1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * University Copyright- Copyright (c) 1982, 1986, 1988 32 * The Regents of the University of California 33 * All Rights Reserved 34 * 35 * University Acknowledgment- Portions of this document are derived from 36 * software developed by the University of California, Berkeley, and its 37 * contributors. 38 */ 39 40 41 #pragma ident "%Z%%M% %I% %E% SMI" 42 43 #include <sys/types.h> 44 #include <sys/param.h> 45 #include <sys/t_lock.h> 46 #include <sys/errno.h> 47 #include <sys/cred.h> 48 #include <sys/user.h> 49 #include <sys/uio.h> 50 #include <sys/file.h> 51 #include <sys/pathname.h> 52 #include <sys/vfs.h> 53 #include <sys/vnode.h> 54 #include <sys/rwstlock.h> 55 #include <sys/fem.h> 56 #include <sys/stat.h> 57 #include <sys/mode.h> 58 #include <sys/conf.h> 59 #include <sys/sysmacros.h> 60 #include <sys/cmn_err.h> 61 #include <sys/systm.h> 62 #include <sys/kmem.h> 63 #include <sys/debug.h> 64 #include <c2/audit.h> 65 #include <sys/acl.h> 66 #include <sys/nbmlock.h> 67 #include <sys/fcntl.h> 68 #include <fs/fs_subr.h> 69 70 /* Determine if this vnode is a file that is read-only */ 71 #define ISROFILE(vp) \ 72 ((vp)->v_type != VCHR && (vp)->v_type != VBLK && \ 73 (vp)->v_type != VFIFO && vn_is_readonly(vp)) 74 75 /* 76 * Convert stat(2) formats to vnode types and vice versa. (Knows about 77 * numerical order of S_IFMT and vnode types.) 78 */ 79 enum vtype iftovt_tab[] = { 80 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 81 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON 82 }; 83 84 ushort_t vttoif_tab[] = { 85 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO, 86 S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0 87 }; 88 89 /* 90 * The system vnode cache. 91 */ 92 93 kmem_cache_t *vn_cache; 94 95 96 /* 97 * Vnode operations vector. 98 */ 99 100 static const fs_operation_trans_def_t vn_ops_table[] = { 101 VOPNAME_OPEN, offsetof(struct vnodeops, vop_open), 102 fs_nosys, fs_nosys, 103 104 VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close), 105 fs_nosys, fs_nosys, 106 107 VOPNAME_READ, offsetof(struct vnodeops, vop_read), 108 fs_nosys, fs_nosys, 109 110 VOPNAME_WRITE, offsetof(struct vnodeops, vop_write), 111 fs_nosys, fs_nosys, 112 113 VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl), 114 fs_nosys, fs_nosys, 115 116 VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl), 117 fs_setfl, fs_nosys, 118 119 VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr), 120 fs_nosys, fs_nosys, 121 122 VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr), 123 fs_nosys, fs_nosys, 124 125 VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access), 126 fs_nosys, fs_nosys, 127 128 VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup), 129 fs_nosys, fs_nosys, 130 131 VOPNAME_CREATE, offsetof(struct vnodeops, vop_create), 132 fs_nosys, fs_nosys, 133 134 VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove), 135 fs_nosys, fs_nosys, 136 137 VOPNAME_LINK, offsetof(struct vnodeops, vop_link), 138 fs_nosys, fs_nosys, 139 140 VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename), 141 fs_nosys, fs_nosys, 142 143 VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir), 144 fs_nosys, fs_nosys, 145 146 VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir), 147 fs_nosys, fs_nosys, 148 149 VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir), 150 fs_nosys, fs_nosys, 151 152 VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink), 153 fs_nosys, fs_nosys, 154 155 VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink), 156 fs_nosys, fs_nosys, 157 158 VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync), 159 fs_nosys, fs_nosys, 160 161 VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive), 162 fs_nosys, fs_nosys, 163 164 VOPNAME_FID, offsetof(struct vnodeops, vop_fid), 165 fs_nosys, fs_nosys, 166 167 VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock), 168 fs_rwlock, fs_rwlock, 169 170 VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock), 171 (fs_generic_func_p) fs_rwunlock, 172 (fs_generic_func_p) fs_rwunlock, /* no errors allowed */ 173 174 VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek), 175 fs_nosys, fs_nosys, 176 177 VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp), 178 fs_cmp, fs_cmp, /* no errors allowed */ 179 180 VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock), 181 fs_frlock, fs_nosys, 182 183 VOPNAME_SPACE, offsetof(struct vnodeops, vop_space), 184 fs_nosys, fs_nosys, 185 186 VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp), 187 fs_nosys, fs_nosys, 188 189 VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage), 190 fs_nosys, fs_nosys, 191 192 VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage), 193 fs_nosys, fs_nosys, 194 195 VOPNAME_MAP, offsetof(struct vnodeops, vop_map), 196 (fs_generic_func_p) fs_nosys_map, 197 (fs_generic_func_p) fs_nosys_map, 198 199 VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap), 200 (fs_generic_func_p) fs_nosys_addmap, 201 (fs_generic_func_p) fs_nosys_addmap, 202 203 VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap), 204 fs_nosys, fs_nosys, 205 206 VOPNAME_POLL, offsetof(struct vnodeops, vop_poll), 207 (fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll, 208 209 VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump), 210 fs_nosys, fs_nosys, 211 212 VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf), 213 fs_pathconf, fs_nosys, 214 215 VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio), 216 fs_nosys, fs_nosys, 217 218 VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl), 219 fs_nosys, fs_nosys, 220 221 VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose), 222 (fs_generic_func_p) fs_dispose, 223 (fs_generic_func_p) fs_nodispose, 224 225 VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr), 226 fs_nosys, fs_nosys, 227 228 VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr), 229 fs_fab_acl, fs_nosys, 230 231 VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock), 232 fs_shrlock, fs_nosys, 233 234 VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent), 235 (fs_generic_func_p) fs_vnevent_nosupport, 236 (fs_generic_func_p) fs_vnevent_nosupport, 237 238 NULL, 0, NULL, NULL 239 }; 240 241 242 /* 243 * Read or write a vnode. Called from kernel code. 244 */ 245 int 246 vn_rdwr( 247 enum uio_rw rw, 248 struct vnode *vp, 249 caddr_t base, 250 ssize_t len, 251 offset_t offset, 252 enum uio_seg seg, 253 int ioflag, 254 rlim64_t ulimit, /* meaningful only if rw is UIO_WRITE */ 255 cred_t *cr, 256 ssize_t *residp) 257 { 258 struct uio uio; 259 struct iovec iov; 260 int error; 261 int in_crit = 0; 262 263 if (rw == UIO_WRITE && ISROFILE(vp)) 264 return (EROFS); 265 266 if (len < 0) 267 return (EIO); 268 269 iov.iov_base = base; 270 iov.iov_len = len; 271 uio.uio_iov = &iov; 272 uio.uio_iovcnt = 1; 273 uio.uio_loffset = offset; 274 uio.uio_segflg = (short)seg; 275 uio.uio_resid = len; 276 uio.uio_llimit = ulimit; 277 278 /* 279 * We have to enter the critical region before calling VOP_RWLOCK 280 * to avoid a deadlock with ufs. 281 */ 282 if (nbl_need_check(vp)) { 283 int svmand; 284 285 nbl_start_crit(vp, RW_READER); 286 in_crit = 1; 287 error = nbl_svmand(vp, cr, &svmand); 288 if (error != 0) 289 goto done; 290 if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ, 291 uio.uio_offset, uio.uio_resid, svmand)) { 292 error = EACCES; 293 goto done; 294 } 295 } 296 297 (void) VOP_RWLOCK(vp, 298 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL); 299 if (rw == UIO_WRITE) { 300 uio.uio_fmode = FWRITE; 301 uio.uio_extflg = UIO_COPY_DEFAULT; 302 error = VOP_WRITE(vp, &uio, ioflag, cr, NULL); 303 } else { 304 uio.uio_fmode = FREAD; 305 uio.uio_extflg = UIO_COPY_CACHED; 306 error = VOP_READ(vp, &uio, ioflag, cr, NULL); 307 } 308 VOP_RWUNLOCK(vp, rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, 309 NULL); 310 if (residp) 311 *residp = uio.uio_resid; 312 else if (uio.uio_resid) 313 error = EIO; 314 315 done: 316 if (in_crit) 317 nbl_end_crit(vp); 318 return (error); 319 } 320 321 /* 322 * Release a vnode. Call VOP_INACTIVE on last reference or 323 * decrement reference count. 324 * 325 * To avoid race conditions, the v_count is left at 1 for 326 * the call to VOP_INACTIVE. This prevents another thread 327 * from reclaiming and releasing the vnode *before* the 328 * VOP_INACTIVE routine has a chance to destroy the vnode. 329 * We can't have more than 1 thread calling VOP_INACTIVE 330 * on a vnode. 331 */ 332 void 333 vn_rele(vnode_t *vp) 334 { 335 if (vp->v_count == 0) 336 cmn_err(CE_PANIC, "vn_rele: vnode ref count 0"); 337 mutex_enter(&vp->v_lock); 338 if (vp->v_count == 1) { 339 mutex_exit(&vp->v_lock); 340 VOP_INACTIVE(vp, CRED()); 341 } else { 342 vp->v_count--; 343 mutex_exit(&vp->v_lock); 344 } 345 } 346 347 /* 348 * Like vn_rele() except that it clears v_stream under v_lock. 349 * This is used by sockfs when it dismantels the association between 350 * the sockfs node and the vnode in the underlaying file system. 351 * v_lock has to be held to prevent a thread coming through the lookupname 352 * path from accessing a stream head that is going away. 353 */ 354 void 355 vn_rele_stream(vnode_t *vp) 356 { 357 if (vp->v_count == 0) 358 cmn_err(CE_PANIC, "vn_rele: vnode ref count 0"); 359 mutex_enter(&vp->v_lock); 360 vp->v_stream = NULL; 361 if (vp->v_count == 1) { 362 mutex_exit(&vp->v_lock); 363 VOP_INACTIVE(vp, CRED()); 364 } else { 365 vp->v_count--; 366 mutex_exit(&vp->v_lock); 367 } 368 } 369 370 int 371 vn_open( 372 char *pnamep, 373 enum uio_seg seg, 374 int filemode, 375 int createmode, 376 struct vnode **vpp, 377 enum create crwhy, 378 mode_t umask) 379 { 380 return (vn_openat(pnamep, seg, filemode, 381 createmode, vpp, crwhy, umask, NULL)); 382 } 383 384 385 /* 386 * Open/create a vnode. 387 * This may be callable by the kernel, the only known use 388 * of user context being that the current user credentials 389 * are used for permissions. crwhy is defined iff filemode & FCREAT. 390 */ 391 int 392 vn_openat( 393 char *pnamep, 394 enum uio_seg seg, 395 int filemode, 396 int createmode, 397 struct vnode **vpp, 398 enum create crwhy, 399 mode_t umask, 400 struct vnode *startvp) 401 { 402 struct vnode *vp; 403 int mode; 404 int error; 405 int in_crit = 0; 406 struct vattr vattr; 407 enum symfollow follow; 408 409 mode = 0; 410 if (filemode & FREAD) 411 mode |= VREAD; 412 if (filemode & (FWRITE|FTRUNC)) 413 mode |= VWRITE; 414 415 /* symlink interpretation */ 416 if (filemode & FNOFOLLOW) 417 follow = NO_FOLLOW; 418 else 419 follow = FOLLOW; 420 421 top: 422 if (filemode & FCREAT) { 423 enum vcexcl excl; 424 425 /* 426 * Wish to create a file. 427 */ 428 vattr.va_type = VREG; 429 vattr.va_mode = createmode; 430 vattr.va_mask = AT_TYPE|AT_MODE; 431 if (filemode & FTRUNC) { 432 vattr.va_size = 0; 433 vattr.va_mask |= AT_SIZE; 434 } 435 if (filemode & FEXCL) 436 excl = EXCL; 437 else 438 excl = NONEXCL; 439 440 if (error = 441 vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy, 442 (filemode & ~(FTRUNC|FEXCL)), 443 umask, startvp)) 444 return (error); 445 } else { 446 /* 447 * Wish to open a file. Just look it up. 448 */ 449 if (error = lookupnameat(pnamep, seg, follow, 450 NULLVPP, &vp, startvp)) { 451 if (error == ESTALE) 452 goto top; 453 return (error); 454 } 455 456 /* 457 * Get the attributes to check whether file is large. 458 * We do this only if the FOFFMAX flag is not set and 459 * only for regular files. 460 */ 461 462 if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) { 463 vattr.va_mask = AT_SIZE; 464 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 465 goto out; 466 } 467 if (vattr.va_size > (u_offset_t)MAXOFF32_T) { 468 /* 469 * Large File API - regular open fails 470 * if FOFFMAX flag is set in file mode 471 */ 472 error = EOVERFLOW; 473 goto out; 474 } 475 } 476 /* 477 * Can't write directories, active texts, or 478 * read-only filesystems. Can't truncate files 479 * on which mandatory locking is in effect. 480 */ 481 if (filemode & (FWRITE|FTRUNC)) { 482 /* 483 * Allow writable directory if VDIROPEN flag is set. 484 */ 485 if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) { 486 error = EISDIR; 487 goto out; 488 } 489 if (ISROFILE(vp)) { 490 error = EROFS; 491 goto out; 492 } 493 /* 494 * Can't truncate files on which mandatory locking 495 * or non-blocking mandatory locking is in effect. 496 */ 497 if (filemode & FTRUNC) { 498 vnode_t *rvp; 499 500 if (VOP_REALVP(vp, &rvp) != 0) 501 rvp = vp; 502 if (nbl_need_check(vp)) { 503 nbl_start_crit(vp, RW_READER); 504 in_crit = 1; 505 vattr.va_mask = AT_MODE|AT_SIZE; 506 if ((error = VOP_GETATTR(vp, &vattr, 0, 507 CRED())) == 0) { 508 if (rvp->v_filocks != NULL) 509 if (MANDLOCK(vp, 510 vattr.va_mode)) 511 error = EAGAIN; 512 if (!error) { 513 if (nbl_conflict(vp, 514 NBL_WRITE, 0, 515 vattr.va_size, 0)) 516 error = EACCES; 517 } 518 } 519 } else if (rvp->v_filocks != NULL) { 520 vattr.va_mask = AT_MODE; 521 if ((error = VOP_GETATTR(vp, &vattr, 522 0, CRED())) == 0 && MANDLOCK(vp, 523 vattr.va_mode)) 524 error = EAGAIN; 525 } 526 } 527 if (error) 528 goto out; 529 } 530 /* 531 * Check permissions. 532 */ 533 if (error = VOP_ACCESS(vp, mode, 0, CRED())) 534 goto out; 535 } 536 537 /* 538 * Do remaining checks for FNOFOLLOW and FNOLINKS. 539 */ 540 if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) { 541 error = EINVAL; 542 goto out; 543 } 544 if (filemode & FNOLINKS) { 545 vattr.va_mask = AT_NLINK; 546 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 547 goto out; 548 } 549 if (vattr.va_nlink != 1) { 550 error = EMLINK; 551 goto out; 552 } 553 } 554 555 /* 556 * Opening a socket corresponding to the AF_UNIX pathname 557 * in the filesystem name space is not supported. 558 * However, VSOCK nodes in namefs are supported in order 559 * to make fattach work for sockets. 560 * 561 * XXX This uses VOP_REALVP to distinguish between 562 * an unopened namefs node (where VOP_REALVP returns a 563 * different VSOCK vnode) and a VSOCK created by vn_create 564 * in some file system (where VOP_REALVP would never return 565 * a different vnode). 566 */ 567 if (vp->v_type == VSOCK) { 568 struct vnode *nvp; 569 570 error = VOP_REALVP(vp, &nvp); 571 if (error != 0 || nvp == NULL || nvp == vp || 572 nvp->v_type != VSOCK) { 573 error = EOPNOTSUPP; 574 goto out; 575 } 576 } 577 /* 578 * Do opening protocol. 579 */ 580 error = VOP_OPEN(&vp, filemode, CRED()); 581 /* 582 * Truncate if required. 583 */ 584 if (error == 0 && (filemode & FTRUNC) && !(filemode & FCREAT)) { 585 vattr.va_size = 0; 586 vattr.va_mask = AT_SIZE; 587 if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0) 588 (void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED()); 589 } 590 out: 591 ASSERT(vp->v_count > 0); 592 593 if (in_crit) { 594 nbl_end_crit(vp); 595 in_crit = 0; 596 } 597 if (error) { 598 /* 599 * The following clause was added to handle a problem 600 * with NFS consistency. It is possible that a lookup 601 * of the file to be opened succeeded, but the file 602 * itself doesn't actually exist on the server. This 603 * is chiefly due to the DNLC containing an entry for 604 * the file which has been removed on the server. In 605 * this case, we just start over. If there was some 606 * other cause for the ESTALE error, then the lookup 607 * of the file will fail and the error will be returned 608 * above instead of looping around from here. 609 */ 610 VN_RELE(vp); 611 if (error == ESTALE) 612 goto top; 613 } else 614 *vpp = vp; 615 return (error); 616 } 617 618 int 619 vn_create( 620 char *pnamep, 621 enum uio_seg seg, 622 struct vattr *vap, 623 enum vcexcl excl, 624 int mode, 625 struct vnode **vpp, 626 enum create why, 627 int flag, 628 mode_t umask) 629 { 630 return (vn_createat(pnamep, seg, vap, excl, mode, vpp, 631 why, flag, umask, NULL)); 632 } 633 634 /* 635 * Create a vnode (makenode). 636 */ 637 int 638 vn_createat( 639 char *pnamep, 640 enum uio_seg seg, 641 struct vattr *vap, 642 enum vcexcl excl, 643 int mode, 644 struct vnode **vpp, 645 enum create why, 646 int flag, 647 mode_t umask, 648 struct vnode *startvp) 649 { 650 struct vnode *dvp; /* ptr to parent dir vnode */ 651 struct vnode *vp = NULL; 652 struct pathname pn; 653 int error; 654 int in_crit = 0; 655 struct vattr vattr; 656 enum symfollow follow; 657 658 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 659 660 /* symlink interpretation */ 661 if ((flag & FNOFOLLOW) || excl == EXCL) 662 follow = NO_FOLLOW; 663 else 664 follow = FOLLOW; 665 flag &= ~(FNOFOLLOW|FNOLINKS); 666 667 top: 668 /* 669 * Lookup directory. 670 * If new object is a file, call lower level to create it. 671 * Note that it is up to the lower level to enforce exclusive 672 * creation, if the file is already there. 673 * This allows the lower level to do whatever 674 * locking or protocol that is needed to prevent races. 675 * If the new object is directory call lower level to make 676 * the new directory, with "." and "..". 677 */ 678 if (error = pn_get(pnamep, seg, &pn)) 679 return (error); 680 #ifdef C2_AUDIT 681 if (audit_active) 682 audit_vncreate_start(); 683 #endif /* C2_AUDIT */ 684 dvp = NULL; 685 *vpp = NULL; 686 /* 687 * lookup will find the parent directory for the vnode. 688 * When it is done the pn holds the name of the entry 689 * in the directory. 690 * If this is a non-exclusive create we also find the node itself. 691 */ 692 error = lookuppnat(&pn, NULL, follow, &dvp, 693 (excl == EXCL) ? NULLVPP : vpp, startvp); 694 if (error) { 695 pn_free(&pn); 696 if (error == ESTALE) 697 goto top; 698 if (why == CRMKDIR && error == EINVAL) 699 error = EEXIST; /* SVID */ 700 return (error); 701 } 702 703 if (why != CRMKNOD) 704 vap->va_mode &= ~VSVTX; 705 706 /* 707 * If default ACLs are defined for the directory don't apply the 708 * umask if umask is passed. 709 */ 710 711 if (umask) { 712 713 vsecattr_t vsec; 714 715 vsec.vsa_aclcnt = 0; 716 vsec.vsa_aclentp = NULL; 717 vsec.vsa_dfaclcnt = 0; 718 vsec.vsa_dfaclentp = NULL; 719 vsec.vsa_mask = VSA_DFACLCNT; 720 if (error = VOP_GETSECATTR(dvp, &vsec, 0, CRED())) { 721 if (*vpp != NULL) 722 VN_RELE(*vpp); 723 goto out; 724 } 725 726 /* 727 * Apply the umask if no default ACLs. 728 */ 729 if (vsec.vsa_dfaclcnt == 0) 730 vap->va_mode &= ~umask; 731 732 /* 733 * VOP_GETSECATTR() may have allocated memory for ACLs we 734 * didn't request, so double-check and free it if necessary. 735 */ 736 if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL) 737 kmem_free((caddr_t)vsec.vsa_aclentp, 738 vsec.vsa_aclcnt * sizeof (aclent_t)); 739 if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL) 740 kmem_free((caddr_t)vsec.vsa_dfaclentp, 741 vsec.vsa_dfaclcnt * sizeof (aclent_t)); 742 } 743 744 /* 745 * In general we want to generate EROFS if the file system is 746 * readonly. However, POSIX (IEEE Std. 1003.1) section 5.3.1 747 * documents the open system call, and it says that O_CREAT has no 748 * effect if the file already exists. Bug 1119649 states 749 * that open(path, O_CREAT, ...) fails when attempting to open an 750 * existing file on a read only file system. Thus, the first part 751 * of the following if statement has 3 checks: 752 * if the file exists && 753 * it is being open with write access && 754 * the file system is read only 755 * then generate EROFS 756 */ 757 if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) || 758 (*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 759 if (*vpp) 760 VN_RELE(*vpp); 761 error = EROFS; 762 } else if (excl == NONEXCL && *vpp != NULL) { 763 vnode_t *rvp; 764 765 /* 766 * File already exists. If a mandatory lock has been 767 * applied, return error. 768 */ 769 vp = *vpp; 770 if (VOP_REALVP(vp, &rvp) != 0) 771 rvp = vp; 772 if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) { 773 nbl_start_crit(vp, RW_READER); 774 in_crit = 1; 775 } 776 if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) { 777 vattr.va_mask = AT_MODE|AT_SIZE; 778 if (error = VOP_GETATTR(vp, &vattr, 0, CRED())) { 779 goto out; 780 } 781 if (MANDLOCK(vp, vattr.va_mode)) { 782 error = EAGAIN; 783 goto out; 784 } 785 /* 786 * File cannot be truncated if non-blocking mandatory 787 * locks are currently on the file. 788 */ 789 if ((vap->va_mask & AT_SIZE) && in_crit) { 790 u_offset_t offset; 791 ssize_t length; 792 793 offset = vap->va_size > vattr.va_size ? 794 vattr.va_size : vap->va_size; 795 length = vap->va_size > vattr.va_size ? 796 vap->va_size - vattr.va_size : 797 vattr.va_size - vap->va_size; 798 if (nbl_conflict(vp, NBL_WRITE, offset, 799 length, 0)) { 800 error = EACCES; 801 goto out; 802 } 803 } 804 } 805 806 /* 807 * If the file is the root of a VFS, we've crossed a 808 * mount point and the "containing" directory that we 809 * acquired above (dvp) is irrelevant because it's in 810 * a different file system. We apply VOP_CREATE to the 811 * target itself instead of to the containing directory 812 * and supply a null path name to indicate (conventionally) 813 * the node itself as the "component" of interest. 814 * 815 * The intercession of the file system is necessary to 816 * ensure that the appropriate permission checks are 817 * done. 818 */ 819 if (vp->v_flag & VROOT) { 820 ASSERT(why != CRMKDIR); 821 error = 822 VOP_CREATE(vp, "", vap, excl, mode, vpp, CRED(), 823 flag); 824 /* 825 * If the create succeeded, it will have created 826 * a new reference to the vnode. Give up the 827 * original reference. The assertion should not 828 * get triggered because NBMAND locks only apply to 829 * VREG files. And if in_crit is non-zero for some 830 * reason, detect that here, rather than when we 831 * deference a null vp. 832 */ 833 ASSERT(in_crit == 0); 834 VN_RELE(vp); 835 vp = NULL; 836 goto out; 837 } 838 839 /* 840 * Large File API - non-large open (FOFFMAX flag not set) 841 * of regular file fails if the file size exceeds MAXOFF32_T. 842 */ 843 if (why != CRMKDIR && 844 !(flag & FOFFMAX) && 845 (vp->v_type == VREG)) { 846 vattr.va_mask = AT_SIZE; 847 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 848 goto out; 849 } 850 if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) { 851 error = EOVERFLOW; 852 goto out; 853 } 854 } 855 } 856 857 if (error == 0) { 858 /* 859 * Call mkdir() if specified, otherwise create(). 860 */ 861 int must_be_dir = pn_fixslash(&pn); /* trailing '/'? */ 862 863 if (why == CRMKDIR) 864 error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED()); 865 else if (!must_be_dir) 866 error = VOP_CREATE(dvp, pn.pn_path, vap, 867 excl, mode, vpp, CRED(), flag); 868 else 869 error = ENOTDIR; 870 } 871 872 out: 873 874 #ifdef C2_AUDIT 875 if (audit_active) 876 audit_vncreate_finish(*vpp, error); 877 #endif /* C2_AUDIT */ 878 if (in_crit) { 879 nbl_end_crit(vp); 880 in_crit = 0; 881 } 882 if (vp != NULL) { 883 VN_RELE(vp); 884 vp = NULL; 885 } 886 pn_free(&pn); 887 VN_RELE(dvp); 888 /* 889 * The following clause was added to handle a problem 890 * with NFS consistency. It is possible that a lookup 891 * of the file to be created succeeded, but the file 892 * itself doesn't actually exist on the server. This 893 * is chiefly due to the DNLC containing an entry for 894 * the file which has been removed on the server. In 895 * this case, we just start over. If there was some 896 * other cause for the ESTALE error, then the lookup 897 * of the file will fail and the error will be returned 898 * above instead of looping around from here. 899 */ 900 if (error == ESTALE) 901 goto top; 902 return (error); 903 } 904 905 int 906 vn_link(char *from, char *to, enum uio_seg seg) 907 { 908 struct vnode *fvp; /* from vnode ptr */ 909 struct vnode *tdvp; /* to directory vnode ptr */ 910 struct pathname pn; 911 int error; 912 struct vattr vattr; 913 dev_t fsid; 914 915 top: 916 fvp = tdvp = NULL; 917 if (error = pn_get(to, seg, &pn)) 918 return (error); 919 if (error = lookupname(from, seg, NO_FOLLOW, NULLVPP, &fvp)) 920 goto out; 921 if (error = lookuppn(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP)) 922 goto out; 923 /* 924 * Make sure both source vnode and target directory vnode are 925 * in the same vfs and that it is writeable. 926 */ 927 vattr.va_mask = AT_FSID; 928 if (error = VOP_GETATTR(fvp, &vattr, 0, CRED())) 929 goto out; 930 fsid = vattr.va_fsid; 931 vattr.va_mask = AT_FSID; 932 if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED())) 933 goto out; 934 if (fsid != vattr.va_fsid) { 935 error = EXDEV; 936 goto out; 937 } 938 if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) { 939 error = EROFS; 940 goto out; 941 } 942 /* 943 * Do the link. 944 */ 945 (void) pn_fixslash(&pn); 946 error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED()); 947 out: 948 pn_free(&pn); 949 if (fvp) 950 VN_RELE(fvp); 951 if (tdvp) 952 VN_RELE(tdvp); 953 if (error == ESTALE) 954 goto top; 955 return (error); 956 } 957 958 int 959 vn_rename(char *from, char *to, enum uio_seg seg) 960 { 961 return (vn_renameat(NULL, from, NULL, to, seg)); 962 } 963 964 int 965 vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp, 966 char *tname, enum uio_seg seg) 967 { 968 int error; 969 struct vattr vattr; 970 struct pathname fpn; /* from pathname */ 971 struct pathname tpn; /* to pathname */ 972 dev_t fsid; 973 int in_crit = 0; 974 vnode_t *fromvp, *fvp; 975 vnode_t *tovp; 976 977 top: 978 fvp = fromvp = tovp = NULL; 979 /* 980 * Get to and from pathnames. 981 */ 982 if (error = pn_get(fname, seg, &fpn)) 983 return (error); 984 if (error = pn_get(tname, seg, &tpn)) { 985 pn_free(&fpn); 986 return (error); 987 } 988 989 /* 990 * First we need to resolve the correct directories 991 * The passed in directories may only be a starting point, 992 * but we need the real directories the file(s) live in. 993 * For example the fname may be something like usr/lib/sparc 994 * and we were passed in the / directory, but we need to 995 * use the lib directory for the rename. 996 */ 997 998 #ifdef C2_AUDIT 999 if (audit_active) 1000 audit_setfsat_path(1); 1001 #endif /* C2_AUDIT */ 1002 /* 1003 * Lookup to and from directories. 1004 */ 1005 if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) { 1006 goto out; 1007 } 1008 1009 /* 1010 * Make sure there is an entry. 1011 */ 1012 if (fvp == NULL) { 1013 error = ENOENT; 1014 goto out; 1015 } 1016 1017 #ifdef C2_AUDIT 1018 if (audit_active) 1019 audit_setfsat_path(3); 1020 #endif /* C2_AUDIT */ 1021 if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, NULLVPP, tdvp)) { 1022 goto out; 1023 } 1024 1025 /* 1026 * Make sure both the from vnode directory and the to directory 1027 * are in the same vfs and the to directory is writable. 1028 * We check fsid's, not vfs pointers, so loopback fs works. 1029 */ 1030 if (fromvp != tovp) { 1031 vattr.va_mask = AT_FSID; 1032 if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED())) 1033 goto out; 1034 fsid = vattr.va_fsid; 1035 vattr.va_mask = AT_FSID; 1036 if (error = VOP_GETATTR(tovp, &vattr, 0, CRED())) 1037 goto out; 1038 if (fsid != vattr.va_fsid) { 1039 error = EXDEV; 1040 goto out; 1041 } 1042 } 1043 1044 if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) { 1045 error = EROFS; 1046 goto out; 1047 } 1048 1049 if (nbl_need_check(fvp)) { 1050 nbl_start_crit(fvp, RW_READER); 1051 in_crit = 1; 1052 if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0)) { 1053 error = EACCES; 1054 goto out; 1055 } 1056 } 1057 1058 /* 1059 * Do the rename. 1060 */ 1061 (void) pn_fixslash(&tpn); 1062 error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED()); 1063 1064 out: 1065 pn_free(&fpn); 1066 pn_free(&tpn); 1067 if (in_crit) { 1068 nbl_end_crit(fvp); 1069 in_crit = 0; 1070 } 1071 if (fromvp) 1072 VN_RELE(fromvp); 1073 if (tovp) 1074 VN_RELE(tovp); 1075 if (fvp) 1076 VN_RELE(fvp); 1077 if (error == ESTALE) 1078 goto top; 1079 return (error); 1080 } 1081 1082 /* 1083 * Remove a file or directory. 1084 */ 1085 int 1086 vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag) 1087 { 1088 return (vn_removeat(NULL, fnamep, seg, dirflag)); 1089 } 1090 1091 int 1092 vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag) 1093 { 1094 struct vnode *vp; /* entry vnode */ 1095 struct vnode *dvp; /* ptr to parent dir vnode */ 1096 struct vnode *coveredvp; 1097 struct pathname pn; /* name of entry */ 1098 enum vtype vtype; 1099 int error; 1100 struct vfs *vfsp; 1101 struct vfs *dvfsp; /* ptr to parent dir vfs */ 1102 int in_crit = 0; 1103 1104 top: 1105 if (error = pn_get(fnamep, seg, &pn)) 1106 return (error); 1107 dvp = vp = NULL; 1108 if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) { 1109 pn_free(&pn); 1110 if (error == ESTALE) 1111 goto top; 1112 return (error); 1113 } 1114 1115 /* 1116 * Make sure there is an entry. 1117 */ 1118 if (vp == NULL) { 1119 error = ENOENT; 1120 goto out; 1121 } 1122 1123 vfsp = vp->v_vfsp; 1124 dvfsp = dvp->v_vfsp; 1125 1126 /* 1127 * If the named file is the root of a mounted filesystem, fail, 1128 * unless it's marked unlinkable. In that case, unmount the 1129 * filesystem and proceed to unlink the covered vnode. (If the 1130 * covered vnode is a directory, use rmdir instead of unlink, 1131 * to avoid file system corruption.) 1132 */ 1133 if (vp->v_flag & VROOT) { 1134 if (vfsp->vfs_flag & VFS_UNLINKABLE) { 1135 if (dirflag == RMDIRECTORY) { 1136 /* 1137 * User called rmdir(2) on a file that has 1138 * been namefs mounted on top of. Since 1139 * namefs doesn't allow directories to 1140 * be mounted on other files we know 1141 * vp is not of type VDIR so fail to operation. 1142 */ 1143 error = ENOTDIR; 1144 goto out; 1145 } 1146 coveredvp = vfsp->vfs_vnodecovered; 1147 VN_HOLD(coveredvp); 1148 VN_RELE(vp); 1149 vp = NULL; 1150 if ((error = vn_vfswlock(coveredvp)) == 0) 1151 error = dounmount(vfsp, 0, CRED()); 1152 /* 1153 * Unmounted the namefs file system; now get 1154 * the object it was mounted over. 1155 */ 1156 vp = coveredvp; 1157 /* 1158 * If namefs was mounted over a directory, then 1159 * we want to use rmdir() instead of unlink(). 1160 */ 1161 if (vp->v_type == VDIR) 1162 dirflag = RMDIRECTORY; 1163 } else 1164 error = EBUSY; 1165 1166 if (error) 1167 goto out; 1168 } 1169 1170 /* 1171 * Make sure filesystem is writeable. 1172 * We check the parent directory's vfs in case this is an lofs vnode. 1173 */ 1174 if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) { 1175 error = EROFS; 1176 goto out; 1177 } 1178 1179 vtype = vp->v_type; 1180 1181 /* 1182 * If there is the possibility of an nbmand share reservation, make 1183 * sure it's okay to remove the file. Keep a reference to the 1184 * vnode, so that we can exit the nbl critical region after 1185 * calling VOP_REMOVE. 1186 * If there is no possibility of an nbmand share reservation, 1187 * release the vnode reference now. Filesystems like NFS may 1188 * behave differently if there is an extra reference, so get rid of 1189 * this one. Fortunately, we can't have nbmand mounts on NFS 1190 * filesystems. 1191 */ 1192 if (nbl_need_check(vp)) { 1193 nbl_start_crit(vp, RW_READER); 1194 in_crit = 1; 1195 if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0)) { 1196 error = EACCES; 1197 goto out; 1198 } 1199 } else { 1200 VN_RELE(vp); 1201 vp = NULL; 1202 } 1203 1204 if (dirflag == RMDIRECTORY) { 1205 /* 1206 * Caller is using rmdir(2), which can only be applied to 1207 * directories. 1208 */ 1209 if (vtype != VDIR) { 1210 error = ENOTDIR; 1211 } else { 1212 vnode_t *cwd; 1213 proc_t *pp = curproc; 1214 1215 mutex_enter(&pp->p_lock); 1216 cwd = PTOU(pp)->u_cdir; 1217 VN_HOLD(cwd); 1218 mutex_exit(&pp->p_lock); 1219 error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED()); 1220 VN_RELE(cwd); 1221 } 1222 } else { 1223 /* 1224 * Unlink(2) can be applied to anything. 1225 */ 1226 error = VOP_REMOVE(dvp, pn.pn_path, CRED()); 1227 } 1228 1229 out: 1230 pn_free(&pn); 1231 if (in_crit) { 1232 nbl_end_crit(vp); 1233 in_crit = 0; 1234 } 1235 if (vp != NULL) 1236 VN_RELE(vp); 1237 if (dvp != NULL) 1238 VN_RELE(dvp); 1239 if (error == ESTALE) 1240 goto top; 1241 return (error); 1242 } 1243 1244 /* 1245 * Utility function to compare equality of vnodes. 1246 * Compare the underlying real vnodes, if there are underlying vnodes. 1247 * This is a more thorough comparison than the VN_CMP() macro provides. 1248 */ 1249 int 1250 vn_compare(vnode_t *vp1, vnode_t *vp2) 1251 { 1252 vnode_t *realvp; 1253 1254 if (vp1 != NULL && VOP_REALVP(vp1, &realvp) == 0) 1255 vp1 = realvp; 1256 if (vp2 != NULL && VOP_REALVP(vp2, &realvp) == 0) 1257 vp2 = realvp; 1258 return (VN_CMP(vp1, vp2)); 1259 } 1260 1261 /* 1262 * The number of locks to hash into. This value must be a power 1263 * of 2 minus 1 and should probably also be prime. 1264 */ 1265 #define NUM_BUCKETS 1023 1266 1267 struct vn_vfslocks_bucket { 1268 kmutex_t vb_lock; 1269 vn_vfslocks_entry_t *vb_list; 1270 char pad[64 - sizeof (kmutex_t) - sizeof (void *)]; 1271 }; 1272 1273 /* 1274 * Total number of buckets will be NUM_BUCKETS + 1 . 1275 */ 1276 1277 #pragma align 64(vn_vfslocks_buckets) 1278 static struct vn_vfslocks_bucket vn_vfslocks_buckets[NUM_BUCKETS + 1]; 1279 1280 #define VN_VFSLOCKS_SHIFT 9 1281 1282 #define VN_VFSLOCKS_HASH(vfsvpptr) \ 1283 ((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS) 1284 1285 /* 1286 * vn_vfslocks_getlock() uses an HASH scheme to generate 1287 * rwstlock using vfs/vnode pointer passed to it. 1288 * 1289 * vn_vfslocks_rele() releases a reference in the 1290 * HASH table which allows the entry allocated by 1291 * vn_vfslocks_getlock() to be freed at a later 1292 * stage when the refcount drops to zero. 1293 */ 1294 1295 vn_vfslocks_entry_t * 1296 vn_vfslocks_getlock(void *vfsvpptr) 1297 { 1298 struct vn_vfslocks_bucket *bp; 1299 vn_vfslocks_entry_t *vep; 1300 vn_vfslocks_entry_t *tvep; 1301 1302 ASSERT(vfsvpptr != NULL); 1303 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)]; 1304 1305 mutex_enter(&bp->vb_lock); 1306 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 1307 if (vep->ve_vpvfs == vfsvpptr) { 1308 vep->ve_refcnt++; 1309 mutex_exit(&bp->vb_lock); 1310 return (vep); 1311 } 1312 } 1313 mutex_exit(&bp->vb_lock); 1314 vep = kmem_alloc(sizeof (*vep), KM_SLEEP); 1315 rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL); 1316 vep->ve_vpvfs = (char *)vfsvpptr; 1317 vep->ve_refcnt = 1; 1318 mutex_enter(&bp->vb_lock); 1319 for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) { 1320 if (tvep->ve_vpvfs == vfsvpptr) { 1321 tvep->ve_refcnt++; 1322 mutex_exit(&bp->vb_lock); 1323 1324 /* 1325 * There is already an entry in the hash 1326 * destroy what we just allocated. 1327 */ 1328 rwst_destroy(&vep->ve_lock); 1329 kmem_free(vep, sizeof (*vep)); 1330 return (tvep); 1331 } 1332 } 1333 vep->ve_next = bp->vb_list; 1334 bp->vb_list = vep; 1335 mutex_exit(&bp->vb_lock); 1336 return (vep); 1337 } 1338 1339 void 1340 vn_vfslocks_rele(vn_vfslocks_entry_t *vepent) 1341 { 1342 struct vn_vfslocks_bucket *bp; 1343 vn_vfslocks_entry_t *vep; 1344 vn_vfslocks_entry_t *pvep; 1345 1346 ASSERT(vepent != NULL); 1347 ASSERT(vepent->ve_vpvfs != NULL); 1348 1349 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)]; 1350 1351 mutex_enter(&bp->vb_lock); 1352 vepent->ve_refcnt--; 1353 1354 if ((int32_t)vepent->ve_refcnt < 0) 1355 cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative"); 1356 1357 if (vepent->ve_refcnt == 0) { 1358 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 1359 if (vep->ve_vpvfs == vepent->ve_vpvfs) { 1360 if (bp->vb_list == vep) 1361 bp->vb_list = vep->ve_next; 1362 else { 1363 /* LINTED */ 1364 pvep->ve_next = vep->ve_next; 1365 } 1366 mutex_exit(&bp->vb_lock); 1367 rwst_destroy(&vep->ve_lock); 1368 kmem_free(vep, sizeof (*vep)); 1369 return; 1370 } 1371 pvep = vep; 1372 } 1373 cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found"); 1374 } 1375 mutex_exit(&bp->vb_lock); 1376 } 1377 1378 /* 1379 * vn_vfswlock_wait is used to implement a lock which is logically a writers 1380 * lock protecting the v_vfsmountedhere field. 1381 * vn_vfswlock_wait has been modified to be similar to vn_vfswlock, 1382 * except that it blocks to acquire the lock VVFSLOCK. 1383 * 1384 * traverse() and routines re-implementing part of traverse (e.g. autofs) 1385 * need to hold this lock. mount(), vn_rename(), vn_remove() and so on 1386 * need the non-blocking version of the writers lock i.e. vn_vfswlock 1387 */ 1388 int 1389 vn_vfswlock_wait(vnode_t *vp) 1390 { 1391 int retval; 1392 vn_vfslocks_entry_t *vpvfsentry; 1393 ASSERT(vp != NULL); 1394 1395 vpvfsentry = vn_vfslocks_getlock(vp); 1396 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER); 1397 1398 if (retval == EINTR) { 1399 vn_vfslocks_rele(vpvfsentry); 1400 return (EINTR); 1401 } 1402 return (retval); 1403 } 1404 1405 int 1406 vn_vfsrlock_wait(vnode_t *vp) 1407 { 1408 int retval; 1409 vn_vfslocks_entry_t *vpvfsentry; 1410 ASSERT(vp != NULL); 1411 1412 vpvfsentry = vn_vfslocks_getlock(vp); 1413 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER); 1414 1415 if (retval == EINTR) { 1416 vn_vfslocks_rele(vpvfsentry); 1417 return (EINTR); 1418 } 1419 1420 return (retval); 1421 } 1422 1423 1424 /* 1425 * vn_vfswlock is used to implement a lock which is logically a writers lock 1426 * protecting the v_vfsmountedhere field. 1427 */ 1428 int 1429 vn_vfswlock(vnode_t *vp) 1430 { 1431 vn_vfslocks_entry_t *vpvfsentry; 1432 1433 /* 1434 * If vp is NULL then somebody is trying to lock the covered vnode 1435 * of /. (vfs_vnodecovered is NULL for /). This situation will 1436 * only happen when unmounting /. Since that operation will fail 1437 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 1438 */ 1439 if (vp == NULL) 1440 return (EBUSY); 1441 1442 vpvfsentry = vn_vfslocks_getlock(vp); 1443 1444 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 1445 return (0); 1446 1447 vn_vfslocks_rele(vpvfsentry); 1448 return (EBUSY); 1449 } 1450 1451 int 1452 vn_vfsrlock(vnode_t *vp) 1453 { 1454 vn_vfslocks_entry_t *vpvfsentry; 1455 1456 /* 1457 * If vp is NULL then somebody is trying to lock the covered vnode 1458 * of /. (vfs_vnodecovered is NULL for /). This situation will 1459 * only happen when unmounting /. Since that operation will fail 1460 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 1461 */ 1462 if (vp == NULL) 1463 return (EBUSY); 1464 1465 vpvfsentry = vn_vfslocks_getlock(vp); 1466 1467 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 1468 return (0); 1469 1470 vn_vfslocks_rele(vpvfsentry); 1471 return (EBUSY); 1472 } 1473 1474 1475 /* 1476 * For compatibility with old (deprecated) interface, continue 1477 * to support vanilla mutex. 1478 */ 1479 int 1480 vn_vfslock(vnode_t *vp) 1481 { 1482 return (vn_vfswlock(vp)); 1483 } 1484 1485 void 1486 vn_vfsunlock(vnode_t *vp) 1487 { 1488 vn_vfslocks_entry_t *vpvfsentry; 1489 1490 /* 1491 * ve_refcnt needs to be decremented twice. 1492 * 1. To release refernce after a call to vn_vfslocks_getlock() 1493 * 2. To release the reference from the locking routines like 1494 * vn_vfsrlock/vn_vfswlock etc,. 1495 */ 1496 vpvfsentry = vn_vfslocks_getlock(vp); 1497 vn_vfslocks_rele(vpvfsentry); 1498 1499 rwst_exit(&vpvfsentry->ve_lock); 1500 vn_vfslocks_rele(vpvfsentry); 1501 } 1502 1503 int 1504 vn_vfswlock_held(vnode_t *vp) 1505 { 1506 int held; 1507 vn_vfslocks_entry_t *vpvfsentry; 1508 1509 ASSERT(vp != NULL); 1510 1511 vpvfsentry = vn_vfslocks_getlock(vp); 1512 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 1513 1514 vn_vfslocks_rele(vpvfsentry); 1515 return (held); 1516 } 1517 1518 1519 int 1520 vn_make_ops( 1521 const char *name, /* Name of file system */ 1522 const fs_operation_def_t *templ, /* Operation specification */ 1523 vnodeops_t **actual) /* Return the vnodeops */ 1524 { 1525 int unused_ops; 1526 int error; 1527 1528 *actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP); 1529 1530 (*actual)->vnop_name = name; 1531 1532 error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ); 1533 if (error) { 1534 kmem_free(*actual, sizeof (vnodeops_t)); 1535 } 1536 1537 #if DEBUG 1538 if (unused_ops != 0) 1539 cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied " 1540 "but not used", name, unused_ops); 1541 #endif 1542 1543 return (error); 1544 } 1545 1546 /* 1547 * Free the vnodeops created as a result of vn_make_ops() 1548 */ 1549 void 1550 vn_freevnodeops(vnodeops_t *vnops) 1551 { 1552 kmem_free(vnops, sizeof (vnodeops_t)); 1553 } 1554 1555 /* 1556 * Vnode cache. 1557 */ 1558 1559 /* ARGSUSED */ 1560 static int 1561 vn_cache_constructor(void *buf, void *cdrarg, int kmflags) 1562 { 1563 struct vnode *vp; 1564 1565 vp = buf; 1566 1567 mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL); 1568 cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL); 1569 rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL); 1570 rw_init(&vp->v_mslock, NULL, RW_DEFAULT, NULL); 1571 1572 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 1573 vp->v_path = NULL; 1574 vp->v_mpssdata = NULL; 1575 1576 return (0); 1577 } 1578 1579 /* ARGSUSED */ 1580 static void 1581 vn_cache_destructor(void *buf, void *cdrarg) 1582 { 1583 struct vnode *vp; 1584 1585 vp = buf; 1586 1587 rw_destroy(&vp->v_mslock); 1588 rw_destroy(&vp->v_nbllock); 1589 cv_destroy(&vp->v_cv); 1590 mutex_destroy(&vp->v_lock); 1591 } 1592 1593 void 1594 vn_create_cache(void) 1595 { 1596 vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode), 64, 1597 vn_cache_constructor, vn_cache_destructor, NULL, NULL, 1598 NULL, 0); 1599 } 1600 1601 void 1602 vn_destroy_cache(void) 1603 { 1604 kmem_cache_destroy(vn_cache); 1605 } 1606 1607 /* 1608 * Used by file systems when fs-specific nodes (e.g., ufs inodes) are 1609 * cached by the file system and vnodes remain associated. 1610 */ 1611 void 1612 vn_recycle(vnode_t *vp) 1613 { 1614 ASSERT(vp->v_pages == NULL); 1615 1616 /* 1617 * XXX - This really belongs in vn_reinit(), but we have some issues 1618 * with the counts. Best to have it here for clean initialization. 1619 */ 1620 vp->v_rdcnt = 0; 1621 vp->v_wrcnt = 0; 1622 vp->v_mmap_read = 0; 1623 vp->v_mmap_write = 0; 1624 1625 /* 1626 * If FEM was in use, make sure everything gets cleaned up 1627 * NOTE: vp->v_femhead is initialized to NULL in the vnode 1628 * constructor. 1629 */ 1630 if (vp->v_femhead) { 1631 /* XXX - There should be a free_femhead() that does all this */ 1632 ASSERT(vp->v_femhead->femh_list == NULL); 1633 mutex_destroy(&vp->v_femhead->femh_lock); 1634 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 1635 vp->v_femhead = NULL; 1636 } 1637 if (vp->v_path) { 1638 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 1639 vp->v_path = NULL; 1640 } 1641 vp->v_mpssdata = NULL; 1642 } 1643 1644 /* 1645 * Used to reset the vnode fields including those that are directly accessible 1646 * as well as those which require an accessor function. 1647 * 1648 * Does not initialize: 1649 * synchronization objects: v_lock, v_nbllock, v_cv 1650 * v_data (since FS-nodes and vnodes point to each other and should 1651 * be updated simultaneously) 1652 * v_op (in case someone needs to make a VOP call on this object) 1653 */ 1654 void 1655 vn_reinit(vnode_t *vp) 1656 { 1657 vp->v_count = 1; 1658 vp->v_vfsp = NULL; 1659 vp->v_stream = NULL; 1660 vp->v_vfsmountedhere = NULL; 1661 vp->v_flag = 0; 1662 vp->v_type = VNON; 1663 vp->v_rdev = NODEV; 1664 1665 vp->v_filocks = NULL; 1666 vp->v_shrlocks = NULL; 1667 vp->v_pages = NULL; 1668 vp->v_npages = 0; 1669 vp->v_msnpages = 0; 1670 vp->v_scanfront = NULL; 1671 vp->v_scanback = NULL; 1672 1673 vp->v_locality = NULL; 1674 vp->v_scantime = 0; 1675 vp->v_mset = 0; 1676 vp->v_msflags = 0; 1677 vp->v_msnext = NULL; 1678 vp->v_msprev = NULL; 1679 1680 /* Handles v_femhead, v_path, and the r/w/map counts */ 1681 vn_recycle(vp); 1682 } 1683 1684 vnode_t * 1685 vn_alloc(int kmflag) 1686 { 1687 vnode_t *vp; 1688 1689 vp = kmem_cache_alloc(vn_cache, kmflag); 1690 1691 if (vp != NULL) { 1692 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 1693 vn_reinit(vp); 1694 } 1695 1696 return (vp); 1697 } 1698 1699 void 1700 vn_free(vnode_t *vp) 1701 { 1702 /* 1703 * Some file systems call vn_free() with v_count of zero, 1704 * some with v_count of 1. In any case, the value should 1705 * never be anything else. 1706 */ 1707 ASSERT((vp->v_count == 0) || (vp->v_count == 1)); 1708 if (vp->v_path != NULL) { 1709 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 1710 vp->v_path = NULL; 1711 } 1712 1713 /* If FEM was in use, make sure everything gets cleaned up */ 1714 if (vp->v_femhead) { 1715 /* XXX - There should be a free_femhead() that does all this */ 1716 ASSERT(vp->v_femhead->femh_list == NULL); 1717 mutex_destroy(&vp->v_femhead->femh_lock); 1718 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 1719 vp->v_femhead = NULL; 1720 } 1721 vp->v_mpssdata = NULL; 1722 kmem_cache_free(vn_cache, vp); 1723 } 1724 1725 /* 1726 * vnode status changes, should define better states than 1, 0. 1727 */ 1728 void 1729 vn_reclaim(vnode_t *vp) 1730 { 1731 vfs_t *vfsp = vp->v_vfsp; 1732 1733 if (vfsp == NULL || vfsp->vfs_femhead == NULL) { 1734 return; 1735 } 1736 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED); 1737 } 1738 1739 void 1740 vn_idle(vnode_t *vp) 1741 { 1742 vfs_t *vfsp = vp->v_vfsp; 1743 1744 if (vfsp == NULL || vfsp->vfs_femhead == NULL) { 1745 return; 1746 } 1747 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED); 1748 } 1749 void 1750 vn_exists(vnode_t *vp) 1751 { 1752 vfs_t *vfsp = vp->v_vfsp; 1753 1754 if (vfsp == NULL || vfsp->vfs_femhead == NULL) { 1755 return; 1756 } 1757 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS); 1758 } 1759 1760 void 1761 vn_invalid(vnode_t *vp) 1762 { 1763 vfs_t *vfsp = vp->v_vfsp; 1764 1765 if (vfsp == NULL || vfsp->vfs_femhead == NULL) { 1766 return; 1767 } 1768 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED); 1769 } 1770 1771 /* Vnode event notification */ 1772 1773 int 1774 vnevent_support(vnode_t *vp) 1775 { 1776 if (vp == NULL) 1777 return (EINVAL); 1778 1779 return (VOP_VNEVENT(vp, VE_SUPPORT)); 1780 } 1781 1782 void 1783 vnevent_rename_src(vnode_t *vp) 1784 { 1785 if (vp == NULL || vp->v_femhead == NULL) { 1786 return; 1787 } 1788 (void) VOP_VNEVENT(vp, VE_RENAME_SRC); 1789 } 1790 1791 void 1792 vnevent_rename_dest(vnode_t *vp) 1793 { 1794 if (vp == NULL || vp->v_femhead == NULL) { 1795 return; 1796 } 1797 (void) VOP_VNEVENT(vp, VE_RENAME_DEST); 1798 } 1799 1800 void 1801 vnevent_remove(vnode_t *vp) 1802 { 1803 if (vp == NULL || vp->v_femhead == NULL) { 1804 return; 1805 } 1806 (void) VOP_VNEVENT(vp, VE_REMOVE); 1807 } 1808 1809 void 1810 vnevent_rmdir(vnode_t *vp) 1811 { 1812 if (vp == NULL || vp->v_femhead == NULL) { 1813 return; 1814 } 1815 (void) VOP_VNEVENT(vp, VE_RMDIR); 1816 } 1817 1818 /* 1819 * Vnode accessors. 1820 */ 1821 1822 int 1823 vn_is_readonly(vnode_t *vp) 1824 { 1825 return (vp->v_vfsp->vfs_flag & VFS_RDONLY); 1826 } 1827 1828 int 1829 vn_has_flocks(vnode_t *vp) 1830 { 1831 return (vp->v_filocks != NULL); 1832 } 1833 1834 int 1835 vn_has_mandatory_locks(vnode_t *vp, int mode) 1836 { 1837 return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode))); 1838 } 1839 1840 int 1841 vn_has_cached_data(vnode_t *vp) 1842 { 1843 return (vp->v_pages != NULL); 1844 } 1845 1846 /* 1847 * Return 0 if the vnode in question shouldn't be permitted into a zone via 1848 * zone_enter(2). 1849 */ 1850 int 1851 vn_can_change_zones(vnode_t *vp) 1852 { 1853 struct vfssw *vswp; 1854 int allow = 1; 1855 vnode_t *rvp; 1856 1857 /* 1858 * We always want to look at the underlying vnode if there is one. 1859 */ 1860 if (VOP_REALVP(vp, &rvp) != 0) 1861 rvp = vp; 1862 /* 1863 * Some pseudo filesystems (including doorfs) don't actually register 1864 * their vfsops_t, so the following may return NULL; we happily let 1865 * such vnodes switch zones. 1866 */ 1867 vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp)); 1868 if (vswp != NULL) { 1869 if (vswp->vsw_flag & VSW_NOTZONESAFE) 1870 allow = 0; 1871 vfs_unrefvfssw(vswp); 1872 } 1873 return (allow); 1874 } 1875 1876 /* 1877 * Return nonzero if the vnode is a mount point, zero if not. 1878 */ 1879 int 1880 vn_ismntpt(vnode_t *vp) 1881 { 1882 return (vp->v_vfsmountedhere != NULL); 1883 } 1884 1885 /* Retrieve the vfs (if any) mounted on this vnode */ 1886 vfs_t * 1887 vn_mountedvfs(vnode_t *vp) 1888 { 1889 return (vp->v_vfsmountedhere); 1890 } 1891 1892 /* 1893 * vn_is_opened() checks whether a particular file is opened and 1894 * whether the open is for read and/or write. 1895 * 1896 * Vnode counts are only kept on regular files (v_type=VREG). 1897 */ 1898 int 1899 vn_is_opened( 1900 vnode_t *vp, 1901 v_mode_t mode) 1902 { 1903 1904 ASSERT(vp != NULL); 1905 1906 switch (mode) { 1907 case V_WRITE: 1908 if (vp->v_wrcnt) 1909 return (V_TRUE); 1910 break; 1911 case V_RDANDWR: 1912 if (vp->v_rdcnt && vp->v_wrcnt) 1913 return (V_TRUE); 1914 break; 1915 case V_RDORWR: 1916 if (vp->v_rdcnt || vp->v_wrcnt) 1917 return (V_TRUE); 1918 break; 1919 case V_READ: 1920 if (vp->v_rdcnt) 1921 return (V_TRUE); 1922 break; 1923 } 1924 1925 return (V_FALSE); 1926 } 1927 1928 /* 1929 * vn_is_mapped() checks whether a particular file is mapped and whether 1930 * the file is mapped read and/or write. 1931 */ 1932 int 1933 vn_is_mapped( 1934 vnode_t *vp, 1935 v_mode_t mode) 1936 { 1937 1938 ASSERT(vp != NULL); 1939 1940 #if !defined(_LP64) 1941 switch (mode) { 1942 /* 1943 * The atomic_add_64_nv functions force atomicity in the 1944 * case of 32 bit architectures. Otherwise the 64 bit values 1945 * require two fetches. The value of the fields may be 1946 * (potentially) changed between the first fetch and the 1947 * second 1948 */ 1949 case V_WRITE: 1950 if (atomic_add_64_nv((&(vp->v_mmap_write)), 0)) 1951 return (V_TRUE); 1952 break; 1953 case V_RDANDWR: 1954 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) && 1955 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 1956 return (V_TRUE); 1957 break; 1958 case V_RDORWR: 1959 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) || 1960 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 1961 return (V_TRUE); 1962 break; 1963 case V_READ: 1964 if (atomic_add_64_nv((&(vp->v_mmap_read)), 0)) 1965 return (V_TRUE); 1966 break; 1967 } 1968 #else 1969 switch (mode) { 1970 case V_WRITE: 1971 if (vp->v_mmap_write) 1972 return (V_TRUE); 1973 break; 1974 case V_RDANDWR: 1975 if (vp->v_mmap_read && vp->v_mmap_write) 1976 return (V_TRUE); 1977 break; 1978 case V_RDORWR: 1979 if (vp->v_mmap_read || vp->v_mmap_write) 1980 return (V_TRUE); 1981 break; 1982 case V_READ: 1983 if (vp->v_mmap_read) 1984 return (V_TRUE); 1985 break; 1986 } 1987 #endif 1988 1989 return (V_FALSE); 1990 } 1991 1992 /* 1993 * Set the operations vector for a vnode. 1994 * 1995 * FEM ensures that the v_femhead pointer is filled in before the 1996 * v_op pointer is changed. This means that if the v_femhead pointer 1997 * is NULL, and the v_op field hasn't changed since before which checked 1998 * the v_femhead pointer; then our update is ok - we are not racing with 1999 * FEM. 2000 */ 2001 void 2002 vn_setops(vnode_t *vp, vnodeops_t *vnodeops) 2003 { 2004 vnodeops_t *op; 2005 2006 ASSERT(vp != NULL); 2007 ASSERT(vnodeops != NULL); 2008 2009 op = vp->v_op; 2010 membar_consumer(); 2011 /* 2012 * If vp->v_femhead == NULL, then we'll call casptr() to do the 2013 * compare-and-swap on vp->v_op. If either fails, then FEM is 2014 * in effect on the vnode and we need to have FEM deal with it. 2015 */ 2016 if (vp->v_femhead != NULL || casptr(&vp->v_op, op, vnodeops) != op) { 2017 fem_setvnops(vp, vnodeops); 2018 } 2019 } 2020 2021 /* 2022 * Retrieve the operations vector for a vnode 2023 * As with vn_setops(above); make sure we aren't racing with FEM. 2024 * FEM sets the v_op to a special, internal, vnodeops that wouldn't 2025 * make sense to the callers of this routine. 2026 */ 2027 vnodeops_t * 2028 vn_getops(vnode_t *vp) 2029 { 2030 vnodeops_t *op; 2031 2032 ASSERT(vp != NULL); 2033 2034 op = vp->v_op; 2035 membar_consumer(); 2036 if (vp->v_femhead == NULL && op == vp->v_op) { 2037 return (op); 2038 } else { 2039 return (fem_getvnops(vp)); 2040 } 2041 } 2042 2043 /* 2044 * Returns non-zero (1) if the vnodeops matches that of the vnode. 2045 * Returns zero (0) if not. 2046 */ 2047 int 2048 vn_matchops(vnode_t *vp, vnodeops_t *vnodeops) 2049 { 2050 return (vn_getops(vp) == vnodeops); 2051 } 2052 2053 /* 2054 * Returns non-zero (1) if the specified operation matches the 2055 * corresponding operation for that the vnode. 2056 * Returns zero (0) if not. 2057 */ 2058 2059 #define MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0)) 2060 2061 int 2062 vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp) 2063 { 2064 const fs_operation_trans_def_t *otdp; 2065 fs_generic_func_p *loc = NULL; 2066 vnodeops_t *vop = vn_getops(vp); 2067 2068 ASSERT(vopname != NULL); 2069 2070 for (otdp = vn_ops_table; otdp->name != NULL; otdp++) { 2071 if (MATCHNAME(otdp->name, vopname)) { 2072 loc = (fs_generic_func_p *)((char *)(vop) 2073 + otdp->offset); 2074 break; 2075 } 2076 } 2077 2078 return ((loc != NULL) && (*loc == funcp)); 2079 } 2080 2081 /* 2082 * fs_new_caller_id() needs to return a unique ID on a given local system. 2083 * The IDs do not need to survive across reboots. These are primarily 2084 * used so that (FEM) monitors can detect particular callers (such as 2085 * the NFS server) to a given vnode/vfs operation. 2086 */ 2087 u_longlong_t 2088 fs_new_caller_id() 2089 { 2090 static uint64_t next_caller_id = 0LL; /* First call returns 1 */ 2091 2092 return ((u_longlong_t)atomic_add_64_nv(&next_caller_id, 1)); 2093 } 2094 2095 /* 2096 * Given a starting vnode and a path, updates the path in the target vnode in 2097 * a safe manner. If the vnode already has path information embedded, then the 2098 * cached path is left untouched. 2099 */ 2100 void 2101 vn_setpath(vnode_t *rootvp, struct vnode *startvp, struct vnode *vp, 2102 const char *path, size_t plen) 2103 { 2104 char *rpath; 2105 vnode_t *base; 2106 size_t rpathlen, rpathalloc; 2107 int doslash = 1; 2108 2109 if (*path == '/') { 2110 base = rootvp; 2111 path++; 2112 plen--; 2113 } else { 2114 base = startvp; 2115 } 2116 2117 /* 2118 * We cannot grab base->v_lock while we hold vp->v_lock because of 2119 * the potential for deadlock. 2120 */ 2121 mutex_enter(&base->v_lock); 2122 if (base->v_path == NULL) { 2123 mutex_exit(&base->v_lock); 2124 return; 2125 } 2126 2127 rpathlen = strlen(base->v_path); 2128 rpathalloc = rpathlen + plen + 1; 2129 /* Avoid adding a slash if there's already one there */ 2130 if (base->v_path[rpathlen-1] == '/') 2131 doslash = 0; 2132 else 2133 rpathalloc++; 2134 2135 /* 2136 * We don't want to call kmem_alloc(KM_SLEEP) with kernel locks held, 2137 * so we must do this dance. If, by chance, something changes the path, 2138 * just give up since there is no real harm. 2139 */ 2140 mutex_exit(&base->v_lock); 2141 2142 rpath = kmem_alloc(rpathalloc, KM_SLEEP); 2143 2144 mutex_enter(&base->v_lock); 2145 if (base->v_path == NULL || strlen(base->v_path) != rpathlen) { 2146 mutex_exit(&base->v_lock); 2147 kmem_free(rpath, rpathalloc); 2148 return; 2149 } 2150 bcopy(base->v_path, rpath, rpathlen); 2151 mutex_exit(&base->v_lock); 2152 2153 if (doslash) 2154 rpath[rpathlen++] = '/'; 2155 bcopy(path, rpath + rpathlen, plen); 2156 rpath[rpathlen + plen] = '\0'; 2157 2158 mutex_enter(&vp->v_lock); 2159 if (vp->v_path != NULL) { 2160 mutex_exit(&vp->v_lock); 2161 kmem_free(rpath, rpathalloc); 2162 } else { 2163 vp->v_path = rpath; 2164 mutex_exit(&vp->v_lock); 2165 } 2166 } 2167 2168 /* 2169 * Sets the path to the vnode to be the given string, regardless of current 2170 * context. The string must be a complete path from rootdir. This is only used 2171 * by fsop_root() for setting the path based on the mountpoint. 2172 */ 2173 void 2174 vn_setpath_str(struct vnode *vp, const char *str, size_t len) 2175 { 2176 char *buf = kmem_alloc(len + 1, KM_SLEEP); 2177 2178 mutex_enter(&vp->v_lock); 2179 if (vp->v_path != NULL) { 2180 mutex_exit(&vp->v_lock); 2181 kmem_free(buf, len + 1); 2182 return; 2183 } 2184 2185 vp->v_path = buf; 2186 bcopy(str, vp->v_path, len); 2187 vp->v_path[len] = '\0'; 2188 2189 mutex_exit(&vp->v_lock); 2190 } 2191 2192 /* 2193 * Similar to vn_setpath_str(), this function sets the path of the destination 2194 * vnode to the be the same as the source vnode. 2195 */ 2196 void 2197 vn_copypath(struct vnode *src, struct vnode *dst) 2198 { 2199 char *buf; 2200 int alloc; 2201 2202 mutex_enter(&src->v_lock); 2203 if (src->v_path == NULL) { 2204 mutex_exit(&src->v_lock); 2205 return; 2206 } 2207 alloc = strlen(src->v_path) + 1; 2208 2209 /* avoid kmem_alloc() with lock held */ 2210 mutex_exit(&src->v_lock); 2211 buf = kmem_alloc(alloc, KM_SLEEP); 2212 mutex_enter(&src->v_lock); 2213 if (src->v_path == NULL || strlen(src->v_path) + 1 != alloc) { 2214 mutex_exit(&src->v_lock); 2215 kmem_free(buf, alloc); 2216 return; 2217 } 2218 bcopy(src->v_path, buf, alloc); 2219 mutex_exit(&src->v_lock); 2220 2221 mutex_enter(&dst->v_lock); 2222 if (dst->v_path != NULL) { 2223 mutex_exit(&dst->v_lock); 2224 kmem_free(buf, alloc); 2225 return; 2226 } 2227 dst->v_path = buf; 2228 mutex_exit(&dst->v_lock); 2229 } 2230 2231 /* 2232 * XXX Private interface for segvn routines that handle vnode 2233 * large page segments. 2234 * 2235 * return 1 if vp's file system VOP_PAGEIO() implementation 2236 * can be safely used instead of VOP_GETPAGE() for handling 2237 * pagefaults against regular non swap files. VOP_PAGEIO() 2238 * interface is considered safe here if its implementation 2239 * is very close to VOP_GETPAGE() implementation. 2240 * e.g. It zero's out the part of the page beyond EOF. Doesn't 2241 * panic if there're file holes but instead returns an error. 2242 * Doesn't assume file won't be changed by user writes, etc. 2243 * 2244 * return 0 otherwise. 2245 * 2246 * For now allow segvn to only use VOP_PAGEIO() with ufs and nfs. 2247 */ 2248 int 2249 vn_vmpss_usepageio(vnode_t *vp) 2250 { 2251 vfs_t *vfsp = vp->v_vfsp; 2252 char *fsname = vfssw[vfsp->vfs_fstype].vsw_name; 2253 char *pageio_ok_fss[] = {"ufs", "nfs", NULL}; 2254 char **fsok = pageio_ok_fss; 2255 2256 if (fsname == NULL) { 2257 return (0); 2258 } 2259 2260 for (; *fsok; fsok++) { 2261 if (strcmp(*fsok, fsname) == 0) { 2262 return (1); 2263 } 2264 } 2265 return (0); 2266 } 2267 2268 /* VOP_XXX() macros call the corresponding fop_xxx() function */ 2269 2270 int 2271 fop_open( 2272 vnode_t **vpp, 2273 int mode, 2274 cred_t *cr) 2275 { 2276 int ret; 2277 vnode_t *vp = *vpp; 2278 2279 VN_HOLD(vp); 2280 /* 2281 * Adding to the vnode counts before calling open 2282 * avoids the need for a mutex. It circumvents a race 2283 * condition where a query made on the vnode counts results in a 2284 * false negative. The inquirer goes away believing the file is 2285 * not open when there is an open on the file already under way. 2286 * 2287 * The counts are meant to prevent NFS from granting a delegation 2288 * when it would be dangerous to do so. 2289 * 2290 * The vnode counts are only kept on regular files 2291 */ 2292 if ((*vpp)->v_type == VREG) { 2293 if (mode & FREAD) 2294 atomic_add_32(&((*vpp)->v_rdcnt), 1); 2295 if (mode & FWRITE) 2296 atomic_add_32(&((*vpp)->v_wrcnt), 1); 2297 } 2298 2299 ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr); 2300 2301 if (ret) { 2302 /* 2303 * Use the saved vp just in case the vnode ptr got trashed 2304 * by the error. 2305 */ 2306 if ((vp->v_type == VREG) && (mode & FREAD)) 2307 atomic_add_32(&(vp->v_rdcnt), -1); 2308 if ((vp->v_type == VREG) && (mode & FWRITE)) 2309 atomic_add_32(&(vp->v_wrcnt), -1); 2310 } else { 2311 /* 2312 * Some filesystems will return a different vnode, 2313 * but the same path was still used to open it. 2314 * So if we do change the vnode and need to 2315 * copy over the path, do so here, rather than special 2316 * casing each filesystem. Adjust the vnode counts to 2317 * reflect the vnode switch. 2318 */ 2319 2320 if (*vpp != vp && *vpp != NULL) { 2321 vn_copypath(vp, *vpp); 2322 if (((*vpp)->v_type == VREG) && (mode & FREAD)) 2323 atomic_add_32(&((*vpp)->v_rdcnt), 1); 2324 if ((vp->v_type == VREG) && (mode & FREAD)) 2325 atomic_add_32(&(vp->v_rdcnt), -1); 2326 if (((*vpp)->v_type == VREG) && (mode & FWRITE)) 2327 atomic_add_32(&((*vpp)->v_wrcnt), 1); 2328 if ((vp->v_type == VREG) && (mode & FWRITE)) 2329 atomic_add_32(&(vp->v_wrcnt), -1); 2330 } 2331 } 2332 VN_RELE(vp); 2333 return (ret); 2334 } 2335 2336 int 2337 fop_close( 2338 vnode_t *vp, 2339 int flag, 2340 int count, 2341 offset_t offset, 2342 cred_t *cr) 2343 { 2344 int error; 2345 error = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr); 2346 /* 2347 * Check passed in count to handle possible dups. Vnode counts are only 2348 * kept on regular files 2349 */ 2350 if ((vp->v_type == VREG) && (count == 1)) { 2351 if (flag & FREAD) { 2352 ASSERT(vp->v_rdcnt > 0); 2353 atomic_add_32(&(vp->v_rdcnt), -1); 2354 } 2355 if (flag & FWRITE) { 2356 ASSERT(vp->v_wrcnt > 0); 2357 atomic_add_32(&(vp->v_wrcnt), -1); 2358 } 2359 } 2360 return (error); 2361 } 2362 2363 int 2364 fop_read( 2365 vnode_t *vp, 2366 uio_t *uiop, 2367 int ioflag, 2368 cred_t *cr, 2369 struct caller_context *ct) 2370 { 2371 return (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct); 2372 } 2373 2374 int 2375 fop_write( 2376 vnode_t *vp, 2377 uio_t *uiop, 2378 int ioflag, 2379 cred_t *cr, 2380 struct caller_context *ct) 2381 { 2382 return (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct); 2383 } 2384 2385 int 2386 fop_ioctl( 2387 vnode_t *vp, 2388 int cmd, 2389 intptr_t arg, 2390 int flag, 2391 cred_t *cr, 2392 int *rvalp) 2393 { 2394 return (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp); 2395 } 2396 2397 int 2398 fop_setfl( 2399 vnode_t *vp, 2400 int oflags, 2401 int nflags, 2402 cred_t *cr) 2403 { 2404 return (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr); 2405 } 2406 2407 int 2408 fop_getattr( 2409 vnode_t *vp, 2410 vattr_t *vap, 2411 int flags, 2412 cred_t *cr) 2413 { 2414 return (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr); 2415 } 2416 2417 int 2418 fop_setattr( 2419 vnode_t *vp, 2420 vattr_t *vap, 2421 int flags, 2422 cred_t *cr, 2423 caller_context_t *ct) 2424 { 2425 return (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct); 2426 } 2427 2428 int 2429 fop_access( 2430 vnode_t *vp, 2431 int mode, 2432 int flags, 2433 cred_t *cr) 2434 { 2435 return (*(vp)->v_op->vop_access)(vp, mode, flags, cr); 2436 } 2437 2438 int 2439 fop_lookup( 2440 vnode_t *dvp, 2441 char *nm, 2442 vnode_t **vpp, 2443 pathname_t *pnp, 2444 int flags, 2445 vnode_t *rdir, 2446 cred_t *cr) 2447 { 2448 int ret; 2449 2450 ret = (*(dvp)->v_op->vop_lookup)(dvp, nm, vpp, pnp, flags, rdir, cr); 2451 if (ret == 0 && *vpp && (*vpp)->v_path == NULL) 2452 vn_setpath(rootdir, dvp, *vpp, nm, strlen(nm)); 2453 2454 return (ret); 2455 } 2456 2457 int 2458 fop_create( 2459 vnode_t *dvp, 2460 char *name, 2461 vattr_t *vap, 2462 vcexcl_t excl, 2463 int mode, 2464 vnode_t **vpp, 2465 cred_t *cr, 2466 int flag) 2467 { 2468 int ret; 2469 2470 ret = (*(dvp)->v_op->vop_create) 2471 (dvp, name, vap, excl, mode, vpp, cr, flag); 2472 if (ret == 0 && *vpp && (*vpp)->v_path == NULL) 2473 vn_setpath(rootdir, dvp, *vpp, name, strlen(name)); 2474 2475 return (ret); 2476 } 2477 2478 int 2479 fop_remove( 2480 vnode_t *dvp, 2481 char *nm, 2482 cred_t *cr) 2483 { 2484 return (*(dvp)->v_op->vop_remove)(dvp, nm, cr); 2485 } 2486 2487 int 2488 fop_link( 2489 vnode_t *tdvp, 2490 vnode_t *svp, 2491 char *tnm, 2492 cred_t *cr) 2493 { 2494 return (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr); 2495 } 2496 2497 int 2498 fop_rename( 2499 vnode_t *sdvp, 2500 char *snm, 2501 vnode_t *tdvp, 2502 char *tnm, 2503 cred_t *cr) 2504 { 2505 return (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr); 2506 } 2507 2508 int 2509 fop_mkdir( 2510 vnode_t *dvp, 2511 char *dirname, 2512 vattr_t *vap, 2513 vnode_t **vpp, 2514 cred_t *cr) 2515 { 2516 int ret; 2517 2518 ret = (*(dvp)->v_op->vop_mkdir)(dvp, dirname, vap, vpp, cr); 2519 if (ret == 0 && *vpp && (*vpp)->v_path == NULL) 2520 vn_setpath(rootdir, dvp, *vpp, dirname, strlen(dirname)); 2521 2522 return (ret); 2523 } 2524 2525 int 2526 fop_rmdir( 2527 vnode_t *dvp, 2528 char *nm, 2529 vnode_t *cdir, 2530 cred_t *cr) 2531 { 2532 return (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr); 2533 } 2534 2535 int 2536 fop_readdir( 2537 vnode_t *vp, 2538 uio_t *uiop, 2539 cred_t *cr, 2540 int *eofp) 2541 { 2542 return (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp); 2543 } 2544 2545 int 2546 fop_symlink( 2547 vnode_t *dvp, 2548 char *linkname, 2549 vattr_t *vap, 2550 char *target, 2551 cred_t *cr) 2552 { 2553 return (*(dvp)->v_op->vop_symlink) (dvp, linkname, vap, target, cr); 2554 } 2555 2556 int 2557 fop_readlink( 2558 vnode_t *vp, 2559 uio_t *uiop, 2560 cred_t *cr) 2561 { 2562 return (*(vp)->v_op->vop_readlink)(vp, uiop, cr); 2563 } 2564 2565 int 2566 fop_fsync( 2567 vnode_t *vp, 2568 int syncflag, 2569 cred_t *cr) 2570 { 2571 return (*(vp)->v_op->vop_fsync)(vp, syncflag, cr); 2572 } 2573 2574 void 2575 fop_inactive( 2576 vnode_t *vp, 2577 cred_t *cr) 2578 { 2579 (*(vp)->v_op->vop_inactive)(vp, cr); 2580 } 2581 2582 int 2583 fop_fid( 2584 vnode_t *vp, 2585 fid_t *fidp) 2586 { 2587 return (*(vp)->v_op->vop_fid)(vp, fidp); 2588 } 2589 2590 int 2591 fop_rwlock( 2592 vnode_t *vp, 2593 int write_lock, 2594 caller_context_t *ct) 2595 { 2596 return ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct)); 2597 } 2598 2599 void 2600 fop_rwunlock( 2601 vnode_t *vp, 2602 int write_lock, 2603 caller_context_t *ct) 2604 { 2605 (*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct); 2606 } 2607 2608 int 2609 fop_seek( 2610 vnode_t *vp, 2611 offset_t ooff, 2612 offset_t *noffp) 2613 { 2614 return (*(vp)->v_op->vop_seek)(vp, ooff, noffp); 2615 } 2616 2617 int 2618 fop_cmp( 2619 vnode_t *vp1, 2620 vnode_t *vp2) 2621 { 2622 return (*(vp1)->v_op->vop_cmp)(vp1, vp2); 2623 } 2624 2625 int 2626 fop_frlock( 2627 vnode_t *vp, 2628 int cmd, 2629 flock64_t *bfp, 2630 int flag, 2631 offset_t offset, 2632 struct flk_callback *flk_cbp, 2633 cred_t *cr) 2634 { 2635 return (*(vp)->v_op->vop_frlock) 2636 (vp, cmd, bfp, flag, offset, flk_cbp, cr); 2637 } 2638 2639 int 2640 fop_space( 2641 vnode_t *vp, 2642 int cmd, 2643 flock64_t *bfp, 2644 int flag, 2645 offset_t offset, 2646 cred_t *cr, 2647 caller_context_t *ct) 2648 { 2649 return (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct); 2650 } 2651 2652 int 2653 fop_realvp( 2654 vnode_t *vp, 2655 vnode_t **vpp) 2656 { 2657 return (*(vp)->v_op->vop_realvp)(vp, vpp); 2658 } 2659 2660 int 2661 fop_getpage( 2662 vnode_t *vp, 2663 offset_t off, 2664 size_t len, 2665 uint_t *protp, 2666 page_t **plarr, 2667 size_t plsz, 2668 struct seg *seg, 2669 caddr_t addr, 2670 enum seg_rw rw, 2671 cred_t *cr) 2672 { 2673 return (*(vp)->v_op->vop_getpage) 2674 (vp, off, len, protp, plarr, plsz, seg, addr, rw, cr); 2675 } 2676 2677 int 2678 fop_putpage( 2679 vnode_t *vp, 2680 offset_t off, 2681 size_t len, 2682 int flags, 2683 cred_t *cr) 2684 { 2685 return (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr); 2686 } 2687 2688 int 2689 fop_map( 2690 vnode_t *vp, 2691 offset_t off, 2692 struct as *as, 2693 caddr_t *addrp, 2694 size_t len, 2695 uchar_t prot, 2696 uchar_t maxprot, 2697 uint_t flags, 2698 cred_t *cr) 2699 { 2700 return (*(vp)->v_op->vop_map) 2701 (vp, off, as, addrp, len, prot, maxprot, flags, cr); 2702 } 2703 2704 int 2705 fop_addmap( 2706 vnode_t *vp, 2707 offset_t off, 2708 struct as *as, 2709 caddr_t addr, 2710 size_t len, 2711 uchar_t prot, 2712 uchar_t maxprot, 2713 uint_t flags, 2714 cred_t *cr) 2715 { 2716 int error; 2717 u_longlong_t delta; 2718 2719 error = (*(vp)->v_op->vop_addmap) 2720 (vp, off, as, addr, len, prot, maxprot, flags, cr); 2721 2722 if ((!error) && (vp->v_type == VREG)) { 2723 delta = (u_longlong_t)btopr(len); 2724 /* 2725 * If file is declared MAP_PRIVATE, it can't be written back 2726 * even if open for write. Handle as read. 2727 */ 2728 if (flags & MAP_PRIVATE) { 2729 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 2730 (int64_t)delta); 2731 } else { 2732 /* 2733 * atomic_add_64 forces the fetch of a 64 bit value to 2734 * be atomic on 32 bit machines 2735 */ 2736 if (maxprot & PROT_WRITE) 2737 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 2738 (int64_t)delta); 2739 if (maxprot & PROT_READ) 2740 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 2741 (int64_t)delta); 2742 if (maxprot & PROT_EXEC) 2743 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 2744 (int64_t)delta); 2745 } 2746 } 2747 return (error); 2748 } 2749 2750 int 2751 fop_delmap( 2752 vnode_t *vp, 2753 offset_t off, 2754 struct as *as, 2755 caddr_t addr, 2756 size_t len, 2757 uint_t prot, 2758 uint_t maxprot, 2759 uint_t flags, 2760 cred_t *cr) 2761 { 2762 int error; 2763 u_longlong_t delta; 2764 error = (*(vp)->v_op->vop_delmap) 2765 (vp, off, as, addr, len, prot, maxprot, flags, cr); 2766 2767 /* 2768 * NFS calls into delmap twice, the first time 2769 * it simply establishes a callback mechanism and returns EAGAIN 2770 * while the real work is being done upon the second invocation. 2771 * We have to detect this here and only decrement the counts upon 2772 * the second delmap request. 2773 */ 2774 if ((error != EAGAIN) && (vp->v_type == VREG)) { 2775 2776 delta = (u_longlong_t)btopr(len); 2777 2778 if (flags & MAP_PRIVATE) { 2779 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 2780 (int64_t)(-delta)); 2781 } else { 2782 /* 2783 * atomic_add_64 forces the fetch of a 64 bit value 2784 * to be atomic on 32 bit machines 2785 */ 2786 if (maxprot & PROT_WRITE) 2787 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 2788 (int64_t)(-delta)); 2789 if (maxprot & PROT_READ) 2790 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 2791 (int64_t)(-delta)); 2792 if (maxprot & PROT_EXEC) 2793 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 2794 (int64_t)(-delta)); 2795 } 2796 } 2797 return (error); 2798 } 2799 2800 2801 int 2802 fop_poll( 2803 vnode_t *vp, 2804 short events, 2805 int anyyet, 2806 short *reventsp, 2807 struct pollhead **phpp) 2808 { 2809 return (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp); 2810 } 2811 2812 int 2813 fop_dump( 2814 vnode_t *vp, 2815 caddr_t addr, 2816 int lbdn, 2817 int dblks) 2818 { 2819 return (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks); 2820 } 2821 2822 int 2823 fop_pathconf( 2824 vnode_t *vp, 2825 int cmd, 2826 ulong_t *valp, 2827 cred_t *cr) 2828 { 2829 return (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr); 2830 } 2831 2832 int 2833 fop_pageio( 2834 vnode_t *vp, 2835 struct page *pp, 2836 u_offset_t io_off, 2837 size_t io_len, 2838 int flags, 2839 cred_t *cr) 2840 { 2841 return (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr); 2842 } 2843 2844 int 2845 fop_dumpctl( 2846 vnode_t *vp, 2847 int action, 2848 int *blkp) 2849 { 2850 return (*(vp)->v_op->vop_dumpctl)(vp, action, blkp); 2851 } 2852 2853 void 2854 fop_dispose( 2855 vnode_t *vp, 2856 page_t *pp, 2857 int flag, 2858 int dn, 2859 cred_t *cr) 2860 { 2861 (*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr); 2862 } 2863 2864 int 2865 fop_setsecattr( 2866 vnode_t *vp, 2867 vsecattr_t *vsap, 2868 int flag, 2869 cred_t *cr) 2870 { 2871 return (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr); 2872 } 2873 2874 int 2875 fop_getsecattr( 2876 vnode_t *vp, 2877 vsecattr_t *vsap, 2878 int flag, 2879 cred_t *cr) 2880 { 2881 return (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr); 2882 } 2883 2884 int 2885 fop_shrlock( 2886 vnode_t *vp, 2887 int cmd, 2888 struct shrlock *shr, 2889 int flag, 2890 cred_t *cr) 2891 { 2892 return (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr); 2893 } 2894 2895 int 2896 fop_vnevent(vnode_t *vp, vnevent_t vnevent) 2897 { 2898 return (*(vp)->v_op->vop_vnevent)(vp, vnevent); 2899 } 2900