1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 #include <sys/types.h> 43 #include <sys/param.h> 44 #include <sys/t_lock.h> 45 #include <sys/errno.h> 46 #include <sys/cred.h> 47 #include <sys/user.h> 48 #include <sys/uio.h> 49 #include <sys/file.h> 50 #include <sys/pathname.h> 51 #include <sys/vfs.h> 52 #include <sys/vfs_opreg.h> 53 #include <sys/vnode.h> 54 #include <sys/rwstlock.h> 55 #include <sys/fem.h> 56 #include <sys/stat.h> 57 #include <sys/mode.h> 58 #include <sys/conf.h> 59 #include <sys/sysmacros.h> 60 #include <sys/cmn_err.h> 61 #include <sys/systm.h> 62 #include <sys/kmem.h> 63 #include <sys/debug.h> 64 #include <c2/audit.h> 65 #include <sys/acl.h> 66 #include <sys/nbmlock.h> 67 #include <sys/fcntl.h> 68 #include <fs/fs_subr.h> 69 70 /* Determine if this vnode is a file that is read-only */ 71 #define ISROFILE(vp) \ 72 ((vp)->v_type != VCHR && (vp)->v_type != VBLK && \ 73 (vp)->v_type != VFIFO && vn_is_readonly(vp)) 74 75 /* Tunable via /etc/system; used only by admin/install */ 76 int nfs_global_client_only; 77 78 /* 79 * Array of vopstats_t for per-FS-type vopstats. This array has the same 80 * number of entries as and parallel to the vfssw table. (Arguably, it could 81 * be part of the vfssw table.) Once it's initialized, it's accessed using 82 * the same fstype index that is used to index into the vfssw table. 83 */ 84 vopstats_t **vopstats_fstype; 85 86 /* vopstats initialization template used for fast initialization via bcopy() */ 87 static vopstats_t *vs_templatep; 88 89 /* Kmem cache handle for vsk_anchor_t allocations */ 90 kmem_cache_t *vsk_anchor_cache; 91 92 /* file events cleanup routine */ 93 extern void free_fopdata(vnode_t *); 94 95 /* 96 * Root of AVL tree for the kstats associated with vopstats. Lock protects 97 * updates to vsktat_tree. 98 */ 99 avl_tree_t vskstat_tree; 100 kmutex_t vskstat_tree_lock; 101 102 /* Global variable which enables/disables the vopstats collection */ 103 int vopstats_enabled = 1; 104 105 /* 106 * forward declarations for internal vnode specific data (vsd) 107 */ 108 static void *vsd_realloc(void *, size_t, size_t); 109 110 /* 111 * VSD -- VNODE SPECIFIC DATA 112 * The v_data pointer is typically used by a file system to store a 113 * pointer to the file system's private node (e.g. ufs inode, nfs rnode). 114 * However, there are times when additional project private data needs 115 * to be stored separately from the data (node) pointed to by v_data. 116 * This additional data could be stored by the file system itself or 117 * by a completely different kernel entity. VSD provides a way for 118 * callers to obtain a key and store a pointer to private data associated 119 * with a vnode. 120 * 121 * Callers are responsible for protecting the vsd by holding v_lock 122 * for calls to vsd_set() and vsd_get(). 123 */ 124 125 /* 126 * vsd_lock protects: 127 * vsd_nkeys - creation and deletion of vsd keys 128 * vsd_list - insertion and deletion of vsd_node in the vsd_list 129 * vsd_destructor - adding and removing destructors to the list 130 */ 131 static kmutex_t vsd_lock; 132 static uint_t vsd_nkeys; /* size of destructor array */ 133 /* list of vsd_node's */ 134 static list_t *vsd_list = NULL; 135 /* per-key destructor funcs */ 136 static void (**vsd_destructor)(void *); 137 138 /* 139 * The following is the common set of actions needed to update the 140 * vopstats structure from a vnode op. Both VOPSTATS_UPDATE() and 141 * VOPSTATS_UPDATE_IO() do almost the same thing, except for the 142 * recording of the bytes transferred. Since the code is similar 143 * but small, it is nearly a duplicate. Consequently any changes 144 * to one may need to be reflected in the other. 145 * Rundown of the variables: 146 * vp - Pointer to the vnode 147 * counter - Partial name structure member to update in vopstats for counts 148 * bytecounter - Partial name structure member to update in vopstats for bytes 149 * bytesval - Value to update in vopstats for bytes 150 * fstype - Index into vsanchor_fstype[], same as index into vfssw[] 151 * vsp - Pointer to vopstats structure (either in vfs or vsanchor_fstype[i]) 152 */ 153 154 #define VOPSTATS_UPDATE(vp, counter) { \ 155 vfs_t *vfsp = (vp)->v_vfsp; \ 156 if (vfsp && vfsp->vfs_implp && \ 157 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \ 158 vopstats_t *vsp = &vfsp->vfs_vopstats; \ 159 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \ 160 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \ 161 size_t, uint64_t *); \ 162 __dtrace_probe___fsinfo_##counter(vp, 0, stataddr); \ 163 (*stataddr)++; \ 164 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \ 165 vsp->n##counter.value.ui64++; \ 166 } \ 167 } \ 168 } 169 170 #define VOPSTATS_UPDATE_IO(vp, counter, bytecounter, bytesval) { \ 171 vfs_t *vfsp = (vp)->v_vfsp; \ 172 if (vfsp && vfsp->vfs_implp && \ 173 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \ 174 vopstats_t *vsp = &vfsp->vfs_vopstats; \ 175 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \ 176 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \ 177 size_t, uint64_t *); \ 178 __dtrace_probe___fsinfo_##counter(vp, bytesval, stataddr); \ 179 (*stataddr)++; \ 180 vsp->bytecounter.value.ui64 += bytesval; \ 181 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \ 182 vsp->n##counter.value.ui64++; \ 183 vsp->bytecounter.value.ui64 += bytesval; \ 184 } \ 185 } \ 186 } 187 188 /* 189 * If the filesystem does not support XIDs map credential 190 * If the vfsp is NULL, perhaps we should also map? 191 */ 192 #define VOPXID_MAP_CR(vp, cr) { \ 193 vfs_t *vfsp = (vp)->v_vfsp; \ 194 if (vfsp != NULL && (vfsp->vfs_flag & VFS_XID) == 0) \ 195 cr = crgetmapped(cr); \ 196 } 197 198 /* 199 * Convert stat(2) formats to vnode types and vice versa. (Knows about 200 * numerical order of S_IFMT and vnode types.) 201 */ 202 enum vtype iftovt_tab[] = { 203 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 204 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON 205 }; 206 207 ushort_t vttoif_tab[] = { 208 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO, 209 S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0 210 }; 211 212 /* 213 * The system vnode cache. 214 */ 215 216 kmem_cache_t *vn_cache; 217 218 219 /* 220 * Vnode operations vector. 221 */ 222 223 static const fs_operation_trans_def_t vn_ops_table[] = { 224 VOPNAME_OPEN, offsetof(struct vnodeops, vop_open), 225 fs_nosys, fs_nosys, 226 227 VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close), 228 fs_nosys, fs_nosys, 229 230 VOPNAME_READ, offsetof(struct vnodeops, vop_read), 231 fs_nosys, fs_nosys, 232 233 VOPNAME_WRITE, offsetof(struct vnodeops, vop_write), 234 fs_nosys, fs_nosys, 235 236 VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl), 237 fs_nosys, fs_nosys, 238 239 VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl), 240 fs_setfl, fs_nosys, 241 242 VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr), 243 fs_nosys, fs_nosys, 244 245 VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr), 246 fs_nosys, fs_nosys, 247 248 VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access), 249 fs_nosys, fs_nosys, 250 251 VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup), 252 fs_nosys, fs_nosys, 253 254 VOPNAME_CREATE, offsetof(struct vnodeops, vop_create), 255 fs_nosys, fs_nosys, 256 257 VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove), 258 fs_nosys, fs_nosys, 259 260 VOPNAME_LINK, offsetof(struct vnodeops, vop_link), 261 fs_nosys, fs_nosys, 262 263 VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename), 264 fs_nosys, fs_nosys, 265 266 VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir), 267 fs_nosys, fs_nosys, 268 269 VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir), 270 fs_nosys, fs_nosys, 271 272 VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir), 273 fs_nosys, fs_nosys, 274 275 VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink), 276 fs_nosys, fs_nosys, 277 278 VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink), 279 fs_nosys, fs_nosys, 280 281 VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync), 282 fs_nosys, fs_nosys, 283 284 VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive), 285 fs_nosys, fs_nosys, 286 287 VOPNAME_FID, offsetof(struct vnodeops, vop_fid), 288 fs_nosys, fs_nosys, 289 290 VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock), 291 fs_rwlock, fs_rwlock, 292 293 VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock), 294 (fs_generic_func_p) fs_rwunlock, 295 (fs_generic_func_p) fs_rwunlock, /* no errors allowed */ 296 297 VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek), 298 fs_nosys, fs_nosys, 299 300 VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp), 301 fs_cmp, fs_cmp, /* no errors allowed */ 302 303 VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock), 304 fs_frlock, fs_nosys, 305 306 VOPNAME_SPACE, offsetof(struct vnodeops, vop_space), 307 fs_nosys, fs_nosys, 308 309 VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp), 310 fs_nosys, fs_nosys, 311 312 VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage), 313 fs_nosys, fs_nosys, 314 315 VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage), 316 fs_nosys, fs_nosys, 317 318 VOPNAME_MAP, offsetof(struct vnodeops, vop_map), 319 (fs_generic_func_p) fs_nosys_map, 320 (fs_generic_func_p) fs_nosys_map, 321 322 VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap), 323 (fs_generic_func_p) fs_nosys_addmap, 324 (fs_generic_func_p) fs_nosys_addmap, 325 326 VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap), 327 fs_nosys, fs_nosys, 328 329 VOPNAME_POLL, offsetof(struct vnodeops, vop_poll), 330 (fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll, 331 332 VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump), 333 fs_nosys, fs_nosys, 334 335 VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf), 336 fs_pathconf, fs_nosys, 337 338 VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio), 339 fs_nosys, fs_nosys, 340 341 VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl), 342 fs_nosys, fs_nosys, 343 344 VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose), 345 (fs_generic_func_p) fs_dispose, 346 (fs_generic_func_p) fs_nodispose, 347 348 VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr), 349 fs_nosys, fs_nosys, 350 351 VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr), 352 fs_fab_acl, fs_nosys, 353 354 VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock), 355 fs_shrlock, fs_nosys, 356 357 VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent), 358 (fs_generic_func_p) fs_vnevent_nosupport, 359 (fs_generic_func_p) fs_vnevent_nosupport, 360 361 NULL, 0, NULL, NULL 362 }; 363 364 /* Extensible attribute (xva) routines. */ 365 366 /* 367 * Zero out the structure, set the size of the requested/returned bitmaps, 368 * set AT_XVATTR in the embedded vattr_t's va_mask, and set up the pointer 369 * to the returned attributes array. 370 */ 371 void 372 xva_init(xvattr_t *xvap) 373 { 374 bzero(xvap, sizeof (xvattr_t)); 375 xvap->xva_mapsize = XVA_MAPSIZE; 376 xvap->xva_magic = XVA_MAGIC; 377 xvap->xva_vattr.va_mask = AT_XVATTR; 378 xvap->xva_rtnattrmapp = &(xvap->xva_rtnattrmap)[0]; 379 } 380 381 /* 382 * If AT_XVATTR is set, returns a pointer to the embedded xoptattr_t 383 * structure. Otherwise, returns NULL. 384 */ 385 xoptattr_t * 386 xva_getxoptattr(xvattr_t *xvap) 387 { 388 xoptattr_t *xoap = NULL; 389 if (xvap->xva_vattr.va_mask & AT_XVATTR) 390 xoap = &xvap->xva_xoptattrs; 391 return (xoap); 392 } 393 394 /* 395 * Used by the AVL routines to compare two vsk_anchor_t structures in the tree. 396 * We use the f_fsid reported by VFS_STATVFS() since we use that for the 397 * kstat name. 398 */ 399 static int 400 vska_compar(const void *n1, const void *n2) 401 { 402 int ret; 403 ulong_t p1 = ((vsk_anchor_t *)n1)->vsk_fsid; 404 ulong_t p2 = ((vsk_anchor_t *)n2)->vsk_fsid; 405 406 if (p1 < p2) { 407 ret = -1; 408 } else if (p1 > p2) { 409 ret = 1; 410 } else { 411 ret = 0; 412 } 413 414 return (ret); 415 } 416 417 /* 418 * Used to create a single template which will be bcopy()ed to a newly 419 * allocated vsanchor_combo_t structure in new_vsanchor(), below. 420 */ 421 static vopstats_t * 422 create_vopstats_template() 423 { 424 vopstats_t *vsp; 425 426 vsp = kmem_alloc(sizeof (vopstats_t), KM_SLEEP); 427 bzero(vsp, sizeof (*vsp)); /* Start fresh */ 428 429 /* VOP_OPEN */ 430 kstat_named_init(&vsp->nopen, "nopen", KSTAT_DATA_UINT64); 431 /* VOP_CLOSE */ 432 kstat_named_init(&vsp->nclose, "nclose", KSTAT_DATA_UINT64); 433 /* VOP_READ I/O */ 434 kstat_named_init(&vsp->nread, "nread", KSTAT_DATA_UINT64); 435 kstat_named_init(&vsp->read_bytes, "read_bytes", KSTAT_DATA_UINT64); 436 /* VOP_WRITE I/O */ 437 kstat_named_init(&vsp->nwrite, "nwrite", KSTAT_DATA_UINT64); 438 kstat_named_init(&vsp->write_bytes, "write_bytes", KSTAT_DATA_UINT64); 439 /* VOP_IOCTL */ 440 kstat_named_init(&vsp->nioctl, "nioctl", KSTAT_DATA_UINT64); 441 /* VOP_SETFL */ 442 kstat_named_init(&vsp->nsetfl, "nsetfl", KSTAT_DATA_UINT64); 443 /* VOP_GETATTR */ 444 kstat_named_init(&vsp->ngetattr, "ngetattr", KSTAT_DATA_UINT64); 445 /* VOP_SETATTR */ 446 kstat_named_init(&vsp->nsetattr, "nsetattr", KSTAT_DATA_UINT64); 447 /* VOP_ACCESS */ 448 kstat_named_init(&vsp->naccess, "naccess", KSTAT_DATA_UINT64); 449 /* VOP_LOOKUP */ 450 kstat_named_init(&vsp->nlookup, "nlookup", KSTAT_DATA_UINT64); 451 /* VOP_CREATE */ 452 kstat_named_init(&vsp->ncreate, "ncreate", KSTAT_DATA_UINT64); 453 /* VOP_REMOVE */ 454 kstat_named_init(&vsp->nremove, "nremove", KSTAT_DATA_UINT64); 455 /* VOP_LINK */ 456 kstat_named_init(&vsp->nlink, "nlink", KSTAT_DATA_UINT64); 457 /* VOP_RENAME */ 458 kstat_named_init(&vsp->nrename, "nrename", KSTAT_DATA_UINT64); 459 /* VOP_MKDIR */ 460 kstat_named_init(&vsp->nmkdir, "nmkdir", KSTAT_DATA_UINT64); 461 /* VOP_RMDIR */ 462 kstat_named_init(&vsp->nrmdir, "nrmdir", KSTAT_DATA_UINT64); 463 /* VOP_READDIR I/O */ 464 kstat_named_init(&vsp->nreaddir, "nreaddir", KSTAT_DATA_UINT64); 465 kstat_named_init(&vsp->readdir_bytes, "readdir_bytes", 466 KSTAT_DATA_UINT64); 467 /* VOP_SYMLINK */ 468 kstat_named_init(&vsp->nsymlink, "nsymlink", KSTAT_DATA_UINT64); 469 /* VOP_READLINK */ 470 kstat_named_init(&vsp->nreadlink, "nreadlink", KSTAT_DATA_UINT64); 471 /* VOP_FSYNC */ 472 kstat_named_init(&vsp->nfsync, "nfsync", KSTAT_DATA_UINT64); 473 /* VOP_INACTIVE */ 474 kstat_named_init(&vsp->ninactive, "ninactive", KSTAT_DATA_UINT64); 475 /* VOP_FID */ 476 kstat_named_init(&vsp->nfid, "nfid", KSTAT_DATA_UINT64); 477 /* VOP_RWLOCK */ 478 kstat_named_init(&vsp->nrwlock, "nrwlock", KSTAT_DATA_UINT64); 479 /* VOP_RWUNLOCK */ 480 kstat_named_init(&vsp->nrwunlock, "nrwunlock", KSTAT_DATA_UINT64); 481 /* VOP_SEEK */ 482 kstat_named_init(&vsp->nseek, "nseek", KSTAT_DATA_UINT64); 483 /* VOP_CMP */ 484 kstat_named_init(&vsp->ncmp, "ncmp", KSTAT_DATA_UINT64); 485 /* VOP_FRLOCK */ 486 kstat_named_init(&vsp->nfrlock, "nfrlock", KSTAT_DATA_UINT64); 487 /* VOP_SPACE */ 488 kstat_named_init(&vsp->nspace, "nspace", KSTAT_DATA_UINT64); 489 /* VOP_REALVP */ 490 kstat_named_init(&vsp->nrealvp, "nrealvp", KSTAT_DATA_UINT64); 491 /* VOP_GETPAGE */ 492 kstat_named_init(&vsp->ngetpage, "ngetpage", KSTAT_DATA_UINT64); 493 /* VOP_PUTPAGE */ 494 kstat_named_init(&vsp->nputpage, "nputpage", KSTAT_DATA_UINT64); 495 /* VOP_MAP */ 496 kstat_named_init(&vsp->nmap, "nmap", KSTAT_DATA_UINT64); 497 /* VOP_ADDMAP */ 498 kstat_named_init(&vsp->naddmap, "naddmap", KSTAT_DATA_UINT64); 499 /* VOP_DELMAP */ 500 kstat_named_init(&vsp->ndelmap, "ndelmap", KSTAT_DATA_UINT64); 501 /* VOP_POLL */ 502 kstat_named_init(&vsp->npoll, "npoll", KSTAT_DATA_UINT64); 503 /* VOP_DUMP */ 504 kstat_named_init(&vsp->ndump, "ndump", KSTAT_DATA_UINT64); 505 /* VOP_PATHCONF */ 506 kstat_named_init(&vsp->npathconf, "npathconf", KSTAT_DATA_UINT64); 507 /* VOP_PAGEIO */ 508 kstat_named_init(&vsp->npageio, "npageio", KSTAT_DATA_UINT64); 509 /* VOP_DUMPCTL */ 510 kstat_named_init(&vsp->ndumpctl, "ndumpctl", KSTAT_DATA_UINT64); 511 /* VOP_DISPOSE */ 512 kstat_named_init(&vsp->ndispose, "ndispose", KSTAT_DATA_UINT64); 513 /* VOP_SETSECATTR */ 514 kstat_named_init(&vsp->nsetsecattr, "nsetsecattr", KSTAT_DATA_UINT64); 515 /* VOP_GETSECATTR */ 516 kstat_named_init(&vsp->ngetsecattr, "ngetsecattr", KSTAT_DATA_UINT64); 517 /* VOP_SHRLOCK */ 518 kstat_named_init(&vsp->nshrlock, "nshrlock", KSTAT_DATA_UINT64); 519 /* VOP_VNEVENT */ 520 kstat_named_init(&vsp->nvnevent, "nvnevent", KSTAT_DATA_UINT64); 521 522 return (vsp); 523 } 524 525 /* 526 * Creates a kstat structure associated with a vopstats structure. 527 */ 528 kstat_t * 529 new_vskstat(char *ksname, vopstats_t *vsp) 530 { 531 kstat_t *ksp; 532 533 if (!vopstats_enabled) { 534 return (NULL); 535 } 536 537 ksp = kstat_create("unix", 0, ksname, "misc", KSTAT_TYPE_NAMED, 538 sizeof (vopstats_t)/sizeof (kstat_named_t), 539 KSTAT_FLAG_VIRTUAL|KSTAT_FLAG_WRITABLE); 540 if (ksp) { 541 ksp->ks_data = vsp; 542 kstat_install(ksp); 543 } 544 545 return (ksp); 546 } 547 548 /* 549 * Called from vfsinit() to initialize the support mechanisms for vopstats 550 */ 551 void 552 vopstats_startup() 553 { 554 if (!vopstats_enabled) 555 return; 556 557 /* 558 * Creates the AVL tree which holds per-vfs vopstat anchors. This 559 * is necessary since we need to check if a kstat exists before we 560 * attempt to create it. Also, initialize its lock. 561 */ 562 avl_create(&vskstat_tree, vska_compar, sizeof (vsk_anchor_t), 563 offsetof(vsk_anchor_t, vsk_node)); 564 mutex_init(&vskstat_tree_lock, NULL, MUTEX_DEFAULT, NULL); 565 566 vsk_anchor_cache = kmem_cache_create("vsk_anchor_cache", 567 sizeof (vsk_anchor_t), sizeof (uintptr_t), NULL, NULL, NULL, 568 NULL, NULL, 0); 569 570 /* 571 * Set up the array of pointers for the vopstats-by-FS-type. 572 * The entries will be allocated/initialized as each file system 573 * goes through modload/mod_installfs. 574 */ 575 vopstats_fstype = (vopstats_t **)kmem_zalloc( 576 (sizeof (vopstats_t *) * nfstype), KM_SLEEP); 577 578 /* Set up the global vopstats initialization template */ 579 vs_templatep = create_vopstats_template(); 580 } 581 582 /* 583 * We need to have the all of the counters zeroed. 584 * The initialization of the vopstats_t includes on the order of 585 * 50 calls to kstat_named_init(). Rather that do that on every call, 586 * we do it once in a template (vs_templatep) then bcopy it over. 587 */ 588 void 589 initialize_vopstats(vopstats_t *vsp) 590 { 591 if (vsp == NULL) 592 return; 593 594 bcopy(vs_templatep, vsp, sizeof (vopstats_t)); 595 } 596 597 /* 598 * If possible, determine which vopstats by fstype to use and 599 * return a pointer to the caller. 600 */ 601 vopstats_t * 602 get_fstype_vopstats(vfs_t *vfsp, struct vfssw *vswp) 603 { 604 int fstype = 0; /* Index into vfssw[] */ 605 vopstats_t *vsp = NULL; 606 607 if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 || 608 !vopstats_enabled) 609 return (NULL); 610 /* 611 * Set up the fstype. We go to so much trouble because all versions 612 * of NFS use the same fstype in their vfs even though they have 613 * distinct entries in the vfssw[] table. 614 * NOTE: A special vfs (e.g., EIO_vfs) may not have an entry. 615 */ 616 if (vswp) { 617 fstype = vswp - vfssw; /* Gets us the index */ 618 } else { 619 fstype = vfsp->vfs_fstype; 620 } 621 622 /* 623 * Point to the per-fstype vopstats. The only valid values are 624 * non-zero positive values less than the number of vfssw[] table 625 * entries. 626 */ 627 if (fstype > 0 && fstype < nfstype) { 628 vsp = vopstats_fstype[fstype]; 629 } 630 631 return (vsp); 632 } 633 634 /* 635 * Generate a kstat name, create the kstat structure, and allocate a 636 * vsk_anchor_t to hold it together. Return the pointer to the vsk_anchor_t 637 * to the caller. This must only be called from a mount. 638 */ 639 vsk_anchor_t * 640 get_vskstat_anchor(vfs_t *vfsp) 641 { 642 char kstatstr[KSTAT_STRLEN]; /* kstat name for vopstats */ 643 statvfs64_t statvfsbuf; /* Needed to find f_fsid */ 644 vsk_anchor_t *vskp = NULL; /* vfs <--> kstat anchor */ 645 kstat_t *ksp; /* Ptr to new kstat */ 646 avl_index_t where; /* Location in the AVL tree */ 647 648 if (vfsp == NULL || vfsp->vfs_implp == NULL || 649 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled) 650 return (NULL); 651 652 /* Need to get the fsid to build a kstat name */ 653 if (VFS_STATVFS(vfsp, &statvfsbuf) == 0) { 654 /* Create a name for our kstats based on fsid */ 655 (void) snprintf(kstatstr, KSTAT_STRLEN, "%s%lx", 656 VOPSTATS_STR, statvfsbuf.f_fsid); 657 658 /* Allocate and initialize the vsk_anchor_t */ 659 vskp = kmem_cache_alloc(vsk_anchor_cache, KM_SLEEP); 660 bzero(vskp, sizeof (*vskp)); 661 vskp->vsk_fsid = statvfsbuf.f_fsid; 662 663 mutex_enter(&vskstat_tree_lock); 664 if (avl_find(&vskstat_tree, vskp, &where) == NULL) { 665 avl_insert(&vskstat_tree, vskp, where); 666 mutex_exit(&vskstat_tree_lock); 667 668 /* 669 * Now that we've got the anchor in the AVL 670 * tree, we can create the kstat. 671 */ 672 ksp = new_vskstat(kstatstr, &vfsp->vfs_vopstats); 673 if (ksp) { 674 vskp->vsk_ksp = ksp; 675 } 676 } else { 677 /* Oops, found one! Release memory and lock. */ 678 mutex_exit(&vskstat_tree_lock); 679 kmem_cache_free(vsk_anchor_cache, vskp); 680 vskp = NULL; 681 } 682 } 683 return (vskp); 684 } 685 686 /* 687 * We're in the process of tearing down the vfs and need to cleanup 688 * the data structures associated with the vopstats. Must only be called 689 * from dounmount(). 690 */ 691 void 692 teardown_vopstats(vfs_t *vfsp) 693 { 694 vsk_anchor_t *vskap; 695 avl_index_t where; 696 697 if (vfsp == NULL || vfsp->vfs_implp == NULL || 698 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled) 699 return; 700 701 /* This is a safe check since VFS_STATS must be set (see above) */ 702 if ((vskap = vfsp->vfs_vskap) == NULL) 703 return; 704 705 /* Whack the pointer right away */ 706 vfsp->vfs_vskap = NULL; 707 708 /* Lock the tree, remove the node, and delete the kstat */ 709 mutex_enter(&vskstat_tree_lock); 710 if (avl_find(&vskstat_tree, vskap, &where)) { 711 avl_remove(&vskstat_tree, vskap); 712 } 713 714 if (vskap->vsk_ksp) { 715 kstat_delete(vskap->vsk_ksp); 716 } 717 mutex_exit(&vskstat_tree_lock); 718 719 kmem_cache_free(vsk_anchor_cache, vskap); 720 } 721 722 /* 723 * Read or write a vnode. Called from kernel code. 724 */ 725 int 726 vn_rdwr( 727 enum uio_rw rw, 728 struct vnode *vp, 729 caddr_t base, 730 ssize_t len, 731 offset_t offset, 732 enum uio_seg seg, 733 int ioflag, 734 rlim64_t ulimit, /* meaningful only if rw is UIO_WRITE */ 735 cred_t *cr, 736 ssize_t *residp) 737 { 738 struct uio uio; 739 struct iovec iov; 740 int error; 741 int in_crit = 0; 742 743 if (rw == UIO_WRITE && ISROFILE(vp)) 744 return (EROFS); 745 746 if (len < 0) 747 return (EIO); 748 749 VOPXID_MAP_CR(vp, cr); 750 751 iov.iov_base = base; 752 iov.iov_len = len; 753 uio.uio_iov = &iov; 754 uio.uio_iovcnt = 1; 755 uio.uio_loffset = offset; 756 uio.uio_segflg = (short)seg; 757 uio.uio_resid = len; 758 uio.uio_llimit = ulimit; 759 760 /* 761 * We have to enter the critical region before calling VOP_RWLOCK 762 * to avoid a deadlock with ufs. 763 */ 764 if (nbl_need_check(vp)) { 765 int svmand; 766 767 nbl_start_crit(vp, RW_READER); 768 in_crit = 1; 769 error = nbl_svmand(vp, cr, &svmand); 770 if (error != 0) 771 goto done; 772 if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ, 773 uio.uio_offset, uio.uio_resid, svmand, NULL)) { 774 error = EACCES; 775 goto done; 776 } 777 } 778 779 (void) VOP_RWLOCK(vp, 780 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL); 781 if (rw == UIO_WRITE) { 782 uio.uio_fmode = FWRITE; 783 uio.uio_extflg = UIO_COPY_DEFAULT; 784 error = VOP_WRITE(vp, &uio, ioflag, cr, NULL); 785 } else { 786 uio.uio_fmode = FREAD; 787 uio.uio_extflg = UIO_COPY_CACHED; 788 error = VOP_READ(vp, &uio, ioflag, cr, NULL); 789 } 790 VOP_RWUNLOCK(vp, 791 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL); 792 if (residp) 793 *residp = uio.uio_resid; 794 else if (uio.uio_resid) 795 error = EIO; 796 797 done: 798 if (in_crit) 799 nbl_end_crit(vp); 800 return (error); 801 } 802 803 /* 804 * Release a vnode. Call VOP_INACTIVE on last reference or 805 * decrement reference count. 806 * 807 * To avoid race conditions, the v_count is left at 1 for 808 * the call to VOP_INACTIVE. This prevents another thread 809 * from reclaiming and releasing the vnode *before* the 810 * VOP_INACTIVE routine has a chance to destroy the vnode. 811 * We can't have more than 1 thread calling VOP_INACTIVE 812 * on a vnode. 813 */ 814 void 815 vn_rele(vnode_t *vp) 816 { 817 VERIFY(vp->v_count > 0); 818 mutex_enter(&vp->v_lock); 819 if (vp->v_count == 1) { 820 mutex_exit(&vp->v_lock); 821 VOP_INACTIVE(vp, CRED(), NULL); 822 return; 823 } 824 vp->v_count--; 825 mutex_exit(&vp->v_lock); 826 } 827 828 /* 829 * Release a vnode referenced by the DNLC. Multiple DNLC references are treated 830 * as a single reference, so v_count is not decremented until the last DNLC hold 831 * is released. This makes it possible to distinguish vnodes that are referenced 832 * only by the DNLC. 833 */ 834 void 835 vn_rele_dnlc(vnode_t *vp) 836 { 837 VERIFY((vp->v_count > 0) && (vp->v_count_dnlc > 0)); 838 mutex_enter(&vp->v_lock); 839 if (--vp->v_count_dnlc == 0) { 840 if (vp->v_count == 1) { 841 mutex_exit(&vp->v_lock); 842 VOP_INACTIVE(vp, CRED(), NULL); 843 return; 844 } 845 vp->v_count--; 846 } 847 mutex_exit(&vp->v_lock); 848 } 849 850 /* 851 * Like vn_rele() except that it clears v_stream under v_lock. 852 * This is used by sockfs when it dismantels the association between 853 * the sockfs node and the vnode in the underlaying file system. 854 * v_lock has to be held to prevent a thread coming through the lookupname 855 * path from accessing a stream head that is going away. 856 */ 857 void 858 vn_rele_stream(vnode_t *vp) 859 { 860 VERIFY(vp->v_count > 0); 861 mutex_enter(&vp->v_lock); 862 vp->v_stream = NULL; 863 if (vp->v_count == 1) { 864 mutex_exit(&vp->v_lock); 865 VOP_INACTIVE(vp, CRED(), NULL); 866 return; 867 } 868 vp->v_count--; 869 mutex_exit(&vp->v_lock); 870 } 871 872 int 873 vn_open( 874 char *pnamep, 875 enum uio_seg seg, 876 int filemode, 877 int createmode, 878 struct vnode **vpp, 879 enum create crwhy, 880 mode_t umask) 881 { 882 return (vn_openat(pnamep, seg, filemode, createmode, vpp, crwhy, 883 umask, NULL, -1)); 884 } 885 886 887 /* 888 * Open/create a vnode. 889 * This may be callable by the kernel, the only known use 890 * of user context being that the current user credentials 891 * are used for permissions. crwhy is defined iff filemode & FCREAT. 892 */ 893 int 894 vn_openat( 895 char *pnamep, 896 enum uio_seg seg, 897 int filemode, 898 int createmode, 899 struct vnode **vpp, 900 enum create crwhy, 901 mode_t umask, 902 struct vnode *startvp, 903 int fd) 904 { 905 struct vnode *vp; 906 int mode; 907 int accessflags; 908 int error; 909 int in_crit = 0; 910 int open_done = 0; 911 int shrlock_done = 0; 912 struct vattr vattr; 913 enum symfollow follow; 914 int estale_retry = 0; 915 struct shrlock shr; 916 struct shr_locowner shr_own; 917 918 mode = 0; 919 accessflags = 0; 920 if (filemode & FREAD) 921 mode |= VREAD; 922 if (filemode & (FWRITE|FTRUNC)) 923 mode |= VWRITE; 924 if (filemode & FXATTRDIROPEN) 925 mode |= VEXEC; 926 927 /* symlink interpretation */ 928 if (filemode & FNOFOLLOW) 929 follow = NO_FOLLOW; 930 else 931 follow = FOLLOW; 932 933 if (filemode & FAPPEND) 934 accessflags |= V_APPEND; 935 936 top: 937 if (filemode & FCREAT) { 938 enum vcexcl excl; 939 940 /* 941 * Wish to create a file. 942 */ 943 vattr.va_type = VREG; 944 vattr.va_mode = createmode; 945 vattr.va_mask = AT_TYPE|AT_MODE; 946 if (filemode & FTRUNC) { 947 vattr.va_size = 0; 948 vattr.va_mask |= AT_SIZE; 949 } 950 if (filemode & FEXCL) 951 excl = EXCL; 952 else 953 excl = NONEXCL; 954 955 if (error = 956 vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy, 957 (filemode & ~(FTRUNC|FEXCL)), umask, startvp)) 958 return (error); 959 } else { 960 /* 961 * Wish to open a file. Just look it up. 962 */ 963 if (error = lookupnameat(pnamep, seg, follow, 964 NULLVPP, &vp, startvp)) { 965 if ((error == ESTALE) && 966 fs_need_estale_retry(estale_retry++)) 967 goto top; 968 return (error); 969 } 970 971 /* 972 * Get the attributes to check whether file is large. 973 * We do this only if the FOFFMAX flag is not set and 974 * only for regular files. 975 */ 976 977 if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) { 978 vattr.va_mask = AT_SIZE; 979 if ((error = VOP_GETATTR(vp, &vattr, 0, 980 CRED(), NULL))) { 981 goto out; 982 } 983 if (vattr.va_size > (u_offset_t)MAXOFF32_T) { 984 /* 985 * Large File API - regular open fails 986 * if FOFFMAX flag is set in file mode 987 */ 988 error = EOVERFLOW; 989 goto out; 990 } 991 } 992 /* 993 * Can't write directories, active texts, or 994 * read-only filesystems. Can't truncate files 995 * on which mandatory locking is in effect. 996 */ 997 if (filemode & (FWRITE|FTRUNC)) { 998 /* 999 * Allow writable directory if VDIROPEN flag is set. 1000 */ 1001 if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) { 1002 error = EISDIR; 1003 goto out; 1004 } 1005 if (ISROFILE(vp)) { 1006 error = EROFS; 1007 goto out; 1008 } 1009 /* 1010 * Can't truncate files on which 1011 * sysv mandatory locking is in effect. 1012 */ 1013 if (filemode & FTRUNC) { 1014 vnode_t *rvp; 1015 1016 if (VOP_REALVP(vp, &rvp, NULL) != 0) 1017 rvp = vp; 1018 if (rvp->v_filocks != NULL) { 1019 vattr.va_mask = AT_MODE; 1020 if ((error = VOP_GETATTR(vp, 1021 &vattr, 0, CRED(), NULL)) == 0 && 1022 MANDLOCK(vp, vattr.va_mode)) 1023 error = EAGAIN; 1024 } 1025 } 1026 if (error) 1027 goto out; 1028 } 1029 /* 1030 * Check permissions. 1031 */ 1032 if (error = VOP_ACCESS(vp, mode, accessflags, CRED(), NULL)) 1033 goto out; 1034 } 1035 1036 /* 1037 * Do remaining checks for FNOFOLLOW and FNOLINKS. 1038 */ 1039 if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) { 1040 error = ELOOP; 1041 goto out; 1042 } 1043 if (filemode & FNOLINKS) { 1044 vattr.va_mask = AT_NLINK; 1045 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))) { 1046 goto out; 1047 } 1048 if (vattr.va_nlink != 1) { 1049 error = EMLINK; 1050 goto out; 1051 } 1052 } 1053 1054 /* 1055 * Opening a socket corresponding to the AF_UNIX pathname 1056 * in the filesystem name space is not supported. 1057 * However, VSOCK nodes in namefs are supported in order 1058 * to make fattach work for sockets. 1059 * 1060 * XXX This uses VOP_REALVP to distinguish between 1061 * an unopened namefs node (where VOP_REALVP returns a 1062 * different VSOCK vnode) and a VSOCK created by vn_create 1063 * in some file system (where VOP_REALVP would never return 1064 * a different vnode). 1065 */ 1066 if (vp->v_type == VSOCK) { 1067 struct vnode *nvp; 1068 1069 error = VOP_REALVP(vp, &nvp, NULL); 1070 if (error != 0 || nvp == NULL || nvp == vp || 1071 nvp->v_type != VSOCK) { 1072 error = EOPNOTSUPP; 1073 goto out; 1074 } 1075 } 1076 1077 if ((vp->v_type == VREG) && nbl_need_check(vp)) { 1078 /* get share reservation */ 1079 shr.s_access = 0; 1080 if (filemode & FWRITE) 1081 shr.s_access |= F_WRACC; 1082 if (filemode & FREAD) 1083 shr.s_access |= F_RDACC; 1084 shr.s_deny = 0; 1085 shr.s_sysid = 0; 1086 shr.s_pid = ttoproc(curthread)->p_pid; 1087 shr_own.sl_pid = shr.s_pid; 1088 shr_own.sl_id = fd; 1089 shr.s_own_len = sizeof (shr_own); 1090 shr.s_owner = (caddr_t)&shr_own; 1091 error = VOP_SHRLOCK(vp, F_SHARE_NBMAND, &shr, filemode, CRED(), 1092 NULL); 1093 if (error) 1094 goto out; 1095 shrlock_done = 1; 1096 1097 /* nbmand conflict check if truncating file */ 1098 if ((filemode & FTRUNC) && !(filemode & FCREAT)) { 1099 nbl_start_crit(vp, RW_READER); 1100 in_crit = 1; 1101 1102 vattr.va_mask = AT_SIZE; 1103 if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL)) 1104 goto out; 1105 if (nbl_conflict(vp, NBL_WRITE, 0, vattr.va_size, 0, 1106 NULL)) { 1107 error = EACCES; 1108 goto out; 1109 } 1110 } 1111 } 1112 1113 /* 1114 * Do opening protocol. 1115 */ 1116 error = VOP_OPEN(&vp, filemode, CRED(), NULL); 1117 if (error) 1118 goto out; 1119 open_done = 1; 1120 1121 /* 1122 * Truncate if required. 1123 */ 1124 if ((filemode & FTRUNC) && !(filemode & FCREAT)) { 1125 vattr.va_size = 0; 1126 vattr.va_mask = AT_SIZE; 1127 if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0) 1128 goto out; 1129 } 1130 out: 1131 ASSERT(vp->v_count > 0); 1132 1133 if (in_crit) { 1134 nbl_end_crit(vp); 1135 in_crit = 0; 1136 } 1137 if (error) { 1138 if (open_done) { 1139 (void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED(), 1140 NULL); 1141 open_done = 0; 1142 shrlock_done = 0; 1143 } 1144 if (shrlock_done) { 1145 (void) VOP_SHRLOCK(vp, F_UNSHARE, &shr, 0, CRED(), 1146 NULL); 1147 shrlock_done = 0; 1148 } 1149 1150 /* 1151 * The following clause was added to handle a problem 1152 * with NFS consistency. It is possible that a lookup 1153 * of the file to be opened succeeded, but the file 1154 * itself doesn't actually exist on the server. This 1155 * is chiefly due to the DNLC containing an entry for 1156 * the file which has been removed on the server. In 1157 * this case, we just start over. If there was some 1158 * other cause for the ESTALE error, then the lookup 1159 * of the file will fail and the error will be returned 1160 * above instead of looping around from here. 1161 */ 1162 VN_RELE(vp); 1163 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1164 goto top; 1165 } else 1166 *vpp = vp; 1167 return (error); 1168 } 1169 1170 /* 1171 * The following two accessor functions are for the NFSv4 server. Since there 1172 * is no VOP_OPEN_UP/DOWNGRADE we need a way for the NFS server to keep the 1173 * vnode open counts correct when a client "upgrades" an open or does an 1174 * open_downgrade. In NFS, an upgrade or downgrade can not only change the 1175 * open mode (add or subtract read or write), but also change the share/deny 1176 * modes. However, share reservations are not integrated with OPEN, yet, so 1177 * we need to handle each separately. These functions are cleaner than having 1178 * the NFS server manipulate the counts directly, however, nobody else should 1179 * use these functions. 1180 */ 1181 void 1182 vn_open_upgrade( 1183 vnode_t *vp, 1184 int filemode) 1185 { 1186 ASSERT(vp->v_type == VREG); 1187 1188 if (filemode & FREAD) 1189 atomic_add_32(&(vp->v_rdcnt), 1); 1190 if (filemode & FWRITE) 1191 atomic_add_32(&(vp->v_wrcnt), 1); 1192 1193 } 1194 1195 void 1196 vn_open_downgrade( 1197 vnode_t *vp, 1198 int filemode) 1199 { 1200 ASSERT(vp->v_type == VREG); 1201 1202 if (filemode & FREAD) { 1203 ASSERT(vp->v_rdcnt > 0); 1204 atomic_add_32(&(vp->v_rdcnt), -1); 1205 } 1206 if (filemode & FWRITE) { 1207 ASSERT(vp->v_wrcnt > 0); 1208 atomic_add_32(&(vp->v_wrcnt), -1); 1209 } 1210 1211 } 1212 1213 int 1214 vn_create( 1215 char *pnamep, 1216 enum uio_seg seg, 1217 struct vattr *vap, 1218 enum vcexcl excl, 1219 int mode, 1220 struct vnode **vpp, 1221 enum create why, 1222 int flag, 1223 mode_t umask) 1224 { 1225 return (vn_createat(pnamep, seg, vap, excl, mode, vpp, why, flag, 1226 umask, NULL)); 1227 } 1228 1229 /* 1230 * Create a vnode (makenode). 1231 */ 1232 int 1233 vn_createat( 1234 char *pnamep, 1235 enum uio_seg seg, 1236 struct vattr *vap, 1237 enum vcexcl excl, 1238 int mode, 1239 struct vnode **vpp, 1240 enum create why, 1241 int flag, 1242 mode_t umask, 1243 struct vnode *startvp) 1244 { 1245 struct vnode *dvp; /* ptr to parent dir vnode */ 1246 struct vnode *vp = NULL; 1247 struct pathname pn; 1248 int error; 1249 int in_crit = 0; 1250 struct vattr vattr; 1251 enum symfollow follow; 1252 int estale_retry = 0; 1253 1254 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 1255 1256 /* symlink interpretation */ 1257 if ((flag & FNOFOLLOW) || excl == EXCL) 1258 follow = NO_FOLLOW; 1259 else 1260 follow = FOLLOW; 1261 flag &= ~(FNOFOLLOW|FNOLINKS); 1262 1263 top: 1264 /* 1265 * Lookup directory. 1266 * If new object is a file, call lower level to create it. 1267 * Note that it is up to the lower level to enforce exclusive 1268 * creation, if the file is already there. 1269 * This allows the lower level to do whatever 1270 * locking or protocol that is needed to prevent races. 1271 * If the new object is directory call lower level to make 1272 * the new directory, with "." and "..". 1273 */ 1274 if (error = pn_get(pnamep, seg, &pn)) 1275 return (error); 1276 if (audit_active) 1277 audit_vncreate_start(); 1278 dvp = NULL; 1279 *vpp = NULL; 1280 /* 1281 * lookup will find the parent directory for the vnode. 1282 * When it is done the pn holds the name of the entry 1283 * in the directory. 1284 * If this is a non-exclusive create we also find the node itself. 1285 */ 1286 error = lookuppnat(&pn, NULL, follow, &dvp, 1287 (excl == EXCL) ? NULLVPP : vpp, startvp); 1288 if (error) { 1289 pn_free(&pn); 1290 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1291 goto top; 1292 if (why == CRMKDIR && error == EINVAL) 1293 error = EEXIST; /* SVID */ 1294 return (error); 1295 } 1296 1297 if (why != CRMKNOD) 1298 vap->va_mode &= ~VSVTX; 1299 1300 /* 1301 * If default ACLs are defined for the directory don't apply the 1302 * umask if umask is passed. 1303 */ 1304 1305 if (umask) { 1306 1307 vsecattr_t vsec; 1308 1309 vsec.vsa_aclcnt = 0; 1310 vsec.vsa_aclentp = NULL; 1311 vsec.vsa_dfaclcnt = 0; 1312 vsec.vsa_dfaclentp = NULL; 1313 vsec.vsa_mask = VSA_DFACLCNT; 1314 error = VOP_GETSECATTR(dvp, &vsec, 0, CRED(), NULL); 1315 /* 1316 * If error is ENOSYS then treat it as no error 1317 * Don't want to force all file systems to support 1318 * aclent_t style of ACL's. 1319 */ 1320 if (error == ENOSYS) 1321 error = 0; 1322 if (error) { 1323 if (*vpp != NULL) 1324 VN_RELE(*vpp); 1325 goto out; 1326 } else { 1327 /* 1328 * Apply the umask if no default ACLs. 1329 */ 1330 if (vsec.vsa_dfaclcnt == 0) 1331 vap->va_mode &= ~umask; 1332 1333 /* 1334 * VOP_GETSECATTR() may have allocated memory for 1335 * ACLs we didn't request, so double-check and 1336 * free it if necessary. 1337 */ 1338 if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL) 1339 kmem_free((caddr_t)vsec.vsa_aclentp, 1340 vsec.vsa_aclcnt * sizeof (aclent_t)); 1341 if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL) 1342 kmem_free((caddr_t)vsec.vsa_dfaclentp, 1343 vsec.vsa_dfaclcnt * sizeof (aclent_t)); 1344 } 1345 } 1346 1347 /* 1348 * In general we want to generate EROFS if the file system is 1349 * readonly. However, POSIX (IEEE Std. 1003.1) section 5.3.1 1350 * documents the open system call, and it says that O_CREAT has no 1351 * effect if the file already exists. Bug 1119649 states 1352 * that open(path, O_CREAT, ...) fails when attempting to open an 1353 * existing file on a read only file system. Thus, the first part 1354 * of the following if statement has 3 checks: 1355 * if the file exists && 1356 * it is being open with write access && 1357 * the file system is read only 1358 * then generate EROFS 1359 */ 1360 if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) || 1361 (*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 1362 if (*vpp) 1363 VN_RELE(*vpp); 1364 error = EROFS; 1365 } else if (excl == NONEXCL && *vpp != NULL) { 1366 vnode_t *rvp; 1367 1368 /* 1369 * File already exists. If a mandatory lock has been 1370 * applied, return error. 1371 */ 1372 vp = *vpp; 1373 if (VOP_REALVP(vp, &rvp, NULL) != 0) 1374 rvp = vp; 1375 if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) { 1376 nbl_start_crit(vp, RW_READER); 1377 in_crit = 1; 1378 } 1379 if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) { 1380 vattr.va_mask = AT_MODE|AT_SIZE; 1381 if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL)) { 1382 goto out; 1383 } 1384 if (MANDLOCK(vp, vattr.va_mode)) { 1385 error = EAGAIN; 1386 goto out; 1387 } 1388 /* 1389 * File cannot be truncated if non-blocking mandatory 1390 * locks are currently on the file. 1391 */ 1392 if ((vap->va_mask & AT_SIZE) && in_crit) { 1393 u_offset_t offset; 1394 ssize_t length; 1395 1396 offset = vap->va_size > vattr.va_size ? 1397 vattr.va_size : vap->va_size; 1398 length = vap->va_size > vattr.va_size ? 1399 vap->va_size - vattr.va_size : 1400 vattr.va_size - vap->va_size; 1401 if (nbl_conflict(vp, NBL_WRITE, offset, 1402 length, 0, NULL)) { 1403 error = EACCES; 1404 goto out; 1405 } 1406 } 1407 } 1408 1409 /* 1410 * If the file is the root of a VFS, we've crossed a 1411 * mount point and the "containing" directory that we 1412 * acquired above (dvp) is irrelevant because it's in 1413 * a different file system. We apply VOP_CREATE to the 1414 * target itself instead of to the containing directory 1415 * and supply a null path name to indicate (conventionally) 1416 * the node itself as the "component" of interest. 1417 * 1418 * The intercession of the file system is necessary to 1419 * ensure that the appropriate permission checks are 1420 * done. 1421 */ 1422 if (vp->v_flag & VROOT) { 1423 ASSERT(why != CRMKDIR); 1424 error = VOP_CREATE(vp, "", vap, excl, mode, vpp, 1425 CRED(), flag, NULL, NULL); 1426 /* 1427 * If the create succeeded, it will have created 1428 * a new reference to the vnode. Give up the 1429 * original reference. The assertion should not 1430 * get triggered because NBMAND locks only apply to 1431 * VREG files. And if in_crit is non-zero for some 1432 * reason, detect that here, rather than when we 1433 * deference a null vp. 1434 */ 1435 ASSERT(in_crit == 0); 1436 VN_RELE(vp); 1437 vp = NULL; 1438 goto out; 1439 } 1440 1441 /* 1442 * Large File API - non-large open (FOFFMAX flag not set) 1443 * of regular file fails if the file size exceeds MAXOFF32_T. 1444 */ 1445 if (why != CRMKDIR && 1446 !(flag & FOFFMAX) && 1447 (vp->v_type == VREG)) { 1448 vattr.va_mask = AT_SIZE; 1449 if ((error = VOP_GETATTR(vp, &vattr, 0, 1450 CRED(), NULL))) { 1451 goto out; 1452 } 1453 if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) { 1454 error = EOVERFLOW; 1455 goto out; 1456 } 1457 } 1458 } 1459 1460 if (error == 0) { 1461 /* 1462 * Call mkdir() if specified, otherwise create(). 1463 */ 1464 int must_be_dir = pn_fixslash(&pn); /* trailing '/'? */ 1465 1466 if (why == CRMKDIR) 1467 /* 1468 * N.B., if vn_createat() ever requests 1469 * case-insensitive behavior then it will need 1470 * to be passed to VOP_MKDIR(). VOP_CREATE() 1471 * will already get it via "flag" 1472 */ 1473 error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED(), 1474 NULL, 0, NULL); 1475 else if (!must_be_dir) 1476 error = VOP_CREATE(dvp, pn.pn_path, vap, 1477 excl, mode, vpp, CRED(), flag, NULL, NULL); 1478 else 1479 error = ENOTDIR; 1480 } 1481 1482 out: 1483 1484 if (audit_active) 1485 audit_vncreate_finish(*vpp, error); 1486 if (in_crit) { 1487 nbl_end_crit(vp); 1488 in_crit = 0; 1489 } 1490 if (vp != NULL) { 1491 VN_RELE(vp); 1492 vp = NULL; 1493 } 1494 pn_free(&pn); 1495 VN_RELE(dvp); 1496 /* 1497 * The following clause was added to handle a problem 1498 * with NFS consistency. It is possible that a lookup 1499 * of the file to be created succeeded, but the file 1500 * itself doesn't actually exist on the server. This 1501 * is chiefly due to the DNLC containing an entry for 1502 * the file which has been removed on the server. In 1503 * this case, we just start over. If there was some 1504 * other cause for the ESTALE error, then the lookup 1505 * of the file will fail and the error will be returned 1506 * above instead of looping around from here. 1507 */ 1508 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1509 goto top; 1510 return (error); 1511 } 1512 1513 int 1514 vn_link(char *from, char *to, enum uio_seg seg) 1515 { 1516 struct vnode *fvp; /* from vnode ptr */ 1517 struct vnode *tdvp; /* to directory vnode ptr */ 1518 struct pathname pn; 1519 int error; 1520 struct vattr vattr; 1521 dev_t fsid; 1522 int estale_retry = 0; 1523 1524 top: 1525 fvp = tdvp = NULL; 1526 if (error = pn_get(to, seg, &pn)) 1527 return (error); 1528 if (error = lookupname(from, seg, NO_FOLLOW, NULLVPP, &fvp)) 1529 goto out; 1530 if (error = lookuppn(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP)) 1531 goto out; 1532 /* 1533 * Make sure both source vnode and target directory vnode are 1534 * in the same vfs and that it is writeable. 1535 */ 1536 vattr.va_mask = AT_FSID; 1537 if (error = VOP_GETATTR(fvp, &vattr, 0, CRED(), NULL)) 1538 goto out; 1539 fsid = vattr.va_fsid; 1540 vattr.va_mask = AT_FSID; 1541 if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED(), NULL)) 1542 goto out; 1543 if (fsid != vattr.va_fsid) { 1544 error = EXDEV; 1545 goto out; 1546 } 1547 if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) { 1548 error = EROFS; 1549 goto out; 1550 } 1551 /* 1552 * Do the link. 1553 */ 1554 (void) pn_fixslash(&pn); 1555 error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED(), NULL, 0); 1556 out: 1557 pn_free(&pn); 1558 if (fvp) 1559 VN_RELE(fvp); 1560 if (tdvp) 1561 VN_RELE(tdvp); 1562 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1563 goto top; 1564 return (error); 1565 } 1566 1567 int 1568 vn_rename(char *from, char *to, enum uio_seg seg) 1569 { 1570 return (vn_renameat(NULL, from, NULL, to, seg)); 1571 } 1572 1573 int 1574 vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp, 1575 char *tname, enum uio_seg seg) 1576 { 1577 int error; 1578 struct vattr vattr; 1579 struct pathname fpn; /* from pathname */ 1580 struct pathname tpn; /* to pathname */ 1581 dev_t fsid; 1582 int in_crit_src, in_crit_targ; 1583 vnode_t *fromvp, *fvp; 1584 vnode_t *tovp, *targvp; 1585 int estale_retry = 0; 1586 1587 top: 1588 fvp = fromvp = tovp = targvp = NULL; 1589 in_crit_src = in_crit_targ = 0; 1590 /* 1591 * Get to and from pathnames. 1592 */ 1593 if (error = pn_get(fname, seg, &fpn)) 1594 return (error); 1595 if (error = pn_get(tname, seg, &tpn)) { 1596 pn_free(&fpn); 1597 return (error); 1598 } 1599 1600 /* 1601 * First we need to resolve the correct directories 1602 * The passed in directories may only be a starting point, 1603 * but we need the real directories the file(s) live in. 1604 * For example the fname may be something like usr/lib/sparc 1605 * and we were passed in the / directory, but we need to 1606 * use the lib directory for the rename. 1607 */ 1608 1609 if (audit_active) 1610 audit_setfsat_path(1); 1611 /* 1612 * Lookup to and from directories. 1613 */ 1614 if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) { 1615 goto out; 1616 } 1617 1618 /* 1619 * Make sure there is an entry. 1620 */ 1621 if (fvp == NULL) { 1622 error = ENOENT; 1623 goto out; 1624 } 1625 1626 if (audit_active) 1627 audit_setfsat_path(3); 1628 if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, &targvp, tdvp)) { 1629 goto out; 1630 } 1631 1632 /* 1633 * Make sure both the from vnode directory and the to directory 1634 * are in the same vfs and the to directory is writable. 1635 * We check fsid's, not vfs pointers, so loopback fs works. 1636 */ 1637 if (fromvp != tovp) { 1638 vattr.va_mask = AT_FSID; 1639 if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED(), NULL)) 1640 goto out; 1641 fsid = vattr.va_fsid; 1642 vattr.va_mask = AT_FSID; 1643 if (error = VOP_GETATTR(tovp, &vattr, 0, CRED(), NULL)) 1644 goto out; 1645 if (fsid != vattr.va_fsid) { 1646 error = EXDEV; 1647 goto out; 1648 } 1649 } 1650 1651 if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) { 1652 error = EROFS; 1653 goto out; 1654 } 1655 1656 if (targvp && (fvp != targvp)) { 1657 nbl_start_crit(targvp, RW_READER); 1658 in_crit_targ = 1; 1659 if (nbl_conflict(targvp, NBL_REMOVE, 0, 0, 0, NULL)) { 1660 error = EACCES; 1661 goto out; 1662 } 1663 } 1664 1665 if (nbl_need_check(fvp)) { 1666 nbl_start_crit(fvp, RW_READER); 1667 in_crit_src = 1; 1668 if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0, NULL)) { 1669 error = EACCES; 1670 goto out; 1671 } 1672 } 1673 1674 /* 1675 * Do the rename. 1676 */ 1677 (void) pn_fixslash(&tpn); 1678 error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED(), 1679 NULL, 0); 1680 1681 out: 1682 pn_free(&fpn); 1683 pn_free(&tpn); 1684 if (in_crit_src) 1685 nbl_end_crit(fvp); 1686 if (in_crit_targ) 1687 nbl_end_crit(targvp); 1688 if (fromvp) 1689 VN_RELE(fromvp); 1690 if (tovp) 1691 VN_RELE(tovp); 1692 if (targvp) 1693 VN_RELE(targvp); 1694 if (fvp) 1695 VN_RELE(fvp); 1696 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1697 goto top; 1698 return (error); 1699 } 1700 1701 /* 1702 * Remove a file or directory. 1703 */ 1704 int 1705 vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag) 1706 { 1707 return (vn_removeat(NULL, fnamep, seg, dirflag)); 1708 } 1709 1710 int 1711 vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag) 1712 { 1713 struct vnode *vp; /* entry vnode */ 1714 struct vnode *dvp; /* ptr to parent dir vnode */ 1715 struct vnode *coveredvp; 1716 struct pathname pn; /* name of entry */ 1717 enum vtype vtype; 1718 int error; 1719 struct vfs *vfsp; 1720 struct vfs *dvfsp; /* ptr to parent dir vfs */ 1721 int in_crit = 0; 1722 int estale_retry = 0; 1723 1724 top: 1725 if (error = pn_get(fnamep, seg, &pn)) 1726 return (error); 1727 dvp = vp = NULL; 1728 if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) { 1729 pn_free(&pn); 1730 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1731 goto top; 1732 return (error); 1733 } 1734 1735 /* 1736 * Make sure there is an entry. 1737 */ 1738 if (vp == NULL) { 1739 error = ENOENT; 1740 goto out; 1741 } 1742 1743 vfsp = vp->v_vfsp; 1744 dvfsp = dvp->v_vfsp; 1745 1746 /* 1747 * If the named file is the root of a mounted filesystem, fail, 1748 * unless it's marked unlinkable. In that case, unmount the 1749 * filesystem and proceed to unlink the covered vnode. (If the 1750 * covered vnode is a directory, use rmdir instead of unlink, 1751 * to avoid file system corruption.) 1752 */ 1753 if (vp->v_flag & VROOT) { 1754 if ((vfsp->vfs_flag & VFS_UNLINKABLE) == 0) { 1755 error = EBUSY; 1756 goto out; 1757 } 1758 1759 /* 1760 * Namefs specific code starts here. 1761 */ 1762 1763 if (dirflag == RMDIRECTORY) { 1764 /* 1765 * User called rmdir(2) on a file that has 1766 * been namefs mounted on top of. Since 1767 * namefs doesn't allow directories to 1768 * be mounted on other files we know 1769 * vp is not of type VDIR so fail to operation. 1770 */ 1771 error = ENOTDIR; 1772 goto out; 1773 } 1774 1775 /* 1776 * If VROOT is still set after grabbing vp->v_lock, 1777 * noone has finished nm_unmount so far and coveredvp 1778 * is valid. 1779 * If we manage to grab vn_vfswlock(coveredvp) before releasing 1780 * vp->v_lock, any race window is eliminated. 1781 */ 1782 1783 mutex_enter(&vp->v_lock); 1784 if ((vp->v_flag & VROOT) == 0) { 1785 /* Someone beat us to the unmount */ 1786 mutex_exit(&vp->v_lock); 1787 error = EBUSY; 1788 goto out; 1789 } 1790 vfsp = vp->v_vfsp; 1791 coveredvp = vfsp->vfs_vnodecovered; 1792 ASSERT(coveredvp); 1793 /* 1794 * Note: Implementation of vn_vfswlock shows that ordering of 1795 * v_lock / vn_vfswlock is not an issue here. 1796 */ 1797 error = vn_vfswlock(coveredvp); 1798 mutex_exit(&vp->v_lock); 1799 1800 if (error) 1801 goto out; 1802 1803 VN_HOLD(coveredvp); 1804 VN_RELE(vp); 1805 error = dounmount(vfsp, 0, CRED()); 1806 1807 /* 1808 * Unmounted the namefs file system; now get 1809 * the object it was mounted over. 1810 */ 1811 vp = coveredvp; 1812 /* 1813 * If namefs was mounted over a directory, then 1814 * we want to use rmdir() instead of unlink(). 1815 */ 1816 if (vp->v_type == VDIR) 1817 dirflag = RMDIRECTORY; 1818 1819 if (error) 1820 goto out; 1821 } 1822 1823 /* 1824 * Make sure filesystem is writeable. 1825 * We check the parent directory's vfs in case this is an lofs vnode. 1826 */ 1827 if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) { 1828 error = EROFS; 1829 goto out; 1830 } 1831 1832 vtype = vp->v_type; 1833 1834 /* 1835 * If there is the possibility of an nbmand share reservation, make 1836 * sure it's okay to remove the file. Keep a reference to the 1837 * vnode, so that we can exit the nbl critical region after 1838 * calling VOP_REMOVE. 1839 * If there is no possibility of an nbmand share reservation, 1840 * release the vnode reference now. Filesystems like NFS may 1841 * behave differently if there is an extra reference, so get rid of 1842 * this one. Fortunately, we can't have nbmand mounts on NFS 1843 * filesystems. 1844 */ 1845 if (nbl_need_check(vp)) { 1846 nbl_start_crit(vp, RW_READER); 1847 in_crit = 1; 1848 if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0, NULL)) { 1849 error = EACCES; 1850 goto out; 1851 } 1852 } else { 1853 VN_RELE(vp); 1854 vp = NULL; 1855 } 1856 1857 if (dirflag == RMDIRECTORY) { 1858 /* 1859 * Caller is using rmdir(2), which can only be applied to 1860 * directories. 1861 */ 1862 if (vtype != VDIR) { 1863 error = ENOTDIR; 1864 } else { 1865 vnode_t *cwd; 1866 proc_t *pp = curproc; 1867 1868 mutex_enter(&pp->p_lock); 1869 cwd = PTOU(pp)->u_cdir; 1870 VN_HOLD(cwd); 1871 mutex_exit(&pp->p_lock); 1872 error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED(), 1873 NULL, 0); 1874 VN_RELE(cwd); 1875 } 1876 } else { 1877 /* 1878 * Unlink(2) can be applied to anything. 1879 */ 1880 error = VOP_REMOVE(dvp, pn.pn_path, CRED(), NULL, 0); 1881 } 1882 1883 out: 1884 pn_free(&pn); 1885 if (in_crit) { 1886 nbl_end_crit(vp); 1887 in_crit = 0; 1888 } 1889 if (vp != NULL) 1890 VN_RELE(vp); 1891 if (dvp != NULL) 1892 VN_RELE(dvp); 1893 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1894 goto top; 1895 return (error); 1896 } 1897 1898 /* 1899 * Utility function to compare equality of vnodes. 1900 * Compare the underlying real vnodes, if there are underlying vnodes. 1901 * This is a more thorough comparison than the VN_CMP() macro provides. 1902 */ 1903 int 1904 vn_compare(vnode_t *vp1, vnode_t *vp2) 1905 { 1906 vnode_t *realvp; 1907 1908 if (vp1 != NULL && VOP_REALVP(vp1, &realvp, NULL) == 0) 1909 vp1 = realvp; 1910 if (vp2 != NULL && VOP_REALVP(vp2, &realvp, NULL) == 0) 1911 vp2 = realvp; 1912 return (VN_CMP(vp1, vp2)); 1913 } 1914 1915 /* 1916 * The number of locks to hash into. This value must be a power 1917 * of 2 minus 1 and should probably also be prime. 1918 */ 1919 #define NUM_BUCKETS 1023 1920 1921 struct vn_vfslocks_bucket { 1922 kmutex_t vb_lock; 1923 vn_vfslocks_entry_t *vb_list; 1924 char pad[64 - sizeof (kmutex_t) - sizeof (void *)]; 1925 }; 1926 1927 /* 1928 * Total number of buckets will be NUM_BUCKETS + 1 . 1929 */ 1930 1931 #pragma align 64(vn_vfslocks_buckets) 1932 static struct vn_vfslocks_bucket vn_vfslocks_buckets[NUM_BUCKETS + 1]; 1933 1934 #define VN_VFSLOCKS_SHIFT 9 1935 1936 #define VN_VFSLOCKS_HASH(vfsvpptr) \ 1937 ((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS) 1938 1939 /* 1940 * vn_vfslocks_getlock() uses an HASH scheme to generate 1941 * rwstlock using vfs/vnode pointer passed to it. 1942 * 1943 * vn_vfslocks_rele() releases a reference in the 1944 * HASH table which allows the entry allocated by 1945 * vn_vfslocks_getlock() to be freed at a later 1946 * stage when the refcount drops to zero. 1947 */ 1948 1949 vn_vfslocks_entry_t * 1950 vn_vfslocks_getlock(void *vfsvpptr) 1951 { 1952 struct vn_vfslocks_bucket *bp; 1953 vn_vfslocks_entry_t *vep; 1954 vn_vfslocks_entry_t *tvep; 1955 1956 ASSERT(vfsvpptr != NULL); 1957 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)]; 1958 1959 mutex_enter(&bp->vb_lock); 1960 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 1961 if (vep->ve_vpvfs == vfsvpptr) { 1962 vep->ve_refcnt++; 1963 mutex_exit(&bp->vb_lock); 1964 return (vep); 1965 } 1966 } 1967 mutex_exit(&bp->vb_lock); 1968 vep = kmem_alloc(sizeof (*vep), KM_SLEEP); 1969 rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL); 1970 vep->ve_vpvfs = (char *)vfsvpptr; 1971 vep->ve_refcnt = 1; 1972 mutex_enter(&bp->vb_lock); 1973 for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) { 1974 if (tvep->ve_vpvfs == vfsvpptr) { 1975 tvep->ve_refcnt++; 1976 mutex_exit(&bp->vb_lock); 1977 1978 /* 1979 * There is already an entry in the hash 1980 * destroy what we just allocated. 1981 */ 1982 rwst_destroy(&vep->ve_lock); 1983 kmem_free(vep, sizeof (*vep)); 1984 return (tvep); 1985 } 1986 } 1987 vep->ve_next = bp->vb_list; 1988 bp->vb_list = vep; 1989 mutex_exit(&bp->vb_lock); 1990 return (vep); 1991 } 1992 1993 void 1994 vn_vfslocks_rele(vn_vfslocks_entry_t *vepent) 1995 { 1996 struct vn_vfslocks_bucket *bp; 1997 vn_vfslocks_entry_t *vep; 1998 vn_vfslocks_entry_t *pvep; 1999 2000 ASSERT(vepent != NULL); 2001 ASSERT(vepent->ve_vpvfs != NULL); 2002 2003 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)]; 2004 2005 mutex_enter(&bp->vb_lock); 2006 vepent->ve_refcnt--; 2007 2008 if ((int32_t)vepent->ve_refcnt < 0) 2009 cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative"); 2010 2011 if (vepent->ve_refcnt == 0) { 2012 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 2013 if (vep->ve_vpvfs == vepent->ve_vpvfs) { 2014 if (bp->vb_list == vep) 2015 bp->vb_list = vep->ve_next; 2016 else { 2017 /* LINTED */ 2018 pvep->ve_next = vep->ve_next; 2019 } 2020 mutex_exit(&bp->vb_lock); 2021 rwst_destroy(&vep->ve_lock); 2022 kmem_free(vep, sizeof (*vep)); 2023 return; 2024 } 2025 pvep = vep; 2026 } 2027 cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found"); 2028 } 2029 mutex_exit(&bp->vb_lock); 2030 } 2031 2032 /* 2033 * vn_vfswlock_wait is used to implement a lock which is logically a writers 2034 * lock protecting the v_vfsmountedhere field. 2035 * vn_vfswlock_wait has been modified to be similar to vn_vfswlock, 2036 * except that it blocks to acquire the lock VVFSLOCK. 2037 * 2038 * traverse() and routines re-implementing part of traverse (e.g. autofs) 2039 * need to hold this lock. mount(), vn_rename(), vn_remove() and so on 2040 * need the non-blocking version of the writers lock i.e. vn_vfswlock 2041 */ 2042 int 2043 vn_vfswlock_wait(vnode_t *vp) 2044 { 2045 int retval; 2046 vn_vfslocks_entry_t *vpvfsentry; 2047 ASSERT(vp != NULL); 2048 2049 vpvfsentry = vn_vfslocks_getlock(vp); 2050 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER); 2051 2052 if (retval == EINTR) { 2053 vn_vfslocks_rele(vpvfsentry); 2054 return (EINTR); 2055 } 2056 return (retval); 2057 } 2058 2059 int 2060 vn_vfsrlock_wait(vnode_t *vp) 2061 { 2062 int retval; 2063 vn_vfslocks_entry_t *vpvfsentry; 2064 ASSERT(vp != NULL); 2065 2066 vpvfsentry = vn_vfslocks_getlock(vp); 2067 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER); 2068 2069 if (retval == EINTR) { 2070 vn_vfslocks_rele(vpvfsentry); 2071 return (EINTR); 2072 } 2073 2074 return (retval); 2075 } 2076 2077 2078 /* 2079 * vn_vfswlock is used to implement a lock which is logically a writers lock 2080 * protecting the v_vfsmountedhere field. 2081 */ 2082 int 2083 vn_vfswlock(vnode_t *vp) 2084 { 2085 vn_vfslocks_entry_t *vpvfsentry; 2086 2087 /* 2088 * If vp is NULL then somebody is trying to lock the covered vnode 2089 * of /. (vfs_vnodecovered is NULL for /). This situation will 2090 * only happen when unmounting /. Since that operation will fail 2091 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 2092 */ 2093 if (vp == NULL) 2094 return (EBUSY); 2095 2096 vpvfsentry = vn_vfslocks_getlock(vp); 2097 2098 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 2099 return (0); 2100 2101 vn_vfslocks_rele(vpvfsentry); 2102 return (EBUSY); 2103 } 2104 2105 int 2106 vn_vfsrlock(vnode_t *vp) 2107 { 2108 vn_vfslocks_entry_t *vpvfsentry; 2109 2110 /* 2111 * If vp is NULL then somebody is trying to lock the covered vnode 2112 * of /. (vfs_vnodecovered is NULL for /). This situation will 2113 * only happen when unmounting /. Since that operation will fail 2114 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 2115 */ 2116 if (vp == NULL) 2117 return (EBUSY); 2118 2119 vpvfsentry = vn_vfslocks_getlock(vp); 2120 2121 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 2122 return (0); 2123 2124 vn_vfslocks_rele(vpvfsentry); 2125 return (EBUSY); 2126 } 2127 2128 void 2129 vn_vfsunlock(vnode_t *vp) 2130 { 2131 vn_vfslocks_entry_t *vpvfsentry; 2132 2133 /* 2134 * ve_refcnt needs to be decremented twice. 2135 * 1. To release refernce after a call to vn_vfslocks_getlock() 2136 * 2. To release the reference from the locking routines like 2137 * vn_vfsrlock/vn_vfswlock etc,. 2138 */ 2139 vpvfsentry = vn_vfslocks_getlock(vp); 2140 vn_vfslocks_rele(vpvfsentry); 2141 2142 rwst_exit(&vpvfsentry->ve_lock); 2143 vn_vfslocks_rele(vpvfsentry); 2144 } 2145 2146 int 2147 vn_vfswlock_held(vnode_t *vp) 2148 { 2149 int held; 2150 vn_vfslocks_entry_t *vpvfsentry; 2151 2152 ASSERT(vp != NULL); 2153 2154 vpvfsentry = vn_vfslocks_getlock(vp); 2155 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 2156 2157 vn_vfslocks_rele(vpvfsentry); 2158 return (held); 2159 } 2160 2161 2162 int 2163 vn_make_ops( 2164 const char *name, /* Name of file system */ 2165 const fs_operation_def_t *templ, /* Operation specification */ 2166 vnodeops_t **actual) /* Return the vnodeops */ 2167 { 2168 int unused_ops; 2169 int error; 2170 2171 *actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP); 2172 2173 (*actual)->vnop_name = name; 2174 2175 error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ); 2176 if (error) { 2177 kmem_free(*actual, sizeof (vnodeops_t)); 2178 } 2179 2180 #if DEBUG 2181 if (unused_ops != 0) 2182 cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied " 2183 "but not used", name, unused_ops); 2184 #endif 2185 2186 return (error); 2187 } 2188 2189 /* 2190 * Free the vnodeops created as a result of vn_make_ops() 2191 */ 2192 void 2193 vn_freevnodeops(vnodeops_t *vnops) 2194 { 2195 kmem_free(vnops, sizeof (vnodeops_t)); 2196 } 2197 2198 /* 2199 * Vnode cache. 2200 */ 2201 2202 /* ARGSUSED */ 2203 static int 2204 vn_cache_constructor(void *buf, void *cdrarg, int kmflags) 2205 { 2206 struct vnode *vp; 2207 2208 vp = buf; 2209 2210 mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL); 2211 cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL); 2212 rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL); 2213 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 2214 vp->v_path = NULL; 2215 vp->v_mpssdata = NULL; 2216 vp->v_vsd = NULL; 2217 vp->v_fopdata = NULL; 2218 2219 return (0); 2220 } 2221 2222 /* ARGSUSED */ 2223 static void 2224 vn_cache_destructor(void *buf, void *cdrarg) 2225 { 2226 struct vnode *vp; 2227 2228 vp = buf; 2229 2230 rw_destroy(&vp->v_nbllock); 2231 cv_destroy(&vp->v_cv); 2232 mutex_destroy(&vp->v_lock); 2233 } 2234 2235 void 2236 vn_create_cache(void) 2237 { 2238 vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode), 64, 2239 vn_cache_constructor, vn_cache_destructor, NULL, NULL, 2240 NULL, 0); 2241 } 2242 2243 void 2244 vn_destroy_cache(void) 2245 { 2246 kmem_cache_destroy(vn_cache); 2247 } 2248 2249 /* 2250 * Used by file systems when fs-specific nodes (e.g., ufs inodes) are 2251 * cached by the file system and vnodes remain associated. 2252 */ 2253 void 2254 vn_recycle(vnode_t *vp) 2255 { 2256 ASSERT(vp->v_pages == NULL); 2257 2258 /* 2259 * XXX - This really belongs in vn_reinit(), but we have some issues 2260 * with the counts. Best to have it here for clean initialization. 2261 */ 2262 vp->v_rdcnt = 0; 2263 vp->v_wrcnt = 0; 2264 vp->v_mmap_read = 0; 2265 vp->v_mmap_write = 0; 2266 2267 /* 2268 * If FEM was in use, make sure everything gets cleaned up 2269 * NOTE: vp->v_femhead is initialized to NULL in the vnode 2270 * constructor. 2271 */ 2272 if (vp->v_femhead) { 2273 /* XXX - There should be a free_femhead() that does all this */ 2274 ASSERT(vp->v_femhead->femh_list == NULL); 2275 mutex_destroy(&vp->v_femhead->femh_lock); 2276 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 2277 vp->v_femhead = NULL; 2278 } 2279 if (vp->v_path) { 2280 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 2281 vp->v_path = NULL; 2282 } 2283 2284 if (vp->v_fopdata != NULL) { 2285 free_fopdata(vp); 2286 } 2287 vp->v_mpssdata = NULL; 2288 vsd_free(vp); 2289 } 2290 2291 /* 2292 * Used to reset the vnode fields including those that are directly accessible 2293 * as well as those which require an accessor function. 2294 * 2295 * Does not initialize: 2296 * synchronization objects: v_lock, v_nbllock, v_cv 2297 * v_data (since FS-nodes and vnodes point to each other and should 2298 * be updated simultaneously) 2299 * v_op (in case someone needs to make a VOP call on this object) 2300 */ 2301 void 2302 vn_reinit(vnode_t *vp) 2303 { 2304 vp->v_count = 1; 2305 vp->v_count_dnlc = 0; 2306 vp->v_vfsp = NULL; 2307 vp->v_stream = NULL; 2308 vp->v_vfsmountedhere = NULL; 2309 vp->v_flag = 0; 2310 vp->v_type = VNON; 2311 vp->v_rdev = NODEV; 2312 2313 vp->v_filocks = NULL; 2314 vp->v_shrlocks = NULL; 2315 vp->v_pages = NULL; 2316 2317 vp->v_locality = NULL; 2318 vp->v_xattrdir = NULL; 2319 2320 /* Handles v_femhead, v_path, and the r/w/map counts */ 2321 vn_recycle(vp); 2322 } 2323 2324 vnode_t * 2325 vn_alloc(int kmflag) 2326 { 2327 vnode_t *vp; 2328 2329 vp = kmem_cache_alloc(vn_cache, kmflag); 2330 2331 if (vp != NULL) { 2332 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 2333 vp->v_fopdata = NULL; 2334 vn_reinit(vp); 2335 } 2336 2337 return (vp); 2338 } 2339 2340 void 2341 vn_free(vnode_t *vp) 2342 { 2343 ASSERT(vp->v_shrlocks == NULL); 2344 ASSERT(vp->v_filocks == NULL); 2345 2346 /* 2347 * Some file systems call vn_free() with v_count of zero, 2348 * some with v_count of 1. In any case, the value should 2349 * never be anything else. 2350 */ 2351 ASSERT((vp->v_count == 0) || (vp->v_count == 1)); 2352 ASSERT(vp->v_count_dnlc == 0); 2353 if (vp->v_path != NULL) { 2354 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 2355 vp->v_path = NULL; 2356 } 2357 2358 /* If FEM was in use, make sure everything gets cleaned up */ 2359 if (vp->v_femhead) { 2360 /* XXX - There should be a free_femhead() that does all this */ 2361 ASSERT(vp->v_femhead->femh_list == NULL); 2362 mutex_destroy(&vp->v_femhead->femh_lock); 2363 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 2364 vp->v_femhead = NULL; 2365 } 2366 2367 if (vp->v_fopdata != NULL) { 2368 free_fopdata(vp); 2369 } 2370 vp->v_mpssdata = NULL; 2371 vsd_free(vp); 2372 kmem_cache_free(vn_cache, vp); 2373 } 2374 2375 /* 2376 * vnode status changes, should define better states than 1, 0. 2377 */ 2378 void 2379 vn_reclaim(vnode_t *vp) 2380 { 2381 vfs_t *vfsp = vp->v_vfsp; 2382 2383 if (vfsp == NULL || 2384 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2385 return; 2386 } 2387 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED); 2388 } 2389 2390 void 2391 vn_idle(vnode_t *vp) 2392 { 2393 vfs_t *vfsp = vp->v_vfsp; 2394 2395 if (vfsp == NULL || 2396 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2397 return; 2398 } 2399 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED); 2400 } 2401 void 2402 vn_exists(vnode_t *vp) 2403 { 2404 vfs_t *vfsp = vp->v_vfsp; 2405 2406 if (vfsp == NULL || 2407 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2408 return; 2409 } 2410 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS); 2411 } 2412 2413 void 2414 vn_invalid(vnode_t *vp) 2415 { 2416 vfs_t *vfsp = vp->v_vfsp; 2417 2418 if (vfsp == NULL || 2419 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2420 return; 2421 } 2422 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED); 2423 } 2424 2425 /* Vnode event notification */ 2426 2427 int 2428 vnevent_support(vnode_t *vp, caller_context_t *ct) 2429 { 2430 if (vp == NULL) 2431 return (EINVAL); 2432 2433 return (VOP_VNEVENT(vp, VE_SUPPORT, NULL, NULL, ct)); 2434 } 2435 2436 void 2437 vnevent_rename_src(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct) 2438 { 2439 if (vp == NULL || vp->v_femhead == NULL) { 2440 return; 2441 } 2442 (void) VOP_VNEVENT(vp, VE_RENAME_SRC, dvp, name, ct); 2443 } 2444 2445 void 2446 vnevent_rename_dest(vnode_t *vp, vnode_t *dvp, char *name, 2447 caller_context_t *ct) 2448 { 2449 if (vp == NULL || vp->v_femhead == NULL) { 2450 return; 2451 } 2452 (void) VOP_VNEVENT(vp, VE_RENAME_DEST, dvp, name, ct); 2453 } 2454 2455 void 2456 vnevent_rename_dest_dir(vnode_t *vp, caller_context_t *ct) 2457 { 2458 if (vp == NULL || vp->v_femhead == NULL) { 2459 return; 2460 } 2461 (void) VOP_VNEVENT(vp, VE_RENAME_DEST_DIR, NULL, NULL, ct); 2462 } 2463 2464 void 2465 vnevent_remove(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct) 2466 { 2467 if (vp == NULL || vp->v_femhead == NULL) { 2468 return; 2469 } 2470 (void) VOP_VNEVENT(vp, VE_REMOVE, dvp, name, ct); 2471 } 2472 2473 void 2474 vnevent_rmdir(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct) 2475 { 2476 if (vp == NULL || vp->v_femhead == NULL) { 2477 return; 2478 } 2479 (void) VOP_VNEVENT(vp, VE_RMDIR, dvp, name, ct); 2480 } 2481 2482 void 2483 vnevent_create(vnode_t *vp, caller_context_t *ct) 2484 { 2485 if (vp == NULL || vp->v_femhead == NULL) { 2486 return; 2487 } 2488 (void) VOP_VNEVENT(vp, VE_CREATE, NULL, NULL, ct); 2489 } 2490 2491 void 2492 vnevent_link(vnode_t *vp, caller_context_t *ct) 2493 { 2494 if (vp == NULL || vp->v_femhead == NULL) { 2495 return; 2496 } 2497 (void) VOP_VNEVENT(vp, VE_LINK, NULL, NULL, ct); 2498 } 2499 2500 void 2501 vnevent_mountedover(vnode_t *vp, caller_context_t *ct) 2502 { 2503 if (vp == NULL || vp->v_femhead == NULL) { 2504 return; 2505 } 2506 (void) VOP_VNEVENT(vp, VE_MOUNTEDOVER, NULL, NULL, ct); 2507 } 2508 2509 /* 2510 * Vnode accessors. 2511 */ 2512 2513 int 2514 vn_is_readonly(vnode_t *vp) 2515 { 2516 return (vp->v_vfsp->vfs_flag & VFS_RDONLY); 2517 } 2518 2519 int 2520 vn_has_flocks(vnode_t *vp) 2521 { 2522 return (vp->v_filocks != NULL); 2523 } 2524 2525 int 2526 vn_has_mandatory_locks(vnode_t *vp, int mode) 2527 { 2528 return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode))); 2529 } 2530 2531 int 2532 vn_has_cached_data(vnode_t *vp) 2533 { 2534 return (vp->v_pages != NULL); 2535 } 2536 2537 /* 2538 * Return 0 if the vnode in question shouldn't be permitted into a zone via 2539 * zone_enter(2). 2540 */ 2541 int 2542 vn_can_change_zones(vnode_t *vp) 2543 { 2544 struct vfssw *vswp; 2545 int allow = 1; 2546 vnode_t *rvp; 2547 2548 if (nfs_global_client_only != 0) 2549 return (1); 2550 2551 /* 2552 * We always want to look at the underlying vnode if there is one. 2553 */ 2554 if (VOP_REALVP(vp, &rvp, NULL) != 0) 2555 rvp = vp; 2556 /* 2557 * Some pseudo filesystems (including doorfs) don't actually register 2558 * their vfsops_t, so the following may return NULL; we happily let 2559 * such vnodes switch zones. 2560 */ 2561 vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp)); 2562 if (vswp != NULL) { 2563 if (vswp->vsw_flag & VSW_NOTZONESAFE) 2564 allow = 0; 2565 vfs_unrefvfssw(vswp); 2566 } 2567 return (allow); 2568 } 2569 2570 /* 2571 * Return nonzero if the vnode is a mount point, zero if not. 2572 */ 2573 int 2574 vn_ismntpt(vnode_t *vp) 2575 { 2576 return (vp->v_vfsmountedhere != NULL); 2577 } 2578 2579 /* Retrieve the vfs (if any) mounted on this vnode */ 2580 vfs_t * 2581 vn_mountedvfs(vnode_t *vp) 2582 { 2583 return (vp->v_vfsmountedhere); 2584 } 2585 2586 /* 2587 * Return nonzero if the vnode is referenced by the dnlc, zero if not. 2588 */ 2589 int 2590 vn_in_dnlc(vnode_t *vp) 2591 { 2592 return (vp->v_count_dnlc > 0); 2593 } 2594 2595 /* 2596 * vn_has_other_opens() checks whether a particular file is opened by more than 2597 * just the caller and whether the open is for read and/or write. 2598 * This routine is for calling after the caller has already called VOP_OPEN() 2599 * and the caller wishes to know if they are the only one with it open for 2600 * the mode(s) specified. 2601 * 2602 * Vnode counts are only kept on regular files (v_type=VREG). 2603 */ 2604 int 2605 vn_has_other_opens( 2606 vnode_t *vp, 2607 v_mode_t mode) 2608 { 2609 2610 ASSERT(vp != NULL); 2611 2612 switch (mode) { 2613 case V_WRITE: 2614 if (vp->v_wrcnt > 1) 2615 return (V_TRUE); 2616 break; 2617 case V_RDORWR: 2618 if ((vp->v_rdcnt > 1) || (vp->v_wrcnt > 1)) 2619 return (V_TRUE); 2620 break; 2621 case V_RDANDWR: 2622 if ((vp->v_rdcnt > 1) && (vp->v_wrcnt > 1)) 2623 return (V_TRUE); 2624 break; 2625 case V_READ: 2626 if (vp->v_rdcnt > 1) 2627 return (V_TRUE); 2628 break; 2629 } 2630 2631 return (V_FALSE); 2632 } 2633 2634 /* 2635 * vn_is_opened() checks whether a particular file is opened and 2636 * whether the open is for read and/or write. 2637 * 2638 * Vnode counts are only kept on regular files (v_type=VREG). 2639 */ 2640 int 2641 vn_is_opened( 2642 vnode_t *vp, 2643 v_mode_t mode) 2644 { 2645 2646 ASSERT(vp != NULL); 2647 2648 switch (mode) { 2649 case V_WRITE: 2650 if (vp->v_wrcnt) 2651 return (V_TRUE); 2652 break; 2653 case V_RDANDWR: 2654 if (vp->v_rdcnt && vp->v_wrcnt) 2655 return (V_TRUE); 2656 break; 2657 case V_RDORWR: 2658 if (vp->v_rdcnt || vp->v_wrcnt) 2659 return (V_TRUE); 2660 break; 2661 case V_READ: 2662 if (vp->v_rdcnt) 2663 return (V_TRUE); 2664 break; 2665 } 2666 2667 return (V_FALSE); 2668 } 2669 2670 /* 2671 * vn_is_mapped() checks whether a particular file is mapped and whether 2672 * the file is mapped read and/or write. 2673 */ 2674 int 2675 vn_is_mapped( 2676 vnode_t *vp, 2677 v_mode_t mode) 2678 { 2679 2680 ASSERT(vp != NULL); 2681 2682 #if !defined(_LP64) 2683 switch (mode) { 2684 /* 2685 * The atomic_add_64_nv functions force atomicity in the 2686 * case of 32 bit architectures. Otherwise the 64 bit values 2687 * require two fetches. The value of the fields may be 2688 * (potentially) changed between the first fetch and the 2689 * second 2690 */ 2691 case V_WRITE: 2692 if (atomic_add_64_nv((&(vp->v_mmap_write)), 0)) 2693 return (V_TRUE); 2694 break; 2695 case V_RDANDWR: 2696 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) && 2697 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 2698 return (V_TRUE); 2699 break; 2700 case V_RDORWR: 2701 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) || 2702 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 2703 return (V_TRUE); 2704 break; 2705 case V_READ: 2706 if (atomic_add_64_nv((&(vp->v_mmap_read)), 0)) 2707 return (V_TRUE); 2708 break; 2709 } 2710 #else 2711 switch (mode) { 2712 case V_WRITE: 2713 if (vp->v_mmap_write) 2714 return (V_TRUE); 2715 break; 2716 case V_RDANDWR: 2717 if (vp->v_mmap_read && vp->v_mmap_write) 2718 return (V_TRUE); 2719 break; 2720 case V_RDORWR: 2721 if (vp->v_mmap_read || vp->v_mmap_write) 2722 return (V_TRUE); 2723 break; 2724 case V_READ: 2725 if (vp->v_mmap_read) 2726 return (V_TRUE); 2727 break; 2728 } 2729 #endif 2730 2731 return (V_FALSE); 2732 } 2733 2734 /* 2735 * Set the operations vector for a vnode. 2736 * 2737 * FEM ensures that the v_femhead pointer is filled in before the 2738 * v_op pointer is changed. This means that if the v_femhead pointer 2739 * is NULL, and the v_op field hasn't changed since before which checked 2740 * the v_femhead pointer; then our update is ok - we are not racing with 2741 * FEM. 2742 */ 2743 void 2744 vn_setops(vnode_t *vp, vnodeops_t *vnodeops) 2745 { 2746 vnodeops_t *op; 2747 2748 ASSERT(vp != NULL); 2749 ASSERT(vnodeops != NULL); 2750 2751 op = vp->v_op; 2752 membar_consumer(); 2753 /* 2754 * If vp->v_femhead == NULL, then we'll call casptr() to do the 2755 * compare-and-swap on vp->v_op. If either fails, then FEM is 2756 * in effect on the vnode and we need to have FEM deal with it. 2757 */ 2758 if (vp->v_femhead != NULL || casptr(&vp->v_op, op, vnodeops) != op) { 2759 fem_setvnops(vp, vnodeops); 2760 } 2761 } 2762 2763 /* 2764 * Retrieve the operations vector for a vnode 2765 * As with vn_setops(above); make sure we aren't racing with FEM. 2766 * FEM sets the v_op to a special, internal, vnodeops that wouldn't 2767 * make sense to the callers of this routine. 2768 */ 2769 vnodeops_t * 2770 vn_getops(vnode_t *vp) 2771 { 2772 vnodeops_t *op; 2773 2774 ASSERT(vp != NULL); 2775 2776 op = vp->v_op; 2777 membar_consumer(); 2778 if (vp->v_femhead == NULL && op == vp->v_op) { 2779 return (op); 2780 } else { 2781 return (fem_getvnops(vp)); 2782 } 2783 } 2784 2785 /* 2786 * Returns non-zero (1) if the vnodeops matches that of the vnode. 2787 * Returns zero (0) if not. 2788 */ 2789 int 2790 vn_matchops(vnode_t *vp, vnodeops_t *vnodeops) 2791 { 2792 return (vn_getops(vp) == vnodeops); 2793 } 2794 2795 /* 2796 * Returns non-zero (1) if the specified operation matches the 2797 * corresponding operation for that the vnode. 2798 * Returns zero (0) if not. 2799 */ 2800 2801 #define MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0)) 2802 2803 int 2804 vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp) 2805 { 2806 const fs_operation_trans_def_t *otdp; 2807 fs_generic_func_p *loc = NULL; 2808 vnodeops_t *vop = vn_getops(vp); 2809 2810 ASSERT(vopname != NULL); 2811 2812 for (otdp = vn_ops_table; otdp->name != NULL; otdp++) { 2813 if (MATCHNAME(otdp->name, vopname)) { 2814 loc = (fs_generic_func_p *) 2815 ((char *)(vop) + otdp->offset); 2816 break; 2817 } 2818 } 2819 2820 return ((loc != NULL) && (*loc == funcp)); 2821 } 2822 2823 /* 2824 * fs_new_caller_id() needs to return a unique ID on a given local system. 2825 * The IDs do not need to survive across reboots. These are primarily 2826 * used so that (FEM) monitors can detect particular callers (such as 2827 * the NFS server) to a given vnode/vfs operation. 2828 */ 2829 u_longlong_t 2830 fs_new_caller_id() 2831 { 2832 static uint64_t next_caller_id = 0LL; /* First call returns 1 */ 2833 2834 return ((u_longlong_t)atomic_add_64_nv(&next_caller_id, 1)); 2835 } 2836 2837 /* 2838 * Given a starting vnode and a path, updates the path in the target vnode in 2839 * a safe manner. If the vnode already has path information embedded, then the 2840 * cached path is left untouched. 2841 */ 2842 2843 size_t max_vnode_path = 4 * MAXPATHLEN; 2844 2845 void 2846 vn_setpath(vnode_t *rootvp, struct vnode *startvp, struct vnode *vp, 2847 const char *path, size_t plen) 2848 { 2849 char *rpath; 2850 vnode_t *base; 2851 size_t rpathlen, rpathalloc; 2852 int doslash = 1; 2853 2854 if (*path == '/') { 2855 base = rootvp; 2856 path++; 2857 plen--; 2858 } else { 2859 base = startvp; 2860 } 2861 2862 /* 2863 * We cannot grab base->v_lock while we hold vp->v_lock because of 2864 * the potential for deadlock. 2865 */ 2866 mutex_enter(&base->v_lock); 2867 if (base->v_path == NULL) { 2868 mutex_exit(&base->v_lock); 2869 return; 2870 } 2871 2872 rpathlen = strlen(base->v_path); 2873 rpathalloc = rpathlen + plen + 1; 2874 /* Avoid adding a slash if there's already one there */ 2875 if (base->v_path[rpathlen-1] == '/') 2876 doslash = 0; 2877 else 2878 rpathalloc++; 2879 2880 /* 2881 * We don't want to call kmem_alloc(KM_SLEEP) with kernel locks held, 2882 * so we must do this dance. If, by chance, something changes the path, 2883 * just give up since there is no real harm. 2884 */ 2885 mutex_exit(&base->v_lock); 2886 2887 /* Paths should stay within reason */ 2888 if (rpathalloc > max_vnode_path) 2889 return; 2890 2891 rpath = kmem_alloc(rpathalloc, KM_SLEEP); 2892 2893 mutex_enter(&base->v_lock); 2894 if (base->v_path == NULL || strlen(base->v_path) != rpathlen) { 2895 mutex_exit(&base->v_lock); 2896 kmem_free(rpath, rpathalloc); 2897 return; 2898 } 2899 bcopy(base->v_path, rpath, rpathlen); 2900 mutex_exit(&base->v_lock); 2901 2902 if (doslash) 2903 rpath[rpathlen++] = '/'; 2904 bcopy(path, rpath + rpathlen, plen); 2905 rpath[rpathlen + plen] = '\0'; 2906 2907 mutex_enter(&vp->v_lock); 2908 if (vp->v_path != NULL) { 2909 mutex_exit(&vp->v_lock); 2910 kmem_free(rpath, rpathalloc); 2911 } else { 2912 vp->v_path = rpath; 2913 mutex_exit(&vp->v_lock); 2914 } 2915 } 2916 2917 /* 2918 * Sets the path to the vnode to be the given string, regardless of current 2919 * context. The string must be a complete path from rootdir. This is only used 2920 * by fsop_root() for setting the path based on the mountpoint. 2921 */ 2922 void 2923 vn_setpath_str(struct vnode *vp, const char *str, size_t len) 2924 { 2925 char *buf = kmem_alloc(len + 1, KM_SLEEP); 2926 2927 mutex_enter(&vp->v_lock); 2928 if (vp->v_path != NULL) { 2929 mutex_exit(&vp->v_lock); 2930 kmem_free(buf, len + 1); 2931 return; 2932 } 2933 2934 vp->v_path = buf; 2935 bcopy(str, vp->v_path, len); 2936 vp->v_path[len] = '\0'; 2937 2938 mutex_exit(&vp->v_lock); 2939 } 2940 2941 /* 2942 * Similar to vn_setpath_str(), this function sets the path of the destination 2943 * vnode to the be the same as the source vnode. 2944 */ 2945 void 2946 vn_copypath(struct vnode *src, struct vnode *dst) 2947 { 2948 char *buf; 2949 int alloc; 2950 2951 mutex_enter(&src->v_lock); 2952 if (src->v_path == NULL) { 2953 mutex_exit(&src->v_lock); 2954 return; 2955 } 2956 alloc = strlen(src->v_path) + 1; 2957 2958 /* avoid kmem_alloc() with lock held */ 2959 mutex_exit(&src->v_lock); 2960 buf = kmem_alloc(alloc, KM_SLEEP); 2961 mutex_enter(&src->v_lock); 2962 if (src->v_path == NULL || strlen(src->v_path) + 1 != alloc) { 2963 mutex_exit(&src->v_lock); 2964 kmem_free(buf, alloc); 2965 return; 2966 } 2967 bcopy(src->v_path, buf, alloc); 2968 mutex_exit(&src->v_lock); 2969 2970 mutex_enter(&dst->v_lock); 2971 if (dst->v_path != NULL) { 2972 mutex_exit(&dst->v_lock); 2973 kmem_free(buf, alloc); 2974 return; 2975 } 2976 dst->v_path = buf; 2977 mutex_exit(&dst->v_lock); 2978 } 2979 2980 /* 2981 * XXX Private interface for segvn routines that handle vnode 2982 * large page segments. 2983 * 2984 * return 1 if vp's file system VOP_PAGEIO() implementation 2985 * can be safely used instead of VOP_GETPAGE() for handling 2986 * pagefaults against regular non swap files. VOP_PAGEIO() 2987 * interface is considered safe here if its implementation 2988 * is very close to VOP_GETPAGE() implementation. 2989 * e.g. It zero's out the part of the page beyond EOF. Doesn't 2990 * panic if there're file holes but instead returns an error. 2991 * Doesn't assume file won't be changed by user writes, etc. 2992 * 2993 * return 0 otherwise. 2994 * 2995 * For now allow segvn to only use VOP_PAGEIO() with ufs and nfs. 2996 */ 2997 int 2998 vn_vmpss_usepageio(vnode_t *vp) 2999 { 3000 vfs_t *vfsp = vp->v_vfsp; 3001 char *fsname = vfssw[vfsp->vfs_fstype].vsw_name; 3002 char *pageio_ok_fss[] = {"ufs", "nfs", NULL}; 3003 char **fsok = pageio_ok_fss; 3004 3005 if (fsname == NULL) { 3006 return (0); 3007 } 3008 3009 for (; *fsok; fsok++) { 3010 if (strcmp(*fsok, fsname) == 0) { 3011 return (1); 3012 } 3013 } 3014 return (0); 3015 } 3016 3017 /* VOP_XXX() macros call the corresponding fop_xxx() function */ 3018 3019 int 3020 fop_open( 3021 vnode_t **vpp, 3022 int mode, 3023 cred_t *cr, 3024 caller_context_t *ct) 3025 { 3026 int ret; 3027 vnode_t *vp = *vpp; 3028 3029 VN_HOLD(vp); 3030 /* 3031 * Adding to the vnode counts before calling open 3032 * avoids the need for a mutex. It circumvents a race 3033 * condition where a query made on the vnode counts results in a 3034 * false negative. The inquirer goes away believing the file is 3035 * not open when there is an open on the file already under way. 3036 * 3037 * The counts are meant to prevent NFS from granting a delegation 3038 * when it would be dangerous to do so. 3039 * 3040 * The vnode counts are only kept on regular files 3041 */ 3042 if ((*vpp)->v_type == VREG) { 3043 if (mode & FREAD) 3044 atomic_add_32(&((*vpp)->v_rdcnt), 1); 3045 if (mode & FWRITE) 3046 atomic_add_32(&((*vpp)->v_wrcnt), 1); 3047 } 3048 3049 VOPXID_MAP_CR(vp, cr); 3050 3051 ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr, ct); 3052 3053 if (ret) { 3054 /* 3055 * Use the saved vp just in case the vnode ptr got trashed 3056 * by the error. 3057 */ 3058 VOPSTATS_UPDATE(vp, open); 3059 if ((vp->v_type == VREG) && (mode & FREAD)) 3060 atomic_add_32(&(vp->v_rdcnt), -1); 3061 if ((vp->v_type == VREG) && (mode & FWRITE)) 3062 atomic_add_32(&(vp->v_wrcnt), -1); 3063 } else { 3064 /* 3065 * Some filesystems will return a different vnode, 3066 * but the same path was still used to open it. 3067 * So if we do change the vnode and need to 3068 * copy over the path, do so here, rather than special 3069 * casing each filesystem. Adjust the vnode counts to 3070 * reflect the vnode switch. 3071 */ 3072 VOPSTATS_UPDATE(*vpp, open); 3073 if (*vpp != vp && *vpp != NULL) { 3074 vn_copypath(vp, *vpp); 3075 if (((*vpp)->v_type == VREG) && (mode & FREAD)) 3076 atomic_add_32(&((*vpp)->v_rdcnt), 1); 3077 if ((vp->v_type == VREG) && (mode & FREAD)) 3078 atomic_add_32(&(vp->v_rdcnt), -1); 3079 if (((*vpp)->v_type == VREG) && (mode & FWRITE)) 3080 atomic_add_32(&((*vpp)->v_wrcnt), 1); 3081 if ((vp->v_type == VREG) && (mode & FWRITE)) 3082 atomic_add_32(&(vp->v_wrcnt), -1); 3083 } 3084 } 3085 VN_RELE(vp); 3086 return (ret); 3087 } 3088 3089 int 3090 fop_close( 3091 vnode_t *vp, 3092 int flag, 3093 int count, 3094 offset_t offset, 3095 cred_t *cr, 3096 caller_context_t *ct) 3097 { 3098 int err; 3099 3100 VOPXID_MAP_CR(vp, cr); 3101 3102 err = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr, ct); 3103 VOPSTATS_UPDATE(vp, close); 3104 /* 3105 * Check passed in count to handle possible dups. Vnode counts are only 3106 * kept on regular files 3107 */ 3108 if ((vp->v_type == VREG) && (count == 1)) { 3109 if (flag & FREAD) { 3110 ASSERT(vp->v_rdcnt > 0); 3111 atomic_add_32(&(vp->v_rdcnt), -1); 3112 } 3113 if (flag & FWRITE) { 3114 ASSERT(vp->v_wrcnt > 0); 3115 atomic_add_32(&(vp->v_wrcnt), -1); 3116 } 3117 } 3118 return (err); 3119 } 3120 3121 int 3122 fop_read( 3123 vnode_t *vp, 3124 uio_t *uiop, 3125 int ioflag, 3126 cred_t *cr, 3127 caller_context_t *ct) 3128 { 3129 int err; 3130 ssize_t resid_start = uiop->uio_resid; 3131 3132 VOPXID_MAP_CR(vp, cr); 3133 3134 err = (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct); 3135 VOPSTATS_UPDATE_IO(vp, read, 3136 read_bytes, (resid_start - uiop->uio_resid)); 3137 return (err); 3138 } 3139 3140 int 3141 fop_write( 3142 vnode_t *vp, 3143 uio_t *uiop, 3144 int ioflag, 3145 cred_t *cr, 3146 caller_context_t *ct) 3147 { 3148 int err; 3149 ssize_t resid_start = uiop->uio_resid; 3150 3151 VOPXID_MAP_CR(vp, cr); 3152 3153 err = (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct); 3154 VOPSTATS_UPDATE_IO(vp, write, 3155 write_bytes, (resid_start - uiop->uio_resid)); 3156 return (err); 3157 } 3158 3159 int 3160 fop_ioctl( 3161 vnode_t *vp, 3162 int cmd, 3163 intptr_t arg, 3164 int flag, 3165 cred_t *cr, 3166 int *rvalp, 3167 caller_context_t *ct) 3168 { 3169 int err; 3170 3171 VOPXID_MAP_CR(vp, cr); 3172 3173 err = (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp, ct); 3174 VOPSTATS_UPDATE(vp, ioctl); 3175 return (err); 3176 } 3177 3178 int 3179 fop_setfl( 3180 vnode_t *vp, 3181 int oflags, 3182 int nflags, 3183 cred_t *cr, 3184 caller_context_t *ct) 3185 { 3186 int err; 3187 3188 VOPXID_MAP_CR(vp, cr); 3189 3190 err = (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr, ct); 3191 VOPSTATS_UPDATE(vp, setfl); 3192 return (err); 3193 } 3194 3195 int 3196 fop_getattr( 3197 vnode_t *vp, 3198 vattr_t *vap, 3199 int flags, 3200 cred_t *cr, 3201 caller_context_t *ct) 3202 { 3203 int err; 3204 3205 VOPXID_MAP_CR(vp, cr); 3206 3207 /* 3208 * If this file system doesn't understand the xvattr extensions 3209 * then turn off the xvattr bit. 3210 */ 3211 if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) { 3212 vap->va_mask &= ~AT_XVATTR; 3213 } 3214 3215 /* 3216 * We're only allowed to skip the ACL check iff we used a 32 bit 3217 * ACE mask with VOP_ACCESS() to determine permissions. 3218 */ 3219 if ((flags & ATTR_NOACLCHECK) && 3220 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) { 3221 return (EINVAL); 3222 } 3223 err = (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr, ct); 3224 VOPSTATS_UPDATE(vp, getattr); 3225 return (err); 3226 } 3227 3228 int 3229 fop_setattr( 3230 vnode_t *vp, 3231 vattr_t *vap, 3232 int flags, 3233 cred_t *cr, 3234 caller_context_t *ct) 3235 { 3236 int err; 3237 3238 VOPXID_MAP_CR(vp, cr); 3239 3240 /* 3241 * If this file system doesn't understand the xvattr extensions 3242 * then turn off the xvattr bit. 3243 */ 3244 if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) { 3245 vap->va_mask &= ~AT_XVATTR; 3246 } 3247 3248 /* 3249 * We're only allowed to skip the ACL check iff we used a 32 bit 3250 * ACE mask with VOP_ACCESS() to determine permissions. 3251 */ 3252 if ((flags & ATTR_NOACLCHECK) && 3253 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) { 3254 return (EINVAL); 3255 } 3256 err = (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct); 3257 VOPSTATS_UPDATE(vp, setattr); 3258 return (err); 3259 } 3260 3261 int 3262 fop_access( 3263 vnode_t *vp, 3264 int mode, 3265 int flags, 3266 cred_t *cr, 3267 caller_context_t *ct) 3268 { 3269 int err; 3270 3271 if ((flags & V_ACE_MASK) && 3272 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) { 3273 return (EINVAL); 3274 } 3275 3276 VOPXID_MAP_CR(vp, cr); 3277 3278 err = (*(vp)->v_op->vop_access)(vp, mode, flags, cr, ct); 3279 VOPSTATS_UPDATE(vp, access); 3280 return (err); 3281 } 3282 3283 int 3284 fop_lookup( 3285 vnode_t *dvp, 3286 char *nm, 3287 vnode_t **vpp, 3288 pathname_t *pnp, 3289 int flags, 3290 vnode_t *rdir, 3291 cred_t *cr, 3292 caller_context_t *ct, 3293 int *deflags, /* Returned per-dirent flags */ 3294 pathname_t *ppnp) /* Returned case-preserved name in directory */ 3295 { 3296 int ret; 3297 3298 /* 3299 * If this file system doesn't support case-insensitive access 3300 * and said access is requested, fail quickly. It is required 3301 * that if the vfs supports case-insensitive lookup, it also 3302 * supports extended dirent flags. 3303 */ 3304 if (flags & FIGNORECASE && 3305 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3306 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) 3307 return (EINVAL); 3308 3309 VOPXID_MAP_CR(dvp, cr); 3310 3311 if ((flags & LOOKUP_XATTR) && (flags & LOOKUP_HAVE_SYSATTR_DIR) == 0) { 3312 ret = xattr_dir_lookup(dvp, vpp, flags, cr); 3313 } else { 3314 ret = (*(dvp)->v_op->vop_lookup) 3315 (dvp, nm, vpp, pnp, flags, rdir, cr, ct, deflags, ppnp); 3316 } 3317 if (ret == 0 && *vpp) { 3318 VOPSTATS_UPDATE(*vpp, lookup); 3319 if ((*vpp)->v_path == NULL) { 3320 vn_setpath(rootdir, dvp, *vpp, nm, strlen(nm)); 3321 } 3322 } 3323 3324 return (ret); 3325 } 3326 3327 int 3328 fop_create( 3329 vnode_t *dvp, 3330 char *name, 3331 vattr_t *vap, 3332 vcexcl_t excl, 3333 int mode, 3334 vnode_t **vpp, 3335 cred_t *cr, 3336 int flags, 3337 caller_context_t *ct, 3338 vsecattr_t *vsecp) /* ACL to set during create */ 3339 { 3340 int ret; 3341 3342 if (vsecp != NULL && 3343 vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) { 3344 return (EINVAL); 3345 } 3346 /* 3347 * If this file system doesn't support case-insensitive access 3348 * and said access is requested, fail quickly. 3349 */ 3350 if (flags & FIGNORECASE && 3351 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3352 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) 3353 return (EINVAL); 3354 3355 VOPXID_MAP_CR(dvp, cr); 3356 3357 ret = (*(dvp)->v_op->vop_create) 3358 (dvp, name, vap, excl, mode, vpp, cr, flags, ct, vsecp); 3359 if (ret == 0 && *vpp) { 3360 VOPSTATS_UPDATE(*vpp, create); 3361 if ((*vpp)->v_path == NULL) { 3362 vn_setpath(rootdir, dvp, *vpp, name, strlen(name)); 3363 } 3364 } 3365 3366 return (ret); 3367 } 3368 3369 int 3370 fop_remove( 3371 vnode_t *dvp, 3372 char *nm, 3373 cred_t *cr, 3374 caller_context_t *ct, 3375 int flags) 3376 { 3377 int err; 3378 3379 /* 3380 * If this file system doesn't support case-insensitive access 3381 * and said access is requested, fail quickly. 3382 */ 3383 if (flags & FIGNORECASE && 3384 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3385 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) 3386 return (EINVAL); 3387 3388 VOPXID_MAP_CR(dvp, cr); 3389 3390 err = (*(dvp)->v_op->vop_remove)(dvp, nm, cr, ct, flags); 3391 VOPSTATS_UPDATE(dvp, remove); 3392 return (err); 3393 } 3394 3395 int 3396 fop_link( 3397 vnode_t *tdvp, 3398 vnode_t *svp, 3399 char *tnm, 3400 cred_t *cr, 3401 caller_context_t *ct, 3402 int flags) 3403 { 3404 int err; 3405 3406 /* 3407 * If the target file system doesn't support case-insensitive access 3408 * and said access is requested, fail quickly. 3409 */ 3410 if (flags & FIGNORECASE && 3411 (vfs_has_feature(tdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3412 vfs_has_feature(tdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) 3413 return (EINVAL); 3414 3415 VOPXID_MAP_CR(tdvp, cr); 3416 3417 err = (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr, ct, flags); 3418 VOPSTATS_UPDATE(tdvp, link); 3419 return (err); 3420 } 3421 3422 int 3423 fop_rename( 3424 vnode_t *sdvp, 3425 char *snm, 3426 vnode_t *tdvp, 3427 char *tnm, 3428 cred_t *cr, 3429 caller_context_t *ct, 3430 int flags) 3431 { 3432 int err; 3433 3434 /* 3435 * If the file system involved does not support 3436 * case-insensitive access and said access is requested, fail 3437 * quickly. 3438 */ 3439 if (flags & FIGNORECASE && 3440 ((vfs_has_feature(sdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3441 vfs_has_feature(sdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))) 3442 return (EINVAL); 3443 3444 VOPXID_MAP_CR(tdvp, cr); 3445 3446 err = (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr, ct, flags); 3447 VOPSTATS_UPDATE(sdvp, rename); 3448 return (err); 3449 } 3450 3451 int 3452 fop_mkdir( 3453 vnode_t *dvp, 3454 char *dirname, 3455 vattr_t *vap, 3456 vnode_t **vpp, 3457 cred_t *cr, 3458 caller_context_t *ct, 3459 int flags, 3460 vsecattr_t *vsecp) /* ACL to set during create */ 3461 { 3462 int ret; 3463 3464 if (vsecp != NULL && 3465 vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) { 3466 return (EINVAL); 3467 } 3468 /* 3469 * If this file system doesn't support case-insensitive access 3470 * and said access is requested, fail quickly. 3471 */ 3472 if (flags & FIGNORECASE && 3473 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3474 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) 3475 return (EINVAL); 3476 3477 VOPXID_MAP_CR(dvp, cr); 3478 3479 ret = (*(dvp)->v_op->vop_mkdir) 3480 (dvp, dirname, vap, vpp, cr, ct, flags, vsecp); 3481 if (ret == 0 && *vpp) { 3482 VOPSTATS_UPDATE(*vpp, mkdir); 3483 if ((*vpp)->v_path == NULL) { 3484 vn_setpath(rootdir, dvp, *vpp, dirname, 3485 strlen(dirname)); 3486 } 3487 } 3488 3489 return (ret); 3490 } 3491 3492 int 3493 fop_rmdir( 3494 vnode_t *dvp, 3495 char *nm, 3496 vnode_t *cdir, 3497 cred_t *cr, 3498 caller_context_t *ct, 3499 int flags) 3500 { 3501 int err; 3502 3503 /* 3504 * If this file system doesn't support case-insensitive access 3505 * and said access is requested, fail quickly. 3506 */ 3507 if (flags & FIGNORECASE && 3508 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3509 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) 3510 return (EINVAL); 3511 3512 VOPXID_MAP_CR(dvp, cr); 3513 3514 err = (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr, ct, flags); 3515 VOPSTATS_UPDATE(dvp, rmdir); 3516 return (err); 3517 } 3518 3519 int 3520 fop_readdir( 3521 vnode_t *vp, 3522 uio_t *uiop, 3523 cred_t *cr, 3524 int *eofp, 3525 caller_context_t *ct, 3526 int flags) 3527 { 3528 int err; 3529 ssize_t resid_start = uiop->uio_resid; 3530 3531 /* 3532 * If this file system doesn't support retrieving directory 3533 * entry flags and said access is requested, fail quickly. 3534 */ 3535 if (flags & V_RDDIR_ENTFLAGS && 3536 vfs_has_feature(vp->v_vfsp, VFSFT_DIRENTFLAGS) == 0) 3537 return (EINVAL); 3538 3539 VOPXID_MAP_CR(vp, cr); 3540 3541 err = (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp, ct, flags); 3542 VOPSTATS_UPDATE_IO(vp, readdir, 3543 readdir_bytes, (resid_start - uiop->uio_resid)); 3544 return (err); 3545 } 3546 3547 int 3548 fop_symlink( 3549 vnode_t *dvp, 3550 char *linkname, 3551 vattr_t *vap, 3552 char *target, 3553 cred_t *cr, 3554 caller_context_t *ct, 3555 int flags) 3556 { 3557 int err; 3558 3559 /* 3560 * If this file system doesn't support case-insensitive access 3561 * and said access is requested, fail quickly. 3562 */ 3563 if (flags & FIGNORECASE && 3564 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3565 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) 3566 return (EINVAL); 3567 3568 VOPXID_MAP_CR(dvp, cr); 3569 3570 err = (*(dvp)->v_op->vop_symlink) 3571 (dvp, linkname, vap, target, cr, ct, flags); 3572 VOPSTATS_UPDATE(dvp, symlink); 3573 return (err); 3574 } 3575 3576 int 3577 fop_readlink( 3578 vnode_t *vp, 3579 uio_t *uiop, 3580 cred_t *cr, 3581 caller_context_t *ct) 3582 { 3583 int err; 3584 3585 VOPXID_MAP_CR(vp, cr); 3586 3587 err = (*(vp)->v_op->vop_readlink)(vp, uiop, cr, ct); 3588 VOPSTATS_UPDATE(vp, readlink); 3589 return (err); 3590 } 3591 3592 int 3593 fop_fsync( 3594 vnode_t *vp, 3595 int syncflag, 3596 cred_t *cr, 3597 caller_context_t *ct) 3598 { 3599 int err; 3600 3601 VOPXID_MAP_CR(vp, cr); 3602 3603 err = (*(vp)->v_op->vop_fsync)(vp, syncflag, cr, ct); 3604 VOPSTATS_UPDATE(vp, fsync); 3605 return (err); 3606 } 3607 3608 void 3609 fop_inactive( 3610 vnode_t *vp, 3611 cred_t *cr, 3612 caller_context_t *ct) 3613 { 3614 /* Need to update stats before vop call since we may lose the vnode */ 3615 VOPSTATS_UPDATE(vp, inactive); 3616 3617 VOPXID_MAP_CR(vp, cr); 3618 3619 (*(vp)->v_op->vop_inactive)(vp, cr, ct); 3620 } 3621 3622 int 3623 fop_fid( 3624 vnode_t *vp, 3625 fid_t *fidp, 3626 caller_context_t *ct) 3627 { 3628 int err; 3629 3630 err = (*(vp)->v_op->vop_fid)(vp, fidp, ct); 3631 VOPSTATS_UPDATE(vp, fid); 3632 return (err); 3633 } 3634 3635 int 3636 fop_rwlock( 3637 vnode_t *vp, 3638 int write_lock, 3639 caller_context_t *ct) 3640 { 3641 int ret; 3642 3643 ret = ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct)); 3644 VOPSTATS_UPDATE(vp, rwlock); 3645 return (ret); 3646 } 3647 3648 void 3649 fop_rwunlock( 3650 vnode_t *vp, 3651 int write_lock, 3652 caller_context_t *ct) 3653 { 3654 (*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct); 3655 VOPSTATS_UPDATE(vp, rwunlock); 3656 } 3657 3658 int 3659 fop_seek( 3660 vnode_t *vp, 3661 offset_t ooff, 3662 offset_t *noffp, 3663 caller_context_t *ct) 3664 { 3665 int err; 3666 3667 err = (*(vp)->v_op->vop_seek)(vp, ooff, noffp, ct); 3668 VOPSTATS_UPDATE(vp, seek); 3669 return (err); 3670 } 3671 3672 int 3673 fop_cmp( 3674 vnode_t *vp1, 3675 vnode_t *vp2, 3676 caller_context_t *ct) 3677 { 3678 int err; 3679 3680 err = (*(vp1)->v_op->vop_cmp)(vp1, vp2, ct); 3681 VOPSTATS_UPDATE(vp1, cmp); 3682 return (err); 3683 } 3684 3685 int 3686 fop_frlock( 3687 vnode_t *vp, 3688 int cmd, 3689 flock64_t *bfp, 3690 int flag, 3691 offset_t offset, 3692 struct flk_callback *flk_cbp, 3693 cred_t *cr, 3694 caller_context_t *ct) 3695 { 3696 int err; 3697 3698 VOPXID_MAP_CR(vp, cr); 3699 3700 err = (*(vp)->v_op->vop_frlock) 3701 (vp, cmd, bfp, flag, offset, flk_cbp, cr, ct); 3702 VOPSTATS_UPDATE(vp, frlock); 3703 return (err); 3704 } 3705 3706 int 3707 fop_space( 3708 vnode_t *vp, 3709 int cmd, 3710 flock64_t *bfp, 3711 int flag, 3712 offset_t offset, 3713 cred_t *cr, 3714 caller_context_t *ct) 3715 { 3716 int err; 3717 3718 VOPXID_MAP_CR(vp, cr); 3719 3720 err = (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct); 3721 VOPSTATS_UPDATE(vp, space); 3722 return (err); 3723 } 3724 3725 int 3726 fop_realvp( 3727 vnode_t *vp, 3728 vnode_t **vpp, 3729 caller_context_t *ct) 3730 { 3731 int err; 3732 3733 err = (*(vp)->v_op->vop_realvp)(vp, vpp, ct); 3734 VOPSTATS_UPDATE(vp, realvp); 3735 return (err); 3736 } 3737 3738 int 3739 fop_getpage( 3740 vnode_t *vp, 3741 offset_t off, 3742 size_t len, 3743 uint_t *protp, 3744 page_t **plarr, 3745 size_t plsz, 3746 struct seg *seg, 3747 caddr_t addr, 3748 enum seg_rw rw, 3749 cred_t *cr, 3750 caller_context_t *ct) 3751 { 3752 int err; 3753 3754 VOPXID_MAP_CR(vp, cr); 3755 3756 err = (*(vp)->v_op->vop_getpage) 3757 (vp, off, len, protp, plarr, plsz, seg, addr, rw, cr, ct); 3758 VOPSTATS_UPDATE(vp, getpage); 3759 return (err); 3760 } 3761 3762 int 3763 fop_putpage( 3764 vnode_t *vp, 3765 offset_t off, 3766 size_t len, 3767 int flags, 3768 cred_t *cr, 3769 caller_context_t *ct) 3770 { 3771 int err; 3772 3773 VOPXID_MAP_CR(vp, cr); 3774 3775 err = (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr, ct); 3776 VOPSTATS_UPDATE(vp, putpage); 3777 return (err); 3778 } 3779 3780 int 3781 fop_map( 3782 vnode_t *vp, 3783 offset_t off, 3784 struct as *as, 3785 caddr_t *addrp, 3786 size_t len, 3787 uchar_t prot, 3788 uchar_t maxprot, 3789 uint_t flags, 3790 cred_t *cr, 3791 caller_context_t *ct) 3792 { 3793 int err; 3794 3795 VOPXID_MAP_CR(vp, cr); 3796 3797 err = (*(vp)->v_op->vop_map) 3798 (vp, off, as, addrp, len, prot, maxprot, flags, cr, ct); 3799 VOPSTATS_UPDATE(vp, map); 3800 return (err); 3801 } 3802 3803 int 3804 fop_addmap( 3805 vnode_t *vp, 3806 offset_t off, 3807 struct as *as, 3808 caddr_t addr, 3809 size_t len, 3810 uchar_t prot, 3811 uchar_t maxprot, 3812 uint_t flags, 3813 cred_t *cr, 3814 caller_context_t *ct) 3815 { 3816 int error; 3817 u_longlong_t delta; 3818 3819 VOPXID_MAP_CR(vp, cr); 3820 3821 error = (*(vp)->v_op->vop_addmap) 3822 (vp, off, as, addr, len, prot, maxprot, flags, cr, ct); 3823 3824 if ((!error) && (vp->v_type == VREG)) { 3825 delta = (u_longlong_t)btopr(len); 3826 /* 3827 * If file is declared MAP_PRIVATE, it can't be written back 3828 * even if open for write. Handle as read. 3829 */ 3830 if (flags & MAP_PRIVATE) { 3831 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3832 (int64_t)delta); 3833 } else { 3834 /* 3835 * atomic_add_64 forces the fetch of a 64 bit value to 3836 * be atomic on 32 bit machines 3837 */ 3838 if (maxprot & PROT_WRITE) 3839 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 3840 (int64_t)delta); 3841 if (maxprot & PROT_READ) 3842 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3843 (int64_t)delta); 3844 if (maxprot & PROT_EXEC) 3845 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3846 (int64_t)delta); 3847 } 3848 } 3849 VOPSTATS_UPDATE(vp, addmap); 3850 return (error); 3851 } 3852 3853 int 3854 fop_delmap( 3855 vnode_t *vp, 3856 offset_t off, 3857 struct as *as, 3858 caddr_t addr, 3859 size_t len, 3860 uint_t prot, 3861 uint_t maxprot, 3862 uint_t flags, 3863 cred_t *cr, 3864 caller_context_t *ct) 3865 { 3866 int error; 3867 u_longlong_t delta; 3868 3869 VOPXID_MAP_CR(vp, cr); 3870 3871 error = (*(vp)->v_op->vop_delmap) 3872 (vp, off, as, addr, len, prot, maxprot, flags, cr, ct); 3873 3874 /* 3875 * NFS calls into delmap twice, the first time 3876 * it simply establishes a callback mechanism and returns EAGAIN 3877 * while the real work is being done upon the second invocation. 3878 * We have to detect this here and only decrement the counts upon 3879 * the second delmap request. 3880 */ 3881 if ((error != EAGAIN) && (vp->v_type == VREG)) { 3882 3883 delta = (u_longlong_t)btopr(len); 3884 3885 if (flags & MAP_PRIVATE) { 3886 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3887 (int64_t)(-delta)); 3888 } else { 3889 /* 3890 * atomic_add_64 forces the fetch of a 64 bit value 3891 * to be atomic on 32 bit machines 3892 */ 3893 if (maxprot & PROT_WRITE) 3894 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 3895 (int64_t)(-delta)); 3896 if (maxprot & PROT_READ) 3897 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3898 (int64_t)(-delta)); 3899 if (maxprot & PROT_EXEC) 3900 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3901 (int64_t)(-delta)); 3902 } 3903 } 3904 VOPSTATS_UPDATE(vp, delmap); 3905 return (error); 3906 } 3907 3908 3909 int 3910 fop_poll( 3911 vnode_t *vp, 3912 short events, 3913 int anyyet, 3914 short *reventsp, 3915 struct pollhead **phpp, 3916 caller_context_t *ct) 3917 { 3918 int err; 3919 3920 err = (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp, ct); 3921 VOPSTATS_UPDATE(vp, poll); 3922 return (err); 3923 } 3924 3925 int 3926 fop_dump( 3927 vnode_t *vp, 3928 caddr_t addr, 3929 offset_t lbdn, 3930 offset_t dblks, 3931 caller_context_t *ct) 3932 { 3933 int err; 3934 3935 /* ensure lbdn and dblks can be passed safely to bdev_dump */ 3936 if ((lbdn != (daddr_t)lbdn) || (dblks != (int)dblks)) 3937 return (EIO); 3938 3939 err = (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks, ct); 3940 VOPSTATS_UPDATE(vp, dump); 3941 return (err); 3942 } 3943 3944 int 3945 fop_pathconf( 3946 vnode_t *vp, 3947 int cmd, 3948 ulong_t *valp, 3949 cred_t *cr, 3950 caller_context_t *ct) 3951 { 3952 int err; 3953 3954 VOPXID_MAP_CR(vp, cr); 3955 3956 err = (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr, ct); 3957 VOPSTATS_UPDATE(vp, pathconf); 3958 return (err); 3959 } 3960 3961 int 3962 fop_pageio( 3963 vnode_t *vp, 3964 struct page *pp, 3965 u_offset_t io_off, 3966 size_t io_len, 3967 int flags, 3968 cred_t *cr, 3969 caller_context_t *ct) 3970 { 3971 int err; 3972 3973 VOPXID_MAP_CR(vp, cr); 3974 3975 err = (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr, ct); 3976 VOPSTATS_UPDATE(vp, pageio); 3977 return (err); 3978 } 3979 3980 int 3981 fop_dumpctl( 3982 vnode_t *vp, 3983 int action, 3984 offset_t *blkp, 3985 caller_context_t *ct) 3986 { 3987 int err; 3988 err = (*(vp)->v_op->vop_dumpctl)(vp, action, blkp, ct); 3989 VOPSTATS_UPDATE(vp, dumpctl); 3990 return (err); 3991 } 3992 3993 void 3994 fop_dispose( 3995 vnode_t *vp, 3996 page_t *pp, 3997 int flag, 3998 int dn, 3999 cred_t *cr, 4000 caller_context_t *ct) 4001 { 4002 /* Must do stats first since it's possible to lose the vnode */ 4003 VOPSTATS_UPDATE(vp, dispose); 4004 4005 VOPXID_MAP_CR(vp, cr); 4006 4007 (*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr, ct); 4008 } 4009 4010 int 4011 fop_setsecattr( 4012 vnode_t *vp, 4013 vsecattr_t *vsap, 4014 int flag, 4015 cred_t *cr, 4016 caller_context_t *ct) 4017 { 4018 int err; 4019 4020 VOPXID_MAP_CR(vp, cr); 4021 4022 /* 4023 * We're only allowed to skip the ACL check iff we used a 32 bit 4024 * ACE mask with VOP_ACCESS() to determine permissions. 4025 */ 4026 if ((flag & ATTR_NOACLCHECK) && 4027 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) { 4028 return (EINVAL); 4029 } 4030 err = (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr, ct); 4031 VOPSTATS_UPDATE(vp, setsecattr); 4032 return (err); 4033 } 4034 4035 int 4036 fop_getsecattr( 4037 vnode_t *vp, 4038 vsecattr_t *vsap, 4039 int flag, 4040 cred_t *cr, 4041 caller_context_t *ct) 4042 { 4043 int err; 4044 4045 /* 4046 * We're only allowed to skip the ACL check iff we used a 32 bit 4047 * ACE mask with VOP_ACCESS() to determine permissions. 4048 */ 4049 if ((flag & ATTR_NOACLCHECK) && 4050 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) { 4051 return (EINVAL); 4052 } 4053 4054 VOPXID_MAP_CR(vp, cr); 4055 4056 err = (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr, ct); 4057 VOPSTATS_UPDATE(vp, getsecattr); 4058 return (err); 4059 } 4060 4061 int 4062 fop_shrlock( 4063 vnode_t *vp, 4064 int cmd, 4065 struct shrlock *shr, 4066 int flag, 4067 cred_t *cr, 4068 caller_context_t *ct) 4069 { 4070 int err; 4071 4072 VOPXID_MAP_CR(vp, cr); 4073 4074 err = (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr, ct); 4075 VOPSTATS_UPDATE(vp, shrlock); 4076 return (err); 4077 } 4078 4079 int 4080 fop_vnevent(vnode_t *vp, vnevent_t vnevent, vnode_t *dvp, char *fnm, 4081 caller_context_t *ct) 4082 { 4083 int err; 4084 4085 err = (*(vp)->v_op->vop_vnevent)(vp, vnevent, dvp, fnm, ct); 4086 VOPSTATS_UPDATE(vp, vnevent); 4087 return (err); 4088 } 4089 4090 /* 4091 * Default destructor 4092 * Needed because NULL destructor means that the key is unused 4093 */ 4094 /* ARGSUSED */ 4095 void 4096 vsd_defaultdestructor(void *value) 4097 {} 4098 4099 /* 4100 * Create a key (index into per vnode array) 4101 * Locks out vsd_create, vsd_destroy, and vsd_free 4102 * May allocate memory with lock held 4103 */ 4104 void 4105 vsd_create(uint_t *keyp, void (*destructor)(void *)) 4106 { 4107 int i; 4108 uint_t nkeys; 4109 4110 /* 4111 * if key is allocated, do nothing 4112 */ 4113 mutex_enter(&vsd_lock); 4114 if (*keyp) { 4115 mutex_exit(&vsd_lock); 4116 return; 4117 } 4118 /* 4119 * find an unused key 4120 */ 4121 if (destructor == NULL) 4122 destructor = vsd_defaultdestructor; 4123 4124 for (i = 0; i < vsd_nkeys; ++i) 4125 if (vsd_destructor[i] == NULL) 4126 break; 4127 4128 /* 4129 * if no unused keys, increase the size of the destructor array 4130 */ 4131 if (i == vsd_nkeys) { 4132 if ((nkeys = (vsd_nkeys << 1)) == 0) 4133 nkeys = 1; 4134 vsd_destructor = 4135 (void (**)(void *))vsd_realloc((void *)vsd_destructor, 4136 (size_t)(vsd_nkeys * sizeof (void (*)(void *))), 4137 (size_t)(nkeys * sizeof (void (*)(void *)))); 4138 vsd_nkeys = nkeys; 4139 } 4140 4141 /* 4142 * allocate the next available unused key 4143 */ 4144 vsd_destructor[i] = destructor; 4145 *keyp = i + 1; 4146 4147 /* create vsd_list, if it doesn't exist */ 4148 if (vsd_list == NULL) { 4149 vsd_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 4150 list_create(vsd_list, sizeof (struct vsd_node), 4151 offsetof(struct vsd_node, vs_nodes)); 4152 } 4153 4154 mutex_exit(&vsd_lock); 4155 } 4156 4157 /* 4158 * Destroy a key 4159 * 4160 * Assumes that the caller is preventing vsd_set and vsd_get 4161 * Locks out vsd_create, vsd_destroy, and vsd_free 4162 * May free memory with lock held 4163 */ 4164 void 4165 vsd_destroy(uint_t *keyp) 4166 { 4167 uint_t key; 4168 struct vsd_node *vsd; 4169 4170 /* 4171 * protect the key namespace and our destructor lists 4172 */ 4173 mutex_enter(&vsd_lock); 4174 key = *keyp; 4175 *keyp = 0; 4176 4177 ASSERT(key <= vsd_nkeys); 4178 4179 /* 4180 * if the key is valid 4181 */ 4182 if (key != 0) { 4183 uint_t k = key - 1; 4184 /* 4185 * for every vnode with VSD, call key's destructor 4186 */ 4187 for (vsd = list_head(vsd_list); vsd != NULL; 4188 vsd = list_next(vsd_list, vsd)) { 4189 /* 4190 * no VSD for key in this vnode 4191 */ 4192 if (key > vsd->vs_nkeys) 4193 continue; 4194 /* 4195 * call destructor for key 4196 */ 4197 if (vsd->vs_value[k] && vsd_destructor[k]) 4198 (*vsd_destructor[k])(vsd->vs_value[k]); 4199 /* 4200 * reset value for key 4201 */ 4202 vsd->vs_value[k] = NULL; 4203 } 4204 /* 4205 * actually free the key (NULL destructor == unused) 4206 */ 4207 vsd_destructor[k] = NULL; 4208 } 4209 4210 mutex_exit(&vsd_lock); 4211 } 4212 4213 /* 4214 * Quickly return the per vnode value that was stored with the specified key 4215 * Assumes the caller is protecting key from vsd_create and vsd_destroy 4216 * Assumes the caller is holding v_lock to protect the vsd. 4217 */ 4218 void * 4219 vsd_get(vnode_t *vp, uint_t key) 4220 { 4221 struct vsd_node *vsd; 4222 4223 /* 4224 * The caller needs to pass a valid vnode. 4225 */ 4226 ASSERT(vp != NULL); 4227 if (vp == NULL) 4228 return (NULL); 4229 4230 vsd = vp->v_vsd; 4231 4232 if (key && vsd != NULL && key <= vsd->vs_nkeys) 4233 return (vsd->vs_value[key - 1]); 4234 return (NULL); 4235 } 4236 4237 /* 4238 * Set a per vnode value indexed with the specified key 4239 * Assumes the caller is holding v_lock to protect the vsd. 4240 */ 4241 int 4242 vsd_set(vnode_t *vp, uint_t key, void *value) 4243 { 4244 struct vsd_node *vsd = vp->v_vsd; 4245 4246 if (key == 0) 4247 return (EINVAL); 4248 if (vsd == NULL) 4249 vsd = vp->v_vsd = kmem_zalloc(sizeof (*vsd), KM_SLEEP); 4250 4251 /* 4252 * If the vsd was just allocated, vs_nkeys will be 0, so the following 4253 * code won't happen and we will continue down and allocate space for 4254 * the vs_value array. 4255 * If the caller is replacing one value with another, then it is up 4256 * to the caller to free/rele/destroy the previous value (if needed). 4257 */ 4258 if (key <= vsd->vs_nkeys) { 4259 vsd->vs_value[key - 1] = value; 4260 return (0); 4261 } 4262 4263 ASSERT(key <= vsd_nkeys); 4264 4265 if (vsd->vs_nkeys == 0) { 4266 mutex_enter(&vsd_lock); /* lock out vsd_destroy() */ 4267 /* 4268 * Link onto list of all VSD nodes. 4269 */ 4270 list_insert_head(vsd_list, vsd); 4271 mutex_exit(&vsd_lock); 4272 } 4273 4274 /* 4275 * Allocate vnode local storage and set the value for key 4276 */ 4277 vsd->vs_value = vsd_realloc(vsd->vs_value, 4278 vsd->vs_nkeys * sizeof (void *), 4279 key * sizeof (void *)); 4280 vsd->vs_nkeys = key; 4281 vsd->vs_value[key - 1] = value; 4282 4283 return (0); 4284 } 4285 4286 /* 4287 * Called from vn_free() to run the destructor function for each vsd 4288 * Locks out vsd_create and vsd_destroy 4289 * Assumes that the destructor *DOES NOT* use vsd 4290 */ 4291 void 4292 vsd_free(vnode_t *vp) 4293 { 4294 int i; 4295 struct vsd_node *vsd = vp->v_vsd; 4296 4297 if (vsd == NULL) 4298 return; 4299 4300 if (vsd->vs_nkeys == 0) { 4301 kmem_free(vsd, sizeof (*vsd)); 4302 vp->v_vsd = NULL; 4303 return; 4304 } 4305 4306 /* 4307 * lock out vsd_create and vsd_destroy, call 4308 * the destructor, and mark the value as destroyed. 4309 */ 4310 mutex_enter(&vsd_lock); 4311 4312 for (i = 0; i < vsd->vs_nkeys; i++) { 4313 if (vsd->vs_value[i] && vsd_destructor[i]) 4314 (*vsd_destructor[i])(vsd->vs_value[i]); 4315 vsd->vs_value[i] = NULL; 4316 } 4317 4318 /* 4319 * remove from linked list of VSD nodes 4320 */ 4321 list_remove(vsd_list, vsd); 4322 4323 mutex_exit(&vsd_lock); 4324 4325 /* 4326 * free up the VSD 4327 */ 4328 kmem_free(vsd->vs_value, vsd->vs_nkeys * sizeof (void *)); 4329 kmem_free(vsd, sizeof (struct vsd_node)); 4330 vp->v_vsd = NULL; 4331 } 4332 4333 /* 4334 * realloc 4335 */ 4336 static void * 4337 vsd_realloc(void *old, size_t osize, size_t nsize) 4338 { 4339 void *new; 4340 4341 new = kmem_zalloc(nsize, KM_SLEEP); 4342 if (old) { 4343 bcopy(old, new, osize); 4344 kmem_free(old, osize); 4345 } 4346 return (new); 4347 } 4348