943 hdr->b_flags |= ARC_PREFETCH; 1944 } 1945 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1946 arc_access(hdr, hash_lock); 1947 mutex_exit(hash_lock); 1948 atomic_add_64(&arc.hits, 1); 1949 if (done) 1950 done(NULL, buf, private); 1951 } else { 1952 uint64_t size = BP_GET_LSIZE(bp); 1953 arc_callback_t *acb; 1954 1955 if (hdr == NULL) { 1956 /* this block is not in the cache */ 1957 arc_buf_hdr_t *exists; 1958 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 1959 buf = arc_buf_alloc(spa, size, private, type); 1960 hdr = buf->b_hdr; 1961 hdr->b_dva = *BP_IDENTITY(bp); 1962 hdr->b_birth = bp->blk_birth; 1963 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 1964 exists = buf_hash_insert(hdr, &hash_lock); 1965 if (exists) { 1966 /* somebody beat us to the hash insert */ 1967 mutex_exit(hash_lock); 1968 bzero(&hdr->b_dva, sizeof (dva_t)); 1969 hdr->b_birth = 0; 1970 hdr->b_cksum0 = 0; 1971 (void) arc_buf_remove_ref(buf, private); 1972 goto top; /* restart the IO request */ 1973 } 1974 /* if this is a prefetch, we don't have a reference */ 1975 if (*arc_flags & ARC_PREFETCH) { 1976 (void) remove_reference(hdr, hash_lock, 1977 private); 1978 hdr->b_flags |= ARC_PREFETCH; 1979 } 1980 if (BP_GET_LEVEL(bp) > 0) 1981 hdr->b_flags |= ARC_INDIRECT; 1982 } else { 1983 /* this block is in the ghost cache */ 1984 ASSERT(GHOST_STATE(hdr->b_state)); 1985 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1986 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 1987 ASSERT(hdr->b_buf == NULL); 1988 1989 /* if this is a prefetch, we don't have a reference */ 1990 if (*arc_flags & ARC_PREFETCH) 1991 hdr->b_flags |= ARC_PREFETCH; 1992 else 1993 add_reference(hdr, hash_lock, private); 1994 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1995 buf->b_hdr = hdr; 1996 buf->b_data = NULL; 1997 buf->b_efunc = NULL; 1998 buf->b_private = NULL; 1999 buf->b_next = NULL; 2000 hdr->b_buf = buf; 2001 arc_get_data_buf(buf); 2002 ASSERT(hdr->b_datacnt == 0); 2003 hdr->b_datacnt = 1; 2004 2005 } 2006 2007 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2008 acb->acb_done = done; 2009 acb->acb_private = private; 2010 acb->acb_byteswap = swap; 2011 2012 ASSERT(hdr->b_acb == NULL); 2013 hdr->b_acb = acb; 2014 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2015 2016 /* 2017 * If the buffer has been evicted, migrate it to a present state 2018 * before issuing the I/O. Once we drop the hash-table lock, 2019 * the header will be marked as I/O in progress and have an 2020 * attached buffer. At this point, anybody who finds this 2021 * buffer ought to notice that it's legit but has a pending I/O. 2022 */ 2023 2024 if (GHOST_STATE(hdr->b_state)) 2025 arc_access(hdr, hash_lock); 2026 mutex_exit(hash_lock); 2027 2028 ASSERT3U(hdr->b_size, ==, size); 2029 DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size, 2030 zbookmark_t *, zb); 2031 atomic_add_64(&arc.misses, 1); 2032 2033 rzio = zio_read(pio, spa, bp, buf->b_data, size, 2034 arc_read_done, buf, priority, flags, zb); 2035 2036 if (*arc_flags & ARC_WAIT) 2037 return (zio_wait(rzio)); 2038 2039 ASSERT(*arc_flags & ARC_NOWAIT); 2040 zio_nowait(rzio); 2041 } 2042 return (0); 2043 } 2044 2045 /* 2046 * arc_read() variant to support pool traversal. If the block is already 2047 * in the ARC, make a copy of it; otherwise, the caller will do the I/O. 2048 * The idea is that we don't want pool traversal filling up memory, but 2049 * if the ARC already has the data anyway, we shouldn't pay for the I/O. 2050 */ 2051 int 2052 arc_tryread(spa_t *spa, blkptr_t *bp, void *data) 2053 { 2054 arc_buf_hdr_t *hdr; 2055 kmutex_t *hash_mtx; 2056 int rc = 0; 2057 2058 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx); 2059 2060 if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) { 2061 arc_buf_t *buf = hdr->b_buf; 2062 2063 ASSERT(buf); 2064 while (buf->b_data == NULL) { 2065 buf = buf->b_next; 2066 ASSERT(buf); 2067 } 2068 bcopy(buf->b_data, data, hdr->b_size); 2069 } else { 2070 rc = ENOENT; 2071 } 2072 2073 if (hash_mtx) 2074 mutex_exit(hash_mtx); 2075 2076 return (rc); 2077 } 2078 2079 void 2080 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2081 { 2082 ASSERT(buf->b_hdr != NULL); 2083 ASSERT(buf->b_hdr->b_state != arc.anon); 2084 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2085 buf->b_efunc = func; 2086 buf->b_private = private; 2087 } 2088 2089 /* 2090 * This is used by the DMU to let the ARC know that a buffer is 2091 * being evicted, so the ARC should clean up. If this arc buf 2092 * is not yet in the evicted state, it will be put there. 2093 */ 2094 int 2095 arc_buf_evict(arc_buf_t *buf) 2096 { 2097 arc_buf_hdr_t *hdr; 2098 kmutex_t *hash_lock; 2099 arc_buf_t **bufp; 2100 2101 mutex_enter(&arc_eviction_mtx); 2102 hdr = buf->b_hdr; 2103 if (hdr == NULL) { 2104 /* 2105 * We are in arc_do_user_evicts(). 2106 */ 2107 ASSERT(buf->b_data == NULL); 2108 mutex_exit(&arc_eviction_mtx); 2109 return (0); 2110 } 2111 hash_lock = HDR_LOCK(hdr); 2112 mutex_exit(&arc_eviction_mtx); 2113 2114 mutex_enter(hash_lock); 2115 2116 if (buf->b_data == NULL) { 2117 /* 2118 * We are on the eviction list. 2119 */ 2120 mutex_exit(hash_lock); 2121 mutex_enter(&arc_eviction_mtx); 2122 if (buf->b_hdr == NULL) { 2123 /* 2124 * We are already in arc_do_user_evicts(). 2125 */ 2126 mutex_exit(&arc_eviction_mtx); 2127 return (0); 2128 } else { 2129 arc_buf_t copy = *buf; /* structure assignment */ 2130 /* 2131 * Process this buffer now 2132 * but let arc_do_user_evicts() do the reaping. 2133 */ 2134 buf->b_efunc = NULL; 2135 mutex_exit(&arc_eviction_mtx); 2136 VERIFY(copy.b_efunc(©) == 0); 2137 return (1); 2138 } 2139 } 2140 2141 ASSERT(buf->b_hdr == hdr); 2142 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2143 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 2144 2145 /* 2146 * Pull this buffer off of the hdr 2147 */ 2148 bufp = &hdr->b_buf; 2149 while (*bufp != buf) 2150 bufp = &(*bufp)->b_next; 2151 *bufp = buf->b_next; 2152 2153 ASSERT(buf->b_data != NULL); 2154 arc_buf_destroy(buf, FALSE, FALSE); 2155 2156 if (hdr->b_datacnt == 0) { 2157 arc_state_t *old_state = hdr->b_state; 2158 arc_state_t *evicted_state; 2159 2160 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2161 2162 evicted_state = 2163 (old_state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost; 2164 2165 mutex_enter(&old_state->mtx); 2166 mutex_enter(&evicted_state->mtx); 2167 2168 arc_change_state(evicted_state, hdr, hash_lock); 2169 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2170 hdr->b_flags = ARC_IN_HASH_TABLE; 2171 2172 mutex_exit(&evicted_state->mtx); 2173 mutex_exit(&old_state->mtx); 2174 } 2175 mutex_exit(hash_lock); 2176 2177 VERIFY(buf->b_efunc(buf) == 0); 2178 buf->b_efunc = NULL; 2179 buf->b_private = NULL; 2180 buf->b_hdr = NULL; 2181 kmem_cache_free(buf_cache, buf); 2182 return (1); 2183 } 2184 2185 /* 2186 * Release this buffer from the cache. This must be done 2187 * after a read and prior to modifying the buffer contents. 2188 * If the buffer has more than one reference, we must make 2189 * make a new hdr for the buffer. 2190 */ 2191 void 2192 arc_release(arc_buf_t *buf, void *tag) 2193 { 2194 arc_buf_hdr_t *hdr = buf->b_hdr; 2195 kmutex_t *hash_lock = HDR_LOCK(hdr); 2196 2197 /* this buffer is not on any list */ 2198 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 2199 2200 if (hdr->b_state == arc.anon) { 2201 /* this buffer is already released */ 2202 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 2203 ASSERT(BUF_EMPTY(hdr)); 2204 ASSERT(buf->b_efunc == NULL); 2205 arc_buf_thaw(buf); 2206 return; 2207 } 2208 2209 mutex_enter(hash_lock); 2210 2211 /* 2212 * Do we have more than one buf? 2213 */ 2214 if (hdr->b_buf != buf || buf->b_next != NULL) { 2215 arc_buf_hdr_t *nhdr; 2216 arc_buf_t **bufp; 2217 uint64_t blksz = hdr->b_size; 2218 spa_t *spa = hdr->b_spa; 2219 arc_buf_contents_t type = hdr->b_type; 2220 2221 ASSERT(hdr->b_datacnt > 1); 2222 /* 2223 * Pull the data off of this buf and attach it to 2224 * a new anonymous buf. 2225 */ 2226 (void) remove_reference(hdr, hash_lock, tag); 2227 bufp = &hdr->b_buf; 2228 while (*bufp != buf) 2229 bufp = &(*bufp)->b_next; 2230 *bufp = (*bufp)->b_next; 2231 2232 ASSERT3U(hdr->b_state->size, >=, hdr->b_size); 2233 atomic_add_64(&hdr->b_state->size, -hdr->b_size); 2234 if (refcount_is_zero(&hdr->b_refcnt)) { 2235 ASSERT3U(hdr->b_state->lsize, >=, hdr->b_size); 2236 atomic_add_64(&hdr->b_state->lsize, -hdr->b_size); 2237 } 2238 hdr->b_datacnt -= 1; 2239 2240 mutex_exit(hash_lock); 2241 2242 nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 2243 nhdr->b_size = blksz; 2244 nhdr->b_spa = spa; 2245 nhdr->b_type = type; 2246 nhdr->b_buf = buf; 2247 nhdr->b_state = arc.anon; 2248 nhdr->b_arc_access = 0; 2249 nhdr->b_flags = 0; 2250 nhdr->b_datacnt = 1; 2251 nhdr->b_freeze_cksum = 2252 kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 2253 *nhdr->b_freeze_cksum = *hdr->b_freeze_cksum; /* struct copy */ 2254 buf->b_hdr = nhdr; 2255 buf->b_next = NULL; 2256 (void) refcount_add(&nhdr->b_refcnt, tag); 2257 atomic_add_64(&arc.anon->size, blksz); 2258 2259 hdr = nhdr; 2260 } else { 2261 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 2262 ASSERT(!list_link_active(&hdr->b_arc_node)); 2263 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2264 arc_change_state(arc.anon, hdr, hash_lock); 2265 hdr->b_arc_access = 0; 2266 mutex_exit(hash_lock); 2267 bzero(&hdr->b_dva, sizeof (dva_t)); 2268 hdr->b_birth = 0; 2269 hdr->b_cksum0 = 0; 2270 } 2271 buf->b_efunc = NULL; 2272 buf->b_private = NULL; 2273 arc_buf_thaw(buf); 2274 } 2275 2276 int 2277 arc_released(arc_buf_t *buf) 2278 { 2279 return (buf->b_data != NULL && buf->b_hdr->b_state == arc.anon); 2280 } 2281 2282 int 2283 arc_has_callback(arc_buf_t *buf) 2284 { 2285 return (buf->b_efunc != NULL); 2286 } 2287 2288 #ifdef ZFS_DEBUG 2289 int 2290 arc_referenced(arc_buf_t *buf) 2291 { 2292 return (refcount_count(&buf->b_hdr->b_refcnt)); 2293 } 2294 #endif 2295 2296 static void 2297 arc_write_done(zio_t *zio) 2298 { 2299 arc_buf_t *buf; 2300 arc_buf_hdr_t *hdr; 2301 arc_callback_t *acb; 2302 2303 buf = zio->io_private; 2304 hdr = buf->b_hdr; 2305 acb = hdr->b_acb; 2306 hdr->b_acb = NULL; 2307 ASSERT(acb != NULL); 2308 2309 /* this buffer is on no lists and is not in the hash table */ 2310 ASSERT3P(hdr->b_state, ==, arc.anon); 2311 2312 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 2313 hdr->b_birth = zio->io_bp->blk_birth; 2314 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 2315 /* 2316 * If the block to be written was all-zero, we may have 2317 * compressed it away. In this case no write was performed 2318 * so there will be no dva/birth-date/checksum. The buffer 2319 * must therefor remain anonymous (and uncached). 2320 */ 2321 if (!BUF_EMPTY(hdr)) { 2322 arc_buf_hdr_t *exists; 2323 kmutex_t *hash_lock; 2324 2325 arc_cksum_verify(buf); 2326 2327 exists = buf_hash_insert(hdr, &hash_lock); 2328 if (exists) { 2329 /* 2330 * This can only happen if we overwrite for 2331 * sync-to-convergence, because we remove 2332 * buffers from the hash table when we arc_free(). 2333 */ 2334 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 2335 BP_IDENTITY(zio->io_bp))); 2336 ASSERT3U(zio->io_bp_orig.blk_birth, ==, 2337 zio->io_bp->blk_birth); 2338 2339 ASSERT(refcount_is_zero(&exists->b_refcnt)); 2340 arc_change_state(arc.anon, exists, hash_lock); 2341 mutex_exit(hash_lock); 2342 arc_hdr_destroy(exists); 2343 exists = buf_hash_insert(hdr, &hash_lock); 2344 ASSERT3P(exists, ==, NULL); 2345 } 2346 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2347 arc_access(hdr, hash_lock); 2348 mutex_exit(hash_lock); 2349 } else if (acb->acb_done == NULL) { 2350 int destroy_hdr; 2351 /* 2352 * This is an anonymous buffer with no user callback, 2353 * destroy it if there are no active references. 2354 */ 2355 mutex_enter(&arc_eviction_mtx); 2356 destroy_hdr = refcount_is_zero(&hdr->b_refcnt); 2357 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2358 mutex_exit(&arc_eviction_mtx); 2359 if (destroy_hdr) 2360 arc_hdr_destroy(hdr); 2361 } else { 2362 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2363 } 2364 2365 if (acb->acb_done) { 2366 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 2367 acb->acb_done(zio, buf, acb->acb_private); 2368 } 2369 2370 kmem_free(acb, sizeof (arc_callback_t)); 2371 } 2372 2373 int 2374 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies, 2375 uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 2376 arc_done_func_t *done, void *private, int priority, int flags, 2377 uint32_t arc_flags, zbookmark_t *zb) 2378 { 2379 arc_buf_hdr_t *hdr = buf->b_hdr; 2380 arc_callback_t *acb; 2381 zio_t *rzio; 2382 2383 /* this is a private buffer - no locking required */ 2384 ASSERT3P(hdr->b_state, ==, arc.anon); 2385 ASSERT(BUF_EMPTY(hdr)); 2386 ASSERT(!HDR_IO_ERROR(hdr)); 2387 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 2388 ASSERT(hdr->b_acb == 0); 2389 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2390 acb->acb_done = done; 2391 acb->acb_private = private; 2392 acb->acb_byteswap = (arc_byteswap_func_t *)-1; 2393 hdr->b_acb = acb; 2394 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2395 arc_cksum_compute(buf); 2396 rzio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp, 2397 buf->b_data, hdr->b_size, arc_write_done, buf, priority, flags, zb); 2398 2399 if (arc_flags & ARC_WAIT) 2400 return (zio_wait(rzio)); 2401 2402 ASSERT(arc_flags & ARC_NOWAIT); 2403 zio_nowait(rzio); 2404 2405 return (0); 2406 } 2407 2408 int 2409 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 2410 zio_done_func_t *done, void *private, uint32_t arc_flags) 2411 { 2412 arc_buf_hdr_t *ab; 2413 kmutex_t *hash_lock; 2414 zio_t *zio; 2415 2416 /* 2417 * If this buffer is in the cache, release it, so it 2418 * can be re-used. 2419 */ 2420 ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 2421 if (ab != NULL) { 2422 /* 2423 * The checksum of blocks to free is not always 2424 * preserved (eg. on the deadlist). However, if it is 2425 * nonzero, it should match what we have in the cache. 2426 */ 2427 ASSERT(bp->blk_cksum.zc_word[0] == 0 || 2428 ab->b_cksum0 == bp->blk_cksum.zc_word[0]); 2429 if (ab->b_state != arc.anon) 2430 arc_change_state(arc.anon, ab, hash_lock); 2431 if (HDR_IO_IN_PROGRESS(ab)) { 2432 /* 2433 * This should only happen when we prefetch. 2434 */ 2435 ASSERT(ab->b_flags & ARC_PREFETCH); 2436 ASSERT3U(ab->b_datacnt, ==, 1); 2437 ab->b_flags |= ARC_FREED_IN_READ; 2438 if (HDR_IN_HASH_TABLE(ab)) 2439 buf_hash_remove(ab); 2440 ab->b_arc_access = 0; 2441 bzero(&ab->b_dva, sizeof (dva_t)); 2442 ab->b_birth = 0; 2443 ab->b_cksum0 = 0; 2444 ab->b_buf->b_efunc = NULL; 2445 ab->b_buf->b_private = NULL; 2446 mutex_exit(hash_lock); 2447 } else if (refcount_is_zero(&ab->b_refcnt)) { 2448 mutex_exit(hash_lock); 2449 arc_hdr_destroy(ab); 2450 atomic_add_64(&arc.deleted, 1); 2451 } else { 2452 /* 2453 * We still have an active reference on this 2454 * buffer. This can happen, e.g., from 2455 * dbuf_unoverride(). 2456 */ 2457 ASSERT(!HDR_IN_HASH_TABLE(ab)); 2458 ab->b_arc_access = 0; 2459 bzero(&ab->b_dva, sizeof (dva_t)); 2460 ab->b_birth = 0; 2461 ab->b_cksum0 = 0; 2462 ab->b_buf->b_efunc = NULL; 2463 ab->b_buf->b_private = NULL; 2464 mutex_exit(hash_lock); 2465 } 2466 } 2467 2468 zio = zio_free(pio, spa, txg, bp, done, private); 2469 2470 if (arc_flags & ARC_WAIT) 2471 return (zio_wait(zio)); 2472 2473 ASSERT(arc_flags & ARC_NOWAIT); 2474 zio_nowait(zio); 2475 2476 return (0); 2477 } 2478 2479 void 2480 arc_tempreserve_clear(uint64_t tempreserve) 2481 { 2482 atomic_add_64(&arc_tempreserve, -tempreserve); 2483 ASSERT((int64_t)arc_tempreserve >= 0); 2484 } 2485 2486 int 2487 arc_tempreserve_space(uint64_t tempreserve) 2488 { 2489 #ifdef ZFS_DEBUG 2490 /* 2491 * Once in a while, fail for no reason. Everything should cope. 2492 */ 2493 if (spa_get_random(10000) == 0) { 2494 dprintf("forcing random failure\n"); 2495 return (ERESTART); 2496 } 2497 #endif 2498 if (tempreserve > arc.c/4 && !arc.no_grow) 2499 arc.c = MIN(arc.c_max, tempreserve * 4); 2500 if (tempreserve > arc.c) 2501 return (ENOMEM); 2502 2503 /* 2504 * Throttle writes when the amount of dirty data in the cache 2505 * gets too large. We try to keep the cache less than half full 2506 * of dirty blocks so that our sync times don't grow too large. 2507 * Note: if two requests come in concurrently, we might let them 2508 * both succeed, when one of them should fail. Not a huge deal. 2509 * 2510 * XXX The limit should be adjusted dynamically to keep the time 2511 * to sync a dataset fixed (around 1-5 seconds?). 2512 */ 2513 2514 if (tempreserve + arc_tempreserve + arc.anon->size > arc.c / 2 && 2515 arc_tempreserve + arc.anon->size > arc.c / 4) { 2516 dprintf("failing, arc_tempreserve=%lluK anon=%lluK " 2517 "tempreserve=%lluK arc.c=%lluK\n", 2518 arc_tempreserve>>10, arc.anon->lsize>>10, 2519 tempreserve>>10, arc.c>>10); 2520 return (ERESTART); 2521 } 2522 atomic_add_64(&arc_tempreserve, tempreserve); 2523 return (0); 2524 } 2525 2526 void 2527 arc_init(void) 2528 { 2529 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 2530 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 2531 2532 /* Convert seconds to clock ticks */ 2533 arc_min_prefetch_lifespan = 1 * hz; 2534 2535 /* Start out with 1/8 of all memory */ 2536 arc.c = physmem * PAGESIZE / 8; 2537 2538 #ifdef _KERNEL 2539 /* 2540 * On architectures where the physical memory can be larger 2541 * than the addressable space (intel in 32-bit mode), we may 2542 * need to limit the cache to 1/8 of VM size. 2543 */ 2544 arc.c = MIN(arc.c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 2545 #endif 2546 2547 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 2548 arc.c_min = MAX(arc.c / 4, 64<<20); 2549 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 2550 if (arc.c * 8 >= 1<<30) 2551 arc.c_max = (arc.c * 8) - (1<<30); 2552 else 2553 arc.c_max = arc.c_min; 2554 arc.c_max = MAX(arc.c * 6, arc.c_max); 2555 2556 /* 2557 * Allow the tunables to override our calculations if they are 2558 * reasonable (ie. over 64MB) 2559 */ 2560 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 2561 arc.c_max = zfs_arc_max; 2562 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc.c_max) 2563 arc.c_min = zfs_arc_min; 2564 2565 arc.c = arc.c_max; 2566 arc.p = (arc.c >> 1); 2567 2568 /* if kmem_flags are set, lets try to use less memory */ 2569 if (kmem_debugging()) 2570 arc.c = arc.c / 2; 2571 if (arc.c < arc.c_min) 2572 arc.c = arc.c_min; 2573 2574 arc.anon = &ARC_anon; 2575 arc.mru = &ARC_mru; 2576 arc.mru_ghost = &ARC_mru_ghost; 2577 arc.mfu = &ARC_mfu; 2578 arc.mfu_ghost = &ARC_mfu_ghost; 2579 arc.size = 0; 2580 2581 arc.hits = 0; 2582 arc.recycle_miss = 0; 2583 arc.evict_skip = 0; 2584 arc.mutex_miss = 0; 2585 2586 mutex_init(&arc.anon->mtx, NULL, MUTEX_DEFAULT, NULL); 2587 mutex_init(&arc.mru->mtx, NULL, MUTEX_DEFAULT, NULL); 2588 mutex_init(&arc.mru_ghost->mtx, NULL, MUTEX_DEFAULT, NULL); 2589 mutex_init(&arc.mfu->mtx, NULL, MUTEX_DEFAULT, NULL); 2590 mutex_init(&arc.mfu_ghost->mtx, NULL, MUTEX_DEFAULT, NULL); 2591 2592 list_create(&arc.mru->list, sizeof (arc_buf_hdr_t), 2593 offsetof(arc_buf_hdr_t, b_arc_node)); 2594 list_create(&arc.mru_ghost->list, sizeof (arc_buf_hdr_t), 2595 offsetof(arc_buf_hdr_t, b_arc_node)); 2596 list_create(&arc.mfu->list, sizeof (arc_buf_hdr_t), 2597 offsetof(arc_buf_hdr_t, b_arc_node)); 2598 list_create(&arc.mfu_ghost->list, sizeof (arc_buf_hdr_t), 2599 offsetof(arc_buf_hdr_t, b_arc_node)); 2600 2601 buf_init(); 2602 2603 arc_thread_exit = 0; 2604 arc_eviction_list = NULL; 2605 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 2606 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 2607 2608 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 2609 TS_RUN, minclsyspri); 2610 2611 arc_dead = FALSE; 2612 } 2613 2614 void 2615 arc_fini(void) 2616 { 2617 mutex_enter(&arc_reclaim_thr_lock); 2618 arc_thread_exit = 1; 2619 while (arc_thread_exit != 0) 2620 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 2621 mutex_exit(&arc_reclaim_thr_lock); 2622 2623 arc_flush(); 2624 2625 arc_dead = TRUE; 2626 2627 mutex_destroy(&arc_eviction_mtx); 2628 mutex_destroy(&arc_reclaim_thr_lock); 2629 cv_destroy(&arc_reclaim_thr_cv); 2630 2631 list_destroy(&arc.mru->list); 2632 list_destroy(&arc.mru_ghost->list); 2633 list_destroy(&arc.mfu->list); 2634 list_destroy(&arc.mfu_ghost->list); 2635 2636 mutex_destroy(&arc.anon->mtx); 2637 mutex_destroy(&arc.mru->mtx); 2638 mutex_destroy(&arc.mru_ghost->mtx); 2639 mutex_destroy(&arc.mfu->mtx); 2640 mutex_destroy(&arc.mfu_ghost->mtx); 2641 2642 buf_fini(); 2643 } 2644