xref: /illumos-gate/usr/src/uts/common/fs/vfs.c (revision 8c69cc8fbe729fa7b091e901c4b50508ccc6bb33)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2016 Joyent, Inc.
25  * Copyright 2016 Toomas Soome <tsoome@me.com>
26  * Copyright (c) 2016 by Delphix. All rights reserved.
27  * Copyright 2016 Nexenta Systems, Inc.
28  * Copyright 2017 RackTop Systems.
29  */
30 
31 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
32 /*	  All Rights Reserved  	*/
33 
34 /*
35  * University Copyright- Copyright (c) 1982, 1986, 1988
36  * The Regents of the University of California
37  * All Rights Reserved
38  *
39  * University Acknowledgment- Portions of this document are derived from
40  * software developed by the University of California, Berkeley, and its
41  * contributors.
42  */
43 
44 #include <sys/types.h>
45 #include <sys/t_lock.h>
46 #include <sys/param.h>
47 #include <sys/errno.h>
48 #include <sys/user.h>
49 #include <sys/fstyp.h>
50 #include <sys/kmem.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/vfs.h>
55 #include <sys/vfs_opreg.h>
56 #include <sys/fem.h>
57 #include <sys/mntent.h>
58 #include <sys/stat.h>
59 #include <sys/statvfs.h>
60 #include <sys/statfs.h>
61 #include <sys/cred.h>
62 #include <sys/vnode.h>
63 #include <sys/rwstlock.h>
64 #include <sys/dnlc.h>
65 #include <sys/file.h>
66 #include <sys/time.h>
67 #include <sys/atomic.h>
68 #include <sys/cmn_err.h>
69 #include <sys/buf.h>
70 #include <sys/swap.h>
71 #include <sys/debug.h>
72 #include <sys/vnode.h>
73 #include <sys/modctl.h>
74 #include <sys/ddi.h>
75 #include <sys/pathname.h>
76 #include <sys/bootconf.h>
77 #include <sys/dumphdr.h>
78 #include <sys/dc_ki.h>
79 #include <sys/poll.h>
80 #include <sys/sunddi.h>
81 #include <sys/sysmacros.h>
82 #include <sys/zone.h>
83 #include <sys/policy.h>
84 #include <sys/ctfs.h>
85 #include <sys/objfs.h>
86 #include <sys/console.h>
87 #include <sys/reboot.h>
88 #include <sys/attr.h>
89 #include <sys/zio.h>
90 #include <sys/spa.h>
91 #include <sys/lofi.h>
92 #include <sys/bootprops.h>
93 
94 #include <vm/page.h>
95 
96 #include <fs/fs_subr.h>
97 /* Private interfaces to create vopstats-related data structures */
98 extern void		initialize_vopstats(vopstats_t *);
99 extern vopstats_t	*get_fstype_vopstats(struct vfs *, struct vfssw *);
100 extern vsk_anchor_t	*get_vskstat_anchor(struct vfs *);
101 
102 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
103 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
104     const char *, int, int);
105 static int  vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
106 static void vfs_freemnttab(struct vfs *);
107 static void vfs_freeopt(mntopt_t *);
108 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
109 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
110 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
111 static void vfs_createopttbl_extend(mntopts_t *, const char *,
112     const mntopts_t *);
113 static char **vfs_copycancelopt_extend(char **const, int);
114 static void vfs_freecancelopt(char **);
115 static void getrootfs(char **, char **);
116 static int getmacpath(dev_info_t *, void *);
117 static void vfs_mnttabvp_setup(void);
118 
119 struct ipmnt {
120 	struct ipmnt	*mip_next;
121 	dev_t		mip_dev;
122 	struct vfs	*mip_vfsp;
123 };
124 
125 static kmutex_t		vfs_miplist_mutex;
126 static struct ipmnt	*vfs_miplist = NULL;
127 static struct ipmnt	*vfs_miplist_end = NULL;
128 
129 static kmem_cache_t *vfs_cache;	/* Pointer to VFS kmem cache */
130 
131 /*
132  * VFS global data.
133  */
134 vnode_t *rootdir;		/* pointer to root inode vnode. */
135 vnode_t *devicesdir;		/* pointer to inode of devices root */
136 vnode_t	*devdir;		/* pointer to inode of dev root */
137 
138 char *server_rootpath;		/* root path for diskless clients */
139 char *server_hostname;		/* hostname of diskless server */
140 
141 static struct vfs root;
142 static struct vfs devices;
143 static struct vfs dev;
144 struct vfs *rootvfs = &root;	/* pointer to root vfs; head of VFS list. */
145 rvfs_t *rvfs_list;		/* array of vfs ptrs for vfs hash list */
146 int vfshsz = 512;		/* # of heads/locks in vfs hash arrays */
147 				/* must be power of 2!	*/
148 timespec_t vfs_mnttab_ctime;	/* mnttab created time */
149 timespec_t vfs_mnttab_mtime;	/* mnttab last modified time */
150 char *vfs_dummyfstype = "\0";
151 struct pollhead vfs_pollhd;	/* for mnttab pollers */
152 struct vnode *vfs_mntdummyvp;	/* to fake mnttab read/write for file events */
153 int	mntfstype;		/* will be set once mnt fs is mounted */
154 
155 /*
156  * Table for generic options recognized in the VFS layer and acted
157  * on at this level before parsing file system specific options.
158  * The nosuid option is stronger than any of the devices and setuid
159  * options, so those are canceled when nosuid is seen.
160  *
161  * All options which are added here need to be added to the
162  * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
163  */
164 /*
165  * VFS Mount options table
166  */
167 static char *ro_cancel[] = { MNTOPT_RW, NULL };
168 static char *rw_cancel[] = { MNTOPT_RO, NULL };
169 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
170 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
171     MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
172 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
173 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
174 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
175 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
176 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
177 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
178 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
179 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
180 
181 static const mntopt_t mntopts[] = {
182 /*
183  *	option name		cancel options		default arg	flags
184  */
185 	{ MNTOPT_REMOUNT,	NULL,			NULL,
186 		MO_NODISPLAY, (void *)0 },
187 	{ MNTOPT_RO,		ro_cancel,		NULL,		0,
188 		(void *)0 },
189 	{ MNTOPT_RW,		rw_cancel,		NULL,		0,
190 		(void *)0 },
191 	{ MNTOPT_SUID,		suid_cancel,		NULL,		0,
192 		(void *)0 },
193 	{ MNTOPT_NOSUID,	nosuid_cancel,		NULL,		0,
194 		(void *)0 },
195 	{ MNTOPT_DEVICES,	devices_cancel,		NULL,		0,
196 		(void *)0 },
197 	{ MNTOPT_NODEVICES,	nodevices_cancel,	NULL,		0,
198 		(void *)0 },
199 	{ MNTOPT_SETUID,	setuid_cancel,		NULL,		0,
200 		(void *)0 },
201 	{ MNTOPT_NOSETUID,	nosetuid_cancel,	NULL,		0,
202 		(void *)0 },
203 	{ MNTOPT_NBMAND,	nbmand_cancel,		NULL,		0,
204 		(void *)0 },
205 	{ MNTOPT_NONBMAND,	nonbmand_cancel,	NULL,		0,
206 		(void *)0 },
207 	{ MNTOPT_EXEC,		exec_cancel,		NULL,		0,
208 		(void *)0 },
209 	{ MNTOPT_NOEXEC,	noexec_cancel,		NULL,		0,
210 		(void *)0 },
211 };
212 
213 const mntopts_t vfs_mntopts = {
214 	sizeof (mntopts) / sizeof (mntopt_t),
215 	(mntopt_t *)&mntopts[0]
216 };
217 
218 /*
219  * File system operation dispatch functions.
220  */
221 
222 int
223 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
224 {
225 	return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
226 }
227 
228 int
229 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
230 {
231 	return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
232 }
233 
234 int
235 fsop_root(vfs_t *vfsp, vnode_t **vpp)
236 {
237 	refstr_t *mntpt;
238 	int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
239 	/*
240 	 * Make sure this root has a path.  With lofs, it is possible to have
241 	 * a NULL mountpoint.
242 	 */
243 	if (ret == 0 && vfsp->vfs_mntpt != NULL &&
244 	    (*vpp)->v_path == vn_vpath_empty) {
245 		const char *path;
246 
247 		mntpt = vfs_getmntpoint(vfsp);
248 		path = refstr_value(mntpt);
249 		vn_setpath_str(*vpp, path, strlen(path));
250 		refstr_rele(mntpt);
251 	}
252 
253 	return (ret);
254 }
255 
256 int
257 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
258 {
259 	return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
260 }
261 
262 int
263 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
264 {
265 	return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
266 }
267 
268 int
269 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
270 {
271 	/*
272 	 * In order to handle system attribute fids in a manner
273 	 * transparent to the underlying fs, we embed the fid for
274 	 * the sysattr parent object in the sysattr fid and tack on
275 	 * some extra bytes that only the sysattr layer knows about.
276 	 *
277 	 * This guarantees that sysattr fids are larger than other fids
278 	 * for this vfs. If the vfs supports the sysattr view interface
279 	 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
280 	 * collision with XATTR_FIDSZ.
281 	 */
282 	if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
283 	    fidp->fid_len == XATTR_FIDSZ)
284 		return (xattr_dir_vget(vfsp, vpp, fidp));
285 
286 	return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
287 }
288 
289 int
290 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
291 {
292 	return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
293 }
294 
295 void
296 fsop_freefs(vfs_t *vfsp)
297 {
298 	(*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
299 }
300 
301 int
302 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
303 {
304 	return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
305 }
306 
307 int
308 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
309 {
310 	ASSERT((fstype >= 0) && (fstype < nfstype));
311 
312 	if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
313 		return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
314 	else
315 		return (ENOTSUP);
316 }
317 
318 /*
319  * File system initialization.  vfs_setfsops() must be called from a file
320  * system's init routine.
321  */
322 
323 static int
324 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
325     int *unused_ops)
326 {
327 	static const fs_operation_trans_def_t vfs_ops_table[] = {
328 		VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
329 			fs_nosys, fs_nosys,
330 
331 		VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
332 			fs_nosys, fs_nosys,
333 
334 		VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
335 			fs_nosys, fs_nosys,
336 
337 		VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
338 			fs_nosys, fs_nosys,
339 
340 		VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
341 			(fs_generic_func_p) fs_sync,
342 			(fs_generic_func_p) fs_sync,	/* No errors allowed */
343 
344 		VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
345 			fs_nosys, fs_nosys,
346 
347 		VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
348 			fs_nosys, fs_nosys,
349 
350 		VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
351 			(fs_generic_func_p)fs_freevfs,
352 			(fs_generic_func_p)fs_freevfs,	/* Shouldn't fail */
353 
354 		VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
355 			(fs_generic_func_p)fs_nosys,
356 			(fs_generic_func_p)fs_nosys,
357 
358 		NULL, 0, NULL, NULL
359 	};
360 
361 	return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
362 }
363 
364 void
365 zfs_boot_init(void)
366 {
367 	if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
368 		spa_boot_init();
369 }
370 
371 int
372 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
373 {
374 	int error;
375 	int unused_ops;
376 
377 	/*
378 	 * Verify that fstype refers to a valid fs.  Note that
379 	 * 0 is valid since it's used to set "stray" ops.
380 	 */
381 	if ((fstype < 0) || (fstype >= nfstype))
382 		return (EINVAL);
383 
384 	if (!ALLOCATED_VFSSW(&vfssw[fstype]))
385 		return (EINVAL);
386 
387 	/* Set up the operations vector. */
388 
389 	error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
390 
391 	if (error != 0)
392 		return (error);
393 
394 	vfssw[fstype].vsw_flag |= VSW_INSTALLED;
395 
396 	if (actual != NULL)
397 		*actual = &vfssw[fstype].vsw_vfsops;
398 
399 #if DEBUG
400 	if (unused_ops != 0)
401 		cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
402 		    "but not used", vfssw[fstype].vsw_name, unused_ops);
403 #endif
404 
405 	return (0);
406 }
407 
408 int
409 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
410 {
411 	int error;
412 	int unused_ops;
413 
414 	*actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
415 
416 	error = fs_copyfsops(template, *actual, &unused_ops);
417 	if (error != 0) {
418 		kmem_free(*actual, sizeof (vfsops_t));
419 		*actual = NULL;
420 		return (error);
421 	}
422 
423 	return (0);
424 }
425 
426 /*
427  * Free a vfsops structure created as a result of vfs_makefsops().
428  * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
429  * vfs_freevfsops_by_type().
430  */
431 void
432 vfs_freevfsops(vfsops_t *vfsops)
433 {
434 	kmem_free(vfsops, sizeof (vfsops_t));
435 }
436 
437 /*
438  * Since the vfsops structure is part of the vfssw table and wasn't
439  * really allocated, we're not really freeing anything.  We keep
440  * the name for consistency with vfs_freevfsops().  We do, however,
441  * need to take care of a little bookkeeping.
442  * NOTE: For a vfsops structure created by vfs_setfsops(), use
443  * vfs_freevfsops_by_type().
444  */
445 int
446 vfs_freevfsops_by_type(int fstype)
447 {
448 
449 	/* Verify that fstype refers to a loaded fs (and not fsid 0). */
450 	if ((fstype <= 0) || (fstype >= nfstype))
451 		return (EINVAL);
452 
453 	WLOCK_VFSSW();
454 	if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
455 		WUNLOCK_VFSSW();
456 		return (EINVAL);
457 	}
458 
459 	vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
460 	WUNLOCK_VFSSW();
461 
462 	return (0);
463 }
464 
465 /* Support routines used to reference vfs_op */
466 
467 /* Set the operations vector for a vfs */
468 void
469 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
470 {
471 	vfsops_t	*op;
472 
473 	ASSERT(vfsp != NULL);
474 	ASSERT(vfsops != NULL);
475 
476 	op = vfsp->vfs_op;
477 	membar_consumer();
478 	if (vfsp->vfs_femhead == NULL &&
479 	    atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) {
480 		return;
481 	}
482 	fsem_setvfsops(vfsp, vfsops);
483 }
484 
485 /* Retrieve the operations vector for a vfs */
486 vfsops_t *
487 vfs_getops(vfs_t *vfsp)
488 {
489 	vfsops_t	*op;
490 
491 	ASSERT(vfsp != NULL);
492 
493 	op = vfsp->vfs_op;
494 	membar_consumer();
495 	if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
496 		return (op);
497 	} else {
498 		return (fsem_getvfsops(vfsp));
499 	}
500 }
501 
502 /*
503  * Returns non-zero (1) if the vfsops matches that of the vfs.
504  * Returns zero (0) if not.
505  */
506 int
507 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
508 {
509 	return (vfs_getops(vfsp) == vfsops);
510 }
511 
512 /*
513  * Returns non-zero (1) if the file system has installed a non-default,
514  * non-error vfs_sync routine.  Returns zero (0) otherwise.
515  */
516 int
517 vfs_can_sync(vfs_t *vfsp)
518 {
519 	/* vfs_sync() routine is not the default/error function */
520 	return (vfs_getops(vfsp)->vfs_sync != fs_sync);
521 }
522 
523 /*
524  * Initialize a vfs structure.
525  */
526 void
527 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
528 {
529 	/* Other initialization has been moved to vfs_alloc() */
530 	vfsp->vfs_count = 0;
531 	vfsp->vfs_next = vfsp;
532 	vfsp->vfs_prev = vfsp;
533 	vfsp->vfs_zone_next = vfsp;
534 	vfsp->vfs_zone_prev = vfsp;
535 	vfsp->vfs_lofi_id = 0;
536 	sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
537 	vfsimpl_setup(vfsp);
538 	vfsp->vfs_data = (data);
539 	vfs_setops((vfsp), (op));
540 }
541 
542 /*
543  * Allocate and initialize the vfs implementation private data
544  * structure, vfs_impl_t.
545  */
546 void
547 vfsimpl_setup(vfs_t *vfsp)
548 {
549 	int i;
550 
551 	if (vfsp->vfs_implp != NULL) {
552 		return;
553 	}
554 
555 	vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
556 	/* Note that these are #define'd in vfs.h */
557 	vfsp->vfs_vskap = NULL;
558 	vfsp->vfs_fstypevsp = NULL;
559 
560 	/* Set size of counted array, then zero the array */
561 	vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
562 	for (i = 1; i <  VFS_FEATURE_MAXSZ; i++) {
563 		vfsp->vfs_featureset[i] = 0;
564 	}
565 }
566 
567 /*
568  * Release the vfs_impl_t structure, if it exists. Some unbundled
569  * filesystems may not use the newer version of vfs and thus
570  * would not contain this implementation private data structure.
571  */
572 void
573 vfsimpl_teardown(vfs_t *vfsp)
574 {
575 	vfs_impl_t	*vip = vfsp->vfs_implp;
576 
577 	if (vip == NULL)
578 		return;
579 
580 	kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
581 	vfsp->vfs_implp = NULL;
582 }
583 
584 /*
585  * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
586  * fstatvfs, and sysfs moved to common/syscall.
587  */
588 
589 /*
590  * Update every mounted file system.  We call the vfs_sync operation of
591  * each file system type, passing it a NULL vfsp to indicate that all
592  * mounted file systems of that type should be updated.
593  */
594 void
595 vfs_sync(int flag)
596 {
597 	struct vfssw *vswp;
598 	RLOCK_VFSSW();
599 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
600 		if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
601 			vfs_refvfssw(vswp);
602 			RUNLOCK_VFSSW();
603 			(void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
604 			    CRED());
605 			vfs_unrefvfssw(vswp);
606 			RLOCK_VFSSW();
607 		}
608 	}
609 	RUNLOCK_VFSSW();
610 }
611 
612 void
613 sync(void)
614 {
615 	vfs_sync(0);
616 }
617 
618 /*
619  * External routines.
620  */
621 
622 krwlock_t vfssw_lock;	/* lock accesses to vfssw */
623 
624 /*
625  * Lock for accessing the vfs linked list.  Initialized in vfs_mountroot(),
626  * but otherwise should be accessed only via vfs_list_lock() and
627  * vfs_list_unlock().  Also used to protect the timestamp for mods to the list.
628  */
629 static krwlock_t vfslist;
630 
631 /*
632  * Mount devfs on /devices. This is done right after root is mounted
633  * to provide device access support for the system
634  */
635 static void
636 vfs_mountdevices(void)
637 {
638 	struct vfssw *vsw;
639 	struct vnode *mvp;
640 	struct mounta mounta = {	/* fake mounta for devfs_mount() */
641 		NULL,
642 		NULL,
643 		MS_SYSSPACE,
644 		NULL,
645 		NULL,
646 		0,
647 		NULL,
648 		0
649 	};
650 
651 	/*
652 	 * _init devfs module to fill in the vfssw
653 	 */
654 	if (modload("fs", "devfs") == -1)
655 		panic("Cannot _init devfs module");
656 
657 	/*
658 	 * Hold vfs
659 	 */
660 	RLOCK_VFSSW();
661 	vsw = vfs_getvfsswbyname("devfs");
662 	VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
663 	VFS_HOLD(&devices);
664 
665 	/*
666 	 * Locate mount point
667 	 */
668 	if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
669 		panic("Cannot find /devices");
670 
671 	/*
672 	 * Perform the mount of /devices
673 	 */
674 	if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
675 		panic("Cannot mount /devices");
676 
677 	RUNLOCK_VFSSW();
678 
679 	/*
680 	 * Set appropriate members and add to vfs list for mnttab display
681 	 */
682 	vfs_setresource(&devices, "/devices", 0);
683 	vfs_setmntpoint(&devices, "/devices", 0);
684 
685 	/*
686 	 * Hold the root of /devices so it won't go away
687 	 */
688 	if (VFS_ROOT(&devices, &devicesdir))
689 		panic("vfs_mountdevices: not devices root");
690 
691 	if (vfs_lock(&devices) != 0) {
692 		VN_RELE(devicesdir);
693 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
694 		return;
695 	}
696 
697 	if (vn_vfswlock(mvp) != 0) {
698 		vfs_unlock(&devices);
699 		VN_RELE(devicesdir);
700 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
701 		return;
702 	}
703 
704 	vfs_add(mvp, &devices, 0);
705 	vn_vfsunlock(mvp);
706 	vfs_unlock(&devices);
707 	VN_RELE(devicesdir);
708 }
709 
710 /*
711  * mount the first instance of /dev  to root and remain mounted
712  */
713 static void
714 vfs_mountdev1(void)
715 {
716 	struct vfssw *vsw;
717 	struct vnode *mvp;
718 	struct mounta mounta = {	/* fake mounta for sdev_mount() */
719 		NULL,
720 		NULL,
721 		MS_SYSSPACE | MS_OVERLAY,
722 		NULL,
723 		NULL,
724 		0,
725 		NULL,
726 		0
727 	};
728 
729 	/*
730 	 * _init dev module to fill in the vfssw
731 	 */
732 	if (modload("fs", "dev") == -1)
733 		cmn_err(CE_PANIC, "Cannot _init dev module\n");
734 
735 	/*
736 	 * Hold vfs
737 	 */
738 	RLOCK_VFSSW();
739 	vsw = vfs_getvfsswbyname("dev");
740 	VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
741 	VFS_HOLD(&dev);
742 
743 	/*
744 	 * Locate mount point
745 	 */
746 	if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
747 		cmn_err(CE_PANIC, "Cannot find /dev\n");
748 
749 	/*
750 	 * Perform the mount of /dev
751 	 */
752 	if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
753 		cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
754 
755 	RUNLOCK_VFSSW();
756 
757 	/*
758 	 * Set appropriate members and add to vfs list for mnttab display
759 	 */
760 	vfs_setresource(&dev, "/dev", 0);
761 	vfs_setmntpoint(&dev, "/dev", 0);
762 
763 	/*
764 	 * Hold the root of /dev so it won't go away
765 	 */
766 	if (VFS_ROOT(&dev, &devdir))
767 		cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
768 
769 	if (vfs_lock(&dev) != 0) {
770 		VN_RELE(devdir);
771 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
772 		return;
773 	}
774 
775 	if (vn_vfswlock(mvp) != 0) {
776 		vfs_unlock(&dev);
777 		VN_RELE(devdir);
778 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
779 		return;
780 	}
781 
782 	vfs_add(mvp, &dev, 0);
783 	vn_vfsunlock(mvp);
784 	vfs_unlock(&dev);
785 	VN_RELE(devdir);
786 }
787 
788 /*
789  * Mount required filesystem. This is done right after root is mounted.
790  */
791 static void
792 vfs_mountfs(char *module, char *spec, char *path)
793 {
794 	struct vnode *mvp;
795 	struct mounta mounta;
796 	vfs_t *vfsp;
797 
798 	bzero(&mounta, sizeof (mounta));
799 	mounta.flags = MS_SYSSPACE | MS_DATA;
800 	mounta.fstype = module;
801 	mounta.spec = spec;
802 	mounta.dir = path;
803 	if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
804 		cmn_err(CE_WARN, "Cannot find %s", path);
805 		return;
806 	}
807 	if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
808 		cmn_err(CE_WARN, "Cannot mount %s", path);
809 	else
810 		VFS_RELE(vfsp);
811 	VN_RELE(mvp);
812 }
813 
814 /*
815  * vfs_mountroot is called by main() to mount the root filesystem.
816  */
817 void
818 vfs_mountroot(void)
819 {
820 	struct vnode	*rvp = NULL;
821 	char		*path;
822 	size_t		plen;
823 	struct vfssw	*vswp;
824 	proc_t		*p;
825 
826 	rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
827 	rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
828 
829 	/*
830 	 * Alloc the vfs hash bucket array and locks
831 	 */
832 	rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
833 
834 	/*
835 	 * Call machine-dependent routine "rootconf" to choose a root
836 	 * file system type.
837 	 */
838 	if (rootconf())
839 		panic("vfs_mountroot: cannot mount root");
840 	/*
841 	 * Get vnode for '/'.  Set up rootdir, u.u_rdir and u.u_cdir
842 	 * to point to it.  These are used by lookuppn() so that it
843 	 * knows where to start from ('/' or '.').
844 	 */
845 	vfs_setmntpoint(rootvfs, "/", 0);
846 	if (VFS_ROOT(rootvfs, &rootdir))
847 		panic("vfs_mountroot: no root vnode");
848 
849 	/*
850 	 * At this point, the process tree consists of p0 and possibly some
851 	 * direct children of p0.  (i.e. there are no grandchildren)
852 	 *
853 	 * Walk through them all, setting their current directory.
854 	 */
855 	mutex_enter(&pidlock);
856 	for (p = practive; p != NULL; p = p->p_next) {
857 		ASSERT(p == &p0 || p->p_parent == &p0);
858 
859 		PTOU(p)->u_cdir = rootdir;
860 		VN_HOLD(PTOU(p)->u_cdir);
861 		PTOU(p)->u_rdir = NULL;
862 	}
863 	mutex_exit(&pidlock);
864 
865 	/*
866 	 * Setup the global zone's rootvp, now that it exists.
867 	 */
868 	global_zone->zone_rootvp = rootdir;
869 	VN_HOLD(global_zone->zone_rootvp);
870 
871 	/*
872 	 * Notify the module code that it can begin using the
873 	 * root filesystem instead of the boot program's services.
874 	 */
875 	modrootloaded = 1;
876 
877 	/*
878 	 * Special handling for a ZFS root file system.
879 	 */
880 	zfs_boot_init();
881 
882 	/*
883 	 * Set up mnttab information for root
884 	 */
885 	vfs_setresource(rootvfs, rootfs.bo_name, 0);
886 
887 	/*
888 	 * Notify cluster software that the root filesystem is available.
889 	 */
890 	clboot_mountroot();
891 
892 	/* Now that we're all done with the root FS, set up its vopstats */
893 	if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
894 		/* Set flag for statistics collection */
895 		if (vswp->vsw_flag & VSW_STATS) {
896 			initialize_vopstats(&rootvfs->vfs_vopstats);
897 			rootvfs->vfs_flag |= VFS_STATS;
898 			rootvfs->vfs_fstypevsp =
899 			    get_fstype_vopstats(rootvfs, vswp);
900 			rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
901 		}
902 		vfs_unrefvfssw(vswp);
903 	}
904 
905 	/*
906 	 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
907 	 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
908 	 */
909 	vfs_mountdevices();
910 	vfs_mountdev1();
911 
912 	vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
913 	vfs_mountfs("proc", "/proc", "/proc");
914 	vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
915 	vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
916 	vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
917 	vfs_mountfs("bootfs", "bootfs", "/system/boot");
918 
919 	if (getzoneid() == GLOBAL_ZONEID) {
920 		vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
921 	}
922 
923 	if (strcmp(rootfs.bo_fstype, "zfs") != 0) {
924 		/*
925 		 * Look up the root device via devfs so that a dv_node is
926 		 * created for it. The vnode is never VN_RELE()ed.
927 		 * We allocate more than MAXPATHLEN so that the
928 		 * buffer passed to i_ddi_prompath_to_devfspath() is
929 		 * exactly MAXPATHLEN (the function expects a buffer
930 		 * of that length).
931 		 */
932 		plen = strlen("/devices");
933 		path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
934 		(void) strcpy(path, "/devices");
935 
936 		if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
937 		    != DDI_SUCCESS ||
938 		    lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
939 
940 			/* NUL terminate in case "path" has garbage */
941 			path[plen + MAXPATHLEN - 1] = '\0';
942 #ifdef	DEBUG
943 			cmn_err(CE_WARN, "!Cannot lookup root device: %s",
944 			    path);
945 #endif
946 		}
947 		kmem_free(path, plen + MAXPATHLEN);
948 	}
949 
950 	vfs_mnttabvp_setup();
951 }
952 
953 /*
954  * Check to see if our "block device" is actually a file.  If so,
955  * automatically add a lofi device, and keep track of this fact.
956  */
957 static int
958 lofi_add(const char *fsname, struct vfs *vfsp,
959     mntopts_t *mntopts, struct mounta *uap)
960 {
961 	int fromspace = (uap->flags & MS_SYSSPACE) ?
962 	    UIO_SYSSPACE : UIO_USERSPACE;
963 	struct lofi_ioctl *li = NULL;
964 	struct vnode *vp = NULL;
965 	struct pathname	pn = { NULL };
966 	ldi_ident_t ldi_id;
967 	ldi_handle_t ldi_hdl;
968 	vfssw_t *vfssw;
969 	int id;
970 	int err = 0;
971 
972 	if ((vfssw = vfs_getvfssw(fsname)) == NULL)
973 		return (0);
974 
975 	if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
976 		vfs_unrefvfssw(vfssw);
977 		return (0);
978 	}
979 
980 	vfs_unrefvfssw(vfssw);
981 	vfssw = NULL;
982 
983 	if (pn_get(uap->spec, fromspace, &pn) != 0)
984 		return (0);
985 
986 	if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
987 		goto out;
988 
989 	if (vp->v_type != VREG)
990 		goto out;
991 
992 	/* OK, this is a lofi mount. */
993 
994 	if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
995 	    vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
996 	    vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
997 	    vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
998 		err = EINVAL;
999 		goto out;
1000 	}
1001 
1002 	ldi_id = ldi_ident_from_anon();
1003 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1004 	(void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1005 
1006 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1007 	    &ldi_hdl, ldi_id);
1008 
1009 	if (err)
1010 		goto out2;
1011 
1012 	err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1013 	    FREAD | FWRITE | FKIOCTL, kcred, &id);
1014 
1015 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1016 
1017 	if (!err)
1018 		vfsp->vfs_lofi_id = id;
1019 
1020 out2:
1021 	ldi_ident_release(ldi_id);
1022 out:
1023 	if (li != NULL)
1024 		kmem_free(li, sizeof (*li));
1025 	if (vp != NULL)
1026 		VN_RELE(vp);
1027 	pn_free(&pn);
1028 	return (err);
1029 }
1030 
1031 static void
1032 lofi_remove(struct vfs *vfsp)
1033 {
1034 	struct lofi_ioctl *li = NULL;
1035 	ldi_ident_t ldi_id;
1036 	ldi_handle_t ldi_hdl;
1037 	int err;
1038 
1039 	if (vfsp->vfs_lofi_id == 0)
1040 		return;
1041 
1042 	ldi_id = ldi_ident_from_anon();
1043 
1044 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1045 	li->li_id = vfsp->vfs_lofi_id;
1046 	li->li_cleanup = B_TRUE;
1047 
1048 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1049 	    &ldi_hdl, ldi_id);
1050 
1051 	if (err)
1052 		goto out;
1053 
1054 	err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1055 	    FREAD | FWRITE | FKIOCTL, kcred, NULL);
1056 
1057 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1058 
1059 	if (!err)
1060 		vfsp->vfs_lofi_id = 0;
1061 
1062 out:
1063 	ldi_ident_release(ldi_id);
1064 	if (li != NULL)
1065 		kmem_free(li, sizeof (*li));
1066 }
1067 
1068 /*
1069  * Common mount code.  Called from the system call entry point, from autofs,
1070  * nfsv4 trigger mounts, and from pxfs.
1071  *
1072  * Takes the effective file system type, mount arguments, the mount point
1073  * vnode, flags specifying whether the mount is a remount and whether it
1074  * should be entered into the vfs list, and credentials.  Fills in its vfspp
1075  * parameter with the mounted file system instance's vfs.
1076  *
1077  * Note that the effective file system type is specified as a string.  It may
1078  * be null, in which case it's determined from the mount arguments, and may
1079  * differ from the type specified in the mount arguments; this is a hook to
1080  * allow interposition when instantiating file system instances.
1081  *
1082  * The caller is responsible for releasing its own hold on the mount point
1083  * vp (this routine does its own hold when necessary).
1084  * Also note that for remounts, the mount point vp should be the vnode for
1085  * the root of the file system rather than the vnode that the file system
1086  * is mounted on top of.
1087  */
1088 int
1089 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1090     struct vfs **vfspp)
1091 {
1092 	struct vfssw	*vswp;
1093 	vfsops_t	*vfsops;
1094 	struct vfs	*vfsp;
1095 	struct vnode	*bvp;
1096 	dev_t		bdev = 0;
1097 	mntopts_t	mnt_mntopts;
1098 	int		error = 0;
1099 	int		copyout_error = 0;
1100 	int		ovflags;
1101 	char		*opts = uap->optptr;
1102 	char		*inargs = opts;
1103 	int		optlen = uap->optlen;
1104 	int		remount;
1105 	int		rdonly;
1106 	int		nbmand = 0;
1107 	int		delmip = 0;
1108 	int		addmip = 0;
1109 	int		splice = ((uap->flags & MS_NOSPLICE) == 0);
1110 	int		fromspace = (uap->flags & MS_SYSSPACE) ?
1111 	    UIO_SYSSPACE : UIO_USERSPACE;
1112 	char		*resource = NULL, *mountpt = NULL;
1113 	refstr_t	*oldresource, *oldmntpt;
1114 	struct pathname	pn, rpn;
1115 	vsk_anchor_t	*vskap;
1116 	char fstname[FSTYPSZ];
1117 	zone_t		*zone;
1118 
1119 	/*
1120 	 * The v_flag value for the mount point vp is permanently set
1121 	 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1122 	 * for mount point locking.
1123 	 */
1124 	mutex_enter(&vp->v_lock);
1125 	vp->v_flag |= VVFSLOCK;
1126 	mutex_exit(&vp->v_lock);
1127 
1128 	mnt_mntopts.mo_count = 0;
1129 	/*
1130 	 * Find the ops vector to use to invoke the file system-specific mount
1131 	 * method.  If the fsname argument is non-NULL, use it directly.
1132 	 * Otherwise, dig the file system type information out of the mount
1133 	 * arguments.
1134 	 *
1135 	 * A side effect is to hold the vfssw entry.
1136 	 *
1137 	 * Mount arguments can be specified in several ways, which are
1138 	 * distinguished by flag bit settings.  The preferred way is to set
1139 	 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1140 	 * type supplied as a character string and the last two arguments
1141 	 * being a pointer to a character buffer and the size of the buffer.
1142 	 * On entry, the buffer holds a null terminated list of options; on
1143 	 * return, the string is the list of options the file system
1144 	 * recognized. If MS_DATA is set arguments five and six point to a
1145 	 * block of binary data which the file system interprets.
1146 	 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1147 	 * consistently with these conventions.  To handle them, we check to
1148 	 * see whether the pointer to the file system name has a numeric value
1149 	 * less than 256.  If so, we treat it as an index.
1150 	 */
1151 	if (fsname != NULL) {
1152 		if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1153 			return (EINVAL);
1154 		}
1155 	} else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1156 		size_t n;
1157 		uint_t fstype;
1158 
1159 		fsname = fstname;
1160 
1161 		if ((fstype = (uintptr_t)uap->fstype) < 256) {
1162 			RLOCK_VFSSW();
1163 			if (fstype == 0 || fstype >= nfstype ||
1164 			    !ALLOCATED_VFSSW(&vfssw[fstype])) {
1165 				RUNLOCK_VFSSW();
1166 				return (EINVAL);
1167 			}
1168 			(void) strcpy(fsname, vfssw[fstype].vsw_name);
1169 			RUNLOCK_VFSSW();
1170 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1171 				return (EINVAL);
1172 		} else {
1173 			/*
1174 			 * Handle either kernel or user address space.
1175 			 */
1176 			if (uap->flags & MS_SYSSPACE) {
1177 				error = copystr(uap->fstype, fsname,
1178 				    FSTYPSZ, &n);
1179 			} else {
1180 				error = copyinstr(uap->fstype, fsname,
1181 				    FSTYPSZ, &n);
1182 			}
1183 			if (error) {
1184 				if (error == ENAMETOOLONG)
1185 					return (EINVAL);
1186 				return (error);
1187 			}
1188 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1189 				return (EINVAL);
1190 		}
1191 	} else {
1192 		if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1193 			return (EINVAL);
1194 		fsname = vswp->vsw_name;
1195 	}
1196 	if (!VFS_INSTALLED(vswp))
1197 		return (EINVAL);
1198 
1199 	if ((error = secpolicy_fs_allowed_mount(fsname)) != 0)  {
1200 		vfs_unrefvfssw(vswp);
1201 		return (error);
1202 	}
1203 
1204 	vfsops = &vswp->vsw_vfsops;
1205 
1206 	vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1207 	/*
1208 	 * Fetch mount options and parse them for generic vfs options
1209 	 */
1210 	if (uap->flags & MS_OPTIONSTR) {
1211 		/*
1212 		 * Limit the buffer size
1213 		 */
1214 		if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1215 			error = EINVAL;
1216 			goto errout;
1217 		}
1218 		if ((uap->flags & MS_SYSSPACE) == 0) {
1219 			inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1220 			inargs[0] = '\0';
1221 			if (optlen) {
1222 				error = copyinstr(opts, inargs, (size_t)optlen,
1223 				    NULL);
1224 				if (error) {
1225 					goto errout;
1226 				}
1227 			}
1228 		}
1229 		vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1230 	}
1231 	/*
1232 	 * Flag bits override the options string.
1233 	 */
1234 	if (uap->flags & MS_REMOUNT)
1235 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1236 	if (uap->flags & MS_RDONLY)
1237 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1238 	if (uap->flags & MS_NOSUID)
1239 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1240 
1241 	/*
1242 	 * Check if this is a remount; must be set in the option string and
1243 	 * the file system must support a remount option.
1244 	 */
1245 	if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1246 	    MNTOPT_REMOUNT, NULL)) {
1247 		if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1248 			error = ENOTSUP;
1249 			goto errout;
1250 		}
1251 		uap->flags |= MS_REMOUNT;
1252 	}
1253 
1254 	/*
1255 	 * uap->flags and vfs_optionisset() should agree.
1256 	 */
1257 	if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1258 		uap->flags |= MS_RDONLY;
1259 	}
1260 	if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1261 		uap->flags |= MS_NOSUID;
1262 	}
1263 	nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1264 	ASSERT(splice || !remount);
1265 	/*
1266 	 * If we are splicing the fs into the namespace,
1267 	 * perform mount point checks.
1268 	 *
1269 	 * We want to resolve the path for the mount point to eliminate
1270 	 * '.' and ".." and symlinks in mount points; we can't do the
1271 	 * same for the resource string, since it would turn
1272 	 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...".  We need to do
1273 	 * this before grabbing vn_vfswlock(), because otherwise we
1274 	 * would deadlock with lookuppn().
1275 	 */
1276 	if (splice) {
1277 		ASSERT(vp->v_count > 0);
1278 
1279 		/*
1280 		 * Pick up mount point and device from appropriate space.
1281 		 */
1282 		if (pn_get(uap->spec, fromspace, &pn) == 0) {
1283 			resource = kmem_alloc(pn.pn_pathlen + 1,
1284 			    KM_SLEEP);
1285 			(void) strcpy(resource, pn.pn_path);
1286 			pn_free(&pn);
1287 		}
1288 		/*
1289 		 * Do a lookupname prior to taking the
1290 		 * writelock. Mark this as completed if
1291 		 * successful for later cleanup and addition to
1292 		 * the mount in progress table.
1293 		 */
1294 		if ((uap->flags & MS_GLOBAL) == 0 &&
1295 		    lookupname(uap->spec, fromspace,
1296 		    FOLLOW, NULL, &bvp) == 0) {
1297 			addmip = 1;
1298 		}
1299 
1300 		if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1301 			pathname_t *pnp;
1302 
1303 			if (*pn.pn_path != '/') {
1304 				error = EINVAL;
1305 				pn_free(&pn);
1306 				goto errout;
1307 			}
1308 			pn_alloc(&rpn);
1309 			/*
1310 			 * Kludge to prevent autofs from deadlocking with
1311 			 * itself when it calls domount().
1312 			 *
1313 			 * If autofs is calling, it is because it is doing
1314 			 * (autofs) mounts in the process of an NFS mount.  A
1315 			 * lookuppn() here would cause us to block waiting for
1316 			 * said NFS mount to complete, which can't since this
1317 			 * is the thread that was supposed to doing it.
1318 			 */
1319 			if (fromspace == UIO_USERSPACE) {
1320 				if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1321 				    NULL)) == 0) {
1322 					pnp = &rpn;
1323 				} else {
1324 					/*
1325 					 * The file disappeared or otherwise
1326 					 * became inaccessible since we opened
1327 					 * it; might as well fail the mount
1328 					 * since the mount point is no longer
1329 					 * accessible.
1330 					 */
1331 					pn_free(&rpn);
1332 					pn_free(&pn);
1333 					goto errout;
1334 				}
1335 			} else {
1336 				pnp = &pn;
1337 			}
1338 			mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1339 			(void) strcpy(mountpt, pnp->pn_path);
1340 
1341 			/*
1342 			 * If the addition of the zone's rootpath
1343 			 * would push us over a total path length
1344 			 * of MAXPATHLEN, we fail the mount with
1345 			 * ENAMETOOLONG, which is what we would have
1346 			 * gotten if we were trying to perform the same
1347 			 * mount in the global zone.
1348 			 *
1349 			 * strlen() doesn't count the trailing
1350 			 * '\0', but zone_rootpathlen counts both a
1351 			 * trailing '/' and the terminating '\0'.
1352 			 */
1353 			if ((curproc->p_zone->zone_rootpathlen - 1 +
1354 			    strlen(mountpt)) > MAXPATHLEN ||
1355 			    (resource != NULL &&
1356 			    (curproc->p_zone->zone_rootpathlen - 1 +
1357 			    strlen(resource)) > MAXPATHLEN)) {
1358 				error = ENAMETOOLONG;
1359 			}
1360 
1361 			pn_free(&rpn);
1362 			pn_free(&pn);
1363 		}
1364 
1365 		if (error)
1366 			goto errout;
1367 
1368 		/*
1369 		 * Prevent path name resolution from proceeding past
1370 		 * the mount point.
1371 		 */
1372 		if (vn_vfswlock(vp) != 0) {
1373 			error = EBUSY;
1374 			goto errout;
1375 		}
1376 
1377 		/*
1378 		 * Verify that it's legitimate to establish a mount on
1379 		 * the prospective mount point.
1380 		 */
1381 		if (vn_mountedvfs(vp) != NULL) {
1382 			/*
1383 			 * The mount point lock was obtained after some
1384 			 * other thread raced through and established a mount.
1385 			 */
1386 			vn_vfsunlock(vp);
1387 			error = EBUSY;
1388 			goto errout;
1389 		}
1390 		if (vp->v_flag & VNOMOUNT) {
1391 			vn_vfsunlock(vp);
1392 			error = EINVAL;
1393 			goto errout;
1394 		}
1395 	}
1396 	if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1397 		uap->dataptr = NULL;
1398 		uap->datalen = 0;
1399 	}
1400 
1401 	/*
1402 	 * If this is a remount, we don't want to create a new VFS.
1403 	 * Instead, we pass the existing one with a remount flag.
1404 	 */
1405 	if (remount) {
1406 		/*
1407 		 * Confirm that the mount point is the root vnode of the
1408 		 * file system that is being remounted.
1409 		 * This can happen if the user specifies a different
1410 		 * mount point directory pathname in the (re)mount command.
1411 		 *
1412 		 * Code below can only be reached if splice is true, so it's
1413 		 * safe to do vn_vfsunlock() here.
1414 		 */
1415 		if ((vp->v_flag & VROOT) == 0) {
1416 			vn_vfsunlock(vp);
1417 			error = ENOENT;
1418 			goto errout;
1419 		}
1420 		/*
1421 		 * Disallow making file systems read-only unless file system
1422 		 * explicitly allows it in its vfssw.  Ignore other flags.
1423 		 */
1424 		if (rdonly && vn_is_readonly(vp) == 0 &&
1425 		    (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1426 			vn_vfsunlock(vp);
1427 			error = EINVAL;
1428 			goto errout;
1429 		}
1430 		/*
1431 		 * Disallow changing the NBMAND disposition of the file
1432 		 * system on remounts.
1433 		 */
1434 		if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1435 		    (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1436 			vn_vfsunlock(vp);
1437 			error = EINVAL;
1438 			goto errout;
1439 		}
1440 		vfsp = vp->v_vfsp;
1441 		ovflags = vfsp->vfs_flag;
1442 		vfsp->vfs_flag |= VFS_REMOUNT;
1443 		vfsp->vfs_flag &= ~VFS_RDONLY;
1444 	} else {
1445 		vfsp = vfs_alloc(KM_SLEEP);
1446 		VFS_INIT(vfsp, vfsops, NULL);
1447 	}
1448 
1449 	VFS_HOLD(vfsp);
1450 
1451 	if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1452 		if (!remount) {
1453 			if (splice)
1454 				vn_vfsunlock(vp);
1455 			vfs_free(vfsp);
1456 		} else {
1457 			vn_vfsunlock(vp);
1458 			VFS_RELE(vfsp);
1459 		}
1460 		goto errout;
1461 	}
1462 
1463 	/*
1464 	 * PRIV_SYS_MOUNT doesn't mean you can become root.
1465 	 */
1466 	if (vfsp->vfs_lofi_id != 0) {
1467 		uap->flags |= MS_NOSUID;
1468 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1469 	}
1470 
1471 	/*
1472 	 * The vfs_reflock is not used anymore the code below explicitly
1473 	 * holds it preventing others accesing it directly.
1474 	 */
1475 	if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1476 	    !(vfsp->vfs_flag & VFS_REMOUNT))
1477 		cmn_err(CE_WARN,
1478 		    "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1479 
1480 	/*
1481 	 * Lock the vfs. If this is a remount we want to avoid spurious umount
1482 	 * failures that happen as a side-effect of fsflush() and other mount
1483 	 * and unmount operations that might be going on simultaneously and
1484 	 * may have locked the vfs currently. To not return EBUSY immediately
1485 	 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1486 	 */
1487 	if (!remount) {
1488 		if (error = vfs_lock(vfsp)) {
1489 			vfsp->vfs_flag = ovflags;
1490 
1491 			lofi_remove(vfsp);
1492 
1493 			if (splice)
1494 				vn_vfsunlock(vp);
1495 			vfs_free(vfsp);
1496 			goto errout;
1497 		}
1498 	} else {
1499 		vfs_lock_wait(vfsp);
1500 	}
1501 
1502 	/*
1503 	 * Add device to mount in progress table, global mounts require special
1504 	 * handling. It is possible that we have already done the lookupname
1505 	 * on a spliced, non-global fs. If so, we don't want to do it again
1506 	 * since we cannot do a lookupname after taking the
1507 	 * wlock above. This case is for a non-spliced, non-global filesystem.
1508 	 */
1509 	if (!addmip) {
1510 		if ((uap->flags & MS_GLOBAL) == 0 &&
1511 		    lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1512 			addmip = 1;
1513 		}
1514 	}
1515 
1516 	if (addmip) {
1517 		vnode_t *lvp = NULL;
1518 
1519 		error = vfs_get_lofi(vfsp, &lvp);
1520 		if (error > 0) {
1521 			lofi_remove(vfsp);
1522 
1523 			if (splice)
1524 				vn_vfsunlock(vp);
1525 			vfs_unlock(vfsp);
1526 
1527 			if (remount) {
1528 				VFS_RELE(vfsp);
1529 			} else {
1530 				vfs_free(vfsp);
1531 			}
1532 
1533 			goto errout;
1534 		} else if (error == -1) {
1535 			bdev = bvp->v_rdev;
1536 			VN_RELE(bvp);
1537 		} else {
1538 			bdev = lvp->v_rdev;
1539 			VN_RELE(lvp);
1540 			VN_RELE(bvp);
1541 		}
1542 
1543 		vfs_addmip(bdev, vfsp);
1544 		addmip = 0;
1545 		delmip = 1;
1546 	}
1547 	/*
1548 	 * Invalidate cached entry for the mount point.
1549 	 */
1550 	if (splice)
1551 		dnlc_purge_vp(vp);
1552 
1553 	/*
1554 	 * If have an option string but the filesystem doesn't supply a
1555 	 * prototype options table, create a table with the global
1556 	 * options and sufficient room to accept all the options in the
1557 	 * string.  Then parse the passed in option string
1558 	 * accepting all the options in the string.  This gives us an
1559 	 * option table with all the proper cancel properties for the
1560 	 * global options.
1561 	 *
1562 	 * Filesystems that supply a prototype options table are handled
1563 	 * earlier in this function.
1564 	 */
1565 	if (uap->flags & MS_OPTIONSTR) {
1566 		if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1567 			mntopts_t tmp_mntopts;
1568 
1569 			tmp_mntopts.mo_count = 0;
1570 			vfs_createopttbl_extend(&tmp_mntopts, inargs,
1571 			    &mnt_mntopts);
1572 			vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1573 			vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1574 			vfs_freeopttbl(&tmp_mntopts);
1575 		}
1576 	}
1577 
1578 	/*
1579 	 * Serialize with zone state transitions.
1580 	 * See vfs_list_add; zone mounted into is:
1581 	 * 	zone_find_by_path(refstr_value(vfsp->vfs_mntpt))
1582 	 * not the zone doing the mount (curproc->p_zone), but if we're already
1583 	 * inside a NGZ, then we know what zone we are.
1584 	 */
1585 	if (INGLOBALZONE(curproc)) {
1586 		zone = zone_find_by_path(mountpt);
1587 		ASSERT(zone != NULL);
1588 	} else {
1589 		zone = curproc->p_zone;
1590 		/*
1591 		 * zone_find_by_path does a hold, so do one here too so that
1592 		 * we can do a zone_rele after mount_completed.
1593 		 */
1594 		zone_hold(zone);
1595 	}
1596 	mount_in_progress(zone);
1597 	/*
1598 	 * Instantiate (or reinstantiate) the file system.  If appropriate,
1599 	 * splice it into the file system name space.
1600 	 *
1601 	 * We want VFS_MOUNT() to be able to override the vfs_resource
1602 	 * string if necessary (ie, mntfs), and also for a remount to
1603 	 * change the same (necessary when remounting '/' during boot).
1604 	 * So we set up vfs_mntpt and vfs_resource to what we think they
1605 	 * should be, then hand off control to VFS_MOUNT() which can
1606 	 * override this.
1607 	 *
1608 	 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1609 	 * a vfs which is on the vfs list (i.e. during a remount), we must
1610 	 * never set those fields to NULL. Several bits of code make
1611 	 * assumptions that the fields are always valid.
1612 	 */
1613 	vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1614 	if (remount) {
1615 		if ((oldresource = vfsp->vfs_resource) != NULL)
1616 			refstr_hold(oldresource);
1617 		if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1618 			refstr_hold(oldmntpt);
1619 	}
1620 	vfs_setresource(vfsp, resource, 0);
1621 	vfs_setmntpoint(vfsp, mountpt, 0);
1622 
1623 	/*
1624 	 * going to mount on this vnode, so notify.
1625 	 */
1626 	vnevent_mountedover(vp, NULL);
1627 	error = VFS_MOUNT(vfsp, vp, uap, credp);
1628 
1629 	if (uap->flags & MS_RDONLY)
1630 		vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1631 	if (uap->flags & MS_NOSUID)
1632 		vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1633 	if (uap->flags & MS_GLOBAL)
1634 		vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1635 
1636 	if (error) {
1637 		lofi_remove(vfsp);
1638 
1639 		if (remount) {
1640 			/* put back pre-remount options */
1641 			vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1642 			vfs_setmntpoint(vfsp, refstr_value(oldmntpt),
1643 			    VFSSP_VERBATIM);
1644 			if (oldmntpt)
1645 				refstr_rele(oldmntpt);
1646 			vfs_setresource(vfsp, refstr_value(oldresource),
1647 			    VFSSP_VERBATIM);
1648 			if (oldresource)
1649 				refstr_rele(oldresource);
1650 			vfsp->vfs_flag = ovflags;
1651 			vfs_unlock(vfsp);
1652 			VFS_RELE(vfsp);
1653 		} else {
1654 			vfs_unlock(vfsp);
1655 			vfs_freemnttab(vfsp);
1656 			vfs_free(vfsp);
1657 		}
1658 	} else {
1659 		/*
1660 		 * Set the mount time to now
1661 		 */
1662 		vfsp->vfs_mtime = ddi_get_time();
1663 		if (remount) {
1664 			vfsp->vfs_flag &= ~VFS_REMOUNT;
1665 			if (oldresource)
1666 				refstr_rele(oldresource);
1667 			if (oldmntpt)
1668 				refstr_rele(oldmntpt);
1669 		} else if (splice) {
1670 			/*
1671 			 * Link vfsp into the name space at the mount
1672 			 * point. Vfs_add() is responsible for
1673 			 * holding the mount point which will be
1674 			 * released when vfs_remove() is called.
1675 			 */
1676 			vfs_add(vp, vfsp, uap->flags);
1677 		} else {
1678 			/*
1679 			 * Hold the reference to file system which is
1680 			 * not linked into the name space.
1681 			 */
1682 			vfsp->vfs_zone = NULL;
1683 			VFS_HOLD(vfsp);
1684 			vfsp->vfs_vnodecovered = NULL;
1685 		}
1686 		/*
1687 		 * Set flags for global options encountered
1688 		 */
1689 		if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1690 			vfsp->vfs_flag |= VFS_RDONLY;
1691 		else
1692 			vfsp->vfs_flag &= ~VFS_RDONLY;
1693 		if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1694 			vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1695 		} else {
1696 			if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1697 				vfsp->vfs_flag |= VFS_NODEVICES;
1698 			else
1699 				vfsp->vfs_flag &= ~VFS_NODEVICES;
1700 			if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1701 				vfsp->vfs_flag |= VFS_NOSETUID;
1702 			else
1703 				vfsp->vfs_flag &= ~VFS_NOSETUID;
1704 		}
1705 		if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1706 			vfsp->vfs_flag |= VFS_NBMAND;
1707 		else
1708 			vfsp->vfs_flag &= ~VFS_NBMAND;
1709 
1710 		if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1711 			vfsp->vfs_flag |= VFS_XATTR;
1712 		else
1713 			vfsp->vfs_flag &= ~VFS_XATTR;
1714 
1715 		if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1716 			vfsp->vfs_flag |= VFS_NOEXEC;
1717 		else
1718 			vfsp->vfs_flag &= ~VFS_NOEXEC;
1719 
1720 		/*
1721 		 * Now construct the output option string of options
1722 		 * we recognized.
1723 		 */
1724 		if (uap->flags & MS_OPTIONSTR) {
1725 			vfs_list_read_lock();
1726 			copyout_error = vfs_buildoptionstr(
1727 			    &vfsp->vfs_mntopts, inargs, optlen);
1728 			vfs_list_unlock();
1729 			if (copyout_error == 0 &&
1730 			    (uap->flags & MS_SYSSPACE) == 0) {
1731 				copyout_error = copyoutstr(inargs, opts,
1732 				    optlen, NULL);
1733 			}
1734 		}
1735 
1736 		/*
1737 		 * If this isn't a remount, set up the vopstats before
1738 		 * anyone can touch this. We only allow spliced file
1739 		 * systems (file systems which are in the namespace) to
1740 		 * have the VFS_STATS flag set.
1741 		 * NOTE: PxFS mounts the underlying file system with
1742 		 * MS_NOSPLICE set and copies those vfs_flags to its private
1743 		 * vfs structure. As a result, PxFS should never have
1744 		 * the VFS_STATS flag or else we might access the vfs
1745 		 * statistics-related fields prior to them being
1746 		 * properly initialized.
1747 		 */
1748 		if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1749 			initialize_vopstats(&vfsp->vfs_vopstats);
1750 			/*
1751 			 * We need to set vfs_vskap to NULL because there's
1752 			 * a chance it won't be set below.  This is checked
1753 			 * in teardown_vopstats() so we can't have garbage.
1754 			 */
1755 			vfsp->vfs_vskap = NULL;
1756 			vfsp->vfs_flag |= VFS_STATS;
1757 			vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1758 		}
1759 
1760 		if (vswp->vsw_flag & VSW_XID)
1761 			vfsp->vfs_flag |= VFS_XID;
1762 
1763 		vfs_unlock(vfsp);
1764 	}
1765 	mount_completed(zone);
1766 	zone_rele(zone);
1767 	if (splice)
1768 		vn_vfsunlock(vp);
1769 
1770 	if ((error == 0) && (copyout_error == 0)) {
1771 		if (!remount) {
1772 			/*
1773 			 * Don't call get_vskstat_anchor() while holding
1774 			 * locks since it allocates memory and calls
1775 			 * VFS_STATVFS().  For NFS, the latter can generate
1776 			 * an over-the-wire call.
1777 			 */
1778 			vskap = get_vskstat_anchor(vfsp);
1779 			/* Only take the lock if we have something to do */
1780 			if (vskap != NULL) {
1781 				vfs_lock_wait(vfsp);
1782 				if (vfsp->vfs_flag & VFS_STATS) {
1783 					vfsp->vfs_vskap = vskap;
1784 				}
1785 				vfs_unlock(vfsp);
1786 			}
1787 		}
1788 		/* Return vfsp to caller. */
1789 		*vfspp = vfsp;
1790 	}
1791 errout:
1792 	vfs_freeopttbl(&mnt_mntopts);
1793 	if (resource != NULL)
1794 		kmem_free(resource, strlen(resource) + 1);
1795 	if (mountpt != NULL)
1796 		kmem_free(mountpt, strlen(mountpt) + 1);
1797 	/*
1798 	 * It is possible we errored prior to adding to mount in progress
1799 	 * table. Must free vnode we acquired with successful lookupname.
1800 	 */
1801 	if (addmip)
1802 		VN_RELE(bvp);
1803 	if (delmip)
1804 		vfs_delmip(vfsp);
1805 	ASSERT(vswp != NULL);
1806 	vfs_unrefvfssw(vswp);
1807 	if (inargs != opts)
1808 		kmem_free(inargs, MAX_MNTOPT_STR);
1809 	if (copyout_error) {
1810 		lofi_remove(vfsp);
1811 		VFS_RELE(vfsp);
1812 		error = copyout_error;
1813 	}
1814 	return (error);
1815 }
1816 
1817 static void
1818 vfs_setpath(
1819     struct vfs *vfsp,		/* vfs being updated */
1820     refstr_t **refp,		/* Ref-count string to contain the new path */
1821     const char *newpath,	/* Path to add to refp (above) */
1822     uint32_t flag)		/* flag */
1823 {
1824 	size_t len;
1825 	refstr_t *ref;
1826 	zone_t *zone = curproc->p_zone;
1827 	char *sp;
1828 	int have_list_lock = 0;
1829 
1830 	ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1831 
1832 	/*
1833 	 * New path must be less than MAXPATHLEN because mntfs
1834 	 * will only display up to MAXPATHLEN bytes. This is currently
1835 	 * safe, because domount() uses pn_get(), and other callers
1836 	 * similarly cap the size to fewer than MAXPATHLEN bytes.
1837 	 */
1838 
1839 	ASSERT(strlen(newpath) < MAXPATHLEN);
1840 
1841 	/* mntfs requires consistency while vfs list lock is held */
1842 
1843 	if (VFS_ON_LIST(vfsp)) {
1844 		have_list_lock = 1;
1845 		vfs_list_lock();
1846 	}
1847 
1848 	if (*refp != NULL)
1849 		refstr_rele(*refp);
1850 
1851 	/*
1852 	 * If we are in a non-global zone then we prefix the supplied path,
1853 	 * newpath, with the zone's root path, with two exceptions. The first
1854 	 * is where we have been explicitly directed to avoid doing so; this
1855 	 * will be the case following a failed remount, where the path supplied
1856 	 * will be a saved version which must now be restored. The second
1857 	 * exception is where newpath is not a pathname but a descriptive name,
1858 	 * e.g. "procfs".
1859 	 */
1860 	if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') {
1861 		ref = refstr_alloc(newpath);
1862 		goto out;
1863 	}
1864 
1865 	/*
1866 	 * Truncate the trailing '/' in the zoneroot, and merge
1867 	 * in the zone's rootpath with the "newpath" (resource
1868 	 * or mountpoint) passed in.
1869 	 *
1870 	 * The size of the required buffer is thus the size of
1871 	 * the buffer required for the passed-in newpath
1872 	 * (strlen(newpath) + 1), plus the size of the buffer
1873 	 * required to hold zone_rootpath (zone_rootpathlen)
1874 	 * minus one for one of the now-superfluous NUL
1875 	 * terminations, minus one for the trailing '/'.
1876 	 *
1877 	 * That gives us:
1878 	 *
1879 	 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1880 	 *
1881 	 * Which is what we have below.
1882 	 */
1883 
1884 	len = strlen(newpath) + zone->zone_rootpathlen - 1;
1885 	sp = kmem_alloc(len, KM_SLEEP);
1886 
1887 	/*
1888 	 * Copy everything including the trailing slash, which
1889 	 * we then overwrite with the NUL character.
1890 	 */
1891 
1892 	(void) strcpy(sp, zone->zone_rootpath);
1893 	sp[zone->zone_rootpathlen - 2] = '\0';
1894 	(void) strcat(sp, newpath);
1895 
1896 	ref = refstr_alloc(sp);
1897 	kmem_free(sp, len);
1898 out:
1899 	*refp = ref;
1900 
1901 	if (have_list_lock) {
1902 		vfs_mnttab_modtimeupd();
1903 		vfs_list_unlock();
1904 	}
1905 }
1906 
1907 /*
1908  * Record a mounted resource name in a vfs structure.
1909  * If vfsp is already mounted, caller must hold the vfs lock.
1910  */
1911 void
1912 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag)
1913 {
1914 	if (resource == NULL || resource[0] == '\0')
1915 		resource = VFS_NORESOURCE;
1916 	vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag);
1917 }
1918 
1919 /*
1920  * Record a mount point name in a vfs structure.
1921  * If vfsp is already mounted, caller must hold the vfs lock.
1922  */
1923 void
1924 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag)
1925 {
1926 	if (mntpt == NULL || mntpt[0] == '\0')
1927 		mntpt = VFS_NOMNTPT;
1928 	vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag);
1929 }
1930 
1931 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1932 
1933 refstr_t *
1934 vfs_getresource(const struct vfs *vfsp)
1935 {
1936 	refstr_t *resource;
1937 
1938 	vfs_list_read_lock();
1939 	resource = vfsp->vfs_resource;
1940 	refstr_hold(resource);
1941 	vfs_list_unlock();
1942 
1943 	return (resource);
1944 }
1945 
1946 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
1947 
1948 refstr_t *
1949 vfs_getmntpoint(const struct vfs *vfsp)
1950 {
1951 	refstr_t *mntpt;
1952 
1953 	vfs_list_read_lock();
1954 	mntpt = vfsp->vfs_mntpt;
1955 	refstr_hold(mntpt);
1956 	vfs_list_unlock();
1957 
1958 	return (mntpt);
1959 }
1960 
1961 /*
1962  * Create an empty options table with enough empty slots to hold all
1963  * The options in the options string passed as an argument.
1964  * Potentially prepend another options table.
1965  *
1966  * Note: caller is responsible for locking the vfs list, if needed,
1967  *       to protect mops.
1968  */
1969 static void
1970 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
1971     const mntopts_t *mtmpl)
1972 {
1973 	const char *s = opts;
1974 	uint_t count;
1975 
1976 	if (opts == NULL || *opts == '\0') {
1977 		count = 0;
1978 	} else {
1979 		count = 1;
1980 
1981 		/*
1982 		 * Count number of options in the string
1983 		 */
1984 		for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
1985 			count++;
1986 			s++;
1987 		}
1988 	}
1989 	vfs_copyopttbl_extend(mtmpl, mops, count);
1990 }
1991 
1992 /*
1993  * Create an empty options table with enough empty slots to hold all
1994  * The options in the options string passed as an argument.
1995  *
1996  * This function is *not* for general use by filesystems.
1997  *
1998  * Note: caller is responsible for locking the vfs list, if needed,
1999  *       to protect mops.
2000  */
2001 void
2002 vfs_createopttbl(mntopts_t *mops, const char *opts)
2003 {
2004 	vfs_createopttbl_extend(mops, opts, NULL);
2005 }
2006 
2007 
2008 /*
2009  * Swap two mount options tables
2010  */
2011 static void
2012 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2013 {
2014 	uint_t tmpcnt;
2015 	mntopt_t *tmplist;
2016 
2017 	tmpcnt = optbl2->mo_count;
2018 	tmplist = optbl2->mo_list;
2019 	optbl2->mo_count = optbl1->mo_count;
2020 	optbl2->mo_list = optbl1->mo_list;
2021 	optbl1->mo_count = tmpcnt;
2022 	optbl1->mo_list = tmplist;
2023 }
2024 
2025 static void
2026 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2027 {
2028 	vfs_list_lock();
2029 	vfs_swapopttbl_nolock(optbl1, optbl2);
2030 	vfs_mnttab_modtimeupd();
2031 	vfs_list_unlock();
2032 }
2033 
2034 static char **
2035 vfs_copycancelopt_extend(char **const moc, int extend)
2036 {
2037 	int i = 0;
2038 	int j;
2039 	char **result;
2040 
2041 	if (moc != NULL) {
2042 		for (; moc[i] != NULL; i++)
2043 			/* count number of options to cancel */;
2044 	}
2045 
2046 	if (i + extend == 0)
2047 		return (NULL);
2048 
2049 	result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2050 
2051 	for (j = 0; j < i; j++) {
2052 		result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2053 		(void) strcpy(result[j], moc[j]);
2054 	}
2055 	for (; j <= i + extend; j++)
2056 		result[j] = NULL;
2057 
2058 	return (result);
2059 }
2060 
2061 static void
2062 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2063 {
2064 	char *sp, *dp;
2065 
2066 	d->mo_flags = s->mo_flags;
2067 	d->mo_data = s->mo_data;
2068 	sp = s->mo_name;
2069 	if (sp != NULL) {
2070 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2071 		(void) strcpy(dp, sp);
2072 		d->mo_name = dp;
2073 	} else {
2074 		d->mo_name = NULL; /* should never happen */
2075 	}
2076 
2077 	d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2078 
2079 	sp = s->mo_arg;
2080 	if (sp != NULL) {
2081 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2082 		(void) strcpy(dp, sp);
2083 		d->mo_arg = dp;
2084 	} else {
2085 		d->mo_arg = NULL;
2086 	}
2087 }
2088 
2089 /*
2090  * Copy a mount options table, possibly allocating some spare
2091  * slots at the end.  It is permissible to copy_extend the NULL table.
2092  */
2093 static void
2094 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2095 {
2096 	uint_t i, count;
2097 	mntopt_t *motbl;
2098 
2099 	/*
2100 	 * Clear out any existing stuff in the options table being initialized
2101 	 */
2102 	vfs_freeopttbl(dmo);
2103 	count = (smo == NULL) ? 0 : smo->mo_count;
2104 	if ((count + extra) == 0)	/* nothing to do */
2105 		return;
2106 	dmo->mo_count = count + extra;
2107 	motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2108 	dmo->mo_list = motbl;
2109 	for (i = 0; i < count; i++) {
2110 		vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2111 	}
2112 	for (i = count; i < count + extra; i++) {
2113 		motbl[i].mo_flags = MO_EMPTY;
2114 	}
2115 }
2116 
2117 /*
2118  * Copy a mount options table.
2119  *
2120  * This function is *not* for general use by filesystems.
2121  *
2122  * Note: caller is responsible for locking the vfs list, if needed,
2123  *       to protect smo and dmo.
2124  */
2125 void
2126 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2127 {
2128 	vfs_copyopttbl_extend(smo, dmo, 0);
2129 }
2130 
2131 static char **
2132 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2133 {
2134 	int c1 = 0;
2135 	int c2 = 0;
2136 	char **result;
2137 	char **sp1, **sp2, **dp;
2138 
2139 	/*
2140 	 * First we count both lists of cancel options.
2141 	 * If either is NULL or has no elements, we return a copy of
2142 	 * the other.
2143 	 */
2144 	if (mop1->mo_cancel != NULL) {
2145 		for (; mop1->mo_cancel[c1] != NULL; c1++)
2146 			/* count cancel options in mop1 */;
2147 	}
2148 
2149 	if (c1 == 0)
2150 		return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2151 
2152 	if (mop2->mo_cancel != NULL) {
2153 		for (; mop2->mo_cancel[c2] != NULL; c2++)
2154 			/* count cancel options in mop2 */;
2155 	}
2156 
2157 	result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2158 
2159 	if (c2 == 0)
2160 		return (result);
2161 
2162 	/*
2163 	 * When we get here, we've got two sets of cancel options;
2164 	 * we need to merge the two sets.  We know that the result
2165 	 * array has "c1+c2+1" entries and in the end we might shrink
2166 	 * it.
2167 	 * Result now has a copy of the c1 entries from mop1; we'll
2168 	 * now lookup all the entries of mop2 in mop1 and copy it if
2169 	 * it is unique.
2170 	 * This operation is O(n^2) but it's only called once per
2171 	 * filesystem per duplicate option.  This is a situation
2172 	 * which doesn't arise with the filesystems in ON and
2173 	 * n is generally 1.
2174 	 */
2175 
2176 	dp = &result[c1];
2177 	for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2178 		for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2179 			if (strcmp(*sp1, *sp2) == 0)
2180 				break;
2181 		}
2182 		if (*sp1 == NULL) {
2183 			/*
2184 			 * Option *sp2 not found in mop1, so copy it.
2185 			 * The calls to vfs_copycancelopt_extend()
2186 			 * guarantee that there's enough room.
2187 			 */
2188 			*dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2189 			(void) strcpy(*dp++, *sp2);
2190 		}
2191 	}
2192 	if (dp != &result[c1+c2]) {
2193 		size_t bytes = (dp - result + 1) * sizeof (char *);
2194 		char **nres = kmem_alloc(bytes, KM_SLEEP);
2195 
2196 		bcopy(result, nres, bytes);
2197 		kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2198 		result = nres;
2199 	}
2200 	return (result);
2201 }
2202 
2203 /*
2204  * Merge two mount option tables (outer and inner) into one.  This is very
2205  * similar to "merging" global variables and automatic variables in C.
2206  *
2207  * This isn't (and doesn't have to be) fast.
2208  *
2209  * This function is *not* for general use by filesystems.
2210  *
2211  * Note: caller is responsible for locking the vfs list, if needed,
2212  *       to protect omo, imo & dmo.
2213  */
2214 void
2215 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2216 {
2217 	uint_t i, count;
2218 	mntopt_t *mop, *motbl;
2219 	uint_t freeidx;
2220 
2221 	/*
2222 	 * First determine how much space we need to allocate.
2223 	 */
2224 	count = omo->mo_count;
2225 	for (i = 0; i < imo->mo_count; i++) {
2226 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2227 			continue;
2228 		if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2229 			count++;
2230 	}
2231 	ASSERT(count >= omo->mo_count &&
2232 	    count <= omo->mo_count + imo->mo_count);
2233 	motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2234 	for (i = 0; i < omo->mo_count; i++)
2235 		vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2236 	freeidx = omo->mo_count;
2237 	for (i = 0; i < imo->mo_count; i++) {
2238 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2239 			continue;
2240 		if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2241 			char **newcanp;
2242 			uint_t index = mop - omo->mo_list;
2243 
2244 			newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2245 
2246 			vfs_freeopt(&motbl[index]);
2247 			vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2248 
2249 			vfs_freecancelopt(motbl[index].mo_cancel);
2250 			motbl[index].mo_cancel = newcanp;
2251 		} else {
2252 			/*
2253 			 * If it's a new option, just copy it over to the first
2254 			 * free location.
2255 			 */
2256 			vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2257 		}
2258 	}
2259 	dmo->mo_count = count;
2260 	dmo->mo_list = motbl;
2261 }
2262 
2263 /*
2264  * Functions to set and clear mount options in a mount options table.
2265  */
2266 
2267 /*
2268  * Clear a mount option, if it exists.
2269  *
2270  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2271  * the vfs list.
2272  */
2273 static void
2274 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2275 {
2276 	struct mntopt *mop;
2277 	uint_t i, count;
2278 
2279 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2280 
2281 	count = mops->mo_count;
2282 	for (i = 0; i < count; i++) {
2283 		mop = &mops->mo_list[i];
2284 
2285 		if (mop->mo_flags & MO_EMPTY)
2286 			continue;
2287 		if (strcmp(opt, mop->mo_name))
2288 			continue;
2289 		mop->mo_flags &= ~MO_SET;
2290 		if (mop->mo_arg != NULL) {
2291 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2292 		}
2293 		mop->mo_arg = NULL;
2294 		if (update_mnttab)
2295 			vfs_mnttab_modtimeupd();
2296 		break;
2297 	}
2298 }
2299 
2300 void
2301 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2302 {
2303 	int gotlock = 0;
2304 
2305 	if (VFS_ON_LIST(vfsp)) {
2306 		gotlock = 1;
2307 		vfs_list_lock();
2308 	}
2309 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2310 	if (gotlock)
2311 		vfs_list_unlock();
2312 }
2313 
2314 
2315 /*
2316  * Set a mount option on.  If it's not found in the table, it's silently
2317  * ignored.  If the option has MO_IGNORE set, it is still set unless the
2318  * VFS_NOFORCEOPT bit is set in the flags.  Also, VFS_DISPLAY/VFS_NODISPLAY flag
2319  * bits can be used to toggle the MO_NODISPLAY bit for the option.
2320  * If the VFS_CREATEOPT flag bit is set then the first option slot with
2321  * MO_EMPTY set is created as the option passed in.
2322  *
2323  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2324  * the vfs list.
2325  */
2326 static void
2327 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2328     const char *arg, int flags, int update_mnttab)
2329 {
2330 	mntopt_t *mop;
2331 	uint_t i, count;
2332 	char *sp;
2333 
2334 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2335 
2336 	if (flags & VFS_CREATEOPT) {
2337 		if (vfs_hasopt(mops, opt) != NULL) {
2338 			flags &= ~VFS_CREATEOPT;
2339 		}
2340 	}
2341 	count = mops->mo_count;
2342 	for (i = 0; i < count; i++) {
2343 		mop = &mops->mo_list[i];
2344 
2345 		if (mop->mo_flags & MO_EMPTY) {
2346 			if ((flags & VFS_CREATEOPT) == 0)
2347 				continue;
2348 			sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2349 			(void) strcpy(sp, opt);
2350 			mop->mo_name = sp;
2351 			if (arg != NULL)
2352 				mop->mo_flags = MO_HASVALUE;
2353 			else
2354 				mop->mo_flags = 0;
2355 		} else if (strcmp(opt, mop->mo_name)) {
2356 			continue;
2357 		}
2358 		if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2359 			break;
2360 		if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2361 			sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2362 			(void) strcpy(sp, arg);
2363 		} else {
2364 			sp = NULL;
2365 		}
2366 		if (mop->mo_arg != NULL)
2367 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2368 		mop->mo_arg = sp;
2369 		if (flags & VFS_DISPLAY)
2370 			mop->mo_flags &= ~MO_NODISPLAY;
2371 		if (flags & VFS_NODISPLAY)
2372 			mop->mo_flags |= MO_NODISPLAY;
2373 		mop->mo_flags |= MO_SET;
2374 		if (mop->mo_cancel != NULL) {
2375 			char **cp;
2376 
2377 			for (cp = mop->mo_cancel; *cp != NULL; cp++)
2378 				vfs_clearmntopt_nolock(mops, *cp, 0);
2379 		}
2380 		if (update_mnttab)
2381 			vfs_mnttab_modtimeupd();
2382 		break;
2383 	}
2384 }
2385 
2386 void
2387 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2388 {
2389 	int gotlock = 0;
2390 
2391 	if (VFS_ON_LIST(vfsp)) {
2392 		gotlock = 1;
2393 		vfs_list_lock();
2394 	}
2395 	vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2396 	if (gotlock)
2397 		vfs_list_unlock();
2398 }
2399 
2400 
2401 /*
2402  * Add a "tag" option to a mounted file system's options list.
2403  *
2404  * Note: caller is responsible for locking the vfs list, if needed,
2405  *       to protect mops.
2406  */
2407 static mntopt_t *
2408 vfs_addtag(mntopts_t *mops, const char *tag)
2409 {
2410 	uint_t count;
2411 	mntopt_t *mop, *motbl;
2412 
2413 	count = mops->mo_count + 1;
2414 	motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2415 	if (mops->mo_count) {
2416 		size_t len = (count - 1) * sizeof (mntopt_t);
2417 
2418 		bcopy(mops->mo_list, motbl, len);
2419 		kmem_free(mops->mo_list, len);
2420 	}
2421 	mops->mo_count = count;
2422 	mops->mo_list = motbl;
2423 	mop = &motbl[count - 1];
2424 	mop->mo_flags = MO_TAG;
2425 	mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2426 	(void) strcpy(mop->mo_name, tag);
2427 	return (mop);
2428 }
2429 
2430 /*
2431  * Allow users to set arbitrary "tags" in a vfs's mount options.
2432  * Broader use within the kernel is discouraged.
2433  */
2434 int
2435 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2436     cred_t *cr)
2437 {
2438 	vfs_t *vfsp;
2439 	mntopts_t *mops;
2440 	mntopt_t *mop;
2441 	int found = 0;
2442 	dev_t dev = makedevice(major, minor);
2443 	int err = 0;
2444 	char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2445 
2446 	/*
2447 	 * Find the desired mounted file system
2448 	 */
2449 	vfs_list_lock();
2450 	vfsp = rootvfs;
2451 	do {
2452 		if (vfsp->vfs_dev == dev &&
2453 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2454 			found = 1;
2455 			break;
2456 		}
2457 		vfsp = vfsp->vfs_next;
2458 	} while (vfsp != rootvfs);
2459 
2460 	if (!found) {
2461 		err = EINVAL;
2462 		goto out;
2463 	}
2464 	err = secpolicy_fs_config(cr, vfsp);
2465 	if (err != 0)
2466 		goto out;
2467 
2468 	mops = &vfsp->vfs_mntopts;
2469 	/*
2470 	 * Add tag if it doesn't already exist
2471 	 */
2472 	if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2473 		int len;
2474 
2475 		(void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2476 		len = strlen(buf);
2477 		if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2478 			err = ENAMETOOLONG;
2479 			goto out;
2480 		}
2481 		mop = vfs_addtag(mops, tag);
2482 	}
2483 	if ((mop->mo_flags & MO_TAG) == 0) {
2484 		err = EINVAL;
2485 		goto out;
2486 	}
2487 	vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2488 out:
2489 	vfs_list_unlock();
2490 	kmem_free(buf, MAX_MNTOPT_STR);
2491 	return (err);
2492 }
2493 
2494 /*
2495  * Allow users to remove arbitrary "tags" in a vfs's mount options.
2496  * Broader use within the kernel is discouraged.
2497  */
2498 int
2499 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2500     cred_t *cr)
2501 {
2502 	vfs_t *vfsp;
2503 	mntopt_t *mop;
2504 	int found = 0;
2505 	dev_t dev = makedevice(major, minor);
2506 	int err = 0;
2507 
2508 	/*
2509 	 * Find the desired mounted file system
2510 	 */
2511 	vfs_list_lock();
2512 	vfsp = rootvfs;
2513 	do {
2514 		if (vfsp->vfs_dev == dev &&
2515 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2516 			found = 1;
2517 			break;
2518 		}
2519 		vfsp = vfsp->vfs_next;
2520 	} while (vfsp != rootvfs);
2521 
2522 	if (!found) {
2523 		err = EINVAL;
2524 		goto out;
2525 	}
2526 	err = secpolicy_fs_config(cr, vfsp);
2527 	if (err != 0)
2528 		goto out;
2529 
2530 	if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2531 		err = EINVAL;
2532 		goto out;
2533 	}
2534 	if ((mop->mo_flags & MO_TAG) == 0) {
2535 		err = EINVAL;
2536 		goto out;
2537 	}
2538 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2539 out:
2540 	vfs_list_unlock();
2541 	return (err);
2542 }
2543 
2544 /*
2545  * Function to parse an option string and fill in a mount options table.
2546  * Unknown options are silently ignored.  The input option string is modified
2547  * by replacing separators with nulls.  If the create flag is set, options
2548  * not found in the table are just added on the fly.  The table must have
2549  * an option slot marked MO_EMPTY to add an option on the fly.
2550  *
2551  * This function is *not* for general use by filesystems.
2552  *
2553  * Note: caller is responsible for locking the vfs list, if needed,
2554  *       to protect mops..
2555  */
2556 void
2557 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2558 {
2559 	char *s = osp, *p, *nextop, *valp, *cp, *ep;
2560 	int setflg = VFS_NOFORCEOPT;
2561 
2562 	if (osp == NULL)
2563 		return;
2564 	while (*s != '\0') {
2565 		p = strchr(s, ',');	/* find next option */
2566 		if (p == NULL) {
2567 			cp = NULL;
2568 			p = s + strlen(s);
2569 		} else {
2570 			cp = p;		/* save location of comma */
2571 			*p++ = '\0';	/* mark end and point to next option */
2572 		}
2573 		nextop = p;
2574 		p = strchr(s, '=');	/* look for value */
2575 		if (p == NULL) {
2576 			valp = NULL;	/* no value supplied */
2577 		} else {
2578 			ep = p;		/* save location of equals */
2579 			*p++ = '\0';	/* end option and point to value */
2580 			valp = p;
2581 		}
2582 		/*
2583 		 * set option into options table
2584 		 */
2585 		if (create)
2586 			setflg |= VFS_CREATEOPT;
2587 		vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2588 		if (cp != NULL)
2589 			*cp = ',';	/* restore the comma */
2590 		if (valp != NULL)
2591 			*ep = '=';	/* restore the equals */
2592 		s = nextop;
2593 	}
2594 }
2595 
2596 /*
2597  * Function to inquire if an option exists in a mount options table.
2598  * Returns a pointer to the option if it exists, else NULL.
2599  *
2600  * This function is *not* for general use by filesystems.
2601  *
2602  * Note: caller is responsible for locking the vfs list, if needed,
2603  *       to protect mops.
2604  */
2605 struct mntopt *
2606 vfs_hasopt(const mntopts_t *mops, const char *opt)
2607 {
2608 	struct mntopt *mop;
2609 	uint_t i, count;
2610 
2611 	count = mops->mo_count;
2612 	for (i = 0; i < count; i++) {
2613 		mop = &mops->mo_list[i];
2614 
2615 		if (mop->mo_flags & MO_EMPTY)
2616 			continue;
2617 		if (strcmp(opt, mop->mo_name) == 0)
2618 			return (mop);
2619 	}
2620 	return (NULL);
2621 }
2622 
2623 /*
2624  * Function to inquire if an option is set in a mount options table.
2625  * Returns non-zero if set and fills in the arg pointer with a pointer to
2626  * the argument string or NULL if there is no argument string.
2627  */
2628 static int
2629 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2630 {
2631 	struct mntopt *mop;
2632 	uint_t i, count;
2633 
2634 	count = mops->mo_count;
2635 	for (i = 0; i < count; i++) {
2636 		mop = &mops->mo_list[i];
2637 
2638 		if (mop->mo_flags & MO_EMPTY)
2639 			continue;
2640 		if (strcmp(opt, mop->mo_name))
2641 			continue;
2642 		if ((mop->mo_flags & MO_SET) == 0)
2643 			return (0);
2644 		if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2645 			*argp = mop->mo_arg;
2646 		return (1);
2647 	}
2648 	return (0);
2649 }
2650 
2651 
2652 int
2653 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2654 {
2655 	int ret;
2656 
2657 	vfs_list_read_lock();
2658 	ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2659 	vfs_list_unlock();
2660 	return (ret);
2661 }
2662 
2663 
2664 /*
2665  * Construct a comma separated string of the options set in the given
2666  * mount table, return the string in the given buffer.  Return non-zero if
2667  * the buffer would overflow.
2668  *
2669  * This function is *not* for general use by filesystems.
2670  *
2671  * Note: caller is responsible for locking the vfs list, if needed,
2672  *       to protect mp.
2673  */
2674 int
2675 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2676 {
2677 	char *cp;
2678 	uint_t i;
2679 
2680 	buf[0] = '\0';
2681 	cp = buf;
2682 	for (i = 0; i < mp->mo_count; i++) {
2683 		struct mntopt *mop;
2684 
2685 		mop = &mp->mo_list[i];
2686 		if (mop->mo_flags & MO_SET) {
2687 			int optlen, comma = 0;
2688 
2689 			if (buf[0] != '\0')
2690 				comma = 1;
2691 			optlen = strlen(mop->mo_name);
2692 			if (strlen(buf) + comma + optlen + 1 > len)
2693 				goto err;
2694 			if (comma)
2695 				*cp++ = ',';
2696 			(void) strcpy(cp, mop->mo_name);
2697 			cp += optlen;
2698 			/*
2699 			 * Append option value if there is one
2700 			 */
2701 			if (mop->mo_arg != NULL) {
2702 				int arglen;
2703 
2704 				arglen = strlen(mop->mo_arg);
2705 				if (strlen(buf) + arglen + 2 > len)
2706 					goto err;
2707 				*cp++ = '=';
2708 				(void) strcpy(cp, mop->mo_arg);
2709 				cp += arglen;
2710 			}
2711 		}
2712 	}
2713 	return (0);
2714 err:
2715 	return (EOVERFLOW);
2716 }
2717 
2718 static void
2719 vfs_freecancelopt(char **moc)
2720 {
2721 	if (moc != NULL) {
2722 		int ccnt = 0;
2723 		char **cp;
2724 
2725 		for (cp = moc; *cp != NULL; cp++) {
2726 			kmem_free(*cp, strlen(*cp) + 1);
2727 			ccnt++;
2728 		}
2729 		kmem_free(moc, (ccnt + 1) * sizeof (char *));
2730 	}
2731 }
2732 
2733 static void
2734 vfs_freeopt(mntopt_t *mop)
2735 {
2736 	if (mop->mo_name != NULL)
2737 		kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2738 
2739 	vfs_freecancelopt(mop->mo_cancel);
2740 
2741 	if (mop->mo_arg != NULL)
2742 		kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2743 }
2744 
2745 /*
2746  * Free a mount options table
2747  *
2748  * This function is *not* for general use by filesystems.
2749  *
2750  * Note: caller is responsible for locking the vfs list, if needed,
2751  *       to protect mp.
2752  */
2753 void
2754 vfs_freeopttbl(mntopts_t *mp)
2755 {
2756 	uint_t i, count;
2757 
2758 	count = mp->mo_count;
2759 	for (i = 0; i < count; i++) {
2760 		vfs_freeopt(&mp->mo_list[i]);
2761 	}
2762 	if (count) {
2763 		kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2764 		mp->mo_count = 0;
2765 		mp->mo_list = NULL;
2766 	}
2767 }
2768 
2769 
2770 /* ARGSUSED */
2771 static int
2772 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2773     caller_context_t *ct)
2774 {
2775 	return (0);
2776 }
2777 
2778 /* ARGSUSED */
2779 static int
2780 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2781     caller_context_t *ct)
2782 {
2783 	return (0);
2784 }
2785 
2786 /*
2787  * The dummy vnode is currently used only by file events notification
2788  * module which is just interested in the timestamps.
2789  */
2790 /* ARGSUSED */
2791 static int
2792 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2793     caller_context_t *ct)
2794 {
2795 	bzero(vap, sizeof (vattr_t));
2796 	vap->va_type = VREG;
2797 	vap->va_nlink = 1;
2798 	vap->va_ctime = vfs_mnttab_ctime;
2799 	/*
2800 	 * it is ok to just copy mtime as the time will be monotonically
2801 	 * increasing.
2802 	 */
2803 	vap->va_mtime = vfs_mnttab_mtime;
2804 	vap->va_atime = vap->va_mtime;
2805 	return (0);
2806 }
2807 
2808 static void
2809 vfs_mnttabvp_setup(void)
2810 {
2811 	vnode_t *tvp;
2812 	vnodeops_t *vfs_mntdummyvnops;
2813 	const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2814 		VOPNAME_READ, 		{ .vop_read = vfs_mntdummyread },
2815 		VOPNAME_WRITE, 		{ .vop_write = vfs_mntdummywrite },
2816 		VOPNAME_GETATTR,	{ .vop_getattr = vfs_mntdummygetattr },
2817 		VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
2818 		NULL,			NULL
2819 	};
2820 
2821 	if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2822 	    &vfs_mntdummyvnops) != 0) {
2823 		cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2824 		/* Shouldn't happen, but not bad enough to panic */
2825 		return;
2826 	}
2827 
2828 	/*
2829 	 * A global dummy vnode is allocated to represent mntfs files.
2830 	 * The mntfs file (/etc/mnttab) can be monitored for file events
2831 	 * and receive an event when mnttab changes. Dummy VOP calls
2832 	 * will be made on this vnode. The file events notification module
2833 	 * intercepts this vnode and delivers relevant events.
2834 	 */
2835 	tvp = vn_alloc(KM_SLEEP);
2836 	tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2837 	vn_setops(tvp, vfs_mntdummyvnops);
2838 	tvp->v_type = VREG;
2839 	/*
2840 	 * The mnt dummy ops do not reference v_data.
2841 	 * No other module intercepting this vnode should either.
2842 	 * Just set it to point to itself.
2843 	 */
2844 	tvp->v_data = (caddr_t)tvp;
2845 	tvp->v_vfsp = rootvfs;
2846 	vfs_mntdummyvp = tvp;
2847 }
2848 
2849 /*
2850  * performs fake read/write ops
2851  */
2852 static void
2853 vfs_mnttab_rwop(int rw)
2854 {
2855 	struct uio	uio;
2856 	struct iovec	iov;
2857 	char	buf[1];
2858 
2859 	if (vfs_mntdummyvp == NULL)
2860 		return;
2861 
2862 	bzero(&uio, sizeof (uio));
2863 	bzero(&iov, sizeof (iov));
2864 	iov.iov_base = buf;
2865 	iov.iov_len = 0;
2866 	uio.uio_iov = &iov;
2867 	uio.uio_iovcnt = 1;
2868 	uio.uio_loffset = 0;
2869 	uio.uio_segflg = UIO_SYSSPACE;
2870 	uio.uio_resid = 0;
2871 	if (rw) {
2872 		(void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2873 	} else {
2874 		(void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2875 	}
2876 }
2877 
2878 /*
2879  * Generate a write operation.
2880  */
2881 void
2882 vfs_mnttab_writeop(void)
2883 {
2884 	vfs_mnttab_rwop(1);
2885 }
2886 
2887 /*
2888  * Generate a read operation.
2889  */
2890 void
2891 vfs_mnttab_readop(void)
2892 {
2893 	vfs_mnttab_rwop(0);
2894 }
2895 
2896 /*
2897  * Free any mnttab information recorded in the vfs struct.
2898  * The vfs must not be on the vfs list.
2899  */
2900 static void
2901 vfs_freemnttab(struct vfs *vfsp)
2902 {
2903 	ASSERT(!VFS_ON_LIST(vfsp));
2904 
2905 	/*
2906 	 * Free device and mount point information
2907 	 */
2908 	if (vfsp->vfs_mntpt != NULL) {
2909 		refstr_rele(vfsp->vfs_mntpt);
2910 		vfsp->vfs_mntpt = NULL;
2911 	}
2912 	if (vfsp->vfs_resource != NULL) {
2913 		refstr_rele(vfsp->vfs_resource);
2914 		vfsp->vfs_resource = NULL;
2915 	}
2916 	/*
2917 	 * Now free mount options information
2918 	 */
2919 	vfs_freeopttbl(&vfsp->vfs_mntopts);
2920 }
2921 
2922 /*
2923  * Return the last mnttab modification time
2924  */
2925 void
2926 vfs_mnttab_modtime(timespec_t *ts)
2927 {
2928 	ASSERT(RW_LOCK_HELD(&vfslist));
2929 	*ts = vfs_mnttab_mtime;
2930 }
2931 
2932 /*
2933  * See if mnttab is changed
2934  */
2935 void
2936 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2937 {
2938 	int changed;
2939 
2940 	*phpp = (struct pollhead *)NULL;
2941 
2942 	/*
2943 	 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
2944 	 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
2945 	 * to not grab the vfs list lock because tv_sec is monotonically
2946 	 * increasing.
2947 	 */
2948 
2949 	changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
2950 	    (old->tv_sec != vfs_mnttab_mtime.tv_sec);
2951 	if (!changed) {
2952 		*phpp = &vfs_pollhd;
2953 	}
2954 }
2955 
2956 /* Provide a unique and monotonically-increasing timestamp. */
2957 void
2958 vfs_mono_time(timespec_t *ts)
2959 {
2960 	static volatile hrtime_t hrt;		/* The saved time. */
2961 	hrtime_t	newhrt, oldhrt;		/* For effecting the CAS. */
2962 	timespec_t	newts;
2963 
2964 	/*
2965 	 * Try gethrestime() first, but be prepared to fabricate a sensible
2966 	 * answer at the first sign of any trouble.
2967 	 */
2968 	gethrestime(&newts);
2969 	newhrt = ts2hrt(&newts);
2970 	for (;;) {
2971 		oldhrt = hrt;
2972 		if (newhrt <= hrt)
2973 			newhrt = hrt + 1;
2974 		if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
2975 			break;
2976 	}
2977 	hrt2ts(newhrt, ts);
2978 }
2979 
2980 /*
2981  * Update the mnttab modification time and wake up any waiters for
2982  * mnttab changes
2983  */
2984 void
2985 vfs_mnttab_modtimeupd()
2986 {
2987 	hrtime_t oldhrt, newhrt;
2988 
2989 	ASSERT(RW_WRITE_HELD(&vfslist));
2990 	oldhrt = ts2hrt(&vfs_mnttab_mtime);
2991 	gethrestime(&vfs_mnttab_mtime);
2992 	newhrt = ts2hrt(&vfs_mnttab_mtime);
2993 	if (oldhrt == (hrtime_t)0)
2994 		vfs_mnttab_ctime = vfs_mnttab_mtime;
2995 	/*
2996 	 * Attempt to provide unique mtime (like uniqtime but not).
2997 	 */
2998 	if (newhrt == oldhrt) {
2999 		newhrt++;
3000 		hrt2ts(newhrt, &vfs_mnttab_mtime);
3001 	}
3002 	pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
3003 	vfs_mnttab_writeop();
3004 }
3005 
3006 int
3007 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3008 {
3009 	vnode_t *coveredvp;
3010 	int error;
3011 	extern void teardown_vopstats(vfs_t *);
3012 
3013 	/*
3014 	 * Get covered vnode. This will be NULL if the vfs is not linked
3015 	 * into the file system name space (i.e., domount() with MNT_NOSPICE).
3016 	 */
3017 	coveredvp = vfsp->vfs_vnodecovered;
3018 	ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3019 
3020 	/*
3021 	 * Purge all dnlc entries for this vfs.
3022 	 */
3023 	(void) dnlc_purge_vfsp(vfsp, 0);
3024 
3025 	/* For forcible umount, skip VFS_SYNC() since it may hang */
3026 	if ((flag & MS_FORCE) == 0)
3027 		(void) VFS_SYNC(vfsp, 0, cr);
3028 
3029 	/*
3030 	 * Lock the vfs to maintain fs status quo during unmount.  This
3031 	 * has to be done after the sync because ufs_update tries to acquire
3032 	 * the vfs_reflock.
3033 	 */
3034 	vfs_lock_wait(vfsp);
3035 
3036 	if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3037 		vfs_unlock(vfsp);
3038 		if (coveredvp != NULL)
3039 			vn_vfsunlock(coveredvp);
3040 	} else if (coveredvp != NULL) {
3041 		teardown_vopstats(vfsp);
3042 		/*
3043 		 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3044 		 * when it frees vfsp so we do a VN_HOLD() so we can
3045 		 * continue to use coveredvp afterwards.
3046 		 */
3047 		VN_HOLD(coveredvp);
3048 		vfs_remove(vfsp);
3049 		vn_vfsunlock(coveredvp);
3050 		VN_RELE(coveredvp);
3051 	} else {
3052 		teardown_vopstats(vfsp);
3053 		/*
3054 		 * Release the reference to vfs that is not linked
3055 		 * into the name space.
3056 		 */
3057 		vfs_unlock(vfsp);
3058 		VFS_RELE(vfsp);
3059 	}
3060 	return (error);
3061 }
3062 
3063 
3064 /*
3065  * Vfs_unmountall() is called by uadmin() to unmount all
3066  * mounted file systems (except the root file system) during shutdown.
3067  * It follows the existing locking protocol when traversing the vfs list
3068  * to sync and unmount vfses. Even though there should be no
3069  * other thread running while the system is shutting down, it is prudent
3070  * to still follow the locking protocol.
3071  */
3072 void
3073 vfs_unmountall(void)
3074 {
3075 	struct vfs *vfsp;
3076 	struct vfs *prev_vfsp = NULL;
3077 	int error;
3078 
3079 	/*
3080 	 * Toss all dnlc entries now so that the per-vfs sync
3081 	 * and unmount operations don't have to slog through
3082 	 * a bunch of uninteresting vnodes over and over again.
3083 	 */
3084 	dnlc_purge();
3085 
3086 	vfs_list_lock();
3087 	for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3088 		prev_vfsp = vfsp->vfs_prev;
3089 
3090 		if (vfs_lock(vfsp) != 0)
3091 			continue;
3092 		error = vn_vfswlock(vfsp->vfs_vnodecovered);
3093 		vfs_unlock(vfsp);
3094 		if (error)
3095 			continue;
3096 
3097 		vfs_list_unlock();
3098 
3099 		(void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3100 		(void) dounmount(vfsp, 0, CRED());
3101 
3102 		/*
3103 		 * Since we dropped the vfslist lock above we must
3104 		 * verify that next_vfsp still exists, else start over.
3105 		 */
3106 		vfs_list_lock();
3107 		for (vfsp = rootvfs->vfs_prev;
3108 		    vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3109 			if (vfsp == prev_vfsp)
3110 				break;
3111 		if (vfsp == rootvfs && prev_vfsp != rootvfs)
3112 			prev_vfsp = rootvfs->vfs_prev;
3113 	}
3114 	vfs_list_unlock();
3115 }
3116 
3117 /*
3118  * Called to add an entry to the end of the vfs mount in progress list
3119  */
3120 void
3121 vfs_addmip(dev_t dev, struct vfs *vfsp)
3122 {
3123 	struct ipmnt *mipp;
3124 
3125 	mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3126 	mipp->mip_next = NULL;
3127 	mipp->mip_dev = dev;
3128 	mipp->mip_vfsp = vfsp;
3129 	mutex_enter(&vfs_miplist_mutex);
3130 	if (vfs_miplist_end != NULL)
3131 		vfs_miplist_end->mip_next = mipp;
3132 	else
3133 		vfs_miplist = mipp;
3134 	vfs_miplist_end = mipp;
3135 	mutex_exit(&vfs_miplist_mutex);
3136 }
3137 
3138 /*
3139  * Called to remove an entry from the mount in progress list
3140  * Either because the mount completed or it failed.
3141  */
3142 void
3143 vfs_delmip(struct vfs *vfsp)
3144 {
3145 	struct ipmnt *mipp, *mipprev;
3146 
3147 	mutex_enter(&vfs_miplist_mutex);
3148 	mipprev = NULL;
3149 	for (mipp = vfs_miplist;
3150 	    mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3151 		mipprev = mipp;
3152 	}
3153 	if (mipp == NULL)
3154 		return; /* shouldn't happen */
3155 	if (mipp == vfs_miplist_end)
3156 		vfs_miplist_end = mipprev;
3157 	if (mipprev == NULL)
3158 		vfs_miplist = mipp->mip_next;
3159 	else
3160 		mipprev->mip_next = mipp->mip_next;
3161 	mutex_exit(&vfs_miplist_mutex);
3162 	kmem_free(mipp, sizeof (struct ipmnt));
3163 }
3164 
3165 /*
3166  * vfs_add is called by a specific filesystem's mount routine to add
3167  * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3168  * The vfs should already have been locked by the caller.
3169  *
3170  * coveredvp is NULL if this is the root.
3171  */
3172 void
3173 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3174 {
3175 	int newflag;
3176 
3177 	ASSERT(vfs_lock_held(vfsp));
3178 	VFS_HOLD(vfsp);
3179 	newflag = vfsp->vfs_flag;
3180 	if (mflag & MS_RDONLY)
3181 		newflag |= VFS_RDONLY;
3182 	else
3183 		newflag &= ~VFS_RDONLY;
3184 	if (mflag & MS_NOSUID)
3185 		newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3186 	else
3187 		newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3188 	if (mflag & MS_NOMNTTAB)
3189 		newflag |= VFS_NOMNTTAB;
3190 	else
3191 		newflag &= ~VFS_NOMNTTAB;
3192 
3193 	if (coveredvp != NULL) {
3194 		ASSERT(vn_vfswlock_held(coveredvp));
3195 		coveredvp->v_vfsmountedhere = vfsp;
3196 		VN_HOLD(coveredvp);
3197 	}
3198 	vfsp->vfs_vnodecovered = coveredvp;
3199 	vfsp->vfs_flag = newflag;
3200 
3201 	vfs_list_add(vfsp);
3202 }
3203 
3204 /*
3205  * Remove a vfs from the vfs list, null out the pointer from the
3206  * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3207  * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3208  * reference to the vfs and to the covered vnode.
3209  *
3210  * Called from dounmount after it's confirmed with the file system
3211  * that the unmount is legal.
3212  */
3213 void
3214 vfs_remove(struct vfs *vfsp)
3215 {
3216 	vnode_t *vp;
3217 
3218 	ASSERT(vfs_lock_held(vfsp));
3219 
3220 	/*
3221 	 * Can't unmount root.  Should never happen because fs will
3222 	 * be busy.
3223 	 */
3224 	if (vfsp == rootvfs)
3225 		panic("vfs_remove: unmounting root");
3226 
3227 	vfs_list_remove(vfsp);
3228 
3229 	/*
3230 	 * Unhook from the file system name space.
3231 	 */
3232 	vp = vfsp->vfs_vnodecovered;
3233 	ASSERT(vn_vfswlock_held(vp));
3234 	vp->v_vfsmountedhere = NULL;
3235 	vfsp->vfs_vnodecovered = NULL;
3236 	VN_RELE(vp);
3237 
3238 	/*
3239 	 * Release lock and wakeup anybody waiting.
3240 	 */
3241 	vfs_unlock(vfsp);
3242 	VFS_RELE(vfsp);
3243 }
3244 
3245 /*
3246  * Lock a filesystem to prevent access to it while mounting,
3247  * unmounting and syncing.  Return EBUSY immediately if lock
3248  * can't be acquired.
3249  */
3250 int
3251 vfs_lock(vfs_t *vfsp)
3252 {
3253 	vn_vfslocks_entry_t *vpvfsentry;
3254 
3255 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3256 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3257 		return (0);
3258 
3259 	vn_vfslocks_rele(vpvfsentry);
3260 	return (EBUSY);
3261 }
3262 
3263 int
3264 vfs_rlock(vfs_t *vfsp)
3265 {
3266 	vn_vfslocks_entry_t *vpvfsentry;
3267 
3268 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3269 
3270 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3271 		return (0);
3272 
3273 	vn_vfslocks_rele(vpvfsentry);
3274 	return (EBUSY);
3275 }
3276 
3277 void
3278 vfs_lock_wait(vfs_t *vfsp)
3279 {
3280 	vn_vfslocks_entry_t *vpvfsentry;
3281 
3282 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3283 	rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3284 }
3285 
3286 void
3287 vfs_rlock_wait(vfs_t *vfsp)
3288 {
3289 	vn_vfslocks_entry_t *vpvfsentry;
3290 
3291 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3292 	rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3293 }
3294 
3295 /*
3296  * Unlock a locked filesystem.
3297  */
3298 void
3299 vfs_unlock(vfs_t *vfsp)
3300 {
3301 	vn_vfslocks_entry_t *vpvfsentry;
3302 
3303 	/*
3304 	 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3305 	 * And these changes should remain for the patch changes as it is.
3306 	 */
3307 	if (panicstr)
3308 		return;
3309 
3310 	/*
3311 	 * ve_refcount needs to be dropped twice here.
3312 	 * 1. To release refernce after a call to vfs_locks_getlock()
3313 	 * 2. To release the reference from the locking routines like
3314 	 *    vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3315 	 */
3316 
3317 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3318 	vn_vfslocks_rele(vpvfsentry);
3319 
3320 	rwst_exit(&vpvfsentry->ve_lock);
3321 	vn_vfslocks_rele(vpvfsentry);
3322 }
3323 
3324 /*
3325  * Utility routine that allows a filesystem to construct its
3326  * fsid in "the usual way" - by munging some underlying dev_t and
3327  * the filesystem type number into the 64-bit fsid.  Note that
3328  * this implicitly relies on dev_t persistence to make filesystem
3329  * id's persistent.
3330  *
3331  * There's nothing to prevent an individual fs from constructing its
3332  * fsid in a different way, and indeed they should.
3333  *
3334  * Since we want fsids to be 32-bit quantities (so that they can be
3335  * exported identically by either 32-bit or 64-bit APIs, as well as
3336  * the fact that fsid's are "known" to NFS), we compress the device
3337  * number given down to 32-bits, and panic if that isn't possible.
3338  */
3339 void
3340 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3341 {
3342 	if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3343 		panic("device number too big for fsid!");
3344 	fsi->val[1] = val;
3345 }
3346 
3347 int
3348 vfs_lock_held(vfs_t *vfsp)
3349 {
3350 	int held;
3351 	vn_vfslocks_entry_t *vpvfsentry;
3352 
3353 	/*
3354 	 * vfs_lock_held will mimic sema_held behaviour
3355 	 * if panicstr is set. And these changes should remain
3356 	 * for the patch changes as it is.
3357 	 */
3358 	if (panicstr)
3359 		return (1);
3360 
3361 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3362 	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3363 
3364 	vn_vfslocks_rele(vpvfsentry);
3365 	return (held);
3366 }
3367 
3368 struct _kthread *
3369 vfs_lock_owner(vfs_t *vfsp)
3370 {
3371 	struct _kthread *owner;
3372 	vn_vfslocks_entry_t *vpvfsentry;
3373 
3374 	/*
3375 	 * vfs_wlock_held will mimic sema_held behaviour
3376 	 * if panicstr is set. And these changes should remain
3377 	 * for the patch changes as it is.
3378 	 */
3379 	if (panicstr)
3380 		return (NULL);
3381 
3382 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3383 	owner = rwst_owner(&vpvfsentry->ve_lock);
3384 
3385 	vn_vfslocks_rele(vpvfsentry);
3386 	return (owner);
3387 }
3388 
3389 /*
3390  * vfs list locking.
3391  *
3392  * Rather than manipulate the vfslist lock directly, we abstract into lock
3393  * and unlock routines to allow the locking implementation to be changed for
3394  * clustering.
3395  *
3396  * Whenever the vfs list is modified through its hash links, the overall list
3397  * lock must be obtained before locking the relevant hash bucket.  But to see
3398  * whether a given vfs is on the list, it suffices to obtain the lock for the
3399  * hash bucket without getting the overall list lock.  (See getvfs() below.)
3400  */
3401 
3402 void
3403 vfs_list_lock()
3404 {
3405 	rw_enter(&vfslist, RW_WRITER);
3406 }
3407 
3408 void
3409 vfs_list_read_lock()
3410 {
3411 	rw_enter(&vfslist, RW_READER);
3412 }
3413 
3414 void
3415 vfs_list_unlock()
3416 {
3417 	rw_exit(&vfslist);
3418 }
3419 
3420 /*
3421  * Low level worker routines for adding entries to and removing entries from
3422  * the vfs list.
3423  */
3424 
3425 static void
3426 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3427 {
3428 	int vhno;
3429 	struct vfs **hp;
3430 	dev_t dev;
3431 
3432 	ASSERT(RW_WRITE_HELD(&vfslist));
3433 
3434 	dev = expldev(vfsp->vfs_fsid.val[0]);
3435 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3436 
3437 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3438 
3439 	/*
3440 	 * Link into the hash table, inserting it at the end, so that LOFS
3441 	 * with the same fsid as UFS (or other) file systems will not hide the
3442 	 * UFS.
3443 	 */
3444 	if (insert_at_head) {
3445 		vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3446 		rvfs_list[vhno].rvfs_head = vfsp;
3447 	} else {
3448 		for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3449 		    hp = &(*hp)->vfs_hash)
3450 			continue;
3451 		/*
3452 		 * hp now contains the address of the pointer to update
3453 		 * to effect the insertion.
3454 		 */
3455 		vfsp->vfs_hash = NULL;
3456 		*hp = vfsp;
3457 	}
3458 
3459 	rvfs_list[vhno].rvfs_len++;
3460 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3461 }
3462 
3463 
3464 static void
3465 vfs_hash_remove(struct vfs *vfsp)
3466 {
3467 	int vhno;
3468 	struct vfs *tvfsp;
3469 	dev_t dev;
3470 
3471 	ASSERT(RW_WRITE_HELD(&vfslist));
3472 
3473 	dev = expldev(vfsp->vfs_fsid.val[0]);
3474 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3475 
3476 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3477 
3478 	/*
3479 	 * Remove from hash.
3480 	 */
3481 	if (rvfs_list[vhno].rvfs_head == vfsp) {
3482 		rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3483 		rvfs_list[vhno].rvfs_len--;
3484 		goto foundit;
3485 	}
3486 	for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3487 	    tvfsp = tvfsp->vfs_hash) {
3488 		if (tvfsp->vfs_hash == vfsp) {
3489 			tvfsp->vfs_hash = vfsp->vfs_hash;
3490 			rvfs_list[vhno].rvfs_len--;
3491 			goto foundit;
3492 		}
3493 	}
3494 	cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3495 
3496 foundit:
3497 
3498 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3499 }
3500 
3501 
3502 void
3503 vfs_list_add(struct vfs *vfsp)
3504 {
3505 	zone_t *zone;
3506 
3507 	/*
3508 	 * Typically, the vfs_t will have been created on behalf of the file
3509 	 * system in vfs_init, where it will have been provided with a
3510 	 * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3511 	 * by an unbundled file system. We therefore check for such an example
3512 	 * before stamping the vfs_t with its creation time for the benefit of
3513 	 * mntfs.
3514 	 */
3515 	if (vfsp->vfs_implp == NULL)
3516 		vfsimpl_setup(vfsp);
3517 	vfs_mono_time(&vfsp->vfs_hrctime);
3518 
3519 	/*
3520 	 * The zone that owns the mount is the one that performed the mount.
3521 	 * Note that this isn't necessarily the same as the zone mounted into.
3522 	 * The corresponding zone_rele_ref() will be done when the vfs_t
3523 	 * is being free'd.
3524 	 */
3525 	vfsp->vfs_zone = curproc->p_zone;
3526 	zone_init_ref(&vfsp->vfs_implp->vi_zone_ref);
3527 	zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref,
3528 	    ZONE_REF_VFS);
3529 
3530 	/*
3531 	 * Find the zone mounted into, and put this mount on its vfs list.
3532 	 */
3533 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3534 	ASSERT(zone != NULL);
3535 	/*
3536 	 * Special casing for the root vfs.  This structure is allocated
3537 	 * statically and hooked onto rootvfs at link time.  During the
3538 	 * vfs_mountroot call at system startup time, the root file system's
3539 	 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3540 	 * as argument.  The code below must detect and handle this special
3541 	 * case.  The only apparent justification for this special casing is
3542 	 * to ensure that the root file system appears at the head of the
3543 	 * list.
3544 	 *
3545 	 * XXX:	I'm assuming that it's ok to do normal list locking when
3546 	 *	adding the entry for the root file system (this used to be
3547 	 *	done with no locks held).
3548 	 */
3549 	vfs_list_lock();
3550 	/*
3551 	 * Link into the vfs list proper.
3552 	 */
3553 	if (vfsp == &root) {
3554 		/*
3555 		 * Assert: This vfs is already on the list as its first entry.
3556 		 * Thus, there's nothing to do.
3557 		 */
3558 		ASSERT(rootvfs == vfsp);
3559 		/*
3560 		 * Add it to the head of the global zone's vfslist.
3561 		 */
3562 		ASSERT(zone == global_zone);
3563 		ASSERT(zone->zone_vfslist == NULL);
3564 		zone->zone_vfslist = vfsp;
3565 	} else {
3566 		/*
3567 		 * Link to end of list using vfs_prev (as rootvfs is now a
3568 		 * doubly linked circular list) so list is in mount order for
3569 		 * mnttab use.
3570 		 */
3571 		rootvfs->vfs_prev->vfs_next = vfsp;
3572 		vfsp->vfs_prev = rootvfs->vfs_prev;
3573 		rootvfs->vfs_prev = vfsp;
3574 		vfsp->vfs_next = rootvfs;
3575 
3576 		/*
3577 		 * Do it again for the zone-private list (which may be NULL).
3578 		 */
3579 		if (zone->zone_vfslist == NULL) {
3580 			ASSERT(zone != global_zone);
3581 			zone->zone_vfslist = vfsp;
3582 		} else {
3583 			zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3584 			vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3585 			zone->zone_vfslist->vfs_zone_prev = vfsp;
3586 			vfsp->vfs_zone_next = zone->zone_vfslist;
3587 		}
3588 	}
3589 
3590 	/*
3591 	 * Link into the hash table, inserting it at the end, so that LOFS
3592 	 * with the same fsid as UFS (or other) file systems will not hide
3593 	 * the UFS.
3594 	 */
3595 	vfs_hash_add(vfsp, 0);
3596 
3597 	/*
3598 	 * update the mnttab modification time
3599 	 */
3600 	vfs_mnttab_modtimeupd();
3601 	vfs_list_unlock();
3602 	zone_rele(zone);
3603 }
3604 
3605 void
3606 vfs_list_remove(struct vfs *vfsp)
3607 {
3608 	zone_t *zone;
3609 
3610 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3611 	ASSERT(zone != NULL);
3612 	/*
3613 	 * Callers are responsible for preventing attempts to unmount the
3614 	 * root.
3615 	 */
3616 	ASSERT(vfsp != rootvfs);
3617 
3618 	vfs_list_lock();
3619 
3620 	/*
3621 	 * Remove from hash.
3622 	 */
3623 	vfs_hash_remove(vfsp);
3624 
3625 	/*
3626 	 * Remove from vfs list.
3627 	 */
3628 	vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3629 	vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3630 	vfsp->vfs_next = vfsp->vfs_prev = NULL;
3631 
3632 	/*
3633 	 * Remove from zone-specific vfs list.
3634 	 */
3635 	if (zone->zone_vfslist == vfsp)
3636 		zone->zone_vfslist = vfsp->vfs_zone_next;
3637 
3638 	if (vfsp->vfs_zone_next == vfsp) {
3639 		ASSERT(vfsp->vfs_zone_prev == vfsp);
3640 		ASSERT(zone->zone_vfslist == vfsp);
3641 		zone->zone_vfslist = NULL;
3642 	}
3643 
3644 	vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3645 	vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3646 	vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3647 
3648 	/*
3649 	 * update the mnttab modification time
3650 	 */
3651 	vfs_mnttab_modtimeupd();
3652 	vfs_list_unlock();
3653 	zone_rele(zone);
3654 }
3655 
3656 struct vfs *
3657 getvfs(fsid_t *fsid)
3658 {
3659 	struct vfs *vfsp;
3660 	int val0 = fsid->val[0];
3661 	int val1 = fsid->val[1];
3662 	dev_t dev = expldev(val0);
3663 	int vhno = VFSHASH(getmajor(dev), getminor(dev));
3664 	kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3665 
3666 	mutex_enter(hmp);
3667 	for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3668 		if (vfsp->vfs_fsid.val[0] == val0 &&
3669 		    vfsp->vfs_fsid.val[1] == val1) {
3670 			VFS_HOLD(vfsp);
3671 			mutex_exit(hmp);
3672 			return (vfsp);
3673 		}
3674 	}
3675 	mutex_exit(hmp);
3676 	return (NULL);
3677 }
3678 
3679 /*
3680  * Search the vfs mount in progress list for a specified device/vfs entry.
3681  * Returns 0 if the first entry in the list that the device matches has the
3682  * given vfs pointer as well.  If the device matches but a different vfs
3683  * pointer is encountered in the list before the given vfs pointer then
3684  * a 1 is returned.
3685  */
3686 
3687 int
3688 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3689 {
3690 	int retval = 0;
3691 	struct ipmnt *mipp;
3692 
3693 	mutex_enter(&vfs_miplist_mutex);
3694 	for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3695 		if (mipp->mip_dev == dev) {
3696 			if (mipp->mip_vfsp != vfsp)
3697 				retval = 1;
3698 			break;
3699 		}
3700 	}
3701 	mutex_exit(&vfs_miplist_mutex);
3702 	return (retval);
3703 }
3704 
3705 /*
3706  * Search the vfs list for a specified device.  Returns 1, if entry is found
3707  * or 0 if no suitable entry is found.
3708  */
3709 
3710 int
3711 vfs_devismounted(dev_t dev)
3712 {
3713 	struct vfs *vfsp;
3714 	int found;
3715 
3716 	vfs_list_read_lock();
3717 	vfsp = rootvfs;
3718 	found = 0;
3719 	do {
3720 		if (vfsp->vfs_dev == dev) {
3721 			found = 1;
3722 			break;
3723 		}
3724 		vfsp = vfsp->vfs_next;
3725 	} while (vfsp != rootvfs);
3726 
3727 	vfs_list_unlock();
3728 	return (found);
3729 }
3730 
3731 /*
3732  * Search the vfs list for a specified device.  Returns a pointer to it
3733  * or NULL if no suitable entry is found. The caller of this routine
3734  * is responsible for releasing the returned vfs pointer.
3735  */
3736 struct vfs *
3737 vfs_dev2vfsp(dev_t dev)
3738 {
3739 	struct vfs *vfsp;
3740 	int found;
3741 
3742 	vfs_list_read_lock();
3743 	vfsp = rootvfs;
3744 	found = 0;
3745 	do {
3746 		/*
3747 		 * The following could be made more efficient by making
3748 		 * the entire loop use vfs_zone_next if the call is from
3749 		 * a zone.  The only callers, however, ustat(2) and
3750 		 * umount2(2), don't seem to justify the added
3751 		 * complexity at present.
3752 		 */
3753 		if (vfsp->vfs_dev == dev &&
3754 		    ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3755 		    curproc->p_zone)) {
3756 			VFS_HOLD(vfsp);
3757 			found = 1;
3758 			break;
3759 		}
3760 		vfsp = vfsp->vfs_next;
3761 	} while (vfsp != rootvfs);
3762 	vfs_list_unlock();
3763 	return (found ? vfsp: NULL);
3764 }
3765 
3766 /*
3767  * Search the vfs list for a specified mntpoint.  Returns a pointer to it
3768  * or NULL if no suitable entry is found. The caller of this routine
3769  * is responsible for releasing the returned vfs pointer.
3770  *
3771  * Note that if multiple mntpoints match, the last one matching is
3772  * returned in an attempt to return the "top" mount when overlay
3773  * mounts are covering the same mount point.  This is accomplished by starting
3774  * at the end of the list and working our way backwards, stopping at the first
3775  * matching mount.
3776  */
3777 struct vfs *
3778 vfs_mntpoint2vfsp(const char *mp)
3779 {
3780 	struct vfs *vfsp;
3781 	struct vfs *retvfsp = NULL;
3782 	zone_t *zone = curproc->p_zone;
3783 	struct vfs *list;
3784 
3785 	vfs_list_read_lock();
3786 	if (getzoneid() == GLOBAL_ZONEID) {
3787 		/*
3788 		 * The global zone may see filesystems in any zone.
3789 		 */
3790 		vfsp = rootvfs->vfs_prev;
3791 		do {
3792 			if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) {
3793 				retvfsp = vfsp;
3794 				break;
3795 			}
3796 			vfsp = vfsp->vfs_prev;
3797 		} while (vfsp != rootvfs->vfs_prev);
3798 	} else if ((list = zone->zone_vfslist) != NULL) {
3799 		const char *mntpt;
3800 
3801 		vfsp = list->vfs_zone_prev;
3802 		do {
3803 			mntpt = refstr_value(vfsp->vfs_mntpt);
3804 			mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3805 			if (strcmp(mntpt, mp) == 0) {
3806 				retvfsp = vfsp;
3807 				break;
3808 			}
3809 			vfsp = vfsp->vfs_zone_prev;
3810 		} while (vfsp != list->vfs_zone_prev);
3811 	}
3812 	if (retvfsp)
3813 		VFS_HOLD(retvfsp);
3814 	vfs_list_unlock();
3815 	return (retvfsp);
3816 }
3817 
3818 /*
3819  * Search the vfs list for a specified vfsops.
3820  * if vfs entry is found then return 1, else 0.
3821  */
3822 int
3823 vfs_opsinuse(vfsops_t *ops)
3824 {
3825 	struct vfs *vfsp;
3826 	int found;
3827 
3828 	vfs_list_read_lock();
3829 	vfsp = rootvfs;
3830 	found = 0;
3831 	do {
3832 		if (vfs_getops(vfsp) == ops) {
3833 			found = 1;
3834 			break;
3835 		}
3836 		vfsp = vfsp->vfs_next;
3837 	} while (vfsp != rootvfs);
3838 	vfs_list_unlock();
3839 	return (found);
3840 }
3841 
3842 /*
3843  * Allocate an entry in vfssw for a file system type
3844  */
3845 struct vfssw *
3846 allocate_vfssw(const char *type)
3847 {
3848 	struct vfssw *vswp;
3849 
3850 	if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3851 		/*
3852 		 * The vfssw table uses the empty string to identify an
3853 		 * available entry; we cannot add any type which has
3854 		 * a leading NUL. The string length is limited to
3855 		 * the size of the st_fstype array in struct stat.
3856 		 */
3857 		return (NULL);
3858 	}
3859 
3860 	ASSERT(VFSSW_WRITE_LOCKED());
3861 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3862 		if (!ALLOCATED_VFSSW(vswp)) {
3863 			vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3864 			(void) strcpy(vswp->vsw_name, type);
3865 			ASSERT(vswp->vsw_count == 0);
3866 			vswp->vsw_count = 1;
3867 			mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3868 			return (vswp);
3869 		}
3870 	return (NULL);
3871 }
3872 
3873 /*
3874  * Impose additional layer of translation between vfstype names
3875  * and module names in the filesystem.
3876  */
3877 static const char *
3878 vfs_to_modname(const char *vfstype)
3879 {
3880 	if (strcmp(vfstype, "proc") == 0) {
3881 		vfstype = "procfs";
3882 	} else if (strcmp(vfstype, "fd") == 0) {
3883 		vfstype = "fdfs";
3884 	} else if (strncmp(vfstype, "nfs", 3) == 0) {
3885 		vfstype = "nfs";
3886 	}
3887 
3888 	return (vfstype);
3889 }
3890 
3891 /*
3892  * Find a vfssw entry given a file system type name.
3893  * Try to autoload the filesystem if it's not found.
3894  * If it's installed, return the vfssw locked to prevent unloading.
3895  */
3896 struct vfssw *
3897 vfs_getvfssw(const char *type)
3898 {
3899 	struct vfssw *vswp;
3900 	const char *modname;
3901 
3902 	RLOCK_VFSSW();
3903 	vswp = vfs_getvfsswbyname(type);
3904 	modname = vfs_to_modname(type);
3905 
3906 	if (rootdir == NULL) {
3907 		/*
3908 		 * If we haven't yet loaded the root file system, then our
3909 		 * _init won't be called until later. Allocate vfssw entry,
3910 		 * because mod_installfs won't be called.
3911 		 */
3912 		if (vswp == NULL) {
3913 			RUNLOCK_VFSSW();
3914 			WLOCK_VFSSW();
3915 			if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
3916 				if ((vswp = allocate_vfssw(type)) == NULL) {
3917 					WUNLOCK_VFSSW();
3918 					return (NULL);
3919 				}
3920 			}
3921 			WUNLOCK_VFSSW();
3922 			RLOCK_VFSSW();
3923 		}
3924 		if (!VFS_INSTALLED(vswp)) {
3925 			RUNLOCK_VFSSW();
3926 			(void) modloadonly("fs", modname);
3927 		} else
3928 			RUNLOCK_VFSSW();
3929 		return (vswp);
3930 	}
3931 
3932 	/*
3933 	 * Try to load the filesystem.  Before calling modload(), we drop
3934 	 * our lock on the VFS switch table, and pick it up after the
3935 	 * module is loaded.  However, there is a potential race:  the
3936 	 * module could be unloaded after the call to modload() completes
3937 	 * but before we pick up the lock and drive on.  Therefore,
3938 	 * we keep reloading the module until we've loaded the module
3939 	 * _and_ we have the lock on the VFS switch table.
3940 	 */
3941 	while (vswp == NULL || !VFS_INSTALLED(vswp)) {
3942 		RUNLOCK_VFSSW();
3943 		if (modload("fs", modname) == -1)
3944 			return (NULL);
3945 		RLOCK_VFSSW();
3946 		if (vswp == NULL)
3947 			if ((vswp = vfs_getvfsswbyname(type)) == NULL)
3948 				break;
3949 	}
3950 	RUNLOCK_VFSSW();
3951 
3952 	return (vswp);
3953 }
3954 
3955 /*
3956  * Find a vfssw entry given a file system type name.
3957  */
3958 struct vfssw *
3959 vfs_getvfsswbyname(const char *type)
3960 {
3961 	struct vfssw *vswp;
3962 
3963 	ASSERT(VFSSW_LOCKED());
3964 	if (type == NULL || *type == '\0')
3965 		return (NULL);
3966 
3967 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3968 		if (strcmp(type, vswp->vsw_name) == 0) {
3969 			vfs_refvfssw(vswp);
3970 			return (vswp);
3971 		}
3972 	}
3973 
3974 	return (NULL);
3975 }
3976 
3977 /*
3978  * Find a vfssw entry given a set of vfsops.
3979  */
3980 struct vfssw *
3981 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
3982 {
3983 	struct vfssw *vswp;
3984 
3985 	RLOCK_VFSSW();
3986 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3987 		if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
3988 			vfs_refvfssw(vswp);
3989 			RUNLOCK_VFSSW();
3990 			return (vswp);
3991 		}
3992 	}
3993 	RUNLOCK_VFSSW();
3994 
3995 	return (NULL);
3996 }
3997 
3998 /*
3999  * Reference a vfssw entry.
4000  */
4001 void
4002 vfs_refvfssw(struct vfssw *vswp)
4003 {
4004 
4005 	mutex_enter(&vswp->vsw_lock);
4006 	vswp->vsw_count++;
4007 	mutex_exit(&vswp->vsw_lock);
4008 }
4009 
4010 /*
4011  * Unreference a vfssw entry.
4012  */
4013 void
4014 vfs_unrefvfssw(struct vfssw *vswp)
4015 {
4016 
4017 	mutex_enter(&vswp->vsw_lock);
4018 	vswp->vsw_count--;
4019 	mutex_exit(&vswp->vsw_lock);
4020 }
4021 
4022 static int sync_retries = 20;	/* number of retries when not making progress */
4023 static int sync_triesleft;	/* portion of sync_retries remaining */
4024 
4025 static pgcnt_t old_pgcnt, new_pgcnt;
4026 static int new_bufcnt, old_bufcnt;
4027 
4028 /*
4029  * Sync all of the mounted filesystems, and then wait for the actual i/o to
4030  * complete.  We wait by counting the number of dirty pages and buffers,
4031  * pushing them out using bio_busy() and page_busy(), and then counting again.
4032  * This routine is used during the uadmin A_SHUTDOWN code.  It should only
4033  * be used after some higher-level mechanism has quiesced the system so that
4034  * new writes are not being initiated while we are waiting for completion.
4035  *
4036  * To ensure finite running time, our algorithm uses sync_triesleft (a progress
4037  * counter used by the vfs_syncall() loop below). It is declared above so
4038  * it can be found easily in the debugger.
4039  *
4040  * The sync_triesleft counter is updated by vfs_syncall() itself.  If we make
4041  * sync_retries consecutive calls to bio_busy() and page_busy() without
4042  * decreasing either the number of dirty buffers or dirty pages below the
4043  * lowest count we have seen so far, we give up and return from vfs_syncall().
4044  *
4045  * Each loop iteration ends with a call to delay() one second to allow time for
4046  * i/o completion and to permit the user time to read our progress messages.
4047  */
4048 void
4049 vfs_syncall(void)
4050 {
4051 	if (rootdir == NULL && !modrootloaded)
4052 		return; /* no filesystems have been loaded yet */
4053 
4054 	printf("syncing file systems...");
4055 	sync();
4056 
4057 	sync_triesleft = sync_retries;
4058 
4059 	old_bufcnt = new_bufcnt = INT_MAX;
4060 	old_pgcnt = new_pgcnt = ULONG_MAX;
4061 
4062 	while (sync_triesleft > 0) {
4063 		old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4064 		old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4065 
4066 		new_bufcnt = bio_busy(B_TRUE);
4067 		new_pgcnt = page_busy(B_TRUE);
4068 
4069 		if (new_bufcnt == 0 && new_pgcnt == 0)
4070 			break;
4071 
4072 		if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4073 			sync_triesleft = sync_retries;
4074 		else
4075 			sync_triesleft--;
4076 
4077 		if (new_bufcnt)
4078 			printf(" [%d]", new_bufcnt);
4079 		if (new_pgcnt)
4080 			printf(" %lu", new_pgcnt);
4081 
4082 		delay(hz);
4083 	}
4084 
4085 	if (new_bufcnt != 0 || new_pgcnt != 0)
4086 		printf(" done (not all i/o completed)\n");
4087 	else
4088 		printf(" done\n");
4089 
4090 	delay(hz);
4091 }
4092 
4093 /*
4094  * Map VFS flags to statvfs flags.  These shouldn't really be separate
4095  * flags at all.
4096  */
4097 uint_t
4098 vf_to_stf(uint_t vf)
4099 {
4100 	uint_t stf = 0;
4101 
4102 	if (vf & VFS_RDONLY)
4103 		stf |= ST_RDONLY;
4104 	if (vf & VFS_NOSETUID)
4105 		stf |= ST_NOSUID;
4106 	if (vf & VFS_NOTRUNC)
4107 		stf |= ST_NOTRUNC;
4108 
4109 	return (stf);
4110 }
4111 
4112 /*
4113  * Entries for (illegal) fstype 0.
4114  */
4115 /* ARGSUSED */
4116 int
4117 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4118 {
4119 	cmn_err(CE_PANIC, "stray vfs operation");
4120 	return (0);
4121 }
4122 
4123 /*
4124  * Entries for (illegal) fstype 0.
4125  */
4126 int
4127 vfsstray(void)
4128 {
4129 	cmn_err(CE_PANIC, "stray vfs operation");
4130 	return (0);
4131 }
4132 
4133 /*
4134  * Support for dealing with forced UFS unmount and its interaction with
4135  * LOFS. Could be used by any filesystem.
4136  * See bug 1203132.
4137  */
4138 int
4139 vfs_EIO(void)
4140 {
4141 	return (EIO);
4142 }
4143 
4144 /*
4145  * We've gotta define the op for sync separately, since the compiler gets
4146  * confused if we mix and match ANSI and normal style prototypes when
4147  * a "short" argument is present and spits out a warning.
4148  */
4149 /*ARGSUSED*/
4150 int
4151 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4152 {
4153 	return (EIO);
4154 }
4155 
4156 vfs_t EIO_vfs;
4157 vfsops_t *EIO_vfsops;
4158 
4159 /*
4160  * Called from startup() to initialize all loaded vfs's
4161  */
4162 void
4163 vfsinit(void)
4164 {
4165 	struct vfssw *vswp;
4166 	int error;
4167 	extern int vopstats_enabled;
4168 	extern void vopstats_startup();
4169 
4170 	static const fs_operation_def_t EIO_vfsops_template[] = {
4171 		VFSNAME_MOUNT,		{ .error = vfs_EIO },
4172 		VFSNAME_UNMOUNT,	{ .error = vfs_EIO },
4173 		VFSNAME_ROOT,		{ .error = vfs_EIO },
4174 		VFSNAME_STATVFS,	{ .error = vfs_EIO },
4175 		VFSNAME_SYNC, 		{ .vfs_sync = vfs_EIO_sync },
4176 		VFSNAME_VGET,		{ .error = vfs_EIO },
4177 		VFSNAME_MOUNTROOT,	{ .error = vfs_EIO },
4178 		VFSNAME_FREEVFS,	{ .error = vfs_EIO },
4179 		VFSNAME_VNSTATE,	{ .error = vfs_EIO },
4180 		NULL, NULL
4181 	};
4182 
4183 	static const fs_operation_def_t stray_vfsops_template[] = {
4184 		VFSNAME_MOUNT,		{ .error = vfsstray },
4185 		VFSNAME_UNMOUNT,	{ .error = vfsstray },
4186 		VFSNAME_ROOT,		{ .error = vfsstray },
4187 		VFSNAME_STATVFS,	{ .error = vfsstray },
4188 		VFSNAME_SYNC, 		{ .vfs_sync = vfsstray_sync },
4189 		VFSNAME_VGET,		{ .error = vfsstray },
4190 		VFSNAME_MOUNTROOT,	{ .error = vfsstray },
4191 		VFSNAME_FREEVFS,	{ .error = vfsstray },
4192 		VFSNAME_VNSTATE,	{ .error = vfsstray },
4193 		NULL, NULL
4194 	};
4195 
4196 	/* Create vfs cache */
4197 	vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4198 	    sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4199 
4200 	/* Initialize the vnode cache (file systems may use it during init). */
4201 	vn_create_cache();
4202 
4203 	/* Setup event monitor framework */
4204 	fem_init();
4205 
4206 	/* Initialize the dummy stray file system type. */
4207 	error = vfs_setfsops(0, stray_vfsops_template, NULL);
4208 
4209 	/* Initialize the dummy EIO file system. */
4210 	error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4211 	if (error != 0) {
4212 		cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4213 		/* Shouldn't happen, but not bad enough to panic */
4214 	}
4215 
4216 	VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4217 
4218 	/*
4219 	 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4220 	 * on this vfs can immediately notice it's invalid.
4221 	 */
4222 	EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4223 
4224 	/*
4225 	 * Call the init routines of non-loadable filesystems only.
4226 	 * Filesystems which are loaded as separate modules will be
4227 	 * initialized by the module loading code instead.
4228 	 */
4229 
4230 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4231 		RLOCK_VFSSW();
4232 		if (vswp->vsw_init != NULL)
4233 			(*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4234 		RUNLOCK_VFSSW();
4235 	}
4236 
4237 	vopstats_startup();
4238 
4239 	if (vopstats_enabled) {
4240 		/* EIO_vfs can collect stats, but we don't retrieve them */
4241 		initialize_vopstats(&EIO_vfs.vfs_vopstats);
4242 		EIO_vfs.vfs_fstypevsp = NULL;
4243 		EIO_vfs.vfs_vskap = NULL;
4244 		EIO_vfs.vfs_flag |= VFS_STATS;
4245 	}
4246 
4247 	xattr_init();
4248 
4249 	reparse_point_init();
4250 }
4251 
4252 vfs_t *
4253 vfs_alloc(int kmflag)
4254 {
4255 	vfs_t *vfsp;
4256 
4257 	vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4258 
4259 	/*
4260 	 * Do the simplest initialization here.
4261 	 * Everything else gets done in vfs_init()
4262 	 */
4263 	bzero(vfsp, sizeof (vfs_t));
4264 	return (vfsp);
4265 }
4266 
4267 void
4268 vfs_free(vfs_t *vfsp)
4269 {
4270 	/*
4271 	 * One would be tempted to assert that "vfsp->vfs_count == 0".
4272 	 * The problem is that this gets called out of domount() with
4273 	 * a partially initialized vfs and a vfs_count of 1.  This is
4274 	 * also called from vfs_rele() with a vfs_count of 0.  We can't
4275 	 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4276 	 * returned.  This is because VFS_MOUNT() fully initializes the
4277 	 * vfs structure and its associated data.  VFS_RELE() will call
4278 	 * VFS_FREEVFS() which may panic the system if the data structures
4279 	 * aren't fully initialized from a successful VFS_MOUNT()).
4280 	 */
4281 
4282 	/* If FEM was in use, make sure everything gets cleaned up */
4283 	if (vfsp->vfs_femhead) {
4284 		ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4285 		mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4286 		kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4287 		vfsp->vfs_femhead = NULL;
4288 	}
4289 
4290 	if (vfsp->vfs_implp)
4291 		vfsimpl_teardown(vfsp);
4292 	sema_destroy(&vfsp->vfs_reflock);
4293 	kmem_cache_free(vfs_cache, vfsp);
4294 }
4295 
4296 /*
4297  * Increments the vfs reference count by one atomically.
4298  */
4299 void
4300 vfs_hold(vfs_t *vfsp)
4301 {
4302 	atomic_inc_32(&vfsp->vfs_count);
4303 	ASSERT(vfsp->vfs_count != 0);
4304 }
4305 
4306 /*
4307  * Decrements the vfs reference count by one atomically. When
4308  * vfs reference count becomes zero, it calls the file system
4309  * specific vfs_freevfs() to free up the resources.
4310  */
4311 void
4312 vfs_rele(vfs_t *vfsp)
4313 {
4314 	ASSERT(vfsp->vfs_count != 0);
4315 	if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) {
4316 		VFS_FREEVFS(vfsp);
4317 		lofi_remove(vfsp);
4318 		if (vfsp->vfs_zone)
4319 			zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref,
4320 			    ZONE_REF_VFS);
4321 		vfs_freemnttab(vfsp);
4322 		vfs_free(vfsp);
4323 	}
4324 }
4325 
4326 /*
4327  * Generic operations vector support.
4328  *
4329  * This is used to build operations vectors for both the vfs and vnode.
4330  * It's normally called only when a file system is loaded.
4331  *
4332  * There are many possible algorithms for this, including the following:
4333  *
4334  *   (1) scan the list of known operations; for each, see if the file system
4335  *       includes an entry for it, and fill it in as appropriate.
4336  *
4337  *   (2) set up defaults for all known operations.  scan the list of ops
4338  *       supplied by the file system; for each which is both supplied and
4339  *       known, fill it in.
4340  *
4341  *   (3) sort the lists of known ops & supplied ops; scan the list, filling
4342  *       in entries as we go.
4343  *
4344  * we choose (1) for simplicity, and because performance isn't critical here.
4345  * note that (2) could be sped up using a precomputed hash table on known ops.
4346  * (3) could be faster than either, but only if the lists were very large or
4347  * supplied in sorted order.
4348  *
4349  */
4350 
4351 int
4352 fs_build_vector(void *vector, int *unused_ops,
4353     const fs_operation_trans_def_t *translation,
4354     const fs_operation_def_t *operations)
4355 {
4356 	int i, num_trans, num_ops, used;
4357 
4358 	/*
4359 	 * Count the number of translations and the number of supplied
4360 	 * operations.
4361 	 */
4362 
4363 	{
4364 		const fs_operation_trans_def_t *p;
4365 
4366 		for (num_trans = 0, p = translation;
4367 		    p->name != NULL;
4368 		    num_trans++, p++)
4369 			;
4370 	}
4371 
4372 	{
4373 		const fs_operation_def_t *p;
4374 
4375 		for (num_ops = 0, p = operations;
4376 		    p->name != NULL;
4377 		    num_ops++, p++)
4378 			;
4379 	}
4380 
4381 	/* Walk through each operation known to our caller.  There will be */
4382 	/* one entry in the supplied "translation table" for each. */
4383 
4384 	used = 0;
4385 
4386 	for (i = 0; i < num_trans; i++) {
4387 		int j, found;
4388 		char *curname;
4389 		fs_generic_func_p result;
4390 		fs_generic_func_p *location;
4391 
4392 		curname = translation[i].name;
4393 
4394 		/* Look for a matching operation in the list supplied by the */
4395 		/* file system. */
4396 
4397 		found = 0;
4398 
4399 		for (j = 0; j < num_ops; j++) {
4400 			if (strcmp(operations[j].name, curname) == 0) {
4401 				used++;
4402 				found = 1;
4403 				break;
4404 			}
4405 		}
4406 
4407 		/*
4408 		 * If the file system is using a "placeholder" for default
4409 		 * or error functions, grab the appropriate function out of
4410 		 * the translation table.  If the file system didn't supply
4411 		 * this operation at all, use the default function.
4412 		 */
4413 
4414 		if (found) {
4415 			result = operations[j].func.fs_generic;
4416 			if (result == fs_default) {
4417 				result = translation[i].defaultFunc;
4418 			} else if (result == fs_error) {
4419 				result = translation[i].errorFunc;
4420 			} else if (result == NULL) {
4421 				/* Null values are PROHIBITED */
4422 				return (EINVAL);
4423 			}
4424 		} else {
4425 			result = translation[i].defaultFunc;
4426 		}
4427 
4428 		/* Now store the function into the operations vector. */
4429 
4430 		location = (fs_generic_func_p *)
4431 		    (((char *)vector) + translation[i].offset);
4432 
4433 		*location = result;
4434 	}
4435 
4436 	*unused_ops = num_ops - used;
4437 
4438 	return (0);
4439 }
4440 
4441 /* Placeholder functions, should never be called. */
4442 
4443 int
4444 fs_error(void)
4445 {
4446 	cmn_err(CE_PANIC, "fs_error called");
4447 	return (0);
4448 }
4449 
4450 int
4451 fs_default(void)
4452 {
4453 	cmn_err(CE_PANIC, "fs_default called");
4454 	return (0);
4455 }
4456 
4457 #ifdef __sparc
4458 
4459 /*
4460  * Part of the implementation of booting off a mirrored root
4461  * involves a change of dev_t for the root device.  To
4462  * accomplish this, first remove the existing hash table
4463  * entry for the root device, convert to the new dev_t,
4464  * then re-insert in the hash table at the head of the list.
4465  */
4466 void
4467 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4468 {
4469 	vfs_list_lock();
4470 
4471 	vfs_hash_remove(vfsp);
4472 
4473 	vfsp->vfs_dev = ndev;
4474 	vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4475 
4476 	vfs_hash_add(vfsp, 1);
4477 
4478 	vfs_list_unlock();
4479 }
4480 
4481 #else /* x86 NEWBOOT */
4482 
4483 #if defined(__x86)
4484 extern int hvmboot_rootconf();
4485 #endif /* __x86 */
4486 
4487 extern ib_boot_prop_t *iscsiboot_prop;
4488 
4489 int
4490 rootconf()
4491 {
4492 	int error;
4493 	struct vfssw *vsw;
4494 	extern void pm_init();
4495 	char *fstyp, *fsmod;
4496 	int ret = -1;
4497 
4498 	getrootfs(&fstyp, &fsmod);
4499 
4500 #if defined(__x86)
4501 	/*
4502 	 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4503 	 * which lives in /platform/i86hvm, and hence is only available when
4504 	 * booted in an x86 hvm environment.  If the hvm_bootstrap misc module
4505 	 * is not available then the modstub for this function will return 0.
4506 	 * If the hvm_bootstrap misc module is available it will be loaded
4507 	 * and hvmboot_rootconf() will be invoked.
4508 	 */
4509 	if (error = hvmboot_rootconf())
4510 		return (error);
4511 #endif /* __x86 */
4512 
4513 	if (error = clboot_rootconf())
4514 		return (error);
4515 
4516 	if (modload("fs", fsmod) == -1)
4517 		panic("Cannot _init %s module", fsmod);
4518 
4519 	RLOCK_VFSSW();
4520 	vsw = vfs_getvfsswbyname(fstyp);
4521 	RUNLOCK_VFSSW();
4522 	if (vsw == NULL) {
4523 		cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4524 		return (ENXIO);
4525 	}
4526 	VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4527 	VFS_HOLD(rootvfs);
4528 
4529 	/* always mount readonly first */
4530 	rootvfs->vfs_flag |= VFS_RDONLY;
4531 
4532 	pm_init();
4533 
4534 	if (netboot && iscsiboot_prop) {
4535 		cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4536 		    " shouldn't happen in the same time");
4537 		return (EINVAL);
4538 	}
4539 
4540 	if (netboot || iscsiboot_prop) {
4541 		ret = strplumb();
4542 		if (ret != 0) {
4543 			cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4544 			return (EFAULT);
4545 		}
4546 	}
4547 
4548 	if ((ret == 0) && iscsiboot_prop) {
4549 		ret = modload("drv", "iscsi");
4550 		/* -1 indicates fail */
4551 		if (ret == -1) {
4552 			cmn_err(CE_WARN, "Failed to load iscsi module");
4553 			iscsi_boot_prop_free();
4554 			return (EINVAL);
4555 		} else {
4556 			if (!i_ddi_attach_pseudo_node("iscsi")) {
4557 				cmn_err(CE_WARN,
4558 				    "Failed to attach iscsi driver");
4559 				iscsi_boot_prop_free();
4560 				return (ENODEV);
4561 			}
4562 		}
4563 	}
4564 
4565 	error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4566 	vfs_unrefvfssw(vsw);
4567 	rootdev = rootvfs->vfs_dev;
4568 
4569 	if (error)
4570 		cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4571 		    rootfs.bo_name, fstyp);
4572 	else
4573 		cmn_err(CE_CONT, "?root on %s fstype %s\n",
4574 		    rootfs.bo_name, fstyp);
4575 	return (error);
4576 }
4577 
4578 /*
4579  * XXX this is called by nfs only and should probably be removed
4580  * If booted with ASKNAME, prompt on the console for a filesystem
4581  * name and return it.
4582  */
4583 void
4584 getfsname(char *askfor, char *name, size_t namelen)
4585 {
4586 	if (boothowto & RB_ASKNAME) {
4587 		printf("%s name: ", askfor);
4588 		console_gets(name, namelen);
4589 	}
4590 }
4591 
4592 /*
4593  * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4594  * property.
4595  *
4596  * Filesystem types starting with the prefix "nfs" are diskless clients;
4597  * init the root filename name (rootfs.bo_name), too.
4598  *
4599  * If we are booting via NFS we currently have these options:
4600  *	nfs -	dynamically choose NFS V2, V3, or V4 (default)
4601  *	nfs2 -	force NFS V2
4602  *	nfs3 -	force NFS V3
4603  *	nfs4 -	force NFS V4
4604  * Because we need to maintain backward compatibility with the naming
4605  * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4606  * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs".  The dynamic
4607  * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4608  * This is only for root filesystems, all other uses will expect
4609  * that "nfs" == NFS V2.
4610  */
4611 static void
4612 getrootfs(char **fstypp, char **fsmodp)
4613 {
4614 	char *propstr = NULL;
4615 
4616 	/*
4617 	 * Check fstype property; for diskless it should be one of "nfs",
4618 	 * "nfs2", "nfs3" or "nfs4".
4619 	 */
4620 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4621 	    DDI_PROP_DONTPASS, "fstype", &propstr)
4622 	    == DDI_SUCCESS) {
4623 		(void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4624 		ddi_prop_free(propstr);
4625 
4626 	/*
4627 	 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4628 	 * assume the type of this root filesystem is 'zfs'.
4629 	 */
4630 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4631 	    DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4632 	    == DDI_SUCCESS) {
4633 		(void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4634 		ddi_prop_free(propstr);
4635 	}
4636 
4637 	if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4638 		*fstypp = *fsmodp = rootfs.bo_fstype;
4639 		return;
4640 	}
4641 
4642 	++netboot;
4643 
4644 	if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4645 		(void) strcpy(rootfs.bo_fstype, "nfs");
4646 	else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4647 		(void) strcpy(rootfs.bo_fstype, "nfsdyn");
4648 
4649 	/*
4650 	 * check if path to network interface is specified in bootpath
4651 	 * or by a hypervisor domain configuration file.
4652 	 * XXPV - enable strlumb_get_netdev_path()
4653 	 */
4654 	if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4655 	    "xpv-nfsroot")) {
4656 		(void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4657 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4658 	    DDI_PROP_DONTPASS, "bootpath", &propstr)
4659 	    == DDI_SUCCESS) {
4660 		(void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4661 		ddi_prop_free(propstr);
4662 	} else {
4663 		rootfs.bo_name[0] = '\0';
4664 	}
4665 	*fstypp = rootfs.bo_fstype;
4666 	*fsmodp = "nfs";
4667 }
4668 #endif
4669 
4670 /*
4671  * VFS feature routines
4672  */
4673 
4674 #define	VFTINDEX(feature)	(((feature) >> 32) & 0xFFFFFFFF)
4675 #define	VFTBITS(feature)	((feature) & 0xFFFFFFFFLL)
4676 
4677 /* Register a feature in the vfs */
4678 void
4679 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4680 {
4681 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4682 	if (vfsp->vfs_implp == NULL)
4683 		return;
4684 
4685 	vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4686 }
4687 
4688 void
4689 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature)
4690 {
4691 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4692 	if (vfsp->vfs_implp == NULL)
4693 		return;
4694 	vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature);
4695 }
4696 
4697 /*
4698  * Query a vfs for a feature.
4699  * Returns 1 if feature is present, 0 if not
4700  */
4701 int
4702 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4703 {
4704 	int	ret = 0;
4705 
4706 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4707 	if (vfsp->vfs_implp == NULL)
4708 		return (ret);
4709 
4710 	if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4711 		ret = 1;
4712 
4713 	return (ret);
4714 }
4715 
4716 /*
4717  * Propagate feature set from one vfs to another
4718  */
4719 void
4720 vfs_propagate_features(vfs_t *from, vfs_t *to)
4721 {
4722 	int i;
4723 
4724 	if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4725 		return;
4726 
4727 	for (i = 1; i <= to->vfs_featureset[0]; i++) {
4728 		to->vfs_featureset[i] = from->vfs_featureset[i];
4729 	}
4730 }
4731 
4732 #define	LOFINODE_PATH "/dev/lofi/%d"
4733 
4734 /*
4735  * Return the vnode for the lofi node if there's a lofi mount in place.
4736  * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4737  * failure.
4738  */
4739 int
4740 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4741 {
4742 	char *path = NULL;
4743 	int strsize;
4744 	int err;
4745 
4746 	if (vfsp->vfs_lofi_id == 0) {
4747 		*vpp = NULL;
4748 		return (-1);
4749 	}
4750 
4751 	strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_id);
4752 	path = kmem_alloc(strsize + 1, KM_SLEEP);
4753 	(void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_id);
4754 
4755 	/*
4756 	 * We may be inside a zone, so we need to use the /dev path, but
4757 	 * it's created asynchronously, so we wait here.
4758 	 */
4759 	for (;;) {
4760 		err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4761 
4762 		if (err != ENOENT)
4763 			break;
4764 
4765 		if ((err = delay_sig(hz / 8)) == EINTR)
4766 			break;
4767 	}
4768 
4769 	if (err)
4770 		*vpp = NULL;
4771 
4772 	kmem_free(path, strsize + 1);
4773 	return (err);
4774 }
4775