1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2016 Joyent, Inc. 25 * Copyright 2016 Toomas Soome <tsoome@me.com> 26 * Copyright (c) 2016 by Delphix. All rights reserved. 27 * Copyright 2016 Nexenta Systems, Inc. 28 * Copyright 2017 RackTop Systems. 29 */ 30 31 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 32 /* All Rights Reserved */ 33 34 /* 35 * University Copyright- Copyright (c) 1982, 1986, 1988 36 * The Regents of the University of California 37 * All Rights Reserved 38 * 39 * University Acknowledgment- Portions of this document are derived from 40 * software developed by the University of California, Berkeley, and its 41 * contributors. 42 */ 43 44 #include <sys/types.h> 45 #include <sys/t_lock.h> 46 #include <sys/param.h> 47 #include <sys/errno.h> 48 #include <sys/user.h> 49 #include <sys/fstyp.h> 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/proc.h> 53 #include <sys/mount.h> 54 #include <sys/vfs.h> 55 #include <sys/vfs_opreg.h> 56 #include <sys/fem.h> 57 #include <sys/mntent.h> 58 #include <sys/stat.h> 59 #include <sys/statvfs.h> 60 #include <sys/statfs.h> 61 #include <sys/cred.h> 62 #include <sys/vnode.h> 63 #include <sys/rwstlock.h> 64 #include <sys/dnlc.h> 65 #include <sys/file.h> 66 #include <sys/time.h> 67 #include <sys/atomic.h> 68 #include <sys/cmn_err.h> 69 #include <sys/buf.h> 70 #include <sys/swap.h> 71 #include <sys/debug.h> 72 #include <sys/vnode.h> 73 #include <sys/modctl.h> 74 #include <sys/ddi.h> 75 #include <sys/pathname.h> 76 #include <sys/bootconf.h> 77 #include <sys/dumphdr.h> 78 #include <sys/dc_ki.h> 79 #include <sys/poll.h> 80 #include <sys/sunddi.h> 81 #include <sys/sysmacros.h> 82 #include <sys/zone.h> 83 #include <sys/policy.h> 84 #include <sys/ctfs.h> 85 #include <sys/objfs.h> 86 #include <sys/console.h> 87 #include <sys/reboot.h> 88 #include <sys/attr.h> 89 #include <sys/zio.h> 90 #include <sys/spa.h> 91 #include <sys/lofi.h> 92 #include <sys/bootprops.h> 93 94 #include <vm/page.h> 95 96 #include <fs/fs_subr.h> 97 /* Private interfaces to create vopstats-related data structures */ 98 extern void initialize_vopstats(vopstats_t *); 99 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 100 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 101 102 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 103 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 104 const char *, int, int); 105 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 106 static void vfs_freemnttab(struct vfs *); 107 static void vfs_freeopt(mntopt_t *); 108 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 109 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 110 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 111 static void vfs_createopttbl_extend(mntopts_t *, const char *, 112 const mntopts_t *); 113 static char **vfs_copycancelopt_extend(char **const, int); 114 static void vfs_freecancelopt(char **); 115 static void getrootfs(char **, char **); 116 static int getmacpath(dev_info_t *, void *); 117 static void vfs_mnttabvp_setup(void); 118 119 struct ipmnt { 120 struct ipmnt *mip_next; 121 dev_t mip_dev; 122 struct vfs *mip_vfsp; 123 }; 124 125 static kmutex_t vfs_miplist_mutex; 126 static struct ipmnt *vfs_miplist = NULL; 127 static struct ipmnt *vfs_miplist_end = NULL; 128 129 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */ 130 131 /* 132 * VFS global data. 133 */ 134 vnode_t *rootdir; /* pointer to root inode vnode. */ 135 vnode_t *devicesdir; /* pointer to inode of devices root */ 136 vnode_t *devdir; /* pointer to inode of dev root */ 137 138 char *server_rootpath; /* root path for diskless clients */ 139 char *server_hostname; /* hostname of diskless server */ 140 141 static struct vfs root; 142 static struct vfs devices; 143 static struct vfs dev; 144 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 145 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 146 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 147 /* must be power of 2! */ 148 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 149 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 150 char *vfs_dummyfstype = "\0"; 151 struct pollhead vfs_pollhd; /* for mnttab pollers */ 152 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */ 153 int mntfstype; /* will be set once mnt fs is mounted */ 154 155 /* 156 * Table for generic options recognized in the VFS layer and acted 157 * on at this level before parsing file system specific options. 158 * The nosuid option is stronger than any of the devices and setuid 159 * options, so those are canceled when nosuid is seen. 160 * 161 * All options which are added here need to be added to the 162 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 163 */ 164 /* 165 * VFS Mount options table 166 */ 167 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 168 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 169 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 170 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 171 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 172 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 173 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 174 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 175 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 176 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 177 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 178 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 179 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 180 181 static const mntopt_t mntopts[] = { 182 /* 183 * option name cancel options default arg flags 184 */ 185 { MNTOPT_REMOUNT, NULL, NULL, 186 MO_NODISPLAY, (void *)0 }, 187 { MNTOPT_RO, ro_cancel, NULL, 0, 188 (void *)0 }, 189 { MNTOPT_RW, rw_cancel, NULL, 0, 190 (void *)0 }, 191 { MNTOPT_SUID, suid_cancel, NULL, 0, 192 (void *)0 }, 193 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 194 (void *)0 }, 195 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 196 (void *)0 }, 197 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 198 (void *)0 }, 199 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 200 (void *)0 }, 201 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 202 (void *)0 }, 203 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 204 (void *)0 }, 205 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 206 (void *)0 }, 207 { MNTOPT_EXEC, exec_cancel, NULL, 0, 208 (void *)0 }, 209 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 210 (void *)0 }, 211 }; 212 213 const mntopts_t vfs_mntopts = { 214 sizeof (mntopts) / sizeof (mntopt_t), 215 (mntopt_t *)&mntopts[0] 216 }; 217 218 /* 219 * File system operation dispatch functions. 220 */ 221 222 int 223 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 224 { 225 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 226 } 227 228 int 229 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 230 { 231 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 232 } 233 234 int 235 fsop_root(vfs_t *vfsp, vnode_t **vpp) 236 { 237 refstr_t *mntpt; 238 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 239 /* 240 * Make sure this root has a path. With lofs, it is possible to have 241 * a NULL mountpoint. 242 */ 243 if (ret == 0 && vfsp->vfs_mntpt != NULL && 244 (*vpp)->v_path == vn_vpath_empty) { 245 const char *path; 246 247 mntpt = vfs_getmntpoint(vfsp); 248 path = refstr_value(mntpt); 249 vn_setpath_str(*vpp, path, strlen(path)); 250 refstr_rele(mntpt); 251 } 252 253 return (ret); 254 } 255 256 int 257 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 258 { 259 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 260 } 261 262 int 263 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 264 { 265 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 266 } 267 268 int 269 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 270 { 271 /* 272 * In order to handle system attribute fids in a manner 273 * transparent to the underlying fs, we embed the fid for 274 * the sysattr parent object in the sysattr fid and tack on 275 * some extra bytes that only the sysattr layer knows about. 276 * 277 * This guarantees that sysattr fids are larger than other fids 278 * for this vfs. If the vfs supports the sysattr view interface 279 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size 280 * collision with XATTR_FIDSZ. 281 */ 282 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) && 283 fidp->fid_len == XATTR_FIDSZ) 284 return (xattr_dir_vget(vfsp, vpp, fidp)); 285 286 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 287 } 288 289 int 290 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 291 { 292 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 293 } 294 295 void 296 fsop_freefs(vfs_t *vfsp) 297 { 298 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 299 } 300 301 int 302 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 303 { 304 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 305 } 306 307 int 308 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 309 { 310 ASSERT((fstype >= 0) && (fstype < nfstype)); 311 312 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 313 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 314 else 315 return (ENOTSUP); 316 } 317 318 /* 319 * File system initialization. vfs_setfsops() must be called from a file 320 * system's init routine. 321 */ 322 323 static int 324 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 325 int *unused_ops) 326 { 327 static const fs_operation_trans_def_t vfs_ops_table[] = { 328 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 329 fs_nosys, fs_nosys, 330 331 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 332 fs_nosys, fs_nosys, 333 334 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 335 fs_nosys, fs_nosys, 336 337 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 338 fs_nosys, fs_nosys, 339 340 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 341 (fs_generic_func_p) fs_sync, 342 (fs_generic_func_p) fs_sync, /* No errors allowed */ 343 344 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 345 fs_nosys, fs_nosys, 346 347 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 348 fs_nosys, fs_nosys, 349 350 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 351 (fs_generic_func_p)fs_freevfs, 352 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 353 354 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 355 (fs_generic_func_p)fs_nosys, 356 (fs_generic_func_p)fs_nosys, 357 358 NULL, 0, NULL, NULL 359 }; 360 361 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 362 } 363 364 void 365 zfs_boot_init(void) 366 { 367 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0) 368 spa_boot_init(); 369 } 370 371 int 372 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 373 { 374 int error; 375 int unused_ops; 376 377 /* 378 * Verify that fstype refers to a valid fs. Note that 379 * 0 is valid since it's used to set "stray" ops. 380 */ 381 if ((fstype < 0) || (fstype >= nfstype)) 382 return (EINVAL); 383 384 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 385 return (EINVAL); 386 387 /* Set up the operations vector. */ 388 389 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 390 391 if (error != 0) 392 return (error); 393 394 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 395 396 if (actual != NULL) 397 *actual = &vfssw[fstype].vsw_vfsops; 398 399 #if DEBUG 400 if (unused_ops != 0) 401 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 402 "but not used", vfssw[fstype].vsw_name, unused_ops); 403 #endif 404 405 return (0); 406 } 407 408 int 409 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 410 { 411 int error; 412 int unused_ops; 413 414 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 415 416 error = fs_copyfsops(template, *actual, &unused_ops); 417 if (error != 0) { 418 kmem_free(*actual, sizeof (vfsops_t)); 419 *actual = NULL; 420 return (error); 421 } 422 423 return (0); 424 } 425 426 /* 427 * Free a vfsops structure created as a result of vfs_makefsops(). 428 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 429 * vfs_freevfsops_by_type(). 430 */ 431 void 432 vfs_freevfsops(vfsops_t *vfsops) 433 { 434 kmem_free(vfsops, sizeof (vfsops_t)); 435 } 436 437 /* 438 * Since the vfsops structure is part of the vfssw table and wasn't 439 * really allocated, we're not really freeing anything. We keep 440 * the name for consistency with vfs_freevfsops(). We do, however, 441 * need to take care of a little bookkeeping. 442 * NOTE: For a vfsops structure created by vfs_setfsops(), use 443 * vfs_freevfsops_by_type(). 444 */ 445 int 446 vfs_freevfsops_by_type(int fstype) 447 { 448 449 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 450 if ((fstype <= 0) || (fstype >= nfstype)) 451 return (EINVAL); 452 453 WLOCK_VFSSW(); 454 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 455 WUNLOCK_VFSSW(); 456 return (EINVAL); 457 } 458 459 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 460 WUNLOCK_VFSSW(); 461 462 return (0); 463 } 464 465 /* Support routines used to reference vfs_op */ 466 467 /* Set the operations vector for a vfs */ 468 void 469 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 470 { 471 vfsops_t *op; 472 473 ASSERT(vfsp != NULL); 474 ASSERT(vfsops != NULL); 475 476 op = vfsp->vfs_op; 477 membar_consumer(); 478 if (vfsp->vfs_femhead == NULL && 479 atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) { 480 return; 481 } 482 fsem_setvfsops(vfsp, vfsops); 483 } 484 485 /* Retrieve the operations vector for a vfs */ 486 vfsops_t * 487 vfs_getops(vfs_t *vfsp) 488 { 489 vfsops_t *op; 490 491 ASSERT(vfsp != NULL); 492 493 op = vfsp->vfs_op; 494 membar_consumer(); 495 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 496 return (op); 497 } else { 498 return (fsem_getvfsops(vfsp)); 499 } 500 } 501 502 /* 503 * Returns non-zero (1) if the vfsops matches that of the vfs. 504 * Returns zero (0) if not. 505 */ 506 int 507 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 508 { 509 return (vfs_getops(vfsp) == vfsops); 510 } 511 512 /* 513 * Returns non-zero (1) if the file system has installed a non-default, 514 * non-error vfs_sync routine. Returns zero (0) otherwise. 515 */ 516 int 517 vfs_can_sync(vfs_t *vfsp) 518 { 519 /* vfs_sync() routine is not the default/error function */ 520 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 521 } 522 523 /* 524 * Initialize a vfs structure. 525 */ 526 void 527 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 528 { 529 /* Other initialization has been moved to vfs_alloc() */ 530 vfsp->vfs_count = 0; 531 vfsp->vfs_next = vfsp; 532 vfsp->vfs_prev = vfsp; 533 vfsp->vfs_zone_next = vfsp; 534 vfsp->vfs_zone_prev = vfsp; 535 vfsp->vfs_lofi_id = 0; 536 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 537 vfsimpl_setup(vfsp); 538 vfsp->vfs_data = (data); 539 vfs_setops((vfsp), (op)); 540 } 541 542 /* 543 * Allocate and initialize the vfs implementation private data 544 * structure, vfs_impl_t. 545 */ 546 void 547 vfsimpl_setup(vfs_t *vfsp) 548 { 549 int i; 550 551 if (vfsp->vfs_implp != NULL) { 552 return; 553 } 554 555 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 556 /* Note that these are #define'd in vfs.h */ 557 vfsp->vfs_vskap = NULL; 558 vfsp->vfs_fstypevsp = NULL; 559 560 /* Set size of counted array, then zero the array */ 561 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1; 562 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) { 563 vfsp->vfs_featureset[i] = 0; 564 } 565 } 566 567 /* 568 * Release the vfs_impl_t structure, if it exists. Some unbundled 569 * filesystems may not use the newer version of vfs and thus 570 * would not contain this implementation private data structure. 571 */ 572 void 573 vfsimpl_teardown(vfs_t *vfsp) 574 { 575 vfs_impl_t *vip = vfsp->vfs_implp; 576 577 if (vip == NULL) 578 return; 579 580 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 581 vfsp->vfs_implp = NULL; 582 } 583 584 /* 585 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 586 * fstatvfs, and sysfs moved to common/syscall. 587 */ 588 589 /* 590 * Update every mounted file system. We call the vfs_sync operation of 591 * each file system type, passing it a NULL vfsp to indicate that all 592 * mounted file systems of that type should be updated. 593 */ 594 void 595 vfs_sync(int flag) 596 { 597 struct vfssw *vswp; 598 RLOCK_VFSSW(); 599 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 600 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 601 vfs_refvfssw(vswp); 602 RUNLOCK_VFSSW(); 603 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 604 CRED()); 605 vfs_unrefvfssw(vswp); 606 RLOCK_VFSSW(); 607 } 608 } 609 RUNLOCK_VFSSW(); 610 } 611 612 void 613 sync(void) 614 { 615 vfs_sync(0); 616 } 617 618 /* 619 * External routines. 620 */ 621 622 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 623 624 /* 625 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 626 * but otherwise should be accessed only via vfs_list_lock() and 627 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 628 */ 629 static krwlock_t vfslist; 630 631 /* 632 * Mount devfs on /devices. This is done right after root is mounted 633 * to provide device access support for the system 634 */ 635 static void 636 vfs_mountdevices(void) 637 { 638 struct vfssw *vsw; 639 struct vnode *mvp; 640 struct mounta mounta = { /* fake mounta for devfs_mount() */ 641 NULL, 642 NULL, 643 MS_SYSSPACE, 644 NULL, 645 NULL, 646 0, 647 NULL, 648 0 649 }; 650 651 /* 652 * _init devfs module to fill in the vfssw 653 */ 654 if (modload("fs", "devfs") == -1) 655 panic("Cannot _init devfs module"); 656 657 /* 658 * Hold vfs 659 */ 660 RLOCK_VFSSW(); 661 vsw = vfs_getvfsswbyname("devfs"); 662 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 663 VFS_HOLD(&devices); 664 665 /* 666 * Locate mount point 667 */ 668 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 669 panic("Cannot find /devices"); 670 671 /* 672 * Perform the mount of /devices 673 */ 674 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 675 panic("Cannot mount /devices"); 676 677 RUNLOCK_VFSSW(); 678 679 /* 680 * Set appropriate members and add to vfs list for mnttab display 681 */ 682 vfs_setresource(&devices, "/devices", 0); 683 vfs_setmntpoint(&devices, "/devices", 0); 684 685 /* 686 * Hold the root of /devices so it won't go away 687 */ 688 if (VFS_ROOT(&devices, &devicesdir)) 689 panic("vfs_mountdevices: not devices root"); 690 691 if (vfs_lock(&devices) != 0) { 692 VN_RELE(devicesdir); 693 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 694 return; 695 } 696 697 if (vn_vfswlock(mvp) != 0) { 698 vfs_unlock(&devices); 699 VN_RELE(devicesdir); 700 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 701 return; 702 } 703 704 vfs_add(mvp, &devices, 0); 705 vn_vfsunlock(mvp); 706 vfs_unlock(&devices); 707 VN_RELE(devicesdir); 708 } 709 710 /* 711 * mount the first instance of /dev to root and remain mounted 712 */ 713 static void 714 vfs_mountdev1(void) 715 { 716 struct vfssw *vsw; 717 struct vnode *mvp; 718 struct mounta mounta = { /* fake mounta for sdev_mount() */ 719 NULL, 720 NULL, 721 MS_SYSSPACE | MS_OVERLAY, 722 NULL, 723 NULL, 724 0, 725 NULL, 726 0 727 }; 728 729 /* 730 * _init dev module to fill in the vfssw 731 */ 732 if (modload("fs", "dev") == -1) 733 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 734 735 /* 736 * Hold vfs 737 */ 738 RLOCK_VFSSW(); 739 vsw = vfs_getvfsswbyname("dev"); 740 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 741 VFS_HOLD(&dev); 742 743 /* 744 * Locate mount point 745 */ 746 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 747 cmn_err(CE_PANIC, "Cannot find /dev\n"); 748 749 /* 750 * Perform the mount of /dev 751 */ 752 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 753 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 754 755 RUNLOCK_VFSSW(); 756 757 /* 758 * Set appropriate members and add to vfs list for mnttab display 759 */ 760 vfs_setresource(&dev, "/dev", 0); 761 vfs_setmntpoint(&dev, "/dev", 0); 762 763 /* 764 * Hold the root of /dev so it won't go away 765 */ 766 if (VFS_ROOT(&dev, &devdir)) 767 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 768 769 if (vfs_lock(&dev) != 0) { 770 VN_RELE(devdir); 771 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 772 return; 773 } 774 775 if (vn_vfswlock(mvp) != 0) { 776 vfs_unlock(&dev); 777 VN_RELE(devdir); 778 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 779 return; 780 } 781 782 vfs_add(mvp, &dev, 0); 783 vn_vfsunlock(mvp); 784 vfs_unlock(&dev); 785 VN_RELE(devdir); 786 } 787 788 /* 789 * Mount required filesystem. This is done right after root is mounted. 790 */ 791 static void 792 vfs_mountfs(char *module, char *spec, char *path) 793 { 794 struct vnode *mvp; 795 struct mounta mounta; 796 vfs_t *vfsp; 797 798 bzero(&mounta, sizeof (mounta)); 799 mounta.flags = MS_SYSSPACE | MS_DATA; 800 mounta.fstype = module; 801 mounta.spec = spec; 802 mounta.dir = path; 803 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 804 cmn_err(CE_WARN, "Cannot find %s", path); 805 return; 806 } 807 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 808 cmn_err(CE_WARN, "Cannot mount %s", path); 809 else 810 VFS_RELE(vfsp); 811 VN_RELE(mvp); 812 } 813 814 /* 815 * vfs_mountroot is called by main() to mount the root filesystem. 816 */ 817 void 818 vfs_mountroot(void) 819 { 820 struct vnode *rvp = NULL; 821 char *path; 822 size_t plen; 823 struct vfssw *vswp; 824 proc_t *p; 825 826 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 827 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 828 829 /* 830 * Alloc the vfs hash bucket array and locks 831 */ 832 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 833 834 /* 835 * Call machine-dependent routine "rootconf" to choose a root 836 * file system type. 837 */ 838 if (rootconf()) 839 panic("vfs_mountroot: cannot mount root"); 840 /* 841 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 842 * to point to it. These are used by lookuppn() so that it 843 * knows where to start from ('/' or '.'). 844 */ 845 vfs_setmntpoint(rootvfs, "/", 0); 846 if (VFS_ROOT(rootvfs, &rootdir)) 847 panic("vfs_mountroot: no root vnode"); 848 849 /* 850 * At this point, the process tree consists of p0 and possibly some 851 * direct children of p0. (i.e. there are no grandchildren) 852 * 853 * Walk through them all, setting their current directory. 854 */ 855 mutex_enter(&pidlock); 856 for (p = practive; p != NULL; p = p->p_next) { 857 ASSERT(p == &p0 || p->p_parent == &p0); 858 859 PTOU(p)->u_cdir = rootdir; 860 VN_HOLD(PTOU(p)->u_cdir); 861 PTOU(p)->u_rdir = NULL; 862 } 863 mutex_exit(&pidlock); 864 865 /* 866 * Setup the global zone's rootvp, now that it exists. 867 */ 868 global_zone->zone_rootvp = rootdir; 869 VN_HOLD(global_zone->zone_rootvp); 870 871 /* 872 * Notify the module code that it can begin using the 873 * root filesystem instead of the boot program's services. 874 */ 875 modrootloaded = 1; 876 877 /* 878 * Special handling for a ZFS root file system. 879 */ 880 zfs_boot_init(); 881 882 /* 883 * Set up mnttab information for root 884 */ 885 vfs_setresource(rootvfs, rootfs.bo_name, 0); 886 887 /* 888 * Notify cluster software that the root filesystem is available. 889 */ 890 clboot_mountroot(); 891 892 /* Now that we're all done with the root FS, set up its vopstats */ 893 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 894 /* Set flag for statistics collection */ 895 if (vswp->vsw_flag & VSW_STATS) { 896 initialize_vopstats(&rootvfs->vfs_vopstats); 897 rootvfs->vfs_flag |= VFS_STATS; 898 rootvfs->vfs_fstypevsp = 899 get_fstype_vopstats(rootvfs, vswp); 900 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 901 } 902 vfs_unrefvfssw(vswp); 903 } 904 905 /* 906 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 907 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 908 */ 909 vfs_mountdevices(); 910 vfs_mountdev1(); 911 912 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 913 vfs_mountfs("proc", "/proc", "/proc"); 914 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 915 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 916 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 917 vfs_mountfs("bootfs", "bootfs", "/system/boot"); 918 919 if (getzoneid() == GLOBAL_ZONEID) { 920 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 921 } 922 923 if (strcmp(rootfs.bo_fstype, "zfs") != 0) { 924 /* 925 * Look up the root device via devfs so that a dv_node is 926 * created for it. The vnode is never VN_RELE()ed. 927 * We allocate more than MAXPATHLEN so that the 928 * buffer passed to i_ddi_prompath_to_devfspath() is 929 * exactly MAXPATHLEN (the function expects a buffer 930 * of that length). 931 */ 932 plen = strlen("/devices"); 933 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 934 (void) strcpy(path, "/devices"); 935 936 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 937 != DDI_SUCCESS || 938 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 939 940 /* NUL terminate in case "path" has garbage */ 941 path[plen + MAXPATHLEN - 1] = '\0'; 942 #ifdef DEBUG 943 cmn_err(CE_WARN, "!Cannot lookup root device: %s", 944 path); 945 #endif 946 } 947 kmem_free(path, plen + MAXPATHLEN); 948 } 949 950 vfs_mnttabvp_setup(); 951 } 952 953 /* 954 * Check to see if our "block device" is actually a file. If so, 955 * automatically add a lofi device, and keep track of this fact. 956 */ 957 static int 958 lofi_add(const char *fsname, struct vfs *vfsp, 959 mntopts_t *mntopts, struct mounta *uap) 960 { 961 int fromspace = (uap->flags & MS_SYSSPACE) ? 962 UIO_SYSSPACE : UIO_USERSPACE; 963 struct lofi_ioctl *li = NULL; 964 struct vnode *vp = NULL; 965 struct pathname pn = { NULL }; 966 ldi_ident_t ldi_id; 967 ldi_handle_t ldi_hdl; 968 vfssw_t *vfssw; 969 int id; 970 int err = 0; 971 972 if ((vfssw = vfs_getvfssw(fsname)) == NULL) 973 return (0); 974 975 if (!(vfssw->vsw_flag & VSW_CANLOFI)) { 976 vfs_unrefvfssw(vfssw); 977 return (0); 978 } 979 980 vfs_unrefvfssw(vfssw); 981 vfssw = NULL; 982 983 if (pn_get(uap->spec, fromspace, &pn) != 0) 984 return (0); 985 986 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0) 987 goto out; 988 989 if (vp->v_type != VREG) 990 goto out; 991 992 /* OK, this is a lofi mount. */ 993 994 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) || 995 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) || 996 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) || 997 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) { 998 err = EINVAL; 999 goto out; 1000 } 1001 1002 ldi_id = ldi_ident_from_anon(); 1003 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1004 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN); 1005 1006 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1007 &ldi_hdl, ldi_id); 1008 1009 if (err) 1010 goto out2; 1011 1012 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li, 1013 FREAD | FWRITE | FKIOCTL, kcred, &id); 1014 1015 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1016 1017 if (!err) 1018 vfsp->vfs_lofi_id = id; 1019 1020 out2: 1021 ldi_ident_release(ldi_id); 1022 out: 1023 if (li != NULL) 1024 kmem_free(li, sizeof (*li)); 1025 if (vp != NULL) 1026 VN_RELE(vp); 1027 pn_free(&pn); 1028 return (err); 1029 } 1030 1031 static void 1032 lofi_remove(struct vfs *vfsp) 1033 { 1034 struct lofi_ioctl *li = NULL; 1035 ldi_ident_t ldi_id; 1036 ldi_handle_t ldi_hdl; 1037 int err; 1038 1039 if (vfsp->vfs_lofi_id == 0) 1040 return; 1041 1042 ldi_id = ldi_ident_from_anon(); 1043 1044 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1045 li->li_id = vfsp->vfs_lofi_id; 1046 li->li_cleanup = B_TRUE; 1047 1048 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1049 &ldi_hdl, ldi_id); 1050 1051 if (err) 1052 goto out; 1053 1054 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li, 1055 FREAD | FWRITE | FKIOCTL, kcred, NULL); 1056 1057 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1058 1059 if (!err) 1060 vfsp->vfs_lofi_id = 0; 1061 1062 out: 1063 ldi_ident_release(ldi_id); 1064 if (li != NULL) 1065 kmem_free(li, sizeof (*li)); 1066 } 1067 1068 /* 1069 * Common mount code. Called from the system call entry point, from autofs, 1070 * nfsv4 trigger mounts, and from pxfs. 1071 * 1072 * Takes the effective file system type, mount arguments, the mount point 1073 * vnode, flags specifying whether the mount is a remount and whether it 1074 * should be entered into the vfs list, and credentials. Fills in its vfspp 1075 * parameter with the mounted file system instance's vfs. 1076 * 1077 * Note that the effective file system type is specified as a string. It may 1078 * be null, in which case it's determined from the mount arguments, and may 1079 * differ from the type specified in the mount arguments; this is a hook to 1080 * allow interposition when instantiating file system instances. 1081 * 1082 * The caller is responsible for releasing its own hold on the mount point 1083 * vp (this routine does its own hold when necessary). 1084 * Also note that for remounts, the mount point vp should be the vnode for 1085 * the root of the file system rather than the vnode that the file system 1086 * is mounted on top of. 1087 */ 1088 int 1089 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 1090 struct vfs **vfspp) 1091 { 1092 struct vfssw *vswp; 1093 vfsops_t *vfsops; 1094 struct vfs *vfsp; 1095 struct vnode *bvp; 1096 dev_t bdev = 0; 1097 mntopts_t mnt_mntopts; 1098 int error = 0; 1099 int copyout_error = 0; 1100 int ovflags; 1101 char *opts = uap->optptr; 1102 char *inargs = opts; 1103 int optlen = uap->optlen; 1104 int remount; 1105 int rdonly; 1106 int nbmand = 0; 1107 int delmip = 0; 1108 int addmip = 0; 1109 int splice = ((uap->flags & MS_NOSPLICE) == 0); 1110 int fromspace = (uap->flags & MS_SYSSPACE) ? 1111 UIO_SYSSPACE : UIO_USERSPACE; 1112 char *resource = NULL, *mountpt = NULL; 1113 refstr_t *oldresource, *oldmntpt; 1114 struct pathname pn, rpn; 1115 vsk_anchor_t *vskap; 1116 char fstname[FSTYPSZ]; 1117 zone_t *zone; 1118 1119 /* 1120 * The v_flag value for the mount point vp is permanently set 1121 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1122 * for mount point locking. 1123 */ 1124 mutex_enter(&vp->v_lock); 1125 vp->v_flag |= VVFSLOCK; 1126 mutex_exit(&vp->v_lock); 1127 1128 mnt_mntopts.mo_count = 0; 1129 /* 1130 * Find the ops vector to use to invoke the file system-specific mount 1131 * method. If the fsname argument is non-NULL, use it directly. 1132 * Otherwise, dig the file system type information out of the mount 1133 * arguments. 1134 * 1135 * A side effect is to hold the vfssw entry. 1136 * 1137 * Mount arguments can be specified in several ways, which are 1138 * distinguished by flag bit settings. The preferred way is to set 1139 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1140 * type supplied as a character string and the last two arguments 1141 * being a pointer to a character buffer and the size of the buffer. 1142 * On entry, the buffer holds a null terminated list of options; on 1143 * return, the string is the list of options the file system 1144 * recognized. If MS_DATA is set arguments five and six point to a 1145 * block of binary data which the file system interprets. 1146 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1147 * consistently with these conventions. To handle them, we check to 1148 * see whether the pointer to the file system name has a numeric value 1149 * less than 256. If so, we treat it as an index. 1150 */ 1151 if (fsname != NULL) { 1152 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1153 return (EINVAL); 1154 } 1155 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1156 size_t n; 1157 uint_t fstype; 1158 1159 fsname = fstname; 1160 1161 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1162 RLOCK_VFSSW(); 1163 if (fstype == 0 || fstype >= nfstype || 1164 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1165 RUNLOCK_VFSSW(); 1166 return (EINVAL); 1167 } 1168 (void) strcpy(fsname, vfssw[fstype].vsw_name); 1169 RUNLOCK_VFSSW(); 1170 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1171 return (EINVAL); 1172 } else { 1173 /* 1174 * Handle either kernel or user address space. 1175 */ 1176 if (uap->flags & MS_SYSSPACE) { 1177 error = copystr(uap->fstype, fsname, 1178 FSTYPSZ, &n); 1179 } else { 1180 error = copyinstr(uap->fstype, fsname, 1181 FSTYPSZ, &n); 1182 } 1183 if (error) { 1184 if (error == ENAMETOOLONG) 1185 return (EINVAL); 1186 return (error); 1187 } 1188 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1189 return (EINVAL); 1190 } 1191 } else { 1192 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1193 return (EINVAL); 1194 fsname = vswp->vsw_name; 1195 } 1196 if (!VFS_INSTALLED(vswp)) 1197 return (EINVAL); 1198 1199 if ((error = secpolicy_fs_allowed_mount(fsname)) != 0) { 1200 vfs_unrefvfssw(vswp); 1201 return (error); 1202 } 1203 1204 vfsops = &vswp->vsw_vfsops; 1205 1206 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1207 /* 1208 * Fetch mount options and parse them for generic vfs options 1209 */ 1210 if (uap->flags & MS_OPTIONSTR) { 1211 /* 1212 * Limit the buffer size 1213 */ 1214 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1215 error = EINVAL; 1216 goto errout; 1217 } 1218 if ((uap->flags & MS_SYSSPACE) == 0) { 1219 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1220 inargs[0] = '\0'; 1221 if (optlen) { 1222 error = copyinstr(opts, inargs, (size_t)optlen, 1223 NULL); 1224 if (error) { 1225 goto errout; 1226 } 1227 } 1228 } 1229 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1230 } 1231 /* 1232 * Flag bits override the options string. 1233 */ 1234 if (uap->flags & MS_REMOUNT) 1235 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1236 if (uap->flags & MS_RDONLY) 1237 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1238 if (uap->flags & MS_NOSUID) 1239 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1240 1241 /* 1242 * Check if this is a remount; must be set in the option string and 1243 * the file system must support a remount option. 1244 */ 1245 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1246 MNTOPT_REMOUNT, NULL)) { 1247 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1248 error = ENOTSUP; 1249 goto errout; 1250 } 1251 uap->flags |= MS_REMOUNT; 1252 } 1253 1254 /* 1255 * uap->flags and vfs_optionisset() should agree. 1256 */ 1257 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1258 uap->flags |= MS_RDONLY; 1259 } 1260 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1261 uap->flags |= MS_NOSUID; 1262 } 1263 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1264 ASSERT(splice || !remount); 1265 /* 1266 * If we are splicing the fs into the namespace, 1267 * perform mount point checks. 1268 * 1269 * We want to resolve the path for the mount point to eliminate 1270 * '.' and ".." and symlinks in mount points; we can't do the 1271 * same for the resource string, since it would turn 1272 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1273 * this before grabbing vn_vfswlock(), because otherwise we 1274 * would deadlock with lookuppn(). 1275 */ 1276 if (splice) { 1277 ASSERT(vp->v_count > 0); 1278 1279 /* 1280 * Pick up mount point and device from appropriate space. 1281 */ 1282 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1283 resource = kmem_alloc(pn.pn_pathlen + 1, 1284 KM_SLEEP); 1285 (void) strcpy(resource, pn.pn_path); 1286 pn_free(&pn); 1287 } 1288 /* 1289 * Do a lookupname prior to taking the 1290 * writelock. Mark this as completed if 1291 * successful for later cleanup and addition to 1292 * the mount in progress table. 1293 */ 1294 if ((uap->flags & MS_GLOBAL) == 0 && 1295 lookupname(uap->spec, fromspace, 1296 FOLLOW, NULL, &bvp) == 0) { 1297 addmip = 1; 1298 } 1299 1300 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1301 pathname_t *pnp; 1302 1303 if (*pn.pn_path != '/') { 1304 error = EINVAL; 1305 pn_free(&pn); 1306 goto errout; 1307 } 1308 pn_alloc(&rpn); 1309 /* 1310 * Kludge to prevent autofs from deadlocking with 1311 * itself when it calls domount(). 1312 * 1313 * If autofs is calling, it is because it is doing 1314 * (autofs) mounts in the process of an NFS mount. A 1315 * lookuppn() here would cause us to block waiting for 1316 * said NFS mount to complete, which can't since this 1317 * is the thread that was supposed to doing it. 1318 */ 1319 if (fromspace == UIO_USERSPACE) { 1320 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1321 NULL)) == 0) { 1322 pnp = &rpn; 1323 } else { 1324 /* 1325 * The file disappeared or otherwise 1326 * became inaccessible since we opened 1327 * it; might as well fail the mount 1328 * since the mount point is no longer 1329 * accessible. 1330 */ 1331 pn_free(&rpn); 1332 pn_free(&pn); 1333 goto errout; 1334 } 1335 } else { 1336 pnp = &pn; 1337 } 1338 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1339 (void) strcpy(mountpt, pnp->pn_path); 1340 1341 /* 1342 * If the addition of the zone's rootpath 1343 * would push us over a total path length 1344 * of MAXPATHLEN, we fail the mount with 1345 * ENAMETOOLONG, which is what we would have 1346 * gotten if we were trying to perform the same 1347 * mount in the global zone. 1348 * 1349 * strlen() doesn't count the trailing 1350 * '\0', but zone_rootpathlen counts both a 1351 * trailing '/' and the terminating '\0'. 1352 */ 1353 if ((curproc->p_zone->zone_rootpathlen - 1 + 1354 strlen(mountpt)) > MAXPATHLEN || 1355 (resource != NULL && 1356 (curproc->p_zone->zone_rootpathlen - 1 + 1357 strlen(resource)) > MAXPATHLEN)) { 1358 error = ENAMETOOLONG; 1359 } 1360 1361 pn_free(&rpn); 1362 pn_free(&pn); 1363 } 1364 1365 if (error) 1366 goto errout; 1367 1368 /* 1369 * Prevent path name resolution from proceeding past 1370 * the mount point. 1371 */ 1372 if (vn_vfswlock(vp) != 0) { 1373 error = EBUSY; 1374 goto errout; 1375 } 1376 1377 /* 1378 * Verify that it's legitimate to establish a mount on 1379 * the prospective mount point. 1380 */ 1381 if (vn_mountedvfs(vp) != NULL) { 1382 /* 1383 * The mount point lock was obtained after some 1384 * other thread raced through and established a mount. 1385 */ 1386 vn_vfsunlock(vp); 1387 error = EBUSY; 1388 goto errout; 1389 } 1390 if (vp->v_flag & VNOMOUNT) { 1391 vn_vfsunlock(vp); 1392 error = EINVAL; 1393 goto errout; 1394 } 1395 } 1396 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1397 uap->dataptr = NULL; 1398 uap->datalen = 0; 1399 } 1400 1401 /* 1402 * If this is a remount, we don't want to create a new VFS. 1403 * Instead, we pass the existing one with a remount flag. 1404 */ 1405 if (remount) { 1406 /* 1407 * Confirm that the mount point is the root vnode of the 1408 * file system that is being remounted. 1409 * This can happen if the user specifies a different 1410 * mount point directory pathname in the (re)mount command. 1411 * 1412 * Code below can only be reached if splice is true, so it's 1413 * safe to do vn_vfsunlock() here. 1414 */ 1415 if ((vp->v_flag & VROOT) == 0) { 1416 vn_vfsunlock(vp); 1417 error = ENOENT; 1418 goto errout; 1419 } 1420 /* 1421 * Disallow making file systems read-only unless file system 1422 * explicitly allows it in its vfssw. Ignore other flags. 1423 */ 1424 if (rdonly && vn_is_readonly(vp) == 0 && 1425 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1426 vn_vfsunlock(vp); 1427 error = EINVAL; 1428 goto errout; 1429 } 1430 /* 1431 * Disallow changing the NBMAND disposition of the file 1432 * system on remounts. 1433 */ 1434 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1435 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1436 vn_vfsunlock(vp); 1437 error = EINVAL; 1438 goto errout; 1439 } 1440 vfsp = vp->v_vfsp; 1441 ovflags = vfsp->vfs_flag; 1442 vfsp->vfs_flag |= VFS_REMOUNT; 1443 vfsp->vfs_flag &= ~VFS_RDONLY; 1444 } else { 1445 vfsp = vfs_alloc(KM_SLEEP); 1446 VFS_INIT(vfsp, vfsops, NULL); 1447 } 1448 1449 VFS_HOLD(vfsp); 1450 1451 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) { 1452 if (!remount) { 1453 if (splice) 1454 vn_vfsunlock(vp); 1455 vfs_free(vfsp); 1456 } else { 1457 vn_vfsunlock(vp); 1458 VFS_RELE(vfsp); 1459 } 1460 goto errout; 1461 } 1462 1463 /* 1464 * PRIV_SYS_MOUNT doesn't mean you can become root. 1465 */ 1466 if (vfsp->vfs_lofi_id != 0) { 1467 uap->flags |= MS_NOSUID; 1468 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1469 } 1470 1471 /* 1472 * The vfs_reflock is not used anymore the code below explicitly 1473 * holds it preventing others accesing it directly. 1474 */ 1475 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1476 !(vfsp->vfs_flag & VFS_REMOUNT)) 1477 cmn_err(CE_WARN, 1478 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1479 1480 /* 1481 * Lock the vfs. If this is a remount we want to avoid spurious umount 1482 * failures that happen as a side-effect of fsflush() and other mount 1483 * and unmount operations that might be going on simultaneously and 1484 * may have locked the vfs currently. To not return EBUSY immediately 1485 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1486 */ 1487 if (!remount) { 1488 if (error = vfs_lock(vfsp)) { 1489 vfsp->vfs_flag = ovflags; 1490 1491 lofi_remove(vfsp); 1492 1493 if (splice) 1494 vn_vfsunlock(vp); 1495 vfs_free(vfsp); 1496 goto errout; 1497 } 1498 } else { 1499 vfs_lock_wait(vfsp); 1500 } 1501 1502 /* 1503 * Add device to mount in progress table, global mounts require special 1504 * handling. It is possible that we have already done the lookupname 1505 * on a spliced, non-global fs. If so, we don't want to do it again 1506 * since we cannot do a lookupname after taking the 1507 * wlock above. This case is for a non-spliced, non-global filesystem. 1508 */ 1509 if (!addmip) { 1510 if ((uap->flags & MS_GLOBAL) == 0 && 1511 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1512 addmip = 1; 1513 } 1514 } 1515 1516 if (addmip) { 1517 vnode_t *lvp = NULL; 1518 1519 error = vfs_get_lofi(vfsp, &lvp); 1520 if (error > 0) { 1521 lofi_remove(vfsp); 1522 1523 if (splice) 1524 vn_vfsunlock(vp); 1525 vfs_unlock(vfsp); 1526 1527 if (remount) { 1528 VFS_RELE(vfsp); 1529 } else { 1530 vfs_free(vfsp); 1531 } 1532 1533 goto errout; 1534 } else if (error == -1) { 1535 bdev = bvp->v_rdev; 1536 VN_RELE(bvp); 1537 } else { 1538 bdev = lvp->v_rdev; 1539 VN_RELE(lvp); 1540 VN_RELE(bvp); 1541 } 1542 1543 vfs_addmip(bdev, vfsp); 1544 addmip = 0; 1545 delmip = 1; 1546 } 1547 /* 1548 * Invalidate cached entry for the mount point. 1549 */ 1550 if (splice) 1551 dnlc_purge_vp(vp); 1552 1553 /* 1554 * If have an option string but the filesystem doesn't supply a 1555 * prototype options table, create a table with the global 1556 * options and sufficient room to accept all the options in the 1557 * string. Then parse the passed in option string 1558 * accepting all the options in the string. This gives us an 1559 * option table with all the proper cancel properties for the 1560 * global options. 1561 * 1562 * Filesystems that supply a prototype options table are handled 1563 * earlier in this function. 1564 */ 1565 if (uap->flags & MS_OPTIONSTR) { 1566 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1567 mntopts_t tmp_mntopts; 1568 1569 tmp_mntopts.mo_count = 0; 1570 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1571 &mnt_mntopts); 1572 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1573 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1574 vfs_freeopttbl(&tmp_mntopts); 1575 } 1576 } 1577 1578 /* 1579 * Serialize with zone state transitions. 1580 * See vfs_list_add; zone mounted into is: 1581 * zone_find_by_path(refstr_value(vfsp->vfs_mntpt)) 1582 * not the zone doing the mount (curproc->p_zone), but if we're already 1583 * inside a NGZ, then we know what zone we are. 1584 */ 1585 if (INGLOBALZONE(curproc)) { 1586 zone = zone_find_by_path(mountpt); 1587 ASSERT(zone != NULL); 1588 } else { 1589 zone = curproc->p_zone; 1590 /* 1591 * zone_find_by_path does a hold, so do one here too so that 1592 * we can do a zone_rele after mount_completed. 1593 */ 1594 zone_hold(zone); 1595 } 1596 mount_in_progress(zone); 1597 /* 1598 * Instantiate (or reinstantiate) the file system. If appropriate, 1599 * splice it into the file system name space. 1600 * 1601 * We want VFS_MOUNT() to be able to override the vfs_resource 1602 * string if necessary (ie, mntfs), and also for a remount to 1603 * change the same (necessary when remounting '/' during boot). 1604 * So we set up vfs_mntpt and vfs_resource to what we think they 1605 * should be, then hand off control to VFS_MOUNT() which can 1606 * override this. 1607 * 1608 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1609 * a vfs which is on the vfs list (i.e. during a remount), we must 1610 * never set those fields to NULL. Several bits of code make 1611 * assumptions that the fields are always valid. 1612 */ 1613 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1614 if (remount) { 1615 if ((oldresource = vfsp->vfs_resource) != NULL) 1616 refstr_hold(oldresource); 1617 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1618 refstr_hold(oldmntpt); 1619 } 1620 vfs_setresource(vfsp, resource, 0); 1621 vfs_setmntpoint(vfsp, mountpt, 0); 1622 1623 /* 1624 * going to mount on this vnode, so notify. 1625 */ 1626 vnevent_mountedover(vp, NULL); 1627 error = VFS_MOUNT(vfsp, vp, uap, credp); 1628 1629 if (uap->flags & MS_RDONLY) 1630 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1631 if (uap->flags & MS_NOSUID) 1632 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1633 if (uap->flags & MS_GLOBAL) 1634 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1635 1636 if (error) { 1637 lofi_remove(vfsp); 1638 1639 if (remount) { 1640 /* put back pre-remount options */ 1641 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1642 vfs_setmntpoint(vfsp, refstr_value(oldmntpt), 1643 VFSSP_VERBATIM); 1644 if (oldmntpt) 1645 refstr_rele(oldmntpt); 1646 vfs_setresource(vfsp, refstr_value(oldresource), 1647 VFSSP_VERBATIM); 1648 if (oldresource) 1649 refstr_rele(oldresource); 1650 vfsp->vfs_flag = ovflags; 1651 vfs_unlock(vfsp); 1652 VFS_RELE(vfsp); 1653 } else { 1654 vfs_unlock(vfsp); 1655 vfs_freemnttab(vfsp); 1656 vfs_free(vfsp); 1657 } 1658 } else { 1659 /* 1660 * Set the mount time to now 1661 */ 1662 vfsp->vfs_mtime = ddi_get_time(); 1663 if (remount) { 1664 vfsp->vfs_flag &= ~VFS_REMOUNT; 1665 if (oldresource) 1666 refstr_rele(oldresource); 1667 if (oldmntpt) 1668 refstr_rele(oldmntpt); 1669 } else if (splice) { 1670 /* 1671 * Link vfsp into the name space at the mount 1672 * point. Vfs_add() is responsible for 1673 * holding the mount point which will be 1674 * released when vfs_remove() is called. 1675 */ 1676 vfs_add(vp, vfsp, uap->flags); 1677 } else { 1678 /* 1679 * Hold the reference to file system which is 1680 * not linked into the name space. 1681 */ 1682 vfsp->vfs_zone = NULL; 1683 VFS_HOLD(vfsp); 1684 vfsp->vfs_vnodecovered = NULL; 1685 } 1686 /* 1687 * Set flags for global options encountered 1688 */ 1689 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1690 vfsp->vfs_flag |= VFS_RDONLY; 1691 else 1692 vfsp->vfs_flag &= ~VFS_RDONLY; 1693 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1694 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1695 } else { 1696 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1697 vfsp->vfs_flag |= VFS_NODEVICES; 1698 else 1699 vfsp->vfs_flag &= ~VFS_NODEVICES; 1700 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1701 vfsp->vfs_flag |= VFS_NOSETUID; 1702 else 1703 vfsp->vfs_flag &= ~VFS_NOSETUID; 1704 } 1705 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1706 vfsp->vfs_flag |= VFS_NBMAND; 1707 else 1708 vfsp->vfs_flag &= ~VFS_NBMAND; 1709 1710 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1711 vfsp->vfs_flag |= VFS_XATTR; 1712 else 1713 vfsp->vfs_flag &= ~VFS_XATTR; 1714 1715 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1716 vfsp->vfs_flag |= VFS_NOEXEC; 1717 else 1718 vfsp->vfs_flag &= ~VFS_NOEXEC; 1719 1720 /* 1721 * Now construct the output option string of options 1722 * we recognized. 1723 */ 1724 if (uap->flags & MS_OPTIONSTR) { 1725 vfs_list_read_lock(); 1726 copyout_error = vfs_buildoptionstr( 1727 &vfsp->vfs_mntopts, inargs, optlen); 1728 vfs_list_unlock(); 1729 if (copyout_error == 0 && 1730 (uap->flags & MS_SYSSPACE) == 0) { 1731 copyout_error = copyoutstr(inargs, opts, 1732 optlen, NULL); 1733 } 1734 } 1735 1736 /* 1737 * If this isn't a remount, set up the vopstats before 1738 * anyone can touch this. We only allow spliced file 1739 * systems (file systems which are in the namespace) to 1740 * have the VFS_STATS flag set. 1741 * NOTE: PxFS mounts the underlying file system with 1742 * MS_NOSPLICE set and copies those vfs_flags to its private 1743 * vfs structure. As a result, PxFS should never have 1744 * the VFS_STATS flag or else we might access the vfs 1745 * statistics-related fields prior to them being 1746 * properly initialized. 1747 */ 1748 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1749 initialize_vopstats(&vfsp->vfs_vopstats); 1750 /* 1751 * We need to set vfs_vskap to NULL because there's 1752 * a chance it won't be set below. This is checked 1753 * in teardown_vopstats() so we can't have garbage. 1754 */ 1755 vfsp->vfs_vskap = NULL; 1756 vfsp->vfs_flag |= VFS_STATS; 1757 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1758 } 1759 1760 if (vswp->vsw_flag & VSW_XID) 1761 vfsp->vfs_flag |= VFS_XID; 1762 1763 vfs_unlock(vfsp); 1764 } 1765 mount_completed(zone); 1766 zone_rele(zone); 1767 if (splice) 1768 vn_vfsunlock(vp); 1769 1770 if ((error == 0) && (copyout_error == 0)) { 1771 if (!remount) { 1772 /* 1773 * Don't call get_vskstat_anchor() while holding 1774 * locks since it allocates memory and calls 1775 * VFS_STATVFS(). For NFS, the latter can generate 1776 * an over-the-wire call. 1777 */ 1778 vskap = get_vskstat_anchor(vfsp); 1779 /* Only take the lock if we have something to do */ 1780 if (vskap != NULL) { 1781 vfs_lock_wait(vfsp); 1782 if (vfsp->vfs_flag & VFS_STATS) { 1783 vfsp->vfs_vskap = vskap; 1784 } 1785 vfs_unlock(vfsp); 1786 } 1787 } 1788 /* Return vfsp to caller. */ 1789 *vfspp = vfsp; 1790 } 1791 errout: 1792 vfs_freeopttbl(&mnt_mntopts); 1793 if (resource != NULL) 1794 kmem_free(resource, strlen(resource) + 1); 1795 if (mountpt != NULL) 1796 kmem_free(mountpt, strlen(mountpt) + 1); 1797 /* 1798 * It is possible we errored prior to adding to mount in progress 1799 * table. Must free vnode we acquired with successful lookupname. 1800 */ 1801 if (addmip) 1802 VN_RELE(bvp); 1803 if (delmip) 1804 vfs_delmip(vfsp); 1805 ASSERT(vswp != NULL); 1806 vfs_unrefvfssw(vswp); 1807 if (inargs != opts) 1808 kmem_free(inargs, MAX_MNTOPT_STR); 1809 if (copyout_error) { 1810 lofi_remove(vfsp); 1811 VFS_RELE(vfsp); 1812 error = copyout_error; 1813 } 1814 return (error); 1815 } 1816 1817 static void 1818 vfs_setpath( 1819 struct vfs *vfsp, /* vfs being updated */ 1820 refstr_t **refp, /* Ref-count string to contain the new path */ 1821 const char *newpath, /* Path to add to refp (above) */ 1822 uint32_t flag) /* flag */ 1823 { 1824 size_t len; 1825 refstr_t *ref; 1826 zone_t *zone = curproc->p_zone; 1827 char *sp; 1828 int have_list_lock = 0; 1829 1830 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1831 1832 /* 1833 * New path must be less than MAXPATHLEN because mntfs 1834 * will only display up to MAXPATHLEN bytes. This is currently 1835 * safe, because domount() uses pn_get(), and other callers 1836 * similarly cap the size to fewer than MAXPATHLEN bytes. 1837 */ 1838 1839 ASSERT(strlen(newpath) < MAXPATHLEN); 1840 1841 /* mntfs requires consistency while vfs list lock is held */ 1842 1843 if (VFS_ON_LIST(vfsp)) { 1844 have_list_lock = 1; 1845 vfs_list_lock(); 1846 } 1847 1848 if (*refp != NULL) 1849 refstr_rele(*refp); 1850 1851 /* 1852 * If we are in a non-global zone then we prefix the supplied path, 1853 * newpath, with the zone's root path, with two exceptions. The first 1854 * is where we have been explicitly directed to avoid doing so; this 1855 * will be the case following a failed remount, where the path supplied 1856 * will be a saved version which must now be restored. The second 1857 * exception is where newpath is not a pathname but a descriptive name, 1858 * e.g. "procfs". 1859 */ 1860 if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') { 1861 ref = refstr_alloc(newpath); 1862 goto out; 1863 } 1864 1865 /* 1866 * Truncate the trailing '/' in the zoneroot, and merge 1867 * in the zone's rootpath with the "newpath" (resource 1868 * or mountpoint) passed in. 1869 * 1870 * The size of the required buffer is thus the size of 1871 * the buffer required for the passed-in newpath 1872 * (strlen(newpath) + 1), plus the size of the buffer 1873 * required to hold zone_rootpath (zone_rootpathlen) 1874 * minus one for one of the now-superfluous NUL 1875 * terminations, minus one for the trailing '/'. 1876 * 1877 * That gives us: 1878 * 1879 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1880 * 1881 * Which is what we have below. 1882 */ 1883 1884 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1885 sp = kmem_alloc(len, KM_SLEEP); 1886 1887 /* 1888 * Copy everything including the trailing slash, which 1889 * we then overwrite with the NUL character. 1890 */ 1891 1892 (void) strcpy(sp, zone->zone_rootpath); 1893 sp[zone->zone_rootpathlen - 2] = '\0'; 1894 (void) strcat(sp, newpath); 1895 1896 ref = refstr_alloc(sp); 1897 kmem_free(sp, len); 1898 out: 1899 *refp = ref; 1900 1901 if (have_list_lock) { 1902 vfs_mnttab_modtimeupd(); 1903 vfs_list_unlock(); 1904 } 1905 } 1906 1907 /* 1908 * Record a mounted resource name in a vfs structure. 1909 * If vfsp is already mounted, caller must hold the vfs lock. 1910 */ 1911 void 1912 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag) 1913 { 1914 if (resource == NULL || resource[0] == '\0') 1915 resource = VFS_NORESOURCE; 1916 vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag); 1917 } 1918 1919 /* 1920 * Record a mount point name in a vfs structure. 1921 * If vfsp is already mounted, caller must hold the vfs lock. 1922 */ 1923 void 1924 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag) 1925 { 1926 if (mntpt == NULL || mntpt[0] == '\0') 1927 mntpt = VFS_NOMNTPT; 1928 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag); 1929 } 1930 1931 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1932 1933 refstr_t * 1934 vfs_getresource(const struct vfs *vfsp) 1935 { 1936 refstr_t *resource; 1937 1938 vfs_list_read_lock(); 1939 resource = vfsp->vfs_resource; 1940 refstr_hold(resource); 1941 vfs_list_unlock(); 1942 1943 return (resource); 1944 } 1945 1946 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1947 1948 refstr_t * 1949 vfs_getmntpoint(const struct vfs *vfsp) 1950 { 1951 refstr_t *mntpt; 1952 1953 vfs_list_read_lock(); 1954 mntpt = vfsp->vfs_mntpt; 1955 refstr_hold(mntpt); 1956 vfs_list_unlock(); 1957 1958 return (mntpt); 1959 } 1960 1961 /* 1962 * Create an empty options table with enough empty slots to hold all 1963 * The options in the options string passed as an argument. 1964 * Potentially prepend another options table. 1965 * 1966 * Note: caller is responsible for locking the vfs list, if needed, 1967 * to protect mops. 1968 */ 1969 static void 1970 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1971 const mntopts_t *mtmpl) 1972 { 1973 const char *s = opts; 1974 uint_t count; 1975 1976 if (opts == NULL || *opts == '\0') { 1977 count = 0; 1978 } else { 1979 count = 1; 1980 1981 /* 1982 * Count number of options in the string 1983 */ 1984 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 1985 count++; 1986 s++; 1987 } 1988 } 1989 vfs_copyopttbl_extend(mtmpl, mops, count); 1990 } 1991 1992 /* 1993 * Create an empty options table with enough empty slots to hold all 1994 * The options in the options string passed as an argument. 1995 * 1996 * This function is *not* for general use by filesystems. 1997 * 1998 * Note: caller is responsible for locking the vfs list, if needed, 1999 * to protect mops. 2000 */ 2001 void 2002 vfs_createopttbl(mntopts_t *mops, const char *opts) 2003 { 2004 vfs_createopttbl_extend(mops, opts, NULL); 2005 } 2006 2007 2008 /* 2009 * Swap two mount options tables 2010 */ 2011 static void 2012 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 2013 { 2014 uint_t tmpcnt; 2015 mntopt_t *tmplist; 2016 2017 tmpcnt = optbl2->mo_count; 2018 tmplist = optbl2->mo_list; 2019 optbl2->mo_count = optbl1->mo_count; 2020 optbl2->mo_list = optbl1->mo_list; 2021 optbl1->mo_count = tmpcnt; 2022 optbl1->mo_list = tmplist; 2023 } 2024 2025 static void 2026 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 2027 { 2028 vfs_list_lock(); 2029 vfs_swapopttbl_nolock(optbl1, optbl2); 2030 vfs_mnttab_modtimeupd(); 2031 vfs_list_unlock(); 2032 } 2033 2034 static char ** 2035 vfs_copycancelopt_extend(char **const moc, int extend) 2036 { 2037 int i = 0; 2038 int j; 2039 char **result; 2040 2041 if (moc != NULL) { 2042 for (; moc[i] != NULL; i++) 2043 /* count number of options to cancel */; 2044 } 2045 2046 if (i + extend == 0) 2047 return (NULL); 2048 2049 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 2050 2051 for (j = 0; j < i; j++) { 2052 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 2053 (void) strcpy(result[j], moc[j]); 2054 } 2055 for (; j <= i + extend; j++) 2056 result[j] = NULL; 2057 2058 return (result); 2059 } 2060 2061 static void 2062 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 2063 { 2064 char *sp, *dp; 2065 2066 d->mo_flags = s->mo_flags; 2067 d->mo_data = s->mo_data; 2068 sp = s->mo_name; 2069 if (sp != NULL) { 2070 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2071 (void) strcpy(dp, sp); 2072 d->mo_name = dp; 2073 } else { 2074 d->mo_name = NULL; /* should never happen */ 2075 } 2076 2077 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 2078 2079 sp = s->mo_arg; 2080 if (sp != NULL) { 2081 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2082 (void) strcpy(dp, sp); 2083 d->mo_arg = dp; 2084 } else { 2085 d->mo_arg = NULL; 2086 } 2087 } 2088 2089 /* 2090 * Copy a mount options table, possibly allocating some spare 2091 * slots at the end. It is permissible to copy_extend the NULL table. 2092 */ 2093 static void 2094 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 2095 { 2096 uint_t i, count; 2097 mntopt_t *motbl; 2098 2099 /* 2100 * Clear out any existing stuff in the options table being initialized 2101 */ 2102 vfs_freeopttbl(dmo); 2103 count = (smo == NULL) ? 0 : smo->mo_count; 2104 if ((count + extra) == 0) /* nothing to do */ 2105 return; 2106 dmo->mo_count = count + extra; 2107 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 2108 dmo->mo_list = motbl; 2109 for (i = 0; i < count; i++) { 2110 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 2111 } 2112 for (i = count; i < count + extra; i++) { 2113 motbl[i].mo_flags = MO_EMPTY; 2114 } 2115 } 2116 2117 /* 2118 * Copy a mount options table. 2119 * 2120 * This function is *not* for general use by filesystems. 2121 * 2122 * Note: caller is responsible for locking the vfs list, if needed, 2123 * to protect smo and dmo. 2124 */ 2125 void 2126 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 2127 { 2128 vfs_copyopttbl_extend(smo, dmo, 0); 2129 } 2130 2131 static char ** 2132 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 2133 { 2134 int c1 = 0; 2135 int c2 = 0; 2136 char **result; 2137 char **sp1, **sp2, **dp; 2138 2139 /* 2140 * First we count both lists of cancel options. 2141 * If either is NULL or has no elements, we return a copy of 2142 * the other. 2143 */ 2144 if (mop1->mo_cancel != NULL) { 2145 for (; mop1->mo_cancel[c1] != NULL; c1++) 2146 /* count cancel options in mop1 */; 2147 } 2148 2149 if (c1 == 0) 2150 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 2151 2152 if (mop2->mo_cancel != NULL) { 2153 for (; mop2->mo_cancel[c2] != NULL; c2++) 2154 /* count cancel options in mop2 */; 2155 } 2156 2157 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 2158 2159 if (c2 == 0) 2160 return (result); 2161 2162 /* 2163 * When we get here, we've got two sets of cancel options; 2164 * we need to merge the two sets. We know that the result 2165 * array has "c1+c2+1" entries and in the end we might shrink 2166 * it. 2167 * Result now has a copy of the c1 entries from mop1; we'll 2168 * now lookup all the entries of mop2 in mop1 and copy it if 2169 * it is unique. 2170 * This operation is O(n^2) but it's only called once per 2171 * filesystem per duplicate option. This is a situation 2172 * which doesn't arise with the filesystems in ON and 2173 * n is generally 1. 2174 */ 2175 2176 dp = &result[c1]; 2177 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 2178 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 2179 if (strcmp(*sp1, *sp2) == 0) 2180 break; 2181 } 2182 if (*sp1 == NULL) { 2183 /* 2184 * Option *sp2 not found in mop1, so copy it. 2185 * The calls to vfs_copycancelopt_extend() 2186 * guarantee that there's enough room. 2187 */ 2188 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 2189 (void) strcpy(*dp++, *sp2); 2190 } 2191 } 2192 if (dp != &result[c1+c2]) { 2193 size_t bytes = (dp - result + 1) * sizeof (char *); 2194 char **nres = kmem_alloc(bytes, KM_SLEEP); 2195 2196 bcopy(result, nres, bytes); 2197 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 2198 result = nres; 2199 } 2200 return (result); 2201 } 2202 2203 /* 2204 * Merge two mount option tables (outer and inner) into one. This is very 2205 * similar to "merging" global variables and automatic variables in C. 2206 * 2207 * This isn't (and doesn't have to be) fast. 2208 * 2209 * This function is *not* for general use by filesystems. 2210 * 2211 * Note: caller is responsible for locking the vfs list, if needed, 2212 * to protect omo, imo & dmo. 2213 */ 2214 void 2215 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2216 { 2217 uint_t i, count; 2218 mntopt_t *mop, *motbl; 2219 uint_t freeidx; 2220 2221 /* 2222 * First determine how much space we need to allocate. 2223 */ 2224 count = omo->mo_count; 2225 for (i = 0; i < imo->mo_count; i++) { 2226 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2227 continue; 2228 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2229 count++; 2230 } 2231 ASSERT(count >= omo->mo_count && 2232 count <= omo->mo_count + imo->mo_count); 2233 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2234 for (i = 0; i < omo->mo_count; i++) 2235 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2236 freeidx = omo->mo_count; 2237 for (i = 0; i < imo->mo_count; i++) { 2238 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2239 continue; 2240 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2241 char **newcanp; 2242 uint_t index = mop - omo->mo_list; 2243 2244 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2245 2246 vfs_freeopt(&motbl[index]); 2247 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2248 2249 vfs_freecancelopt(motbl[index].mo_cancel); 2250 motbl[index].mo_cancel = newcanp; 2251 } else { 2252 /* 2253 * If it's a new option, just copy it over to the first 2254 * free location. 2255 */ 2256 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2257 } 2258 } 2259 dmo->mo_count = count; 2260 dmo->mo_list = motbl; 2261 } 2262 2263 /* 2264 * Functions to set and clear mount options in a mount options table. 2265 */ 2266 2267 /* 2268 * Clear a mount option, if it exists. 2269 * 2270 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2271 * the vfs list. 2272 */ 2273 static void 2274 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2275 { 2276 struct mntopt *mop; 2277 uint_t i, count; 2278 2279 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2280 2281 count = mops->mo_count; 2282 for (i = 0; i < count; i++) { 2283 mop = &mops->mo_list[i]; 2284 2285 if (mop->mo_flags & MO_EMPTY) 2286 continue; 2287 if (strcmp(opt, mop->mo_name)) 2288 continue; 2289 mop->mo_flags &= ~MO_SET; 2290 if (mop->mo_arg != NULL) { 2291 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2292 } 2293 mop->mo_arg = NULL; 2294 if (update_mnttab) 2295 vfs_mnttab_modtimeupd(); 2296 break; 2297 } 2298 } 2299 2300 void 2301 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2302 { 2303 int gotlock = 0; 2304 2305 if (VFS_ON_LIST(vfsp)) { 2306 gotlock = 1; 2307 vfs_list_lock(); 2308 } 2309 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2310 if (gotlock) 2311 vfs_list_unlock(); 2312 } 2313 2314 2315 /* 2316 * Set a mount option on. If it's not found in the table, it's silently 2317 * ignored. If the option has MO_IGNORE set, it is still set unless the 2318 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2319 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2320 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2321 * MO_EMPTY set is created as the option passed in. 2322 * 2323 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2324 * the vfs list. 2325 */ 2326 static void 2327 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2328 const char *arg, int flags, int update_mnttab) 2329 { 2330 mntopt_t *mop; 2331 uint_t i, count; 2332 char *sp; 2333 2334 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2335 2336 if (flags & VFS_CREATEOPT) { 2337 if (vfs_hasopt(mops, opt) != NULL) { 2338 flags &= ~VFS_CREATEOPT; 2339 } 2340 } 2341 count = mops->mo_count; 2342 for (i = 0; i < count; i++) { 2343 mop = &mops->mo_list[i]; 2344 2345 if (mop->mo_flags & MO_EMPTY) { 2346 if ((flags & VFS_CREATEOPT) == 0) 2347 continue; 2348 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2349 (void) strcpy(sp, opt); 2350 mop->mo_name = sp; 2351 if (arg != NULL) 2352 mop->mo_flags = MO_HASVALUE; 2353 else 2354 mop->mo_flags = 0; 2355 } else if (strcmp(opt, mop->mo_name)) { 2356 continue; 2357 } 2358 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2359 break; 2360 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2361 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2362 (void) strcpy(sp, arg); 2363 } else { 2364 sp = NULL; 2365 } 2366 if (mop->mo_arg != NULL) 2367 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2368 mop->mo_arg = sp; 2369 if (flags & VFS_DISPLAY) 2370 mop->mo_flags &= ~MO_NODISPLAY; 2371 if (flags & VFS_NODISPLAY) 2372 mop->mo_flags |= MO_NODISPLAY; 2373 mop->mo_flags |= MO_SET; 2374 if (mop->mo_cancel != NULL) { 2375 char **cp; 2376 2377 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2378 vfs_clearmntopt_nolock(mops, *cp, 0); 2379 } 2380 if (update_mnttab) 2381 vfs_mnttab_modtimeupd(); 2382 break; 2383 } 2384 } 2385 2386 void 2387 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2388 { 2389 int gotlock = 0; 2390 2391 if (VFS_ON_LIST(vfsp)) { 2392 gotlock = 1; 2393 vfs_list_lock(); 2394 } 2395 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2396 if (gotlock) 2397 vfs_list_unlock(); 2398 } 2399 2400 2401 /* 2402 * Add a "tag" option to a mounted file system's options list. 2403 * 2404 * Note: caller is responsible for locking the vfs list, if needed, 2405 * to protect mops. 2406 */ 2407 static mntopt_t * 2408 vfs_addtag(mntopts_t *mops, const char *tag) 2409 { 2410 uint_t count; 2411 mntopt_t *mop, *motbl; 2412 2413 count = mops->mo_count + 1; 2414 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2415 if (mops->mo_count) { 2416 size_t len = (count - 1) * sizeof (mntopt_t); 2417 2418 bcopy(mops->mo_list, motbl, len); 2419 kmem_free(mops->mo_list, len); 2420 } 2421 mops->mo_count = count; 2422 mops->mo_list = motbl; 2423 mop = &motbl[count - 1]; 2424 mop->mo_flags = MO_TAG; 2425 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2426 (void) strcpy(mop->mo_name, tag); 2427 return (mop); 2428 } 2429 2430 /* 2431 * Allow users to set arbitrary "tags" in a vfs's mount options. 2432 * Broader use within the kernel is discouraged. 2433 */ 2434 int 2435 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2436 cred_t *cr) 2437 { 2438 vfs_t *vfsp; 2439 mntopts_t *mops; 2440 mntopt_t *mop; 2441 int found = 0; 2442 dev_t dev = makedevice(major, minor); 2443 int err = 0; 2444 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2445 2446 /* 2447 * Find the desired mounted file system 2448 */ 2449 vfs_list_lock(); 2450 vfsp = rootvfs; 2451 do { 2452 if (vfsp->vfs_dev == dev && 2453 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2454 found = 1; 2455 break; 2456 } 2457 vfsp = vfsp->vfs_next; 2458 } while (vfsp != rootvfs); 2459 2460 if (!found) { 2461 err = EINVAL; 2462 goto out; 2463 } 2464 err = secpolicy_fs_config(cr, vfsp); 2465 if (err != 0) 2466 goto out; 2467 2468 mops = &vfsp->vfs_mntopts; 2469 /* 2470 * Add tag if it doesn't already exist 2471 */ 2472 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2473 int len; 2474 2475 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2476 len = strlen(buf); 2477 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2478 err = ENAMETOOLONG; 2479 goto out; 2480 } 2481 mop = vfs_addtag(mops, tag); 2482 } 2483 if ((mop->mo_flags & MO_TAG) == 0) { 2484 err = EINVAL; 2485 goto out; 2486 } 2487 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2488 out: 2489 vfs_list_unlock(); 2490 kmem_free(buf, MAX_MNTOPT_STR); 2491 return (err); 2492 } 2493 2494 /* 2495 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2496 * Broader use within the kernel is discouraged. 2497 */ 2498 int 2499 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2500 cred_t *cr) 2501 { 2502 vfs_t *vfsp; 2503 mntopt_t *mop; 2504 int found = 0; 2505 dev_t dev = makedevice(major, minor); 2506 int err = 0; 2507 2508 /* 2509 * Find the desired mounted file system 2510 */ 2511 vfs_list_lock(); 2512 vfsp = rootvfs; 2513 do { 2514 if (vfsp->vfs_dev == dev && 2515 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2516 found = 1; 2517 break; 2518 } 2519 vfsp = vfsp->vfs_next; 2520 } while (vfsp != rootvfs); 2521 2522 if (!found) { 2523 err = EINVAL; 2524 goto out; 2525 } 2526 err = secpolicy_fs_config(cr, vfsp); 2527 if (err != 0) 2528 goto out; 2529 2530 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2531 err = EINVAL; 2532 goto out; 2533 } 2534 if ((mop->mo_flags & MO_TAG) == 0) { 2535 err = EINVAL; 2536 goto out; 2537 } 2538 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2539 out: 2540 vfs_list_unlock(); 2541 return (err); 2542 } 2543 2544 /* 2545 * Function to parse an option string and fill in a mount options table. 2546 * Unknown options are silently ignored. The input option string is modified 2547 * by replacing separators with nulls. If the create flag is set, options 2548 * not found in the table are just added on the fly. The table must have 2549 * an option slot marked MO_EMPTY to add an option on the fly. 2550 * 2551 * This function is *not* for general use by filesystems. 2552 * 2553 * Note: caller is responsible for locking the vfs list, if needed, 2554 * to protect mops.. 2555 */ 2556 void 2557 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2558 { 2559 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2560 int setflg = VFS_NOFORCEOPT; 2561 2562 if (osp == NULL) 2563 return; 2564 while (*s != '\0') { 2565 p = strchr(s, ','); /* find next option */ 2566 if (p == NULL) { 2567 cp = NULL; 2568 p = s + strlen(s); 2569 } else { 2570 cp = p; /* save location of comma */ 2571 *p++ = '\0'; /* mark end and point to next option */ 2572 } 2573 nextop = p; 2574 p = strchr(s, '='); /* look for value */ 2575 if (p == NULL) { 2576 valp = NULL; /* no value supplied */ 2577 } else { 2578 ep = p; /* save location of equals */ 2579 *p++ = '\0'; /* end option and point to value */ 2580 valp = p; 2581 } 2582 /* 2583 * set option into options table 2584 */ 2585 if (create) 2586 setflg |= VFS_CREATEOPT; 2587 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2588 if (cp != NULL) 2589 *cp = ','; /* restore the comma */ 2590 if (valp != NULL) 2591 *ep = '='; /* restore the equals */ 2592 s = nextop; 2593 } 2594 } 2595 2596 /* 2597 * Function to inquire if an option exists in a mount options table. 2598 * Returns a pointer to the option if it exists, else NULL. 2599 * 2600 * This function is *not* for general use by filesystems. 2601 * 2602 * Note: caller is responsible for locking the vfs list, if needed, 2603 * to protect mops. 2604 */ 2605 struct mntopt * 2606 vfs_hasopt(const mntopts_t *mops, const char *opt) 2607 { 2608 struct mntopt *mop; 2609 uint_t i, count; 2610 2611 count = mops->mo_count; 2612 for (i = 0; i < count; i++) { 2613 mop = &mops->mo_list[i]; 2614 2615 if (mop->mo_flags & MO_EMPTY) 2616 continue; 2617 if (strcmp(opt, mop->mo_name) == 0) 2618 return (mop); 2619 } 2620 return (NULL); 2621 } 2622 2623 /* 2624 * Function to inquire if an option is set in a mount options table. 2625 * Returns non-zero if set and fills in the arg pointer with a pointer to 2626 * the argument string or NULL if there is no argument string. 2627 */ 2628 static int 2629 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2630 { 2631 struct mntopt *mop; 2632 uint_t i, count; 2633 2634 count = mops->mo_count; 2635 for (i = 0; i < count; i++) { 2636 mop = &mops->mo_list[i]; 2637 2638 if (mop->mo_flags & MO_EMPTY) 2639 continue; 2640 if (strcmp(opt, mop->mo_name)) 2641 continue; 2642 if ((mop->mo_flags & MO_SET) == 0) 2643 return (0); 2644 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2645 *argp = mop->mo_arg; 2646 return (1); 2647 } 2648 return (0); 2649 } 2650 2651 2652 int 2653 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2654 { 2655 int ret; 2656 2657 vfs_list_read_lock(); 2658 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2659 vfs_list_unlock(); 2660 return (ret); 2661 } 2662 2663 2664 /* 2665 * Construct a comma separated string of the options set in the given 2666 * mount table, return the string in the given buffer. Return non-zero if 2667 * the buffer would overflow. 2668 * 2669 * This function is *not* for general use by filesystems. 2670 * 2671 * Note: caller is responsible for locking the vfs list, if needed, 2672 * to protect mp. 2673 */ 2674 int 2675 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2676 { 2677 char *cp; 2678 uint_t i; 2679 2680 buf[0] = '\0'; 2681 cp = buf; 2682 for (i = 0; i < mp->mo_count; i++) { 2683 struct mntopt *mop; 2684 2685 mop = &mp->mo_list[i]; 2686 if (mop->mo_flags & MO_SET) { 2687 int optlen, comma = 0; 2688 2689 if (buf[0] != '\0') 2690 comma = 1; 2691 optlen = strlen(mop->mo_name); 2692 if (strlen(buf) + comma + optlen + 1 > len) 2693 goto err; 2694 if (comma) 2695 *cp++ = ','; 2696 (void) strcpy(cp, mop->mo_name); 2697 cp += optlen; 2698 /* 2699 * Append option value if there is one 2700 */ 2701 if (mop->mo_arg != NULL) { 2702 int arglen; 2703 2704 arglen = strlen(mop->mo_arg); 2705 if (strlen(buf) + arglen + 2 > len) 2706 goto err; 2707 *cp++ = '='; 2708 (void) strcpy(cp, mop->mo_arg); 2709 cp += arglen; 2710 } 2711 } 2712 } 2713 return (0); 2714 err: 2715 return (EOVERFLOW); 2716 } 2717 2718 static void 2719 vfs_freecancelopt(char **moc) 2720 { 2721 if (moc != NULL) { 2722 int ccnt = 0; 2723 char **cp; 2724 2725 for (cp = moc; *cp != NULL; cp++) { 2726 kmem_free(*cp, strlen(*cp) + 1); 2727 ccnt++; 2728 } 2729 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2730 } 2731 } 2732 2733 static void 2734 vfs_freeopt(mntopt_t *mop) 2735 { 2736 if (mop->mo_name != NULL) 2737 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2738 2739 vfs_freecancelopt(mop->mo_cancel); 2740 2741 if (mop->mo_arg != NULL) 2742 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2743 } 2744 2745 /* 2746 * Free a mount options table 2747 * 2748 * This function is *not* for general use by filesystems. 2749 * 2750 * Note: caller is responsible for locking the vfs list, if needed, 2751 * to protect mp. 2752 */ 2753 void 2754 vfs_freeopttbl(mntopts_t *mp) 2755 { 2756 uint_t i, count; 2757 2758 count = mp->mo_count; 2759 for (i = 0; i < count; i++) { 2760 vfs_freeopt(&mp->mo_list[i]); 2761 } 2762 if (count) { 2763 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2764 mp->mo_count = 0; 2765 mp->mo_list = NULL; 2766 } 2767 } 2768 2769 2770 /* ARGSUSED */ 2771 static int 2772 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2773 caller_context_t *ct) 2774 { 2775 return (0); 2776 } 2777 2778 /* ARGSUSED */ 2779 static int 2780 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2781 caller_context_t *ct) 2782 { 2783 return (0); 2784 } 2785 2786 /* 2787 * The dummy vnode is currently used only by file events notification 2788 * module which is just interested in the timestamps. 2789 */ 2790 /* ARGSUSED */ 2791 static int 2792 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2793 caller_context_t *ct) 2794 { 2795 bzero(vap, sizeof (vattr_t)); 2796 vap->va_type = VREG; 2797 vap->va_nlink = 1; 2798 vap->va_ctime = vfs_mnttab_ctime; 2799 /* 2800 * it is ok to just copy mtime as the time will be monotonically 2801 * increasing. 2802 */ 2803 vap->va_mtime = vfs_mnttab_mtime; 2804 vap->va_atime = vap->va_mtime; 2805 return (0); 2806 } 2807 2808 static void 2809 vfs_mnttabvp_setup(void) 2810 { 2811 vnode_t *tvp; 2812 vnodeops_t *vfs_mntdummyvnops; 2813 const fs_operation_def_t mnt_dummyvnodeops_template[] = { 2814 VOPNAME_READ, { .vop_read = vfs_mntdummyread }, 2815 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite }, 2816 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr }, 2817 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 2818 NULL, NULL 2819 }; 2820 2821 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template, 2822 &vfs_mntdummyvnops) != 0) { 2823 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed"); 2824 /* Shouldn't happen, but not bad enough to panic */ 2825 return; 2826 } 2827 2828 /* 2829 * A global dummy vnode is allocated to represent mntfs files. 2830 * The mntfs file (/etc/mnttab) can be monitored for file events 2831 * and receive an event when mnttab changes. Dummy VOP calls 2832 * will be made on this vnode. The file events notification module 2833 * intercepts this vnode and delivers relevant events. 2834 */ 2835 tvp = vn_alloc(KM_SLEEP); 2836 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE; 2837 vn_setops(tvp, vfs_mntdummyvnops); 2838 tvp->v_type = VREG; 2839 /* 2840 * The mnt dummy ops do not reference v_data. 2841 * No other module intercepting this vnode should either. 2842 * Just set it to point to itself. 2843 */ 2844 tvp->v_data = (caddr_t)tvp; 2845 tvp->v_vfsp = rootvfs; 2846 vfs_mntdummyvp = tvp; 2847 } 2848 2849 /* 2850 * performs fake read/write ops 2851 */ 2852 static void 2853 vfs_mnttab_rwop(int rw) 2854 { 2855 struct uio uio; 2856 struct iovec iov; 2857 char buf[1]; 2858 2859 if (vfs_mntdummyvp == NULL) 2860 return; 2861 2862 bzero(&uio, sizeof (uio)); 2863 bzero(&iov, sizeof (iov)); 2864 iov.iov_base = buf; 2865 iov.iov_len = 0; 2866 uio.uio_iov = &iov; 2867 uio.uio_iovcnt = 1; 2868 uio.uio_loffset = 0; 2869 uio.uio_segflg = UIO_SYSSPACE; 2870 uio.uio_resid = 0; 2871 if (rw) { 2872 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2873 } else { 2874 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2875 } 2876 } 2877 2878 /* 2879 * Generate a write operation. 2880 */ 2881 void 2882 vfs_mnttab_writeop(void) 2883 { 2884 vfs_mnttab_rwop(1); 2885 } 2886 2887 /* 2888 * Generate a read operation. 2889 */ 2890 void 2891 vfs_mnttab_readop(void) 2892 { 2893 vfs_mnttab_rwop(0); 2894 } 2895 2896 /* 2897 * Free any mnttab information recorded in the vfs struct. 2898 * The vfs must not be on the vfs list. 2899 */ 2900 static void 2901 vfs_freemnttab(struct vfs *vfsp) 2902 { 2903 ASSERT(!VFS_ON_LIST(vfsp)); 2904 2905 /* 2906 * Free device and mount point information 2907 */ 2908 if (vfsp->vfs_mntpt != NULL) { 2909 refstr_rele(vfsp->vfs_mntpt); 2910 vfsp->vfs_mntpt = NULL; 2911 } 2912 if (vfsp->vfs_resource != NULL) { 2913 refstr_rele(vfsp->vfs_resource); 2914 vfsp->vfs_resource = NULL; 2915 } 2916 /* 2917 * Now free mount options information 2918 */ 2919 vfs_freeopttbl(&vfsp->vfs_mntopts); 2920 } 2921 2922 /* 2923 * Return the last mnttab modification time 2924 */ 2925 void 2926 vfs_mnttab_modtime(timespec_t *ts) 2927 { 2928 ASSERT(RW_LOCK_HELD(&vfslist)); 2929 *ts = vfs_mnttab_mtime; 2930 } 2931 2932 /* 2933 * See if mnttab is changed 2934 */ 2935 void 2936 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2937 { 2938 int changed; 2939 2940 *phpp = (struct pollhead *)NULL; 2941 2942 /* 2943 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2944 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2945 * to not grab the vfs list lock because tv_sec is monotonically 2946 * increasing. 2947 */ 2948 2949 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2950 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2951 if (!changed) { 2952 *phpp = &vfs_pollhd; 2953 } 2954 } 2955 2956 /* Provide a unique and monotonically-increasing timestamp. */ 2957 void 2958 vfs_mono_time(timespec_t *ts) 2959 { 2960 static volatile hrtime_t hrt; /* The saved time. */ 2961 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */ 2962 timespec_t newts; 2963 2964 /* 2965 * Try gethrestime() first, but be prepared to fabricate a sensible 2966 * answer at the first sign of any trouble. 2967 */ 2968 gethrestime(&newts); 2969 newhrt = ts2hrt(&newts); 2970 for (;;) { 2971 oldhrt = hrt; 2972 if (newhrt <= hrt) 2973 newhrt = hrt + 1; 2974 if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt) 2975 break; 2976 } 2977 hrt2ts(newhrt, ts); 2978 } 2979 2980 /* 2981 * Update the mnttab modification time and wake up any waiters for 2982 * mnttab changes 2983 */ 2984 void 2985 vfs_mnttab_modtimeupd() 2986 { 2987 hrtime_t oldhrt, newhrt; 2988 2989 ASSERT(RW_WRITE_HELD(&vfslist)); 2990 oldhrt = ts2hrt(&vfs_mnttab_mtime); 2991 gethrestime(&vfs_mnttab_mtime); 2992 newhrt = ts2hrt(&vfs_mnttab_mtime); 2993 if (oldhrt == (hrtime_t)0) 2994 vfs_mnttab_ctime = vfs_mnttab_mtime; 2995 /* 2996 * Attempt to provide unique mtime (like uniqtime but not). 2997 */ 2998 if (newhrt == oldhrt) { 2999 newhrt++; 3000 hrt2ts(newhrt, &vfs_mnttab_mtime); 3001 } 3002 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 3003 vfs_mnttab_writeop(); 3004 } 3005 3006 int 3007 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 3008 { 3009 vnode_t *coveredvp; 3010 int error; 3011 extern void teardown_vopstats(vfs_t *); 3012 3013 /* 3014 * Get covered vnode. This will be NULL if the vfs is not linked 3015 * into the file system name space (i.e., domount() with MNT_NOSPICE). 3016 */ 3017 coveredvp = vfsp->vfs_vnodecovered; 3018 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 3019 3020 /* 3021 * Purge all dnlc entries for this vfs. 3022 */ 3023 (void) dnlc_purge_vfsp(vfsp, 0); 3024 3025 /* For forcible umount, skip VFS_SYNC() since it may hang */ 3026 if ((flag & MS_FORCE) == 0) 3027 (void) VFS_SYNC(vfsp, 0, cr); 3028 3029 /* 3030 * Lock the vfs to maintain fs status quo during unmount. This 3031 * has to be done after the sync because ufs_update tries to acquire 3032 * the vfs_reflock. 3033 */ 3034 vfs_lock_wait(vfsp); 3035 3036 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 3037 vfs_unlock(vfsp); 3038 if (coveredvp != NULL) 3039 vn_vfsunlock(coveredvp); 3040 } else if (coveredvp != NULL) { 3041 teardown_vopstats(vfsp); 3042 /* 3043 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 3044 * when it frees vfsp so we do a VN_HOLD() so we can 3045 * continue to use coveredvp afterwards. 3046 */ 3047 VN_HOLD(coveredvp); 3048 vfs_remove(vfsp); 3049 vn_vfsunlock(coveredvp); 3050 VN_RELE(coveredvp); 3051 } else { 3052 teardown_vopstats(vfsp); 3053 /* 3054 * Release the reference to vfs that is not linked 3055 * into the name space. 3056 */ 3057 vfs_unlock(vfsp); 3058 VFS_RELE(vfsp); 3059 } 3060 return (error); 3061 } 3062 3063 3064 /* 3065 * Vfs_unmountall() is called by uadmin() to unmount all 3066 * mounted file systems (except the root file system) during shutdown. 3067 * It follows the existing locking protocol when traversing the vfs list 3068 * to sync and unmount vfses. Even though there should be no 3069 * other thread running while the system is shutting down, it is prudent 3070 * to still follow the locking protocol. 3071 */ 3072 void 3073 vfs_unmountall(void) 3074 { 3075 struct vfs *vfsp; 3076 struct vfs *prev_vfsp = NULL; 3077 int error; 3078 3079 /* 3080 * Toss all dnlc entries now so that the per-vfs sync 3081 * and unmount operations don't have to slog through 3082 * a bunch of uninteresting vnodes over and over again. 3083 */ 3084 dnlc_purge(); 3085 3086 vfs_list_lock(); 3087 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 3088 prev_vfsp = vfsp->vfs_prev; 3089 3090 if (vfs_lock(vfsp) != 0) 3091 continue; 3092 error = vn_vfswlock(vfsp->vfs_vnodecovered); 3093 vfs_unlock(vfsp); 3094 if (error) 3095 continue; 3096 3097 vfs_list_unlock(); 3098 3099 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 3100 (void) dounmount(vfsp, 0, CRED()); 3101 3102 /* 3103 * Since we dropped the vfslist lock above we must 3104 * verify that next_vfsp still exists, else start over. 3105 */ 3106 vfs_list_lock(); 3107 for (vfsp = rootvfs->vfs_prev; 3108 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 3109 if (vfsp == prev_vfsp) 3110 break; 3111 if (vfsp == rootvfs && prev_vfsp != rootvfs) 3112 prev_vfsp = rootvfs->vfs_prev; 3113 } 3114 vfs_list_unlock(); 3115 } 3116 3117 /* 3118 * Called to add an entry to the end of the vfs mount in progress list 3119 */ 3120 void 3121 vfs_addmip(dev_t dev, struct vfs *vfsp) 3122 { 3123 struct ipmnt *mipp; 3124 3125 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 3126 mipp->mip_next = NULL; 3127 mipp->mip_dev = dev; 3128 mipp->mip_vfsp = vfsp; 3129 mutex_enter(&vfs_miplist_mutex); 3130 if (vfs_miplist_end != NULL) 3131 vfs_miplist_end->mip_next = mipp; 3132 else 3133 vfs_miplist = mipp; 3134 vfs_miplist_end = mipp; 3135 mutex_exit(&vfs_miplist_mutex); 3136 } 3137 3138 /* 3139 * Called to remove an entry from the mount in progress list 3140 * Either because the mount completed or it failed. 3141 */ 3142 void 3143 vfs_delmip(struct vfs *vfsp) 3144 { 3145 struct ipmnt *mipp, *mipprev; 3146 3147 mutex_enter(&vfs_miplist_mutex); 3148 mipprev = NULL; 3149 for (mipp = vfs_miplist; 3150 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 3151 mipprev = mipp; 3152 } 3153 if (mipp == NULL) 3154 return; /* shouldn't happen */ 3155 if (mipp == vfs_miplist_end) 3156 vfs_miplist_end = mipprev; 3157 if (mipprev == NULL) 3158 vfs_miplist = mipp->mip_next; 3159 else 3160 mipprev->mip_next = mipp->mip_next; 3161 mutex_exit(&vfs_miplist_mutex); 3162 kmem_free(mipp, sizeof (struct ipmnt)); 3163 } 3164 3165 /* 3166 * vfs_add is called by a specific filesystem's mount routine to add 3167 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 3168 * The vfs should already have been locked by the caller. 3169 * 3170 * coveredvp is NULL if this is the root. 3171 */ 3172 void 3173 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 3174 { 3175 int newflag; 3176 3177 ASSERT(vfs_lock_held(vfsp)); 3178 VFS_HOLD(vfsp); 3179 newflag = vfsp->vfs_flag; 3180 if (mflag & MS_RDONLY) 3181 newflag |= VFS_RDONLY; 3182 else 3183 newflag &= ~VFS_RDONLY; 3184 if (mflag & MS_NOSUID) 3185 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 3186 else 3187 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 3188 if (mflag & MS_NOMNTTAB) 3189 newflag |= VFS_NOMNTTAB; 3190 else 3191 newflag &= ~VFS_NOMNTTAB; 3192 3193 if (coveredvp != NULL) { 3194 ASSERT(vn_vfswlock_held(coveredvp)); 3195 coveredvp->v_vfsmountedhere = vfsp; 3196 VN_HOLD(coveredvp); 3197 } 3198 vfsp->vfs_vnodecovered = coveredvp; 3199 vfsp->vfs_flag = newflag; 3200 3201 vfs_list_add(vfsp); 3202 } 3203 3204 /* 3205 * Remove a vfs from the vfs list, null out the pointer from the 3206 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 3207 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 3208 * reference to the vfs and to the covered vnode. 3209 * 3210 * Called from dounmount after it's confirmed with the file system 3211 * that the unmount is legal. 3212 */ 3213 void 3214 vfs_remove(struct vfs *vfsp) 3215 { 3216 vnode_t *vp; 3217 3218 ASSERT(vfs_lock_held(vfsp)); 3219 3220 /* 3221 * Can't unmount root. Should never happen because fs will 3222 * be busy. 3223 */ 3224 if (vfsp == rootvfs) 3225 panic("vfs_remove: unmounting root"); 3226 3227 vfs_list_remove(vfsp); 3228 3229 /* 3230 * Unhook from the file system name space. 3231 */ 3232 vp = vfsp->vfs_vnodecovered; 3233 ASSERT(vn_vfswlock_held(vp)); 3234 vp->v_vfsmountedhere = NULL; 3235 vfsp->vfs_vnodecovered = NULL; 3236 VN_RELE(vp); 3237 3238 /* 3239 * Release lock and wakeup anybody waiting. 3240 */ 3241 vfs_unlock(vfsp); 3242 VFS_RELE(vfsp); 3243 } 3244 3245 /* 3246 * Lock a filesystem to prevent access to it while mounting, 3247 * unmounting and syncing. Return EBUSY immediately if lock 3248 * can't be acquired. 3249 */ 3250 int 3251 vfs_lock(vfs_t *vfsp) 3252 { 3253 vn_vfslocks_entry_t *vpvfsentry; 3254 3255 vpvfsentry = vn_vfslocks_getlock(vfsp); 3256 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 3257 return (0); 3258 3259 vn_vfslocks_rele(vpvfsentry); 3260 return (EBUSY); 3261 } 3262 3263 int 3264 vfs_rlock(vfs_t *vfsp) 3265 { 3266 vn_vfslocks_entry_t *vpvfsentry; 3267 3268 vpvfsentry = vn_vfslocks_getlock(vfsp); 3269 3270 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 3271 return (0); 3272 3273 vn_vfslocks_rele(vpvfsentry); 3274 return (EBUSY); 3275 } 3276 3277 void 3278 vfs_lock_wait(vfs_t *vfsp) 3279 { 3280 vn_vfslocks_entry_t *vpvfsentry; 3281 3282 vpvfsentry = vn_vfslocks_getlock(vfsp); 3283 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 3284 } 3285 3286 void 3287 vfs_rlock_wait(vfs_t *vfsp) 3288 { 3289 vn_vfslocks_entry_t *vpvfsentry; 3290 3291 vpvfsentry = vn_vfslocks_getlock(vfsp); 3292 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 3293 } 3294 3295 /* 3296 * Unlock a locked filesystem. 3297 */ 3298 void 3299 vfs_unlock(vfs_t *vfsp) 3300 { 3301 vn_vfslocks_entry_t *vpvfsentry; 3302 3303 /* 3304 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 3305 * And these changes should remain for the patch changes as it is. 3306 */ 3307 if (panicstr) 3308 return; 3309 3310 /* 3311 * ve_refcount needs to be dropped twice here. 3312 * 1. To release refernce after a call to vfs_locks_getlock() 3313 * 2. To release the reference from the locking routines like 3314 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 3315 */ 3316 3317 vpvfsentry = vn_vfslocks_getlock(vfsp); 3318 vn_vfslocks_rele(vpvfsentry); 3319 3320 rwst_exit(&vpvfsentry->ve_lock); 3321 vn_vfslocks_rele(vpvfsentry); 3322 } 3323 3324 /* 3325 * Utility routine that allows a filesystem to construct its 3326 * fsid in "the usual way" - by munging some underlying dev_t and 3327 * the filesystem type number into the 64-bit fsid. Note that 3328 * this implicitly relies on dev_t persistence to make filesystem 3329 * id's persistent. 3330 * 3331 * There's nothing to prevent an individual fs from constructing its 3332 * fsid in a different way, and indeed they should. 3333 * 3334 * Since we want fsids to be 32-bit quantities (so that they can be 3335 * exported identically by either 32-bit or 64-bit APIs, as well as 3336 * the fact that fsid's are "known" to NFS), we compress the device 3337 * number given down to 32-bits, and panic if that isn't possible. 3338 */ 3339 void 3340 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 3341 { 3342 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 3343 panic("device number too big for fsid!"); 3344 fsi->val[1] = val; 3345 } 3346 3347 int 3348 vfs_lock_held(vfs_t *vfsp) 3349 { 3350 int held; 3351 vn_vfslocks_entry_t *vpvfsentry; 3352 3353 /* 3354 * vfs_lock_held will mimic sema_held behaviour 3355 * if panicstr is set. And these changes should remain 3356 * for the patch changes as it is. 3357 */ 3358 if (panicstr) 3359 return (1); 3360 3361 vpvfsentry = vn_vfslocks_getlock(vfsp); 3362 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3363 3364 vn_vfslocks_rele(vpvfsentry); 3365 return (held); 3366 } 3367 3368 struct _kthread * 3369 vfs_lock_owner(vfs_t *vfsp) 3370 { 3371 struct _kthread *owner; 3372 vn_vfslocks_entry_t *vpvfsentry; 3373 3374 /* 3375 * vfs_wlock_held will mimic sema_held behaviour 3376 * if panicstr is set. And these changes should remain 3377 * for the patch changes as it is. 3378 */ 3379 if (panicstr) 3380 return (NULL); 3381 3382 vpvfsentry = vn_vfslocks_getlock(vfsp); 3383 owner = rwst_owner(&vpvfsentry->ve_lock); 3384 3385 vn_vfslocks_rele(vpvfsentry); 3386 return (owner); 3387 } 3388 3389 /* 3390 * vfs list locking. 3391 * 3392 * Rather than manipulate the vfslist lock directly, we abstract into lock 3393 * and unlock routines to allow the locking implementation to be changed for 3394 * clustering. 3395 * 3396 * Whenever the vfs list is modified through its hash links, the overall list 3397 * lock must be obtained before locking the relevant hash bucket. But to see 3398 * whether a given vfs is on the list, it suffices to obtain the lock for the 3399 * hash bucket without getting the overall list lock. (See getvfs() below.) 3400 */ 3401 3402 void 3403 vfs_list_lock() 3404 { 3405 rw_enter(&vfslist, RW_WRITER); 3406 } 3407 3408 void 3409 vfs_list_read_lock() 3410 { 3411 rw_enter(&vfslist, RW_READER); 3412 } 3413 3414 void 3415 vfs_list_unlock() 3416 { 3417 rw_exit(&vfslist); 3418 } 3419 3420 /* 3421 * Low level worker routines for adding entries to and removing entries from 3422 * the vfs list. 3423 */ 3424 3425 static void 3426 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3427 { 3428 int vhno; 3429 struct vfs **hp; 3430 dev_t dev; 3431 3432 ASSERT(RW_WRITE_HELD(&vfslist)); 3433 3434 dev = expldev(vfsp->vfs_fsid.val[0]); 3435 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3436 3437 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3438 3439 /* 3440 * Link into the hash table, inserting it at the end, so that LOFS 3441 * with the same fsid as UFS (or other) file systems will not hide the 3442 * UFS. 3443 */ 3444 if (insert_at_head) { 3445 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3446 rvfs_list[vhno].rvfs_head = vfsp; 3447 } else { 3448 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3449 hp = &(*hp)->vfs_hash) 3450 continue; 3451 /* 3452 * hp now contains the address of the pointer to update 3453 * to effect the insertion. 3454 */ 3455 vfsp->vfs_hash = NULL; 3456 *hp = vfsp; 3457 } 3458 3459 rvfs_list[vhno].rvfs_len++; 3460 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3461 } 3462 3463 3464 static void 3465 vfs_hash_remove(struct vfs *vfsp) 3466 { 3467 int vhno; 3468 struct vfs *tvfsp; 3469 dev_t dev; 3470 3471 ASSERT(RW_WRITE_HELD(&vfslist)); 3472 3473 dev = expldev(vfsp->vfs_fsid.val[0]); 3474 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3475 3476 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3477 3478 /* 3479 * Remove from hash. 3480 */ 3481 if (rvfs_list[vhno].rvfs_head == vfsp) { 3482 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3483 rvfs_list[vhno].rvfs_len--; 3484 goto foundit; 3485 } 3486 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3487 tvfsp = tvfsp->vfs_hash) { 3488 if (tvfsp->vfs_hash == vfsp) { 3489 tvfsp->vfs_hash = vfsp->vfs_hash; 3490 rvfs_list[vhno].rvfs_len--; 3491 goto foundit; 3492 } 3493 } 3494 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3495 3496 foundit: 3497 3498 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3499 } 3500 3501 3502 void 3503 vfs_list_add(struct vfs *vfsp) 3504 { 3505 zone_t *zone; 3506 3507 /* 3508 * Typically, the vfs_t will have been created on behalf of the file 3509 * system in vfs_init, where it will have been provided with a 3510 * vfs_impl_t. This, however, might be lacking if the vfs_t was created 3511 * by an unbundled file system. We therefore check for such an example 3512 * before stamping the vfs_t with its creation time for the benefit of 3513 * mntfs. 3514 */ 3515 if (vfsp->vfs_implp == NULL) 3516 vfsimpl_setup(vfsp); 3517 vfs_mono_time(&vfsp->vfs_hrctime); 3518 3519 /* 3520 * The zone that owns the mount is the one that performed the mount. 3521 * Note that this isn't necessarily the same as the zone mounted into. 3522 * The corresponding zone_rele_ref() will be done when the vfs_t 3523 * is being free'd. 3524 */ 3525 vfsp->vfs_zone = curproc->p_zone; 3526 zone_init_ref(&vfsp->vfs_implp->vi_zone_ref); 3527 zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref, 3528 ZONE_REF_VFS); 3529 3530 /* 3531 * Find the zone mounted into, and put this mount on its vfs list. 3532 */ 3533 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3534 ASSERT(zone != NULL); 3535 /* 3536 * Special casing for the root vfs. This structure is allocated 3537 * statically and hooked onto rootvfs at link time. During the 3538 * vfs_mountroot call at system startup time, the root file system's 3539 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3540 * as argument. The code below must detect and handle this special 3541 * case. The only apparent justification for this special casing is 3542 * to ensure that the root file system appears at the head of the 3543 * list. 3544 * 3545 * XXX: I'm assuming that it's ok to do normal list locking when 3546 * adding the entry for the root file system (this used to be 3547 * done with no locks held). 3548 */ 3549 vfs_list_lock(); 3550 /* 3551 * Link into the vfs list proper. 3552 */ 3553 if (vfsp == &root) { 3554 /* 3555 * Assert: This vfs is already on the list as its first entry. 3556 * Thus, there's nothing to do. 3557 */ 3558 ASSERT(rootvfs == vfsp); 3559 /* 3560 * Add it to the head of the global zone's vfslist. 3561 */ 3562 ASSERT(zone == global_zone); 3563 ASSERT(zone->zone_vfslist == NULL); 3564 zone->zone_vfslist = vfsp; 3565 } else { 3566 /* 3567 * Link to end of list using vfs_prev (as rootvfs is now a 3568 * doubly linked circular list) so list is in mount order for 3569 * mnttab use. 3570 */ 3571 rootvfs->vfs_prev->vfs_next = vfsp; 3572 vfsp->vfs_prev = rootvfs->vfs_prev; 3573 rootvfs->vfs_prev = vfsp; 3574 vfsp->vfs_next = rootvfs; 3575 3576 /* 3577 * Do it again for the zone-private list (which may be NULL). 3578 */ 3579 if (zone->zone_vfslist == NULL) { 3580 ASSERT(zone != global_zone); 3581 zone->zone_vfslist = vfsp; 3582 } else { 3583 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3584 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3585 zone->zone_vfslist->vfs_zone_prev = vfsp; 3586 vfsp->vfs_zone_next = zone->zone_vfslist; 3587 } 3588 } 3589 3590 /* 3591 * Link into the hash table, inserting it at the end, so that LOFS 3592 * with the same fsid as UFS (or other) file systems will not hide 3593 * the UFS. 3594 */ 3595 vfs_hash_add(vfsp, 0); 3596 3597 /* 3598 * update the mnttab modification time 3599 */ 3600 vfs_mnttab_modtimeupd(); 3601 vfs_list_unlock(); 3602 zone_rele(zone); 3603 } 3604 3605 void 3606 vfs_list_remove(struct vfs *vfsp) 3607 { 3608 zone_t *zone; 3609 3610 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3611 ASSERT(zone != NULL); 3612 /* 3613 * Callers are responsible for preventing attempts to unmount the 3614 * root. 3615 */ 3616 ASSERT(vfsp != rootvfs); 3617 3618 vfs_list_lock(); 3619 3620 /* 3621 * Remove from hash. 3622 */ 3623 vfs_hash_remove(vfsp); 3624 3625 /* 3626 * Remove from vfs list. 3627 */ 3628 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3629 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3630 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3631 3632 /* 3633 * Remove from zone-specific vfs list. 3634 */ 3635 if (zone->zone_vfslist == vfsp) 3636 zone->zone_vfslist = vfsp->vfs_zone_next; 3637 3638 if (vfsp->vfs_zone_next == vfsp) { 3639 ASSERT(vfsp->vfs_zone_prev == vfsp); 3640 ASSERT(zone->zone_vfslist == vfsp); 3641 zone->zone_vfslist = NULL; 3642 } 3643 3644 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3645 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3646 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3647 3648 /* 3649 * update the mnttab modification time 3650 */ 3651 vfs_mnttab_modtimeupd(); 3652 vfs_list_unlock(); 3653 zone_rele(zone); 3654 } 3655 3656 struct vfs * 3657 getvfs(fsid_t *fsid) 3658 { 3659 struct vfs *vfsp; 3660 int val0 = fsid->val[0]; 3661 int val1 = fsid->val[1]; 3662 dev_t dev = expldev(val0); 3663 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3664 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3665 3666 mutex_enter(hmp); 3667 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3668 if (vfsp->vfs_fsid.val[0] == val0 && 3669 vfsp->vfs_fsid.val[1] == val1) { 3670 VFS_HOLD(vfsp); 3671 mutex_exit(hmp); 3672 return (vfsp); 3673 } 3674 } 3675 mutex_exit(hmp); 3676 return (NULL); 3677 } 3678 3679 /* 3680 * Search the vfs mount in progress list for a specified device/vfs entry. 3681 * Returns 0 if the first entry in the list that the device matches has the 3682 * given vfs pointer as well. If the device matches but a different vfs 3683 * pointer is encountered in the list before the given vfs pointer then 3684 * a 1 is returned. 3685 */ 3686 3687 int 3688 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3689 { 3690 int retval = 0; 3691 struct ipmnt *mipp; 3692 3693 mutex_enter(&vfs_miplist_mutex); 3694 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3695 if (mipp->mip_dev == dev) { 3696 if (mipp->mip_vfsp != vfsp) 3697 retval = 1; 3698 break; 3699 } 3700 } 3701 mutex_exit(&vfs_miplist_mutex); 3702 return (retval); 3703 } 3704 3705 /* 3706 * Search the vfs list for a specified device. Returns 1, if entry is found 3707 * or 0 if no suitable entry is found. 3708 */ 3709 3710 int 3711 vfs_devismounted(dev_t dev) 3712 { 3713 struct vfs *vfsp; 3714 int found; 3715 3716 vfs_list_read_lock(); 3717 vfsp = rootvfs; 3718 found = 0; 3719 do { 3720 if (vfsp->vfs_dev == dev) { 3721 found = 1; 3722 break; 3723 } 3724 vfsp = vfsp->vfs_next; 3725 } while (vfsp != rootvfs); 3726 3727 vfs_list_unlock(); 3728 return (found); 3729 } 3730 3731 /* 3732 * Search the vfs list for a specified device. Returns a pointer to it 3733 * or NULL if no suitable entry is found. The caller of this routine 3734 * is responsible for releasing the returned vfs pointer. 3735 */ 3736 struct vfs * 3737 vfs_dev2vfsp(dev_t dev) 3738 { 3739 struct vfs *vfsp; 3740 int found; 3741 3742 vfs_list_read_lock(); 3743 vfsp = rootvfs; 3744 found = 0; 3745 do { 3746 /* 3747 * The following could be made more efficient by making 3748 * the entire loop use vfs_zone_next if the call is from 3749 * a zone. The only callers, however, ustat(2) and 3750 * umount2(2), don't seem to justify the added 3751 * complexity at present. 3752 */ 3753 if (vfsp->vfs_dev == dev && 3754 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3755 curproc->p_zone)) { 3756 VFS_HOLD(vfsp); 3757 found = 1; 3758 break; 3759 } 3760 vfsp = vfsp->vfs_next; 3761 } while (vfsp != rootvfs); 3762 vfs_list_unlock(); 3763 return (found ? vfsp: NULL); 3764 } 3765 3766 /* 3767 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3768 * or NULL if no suitable entry is found. The caller of this routine 3769 * is responsible for releasing the returned vfs pointer. 3770 * 3771 * Note that if multiple mntpoints match, the last one matching is 3772 * returned in an attempt to return the "top" mount when overlay 3773 * mounts are covering the same mount point. This is accomplished by starting 3774 * at the end of the list and working our way backwards, stopping at the first 3775 * matching mount. 3776 */ 3777 struct vfs * 3778 vfs_mntpoint2vfsp(const char *mp) 3779 { 3780 struct vfs *vfsp; 3781 struct vfs *retvfsp = NULL; 3782 zone_t *zone = curproc->p_zone; 3783 struct vfs *list; 3784 3785 vfs_list_read_lock(); 3786 if (getzoneid() == GLOBAL_ZONEID) { 3787 /* 3788 * The global zone may see filesystems in any zone. 3789 */ 3790 vfsp = rootvfs->vfs_prev; 3791 do { 3792 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3793 retvfsp = vfsp; 3794 break; 3795 } 3796 vfsp = vfsp->vfs_prev; 3797 } while (vfsp != rootvfs->vfs_prev); 3798 } else if ((list = zone->zone_vfslist) != NULL) { 3799 const char *mntpt; 3800 3801 vfsp = list->vfs_zone_prev; 3802 do { 3803 mntpt = refstr_value(vfsp->vfs_mntpt); 3804 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3805 if (strcmp(mntpt, mp) == 0) { 3806 retvfsp = vfsp; 3807 break; 3808 } 3809 vfsp = vfsp->vfs_zone_prev; 3810 } while (vfsp != list->vfs_zone_prev); 3811 } 3812 if (retvfsp) 3813 VFS_HOLD(retvfsp); 3814 vfs_list_unlock(); 3815 return (retvfsp); 3816 } 3817 3818 /* 3819 * Search the vfs list for a specified vfsops. 3820 * if vfs entry is found then return 1, else 0. 3821 */ 3822 int 3823 vfs_opsinuse(vfsops_t *ops) 3824 { 3825 struct vfs *vfsp; 3826 int found; 3827 3828 vfs_list_read_lock(); 3829 vfsp = rootvfs; 3830 found = 0; 3831 do { 3832 if (vfs_getops(vfsp) == ops) { 3833 found = 1; 3834 break; 3835 } 3836 vfsp = vfsp->vfs_next; 3837 } while (vfsp != rootvfs); 3838 vfs_list_unlock(); 3839 return (found); 3840 } 3841 3842 /* 3843 * Allocate an entry in vfssw for a file system type 3844 */ 3845 struct vfssw * 3846 allocate_vfssw(const char *type) 3847 { 3848 struct vfssw *vswp; 3849 3850 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3851 /* 3852 * The vfssw table uses the empty string to identify an 3853 * available entry; we cannot add any type which has 3854 * a leading NUL. The string length is limited to 3855 * the size of the st_fstype array in struct stat. 3856 */ 3857 return (NULL); 3858 } 3859 3860 ASSERT(VFSSW_WRITE_LOCKED()); 3861 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3862 if (!ALLOCATED_VFSSW(vswp)) { 3863 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3864 (void) strcpy(vswp->vsw_name, type); 3865 ASSERT(vswp->vsw_count == 0); 3866 vswp->vsw_count = 1; 3867 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3868 return (vswp); 3869 } 3870 return (NULL); 3871 } 3872 3873 /* 3874 * Impose additional layer of translation between vfstype names 3875 * and module names in the filesystem. 3876 */ 3877 static const char * 3878 vfs_to_modname(const char *vfstype) 3879 { 3880 if (strcmp(vfstype, "proc") == 0) { 3881 vfstype = "procfs"; 3882 } else if (strcmp(vfstype, "fd") == 0) { 3883 vfstype = "fdfs"; 3884 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3885 vfstype = "nfs"; 3886 } 3887 3888 return (vfstype); 3889 } 3890 3891 /* 3892 * Find a vfssw entry given a file system type name. 3893 * Try to autoload the filesystem if it's not found. 3894 * If it's installed, return the vfssw locked to prevent unloading. 3895 */ 3896 struct vfssw * 3897 vfs_getvfssw(const char *type) 3898 { 3899 struct vfssw *vswp; 3900 const char *modname; 3901 3902 RLOCK_VFSSW(); 3903 vswp = vfs_getvfsswbyname(type); 3904 modname = vfs_to_modname(type); 3905 3906 if (rootdir == NULL) { 3907 /* 3908 * If we haven't yet loaded the root file system, then our 3909 * _init won't be called until later. Allocate vfssw entry, 3910 * because mod_installfs won't be called. 3911 */ 3912 if (vswp == NULL) { 3913 RUNLOCK_VFSSW(); 3914 WLOCK_VFSSW(); 3915 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3916 if ((vswp = allocate_vfssw(type)) == NULL) { 3917 WUNLOCK_VFSSW(); 3918 return (NULL); 3919 } 3920 } 3921 WUNLOCK_VFSSW(); 3922 RLOCK_VFSSW(); 3923 } 3924 if (!VFS_INSTALLED(vswp)) { 3925 RUNLOCK_VFSSW(); 3926 (void) modloadonly("fs", modname); 3927 } else 3928 RUNLOCK_VFSSW(); 3929 return (vswp); 3930 } 3931 3932 /* 3933 * Try to load the filesystem. Before calling modload(), we drop 3934 * our lock on the VFS switch table, and pick it up after the 3935 * module is loaded. However, there is a potential race: the 3936 * module could be unloaded after the call to modload() completes 3937 * but before we pick up the lock and drive on. Therefore, 3938 * we keep reloading the module until we've loaded the module 3939 * _and_ we have the lock on the VFS switch table. 3940 */ 3941 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3942 RUNLOCK_VFSSW(); 3943 if (modload("fs", modname) == -1) 3944 return (NULL); 3945 RLOCK_VFSSW(); 3946 if (vswp == NULL) 3947 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3948 break; 3949 } 3950 RUNLOCK_VFSSW(); 3951 3952 return (vswp); 3953 } 3954 3955 /* 3956 * Find a vfssw entry given a file system type name. 3957 */ 3958 struct vfssw * 3959 vfs_getvfsswbyname(const char *type) 3960 { 3961 struct vfssw *vswp; 3962 3963 ASSERT(VFSSW_LOCKED()); 3964 if (type == NULL || *type == '\0') 3965 return (NULL); 3966 3967 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3968 if (strcmp(type, vswp->vsw_name) == 0) { 3969 vfs_refvfssw(vswp); 3970 return (vswp); 3971 } 3972 } 3973 3974 return (NULL); 3975 } 3976 3977 /* 3978 * Find a vfssw entry given a set of vfsops. 3979 */ 3980 struct vfssw * 3981 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3982 { 3983 struct vfssw *vswp; 3984 3985 RLOCK_VFSSW(); 3986 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3987 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 3988 vfs_refvfssw(vswp); 3989 RUNLOCK_VFSSW(); 3990 return (vswp); 3991 } 3992 } 3993 RUNLOCK_VFSSW(); 3994 3995 return (NULL); 3996 } 3997 3998 /* 3999 * Reference a vfssw entry. 4000 */ 4001 void 4002 vfs_refvfssw(struct vfssw *vswp) 4003 { 4004 4005 mutex_enter(&vswp->vsw_lock); 4006 vswp->vsw_count++; 4007 mutex_exit(&vswp->vsw_lock); 4008 } 4009 4010 /* 4011 * Unreference a vfssw entry. 4012 */ 4013 void 4014 vfs_unrefvfssw(struct vfssw *vswp) 4015 { 4016 4017 mutex_enter(&vswp->vsw_lock); 4018 vswp->vsw_count--; 4019 mutex_exit(&vswp->vsw_lock); 4020 } 4021 4022 static int sync_retries = 20; /* number of retries when not making progress */ 4023 static int sync_triesleft; /* portion of sync_retries remaining */ 4024 4025 static pgcnt_t old_pgcnt, new_pgcnt; 4026 static int new_bufcnt, old_bufcnt; 4027 4028 /* 4029 * Sync all of the mounted filesystems, and then wait for the actual i/o to 4030 * complete. We wait by counting the number of dirty pages and buffers, 4031 * pushing them out using bio_busy() and page_busy(), and then counting again. 4032 * This routine is used during the uadmin A_SHUTDOWN code. It should only 4033 * be used after some higher-level mechanism has quiesced the system so that 4034 * new writes are not being initiated while we are waiting for completion. 4035 * 4036 * To ensure finite running time, our algorithm uses sync_triesleft (a progress 4037 * counter used by the vfs_syncall() loop below). It is declared above so 4038 * it can be found easily in the debugger. 4039 * 4040 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 4041 * sync_retries consecutive calls to bio_busy() and page_busy() without 4042 * decreasing either the number of dirty buffers or dirty pages below the 4043 * lowest count we have seen so far, we give up and return from vfs_syncall(). 4044 * 4045 * Each loop iteration ends with a call to delay() one second to allow time for 4046 * i/o completion and to permit the user time to read our progress messages. 4047 */ 4048 void 4049 vfs_syncall(void) 4050 { 4051 if (rootdir == NULL && !modrootloaded) 4052 return; /* no filesystems have been loaded yet */ 4053 4054 printf("syncing file systems..."); 4055 sync(); 4056 4057 sync_triesleft = sync_retries; 4058 4059 old_bufcnt = new_bufcnt = INT_MAX; 4060 old_pgcnt = new_pgcnt = ULONG_MAX; 4061 4062 while (sync_triesleft > 0) { 4063 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 4064 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 4065 4066 new_bufcnt = bio_busy(B_TRUE); 4067 new_pgcnt = page_busy(B_TRUE); 4068 4069 if (new_bufcnt == 0 && new_pgcnt == 0) 4070 break; 4071 4072 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 4073 sync_triesleft = sync_retries; 4074 else 4075 sync_triesleft--; 4076 4077 if (new_bufcnt) 4078 printf(" [%d]", new_bufcnt); 4079 if (new_pgcnt) 4080 printf(" %lu", new_pgcnt); 4081 4082 delay(hz); 4083 } 4084 4085 if (new_bufcnt != 0 || new_pgcnt != 0) 4086 printf(" done (not all i/o completed)\n"); 4087 else 4088 printf(" done\n"); 4089 4090 delay(hz); 4091 } 4092 4093 /* 4094 * Map VFS flags to statvfs flags. These shouldn't really be separate 4095 * flags at all. 4096 */ 4097 uint_t 4098 vf_to_stf(uint_t vf) 4099 { 4100 uint_t stf = 0; 4101 4102 if (vf & VFS_RDONLY) 4103 stf |= ST_RDONLY; 4104 if (vf & VFS_NOSETUID) 4105 stf |= ST_NOSUID; 4106 if (vf & VFS_NOTRUNC) 4107 stf |= ST_NOTRUNC; 4108 4109 return (stf); 4110 } 4111 4112 /* 4113 * Entries for (illegal) fstype 0. 4114 */ 4115 /* ARGSUSED */ 4116 int 4117 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 4118 { 4119 cmn_err(CE_PANIC, "stray vfs operation"); 4120 return (0); 4121 } 4122 4123 /* 4124 * Entries for (illegal) fstype 0. 4125 */ 4126 int 4127 vfsstray(void) 4128 { 4129 cmn_err(CE_PANIC, "stray vfs operation"); 4130 return (0); 4131 } 4132 4133 /* 4134 * Support for dealing with forced UFS unmount and its interaction with 4135 * LOFS. Could be used by any filesystem. 4136 * See bug 1203132. 4137 */ 4138 int 4139 vfs_EIO(void) 4140 { 4141 return (EIO); 4142 } 4143 4144 /* 4145 * We've gotta define the op for sync separately, since the compiler gets 4146 * confused if we mix and match ANSI and normal style prototypes when 4147 * a "short" argument is present and spits out a warning. 4148 */ 4149 /*ARGSUSED*/ 4150 int 4151 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 4152 { 4153 return (EIO); 4154 } 4155 4156 vfs_t EIO_vfs; 4157 vfsops_t *EIO_vfsops; 4158 4159 /* 4160 * Called from startup() to initialize all loaded vfs's 4161 */ 4162 void 4163 vfsinit(void) 4164 { 4165 struct vfssw *vswp; 4166 int error; 4167 extern int vopstats_enabled; 4168 extern void vopstats_startup(); 4169 4170 static const fs_operation_def_t EIO_vfsops_template[] = { 4171 VFSNAME_MOUNT, { .error = vfs_EIO }, 4172 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 4173 VFSNAME_ROOT, { .error = vfs_EIO }, 4174 VFSNAME_STATVFS, { .error = vfs_EIO }, 4175 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 4176 VFSNAME_VGET, { .error = vfs_EIO }, 4177 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 4178 VFSNAME_FREEVFS, { .error = vfs_EIO }, 4179 VFSNAME_VNSTATE, { .error = vfs_EIO }, 4180 NULL, NULL 4181 }; 4182 4183 static const fs_operation_def_t stray_vfsops_template[] = { 4184 VFSNAME_MOUNT, { .error = vfsstray }, 4185 VFSNAME_UNMOUNT, { .error = vfsstray }, 4186 VFSNAME_ROOT, { .error = vfsstray }, 4187 VFSNAME_STATVFS, { .error = vfsstray }, 4188 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 4189 VFSNAME_VGET, { .error = vfsstray }, 4190 VFSNAME_MOUNTROOT, { .error = vfsstray }, 4191 VFSNAME_FREEVFS, { .error = vfsstray }, 4192 VFSNAME_VNSTATE, { .error = vfsstray }, 4193 NULL, NULL 4194 }; 4195 4196 /* Create vfs cache */ 4197 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs), 4198 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0); 4199 4200 /* Initialize the vnode cache (file systems may use it during init). */ 4201 vn_create_cache(); 4202 4203 /* Setup event monitor framework */ 4204 fem_init(); 4205 4206 /* Initialize the dummy stray file system type. */ 4207 error = vfs_setfsops(0, stray_vfsops_template, NULL); 4208 4209 /* Initialize the dummy EIO file system. */ 4210 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 4211 if (error != 0) { 4212 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 4213 /* Shouldn't happen, but not bad enough to panic */ 4214 } 4215 4216 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 4217 4218 /* 4219 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 4220 * on this vfs can immediately notice it's invalid. 4221 */ 4222 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 4223 4224 /* 4225 * Call the init routines of non-loadable filesystems only. 4226 * Filesystems which are loaded as separate modules will be 4227 * initialized by the module loading code instead. 4228 */ 4229 4230 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4231 RLOCK_VFSSW(); 4232 if (vswp->vsw_init != NULL) 4233 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 4234 RUNLOCK_VFSSW(); 4235 } 4236 4237 vopstats_startup(); 4238 4239 if (vopstats_enabled) { 4240 /* EIO_vfs can collect stats, but we don't retrieve them */ 4241 initialize_vopstats(&EIO_vfs.vfs_vopstats); 4242 EIO_vfs.vfs_fstypevsp = NULL; 4243 EIO_vfs.vfs_vskap = NULL; 4244 EIO_vfs.vfs_flag |= VFS_STATS; 4245 } 4246 4247 xattr_init(); 4248 4249 reparse_point_init(); 4250 } 4251 4252 vfs_t * 4253 vfs_alloc(int kmflag) 4254 { 4255 vfs_t *vfsp; 4256 4257 vfsp = kmem_cache_alloc(vfs_cache, kmflag); 4258 4259 /* 4260 * Do the simplest initialization here. 4261 * Everything else gets done in vfs_init() 4262 */ 4263 bzero(vfsp, sizeof (vfs_t)); 4264 return (vfsp); 4265 } 4266 4267 void 4268 vfs_free(vfs_t *vfsp) 4269 { 4270 /* 4271 * One would be tempted to assert that "vfsp->vfs_count == 0". 4272 * The problem is that this gets called out of domount() with 4273 * a partially initialized vfs and a vfs_count of 1. This is 4274 * also called from vfs_rele() with a vfs_count of 0. We can't 4275 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully 4276 * returned. This is because VFS_MOUNT() fully initializes the 4277 * vfs structure and its associated data. VFS_RELE() will call 4278 * VFS_FREEVFS() which may panic the system if the data structures 4279 * aren't fully initialized from a successful VFS_MOUNT()). 4280 */ 4281 4282 /* If FEM was in use, make sure everything gets cleaned up */ 4283 if (vfsp->vfs_femhead) { 4284 ASSERT(vfsp->vfs_femhead->femh_list == NULL); 4285 mutex_destroy(&vfsp->vfs_femhead->femh_lock); 4286 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead))); 4287 vfsp->vfs_femhead = NULL; 4288 } 4289 4290 if (vfsp->vfs_implp) 4291 vfsimpl_teardown(vfsp); 4292 sema_destroy(&vfsp->vfs_reflock); 4293 kmem_cache_free(vfs_cache, vfsp); 4294 } 4295 4296 /* 4297 * Increments the vfs reference count by one atomically. 4298 */ 4299 void 4300 vfs_hold(vfs_t *vfsp) 4301 { 4302 atomic_inc_32(&vfsp->vfs_count); 4303 ASSERT(vfsp->vfs_count != 0); 4304 } 4305 4306 /* 4307 * Decrements the vfs reference count by one atomically. When 4308 * vfs reference count becomes zero, it calls the file system 4309 * specific vfs_freevfs() to free up the resources. 4310 */ 4311 void 4312 vfs_rele(vfs_t *vfsp) 4313 { 4314 ASSERT(vfsp->vfs_count != 0); 4315 if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) { 4316 VFS_FREEVFS(vfsp); 4317 lofi_remove(vfsp); 4318 if (vfsp->vfs_zone) 4319 zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref, 4320 ZONE_REF_VFS); 4321 vfs_freemnttab(vfsp); 4322 vfs_free(vfsp); 4323 } 4324 } 4325 4326 /* 4327 * Generic operations vector support. 4328 * 4329 * This is used to build operations vectors for both the vfs and vnode. 4330 * It's normally called only when a file system is loaded. 4331 * 4332 * There are many possible algorithms for this, including the following: 4333 * 4334 * (1) scan the list of known operations; for each, see if the file system 4335 * includes an entry for it, and fill it in as appropriate. 4336 * 4337 * (2) set up defaults for all known operations. scan the list of ops 4338 * supplied by the file system; for each which is both supplied and 4339 * known, fill it in. 4340 * 4341 * (3) sort the lists of known ops & supplied ops; scan the list, filling 4342 * in entries as we go. 4343 * 4344 * we choose (1) for simplicity, and because performance isn't critical here. 4345 * note that (2) could be sped up using a precomputed hash table on known ops. 4346 * (3) could be faster than either, but only if the lists were very large or 4347 * supplied in sorted order. 4348 * 4349 */ 4350 4351 int 4352 fs_build_vector(void *vector, int *unused_ops, 4353 const fs_operation_trans_def_t *translation, 4354 const fs_operation_def_t *operations) 4355 { 4356 int i, num_trans, num_ops, used; 4357 4358 /* 4359 * Count the number of translations and the number of supplied 4360 * operations. 4361 */ 4362 4363 { 4364 const fs_operation_trans_def_t *p; 4365 4366 for (num_trans = 0, p = translation; 4367 p->name != NULL; 4368 num_trans++, p++) 4369 ; 4370 } 4371 4372 { 4373 const fs_operation_def_t *p; 4374 4375 for (num_ops = 0, p = operations; 4376 p->name != NULL; 4377 num_ops++, p++) 4378 ; 4379 } 4380 4381 /* Walk through each operation known to our caller. There will be */ 4382 /* one entry in the supplied "translation table" for each. */ 4383 4384 used = 0; 4385 4386 for (i = 0; i < num_trans; i++) { 4387 int j, found; 4388 char *curname; 4389 fs_generic_func_p result; 4390 fs_generic_func_p *location; 4391 4392 curname = translation[i].name; 4393 4394 /* Look for a matching operation in the list supplied by the */ 4395 /* file system. */ 4396 4397 found = 0; 4398 4399 for (j = 0; j < num_ops; j++) { 4400 if (strcmp(operations[j].name, curname) == 0) { 4401 used++; 4402 found = 1; 4403 break; 4404 } 4405 } 4406 4407 /* 4408 * If the file system is using a "placeholder" for default 4409 * or error functions, grab the appropriate function out of 4410 * the translation table. If the file system didn't supply 4411 * this operation at all, use the default function. 4412 */ 4413 4414 if (found) { 4415 result = operations[j].func.fs_generic; 4416 if (result == fs_default) { 4417 result = translation[i].defaultFunc; 4418 } else if (result == fs_error) { 4419 result = translation[i].errorFunc; 4420 } else if (result == NULL) { 4421 /* Null values are PROHIBITED */ 4422 return (EINVAL); 4423 } 4424 } else { 4425 result = translation[i].defaultFunc; 4426 } 4427 4428 /* Now store the function into the operations vector. */ 4429 4430 location = (fs_generic_func_p *) 4431 (((char *)vector) + translation[i].offset); 4432 4433 *location = result; 4434 } 4435 4436 *unused_ops = num_ops - used; 4437 4438 return (0); 4439 } 4440 4441 /* Placeholder functions, should never be called. */ 4442 4443 int 4444 fs_error(void) 4445 { 4446 cmn_err(CE_PANIC, "fs_error called"); 4447 return (0); 4448 } 4449 4450 int 4451 fs_default(void) 4452 { 4453 cmn_err(CE_PANIC, "fs_default called"); 4454 return (0); 4455 } 4456 4457 #ifdef __sparc 4458 4459 /* 4460 * Part of the implementation of booting off a mirrored root 4461 * involves a change of dev_t for the root device. To 4462 * accomplish this, first remove the existing hash table 4463 * entry for the root device, convert to the new dev_t, 4464 * then re-insert in the hash table at the head of the list. 4465 */ 4466 void 4467 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4468 { 4469 vfs_list_lock(); 4470 4471 vfs_hash_remove(vfsp); 4472 4473 vfsp->vfs_dev = ndev; 4474 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4475 4476 vfs_hash_add(vfsp, 1); 4477 4478 vfs_list_unlock(); 4479 } 4480 4481 #else /* x86 NEWBOOT */ 4482 4483 #if defined(__x86) 4484 extern int hvmboot_rootconf(); 4485 #endif /* __x86 */ 4486 4487 extern ib_boot_prop_t *iscsiboot_prop; 4488 4489 int 4490 rootconf() 4491 { 4492 int error; 4493 struct vfssw *vsw; 4494 extern void pm_init(); 4495 char *fstyp, *fsmod; 4496 int ret = -1; 4497 4498 getrootfs(&fstyp, &fsmod); 4499 4500 #if defined(__x86) 4501 /* 4502 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module, 4503 * which lives in /platform/i86hvm, and hence is only available when 4504 * booted in an x86 hvm environment. If the hvm_bootstrap misc module 4505 * is not available then the modstub for this function will return 0. 4506 * If the hvm_bootstrap misc module is available it will be loaded 4507 * and hvmboot_rootconf() will be invoked. 4508 */ 4509 if (error = hvmboot_rootconf()) 4510 return (error); 4511 #endif /* __x86 */ 4512 4513 if (error = clboot_rootconf()) 4514 return (error); 4515 4516 if (modload("fs", fsmod) == -1) 4517 panic("Cannot _init %s module", fsmod); 4518 4519 RLOCK_VFSSW(); 4520 vsw = vfs_getvfsswbyname(fstyp); 4521 RUNLOCK_VFSSW(); 4522 if (vsw == NULL) { 4523 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp); 4524 return (ENXIO); 4525 } 4526 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4527 VFS_HOLD(rootvfs); 4528 4529 /* always mount readonly first */ 4530 rootvfs->vfs_flag |= VFS_RDONLY; 4531 4532 pm_init(); 4533 4534 if (netboot && iscsiboot_prop) { 4535 cmn_err(CE_WARN, "NFS boot and iSCSI boot" 4536 " shouldn't happen in the same time"); 4537 return (EINVAL); 4538 } 4539 4540 if (netboot || iscsiboot_prop) { 4541 ret = strplumb(); 4542 if (ret != 0) { 4543 cmn_err(CE_WARN, "Cannot plumb network device %d", ret); 4544 return (EFAULT); 4545 } 4546 } 4547 4548 if ((ret == 0) && iscsiboot_prop) { 4549 ret = modload("drv", "iscsi"); 4550 /* -1 indicates fail */ 4551 if (ret == -1) { 4552 cmn_err(CE_WARN, "Failed to load iscsi module"); 4553 iscsi_boot_prop_free(); 4554 return (EINVAL); 4555 } else { 4556 if (!i_ddi_attach_pseudo_node("iscsi")) { 4557 cmn_err(CE_WARN, 4558 "Failed to attach iscsi driver"); 4559 iscsi_boot_prop_free(); 4560 return (ENODEV); 4561 } 4562 } 4563 } 4564 4565 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4566 vfs_unrefvfssw(vsw); 4567 rootdev = rootvfs->vfs_dev; 4568 4569 if (error) 4570 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n", 4571 rootfs.bo_name, fstyp); 4572 else 4573 cmn_err(CE_CONT, "?root on %s fstype %s\n", 4574 rootfs.bo_name, fstyp); 4575 return (error); 4576 } 4577 4578 /* 4579 * XXX this is called by nfs only and should probably be removed 4580 * If booted with ASKNAME, prompt on the console for a filesystem 4581 * name and return it. 4582 */ 4583 void 4584 getfsname(char *askfor, char *name, size_t namelen) 4585 { 4586 if (boothowto & RB_ASKNAME) { 4587 printf("%s name: ", askfor); 4588 console_gets(name, namelen); 4589 } 4590 } 4591 4592 /* 4593 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype" 4594 * property. 4595 * 4596 * Filesystem types starting with the prefix "nfs" are diskless clients; 4597 * init the root filename name (rootfs.bo_name), too. 4598 * 4599 * If we are booting via NFS we currently have these options: 4600 * nfs - dynamically choose NFS V2, V3, or V4 (default) 4601 * nfs2 - force NFS V2 4602 * nfs3 - force NFS V3 4603 * nfs4 - force NFS V4 4604 * Because we need to maintain backward compatibility with the naming 4605 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c) 4606 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic 4607 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4". 4608 * This is only for root filesystems, all other uses will expect 4609 * that "nfs" == NFS V2. 4610 */ 4611 static void 4612 getrootfs(char **fstypp, char **fsmodp) 4613 { 4614 char *propstr = NULL; 4615 4616 /* 4617 * Check fstype property; for diskless it should be one of "nfs", 4618 * "nfs2", "nfs3" or "nfs4". 4619 */ 4620 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4621 DDI_PROP_DONTPASS, "fstype", &propstr) 4622 == DDI_SUCCESS) { 4623 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4624 ddi_prop_free(propstr); 4625 4626 /* 4627 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4628 * assume the type of this root filesystem is 'zfs'. 4629 */ 4630 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4631 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4632 == DDI_SUCCESS) { 4633 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4634 ddi_prop_free(propstr); 4635 } 4636 4637 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) { 4638 *fstypp = *fsmodp = rootfs.bo_fstype; 4639 return; 4640 } 4641 4642 ++netboot; 4643 4644 if (strcmp(rootfs.bo_fstype, "nfs2") == 0) 4645 (void) strcpy(rootfs.bo_fstype, "nfs"); 4646 else if (strcmp(rootfs.bo_fstype, "nfs") == 0) 4647 (void) strcpy(rootfs.bo_fstype, "nfsdyn"); 4648 4649 /* 4650 * check if path to network interface is specified in bootpath 4651 * or by a hypervisor domain configuration file. 4652 * XXPV - enable strlumb_get_netdev_path() 4653 */ 4654 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, 4655 "xpv-nfsroot")) { 4656 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0"); 4657 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4658 DDI_PROP_DONTPASS, "bootpath", &propstr) 4659 == DDI_SUCCESS) { 4660 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4661 ddi_prop_free(propstr); 4662 } else { 4663 rootfs.bo_name[0] = '\0'; 4664 } 4665 *fstypp = rootfs.bo_fstype; 4666 *fsmodp = "nfs"; 4667 } 4668 #endif 4669 4670 /* 4671 * VFS feature routines 4672 */ 4673 4674 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF) 4675 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL) 4676 4677 /* Register a feature in the vfs */ 4678 void 4679 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature) 4680 { 4681 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4682 if (vfsp->vfs_implp == NULL) 4683 return; 4684 4685 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature); 4686 } 4687 4688 void 4689 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature) 4690 { 4691 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4692 if (vfsp->vfs_implp == NULL) 4693 return; 4694 vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature); 4695 } 4696 4697 /* 4698 * Query a vfs for a feature. 4699 * Returns 1 if feature is present, 0 if not 4700 */ 4701 int 4702 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature) 4703 { 4704 int ret = 0; 4705 4706 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4707 if (vfsp->vfs_implp == NULL) 4708 return (ret); 4709 4710 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature)) 4711 ret = 1; 4712 4713 return (ret); 4714 } 4715 4716 /* 4717 * Propagate feature set from one vfs to another 4718 */ 4719 void 4720 vfs_propagate_features(vfs_t *from, vfs_t *to) 4721 { 4722 int i; 4723 4724 if (to->vfs_implp == NULL || from->vfs_implp == NULL) 4725 return; 4726 4727 for (i = 1; i <= to->vfs_featureset[0]; i++) { 4728 to->vfs_featureset[i] = from->vfs_featureset[i]; 4729 } 4730 } 4731 4732 #define LOFINODE_PATH "/dev/lofi/%d" 4733 4734 /* 4735 * Return the vnode for the lofi node if there's a lofi mount in place. 4736 * Returns -1 when there's no lofi node, 0 on success, and > 0 on 4737 * failure. 4738 */ 4739 int 4740 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp) 4741 { 4742 char *path = NULL; 4743 int strsize; 4744 int err; 4745 4746 if (vfsp->vfs_lofi_id == 0) { 4747 *vpp = NULL; 4748 return (-1); 4749 } 4750 4751 strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_id); 4752 path = kmem_alloc(strsize + 1, KM_SLEEP); 4753 (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_id); 4754 4755 /* 4756 * We may be inside a zone, so we need to use the /dev path, but 4757 * it's created asynchronously, so we wait here. 4758 */ 4759 for (;;) { 4760 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp); 4761 4762 if (err != ENOENT) 4763 break; 4764 4765 if ((err = delay_sig(hz / 8)) == EINTR) 4766 break; 4767 } 4768 4769 if (err) 4770 *vpp = NULL; 4771 4772 kmem_free(path, strsize + 1); 4773 return (err); 4774 } 4775