1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
10 */
11
12 /*
13 * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
14 * Copyright (c) 2019 by Delphix. All rights reserved.
15 * Copyright 2020 Joyent, Inc.
16 * Copyright 2023 RackTop Systems, Inc.
17 */
18
19 /*
20 * ARC buffer data (ABD).
21 *
22 * ABDs are an abstract data structure for the ARC which can use two
23 * different ways of storing the underlying data:
24 *
25 * (a) Linear buffer. In this case, all the data in the ABD is stored in one
26 * contiguous buffer in memory (from a zio_[data_]buf_* kmem cache).
27 *
28 * +-------------------+
29 * | ABD (linear) |
30 * | abd_flags = ... |
31 * | abd_size = ... | +--------------------------------+
32 * | abd_buf ------------->| raw buffer of size abd_size |
33 * +-------------------+ +--------------------------------+
34 * no abd_chunks
35 *
36 * (b) Scattered buffer. In this case, the data in the ABD is split into
37 * equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers
38 * to the chunks recorded in an array at the end of the ABD structure.
39 *
40 * +-------------------+
41 * | ABD (scattered) |
42 * | abd_flags = ... |
43 * | abd_size = ... |
44 * | abd_offset = 0 | +-----------+
45 * | abd_chunks[0] ----------------------------->| chunk 0 |
46 * | abd_chunks[1] ---------------------+ +-----------+
47 * | ... | | +-----------+
48 * | abd_chunks[N-1] ---------+ +------->| chunk 1 |
49 * +-------------------+ | +-----------+
50 * | ...
51 * | +-----------+
52 * +----------------->| chunk N-1 |
53 * +-----------+
54 *
55 * Using a large proportion of scattered ABDs decreases ARC fragmentation since
56 * when we are at the limit of allocatable space, using equal-size chunks will
57 * allow us to quickly reclaim enough space for a new large allocation (assuming
58 * it is also scattered).
59 *
60 * In addition to directly allocating a linear or scattered ABD, it is also
61 * possible to create an ABD by requesting the "sub-ABD" starting at an offset
62 * within an existing ABD. In linear buffers this is simple (set abd_buf of
63 * the new ABD to the starting point within the original raw buffer), but
64 * scattered ABDs are a little more complex. The new ABD makes a copy of the
65 * relevant abd_chunks pointers (but not the underlying data). However, to
66 * provide arbitrary rather than only chunk-aligned starting offsets, it also
67 * tracks an abd_offset field which represents the starting point of the data
68 * within the first chunk in abd_chunks. For both linear and scattered ABDs,
69 * creating an offset ABD marks the original ABD as the offset's parent, and the
70 * original ABD's abd_children refcount is incremented. This data allows us to
71 * ensure the root ABD isn't deleted before its children.
72 *
73 * Most consumers should never need to know what type of ABD they're using --
74 * the ABD public API ensures that it's possible to transparently switch from
75 * using a linear ABD to a scattered one when doing so would be beneficial.
76 *
77 * If you need to use the data within an ABD directly, if you know it's linear
78 * (because you allocated it) you can use abd_to_buf() to access the underlying
79 * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions
80 * which will allocate a raw buffer if necessary. Use the abd_return_buf*
81 * functions to return any raw buffers that are no longer necessary when you're
82 * done using them.
83 *
84 * There are a variety of ABD APIs that implement basic buffer operations:
85 * compare, copy, read, write, and fill with zeroes. If you need a custom
86 * function which progressively accesses the whole ABD, use the abd_iterate_*
87 * functions.
88 */
89
90 #include <sys/abd.h>
91 #include <sys/param.h>
92 #include <sys/zio.h>
93 #include <sys/zfs_context.h>
94 #include <sys/zfs_znode.h>
95
96 typedef struct abd_stats {
97 kstat_named_t abdstat_struct_size;
98 kstat_named_t abdstat_scatter_cnt;
99 kstat_named_t abdstat_scatter_data_size;
100 kstat_named_t abdstat_scatter_chunk_waste;
101 kstat_named_t abdstat_linear_cnt;
102 kstat_named_t abdstat_linear_data_size;
103 } abd_stats_t;
104
105 static abd_stats_t abd_stats = {
106 /* Amount of memory occupied by all of the abd_t struct allocations */
107 { "struct_size", KSTAT_DATA_UINT64 },
108 /*
109 * The number of scatter ABDs which are currently allocated, excluding
110 * ABDs which don't own their data (for instance the ones which were
111 * allocated through abd_get_offset()).
112 */
113 { "scatter_cnt", KSTAT_DATA_UINT64 },
114 /* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
115 { "scatter_data_size", KSTAT_DATA_UINT64 },
116 /*
117 * The amount of space wasted at the end of the last chunk across all
118 * scatter ABDs tracked by scatter_cnt.
119 */
120 { "scatter_chunk_waste", KSTAT_DATA_UINT64 },
121 /*
122 * The number of linear ABDs which are currently allocated, excluding
123 * ABDs which don't own their data (for instance the ones which were
124 * allocated through abd_get_offset() and abd_get_from_buf()). If an
125 * ABD takes ownership of its buf then it will become tracked.
126 */
127 { "linear_cnt", KSTAT_DATA_UINT64 },
128 /* Amount of data stored in all linear ABDs tracked by linear_cnt */
129 { "linear_data_size", KSTAT_DATA_UINT64 },
130 };
131
132 #define ABDSTAT(stat) (abd_stats.stat.value.ui64)
133 #define ABDSTAT_INCR(stat, val) \
134 atomic_add_64(&abd_stats.stat.value.ui64, (val))
135 #define ABDSTAT_BUMP(stat) ABDSTAT_INCR(stat, 1)
136 #define ABDSTAT_BUMPDOWN(stat) ABDSTAT_INCR(stat, -1)
137
138 /*
139 * It is possible to make all future ABDs be linear by setting this to B_FALSE.
140 * Otherwise, ABDs are allocated scattered by default unless the caller uses
141 * abd_alloc_linear().
142 */
143 boolean_t zfs_abd_scatter_enabled = B_TRUE;
144
145 /*
146 * zfs_abd_scatter_min_size is the minimum allocation size to use scatter
147 * ABD's. Smaller allocations will use linear ABD's which uses
148 * zio_[data_]buf_alloc().
149 *
150 * Scatter ABD's use at least one page each, so sub-page allocations waste
151 * some space when allocated as scatter (e.g. 2KB scatter allocation wastes
152 * half of each page). Using linear ABD's for small allocations means that
153 * they will be put on slabs which contain many allocations. This can
154 * improve memory efficiency, but it also makes it much harder for ARC
155 * evictions to actually free pages, because all the buffers on one slab need
156 * to be freed in order for the slab (and underlying pages) to be freed.
157 * Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's
158 * possible for them to actually waste more memory than scatter (one page per
159 * buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th).
160 *
161 * Spill blocks are typically 512B and are heavily used on systems running
162 * selinux with the default dnode size and the `xattr=sa` property set.
163 *
164 * By default we use linear allocations for 512B and 1KB, and scatter
165 * allocations for larger (1.5KB and up).
166 */
167 int zfs_abd_scatter_min_size = 512 * 3;
168
169 /*
170 * The size of the chunks ABD allocates. Because the sizes allocated from the
171 * kmem_cache can't change, this tunable can only be modified at boot. Changing
172 * it at runtime would cause ABD iteration to work incorrectly for ABDs which
173 * were allocated with the old size, so a safeguard has been put in place which
174 * will cause the machine to panic if you change it and try to access the data
175 * within a scattered ABD.
176 */
177 size_t zfs_abd_chunk_size = 4096;
178
179 #ifdef _KERNEL
180 extern vmem_t *zio_alloc_arena;
181 #endif
182
183 kmem_cache_t *abd_chunk_cache;
184 static kstat_t *abd_ksp;
185
186 extern inline boolean_t abd_is_linear(abd_t *abd);
187 extern inline void abd_copy(abd_t *dabd, abd_t *sabd, size_t size);
188 extern inline void abd_copy_from_buf(abd_t *abd, const void *buf, size_t size);
189 extern inline void abd_copy_to_buf(void* buf, abd_t *abd, size_t size);
190 extern inline int abd_cmp_buf(abd_t *abd, const void *buf, size_t size);
191 extern inline void abd_zero(abd_t *abd, size_t size);
192
193 static void *
abd_alloc_chunk()194 abd_alloc_chunk()
195 {
196 void *c = kmem_cache_alloc(abd_chunk_cache, KM_PUSHPAGE);
197 ASSERT3P(c, !=, NULL);
198 return (c);
199 }
200
201 static void
abd_free_chunk(void * c)202 abd_free_chunk(void *c)
203 {
204 kmem_cache_free(abd_chunk_cache, c);
205 }
206
207 void
abd_init(void)208 abd_init(void)
209 {
210 vmem_t *data_alloc_arena = NULL;
211
212 #ifdef _KERNEL
213 data_alloc_arena = zio_alloc_arena;
214 #endif
215
216 /*
217 * Since ABD chunks do not appear in crash dumps, we pass KMC_NOTOUCH
218 * so that no allocator metadata is stored with the buffers.
219 */
220 abd_chunk_cache = kmem_cache_create("abd_chunk", zfs_abd_chunk_size, 64,
221 NULL, NULL, NULL, NULL, data_alloc_arena, KMC_NOTOUCH);
222
223 abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
224 sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
225 if (abd_ksp != NULL) {
226 abd_ksp->ks_data = &abd_stats;
227 kstat_install(abd_ksp);
228 }
229 }
230
231 void
abd_fini(void)232 abd_fini(void)
233 {
234 if (abd_ksp != NULL) {
235 kstat_delete(abd_ksp);
236 abd_ksp = NULL;
237 }
238
239 kmem_cache_destroy(abd_chunk_cache);
240 abd_chunk_cache = NULL;
241 }
242
243 static inline size_t
abd_chunkcnt_for_bytes(size_t size)244 abd_chunkcnt_for_bytes(size_t size)
245 {
246 return (P2ROUNDUP(size, zfs_abd_chunk_size) / zfs_abd_chunk_size);
247 }
248
249 static inline size_t
abd_scatter_chunkcnt(abd_t * abd)250 abd_scatter_chunkcnt(abd_t *abd)
251 {
252 ASSERT(!abd_is_linear(abd));
253 return (abd_chunkcnt_for_bytes(
254 abd->abd_u.abd_scatter.abd_offset + abd->abd_size));
255 }
256
257 static inline void
abd_verify(abd_t * abd)258 abd_verify(abd_t *abd)
259 {
260 ASSERT3U(abd->abd_size, >, 0);
261 ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE);
262 ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR |
263 ABD_FLAG_OWNER | ABD_FLAG_META));
264 IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER));
265 IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER);
266 if (abd_is_linear(abd)) {
267 ASSERT3P(abd->abd_u.abd_linear.abd_buf, !=, NULL);
268 } else {
269 ASSERT3U(abd->abd_u.abd_scatter.abd_offset, <,
270 zfs_abd_chunk_size);
271 size_t n = abd_scatter_chunkcnt(abd);
272 for (int i = 0; i < n; i++) {
273 ASSERT3P(
274 abd->abd_u.abd_scatter.abd_chunks[i], !=, NULL);
275 }
276 }
277 }
278
279 static inline abd_t *
abd_alloc_struct(size_t chunkcnt)280 abd_alloc_struct(size_t chunkcnt)
281 {
282 size_t size = offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]);
283 abd_t *abd = kmem_alloc(size, KM_PUSHPAGE);
284 ASSERT3P(abd, !=, NULL);
285 ABDSTAT_INCR(abdstat_struct_size, size);
286
287 return (abd);
288 }
289
290 static inline void
abd_free_struct(abd_t * abd)291 abd_free_struct(abd_t *abd)
292 {
293 size_t chunkcnt = abd_is_linear(abd) ? 0 : abd_scatter_chunkcnt(abd);
294 int size = offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]);
295 kmem_free(abd, size);
296 ABDSTAT_INCR(abdstat_struct_size, -size);
297 }
298
299 /*
300 * Allocate an ABD, along with its own underlying data buffers. Use this if you
301 * don't care whether the ABD is linear or not.
302 */
303 abd_t *
abd_alloc(size_t size,boolean_t is_metadata)304 abd_alloc(size_t size, boolean_t is_metadata)
305 {
306 /* see the comment above zfs_abd_scatter_min_size */
307 if (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size)
308 return (abd_alloc_linear(size, is_metadata));
309
310 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
311
312 size_t n = abd_chunkcnt_for_bytes(size);
313 abd_t *abd = abd_alloc_struct(n);
314
315 abd->abd_flags = ABD_FLAG_OWNER;
316 if (is_metadata) {
317 abd->abd_flags |= ABD_FLAG_META;
318 }
319 abd->abd_size = size;
320 abd->abd_parent = NULL;
321 zfs_refcount_create(&abd->abd_children);
322
323 abd->abd_u.abd_scatter.abd_offset = 0;
324 abd->abd_u.abd_scatter.abd_chunk_size = zfs_abd_chunk_size;
325
326 for (int i = 0; i < n; i++) {
327 void *c = abd_alloc_chunk();
328 ASSERT3P(c, !=, NULL);
329 abd->abd_u.abd_scatter.abd_chunks[i] = c;
330 }
331
332 ABDSTAT_BUMP(abdstat_scatter_cnt);
333 ABDSTAT_INCR(abdstat_scatter_data_size, size);
334 ABDSTAT_INCR(abdstat_scatter_chunk_waste,
335 n * zfs_abd_chunk_size - size);
336
337 return (abd);
338 }
339
340 static void
abd_free_scatter(abd_t * abd)341 abd_free_scatter(abd_t *abd)
342 {
343 size_t n = abd_scatter_chunkcnt(abd);
344 for (int i = 0; i < n; i++) {
345 abd_free_chunk(abd->abd_u.abd_scatter.abd_chunks[i]);
346 }
347
348 zfs_refcount_destroy(&abd->abd_children);
349 ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
350 ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
351 ABDSTAT_INCR(abdstat_scatter_chunk_waste,
352 abd->abd_size - n * zfs_abd_chunk_size);
353
354 abd_free_struct(abd);
355 }
356
357 /*
358 * Allocate an ABD that must be linear, along with its own underlying data
359 * buffer. Only use this when it would be very annoying to write your ABD
360 * consumer with a scattered ABD.
361 */
362 abd_t *
abd_alloc_linear(size_t size,boolean_t is_metadata)363 abd_alloc_linear(size_t size, boolean_t is_metadata)
364 {
365 abd_t *abd = abd_alloc_struct(0);
366
367 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
368
369 abd->abd_flags = ABD_FLAG_LINEAR | ABD_FLAG_OWNER;
370 if (is_metadata) {
371 abd->abd_flags |= ABD_FLAG_META;
372 }
373 abd->abd_size = size;
374 abd->abd_parent = NULL;
375 zfs_refcount_create(&abd->abd_children);
376
377 if (is_metadata) {
378 abd->abd_u.abd_linear.abd_buf = zio_buf_alloc(size);
379 } else {
380 abd->abd_u.abd_linear.abd_buf = zio_data_buf_alloc(size);
381 }
382
383 ABDSTAT_BUMP(abdstat_linear_cnt);
384 ABDSTAT_INCR(abdstat_linear_data_size, size);
385
386 return (abd);
387 }
388
389 static void
abd_free_linear(abd_t * abd)390 abd_free_linear(abd_t *abd)
391 {
392 if (abd->abd_flags & ABD_FLAG_META) {
393 zio_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size);
394 } else {
395 zio_data_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size);
396 }
397
398 zfs_refcount_destroy(&abd->abd_children);
399 ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
400 ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
401
402 abd_free_struct(abd);
403 }
404
405 /*
406 * Free an ABD. Only use this on ABDs allocated with abd_alloc() or
407 * abd_alloc_linear().
408 */
409 void
abd_free(abd_t * abd)410 abd_free(abd_t *abd)
411 {
412 abd_verify(abd);
413 ASSERT3P(abd->abd_parent, ==, NULL);
414 ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
415 if (abd_is_linear(abd))
416 abd_free_linear(abd);
417 else
418 abd_free_scatter(abd);
419 }
420
421 /*
422 * Allocate an ABD of the same format (same metadata flag, same scatterize
423 * setting) as another ABD.
424 */
425 abd_t *
abd_alloc_sametype(abd_t * sabd,size_t size)426 abd_alloc_sametype(abd_t *sabd, size_t size)
427 {
428 boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0;
429 if (abd_is_linear(sabd)) {
430 return (abd_alloc_linear(size, is_metadata));
431 } else {
432 return (abd_alloc(size, is_metadata));
433 }
434 }
435
436 /*
437 * If we're going to use this ABD for doing I/O using the block layer, the
438 * consumer of the ABD data doesn't care if it's scattered or not, and we don't
439 * plan to store this ABD in memory for a long period of time, we should
440 * allocate the ABD type that requires the least data copying to do the I/O.
441 *
442 * Currently this is linear ABDs, however if ldi_strategy() can ever issue I/Os
443 * using a scatter/gather list we should switch to that and replace this call
444 * with vanilla abd_alloc().
445 */
446 abd_t *
abd_alloc_for_io(size_t size,boolean_t is_metadata)447 abd_alloc_for_io(size_t size, boolean_t is_metadata)
448 {
449 return (abd_alloc_linear(size, is_metadata));
450 }
451
452 /*
453 * Allocate a new ABD to point to offset off of sabd. It shares the underlying
454 * buffer data with sabd. Use abd_put() to free. sabd must not be freed while
455 * any derived ABDs exist.
456 */
457 /* ARGSUSED */
458 static inline abd_t *
abd_get_offset_impl(abd_t * sabd,size_t off,size_t size)459 abd_get_offset_impl(abd_t *sabd, size_t off, size_t size)
460 {
461 abd_t *abd;
462
463 abd_verify(sabd);
464 ASSERT3U(off, <=, sabd->abd_size);
465
466 if (abd_is_linear(sabd)) {
467 abd = abd_alloc_struct(0);
468
469 /*
470 * Even if this buf is filesystem metadata, we only track that
471 * if we own the underlying data buffer, which is not true in
472 * this case. Therefore, we don't ever use ABD_FLAG_META here.
473 */
474 abd->abd_flags = ABD_FLAG_LINEAR;
475
476 abd->abd_u.abd_linear.abd_buf =
477 (char *)sabd->abd_u.abd_linear.abd_buf + off;
478 } else {
479 size_t new_offset = sabd->abd_u.abd_scatter.abd_offset + off;
480 size_t chunkcnt = abd_scatter_chunkcnt(sabd) -
481 (new_offset / zfs_abd_chunk_size);
482
483 abd = abd_alloc_struct(chunkcnt);
484
485 /*
486 * Even if this buf is filesystem metadata, we only track that
487 * if we own the underlying data buffer, which is not true in
488 * this case. Therefore, we don't ever use ABD_FLAG_META here.
489 */
490 abd->abd_flags = 0;
491
492 abd->abd_u.abd_scatter.abd_offset =
493 new_offset % zfs_abd_chunk_size;
494 abd->abd_u.abd_scatter.abd_chunk_size = zfs_abd_chunk_size;
495
496 /* Copy the scatterlist starting at the correct offset */
497 (void) memcpy(&abd->abd_u.abd_scatter.abd_chunks,
498 &sabd->abd_u.abd_scatter.abd_chunks[new_offset /
499 zfs_abd_chunk_size],
500 chunkcnt * sizeof (void *));
501 }
502
503 abd->abd_size = sabd->abd_size - off;
504 abd->abd_parent = sabd;
505 zfs_refcount_create(&abd->abd_children);
506 (void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd);
507
508 return (abd);
509 }
510
511 abd_t *
abd_get_offset(abd_t * sabd,size_t off)512 abd_get_offset(abd_t *sabd, size_t off)
513 {
514 size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0;
515
516 VERIFY3U(size, >, 0);
517
518 return (abd_get_offset_impl(sabd, off, size));
519 }
520
521 abd_t *
abd_get_offset_size(abd_t * sabd,size_t off,size_t size)522 abd_get_offset_size(abd_t *sabd, size_t off, size_t size)
523 {
524 ASSERT3U(off + size, <=, sabd->abd_size);
525
526 return (abd_get_offset_impl(sabd, off, size));
527 }
528
529
530 /*
531 * Allocate a linear ABD structure for buf. You must free this with abd_put()
532 * since the resulting ABD doesn't own its own buffer.
533 */
534 abd_t *
abd_get_from_buf(void * buf,size_t size)535 abd_get_from_buf(void *buf, size_t size)
536 {
537 abd_t *abd = abd_alloc_struct(0);
538
539 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
540
541 /*
542 * Even if this buf is filesystem metadata, we only track that if we
543 * own the underlying data buffer, which is not true in this case.
544 * Therefore, we don't ever use ABD_FLAG_META here.
545 */
546 abd->abd_flags = ABD_FLAG_LINEAR;
547 abd->abd_size = size;
548 abd->abd_parent = NULL;
549 zfs_refcount_create(&abd->abd_children);
550
551 abd->abd_u.abd_linear.abd_buf = buf;
552
553 return (abd);
554 }
555
556 /*
557 * Free an ABD allocated from abd_get_offset() or abd_get_from_buf(). Will not
558 * free the underlying scatterlist or buffer.
559 */
560 void
abd_put(abd_t * abd)561 abd_put(abd_t *abd)
562 {
563 abd_verify(abd);
564 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
565
566 if (abd->abd_parent != NULL) {
567 (void) zfs_refcount_remove_many(&abd->abd_parent->abd_children,
568 abd->abd_size, abd);
569 }
570
571 zfs_refcount_destroy(&abd->abd_children);
572 abd_free_struct(abd);
573 }
574
575 /*
576 * Get the raw buffer associated with a linear ABD.
577 */
578 void *
abd_to_buf(abd_t * abd)579 abd_to_buf(abd_t *abd)
580 {
581 ASSERT(abd_is_linear(abd));
582 abd_verify(abd);
583 return (abd->abd_u.abd_linear.abd_buf);
584 }
585
586 /*
587 * Borrow a raw buffer from an ABD without copying the contents of the ABD
588 * into the buffer. If the ABD is scattered, this will allocate a raw buffer
589 * whose contents are undefined. To copy over the existing data in the ABD, use
590 * abd_borrow_buf_copy() instead.
591 */
592 void *
abd_borrow_buf(abd_t * abd,size_t n)593 abd_borrow_buf(abd_t *abd, size_t n)
594 {
595 void *buf;
596 abd_verify(abd);
597 ASSERT3U(abd->abd_size, >=, n);
598 if (abd_is_linear(abd)) {
599 buf = abd_to_buf(abd);
600 } else if ((abd->abd_flags & ABD_FLAG_META) != 0) {
601 buf = zio_buf_alloc(n);
602 } else {
603 buf = zio_data_buf_alloc(n);
604 }
605 (void) zfs_refcount_add_many(&abd->abd_children, n, buf);
606
607 return (buf);
608 }
609
610 void *
abd_borrow_buf_copy(abd_t * abd,size_t n)611 abd_borrow_buf_copy(abd_t *abd, size_t n)
612 {
613 void *buf = abd_borrow_buf(abd, n);
614 if (!abd_is_linear(abd)) {
615 abd_copy_to_buf(buf, abd, n);
616 }
617 return (buf);
618 }
619
620 /*
621 * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will
622 * not change the contents of the ABD and will ASSERT that you didn't modify
623 * the buffer since it was borrowed. If you want any changes you made to buf to
624 * be copied back to abd, use abd_return_buf_copy() instead.
625 */
626 void
abd_return_buf(abd_t * abd,void * buf,size_t n)627 abd_return_buf(abd_t *abd, void *buf, size_t n)
628 {
629 abd_verify(abd);
630 ASSERT3U(abd->abd_size, >=, n);
631 if (abd_is_linear(abd)) {
632 ASSERT3P(buf, ==, abd_to_buf(abd));
633 } else if ((abd->abd_flags & ABD_FLAG_META) != 0) {
634 ASSERT0(abd_cmp_buf(abd, buf, n));
635 zio_buf_free(buf, n);
636 } else {
637 ASSERT0(abd_cmp_buf(abd, buf, n));
638 zio_data_buf_free(buf, n);
639 }
640 (void) zfs_refcount_remove_many(&abd->abd_children, n, buf);
641 }
642
643 void
abd_return_buf_copy(abd_t * abd,void * buf,size_t n)644 abd_return_buf_copy(abd_t *abd, void *buf, size_t n)
645 {
646 if (!abd_is_linear(abd)) {
647 abd_copy_from_buf(abd, buf, n);
648 }
649 abd_return_buf(abd, buf, n);
650 }
651
652 /*
653 * Give this ABD ownership of the buffer that it's storing. Can only be used on
654 * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated
655 * with abd_alloc_linear() which subsequently released ownership of their buf
656 * with abd_release_ownership_of_buf().
657 */
658 void
abd_take_ownership_of_buf(abd_t * abd,boolean_t is_metadata)659 abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata)
660 {
661 ASSERT(abd_is_linear(abd));
662 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
663 abd_verify(abd);
664
665 abd->abd_flags |= ABD_FLAG_OWNER;
666 if (is_metadata) {
667 abd->abd_flags |= ABD_FLAG_META;
668 }
669
670 ABDSTAT_BUMP(abdstat_linear_cnt);
671 ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
672 }
673
674 void
abd_release_ownership_of_buf(abd_t * abd)675 abd_release_ownership_of_buf(abd_t *abd)
676 {
677 ASSERT(abd_is_linear(abd));
678 ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
679 abd_verify(abd);
680
681 abd->abd_flags &= ~ABD_FLAG_OWNER;
682 /* Disable this flag since we no longer own the data buffer */
683 abd->abd_flags &= ~ABD_FLAG_META;
684
685 ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
686 ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
687 }
688
689 struct abd_iter {
690 abd_t *iter_abd; /* ABD being iterated through */
691 size_t iter_pos; /* position (relative to abd_offset) */
692 void *iter_mapaddr; /* addr corresponding to iter_pos */
693 size_t iter_mapsize; /* length of data valid at mapaddr */
694 };
695
696 static inline size_t
abd_iter_scatter_chunk_offset(struct abd_iter * aiter)697 abd_iter_scatter_chunk_offset(struct abd_iter *aiter)
698 {
699 ASSERT(!abd_is_linear(aiter->iter_abd));
700 return ((aiter->iter_abd->abd_u.abd_scatter.abd_offset +
701 aiter->iter_pos) % zfs_abd_chunk_size);
702 }
703
704 static inline size_t
abd_iter_scatter_chunk_index(struct abd_iter * aiter)705 abd_iter_scatter_chunk_index(struct abd_iter *aiter)
706 {
707 ASSERT(!abd_is_linear(aiter->iter_abd));
708 return ((aiter->iter_abd->abd_u.abd_scatter.abd_offset +
709 aiter->iter_pos) / zfs_abd_chunk_size);
710 }
711
712 /*
713 * Initialize the abd_iter.
714 */
715 static void
abd_iter_init(struct abd_iter * aiter,abd_t * abd)716 abd_iter_init(struct abd_iter *aiter, abd_t *abd)
717 {
718 abd_verify(abd);
719 aiter->iter_abd = abd;
720 aiter->iter_pos = 0;
721 aiter->iter_mapaddr = NULL;
722 aiter->iter_mapsize = 0;
723 }
724
725 /*
726 * Advance the iterator by a certain amount. Cannot be called when a chunk is
727 * in use. This can be safely called when the aiter has already exhausted, in
728 * which case this does nothing.
729 */
730 static void
abd_iter_advance(struct abd_iter * aiter,size_t amount)731 abd_iter_advance(struct abd_iter *aiter, size_t amount)
732 {
733 ASSERT3P(aiter->iter_mapaddr, ==, NULL);
734 ASSERT0(aiter->iter_mapsize);
735
736 /* There's nothing left to advance to, so do nothing */
737 if (aiter->iter_pos == aiter->iter_abd->abd_size)
738 return;
739
740 aiter->iter_pos += amount;
741 }
742
743 /*
744 * Map the current chunk into aiter. This can be safely called when the aiter
745 * has already exhausted, in which case this does nothing.
746 */
747 static void
abd_iter_map(struct abd_iter * aiter)748 abd_iter_map(struct abd_iter *aiter)
749 {
750 void *paddr;
751 size_t offset = 0;
752
753 ASSERT3P(aiter->iter_mapaddr, ==, NULL);
754 ASSERT0(aiter->iter_mapsize);
755
756 /* Panic if someone has changed zfs_abd_chunk_size */
757 IMPLY(!abd_is_linear(aiter->iter_abd), zfs_abd_chunk_size ==
758 aiter->iter_abd->abd_u.abd_scatter.abd_chunk_size);
759
760 /* There's nothing left to iterate over, so do nothing */
761 if (aiter->iter_pos == aiter->iter_abd->abd_size)
762 return;
763
764 if (abd_is_linear(aiter->iter_abd)) {
765 offset = aiter->iter_pos;
766 aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
767 paddr = aiter->iter_abd->abd_u.abd_linear.abd_buf;
768 } else {
769 size_t index = abd_iter_scatter_chunk_index(aiter);
770 offset = abd_iter_scatter_chunk_offset(aiter);
771 aiter->iter_mapsize = MIN(zfs_abd_chunk_size - offset,
772 aiter->iter_abd->abd_size - aiter->iter_pos);
773 paddr = aiter->iter_abd->abd_u.abd_scatter.abd_chunks[index];
774 }
775 aiter->iter_mapaddr = (char *)paddr + offset;
776 }
777
778 /*
779 * Unmap the current chunk from aiter. This can be safely called when the aiter
780 * has already exhausted, in which case this does nothing.
781 */
782 static void
abd_iter_unmap(struct abd_iter * aiter)783 abd_iter_unmap(struct abd_iter *aiter)
784 {
785 /* There's nothing left to unmap, so do nothing */
786 if (aiter->iter_pos == aiter->iter_abd->abd_size)
787 return;
788
789 ASSERT3P(aiter->iter_mapaddr, !=, NULL);
790 ASSERT3U(aiter->iter_mapsize, >, 0);
791
792 aiter->iter_mapaddr = NULL;
793 aiter->iter_mapsize = 0;
794 }
795
796 int
abd_iterate_func(abd_t * abd,size_t off,size_t size,abd_iter_func_t * func,void * private)797 abd_iterate_func(abd_t *abd, size_t off, size_t size,
798 abd_iter_func_t *func, void *private)
799 {
800 int ret = 0;
801 struct abd_iter aiter;
802
803 abd_verify(abd);
804 ASSERT3U(off + size, <=, abd->abd_size);
805
806 abd_iter_init(&aiter, abd);
807 abd_iter_advance(&aiter, off);
808
809 while (size > 0) {
810 abd_iter_map(&aiter);
811
812 size_t len = MIN(aiter.iter_mapsize, size);
813 ASSERT3U(len, >, 0);
814
815 ret = func(aiter.iter_mapaddr, len, private);
816
817 abd_iter_unmap(&aiter);
818
819 if (ret != 0)
820 break;
821
822 size -= len;
823 abd_iter_advance(&aiter, len);
824 }
825
826 return (ret);
827 }
828
829 struct buf_arg {
830 void *arg_buf;
831 };
832
833 static int
abd_copy_to_buf_off_cb(void * buf,size_t size,void * private)834 abd_copy_to_buf_off_cb(void *buf, size_t size, void *private)
835 {
836 struct buf_arg *ba_ptr = private;
837
838 (void) memcpy(ba_ptr->arg_buf, buf, size);
839 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
840
841 return (0);
842 }
843
844 /*
845 * Copy abd to buf. (off is the offset in abd.)
846 */
847 void
abd_copy_to_buf_off(void * buf,abd_t * abd,size_t off,size_t size)848 abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size)
849 {
850 struct buf_arg ba_ptr = { buf };
851
852 (void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb,
853 &ba_ptr);
854 }
855
856 static int
abd_cmp_buf_off_cb(void * buf,size_t size,void * private)857 abd_cmp_buf_off_cb(void *buf, size_t size, void *private)
858 {
859 int ret;
860 struct buf_arg *ba_ptr = private;
861
862 ret = memcmp(buf, ba_ptr->arg_buf, size);
863 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
864
865 return (ret);
866 }
867
868 /*
869 * Compare the contents of abd to buf. (off is the offset in abd.)
870 */
871 int
abd_cmp_buf_off(abd_t * abd,const void * buf,size_t off,size_t size)872 abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
873 {
874 struct buf_arg ba_ptr = { (void *) buf };
875
876 return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr));
877 }
878
879 static int
abd_copy_from_buf_off_cb(void * buf,size_t size,void * private)880 abd_copy_from_buf_off_cb(void *buf, size_t size, void *private)
881 {
882 struct buf_arg *ba_ptr = private;
883
884 (void) memcpy(buf, ba_ptr->arg_buf, size);
885 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
886
887 return (0);
888 }
889
890 /*
891 * Copy from buf to abd. (off is the offset in abd.)
892 */
893 void
abd_copy_from_buf_off(abd_t * abd,const void * buf,size_t off,size_t size)894 abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
895 {
896 struct buf_arg ba_ptr = { (void *) buf };
897
898 (void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb,
899 &ba_ptr);
900 }
901
902 /*ARGSUSED*/
903 static int
abd_zero_off_cb(void * buf,size_t size,void * private)904 abd_zero_off_cb(void *buf, size_t size, void *private)
905 {
906 (void) memset(buf, 0, size);
907 return (0);
908 }
909
910 /*
911 * Zero out the abd from a particular offset to the end.
912 */
913 void
abd_zero_off(abd_t * abd,size_t off,size_t size)914 abd_zero_off(abd_t *abd, size_t off, size_t size)
915 {
916 (void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL);
917 }
918
919 /*
920 * Iterate over two ABDs and call func incrementally on the two ABDs' data in
921 * equal-sized chunks (passed to func as raw buffers). func could be called many
922 * times during this iteration.
923 */
924 int
abd_iterate_func2(abd_t * dabd,abd_t * sabd,size_t doff,size_t soff,size_t size,abd_iter_func2_t * func,void * private)925 abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff,
926 size_t size, abd_iter_func2_t *func, void *private)
927 {
928 int ret = 0;
929 struct abd_iter daiter, saiter;
930
931 abd_verify(dabd);
932 abd_verify(sabd);
933
934 ASSERT3U(doff + size, <=, dabd->abd_size);
935 ASSERT3U(soff + size, <=, sabd->abd_size);
936
937 abd_iter_init(&daiter, dabd);
938 abd_iter_init(&saiter, sabd);
939 abd_iter_advance(&daiter, doff);
940 abd_iter_advance(&saiter, soff);
941
942 while (size > 0) {
943 abd_iter_map(&daiter);
944 abd_iter_map(&saiter);
945
946 size_t dlen = MIN(daiter.iter_mapsize, size);
947 size_t slen = MIN(saiter.iter_mapsize, size);
948 size_t len = MIN(dlen, slen);
949 ASSERT(dlen > 0 || slen > 0);
950
951 ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len,
952 private);
953
954 abd_iter_unmap(&saiter);
955 abd_iter_unmap(&daiter);
956
957 if (ret != 0)
958 break;
959
960 size -= len;
961 abd_iter_advance(&daiter, len);
962 abd_iter_advance(&saiter, len);
963 }
964
965 return (ret);
966 }
967
968 /*ARGSUSED*/
969 static int
abd_copy_off_cb(void * dbuf,void * sbuf,size_t size,void * private)970 abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private)
971 {
972 (void) memcpy(dbuf, sbuf, size);
973 return (0);
974 }
975
976 /*
977 * Copy from sabd to dabd starting from soff and doff.
978 */
979 void
abd_copy_off(abd_t * dabd,abd_t * sabd,size_t doff,size_t soff,size_t size)980 abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size)
981 {
982 (void) abd_iterate_func2(dabd, sabd, doff, soff, size,
983 abd_copy_off_cb, NULL);
984 }
985
986 /*ARGSUSED*/
987 static int
abd_cmp_cb(void * bufa,void * bufb,size_t size,void * private)988 abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private)
989 {
990 return (memcmp(bufa, bufb, size));
991 }
992
993 /*
994 * Compares the first size bytes of two ABDs.
995 */
996 int
abd_cmp(abd_t * dabd,abd_t * sabd,size_t size)997 abd_cmp(abd_t *dabd, abd_t *sabd, size_t size)
998 {
999 return (abd_iterate_func2(dabd, sabd, 0, 0, size, abd_cmp_cb, NULL));
1000 }
1001
1002 /*
1003 * Iterate over code ABDs and a data ABD and call @func_raidz_gen.
1004 *
1005 * @cabds parity ABDs, must have equal size
1006 * @dabd data ABD. Can be NULL (in this case @dsize = 0)
1007 * @func_raidz_gen should be implemented so that its behaviour
1008 * is the same when taking linear and when taking scatter
1009 */
1010 void
abd_raidz_gen_iterate(abd_t ** cabds,abd_t * dabd,ssize_t csize,ssize_t dsize,const unsigned parity,void (* func_raidz_gen)(void **,const void *,size_t,size_t))1011 abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd,
1012 ssize_t csize, ssize_t dsize, const unsigned parity,
1013 void (*func_raidz_gen)(void **, const void *, size_t, size_t))
1014 {
1015 int i;
1016 ssize_t len, dlen;
1017 struct abd_iter caiters[3];
1018 struct abd_iter daiter = {0};
1019 void *caddrs[3];
1020
1021 ASSERT3U(parity, <=, 3);
1022
1023 for (i = 0; i < parity; i++)
1024 abd_iter_init(&caiters[i], cabds[i]);
1025
1026 if (dabd)
1027 abd_iter_init(&daiter, dabd);
1028
1029 ASSERT3S(dsize, >=, 0);
1030
1031 #ifdef _KERNEL
1032 kpreempt_disable();
1033 #endif
1034 while (csize > 0) {
1035 len = csize;
1036
1037 if (dabd && dsize > 0)
1038 abd_iter_map(&daiter);
1039
1040 for (i = 0; i < parity; i++) {
1041 abd_iter_map(&caiters[i]);
1042 caddrs[i] = caiters[i].iter_mapaddr;
1043 }
1044
1045 switch (parity) {
1046 case 3:
1047 len = MIN(caiters[2].iter_mapsize, len);
1048 /* falls through */
1049 case 2:
1050 len = MIN(caiters[1].iter_mapsize, len);
1051 /* falls through */
1052 case 1:
1053 len = MIN(caiters[0].iter_mapsize, len);
1054 }
1055
1056 /* must be progressive */
1057 ASSERT3S(len, >, 0);
1058
1059 if (dabd && dsize > 0) {
1060 /* this needs precise iter.length */
1061 len = MIN(daiter.iter_mapsize, len);
1062 len = MIN(dsize, len);
1063 dlen = len;
1064 } else
1065 dlen = 0;
1066
1067 /* must be progressive */
1068 ASSERT3S(len, >, 0);
1069 /*
1070 * The iterated function likely will not do well if each
1071 * segment except the last one is not multiple of 512 (raidz).
1072 */
1073 ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
1074
1075 func_raidz_gen(caddrs, daiter.iter_mapaddr, len, dlen);
1076
1077 for (i = parity-1; i >= 0; i--) {
1078 abd_iter_unmap(&caiters[i]);
1079 abd_iter_advance(&caiters[i], len);
1080 }
1081
1082 if (dabd && dsize > 0) {
1083 abd_iter_unmap(&daiter);
1084 abd_iter_advance(&daiter, dlen);
1085 dsize -= dlen;
1086 }
1087
1088 csize -= len;
1089
1090 ASSERT3S(dsize, >=, 0);
1091 ASSERT3S(csize, >=, 0);
1092 }
1093 #ifdef _KERNEL
1094 kpreempt_enable();
1095 #endif
1096 }
1097
1098 /*
1099 * Iterate over code ABDs and data reconstruction target ABDs and call
1100 * @func_raidz_rec. Function maps at most 6 pages atomically.
1101 *
1102 * @cabds parity ABDs, must have equal size
1103 * @tabds rec target ABDs, at most 3
1104 * @tsize size of data target columns
1105 * @func_raidz_rec expects syndrome data in target columns. Function
1106 * reconstructs data and overwrites target columns.
1107 */
1108 void
abd_raidz_rec_iterate(abd_t ** cabds,abd_t ** tabds,ssize_t tsize,const unsigned parity,void (* func_raidz_rec)(void ** t,const size_t tsize,void ** c,const unsigned * mul),const unsigned * mul)1109 abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds,
1110 ssize_t tsize, const unsigned parity,
1111 void (*func_raidz_rec)(void **t, const size_t tsize, void **c,
1112 const unsigned *mul),
1113 const unsigned *mul)
1114 {
1115 int i;
1116 ssize_t len;
1117 struct abd_iter citers[3];
1118 struct abd_iter xiters[3];
1119 void *caddrs[3], *xaddrs[3];
1120
1121 ASSERT3U(parity, <=, 3);
1122
1123 for (i = 0; i < parity; i++) {
1124 abd_iter_init(&citers[i], cabds[i]);
1125 abd_iter_init(&xiters[i], tabds[i]);
1126 }
1127
1128 #ifdef _KERNEL
1129 kpreempt_disable();
1130 #endif
1131 while (tsize > 0) {
1132
1133 for (i = 0; i < parity; i++) {
1134 abd_iter_map(&citers[i]);
1135 abd_iter_map(&xiters[i]);
1136 caddrs[i] = citers[i].iter_mapaddr;
1137 xaddrs[i] = xiters[i].iter_mapaddr;
1138 }
1139
1140 len = tsize;
1141 switch (parity) {
1142 case 3:
1143 len = MIN(xiters[2].iter_mapsize, len);
1144 len = MIN(citers[2].iter_mapsize, len);
1145 /* falls through */
1146 case 2:
1147 len = MIN(xiters[1].iter_mapsize, len);
1148 len = MIN(citers[1].iter_mapsize, len);
1149 /* falls through */
1150 case 1:
1151 len = MIN(xiters[0].iter_mapsize, len);
1152 len = MIN(citers[0].iter_mapsize, len);
1153 }
1154 /* must be progressive */
1155 ASSERT3S(len, >, 0);
1156 /*
1157 * The iterated function likely will not do well if each
1158 * segment except the last one is not multiple of 512 (raidz).
1159 */
1160 ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
1161
1162 func_raidz_rec(xaddrs, len, caddrs, mul);
1163
1164 for (i = parity-1; i >= 0; i--) {
1165 abd_iter_unmap(&xiters[i]);
1166 abd_iter_unmap(&citers[i]);
1167 abd_iter_advance(&xiters[i], len);
1168 abd_iter_advance(&citers[i], len);
1169 }
1170
1171 tsize -= len;
1172 ASSERT3S(tsize, >=, 0);
1173 }
1174 #ifdef _KERNEL
1175 kpreempt_enable();
1176 #endif
1177 }
1178