xref: /illumos-gate/usr/src/uts/common/fs/vnode.c (revision d6bb6a8465e557cb946ef49d56ed3202f6218652)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 
40 #pragma ident	"%Z%%M%	%I%	%E% SMI"
41 
42 #include <sys/types.h>
43 #include <sys/param.h>
44 #include <sys/t_lock.h>
45 #include <sys/errno.h>
46 #include <sys/cred.h>
47 #include <sys/user.h>
48 #include <sys/uio.h>
49 #include <sys/file.h>
50 #include <sys/pathname.h>
51 #include <sys/vfs.h>
52 #include <sys/vnode.h>
53 #include <sys/rwstlock.h>
54 #include <sys/fem.h>
55 #include <sys/stat.h>
56 #include <sys/mode.h>
57 #include <sys/conf.h>
58 #include <sys/sysmacros.h>
59 #include <sys/cmn_err.h>
60 #include <sys/systm.h>
61 #include <sys/kmem.h>
62 #include <sys/debug.h>
63 #include <c2/audit.h>
64 #include <sys/acl.h>
65 #include <sys/nbmlock.h>
66 #include <sys/fcntl.h>
67 #include <fs/fs_subr.h>
68 
69 /* Determine if this vnode is a file that is read-only */
70 #define	ISROFILE(vp)	\
71 	((vp)->v_type != VCHR && (vp)->v_type != VBLK && \
72 	    (vp)->v_type != VFIFO && vn_is_readonly(vp))
73 
74 /* Tunable via /etc/system; used only by admin/install */
75 int nfs_global_client_only;
76 
77 /*
78  * Array of vopstats_t for per-FS-type vopstats.  This array has the same
79  * number of entries as and parallel to the vfssw table.  (Arguably, it could
80  * be part of the vfssw table.)  Once it's initialized, it's accessed using
81  * the same fstype index that is used to index into the vfssw table.
82  */
83 vopstats_t **vopstats_fstype;
84 
85 /* vopstats initialization template used for fast initialization via bcopy() */
86 static vopstats_t *vs_templatep;
87 
88 /* Kmem cache handle for vsk_anchor_t allocations */
89 kmem_cache_t *vsk_anchor_cache;
90 
91 /*
92  * Root of AVL tree for the kstats associated with vopstats.  Lock protects
93  * updates to vsktat_tree.
94  */
95 avl_tree_t	vskstat_tree;
96 kmutex_t	vskstat_tree_lock;
97 
98 /* Global variable which enables/disables the vopstats collection */
99 int vopstats_enabled = 1;
100 
101 /*
102  * The following is the common set of actions needed to update the
103  * vopstats structure from a vnode op.  Both VOPSTATS_UPDATE() and
104  * VOPSTATS_UPDATE_IO() do almost the same thing, except for the
105  * recording of the bytes transferred.  Since the code is similar
106  * but small, it is nearly a duplicate.  Consequently any changes
107  * to one may need to be reflected in the other.
108  * Rundown of the variables:
109  * vp - Pointer to the vnode
110  * counter - Partial name structure member to update in vopstats for counts
111  * bytecounter - Partial name structure member to update in vopstats for bytes
112  * bytesval - Value to update in vopstats for bytes
113  * fstype - Index into vsanchor_fstype[], same as index into vfssw[]
114  * vsp - Pointer to vopstats structure (either in vfs or vsanchor_fstype[i])
115  */
116 
117 #define	VOPSTATS_UPDATE(vp, counter) {					\
118 	vfs_t *vfsp = (vp)->v_vfsp;					\
119 	if (vfsp && (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \
120 		vopstats_t *vsp = &vfsp->vfs_vopstats;			\
121 		vsp->counter.value.ui64++;				\
122 		if ((vsp = vfsp->vfs_fstypevsp) != NULL) {		\
123 			vsp->counter.value.ui64++;			\
124 		}							\
125 	}								\
126 }
127 
128 #define	VOPSTATS_UPDATE_IO(vp, counter, bytecounter, bytesval) {	\
129 	vfs_t *vfsp = (vp)->v_vfsp;					\
130 	if (vfsp && (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \
131 		vopstats_t *vsp = &vfsp->vfs_vopstats;			\
132 		vsp->counter.value.ui64++;				\
133 		vsp->bytecounter.value.ui64 += bytesval;		\
134 		if ((vsp = vfsp->vfs_fstypevsp) != NULL) {		\
135 			vsp->counter.value.ui64++;			\
136 			vsp->bytecounter.value.ui64 += bytesval;	\
137 		}							\
138 	}								\
139 }
140 
141 /*
142  * Convert stat(2) formats to vnode types and vice versa.  (Knows about
143  * numerical order of S_IFMT and vnode types.)
144  */
145 enum vtype iftovt_tab[] = {
146 	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
147 	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
148 };
149 
150 ushort_t vttoif_tab[] = {
151 	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO,
152 	S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0
153 };
154 
155 /*
156  * The system vnode cache.
157  */
158 
159 kmem_cache_t *vn_cache;
160 
161 
162 /*
163  * Vnode operations vector.
164  */
165 
166 static const fs_operation_trans_def_t vn_ops_table[] = {
167 	VOPNAME_OPEN, offsetof(struct vnodeops, vop_open),
168 	    fs_nosys, fs_nosys,
169 
170 	VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close),
171 	    fs_nosys, fs_nosys,
172 
173 	VOPNAME_READ, offsetof(struct vnodeops, vop_read),
174 	    fs_nosys, fs_nosys,
175 
176 	VOPNAME_WRITE, offsetof(struct vnodeops, vop_write),
177 	    fs_nosys, fs_nosys,
178 
179 	VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl),
180 	    fs_nosys, fs_nosys,
181 
182 	VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl),
183 	    fs_setfl, fs_nosys,
184 
185 	VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr),
186 	    fs_nosys, fs_nosys,
187 
188 	VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr),
189 	    fs_nosys, fs_nosys,
190 
191 	VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access),
192 	    fs_nosys, fs_nosys,
193 
194 	VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup),
195 	    fs_nosys, fs_nosys,
196 
197 	VOPNAME_CREATE, offsetof(struct vnodeops, vop_create),
198 	    fs_nosys, fs_nosys,
199 
200 	VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove),
201 	    fs_nosys, fs_nosys,
202 
203 	VOPNAME_LINK, offsetof(struct vnodeops, vop_link),
204 	    fs_nosys, fs_nosys,
205 
206 	VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename),
207 	    fs_nosys, fs_nosys,
208 
209 	VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir),
210 	    fs_nosys, fs_nosys,
211 
212 	VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir),
213 	    fs_nosys, fs_nosys,
214 
215 	VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir),
216 	    fs_nosys, fs_nosys,
217 
218 	VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink),
219 	    fs_nosys, fs_nosys,
220 
221 	VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink),
222 	    fs_nosys, fs_nosys,
223 
224 	VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync),
225 	    fs_nosys, fs_nosys,
226 
227 	VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive),
228 	    fs_nosys, fs_nosys,
229 
230 	VOPNAME_FID, offsetof(struct vnodeops, vop_fid),
231 	    fs_nosys, fs_nosys,
232 
233 	VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock),
234 	    fs_rwlock, fs_rwlock,
235 
236 	VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock),
237 	    (fs_generic_func_p) fs_rwunlock,
238 	    (fs_generic_func_p) fs_rwunlock,	/* no errors allowed */
239 
240 	VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek),
241 	    fs_nosys, fs_nosys,
242 
243 	VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp),
244 	    fs_cmp, fs_cmp,		/* no errors allowed */
245 
246 	VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock),
247 	    fs_frlock, fs_nosys,
248 
249 	VOPNAME_SPACE, offsetof(struct vnodeops, vop_space),
250 	    fs_nosys, fs_nosys,
251 
252 	VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp),
253 	    fs_nosys, fs_nosys,
254 
255 	VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage),
256 	    fs_nosys, fs_nosys,
257 
258 	VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage),
259 	    fs_nosys, fs_nosys,
260 
261 	VOPNAME_MAP, offsetof(struct vnodeops, vop_map),
262 	    (fs_generic_func_p) fs_nosys_map,
263 	    (fs_generic_func_p) fs_nosys_map,
264 
265 	VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap),
266 	    (fs_generic_func_p) fs_nosys_addmap,
267 	    (fs_generic_func_p) fs_nosys_addmap,
268 
269 	VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap),
270 	    fs_nosys, fs_nosys,
271 
272 	VOPNAME_POLL, offsetof(struct vnodeops, vop_poll),
273 	    (fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll,
274 
275 	VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump),
276 	    fs_nosys, fs_nosys,
277 
278 	VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf),
279 	    fs_pathconf, fs_nosys,
280 
281 	VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio),
282 	    fs_nosys, fs_nosys,
283 
284 	VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl),
285 	    fs_nosys, fs_nosys,
286 
287 	VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose),
288 	    (fs_generic_func_p) fs_dispose,
289 	    (fs_generic_func_p) fs_nodispose,
290 
291 	VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr),
292 	    fs_nosys, fs_nosys,
293 
294 	VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr),
295 	    fs_fab_acl, fs_nosys,
296 
297 	VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock),
298 	    fs_shrlock, fs_nosys,
299 
300 	VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent),
301 	    (fs_generic_func_p) fs_vnevent_nosupport,
302 	    (fs_generic_func_p) fs_vnevent_nosupport,
303 
304 	NULL, 0, NULL, NULL
305 };
306 
307 /*
308  * Used by the AVL routines to compare two vsk_anchor_t structures in the tree.
309  * We use the f_fsid reported by VFS_STATVFS() since we use that for the
310  * kstat name.
311  */
312 static int
313 vska_compar(const void *n1, const void *n2)
314 {
315 	int ret;
316 	ulong_t p1 = ((vsk_anchor_t *)n1)->vsk_fsid;
317 	ulong_t p2 = ((vsk_anchor_t *)n2)->vsk_fsid;
318 
319 	if (p1 < p2) {
320 		ret = -1;
321 	} else if (p1 > p2) {
322 		ret = 1;
323 	} else {
324 		ret = 0;
325 	}
326 
327 	return (ret);
328 }
329 
330 /*
331  * Used to create a single template which will be bcopy()ed to a newly
332  * allocated vsanchor_combo_t structure in new_vsanchor(), below.
333  */
334 static vopstats_t *
335 create_vopstats_template()
336 {
337 	vopstats_t		*vsp;
338 
339 	vsp = kmem_alloc(sizeof (vopstats_t), KM_SLEEP);
340 	bzero(vsp, sizeof (*vsp));	/* Start fresh */
341 
342 	/* VOP_OPEN */
343 	kstat_named_init(&vsp->nopen, "nopen", KSTAT_DATA_UINT64);
344 	/* VOP_CLOSE */
345 	kstat_named_init(&vsp->nclose, "nclose", KSTAT_DATA_UINT64);
346 	/* VOP_READ I/O */
347 	kstat_named_init(&vsp->nread, "nread", KSTAT_DATA_UINT64);
348 	kstat_named_init(&vsp->read_bytes, "read_bytes", KSTAT_DATA_UINT64);
349 	/* VOP_WRITE I/O */
350 	kstat_named_init(&vsp->nwrite, "nwrite", KSTAT_DATA_UINT64);
351 	kstat_named_init(&vsp->write_bytes, "write_bytes", KSTAT_DATA_UINT64);
352 	/* VOP_IOCTL */
353 	kstat_named_init(&vsp->nioctl, "nioctl", KSTAT_DATA_UINT64);
354 	/* VOP_SETFL */
355 	kstat_named_init(&vsp->nsetfl, "nsetfl", KSTAT_DATA_UINT64);
356 	/* VOP_GETATTR */
357 	kstat_named_init(&vsp->ngetattr, "ngetattr", KSTAT_DATA_UINT64);
358 	/* VOP_SETATTR */
359 	kstat_named_init(&vsp->nsetattr, "nsetattr", KSTAT_DATA_UINT64);
360 	/* VOP_ACCESS */
361 	kstat_named_init(&vsp->naccess, "naccess", KSTAT_DATA_UINT64);
362 	/* VOP_LOOKUP */
363 	kstat_named_init(&vsp->nlookup, "nlookup", KSTAT_DATA_UINT64);
364 	/* VOP_CREATE */
365 	kstat_named_init(&vsp->ncreate, "ncreate", KSTAT_DATA_UINT64);
366 	/* VOP_REMOVE */
367 	kstat_named_init(&vsp->nremove, "nremove", KSTAT_DATA_UINT64);
368 	/* VOP_LINK */
369 	kstat_named_init(&vsp->nlink, "nlink", KSTAT_DATA_UINT64);
370 	/* VOP_RENAME */
371 	kstat_named_init(&vsp->nrename, "nrename", KSTAT_DATA_UINT64);
372 	/* VOP_MKDIR */
373 	kstat_named_init(&vsp->nmkdir, "nmkdir", KSTAT_DATA_UINT64);
374 	/* VOP_RMDIR */
375 	kstat_named_init(&vsp->nrmdir, "nrmdir", KSTAT_DATA_UINT64);
376 	/* VOP_READDIR I/O */
377 	kstat_named_init(&vsp->nreaddir, "nreaddir", KSTAT_DATA_UINT64);
378 	kstat_named_init(&vsp->readdir_bytes, "readdir_bytes",
379 	    KSTAT_DATA_UINT64);
380 	/* VOP_SYMLINK */
381 	kstat_named_init(&vsp->nsymlink, "nsymlink", KSTAT_DATA_UINT64);
382 	/* VOP_READLINK */
383 	kstat_named_init(&vsp->nreadlink, "nreadlink", KSTAT_DATA_UINT64);
384 	/* VOP_FSYNC */
385 	kstat_named_init(&vsp->nfsync, "nfsync", KSTAT_DATA_UINT64);
386 	/* VOP_INACTIVE */
387 	kstat_named_init(&vsp->ninactive, "ninactive", KSTAT_DATA_UINT64);
388 	/* VOP_FID */
389 	kstat_named_init(&vsp->nfid, "nfid", KSTAT_DATA_UINT64);
390 	/* VOP_RWLOCK */
391 	kstat_named_init(&vsp->nrwlock, "nrwlock", KSTAT_DATA_UINT64);
392 	/* VOP_RWUNLOCK */
393 	kstat_named_init(&vsp->nrwunlock, "nrwunlock", KSTAT_DATA_UINT64);
394 	/* VOP_SEEK */
395 	kstat_named_init(&vsp->nseek, "nseek", KSTAT_DATA_UINT64);
396 	/* VOP_CMP */
397 	kstat_named_init(&vsp->ncmp, "ncmp", KSTAT_DATA_UINT64);
398 	/* VOP_FRLOCK */
399 	kstat_named_init(&vsp->nfrlock, "nfrlock", KSTAT_DATA_UINT64);
400 	/* VOP_SPACE */
401 	kstat_named_init(&vsp->nspace, "nspace", KSTAT_DATA_UINT64);
402 	/* VOP_REALVP */
403 	kstat_named_init(&vsp->nrealvp, "nrealvp", KSTAT_DATA_UINT64);
404 	/* VOP_GETPAGE */
405 	kstat_named_init(&vsp->ngetpage, "ngetpage", KSTAT_DATA_UINT64);
406 	/* VOP_PUTPAGE */
407 	kstat_named_init(&vsp->nputpage, "nputpage", KSTAT_DATA_UINT64);
408 	/* VOP_MAP */
409 	kstat_named_init(&vsp->nmap, "nmap", KSTAT_DATA_UINT64);
410 	/* VOP_ADDMAP */
411 	kstat_named_init(&vsp->naddmap, "naddmap", KSTAT_DATA_UINT64);
412 	/* VOP_DELMAP */
413 	kstat_named_init(&vsp->ndelmap, "ndelmap", KSTAT_DATA_UINT64);
414 	/* VOP_POLL */
415 	kstat_named_init(&vsp->npoll, "npoll", KSTAT_DATA_UINT64);
416 	/* VOP_DUMP */
417 	kstat_named_init(&vsp->ndump, "ndump", KSTAT_DATA_UINT64);
418 	/* VOP_PATHCONF */
419 	kstat_named_init(&vsp->npathconf, "npathconf", KSTAT_DATA_UINT64);
420 	/* VOP_PAGEIO */
421 	kstat_named_init(&vsp->npageio, "npageio", KSTAT_DATA_UINT64);
422 	/* VOP_DUMPCTL */
423 	kstat_named_init(&vsp->ndumpctl, "ndumpctl", KSTAT_DATA_UINT64);
424 	/* VOP_DISPOSE */
425 	kstat_named_init(&vsp->ndispose, "ndispose", KSTAT_DATA_UINT64);
426 	/* VOP_SETSECATTR */
427 	kstat_named_init(&vsp->nsetsecattr, "nsetsecattr", KSTAT_DATA_UINT64);
428 	/* VOP_GETSECATTR */
429 	kstat_named_init(&vsp->ngetsecattr, "ngetsecattr", KSTAT_DATA_UINT64);
430 	/* VOP_SHRLOCK */
431 	kstat_named_init(&vsp->nshrlock, "nshrlock", KSTAT_DATA_UINT64);
432 	/* VOP_VNEVENT */
433 	kstat_named_init(&vsp->nvnevent, "nvnevent", KSTAT_DATA_UINT64);
434 
435 	return (vsp);
436 }
437 
438 /*
439  * Creates a kstat structure associated with a vopstats structure.
440  */
441 kstat_t *
442 new_vskstat(char *ksname, vopstats_t *vsp)
443 {
444 	kstat_t		*ksp;
445 
446 	if (!vopstats_enabled) {
447 		return (NULL);
448 	}
449 
450 	ksp = kstat_create("unix", 0, ksname, "misc", KSTAT_TYPE_NAMED,
451 	    sizeof (vopstats_t)/sizeof (kstat_named_t),
452 	    KSTAT_FLAG_VIRTUAL|KSTAT_FLAG_WRITABLE);
453 	if (ksp) {
454 		ksp->ks_data = vsp;
455 		kstat_install(ksp);
456 	}
457 
458 	return (ksp);
459 }
460 
461 /*
462  * Called from vfsinit() to initialize the support mechanisms for vopstats
463  */
464 void
465 vopstats_startup()
466 {
467 	if (!vopstats_enabled)
468 		return;
469 
470 	/*
471 	 * Creates the AVL tree which holds per-vfs vopstat anchors.  This
472 	 * is necessary since we need to check if a kstat exists before we
473 	 * attempt to create it.  Also, initialize its lock.
474 	 */
475 	avl_create(&vskstat_tree, vska_compar, sizeof (vsk_anchor_t),
476 	    offsetof(vsk_anchor_t, vsk_node));
477 	mutex_init(&vskstat_tree_lock, NULL, MUTEX_DEFAULT, NULL);
478 
479 	vsk_anchor_cache = kmem_cache_create("vsk_anchor_cache",
480 	    sizeof (vsk_anchor_t), sizeof (uintptr_t), NULL, NULL, NULL,
481 	    NULL, NULL, 0);
482 
483 	/*
484 	 * Set up the array of pointers for the vopstats-by-FS-type.
485 	 * The entries will be allocated/initialized as each file system
486 	 * goes through modload/mod_installfs.
487 	 */
488 	vopstats_fstype = (vopstats_t **)kmem_zalloc(
489 	    (sizeof (vopstats_t *) * nfstype), KM_SLEEP);
490 
491 	/* Set up the global vopstats initialization template */
492 	vs_templatep = create_vopstats_template();
493 }
494 
495 /*
496  * We need to have the all of the counters zeroed.
497  * The initialization of the vopstats_t includes on the order of
498  * 50 calls to kstat_named_init().  Rather that do that on every call,
499  * we do it once in a template (vs_templatep) then bcopy it over.
500  */
501 void
502 initialize_vopstats(vopstats_t *vsp)
503 {
504 	if (vsp == NULL)
505 		return;
506 
507 	bcopy(vs_templatep, vsp, sizeof (vopstats_t));
508 }
509 
510 /*
511  * If possible, determine which vopstats by fstype to use and
512  * return a pointer to the caller.
513  */
514 vopstats_t *
515 get_fstype_vopstats(vfs_t *vfsp, struct vfssw *vswp)
516 {
517 	int		fstype = 0;	/* Index into vfssw[] */
518 	vopstats_t	*vsp = NULL;
519 
520 	if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 ||
521 	    !vopstats_enabled)
522 		return (NULL);
523 	/*
524 	 * Set up the fstype.  We go to so much trouble because all versions
525 	 * of NFS use the same fstype in their vfs even though they have
526 	 * distinct entries in the vfssw[] table.
527 	 * NOTE: A special vfs (e.g., EIO_vfs) may not have an entry.
528 	 */
529 	if (vswp) {
530 		fstype = vswp - vfssw;	/* Gets us the index */
531 	} else {
532 		fstype = vfsp->vfs_fstype;
533 	}
534 
535 	/*
536 	 * Point to the per-fstype vopstats. The only valid values are
537 	 * non-zero positive values less than the number of vfssw[] table
538 	 * entries.
539 	 */
540 	if (fstype > 0 && fstype < nfstype) {
541 		vsp = vopstats_fstype[fstype];
542 	}
543 
544 	return (vsp);
545 }
546 
547 /*
548  * Generate a kstat name, create the kstat structure, and allocate a
549  * vsk_anchor_t to hold it together.  Return the pointer to the vsk_anchor_t
550  * to the caller.  This must only be called from a mount.
551  */
552 vsk_anchor_t *
553 get_vskstat_anchor(vfs_t *vfsp)
554 {
555 	char		kstatstr[KSTAT_STRLEN]; /* kstat name for vopstats */
556 	statvfs64_t	statvfsbuf;		/* Needed to find f_fsid */
557 	vsk_anchor_t	*vskp = NULL;		/* vfs <--> kstat anchor */
558 	kstat_t		*ksp;			/* Ptr to new kstat */
559 	avl_index_t	where;			/* Location in the AVL tree */
560 
561 	if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 ||
562 	    !vopstats_enabled)
563 		return (NULL);
564 
565 	/* Need to get the fsid to build a kstat name */
566 	if (VFS_STATVFS(vfsp, &statvfsbuf) == 0) {
567 		/* Create a name for our kstats based on fsid */
568 		(void) snprintf(kstatstr, KSTAT_STRLEN, "%s%lx",
569 		    VOPSTATS_STR, statvfsbuf.f_fsid);
570 
571 		/* Allocate and initialize the vsk_anchor_t */
572 		vskp = kmem_cache_alloc(vsk_anchor_cache, KM_SLEEP);
573 		bzero(vskp, sizeof (*vskp));
574 		vskp->vsk_fsid = statvfsbuf.f_fsid;
575 
576 		mutex_enter(&vskstat_tree_lock);
577 		if (avl_find(&vskstat_tree, vskp, &where) == NULL) {
578 			avl_insert(&vskstat_tree, vskp, where);
579 			mutex_exit(&vskstat_tree_lock);
580 
581 			/*
582 			 * Now that we've got the anchor in the AVL
583 			 * tree, we can create the kstat.
584 			 */
585 			ksp = new_vskstat(kstatstr, &vfsp->vfs_vopstats);
586 			if (ksp) {
587 				vskp->vsk_ksp = ksp;
588 			}
589 		} else {
590 			/* Oops, found one! Release memory and lock. */
591 			mutex_exit(&vskstat_tree_lock);
592 			kmem_cache_free(vsk_anchor_cache, vskp);
593 			vskp = NULL;
594 		}
595 	}
596 	return (vskp);
597 }
598 
599 /*
600  * We're in the process of tearing down the vfs and need to cleanup
601  * the data structures associated with the vopstats. Must only be called
602  * from dounmount().
603  */
604 void
605 teardown_vopstats(vfs_t *vfsp)
606 {
607 	vsk_anchor_t	*vskap;
608 	avl_index_t	where;
609 
610 	if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 ||
611 	    !vopstats_enabled)
612 		return;
613 
614 	/* This is a safe check since VFS_STATS must be set (see above) */
615 	if ((vskap = vfsp->vfs_vskap) == NULL)
616 		return;
617 
618 	/* Whack the pointer right away */
619 	vfsp->vfs_vskap = NULL;
620 
621 	/* Lock the tree, remove the node, and delete the kstat */
622 	mutex_enter(&vskstat_tree_lock);
623 	if (avl_find(&vskstat_tree, vskap, &where)) {
624 		avl_remove(&vskstat_tree, vskap);
625 	}
626 
627 	if (vskap->vsk_ksp) {
628 		kstat_delete(vskap->vsk_ksp);
629 	}
630 	mutex_exit(&vskstat_tree_lock);
631 
632 	kmem_cache_free(vsk_anchor_cache, vskap);
633 }
634 
635 /*
636  * Read or write a vnode.  Called from kernel code.
637  */
638 int
639 vn_rdwr(
640 	enum uio_rw rw,
641 	struct vnode *vp,
642 	caddr_t base,
643 	ssize_t len,
644 	offset_t offset,
645 	enum uio_seg seg,
646 	int ioflag,
647 	rlim64_t ulimit,	/* meaningful only if rw is UIO_WRITE */
648 	cred_t *cr,
649 	ssize_t *residp)
650 {
651 	struct uio uio;
652 	struct iovec iov;
653 	int error;
654 	int in_crit = 0;
655 
656 	if (rw == UIO_WRITE && ISROFILE(vp))
657 		return (EROFS);
658 
659 	if (len < 0)
660 		return (EIO);
661 
662 	iov.iov_base = base;
663 	iov.iov_len = len;
664 	uio.uio_iov = &iov;
665 	uio.uio_iovcnt = 1;
666 	uio.uio_loffset = offset;
667 	uio.uio_segflg = (short)seg;
668 	uio.uio_resid = len;
669 	uio.uio_llimit = ulimit;
670 
671 	/*
672 	 * We have to enter the critical region before calling VOP_RWLOCK
673 	 * to avoid a deadlock with ufs.
674 	 */
675 	if (nbl_need_check(vp)) {
676 		int svmand;
677 
678 		nbl_start_crit(vp, RW_READER);
679 		in_crit = 1;
680 		error = nbl_svmand(vp, cr, &svmand);
681 		if (error != 0)
682 			goto done;
683 		if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ,
684 		    uio.uio_offset, uio.uio_resid, svmand)) {
685 			error = EACCES;
686 			goto done;
687 		}
688 	}
689 
690 	(void) VOP_RWLOCK(vp,
691 		rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL);
692 	if (rw == UIO_WRITE) {
693 		uio.uio_fmode = FWRITE;
694 		uio.uio_extflg = UIO_COPY_DEFAULT;
695 		error = VOP_WRITE(vp, &uio, ioflag, cr, NULL);
696 	} else {
697 		uio.uio_fmode = FREAD;
698 		uio.uio_extflg = UIO_COPY_CACHED;
699 		error = VOP_READ(vp, &uio, ioflag, cr, NULL);
700 	}
701 	VOP_RWUNLOCK(vp, rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE,
702 									NULL);
703 	if (residp)
704 		*residp = uio.uio_resid;
705 	else if (uio.uio_resid)
706 		error = EIO;
707 
708 done:
709 	if (in_crit)
710 		nbl_end_crit(vp);
711 	return (error);
712 }
713 
714 /*
715  * Release a vnode.  Call VOP_INACTIVE on last reference or
716  * decrement reference count.
717  *
718  * To avoid race conditions, the v_count is left at 1 for
719  * the call to VOP_INACTIVE. This prevents another thread
720  * from reclaiming and releasing the vnode *before* the
721  * VOP_INACTIVE routine has a chance to destroy the vnode.
722  * We can't have more than 1 thread calling VOP_INACTIVE
723  * on a vnode.
724  */
725 void
726 vn_rele(vnode_t *vp)
727 {
728 	if (vp->v_count == 0)
729 		cmn_err(CE_PANIC, "vn_rele: vnode ref count 0");
730 	mutex_enter(&vp->v_lock);
731 	if (vp->v_count == 1) {
732 		mutex_exit(&vp->v_lock);
733 		VOP_INACTIVE(vp, CRED());
734 	} else {
735 		vp->v_count--;
736 		mutex_exit(&vp->v_lock);
737 	}
738 }
739 
740 /*
741  * Like vn_rele() except that it clears v_stream under v_lock.
742  * This is used by sockfs when it dismantels the association between
743  * the sockfs node and the vnode in the underlaying file system.
744  * v_lock has to be held to prevent a thread coming through the lookupname
745  * path from accessing a stream head that is going away.
746  */
747 void
748 vn_rele_stream(vnode_t *vp)
749 {
750 	if (vp->v_count == 0)
751 		cmn_err(CE_PANIC, "vn_rele: vnode ref count 0");
752 	mutex_enter(&vp->v_lock);
753 	vp->v_stream = NULL;
754 	if (vp->v_count == 1) {
755 		mutex_exit(&vp->v_lock);
756 		VOP_INACTIVE(vp, CRED());
757 	} else {
758 		vp->v_count--;
759 		mutex_exit(&vp->v_lock);
760 	}
761 }
762 
763 int
764 vn_open(
765 	char *pnamep,
766 	enum uio_seg seg,
767 	int filemode,
768 	int createmode,
769 	struct vnode **vpp,
770 	enum create crwhy,
771 	mode_t umask)
772 {
773 	return (vn_openat(pnamep, seg, filemode,
774 			createmode, vpp, crwhy, umask, NULL));
775 }
776 
777 
778 /*
779  * Open/create a vnode.
780  * This may be callable by the kernel, the only known use
781  * of user context being that the current user credentials
782  * are used for permissions.  crwhy is defined iff filemode & FCREAT.
783  */
784 int
785 vn_openat(
786 	char *pnamep,
787 	enum uio_seg seg,
788 	int filemode,
789 	int createmode,
790 	struct vnode **vpp,
791 	enum create crwhy,
792 	mode_t umask,
793 	struct vnode *startvp)
794 {
795 	struct vnode *vp;
796 	int mode;
797 	int error;
798 	int in_crit = 0;
799 	struct vattr vattr;
800 	enum symfollow follow;
801 
802 	mode = 0;
803 	if (filemode & FREAD)
804 		mode |= VREAD;
805 	if (filemode & (FWRITE|FTRUNC))
806 		mode |= VWRITE;
807 
808 	/* symlink interpretation */
809 	if (filemode & FNOFOLLOW)
810 		follow = NO_FOLLOW;
811 	else
812 		follow = FOLLOW;
813 
814 top:
815 	if (filemode & FCREAT) {
816 		enum vcexcl excl;
817 
818 		/*
819 		 * Wish to create a file.
820 		 */
821 		vattr.va_type = VREG;
822 		vattr.va_mode = createmode;
823 		vattr.va_mask = AT_TYPE|AT_MODE;
824 		if (filemode & FTRUNC) {
825 			vattr.va_size = 0;
826 			vattr.va_mask |= AT_SIZE;
827 		}
828 		if (filemode & FEXCL)
829 			excl = EXCL;
830 		else
831 			excl = NONEXCL;
832 
833 		if (error =
834 		    vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy,
835 					(filemode & ~(FTRUNC|FEXCL)),
836 						umask, startvp))
837 			return (error);
838 	} else {
839 		/*
840 		 * Wish to open a file.  Just look it up.
841 		 */
842 		if (error = lookupnameat(pnamep, seg, follow,
843 		    NULLVPP, &vp, startvp)) {
844 			if (error == ESTALE)
845 				goto top;
846 			return (error);
847 		}
848 
849 		/*
850 		 * Get the attributes to check whether file is large.
851 		 * We do this only if the FOFFMAX flag is not set and
852 		 * only for regular files.
853 		 */
854 
855 		if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) {
856 			vattr.va_mask = AT_SIZE;
857 			if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) {
858 				goto out;
859 			}
860 			if (vattr.va_size > (u_offset_t)MAXOFF32_T) {
861 				/*
862 				 * Large File API - regular open fails
863 				 * if FOFFMAX flag is set in file mode
864 				 */
865 				error = EOVERFLOW;
866 				goto out;
867 			}
868 		}
869 		/*
870 		 * Can't write directories, active texts, or
871 		 * read-only filesystems.  Can't truncate files
872 		 * on which mandatory locking is in effect.
873 		 */
874 		if (filemode & (FWRITE|FTRUNC)) {
875 			/*
876 			 * Allow writable directory if VDIROPEN flag is set.
877 			 */
878 			if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) {
879 				error = EISDIR;
880 				goto out;
881 			}
882 			if (ISROFILE(vp)) {
883 				error = EROFS;
884 				goto out;
885 			}
886 			/*
887 			 * Can't truncate files on which mandatory locking
888 			 * or non-blocking mandatory locking is in effect.
889 			 */
890 			if (filemode & FTRUNC) {
891 				vnode_t *rvp;
892 
893 				if (VOP_REALVP(vp, &rvp) != 0)
894 					rvp = vp;
895 				if (nbl_need_check(vp)) {
896 					nbl_start_crit(vp, RW_READER);
897 					in_crit = 1;
898 					vattr.va_mask = AT_MODE|AT_SIZE;
899 					if ((error = VOP_GETATTR(vp, &vattr, 0,
900 					    CRED())) == 0) {
901 						if (rvp->v_filocks != NULL)
902 							if (MANDLOCK(vp,
903 							    vattr.va_mode))
904 								error = EAGAIN;
905 						if (!error) {
906 							if (nbl_conflict(vp,
907 							    NBL_WRITE, 0,
908 							    vattr.va_size, 0))
909 								error = EACCES;
910 						}
911 					}
912 				} else if (rvp->v_filocks != NULL) {
913 					vattr.va_mask = AT_MODE;
914 					if ((error = VOP_GETATTR(vp, &vattr,
915 					    0, CRED())) == 0 && MANDLOCK(vp,
916 					    vattr.va_mode))
917 						error = EAGAIN;
918 				}
919 			}
920 			if (error)
921 				goto out;
922 		}
923 		/*
924 		 * Check permissions.
925 		 */
926 		if (error = VOP_ACCESS(vp, mode, 0, CRED()))
927 			goto out;
928 	}
929 
930 	/*
931 	 * Do remaining checks for FNOFOLLOW and FNOLINKS.
932 	 */
933 	if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) {
934 		error = EINVAL;
935 		goto out;
936 	}
937 	if (filemode & FNOLINKS) {
938 		vattr.va_mask = AT_NLINK;
939 		if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) {
940 			goto out;
941 		}
942 		if (vattr.va_nlink != 1) {
943 			error = EMLINK;
944 			goto out;
945 		}
946 	}
947 
948 	/*
949 	 * Opening a socket corresponding to the AF_UNIX pathname
950 	 * in the filesystem name space is not supported.
951 	 * However, VSOCK nodes in namefs are supported in order
952 	 * to make fattach work for sockets.
953 	 *
954 	 * XXX This uses VOP_REALVP to distinguish between
955 	 * an unopened namefs node (where VOP_REALVP returns a
956 	 * different VSOCK vnode) and a VSOCK created by vn_create
957 	 * in some file system (where VOP_REALVP would never return
958 	 * a different vnode).
959 	 */
960 	if (vp->v_type == VSOCK) {
961 		struct vnode *nvp;
962 
963 		error = VOP_REALVP(vp, &nvp);
964 		if (error != 0 || nvp == NULL || nvp == vp ||
965 		    nvp->v_type != VSOCK) {
966 			error = EOPNOTSUPP;
967 			goto out;
968 		}
969 	}
970 	/*
971 	 * Do opening protocol.
972 	 */
973 	error = VOP_OPEN(&vp, filemode, CRED());
974 	/*
975 	 * Truncate if required.
976 	 */
977 	if (error == 0 && (filemode & FTRUNC) && !(filemode & FCREAT)) {
978 		vattr.va_size = 0;
979 		vattr.va_mask = AT_SIZE;
980 		if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0)
981 			(void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED());
982 	}
983 out:
984 	ASSERT(vp->v_count > 0);
985 
986 	if (in_crit) {
987 		nbl_end_crit(vp);
988 		in_crit = 0;
989 	}
990 	if (error) {
991 		/*
992 		 * The following clause was added to handle a problem
993 		 * with NFS consistency.  It is possible that a lookup
994 		 * of the file to be opened succeeded, but the file
995 		 * itself doesn't actually exist on the server.  This
996 		 * is chiefly due to the DNLC containing an entry for
997 		 * the file which has been removed on the server.  In
998 		 * this case, we just start over.  If there was some
999 		 * other cause for the ESTALE error, then the lookup
1000 		 * of the file will fail and the error will be returned
1001 		 * above instead of looping around from here.
1002 		 */
1003 		VN_RELE(vp);
1004 		if (error == ESTALE)
1005 			goto top;
1006 	} else
1007 		*vpp = vp;
1008 	return (error);
1009 }
1010 
1011 int
1012 vn_create(
1013 	char *pnamep,
1014 	enum uio_seg seg,
1015 	struct vattr *vap,
1016 	enum vcexcl excl,
1017 	int mode,
1018 	struct vnode **vpp,
1019 	enum create why,
1020 	int flag,
1021 	mode_t umask)
1022 {
1023 	return (vn_createat(pnamep, seg, vap, excl, mode, vpp,
1024 			why, flag, umask, NULL));
1025 }
1026 
1027 /*
1028  * Create a vnode (makenode).
1029  */
1030 int
1031 vn_createat(
1032 	char *pnamep,
1033 	enum uio_seg seg,
1034 	struct vattr *vap,
1035 	enum vcexcl excl,
1036 	int mode,
1037 	struct vnode **vpp,
1038 	enum create why,
1039 	int flag,
1040 	mode_t umask,
1041 	struct vnode *startvp)
1042 {
1043 	struct vnode *dvp;	/* ptr to parent dir vnode */
1044 	struct vnode *vp = NULL;
1045 	struct pathname pn;
1046 	int error;
1047 	int in_crit = 0;
1048 	struct vattr vattr;
1049 	enum symfollow follow;
1050 
1051 	ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
1052 
1053 	/* symlink interpretation */
1054 	if ((flag & FNOFOLLOW) || excl == EXCL)
1055 		follow = NO_FOLLOW;
1056 	else
1057 		follow = FOLLOW;
1058 	flag &= ~(FNOFOLLOW|FNOLINKS);
1059 
1060 top:
1061 	/*
1062 	 * Lookup directory.
1063 	 * If new object is a file, call lower level to create it.
1064 	 * Note that it is up to the lower level to enforce exclusive
1065 	 * creation, if the file is already there.
1066 	 * This allows the lower level to do whatever
1067 	 * locking or protocol that is needed to prevent races.
1068 	 * If the new object is directory call lower level to make
1069 	 * the new directory, with "." and "..".
1070 	 */
1071 	if (error = pn_get(pnamep, seg, &pn))
1072 		return (error);
1073 #ifdef  C2_AUDIT
1074 	if (audit_active)
1075 		audit_vncreate_start();
1076 #endif /* C2_AUDIT */
1077 	dvp = NULL;
1078 	*vpp = NULL;
1079 	/*
1080 	 * lookup will find the parent directory for the vnode.
1081 	 * When it is done the pn holds the name of the entry
1082 	 * in the directory.
1083 	 * If this is a non-exclusive create we also find the node itself.
1084 	 */
1085 	error = lookuppnat(&pn, NULL, follow, &dvp,
1086 	    (excl == EXCL) ? NULLVPP : vpp, startvp);
1087 	if (error) {
1088 		pn_free(&pn);
1089 		if (error == ESTALE)
1090 			goto top;
1091 		if (why == CRMKDIR && error == EINVAL)
1092 			error = EEXIST;		/* SVID */
1093 		return (error);
1094 	}
1095 
1096 	if (why != CRMKNOD)
1097 		vap->va_mode &= ~VSVTX;
1098 
1099 	/*
1100 	 * If default ACLs are defined for the directory don't apply the
1101 	 * umask if umask is passed.
1102 	 */
1103 
1104 	if (umask) {
1105 
1106 		vsecattr_t vsec;
1107 
1108 		vsec.vsa_aclcnt = 0;
1109 		vsec.vsa_aclentp = NULL;
1110 		vsec.vsa_dfaclcnt = 0;
1111 		vsec.vsa_dfaclentp = NULL;
1112 		vsec.vsa_mask = VSA_DFACLCNT;
1113 		error =  VOP_GETSECATTR(dvp, &vsec, 0, CRED());
1114 		/*
1115 		 * If error is ENOSYS then treat it as no error
1116 		 * Don't want to force all file systems to support
1117 		 * aclent_t style of ACL's.
1118 		 */
1119 		if (error == ENOSYS)
1120 			error = 0;
1121 		if (error) {
1122 			if (*vpp != NULL)
1123 				VN_RELE(*vpp);
1124 			goto out;
1125 		} else {
1126 			/*
1127 			 * Apply the umask if no default ACLs.
1128 			 */
1129 			if (vsec.vsa_dfaclcnt == 0)
1130 				vap->va_mode &= ~umask;
1131 
1132 			/*
1133 			 * VOP_GETSECATTR() may have allocated memory for
1134 			 * ACLs we didn't request, so double-check and
1135 			 * free it if necessary.
1136 			 */
1137 			if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL)
1138 				kmem_free((caddr_t)vsec.vsa_aclentp,
1139 				    vsec.vsa_aclcnt * sizeof (aclent_t));
1140 			if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL)
1141 				kmem_free((caddr_t)vsec.vsa_dfaclentp,
1142 				    vsec.vsa_dfaclcnt * sizeof (aclent_t));
1143 		}
1144 	}
1145 
1146 	/*
1147 	 * In general we want to generate EROFS if the file system is
1148 	 * readonly.  However, POSIX (IEEE Std. 1003.1) section 5.3.1
1149 	 * documents the open system call, and it says that O_CREAT has no
1150 	 * effect if the file already exists.  Bug 1119649 states
1151 	 * that open(path, O_CREAT, ...) fails when attempting to open an
1152 	 * existing file on a read only file system.  Thus, the first part
1153 	 * of the following if statement has 3 checks:
1154 	 *	if the file exists &&
1155 	 *		it is being open with write access &&
1156 	 *		the file system is read only
1157 	 *	then generate EROFS
1158 	 */
1159 	if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) ||
1160 	    (*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) {
1161 		if (*vpp)
1162 			VN_RELE(*vpp);
1163 		error = EROFS;
1164 	} else if (excl == NONEXCL && *vpp != NULL) {
1165 		vnode_t *rvp;
1166 
1167 		/*
1168 		 * File already exists.  If a mandatory lock has been
1169 		 * applied, return error.
1170 		 */
1171 		vp = *vpp;
1172 		if (VOP_REALVP(vp, &rvp) != 0)
1173 			rvp = vp;
1174 		if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) {
1175 			nbl_start_crit(vp, RW_READER);
1176 			in_crit = 1;
1177 		}
1178 		if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) {
1179 			vattr.va_mask = AT_MODE|AT_SIZE;
1180 			if (error = VOP_GETATTR(vp, &vattr, 0, CRED())) {
1181 				goto out;
1182 			}
1183 			if (MANDLOCK(vp, vattr.va_mode)) {
1184 				error = EAGAIN;
1185 				goto out;
1186 			}
1187 			/*
1188 			 * File cannot be truncated if non-blocking mandatory
1189 			 * locks are currently on the file.
1190 			 */
1191 			if ((vap->va_mask & AT_SIZE) && in_crit) {
1192 				u_offset_t offset;
1193 				ssize_t length;
1194 
1195 				offset = vap->va_size > vattr.va_size ?
1196 						vattr.va_size : vap->va_size;
1197 				length = vap->va_size > vattr.va_size ?
1198 						vap->va_size - vattr.va_size :
1199 						vattr.va_size - vap->va_size;
1200 				if (nbl_conflict(vp, NBL_WRITE, offset,
1201 						length, 0)) {
1202 					error = EACCES;
1203 					goto out;
1204 				}
1205 			}
1206 		}
1207 
1208 		/*
1209 		 * If the file is the root of a VFS, we've crossed a
1210 		 * mount point and the "containing" directory that we
1211 		 * acquired above (dvp) is irrelevant because it's in
1212 		 * a different file system.  We apply VOP_CREATE to the
1213 		 * target itself instead of to the containing directory
1214 		 * and supply a null path name to indicate (conventionally)
1215 		 * the node itself as the "component" of interest.
1216 		 *
1217 		 * The intercession of the file system is necessary to
1218 		 * ensure that the appropriate permission checks are
1219 		 * done.
1220 		 */
1221 		if (vp->v_flag & VROOT) {
1222 			ASSERT(why != CRMKDIR);
1223 			error =
1224 			    VOP_CREATE(vp, "", vap, excl, mode, vpp, CRED(),
1225 				    flag);
1226 			/*
1227 			 * If the create succeeded, it will have created
1228 			 * a new reference to the vnode.  Give up the
1229 			 * original reference.  The assertion should not
1230 			 * get triggered because NBMAND locks only apply to
1231 			 * VREG files.  And if in_crit is non-zero for some
1232 			 * reason, detect that here, rather than when we
1233 			 * deference a null vp.
1234 			 */
1235 			ASSERT(in_crit == 0);
1236 			VN_RELE(vp);
1237 			vp = NULL;
1238 			goto out;
1239 		}
1240 
1241 		/*
1242 		 * Large File API - non-large open (FOFFMAX flag not set)
1243 		 * of regular file fails if the file size exceeds MAXOFF32_T.
1244 		 */
1245 		if (why != CRMKDIR &&
1246 		    !(flag & FOFFMAX) &&
1247 		    (vp->v_type == VREG)) {
1248 			vattr.va_mask = AT_SIZE;
1249 			if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) {
1250 				goto out;
1251 			}
1252 			if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) {
1253 				error = EOVERFLOW;
1254 				goto out;
1255 			}
1256 		}
1257 	}
1258 
1259 	if (error == 0) {
1260 		/*
1261 		 * Call mkdir() if specified, otherwise create().
1262 		 */
1263 		int must_be_dir = pn_fixslash(&pn);	/* trailing '/'? */
1264 
1265 		if (why == CRMKDIR)
1266 			error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED());
1267 		else if (!must_be_dir)
1268 			error = VOP_CREATE(dvp, pn.pn_path, vap,
1269 			    excl, mode, vpp, CRED(), flag);
1270 		else
1271 			error = ENOTDIR;
1272 	}
1273 
1274 out:
1275 
1276 #ifdef C2_AUDIT
1277 	if (audit_active)
1278 		audit_vncreate_finish(*vpp, error);
1279 #endif  /* C2_AUDIT */
1280 	if (in_crit) {
1281 		nbl_end_crit(vp);
1282 		in_crit = 0;
1283 	}
1284 	if (vp != NULL) {
1285 		VN_RELE(vp);
1286 		vp = NULL;
1287 	}
1288 	pn_free(&pn);
1289 	VN_RELE(dvp);
1290 	/*
1291 	 * The following clause was added to handle a problem
1292 	 * with NFS consistency.  It is possible that a lookup
1293 	 * of the file to be created succeeded, but the file
1294 	 * itself doesn't actually exist on the server.  This
1295 	 * is chiefly due to the DNLC containing an entry for
1296 	 * the file which has been removed on the server.  In
1297 	 * this case, we just start over.  If there was some
1298 	 * other cause for the ESTALE error, then the lookup
1299 	 * of the file will fail and the error will be returned
1300 	 * above instead of looping around from here.
1301 	 */
1302 	if (error == ESTALE)
1303 		goto top;
1304 	return (error);
1305 }
1306 
1307 int
1308 vn_link(char *from, char *to, enum uio_seg seg)
1309 {
1310 	struct vnode *fvp;		/* from vnode ptr */
1311 	struct vnode *tdvp;		/* to directory vnode ptr */
1312 	struct pathname pn;
1313 	int error;
1314 	struct vattr vattr;
1315 	dev_t fsid;
1316 
1317 top:
1318 	fvp = tdvp = NULL;
1319 	if (error = pn_get(to, seg, &pn))
1320 		return (error);
1321 	if (error = lookupname(from, seg, NO_FOLLOW, NULLVPP, &fvp))
1322 		goto out;
1323 	if (error = lookuppn(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP))
1324 		goto out;
1325 	/*
1326 	 * Make sure both source vnode and target directory vnode are
1327 	 * in the same vfs and that it is writeable.
1328 	 */
1329 	vattr.va_mask = AT_FSID;
1330 	if (error = VOP_GETATTR(fvp, &vattr, 0, CRED()))
1331 		goto out;
1332 	fsid = vattr.va_fsid;
1333 	vattr.va_mask = AT_FSID;
1334 	if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED()))
1335 		goto out;
1336 	if (fsid != vattr.va_fsid) {
1337 		error = EXDEV;
1338 		goto out;
1339 	}
1340 	if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) {
1341 		error = EROFS;
1342 		goto out;
1343 	}
1344 	/*
1345 	 * Do the link.
1346 	 */
1347 	(void) pn_fixslash(&pn);
1348 	error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED());
1349 out:
1350 	pn_free(&pn);
1351 	if (fvp)
1352 		VN_RELE(fvp);
1353 	if (tdvp)
1354 		VN_RELE(tdvp);
1355 	if (error == ESTALE)
1356 		goto top;
1357 	return (error);
1358 }
1359 
1360 int
1361 vn_rename(char *from, char *to, enum uio_seg seg)
1362 {
1363 	return (vn_renameat(NULL, from, NULL, to, seg));
1364 }
1365 
1366 int
1367 vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp,
1368 		char *tname, enum uio_seg seg)
1369 {
1370 	int error;
1371 	struct vattr vattr;
1372 	struct pathname fpn;		/* from pathname */
1373 	struct pathname tpn;		/* to pathname */
1374 	dev_t fsid;
1375 	int in_crit = 0;
1376 	vnode_t *fromvp, *fvp;
1377 	vnode_t *tovp;
1378 
1379 top:
1380 	fvp = fromvp = tovp = NULL;
1381 	/*
1382 	 * Get to and from pathnames.
1383 	 */
1384 	if (error = pn_get(fname, seg, &fpn))
1385 		return (error);
1386 	if (error = pn_get(tname, seg, &tpn)) {
1387 		pn_free(&fpn);
1388 		return (error);
1389 	}
1390 
1391 	/*
1392 	 * First we need to resolve the correct directories
1393 	 * The passed in directories may only be a starting point,
1394 	 * but we need the real directories the file(s) live in.
1395 	 * For example the fname may be something like usr/lib/sparc
1396 	 * and we were passed in the / directory, but we need to
1397 	 * use the lib directory for the rename.
1398 	 */
1399 
1400 #ifdef  C2_AUDIT
1401 	if (audit_active)
1402 		audit_setfsat_path(1);
1403 #endif /* C2_AUDIT */
1404 	/*
1405 	 * Lookup to and from directories.
1406 	 */
1407 	if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) {
1408 		goto out;
1409 	}
1410 
1411 	/*
1412 	 * Make sure there is an entry.
1413 	 */
1414 	if (fvp == NULL) {
1415 		error = ENOENT;
1416 		goto out;
1417 	}
1418 
1419 #ifdef  C2_AUDIT
1420 	if (audit_active)
1421 		audit_setfsat_path(3);
1422 #endif /* C2_AUDIT */
1423 	if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, NULLVPP, tdvp)) {
1424 		goto out;
1425 	}
1426 
1427 	/*
1428 	 * Make sure both the from vnode directory and the to directory
1429 	 * are in the same vfs and the to directory is writable.
1430 	 * We check fsid's, not vfs pointers, so loopback fs works.
1431 	 */
1432 	if (fromvp != tovp) {
1433 		vattr.va_mask = AT_FSID;
1434 		if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED()))
1435 			goto out;
1436 		fsid = vattr.va_fsid;
1437 		vattr.va_mask = AT_FSID;
1438 		if (error = VOP_GETATTR(tovp, &vattr, 0, CRED()))
1439 			goto out;
1440 		if (fsid != vattr.va_fsid) {
1441 			error = EXDEV;
1442 			goto out;
1443 		}
1444 	}
1445 
1446 	if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) {
1447 		error = EROFS;
1448 		goto out;
1449 	}
1450 
1451 	if (nbl_need_check(fvp)) {
1452 		nbl_start_crit(fvp, RW_READER);
1453 		in_crit = 1;
1454 		if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0)) {
1455 			error = EACCES;
1456 			goto out;
1457 		}
1458 	}
1459 
1460 	/*
1461 	 * Do the rename.
1462 	 */
1463 	(void) pn_fixslash(&tpn);
1464 	error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED());
1465 
1466 out:
1467 	pn_free(&fpn);
1468 	pn_free(&tpn);
1469 	if (in_crit) {
1470 		nbl_end_crit(fvp);
1471 		in_crit = 0;
1472 	}
1473 	if (fromvp)
1474 		VN_RELE(fromvp);
1475 	if (tovp)
1476 		VN_RELE(tovp);
1477 	if (fvp)
1478 		VN_RELE(fvp);
1479 	if (error == ESTALE)
1480 		goto top;
1481 	return (error);
1482 }
1483 
1484 /*
1485  * Remove a file or directory.
1486  */
1487 int
1488 vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag)
1489 {
1490 	return (vn_removeat(NULL, fnamep, seg, dirflag));
1491 }
1492 
1493 int
1494 vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag)
1495 {
1496 	struct vnode *vp;		/* entry vnode */
1497 	struct vnode *dvp;		/* ptr to parent dir vnode */
1498 	struct vnode *coveredvp;
1499 	struct pathname pn;		/* name of entry */
1500 	enum vtype vtype;
1501 	int error;
1502 	struct vfs *vfsp;
1503 	struct vfs *dvfsp;	/* ptr to parent dir vfs */
1504 	int in_crit = 0;
1505 
1506 top:
1507 	if (error = pn_get(fnamep, seg, &pn))
1508 		return (error);
1509 	dvp = vp = NULL;
1510 	if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) {
1511 		pn_free(&pn);
1512 		if (error == ESTALE)
1513 			goto top;
1514 		return (error);
1515 	}
1516 
1517 	/*
1518 	 * Make sure there is an entry.
1519 	 */
1520 	if (vp == NULL) {
1521 		error = ENOENT;
1522 		goto out;
1523 	}
1524 
1525 	vfsp = vp->v_vfsp;
1526 	dvfsp = dvp->v_vfsp;
1527 
1528 	/*
1529 	 * If the named file is the root of a mounted filesystem, fail,
1530 	 * unless it's marked unlinkable.  In that case, unmount the
1531 	 * filesystem and proceed to unlink the covered vnode.  (If the
1532 	 * covered vnode is a directory, use rmdir instead of unlink,
1533 	 * to avoid file system corruption.)
1534 	 */
1535 	if (vp->v_flag & VROOT) {
1536 		if (vfsp->vfs_flag & VFS_UNLINKABLE) {
1537 			if (dirflag == RMDIRECTORY) {
1538 				/*
1539 				 * User called rmdir(2) on a file that has
1540 				 * been namefs mounted on top of.  Since
1541 				 * namefs doesn't allow directories to
1542 				 * be mounted on other files we know
1543 				 * vp is not of type VDIR so fail to operation.
1544 				 */
1545 				error = ENOTDIR;
1546 				goto out;
1547 			}
1548 			coveredvp = vfsp->vfs_vnodecovered;
1549 			VN_HOLD(coveredvp);
1550 			VN_RELE(vp);
1551 			vp = NULL;
1552 			if ((error = vn_vfswlock(coveredvp)) == 0)
1553 				error = dounmount(vfsp, 0, CRED());
1554 			/*
1555 			 * Unmounted the namefs file system; now get
1556 			 * the object it was mounted over.
1557 			 */
1558 			vp = coveredvp;
1559 			/*
1560 			 * If namefs was mounted over a directory, then
1561 			 * we want to use rmdir() instead of unlink().
1562 			 */
1563 			if (vp->v_type == VDIR)
1564 				dirflag = RMDIRECTORY;
1565 		} else
1566 			error = EBUSY;
1567 
1568 		if (error)
1569 			goto out;
1570 	}
1571 
1572 	/*
1573 	 * Make sure filesystem is writeable.
1574 	 * We check the parent directory's vfs in case this is an lofs vnode.
1575 	 */
1576 	if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) {
1577 		error = EROFS;
1578 		goto out;
1579 	}
1580 
1581 	vtype = vp->v_type;
1582 
1583 	/*
1584 	 * If there is the possibility of an nbmand share reservation, make
1585 	 * sure it's okay to remove the file.  Keep a reference to the
1586 	 * vnode, so that we can exit the nbl critical region after
1587 	 * calling VOP_REMOVE.
1588 	 * If there is no possibility of an nbmand share reservation,
1589 	 * release the vnode reference now.  Filesystems like NFS may
1590 	 * behave differently if there is an extra reference, so get rid of
1591 	 * this one.  Fortunately, we can't have nbmand mounts on NFS
1592 	 * filesystems.
1593 	 */
1594 	if (nbl_need_check(vp)) {
1595 		nbl_start_crit(vp, RW_READER);
1596 		in_crit = 1;
1597 		if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0)) {
1598 			error = EACCES;
1599 			goto out;
1600 		}
1601 	} else {
1602 		VN_RELE(vp);
1603 		vp = NULL;
1604 	}
1605 
1606 	if (dirflag == RMDIRECTORY) {
1607 		/*
1608 		 * Caller is using rmdir(2), which can only be applied to
1609 		 * directories.
1610 		 */
1611 		if (vtype != VDIR) {
1612 			error = ENOTDIR;
1613 		} else {
1614 			vnode_t *cwd;
1615 			proc_t *pp = curproc;
1616 
1617 			mutex_enter(&pp->p_lock);
1618 			cwd = PTOU(pp)->u_cdir;
1619 			VN_HOLD(cwd);
1620 			mutex_exit(&pp->p_lock);
1621 			error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED());
1622 			VN_RELE(cwd);
1623 		}
1624 	} else {
1625 		/*
1626 		 * Unlink(2) can be applied to anything.
1627 		 */
1628 		error = VOP_REMOVE(dvp, pn.pn_path, CRED());
1629 	}
1630 
1631 out:
1632 	pn_free(&pn);
1633 	if (in_crit) {
1634 		nbl_end_crit(vp);
1635 		in_crit = 0;
1636 	}
1637 	if (vp != NULL)
1638 		VN_RELE(vp);
1639 	if (dvp != NULL)
1640 		VN_RELE(dvp);
1641 	if (error == ESTALE)
1642 		goto top;
1643 	return (error);
1644 }
1645 
1646 /*
1647  * Utility function to compare equality of vnodes.
1648  * Compare the underlying real vnodes, if there are underlying vnodes.
1649  * This is a more thorough comparison than the VN_CMP() macro provides.
1650  */
1651 int
1652 vn_compare(vnode_t *vp1, vnode_t *vp2)
1653 {
1654 	vnode_t *realvp;
1655 
1656 	if (vp1 != NULL && VOP_REALVP(vp1, &realvp) == 0)
1657 		vp1 = realvp;
1658 	if (vp2 != NULL && VOP_REALVP(vp2, &realvp) == 0)
1659 		vp2 = realvp;
1660 	return (VN_CMP(vp1, vp2));
1661 }
1662 
1663 /*
1664  * The number of locks to hash into.  This value must be a power
1665  * of 2 minus 1 and should probably also be prime.
1666  */
1667 #define	NUM_BUCKETS	1023
1668 
1669 struct  vn_vfslocks_bucket {
1670 	kmutex_t vb_lock;
1671 	vn_vfslocks_entry_t *vb_list;
1672 	char pad[64 - sizeof (kmutex_t) - sizeof (void *)];
1673 };
1674 
1675 /*
1676  * Total number of buckets will be NUM_BUCKETS + 1 .
1677  */
1678 
1679 #pragma	align	64(vn_vfslocks_buckets)
1680 static	struct vn_vfslocks_bucket	vn_vfslocks_buckets[NUM_BUCKETS + 1];
1681 
1682 #define	VN_VFSLOCKS_SHIFT	9
1683 
1684 #define	VN_VFSLOCKS_HASH(vfsvpptr)	\
1685 	((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS)
1686 
1687 /*
1688  * vn_vfslocks_getlock() uses an HASH scheme to generate
1689  * rwstlock using vfs/vnode pointer passed to it.
1690  *
1691  * vn_vfslocks_rele() releases a reference in the
1692  * HASH table which allows the entry allocated by
1693  * vn_vfslocks_getlock() to be freed at a later
1694  * stage when the refcount drops to zero.
1695  */
1696 
1697 vn_vfslocks_entry_t *
1698 vn_vfslocks_getlock(void *vfsvpptr)
1699 {
1700 	struct vn_vfslocks_bucket *bp;
1701 	vn_vfslocks_entry_t *vep;
1702 	vn_vfslocks_entry_t *tvep;
1703 
1704 	ASSERT(vfsvpptr != NULL);
1705 	bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)];
1706 
1707 	mutex_enter(&bp->vb_lock);
1708 	for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) {
1709 		if (vep->ve_vpvfs == vfsvpptr) {
1710 			vep->ve_refcnt++;
1711 			mutex_exit(&bp->vb_lock);
1712 			return (vep);
1713 		}
1714 	}
1715 	mutex_exit(&bp->vb_lock);
1716 	vep = kmem_alloc(sizeof (*vep), KM_SLEEP);
1717 	rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL);
1718 	vep->ve_vpvfs = (char *)vfsvpptr;
1719 	vep->ve_refcnt = 1;
1720 	mutex_enter(&bp->vb_lock);
1721 	for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) {
1722 		if (tvep->ve_vpvfs == vfsvpptr) {
1723 			tvep->ve_refcnt++;
1724 			mutex_exit(&bp->vb_lock);
1725 
1726 			/*
1727 			 * There is already an entry in the hash
1728 			 * destroy what we just allocated.
1729 			 */
1730 			rwst_destroy(&vep->ve_lock);
1731 			kmem_free(vep, sizeof (*vep));
1732 			return (tvep);
1733 		}
1734 	}
1735 	vep->ve_next = bp->vb_list;
1736 	bp->vb_list = vep;
1737 	mutex_exit(&bp->vb_lock);
1738 	return (vep);
1739 }
1740 
1741 void
1742 vn_vfslocks_rele(vn_vfslocks_entry_t *vepent)
1743 {
1744 	struct vn_vfslocks_bucket *bp;
1745 	vn_vfslocks_entry_t *vep;
1746 	vn_vfslocks_entry_t *pvep;
1747 
1748 	ASSERT(vepent != NULL);
1749 	ASSERT(vepent->ve_vpvfs != NULL);
1750 
1751 	bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)];
1752 
1753 	mutex_enter(&bp->vb_lock);
1754 	vepent->ve_refcnt--;
1755 
1756 	if ((int32_t)vepent->ve_refcnt < 0)
1757 		cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative");
1758 
1759 	if (vepent->ve_refcnt == 0) {
1760 		for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) {
1761 			if (vep->ve_vpvfs == vepent->ve_vpvfs) {
1762 				if (bp->vb_list == vep)
1763 					bp->vb_list = vep->ve_next;
1764 				else {
1765 					/* LINTED */
1766 					pvep->ve_next = vep->ve_next;
1767 				}
1768 				mutex_exit(&bp->vb_lock);
1769 				rwst_destroy(&vep->ve_lock);
1770 				kmem_free(vep, sizeof (*vep));
1771 				return;
1772 			}
1773 			pvep = vep;
1774 		}
1775 		cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found");
1776 	}
1777 	mutex_exit(&bp->vb_lock);
1778 }
1779 
1780 /*
1781  * vn_vfswlock_wait is used to implement a lock which is logically a writers
1782  * lock protecting the v_vfsmountedhere field.
1783  * vn_vfswlock_wait has been modified to be similar to vn_vfswlock,
1784  * except that it blocks to acquire the lock VVFSLOCK.
1785  *
1786  * traverse() and routines re-implementing part of traverse (e.g. autofs)
1787  * need to hold this lock. mount(), vn_rename(), vn_remove() and so on
1788  * need the non-blocking version of the writers lock i.e. vn_vfswlock
1789  */
1790 int
1791 vn_vfswlock_wait(vnode_t *vp)
1792 {
1793 	int retval;
1794 	vn_vfslocks_entry_t *vpvfsentry;
1795 	ASSERT(vp != NULL);
1796 
1797 	vpvfsentry = vn_vfslocks_getlock(vp);
1798 	retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER);
1799 
1800 	if (retval == EINTR) {
1801 		vn_vfslocks_rele(vpvfsentry);
1802 		return (EINTR);
1803 	}
1804 	return (retval);
1805 }
1806 
1807 int
1808 vn_vfsrlock_wait(vnode_t *vp)
1809 {
1810 	int retval;
1811 	vn_vfslocks_entry_t *vpvfsentry;
1812 	ASSERT(vp != NULL);
1813 
1814 	vpvfsentry = vn_vfslocks_getlock(vp);
1815 	retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER);
1816 
1817 	if (retval == EINTR) {
1818 		vn_vfslocks_rele(vpvfsentry);
1819 		return (EINTR);
1820 	}
1821 
1822 	return (retval);
1823 }
1824 
1825 
1826 /*
1827  * vn_vfswlock is used to implement a lock which is logically a writers lock
1828  * protecting the v_vfsmountedhere field.
1829  */
1830 int
1831 vn_vfswlock(vnode_t *vp)
1832 {
1833 	vn_vfslocks_entry_t *vpvfsentry;
1834 
1835 	/*
1836 	 * If vp is NULL then somebody is trying to lock the covered vnode
1837 	 * of /.  (vfs_vnodecovered is NULL for /).  This situation will
1838 	 * only happen when unmounting /.  Since that operation will fail
1839 	 * anyway, return EBUSY here instead of in VFS_UNMOUNT.
1840 	 */
1841 	if (vp == NULL)
1842 		return (EBUSY);
1843 
1844 	vpvfsentry = vn_vfslocks_getlock(vp);
1845 
1846 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
1847 		return (0);
1848 
1849 	vn_vfslocks_rele(vpvfsentry);
1850 	return (EBUSY);
1851 }
1852 
1853 int
1854 vn_vfsrlock(vnode_t *vp)
1855 {
1856 	vn_vfslocks_entry_t *vpvfsentry;
1857 
1858 	/*
1859 	 * If vp is NULL then somebody is trying to lock the covered vnode
1860 	 * of /.  (vfs_vnodecovered is NULL for /).  This situation will
1861 	 * only happen when unmounting /.  Since that operation will fail
1862 	 * anyway, return EBUSY here instead of in VFS_UNMOUNT.
1863 	 */
1864 	if (vp == NULL)
1865 		return (EBUSY);
1866 
1867 	vpvfsentry = vn_vfslocks_getlock(vp);
1868 
1869 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
1870 		return (0);
1871 
1872 	vn_vfslocks_rele(vpvfsentry);
1873 	return (EBUSY);
1874 }
1875 
1876 void
1877 vn_vfsunlock(vnode_t *vp)
1878 {
1879 	vn_vfslocks_entry_t *vpvfsentry;
1880 
1881 	/*
1882 	 * ve_refcnt needs to be decremented twice.
1883 	 * 1. To release refernce after a call to vn_vfslocks_getlock()
1884 	 * 2. To release the reference from the locking routines like
1885 	 *    vn_vfsrlock/vn_vfswlock etc,.
1886 	 */
1887 	vpvfsentry = vn_vfslocks_getlock(vp);
1888 	vn_vfslocks_rele(vpvfsentry);
1889 
1890 	rwst_exit(&vpvfsentry->ve_lock);
1891 	vn_vfslocks_rele(vpvfsentry);
1892 }
1893 
1894 int
1895 vn_vfswlock_held(vnode_t *vp)
1896 {
1897 	int held;
1898 	vn_vfslocks_entry_t *vpvfsentry;
1899 
1900 	ASSERT(vp != NULL);
1901 
1902 	vpvfsentry = vn_vfslocks_getlock(vp);
1903 	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
1904 
1905 	vn_vfslocks_rele(vpvfsentry);
1906 	return (held);
1907 }
1908 
1909 
1910 int
1911 vn_make_ops(
1912 	const char *name,			/* Name of file system */
1913 	const fs_operation_def_t *templ,	/* Operation specification */
1914 	vnodeops_t **actual)			/* Return the vnodeops */
1915 {
1916 	int unused_ops;
1917 	int error;
1918 
1919 	*actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP);
1920 
1921 	(*actual)->vnop_name = name;
1922 
1923 	error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ);
1924 	if (error) {
1925 		kmem_free(*actual, sizeof (vnodeops_t));
1926 	}
1927 
1928 #if DEBUG
1929 	if (unused_ops != 0)
1930 		cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied "
1931 		    "but not used", name, unused_ops);
1932 #endif
1933 
1934 	return (error);
1935 }
1936 
1937 /*
1938  * Free the vnodeops created as a result of vn_make_ops()
1939  */
1940 void
1941 vn_freevnodeops(vnodeops_t *vnops)
1942 {
1943 	kmem_free(vnops, sizeof (vnodeops_t));
1944 }
1945 
1946 /*
1947  * Vnode cache.
1948  */
1949 
1950 /* ARGSUSED */
1951 static int
1952 vn_cache_constructor(void *buf, void *cdrarg, int kmflags)
1953 {
1954 	struct vnode *vp;
1955 
1956 	vp = buf;
1957 
1958 	mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL);
1959 	cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL);
1960 	rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL);
1961 	rw_init(&vp->v_mslock, NULL, RW_DEFAULT, NULL);
1962 
1963 	vp->v_femhead = NULL;	/* Must be done before vn_reinit() */
1964 	vp->v_path = NULL;
1965 	vp->v_mpssdata = NULL;
1966 
1967 	return (0);
1968 }
1969 
1970 /* ARGSUSED */
1971 static void
1972 vn_cache_destructor(void *buf, void *cdrarg)
1973 {
1974 	struct vnode *vp;
1975 
1976 	vp = buf;
1977 
1978 	rw_destroy(&vp->v_mslock);
1979 	rw_destroy(&vp->v_nbllock);
1980 	cv_destroy(&vp->v_cv);
1981 	mutex_destroy(&vp->v_lock);
1982 }
1983 
1984 void
1985 vn_create_cache(void)
1986 {
1987 	vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode), 64,
1988 	    vn_cache_constructor, vn_cache_destructor, NULL, NULL,
1989 	    NULL, 0);
1990 }
1991 
1992 void
1993 vn_destroy_cache(void)
1994 {
1995 	kmem_cache_destroy(vn_cache);
1996 }
1997 
1998 /*
1999  * Used by file systems when fs-specific nodes (e.g., ufs inodes) are
2000  * cached by the file system and vnodes remain associated.
2001  */
2002 void
2003 vn_recycle(vnode_t *vp)
2004 {
2005 	ASSERT(vp->v_pages == NULL);
2006 
2007 	/*
2008 	 * XXX - This really belongs in vn_reinit(), but we have some issues
2009 	 * with the counts.  Best to have it here for clean initialization.
2010 	 */
2011 	vp->v_rdcnt = 0;
2012 	vp->v_wrcnt = 0;
2013 	vp->v_mmap_read = 0;
2014 	vp->v_mmap_write = 0;
2015 
2016 	/*
2017 	 * If FEM was in use, make sure everything gets cleaned up
2018 	 * NOTE: vp->v_femhead is initialized to NULL in the vnode
2019 	 * constructor.
2020 	 */
2021 	if (vp->v_femhead) {
2022 		/* XXX - There should be a free_femhead() that does all this */
2023 		ASSERT(vp->v_femhead->femh_list == NULL);
2024 		mutex_destroy(&vp->v_femhead->femh_lock);
2025 		kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead)));
2026 		vp->v_femhead = NULL;
2027 	}
2028 	if (vp->v_path) {
2029 		kmem_free(vp->v_path, strlen(vp->v_path) + 1);
2030 		vp->v_path = NULL;
2031 	}
2032 	vp->v_mpssdata = NULL;
2033 }
2034 
2035 /*
2036  * Used to reset the vnode fields including those that are directly accessible
2037  * as well as those which require an accessor function.
2038  *
2039  * Does not initialize:
2040  *	synchronization objects: v_lock, v_nbllock, v_cv
2041  *	v_data (since FS-nodes and vnodes point to each other and should
2042  *		be updated simultaneously)
2043  *	v_op (in case someone needs to make a VOP call on this object)
2044  */
2045 void
2046 vn_reinit(vnode_t *vp)
2047 {
2048 	vp->v_count = 1;
2049 	vp->v_vfsp = NULL;
2050 	vp->v_stream = NULL;
2051 	vp->v_vfsmountedhere = NULL;
2052 	vp->v_flag = 0;
2053 	vp->v_type = VNON;
2054 	vp->v_rdev = NODEV;
2055 
2056 	vp->v_filocks = NULL;
2057 	vp->v_shrlocks = NULL;
2058 	vp->v_pages = NULL;
2059 	vp->v_npages = 0;
2060 	vp->v_msnpages = 0;
2061 	vp->v_scanfront = NULL;
2062 	vp->v_scanback = NULL;
2063 
2064 	vp->v_locality = NULL;
2065 	vp->v_scantime = 0;
2066 	vp->v_mset = 0;
2067 	vp->v_msflags = 0;
2068 	vp->v_msnext = NULL;
2069 	vp->v_msprev = NULL;
2070 
2071 	/* Handles v_femhead, v_path, and the r/w/map counts */
2072 	vn_recycle(vp);
2073 }
2074 
2075 vnode_t *
2076 vn_alloc(int kmflag)
2077 {
2078 	vnode_t *vp;
2079 
2080 	vp = kmem_cache_alloc(vn_cache, kmflag);
2081 
2082 	if (vp != NULL) {
2083 		vp->v_femhead = NULL;	/* Must be done before vn_reinit() */
2084 		vn_reinit(vp);
2085 	}
2086 
2087 	return (vp);
2088 }
2089 
2090 void
2091 vn_free(vnode_t *vp)
2092 {
2093 	/*
2094 	 * Some file systems call vn_free() with v_count of zero,
2095 	 * some with v_count of 1.  In any case, the value should
2096 	 * never be anything else.
2097 	 */
2098 	ASSERT((vp->v_count == 0) || (vp->v_count == 1));
2099 	if (vp->v_path != NULL) {
2100 		kmem_free(vp->v_path, strlen(vp->v_path) + 1);
2101 		vp->v_path = NULL;
2102 	}
2103 
2104 	/* If FEM was in use, make sure everything gets cleaned up */
2105 	if (vp->v_femhead) {
2106 		/* XXX - There should be a free_femhead() that does all this */
2107 		ASSERT(vp->v_femhead->femh_list == NULL);
2108 		mutex_destroy(&vp->v_femhead->femh_lock);
2109 		kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead)));
2110 		vp->v_femhead = NULL;
2111 	}
2112 	vp->v_mpssdata = NULL;
2113 	kmem_cache_free(vn_cache, vp);
2114 }
2115 
2116 /*
2117  * vnode status changes, should define better states than 1, 0.
2118  */
2119 void
2120 vn_reclaim(vnode_t *vp)
2121 {
2122 	vfs_t   *vfsp = vp->v_vfsp;
2123 
2124 	if (vfsp == NULL || vfsp->vfs_femhead == NULL) {
2125 		return;
2126 	}
2127 	(void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED);
2128 }
2129 
2130 void
2131 vn_idle(vnode_t *vp)
2132 {
2133 	vfs_t   *vfsp = vp->v_vfsp;
2134 
2135 	if (vfsp == NULL || vfsp->vfs_femhead == NULL) {
2136 		return;
2137 	}
2138 	(void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED);
2139 }
2140 void
2141 vn_exists(vnode_t *vp)
2142 {
2143 	vfs_t   *vfsp = vp->v_vfsp;
2144 
2145 	if (vfsp == NULL || vfsp->vfs_femhead == NULL) {
2146 		return;
2147 	}
2148 	(void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS);
2149 }
2150 
2151 void
2152 vn_invalid(vnode_t *vp)
2153 {
2154 	vfs_t   *vfsp = vp->v_vfsp;
2155 
2156 	if (vfsp == NULL || vfsp->vfs_femhead == NULL) {
2157 		return;
2158 	}
2159 	(void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED);
2160 }
2161 
2162 /* Vnode event notification */
2163 
2164 int
2165 vnevent_support(vnode_t *vp)
2166 {
2167 	if (vp == NULL)
2168 		return (EINVAL);
2169 
2170 	return (VOP_VNEVENT(vp, VE_SUPPORT));
2171 }
2172 
2173 void
2174 vnevent_rename_src(vnode_t *vp)
2175 {
2176 	if (vp == NULL || vp->v_femhead == NULL) {
2177 		return;
2178 	}
2179 	(void) VOP_VNEVENT(vp, VE_RENAME_SRC);
2180 }
2181 
2182 void
2183 vnevent_rename_dest(vnode_t *vp)
2184 {
2185 	if (vp == NULL || vp->v_femhead == NULL) {
2186 		return;
2187 	}
2188 	(void) VOP_VNEVENT(vp, VE_RENAME_DEST);
2189 }
2190 
2191 void
2192 vnevent_remove(vnode_t *vp)
2193 {
2194 	if (vp == NULL || vp->v_femhead == NULL) {
2195 		return;
2196 	}
2197 	(void) VOP_VNEVENT(vp, VE_REMOVE);
2198 }
2199 
2200 void
2201 vnevent_rmdir(vnode_t *vp)
2202 {
2203 	if (vp == NULL || vp->v_femhead == NULL) {
2204 		return;
2205 	}
2206 	(void) VOP_VNEVENT(vp, VE_RMDIR);
2207 }
2208 
2209 /*
2210  * Vnode accessors.
2211  */
2212 
2213 int
2214 vn_is_readonly(vnode_t *vp)
2215 {
2216 	return (vp->v_vfsp->vfs_flag & VFS_RDONLY);
2217 }
2218 
2219 int
2220 vn_has_flocks(vnode_t *vp)
2221 {
2222 	return (vp->v_filocks != NULL);
2223 }
2224 
2225 int
2226 vn_has_mandatory_locks(vnode_t *vp, int mode)
2227 {
2228 	return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode)));
2229 }
2230 
2231 int
2232 vn_has_cached_data(vnode_t *vp)
2233 {
2234 	return (vp->v_pages != NULL);
2235 }
2236 
2237 /*
2238  * Return 0 if the vnode in question shouldn't be permitted into a zone via
2239  * zone_enter(2).
2240  */
2241 int
2242 vn_can_change_zones(vnode_t *vp)
2243 {
2244 	struct vfssw *vswp;
2245 	int allow = 1;
2246 	vnode_t *rvp;
2247 
2248 	if (nfs_global_client_only != 0)
2249 		return (1);
2250 
2251 	/*
2252 	 * We always want to look at the underlying vnode if there is one.
2253 	 */
2254 	if (VOP_REALVP(vp, &rvp) != 0)
2255 		rvp = vp;
2256 	/*
2257 	 * Some pseudo filesystems (including doorfs) don't actually register
2258 	 * their vfsops_t, so the following may return NULL; we happily let
2259 	 * such vnodes switch zones.
2260 	 */
2261 	vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp));
2262 	if (vswp != NULL) {
2263 		if (vswp->vsw_flag & VSW_NOTZONESAFE)
2264 			allow = 0;
2265 		vfs_unrefvfssw(vswp);
2266 	}
2267 	return (allow);
2268 }
2269 
2270 /*
2271  * Return nonzero if the vnode is a mount point, zero if not.
2272  */
2273 int
2274 vn_ismntpt(vnode_t *vp)
2275 {
2276 	return (vp->v_vfsmountedhere != NULL);
2277 }
2278 
2279 /* Retrieve the vfs (if any) mounted on this vnode */
2280 vfs_t *
2281 vn_mountedvfs(vnode_t *vp)
2282 {
2283 	return (vp->v_vfsmountedhere);
2284 }
2285 
2286 /*
2287  * vn_is_opened() checks whether a particular file is opened and
2288  * whether the open is for read and/or write.
2289  *
2290  * Vnode counts are only kept on regular files (v_type=VREG).
2291  */
2292 int
2293 vn_is_opened(
2294 	vnode_t *vp,
2295 	v_mode_t mode)
2296 {
2297 
2298 	ASSERT(vp != NULL);
2299 
2300 	switch (mode) {
2301 	case V_WRITE:
2302 		if (vp->v_wrcnt)
2303 			return (V_TRUE);
2304 		break;
2305 	case V_RDANDWR:
2306 		if (vp->v_rdcnt && vp->v_wrcnt)
2307 			return (V_TRUE);
2308 		break;
2309 	case V_RDORWR:
2310 		if (vp->v_rdcnt || vp->v_wrcnt)
2311 			return (V_TRUE);
2312 		break;
2313 	case V_READ:
2314 		if (vp->v_rdcnt)
2315 			return (V_TRUE);
2316 		break;
2317 	}
2318 
2319 	return (V_FALSE);
2320 }
2321 
2322 /*
2323  * vn_is_mapped() checks whether a particular file is mapped and whether
2324  * the file is mapped read and/or write.
2325  */
2326 int
2327 vn_is_mapped(
2328 	vnode_t *vp,
2329 	v_mode_t mode)
2330 {
2331 
2332 	ASSERT(vp != NULL);
2333 
2334 #if !defined(_LP64)
2335 	switch (mode) {
2336 	/*
2337 	 * The atomic_add_64_nv functions force atomicity in the
2338 	 * case of 32 bit architectures. Otherwise the 64 bit values
2339 	 * require two fetches. The value of the fields may be
2340 	 * (potentially) changed between the first fetch and the
2341 	 * second
2342 	 */
2343 	case V_WRITE:
2344 		if (atomic_add_64_nv((&(vp->v_mmap_write)), 0))
2345 			return (V_TRUE);
2346 		break;
2347 	case V_RDANDWR:
2348 		if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) &&
2349 		    (atomic_add_64_nv((&(vp->v_mmap_write)), 0)))
2350 			return (V_TRUE);
2351 		break;
2352 	case V_RDORWR:
2353 		if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) ||
2354 		    (atomic_add_64_nv((&(vp->v_mmap_write)), 0)))
2355 			return (V_TRUE);
2356 		break;
2357 	case V_READ:
2358 		if (atomic_add_64_nv((&(vp->v_mmap_read)), 0))
2359 			return (V_TRUE);
2360 		break;
2361 	}
2362 #else
2363 	switch (mode) {
2364 	case V_WRITE:
2365 		if (vp->v_mmap_write)
2366 			return (V_TRUE);
2367 		break;
2368 	case V_RDANDWR:
2369 		if (vp->v_mmap_read && vp->v_mmap_write)
2370 			return (V_TRUE);
2371 		break;
2372 	case V_RDORWR:
2373 		if (vp->v_mmap_read || vp->v_mmap_write)
2374 			return (V_TRUE);
2375 		break;
2376 	case V_READ:
2377 		if (vp->v_mmap_read)
2378 			return (V_TRUE);
2379 		break;
2380 	}
2381 #endif
2382 
2383 	return (V_FALSE);
2384 }
2385 
2386 /*
2387  * Set the operations vector for a vnode.
2388  *
2389  * FEM ensures that the v_femhead pointer is filled in before the
2390  * v_op pointer is changed.  This means that if the v_femhead pointer
2391  * is NULL, and the v_op field hasn't changed since before which checked
2392  * the v_femhead pointer; then our update is ok - we are not racing with
2393  * FEM.
2394  */
2395 void
2396 vn_setops(vnode_t *vp, vnodeops_t *vnodeops)
2397 {
2398 	vnodeops_t	*op;
2399 
2400 	ASSERT(vp != NULL);
2401 	ASSERT(vnodeops != NULL);
2402 
2403 	op = vp->v_op;
2404 	membar_consumer();
2405 	/*
2406 	 * If vp->v_femhead == NULL, then we'll call casptr() to do the
2407 	 * compare-and-swap on vp->v_op.  If either fails, then FEM is
2408 	 * in effect on the vnode and we need to have FEM deal with it.
2409 	 */
2410 	if (vp->v_femhead != NULL || casptr(&vp->v_op, op, vnodeops) != op) {
2411 		fem_setvnops(vp, vnodeops);
2412 	}
2413 }
2414 
2415 /*
2416  * Retrieve the operations vector for a vnode
2417  * As with vn_setops(above); make sure we aren't racing with FEM.
2418  * FEM sets the v_op to a special, internal, vnodeops that wouldn't
2419  * make sense to the callers of this routine.
2420  */
2421 vnodeops_t *
2422 vn_getops(vnode_t *vp)
2423 {
2424 	vnodeops_t	*op;
2425 
2426 	ASSERT(vp != NULL);
2427 
2428 	op = vp->v_op;
2429 	membar_consumer();
2430 	if (vp->v_femhead == NULL && op == vp->v_op) {
2431 		return (op);
2432 	} else {
2433 		return (fem_getvnops(vp));
2434 	}
2435 }
2436 
2437 /*
2438  * Returns non-zero (1) if the vnodeops matches that of the vnode.
2439  * Returns zero (0) if not.
2440  */
2441 int
2442 vn_matchops(vnode_t *vp, vnodeops_t *vnodeops)
2443 {
2444 	return (vn_getops(vp) == vnodeops);
2445 }
2446 
2447 /*
2448  * Returns non-zero (1) if the specified operation matches the
2449  * corresponding operation for that the vnode.
2450  * Returns zero (0) if not.
2451  */
2452 
2453 #define	MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0))
2454 
2455 int
2456 vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp)
2457 {
2458 	const fs_operation_trans_def_t *otdp;
2459 	fs_generic_func_p *loc = NULL;
2460 	vnodeops_t	*vop = vn_getops(vp);
2461 
2462 	ASSERT(vopname != NULL);
2463 
2464 	for (otdp = vn_ops_table; otdp->name != NULL; otdp++) {
2465 		if (MATCHNAME(otdp->name, vopname)) {
2466 			loc = (fs_generic_func_p *)((char *)(vop)
2467 							+ otdp->offset);
2468 			break;
2469 		}
2470 	}
2471 
2472 	return ((loc != NULL) && (*loc == funcp));
2473 }
2474 
2475 /*
2476  * fs_new_caller_id() needs to return a unique ID on a given local system.
2477  * The IDs do not need to survive across reboots.  These are primarily
2478  * used so that (FEM) monitors can detect particular callers (such as
2479  * the NFS server) to a given vnode/vfs operation.
2480  */
2481 u_longlong_t
2482 fs_new_caller_id()
2483 {
2484 	static uint64_t next_caller_id = 0LL; /* First call returns 1 */
2485 
2486 	return ((u_longlong_t)atomic_add_64_nv(&next_caller_id, 1));
2487 }
2488 
2489 /*
2490  * Given a starting vnode and a path, updates the path in the target vnode in
2491  * a safe manner.  If the vnode already has path information embedded, then the
2492  * cached path is left untouched.
2493  */
2494 void
2495 vn_setpath(vnode_t *rootvp, struct vnode *startvp, struct vnode *vp,
2496     const char *path, size_t plen)
2497 {
2498 	char	*rpath;
2499 	vnode_t	*base;
2500 	size_t	rpathlen, rpathalloc;
2501 	int	doslash = 1;
2502 
2503 	if (*path == '/') {
2504 		base = rootvp;
2505 		path++;
2506 		plen--;
2507 	} else {
2508 		base = startvp;
2509 	}
2510 
2511 	/*
2512 	 * We cannot grab base->v_lock while we hold vp->v_lock because of
2513 	 * the potential for deadlock.
2514 	 */
2515 	mutex_enter(&base->v_lock);
2516 	if (base->v_path == NULL) {
2517 		mutex_exit(&base->v_lock);
2518 		return;
2519 	}
2520 
2521 	rpathlen = strlen(base->v_path);
2522 	rpathalloc = rpathlen + plen + 1;
2523 	/* Avoid adding a slash if there's already one there */
2524 	if (base->v_path[rpathlen-1] == '/')
2525 		doslash = 0;
2526 	else
2527 		rpathalloc++;
2528 
2529 	/*
2530 	 * We don't want to call kmem_alloc(KM_SLEEP) with kernel locks held,
2531 	 * so we must do this dance.  If, by chance, something changes the path,
2532 	 * just give up since there is no real harm.
2533 	 */
2534 	mutex_exit(&base->v_lock);
2535 
2536 	rpath = kmem_alloc(rpathalloc, KM_SLEEP);
2537 
2538 	mutex_enter(&base->v_lock);
2539 	if (base->v_path == NULL || strlen(base->v_path) != rpathlen) {
2540 		mutex_exit(&base->v_lock);
2541 		kmem_free(rpath, rpathalloc);
2542 		return;
2543 	}
2544 	bcopy(base->v_path, rpath, rpathlen);
2545 	mutex_exit(&base->v_lock);
2546 
2547 	if (doslash)
2548 		rpath[rpathlen++] = '/';
2549 	bcopy(path, rpath + rpathlen, plen);
2550 	rpath[rpathlen + plen] = '\0';
2551 
2552 	mutex_enter(&vp->v_lock);
2553 	if (vp->v_path != NULL) {
2554 		mutex_exit(&vp->v_lock);
2555 		kmem_free(rpath, rpathalloc);
2556 	} else {
2557 		vp->v_path = rpath;
2558 		mutex_exit(&vp->v_lock);
2559 	}
2560 }
2561 
2562 /*
2563  * Sets the path to the vnode to be the given string, regardless of current
2564  * context.  The string must be a complete path from rootdir.  This is only used
2565  * by fsop_root() for setting the path based on the mountpoint.
2566  */
2567 void
2568 vn_setpath_str(struct vnode *vp, const char *str, size_t len)
2569 {
2570 	char *buf = kmem_alloc(len + 1, KM_SLEEP);
2571 
2572 	mutex_enter(&vp->v_lock);
2573 	if (vp->v_path != NULL) {
2574 		mutex_exit(&vp->v_lock);
2575 		kmem_free(buf, len + 1);
2576 		return;
2577 	}
2578 
2579 	vp->v_path = buf;
2580 	bcopy(str, vp->v_path, len);
2581 	vp->v_path[len] = '\0';
2582 
2583 	mutex_exit(&vp->v_lock);
2584 }
2585 
2586 /*
2587  * Similar to vn_setpath_str(), this function sets the path of the destination
2588  * vnode to the be the same as the source vnode.
2589  */
2590 void
2591 vn_copypath(struct vnode *src, struct vnode *dst)
2592 {
2593 	char *buf;
2594 	int alloc;
2595 
2596 	mutex_enter(&src->v_lock);
2597 	if (src->v_path == NULL) {
2598 		mutex_exit(&src->v_lock);
2599 		return;
2600 	}
2601 	alloc = strlen(src->v_path) + 1;
2602 
2603 	/* avoid kmem_alloc() with lock held */
2604 	mutex_exit(&src->v_lock);
2605 	buf = kmem_alloc(alloc, KM_SLEEP);
2606 	mutex_enter(&src->v_lock);
2607 	if (src->v_path == NULL || strlen(src->v_path) + 1 != alloc) {
2608 		mutex_exit(&src->v_lock);
2609 		kmem_free(buf, alloc);
2610 		return;
2611 	}
2612 	bcopy(src->v_path, buf, alloc);
2613 	mutex_exit(&src->v_lock);
2614 
2615 	mutex_enter(&dst->v_lock);
2616 	if (dst->v_path != NULL) {
2617 		mutex_exit(&dst->v_lock);
2618 		kmem_free(buf, alloc);
2619 		return;
2620 	}
2621 	dst->v_path = buf;
2622 	mutex_exit(&dst->v_lock);
2623 }
2624 
2625 /*
2626  * XXX Private interface for segvn routines that handle vnode
2627  * large page segments.
2628  *
2629  * return 1 if vp's file system VOP_PAGEIO() implementation
2630  * can be safely used instead of VOP_GETPAGE() for handling
2631  * pagefaults against regular non swap files. VOP_PAGEIO()
2632  * interface is considered safe here if its implementation
2633  * is very close to VOP_GETPAGE() implementation.
2634  * e.g. It zero's out the part of the page beyond EOF. Doesn't
2635  * panic if there're file holes but instead returns an error.
2636  * Doesn't assume file won't be changed by user writes, etc.
2637  *
2638  * return 0 otherwise.
2639  *
2640  * For now allow segvn to only use VOP_PAGEIO() with ufs and nfs.
2641  */
2642 int
2643 vn_vmpss_usepageio(vnode_t *vp)
2644 {
2645 	vfs_t   *vfsp = vp->v_vfsp;
2646 	char *fsname = vfssw[vfsp->vfs_fstype].vsw_name;
2647 	char *pageio_ok_fss[] = {"ufs", "nfs", NULL};
2648 	char **fsok = pageio_ok_fss;
2649 
2650 	if (fsname == NULL) {
2651 		return (0);
2652 	}
2653 
2654 	for (; *fsok; fsok++) {
2655 		if (strcmp(*fsok, fsname) == 0) {
2656 			return (1);
2657 		}
2658 	}
2659 	return (0);
2660 }
2661 
2662 /* VOP_XXX() macros call the corresponding fop_xxx() function */
2663 
2664 int
2665 fop_open(
2666 	vnode_t **vpp,
2667 	int mode,
2668 	cred_t *cr)
2669 {
2670 	int ret;
2671 	vnode_t *vp = *vpp;
2672 
2673 	VN_HOLD(vp);
2674 	/*
2675 	 * Adding to the vnode counts before calling open
2676 	 * avoids the need for a mutex. It circumvents a race
2677 	 * condition where a query made on the vnode counts results in a
2678 	 * false negative. The inquirer goes away believing the file is
2679 	 * not open when there is an open on the file already under way.
2680 	 *
2681 	 * The counts are meant to prevent NFS from granting a delegation
2682 	 * when it would be dangerous to do so.
2683 	 *
2684 	 * The vnode counts are only kept on regular files
2685 	 */
2686 	if ((*vpp)->v_type == VREG) {
2687 		if (mode & FREAD)
2688 			atomic_add_32(&((*vpp)->v_rdcnt), 1);
2689 		if (mode & FWRITE)
2690 			atomic_add_32(&((*vpp)->v_wrcnt), 1);
2691 	}
2692 
2693 	ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr);
2694 
2695 	if (ret) {
2696 		/*
2697 		 * Use the saved vp just in case the vnode ptr got trashed
2698 		 * by the error.
2699 		 */
2700 		VOPSTATS_UPDATE(vp, nopen);
2701 		if ((vp->v_type == VREG) && (mode & FREAD))
2702 			atomic_add_32(&(vp->v_rdcnt), -1);
2703 		if ((vp->v_type == VREG) && (mode & FWRITE))
2704 			atomic_add_32(&(vp->v_wrcnt), -1);
2705 	} else {
2706 		/*
2707 		 * Some filesystems will return a different vnode,
2708 		 * but the same path was still used to open it.
2709 		 * So if we do change the vnode and need to
2710 		 * copy over the path, do so here, rather than special
2711 		 * casing each filesystem. Adjust the vnode counts to
2712 		 * reflect the vnode switch.
2713 		 */
2714 		VOPSTATS_UPDATE(*vpp, nopen);
2715 		if (*vpp != vp && *vpp != NULL) {
2716 			vn_copypath(vp, *vpp);
2717 			if (((*vpp)->v_type == VREG) && (mode & FREAD))
2718 				atomic_add_32(&((*vpp)->v_rdcnt), 1);
2719 			if ((vp->v_type == VREG) && (mode & FREAD))
2720 				atomic_add_32(&(vp->v_rdcnt), -1);
2721 			if (((*vpp)->v_type == VREG) && (mode & FWRITE))
2722 				atomic_add_32(&((*vpp)->v_wrcnt), 1);
2723 			if ((vp->v_type == VREG) && (mode & FWRITE))
2724 				atomic_add_32(&(vp->v_wrcnt), -1);
2725 		}
2726 	}
2727 	VN_RELE(vp);
2728 	return (ret);
2729 }
2730 
2731 int
2732 fop_close(
2733 	vnode_t *vp,
2734 	int flag,
2735 	int count,
2736 	offset_t offset,
2737 	cred_t *cr)
2738 {
2739 	int err;
2740 
2741 	err = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr);
2742 	VOPSTATS_UPDATE(vp, nclose);
2743 	/*
2744 	 * Check passed in count to handle possible dups. Vnode counts are only
2745 	 * kept on regular files
2746 	 */
2747 	if ((vp->v_type == VREG) && (count == 1))  {
2748 		if (flag & FREAD) {
2749 			ASSERT(vp->v_rdcnt > 0);
2750 			atomic_add_32(&(vp->v_rdcnt), -1);
2751 		}
2752 		if (flag & FWRITE) {
2753 			ASSERT(vp->v_wrcnt > 0);
2754 			atomic_add_32(&(vp->v_wrcnt), -1);
2755 		}
2756 	}
2757 	return (err);
2758 }
2759 
2760 int
2761 fop_read(
2762 	vnode_t *vp,
2763 	uio_t *uiop,
2764 	int ioflag,
2765 	cred_t *cr,
2766 	struct caller_context *ct)
2767 {
2768 	int	err;
2769 	ssize_t	resid_start = uiop->uio_resid;
2770 
2771 	err = (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct);
2772 	VOPSTATS_UPDATE_IO(vp, nread,
2773 	    read_bytes, (resid_start - uiop->uio_resid));
2774 	return (err);
2775 }
2776 
2777 int
2778 fop_write(
2779 	vnode_t *vp,
2780 	uio_t *uiop,
2781 	int ioflag,
2782 	cred_t *cr,
2783 	struct caller_context *ct)
2784 {
2785 	int	err;
2786 	ssize_t	resid_start = uiop->uio_resid;
2787 
2788 	err = (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct);
2789 	VOPSTATS_UPDATE_IO(vp, nwrite,
2790 	    write_bytes, (resid_start - uiop->uio_resid));
2791 	return (err);
2792 }
2793 
2794 int
2795 fop_ioctl(
2796 	vnode_t *vp,
2797 	int cmd,
2798 	intptr_t arg,
2799 	int flag,
2800 	cred_t *cr,
2801 	int *rvalp)
2802 {
2803 	int	err;
2804 
2805 	err = (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp);
2806 	VOPSTATS_UPDATE(vp, nioctl);
2807 	return (err);
2808 }
2809 
2810 int
2811 fop_setfl(
2812 	vnode_t *vp,
2813 	int oflags,
2814 	int nflags,
2815 	cred_t *cr)
2816 {
2817 	int	err;
2818 
2819 	err = (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr);
2820 	VOPSTATS_UPDATE(vp, nsetfl);
2821 	return (err);
2822 }
2823 
2824 int
2825 fop_getattr(
2826 	vnode_t *vp,
2827 	vattr_t *vap,
2828 	int flags,
2829 	cred_t *cr)
2830 {
2831 	int	err;
2832 
2833 	err = (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr);
2834 	VOPSTATS_UPDATE(vp, ngetattr);
2835 	return (err);
2836 }
2837 
2838 int
2839 fop_setattr(
2840 	vnode_t *vp,
2841 	vattr_t *vap,
2842 	int flags,
2843 	cred_t *cr,
2844 	caller_context_t *ct)
2845 {
2846 	int	err;
2847 
2848 	err = (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct);
2849 	VOPSTATS_UPDATE(vp, nsetattr);
2850 	return (err);
2851 }
2852 
2853 int
2854 fop_access(
2855 	vnode_t *vp,
2856 	int mode,
2857 	int flags,
2858 	cred_t *cr)
2859 {
2860 	int	err;
2861 
2862 	err = (*(vp)->v_op->vop_access)(vp, mode, flags, cr);
2863 	VOPSTATS_UPDATE(vp, naccess);
2864 	return (err);
2865 }
2866 
2867 int
2868 fop_lookup(
2869 	vnode_t *dvp,
2870 	char *nm,
2871 	vnode_t **vpp,
2872 	pathname_t *pnp,
2873 	int flags,
2874 	vnode_t *rdir,
2875 	cred_t *cr)
2876 {
2877 	int ret;
2878 
2879 	ret = (*(dvp)->v_op->vop_lookup)(dvp, nm, vpp, pnp, flags, rdir, cr);
2880 	if (ret == 0 && *vpp) {
2881 		VOPSTATS_UPDATE(*vpp, nlookup);
2882 		if ((*vpp)->v_path == NULL) {
2883 			vn_setpath(rootdir, dvp, *vpp, nm, strlen(nm));
2884 		}
2885 	}
2886 
2887 	return (ret);
2888 }
2889 
2890 int
2891 fop_create(
2892 	vnode_t *dvp,
2893 	char *name,
2894 	vattr_t *vap,
2895 	vcexcl_t excl,
2896 	int mode,
2897 	vnode_t **vpp,
2898 	cred_t *cr,
2899 	int flag)
2900 {
2901 	int ret;
2902 
2903 	ret = (*(dvp)->v_op->vop_create)
2904 				(dvp, name, vap, excl, mode, vpp, cr, flag);
2905 	if (ret == 0 && *vpp) {
2906 		VOPSTATS_UPDATE(*vpp, ncreate);
2907 		if ((*vpp)->v_path == NULL) {
2908 			vn_setpath(rootdir, dvp, *vpp, name, strlen(name));
2909 		}
2910 	}
2911 
2912 	return (ret);
2913 }
2914 
2915 int
2916 fop_remove(
2917 	vnode_t *dvp,
2918 	char *nm,
2919 	cred_t *cr)
2920 {
2921 	int	err;
2922 
2923 	err = (*(dvp)->v_op->vop_remove)(dvp, nm, cr);
2924 	VOPSTATS_UPDATE(dvp, nremove);
2925 	return (err);
2926 }
2927 
2928 int
2929 fop_link(
2930 	vnode_t *tdvp,
2931 	vnode_t *svp,
2932 	char *tnm,
2933 	cred_t *cr)
2934 {
2935 	int	err;
2936 
2937 	err = (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr);
2938 	VOPSTATS_UPDATE(tdvp, nlink);
2939 	return (err);
2940 }
2941 
2942 int
2943 fop_rename(
2944 	vnode_t *sdvp,
2945 	char *snm,
2946 	vnode_t *tdvp,
2947 	char *tnm,
2948 	cred_t *cr)
2949 {
2950 	int	err;
2951 
2952 	err = (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr);
2953 	VOPSTATS_UPDATE(sdvp, nrename);
2954 	return (err);
2955 }
2956 
2957 int
2958 fop_mkdir(
2959 	vnode_t *dvp,
2960 	char *dirname,
2961 	vattr_t *vap,
2962 	vnode_t **vpp,
2963 	cred_t *cr)
2964 {
2965 	int ret;
2966 
2967 	ret = (*(dvp)->v_op->vop_mkdir)(dvp, dirname, vap, vpp, cr);
2968 	if (ret == 0 && *vpp) {
2969 		VOPSTATS_UPDATE(*vpp, nmkdir);
2970 		if ((*vpp)->v_path == NULL) {
2971 			vn_setpath(rootdir, dvp, *vpp, dirname,
2972 			    strlen(dirname));
2973 		}
2974 	}
2975 
2976 	return (ret);
2977 }
2978 
2979 int
2980 fop_rmdir(
2981 	vnode_t *dvp,
2982 	char *nm,
2983 	vnode_t *cdir,
2984 	cred_t *cr)
2985 {
2986 	int	err;
2987 
2988 	err = (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr);
2989 	VOPSTATS_UPDATE(dvp, nrmdir);
2990 	return (err);
2991 }
2992 
2993 int
2994 fop_readdir(
2995 	vnode_t *vp,
2996 	uio_t *uiop,
2997 	cred_t *cr,
2998 	int *eofp)
2999 {
3000 	int	err;
3001 	ssize_t	resid_start = uiop->uio_resid;
3002 
3003 	err = (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp);
3004 	VOPSTATS_UPDATE_IO(vp, nreaddir,
3005 	    readdir_bytes, (resid_start - uiop->uio_resid));
3006 	return (err);
3007 }
3008 
3009 int
3010 fop_symlink(
3011 	vnode_t *dvp,
3012 	char *linkname,
3013 	vattr_t *vap,
3014 	char *target,
3015 	cred_t *cr)
3016 {
3017 	int	err;
3018 
3019 	err = (*(dvp)->v_op->vop_symlink) (dvp, linkname, vap, target, cr);
3020 	VOPSTATS_UPDATE(dvp, nsymlink);
3021 	return (err);
3022 }
3023 
3024 int
3025 fop_readlink(
3026 	vnode_t *vp,
3027 	uio_t *uiop,
3028 	cred_t *cr)
3029 {
3030 	int	err;
3031 
3032 	err = (*(vp)->v_op->vop_readlink)(vp, uiop, cr);
3033 	VOPSTATS_UPDATE(vp, nreadlink);
3034 	return (err);
3035 }
3036 
3037 int
3038 fop_fsync(
3039 	vnode_t *vp,
3040 	int syncflag,
3041 	cred_t *cr)
3042 {
3043 	int	err;
3044 
3045 	err = (*(vp)->v_op->vop_fsync)(vp, syncflag, cr);
3046 	VOPSTATS_UPDATE(vp, nfsync);
3047 	return (err);
3048 }
3049 
3050 void
3051 fop_inactive(
3052 	vnode_t *vp,
3053 	cred_t *cr)
3054 {
3055 	/* Need to update stats before vop call since we may lose the vnode */
3056 	VOPSTATS_UPDATE(vp, ninactive);
3057 	(*(vp)->v_op->vop_inactive)(vp, cr);
3058 }
3059 
3060 int
3061 fop_fid(
3062 	vnode_t *vp,
3063 	fid_t *fidp)
3064 {
3065 	int	err;
3066 
3067 	err = (*(vp)->v_op->vop_fid)(vp, fidp);
3068 	VOPSTATS_UPDATE(vp, nfid);
3069 	return (err);
3070 }
3071 
3072 int
3073 fop_rwlock(
3074 	vnode_t *vp,
3075 	int write_lock,
3076 	caller_context_t *ct)
3077 {
3078 	int	ret;
3079 
3080 	ret = ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct));
3081 	VOPSTATS_UPDATE(vp, nrwlock);
3082 	return (ret);
3083 }
3084 
3085 void
3086 fop_rwunlock(
3087 	vnode_t *vp,
3088 	int write_lock,
3089 	caller_context_t *ct)
3090 {
3091 	(*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct);
3092 	VOPSTATS_UPDATE(vp, nrwunlock);
3093 }
3094 
3095 int
3096 fop_seek(
3097 	vnode_t *vp,
3098 	offset_t ooff,
3099 	offset_t *noffp)
3100 {
3101 	int	err;
3102 
3103 	err = (*(vp)->v_op->vop_seek)(vp, ooff, noffp);
3104 	VOPSTATS_UPDATE(vp, nseek);
3105 	return (err);
3106 }
3107 
3108 int
3109 fop_cmp(
3110 	vnode_t *vp1,
3111 	vnode_t *vp2)
3112 {
3113 	int	err;
3114 
3115 	err = (*(vp1)->v_op->vop_cmp)(vp1, vp2);
3116 	VOPSTATS_UPDATE(vp1, ncmp);
3117 	return (err);
3118 }
3119 
3120 int
3121 fop_frlock(
3122 	vnode_t *vp,
3123 	int cmd,
3124 	flock64_t *bfp,
3125 	int flag,
3126 	offset_t offset,
3127 	struct flk_callback *flk_cbp,
3128 	cred_t *cr)
3129 {
3130 	int	err;
3131 
3132 	err = (*(vp)->v_op->vop_frlock)
3133 				(vp, cmd, bfp, flag, offset, flk_cbp, cr);
3134 	VOPSTATS_UPDATE(vp, nfrlock);
3135 	return (err);
3136 }
3137 
3138 int
3139 fop_space(
3140 	vnode_t *vp,
3141 	int cmd,
3142 	flock64_t *bfp,
3143 	int flag,
3144 	offset_t offset,
3145 	cred_t *cr,
3146 	caller_context_t *ct)
3147 {
3148 	int	err;
3149 
3150 	err = (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct);
3151 	VOPSTATS_UPDATE(vp, nspace);
3152 	return (err);
3153 }
3154 
3155 int
3156 fop_realvp(
3157 	vnode_t *vp,
3158 	vnode_t **vpp)
3159 {
3160 	int	err;
3161 
3162 	err = (*(vp)->v_op->vop_realvp)(vp, vpp);
3163 	VOPSTATS_UPDATE(vp, nrealvp);
3164 	return (err);
3165 }
3166 
3167 int
3168 fop_getpage(
3169 	vnode_t *vp,
3170 	offset_t off,
3171 	size_t len,
3172 	uint_t *protp,
3173 	page_t **plarr,
3174 	size_t plsz,
3175 	struct seg *seg,
3176 	caddr_t addr,
3177 	enum seg_rw rw,
3178 	cred_t *cr)
3179 {
3180 	int	err;
3181 
3182 	err = (*(vp)->v_op->vop_getpage)
3183 			(vp, off, len, protp, plarr, plsz, seg, addr, rw, cr);
3184 	VOPSTATS_UPDATE(vp, ngetpage);
3185 	return (err);
3186 }
3187 
3188 int
3189 fop_putpage(
3190 	vnode_t *vp,
3191 	offset_t off,
3192 	size_t len,
3193 	int flags,
3194 	cred_t *cr)
3195 {
3196 	int	err;
3197 
3198 	err = (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr);
3199 	VOPSTATS_UPDATE(vp, nputpage);
3200 	return (err);
3201 }
3202 
3203 int
3204 fop_map(
3205 	vnode_t *vp,
3206 	offset_t off,
3207 	struct as *as,
3208 	caddr_t *addrp,
3209 	size_t len,
3210 	uchar_t prot,
3211 	uchar_t maxprot,
3212 	uint_t flags,
3213 	cred_t *cr)
3214 {
3215 	int	err;
3216 
3217 	err = (*(vp)->v_op->vop_map)
3218 			(vp, off, as, addrp, len, prot, maxprot, flags, cr);
3219 	VOPSTATS_UPDATE(vp, nmap);
3220 	return (err);
3221 }
3222 
3223 int
3224 fop_addmap(
3225 	vnode_t *vp,
3226 	offset_t off,
3227 	struct as *as,
3228 	caddr_t addr,
3229 	size_t len,
3230 	uchar_t prot,
3231 	uchar_t maxprot,
3232 	uint_t flags,
3233 	cred_t *cr)
3234 {
3235 	int error;
3236 	u_longlong_t delta;
3237 
3238 	error = (*(vp)->v_op->vop_addmap)
3239 			(vp, off, as, addr, len, prot, maxprot, flags, cr);
3240 
3241 	if ((!error) && (vp->v_type == VREG)) {
3242 		delta = (u_longlong_t)btopr(len);
3243 		/*
3244 		 * If file is declared MAP_PRIVATE, it can't be written back
3245 		 * even if open for write. Handle as read.
3246 		 */
3247 		if (flags & MAP_PRIVATE) {
3248 			atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
3249 				(int64_t)delta);
3250 		} else {
3251 			/*
3252 			 * atomic_add_64 forces the fetch of a 64 bit value to
3253 			 * be atomic on 32 bit machines
3254 			 */
3255 			if (maxprot & PROT_WRITE)
3256 				atomic_add_64((uint64_t *)(&(vp->v_mmap_write)),
3257 					(int64_t)delta);
3258 			if (maxprot & PROT_READ)
3259 				atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
3260 					(int64_t)delta);
3261 			if (maxprot & PROT_EXEC)
3262 				atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
3263 					(int64_t)delta);
3264 		}
3265 	}
3266 	VOPSTATS_UPDATE(vp, naddmap);
3267 	return (error);
3268 }
3269 
3270 int
3271 fop_delmap(
3272 	vnode_t *vp,
3273 	offset_t off,
3274 	struct as *as,
3275 	caddr_t addr,
3276 	size_t len,
3277 	uint_t prot,
3278 	uint_t maxprot,
3279 	uint_t flags,
3280 	cred_t *cr)
3281 {
3282 	int error;
3283 	u_longlong_t delta;
3284 	error = (*(vp)->v_op->vop_delmap)
3285 		(vp, off, as, addr, len, prot, maxprot, flags, cr);
3286 
3287 	/*
3288 	 * NFS calls into delmap twice, the first time
3289 	 * it simply establishes a callback mechanism and returns EAGAIN
3290 	 * while the real work is being done upon the second invocation.
3291 	 * We have to detect this here and only decrement the counts upon
3292 	 * the second delmap request.
3293 	 */
3294 	if ((error != EAGAIN) && (vp->v_type == VREG)) {
3295 
3296 		delta = (u_longlong_t)btopr(len);
3297 
3298 		if (flags & MAP_PRIVATE) {
3299 			atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
3300 				(int64_t)(-delta));
3301 		} else {
3302 			/*
3303 			 * atomic_add_64 forces the fetch of a 64 bit value
3304 			 * to be atomic on 32 bit machines
3305 			 */
3306 			if (maxprot & PROT_WRITE)
3307 				atomic_add_64((uint64_t *)(&(vp->v_mmap_write)),
3308 					(int64_t)(-delta));
3309 			if (maxprot & PROT_READ)
3310 				atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
3311 					(int64_t)(-delta));
3312 			if (maxprot & PROT_EXEC)
3313 				atomic_add_64((uint64_t *)(&(vp->v_mmap_read)),
3314 					(int64_t)(-delta));
3315 		}
3316 	}
3317 	VOPSTATS_UPDATE(vp, ndelmap);
3318 	return (error);
3319 }
3320 
3321 
3322 int
3323 fop_poll(
3324 	vnode_t *vp,
3325 	short events,
3326 	int anyyet,
3327 	short *reventsp,
3328 	struct pollhead **phpp)
3329 {
3330 	int	err;
3331 
3332 	err = (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp);
3333 	VOPSTATS_UPDATE(vp, npoll);
3334 	return (err);
3335 }
3336 
3337 int
3338 fop_dump(
3339 	vnode_t *vp,
3340 	caddr_t addr,
3341 	int lbdn,
3342 	int dblks)
3343 {
3344 	int	err;
3345 
3346 	err = (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks);
3347 	VOPSTATS_UPDATE(vp, ndump);
3348 	return (err);
3349 }
3350 
3351 int
3352 fop_pathconf(
3353 	vnode_t *vp,
3354 	int cmd,
3355 	ulong_t *valp,
3356 	cred_t *cr)
3357 {
3358 	int	err;
3359 
3360 	err = (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr);
3361 	VOPSTATS_UPDATE(vp, npathconf);
3362 	return (err);
3363 }
3364 
3365 int
3366 fop_pageio(
3367 	vnode_t *vp,
3368 	struct page *pp,
3369 	u_offset_t io_off,
3370 	size_t io_len,
3371 	int flags,
3372 	cred_t *cr)
3373 {
3374 	int	err;
3375 
3376 	err = (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr);
3377 	VOPSTATS_UPDATE(vp, npageio);
3378 	return (err);
3379 }
3380 
3381 int
3382 fop_dumpctl(
3383 	vnode_t *vp,
3384 	int action,
3385 	int *blkp)
3386 {
3387 	int	err;
3388 	err = (*(vp)->v_op->vop_dumpctl)(vp, action, blkp);
3389 	VOPSTATS_UPDATE(vp, ndumpctl);
3390 	return (err);
3391 }
3392 
3393 void
3394 fop_dispose(
3395 	vnode_t *vp,
3396 	page_t *pp,
3397 	int flag,
3398 	int dn,
3399 	cred_t *cr)
3400 {
3401 	/* Must do stats first since it's possible to lose the vnode */
3402 	VOPSTATS_UPDATE(vp, ndispose);
3403 	(*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr);
3404 }
3405 
3406 int
3407 fop_setsecattr(
3408 	vnode_t *vp,
3409 	vsecattr_t *vsap,
3410 	int flag,
3411 	cred_t *cr)
3412 {
3413 	int	err;
3414 
3415 	err = (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr);
3416 	VOPSTATS_UPDATE(vp, nsetsecattr);
3417 	return (err);
3418 }
3419 
3420 int
3421 fop_getsecattr(
3422 	vnode_t *vp,
3423 	vsecattr_t *vsap,
3424 	int flag,
3425 	cred_t *cr)
3426 {
3427 	int	err;
3428 
3429 	err = (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr);
3430 	VOPSTATS_UPDATE(vp, ngetsecattr);
3431 	return (err);
3432 }
3433 
3434 int
3435 fop_shrlock(
3436 	vnode_t *vp,
3437 	int cmd,
3438 	struct shrlock *shr,
3439 	int flag,
3440 	cred_t *cr)
3441 {
3442 	int	err;
3443 
3444 	err = (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr);
3445 	VOPSTATS_UPDATE(vp, nshrlock);
3446 	return (err);
3447 }
3448 
3449 int
3450 fop_vnevent(vnode_t *vp, vnevent_t vnevent)
3451 {
3452 	int	err;
3453 
3454 	err = (*(vp)->v_op->vop_vnevent)(vp, vnevent);
3455 	VOPSTATS_UPDATE(vp, nvnevent);
3456 	return (err);
3457 }
3458