xref: /illumos-gate/usr/src/uts/common/fs/zfs/abd.c (revision 87d7b64204c06f7d85b6dfec442ff0aba82efe9a)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
14  * Copyright (c) 2019 by Delphix. All rights reserved.
15  */
16 
17 /*
18  * ARC buffer data (ABD).
19  *
20  * ABDs are an abstract data structure for the ARC which can use two
21  * different ways of storing the underlying data:
22  *
23  * (a) Linear buffer. In this case, all the data in the ABD is stored in one
24  *     contiguous buffer in memory (from a zio_[data_]buf_* kmem cache).
25  *
26  *         +-------------------+
27  *         | ABD (linear)      |
28  *         |   abd_flags = ... |
29  *         |   abd_size = ...  |     +--------------------------------+
30  *         |   abd_buf ------------->| raw buffer of size abd_size    |
31  *         +-------------------+     +--------------------------------+
32  *              no abd_chunks
33  *
34  * (b) Scattered buffer. In this case, the data in the ABD is split into
35  *     equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers
36  *     to the chunks recorded in an array at the end of the ABD structure.
37  *
38  *         +-------------------+
39  *         | ABD (scattered)   |
40  *         |   abd_flags = ... |
41  *         |   abd_size = ...  |
42  *         |   abd_offset = 0  |                           +-----------+
43  *         |   abd_chunks[0] ----------------------------->| chunk 0   |
44  *         |   abd_chunks[1] ---------------------+        +-----------+
45  *         |   ...             |                  |        +-----------+
46  *         |   abd_chunks[N-1] ---------+         +------->| chunk 1   |
47  *         +-------------------+        |                  +-----------+
48  *                                      |                      ...
49  *                                      |                  +-----------+
50  *                                      +----------------->| chunk N-1 |
51  *                                                         +-----------+
52  *
53  * Using a large proportion of scattered ABDs decreases ARC fragmentation since
54  * when we are at the limit of allocatable space, using equal-size chunks will
55  * allow us to quickly reclaim enough space for a new large allocation (assuming
56  * it is also scattered).
57  *
58  * In addition to directly allocating a linear or scattered ABD, it is also
59  * possible to create an ABD by requesting the "sub-ABD" starting at an offset
60  * within an existing ABD. In linear buffers this is simple (set abd_buf of
61  * the new ABD to the starting point within the original raw buffer), but
62  * scattered ABDs are a little more complex. The new ABD makes a copy of the
63  * relevant abd_chunks pointers (but not the underlying data). However, to
64  * provide arbitrary rather than only chunk-aligned starting offsets, it also
65  * tracks an abd_offset field which represents the starting point of the data
66  * within the first chunk in abd_chunks. For both linear and scattered ABDs,
67  * creating an offset ABD marks the original ABD as the offset's parent, and the
68  * original ABD's abd_children refcount is incremented. This data allows us to
69  * ensure the root ABD isn't deleted before its children.
70  *
71  * Most consumers should never need to know what type of ABD they're using --
72  * the ABD public API ensures that it's possible to transparently switch from
73  * using a linear ABD to a scattered one when doing so would be beneficial.
74  *
75  * If you need to use the data within an ABD directly, if you know it's linear
76  * (because you allocated it) you can use abd_to_buf() to access the underlying
77  * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions
78  * which will allocate a raw buffer if necessary. Use the abd_return_buf*
79  * functions to return any raw buffers that are no longer necessary when you're
80  * done using them.
81  *
82  * There are a variety of ABD APIs that implement basic buffer operations:
83  * compare, copy, read, write, and fill with zeroes. If you need a custom
84  * function which progressively accesses the whole ABD, use the abd_iterate_*
85  * functions.
86  */
87 
88 #include <sys/abd.h>
89 #include <sys/param.h>
90 #include <sys/zio.h>
91 #include <sys/zfs_context.h>
92 #include <sys/zfs_znode.h>
93 
94 typedef struct abd_stats {
95 	kstat_named_t abdstat_struct_size;
96 	kstat_named_t abdstat_scatter_cnt;
97 	kstat_named_t abdstat_scatter_data_size;
98 	kstat_named_t abdstat_scatter_chunk_waste;
99 	kstat_named_t abdstat_linear_cnt;
100 	kstat_named_t abdstat_linear_data_size;
101 } abd_stats_t;
102 
103 static abd_stats_t abd_stats = {
104 	/* Amount of memory occupied by all of the abd_t struct allocations */
105 	{ "struct_size",			KSTAT_DATA_UINT64 },
106 	/*
107 	 * The number of scatter ABDs which are currently allocated, excluding
108 	 * ABDs which don't own their data (for instance the ones which were
109 	 * allocated through abd_get_offset()).
110 	 */
111 	{ "scatter_cnt",			KSTAT_DATA_UINT64 },
112 	/* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
113 	{ "scatter_data_size",			KSTAT_DATA_UINT64 },
114 	/*
115 	 * The amount of space wasted at the end of the last chunk across all
116 	 * scatter ABDs tracked by scatter_cnt.
117 	 */
118 	{ "scatter_chunk_waste",		KSTAT_DATA_UINT64 },
119 	/*
120 	 * The number of linear ABDs which are currently allocated, excluding
121 	 * ABDs which don't own their data (for instance the ones which were
122 	 * allocated through abd_get_offset() and abd_get_from_buf()). If an
123 	 * ABD takes ownership of its buf then it will become tracked.
124 	 */
125 	{ "linear_cnt",				KSTAT_DATA_UINT64 },
126 	/* Amount of data stored in all linear ABDs tracked by linear_cnt */
127 	{ "linear_data_size",			KSTAT_DATA_UINT64 },
128 };
129 
130 #define	ABDSTAT(stat)		(abd_stats.stat.value.ui64)
131 #define	ABDSTAT_INCR(stat, val) \
132 	atomic_add_64(&abd_stats.stat.value.ui64, (val))
133 #define	ABDSTAT_BUMP(stat)	ABDSTAT_INCR(stat, 1)
134 #define	ABDSTAT_BUMPDOWN(stat)	ABDSTAT_INCR(stat, -1)
135 
136 /*
137  * It is possible to make all future ABDs be linear by setting this to B_FALSE.
138  * Otherwise, ABDs are allocated scattered by default unless the caller uses
139  * abd_alloc_linear().
140  */
141 boolean_t zfs_abd_scatter_enabled = B_TRUE;
142 
143 /*
144  * zfs_abd_scatter_min_size is the minimum allocation size to use scatter
145  * ABD's.  Smaller allocations will use linear ABD's which uses
146  * zio_[data_]buf_alloc().
147  *
148  * Scatter ABD's use at least one page each, so sub-page allocations waste
149  * some space when allocated as scatter (e.g. 2KB scatter allocation wastes
150  * half of each page).  Using linear ABD's for small allocations means that
151  * they will be put on slabs which contain many allocations.  This can
152  * improve memory efficiency, but it also makes it much harder for ARC
153  * evictions to actually free pages, because all the buffers on one slab need
154  * to be freed in order for the slab (and underlying pages) to be freed.
155  * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's
156  * possible for them to actually waste more memory than scatter (one page per
157  * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th).
158  *
159  * Spill blocks are typically 512B and are heavily used on systems running
160  * selinux with the default dnode size and the `xattr=sa` property set.
161  *
162  * By default we use linear allocations for 512B and 1KB, and scatter
163  * allocations for larger (1.5KB and up).
164  */
165 int zfs_abd_scatter_min_size = 512 * 3;
166 
167 /*
168  * The size of the chunks ABD allocates. Because the sizes allocated from the
169  * kmem_cache can't change, this tunable can only be modified at boot. Changing
170  * it at runtime would cause ABD iteration to work incorrectly for ABDs which
171  * were allocated with the old size, so a safeguard has been put in place which
172  * will cause the machine to panic if you change it and try to access the data
173  * within a scattered ABD.
174  */
175 size_t zfs_abd_chunk_size = 4096;
176 
177 #ifdef _KERNEL
178 extern vmem_t *zio_alloc_arena;
179 #endif
180 
181 kmem_cache_t *abd_chunk_cache;
182 static kstat_t *abd_ksp;
183 
184 extern inline boolean_t abd_is_linear(abd_t *abd);
185 extern inline void abd_copy(abd_t *dabd, abd_t *sabd, size_t size);
186 extern inline void abd_copy_from_buf(abd_t *abd, const void *buf, size_t size);
187 extern inline void abd_copy_to_buf(void* buf, abd_t *abd, size_t size);
188 extern inline int abd_cmp_buf(abd_t *abd, const void *buf, size_t size);
189 extern inline void abd_zero(abd_t *abd, size_t size);
190 
191 static void *
192 abd_alloc_chunk()
193 {
194 	void *c = kmem_cache_alloc(abd_chunk_cache, KM_PUSHPAGE);
195 	ASSERT3P(c, !=, NULL);
196 	return (c);
197 }
198 
199 static void
200 abd_free_chunk(void *c)
201 {
202 	kmem_cache_free(abd_chunk_cache, c);
203 }
204 
205 void
206 abd_init(void)
207 {
208 	vmem_t *data_alloc_arena = NULL;
209 
210 #ifdef _KERNEL
211 	data_alloc_arena = zio_alloc_arena;
212 #endif
213 
214 	/*
215 	 * Since ABD chunks do not appear in crash dumps, we pass KMC_NOTOUCH
216 	 * so that no allocator metadata is stored with the buffers.
217 	 */
218 	abd_chunk_cache = kmem_cache_create("abd_chunk", zfs_abd_chunk_size, 0,
219 	    NULL, NULL, NULL, NULL, data_alloc_arena, KMC_NOTOUCH);
220 
221 	abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
222 	    sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
223 	if (abd_ksp != NULL) {
224 		abd_ksp->ks_data = &abd_stats;
225 		kstat_install(abd_ksp);
226 	}
227 }
228 
229 void
230 abd_fini(void)
231 {
232 	if (abd_ksp != NULL) {
233 		kstat_delete(abd_ksp);
234 		abd_ksp = NULL;
235 	}
236 
237 	kmem_cache_destroy(abd_chunk_cache);
238 	abd_chunk_cache = NULL;
239 }
240 
241 static inline size_t
242 abd_chunkcnt_for_bytes(size_t size)
243 {
244 	return (P2ROUNDUP(size, zfs_abd_chunk_size) / zfs_abd_chunk_size);
245 }
246 
247 static inline size_t
248 abd_scatter_chunkcnt(abd_t *abd)
249 {
250 	ASSERT(!abd_is_linear(abd));
251 	return (abd_chunkcnt_for_bytes(
252 	    abd->abd_u.abd_scatter.abd_offset + abd->abd_size));
253 }
254 
255 static inline void
256 abd_verify(abd_t *abd)
257 {
258 	ASSERT3U(abd->abd_size, >, 0);
259 	ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE);
260 	ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR |
261 	    ABD_FLAG_OWNER | ABD_FLAG_META));
262 	IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER));
263 	IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER);
264 	if (abd_is_linear(abd)) {
265 		ASSERT3P(abd->abd_u.abd_linear.abd_buf, !=, NULL);
266 	} else {
267 		ASSERT3U(abd->abd_u.abd_scatter.abd_offset, <,
268 		    zfs_abd_chunk_size);
269 		size_t n = abd_scatter_chunkcnt(abd);
270 		for (int i = 0; i < n; i++) {
271 			ASSERT3P(
272 			    abd->abd_u.abd_scatter.abd_chunks[i], !=, NULL);
273 		}
274 	}
275 }
276 
277 static inline abd_t *
278 abd_alloc_struct(size_t chunkcnt)
279 {
280 	size_t size = offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]);
281 	abd_t *abd = kmem_alloc(size, KM_PUSHPAGE);
282 	ASSERT3P(abd, !=, NULL);
283 	ABDSTAT_INCR(abdstat_struct_size, size);
284 
285 	return (abd);
286 }
287 
288 static inline void
289 abd_free_struct(abd_t *abd)
290 {
291 	size_t chunkcnt = abd_is_linear(abd) ? 0 : abd_scatter_chunkcnt(abd);
292 	int size = offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]);
293 	kmem_free(abd, size);
294 	ABDSTAT_INCR(abdstat_struct_size, -size);
295 }
296 
297 /*
298  * Allocate an ABD, along with its own underlying data buffers. Use this if you
299  * don't care whether the ABD is linear or not.
300  */
301 abd_t *
302 abd_alloc(size_t size, boolean_t is_metadata)
303 {
304 	/* see the comment above zfs_abd_scatter_min_size */
305 	if (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size)
306 		return (abd_alloc_linear(size, is_metadata));
307 
308 	VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
309 
310 	size_t n = abd_chunkcnt_for_bytes(size);
311 	abd_t *abd = abd_alloc_struct(n);
312 
313 	abd->abd_flags = ABD_FLAG_OWNER;
314 	if (is_metadata) {
315 		abd->abd_flags |= ABD_FLAG_META;
316 	}
317 	abd->abd_size = size;
318 	abd->abd_parent = NULL;
319 	zfs_refcount_create(&abd->abd_children);
320 
321 	abd->abd_u.abd_scatter.abd_offset = 0;
322 	abd->abd_u.abd_scatter.abd_chunk_size = zfs_abd_chunk_size;
323 
324 	for (int i = 0; i < n; i++) {
325 		void *c = abd_alloc_chunk();
326 		ASSERT3P(c, !=, NULL);
327 		abd->abd_u.abd_scatter.abd_chunks[i] = c;
328 	}
329 
330 	ABDSTAT_BUMP(abdstat_scatter_cnt);
331 	ABDSTAT_INCR(abdstat_scatter_data_size, size);
332 	ABDSTAT_INCR(abdstat_scatter_chunk_waste,
333 	    n * zfs_abd_chunk_size - size);
334 
335 	return (abd);
336 }
337 
338 static void
339 abd_free_scatter(abd_t *abd)
340 {
341 	size_t n = abd_scatter_chunkcnt(abd);
342 	for (int i = 0; i < n; i++) {
343 		abd_free_chunk(abd->abd_u.abd_scatter.abd_chunks[i]);
344 	}
345 
346 	zfs_refcount_destroy(&abd->abd_children);
347 	ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
348 	ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
349 	ABDSTAT_INCR(abdstat_scatter_chunk_waste,
350 	    abd->abd_size - n * zfs_abd_chunk_size);
351 
352 	abd_free_struct(abd);
353 }
354 
355 /*
356  * Allocate an ABD that must be linear, along with its own underlying data
357  * buffer. Only use this when it would be very annoying to write your ABD
358  * consumer with a scattered ABD.
359  */
360 abd_t *
361 abd_alloc_linear(size_t size, boolean_t is_metadata)
362 {
363 	abd_t *abd = abd_alloc_struct(0);
364 
365 	VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
366 
367 	abd->abd_flags = ABD_FLAG_LINEAR | ABD_FLAG_OWNER;
368 	if (is_metadata) {
369 		abd->abd_flags |= ABD_FLAG_META;
370 	}
371 	abd->abd_size = size;
372 	abd->abd_parent = NULL;
373 	zfs_refcount_create(&abd->abd_children);
374 
375 	if (is_metadata) {
376 		abd->abd_u.abd_linear.abd_buf = zio_buf_alloc(size);
377 	} else {
378 		abd->abd_u.abd_linear.abd_buf = zio_data_buf_alloc(size);
379 	}
380 
381 	ABDSTAT_BUMP(abdstat_linear_cnt);
382 	ABDSTAT_INCR(abdstat_linear_data_size, size);
383 
384 	return (abd);
385 }
386 
387 static void
388 abd_free_linear(abd_t *abd)
389 {
390 	if (abd->abd_flags & ABD_FLAG_META) {
391 		zio_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size);
392 	} else {
393 		zio_data_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size);
394 	}
395 
396 	zfs_refcount_destroy(&abd->abd_children);
397 	ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
398 	ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
399 
400 	abd_free_struct(abd);
401 }
402 
403 /*
404  * Free an ABD. Only use this on ABDs allocated with abd_alloc() or
405  * abd_alloc_linear().
406  */
407 void
408 abd_free(abd_t *abd)
409 {
410 	abd_verify(abd);
411 	ASSERT3P(abd->abd_parent, ==, NULL);
412 	ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
413 	if (abd_is_linear(abd))
414 		abd_free_linear(abd);
415 	else
416 		abd_free_scatter(abd);
417 }
418 
419 /*
420  * Allocate an ABD of the same format (same metadata flag, same scatterize
421  * setting) as another ABD.
422  */
423 abd_t *
424 abd_alloc_sametype(abd_t *sabd, size_t size)
425 {
426 	boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0;
427 	if (abd_is_linear(sabd)) {
428 		return (abd_alloc_linear(size, is_metadata));
429 	} else {
430 		return (abd_alloc(size, is_metadata));
431 	}
432 }
433 
434 /*
435  * If we're going to use this ABD for doing I/O using the block layer, the
436  * consumer of the ABD data doesn't care if it's scattered or not, and we don't
437  * plan to store this ABD in memory for a long period of time, we should
438  * allocate the ABD type that requires the least data copying to do the I/O.
439  *
440  * Currently this is linear ABDs, however if ldi_strategy() can ever issue I/Os
441  * using a scatter/gather list we should switch to that and replace this call
442  * with vanilla abd_alloc().
443  */
444 abd_t *
445 abd_alloc_for_io(size_t size, boolean_t is_metadata)
446 {
447 	return (abd_alloc_linear(size, is_metadata));
448 }
449 
450 /*
451  * Allocate a new ABD to point to offset off of sabd. It shares the underlying
452  * buffer data with sabd. Use abd_put() to free. sabd must not be freed while
453  * any derived ABDs exist.
454  */
455 /* ARGSUSED */
456 static inline abd_t *
457 abd_get_offset_impl(abd_t *sabd, size_t off, size_t size)
458 {
459 	abd_t *abd;
460 
461 	abd_verify(sabd);
462 	ASSERT3U(off, <=, sabd->abd_size);
463 
464 	if (abd_is_linear(sabd)) {
465 		abd = abd_alloc_struct(0);
466 
467 		/*
468 		 * Even if this buf is filesystem metadata, we only track that
469 		 * if we own the underlying data buffer, which is not true in
470 		 * this case. Therefore, we don't ever use ABD_FLAG_META here.
471 		 */
472 		abd->abd_flags = ABD_FLAG_LINEAR;
473 
474 		abd->abd_u.abd_linear.abd_buf =
475 		    (char *)sabd->abd_u.abd_linear.abd_buf + off;
476 	} else {
477 		size_t new_offset = sabd->abd_u.abd_scatter.abd_offset + off;
478 		size_t chunkcnt = abd_scatter_chunkcnt(sabd) -
479 		    (new_offset / zfs_abd_chunk_size);
480 
481 		abd = abd_alloc_struct(chunkcnt);
482 
483 		/*
484 		 * Even if this buf is filesystem metadata, we only track that
485 		 * if we own the underlying data buffer, which is not true in
486 		 * this case. Therefore, we don't ever use ABD_FLAG_META here.
487 		 */
488 		abd->abd_flags = 0;
489 
490 		abd->abd_u.abd_scatter.abd_offset =
491 		    new_offset % zfs_abd_chunk_size;
492 		abd->abd_u.abd_scatter.abd_chunk_size = zfs_abd_chunk_size;
493 
494 		/* Copy the scatterlist starting at the correct offset */
495 		(void) memcpy(&abd->abd_u.abd_scatter.abd_chunks,
496 		    &sabd->abd_u.abd_scatter.abd_chunks[new_offset /
497 		    zfs_abd_chunk_size],
498 		    chunkcnt * sizeof (void *));
499 	}
500 
501 	abd->abd_size = sabd->abd_size - off;
502 	abd->abd_parent = sabd;
503 	zfs_refcount_create(&abd->abd_children);
504 	(void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd);
505 
506 	return (abd);
507 }
508 
509 abd_t *
510 abd_get_offset(abd_t *sabd, size_t off)
511 {
512 	size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0;
513 
514 	VERIFY3U(size, >, 0);
515 
516 	return (abd_get_offset_impl(sabd, off, size));
517 }
518 
519 abd_t *
520 abd_get_offset_size(abd_t *sabd, size_t off, size_t size)
521 {
522 	ASSERT3U(off + size, <=, sabd->abd_size);
523 
524 	return (abd_get_offset_impl(sabd, off, size));
525 }
526 
527 
528 /*
529  * Allocate a linear ABD structure for buf. You must free this with abd_put()
530  * since the resulting ABD doesn't own its own buffer.
531  */
532 abd_t *
533 abd_get_from_buf(void *buf, size_t size)
534 {
535 	abd_t *abd = abd_alloc_struct(0);
536 
537 	VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
538 
539 	/*
540 	 * Even if this buf is filesystem metadata, we only track that if we
541 	 * own the underlying data buffer, which is not true in this case.
542 	 * Therefore, we don't ever use ABD_FLAG_META here.
543 	 */
544 	abd->abd_flags = ABD_FLAG_LINEAR;
545 	abd->abd_size = size;
546 	abd->abd_parent = NULL;
547 	zfs_refcount_create(&abd->abd_children);
548 
549 	abd->abd_u.abd_linear.abd_buf = buf;
550 
551 	return (abd);
552 }
553 
554 /*
555  * Free an ABD allocated from abd_get_offset() or abd_get_from_buf(). Will not
556  * free the underlying scatterlist or buffer.
557  */
558 void
559 abd_put(abd_t *abd)
560 {
561 	abd_verify(abd);
562 	ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
563 
564 	if (abd->abd_parent != NULL) {
565 		(void) zfs_refcount_remove_many(&abd->abd_parent->abd_children,
566 		    abd->abd_size, abd);
567 	}
568 
569 	zfs_refcount_destroy(&abd->abd_children);
570 	abd_free_struct(abd);
571 }
572 
573 /*
574  * Get the raw buffer associated with a linear ABD.
575  */
576 void *
577 abd_to_buf(abd_t *abd)
578 {
579 	ASSERT(abd_is_linear(abd));
580 	abd_verify(abd);
581 	return (abd->abd_u.abd_linear.abd_buf);
582 }
583 
584 /*
585  * Borrow a raw buffer from an ABD without copying the contents of the ABD
586  * into the buffer. If the ABD is scattered, this will allocate a raw buffer
587  * whose contents are undefined. To copy over the existing data in the ABD, use
588  * abd_borrow_buf_copy() instead.
589  */
590 void *
591 abd_borrow_buf(abd_t *abd, size_t n)
592 {
593 	void *buf;
594 	abd_verify(abd);
595 	ASSERT3U(abd->abd_size, >=, n);
596 	if (abd_is_linear(abd)) {
597 		buf = abd_to_buf(abd);
598 	} else {
599 		buf = zio_buf_alloc(n);
600 	}
601 	(void) zfs_refcount_add_many(&abd->abd_children, n, buf);
602 
603 	return (buf);
604 }
605 
606 void *
607 abd_borrow_buf_copy(abd_t *abd, size_t n)
608 {
609 	void *buf = abd_borrow_buf(abd, n);
610 	if (!abd_is_linear(abd)) {
611 		abd_copy_to_buf(buf, abd, n);
612 	}
613 	return (buf);
614 }
615 
616 /*
617  * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will
618  * not change the contents of the ABD and will ASSERT that you didn't modify
619  * the buffer since it was borrowed. If you want any changes you made to buf to
620  * be copied back to abd, use abd_return_buf_copy() instead.
621  */
622 void
623 abd_return_buf(abd_t *abd, void *buf, size_t n)
624 {
625 	abd_verify(abd);
626 	ASSERT3U(abd->abd_size, >=, n);
627 	if (abd_is_linear(abd)) {
628 		ASSERT3P(buf, ==, abd_to_buf(abd));
629 	} else {
630 		ASSERT0(abd_cmp_buf(abd, buf, n));
631 		zio_buf_free(buf, n);
632 	}
633 	(void) zfs_refcount_remove_many(&abd->abd_children, n, buf);
634 }
635 
636 void
637 abd_return_buf_copy(abd_t *abd, void *buf, size_t n)
638 {
639 	if (!abd_is_linear(abd)) {
640 		abd_copy_from_buf(abd, buf, n);
641 	}
642 	abd_return_buf(abd, buf, n);
643 }
644 
645 /*
646  * Give this ABD ownership of the buffer that it's storing. Can only be used on
647  * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated
648  * with abd_alloc_linear() which subsequently released ownership of their buf
649  * with abd_release_ownership_of_buf().
650  */
651 void
652 abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata)
653 {
654 	ASSERT(abd_is_linear(abd));
655 	ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
656 	abd_verify(abd);
657 
658 	abd->abd_flags |= ABD_FLAG_OWNER;
659 	if (is_metadata) {
660 		abd->abd_flags |= ABD_FLAG_META;
661 	}
662 
663 	ABDSTAT_BUMP(abdstat_linear_cnt);
664 	ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
665 }
666 
667 void
668 abd_release_ownership_of_buf(abd_t *abd)
669 {
670 	ASSERT(abd_is_linear(abd));
671 	ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
672 	abd_verify(abd);
673 
674 	abd->abd_flags &= ~ABD_FLAG_OWNER;
675 	/* Disable this flag since we no longer own the data buffer */
676 	abd->abd_flags &= ~ABD_FLAG_META;
677 
678 	ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
679 	ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
680 }
681 
682 struct abd_iter {
683 	abd_t		*iter_abd;	/* ABD being iterated through */
684 	size_t		iter_pos;	/* position (relative to abd_offset) */
685 	void		*iter_mapaddr;	/* addr corresponding to iter_pos */
686 	size_t		iter_mapsize;	/* length of data valid at mapaddr */
687 };
688 
689 static inline size_t
690 abd_iter_scatter_chunk_offset(struct abd_iter *aiter)
691 {
692 	ASSERT(!abd_is_linear(aiter->iter_abd));
693 	return ((aiter->iter_abd->abd_u.abd_scatter.abd_offset +
694 	    aiter->iter_pos) % zfs_abd_chunk_size);
695 }
696 
697 static inline size_t
698 abd_iter_scatter_chunk_index(struct abd_iter *aiter)
699 {
700 	ASSERT(!abd_is_linear(aiter->iter_abd));
701 	return ((aiter->iter_abd->abd_u.abd_scatter.abd_offset +
702 	    aiter->iter_pos) / zfs_abd_chunk_size);
703 }
704 
705 /*
706  * Initialize the abd_iter.
707  */
708 static void
709 abd_iter_init(struct abd_iter *aiter, abd_t *abd)
710 {
711 	abd_verify(abd);
712 	aiter->iter_abd = abd;
713 	aiter->iter_pos = 0;
714 	aiter->iter_mapaddr = NULL;
715 	aiter->iter_mapsize = 0;
716 }
717 
718 /*
719  * Advance the iterator by a certain amount. Cannot be called when a chunk is
720  * in use. This can be safely called when the aiter has already exhausted, in
721  * which case this does nothing.
722  */
723 static void
724 abd_iter_advance(struct abd_iter *aiter, size_t amount)
725 {
726 	ASSERT3P(aiter->iter_mapaddr, ==, NULL);
727 	ASSERT0(aiter->iter_mapsize);
728 
729 	/* There's nothing left to advance to, so do nothing */
730 	if (aiter->iter_pos == aiter->iter_abd->abd_size)
731 		return;
732 
733 	aiter->iter_pos += amount;
734 }
735 
736 /*
737  * Map the current chunk into aiter. This can be safely called when the aiter
738  * has already exhausted, in which case this does nothing.
739  */
740 static void
741 abd_iter_map(struct abd_iter *aiter)
742 {
743 	void *paddr;
744 	size_t offset = 0;
745 
746 	ASSERT3P(aiter->iter_mapaddr, ==, NULL);
747 	ASSERT0(aiter->iter_mapsize);
748 
749 	/* Panic if someone has changed zfs_abd_chunk_size */
750 	IMPLY(!abd_is_linear(aiter->iter_abd), zfs_abd_chunk_size ==
751 	    aiter->iter_abd->abd_u.abd_scatter.abd_chunk_size);
752 
753 	/* There's nothing left to iterate over, so do nothing */
754 	if (aiter->iter_pos == aiter->iter_abd->abd_size)
755 		return;
756 
757 	if (abd_is_linear(aiter->iter_abd)) {
758 		offset = aiter->iter_pos;
759 		aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
760 		paddr = aiter->iter_abd->abd_u.abd_linear.abd_buf;
761 	} else {
762 		size_t index = abd_iter_scatter_chunk_index(aiter);
763 		offset = abd_iter_scatter_chunk_offset(aiter);
764 		aiter->iter_mapsize = zfs_abd_chunk_size - offset;
765 		paddr = aiter->iter_abd->abd_u.abd_scatter.abd_chunks[index];
766 	}
767 	aiter->iter_mapaddr = (char *)paddr + offset;
768 }
769 
770 /*
771  * Unmap the current chunk from aiter. This can be safely called when the aiter
772  * has already exhausted, in which case this does nothing.
773  */
774 static void
775 abd_iter_unmap(struct abd_iter *aiter)
776 {
777 	/* There's nothing left to unmap, so do nothing */
778 	if (aiter->iter_pos == aiter->iter_abd->abd_size)
779 		return;
780 
781 	ASSERT3P(aiter->iter_mapaddr, !=, NULL);
782 	ASSERT3U(aiter->iter_mapsize, >, 0);
783 
784 	aiter->iter_mapaddr = NULL;
785 	aiter->iter_mapsize = 0;
786 }
787 
788 int
789 abd_iterate_func(abd_t *abd, size_t off, size_t size,
790     abd_iter_func_t *func, void *private)
791 {
792 	int ret = 0;
793 	struct abd_iter aiter;
794 
795 	abd_verify(abd);
796 	ASSERT3U(off + size, <=, abd->abd_size);
797 
798 	abd_iter_init(&aiter, abd);
799 	abd_iter_advance(&aiter, off);
800 
801 	while (size > 0) {
802 		abd_iter_map(&aiter);
803 
804 		size_t len = MIN(aiter.iter_mapsize, size);
805 		ASSERT3U(len, >, 0);
806 
807 		ret = func(aiter.iter_mapaddr, len, private);
808 
809 		abd_iter_unmap(&aiter);
810 
811 		if (ret != 0)
812 			break;
813 
814 		size -= len;
815 		abd_iter_advance(&aiter, len);
816 	}
817 
818 	return (ret);
819 }
820 
821 struct buf_arg {
822 	void *arg_buf;
823 };
824 
825 static int
826 abd_copy_to_buf_off_cb(void *buf, size_t size, void *private)
827 {
828 	struct buf_arg *ba_ptr = private;
829 
830 	(void) memcpy(ba_ptr->arg_buf, buf, size);
831 	ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
832 
833 	return (0);
834 }
835 
836 /*
837  * Copy abd to buf. (off is the offset in abd.)
838  */
839 void
840 abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size)
841 {
842 	struct buf_arg ba_ptr = { buf };
843 
844 	(void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb,
845 	    &ba_ptr);
846 }
847 
848 static int
849 abd_cmp_buf_off_cb(void *buf, size_t size, void *private)
850 {
851 	int ret;
852 	struct buf_arg *ba_ptr = private;
853 
854 	ret = memcmp(buf, ba_ptr->arg_buf, size);
855 	ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
856 
857 	return (ret);
858 }
859 
860 /*
861  * Compare the contents of abd to buf. (off is the offset in abd.)
862  */
863 int
864 abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
865 {
866 	struct buf_arg ba_ptr = { (void *) buf };
867 
868 	return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr));
869 }
870 
871 static int
872 abd_copy_from_buf_off_cb(void *buf, size_t size, void *private)
873 {
874 	struct buf_arg *ba_ptr = private;
875 
876 	(void) memcpy(buf, ba_ptr->arg_buf, size);
877 	ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
878 
879 	return (0);
880 }
881 
882 /*
883  * Copy from buf to abd. (off is the offset in abd.)
884  */
885 void
886 abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
887 {
888 	struct buf_arg ba_ptr = { (void *) buf };
889 
890 	(void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb,
891 	    &ba_ptr);
892 }
893 
894 /*ARGSUSED*/
895 static int
896 abd_zero_off_cb(void *buf, size_t size, void *private)
897 {
898 	(void) memset(buf, 0, size);
899 	return (0);
900 }
901 
902 /*
903  * Zero out the abd from a particular offset to the end.
904  */
905 void
906 abd_zero_off(abd_t *abd, size_t off, size_t size)
907 {
908 	(void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL);
909 }
910 
911 /*
912  * Iterate over two ABDs and call func incrementally on the two ABDs' data in
913  * equal-sized chunks (passed to func as raw buffers). func could be called many
914  * times during this iteration.
915  */
916 int
917 abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff,
918     size_t size, abd_iter_func2_t *func, void *private)
919 {
920 	int ret = 0;
921 	struct abd_iter daiter, saiter;
922 
923 	abd_verify(dabd);
924 	abd_verify(sabd);
925 
926 	ASSERT3U(doff + size, <=, dabd->abd_size);
927 	ASSERT3U(soff + size, <=, sabd->abd_size);
928 
929 	abd_iter_init(&daiter, dabd);
930 	abd_iter_init(&saiter, sabd);
931 	abd_iter_advance(&daiter, doff);
932 	abd_iter_advance(&saiter, soff);
933 
934 	while (size > 0) {
935 		abd_iter_map(&daiter);
936 		abd_iter_map(&saiter);
937 
938 		size_t dlen = MIN(daiter.iter_mapsize, size);
939 		size_t slen = MIN(saiter.iter_mapsize, size);
940 		size_t len = MIN(dlen, slen);
941 		ASSERT(dlen > 0 || slen > 0);
942 
943 		ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len,
944 		    private);
945 
946 		abd_iter_unmap(&saiter);
947 		abd_iter_unmap(&daiter);
948 
949 		if (ret != 0)
950 			break;
951 
952 		size -= len;
953 		abd_iter_advance(&daiter, len);
954 		abd_iter_advance(&saiter, len);
955 	}
956 
957 	return (ret);
958 }
959 
960 /*ARGSUSED*/
961 static int
962 abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private)
963 {
964 	(void) memcpy(dbuf, sbuf, size);
965 	return (0);
966 }
967 
968 /*
969  * Copy from sabd to dabd starting from soff and doff.
970  */
971 void
972 abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size)
973 {
974 	(void) abd_iterate_func2(dabd, sabd, doff, soff, size,
975 	    abd_copy_off_cb, NULL);
976 }
977 
978 /*ARGSUSED*/
979 static int
980 abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private)
981 {
982 	return (memcmp(bufa, bufb, size));
983 }
984 
985 /*
986  * Compares the first size bytes of two ABDs.
987  */
988 int
989 abd_cmp(abd_t *dabd, abd_t *sabd, size_t size)
990 {
991 	return (abd_iterate_func2(dabd, sabd, 0, 0, size, abd_cmp_cb, NULL));
992 }
993