1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * Copyright (c) 2014 by Chunwei Chen. All rights reserved. 14 * Copyright (c) 2019 by Delphix. All rights reserved. 15 */ 16 17 /* 18 * ARC buffer data (ABD). 19 * 20 * ABDs are an abstract data structure for the ARC which can use two 21 * different ways of storing the underlying data: 22 * 23 * (a) Linear buffer. In this case, all the data in the ABD is stored in one 24 * contiguous buffer in memory (from a zio_[data_]buf_* kmem cache). 25 * 26 * +-------------------+ 27 * | ABD (linear) | 28 * | abd_flags = ... | 29 * | abd_size = ... | +--------------------------------+ 30 * | abd_buf ------------->| raw buffer of size abd_size | 31 * +-------------------+ +--------------------------------+ 32 * no abd_chunks 33 * 34 * (b) Scattered buffer. In this case, the data in the ABD is split into 35 * equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers 36 * to the chunks recorded in an array at the end of the ABD structure. 37 * 38 * +-------------------+ 39 * | ABD (scattered) | 40 * | abd_flags = ... | 41 * | abd_size = ... | 42 * | abd_offset = 0 | +-----------+ 43 * | abd_chunks[0] ----------------------------->| chunk 0 | 44 * | abd_chunks[1] ---------------------+ +-----------+ 45 * | ... | | +-----------+ 46 * | abd_chunks[N-1] ---------+ +------->| chunk 1 | 47 * +-------------------+ | +-----------+ 48 * | ... 49 * | +-----------+ 50 * +----------------->| chunk N-1 | 51 * +-----------+ 52 * 53 * Using a large proportion of scattered ABDs decreases ARC fragmentation since 54 * when we are at the limit of allocatable space, using equal-size chunks will 55 * allow us to quickly reclaim enough space for a new large allocation (assuming 56 * it is also scattered). 57 * 58 * In addition to directly allocating a linear or scattered ABD, it is also 59 * possible to create an ABD by requesting the "sub-ABD" starting at an offset 60 * within an existing ABD. In linear buffers this is simple (set abd_buf of 61 * the new ABD to the starting point within the original raw buffer), but 62 * scattered ABDs are a little more complex. The new ABD makes a copy of the 63 * relevant abd_chunks pointers (but not the underlying data). However, to 64 * provide arbitrary rather than only chunk-aligned starting offsets, it also 65 * tracks an abd_offset field which represents the starting point of the data 66 * within the first chunk in abd_chunks. For both linear and scattered ABDs, 67 * creating an offset ABD marks the original ABD as the offset's parent, and the 68 * original ABD's abd_children refcount is incremented. This data allows us to 69 * ensure the root ABD isn't deleted before its children. 70 * 71 * Most consumers should never need to know what type of ABD they're using -- 72 * the ABD public API ensures that it's possible to transparently switch from 73 * using a linear ABD to a scattered one when doing so would be beneficial. 74 * 75 * If you need to use the data within an ABD directly, if you know it's linear 76 * (because you allocated it) you can use abd_to_buf() to access the underlying 77 * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions 78 * which will allocate a raw buffer if necessary. Use the abd_return_buf* 79 * functions to return any raw buffers that are no longer necessary when you're 80 * done using them. 81 * 82 * There are a variety of ABD APIs that implement basic buffer operations: 83 * compare, copy, read, write, and fill with zeroes. If you need a custom 84 * function which progressively accesses the whole ABD, use the abd_iterate_* 85 * functions. 86 */ 87 88 #include <sys/abd.h> 89 #include <sys/param.h> 90 #include <sys/zio.h> 91 #include <sys/zfs_context.h> 92 #include <sys/zfs_znode.h> 93 94 typedef struct abd_stats { 95 kstat_named_t abdstat_struct_size; 96 kstat_named_t abdstat_scatter_cnt; 97 kstat_named_t abdstat_scatter_data_size; 98 kstat_named_t abdstat_scatter_chunk_waste; 99 kstat_named_t abdstat_linear_cnt; 100 kstat_named_t abdstat_linear_data_size; 101 } abd_stats_t; 102 103 static abd_stats_t abd_stats = { 104 /* Amount of memory occupied by all of the abd_t struct allocations */ 105 { "struct_size", KSTAT_DATA_UINT64 }, 106 /* 107 * The number of scatter ABDs which are currently allocated, excluding 108 * ABDs which don't own their data (for instance the ones which were 109 * allocated through abd_get_offset()). 110 */ 111 { "scatter_cnt", KSTAT_DATA_UINT64 }, 112 /* Amount of data stored in all scatter ABDs tracked by scatter_cnt */ 113 { "scatter_data_size", KSTAT_DATA_UINT64 }, 114 /* 115 * The amount of space wasted at the end of the last chunk across all 116 * scatter ABDs tracked by scatter_cnt. 117 */ 118 { "scatter_chunk_waste", KSTAT_DATA_UINT64 }, 119 /* 120 * The number of linear ABDs which are currently allocated, excluding 121 * ABDs which don't own their data (for instance the ones which were 122 * allocated through abd_get_offset() and abd_get_from_buf()). If an 123 * ABD takes ownership of its buf then it will become tracked. 124 */ 125 { "linear_cnt", KSTAT_DATA_UINT64 }, 126 /* Amount of data stored in all linear ABDs tracked by linear_cnt */ 127 { "linear_data_size", KSTAT_DATA_UINT64 }, 128 }; 129 130 #define ABDSTAT(stat) (abd_stats.stat.value.ui64) 131 #define ABDSTAT_INCR(stat, val) \ 132 atomic_add_64(&abd_stats.stat.value.ui64, (val)) 133 #define ABDSTAT_BUMP(stat) ABDSTAT_INCR(stat, 1) 134 #define ABDSTAT_BUMPDOWN(stat) ABDSTAT_INCR(stat, -1) 135 136 /* 137 * It is possible to make all future ABDs be linear by setting this to B_FALSE. 138 * Otherwise, ABDs are allocated scattered by default unless the caller uses 139 * abd_alloc_linear(). 140 */ 141 boolean_t zfs_abd_scatter_enabled = B_TRUE; 142 143 /* 144 * zfs_abd_scatter_min_size is the minimum allocation size to use scatter 145 * ABD's. Smaller allocations will use linear ABD's which uses 146 * zio_[data_]buf_alloc(). 147 * 148 * Scatter ABD's use at least one page each, so sub-page allocations waste 149 * some space when allocated as scatter (e.g. 2KB scatter allocation wastes 150 * half of each page). Using linear ABD's for small allocations means that 151 * they will be put on slabs which contain many allocations. This can 152 * improve memory efficiency, but it also makes it much harder for ARC 153 * evictions to actually free pages, because all the buffers on one slab need 154 * to be freed in order for the slab (and underlying pages) to be freed. 155 * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's 156 * possible for them to actually waste more memory than scatter (one page per 157 * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th). 158 * 159 * Spill blocks are typically 512B and are heavily used on systems running 160 * selinux with the default dnode size and the `xattr=sa` property set. 161 * 162 * By default we use linear allocations for 512B and 1KB, and scatter 163 * allocations for larger (1.5KB and up). 164 */ 165 int zfs_abd_scatter_min_size = 512 * 3; 166 167 /* 168 * The size of the chunks ABD allocates. Because the sizes allocated from the 169 * kmem_cache can't change, this tunable can only be modified at boot. Changing 170 * it at runtime would cause ABD iteration to work incorrectly for ABDs which 171 * were allocated with the old size, so a safeguard has been put in place which 172 * will cause the machine to panic if you change it and try to access the data 173 * within a scattered ABD. 174 */ 175 size_t zfs_abd_chunk_size = 4096; 176 177 #ifdef _KERNEL 178 extern vmem_t *zio_alloc_arena; 179 #endif 180 181 kmem_cache_t *abd_chunk_cache; 182 static kstat_t *abd_ksp; 183 184 extern inline boolean_t abd_is_linear(abd_t *abd); 185 extern inline void abd_copy(abd_t *dabd, abd_t *sabd, size_t size); 186 extern inline void abd_copy_from_buf(abd_t *abd, const void *buf, size_t size); 187 extern inline void abd_copy_to_buf(void* buf, abd_t *abd, size_t size); 188 extern inline int abd_cmp_buf(abd_t *abd, const void *buf, size_t size); 189 extern inline void abd_zero(abd_t *abd, size_t size); 190 191 static void * 192 abd_alloc_chunk() 193 { 194 void *c = kmem_cache_alloc(abd_chunk_cache, KM_PUSHPAGE); 195 ASSERT3P(c, !=, NULL); 196 return (c); 197 } 198 199 static void 200 abd_free_chunk(void *c) 201 { 202 kmem_cache_free(abd_chunk_cache, c); 203 } 204 205 void 206 abd_init(void) 207 { 208 vmem_t *data_alloc_arena = NULL; 209 210 #ifdef _KERNEL 211 data_alloc_arena = zio_alloc_arena; 212 #endif 213 214 /* 215 * Since ABD chunks do not appear in crash dumps, we pass KMC_NOTOUCH 216 * so that no allocator metadata is stored with the buffers. 217 */ 218 abd_chunk_cache = kmem_cache_create("abd_chunk", zfs_abd_chunk_size, 0, 219 NULL, NULL, NULL, NULL, data_alloc_arena, KMC_NOTOUCH); 220 221 abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED, 222 sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 223 if (abd_ksp != NULL) { 224 abd_ksp->ks_data = &abd_stats; 225 kstat_install(abd_ksp); 226 } 227 } 228 229 void 230 abd_fini(void) 231 { 232 if (abd_ksp != NULL) { 233 kstat_delete(abd_ksp); 234 abd_ksp = NULL; 235 } 236 237 kmem_cache_destroy(abd_chunk_cache); 238 abd_chunk_cache = NULL; 239 } 240 241 static inline size_t 242 abd_chunkcnt_for_bytes(size_t size) 243 { 244 return (P2ROUNDUP(size, zfs_abd_chunk_size) / zfs_abd_chunk_size); 245 } 246 247 static inline size_t 248 abd_scatter_chunkcnt(abd_t *abd) 249 { 250 ASSERT(!abd_is_linear(abd)); 251 return (abd_chunkcnt_for_bytes( 252 abd->abd_u.abd_scatter.abd_offset + abd->abd_size)); 253 } 254 255 static inline void 256 abd_verify(abd_t *abd) 257 { 258 ASSERT3U(abd->abd_size, >, 0); 259 ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE); 260 ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR | 261 ABD_FLAG_OWNER | ABD_FLAG_META)); 262 IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER)); 263 IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER); 264 if (abd_is_linear(abd)) { 265 ASSERT3P(abd->abd_u.abd_linear.abd_buf, !=, NULL); 266 } else { 267 ASSERT3U(abd->abd_u.abd_scatter.abd_offset, <, 268 zfs_abd_chunk_size); 269 size_t n = abd_scatter_chunkcnt(abd); 270 for (int i = 0; i < n; i++) { 271 ASSERT3P( 272 abd->abd_u.abd_scatter.abd_chunks[i], !=, NULL); 273 } 274 } 275 } 276 277 static inline abd_t * 278 abd_alloc_struct(size_t chunkcnt) 279 { 280 size_t size = offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]); 281 abd_t *abd = kmem_alloc(size, KM_PUSHPAGE); 282 ASSERT3P(abd, !=, NULL); 283 ABDSTAT_INCR(abdstat_struct_size, size); 284 285 return (abd); 286 } 287 288 static inline void 289 abd_free_struct(abd_t *abd) 290 { 291 size_t chunkcnt = abd_is_linear(abd) ? 0 : abd_scatter_chunkcnt(abd); 292 int size = offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]); 293 kmem_free(abd, size); 294 ABDSTAT_INCR(abdstat_struct_size, -size); 295 } 296 297 /* 298 * Allocate an ABD, along with its own underlying data buffers. Use this if you 299 * don't care whether the ABD is linear or not. 300 */ 301 abd_t * 302 abd_alloc(size_t size, boolean_t is_metadata) 303 { 304 /* see the comment above zfs_abd_scatter_min_size */ 305 if (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size) 306 return (abd_alloc_linear(size, is_metadata)); 307 308 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); 309 310 size_t n = abd_chunkcnt_for_bytes(size); 311 abd_t *abd = abd_alloc_struct(n); 312 313 abd->abd_flags = ABD_FLAG_OWNER; 314 if (is_metadata) { 315 abd->abd_flags |= ABD_FLAG_META; 316 } 317 abd->abd_size = size; 318 abd->abd_parent = NULL; 319 zfs_refcount_create(&abd->abd_children); 320 321 abd->abd_u.abd_scatter.abd_offset = 0; 322 abd->abd_u.abd_scatter.abd_chunk_size = zfs_abd_chunk_size; 323 324 for (int i = 0; i < n; i++) { 325 void *c = abd_alloc_chunk(); 326 ASSERT3P(c, !=, NULL); 327 abd->abd_u.abd_scatter.abd_chunks[i] = c; 328 } 329 330 ABDSTAT_BUMP(abdstat_scatter_cnt); 331 ABDSTAT_INCR(abdstat_scatter_data_size, size); 332 ABDSTAT_INCR(abdstat_scatter_chunk_waste, 333 n * zfs_abd_chunk_size - size); 334 335 return (abd); 336 } 337 338 static void 339 abd_free_scatter(abd_t *abd) 340 { 341 size_t n = abd_scatter_chunkcnt(abd); 342 for (int i = 0; i < n; i++) { 343 abd_free_chunk(abd->abd_u.abd_scatter.abd_chunks[i]); 344 } 345 346 zfs_refcount_destroy(&abd->abd_children); 347 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt); 348 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size); 349 ABDSTAT_INCR(abdstat_scatter_chunk_waste, 350 abd->abd_size - n * zfs_abd_chunk_size); 351 352 abd_free_struct(abd); 353 } 354 355 /* 356 * Allocate an ABD that must be linear, along with its own underlying data 357 * buffer. Only use this when it would be very annoying to write your ABD 358 * consumer with a scattered ABD. 359 */ 360 abd_t * 361 abd_alloc_linear(size_t size, boolean_t is_metadata) 362 { 363 abd_t *abd = abd_alloc_struct(0); 364 365 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); 366 367 abd->abd_flags = ABD_FLAG_LINEAR | ABD_FLAG_OWNER; 368 if (is_metadata) { 369 abd->abd_flags |= ABD_FLAG_META; 370 } 371 abd->abd_size = size; 372 abd->abd_parent = NULL; 373 zfs_refcount_create(&abd->abd_children); 374 375 if (is_metadata) { 376 abd->abd_u.abd_linear.abd_buf = zio_buf_alloc(size); 377 } else { 378 abd->abd_u.abd_linear.abd_buf = zio_data_buf_alloc(size); 379 } 380 381 ABDSTAT_BUMP(abdstat_linear_cnt); 382 ABDSTAT_INCR(abdstat_linear_data_size, size); 383 384 return (abd); 385 } 386 387 static void 388 abd_free_linear(abd_t *abd) 389 { 390 if (abd->abd_flags & ABD_FLAG_META) { 391 zio_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size); 392 } else { 393 zio_data_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size); 394 } 395 396 zfs_refcount_destroy(&abd->abd_children); 397 ABDSTAT_BUMPDOWN(abdstat_linear_cnt); 398 ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size); 399 400 abd_free_struct(abd); 401 } 402 403 /* 404 * Free an ABD. Only use this on ABDs allocated with abd_alloc() or 405 * abd_alloc_linear(). 406 */ 407 void 408 abd_free(abd_t *abd) 409 { 410 abd_verify(abd); 411 ASSERT3P(abd->abd_parent, ==, NULL); 412 ASSERT(abd->abd_flags & ABD_FLAG_OWNER); 413 if (abd_is_linear(abd)) 414 abd_free_linear(abd); 415 else 416 abd_free_scatter(abd); 417 } 418 419 /* 420 * Allocate an ABD of the same format (same metadata flag, same scatterize 421 * setting) as another ABD. 422 */ 423 abd_t * 424 abd_alloc_sametype(abd_t *sabd, size_t size) 425 { 426 boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0; 427 if (abd_is_linear(sabd)) { 428 return (abd_alloc_linear(size, is_metadata)); 429 } else { 430 return (abd_alloc(size, is_metadata)); 431 } 432 } 433 434 /* 435 * If we're going to use this ABD for doing I/O using the block layer, the 436 * consumer of the ABD data doesn't care if it's scattered or not, and we don't 437 * plan to store this ABD in memory for a long period of time, we should 438 * allocate the ABD type that requires the least data copying to do the I/O. 439 * 440 * Currently this is linear ABDs, however if ldi_strategy() can ever issue I/Os 441 * using a scatter/gather list we should switch to that and replace this call 442 * with vanilla abd_alloc(). 443 */ 444 abd_t * 445 abd_alloc_for_io(size_t size, boolean_t is_metadata) 446 { 447 return (abd_alloc_linear(size, is_metadata)); 448 } 449 450 /* 451 * Allocate a new ABD to point to offset off of sabd. It shares the underlying 452 * buffer data with sabd. Use abd_put() to free. sabd must not be freed while 453 * any derived ABDs exist. 454 */ 455 /* ARGSUSED */ 456 static inline abd_t * 457 abd_get_offset_impl(abd_t *sabd, size_t off, size_t size) 458 { 459 abd_t *abd; 460 461 abd_verify(sabd); 462 ASSERT3U(off, <=, sabd->abd_size); 463 464 if (abd_is_linear(sabd)) { 465 abd = abd_alloc_struct(0); 466 467 /* 468 * Even if this buf is filesystem metadata, we only track that 469 * if we own the underlying data buffer, which is not true in 470 * this case. Therefore, we don't ever use ABD_FLAG_META here. 471 */ 472 abd->abd_flags = ABD_FLAG_LINEAR; 473 474 abd->abd_u.abd_linear.abd_buf = 475 (char *)sabd->abd_u.abd_linear.abd_buf + off; 476 } else { 477 size_t new_offset = sabd->abd_u.abd_scatter.abd_offset + off; 478 size_t chunkcnt = abd_scatter_chunkcnt(sabd) - 479 (new_offset / zfs_abd_chunk_size); 480 481 abd = abd_alloc_struct(chunkcnt); 482 483 /* 484 * Even if this buf is filesystem metadata, we only track that 485 * if we own the underlying data buffer, which is not true in 486 * this case. Therefore, we don't ever use ABD_FLAG_META here. 487 */ 488 abd->abd_flags = 0; 489 490 abd->abd_u.abd_scatter.abd_offset = 491 new_offset % zfs_abd_chunk_size; 492 abd->abd_u.abd_scatter.abd_chunk_size = zfs_abd_chunk_size; 493 494 /* Copy the scatterlist starting at the correct offset */ 495 (void) memcpy(&abd->abd_u.abd_scatter.abd_chunks, 496 &sabd->abd_u.abd_scatter.abd_chunks[new_offset / 497 zfs_abd_chunk_size], 498 chunkcnt * sizeof (void *)); 499 } 500 501 abd->abd_size = sabd->abd_size - off; 502 abd->abd_parent = sabd; 503 zfs_refcount_create(&abd->abd_children); 504 (void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd); 505 506 return (abd); 507 } 508 509 abd_t * 510 abd_get_offset(abd_t *sabd, size_t off) 511 { 512 size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0; 513 514 VERIFY3U(size, >, 0); 515 516 return (abd_get_offset_impl(sabd, off, size)); 517 } 518 519 abd_t * 520 abd_get_offset_size(abd_t *sabd, size_t off, size_t size) 521 { 522 ASSERT3U(off + size, <=, sabd->abd_size); 523 524 return (abd_get_offset_impl(sabd, off, size)); 525 } 526 527 528 /* 529 * Allocate a linear ABD structure for buf. You must free this with abd_put() 530 * since the resulting ABD doesn't own its own buffer. 531 */ 532 abd_t * 533 abd_get_from_buf(void *buf, size_t size) 534 { 535 abd_t *abd = abd_alloc_struct(0); 536 537 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); 538 539 /* 540 * Even if this buf is filesystem metadata, we only track that if we 541 * own the underlying data buffer, which is not true in this case. 542 * Therefore, we don't ever use ABD_FLAG_META here. 543 */ 544 abd->abd_flags = ABD_FLAG_LINEAR; 545 abd->abd_size = size; 546 abd->abd_parent = NULL; 547 zfs_refcount_create(&abd->abd_children); 548 549 abd->abd_u.abd_linear.abd_buf = buf; 550 551 return (abd); 552 } 553 554 /* 555 * Free an ABD allocated from abd_get_offset() or abd_get_from_buf(). Will not 556 * free the underlying scatterlist or buffer. 557 */ 558 void 559 abd_put(abd_t *abd) 560 { 561 abd_verify(abd); 562 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER)); 563 564 if (abd->abd_parent != NULL) { 565 (void) zfs_refcount_remove_many(&abd->abd_parent->abd_children, 566 abd->abd_size, abd); 567 } 568 569 zfs_refcount_destroy(&abd->abd_children); 570 abd_free_struct(abd); 571 } 572 573 /* 574 * Get the raw buffer associated with a linear ABD. 575 */ 576 void * 577 abd_to_buf(abd_t *abd) 578 { 579 ASSERT(abd_is_linear(abd)); 580 abd_verify(abd); 581 return (abd->abd_u.abd_linear.abd_buf); 582 } 583 584 /* 585 * Borrow a raw buffer from an ABD without copying the contents of the ABD 586 * into the buffer. If the ABD is scattered, this will allocate a raw buffer 587 * whose contents are undefined. To copy over the existing data in the ABD, use 588 * abd_borrow_buf_copy() instead. 589 */ 590 void * 591 abd_borrow_buf(abd_t *abd, size_t n) 592 { 593 void *buf; 594 abd_verify(abd); 595 ASSERT3U(abd->abd_size, >=, n); 596 if (abd_is_linear(abd)) { 597 buf = abd_to_buf(abd); 598 } else { 599 buf = zio_buf_alloc(n); 600 } 601 (void) zfs_refcount_add_many(&abd->abd_children, n, buf); 602 603 return (buf); 604 } 605 606 void * 607 abd_borrow_buf_copy(abd_t *abd, size_t n) 608 { 609 void *buf = abd_borrow_buf(abd, n); 610 if (!abd_is_linear(abd)) { 611 abd_copy_to_buf(buf, abd, n); 612 } 613 return (buf); 614 } 615 616 /* 617 * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will 618 * not change the contents of the ABD and will ASSERT that you didn't modify 619 * the buffer since it was borrowed. If you want any changes you made to buf to 620 * be copied back to abd, use abd_return_buf_copy() instead. 621 */ 622 void 623 abd_return_buf(abd_t *abd, void *buf, size_t n) 624 { 625 abd_verify(abd); 626 ASSERT3U(abd->abd_size, >=, n); 627 if (abd_is_linear(abd)) { 628 ASSERT3P(buf, ==, abd_to_buf(abd)); 629 } else { 630 ASSERT0(abd_cmp_buf(abd, buf, n)); 631 zio_buf_free(buf, n); 632 } 633 (void) zfs_refcount_remove_many(&abd->abd_children, n, buf); 634 } 635 636 void 637 abd_return_buf_copy(abd_t *abd, void *buf, size_t n) 638 { 639 if (!abd_is_linear(abd)) { 640 abd_copy_from_buf(abd, buf, n); 641 } 642 abd_return_buf(abd, buf, n); 643 } 644 645 /* 646 * Give this ABD ownership of the buffer that it's storing. Can only be used on 647 * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated 648 * with abd_alloc_linear() which subsequently released ownership of their buf 649 * with abd_release_ownership_of_buf(). 650 */ 651 void 652 abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata) 653 { 654 ASSERT(abd_is_linear(abd)); 655 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER)); 656 abd_verify(abd); 657 658 abd->abd_flags |= ABD_FLAG_OWNER; 659 if (is_metadata) { 660 abd->abd_flags |= ABD_FLAG_META; 661 } 662 663 ABDSTAT_BUMP(abdstat_linear_cnt); 664 ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size); 665 } 666 667 void 668 abd_release_ownership_of_buf(abd_t *abd) 669 { 670 ASSERT(abd_is_linear(abd)); 671 ASSERT(abd->abd_flags & ABD_FLAG_OWNER); 672 abd_verify(abd); 673 674 abd->abd_flags &= ~ABD_FLAG_OWNER; 675 /* Disable this flag since we no longer own the data buffer */ 676 abd->abd_flags &= ~ABD_FLAG_META; 677 678 ABDSTAT_BUMPDOWN(abdstat_linear_cnt); 679 ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size); 680 } 681 682 struct abd_iter { 683 abd_t *iter_abd; /* ABD being iterated through */ 684 size_t iter_pos; /* position (relative to abd_offset) */ 685 void *iter_mapaddr; /* addr corresponding to iter_pos */ 686 size_t iter_mapsize; /* length of data valid at mapaddr */ 687 }; 688 689 static inline size_t 690 abd_iter_scatter_chunk_offset(struct abd_iter *aiter) 691 { 692 ASSERT(!abd_is_linear(aiter->iter_abd)); 693 return ((aiter->iter_abd->abd_u.abd_scatter.abd_offset + 694 aiter->iter_pos) % zfs_abd_chunk_size); 695 } 696 697 static inline size_t 698 abd_iter_scatter_chunk_index(struct abd_iter *aiter) 699 { 700 ASSERT(!abd_is_linear(aiter->iter_abd)); 701 return ((aiter->iter_abd->abd_u.abd_scatter.abd_offset + 702 aiter->iter_pos) / zfs_abd_chunk_size); 703 } 704 705 /* 706 * Initialize the abd_iter. 707 */ 708 static void 709 abd_iter_init(struct abd_iter *aiter, abd_t *abd) 710 { 711 abd_verify(abd); 712 aiter->iter_abd = abd; 713 aiter->iter_pos = 0; 714 aiter->iter_mapaddr = NULL; 715 aiter->iter_mapsize = 0; 716 } 717 718 /* 719 * Advance the iterator by a certain amount. Cannot be called when a chunk is 720 * in use. This can be safely called when the aiter has already exhausted, in 721 * which case this does nothing. 722 */ 723 static void 724 abd_iter_advance(struct abd_iter *aiter, size_t amount) 725 { 726 ASSERT3P(aiter->iter_mapaddr, ==, NULL); 727 ASSERT0(aiter->iter_mapsize); 728 729 /* There's nothing left to advance to, so do nothing */ 730 if (aiter->iter_pos == aiter->iter_abd->abd_size) 731 return; 732 733 aiter->iter_pos += amount; 734 } 735 736 /* 737 * Map the current chunk into aiter. This can be safely called when the aiter 738 * has already exhausted, in which case this does nothing. 739 */ 740 static void 741 abd_iter_map(struct abd_iter *aiter) 742 { 743 void *paddr; 744 size_t offset = 0; 745 746 ASSERT3P(aiter->iter_mapaddr, ==, NULL); 747 ASSERT0(aiter->iter_mapsize); 748 749 /* Panic if someone has changed zfs_abd_chunk_size */ 750 IMPLY(!abd_is_linear(aiter->iter_abd), zfs_abd_chunk_size == 751 aiter->iter_abd->abd_u.abd_scatter.abd_chunk_size); 752 753 /* There's nothing left to iterate over, so do nothing */ 754 if (aiter->iter_pos == aiter->iter_abd->abd_size) 755 return; 756 757 if (abd_is_linear(aiter->iter_abd)) { 758 offset = aiter->iter_pos; 759 aiter->iter_mapsize = aiter->iter_abd->abd_size - offset; 760 paddr = aiter->iter_abd->abd_u.abd_linear.abd_buf; 761 } else { 762 size_t index = abd_iter_scatter_chunk_index(aiter); 763 offset = abd_iter_scatter_chunk_offset(aiter); 764 aiter->iter_mapsize = zfs_abd_chunk_size - offset; 765 paddr = aiter->iter_abd->abd_u.abd_scatter.abd_chunks[index]; 766 } 767 aiter->iter_mapaddr = (char *)paddr + offset; 768 } 769 770 /* 771 * Unmap the current chunk from aiter. This can be safely called when the aiter 772 * has already exhausted, in which case this does nothing. 773 */ 774 static void 775 abd_iter_unmap(struct abd_iter *aiter) 776 { 777 /* There's nothing left to unmap, so do nothing */ 778 if (aiter->iter_pos == aiter->iter_abd->abd_size) 779 return; 780 781 ASSERT3P(aiter->iter_mapaddr, !=, NULL); 782 ASSERT3U(aiter->iter_mapsize, >, 0); 783 784 aiter->iter_mapaddr = NULL; 785 aiter->iter_mapsize = 0; 786 } 787 788 int 789 abd_iterate_func(abd_t *abd, size_t off, size_t size, 790 abd_iter_func_t *func, void *private) 791 { 792 int ret = 0; 793 struct abd_iter aiter; 794 795 abd_verify(abd); 796 ASSERT3U(off + size, <=, abd->abd_size); 797 798 abd_iter_init(&aiter, abd); 799 abd_iter_advance(&aiter, off); 800 801 while (size > 0) { 802 abd_iter_map(&aiter); 803 804 size_t len = MIN(aiter.iter_mapsize, size); 805 ASSERT3U(len, >, 0); 806 807 ret = func(aiter.iter_mapaddr, len, private); 808 809 abd_iter_unmap(&aiter); 810 811 if (ret != 0) 812 break; 813 814 size -= len; 815 abd_iter_advance(&aiter, len); 816 } 817 818 return (ret); 819 } 820 821 struct buf_arg { 822 void *arg_buf; 823 }; 824 825 static int 826 abd_copy_to_buf_off_cb(void *buf, size_t size, void *private) 827 { 828 struct buf_arg *ba_ptr = private; 829 830 (void) memcpy(ba_ptr->arg_buf, buf, size); 831 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; 832 833 return (0); 834 } 835 836 /* 837 * Copy abd to buf. (off is the offset in abd.) 838 */ 839 void 840 abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size) 841 { 842 struct buf_arg ba_ptr = { buf }; 843 844 (void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb, 845 &ba_ptr); 846 } 847 848 static int 849 abd_cmp_buf_off_cb(void *buf, size_t size, void *private) 850 { 851 int ret; 852 struct buf_arg *ba_ptr = private; 853 854 ret = memcmp(buf, ba_ptr->arg_buf, size); 855 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; 856 857 return (ret); 858 } 859 860 /* 861 * Compare the contents of abd to buf. (off is the offset in abd.) 862 */ 863 int 864 abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) 865 { 866 struct buf_arg ba_ptr = { (void *) buf }; 867 868 return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr)); 869 } 870 871 static int 872 abd_copy_from_buf_off_cb(void *buf, size_t size, void *private) 873 { 874 struct buf_arg *ba_ptr = private; 875 876 (void) memcpy(buf, ba_ptr->arg_buf, size); 877 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; 878 879 return (0); 880 } 881 882 /* 883 * Copy from buf to abd. (off is the offset in abd.) 884 */ 885 void 886 abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) 887 { 888 struct buf_arg ba_ptr = { (void *) buf }; 889 890 (void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb, 891 &ba_ptr); 892 } 893 894 /*ARGSUSED*/ 895 static int 896 abd_zero_off_cb(void *buf, size_t size, void *private) 897 { 898 (void) memset(buf, 0, size); 899 return (0); 900 } 901 902 /* 903 * Zero out the abd from a particular offset to the end. 904 */ 905 void 906 abd_zero_off(abd_t *abd, size_t off, size_t size) 907 { 908 (void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL); 909 } 910 911 /* 912 * Iterate over two ABDs and call func incrementally on the two ABDs' data in 913 * equal-sized chunks (passed to func as raw buffers). func could be called many 914 * times during this iteration. 915 */ 916 int 917 abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, 918 size_t size, abd_iter_func2_t *func, void *private) 919 { 920 int ret = 0; 921 struct abd_iter daiter, saiter; 922 923 abd_verify(dabd); 924 abd_verify(sabd); 925 926 ASSERT3U(doff + size, <=, dabd->abd_size); 927 ASSERT3U(soff + size, <=, sabd->abd_size); 928 929 abd_iter_init(&daiter, dabd); 930 abd_iter_init(&saiter, sabd); 931 abd_iter_advance(&daiter, doff); 932 abd_iter_advance(&saiter, soff); 933 934 while (size > 0) { 935 abd_iter_map(&daiter); 936 abd_iter_map(&saiter); 937 938 size_t dlen = MIN(daiter.iter_mapsize, size); 939 size_t slen = MIN(saiter.iter_mapsize, size); 940 size_t len = MIN(dlen, slen); 941 ASSERT(dlen > 0 || slen > 0); 942 943 ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len, 944 private); 945 946 abd_iter_unmap(&saiter); 947 abd_iter_unmap(&daiter); 948 949 if (ret != 0) 950 break; 951 952 size -= len; 953 abd_iter_advance(&daiter, len); 954 abd_iter_advance(&saiter, len); 955 } 956 957 return (ret); 958 } 959 960 /*ARGSUSED*/ 961 static int 962 abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private) 963 { 964 (void) memcpy(dbuf, sbuf, size); 965 return (0); 966 } 967 968 /* 969 * Copy from sabd to dabd starting from soff and doff. 970 */ 971 void 972 abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size) 973 { 974 (void) abd_iterate_func2(dabd, sabd, doff, soff, size, 975 abd_copy_off_cb, NULL); 976 } 977 978 /*ARGSUSED*/ 979 static int 980 abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private) 981 { 982 return (memcmp(bufa, bufb, size)); 983 } 984 985 /* 986 * Compares the first size bytes of two ABDs. 987 */ 988 int 989 abd_cmp(abd_t *dabd, abd_t *sabd, size_t size) 990 { 991 return (abd_iterate_func2(dabd, sabd, 0, 0, size, abd_cmp_cb, NULL)); 992 } 993