1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 26 /* All Rights Reserved */ 27 28 /* 29 * University Copyright- Copyright (c) 1982, 1986, 1988 30 * The Regents of the University of California 31 * All Rights Reserved 32 * 33 * University Acknowledgment- Portions of this document are derived from 34 * software developed by the University of California, Berkeley, and its 35 * contributors. 36 */ 37 38 #include <sys/types.h> 39 #include <sys/t_lock.h> 40 #include <sys/param.h> 41 #include <sys/errno.h> 42 #include <sys/user.h> 43 #include <sys/fstyp.h> 44 #include <sys/kmem.h> 45 #include <sys/systm.h> 46 #include <sys/proc.h> 47 #include <sys/mount.h> 48 #include <sys/vfs.h> 49 #include <sys/vfs_opreg.h> 50 #include <sys/fem.h> 51 #include <sys/mntent.h> 52 #include <sys/stat.h> 53 #include <sys/statvfs.h> 54 #include <sys/statfs.h> 55 #include <sys/cred.h> 56 #include <sys/vnode.h> 57 #include <sys/rwstlock.h> 58 #include <sys/dnlc.h> 59 #include <sys/file.h> 60 #include <sys/time.h> 61 #include <sys/atomic.h> 62 #include <sys/cmn_err.h> 63 #include <sys/buf.h> 64 #include <sys/swap.h> 65 #include <sys/debug.h> 66 #include <sys/vnode.h> 67 #include <sys/modctl.h> 68 #include <sys/ddi.h> 69 #include <sys/pathname.h> 70 #include <sys/bootconf.h> 71 #include <sys/dumphdr.h> 72 #include <sys/dc_ki.h> 73 #include <sys/poll.h> 74 #include <sys/sunddi.h> 75 #include <sys/sysmacros.h> 76 #include <sys/zone.h> 77 #include <sys/policy.h> 78 #include <sys/ctfs.h> 79 #include <sys/objfs.h> 80 #include <sys/console.h> 81 #include <sys/reboot.h> 82 #include <sys/attr.h> 83 #include <sys/zio.h> 84 #include <sys/spa.h> 85 #include <sys/lofi.h> 86 #include <sys/bootprops.h> 87 88 #include <vm/page.h> 89 90 #include <fs/fs_subr.h> 91 /* Private interfaces to create vopstats-related data structures */ 92 extern void initialize_vopstats(vopstats_t *); 93 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 94 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 95 96 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 97 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 98 const char *, int, int); 99 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 100 static void vfs_freemnttab(struct vfs *); 101 static void vfs_freeopt(mntopt_t *); 102 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 103 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 104 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 105 static void vfs_createopttbl_extend(mntopts_t *, const char *, 106 const mntopts_t *); 107 static char **vfs_copycancelopt_extend(char **const, int); 108 static void vfs_freecancelopt(char **); 109 static void getrootfs(char **, char **); 110 static int getmacpath(dev_info_t *, void *); 111 static void vfs_mnttabvp_setup(void); 112 113 struct ipmnt { 114 struct ipmnt *mip_next; 115 dev_t mip_dev; 116 struct vfs *mip_vfsp; 117 }; 118 119 static kmutex_t vfs_miplist_mutex; 120 static struct ipmnt *vfs_miplist = NULL; 121 static struct ipmnt *vfs_miplist_end = NULL; 122 123 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */ 124 125 /* 126 * VFS global data. 127 */ 128 vnode_t *rootdir; /* pointer to root inode vnode. */ 129 vnode_t *devicesdir; /* pointer to inode of devices root */ 130 vnode_t *devdir; /* pointer to inode of dev root */ 131 132 char *server_rootpath; /* root path for diskless clients */ 133 char *server_hostname; /* hostname of diskless server */ 134 135 static struct vfs root; 136 static struct vfs devices; 137 static struct vfs dev; 138 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 139 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 140 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 141 /* must be power of 2! */ 142 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 143 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 144 char *vfs_dummyfstype = "\0"; 145 struct pollhead vfs_pollhd; /* for mnttab pollers */ 146 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */ 147 int mntfstype; /* will be set once mnt fs is mounted */ 148 149 /* 150 * Table for generic options recognized in the VFS layer and acted 151 * on at this level before parsing file system specific options. 152 * The nosuid option is stronger than any of the devices and setuid 153 * options, so those are canceled when nosuid is seen. 154 * 155 * All options which are added here need to be added to the 156 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 157 */ 158 /* 159 * VFS Mount options table 160 */ 161 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 162 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 163 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 164 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 165 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 166 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 167 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 168 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 169 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 170 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 171 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 172 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 173 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 174 175 static const mntopt_t mntopts[] = { 176 /* 177 * option name cancel options default arg flags 178 */ 179 { MNTOPT_REMOUNT, NULL, NULL, 180 MO_NODISPLAY, (void *)0 }, 181 { MNTOPT_RO, ro_cancel, NULL, 0, 182 (void *)0 }, 183 { MNTOPT_RW, rw_cancel, NULL, 0, 184 (void *)0 }, 185 { MNTOPT_SUID, suid_cancel, NULL, 0, 186 (void *)0 }, 187 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 188 (void *)0 }, 189 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 190 (void *)0 }, 191 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 192 (void *)0 }, 193 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 194 (void *)0 }, 195 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 196 (void *)0 }, 197 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 198 (void *)0 }, 199 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 200 (void *)0 }, 201 { MNTOPT_EXEC, exec_cancel, NULL, 0, 202 (void *)0 }, 203 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 204 (void *)0 }, 205 }; 206 207 const mntopts_t vfs_mntopts = { 208 sizeof (mntopts) / sizeof (mntopt_t), 209 (mntopt_t *)&mntopts[0] 210 }; 211 212 /* 213 * File system operation dispatch functions. 214 */ 215 216 int 217 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 218 { 219 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 220 } 221 222 int 223 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 224 { 225 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 226 } 227 228 int 229 fsop_root(vfs_t *vfsp, vnode_t **vpp) 230 { 231 refstr_t *mntpt; 232 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 233 /* 234 * Make sure this root has a path. With lofs, it is possible to have 235 * a NULL mountpoint. 236 */ 237 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 238 mntpt = vfs_getmntpoint(vfsp); 239 vn_setpath_str(*vpp, refstr_value(mntpt), 240 strlen(refstr_value(mntpt))); 241 refstr_rele(mntpt); 242 } 243 244 return (ret); 245 } 246 247 int 248 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 249 { 250 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 251 } 252 253 int 254 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 255 { 256 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 257 } 258 259 int 260 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 261 { 262 /* 263 * In order to handle system attribute fids in a manner 264 * transparent to the underlying fs, we embed the fid for 265 * the sysattr parent object in the sysattr fid and tack on 266 * some extra bytes that only the sysattr layer knows about. 267 * 268 * This guarantees that sysattr fids are larger than other fids 269 * for this vfs. If the vfs supports the sysattr view interface 270 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size 271 * collision with XATTR_FIDSZ. 272 */ 273 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) && 274 fidp->fid_len == XATTR_FIDSZ) 275 return (xattr_dir_vget(vfsp, vpp, fidp)); 276 277 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 278 } 279 280 int 281 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 282 { 283 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 284 } 285 286 void 287 fsop_freefs(vfs_t *vfsp) 288 { 289 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 290 } 291 292 int 293 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 294 { 295 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 296 } 297 298 int 299 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 300 { 301 ASSERT((fstype >= 0) && (fstype < nfstype)); 302 303 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 304 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 305 else 306 return (ENOTSUP); 307 } 308 309 /* 310 * File system initialization. vfs_setfsops() must be called from a file 311 * system's init routine. 312 */ 313 314 static int 315 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 316 int *unused_ops) 317 { 318 static const fs_operation_trans_def_t vfs_ops_table[] = { 319 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 320 fs_nosys, fs_nosys, 321 322 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 323 fs_nosys, fs_nosys, 324 325 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 326 fs_nosys, fs_nosys, 327 328 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 329 fs_nosys, fs_nosys, 330 331 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 332 (fs_generic_func_p) fs_sync, 333 (fs_generic_func_p) fs_sync, /* No errors allowed */ 334 335 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 336 fs_nosys, fs_nosys, 337 338 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 339 fs_nosys, fs_nosys, 340 341 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 342 (fs_generic_func_p)fs_freevfs, 343 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 344 345 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 346 (fs_generic_func_p)fs_nosys, 347 (fs_generic_func_p)fs_nosys, 348 349 NULL, 0, NULL, NULL 350 }; 351 352 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 353 } 354 355 void 356 zfs_boot_init() { 357 358 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0) 359 spa_boot_init(); 360 } 361 362 int 363 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 364 { 365 int error; 366 int unused_ops; 367 368 /* 369 * Verify that fstype refers to a valid fs. Note that 370 * 0 is valid since it's used to set "stray" ops. 371 */ 372 if ((fstype < 0) || (fstype >= nfstype)) 373 return (EINVAL); 374 375 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 376 return (EINVAL); 377 378 /* Set up the operations vector. */ 379 380 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 381 382 if (error != 0) 383 return (error); 384 385 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 386 387 if (actual != NULL) 388 *actual = &vfssw[fstype].vsw_vfsops; 389 390 #if DEBUG 391 if (unused_ops != 0) 392 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 393 "but not used", vfssw[fstype].vsw_name, unused_ops); 394 #endif 395 396 return (0); 397 } 398 399 int 400 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 401 { 402 int error; 403 int unused_ops; 404 405 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 406 407 error = fs_copyfsops(template, *actual, &unused_ops); 408 if (error != 0) { 409 kmem_free(*actual, sizeof (vfsops_t)); 410 *actual = NULL; 411 return (error); 412 } 413 414 return (0); 415 } 416 417 /* 418 * Free a vfsops structure created as a result of vfs_makefsops(). 419 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 420 * vfs_freevfsops_by_type(). 421 */ 422 void 423 vfs_freevfsops(vfsops_t *vfsops) 424 { 425 kmem_free(vfsops, sizeof (vfsops_t)); 426 } 427 428 /* 429 * Since the vfsops structure is part of the vfssw table and wasn't 430 * really allocated, we're not really freeing anything. We keep 431 * the name for consistency with vfs_freevfsops(). We do, however, 432 * need to take care of a little bookkeeping. 433 * NOTE: For a vfsops structure created by vfs_setfsops(), use 434 * vfs_freevfsops_by_type(). 435 */ 436 int 437 vfs_freevfsops_by_type(int fstype) 438 { 439 440 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 441 if ((fstype <= 0) || (fstype >= nfstype)) 442 return (EINVAL); 443 444 WLOCK_VFSSW(); 445 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 446 WUNLOCK_VFSSW(); 447 return (EINVAL); 448 } 449 450 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 451 WUNLOCK_VFSSW(); 452 453 return (0); 454 } 455 456 /* Support routines used to reference vfs_op */ 457 458 /* Set the operations vector for a vfs */ 459 void 460 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 461 { 462 vfsops_t *op; 463 464 ASSERT(vfsp != NULL); 465 ASSERT(vfsops != NULL); 466 467 op = vfsp->vfs_op; 468 membar_consumer(); 469 if (vfsp->vfs_femhead == NULL && 470 casptr(&vfsp->vfs_op, op, vfsops) == op) { 471 return; 472 } 473 fsem_setvfsops(vfsp, vfsops); 474 } 475 476 /* Retrieve the operations vector for a vfs */ 477 vfsops_t * 478 vfs_getops(vfs_t *vfsp) 479 { 480 vfsops_t *op; 481 482 ASSERT(vfsp != NULL); 483 484 op = vfsp->vfs_op; 485 membar_consumer(); 486 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 487 return (op); 488 } else { 489 return (fsem_getvfsops(vfsp)); 490 } 491 } 492 493 /* 494 * Returns non-zero (1) if the vfsops matches that of the vfs. 495 * Returns zero (0) if not. 496 */ 497 int 498 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 499 { 500 return (vfs_getops(vfsp) == vfsops); 501 } 502 503 /* 504 * Returns non-zero (1) if the file system has installed a non-default, 505 * non-error vfs_sync routine. Returns zero (0) otherwise. 506 */ 507 int 508 vfs_can_sync(vfs_t *vfsp) 509 { 510 /* vfs_sync() routine is not the default/error function */ 511 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 512 } 513 514 /* 515 * Initialize a vfs structure. 516 */ 517 void 518 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 519 { 520 /* Other initialization has been moved to vfs_alloc() */ 521 vfsp->vfs_count = 0; 522 vfsp->vfs_next = vfsp; 523 vfsp->vfs_prev = vfsp; 524 vfsp->vfs_zone_next = vfsp; 525 vfsp->vfs_zone_prev = vfsp; 526 vfsp->vfs_lofi_minor = 0; 527 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 528 vfsimpl_setup(vfsp); 529 vfsp->vfs_data = (data); 530 vfs_setops((vfsp), (op)); 531 } 532 533 /* 534 * Allocate and initialize the vfs implementation private data 535 * structure, vfs_impl_t. 536 */ 537 void 538 vfsimpl_setup(vfs_t *vfsp) 539 { 540 int i; 541 542 if (vfsp->vfs_implp != NULL) { 543 return; 544 } 545 546 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 547 /* Note that these are #define'd in vfs.h */ 548 vfsp->vfs_vskap = NULL; 549 vfsp->vfs_fstypevsp = NULL; 550 551 /* Set size of counted array, then zero the array */ 552 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1; 553 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) { 554 vfsp->vfs_featureset[i] = 0; 555 } 556 } 557 558 /* 559 * Release the vfs_impl_t structure, if it exists. Some unbundled 560 * filesystems may not use the newer version of vfs and thus 561 * would not contain this implementation private data structure. 562 */ 563 void 564 vfsimpl_teardown(vfs_t *vfsp) 565 { 566 vfs_impl_t *vip = vfsp->vfs_implp; 567 568 if (vip == NULL) 569 return; 570 571 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 572 vfsp->vfs_implp = NULL; 573 } 574 575 /* 576 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 577 * fstatvfs, and sysfs moved to common/syscall. 578 */ 579 580 /* 581 * Update every mounted file system. We call the vfs_sync operation of 582 * each file system type, passing it a NULL vfsp to indicate that all 583 * mounted file systems of that type should be updated. 584 */ 585 void 586 vfs_sync(int flag) 587 { 588 struct vfssw *vswp; 589 RLOCK_VFSSW(); 590 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 591 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 592 vfs_refvfssw(vswp); 593 RUNLOCK_VFSSW(); 594 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 595 CRED()); 596 vfs_unrefvfssw(vswp); 597 RLOCK_VFSSW(); 598 } 599 } 600 RUNLOCK_VFSSW(); 601 } 602 603 void 604 sync(void) 605 { 606 vfs_sync(0); 607 } 608 609 /* 610 * External routines. 611 */ 612 613 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 614 615 /* 616 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 617 * but otherwise should be accessed only via vfs_list_lock() and 618 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 619 */ 620 static krwlock_t vfslist; 621 622 /* 623 * Mount devfs on /devices. This is done right after root is mounted 624 * to provide device access support for the system 625 */ 626 static void 627 vfs_mountdevices(void) 628 { 629 struct vfssw *vsw; 630 struct vnode *mvp; 631 struct mounta mounta = { /* fake mounta for devfs_mount() */ 632 NULL, 633 NULL, 634 MS_SYSSPACE, 635 NULL, 636 NULL, 637 0, 638 NULL, 639 0 640 }; 641 642 /* 643 * _init devfs module to fill in the vfssw 644 */ 645 if (modload("fs", "devfs") == -1) 646 panic("Cannot _init devfs module"); 647 648 /* 649 * Hold vfs 650 */ 651 RLOCK_VFSSW(); 652 vsw = vfs_getvfsswbyname("devfs"); 653 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 654 VFS_HOLD(&devices); 655 656 /* 657 * Locate mount point 658 */ 659 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 660 panic("Cannot find /devices"); 661 662 /* 663 * Perform the mount of /devices 664 */ 665 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 666 panic("Cannot mount /devices"); 667 668 RUNLOCK_VFSSW(); 669 670 /* 671 * Set appropriate members and add to vfs list for mnttab display 672 */ 673 vfs_setresource(&devices, "/devices", 0); 674 vfs_setmntpoint(&devices, "/devices", 0); 675 676 /* 677 * Hold the root of /devices so it won't go away 678 */ 679 if (VFS_ROOT(&devices, &devicesdir)) 680 panic("vfs_mountdevices: not devices root"); 681 682 if (vfs_lock(&devices) != 0) { 683 VN_RELE(devicesdir); 684 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 685 return; 686 } 687 688 if (vn_vfswlock(mvp) != 0) { 689 vfs_unlock(&devices); 690 VN_RELE(devicesdir); 691 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 692 return; 693 } 694 695 vfs_add(mvp, &devices, 0); 696 vn_vfsunlock(mvp); 697 vfs_unlock(&devices); 698 VN_RELE(devicesdir); 699 } 700 701 /* 702 * mount the first instance of /dev to root and remain mounted 703 */ 704 static void 705 vfs_mountdev1(void) 706 { 707 struct vfssw *vsw; 708 struct vnode *mvp; 709 struct mounta mounta = { /* fake mounta for sdev_mount() */ 710 NULL, 711 NULL, 712 MS_SYSSPACE | MS_OVERLAY, 713 NULL, 714 NULL, 715 0, 716 NULL, 717 0 718 }; 719 720 /* 721 * _init dev module to fill in the vfssw 722 */ 723 if (modload("fs", "dev") == -1) 724 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 725 726 /* 727 * Hold vfs 728 */ 729 RLOCK_VFSSW(); 730 vsw = vfs_getvfsswbyname("dev"); 731 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 732 VFS_HOLD(&dev); 733 734 /* 735 * Locate mount point 736 */ 737 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 738 cmn_err(CE_PANIC, "Cannot find /dev\n"); 739 740 /* 741 * Perform the mount of /dev 742 */ 743 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 744 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 745 746 RUNLOCK_VFSSW(); 747 748 /* 749 * Set appropriate members and add to vfs list for mnttab display 750 */ 751 vfs_setresource(&dev, "/dev", 0); 752 vfs_setmntpoint(&dev, "/dev", 0); 753 754 /* 755 * Hold the root of /dev so it won't go away 756 */ 757 if (VFS_ROOT(&dev, &devdir)) 758 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 759 760 if (vfs_lock(&dev) != 0) { 761 VN_RELE(devdir); 762 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 763 return; 764 } 765 766 if (vn_vfswlock(mvp) != 0) { 767 vfs_unlock(&dev); 768 VN_RELE(devdir); 769 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 770 return; 771 } 772 773 vfs_add(mvp, &dev, 0); 774 vn_vfsunlock(mvp); 775 vfs_unlock(&dev); 776 VN_RELE(devdir); 777 } 778 779 /* 780 * Mount required filesystem. This is done right after root is mounted. 781 */ 782 static void 783 vfs_mountfs(char *module, char *spec, char *path) 784 { 785 struct vnode *mvp; 786 struct mounta mounta; 787 vfs_t *vfsp; 788 789 mounta.flags = MS_SYSSPACE | MS_DATA; 790 mounta.fstype = module; 791 mounta.spec = spec; 792 mounta.dir = path; 793 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 794 cmn_err(CE_WARN, "Cannot find %s", path); 795 return; 796 } 797 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 798 cmn_err(CE_WARN, "Cannot mount %s", path); 799 else 800 VFS_RELE(vfsp); 801 VN_RELE(mvp); 802 } 803 804 /* 805 * vfs_mountroot is called by main() to mount the root filesystem. 806 */ 807 void 808 vfs_mountroot(void) 809 { 810 struct vnode *rvp = NULL; 811 char *path; 812 size_t plen; 813 struct vfssw *vswp; 814 proc_t *p; 815 816 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 817 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 818 819 /* 820 * Alloc the vfs hash bucket array and locks 821 */ 822 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 823 824 /* 825 * Call machine-dependent routine "rootconf" to choose a root 826 * file system type. 827 */ 828 if (rootconf()) 829 panic("vfs_mountroot: cannot mount root"); 830 /* 831 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 832 * to point to it. These are used by lookuppn() so that it 833 * knows where to start from ('/' or '.'). 834 */ 835 vfs_setmntpoint(rootvfs, "/", 0); 836 if (VFS_ROOT(rootvfs, &rootdir)) 837 panic("vfs_mountroot: no root vnode"); 838 839 /* 840 * At this point, the process tree consists of p0 and possibly some 841 * direct children of p0. (i.e. there are no grandchildren) 842 * 843 * Walk through them all, setting their current directory. 844 */ 845 mutex_enter(&pidlock); 846 for (p = practive; p != NULL; p = p->p_next) { 847 ASSERT(p == &p0 || p->p_parent == &p0); 848 849 PTOU(p)->u_cdir = rootdir; 850 VN_HOLD(PTOU(p)->u_cdir); 851 PTOU(p)->u_rdir = NULL; 852 } 853 mutex_exit(&pidlock); 854 855 /* 856 * Setup the global zone's rootvp, now that it exists. 857 */ 858 global_zone->zone_rootvp = rootdir; 859 VN_HOLD(global_zone->zone_rootvp); 860 861 /* 862 * Notify the module code that it can begin using the 863 * root filesystem instead of the boot program's services. 864 */ 865 modrootloaded = 1; 866 867 /* 868 * Special handling for a ZFS root file system. 869 */ 870 zfs_boot_init(); 871 872 /* 873 * Set up mnttab information for root 874 */ 875 vfs_setresource(rootvfs, rootfs.bo_name, 0); 876 877 /* 878 * Notify cluster software that the root filesystem is available. 879 */ 880 clboot_mountroot(); 881 882 /* Now that we're all done with the root FS, set up its vopstats */ 883 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 884 /* Set flag for statistics collection */ 885 if (vswp->vsw_flag & VSW_STATS) { 886 initialize_vopstats(&rootvfs->vfs_vopstats); 887 rootvfs->vfs_flag |= VFS_STATS; 888 rootvfs->vfs_fstypevsp = 889 get_fstype_vopstats(rootvfs, vswp); 890 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 891 } 892 vfs_unrefvfssw(vswp); 893 } 894 895 /* 896 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 897 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 898 */ 899 vfs_mountdevices(); 900 vfs_mountdev1(); 901 902 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 903 vfs_mountfs("proc", "/proc", "/proc"); 904 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 905 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 906 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 907 908 if (getzoneid() == GLOBAL_ZONEID) { 909 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 910 } 911 912 #ifdef __sparc 913 /* 914 * This bit of magic can go away when we convert sparc to 915 * the new boot architecture based on ramdisk. 916 * 917 * Booting off a mirrored root volume: 918 * At this point, we have booted and mounted root on a 919 * single component of the mirror. Complete the boot 920 * by configuring SVM and converting the root to the 921 * dev_t of the mirrored root device. This dev_t conversion 922 * only works because the underlying device doesn't change. 923 */ 924 if (root_is_svm) { 925 if (svm_rootconf()) { 926 panic("vfs_mountroot: cannot remount root"); 927 } 928 929 /* 930 * mnttab should reflect the new root device 931 */ 932 vfs_lock_wait(rootvfs); 933 vfs_setresource(rootvfs, rootfs.bo_name, 0); 934 vfs_unlock(rootvfs); 935 } 936 #endif /* __sparc */ 937 938 /* 939 * Look up the root device via devfs so that a dv_node is 940 * created for it. The vnode is never VN_RELE()ed. 941 * We allocate more than MAXPATHLEN so that the 942 * buffer passed to i_ddi_prompath_to_devfspath() is 943 * exactly MAXPATHLEN (the function expects a buffer 944 * of that length). 945 */ 946 plen = strlen("/devices"); 947 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 948 (void) strcpy(path, "/devices"); 949 950 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 951 != DDI_SUCCESS || 952 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 953 954 /* NUL terminate in case "path" has garbage */ 955 path[plen + MAXPATHLEN - 1] = '\0'; 956 #ifdef DEBUG 957 cmn_err(CE_WARN, "!Cannot lookup root device: %s", path); 958 #endif 959 } 960 kmem_free(path, plen + MAXPATHLEN); 961 vfs_mnttabvp_setup(); 962 } 963 964 /* 965 * Check to see if our "block device" is actually a file. If so, 966 * automatically add a lofi device, and keep track of this fact. 967 */ 968 static int 969 lofi_add(const char *fsname, struct vfs *vfsp, 970 mntopts_t *mntopts, struct mounta *uap) 971 { 972 int fromspace = (uap->flags & MS_SYSSPACE) ? 973 UIO_SYSSPACE : UIO_USERSPACE; 974 struct lofi_ioctl *li = NULL; 975 struct vnode *vp = NULL; 976 struct pathname pn = { NULL }; 977 ldi_ident_t ldi_id; 978 ldi_handle_t ldi_hdl; 979 vfssw_t *vfssw; 980 int minor; 981 int err = 0; 982 983 if ((vfssw = vfs_getvfssw(fsname)) == NULL) 984 return (0); 985 986 if (!(vfssw->vsw_flag & VSW_CANLOFI)) { 987 vfs_unrefvfssw(vfssw); 988 return (0); 989 } 990 991 vfs_unrefvfssw(vfssw); 992 vfssw = NULL; 993 994 if (pn_get(uap->spec, fromspace, &pn) != 0) 995 return (0); 996 997 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0) 998 goto out; 999 1000 if (vp->v_type != VREG) 1001 goto out; 1002 1003 /* OK, this is a lofi mount. */ 1004 1005 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) || 1006 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) || 1007 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) || 1008 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) { 1009 err = EINVAL; 1010 goto out; 1011 } 1012 1013 ldi_id = ldi_ident_from_anon(); 1014 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1015 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN); 1016 1017 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1018 &ldi_hdl, ldi_id); 1019 1020 if (err) 1021 goto out2; 1022 1023 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li, 1024 FREAD | FWRITE | FKIOCTL, kcred, &minor); 1025 1026 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1027 1028 if (!err) 1029 vfsp->vfs_lofi_minor = minor; 1030 1031 out2: 1032 ldi_ident_release(ldi_id); 1033 out: 1034 if (li != NULL) 1035 kmem_free(li, sizeof (*li)); 1036 if (vp != NULL) 1037 VN_RELE(vp); 1038 pn_free(&pn); 1039 return (err); 1040 } 1041 1042 static void 1043 lofi_remove(struct vfs *vfsp) 1044 { 1045 struct lofi_ioctl *li = NULL; 1046 ldi_ident_t ldi_id; 1047 ldi_handle_t ldi_hdl; 1048 int err; 1049 1050 if (vfsp->vfs_lofi_minor == 0) 1051 return; 1052 1053 ldi_id = ldi_ident_from_anon(); 1054 1055 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1056 li->li_minor = vfsp->vfs_lofi_minor; 1057 li->li_cleanup = B_TRUE; 1058 1059 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1060 &ldi_hdl, ldi_id); 1061 1062 if (err) 1063 goto out; 1064 1065 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li, 1066 FREAD | FWRITE | FKIOCTL, kcred, NULL); 1067 1068 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1069 1070 if (!err) 1071 vfsp->vfs_lofi_minor = 0; 1072 1073 out: 1074 ldi_ident_release(ldi_id); 1075 if (li != NULL) 1076 kmem_free(li, sizeof (*li)); 1077 } 1078 1079 /* 1080 * Common mount code. Called from the system call entry point, from autofs, 1081 * nfsv4 trigger mounts, and from pxfs. 1082 * 1083 * Takes the effective file system type, mount arguments, the mount point 1084 * vnode, flags specifying whether the mount is a remount and whether it 1085 * should be entered into the vfs list, and credentials. Fills in its vfspp 1086 * parameter with the mounted file system instance's vfs. 1087 * 1088 * Note that the effective file system type is specified as a string. It may 1089 * be null, in which case it's determined from the mount arguments, and may 1090 * differ from the type specified in the mount arguments; this is a hook to 1091 * allow interposition when instantiating file system instances. 1092 * 1093 * The caller is responsible for releasing its own hold on the mount point 1094 * vp (this routine does its own hold when necessary). 1095 * Also note that for remounts, the mount point vp should be the vnode for 1096 * the root of the file system rather than the vnode that the file system 1097 * is mounted on top of. 1098 */ 1099 int 1100 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 1101 struct vfs **vfspp) 1102 { 1103 struct vfssw *vswp; 1104 vfsops_t *vfsops; 1105 struct vfs *vfsp; 1106 struct vnode *bvp; 1107 dev_t bdev = 0; 1108 mntopts_t mnt_mntopts; 1109 int error = 0; 1110 int copyout_error = 0; 1111 int ovflags; 1112 char *opts = uap->optptr; 1113 char *inargs = opts; 1114 int optlen = uap->optlen; 1115 int remount; 1116 int rdonly; 1117 int nbmand = 0; 1118 int delmip = 0; 1119 int addmip = 0; 1120 int splice = ((uap->flags & MS_NOSPLICE) == 0); 1121 int fromspace = (uap->flags & MS_SYSSPACE) ? 1122 UIO_SYSSPACE : UIO_USERSPACE; 1123 char *resource = NULL, *mountpt = NULL; 1124 refstr_t *oldresource, *oldmntpt; 1125 struct pathname pn, rpn; 1126 vsk_anchor_t *vskap; 1127 char fstname[FSTYPSZ]; 1128 1129 /* 1130 * The v_flag value for the mount point vp is permanently set 1131 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1132 * for mount point locking. 1133 */ 1134 mutex_enter(&vp->v_lock); 1135 vp->v_flag |= VVFSLOCK; 1136 mutex_exit(&vp->v_lock); 1137 1138 mnt_mntopts.mo_count = 0; 1139 /* 1140 * Find the ops vector to use to invoke the file system-specific mount 1141 * method. If the fsname argument is non-NULL, use it directly. 1142 * Otherwise, dig the file system type information out of the mount 1143 * arguments. 1144 * 1145 * A side effect is to hold the vfssw entry. 1146 * 1147 * Mount arguments can be specified in several ways, which are 1148 * distinguished by flag bit settings. The preferred way is to set 1149 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1150 * type supplied as a character string and the last two arguments 1151 * being a pointer to a character buffer and the size of the buffer. 1152 * On entry, the buffer holds a null terminated list of options; on 1153 * return, the string is the list of options the file system 1154 * recognized. If MS_DATA is set arguments five and six point to a 1155 * block of binary data which the file system interprets. 1156 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1157 * consistently with these conventions. To handle them, we check to 1158 * see whether the pointer to the file system name has a numeric value 1159 * less than 256. If so, we treat it as an index. 1160 */ 1161 if (fsname != NULL) { 1162 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1163 return (EINVAL); 1164 } 1165 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1166 size_t n; 1167 uint_t fstype; 1168 1169 fsname = fstname; 1170 1171 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1172 RLOCK_VFSSW(); 1173 if (fstype == 0 || fstype >= nfstype || 1174 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1175 RUNLOCK_VFSSW(); 1176 return (EINVAL); 1177 } 1178 (void) strcpy(fsname, vfssw[fstype].vsw_name); 1179 RUNLOCK_VFSSW(); 1180 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1181 return (EINVAL); 1182 } else { 1183 /* 1184 * Handle either kernel or user address space. 1185 */ 1186 if (uap->flags & MS_SYSSPACE) { 1187 error = copystr(uap->fstype, fsname, 1188 FSTYPSZ, &n); 1189 } else { 1190 error = copyinstr(uap->fstype, fsname, 1191 FSTYPSZ, &n); 1192 } 1193 if (error) { 1194 if (error == ENAMETOOLONG) 1195 return (EINVAL); 1196 return (error); 1197 } 1198 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1199 return (EINVAL); 1200 } 1201 } else { 1202 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1203 return (EINVAL); 1204 fsname = vswp->vsw_name; 1205 } 1206 if (!VFS_INSTALLED(vswp)) 1207 return (EINVAL); 1208 1209 if ((error = secpolicy_fs_allowed_mount(fsname)) != 0) { 1210 vfs_unrefvfssw(vswp); 1211 return (error); 1212 } 1213 1214 vfsops = &vswp->vsw_vfsops; 1215 1216 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1217 /* 1218 * Fetch mount options and parse them for generic vfs options 1219 */ 1220 if (uap->flags & MS_OPTIONSTR) { 1221 /* 1222 * Limit the buffer size 1223 */ 1224 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1225 error = EINVAL; 1226 goto errout; 1227 } 1228 if ((uap->flags & MS_SYSSPACE) == 0) { 1229 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1230 inargs[0] = '\0'; 1231 if (optlen) { 1232 error = copyinstr(opts, inargs, (size_t)optlen, 1233 NULL); 1234 if (error) { 1235 goto errout; 1236 } 1237 } 1238 } 1239 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1240 } 1241 /* 1242 * Flag bits override the options string. 1243 */ 1244 if (uap->flags & MS_REMOUNT) 1245 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1246 if (uap->flags & MS_RDONLY) 1247 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1248 if (uap->flags & MS_NOSUID) 1249 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1250 1251 /* 1252 * Check if this is a remount; must be set in the option string and 1253 * the file system must support a remount option. 1254 */ 1255 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1256 MNTOPT_REMOUNT, NULL)) { 1257 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1258 error = ENOTSUP; 1259 goto errout; 1260 } 1261 uap->flags |= MS_REMOUNT; 1262 } 1263 1264 /* 1265 * uap->flags and vfs_optionisset() should agree. 1266 */ 1267 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1268 uap->flags |= MS_RDONLY; 1269 } 1270 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1271 uap->flags |= MS_NOSUID; 1272 } 1273 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1274 ASSERT(splice || !remount); 1275 /* 1276 * If we are splicing the fs into the namespace, 1277 * perform mount point checks. 1278 * 1279 * We want to resolve the path for the mount point to eliminate 1280 * '.' and ".." and symlinks in mount points; we can't do the 1281 * same for the resource string, since it would turn 1282 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1283 * this before grabbing vn_vfswlock(), because otherwise we 1284 * would deadlock with lookuppn(). 1285 */ 1286 if (splice) { 1287 ASSERT(vp->v_count > 0); 1288 1289 /* 1290 * Pick up mount point and device from appropriate space. 1291 */ 1292 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1293 resource = kmem_alloc(pn.pn_pathlen + 1, 1294 KM_SLEEP); 1295 (void) strcpy(resource, pn.pn_path); 1296 pn_free(&pn); 1297 } 1298 /* 1299 * Do a lookupname prior to taking the 1300 * writelock. Mark this as completed if 1301 * successful for later cleanup and addition to 1302 * the mount in progress table. 1303 */ 1304 if ((uap->flags & MS_GLOBAL) == 0 && 1305 lookupname(uap->spec, fromspace, 1306 FOLLOW, NULL, &bvp) == 0) { 1307 addmip = 1; 1308 } 1309 1310 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1311 pathname_t *pnp; 1312 1313 if (*pn.pn_path != '/') { 1314 error = EINVAL; 1315 pn_free(&pn); 1316 goto errout; 1317 } 1318 pn_alloc(&rpn); 1319 /* 1320 * Kludge to prevent autofs from deadlocking with 1321 * itself when it calls domount(). 1322 * 1323 * If autofs is calling, it is because it is doing 1324 * (autofs) mounts in the process of an NFS mount. A 1325 * lookuppn() here would cause us to block waiting for 1326 * said NFS mount to complete, which can't since this 1327 * is the thread that was supposed to doing it. 1328 */ 1329 if (fromspace == UIO_USERSPACE) { 1330 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1331 NULL)) == 0) { 1332 pnp = &rpn; 1333 } else { 1334 /* 1335 * The file disappeared or otherwise 1336 * became inaccessible since we opened 1337 * it; might as well fail the mount 1338 * since the mount point is no longer 1339 * accessible. 1340 */ 1341 pn_free(&rpn); 1342 pn_free(&pn); 1343 goto errout; 1344 } 1345 } else { 1346 pnp = &pn; 1347 } 1348 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1349 (void) strcpy(mountpt, pnp->pn_path); 1350 1351 /* 1352 * If the addition of the zone's rootpath 1353 * would push us over a total path length 1354 * of MAXPATHLEN, we fail the mount with 1355 * ENAMETOOLONG, which is what we would have 1356 * gotten if we were trying to perform the same 1357 * mount in the global zone. 1358 * 1359 * strlen() doesn't count the trailing 1360 * '\0', but zone_rootpathlen counts both a 1361 * trailing '/' and the terminating '\0'. 1362 */ 1363 if ((curproc->p_zone->zone_rootpathlen - 1 + 1364 strlen(mountpt)) > MAXPATHLEN || 1365 (resource != NULL && 1366 (curproc->p_zone->zone_rootpathlen - 1 + 1367 strlen(resource)) > MAXPATHLEN)) { 1368 error = ENAMETOOLONG; 1369 } 1370 1371 pn_free(&rpn); 1372 pn_free(&pn); 1373 } 1374 1375 if (error) 1376 goto errout; 1377 1378 /* 1379 * Prevent path name resolution from proceeding past 1380 * the mount point. 1381 */ 1382 if (vn_vfswlock(vp) != 0) { 1383 error = EBUSY; 1384 goto errout; 1385 } 1386 1387 /* 1388 * Verify that it's legitimate to establish a mount on 1389 * the prospective mount point. 1390 */ 1391 if (vn_mountedvfs(vp) != NULL) { 1392 /* 1393 * The mount point lock was obtained after some 1394 * other thread raced through and established a mount. 1395 */ 1396 vn_vfsunlock(vp); 1397 error = EBUSY; 1398 goto errout; 1399 } 1400 if (vp->v_flag & VNOMOUNT) { 1401 vn_vfsunlock(vp); 1402 error = EINVAL; 1403 goto errout; 1404 } 1405 } 1406 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1407 uap->dataptr = NULL; 1408 uap->datalen = 0; 1409 } 1410 1411 /* 1412 * If this is a remount, we don't want to create a new VFS. 1413 * Instead, we pass the existing one with a remount flag. 1414 */ 1415 if (remount) { 1416 /* 1417 * Confirm that the mount point is the root vnode of the 1418 * file system that is being remounted. 1419 * This can happen if the user specifies a different 1420 * mount point directory pathname in the (re)mount command. 1421 * 1422 * Code below can only be reached if splice is true, so it's 1423 * safe to do vn_vfsunlock() here. 1424 */ 1425 if ((vp->v_flag & VROOT) == 0) { 1426 vn_vfsunlock(vp); 1427 error = ENOENT; 1428 goto errout; 1429 } 1430 /* 1431 * Disallow making file systems read-only unless file system 1432 * explicitly allows it in its vfssw. Ignore other flags. 1433 */ 1434 if (rdonly && vn_is_readonly(vp) == 0 && 1435 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1436 vn_vfsunlock(vp); 1437 error = EINVAL; 1438 goto errout; 1439 } 1440 /* 1441 * Disallow changing the NBMAND disposition of the file 1442 * system on remounts. 1443 */ 1444 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1445 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1446 vn_vfsunlock(vp); 1447 error = EINVAL; 1448 goto errout; 1449 } 1450 vfsp = vp->v_vfsp; 1451 ovflags = vfsp->vfs_flag; 1452 vfsp->vfs_flag |= VFS_REMOUNT; 1453 vfsp->vfs_flag &= ~VFS_RDONLY; 1454 } else { 1455 vfsp = vfs_alloc(KM_SLEEP); 1456 VFS_INIT(vfsp, vfsops, NULL); 1457 } 1458 1459 VFS_HOLD(vfsp); 1460 1461 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) { 1462 if (!remount) { 1463 if (splice) 1464 vn_vfsunlock(vp); 1465 vfs_free(vfsp); 1466 } else { 1467 vn_vfsunlock(vp); 1468 VFS_RELE(vfsp); 1469 } 1470 goto errout; 1471 } 1472 1473 /* 1474 * PRIV_SYS_MOUNT doesn't mean you can become root. 1475 */ 1476 if (vfsp->vfs_lofi_minor != 0) { 1477 uap->flags |= MS_NOSUID; 1478 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1479 } 1480 1481 /* 1482 * The vfs_reflock is not used anymore the code below explicitly 1483 * holds it preventing others accesing it directly. 1484 */ 1485 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1486 !(vfsp->vfs_flag & VFS_REMOUNT)) 1487 cmn_err(CE_WARN, 1488 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1489 1490 /* 1491 * Lock the vfs. If this is a remount we want to avoid spurious umount 1492 * failures that happen as a side-effect of fsflush() and other mount 1493 * and unmount operations that might be going on simultaneously and 1494 * may have locked the vfs currently. To not return EBUSY immediately 1495 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1496 */ 1497 if (!remount) { 1498 if (error = vfs_lock(vfsp)) { 1499 vfsp->vfs_flag = ovflags; 1500 1501 lofi_remove(vfsp); 1502 1503 if (splice) 1504 vn_vfsunlock(vp); 1505 vfs_free(vfsp); 1506 goto errout; 1507 } 1508 } else { 1509 vfs_lock_wait(vfsp); 1510 } 1511 1512 /* 1513 * Add device to mount in progress table, global mounts require special 1514 * handling. It is possible that we have already done the lookupname 1515 * on a spliced, non-global fs. If so, we don't want to do it again 1516 * since we cannot do a lookupname after taking the 1517 * wlock above. This case is for a non-spliced, non-global filesystem. 1518 */ 1519 if (!addmip) { 1520 if ((uap->flags & MS_GLOBAL) == 0 && 1521 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1522 addmip = 1; 1523 } 1524 } 1525 1526 if (addmip) { 1527 vnode_t *lvp = NULL; 1528 1529 error = vfs_get_lofi(vfsp, &lvp); 1530 if (error > 0) { 1531 lofi_remove(vfsp); 1532 1533 if (splice) 1534 vn_vfsunlock(vp); 1535 vfs_unlock(vfsp); 1536 1537 if (remount) { 1538 VFS_RELE(vfsp); 1539 } else { 1540 vfs_free(vfsp); 1541 } 1542 1543 goto errout; 1544 } else if (error == -1) { 1545 bdev = bvp->v_rdev; 1546 VN_RELE(bvp); 1547 } else { 1548 bdev = lvp->v_rdev; 1549 VN_RELE(lvp); 1550 VN_RELE(bvp); 1551 } 1552 1553 vfs_addmip(bdev, vfsp); 1554 addmip = 0; 1555 delmip = 1; 1556 } 1557 /* 1558 * Invalidate cached entry for the mount point. 1559 */ 1560 if (splice) 1561 dnlc_purge_vp(vp); 1562 1563 /* 1564 * If have an option string but the filesystem doesn't supply a 1565 * prototype options table, create a table with the global 1566 * options and sufficient room to accept all the options in the 1567 * string. Then parse the passed in option string 1568 * accepting all the options in the string. This gives us an 1569 * option table with all the proper cancel properties for the 1570 * global options. 1571 * 1572 * Filesystems that supply a prototype options table are handled 1573 * earlier in this function. 1574 */ 1575 if (uap->flags & MS_OPTIONSTR) { 1576 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1577 mntopts_t tmp_mntopts; 1578 1579 tmp_mntopts.mo_count = 0; 1580 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1581 &mnt_mntopts); 1582 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1583 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1584 vfs_freeopttbl(&tmp_mntopts); 1585 } 1586 } 1587 1588 /* 1589 * Serialize with zone creations. 1590 */ 1591 mount_in_progress(); 1592 /* 1593 * Instantiate (or reinstantiate) the file system. If appropriate, 1594 * splice it into the file system name space. 1595 * 1596 * We want VFS_MOUNT() to be able to override the vfs_resource 1597 * string if necessary (ie, mntfs), and also for a remount to 1598 * change the same (necessary when remounting '/' during boot). 1599 * So we set up vfs_mntpt and vfs_resource to what we think they 1600 * should be, then hand off control to VFS_MOUNT() which can 1601 * override this. 1602 * 1603 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1604 * a vfs which is on the vfs list (i.e. during a remount), we must 1605 * never set those fields to NULL. Several bits of code make 1606 * assumptions that the fields are always valid. 1607 */ 1608 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1609 if (remount) { 1610 if ((oldresource = vfsp->vfs_resource) != NULL) 1611 refstr_hold(oldresource); 1612 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1613 refstr_hold(oldmntpt); 1614 } 1615 vfs_setresource(vfsp, resource, 0); 1616 vfs_setmntpoint(vfsp, mountpt, 0); 1617 1618 /* 1619 * going to mount on this vnode, so notify. 1620 */ 1621 vnevent_mountedover(vp, NULL); 1622 error = VFS_MOUNT(vfsp, vp, uap, credp); 1623 1624 if (uap->flags & MS_RDONLY) 1625 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1626 if (uap->flags & MS_NOSUID) 1627 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1628 if (uap->flags & MS_GLOBAL) 1629 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1630 1631 if (error) { 1632 lofi_remove(vfsp); 1633 1634 if (remount) { 1635 /* put back pre-remount options */ 1636 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1637 vfs_setmntpoint(vfsp, refstr_value(oldmntpt), 1638 VFSSP_VERBATIM); 1639 if (oldmntpt) 1640 refstr_rele(oldmntpt); 1641 vfs_setresource(vfsp, refstr_value(oldresource), 1642 VFSSP_VERBATIM); 1643 if (oldresource) 1644 refstr_rele(oldresource); 1645 vfsp->vfs_flag = ovflags; 1646 vfs_unlock(vfsp); 1647 VFS_RELE(vfsp); 1648 } else { 1649 vfs_unlock(vfsp); 1650 vfs_freemnttab(vfsp); 1651 vfs_free(vfsp); 1652 } 1653 } else { 1654 /* 1655 * Set the mount time to now 1656 */ 1657 vfsp->vfs_mtime = ddi_get_time(); 1658 if (remount) { 1659 vfsp->vfs_flag &= ~VFS_REMOUNT; 1660 if (oldresource) 1661 refstr_rele(oldresource); 1662 if (oldmntpt) 1663 refstr_rele(oldmntpt); 1664 } else if (splice) { 1665 /* 1666 * Link vfsp into the name space at the mount 1667 * point. Vfs_add() is responsible for 1668 * holding the mount point which will be 1669 * released when vfs_remove() is called. 1670 */ 1671 vfs_add(vp, vfsp, uap->flags); 1672 } else { 1673 /* 1674 * Hold the reference to file system which is 1675 * not linked into the name space. 1676 */ 1677 vfsp->vfs_zone = NULL; 1678 VFS_HOLD(vfsp); 1679 vfsp->vfs_vnodecovered = NULL; 1680 } 1681 /* 1682 * Set flags for global options encountered 1683 */ 1684 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1685 vfsp->vfs_flag |= VFS_RDONLY; 1686 else 1687 vfsp->vfs_flag &= ~VFS_RDONLY; 1688 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1689 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1690 } else { 1691 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1692 vfsp->vfs_flag |= VFS_NODEVICES; 1693 else 1694 vfsp->vfs_flag &= ~VFS_NODEVICES; 1695 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1696 vfsp->vfs_flag |= VFS_NOSETUID; 1697 else 1698 vfsp->vfs_flag &= ~VFS_NOSETUID; 1699 } 1700 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1701 vfsp->vfs_flag |= VFS_NBMAND; 1702 else 1703 vfsp->vfs_flag &= ~VFS_NBMAND; 1704 1705 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1706 vfsp->vfs_flag |= VFS_XATTR; 1707 else 1708 vfsp->vfs_flag &= ~VFS_XATTR; 1709 1710 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1711 vfsp->vfs_flag |= VFS_NOEXEC; 1712 else 1713 vfsp->vfs_flag &= ~VFS_NOEXEC; 1714 1715 /* 1716 * Now construct the output option string of options 1717 * we recognized. 1718 */ 1719 if (uap->flags & MS_OPTIONSTR) { 1720 vfs_list_read_lock(); 1721 copyout_error = vfs_buildoptionstr( 1722 &vfsp->vfs_mntopts, inargs, optlen); 1723 vfs_list_unlock(); 1724 if (copyout_error == 0 && 1725 (uap->flags & MS_SYSSPACE) == 0) { 1726 copyout_error = copyoutstr(inargs, opts, 1727 optlen, NULL); 1728 } 1729 } 1730 1731 /* 1732 * If this isn't a remount, set up the vopstats before 1733 * anyone can touch this. We only allow spliced file 1734 * systems (file systems which are in the namespace) to 1735 * have the VFS_STATS flag set. 1736 * NOTE: PxFS mounts the underlying file system with 1737 * MS_NOSPLICE set and copies those vfs_flags to its private 1738 * vfs structure. As a result, PxFS should never have 1739 * the VFS_STATS flag or else we might access the vfs 1740 * statistics-related fields prior to them being 1741 * properly initialized. 1742 */ 1743 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1744 initialize_vopstats(&vfsp->vfs_vopstats); 1745 /* 1746 * We need to set vfs_vskap to NULL because there's 1747 * a chance it won't be set below. This is checked 1748 * in teardown_vopstats() so we can't have garbage. 1749 */ 1750 vfsp->vfs_vskap = NULL; 1751 vfsp->vfs_flag |= VFS_STATS; 1752 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1753 } 1754 1755 if (vswp->vsw_flag & VSW_XID) 1756 vfsp->vfs_flag |= VFS_XID; 1757 1758 vfs_unlock(vfsp); 1759 } 1760 mount_completed(); 1761 if (splice) 1762 vn_vfsunlock(vp); 1763 1764 if ((error == 0) && (copyout_error == 0)) { 1765 if (!remount) { 1766 /* 1767 * Don't call get_vskstat_anchor() while holding 1768 * locks since it allocates memory and calls 1769 * VFS_STATVFS(). For NFS, the latter can generate 1770 * an over-the-wire call. 1771 */ 1772 vskap = get_vskstat_anchor(vfsp); 1773 /* Only take the lock if we have something to do */ 1774 if (vskap != NULL) { 1775 vfs_lock_wait(vfsp); 1776 if (vfsp->vfs_flag & VFS_STATS) { 1777 vfsp->vfs_vskap = vskap; 1778 } 1779 vfs_unlock(vfsp); 1780 } 1781 } 1782 /* Return vfsp to caller. */ 1783 *vfspp = vfsp; 1784 } 1785 errout: 1786 vfs_freeopttbl(&mnt_mntopts); 1787 if (resource != NULL) 1788 kmem_free(resource, strlen(resource) + 1); 1789 if (mountpt != NULL) 1790 kmem_free(mountpt, strlen(mountpt) + 1); 1791 /* 1792 * It is possible we errored prior to adding to mount in progress 1793 * table. Must free vnode we acquired with successful lookupname. 1794 */ 1795 if (addmip) 1796 VN_RELE(bvp); 1797 if (delmip) 1798 vfs_delmip(vfsp); 1799 ASSERT(vswp != NULL); 1800 vfs_unrefvfssw(vswp); 1801 if (inargs != opts) 1802 kmem_free(inargs, MAX_MNTOPT_STR); 1803 if (copyout_error) { 1804 lofi_remove(vfsp); 1805 VFS_RELE(vfsp); 1806 error = copyout_error; 1807 } 1808 return (error); 1809 } 1810 1811 static void 1812 vfs_setpath( 1813 struct vfs *vfsp, /* vfs being updated */ 1814 refstr_t **refp, /* Ref-count string to contain the new path */ 1815 const char *newpath, /* Path to add to refp (above) */ 1816 uint32_t flag) /* flag */ 1817 { 1818 size_t len; 1819 refstr_t *ref; 1820 zone_t *zone = curproc->p_zone; 1821 char *sp; 1822 int have_list_lock = 0; 1823 1824 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1825 1826 /* 1827 * New path must be less than MAXPATHLEN because mntfs 1828 * will only display up to MAXPATHLEN bytes. This is currently 1829 * safe, because domount() uses pn_get(), and other callers 1830 * similarly cap the size to fewer than MAXPATHLEN bytes. 1831 */ 1832 1833 ASSERT(strlen(newpath) < MAXPATHLEN); 1834 1835 /* mntfs requires consistency while vfs list lock is held */ 1836 1837 if (VFS_ON_LIST(vfsp)) { 1838 have_list_lock = 1; 1839 vfs_list_lock(); 1840 } 1841 1842 if (*refp != NULL) 1843 refstr_rele(*refp); 1844 1845 /* 1846 * If we are in a non-global zone then we prefix the supplied path, 1847 * newpath, with the zone's root path, with two exceptions. The first 1848 * is where we have been explicitly directed to avoid doing so; this 1849 * will be the case following a failed remount, where the path supplied 1850 * will be a saved version which must now be restored. The second 1851 * exception is where newpath is not a pathname but a descriptive name, 1852 * e.g. "procfs". 1853 */ 1854 if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') { 1855 ref = refstr_alloc(newpath); 1856 goto out; 1857 } 1858 1859 /* 1860 * Truncate the trailing '/' in the zoneroot, and merge 1861 * in the zone's rootpath with the "newpath" (resource 1862 * or mountpoint) passed in. 1863 * 1864 * The size of the required buffer is thus the size of 1865 * the buffer required for the passed-in newpath 1866 * (strlen(newpath) + 1), plus the size of the buffer 1867 * required to hold zone_rootpath (zone_rootpathlen) 1868 * minus one for one of the now-superfluous NUL 1869 * terminations, minus one for the trailing '/'. 1870 * 1871 * That gives us: 1872 * 1873 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1874 * 1875 * Which is what we have below. 1876 */ 1877 1878 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1879 sp = kmem_alloc(len, KM_SLEEP); 1880 1881 /* 1882 * Copy everything including the trailing slash, which 1883 * we then overwrite with the NUL character. 1884 */ 1885 1886 (void) strcpy(sp, zone->zone_rootpath); 1887 sp[zone->zone_rootpathlen - 2] = '\0'; 1888 (void) strcat(sp, newpath); 1889 1890 ref = refstr_alloc(sp); 1891 kmem_free(sp, len); 1892 out: 1893 *refp = ref; 1894 1895 if (have_list_lock) { 1896 vfs_mnttab_modtimeupd(); 1897 vfs_list_unlock(); 1898 } 1899 } 1900 1901 /* 1902 * Record a mounted resource name in a vfs structure. 1903 * If vfsp is already mounted, caller must hold the vfs lock. 1904 */ 1905 void 1906 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag) 1907 { 1908 if (resource == NULL || resource[0] == '\0') 1909 resource = VFS_NORESOURCE; 1910 vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag); 1911 } 1912 1913 /* 1914 * Record a mount point name in a vfs structure. 1915 * If vfsp is already mounted, caller must hold the vfs lock. 1916 */ 1917 void 1918 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag) 1919 { 1920 if (mntpt == NULL || mntpt[0] == '\0') 1921 mntpt = VFS_NOMNTPT; 1922 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag); 1923 } 1924 1925 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1926 1927 refstr_t * 1928 vfs_getresource(const struct vfs *vfsp) 1929 { 1930 refstr_t *resource; 1931 1932 vfs_list_read_lock(); 1933 resource = vfsp->vfs_resource; 1934 refstr_hold(resource); 1935 vfs_list_unlock(); 1936 1937 return (resource); 1938 } 1939 1940 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1941 1942 refstr_t * 1943 vfs_getmntpoint(const struct vfs *vfsp) 1944 { 1945 refstr_t *mntpt; 1946 1947 vfs_list_read_lock(); 1948 mntpt = vfsp->vfs_mntpt; 1949 refstr_hold(mntpt); 1950 vfs_list_unlock(); 1951 1952 return (mntpt); 1953 } 1954 1955 /* 1956 * Create an empty options table with enough empty slots to hold all 1957 * The options in the options string passed as an argument. 1958 * Potentially prepend another options table. 1959 * 1960 * Note: caller is responsible for locking the vfs list, if needed, 1961 * to protect mops. 1962 */ 1963 static void 1964 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1965 const mntopts_t *mtmpl) 1966 { 1967 const char *s = opts; 1968 uint_t count; 1969 1970 if (opts == NULL || *opts == '\0') { 1971 count = 0; 1972 } else { 1973 count = 1; 1974 1975 /* 1976 * Count number of options in the string 1977 */ 1978 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 1979 count++; 1980 s++; 1981 } 1982 } 1983 vfs_copyopttbl_extend(mtmpl, mops, count); 1984 } 1985 1986 /* 1987 * Create an empty options table with enough empty slots to hold all 1988 * The options in the options string passed as an argument. 1989 * 1990 * This function is *not* for general use by filesystems. 1991 * 1992 * Note: caller is responsible for locking the vfs list, if needed, 1993 * to protect mops. 1994 */ 1995 void 1996 vfs_createopttbl(mntopts_t *mops, const char *opts) 1997 { 1998 vfs_createopttbl_extend(mops, opts, NULL); 1999 } 2000 2001 2002 /* 2003 * Swap two mount options tables 2004 */ 2005 static void 2006 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 2007 { 2008 uint_t tmpcnt; 2009 mntopt_t *tmplist; 2010 2011 tmpcnt = optbl2->mo_count; 2012 tmplist = optbl2->mo_list; 2013 optbl2->mo_count = optbl1->mo_count; 2014 optbl2->mo_list = optbl1->mo_list; 2015 optbl1->mo_count = tmpcnt; 2016 optbl1->mo_list = tmplist; 2017 } 2018 2019 static void 2020 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 2021 { 2022 vfs_list_lock(); 2023 vfs_swapopttbl_nolock(optbl1, optbl2); 2024 vfs_mnttab_modtimeupd(); 2025 vfs_list_unlock(); 2026 } 2027 2028 static char ** 2029 vfs_copycancelopt_extend(char **const moc, int extend) 2030 { 2031 int i = 0; 2032 int j; 2033 char **result; 2034 2035 if (moc != NULL) { 2036 for (; moc[i] != NULL; i++) 2037 /* count number of options to cancel */; 2038 } 2039 2040 if (i + extend == 0) 2041 return (NULL); 2042 2043 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 2044 2045 for (j = 0; j < i; j++) { 2046 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 2047 (void) strcpy(result[j], moc[j]); 2048 } 2049 for (; j <= i + extend; j++) 2050 result[j] = NULL; 2051 2052 return (result); 2053 } 2054 2055 static void 2056 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 2057 { 2058 char *sp, *dp; 2059 2060 d->mo_flags = s->mo_flags; 2061 d->mo_data = s->mo_data; 2062 sp = s->mo_name; 2063 if (sp != NULL) { 2064 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2065 (void) strcpy(dp, sp); 2066 d->mo_name = dp; 2067 } else { 2068 d->mo_name = NULL; /* should never happen */ 2069 } 2070 2071 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 2072 2073 sp = s->mo_arg; 2074 if (sp != NULL) { 2075 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2076 (void) strcpy(dp, sp); 2077 d->mo_arg = dp; 2078 } else { 2079 d->mo_arg = NULL; 2080 } 2081 } 2082 2083 /* 2084 * Copy a mount options table, possibly allocating some spare 2085 * slots at the end. It is permissible to copy_extend the NULL table. 2086 */ 2087 static void 2088 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 2089 { 2090 uint_t i, count; 2091 mntopt_t *motbl; 2092 2093 /* 2094 * Clear out any existing stuff in the options table being initialized 2095 */ 2096 vfs_freeopttbl(dmo); 2097 count = (smo == NULL) ? 0 : smo->mo_count; 2098 if ((count + extra) == 0) /* nothing to do */ 2099 return; 2100 dmo->mo_count = count + extra; 2101 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 2102 dmo->mo_list = motbl; 2103 for (i = 0; i < count; i++) { 2104 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 2105 } 2106 for (i = count; i < count + extra; i++) { 2107 motbl[i].mo_flags = MO_EMPTY; 2108 } 2109 } 2110 2111 /* 2112 * Copy a mount options table. 2113 * 2114 * This function is *not* for general use by filesystems. 2115 * 2116 * Note: caller is responsible for locking the vfs list, if needed, 2117 * to protect smo and dmo. 2118 */ 2119 void 2120 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 2121 { 2122 vfs_copyopttbl_extend(smo, dmo, 0); 2123 } 2124 2125 static char ** 2126 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 2127 { 2128 int c1 = 0; 2129 int c2 = 0; 2130 char **result; 2131 char **sp1, **sp2, **dp; 2132 2133 /* 2134 * First we count both lists of cancel options. 2135 * If either is NULL or has no elements, we return a copy of 2136 * the other. 2137 */ 2138 if (mop1->mo_cancel != NULL) { 2139 for (; mop1->mo_cancel[c1] != NULL; c1++) 2140 /* count cancel options in mop1 */; 2141 } 2142 2143 if (c1 == 0) 2144 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 2145 2146 if (mop2->mo_cancel != NULL) { 2147 for (; mop2->mo_cancel[c2] != NULL; c2++) 2148 /* count cancel options in mop2 */; 2149 } 2150 2151 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 2152 2153 if (c2 == 0) 2154 return (result); 2155 2156 /* 2157 * When we get here, we've got two sets of cancel options; 2158 * we need to merge the two sets. We know that the result 2159 * array has "c1+c2+1" entries and in the end we might shrink 2160 * it. 2161 * Result now has a copy of the c1 entries from mop1; we'll 2162 * now lookup all the entries of mop2 in mop1 and copy it if 2163 * it is unique. 2164 * This operation is O(n^2) but it's only called once per 2165 * filesystem per duplicate option. This is a situation 2166 * which doesn't arise with the filesystems in ON and 2167 * n is generally 1. 2168 */ 2169 2170 dp = &result[c1]; 2171 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 2172 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 2173 if (strcmp(*sp1, *sp2) == 0) 2174 break; 2175 } 2176 if (*sp1 == NULL) { 2177 /* 2178 * Option *sp2 not found in mop1, so copy it. 2179 * The calls to vfs_copycancelopt_extend() 2180 * guarantee that there's enough room. 2181 */ 2182 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 2183 (void) strcpy(*dp++, *sp2); 2184 } 2185 } 2186 if (dp != &result[c1+c2]) { 2187 size_t bytes = (dp - result + 1) * sizeof (char *); 2188 char **nres = kmem_alloc(bytes, KM_SLEEP); 2189 2190 bcopy(result, nres, bytes); 2191 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 2192 result = nres; 2193 } 2194 return (result); 2195 } 2196 2197 /* 2198 * Merge two mount option tables (outer and inner) into one. This is very 2199 * similar to "merging" global variables and automatic variables in C. 2200 * 2201 * This isn't (and doesn't have to be) fast. 2202 * 2203 * This function is *not* for general use by filesystems. 2204 * 2205 * Note: caller is responsible for locking the vfs list, if needed, 2206 * to protect omo, imo & dmo. 2207 */ 2208 void 2209 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2210 { 2211 uint_t i, count; 2212 mntopt_t *mop, *motbl; 2213 uint_t freeidx; 2214 2215 /* 2216 * First determine how much space we need to allocate. 2217 */ 2218 count = omo->mo_count; 2219 for (i = 0; i < imo->mo_count; i++) { 2220 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2221 continue; 2222 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2223 count++; 2224 } 2225 ASSERT(count >= omo->mo_count && 2226 count <= omo->mo_count + imo->mo_count); 2227 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2228 for (i = 0; i < omo->mo_count; i++) 2229 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2230 freeidx = omo->mo_count; 2231 for (i = 0; i < imo->mo_count; i++) { 2232 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2233 continue; 2234 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2235 char **newcanp; 2236 uint_t index = mop - omo->mo_list; 2237 2238 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2239 2240 vfs_freeopt(&motbl[index]); 2241 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2242 2243 vfs_freecancelopt(motbl[index].mo_cancel); 2244 motbl[index].mo_cancel = newcanp; 2245 } else { 2246 /* 2247 * If it's a new option, just copy it over to the first 2248 * free location. 2249 */ 2250 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2251 } 2252 } 2253 dmo->mo_count = count; 2254 dmo->mo_list = motbl; 2255 } 2256 2257 /* 2258 * Functions to set and clear mount options in a mount options table. 2259 */ 2260 2261 /* 2262 * Clear a mount option, if it exists. 2263 * 2264 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2265 * the vfs list. 2266 */ 2267 static void 2268 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2269 { 2270 struct mntopt *mop; 2271 uint_t i, count; 2272 2273 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2274 2275 count = mops->mo_count; 2276 for (i = 0; i < count; i++) { 2277 mop = &mops->mo_list[i]; 2278 2279 if (mop->mo_flags & MO_EMPTY) 2280 continue; 2281 if (strcmp(opt, mop->mo_name)) 2282 continue; 2283 mop->mo_flags &= ~MO_SET; 2284 if (mop->mo_arg != NULL) { 2285 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2286 } 2287 mop->mo_arg = NULL; 2288 if (update_mnttab) 2289 vfs_mnttab_modtimeupd(); 2290 break; 2291 } 2292 } 2293 2294 void 2295 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2296 { 2297 int gotlock = 0; 2298 2299 if (VFS_ON_LIST(vfsp)) { 2300 gotlock = 1; 2301 vfs_list_lock(); 2302 } 2303 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2304 if (gotlock) 2305 vfs_list_unlock(); 2306 } 2307 2308 2309 /* 2310 * Set a mount option on. If it's not found in the table, it's silently 2311 * ignored. If the option has MO_IGNORE set, it is still set unless the 2312 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2313 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2314 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2315 * MO_EMPTY set is created as the option passed in. 2316 * 2317 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2318 * the vfs list. 2319 */ 2320 static void 2321 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2322 const char *arg, int flags, int update_mnttab) 2323 { 2324 mntopt_t *mop; 2325 uint_t i, count; 2326 char *sp; 2327 2328 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2329 2330 if (flags & VFS_CREATEOPT) { 2331 if (vfs_hasopt(mops, opt) != NULL) { 2332 flags &= ~VFS_CREATEOPT; 2333 } 2334 } 2335 count = mops->mo_count; 2336 for (i = 0; i < count; i++) { 2337 mop = &mops->mo_list[i]; 2338 2339 if (mop->mo_flags & MO_EMPTY) { 2340 if ((flags & VFS_CREATEOPT) == 0) 2341 continue; 2342 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2343 (void) strcpy(sp, opt); 2344 mop->mo_name = sp; 2345 if (arg != NULL) 2346 mop->mo_flags = MO_HASVALUE; 2347 else 2348 mop->mo_flags = 0; 2349 } else if (strcmp(opt, mop->mo_name)) { 2350 continue; 2351 } 2352 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2353 break; 2354 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2355 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2356 (void) strcpy(sp, arg); 2357 } else { 2358 sp = NULL; 2359 } 2360 if (mop->mo_arg != NULL) 2361 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2362 mop->mo_arg = sp; 2363 if (flags & VFS_DISPLAY) 2364 mop->mo_flags &= ~MO_NODISPLAY; 2365 if (flags & VFS_NODISPLAY) 2366 mop->mo_flags |= MO_NODISPLAY; 2367 mop->mo_flags |= MO_SET; 2368 if (mop->mo_cancel != NULL) { 2369 char **cp; 2370 2371 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2372 vfs_clearmntopt_nolock(mops, *cp, 0); 2373 } 2374 if (update_mnttab) 2375 vfs_mnttab_modtimeupd(); 2376 break; 2377 } 2378 } 2379 2380 void 2381 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2382 { 2383 int gotlock = 0; 2384 2385 if (VFS_ON_LIST(vfsp)) { 2386 gotlock = 1; 2387 vfs_list_lock(); 2388 } 2389 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2390 if (gotlock) 2391 vfs_list_unlock(); 2392 } 2393 2394 2395 /* 2396 * Add a "tag" option to a mounted file system's options list. 2397 * 2398 * Note: caller is responsible for locking the vfs list, if needed, 2399 * to protect mops. 2400 */ 2401 static mntopt_t * 2402 vfs_addtag(mntopts_t *mops, const char *tag) 2403 { 2404 uint_t count; 2405 mntopt_t *mop, *motbl; 2406 2407 count = mops->mo_count + 1; 2408 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2409 if (mops->mo_count) { 2410 size_t len = (count - 1) * sizeof (mntopt_t); 2411 2412 bcopy(mops->mo_list, motbl, len); 2413 kmem_free(mops->mo_list, len); 2414 } 2415 mops->mo_count = count; 2416 mops->mo_list = motbl; 2417 mop = &motbl[count - 1]; 2418 mop->mo_flags = MO_TAG; 2419 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2420 (void) strcpy(mop->mo_name, tag); 2421 return (mop); 2422 } 2423 2424 /* 2425 * Allow users to set arbitrary "tags" in a vfs's mount options. 2426 * Broader use within the kernel is discouraged. 2427 */ 2428 int 2429 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2430 cred_t *cr) 2431 { 2432 vfs_t *vfsp; 2433 mntopts_t *mops; 2434 mntopt_t *mop; 2435 int found = 0; 2436 dev_t dev = makedevice(major, minor); 2437 int err = 0; 2438 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2439 2440 /* 2441 * Find the desired mounted file system 2442 */ 2443 vfs_list_lock(); 2444 vfsp = rootvfs; 2445 do { 2446 if (vfsp->vfs_dev == dev && 2447 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2448 found = 1; 2449 break; 2450 } 2451 vfsp = vfsp->vfs_next; 2452 } while (vfsp != rootvfs); 2453 2454 if (!found) { 2455 err = EINVAL; 2456 goto out; 2457 } 2458 err = secpolicy_fs_config(cr, vfsp); 2459 if (err != 0) 2460 goto out; 2461 2462 mops = &vfsp->vfs_mntopts; 2463 /* 2464 * Add tag if it doesn't already exist 2465 */ 2466 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2467 int len; 2468 2469 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2470 len = strlen(buf); 2471 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2472 err = ENAMETOOLONG; 2473 goto out; 2474 } 2475 mop = vfs_addtag(mops, tag); 2476 } 2477 if ((mop->mo_flags & MO_TAG) == 0) { 2478 err = EINVAL; 2479 goto out; 2480 } 2481 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2482 out: 2483 vfs_list_unlock(); 2484 kmem_free(buf, MAX_MNTOPT_STR); 2485 return (err); 2486 } 2487 2488 /* 2489 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2490 * Broader use within the kernel is discouraged. 2491 */ 2492 int 2493 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2494 cred_t *cr) 2495 { 2496 vfs_t *vfsp; 2497 mntopt_t *mop; 2498 int found = 0; 2499 dev_t dev = makedevice(major, minor); 2500 int err = 0; 2501 2502 /* 2503 * Find the desired mounted file system 2504 */ 2505 vfs_list_lock(); 2506 vfsp = rootvfs; 2507 do { 2508 if (vfsp->vfs_dev == dev && 2509 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2510 found = 1; 2511 break; 2512 } 2513 vfsp = vfsp->vfs_next; 2514 } while (vfsp != rootvfs); 2515 2516 if (!found) { 2517 err = EINVAL; 2518 goto out; 2519 } 2520 err = secpolicy_fs_config(cr, vfsp); 2521 if (err != 0) 2522 goto out; 2523 2524 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2525 err = EINVAL; 2526 goto out; 2527 } 2528 if ((mop->mo_flags & MO_TAG) == 0) { 2529 err = EINVAL; 2530 goto out; 2531 } 2532 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2533 out: 2534 vfs_list_unlock(); 2535 return (err); 2536 } 2537 2538 /* 2539 * Function to parse an option string and fill in a mount options table. 2540 * Unknown options are silently ignored. The input option string is modified 2541 * by replacing separators with nulls. If the create flag is set, options 2542 * not found in the table are just added on the fly. The table must have 2543 * an option slot marked MO_EMPTY to add an option on the fly. 2544 * 2545 * This function is *not* for general use by filesystems. 2546 * 2547 * Note: caller is responsible for locking the vfs list, if needed, 2548 * to protect mops.. 2549 */ 2550 void 2551 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2552 { 2553 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2554 int setflg = VFS_NOFORCEOPT; 2555 2556 if (osp == NULL) 2557 return; 2558 while (*s != '\0') { 2559 p = strchr(s, ','); /* find next option */ 2560 if (p == NULL) { 2561 cp = NULL; 2562 p = s + strlen(s); 2563 } else { 2564 cp = p; /* save location of comma */ 2565 *p++ = '\0'; /* mark end and point to next option */ 2566 } 2567 nextop = p; 2568 p = strchr(s, '='); /* look for value */ 2569 if (p == NULL) { 2570 valp = NULL; /* no value supplied */ 2571 } else { 2572 ep = p; /* save location of equals */ 2573 *p++ = '\0'; /* end option and point to value */ 2574 valp = p; 2575 } 2576 /* 2577 * set option into options table 2578 */ 2579 if (create) 2580 setflg |= VFS_CREATEOPT; 2581 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2582 if (cp != NULL) 2583 *cp = ','; /* restore the comma */ 2584 if (valp != NULL) 2585 *ep = '='; /* restore the equals */ 2586 s = nextop; 2587 } 2588 } 2589 2590 /* 2591 * Function to inquire if an option exists in a mount options table. 2592 * Returns a pointer to the option if it exists, else NULL. 2593 * 2594 * This function is *not* for general use by filesystems. 2595 * 2596 * Note: caller is responsible for locking the vfs list, if needed, 2597 * to protect mops. 2598 */ 2599 struct mntopt * 2600 vfs_hasopt(const mntopts_t *mops, const char *opt) 2601 { 2602 struct mntopt *mop; 2603 uint_t i, count; 2604 2605 count = mops->mo_count; 2606 for (i = 0; i < count; i++) { 2607 mop = &mops->mo_list[i]; 2608 2609 if (mop->mo_flags & MO_EMPTY) 2610 continue; 2611 if (strcmp(opt, mop->mo_name) == 0) 2612 return (mop); 2613 } 2614 return (NULL); 2615 } 2616 2617 /* 2618 * Function to inquire if an option is set in a mount options table. 2619 * Returns non-zero if set and fills in the arg pointer with a pointer to 2620 * the argument string or NULL if there is no argument string. 2621 */ 2622 static int 2623 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2624 { 2625 struct mntopt *mop; 2626 uint_t i, count; 2627 2628 count = mops->mo_count; 2629 for (i = 0; i < count; i++) { 2630 mop = &mops->mo_list[i]; 2631 2632 if (mop->mo_flags & MO_EMPTY) 2633 continue; 2634 if (strcmp(opt, mop->mo_name)) 2635 continue; 2636 if ((mop->mo_flags & MO_SET) == 0) 2637 return (0); 2638 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2639 *argp = mop->mo_arg; 2640 return (1); 2641 } 2642 return (0); 2643 } 2644 2645 2646 int 2647 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2648 { 2649 int ret; 2650 2651 vfs_list_read_lock(); 2652 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2653 vfs_list_unlock(); 2654 return (ret); 2655 } 2656 2657 2658 /* 2659 * Construct a comma separated string of the options set in the given 2660 * mount table, return the string in the given buffer. Return non-zero if 2661 * the buffer would overflow. 2662 * 2663 * This function is *not* for general use by filesystems. 2664 * 2665 * Note: caller is responsible for locking the vfs list, if needed, 2666 * to protect mp. 2667 */ 2668 int 2669 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2670 { 2671 char *cp; 2672 uint_t i; 2673 2674 buf[0] = '\0'; 2675 cp = buf; 2676 for (i = 0; i < mp->mo_count; i++) { 2677 struct mntopt *mop; 2678 2679 mop = &mp->mo_list[i]; 2680 if (mop->mo_flags & MO_SET) { 2681 int optlen, comma = 0; 2682 2683 if (buf[0] != '\0') 2684 comma = 1; 2685 optlen = strlen(mop->mo_name); 2686 if (strlen(buf) + comma + optlen + 1 > len) 2687 goto err; 2688 if (comma) 2689 *cp++ = ','; 2690 (void) strcpy(cp, mop->mo_name); 2691 cp += optlen; 2692 /* 2693 * Append option value if there is one 2694 */ 2695 if (mop->mo_arg != NULL) { 2696 int arglen; 2697 2698 arglen = strlen(mop->mo_arg); 2699 if (strlen(buf) + arglen + 2 > len) 2700 goto err; 2701 *cp++ = '='; 2702 (void) strcpy(cp, mop->mo_arg); 2703 cp += arglen; 2704 } 2705 } 2706 } 2707 return (0); 2708 err: 2709 return (EOVERFLOW); 2710 } 2711 2712 static void 2713 vfs_freecancelopt(char **moc) 2714 { 2715 if (moc != NULL) { 2716 int ccnt = 0; 2717 char **cp; 2718 2719 for (cp = moc; *cp != NULL; cp++) { 2720 kmem_free(*cp, strlen(*cp) + 1); 2721 ccnt++; 2722 } 2723 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2724 } 2725 } 2726 2727 static void 2728 vfs_freeopt(mntopt_t *mop) 2729 { 2730 if (mop->mo_name != NULL) 2731 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2732 2733 vfs_freecancelopt(mop->mo_cancel); 2734 2735 if (mop->mo_arg != NULL) 2736 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2737 } 2738 2739 /* 2740 * Free a mount options table 2741 * 2742 * This function is *not* for general use by filesystems. 2743 * 2744 * Note: caller is responsible for locking the vfs list, if needed, 2745 * to protect mp. 2746 */ 2747 void 2748 vfs_freeopttbl(mntopts_t *mp) 2749 { 2750 uint_t i, count; 2751 2752 count = mp->mo_count; 2753 for (i = 0; i < count; i++) { 2754 vfs_freeopt(&mp->mo_list[i]); 2755 } 2756 if (count) { 2757 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2758 mp->mo_count = 0; 2759 mp->mo_list = NULL; 2760 } 2761 } 2762 2763 2764 /* ARGSUSED */ 2765 static int 2766 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2767 caller_context_t *ct) 2768 { 2769 return (0); 2770 } 2771 2772 /* ARGSUSED */ 2773 static int 2774 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2775 caller_context_t *ct) 2776 { 2777 return (0); 2778 } 2779 2780 /* 2781 * The dummy vnode is currently used only by file events notification 2782 * module which is just interested in the timestamps. 2783 */ 2784 /* ARGSUSED */ 2785 static int 2786 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2787 caller_context_t *ct) 2788 { 2789 bzero(vap, sizeof (vattr_t)); 2790 vap->va_type = VREG; 2791 vap->va_nlink = 1; 2792 vap->va_ctime = vfs_mnttab_ctime; 2793 /* 2794 * it is ok to just copy mtime as the time will be monotonically 2795 * increasing. 2796 */ 2797 vap->va_mtime = vfs_mnttab_mtime; 2798 vap->va_atime = vap->va_mtime; 2799 return (0); 2800 } 2801 2802 static void 2803 vfs_mnttabvp_setup(void) 2804 { 2805 vnode_t *tvp; 2806 vnodeops_t *vfs_mntdummyvnops; 2807 const fs_operation_def_t mnt_dummyvnodeops_template[] = { 2808 VOPNAME_READ, { .vop_read = vfs_mntdummyread }, 2809 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite }, 2810 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr }, 2811 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 2812 NULL, NULL 2813 }; 2814 2815 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template, 2816 &vfs_mntdummyvnops) != 0) { 2817 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed"); 2818 /* Shouldn't happen, but not bad enough to panic */ 2819 return; 2820 } 2821 2822 /* 2823 * A global dummy vnode is allocated to represent mntfs files. 2824 * The mntfs file (/etc/mnttab) can be monitored for file events 2825 * and receive an event when mnttab changes. Dummy VOP calls 2826 * will be made on this vnode. The file events notification module 2827 * intercepts this vnode and delivers relevant events. 2828 */ 2829 tvp = vn_alloc(KM_SLEEP); 2830 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE; 2831 vn_setops(tvp, vfs_mntdummyvnops); 2832 tvp->v_type = VREG; 2833 /* 2834 * The mnt dummy ops do not reference v_data. 2835 * No other module intercepting this vnode should either. 2836 * Just set it to point to itself. 2837 */ 2838 tvp->v_data = (caddr_t)tvp; 2839 tvp->v_vfsp = rootvfs; 2840 vfs_mntdummyvp = tvp; 2841 } 2842 2843 /* 2844 * performs fake read/write ops 2845 */ 2846 static void 2847 vfs_mnttab_rwop(int rw) 2848 { 2849 struct uio uio; 2850 struct iovec iov; 2851 char buf[1]; 2852 2853 if (vfs_mntdummyvp == NULL) 2854 return; 2855 2856 bzero(&uio, sizeof (uio)); 2857 bzero(&iov, sizeof (iov)); 2858 iov.iov_base = buf; 2859 iov.iov_len = 0; 2860 uio.uio_iov = &iov; 2861 uio.uio_iovcnt = 1; 2862 uio.uio_loffset = 0; 2863 uio.uio_segflg = UIO_SYSSPACE; 2864 uio.uio_resid = 0; 2865 if (rw) { 2866 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2867 } else { 2868 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2869 } 2870 } 2871 2872 /* 2873 * Generate a write operation. 2874 */ 2875 void 2876 vfs_mnttab_writeop(void) 2877 { 2878 vfs_mnttab_rwop(1); 2879 } 2880 2881 /* 2882 * Generate a read operation. 2883 */ 2884 void 2885 vfs_mnttab_readop(void) 2886 { 2887 vfs_mnttab_rwop(0); 2888 } 2889 2890 /* 2891 * Free any mnttab information recorded in the vfs struct. 2892 * The vfs must not be on the vfs list. 2893 */ 2894 static void 2895 vfs_freemnttab(struct vfs *vfsp) 2896 { 2897 ASSERT(!VFS_ON_LIST(vfsp)); 2898 2899 /* 2900 * Free device and mount point information 2901 */ 2902 if (vfsp->vfs_mntpt != NULL) { 2903 refstr_rele(vfsp->vfs_mntpt); 2904 vfsp->vfs_mntpt = NULL; 2905 } 2906 if (vfsp->vfs_resource != NULL) { 2907 refstr_rele(vfsp->vfs_resource); 2908 vfsp->vfs_resource = NULL; 2909 } 2910 /* 2911 * Now free mount options information 2912 */ 2913 vfs_freeopttbl(&vfsp->vfs_mntopts); 2914 } 2915 2916 /* 2917 * Return the last mnttab modification time 2918 */ 2919 void 2920 vfs_mnttab_modtime(timespec_t *ts) 2921 { 2922 ASSERT(RW_LOCK_HELD(&vfslist)); 2923 *ts = vfs_mnttab_mtime; 2924 } 2925 2926 /* 2927 * See if mnttab is changed 2928 */ 2929 void 2930 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2931 { 2932 int changed; 2933 2934 *phpp = (struct pollhead *)NULL; 2935 2936 /* 2937 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2938 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2939 * to not grab the vfs list lock because tv_sec is monotonically 2940 * increasing. 2941 */ 2942 2943 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2944 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2945 if (!changed) { 2946 *phpp = &vfs_pollhd; 2947 } 2948 } 2949 2950 /* Provide a unique and monotonically-increasing timestamp. */ 2951 void 2952 vfs_mono_time(timespec_t *ts) 2953 { 2954 static volatile hrtime_t hrt; /* The saved time. */ 2955 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */ 2956 timespec_t newts; 2957 2958 /* 2959 * Try gethrestime() first, but be prepared to fabricate a sensible 2960 * answer at the first sign of any trouble. 2961 */ 2962 gethrestime(&newts); 2963 newhrt = ts2hrt(&newts); 2964 for (;;) { 2965 oldhrt = hrt; 2966 if (newhrt <= hrt) 2967 newhrt = hrt + 1; 2968 if (cas64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt) 2969 break; 2970 } 2971 hrt2ts(newhrt, ts); 2972 } 2973 2974 /* 2975 * Update the mnttab modification time and wake up any waiters for 2976 * mnttab changes 2977 */ 2978 void 2979 vfs_mnttab_modtimeupd() 2980 { 2981 hrtime_t oldhrt, newhrt; 2982 2983 ASSERT(RW_WRITE_HELD(&vfslist)); 2984 oldhrt = ts2hrt(&vfs_mnttab_mtime); 2985 gethrestime(&vfs_mnttab_mtime); 2986 newhrt = ts2hrt(&vfs_mnttab_mtime); 2987 if (oldhrt == (hrtime_t)0) 2988 vfs_mnttab_ctime = vfs_mnttab_mtime; 2989 /* 2990 * Attempt to provide unique mtime (like uniqtime but not). 2991 */ 2992 if (newhrt == oldhrt) { 2993 newhrt++; 2994 hrt2ts(newhrt, &vfs_mnttab_mtime); 2995 } 2996 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 2997 vfs_mnttab_writeop(); 2998 } 2999 3000 int 3001 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 3002 { 3003 vnode_t *coveredvp; 3004 int error; 3005 extern void teardown_vopstats(vfs_t *); 3006 3007 /* 3008 * Get covered vnode. This will be NULL if the vfs is not linked 3009 * into the file system name space (i.e., domount() with MNT_NOSPICE). 3010 */ 3011 coveredvp = vfsp->vfs_vnodecovered; 3012 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 3013 3014 /* 3015 * Purge all dnlc entries for this vfs. 3016 */ 3017 (void) dnlc_purge_vfsp(vfsp, 0); 3018 3019 /* For forcible umount, skip VFS_SYNC() since it may hang */ 3020 if ((flag & MS_FORCE) == 0) 3021 (void) VFS_SYNC(vfsp, 0, cr); 3022 3023 /* 3024 * Lock the vfs to maintain fs status quo during unmount. This 3025 * has to be done after the sync because ufs_update tries to acquire 3026 * the vfs_reflock. 3027 */ 3028 vfs_lock_wait(vfsp); 3029 3030 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 3031 vfs_unlock(vfsp); 3032 if (coveredvp != NULL) 3033 vn_vfsunlock(coveredvp); 3034 } else if (coveredvp != NULL) { 3035 teardown_vopstats(vfsp); 3036 /* 3037 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 3038 * when it frees vfsp so we do a VN_HOLD() so we can 3039 * continue to use coveredvp afterwards. 3040 */ 3041 VN_HOLD(coveredvp); 3042 vfs_remove(vfsp); 3043 vn_vfsunlock(coveredvp); 3044 VN_RELE(coveredvp); 3045 } else { 3046 teardown_vopstats(vfsp); 3047 /* 3048 * Release the reference to vfs that is not linked 3049 * into the name space. 3050 */ 3051 vfs_unlock(vfsp); 3052 VFS_RELE(vfsp); 3053 } 3054 return (error); 3055 } 3056 3057 3058 /* 3059 * Vfs_unmountall() is called by uadmin() to unmount all 3060 * mounted file systems (except the root file system) during shutdown. 3061 * It follows the existing locking protocol when traversing the vfs list 3062 * to sync and unmount vfses. Even though there should be no 3063 * other thread running while the system is shutting down, it is prudent 3064 * to still follow the locking protocol. 3065 */ 3066 void 3067 vfs_unmountall(void) 3068 { 3069 struct vfs *vfsp; 3070 struct vfs *prev_vfsp = NULL; 3071 int error; 3072 3073 /* 3074 * Toss all dnlc entries now so that the per-vfs sync 3075 * and unmount operations don't have to slog through 3076 * a bunch of uninteresting vnodes over and over again. 3077 */ 3078 dnlc_purge(); 3079 3080 vfs_list_lock(); 3081 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 3082 prev_vfsp = vfsp->vfs_prev; 3083 3084 if (vfs_lock(vfsp) != 0) 3085 continue; 3086 error = vn_vfswlock(vfsp->vfs_vnodecovered); 3087 vfs_unlock(vfsp); 3088 if (error) 3089 continue; 3090 3091 vfs_list_unlock(); 3092 3093 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 3094 (void) dounmount(vfsp, 0, CRED()); 3095 3096 /* 3097 * Since we dropped the vfslist lock above we must 3098 * verify that next_vfsp still exists, else start over. 3099 */ 3100 vfs_list_lock(); 3101 for (vfsp = rootvfs->vfs_prev; 3102 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 3103 if (vfsp == prev_vfsp) 3104 break; 3105 if (vfsp == rootvfs && prev_vfsp != rootvfs) 3106 prev_vfsp = rootvfs->vfs_prev; 3107 } 3108 vfs_list_unlock(); 3109 } 3110 3111 /* 3112 * Called to add an entry to the end of the vfs mount in progress list 3113 */ 3114 void 3115 vfs_addmip(dev_t dev, struct vfs *vfsp) 3116 { 3117 struct ipmnt *mipp; 3118 3119 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 3120 mipp->mip_next = NULL; 3121 mipp->mip_dev = dev; 3122 mipp->mip_vfsp = vfsp; 3123 mutex_enter(&vfs_miplist_mutex); 3124 if (vfs_miplist_end != NULL) 3125 vfs_miplist_end->mip_next = mipp; 3126 else 3127 vfs_miplist = mipp; 3128 vfs_miplist_end = mipp; 3129 mutex_exit(&vfs_miplist_mutex); 3130 } 3131 3132 /* 3133 * Called to remove an entry from the mount in progress list 3134 * Either because the mount completed or it failed. 3135 */ 3136 void 3137 vfs_delmip(struct vfs *vfsp) 3138 { 3139 struct ipmnt *mipp, *mipprev; 3140 3141 mutex_enter(&vfs_miplist_mutex); 3142 mipprev = NULL; 3143 for (mipp = vfs_miplist; 3144 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 3145 mipprev = mipp; 3146 } 3147 if (mipp == NULL) 3148 return; /* shouldn't happen */ 3149 if (mipp == vfs_miplist_end) 3150 vfs_miplist_end = mipprev; 3151 if (mipprev == NULL) 3152 vfs_miplist = mipp->mip_next; 3153 else 3154 mipprev->mip_next = mipp->mip_next; 3155 mutex_exit(&vfs_miplist_mutex); 3156 kmem_free(mipp, sizeof (struct ipmnt)); 3157 } 3158 3159 /* 3160 * vfs_add is called by a specific filesystem's mount routine to add 3161 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 3162 * The vfs should already have been locked by the caller. 3163 * 3164 * coveredvp is NULL if this is the root. 3165 */ 3166 void 3167 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 3168 { 3169 int newflag; 3170 3171 ASSERT(vfs_lock_held(vfsp)); 3172 VFS_HOLD(vfsp); 3173 newflag = vfsp->vfs_flag; 3174 if (mflag & MS_RDONLY) 3175 newflag |= VFS_RDONLY; 3176 else 3177 newflag &= ~VFS_RDONLY; 3178 if (mflag & MS_NOSUID) 3179 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 3180 else 3181 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 3182 if (mflag & MS_NOMNTTAB) 3183 newflag |= VFS_NOMNTTAB; 3184 else 3185 newflag &= ~VFS_NOMNTTAB; 3186 3187 if (coveredvp != NULL) { 3188 ASSERT(vn_vfswlock_held(coveredvp)); 3189 coveredvp->v_vfsmountedhere = vfsp; 3190 VN_HOLD(coveredvp); 3191 } 3192 vfsp->vfs_vnodecovered = coveredvp; 3193 vfsp->vfs_flag = newflag; 3194 3195 vfs_list_add(vfsp); 3196 } 3197 3198 /* 3199 * Remove a vfs from the vfs list, null out the pointer from the 3200 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 3201 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 3202 * reference to the vfs and to the covered vnode. 3203 * 3204 * Called from dounmount after it's confirmed with the file system 3205 * that the unmount is legal. 3206 */ 3207 void 3208 vfs_remove(struct vfs *vfsp) 3209 { 3210 vnode_t *vp; 3211 3212 ASSERT(vfs_lock_held(vfsp)); 3213 3214 /* 3215 * Can't unmount root. Should never happen because fs will 3216 * be busy. 3217 */ 3218 if (vfsp == rootvfs) 3219 panic("vfs_remove: unmounting root"); 3220 3221 vfs_list_remove(vfsp); 3222 3223 /* 3224 * Unhook from the file system name space. 3225 */ 3226 vp = vfsp->vfs_vnodecovered; 3227 ASSERT(vn_vfswlock_held(vp)); 3228 vp->v_vfsmountedhere = NULL; 3229 vfsp->vfs_vnodecovered = NULL; 3230 VN_RELE(vp); 3231 3232 /* 3233 * Release lock and wakeup anybody waiting. 3234 */ 3235 vfs_unlock(vfsp); 3236 VFS_RELE(vfsp); 3237 } 3238 3239 /* 3240 * Lock a filesystem to prevent access to it while mounting, 3241 * unmounting and syncing. Return EBUSY immediately if lock 3242 * can't be acquired. 3243 */ 3244 int 3245 vfs_lock(vfs_t *vfsp) 3246 { 3247 vn_vfslocks_entry_t *vpvfsentry; 3248 3249 vpvfsentry = vn_vfslocks_getlock(vfsp); 3250 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 3251 return (0); 3252 3253 vn_vfslocks_rele(vpvfsentry); 3254 return (EBUSY); 3255 } 3256 3257 int 3258 vfs_rlock(vfs_t *vfsp) 3259 { 3260 vn_vfslocks_entry_t *vpvfsentry; 3261 3262 vpvfsentry = vn_vfslocks_getlock(vfsp); 3263 3264 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 3265 return (0); 3266 3267 vn_vfslocks_rele(vpvfsentry); 3268 return (EBUSY); 3269 } 3270 3271 void 3272 vfs_lock_wait(vfs_t *vfsp) 3273 { 3274 vn_vfslocks_entry_t *vpvfsentry; 3275 3276 vpvfsentry = vn_vfslocks_getlock(vfsp); 3277 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 3278 } 3279 3280 void 3281 vfs_rlock_wait(vfs_t *vfsp) 3282 { 3283 vn_vfslocks_entry_t *vpvfsentry; 3284 3285 vpvfsentry = vn_vfslocks_getlock(vfsp); 3286 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 3287 } 3288 3289 /* 3290 * Unlock a locked filesystem. 3291 */ 3292 void 3293 vfs_unlock(vfs_t *vfsp) 3294 { 3295 vn_vfslocks_entry_t *vpvfsentry; 3296 3297 /* 3298 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 3299 * And these changes should remain for the patch changes as it is. 3300 */ 3301 if (panicstr) 3302 return; 3303 3304 /* 3305 * ve_refcount needs to be dropped twice here. 3306 * 1. To release refernce after a call to vfs_locks_getlock() 3307 * 2. To release the reference from the locking routines like 3308 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 3309 */ 3310 3311 vpvfsentry = vn_vfslocks_getlock(vfsp); 3312 vn_vfslocks_rele(vpvfsentry); 3313 3314 rwst_exit(&vpvfsentry->ve_lock); 3315 vn_vfslocks_rele(vpvfsentry); 3316 } 3317 3318 /* 3319 * Utility routine that allows a filesystem to construct its 3320 * fsid in "the usual way" - by munging some underlying dev_t and 3321 * the filesystem type number into the 64-bit fsid. Note that 3322 * this implicitly relies on dev_t persistence to make filesystem 3323 * id's persistent. 3324 * 3325 * There's nothing to prevent an individual fs from constructing its 3326 * fsid in a different way, and indeed they should. 3327 * 3328 * Since we want fsids to be 32-bit quantities (so that they can be 3329 * exported identically by either 32-bit or 64-bit APIs, as well as 3330 * the fact that fsid's are "known" to NFS), we compress the device 3331 * number given down to 32-bits, and panic if that isn't possible. 3332 */ 3333 void 3334 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 3335 { 3336 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 3337 panic("device number too big for fsid!"); 3338 fsi->val[1] = val; 3339 } 3340 3341 int 3342 vfs_lock_held(vfs_t *vfsp) 3343 { 3344 int held; 3345 vn_vfslocks_entry_t *vpvfsentry; 3346 3347 /* 3348 * vfs_lock_held will mimic sema_held behaviour 3349 * if panicstr is set. And these changes should remain 3350 * for the patch changes as it is. 3351 */ 3352 if (panicstr) 3353 return (1); 3354 3355 vpvfsentry = vn_vfslocks_getlock(vfsp); 3356 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3357 3358 vn_vfslocks_rele(vpvfsentry); 3359 return (held); 3360 } 3361 3362 struct _kthread * 3363 vfs_lock_owner(vfs_t *vfsp) 3364 { 3365 struct _kthread *owner; 3366 vn_vfslocks_entry_t *vpvfsentry; 3367 3368 /* 3369 * vfs_wlock_held will mimic sema_held behaviour 3370 * if panicstr is set. And these changes should remain 3371 * for the patch changes as it is. 3372 */ 3373 if (panicstr) 3374 return (NULL); 3375 3376 vpvfsentry = vn_vfslocks_getlock(vfsp); 3377 owner = rwst_owner(&vpvfsentry->ve_lock); 3378 3379 vn_vfslocks_rele(vpvfsentry); 3380 return (owner); 3381 } 3382 3383 /* 3384 * vfs list locking. 3385 * 3386 * Rather than manipulate the vfslist lock directly, we abstract into lock 3387 * and unlock routines to allow the locking implementation to be changed for 3388 * clustering. 3389 * 3390 * Whenever the vfs list is modified through its hash links, the overall list 3391 * lock must be obtained before locking the relevant hash bucket. But to see 3392 * whether a given vfs is on the list, it suffices to obtain the lock for the 3393 * hash bucket without getting the overall list lock. (See getvfs() below.) 3394 */ 3395 3396 void 3397 vfs_list_lock() 3398 { 3399 rw_enter(&vfslist, RW_WRITER); 3400 } 3401 3402 void 3403 vfs_list_read_lock() 3404 { 3405 rw_enter(&vfslist, RW_READER); 3406 } 3407 3408 void 3409 vfs_list_unlock() 3410 { 3411 rw_exit(&vfslist); 3412 } 3413 3414 /* 3415 * Low level worker routines for adding entries to and removing entries from 3416 * the vfs list. 3417 */ 3418 3419 static void 3420 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3421 { 3422 int vhno; 3423 struct vfs **hp; 3424 dev_t dev; 3425 3426 ASSERT(RW_WRITE_HELD(&vfslist)); 3427 3428 dev = expldev(vfsp->vfs_fsid.val[0]); 3429 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3430 3431 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3432 3433 /* 3434 * Link into the hash table, inserting it at the end, so that LOFS 3435 * with the same fsid as UFS (or other) file systems will not hide the 3436 * UFS. 3437 */ 3438 if (insert_at_head) { 3439 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3440 rvfs_list[vhno].rvfs_head = vfsp; 3441 } else { 3442 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3443 hp = &(*hp)->vfs_hash) 3444 continue; 3445 /* 3446 * hp now contains the address of the pointer to update 3447 * to effect the insertion. 3448 */ 3449 vfsp->vfs_hash = NULL; 3450 *hp = vfsp; 3451 } 3452 3453 rvfs_list[vhno].rvfs_len++; 3454 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3455 } 3456 3457 3458 static void 3459 vfs_hash_remove(struct vfs *vfsp) 3460 { 3461 int vhno; 3462 struct vfs *tvfsp; 3463 dev_t dev; 3464 3465 ASSERT(RW_WRITE_HELD(&vfslist)); 3466 3467 dev = expldev(vfsp->vfs_fsid.val[0]); 3468 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3469 3470 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3471 3472 /* 3473 * Remove from hash. 3474 */ 3475 if (rvfs_list[vhno].rvfs_head == vfsp) { 3476 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3477 rvfs_list[vhno].rvfs_len--; 3478 goto foundit; 3479 } 3480 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3481 tvfsp = tvfsp->vfs_hash) { 3482 if (tvfsp->vfs_hash == vfsp) { 3483 tvfsp->vfs_hash = vfsp->vfs_hash; 3484 rvfs_list[vhno].rvfs_len--; 3485 goto foundit; 3486 } 3487 } 3488 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3489 3490 foundit: 3491 3492 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3493 } 3494 3495 3496 void 3497 vfs_list_add(struct vfs *vfsp) 3498 { 3499 zone_t *zone; 3500 3501 /* 3502 * Typically, the vfs_t will have been created on behalf of the file 3503 * system in vfs_init, where it will have been provided with a 3504 * vfs_impl_t. This, however, might be lacking if the vfs_t was created 3505 * by an unbundled file system. We therefore check for such an example 3506 * before stamping the vfs_t with its creation time for the benefit of 3507 * mntfs. 3508 */ 3509 if (vfsp->vfs_implp == NULL) 3510 vfsimpl_setup(vfsp); 3511 vfs_mono_time(&vfsp->vfs_hrctime); 3512 3513 /* 3514 * The zone that owns the mount is the one that performed the mount. 3515 * Note that this isn't necessarily the same as the zone mounted into. 3516 * The corresponding zone_rele() will be done when the vfs_t is 3517 * being free'd. 3518 */ 3519 vfsp->vfs_zone = curproc->p_zone; 3520 zone_hold(vfsp->vfs_zone); 3521 3522 /* 3523 * Find the zone mounted into, and put this mount on its vfs list. 3524 */ 3525 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3526 ASSERT(zone != NULL); 3527 /* 3528 * Special casing for the root vfs. This structure is allocated 3529 * statically and hooked onto rootvfs at link time. During the 3530 * vfs_mountroot call at system startup time, the root file system's 3531 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3532 * as argument. The code below must detect and handle this special 3533 * case. The only apparent justification for this special casing is 3534 * to ensure that the root file system appears at the head of the 3535 * list. 3536 * 3537 * XXX: I'm assuming that it's ok to do normal list locking when 3538 * adding the entry for the root file system (this used to be 3539 * done with no locks held). 3540 */ 3541 vfs_list_lock(); 3542 /* 3543 * Link into the vfs list proper. 3544 */ 3545 if (vfsp == &root) { 3546 /* 3547 * Assert: This vfs is already on the list as its first entry. 3548 * Thus, there's nothing to do. 3549 */ 3550 ASSERT(rootvfs == vfsp); 3551 /* 3552 * Add it to the head of the global zone's vfslist. 3553 */ 3554 ASSERT(zone == global_zone); 3555 ASSERT(zone->zone_vfslist == NULL); 3556 zone->zone_vfslist = vfsp; 3557 } else { 3558 /* 3559 * Link to end of list using vfs_prev (as rootvfs is now a 3560 * doubly linked circular list) so list is in mount order for 3561 * mnttab use. 3562 */ 3563 rootvfs->vfs_prev->vfs_next = vfsp; 3564 vfsp->vfs_prev = rootvfs->vfs_prev; 3565 rootvfs->vfs_prev = vfsp; 3566 vfsp->vfs_next = rootvfs; 3567 3568 /* 3569 * Do it again for the zone-private list (which may be NULL). 3570 */ 3571 if (zone->zone_vfslist == NULL) { 3572 ASSERT(zone != global_zone); 3573 zone->zone_vfslist = vfsp; 3574 } else { 3575 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3576 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3577 zone->zone_vfslist->vfs_zone_prev = vfsp; 3578 vfsp->vfs_zone_next = zone->zone_vfslist; 3579 } 3580 } 3581 3582 /* 3583 * Link into the hash table, inserting it at the end, so that LOFS 3584 * with the same fsid as UFS (or other) file systems will not hide 3585 * the UFS. 3586 */ 3587 vfs_hash_add(vfsp, 0); 3588 3589 /* 3590 * update the mnttab modification time 3591 */ 3592 vfs_mnttab_modtimeupd(); 3593 vfs_list_unlock(); 3594 zone_rele(zone); 3595 } 3596 3597 void 3598 vfs_list_remove(struct vfs *vfsp) 3599 { 3600 zone_t *zone; 3601 3602 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3603 ASSERT(zone != NULL); 3604 /* 3605 * Callers are responsible for preventing attempts to unmount the 3606 * root. 3607 */ 3608 ASSERT(vfsp != rootvfs); 3609 3610 vfs_list_lock(); 3611 3612 /* 3613 * Remove from hash. 3614 */ 3615 vfs_hash_remove(vfsp); 3616 3617 /* 3618 * Remove from vfs list. 3619 */ 3620 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3621 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3622 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3623 3624 /* 3625 * Remove from zone-specific vfs list. 3626 */ 3627 if (zone->zone_vfslist == vfsp) 3628 zone->zone_vfslist = vfsp->vfs_zone_next; 3629 3630 if (vfsp->vfs_zone_next == vfsp) { 3631 ASSERT(vfsp->vfs_zone_prev == vfsp); 3632 ASSERT(zone->zone_vfslist == vfsp); 3633 zone->zone_vfslist = NULL; 3634 } 3635 3636 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3637 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3638 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3639 3640 /* 3641 * update the mnttab modification time 3642 */ 3643 vfs_mnttab_modtimeupd(); 3644 vfs_list_unlock(); 3645 zone_rele(zone); 3646 } 3647 3648 struct vfs * 3649 getvfs(fsid_t *fsid) 3650 { 3651 struct vfs *vfsp; 3652 int val0 = fsid->val[0]; 3653 int val1 = fsid->val[1]; 3654 dev_t dev = expldev(val0); 3655 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3656 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3657 3658 mutex_enter(hmp); 3659 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3660 if (vfsp->vfs_fsid.val[0] == val0 && 3661 vfsp->vfs_fsid.val[1] == val1) { 3662 VFS_HOLD(vfsp); 3663 mutex_exit(hmp); 3664 return (vfsp); 3665 } 3666 } 3667 mutex_exit(hmp); 3668 return (NULL); 3669 } 3670 3671 /* 3672 * Search the vfs mount in progress list for a specified device/vfs entry. 3673 * Returns 0 if the first entry in the list that the device matches has the 3674 * given vfs pointer as well. If the device matches but a different vfs 3675 * pointer is encountered in the list before the given vfs pointer then 3676 * a 1 is returned. 3677 */ 3678 3679 int 3680 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3681 { 3682 int retval = 0; 3683 struct ipmnt *mipp; 3684 3685 mutex_enter(&vfs_miplist_mutex); 3686 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3687 if (mipp->mip_dev == dev) { 3688 if (mipp->mip_vfsp != vfsp) 3689 retval = 1; 3690 break; 3691 } 3692 } 3693 mutex_exit(&vfs_miplist_mutex); 3694 return (retval); 3695 } 3696 3697 /* 3698 * Search the vfs list for a specified device. Returns 1, if entry is found 3699 * or 0 if no suitable entry is found. 3700 */ 3701 3702 int 3703 vfs_devismounted(dev_t dev) 3704 { 3705 struct vfs *vfsp; 3706 int found; 3707 3708 vfs_list_read_lock(); 3709 vfsp = rootvfs; 3710 found = 0; 3711 do { 3712 if (vfsp->vfs_dev == dev) { 3713 found = 1; 3714 break; 3715 } 3716 vfsp = vfsp->vfs_next; 3717 } while (vfsp != rootvfs); 3718 3719 vfs_list_unlock(); 3720 return (found); 3721 } 3722 3723 /* 3724 * Search the vfs list for a specified device. Returns a pointer to it 3725 * or NULL if no suitable entry is found. The caller of this routine 3726 * is responsible for releasing the returned vfs pointer. 3727 */ 3728 struct vfs * 3729 vfs_dev2vfsp(dev_t dev) 3730 { 3731 struct vfs *vfsp; 3732 int found; 3733 3734 vfs_list_read_lock(); 3735 vfsp = rootvfs; 3736 found = 0; 3737 do { 3738 /* 3739 * The following could be made more efficient by making 3740 * the entire loop use vfs_zone_next if the call is from 3741 * a zone. The only callers, however, ustat(2) and 3742 * umount2(2), don't seem to justify the added 3743 * complexity at present. 3744 */ 3745 if (vfsp->vfs_dev == dev && 3746 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3747 curproc->p_zone)) { 3748 VFS_HOLD(vfsp); 3749 found = 1; 3750 break; 3751 } 3752 vfsp = vfsp->vfs_next; 3753 } while (vfsp != rootvfs); 3754 vfs_list_unlock(); 3755 return (found ? vfsp: NULL); 3756 } 3757 3758 /* 3759 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3760 * or NULL if no suitable entry is found. The caller of this routine 3761 * is responsible for releasing the returned vfs pointer. 3762 * 3763 * Note that if multiple mntpoints match, the last one matching is 3764 * returned in an attempt to return the "top" mount when overlay 3765 * mounts are covering the same mount point. This is accomplished by starting 3766 * at the end of the list and working our way backwards, stopping at the first 3767 * matching mount. 3768 */ 3769 struct vfs * 3770 vfs_mntpoint2vfsp(const char *mp) 3771 { 3772 struct vfs *vfsp; 3773 struct vfs *retvfsp = NULL; 3774 zone_t *zone = curproc->p_zone; 3775 struct vfs *list; 3776 3777 vfs_list_read_lock(); 3778 if (getzoneid() == GLOBAL_ZONEID) { 3779 /* 3780 * The global zone may see filesystems in any zone. 3781 */ 3782 vfsp = rootvfs->vfs_prev; 3783 do { 3784 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3785 retvfsp = vfsp; 3786 break; 3787 } 3788 vfsp = vfsp->vfs_prev; 3789 } while (vfsp != rootvfs->vfs_prev); 3790 } else if ((list = zone->zone_vfslist) != NULL) { 3791 const char *mntpt; 3792 3793 vfsp = list->vfs_zone_prev; 3794 do { 3795 mntpt = refstr_value(vfsp->vfs_mntpt); 3796 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3797 if (strcmp(mntpt, mp) == 0) { 3798 retvfsp = vfsp; 3799 break; 3800 } 3801 vfsp = vfsp->vfs_zone_prev; 3802 } while (vfsp != list->vfs_zone_prev); 3803 } 3804 if (retvfsp) 3805 VFS_HOLD(retvfsp); 3806 vfs_list_unlock(); 3807 return (retvfsp); 3808 } 3809 3810 /* 3811 * Search the vfs list for a specified vfsops. 3812 * if vfs entry is found then return 1, else 0. 3813 */ 3814 int 3815 vfs_opsinuse(vfsops_t *ops) 3816 { 3817 struct vfs *vfsp; 3818 int found; 3819 3820 vfs_list_read_lock(); 3821 vfsp = rootvfs; 3822 found = 0; 3823 do { 3824 if (vfs_getops(vfsp) == ops) { 3825 found = 1; 3826 break; 3827 } 3828 vfsp = vfsp->vfs_next; 3829 } while (vfsp != rootvfs); 3830 vfs_list_unlock(); 3831 return (found); 3832 } 3833 3834 /* 3835 * Allocate an entry in vfssw for a file system type 3836 */ 3837 struct vfssw * 3838 allocate_vfssw(const char *type) 3839 { 3840 struct vfssw *vswp; 3841 3842 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3843 /* 3844 * The vfssw table uses the empty string to identify an 3845 * available entry; we cannot add any type which has 3846 * a leading NUL. The string length is limited to 3847 * the size of the st_fstype array in struct stat. 3848 */ 3849 return (NULL); 3850 } 3851 3852 ASSERT(VFSSW_WRITE_LOCKED()); 3853 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3854 if (!ALLOCATED_VFSSW(vswp)) { 3855 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3856 (void) strcpy(vswp->vsw_name, type); 3857 ASSERT(vswp->vsw_count == 0); 3858 vswp->vsw_count = 1; 3859 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3860 return (vswp); 3861 } 3862 return (NULL); 3863 } 3864 3865 /* 3866 * Impose additional layer of translation between vfstype names 3867 * and module names in the filesystem. 3868 */ 3869 static const char * 3870 vfs_to_modname(const char *vfstype) 3871 { 3872 if (strcmp(vfstype, "proc") == 0) { 3873 vfstype = "procfs"; 3874 } else if (strcmp(vfstype, "fd") == 0) { 3875 vfstype = "fdfs"; 3876 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3877 vfstype = "nfs"; 3878 } 3879 3880 return (vfstype); 3881 } 3882 3883 /* 3884 * Find a vfssw entry given a file system type name. 3885 * Try to autoload the filesystem if it's not found. 3886 * If it's installed, return the vfssw locked to prevent unloading. 3887 */ 3888 struct vfssw * 3889 vfs_getvfssw(const char *type) 3890 { 3891 struct vfssw *vswp; 3892 const char *modname; 3893 3894 RLOCK_VFSSW(); 3895 vswp = vfs_getvfsswbyname(type); 3896 modname = vfs_to_modname(type); 3897 3898 if (rootdir == NULL) { 3899 /* 3900 * If we haven't yet loaded the root file system, then our 3901 * _init won't be called until later. Allocate vfssw entry, 3902 * because mod_installfs won't be called. 3903 */ 3904 if (vswp == NULL) { 3905 RUNLOCK_VFSSW(); 3906 WLOCK_VFSSW(); 3907 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3908 if ((vswp = allocate_vfssw(type)) == NULL) { 3909 WUNLOCK_VFSSW(); 3910 return (NULL); 3911 } 3912 } 3913 WUNLOCK_VFSSW(); 3914 RLOCK_VFSSW(); 3915 } 3916 if (!VFS_INSTALLED(vswp)) { 3917 RUNLOCK_VFSSW(); 3918 (void) modloadonly("fs", modname); 3919 } else 3920 RUNLOCK_VFSSW(); 3921 return (vswp); 3922 } 3923 3924 /* 3925 * Try to load the filesystem. Before calling modload(), we drop 3926 * our lock on the VFS switch table, and pick it up after the 3927 * module is loaded. However, there is a potential race: the 3928 * module could be unloaded after the call to modload() completes 3929 * but before we pick up the lock and drive on. Therefore, 3930 * we keep reloading the module until we've loaded the module 3931 * _and_ we have the lock on the VFS switch table. 3932 */ 3933 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3934 RUNLOCK_VFSSW(); 3935 if (modload("fs", modname) == -1) 3936 return (NULL); 3937 RLOCK_VFSSW(); 3938 if (vswp == NULL) 3939 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3940 break; 3941 } 3942 RUNLOCK_VFSSW(); 3943 3944 return (vswp); 3945 } 3946 3947 /* 3948 * Find a vfssw entry given a file system type name. 3949 */ 3950 struct vfssw * 3951 vfs_getvfsswbyname(const char *type) 3952 { 3953 struct vfssw *vswp; 3954 3955 ASSERT(VFSSW_LOCKED()); 3956 if (type == NULL || *type == '\0') 3957 return (NULL); 3958 3959 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3960 if (strcmp(type, vswp->vsw_name) == 0) { 3961 vfs_refvfssw(vswp); 3962 return (vswp); 3963 } 3964 } 3965 3966 return (NULL); 3967 } 3968 3969 /* 3970 * Find a vfssw entry given a set of vfsops. 3971 */ 3972 struct vfssw * 3973 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3974 { 3975 struct vfssw *vswp; 3976 3977 RLOCK_VFSSW(); 3978 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3979 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 3980 vfs_refvfssw(vswp); 3981 RUNLOCK_VFSSW(); 3982 return (vswp); 3983 } 3984 } 3985 RUNLOCK_VFSSW(); 3986 3987 return (NULL); 3988 } 3989 3990 /* 3991 * Reference a vfssw entry. 3992 */ 3993 void 3994 vfs_refvfssw(struct vfssw *vswp) 3995 { 3996 3997 mutex_enter(&vswp->vsw_lock); 3998 vswp->vsw_count++; 3999 mutex_exit(&vswp->vsw_lock); 4000 } 4001 4002 /* 4003 * Unreference a vfssw entry. 4004 */ 4005 void 4006 vfs_unrefvfssw(struct vfssw *vswp) 4007 { 4008 4009 mutex_enter(&vswp->vsw_lock); 4010 vswp->vsw_count--; 4011 mutex_exit(&vswp->vsw_lock); 4012 } 4013 4014 int sync_timeout = 30; /* timeout for syncing a page during panic */ 4015 int sync_timeleft; /* portion of sync_timeout remaining */ 4016 4017 static int sync_retries = 20; /* number of retries when not making progress */ 4018 static int sync_triesleft; /* portion of sync_retries remaining */ 4019 4020 static pgcnt_t old_pgcnt, new_pgcnt; 4021 static int new_bufcnt, old_bufcnt; 4022 4023 /* 4024 * Sync all of the mounted filesystems, and then wait for the actual i/o to 4025 * complete. We wait by counting the number of dirty pages and buffers, 4026 * pushing them out using bio_busy() and page_busy(), and then counting again. 4027 * This routine is used during both the uadmin A_SHUTDOWN code as well as 4028 * the SYNC phase of the panic code (see comments in panic.c). It should only 4029 * be used after some higher-level mechanism has quiesced the system so that 4030 * new writes are not being initiated while we are waiting for completion. 4031 * 4032 * To ensure finite running time, our algorithm uses two timeout mechanisms: 4033 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 4034 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 4035 * Together these ensure that syncing completes if our i/o paths are stuck. 4036 * The counters are declared above so they can be found easily in the debugger. 4037 * 4038 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 4039 * vfs_syncprogress() subroutine whenever we make progress through the lists of 4040 * pages and buffers. It is decremented and expired by the deadman() cyclic. 4041 * When vfs_syncall() decides it is done, we disable the deadman() counter by 4042 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 4043 * deadlocking or hanging inside of a broken filesystem or driver routine. 4044 * 4045 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 4046 * sync_retries consecutive calls to bio_busy() and page_busy() without 4047 * decreasing either the number of dirty buffers or dirty pages below the 4048 * lowest count we have seen so far, we give up and return from vfs_syncall(). 4049 * 4050 * Each loop iteration ends with a call to delay() one second to allow time for 4051 * i/o completion and to permit the user time to read our progress messages. 4052 */ 4053 void 4054 vfs_syncall(void) 4055 { 4056 if (rootdir == NULL && !modrootloaded) 4057 return; /* panic during boot - no filesystems yet */ 4058 4059 printf("syncing file systems..."); 4060 vfs_syncprogress(); 4061 sync(); 4062 4063 vfs_syncprogress(); 4064 sync_triesleft = sync_retries; 4065 4066 old_bufcnt = new_bufcnt = INT_MAX; 4067 old_pgcnt = new_pgcnt = ULONG_MAX; 4068 4069 while (sync_triesleft > 0) { 4070 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 4071 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 4072 4073 new_bufcnt = bio_busy(B_TRUE); 4074 new_pgcnt = page_busy(B_TRUE); 4075 vfs_syncprogress(); 4076 4077 if (new_bufcnt == 0 && new_pgcnt == 0) 4078 break; 4079 4080 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 4081 sync_triesleft = sync_retries; 4082 else 4083 sync_triesleft--; 4084 4085 if (new_bufcnt) 4086 printf(" [%d]", new_bufcnt); 4087 if (new_pgcnt) 4088 printf(" %lu", new_pgcnt); 4089 4090 delay(hz); 4091 } 4092 4093 if (new_bufcnt != 0 || new_pgcnt != 0) 4094 printf(" done (not all i/o completed)\n"); 4095 else 4096 printf(" done\n"); 4097 4098 sync_timeleft = 0; 4099 delay(hz); 4100 } 4101 4102 /* 4103 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 4104 * sync_timeout to indicate that we are making progress and the deadman() 4105 * omnipresent cyclic should not yet time us out. Note that it is safe to 4106 * store to sync_timeleft here since the deadman() is firing at high-level 4107 * on top of us. If we are racing with the deadman(), either the deadman() 4108 * will decrement the old value and then we will reset it, or we will 4109 * reset it and then the deadman() will immediately decrement it. In either 4110 * case, correct behavior results. 4111 */ 4112 void 4113 vfs_syncprogress(void) 4114 { 4115 if (panicstr) 4116 sync_timeleft = sync_timeout; 4117 } 4118 4119 /* 4120 * Map VFS flags to statvfs flags. These shouldn't really be separate 4121 * flags at all. 4122 */ 4123 uint_t 4124 vf_to_stf(uint_t vf) 4125 { 4126 uint_t stf = 0; 4127 4128 if (vf & VFS_RDONLY) 4129 stf |= ST_RDONLY; 4130 if (vf & VFS_NOSETUID) 4131 stf |= ST_NOSUID; 4132 if (vf & VFS_NOTRUNC) 4133 stf |= ST_NOTRUNC; 4134 4135 return (stf); 4136 } 4137 4138 /* 4139 * Entries for (illegal) fstype 0. 4140 */ 4141 /* ARGSUSED */ 4142 int 4143 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 4144 { 4145 cmn_err(CE_PANIC, "stray vfs operation"); 4146 return (0); 4147 } 4148 4149 /* 4150 * Entries for (illegal) fstype 0. 4151 */ 4152 int 4153 vfsstray(void) 4154 { 4155 cmn_err(CE_PANIC, "stray vfs operation"); 4156 return (0); 4157 } 4158 4159 /* 4160 * Support for dealing with forced UFS unmount and its interaction with 4161 * LOFS. Could be used by any filesystem. 4162 * See bug 1203132. 4163 */ 4164 int 4165 vfs_EIO(void) 4166 { 4167 return (EIO); 4168 } 4169 4170 /* 4171 * We've gotta define the op for sync separately, since the compiler gets 4172 * confused if we mix and match ANSI and normal style prototypes when 4173 * a "short" argument is present and spits out a warning. 4174 */ 4175 /*ARGSUSED*/ 4176 int 4177 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 4178 { 4179 return (EIO); 4180 } 4181 4182 vfs_t EIO_vfs; 4183 vfsops_t *EIO_vfsops; 4184 4185 /* 4186 * Called from startup() to initialize all loaded vfs's 4187 */ 4188 void 4189 vfsinit(void) 4190 { 4191 struct vfssw *vswp; 4192 int error; 4193 extern int vopstats_enabled; 4194 extern void vopstats_startup(); 4195 4196 static const fs_operation_def_t EIO_vfsops_template[] = { 4197 VFSNAME_MOUNT, { .error = vfs_EIO }, 4198 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 4199 VFSNAME_ROOT, { .error = vfs_EIO }, 4200 VFSNAME_STATVFS, { .error = vfs_EIO }, 4201 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 4202 VFSNAME_VGET, { .error = vfs_EIO }, 4203 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 4204 VFSNAME_FREEVFS, { .error = vfs_EIO }, 4205 VFSNAME_VNSTATE, { .error = vfs_EIO }, 4206 NULL, NULL 4207 }; 4208 4209 static const fs_operation_def_t stray_vfsops_template[] = { 4210 VFSNAME_MOUNT, { .error = vfsstray }, 4211 VFSNAME_UNMOUNT, { .error = vfsstray }, 4212 VFSNAME_ROOT, { .error = vfsstray }, 4213 VFSNAME_STATVFS, { .error = vfsstray }, 4214 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 4215 VFSNAME_VGET, { .error = vfsstray }, 4216 VFSNAME_MOUNTROOT, { .error = vfsstray }, 4217 VFSNAME_FREEVFS, { .error = vfsstray }, 4218 VFSNAME_VNSTATE, { .error = vfsstray }, 4219 NULL, NULL 4220 }; 4221 4222 /* Create vfs cache */ 4223 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs), 4224 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0); 4225 4226 /* Initialize the vnode cache (file systems may use it during init). */ 4227 vn_create_cache(); 4228 4229 /* Setup event monitor framework */ 4230 fem_init(); 4231 4232 /* Initialize the dummy stray file system type. */ 4233 error = vfs_setfsops(0, stray_vfsops_template, NULL); 4234 4235 /* Initialize the dummy EIO file system. */ 4236 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 4237 if (error != 0) { 4238 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 4239 /* Shouldn't happen, but not bad enough to panic */ 4240 } 4241 4242 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 4243 4244 /* 4245 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 4246 * on this vfs can immediately notice it's invalid. 4247 */ 4248 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 4249 4250 /* 4251 * Call the init routines of non-loadable filesystems only. 4252 * Filesystems which are loaded as separate modules will be 4253 * initialized by the module loading code instead. 4254 */ 4255 4256 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4257 RLOCK_VFSSW(); 4258 if (vswp->vsw_init != NULL) 4259 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 4260 RUNLOCK_VFSSW(); 4261 } 4262 4263 vopstats_startup(); 4264 4265 if (vopstats_enabled) { 4266 /* EIO_vfs can collect stats, but we don't retrieve them */ 4267 initialize_vopstats(&EIO_vfs.vfs_vopstats); 4268 EIO_vfs.vfs_fstypevsp = NULL; 4269 EIO_vfs.vfs_vskap = NULL; 4270 EIO_vfs.vfs_flag |= VFS_STATS; 4271 } 4272 4273 xattr_init(); 4274 4275 reparse_point_init(); 4276 } 4277 4278 vfs_t * 4279 vfs_alloc(int kmflag) 4280 { 4281 vfs_t *vfsp; 4282 4283 vfsp = kmem_cache_alloc(vfs_cache, kmflag); 4284 4285 /* 4286 * Do the simplest initialization here. 4287 * Everything else gets done in vfs_init() 4288 */ 4289 bzero(vfsp, sizeof (vfs_t)); 4290 return (vfsp); 4291 } 4292 4293 void 4294 vfs_free(vfs_t *vfsp) 4295 { 4296 /* 4297 * One would be tempted to assert that "vfsp->vfs_count == 0". 4298 * The problem is that this gets called out of domount() with 4299 * a partially initialized vfs and a vfs_count of 1. This is 4300 * also called from vfs_rele() with a vfs_count of 0. We can't 4301 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully 4302 * returned. This is because VFS_MOUNT() fully initializes the 4303 * vfs structure and its associated data. VFS_RELE() will call 4304 * VFS_FREEVFS() which may panic the system if the data structures 4305 * aren't fully initialized from a successful VFS_MOUNT()). 4306 */ 4307 4308 /* If FEM was in use, make sure everything gets cleaned up */ 4309 if (vfsp->vfs_femhead) { 4310 ASSERT(vfsp->vfs_femhead->femh_list == NULL); 4311 mutex_destroy(&vfsp->vfs_femhead->femh_lock); 4312 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead))); 4313 vfsp->vfs_femhead = NULL; 4314 } 4315 4316 if (vfsp->vfs_implp) 4317 vfsimpl_teardown(vfsp); 4318 sema_destroy(&vfsp->vfs_reflock); 4319 kmem_cache_free(vfs_cache, vfsp); 4320 } 4321 4322 /* 4323 * Increments the vfs reference count by one atomically. 4324 */ 4325 void 4326 vfs_hold(vfs_t *vfsp) 4327 { 4328 atomic_add_32(&vfsp->vfs_count, 1); 4329 ASSERT(vfsp->vfs_count != 0); 4330 } 4331 4332 /* 4333 * Decrements the vfs reference count by one atomically. When 4334 * vfs reference count becomes zero, it calls the file system 4335 * specific vfs_freevfs() to free up the resources. 4336 */ 4337 void 4338 vfs_rele(vfs_t *vfsp) 4339 { 4340 ASSERT(vfsp->vfs_count != 0); 4341 if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) { 4342 VFS_FREEVFS(vfsp); 4343 lofi_remove(vfsp); 4344 if (vfsp->vfs_zone) 4345 zone_rele(vfsp->vfs_zone); 4346 vfs_freemnttab(vfsp); 4347 vfs_free(vfsp); 4348 } 4349 } 4350 4351 /* 4352 * Generic operations vector support. 4353 * 4354 * This is used to build operations vectors for both the vfs and vnode. 4355 * It's normally called only when a file system is loaded. 4356 * 4357 * There are many possible algorithms for this, including the following: 4358 * 4359 * (1) scan the list of known operations; for each, see if the file system 4360 * includes an entry for it, and fill it in as appropriate. 4361 * 4362 * (2) set up defaults for all known operations. scan the list of ops 4363 * supplied by the file system; for each which is both supplied and 4364 * known, fill it in. 4365 * 4366 * (3) sort the lists of known ops & supplied ops; scan the list, filling 4367 * in entries as we go. 4368 * 4369 * we choose (1) for simplicity, and because performance isn't critical here. 4370 * note that (2) could be sped up using a precomputed hash table on known ops. 4371 * (3) could be faster than either, but only if the lists were very large or 4372 * supplied in sorted order. 4373 * 4374 */ 4375 4376 int 4377 fs_build_vector(void *vector, int *unused_ops, 4378 const fs_operation_trans_def_t *translation, 4379 const fs_operation_def_t *operations) 4380 { 4381 int i, num_trans, num_ops, used; 4382 4383 /* 4384 * Count the number of translations and the number of supplied 4385 * operations. 4386 */ 4387 4388 { 4389 const fs_operation_trans_def_t *p; 4390 4391 for (num_trans = 0, p = translation; 4392 p->name != NULL; 4393 num_trans++, p++) 4394 ; 4395 } 4396 4397 { 4398 const fs_operation_def_t *p; 4399 4400 for (num_ops = 0, p = operations; 4401 p->name != NULL; 4402 num_ops++, p++) 4403 ; 4404 } 4405 4406 /* Walk through each operation known to our caller. There will be */ 4407 /* one entry in the supplied "translation table" for each. */ 4408 4409 used = 0; 4410 4411 for (i = 0; i < num_trans; i++) { 4412 int j, found; 4413 char *curname; 4414 fs_generic_func_p result; 4415 fs_generic_func_p *location; 4416 4417 curname = translation[i].name; 4418 4419 /* Look for a matching operation in the list supplied by the */ 4420 /* file system. */ 4421 4422 found = 0; 4423 4424 for (j = 0; j < num_ops; j++) { 4425 if (strcmp(operations[j].name, curname) == 0) { 4426 used++; 4427 found = 1; 4428 break; 4429 } 4430 } 4431 4432 /* 4433 * If the file system is using a "placeholder" for default 4434 * or error functions, grab the appropriate function out of 4435 * the translation table. If the file system didn't supply 4436 * this operation at all, use the default function. 4437 */ 4438 4439 if (found) { 4440 result = operations[j].func.fs_generic; 4441 if (result == fs_default) { 4442 result = translation[i].defaultFunc; 4443 } else if (result == fs_error) { 4444 result = translation[i].errorFunc; 4445 } else if (result == NULL) { 4446 /* Null values are PROHIBITED */ 4447 return (EINVAL); 4448 } 4449 } else { 4450 result = translation[i].defaultFunc; 4451 } 4452 4453 /* Now store the function into the operations vector. */ 4454 4455 location = (fs_generic_func_p *) 4456 (((char *)vector) + translation[i].offset); 4457 4458 *location = result; 4459 } 4460 4461 *unused_ops = num_ops - used; 4462 4463 return (0); 4464 } 4465 4466 /* Placeholder functions, should never be called. */ 4467 4468 int 4469 fs_error(void) 4470 { 4471 cmn_err(CE_PANIC, "fs_error called"); 4472 return (0); 4473 } 4474 4475 int 4476 fs_default(void) 4477 { 4478 cmn_err(CE_PANIC, "fs_default called"); 4479 return (0); 4480 } 4481 4482 #ifdef __sparc 4483 4484 /* 4485 * Part of the implementation of booting off a mirrored root 4486 * involves a change of dev_t for the root device. To 4487 * accomplish this, first remove the existing hash table 4488 * entry for the root device, convert to the new dev_t, 4489 * then re-insert in the hash table at the head of the list. 4490 */ 4491 void 4492 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4493 { 4494 vfs_list_lock(); 4495 4496 vfs_hash_remove(vfsp); 4497 4498 vfsp->vfs_dev = ndev; 4499 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4500 4501 vfs_hash_add(vfsp, 1); 4502 4503 vfs_list_unlock(); 4504 } 4505 4506 #else /* x86 NEWBOOT */ 4507 4508 #if defined(__x86) 4509 extern int hvmboot_rootconf(); 4510 #endif /* __x86 */ 4511 4512 extern ib_boot_prop_t *iscsiboot_prop; 4513 4514 int 4515 rootconf() 4516 { 4517 int error; 4518 struct vfssw *vsw; 4519 extern void pm_init(); 4520 char *fstyp, *fsmod; 4521 int ret = -1; 4522 4523 getrootfs(&fstyp, &fsmod); 4524 4525 #if defined(__x86) 4526 /* 4527 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module, 4528 * which lives in /platform/i86hvm, and hence is only available when 4529 * booted in an x86 hvm environment. If the hvm_bootstrap misc module 4530 * is not available then the modstub for this function will return 0. 4531 * If the hvm_bootstrap misc module is available it will be loaded 4532 * and hvmboot_rootconf() will be invoked. 4533 */ 4534 if (error = hvmboot_rootconf()) 4535 return (error); 4536 #endif /* __x86 */ 4537 4538 if (error = clboot_rootconf()) 4539 return (error); 4540 4541 if (modload("fs", fsmod) == -1) 4542 panic("Cannot _init %s module", fsmod); 4543 4544 RLOCK_VFSSW(); 4545 vsw = vfs_getvfsswbyname(fstyp); 4546 RUNLOCK_VFSSW(); 4547 if (vsw == NULL) { 4548 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp); 4549 return (ENXIO); 4550 } 4551 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4552 VFS_HOLD(rootvfs); 4553 4554 /* always mount readonly first */ 4555 rootvfs->vfs_flag |= VFS_RDONLY; 4556 4557 pm_init(); 4558 4559 if (netboot && iscsiboot_prop) { 4560 cmn_err(CE_WARN, "NFS boot and iSCSI boot" 4561 " shouldn't happen in the same time"); 4562 return (EINVAL); 4563 } 4564 4565 if (netboot || iscsiboot_prop) { 4566 ret = strplumb(); 4567 if (ret != 0) { 4568 cmn_err(CE_WARN, "Cannot plumb network device %d", ret); 4569 return (EFAULT); 4570 } 4571 } 4572 4573 if ((ret == 0) && iscsiboot_prop) { 4574 ret = modload("drv", "iscsi"); 4575 /* -1 indicates fail */ 4576 if (ret == -1) { 4577 cmn_err(CE_WARN, "Failed to load iscsi module"); 4578 iscsi_boot_prop_free(); 4579 return (EINVAL); 4580 } else { 4581 if (!i_ddi_attach_pseudo_node("iscsi")) { 4582 cmn_err(CE_WARN, 4583 "Failed to attach iscsi driver"); 4584 iscsi_boot_prop_free(); 4585 return (ENODEV); 4586 } 4587 } 4588 } 4589 4590 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4591 vfs_unrefvfssw(vsw); 4592 rootdev = rootvfs->vfs_dev; 4593 4594 if (error) 4595 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n", 4596 rootfs.bo_name, fstyp); 4597 else 4598 cmn_err(CE_CONT, "?root on %s fstype %s\n", 4599 rootfs.bo_name, fstyp); 4600 return (error); 4601 } 4602 4603 /* 4604 * XXX this is called by nfs only and should probably be removed 4605 * If booted with ASKNAME, prompt on the console for a filesystem 4606 * name and return it. 4607 */ 4608 void 4609 getfsname(char *askfor, char *name, size_t namelen) 4610 { 4611 if (boothowto & RB_ASKNAME) { 4612 printf("%s name: ", askfor); 4613 console_gets(name, namelen); 4614 } 4615 } 4616 4617 /* 4618 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype" 4619 * property. 4620 * 4621 * Filesystem types starting with the prefix "nfs" are diskless clients; 4622 * init the root filename name (rootfs.bo_name), too. 4623 * 4624 * If we are booting via NFS we currently have these options: 4625 * nfs - dynamically choose NFS V2, V3, or V4 (default) 4626 * nfs2 - force NFS V2 4627 * nfs3 - force NFS V3 4628 * nfs4 - force NFS V4 4629 * Because we need to maintain backward compatibility with the naming 4630 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c) 4631 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic 4632 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4". 4633 * This is only for root filesystems, all other uses such as cachefs 4634 * will expect that "nfs" == NFS V2. 4635 */ 4636 static void 4637 getrootfs(char **fstypp, char **fsmodp) 4638 { 4639 extern char *strplumb_get_netdev_path(void); 4640 char *propstr = NULL; 4641 4642 /* 4643 * Check fstype property; for diskless it should be one of "nfs", 4644 * "nfs2", "nfs3" or "nfs4". 4645 */ 4646 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4647 DDI_PROP_DONTPASS, "fstype", &propstr) 4648 == DDI_SUCCESS) { 4649 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4650 ddi_prop_free(propstr); 4651 4652 /* 4653 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4654 * assume the type of this root filesystem is 'zfs'. 4655 */ 4656 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4657 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4658 == DDI_SUCCESS) { 4659 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4660 ddi_prop_free(propstr); 4661 } 4662 4663 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) { 4664 *fstypp = *fsmodp = rootfs.bo_fstype; 4665 return; 4666 } 4667 4668 ++netboot; 4669 4670 if (strcmp(rootfs.bo_fstype, "nfs2") == 0) 4671 (void) strcpy(rootfs.bo_fstype, "nfs"); 4672 else if (strcmp(rootfs.bo_fstype, "nfs") == 0) 4673 (void) strcpy(rootfs.bo_fstype, "nfsdyn"); 4674 4675 /* 4676 * check if path to network interface is specified in bootpath 4677 * or by a hypervisor domain configuration file. 4678 * XXPV - enable strlumb_get_netdev_path() 4679 */ 4680 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, 4681 "xpv-nfsroot")) { 4682 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0"); 4683 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4684 DDI_PROP_DONTPASS, "bootpath", &propstr) 4685 == DDI_SUCCESS) { 4686 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4687 ddi_prop_free(propstr); 4688 } else { 4689 /* attempt to determine netdev_path via boot_mac address */ 4690 netdev_path = strplumb_get_netdev_path(); 4691 if (netdev_path == NULL) 4692 panic("cannot find boot network interface"); 4693 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4694 } 4695 *fstypp = rootfs.bo_fstype; 4696 *fsmodp = "nfs"; 4697 } 4698 #endif 4699 4700 /* 4701 * VFS feature routines 4702 */ 4703 4704 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF) 4705 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL) 4706 4707 /* Register a feature in the vfs */ 4708 void 4709 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature) 4710 { 4711 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4712 if (vfsp->vfs_implp == NULL) 4713 return; 4714 4715 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature); 4716 } 4717 4718 /* 4719 * Query a vfs for a feature. 4720 * Returns 1 if feature is present, 0 if not 4721 */ 4722 int 4723 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature) 4724 { 4725 int ret = 0; 4726 4727 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4728 if (vfsp->vfs_implp == NULL) 4729 return (ret); 4730 4731 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature)) 4732 ret = 1; 4733 4734 return (ret); 4735 } 4736 4737 /* 4738 * Propagate feature set from one vfs to another 4739 */ 4740 void 4741 vfs_propagate_features(vfs_t *from, vfs_t *to) 4742 { 4743 int i; 4744 4745 if (to->vfs_implp == NULL || from->vfs_implp == NULL) 4746 return; 4747 4748 for (i = 1; i <= to->vfs_featureset[0]; i++) { 4749 to->vfs_featureset[i] = from->vfs_featureset[i]; 4750 } 4751 } 4752 4753 #define LOFINODE_PATH "/dev/lofi/%d" 4754 4755 /* 4756 * Return the vnode for the lofi node if there's a lofi mount in place. 4757 * Returns -1 when there's no lofi node, 0 on success, and > 0 on 4758 * failure. 4759 */ 4760 int 4761 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp) 4762 { 4763 char *path = NULL; 4764 int strsize; 4765 int err; 4766 4767 if (vfsp->vfs_lofi_minor == 0) { 4768 *vpp = NULL; 4769 return (-1); 4770 } 4771 4772 strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_minor); 4773 path = kmem_alloc(strsize + 1, KM_SLEEP); 4774 (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_minor); 4775 4776 /* 4777 * We may be inside a zone, so we need to use the /dev path, but 4778 * it's created asynchronously, so we wait here. 4779 */ 4780 for (;;) { 4781 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp); 4782 4783 if (err != ENOENT) 4784 break; 4785 4786 if ((err = delay_sig(hz / 8)) == EINTR) 4787 break; 4788 } 4789 4790 if (err) 4791 *vpp = NULL; 4792 4793 kmem_free(path, strsize + 1); 4794 return (err); 4795 } 4796