1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * Copyright (c) 2014 by Chunwei Chen. All rights reserved. 14 * Copyright (c) 2016 by Delphix. All rights reserved. 15 */ 16 17 /* 18 * ARC buffer data (ABD). 19 * 20 * ABDs are an abstract data structure for the ARC which can use two 21 * different ways of storing the underlying data: 22 * 23 * (a) Linear buffer. In this case, all the data in the ABD is stored in one 24 * contiguous buffer in memory (from a zio_[data_]buf_* kmem cache). 25 * 26 * +-------------------+ 27 * | ABD (linear) | 28 * | abd_flags = ... | 29 * | abd_size = ... | +--------------------------------+ 30 * | abd_buf ------------->| raw buffer of size abd_size | 31 * +-------------------+ +--------------------------------+ 32 * no abd_chunks 33 * 34 * (b) Scattered buffer. In this case, the data in the ABD is split into 35 * equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers 36 * to the chunks recorded in an array at the end of the ABD structure. 37 * 38 * +-------------------+ 39 * | ABD (scattered) | 40 * | abd_flags = ... | 41 * | abd_size = ... | 42 * | abd_offset = 0 | +-----------+ 43 * | abd_chunks[0] ----------------------------->| chunk 0 | 44 * | abd_chunks[1] ---------------------+ +-----------+ 45 * | ... | | +-----------+ 46 * | abd_chunks[N-1] ---------+ +------->| chunk 1 | 47 * +-------------------+ | +-----------+ 48 * | ... 49 * | +-----------+ 50 * +----------------->| chunk N-1 | 51 * +-----------+ 52 * 53 * Using a large proportion of scattered ABDs decreases ARC fragmentation since 54 * when we are at the limit of allocatable space, using equal-size chunks will 55 * allow us to quickly reclaim enough space for a new large allocation (assuming 56 * it is also scattered). 57 * 58 * In addition to directly allocating a linear or scattered ABD, it is also 59 * possible to create an ABD by requesting the "sub-ABD" starting at an offset 60 * within an existing ABD. In linear buffers this is simple (set abd_buf of 61 * the new ABD to the starting point within the original raw buffer), but 62 * scattered ABDs are a little more complex. The new ABD makes a copy of the 63 * relevant abd_chunks pointers (but not the underlying data). However, to 64 * provide arbitrary rather than only chunk-aligned starting offsets, it also 65 * tracks an abd_offset field which represents the starting point of the data 66 * within the first chunk in abd_chunks. For both linear and scattered ABDs, 67 * creating an offset ABD marks the original ABD as the offset's parent, and the 68 * original ABD's abd_children refcount is incremented. This data allows us to 69 * ensure the root ABD isn't deleted before its children. 70 * 71 * Most consumers should never need to know what type of ABD they're using -- 72 * the ABD public API ensures that it's possible to transparently switch from 73 * using a linear ABD to a scattered one when doing so would be beneficial. 74 * 75 * If you need to use the data within an ABD directly, if you know it's linear 76 * (because you allocated it) you can use abd_to_buf() to access the underlying 77 * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions 78 * which will allocate a raw buffer if necessary. Use the abd_return_buf* 79 * functions to return any raw buffers that are no longer necessary when you're 80 * done using them. 81 * 82 * There are a variety of ABD APIs that implement basic buffer operations: 83 * compare, copy, read, write, and fill with zeroes. If you need a custom 84 * function which progressively accesses the whole ABD, use the abd_iterate_* 85 * functions. 86 */ 87 88 #include <sys/abd.h> 89 #include <sys/param.h> 90 #include <sys/zio.h> 91 #include <sys/zfs_context.h> 92 #include <sys/zfs_znode.h> 93 94 typedef struct abd_stats { 95 kstat_named_t abdstat_struct_size; 96 kstat_named_t abdstat_scatter_cnt; 97 kstat_named_t abdstat_scatter_data_size; 98 kstat_named_t abdstat_scatter_chunk_waste; 99 kstat_named_t abdstat_linear_cnt; 100 kstat_named_t abdstat_linear_data_size; 101 } abd_stats_t; 102 103 static abd_stats_t abd_stats = { 104 /* Amount of memory occupied by all of the abd_t struct allocations */ 105 { "struct_size", KSTAT_DATA_UINT64 }, 106 /* 107 * The number of scatter ABDs which are currently allocated, excluding 108 * ABDs which don't own their data (for instance the ones which were 109 * allocated through abd_get_offset()). 110 */ 111 { "scatter_cnt", KSTAT_DATA_UINT64 }, 112 /* Amount of data stored in all scatter ABDs tracked by scatter_cnt */ 113 { "scatter_data_size", KSTAT_DATA_UINT64 }, 114 /* 115 * The amount of space wasted at the end of the last chunk across all 116 * scatter ABDs tracked by scatter_cnt. 117 */ 118 { "scatter_chunk_waste", KSTAT_DATA_UINT64 }, 119 /* 120 * The number of linear ABDs which are currently allocated, excluding 121 * ABDs which don't own their data (for instance the ones which were 122 * allocated through abd_get_offset() and abd_get_from_buf()). If an 123 * ABD takes ownership of its buf then it will become tracked. 124 */ 125 { "linear_cnt", KSTAT_DATA_UINT64 }, 126 /* Amount of data stored in all linear ABDs tracked by linear_cnt */ 127 { "linear_data_size", KSTAT_DATA_UINT64 }, 128 }; 129 130 #define ABDSTAT(stat) (abd_stats.stat.value.ui64) 131 #define ABDSTAT_INCR(stat, val) \ 132 atomic_add_64(&abd_stats.stat.value.ui64, (val)) 133 #define ABDSTAT_BUMP(stat) ABDSTAT_INCR(stat, 1) 134 #define ABDSTAT_BUMPDOWN(stat) ABDSTAT_INCR(stat, -1) 135 136 /* 137 * It is possible to make all future ABDs be linear by setting this to B_FALSE. 138 * Otherwise, ABDs are allocated scattered by default unless the caller uses 139 * abd_alloc_linear(). 140 */ 141 boolean_t zfs_abd_scatter_enabled = B_TRUE; 142 143 /* 144 * The size of the chunks ABD allocates. Because the sizes allocated from the 145 * kmem_cache can't change, this tunable can only be modified at boot. Changing 146 * it at runtime would cause ABD iteration to work incorrectly for ABDs which 147 * were allocated with the old size, so a safeguard has been put in place which 148 * will cause the machine to panic if you change it and try to access the data 149 * within a scattered ABD. 150 */ 151 size_t zfs_abd_chunk_size = 4096; 152 153 #ifdef _KERNEL 154 extern vmem_t *zio_alloc_arena; 155 #endif 156 157 kmem_cache_t *abd_chunk_cache; 158 static kstat_t *abd_ksp; 159 160 extern inline boolean_t abd_is_linear(abd_t *abd); 161 extern inline void abd_copy(abd_t *dabd, abd_t *sabd, size_t size); 162 extern inline void abd_copy_from_buf(abd_t *abd, const void *buf, size_t size); 163 extern inline void abd_copy_to_buf(void* buf, abd_t *abd, size_t size); 164 extern inline int abd_cmp_buf(abd_t *abd, const void *buf, size_t size); 165 extern inline void abd_zero(abd_t *abd, size_t size); 166 167 static void * 168 abd_alloc_chunk() 169 { 170 void *c = kmem_cache_alloc(abd_chunk_cache, KM_PUSHPAGE); 171 ASSERT3P(c, !=, NULL); 172 return (c); 173 } 174 175 static void 176 abd_free_chunk(void *c) 177 { 178 kmem_cache_free(abd_chunk_cache, c); 179 } 180 181 void 182 abd_init(void) 183 { 184 vmem_t *data_alloc_arena = NULL; 185 186 #ifdef _KERNEL 187 data_alloc_arena = zio_alloc_arena; 188 #endif 189 190 /* 191 * Since ABD chunks do not appear in crash dumps, we pass KMC_NOTOUCH 192 * so that no allocator metadata is stored with the buffers. 193 */ 194 abd_chunk_cache = kmem_cache_create("abd_chunk", zfs_abd_chunk_size, 0, 195 NULL, NULL, NULL, NULL, data_alloc_arena, KMC_NOTOUCH); 196 197 abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED, 198 sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 199 if (abd_ksp != NULL) { 200 abd_ksp->ks_data = &abd_stats; 201 kstat_install(abd_ksp); 202 } 203 } 204 205 void 206 abd_fini(void) 207 { 208 if (abd_ksp != NULL) { 209 kstat_delete(abd_ksp); 210 abd_ksp = NULL; 211 } 212 213 kmem_cache_destroy(abd_chunk_cache); 214 abd_chunk_cache = NULL; 215 } 216 217 static inline size_t 218 abd_chunkcnt_for_bytes(size_t size) 219 { 220 return (P2ROUNDUP(size, zfs_abd_chunk_size) / zfs_abd_chunk_size); 221 } 222 223 static inline size_t 224 abd_scatter_chunkcnt(abd_t *abd) 225 { 226 ASSERT(!abd_is_linear(abd)); 227 return (abd_chunkcnt_for_bytes( 228 abd->abd_u.abd_scatter.abd_offset + abd->abd_size)); 229 } 230 231 static inline void 232 abd_verify(abd_t *abd) 233 { 234 ASSERT3U(abd->abd_size, >, 0); 235 ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE); 236 ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR | 237 ABD_FLAG_OWNER | ABD_FLAG_META)); 238 IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER)); 239 IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER); 240 if (abd_is_linear(abd)) { 241 ASSERT3P(abd->abd_u.abd_linear.abd_buf, !=, NULL); 242 } else { 243 ASSERT3U(abd->abd_u.abd_scatter.abd_offset, <, 244 zfs_abd_chunk_size); 245 size_t n = abd_scatter_chunkcnt(abd); 246 for (int i = 0; i < n; i++) { 247 ASSERT3P( 248 abd->abd_u.abd_scatter.abd_chunks[i], !=, NULL); 249 } 250 } 251 } 252 253 static inline abd_t * 254 abd_alloc_struct(size_t chunkcnt) 255 { 256 size_t size = offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]); 257 abd_t *abd = kmem_alloc(size, KM_PUSHPAGE); 258 ASSERT3P(abd, !=, NULL); 259 ABDSTAT_INCR(abdstat_struct_size, size); 260 261 return (abd); 262 } 263 264 static inline void 265 abd_free_struct(abd_t *abd) 266 { 267 size_t chunkcnt = abd_is_linear(abd) ? 0 : abd_scatter_chunkcnt(abd); 268 int size = offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]); 269 kmem_free(abd, size); 270 ABDSTAT_INCR(abdstat_struct_size, -size); 271 } 272 273 /* 274 * Allocate an ABD, along with its own underlying data buffers. Use this if you 275 * don't care whether the ABD is linear or not. 276 */ 277 abd_t * 278 abd_alloc(size_t size, boolean_t is_metadata) 279 { 280 if (!zfs_abd_scatter_enabled) 281 return (abd_alloc_linear(size, is_metadata)); 282 283 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); 284 285 size_t n = abd_chunkcnt_for_bytes(size); 286 abd_t *abd = abd_alloc_struct(n); 287 288 abd->abd_flags = ABD_FLAG_OWNER; 289 if (is_metadata) { 290 abd->abd_flags |= ABD_FLAG_META; 291 } 292 abd->abd_size = size; 293 abd->abd_parent = NULL; 294 zfs_refcount_create(&abd->abd_children); 295 296 abd->abd_u.abd_scatter.abd_offset = 0; 297 abd->abd_u.abd_scatter.abd_chunk_size = zfs_abd_chunk_size; 298 299 for (int i = 0; i < n; i++) { 300 void *c = abd_alloc_chunk(); 301 ASSERT3P(c, !=, NULL); 302 abd->abd_u.abd_scatter.abd_chunks[i] = c; 303 } 304 305 ABDSTAT_BUMP(abdstat_scatter_cnt); 306 ABDSTAT_INCR(abdstat_scatter_data_size, size); 307 ABDSTAT_INCR(abdstat_scatter_chunk_waste, 308 n * zfs_abd_chunk_size - size); 309 310 return (abd); 311 } 312 313 static void 314 abd_free_scatter(abd_t *abd) 315 { 316 size_t n = abd_scatter_chunkcnt(abd); 317 for (int i = 0; i < n; i++) { 318 abd_free_chunk(abd->abd_u.abd_scatter.abd_chunks[i]); 319 } 320 321 zfs_refcount_destroy(&abd->abd_children); 322 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); 323 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size); 324 ABDSTAT_INCR(abdstat_scatter_chunk_waste, 325 abd->abd_size - n * zfs_abd_chunk_size); 326 327 abd_free_struct(abd); 328 } 329 330 /* 331 * Allocate an ABD that must be linear, along with its own underlying data 332 * buffer. Only use this when it would be very annoying to write your ABD 333 * consumer with a scattered ABD. 334 */ 335 abd_t * 336 abd_alloc_linear(size_t size, boolean_t is_metadata) 337 { 338 abd_t *abd = abd_alloc_struct(0); 339 340 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); 341 342 abd->abd_flags = ABD_FLAG_LINEAR | ABD_FLAG_OWNER; 343 if (is_metadata) { 344 abd->abd_flags |= ABD_FLAG_META; 345 } 346 abd->abd_size = size; 347 abd->abd_parent = NULL; 348 zfs_refcount_create(&abd->abd_children); 349 350 if (is_metadata) { 351 abd->abd_u.abd_linear.abd_buf = zio_buf_alloc(size); 352 } else { 353 abd->abd_u.abd_linear.abd_buf = zio_data_buf_alloc(size); 354 } 355 356 ABDSTAT_BUMP(abdstat_linear_cnt); 357 ABDSTAT_INCR(abdstat_linear_data_size, size); 358 359 return (abd); 360 } 361 362 static void 363 abd_free_linear(abd_t *abd) 364 { 365 if (abd->abd_flags & ABD_FLAG_META) { 366 zio_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size); 367 } else { 368 zio_data_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size); 369 } 370 371 zfs_refcount_destroy(&abd->abd_children); 372 ABDSTAT_BUMPDOWN(abdstat_linear_cnt); 373 ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size); 374 375 abd_free_struct(abd); 376 } 377 378 /* 379 * Free an ABD. Only use this on ABDs allocated with abd_alloc() or 380 * abd_alloc_linear(). 381 */ 382 void 383 abd_free(abd_t *abd) 384 { 385 abd_verify(abd); 386 ASSERT3P(abd->abd_parent, ==, NULL); 387 ASSERT(abd->abd_flags & ABD_FLAG_OWNER); 388 if (abd_is_linear(abd)) 389 abd_free_linear(abd); 390 else 391 abd_free_scatter(abd); 392 } 393 394 /* 395 * Allocate an ABD of the same format (same metadata flag, same scatterize 396 * setting) as another ABD. 397 */ 398 abd_t * 399 abd_alloc_sametype(abd_t *sabd, size_t size) 400 { 401 boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0; 402 if (abd_is_linear(sabd)) { 403 return (abd_alloc_linear(size, is_metadata)); 404 } else { 405 return (abd_alloc(size, is_metadata)); 406 } 407 } 408 409 /* 410 * If we're going to use this ABD for doing I/O using the block layer, the 411 * consumer of the ABD data doesn't care if it's scattered or not, and we don't 412 * plan to store this ABD in memory for a long period of time, we should 413 * allocate the ABD type that requires the least data copying to do the I/O. 414 * 415 * Currently this is linear ABDs, however if ldi_strategy() can ever issue I/Os 416 * using a scatter/gather list we should switch to that and replace this call 417 * with vanilla abd_alloc(). 418 */ 419 abd_t * 420 abd_alloc_for_io(size_t size, boolean_t is_metadata) 421 { 422 return (abd_alloc_linear(size, is_metadata)); 423 } 424 425 /* 426 * Allocate a new ABD to point to offset off of sabd. It shares the underlying 427 * buffer data with sabd. Use abd_put() to free. sabd must not be freed while 428 * any derived ABDs exist. 429 */ 430 abd_t * 431 abd_get_offset(abd_t *sabd, size_t off) 432 { 433 abd_t *abd; 434 435 abd_verify(sabd); 436 ASSERT3U(off, <=, sabd->abd_size); 437 438 if (abd_is_linear(sabd)) { 439 abd = abd_alloc_struct(0); 440 441 /* 442 * Even if this buf is filesystem metadata, we only track that 443 * if we own the underlying data buffer, which is not true in 444 * this case. Therefore, we don't ever use ABD_FLAG_META here. 445 */ 446 abd->abd_flags = ABD_FLAG_LINEAR; 447 448 abd->abd_u.abd_linear.abd_buf = 449 (char *)sabd->abd_u.abd_linear.abd_buf + off; 450 } else { 451 size_t new_offset = sabd->abd_u.abd_scatter.abd_offset + off; 452 size_t chunkcnt = abd_scatter_chunkcnt(sabd) - 453 (new_offset / zfs_abd_chunk_size); 454 455 abd = abd_alloc_struct(chunkcnt); 456 457 /* 458 * Even if this buf is filesystem metadata, we only track that 459 * if we own the underlying data buffer, which is not true in 460 * this case. Therefore, we don't ever use ABD_FLAG_META here. 461 */ 462 abd->abd_flags = 0; 463 464 abd->abd_u.abd_scatter.abd_offset = 465 new_offset % zfs_abd_chunk_size; 466 abd->abd_u.abd_scatter.abd_chunk_size = zfs_abd_chunk_size; 467 468 /* Copy the scatterlist starting at the correct offset */ 469 (void) memcpy(&abd->abd_u.abd_scatter.abd_chunks, 470 &sabd->abd_u.abd_scatter.abd_chunks[new_offset / 471 zfs_abd_chunk_size], 472 chunkcnt * sizeof (void *)); 473 } 474 475 abd->abd_size = sabd->abd_size - off; 476 abd->abd_parent = sabd; 477 zfs_refcount_create(&abd->abd_children); 478 (void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd); 479 480 return (abd); 481 } 482 483 /* 484 * Allocate a linear ABD structure for buf. You must free this with abd_put() 485 * since the resulting ABD doesn't own its own buffer. 486 */ 487 abd_t * 488 abd_get_from_buf(void *buf, size_t size) 489 { 490 abd_t *abd = abd_alloc_struct(0); 491 492 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); 493 494 /* 495 * Even if this buf is filesystem metadata, we only track that if we 496 * own the underlying data buffer, which is not true in this case. 497 * Therefore, we don't ever use ABD_FLAG_META here. 498 */ 499 abd->abd_flags = ABD_FLAG_LINEAR; 500 abd->abd_size = size; 501 abd->abd_parent = NULL; 502 zfs_refcount_create(&abd->abd_children); 503 504 abd->abd_u.abd_linear.abd_buf = buf; 505 506 return (abd); 507 } 508 509 /* 510 * Free an ABD allocated from abd_get_offset() or abd_get_from_buf(). Will not 511 * free the underlying scatterlist or buffer. 512 */ 513 void 514 abd_put(abd_t *abd) 515 { 516 abd_verify(abd); 517 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER)); 518 519 if (abd->abd_parent != NULL) { 520 (void) zfs_refcount_remove_many(&abd->abd_parent->abd_children, 521 abd->abd_size, abd); 522 } 523 524 zfs_refcount_destroy(&abd->abd_children); 525 abd_free_struct(abd); 526 } 527 528 /* 529 * Get the raw buffer associated with a linear ABD. 530 */ 531 void * 532 abd_to_buf(abd_t *abd) 533 { 534 ASSERT(abd_is_linear(abd)); 535 abd_verify(abd); 536 return (abd->abd_u.abd_linear.abd_buf); 537 } 538 539 /* 540 * Borrow a raw buffer from an ABD without copying the contents of the ABD 541 * into the buffer. If the ABD is scattered, this will allocate a raw buffer 542 * whose contents are undefined. To copy over the existing data in the ABD, use 543 * abd_borrow_buf_copy() instead. 544 */ 545 void * 546 abd_borrow_buf(abd_t *abd, size_t n) 547 { 548 void *buf; 549 abd_verify(abd); 550 ASSERT3U(abd->abd_size, >=, n); 551 if (abd_is_linear(abd)) { 552 buf = abd_to_buf(abd); 553 } else { 554 buf = zio_buf_alloc(n); 555 } 556 (void) zfs_refcount_add_many(&abd->abd_children, n, buf); 557 558 return (buf); 559 } 560 561 void * 562 abd_borrow_buf_copy(abd_t *abd, size_t n) 563 { 564 void *buf = abd_borrow_buf(abd, n); 565 if (!abd_is_linear(abd)) { 566 abd_copy_to_buf(buf, abd, n); 567 } 568 return (buf); 569 } 570 571 /* 572 * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will 573 * not change the contents of the ABD and will ASSERT that you didn't modify 574 * the buffer since it was borrowed. If you want any changes you made to buf to 575 * be copied back to abd, use abd_return_buf_copy() instead. 576 */ 577 void 578 abd_return_buf(abd_t *abd, void *buf, size_t n) 579 { 580 abd_verify(abd); 581 ASSERT3U(abd->abd_size, >=, n); 582 if (abd_is_linear(abd)) { 583 ASSERT3P(buf, ==, abd_to_buf(abd)); 584 } else { 585 ASSERT0(abd_cmp_buf(abd, buf, n)); 586 zio_buf_free(buf, n); 587 } 588 (void) zfs_refcount_remove_many(&abd->abd_children, n, buf); 589 } 590 591 void 592 abd_return_buf_copy(abd_t *abd, void *buf, size_t n) 593 { 594 if (!abd_is_linear(abd)) { 595 abd_copy_from_buf(abd, buf, n); 596 } 597 abd_return_buf(abd, buf, n); 598 } 599 600 /* 601 * Give this ABD ownership of the buffer that it's storing. Can only be used on 602 * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated 603 * with abd_alloc_linear() which subsequently released ownership of their buf 604 * with abd_release_ownership_of_buf(). 605 */ 606 void 607 abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata) 608 { 609 ASSERT(abd_is_linear(abd)); 610 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER)); 611 abd_verify(abd); 612 613 abd->abd_flags |= ABD_FLAG_OWNER; 614 if (is_metadata) { 615 abd->abd_flags |= ABD_FLAG_META; 616 } 617 618 ABDSTAT_BUMP(abdstat_linear_cnt); 619 ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size); 620 } 621 622 void 623 abd_release_ownership_of_buf(abd_t *abd) 624 { 625 ASSERT(abd_is_linear(abd)); 626 ASSERT(abd->abd_flags & ABD_FLAG_OWNER); 627 abd_verify(abd); 628 629 abd->abd_flags &= ~ABD_FLAG_OWNER; 630 /* Disable this flag since we no longer own the data buffer */ 631 abd->abd_flags &= ~ABD_FLAG_META; 632 633 ABDSTAT_BUMPDOWN(abdstat_linear_cnt); 634 ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size); 635 } 636 637 struct abd_iter { 638 abd_t *iter_abd; /* ABD being iterated through */ 639 size_t iter_pos; /* position (relative to abd_offset) */ 640 void *iter_mapaddr; /* addr corresponding to iter_pos */ 641 size_t iter_mapsize; /* length of data valid at mapaddr */ 642 }; 643 644 static inline size_t 645 abd_iter_scatter_chunk_offset(struct abd_iter *aiter) 646 { 647 ASSERT(!abd_is_linear(aiter->iter_abd)); 648 return ((aiter->iter_abd->abd_u.abd_scatter.abd_offset + 649 aiter->iter_pos) % zfs_abd_chunk_size); 650 } 651 652 static inline size_t 653 abd_iter_scatter_chunk_index(struct abd_iter *aiter) 654 { 655 ASSERT(!abd_is_linear(aiter->iter_abd)); 656 return ((aiter->iter_abd->abd_u.abd_scatter.abd_offset + 657 aiter->iter_pos) / zfs_abd_chunk_size); 658 } 659 660 /* 661 * Initialize the abd_iter. 662 */ 663 static void 664 abd_iter_init(struct abd_iter *aiter, abd_t *abd) 665 { 666 abd_verify(abd); 667 aiter->iter_abd = abd; 668 aiter->iter_pos = 0; 669 aiter->iter_mapaddr = NULL; 670 aiter->iter_mapsize = 0; 671 } 672 673 /* 674 * Advance the iterator by a certain amount. Cannot be called when a chunk is 675 * in use. This can be safely called when the aiter has already exhausted, in 676 * which case this does nothing. 677 */ 678 static void 679 abd_iter_advance(struct abd_iter *aiter, size_t amount) 680 { 681 ASSERT3P(aiter->iter_mapaddr, ==, NULL); 682 ASSERT0(aiter->iter_mapsize); 683 684 /* There's nothing left to advance to, so do nothing */ 685 if (aiter->iter_pos == aiter->iter_abd->abd_size) 686 return; 687 688 aiter->iter_pos += amount; 689 } 690 691 /* 692 * Map the current chunk into aiter. This can be safely called when the aiter 693 * has already exhausted, in which case this does nothing. 694 */ 695 static void 696 abd_iter_map(struct abd_iter *aiter) 697 { 698 void *paddr; 699 size_t offset = 0; 700 701 ASSERT3P(aiter->iter_mapaddr, ==, NULL); 702 ASSERT0(aiter->iter_mapsize); 703 704 /* Panic if someone has changed zfs_abd_chunk_size */ 705 IMPLY(!abd_is_linear(aiter->iter_abd), zfs_abd_chunk_size == 706 aiter->iter_abd->abd_u.abd_scatter.abd_chunk_size); 707 708 /* There's nothing left to iterate over, so do nothing */ 709 if (aiter->iter_pos == aiter->iter_abd->abd_size) 710 return; 711 712 if (abd_is_linear(aiter->iter_abd)) { 713 offset = aiter->iter_pos; 714 aiter->iter_mapsize = aiter->iter_abd->abd_size - offset; 715 paddr = aiter->iter_abd->abd_u.abd_linear.abd_buf; 716 } else { 717 size_t index = abd_iter_scatter_chunk_index(aiter); 718 offset = abd_iter_scatter_chunk_offset(aiter); 719 aiter->iter_mapsize = zfs_abd_chunk_size - offset; 720 paddr = aiter->iter_abd->abd_u.abd_scatter.abd_chunks[index]; 721 } 722 aiter->iter_mapaddr = (char *)paddr + offset; 723 } 724 725 /* 726 * Unmap the current chunk from aiter. This can be safely called when the aiter 727 * has already exhausted, in which case this does nothing. 728 */ 729 static void 730 abd_iter_unmap(struct abd_iter *aiter) 731 { 732 /* There's nothing left to unmap, so do nothing */ 733 if (aiter->iter_pos == aiter->iter_abd->abd_size) 734 return; 735 736 ASSERT3P(aiter->iter_mapaddr, !=, NULL); 737 ASSERT3U(aiter->iter_mapsize, >, 0); 738 739 aiter->iter_mapaddr = NULL; 740 aiter->iter_mapsize = 0; 741 } 742 743 int 744 abd_iterate_func(abd_t *abd, size_t off, size_t size, 745 abd_iter_func_t *func, void *private) 746 { 747 int ret = 0; 748 struct abd_iter aiter; 749 750 abd_verify(abd); 751 ASSERT3U(off + size, <=, abd->abd_size); 752 753 abd_iter_init(&aiter, abd); 754 abd_iter_advance(&aiter, off); 755 756 while (size > 0) { 757 abd_iter_map(&aiter); 758 759 size_t len = MIN(aiter.iter_mapsize, size); 760 ASSERT3U(len, >, 0); 761 762 ret = func(aiter.iter_mapaddr, len, private); 763 764 abd_iter_unmap(&aiter); 765 766 if (ret != 0) 767 break; 768 769 size -= len; 770 abd_iter_advance(&aiter, len); 771 } 772 773 return (ret); 774 } 775 776 struct buf_arg { 777 void *arg_buf; 778 }; 779 780 static int 781 abd_copy_to_buf_off_cb(void *buf, size_t size, void *private) 782 { 783 struct buf_arg *ba_ptr = private; 784 785 (void) memcpy(ba_ptr->arg_buf, buf, size); 786 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; 787 788 return (0); 789 } 790 791 /* 792 * Copy abd to buf. (off is the offset in abd.) 793 */ 794 void 795 abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size) 796 { 797 struct buf_arg ba_ptr = { buf }; 798 799 (void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb, 800 &ba_ptr); 801 } 802 803 static int 804 abd_cmp_buf_off_cb(void *buf, size_t size, void *private) 805 { 806 int ret; 807 struct buf_arg *ba_ptr = private; 808 809 ret = memcmp(buf, ba_ptr->arg_buf, size); 810 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; 811 812 return (ret); 813 } 814 815 /* 816 * Compare the contents of abd to buf. (off is the offset in abd.) 817 */ 818 int 819 abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) 820 { 821 struct buf_arg ba_ptr = { (void *) buf }; 822 823 return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr)); 824 } 825 826 static int 827 abd_copy_from_buf_off_cb(void *buf, size_t size, void *private) 828 { 829 struct buf_arg *ba_ptr = private; 830 831 (void) memcpy(buf, ba_ptr->arg_buf, size); 832 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; 833 834 return (0); 835 } 836 837 /* 838 * Copy from buf to abd. (off is the offset in abd.) 839 */ 840 void 841 abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) 842 { 843 struct buf_arg ba_ptr = { (void *) buf }; 844 845 (void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb, 846 &ba_ptr); 847 } 848 849 /*ARGSUSED*/ 850 static int 851 abd_zero_off_cb(void *buf, size_t size, void *private) 852 { 853 (void) memset(buf, 0, size); 854 return (0); 855 } 856 857 /* 858 * Zero out the abd from a particular offset to the end. 859 */ 860 void 861 abd_zero_off(abd_t *abd, size_t off, size_t size) 862 { 863 (void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL); 864 } 865 866 /* 867 * Iterate over two ABDs and call func incrementally on the two ABDs' data in 868 * equal-sized chunks (passed to func as raw buffers). func could be called many 869 * times during this iteration. 870 */ 871 int 872 abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, 873 size_t size, abd_iter_func2_t *func, void *private) 874 { 875 int ret = 0; 876 struct abd_iter daiter, saiter; 877 878 abd_verify(dabd); 879 abd_verify(sabd); 880 881 ASSERT3U(doff + size, <=, dabd->abd_size); 882 ASSERT3U(soff + size, <=, sabd->abd_size); 883 884 abd_iter_init(&daiter, dabd); 885 abd_iter_init(&saiter, sabd); 886 abd_iter_advance(&daiter, doff); 887 abd_iter_advance(&saiter, soff); 888 889 while (size > 0) { 890 abd_iter_map(&daiter); 891 abd_iter_map(&saiter); 892 893 size_t dlen = MIN(daiter.iter_mapsize, size); 894 size_t slen = MIN(saiter.iter_mapsize, size); 895 size_t len = MIN(dlen, slen); 896 ASSERT(dlen > 0 || slen > 0); 897 898 ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len, 899 private); 900 901 abd_iter_unmap(&saiter); 902 abd_iter_unmap(&daiter); 903 904 if (ret != 0) 905 break; 906 907 size -= len; 908 abd_iter_advance(&daiter, len); 909 abd_iter_advance(&saiter, len); 910 } 911 912 return (ret); 913 } 914 915 /*ARGSUSED*/ 916 static int 917 abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private) 918 { 919 (void) memcpy(dbuf, sbuf, size); 920 return (0); 921 } 922 923 /* 924 * Copy from sabd to dabd starting from soff and doff. 925 */ 926 void 927 abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size) 928 { 929 (void) abd_iterate_func2(dabd, sabd, doff, soff, size, 930 abd_copy_off_cb, NULL); 931 } 932 933 /*ARGSUSED*/ 934 static int 935 abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private) 936 { 937 return (memcmp(bufa, bufb, size)); 938 } 939 940 /* 941 * Compares the first size bytes of two ABDs. 942 */ 943 int 944 abd_cmp(abd_t *dabd, abd_t *sabd, size_t size) 945 { 946 return (abd_iterate_func2(dabd, sabd, 0, 0, size, abd_cmp_cb, NULL)); 947 } 948