1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 #include <sys/types.h> 43 #include <sys/t_lock.h> 44 #include <sys/param.h> 45 #include <sys/errno.h> 46 #include <sys/user.h> 47 #include <sys/fstyp.h> 48 #include <sys/kmem.h> 49 #include <sys/systm.h> 50 #include <sys/proc.h> 51 #include <sys/mount.h> 52 #include <sys/vfs.h> 53 #include <sys/fem.h> 54 #include <sys/mntent.h> 55 #include <sys/stat.h> 56 #include <sys/statvfs.h> 57 #include <sys/statfs.h> 58 #include <sys/cred.h> 59 #include <sys/vnode.h> 60 #include <sys/rwstlock.h> 61 #include <sys/dnlc.h> 62 #include <sys/file.h> 63 #include <sys/time.h> 64 #include <sys/atomic.h> 65 #include <sys/cmn_err.h> 66 #include <sys/buf.h> 67 #include <sys/swap.h> 68 #include <sys/debug.h> 69 #include <sys/vnode.h> 70 #include <sys/modctl.h> 71 #include <sys/ddi.h> 72 #include <sys/pathname.h> 73 #include <sys/bootconf.h> 74 #include <sys/dumphdr.h> 75 #include <sys/dc_ki.h> 76 #include <sys/poll.h> 77 #include <sys/sunddi.h> 78 #include <sys/sysmacros.h> 79 #include <sys/zone.h> 80 #include <sys/policy.h> 81 #include <sys/ctfs.h> 82 #include <sys/objfs.h> 83 #include <sys/console.h> 84 #include <sys/reboot.h> 85 86 #include <vm/page.h> 87 88 #include <fs/fs_subr.h> 89 90 /* Private interfaces to create vopstats-related data structures */ 91 extern void initialize_vopstats(vopstats_t *); 92 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 93 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 94 95 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 96 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 97 const char *, int, int); 98 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 99 static void vfs_freemnttab(struct vfs *); 100 static void vfs_freeopt(mntopt_t *); 101 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 102 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 103 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 104 static void vfs_createopttbl_extend(mntopts_t *, const char *, 105 const mntopts_t *); 106 static char **vfs_copycancelopt_extend(char **const, int); 107 static void vfs_freecancelopt(char **); 108 static char *getrootfs(void); 109 static int getmacpath(dev_info_t *, void *); 110 111 struct ipmnt { 112 struct ipmnt *mip_next; 113 dev_t mip_dev; 114 struct vfs *mip_vfsp; 115 }; 116 117 static kmutex_t vfs_miplist_mutex; 118 static struct ipmnt *vfs_miplist = NULL; 119 static struct ipmnt *vfs_miplist_end = NULL; 120 121 /* 122 * VFS global data. 123 */ 124 vnode_t *rootdir; /* pointer to root inode vnode. */ 125 vnode_t *devicesdir; /* pointer to inode of devices root */ 126 127 char *server_rootpath; /* root path for diskless clients */ 128 char *server_hostname; /* hostname of diskless server */ 129 130 static struct vfs root; 131 static struct vfs devices; 132 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 133 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 134 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 135 /* must be power of 2! */ 136 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 137 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 138 char *vfs_dummyfstype = "\0"; 139 struct pollhead vfs_pollhd; /* for mnttab pollers */ 140 141 /* 142 * Table for generic options recognized in the VFS layer and acted 143 * on at this level before parsing file system specific options. 144 * The nosuid option is stronger than any of the devices and setuid 145 * options, so those are canceled when nosuid is seen. 146 * 147 * All options which are added here need to be added to the 148 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 149 */ 150 /* 151 * VFS Mount options table 152 */ 153 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 154 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 155 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 156 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 157 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 158 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 159 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 160 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 161 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 162 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 163 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 164 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 165 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 166 167 static const mntopt_t mntopts[] = { 168 /* 169 * option name cancel options default arg flags 170 */ 171 { MNTOPT_REMOUNT, NULL, NULL, 172 MO_NODISPLAY, (void *)0 }, 173 { MNTOPT_RO, ro_cancel, NULL, 0, 174 (void *)0 }, 175 { MNTOPT_RW, rw_cancel, NULL, 0, 176 (void *)0 }, 177 { MNTOPT_SUID, suid_cancel, NULL, 0, 178 (void *)0 }, 179 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 180 (void *)0 }, 181 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 182 (void *)0 }, 183 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 184 (void *)0 }, 185 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 186 (void *)0 }, 187 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 188 (void *)0 }, 189 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 190 (void *)0 }, 191 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 192 (void *)0 }, 193 { MNTOPT_EXEC, exec_cancel, NULL, 0, 194 (void *)0 }, 195 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 196 (void *)0 }, 197 }; 198 199 const mntopts_t vfs_mntopts = { 200 sizeof (mntopts) / sizeof (mntopt_t), 201 (mntopt_t *)&mntopts[0] 202 }; 203 204 /* 205 * File system operation dispatch functions. 206 */ 207 208 int 209 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 210 { 211 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 212 } 213 214 int 215 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 216 { 217 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 218 } 219 220 int 221 fsop_root(vfs_t *vfsp, vnode_t **vpp) 222 { 223 refstr_t *mntpt; 224 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 225 /* 226 * Make sure this root has a path. With lofs, it is possible to have 227 * a NULL mountpoint. 228 */ 229 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 230 mntpt = vfs_getmntpoint(vfsp); 231 vn_setpath_str(*vpp, refstr_value(mntpt), 232 strlen(refstr_value(mntpt))); 233 refstr_rele(mntpt); 234 } 235 236 return (ret); 237 } 238 239 int 240 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 241 { 242 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 243 } 244 245 int 246 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 247 { 248 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 249 } 250 251 int 252 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 253 { 254 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 255 } 256 257 int 258 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 259 { 260 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 261 } 262 263 void 264 fsop_freefs(vfs_t *vfsp) 265 { 266 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 267 } 268 269 int 270 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 271 { 272 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 273 } 274 275 int 276 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 277 { 278 ASSERT((fstype >= 0) && (fstype < nfstype)); 279 280 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 281 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 282 else 283 return (ENOTSUP); 284 } 285 286 /* 287 * File system initialization. vfs_setfsops() must be called from a file 288 * system's init routine. 289 */ 290 291 static int 292 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 293 int *unused_ops) 294 { 295 static const fs_operation_trans_def_t vfs_ops_table[] = { 296 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 297 fs_nosys, fs_nosys, 298 299 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 300 fs_nosys, fs_nosys, 301 302 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 303 fs_nosys, fs_nosys, 304 305 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 306 fs_nosys, fs_nosys, 307 308 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 309 (fs_generic_func_p) fs_sync, 310 (fs_generic_func_p) fs_sync, /* No errors allowed */ 311 312 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 313 fs_nosys, fs_nosys, 314 315 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 316 fs_nosys, fs_nosys, 317 318 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 319 (fs_generic_func_p)fs_freevfs, 320 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 321 322 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 323 (fs_generic_func_p)fs_nosys, 324 (fs_generic_func_p)fs_nosys, 325 326 NULL, 0, NULL, NULL 327 }; 328 329 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 330 } 331 332 int 333 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 334 { 335 int error; 336 int unused_ops; 337 338 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 339 340 if ((fstype <= 0) || (fstype >= nfstype)) 341 return (EINVAL); 342 343 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 344 return (EINVAL); 345 346 /* Set up the operations vector. */ 347 348 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 349 350 if (error != 0) 351 return (error); 352 353 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 354 355 if (actual != NULL) 356 *actual = &vfssw[fstype].vsw_vfsops; 357 358 #if DEBUG 359 if (unused_ops != 0) 360 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 361 "but not used", vfssw[fstype].vsw_name, unused_ops); 362 #endif 363 364 return (0); 365 } 366 367 int 368 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 369 { 370 int error; 371 int unused_ops; 372 373 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 374 375 error = fs_copyfsops(template, *actual, &unused_ops); 376 if (error != 0) { 377 kmem_free(*actual, sizeof (vfsops_t)); 378 *actual = NULL; 379 return (error); 380 } 381 382 return (0); 383 } 384 385 /* 386 * Free a vfsops structure created as a result of vfs_makefsops(). 387 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 388 * vfs_freevfsops_by_type(). 389 */ 390 void 391 vfs_freevfsops(vfsops_t *vfsops) 392 { 393 kmem_free(vfsops, sizeof (vfsops_t)); 394 } 395 396 /* 397 * Since the vfsops structure is part of the vfssw table and wasn't 398 * really allocated, we're not really freeing anything. We keep 399 * the name for consistency with vfs_freevfsops(). We do, however, 400 * need to take care of a little bookkeeping. 401 * NOTE: For a vfsops structure created by vfs_setfsops(), use 402 * vfs_freevfsops_by_type(). 403 */ 404 int 405 vfs_freevfsops_by_type(int fstype) 406 { 407 408 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 409 if ((fstype <= 0) || (fstype >= nfstype)) 410 return (EINVAL); 411 412 WLOCK_VFSSW(); 413 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 414 WUNLOCK_VFSSW(); 415 return (EINVAL); 416 } 417 418 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 419 WUNLOCK_VFSSW(); 420 421 return (0); 422 } 423 424 /* Support routines used to reference vfs_op */ 425 426 /* Set the operations vector for a vfs */ 427 void 428 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 429 { 430 vfsops_t *op; 431 432 ASSERT(vfsp != NULL); 433 ASSERT(vfsops != NULL); 434 435 op = vfsp->vfs_op; 436 membar_consumer(); 437 if (vfsp->vfs_femhead == NULL && 438 casptr(&vfsp->vfs_op, op, vfsops) == op) { 439 return; 440 } 441 fsem_setvfsops(vfsp, vfsops); 442 } 443 444 /* Retrieve the operations vector for a vfs */ 445 vfsops_t * 446 vfs_getops(vfs_t *vfsp) 447 { 448 vfsops_t *op; 449 450 ASSERT(vfsp != NULL); 451 452 op = vfsp->vfs_op; 453 membar_consumer(); 454 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 455 return (op); 456 } else { 457 return (fsem_getvfsops(vfsp)); 458 } 459 } 460 461 /* 462 * Returns non-zero (1) if the vfsops matches that of the vfs. 463 * Returns zero (0) if not. 464 */ 465 int 466 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 467 { 468 return (vfs_getops(vfsp) == vfsops); 469 } 470 471 /* 472 * Returns non-zero (1) if the file system has installed a non-default, 473 * non-error vfs_sync routine. Returns zero (0) otherwise. 474 */ 475 int 476 vfs_can_sync(vfs_t *vfsp) 477 { 478 /* vfs_sync() routine is not the default/error function */ 479 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 480 } 481 482 /* 483 * Initialize a vfs structure. 484 */ 485 void 486 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 487 { 488 vfsp->vfs_count = 0; 489 vfsp->vfs_next = vfsp; 490 vfsp->vfs_prev = vfsp; 491 vfsp->vfs_zone_next = vfsp; 492 vfsp->vfs_zone_prev = vfsp; 493 vfsp->vfs_flag = 0; 494 vfsp->vfs_data = (data); 495 vfsp->vfs_resource = NULL; 496 vfsp->vfs_mntpt = NULL; 497 vfsp->vfs_mntopts.mo_count = 0; 498 vfsp->vfs_mntopts.mo_list = NULL; 499 vfsp->vfs_femhead = NULL; 500 vfsp->vfs_zone = NULL; 501 /* 502 * Note: Don't initialize vfs_vskap, vfs_fstypevsp since it 503 * could be a problem for unbundled file systems. 504 */ 505 vfs_setops((vfsp), (op)); 506 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 507 } 508 509 510 /* 511 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 512 * fstatvfs, and sysfs moved to common/syscall. 513 */ 514 515 /* 516 * Update every mounted file system. We call the vfs_sync operation of 517 * each file system type, passing it a NULL vfsp to indicate that all 518 * mounted file systems of that type should be updated. 519 */ 520 void 521 vfs_sync(int flag) 522 { 523 struct vfssw *vswp; 524 RLOCK_VFSSW(); 525 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 526 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 527 vfs_refvfssw(vswp); 528 RUNLOCK_VFSSW(); 529 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 530 CRED()); 531 vfs_unrefvfssw(vswp); 532 RLOCK_VFSSW(); 533 } 534 } 535 RUNLOCK_VFSSW(); 536 } 537 538 void 539 sync(void) 540 { 541 vfs_sync(0); 542 } 543 544 /* 545 * External routines. 546 */ 547 548 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 549 550 /* 551 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 552 * but otherwise should be accessed only via vfs_list_lock() and 553 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 554 */ 555 static krwlock_t vfslist; 556 557 /* 558 * Mount devfs on /devices. This is done right after root is mounted 559 * to provide device access support for the system 560 */ 561 static void 562 vfs_mountdevices(void) 563 { 564 struct vfssw *vsw; 565 struct vnode *mvp; 566 struct mounta mounta = { /* fake mounta for devfs_mount() */ 567 NULL, 568 NULL, 569 MS_SYSSPACE, 570 NULL, 571 NULL, 572 0, 573 NULL, 574 0 575 }; 576 577 /* 578 * _init devfs module to fill in the vfssw 579 */ 580 if (modload("fs", "devfs") == -1) 581 cmn_err(CE_PANIC, "Cannot _init devfs module\n"); 582 583 /* 584 * Hold vfs 585 */ 586 RLOCK_VFSSW(); 587 vsw = vfs_getvfsswbyname("devfs"); 588 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 589 VFS_HOLD(&devices); 590 591 /* 592 * Locate mount point 593 */ 594 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 595 cmn_err(CE_PANIC, "Cannot find /devices\n"); 596 597 /* 598 * Perform the mount of /devices 599 */ 600 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 601 cmn_err(CE_PANIC, "Cannot mount /devices\n"); 602 603 RUNLOCK_VFSSW(); 604 605 /* 606 * Set appropriate members and add to vfs list for mnttab display 607 */ 608 vfs_setresource(&devices, "/devices"); 609 vfs_setmntpoint(&devices, "/devices"); 610 611 /* 612 * Hold the root of /devices so it won't go away 613 */ 614 if (VFS_ROOT(&devices, &devicesdir)) 615 cmn_err(CE_PANIC, "vfs_mountdevices: not devices root"); 616 VN_HOLD(devicesdir); 617 618 if (vfs_lock(&devices) != 0) { 619 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 620 return; 621 } 622 623 if (vn_vfswlock(mvp) != 0) { 624 vfs_unlock(&devices); 625 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 626 return; 627 } 628 629 vfs_add(mvp, &devices, 0); 630 vn_vfsunlock(mvp); 631 vfs_unlock(&devices); 632 } 633 634 /* 635 * Mount required filesystem. This is done right after root is mounted. 636 */ 637 static void 638 vfs_mountfs(char *module, char *spec, char *path) 639 { 640 struct vnode *mvp; 641 struct mounta mounta; 642 vfs_t *vfsp; 643 644 mounta.flags = MS_SYSSPACE | MS_DATA; 645 mounta.fstype = module; 646 mounta.spec = spec; 647 mounta.dir = path; 648 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 649 cmn_err(CE_WARN, "Cannot find %s\n", path); 650 return; 651 } 652 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 653 cmn_err(CE_WARN, "Cannot mount %s\n", path); 654 else 655 VFS_RELE(vfsp); 656 VN_RELE(mvp); 657 } 658 659 /* 660 * vfs_mountroot is called by main() to mount the root filesystem. 661 */ 662 void 663 vfs_mountroot(void) 664 { 665 struct vnode *rvp = NULL; 666 char *path; 667 size_t plen; 668 struct vfssw *vswp; 669 670 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 671 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 672 673 /* 674 * Alloc the vfs hash bucket array and locks 675 */ 676 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 677 678 /* 679 * Call machine-dependent routine "rootconf" to choose a root 680 * file system type. 681 */ 682 if (rootconf()) 683 cmn_err(CE_PANIC, "vfs_mountroot: cannot mount root"); 684 /* 685 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 686 * to point to it. These are used by lookuppn() so that it 687 * knows where to start from ('/' or '.'). 688 */ 689 vfs_setmntpoint(rootvfs, "/"); 690 if (VFS_ROOT(rootvfs, &rootdir)) 691 cmn_err(CE_PANIC, "vfs_mountroot: no root vnode"); 692 u.u_cdir = rootdir; 693 VN_HOLD(u.u_cdir); 694 u.u_rdir = NULL; 695 696 /* 697 * Setup the global zone's rootvp, now that it exists. 698 */ 699 global_zone->zone_rootvp = rootdir; 700 VN_HOLD(global_zone->zone_rootvp); 701 702 /* 703 * Notify the module code that it can begin using the 704 * root filesystem instead of the boot program's services. 705 */ 706 modrootloaded = 1; 707 /* 708 * Set up mnttab information for root 709 */ 710 vfs_setresource(rootvfs, rootfs.bo_name); 711 712 /* 713 * Notify cluster software that the root filesystem is available. 714 */ 715 clboot_mountroot(); 716 717 /* Now that we're all done with the root FS, set up its vopstats */ 718 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 719 /* Set flag for statistics collection */ 720 if (vswp->vsw_flag & VSW_STATS) { 721 initialize_vopstats(&rootvfs->vfs_vopstats); 722 rootvfs->vfs_flag |= VFS_STATS; 723 rootvfs->vfs_fstypevsp = 724 get_fstype_vopstats(rootvfs, vswp); 725 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 726 } 727 vfs_unrefvfssw(vswp); 728 } 729 730 /* 731 * Mount /devices, /system/contract, /etc/mnttab, /etc/svc/volatile, 732 * /system/object, and /proc. 733 */ 734 vfs_mountdevices(); 735 736 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 737 vfs_mountfs("proc", "/proc", "/proc"); 738 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 739 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 740 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 741 742 #ifdef __sparc 743 /* 744 * This bit of magic can go away when we convert sparc to 745 * the new boot architecture based on ramdisk. 746 * 747 * Booting off a mirrored root volume: 748 * At this point, we have booted and mounted root on a 749 * single component of the mirror. Complete the boot 750 * by configuring SVM and converting the root to the 751 * dev_t of the mirrored root device. This dev_t conversion 752 * only works because the underlying device doesn't change. 753 */ 754 if (root_is_svm) { 755 if (svm_rootconf()) { 756 cmn_err(CE_PANIC, "vfs_mountroot: cannot remount root"); 757 } 758 759 /* 760 * mnttab should reflect the new root device 761 */ 762 vfs_lock_wait(rootvfs); 763 vfs_setresource(rootvfs, rootfs.bo_name); 764 vfs_unlock(rootvfs); 765 } 766 #endif /* __sparc */ 767 768 /* 769 * Look up the root device via devfs so that a dv_node is 770 * created for it. The vnode is never VN_RELE()ed. 771 * We allocate more than MAXPATHLEN so that the 772 * buffer passed to i_ddi_prompath_to_devfspath() is 773 * exactly MAXPATHLEN (the function expects a buffer 774 * of that length). 775 */ 776 plen = strlen("/devices"); 777 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 778 (void) strcpy(path, "/devices"); 779 780 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 781 != DDI_SUCCESS || 782 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 783 784 /* NUL terminate in case "path" has garbage */ 785 path[plen + MAXPATHLEN - 1] = '\0'; 786 #ifdef DEBUG 787 cmn_err(CE_WARN, "!Cannot lookup root device: %s", path); 788 #endif 789 } 790 kmem_free(path, plen + MAXPATHLEN); 791 } 792 793 /* 794 * If remount failed and we're in a zone we need to check for the zone 795 * root path and strip it before the call to vfs_setpath(). 796 * 797 * If strpath doesn't begin with the zone_rootpath the original 798 * strpath is returned unchanged. 799 */ 800 static const char * 801 stripzonepath(const char *strpath) 802 { 803 char *str1, *str2; 804 int i; 805 zone_t *zonep = curproc->p_zone; 806 807 if (zonep->zone_rootpath == NULL || strpath == NULL) { 808 return (NULL); 809 } 810 811 /* 812 * we check for the end of the string at one past the 813 * current position because the zone_rootpath always 814 * ends with "/" but we don't want to strip that off. 815 */ 816 str1 = zonep->zone_rootpath; 817 str2 = (char *)strpath; 818 ASSERT(str1[0] != '\0'); 819 for (i = 0; str1[i + 1] != '\0'; i++) { 820 if (str1[i] != str2[i]) 821 return ((char *)strpath); 822 } 823 return (&str2[i]); 824 } 825 826 /* 827 * Common mount code. Called from the system call entry point, from autofs, 828 * and from pxfs. 829 * 830 * Takes the effective file system type, mount arguments, the mount point 831 * vnode, flags specifying whether the mount is a remount and whether it 832 * should be entered into the vfs list, and credentials. Fills in its vfspp 833 * parameter with the mounted file system instance's vfs. 834 * 835 * Note that the effective file system type is specified as a string. It may 836 * be null, in which case it's determined from the mount arguments, and may 837 * differ from the type specified in the mount arguments; this is a hook to 838 * allow interposition when instantiating file system instances. 839 * 840 * The caller is responsible for releasing its own hold on the mount point 841 * vp (this routine does its own hold when necessary). 842 * Also note that for remounts, the mount point vp should be the vnode for 843 * the root of the file system rather than the vnode that the file system 844 * is mounted on top of. 845 */ 846 int 847 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 848 struct vfs **vfspp) 849 { 850 struct vfssw *vswp; 851 vfsops_t *vfsops; 852 struct vfs *vfsp; 853 struct vnode *bvp; 854 dev_t bdev = 0; 855 mntopts_t mnt_mntopts; 856 int error = 0; 857 int copyout_error = 0; 858 int ovflags; 859 char *opts = uap->optptr; 860 char *inargs = opts; 861 int optlen = uap->optlen; 862 int remount; 863 int rdonly; 864 int nbmand = 0; 865 int delmip = 0; 866 int addmip = 0; 867 int splice = ((uap->flags & MS_NOSPLICE) == 0); 868 int fromspace = (uap->flags & MS_SYSSPACE) ? 869 UIO_SYSSPACE : UIO_USERSPACE; 870 char *resource = NULL, *mountpt = NULL; 871 refstr_t *oldresource, *oldmntpt; 872 struct pathname pn, rpn; 873 vsk_anchor_t *vskap; 874 875 /* 876 * The v_flag value for the mount point vp is permanently set 877 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 878 * for mount point locking. 879 */ 880 mutex_enter(&vp->v_lock); 881 vp->v_flag |= VVFSLOCK; 882 mutex_exit(&vp->v_lock); 883 884 mnt_mntopts.mo_count = 0; 885 /* 886 * Find the ops vector to use to invoke the file system-specific mount 887 * method. If the fsname argument is non-NULL, use it directly. 888 * Otherwise, dig the file system type information out of the mount 889 * arguments. 890 * 891 * A side effect is to hold the vfssw entry. 892 * 893 * Mount arguments can be specified in several ways, which are 894 * distinguished by flag bit settings. The preferred way is to set 895 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 896 * type supplied as a character string and the last two arguments 897 * being a pointer to a character buffer and the size of the buffer. 898 * On entry, the buffer holds a null terminated list of options; on 899 * return, the string is the list of options the file system 900 * recognized. If MS_DATA is set arguments five and six point to a 901 * block of binary data which the file system interprets. 902 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 903 * consistently with these conventions. To handle them, we check to 904 * see whether the pointer to the file system name has a numeric value 905 * less than 256. If so, we treat it as an index. 906 */ 907 if (fsname != NULL) { 908 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 909 return (EINVAL); 910 } 911 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 912 size_t n; 913 uint_t fstype; 914 char name[FSTYPSZ]; 915 916 if ((fstype = (uintptr_t)uap->fstype) < 256) { 917 RLOCK_VFSSW(); 918 if (fstype == 0 || fstype >= nfstype || 919 !ALLOCATED_VFSSW(&vfssw[fstype])) { 920 RUNLOCK_VFSSW(); 921 return (EINVAL); 922 } 923 (void) strcpy(name, vfssw[fstype].vsw_name); 924 RUNLOCK_VFSSW(); 925 if ((vswp = vfs_getvfssw(name)) == NULL) 926 return (EINVAL); 927 } else { 928 /* 929 * Handle either kernel or user address space. 930 */ 931 if (uap->flags & MS_SYSSPACE) { 932 error = copystr(uap->fstype, name, 933 FSTYPSZ, &n); 934 } else { 935 error = copyinstr(uap->fstype, name, 936 FSTYPSZ, &n); 937 } 938 if (error) { 939 if (error == ENAMETOOLONG) 940 return (EINVAL); 941 return (error); 942 } 943 if ((vswp = vfs_getvfssw(name)) == NULL) 944 return (EINVAL); 945 } 946 } else { 947 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 948 return (EINVAL); 949 } 950 if (!VFS_INSTALLED(vswp)) 951 return (EINVAL); 952 vfsops = &vswp->vsw_vfsops; 953 954 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 955 /* 956 * Fetch mount options and parse them for generic vfs options 957 */ 958 if (uap->flags & MS_OPTIONSTR) { 959 /* 960 * Limit the buffer size 961 */ 962 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 963 error = EINVAL; 964 goto errout; 965 } 966 if ((uap->flags & MS_SYSSPACE) == 0) { 967 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 968 inargs[0] = '\0'; 969 if (optlen) { 970 error = copyinstr(opts, inargs, (size_t)optlen, 971 NULL); 972 if (error) { 973 goto errout; 974 } 975 } 976 } 977 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 978 } 979 /* 980 * Flag bits override the options string. 981 */ 982 if (uap->flags & MS_REMOUNT) 983 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 984 if (uap->flags & MS_RDONLY) 985 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 986 if (uap->flags & MS_NOSUID) 987 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 988 989 /* 990 * Check if this is a remount; must be set in the option string and 991 * the file system must support a remount option. 992 */ 993 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 994 MNTOPT_REMOUNT, NULL)) { 995 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 996 error = ENOTSUP; 997 goto errout; 998 } 999 uap->flags |= MS_REMOUNT; 1000 } 1001 1002 /* 1003 * uap->flags and vfs_optionisset() should agree. 1004 */ 1005 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1006 uap->flags |= MS_RDONLY; 1007 } 1008 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1009 uap->flags |= MS_NOSUID; 1010 } 1011 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1012 ASSERT(splice || !remount); 1013 /* 1014 * If we are splicing the fs into the namespace, 1015 * perform mount point checks. 1016 * 1017 * We want to resolve the path for the mount point to eliminate 1018 * '.' and ".." and symlinks in mount points; we can't do the 1019 * same for the resource string, since it would turn 1020 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1021 * this before grabbing vn_vfswlock(), because otherwise we 1022 * would deadlock with lookuppn(). 1023 */ 1024 if (splice) { 1025 ASSERT(vp->v_count > 0); 1026 1027 /* 1028 * Pick up mount point and device from appropriate space. 1029 */ 1030 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1031 resource = kmem_alloc(pn.pn_pathlen + 1, 1032 KM_SLEEP); 1033 (void) strcpy(resource, pn.pn_path); 1034 pn_free(&pn); 1035 } 1036 /* 1037 * Do a lookupname prior to taking the 1038 * writelock. Mark this as completed if 1039 * successful for later cleanup and addition to 1040 * the mount in progress table. 1041 */ 1042 if ((uap->flags & MS_GLOBAL) == 0 && 1043 lookupname(uap->spec, fromspace, 1044 FOLLOW, NULL, &bvp) == 0) { 1045 addmip = 1; 1046 } 1047 1048 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1049 pathname_t *pnp; 1050 1051 if (*pn.pn_path != '/') { 1052 error = EINVAL; 1053 pn_free(&pn); 1054 goto errout; 1055 } 1056 pn_alloc(&rpn); 1057 /* 1058 * Kludge to prevent autofs from deadlocking with 1059 * itself when it calls domount(). 1060 * 1061 * If autofs is calling, it is because it is doing 1062 * (autofs) mounts in the process of an NFS mount. A 1063 * lookuppn() here would cause us to block waiting for 1064 * said NFS mount to complete, which can't since this 1065 * is the thread that was supposed to doing it. 1066 */ 1067 if (fromspace == UIO_USERSPACE) { 1068 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1069 NULL)) == 0) { 1070 pnp = &rpn; 1071 } else { 1072 /* 1073 * The file disappeared or otherwise 1074 * became inaccessible since we opened 1075 * it; might as well fail the mount 1076 * since the mount point is no longer 1077 * accessible. 1078 */ 1079 pn_free(&rpn); 1080 pn_free(&pn); 1081 goto errout; 1082 } 1083 } else { 1084 pnp = &pn; 1085 } 1086 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1087 (void) strcpy(mountpt, pnp->pn_path); 1088 1089 /* 1090 * If the addition of the zone's rootpath 1091 * would push us over a total path length 1092 * of MAXPATHLEN, we fail the mount with 1093 * ENAMETOOLONG, which is what we would have 1094 * gotten if we were trying to perform the same 1095 * mount in the global zone. 1096 * 1097 * strlen() doesn't count the trailing 1098 * '\0', but zone_rootpathlen counts both a 1099 * trailing '/' and the terminating '\0'. 1100 */ 1101 if ((curproc->p_zone->zone_rootpathlen - 1 + 1102 strlen(mountpt)) > MAXPATHLEN || 1103 (resource != NULL && 1104 (curproc->p_zone->zone_rootpathlen - 1 + 1105 strlen(resource)) > MAXPATHLEN)) { 1106 error = ENAMETOOLONG; 1107 } 1108 1109 pn_free(&rpn); 1110 pn_free(&pn); 1111 } 1112 1113 if (error) 1114 goto errout; 1115 1116 /* 1117 * Prevent path name resolution from proceeding past 1118 * the mount point. 1119 */ 1120 if (vn_vfswlock(vp) != 0) { 1121 error = EBUSY; 1122 goto errout; 1123 } 1124 1125 /* 1126 * Verify that it's legitimate to establish a mount on 1127 * the prospective mount point. 1128 */ 1129 if (vn_mountedvfs(vp) != NULL) { 1130 /* 1131 * The mount point lock was obtained after some 1132 * other thread raced through and established a mount. 1133 */ 1134 vn_vfsunlock(vp); 1135 error = EBUSY; 1136 goto errout; 1137 } 1138 if (vp->v_flag & VNOMOUNT) { 1139 vn_vfsunlock(vp); 1140 error = EINVAL; 1141 goto errout; 1142 } 1143 } 1144 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1145 uap->dataptr = NULL; 1146 uap->datalen = 0; 1147 } 1148 1149 /* 1150 * If this is a remount, we don't want to create a new VFS. 1151 * Instead, we pass the existing one with a remount flag. 1152 */ 1153 if (remount) { 1154 /* 1155 * Confirm that the mount point is the root vnode of the 1156 * file system that is being remounted. 1157 * This can happen if the user specifies a different 1158 * mount point directory pathname in the (re)mount command. 1159 * 1160 * Code below can only be reached if splice is true, so it's 1161 * safe to do vn_vfsunlock() here. 1162 */ 1163 if ((vp->v_flag & VROOT) == 0) { 1164 vn_vfsunlock(vp); 1165 error = ENOENT; 1166 goto errout; 1167 } 1168 /* 1169 * Disallow making file systems read-only unless file system 1170 * explicitly allows it in its vfssw. Ignore other flags. 1171 */ 1172 if (rdonly && vn_is_readonly(vp) == 0 && 1173 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1174 vn_vfsunlock(vp); 1175 error = EINVAL; 1176 goto errout; 1177 } 1178 /* 1179 * Changing the NBMAND setting on remounts is permitted 1180 * but logged since it can lead to unexpected behavior. 1181 * We also counsel against using it for / and /usr. 1182 */ 1183 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1184 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1185 cmn_err(CE_WARN, "domount: nbmand turned %s via " 1186 "remounting %s", nbmand ? "on" : "off", 1187 refstr_value(vp->v_vfsp->vfs_mntpt)); 1188 } 1189 vfsp = vp->v_vfsp; 1190 ovflags = vfsp->vfs_flag; 1191 vfsp->vfs_flag |= VFS_REMOUNT; 1192 vfsp->vfs_flag &= ~VFS_RDONLY; 1193 } else { 1194 vfsp = kmem_alloc(sizeof (vfs_t), KM_SLEEP); 1195 VFS_INIT(vfsp, vfsops, NULL); 1196 } 1197 1198 VFS_HOLD(vfsp); 1199 1200 /* 1201 * The vfs_reflock is not used anymore the code below explicitly 1202 * holds it preventing others accesing it directly. 1203 */ 1204 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1205 !(vfsp->vfs_flag & VFS_REMOUNT)) 1206 cmn_err(CE_WARN, 1207 "mount type %s couldn't get vfs_reflock\n", vswp->vsw_name); 1208 1209 /* 1210 * Lock the vfs. If this is a remount we want to avoid spurious umount 1211 * failures that happen as a side-effect of fsflush() and other mount 1212 * and unmount operations that might be going on simultaneously and 1213 * may have locked the vfs currently. To not return EBUSY immediately 1214 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1215 */ 1216 if (!remount) { 1217 if (error = vfs_lock(vfsp)) { 1218 vfsp->vfs_flag = ovflags; 1219 if (splice) 1220 vn_vfsunlock(vp); 1221 kmem_free(vfsp, sizeof (struct vfs)); 1222 goto errout; 1223 } 1224 } else { 1225 vfs_lock_wait(vfsp); 1226 } 1227 1228 /* 1229 * Add device to mount in progress table, global mounts require special 1230 * handling. It is possible that we have already done the lookupname 1231 * on a spliced, non-global fs. If so, we don't want to do it again 1232 * since we cannot do a lookupname after taking the 1233 * wlock above. This case is for a non-spliced, non-global filesystem. 1234 */ 1235 if (!addmip) { 1236 if ((uap->flags & MS_GLOBAL) == 0 && 1237 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1238 addmip = 1; 1239 } 1240 } 1241 1242 if (addmip) { 1243 bdev = bvp->v_rdev; 1244 VN_RELE(bvp); 1245 vfs_addmip(bdev, vfsp); 1246 addmip = 0; 1247 delmip = 1; 1248 } 1249 /* 1250 * Invalidate cached entry for the mount point. 1251 */ 1252 if (splice) 1253 dnlc_purge_vp(vp); 1254 1255 /* 1256 * If have an option string but the filesystem doesn't supply a 1257 * prototype options table, create a table with the global 1258 * options and sufficient room to accept all the options in the 1259 * string. Then parse the passed in option string 1260 * accepting all the options in the string. This gives us an 1261 * option table with all the proper cancel properties for the 1262 * global options. 1263 * 1264 * Filesystems that supply a prototype options table are handled 1265 * earlier in this function. 1266 */ 1267 if (uap->flags & MS_OPTIONSTR) { 1268 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1269 mntopts_t tmp_mntopts; 1270 1271 tmp_mntopts.mo_count = 0; 1272 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1273 &mnt_mntopts); 1274 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1275 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1276 vfs_freeopttbl(&tmp_mntopts); 1277 } 1278 } 1279 1280 /* 1281 * Serialize with zone creations. 1282 */ 1283 mount_in_progress(); 1284 /* 1285 * Instantiate (or reinstantiate) the file system. If appropriate, 1286 * splice it into the file system name space. 1287 * 1288 * We want VFS_MOUNT() to be able to override the vfs_resource 1289 * string if necessary (ie, mntfs), and also for a remount to 1290 * change the same (necessary when remounting '/' during boot). 1291 * So we set up vfs_mntpt and vfs_resource to what we think they 1292 * should be, then hand off control to VFS_MOUNT() which can 1293 * override this. 1294 * 1295 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1296 * a vfs which is on the vfs list (i.e. during a remount), we must 1297 * never set those fields to NULL. Several bits of code make 1298 * assumptions that the fields are always valid. 1299 */ 1300 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1301 if (remount) { 1302 if ((oldresource = vfsp->vfs_resource) != NULL) 1303 refstr_hold(oldresource); 1304 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1305 refstr_hold(oldmntpt); 1306 } 1307 vfs_setresource(vfsp, resource); 1308 vfs_setmntpoint(vfsp, mountpt); 1309 1310 error = VFS_MOUNT(vfsp, vp, uap, credp); 1311 1312 if (uap->flags & MS_RDONLY) 1313 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1314 if (uap->flags & MS_NOSUID) 1315 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1316 if (uap->flags & MS_GLOBAL) 1317 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1318 1319 if (error) { 1320 if (remount) { 1321 /* put back pre-remount options */ 1322 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1323 vfs_setmntpoint(vfsp, (stripzonepath( 1324 refstr_value(oldmntpt)))); 1325 if (oldmntpt) 1326 refstr_rele(oldmntpt); 1327 vfs_setresource(vfsp, (stripzonepath( 1328 refstr_value(oldresource)))); 1329 if (oldresource) 1330 refstr_rele(oldresource); 1331 vfsp->vfs_flag = ovflags; 1332 vfs_unlock(vfsp); 1333 VFS_RELE(vfsp); 1334 } else { 1335 vfs_unlock(vfsp); 1336 vfs_freemnttab(vfsp); 1337 kmem_free(vfsp, sizeof (struct vfs)); 1338 } 1339 } else { 1340 /* 1341 * Set the mount time to now 1342 */ 1343 vfsp->vfs_mtime = ddi_get_time(); 1344 if (remount) { 1345 vfsp->vfs_flag &= ~VFS_REMOUNT; 1346 if (oldresource) 1347 refstr_rele(oldresource); 1348 if (oldmntpt) 1349 refstr_rele(oldmntpt); 1350 } else if (splice) { 1351 /* 1352 * Link vfsp into the name space at the mount 1353 * point. Vfs_add() is responsible for 1354 * holding the mount point which will be 1355 * released when vfs_remove() is called. 1356 */ 1357 vfs_add(vp, vfsp, uap->flags); 1358 } else { 1359 /* 1360 * Hold the reference to file system which is 1361 * not linked into the name space. 1362 */ 1363 vfsp->vfs_zone = NULL; 1364 VFS_HOLD(vfsp); 1365 vfsp->vfs_vnodecovered = NULL; 1366 } 1367 /* 1368 * Set flags for global options encountered 1369 */ 1370 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1371 vfsp->vfs_flag |= VFS_RDONLY; 1372 else 1373 vfsp->vfs_flag &= ~VFS_RDONLY; 1374 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1375 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1376 } else { 1377 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1378 vfsp->vfs_flag |= VFS_NODEVICES; 1379 else 1380 vfsp->vfs_flag &= ~VFS_NODEVICES; 1381 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1382 vfsp->vfs_flag |= VFS_NOSETUID; 1383 else 1384 vfsp->vfs_flag &= ~VFS_NOSETUID; 1385 } 1386 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1387 vfsp->vfs_flag |= VFS_NBMAND; 1388 else 1389 vfsp->vfs_flag &= ~VFS_NBMAND; 1390 1391 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1392 vfsp->vfs_flag |= VFS_XATTR; 1393 else 1394 vfsp->vfs_flag &= ~VFS_XATTR; 1395 1396 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1397 vfsp->vfs_flag |= VFS_NOEXEC; 1398 else 1399 vfsp->vfs_flag &= ~VFS_NOEXEC; 1400 1401 /* 1402 * Now construct the output option string of options 1403 * we recognized. 1404 */ 1405 if (uap->flags & MS_OPTIONSTR) { 1406 vfs_list_read_lock(); 1407 copyout_error = vfs_buildoptionstr( 1408 &vfsp->vfs_mntopts, inargs, optlen); 1409 vfs_list_unlock(); 1410 if (copyout_error == 0 && 1411 (uap->flags & MS_SYSSPACE) == 0) { 1412 copyout_error = copyoutstr(inargs, opts, 1413 optlen, NULL); 1414 } 1415 } 1416 1417 /* 1418 * If this isn't a remount, set up the vopstats before 1419 * anyone can touch this. We only allow spliced file 1420 * systems (file systems which are in the namespace) to 1421 * have the VFS_STATS flag set. 1422 * NOTE: PxFS mounts the underlying file system with 1423 * MS_NOSPLICE set and copies those vfs_flags to its private 1424 * vfs structure. As a result, PxFS should never have 1425 * the VFS_STATS flag or else we might access the vfs 1426 * statistics-related fields prior to them being 1427 * properly initialized. 1428 */ 1429 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1430 initialize_vopstats(&vfsp->vfs_vopstats); 1431 /* 1432 * We need to set vfs_vskap to NULL because there's 1433 * a chance it won't be set below. This is checked 1434 * in teardown_vopstats() so we can't have garbage. 1435 */ 1436 vfsp->vfs_vskap = NULL; 1437 vfsp->vfs_flag |= VFS_STATS; 1438 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1439 } 1440 1441 vfs_unlock(vfsp); 1442 } 1443 mount_completed(); 1444 if (splice) 1445 vn_vfsunlock(vp); 1446 1447 if ((error == 0) && (copyout_error == 0)) { 1448 if (!remount) { 1449 /* 1450 * Don't call get_vskstat_anchor() while holding 1451 * locks since it allocates memory and calls 1452 * VFS_STATVFS(). For NFS, the latter can generate 1453 * an over-the-wire call. 1454 */ 1455 vskap = get_vskstat_anchor(vfsp); 1456 /* Only take the lock if we have something to do */ 1457 if (vskap != NULL) { 1458 vfs_lock_wait(vfsp); 1459 if (vfsp->vfs_flag & VFS_STATS) { 1460 vfsp->vfs_vskap = vskap; 1461 } 1462 vfs_unlock(vfsp); 1463 } 1464 } 1465 /* Return vfsp to caller. */ 1466 *vfspp = vfsp; 1467 } 1468 errout: 1469 vfs_freeopttbl(&mnt_mntopts); 1470 if (resource != NULL) 1471 kmem_free(resource, strlen(resource) + 1); 1472 if (mountpt != NULL) 1473 kmem_free(mountpt, strlen(mountpt) + 1); 1474 /* 1475 * It is possible we errored prior to adding to mount in progress 1476 * table. Must free vnode we acquired with successful lookupname. 1477 */ 1478 if (addmip) 1479 VN_RELE(bvp); 1480 if (delmip) 1481 vfs_delmip(vfsp); 1482 ASSERT(vswp != NULL); 1483 vfs_unrefvfssw(vswp); 1484 if (inargs != opts) 1485 kmem_free(inargs, MAX_MNTOPT_STR); 1486 if (copyout_error) { 1487 VFS_RELE(vfsp); 1488 error = copyout_error; 1489 } 1490 return (error); 1491 } 1492 1493 static void 1494 vfs_setpath(struct vfs *vfsp, refstr_t **refp, const char *newpath) 1495 { 1496 size_t len; 1497 refstr_t *ref; 1498 zone_t *zone = curproc->p_zone; 1499 char *sp; 1500 int have_list_lock = 0; 1501 1502 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1503 1504 /* 1505 * New path must be less than MAXPATHLEN because mntfs 1506 * will only display up to MAXPATHLEN bytes. This is currently 1507 * safe, because domount() uses pn_get(), and other callers 1508 * similarly cap the size to fewer than MAXPATHLEN bytes. 1509 */ 1510 1511 ASSERT(strlen(newpath) < MAXPATHLEN); 1512 1513 /* mntfs requires consistency while vfs list lock is held */ 1514 1515 if (VFS_ON_LIST(vfsp)) { 1516 have_list_lock = 1; 1517 vfs_list_lock(); 1518 } 1519 1520 if (*refp != NULL) 1521 refstr_rele(*refp); 1522 1523 /* Do we need to modify the path? */ 1524 1525 if (zone == global_zone || *newpath != '/') { 1526 ref = refstr_alloc(newpath); 1527 goto out; 1528 } 1529 1530 /* 1531 * Truncate the trailing '/' in the zoneroot, and merge 1532 * in the zone's rootpath with the "newpath" (resource 1533 * or mountpoint) passed in. 1534 * 1535 * The size of the required buffer is thus the size of 1536 * the buffer required for the passed-in newpath 1537 * (strlen(newpath) + 1), plus the size of the buffer 1538 * required to hold zone_rootpath (zone_rootpathlen) 1539 * minus one for one of the now-superfluous NUL 1540 * terminations, minus one for the trailing '/'. 1541 * 1542 * That gives us: 1543 * 1544 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1545 * 1546 * Which is what we have below. 1547 */ 1548 1549 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1550 sp = kmem_alloc(len, KM_SLEEP); 1551 1552 /* 1553 * Copy everything including the trailing slash, which 1554 * we then overwrite with the NUL character. 1555 */ 1556 1557 (void) strcpy(sp, zone->zone_rootpath); 1558 sp[zone->zone_rootpathlen - 2] = '\0'; 1559 (void) strcat(sp, newpath); 1560 1561 ref = refstr_alloc(sp); 1562 kmem_free(sp, len); 1563 out: 1564 *refp = ref; 1565 1566 if (have_list_lock) { 1567 vfs_mnttab_modtimeupd(); 1568 vfs_list_unlock(); 1569 } 1570 } 1571 1572 /* 1573 * Record a mounted resource name in a vfs structure. 1574 * If vfsp is already mounted, caller must hold the vfs lock. 1575 */ 1576 void 1577 vfs_setresource(struct vfs *vfsp, const char *resource) 1578 { 1579 if (resource == NULL || resource[0] == '\0') 1580 resource = VFS_NORESOURCE; 1581 vfs_setpath(vfsp, &vfsp->vfs_resource, resource); 1582 } 1583 1584 /* 1585 * Record a mount point name in a vfs structure. 1586 * If vfsp is already mounted, caller must hold the vfs lock. 1587 */ 1588 void 1589 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt) 1590 { 1591 if (mntpt == NULL || mntpt[0] == '\0') 1592 mntpt = VFS_NOMNTPT; 1593 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt); 1594 } 1595 1596 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1597 1598 refstr_t * 1599 vfs_getresource(const struct vfs *vfsp) 1600 { 1601 refstr_t *resource; 1602 1603 vfs_list_read_lock(); 1604 resource = vfsp->vfs_resource; 1605 refstr_hold(resource); 1606 vfs_list_unlock(); 1607 1608 return (resource); 1609 } 1610 1611 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1612 1613 refstr_t * 1614 vfs_getmntpoint(const struct vfs *vfsp) 1615 { 1616 refstr_t *mntpt; 1617 1618 vfs_list_read_lock(); 1619 mntpt = vfsp->vfs_mntpt; 1620 refstr_hold(mntpt); 1621 vfs_list_unlock(); 1622 1623 return (mntpt); 1624 } 1625 1626 /* 1627 * Create an empty options table with enough empty slots to hold all 1628 * The options in the options string passed as an argument. 1629 * Potentially prepend another options table. 1630 * 1631 * Note: caller is responsible for locking the vfs list, if needed, 1632 * to protect mops. 1633 */ 1634 static void 1635 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1636 const mntopts_t *mtmpl) 1637 { 1638 const char *s = opts; 1639 uint_t count; 1640 1641 if (opts == NULL || *opts == '\0') { 1642 count = 0; 1643 } else { 1644 count = 1; 1645 1646 /* 1647 * Count number of options in the string 1648 */ 1649 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 1650 count++; 1651 s++; 1652 } 1653 } 1654 vfs_copyopttbl_extend(mtmpl, mops, count); 1655 } 1656 1657 /* 1658 * Create an empty options table with enough empty slots to hold all 1659 * The options in the options string passed as an argument. 1660 * 1661 * This function is *not* for general use by filesystems. 1662 * 1663 * Note: caller is responsible for locking the vfs list, if needed, 1664 * to protect mops. 1665 */ 1666 void 1667 vfs_createopttbl(mntopts_t *mops, const char *opts) 1668 { 1669 vfs_createopttbl_extend(mops, opts, NULL); 1670 } 1671 1672 1673 /* 1674 * Swap two mount options tables 1675 */ 1676 static void 1677 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 1678 { 1679 uint_t tmpcnt; 1680 mntopt_t *tmplist; 1681 1682 tmpcnt = optbl2->mo_count; 1683 tmplist = optbl2->mo_list; 1684 optbl2->mo_count = optbl1->mo_count; 1685 optbl2->mo_list = optbl1->mo_list; 1686 optbl1->mo_count = tmpcnt; 1687 optbl1->mo_list = tmplist; 1688 } 1689 1690 static void 1691 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 1692 { 1693 vfs_list_lock(); 1694 vfs_swapopttbl_nolock(optbl1, optbl2); 1695 vfs_mnttab_modtimeupd(); 1696 vfs_list_unlock(); 1697 } 1698 1699 static char ** 1700 vfs_copycancelopt_extend(char **const moc, int extend) 1701 { 1702 int i = 0; 1703 int j; 1704 char **result; 1705 1706 if (moc != NULL) { 1707 for (; moc[i] != NULL; i++) 1708 /* count number of options to cancel */; 1709 } 1710 1711 if (i + extend == 0) 1712 return (NULL); 1713 1714 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 1715 1716 for (j = 0; j < i; j++) { 1717 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 1718 (void) strcpy(result[j], moc[j]); 1719 } 1720 for (; j <= i + extend; j++) 1721 result[j] = NULL; 1722 1723 return (result); 1724 } 1725 1726 static void 1727 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 1728 { 1729 char *sp, *dp; 1730 1731 d->mo_flags = s->mo_flags; 1732 d->mo_data = s->mo_data; 1733 sp = s->mo_name; 1734 if (sp != NULL) { 1735 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 1736 (void) strcpy(dp, sp); 1737 d->mo_name = dp; 1738 } else { 1739 d->mo_name = NULL; /* should never happen */ 1740 } 1741 1742 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 1743 1744 sp = s->mo_arg; 1745 if (sp != NULL) { 1746 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 1747 (void) strcpy(dp, sp); 1748 d->mo_arg = dp; 1749 } else { 1750 d->mo_arg = NULL; 1751 } 1752 } 1753 1754 /* 1755 * Copy a mount options table, possibly allocating some spare 1756 * slots at the end. It is permissible to copy_extend the NULL table. 1757 */ 1758 static void 1759 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 1760 { 1761 uint_t i, count; 1762 mntopt_t *motbl; 1763 1764 /* 1765 * Clear out any existing stuff in the options table being initialized 1766 */ 1767 vfs_freeopttbl(dmo); 1768 count = (smo == NULL) ? 0 : smo->mo_count; 1769 if ((count + extra) == 0) /* nothing to do */ 1770 return; 1771 dmo->mo_count = count + extra; 1772 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 1773 dmo->mo_list = motbl; 1774 for (i = 0; i < count; i++) { 1775 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 1776 } 1777 for (i = count; i < count + extra; i++) { 1778 motbl[i].mo_flags = MO_EMPTY; 1779 } 1780 } 1781 1782 /* 1783 * Copy a mount options table. 1784 * 1785 * This function is *not* for general use by filesystems. 1786 * 1787 * Note: caller is responsible for locking the vfs list, if needed, 1788 * to protect smo and dmo. 1789 */ 1790 void 1791 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 1792 { 1793 vfs_copyopttbl_extend(smo, dmo, 0); 1794 } 1795 1796 static char ** 1797 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 1798 { 1799 int c1 = 0; 1800 int c2 = 0; 1801 char **result; 1802 char **sp1, **sp2, **dp; 1803 1804 /* 1805 * First we count both lists of cancel options. 1806 * If either is NULL or has no elements, we return a copy of 1807 * the other. 1808 */ 1809 if (mop1->mo_cancel != NULL) { 1810 for (; mop1->mo_cancel[c1] != NULL; c1++) 1811 /* count cancel options in mop1 */; 1812 } 1813 1814 if (c1 == 0) 1815 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 1816 1817 if (mop2->mo_cancel != NULL) { 1818 for (; mop2->mo_cancel[c2] != NULL; c2++) 1819 /* count cancel options in mop2 */; 1820 } 1821 1822 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 1823 1824 if (c2 == 0) 1825 return (result); 1826 1827 /* 1828 * When we get here, we've got two sets of cancel options; 1829 * we need to merge the two sets. We know that the result 1830 * array has "c1+c2+1" entries and in the end we might shrink 1831 * it. 1832 * Result now has a copy of the c1 entries from mop1; we'll 1833 * now lookup all the entries of mop2 in mop1 and copy it if 1834 * it is unique. 1835 * This operation is O(n^2) but it's only called once per 1836 * filesystem per duplicate option. This is a situation 1837 * which doesn't arise with the filesystems in ON and 1838 * n is generally 1. 1839 */ 1840 1841 dp = &result[c1]; 1842 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 1843 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 1844 if (strcmp(*sp1, *sp2) == 0) 1845 break; 1846 } 1847 if (*sp1 == NULL) { 1848 /* 1849 * Option *sp2 not found in mop1, so copy it. 1850 * The calls to vfs_copycancelopt_extend() 1851 * guarantee that there's enough room. 1852 */ 1853 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 1854 (void) strcpy(*dp++, *sp2); 1855 } 1856 } 1857 if (dp != &result[c1+c2]) { 1858 size_t bytes = (dp - result + 1) * sizeof (char *); 1859 char **nres = kmem_alloc(bytes, KM_SLEEP); 1860 1861 bcopy(result, nres, bytes); 1862 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 1863 result = nres; 1864 } 1865 return (result); 1866 } 1867 1868 /* 1869 * Merge two mount option tables (outer and inner) into one. This is very 1870 * similar to "merging" global variables and automatic variables in C. 1871 * 1872 * This isn't (and doesn't have to be) fast. 1873 * 1874 * This function is *not* for general use by filesystems. 1875 * 1876 * Note: caller is responsible for locking the vfs list, if needed, 1877 * to protect omo, imo & dmo. 1878 */ 1879 void 1880 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 1881 { 1882 uint_t i, count; 1883 mntopt_t *mop, *motbl; 1884 uint_t freeidx; 1885 1886 /* 1887 * First determine how much space we need to allocate. 1888 */ 1889 count = omo->mo_count; 1890 for (i = 0; i < imo->mo_count; i++) { 1891 if (imo->mo_list[i].mo_flags & MO_EMPTY) 1892 continue; 1893 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 1894 count++; 1895 } 1896 ASSERT(count >= omo->mo_count && 1897 count <= omo->mo_count + imo->mo_count); 1898 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 1899 for (i = 0; i < omo->mo_count; i++) 1900 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 1901 freeidx = omo->mo_count; 1902 for (i = 0; i < imo->mo_count; i++) { 1903 if (imo->mo_list[i].mo_flags & MO_EMPTY) 1904 continue; 1905 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 1906 char **newcanp; 1907 uint_t index = mop - omo->mo_list; 1908 1909 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 1910 1911 vfs_freeopt(&motbl[index]); 1912 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 1913 1914 vfs_freecancelopt(motbl[index].mo_cancel); 1915 motbl[index].mo_cancel = newcanp; 1916 } else { 1917 /* 1918 * If it's a new option, just copy it over to the first 1919 * free location. 1920 */ 1921 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 1922 } 1923 } 1924 dmo->mo_count = count; 1925 dmo->mo_list = motbl; 1926 } 1927 1928 /* 1929 * Functions to set and clear mount options in a mount options table. 1930 */ 1931 1932 /* 1933 * Clear a mount option, if it exists. 1934 * 1935 * The update_mnttab arg indicates whether mops is part of a vfs that is on 1936 * the vfs list. 1937 */ 1938 static void 1939 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 1940 { 1941 struct mntopt *mop; 1942 uint_t i, count; 1943 1944 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 1945 1946 count = mops->mo_count; 1947 for (i = 0; i < count; i++) { 1948 mop = &mops->mo_list[i]; 1949 1950 if (mop->mo_flags & MO_EMPTY) 1951 continue; 1952 if (strcmp(opt, mop->mo_name)) 1953 continue; 1954 mop->mo_flags &= ~MO_SET; 1955 if (mop->mo_arg != NULL) { 1956 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 1957 } 1958 mop->mo_arg = NULL; 1959 if (update_mnttab) 1960 vfs_mnttab_modtimeupd(); 1961 break; 1962 } 1963 } 1964 1965 void 1966 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 1967 { 1968 int gotlock = 0; 1969 1970 if (VFS_ON_LIST(vfsp)) { 1971 gotlock = 1; 1972 vfs_list_lock(); 1973 } 1974 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 1975 if (gotlock) 1976 vfs_list_unlock(); 1977 } 1978 1979 1980 /* 1981 * Set a mount option on. If it's not found in the table, it's silently 1982 * ignored. If the option has MO_IGNORE set, it is still set unless the 1983 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 1984 * bits can be used to toggle the MO_NODISPLAY bit for the option. 1985 * If the VFS_CREATEOPT flag bit is set then the first option slot with 1986 * MO_EMPTY set is created as the option passed in. 1987 * 1988 * The update_mnttab arg indicates whether mops is part of a vfs that is on 1989 * the vfs list. 1990 */ 1991 static void 1992 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 1993 const char *arg, int flags, int update_mnttab) 1994 { 1995 mntopt_t *mop; 1996 uint_t i, count; 1997 char *sp; 1998 1999 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2000 2001 if (flags & VFS_CREATEOPT) { 2002 if (vfs_hasopt(mops, opt) != NULL) { 2003 flags &= ~VFS_CREATEOPT; 2004 } 2005 } 2006 count = mops->mo_count; 2007 for (i = 0; i < count; i++) { 2008 mop = &mops->mo_list[i]; 2009 2010 if (mop->mo_flags & MO_EMPTY) { 2011 if ((flags & VFS_CREATEOPT) == 0) 2012 continue; 2013 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2014 (void) strcpy(sp, opt); 2015 mop->mo_name = sp; 2016 if (arg != NULL) 2017 mop->mo_flags = MO_HASVALUE; 2018 else 2019 mop->mo_flags = 0; 2020 } else if (strcmp(opt, mop->mo_name)) { 2021 continue; 2022 } 2023 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2024 break; 2025 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2026 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2027 (void) strcpy(sp, arg); 2028 } else { 2029 sp = NULL; 2030 } 2031 if (mop->mo_arg != NULL) 2032 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2033 mop->mo_arg = sp; 2034 if (flags & VFS_DISPLAY) 2035 mop->mo_flags &= ~MO_NODISPLAY; 2036 if (flags & VFS_NODISPLAY) 2037 mop->mo_flags |= MO_NODISPLAY; 2038 mop->mo_flags |= MO_SET; 2039 if (mop->mo_cancel != NULL) { 2040 char **cp; 2041 2042 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2043 vfs_clearmntopt_nolock(mops, *cp, 0); 2044 } 2045 if (update_mnttab) 2046 vfs_mnttab_modtimeupd(); 2047 break; 2048 } 2049 } 2050 2051 void 2052 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2053 { 2054 int gotlock = 0; 2055 2056 if (VFS_ON_LIST(vfsp)) { 2057 gotlock = 1; 2058 vfs_list_lock(); 2059 } 2060 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2061 if (gotlock) 2062 vfs_list_unlock(); 2063 } 2064 2065 2066 /* 2067 * Add a "tag" option to a mounted file system's options list. 2068 * 2069 * Note: caller is responsible for locking the vfs list, if needed, 2070 * to protect mops. 2071 */ 2072 static mntopt_t * 2073 vfs_addtag(mntopts_t *mops, const char *tag) 2074 { 2075 uint_t count; 2076 mntopt_t *mop, *motbl; 2077 2078 count = mops->mo_count + 1; 2079 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2080 if (mops->mo_count) { 2081 size_t len = (count - 1) * sizeof (mntopt_t); 2082 2083 bcopy(mops->mo_list, motbl, len); 2084 kmem_free(mops->mo_list, len); 2085 } 2086 mops->mo_count = count; 2087 mops->mo_list = motbl; 2088 mop = &motbl[count - 1]; 2089 mop->mo_flags = MO_TAG; 2090 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2091 (void) strcpy(mop->mo_name, tag); 2092 return (mop); 2093 } 2094 2095 /* 2096 * Allow users to set arbitrary "tags" in a vfs's mount options. 2097 * Broader use within the kernel is discouraged. 2098 */ 2099 int 2100 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2101 cred_t *cr) 2102 { 2103 vfs_t *vfsp; 2104 mntopts_t *mops; 2105 mntopt_t *mop; 2106 int found = 0; 2107 dev_t dev = makedevice(major, minor); 2108 int err = 0; 2109 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2110 2111 /* 2112 * Find the desired mounted file system 2113 */ 2114 vfs_list_lock(); 2115 vfsp = rootvfs; 2116 do { 2117 if (vfsp->vfs_dev == dev && 2118 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2119 found = 1; 2120 break; 2121 } 2122 vfsp = vfsp->vfs_next; 2123 } while (vfsp != rootvfs); 2124 2125 if (!found) { 2126 err = EINVAL; 2127 goto out; 2128 } 2129 err = secpolicy_fs_config(cr, vfsp); 2130 if (err != 0) 2131 goto out; 2132 2133 mops = &vfsp->vfs_mntopts; 2134 /* 2135 * Add tag if it doesn't already exist 2136 */ 2137 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2138 int len; 2139 2140 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2141 len = strlen(buf); 2142 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2143 err = ENAMETOOLONG; 2144 goto out; 2145 } 2146 mop = vfs_addtag(mops, tag); 2147 } 2148 if ((mop->mo_flags & MO_TAG) == 0) { 2149 err = EINVAL; 2150 goto out; 2151 } 2152 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2153 out: 2154 vfs_list_unlock(); 2155 kmem_free(buf, MAX_MNTOPT_STR); 2156 return (err); 2157 } 2158 2159 /* 2160 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2161 * Broader use within the kernel is discouraged. 2162 */ 2163 int 2164 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2165 cred_t *cr) 2166 { 2167 vfs_t *vfsp; 2168 mntopt_t *mop; 2169 int found = 0; 2170 dev_t dev = makedevice(major, minor); 2171 int err = 0; 2172 2173 /* 2174 * Find the desired mounted file system 2175 */ 2176 vfs_list_lock(); 2177 vfsp = rootvfs; 2178 do { 2179 if (vfsp->vfs_dev == dev && 2180 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2181 found = 1; 2182 break; 2183 } 2184 vfsp = vfsp->vfs_next; 2185 } while (vfsp != rootvfs); 2186 2187 if (!found) { 2188 err = EINVAL; 2189 goto out; 2190 } 2191 err = secpolicy_fs_config(cr, vfsp); 2192 if (err != 0) 2193 goto out; 2194 2195 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2196 err = EINVAL; 2197 goto out; 2198 } 2199 if ((mop->mo_flags & MO_TAG) == 0) { 2200 err = EINVAL; 2201 goto out; 2202 } 2203 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2204 out: 2205 vfs_list_unlock(); 2206 return (err); 2207 } 2208 2209 /* 2210 * Function to parse an option string and fill in a mount options table. 2211 * Unknown options are silently ignored. The input option string is modified 2212 * by replacing separators with nulls. If the create flag is set, options 2213 * not found in the table are just added on the fly. The table must have 2214 * an option slot marked MO_EMPTY to add an option on the fly. 2215 * 2216 * This function is *not* for general use by filesystems. 2217 * 2218 * Note: caller is responsible for locking the vfs list, if needed, 2219 * to protect mops.. 2220 */ 2221 void 2222 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2223 { 2224 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2225 int setflg = VFS_NOFORCEOPT; 2226 2227 if (osp == NULL) 2228 return; 2229 while (*s != '\0') { 2230 p = strchr(s, ','); /* find next option */ 2231 if (p == NULL) { 2232 cp = NULL; 2233 p = s + strlen(s); 2234 } else { 2235 cp = p; /* save location of comma */ 2236 *p++ = '\0'; /* mark end and point to next option */ 2237 } 2238 nextop = p; 2239 p = strchr(s, '='); /* look for value */ 2240 if (p == NULL) { 2241 valp = NULL; /* no value supplied */ 2242 } else { 2243 ep = p; /* save location of equals */ 2244 *p++ = '\0'; /* end option and point to value */ 2245 valp = p; 2246 } 2247 /* 2248 * set option into options table 2249 */ 2250 if (create) 2251 setflg |= VFS_CREATEOPT; 2252 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2253 if (cp != NULL) 2254 *cp = ','; /* restore the comma */ 2255 if (valp != NULL) 2256 *ep = '='; /* restore the equals */ 2257 s = nextop; 2258 } 2259 } 2260 2261 /* 2262 * Function to inquire if an option exists in a mount options table. 2263 * Returns a pointer to the option if it exists, else NULL. 2264 * 2265 * This function is *not* for general use by filesystems. 2266 * 2267 * Note: caller is responsible for locking the vfs list, if needed, 2268 * to protect mops. 2269 */ 2270 struct mntopt * 2271 vfs_hasopt(const mntopts_t *mops, const char *opt) 2272 { 2273 struct mntopt *mop; 2274 uint_t i, count; 2275 2276 count = mops->mo_count; 2277 for (i = 0; i < count; i++) { 2278 mop = &mops->mo_list[i]; 2279 2280 if (mop->mo_flags & MO_EMPTY) 2281 continue; 2282 if (strcmp(opt, mop->mo_name) == 0) 2283 return (mop); 2284 } 2285 return (NULL); 2286 } 2287 2288 /* 2289 * Function to inquire if an option is set in a mount options table. 2290 * Returns non-zero if set and fills in the arg pointer with a pointer to 2291 * the argument string or NULL if there is no argument string. 2292 */ 2293 static int 2294 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2295 { 2296 struct mntopt *mop; 2297 uint_t i, count; 2298 2299 count = mops->mo_count; 2300 for (i = 0; i < count; i++) { 2301 mop = &mops->mo_list[i]; 2302 2303 if (mop->mo_flags & MO_EMPTY) 2304 continue; 2305 if (strcmp(opt, mop->mo_name)) 2306 continue; 2307 if ((mop->mo_flags & MO_SET) == 0) 2308 return (0); 2309 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2310 *argp = mop->mo_arg; 2311 return (1); 2312 } 2313 return (0); 2314 } 2315 2316 2317 int 2318 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2319 { 2320 int ret; 2321 2322 vfs_list_read_lock(); 2323 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2324 vfs_list_unlock(); 2325 return (ret); 2326 } 2327 2328 2329 /* 2330 * Construct a comma separated string of the options set in the given 2331 * mount table, return the string in the given buffer. Return non-zero if 2332 * the buffer would overflow. 2333 * 2334 * This function is *not* for general use by filesystems. 2335 * 2336 * Note: caller is responsible for locking the vfs list, if needed, 2337 * to protect mp. 2338 */ 2339 int 2340 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2341 { 2342 char *cp; 2343 uint_t i; 2344 2345 buf[0] = '\0'; 2346 cp = buf; 2347 for (i = 0; i < mp->mo_count; i++) { 2348 struct mntopt *mop; 2349 2350 mop = &mp->mo_list[i]; 2351 if (mop->mo_flags & MO_SET) { 2352 int optlen, comma = 0; 2353 2354 if (buf[0] != '\0') 2355 comma = 1; 2356 optlen = strlen(mop->mo_name); 2357 if (strlen(buf) + comma + optlen + 1 > len) 2358 goto err; 2359 if (comma) 2360 *cp++ = ','; 2361 (void) strcpy(cp, mop->mo_name); 2362 cp += optlen; 2363 /* 2364 * Append option value if there is one 2365 */ 2366 if (mop->mo_arg != NULL) { 2367 int arglen; 2368 2369 arglen = strlen(mop->mo_arg); 2370 if (strlen(buf) + arglen + 2 > len) 2371 goto err; 2372 *cp++ = '='; 2373 (void) strcpy(cp, mop->mo_arg); 2374 cp += arglen; 2375 } 2376 } 2377 } 2378 return (0); 2379 err: 2380 return (EOVERFLOW); 2381 } 2382 2383 static void 2384 vfs_freecancelopt(char **moc) 2385 { 2386 if (moc != NULL) { 2387 int ccnt = 0; 2388 char **cp; 2389 2390 for (cp = moc; *cp != NULL; cp++) { 2391 kmem_free(*cp, strlen(*cp) + 1); 2392 ccnt++; 2393 } 2394 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2395 } 2396 } 2397 2398 static void 2399 vfs_freeopt(mntopt_t *mop) 2400 { 2401 if (mop->mo_name != NULL) 2402 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2403 2404 vfs_freecancelopt(mop->mo_cancel); 2405 2406 if (mop->mo_arg != NULL) 2407 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2408 } 2409 2410 /* 2411 * Free a mount options table 2412 * 2413 * This function is *not* for general use by filesystems. 2414 * 2415 * Note: caller is responsible for locking the vfs list, if needed, 2416 * to protect mp. 2417 */ 2418 void 2419 vfs_freeopttbl(mntopts_t *mp) 2420 { 2421 uint_t i, count; 2422 2423 count = mp->mo_count; 2424 for (i = 0; i < count; i++) { 2425 vfs_freeopt(&mp->mo_list[i]); 2426 } 2427 if (count) { 2428 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2429 mp->mo_count = 0; 2430 mp->mo_list = NULL; 2431 } 2432 } 2433 2434 /* 2435 * Free any mnttab information recorded in the vfs struct. 2436 * The vfs must not be on the vfs list. 2437 */ 2438 static void 2439 vfs_freemnttab(struct vfs *vfsp) 2440 { 2441 ASSERT(!VFS_ON_LIST(vfsp)); 2442 2443 /* 2444 * Free device and mount point information 2445 */ 2446 if (vfsp->vfs_mntpt != NULL) { 2447 refstr_rele(vfsp->vfs_mntpt); 2448 vfsp->vfs_mntpt = NULL; 2449 } 2450 if (vfsp->vfs_resource != NULL) { 2451 refstr_rele(vfsp->vfs_resource); 2452 vfsp->vfs_resource = NULL; 2453 } 2454 /* 2455 * Now free mount options information 2456 */ 2457 vfs_freeopttbl(&vfsp->vfs_mntopts); 2458 } 2459 2460 /* 2461 * Return the last mnttab modification time 2462 */ 2463 void 2464 vfs_mnttab_modtime(timespec_t *ts) 2465 { 2466 ASSERT(RW_LOCK_HELD(&vfslist)); 2467 *ts = vfs_mnttab_mtime; 2468 } 2469 2470 /* 2471 * See if mnttab is changed 2472 */ 2473 void 2474 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2475 { 2476 int changed; 2477 2478 *phpp = (struct pollhead *)NULL; 2479 2480 /* 2481 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2482 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2483 * to not grab the vfs list lock because tv_sec is monotonically 2484 * increasing. 2485 */ 2486 2487 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2488 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2489 if (!changed) { 2490 *phpp = &vfs_pollhd; 2491 } 2492 } 2493 2494 /* 2495 * Update the mnttab modification time and wake up any waiters for 2496 * mnttab changes 2497 */ 2498 void 2499 vfs_mnttab_modtimeupd() 2500 { 2501 hrtime_t oldhrt, newhrt; 2502 2503 ASSERT(RW_WRITE_HELD(&vfslist)); 2504 oldhrt = ts2hrt(&vfs_mnttab_mtime); 2505 gethrestime(&vfs_mnttab_mtime); 2506 newhrt = ts2hrt(&vfs_mnttab_mtime); 2507 if (oldhrt == (hrtime_t)0) 2508 vfs_mnttab_ctime = vfs_mnttab_mtime; 2509 /* 2510 * Attempt to provide unique mtime (like uniqtime but not). 2511 */ 2512 if (newhrt == oldhrt) { 2513 newhrt++; 2514 hrt2ts(newhrt, &vfs_mnttab_mtime); 2515 } 2516 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 2517 } 2518 2519 int 2520 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 2521 { 2522 vnode_t *coveredvp; 2523 int error; 2524 extern void teardown_vopstats(vfs_t *); 2525 2526 /* 2527 * Get covered vnode. This will be NULL if the vfs is not linked 2528 * into the file system name space (i.e., domount() with MNT_NOSPICE). 2529 */ 2530 coveredvp = vfsp->vfs_vnodecovered; 2531 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 2532 2533 /* 2534 * Purge all dnlc entries for this vfs. 2535 */ 2536 (void) dnlc_purge_vfsp(vfsp, 0); 2537 2538 /* For forcible umount, skip VFS_SYNC() since it may hang */ 2539 if ((flag & MS_FORCE) == 0) 2540 (void) VFS_SYNC(vfsp, 0, cr); 2541 2542 /* 2543 * Lock the vfs to maintain fs status quo during unmount. This 2544 * has to be done after the sync because ufs_update tries to acquire 2545 * the vfs_reflock. 2546 */ 2547 vfs_lock_wait(vfsp); 2548 2549 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 2550 vfs_unlock(vfsp); 2551 if (coveredvp != NULL) 2552 vn_vfsunlock(coveredvp); 2553 } else if (coveredvp != NULL) { 2554 teardown_vopstats(vfsp); 2555 /* 2556 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 2557 * when it frees vfsp so we do a VN_HOLD() so we can 2558 * continue to use coveredvp afterwards. 2559 */ 2560 VN_HOLD(coveredvp); 2561 vfs_remove(vfsp); 2562 vn_vfsunlock(coveredvp); 2563 VN_RELE(coveredvp); 2564 } else { 2565 teardown_vopstats(vfsp); 2566 /* 2567 * Release the reference to vfs that is not linked 2568 * into the name space. 2569 */ 2570 vfs_unlock(vfsp); 2571 VFS_RELE(vfsp); 2572 } 2573 return (error); 2574 } 2575 2576 2577 /* 2578 * Vfs_unmountall() is called by uadmin() to unmount all 2579 * mounted file systems (except the root file system) during shutdown. 2580 * It follows the existing locking protocol when traversing the vfs list 2581 * to sync and unmount vfses. Even though there should be no 2582 * other thread running while the system is shutting down, it is prudent 2583 * to still follow the locking protocol. 2584 */ 2585 void 2586 vfs_unmountall(void) 2587 { 2588 struct vfs *vfsp; 2589 struct vfs *prev_vfsp = NULL; 2590 int error; 2591 2592 /* 2593 * Toss all dnlc entries now so that the per-vfs sync 2594 * and unmount operations don't have to slog through 2595 * a bunch of uninteresting vnodes over and over again. 2596 */ 2597 dnlc_purge(); 2598 2599 vfs_list_lock(); 2600 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 2601 prev_vfsp = vfsp->vfs_prev; 2602 2603 if (vfs_lock(vfsp) != 0) 2604 continue; 2605 error = vn_vfswlock(vfsp->vfs_vnodecovered); 2606 vfs_unlock(vfsp); 2607 if (error) 2608 continue; 2609 2610 vfs_list_unlock(); 2611 2612 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 2613 (void) dounmount(vfsp, 0, CRED()); 2614 2615 /* 2616 * Since we dropped the vfslist lock above we must 2617 * verify that next_vfsp still exists, else start over. 2618 */ 2619 vfs_list_lock(); 2620 for (vfsp = rootvfs->vfs_prev; 2621 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 2622 if (vfsp == prev_vfsp) 2623 break; 2624 if (vfsp == rootvfs && prev_vfsp != rootvfs) 2625 prev_vfsp = rootvfs->vfs_prev; 2626 } 2627 vfs_list_unlock(); 2628 } 2629 2630 /* 2631 * Called to add an entry to the end of the vfs mount in progress list 2632 */ 2633 void 2634 vfs_addmip(dev_t dev, struct vfs *vfsp) 2635 { 2636 struct ipmnt *mipp; 2637 2638 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 2639 mipp->mip_next = NULL; 2640 mipp->mip_dev = dev; 2641 mipp->mip_vfsp = vfsp; 2642 mutex_enter(&vfs_miplist_mutex); 2643 if (vfs_miplist_end != NULL) 2644 vfs_miplist_end->mip_next = mipp; 2645 else 2646 vfs_miplist = mipp; 2647 vfs_miplist_end = mipp; 2648 mutex_exit(&vfs_miplist_mutex); 2649 } 2650 2651 /* 2652 * Called to remove an entry from the mount in progress list 2653 * Either because the mount completed or it failed. 2654 */ 2655 void 2656 vfs_delmip(struct vfs *vfsp) 2657 { 2658 struct ipmnt *mipp, *mipprev; 2659 2660 mutex_enter(&vfs_miplist_mutex); 2661 mipprev = NULL; 2662 for (mipp = vfs_miplist; 2663 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 2664 mipprev = mipp; 2665 } 2666 if (mipp == NULL) 2667 return; /* shouldn't happen */ 2668 if (mipp == vfs_miplist_end) 2669 vfs_miplist_end = mipprev; 2670 if (mipprev == NULL) 2671 vfs_miplist = mipp->mip_next; 2672 else 2673 mipprev->mip_next = mipp->mip_next; 2674 mutex_exit(&vfs_miplist_mutex); 2675 kmem_free(mipp, sizeof (struct ipmnt)); 2676 } 2677 2678 /* 2679 * vfs_add is called by a specific filesystem's mount routine to add 2680 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 2681 * The vfs should already have been locked by the caller. 2682 * 2683 * coveredvp is NULL if this is the root. 2684 */ 2685 void 2686 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 2687 { 2688 int newflag; 2689 2690 ASSERT(vfs_lock_held(vfsp)); 2691 VFS_HOLD(vfsp); 2692 newflag = vfsp->vfs_flag; 2693 if (mflag & MS_RDONLY) 2694 newflag |= VFS_RDONLY; 2695 else 2696 newflag &= ~VFS_RDONLY; 2697 if (mflag & MS_NOSUID) 2698 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 2699 else 2700 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 2701 if (mflag & MS_NOMNTTAB) 2702 newflag |= VFS_NOMNTTAB; 2703 else 2704 newflag &= ~VFS_NOMNTTAB; 2705 2706 if (coveredvp != NULL) { 2707 ASSERT(vn_vfswlock_held(coveredvp)); 2708 coveredvp->v_vfsmountedhere = vfsp; 2709 VN_HOLD(coveredvp); 2710 } 2711 vfsp->vfs_vnodecovered = coveredvp; 2712 vfsp->vfs_flag = newflag; 2713 2714 vfs_list_add(vfsp); 2715 } 2716 2717 /* 2718 * Remove a vfs from the vfs list, null out the pointer from the 2719 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 2720 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 2721 * reference to the vfs and to the covered vnode. 2722 * 2723 * Called from dounmount after it's confirmed with the file system 2724 * that the unmount is legal. 2725 */ 2726 void 2727 vfs_remove(struct vfs *vfsp) 2728 { 2729 vnode_t *vp; 2730 2731 ASSERT(vfs_lock_held(vfsp)); 2732 2733 /* 2734 * Can't unmount root. Should never happen because fs will 2735 * be busy. 2736 */ 2737 if (vfsp == rootvfs) 2738 cmn_err(CE_PANIC, "vfs_remove: unmounting root"); 2739 2740 vfs_list_remove(vfsp); 2741 2742 /* 2743 * Unhook from the file system name space. 2744 */ 2745 vp = vfsp->vfs_vnodecovered; 2746 ASSERT(vn_vfswlock_held(vp)); 2747 vp->v_vfsmountedhere = NULL; 2748 vfsp->vfs_vnodecovered = NULL; 2749 VN_RELE(vp); 2750 2751 /* 2752 * Release lock and wakeup anybody waiting. 2753 */ 2754 vfs_unlock(vfsp); 2755 VFS_RELE(vfsp); 2756 } 2757 2758 /* 2759 * Lock a filesystem to prevent access to it while mounting, 2760 * unmounting and syncing. Return EBUSY immediately if lock 2761 * can't be acquired. 2762 */ 2763 int 2764 vfs_lock(vfs_t *vfsp) 2765 { 2766 vn_vfslocks_entry_t *vpvfsentry; 2767 2768 vpvfsentry = vn_vfslocks_getlock(vfsp); 2769 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 2770 return (0); 2771 2772 vn_vfslocks_rele(vpvfsentry); 2773 return (EBUSY); 2774 } 2775 2776 int 2777 vfs_rlock(vfs_t *vfsp) 2778 { 2779 vn_vfslocks_entry_t *vpvfsentry; 2780 2781 vpvfsentry = vn_vfslocks_getlock(vfsp); 2782 2783 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 2784 return (0); 2785 2786 vn_vfslocks_rele(vpvfsentry); 2787 return (EBUSY); 2788 } 2789 2790 void 2791 vfs_lock_wait(vfs_t *vfsp) 2792 { 2793 vn_vfslocks_entry_t *vpvfsentry; 2794 2795 vpvfsentry = vn_vfslocks_getlock(vfsp); 2796 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 2797 } 2798 2799 void 2800 vfs_rlock_wait(vfs_t *vfsp) 2801 { 2802 vn_vfslocks_entry_t *vpvfsentry; 2803 2804 vpvfsentry = vn_vfslocks_getlock(vfsp); 2805 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 2806 } 2807 2808 /* 2809 * Unlock a locked filesystem. 2810 */ 2811 void 2812 vfs_unlock(vfs_t *vfsp) 2813 { 2814 vn_vfslocks_entry_t *vpvfsentry; 2815 2816 /* 2817 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 2818 * And these changes should remain for the patch changes as it is. 2819 */ 2820 if (panicstr) 2821 return; 2822 2823 /* 2824 * ve_refcount needs to be dropped twice here. 2825 * 1. To release refernce after a call to vfs_locks_getlock() 2826 * 2. To release the reference from the locking routines like 2827 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 2828 */ 2829 2830 vpvfsentry = vn_vfslocks_getlock(vfsp); 2831 vn_vfslocks_rele(vpvfsentry); 2832 2833 rwst_exit(&vpvfsentry->ve_lock); 2834 vn_vfslocks_rele(vpvfsentry); 2835 } 2836 2837 /* 2838 * Utility routine that allows a filesystem to construct its 2839 * fsid in "the usual way" - by munging some underlying dev_t and 2840 * the filesystem type number into the 64-bit fsid. Note that 2841 * this implicitly relies on dev_t persistence to make filesystem 2842 * id's persistent. 2843 * 2844 * There's nothing to prevent an individual fs from constructing its 2845 * fsid in a different way, and indeed they should. 2846 * 2847 * Since we want fsids to be 32-bit quantities (so that they can be 2848 * exported identically by either 32-bit or 64-bit APIs, as well as 2849 * the fact that fsid's are "known" to NFS), we compress the device 2850 * number given down to 32-bits, and panic if that isn't possible. 2851 */ 2852 void 2853 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 2854 { 2855 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 2856 panic("device number too big for fsid!"); 2857 fsi->val[1] = val; 2858 } 2859 2860 int 2861 vfs_lock_held(vfs_t *vfsp) 2862 { 2863 int held; 2864 vn_vfslocks_entry_t *vpvfsentry; 2865 2866 /* 2867 * vfs_lock_held will mimic sema_held behaviour 2868 * if panicstr is set. And these changes should remain 2869 * for the patch changes as it is. 2870 */ 2871 if (panicstr) 2872 return (1); 2873 2874 vpvfsentry = vn_vfslocks_getlock(vfsp); 2875 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 2876 2877 vn_vfslocks_rele(vpvfsentry); 2878 return (held); 2879 } 2880 2881 struct _kthread * 2882 vfs_lock_owner(vfs_t *vfsp) 2883 { 2884 struct _kthread *owner; 2885 vn_vfslocks_entry_t *vpvfsentry; 2886 2887 /* 2888 * vfs_wlock_held will mimic sema_held behaviour 2889 * if panicstr is set. And these changes should remain 2890 * for the patch changes as it is. 2891 */ 2892 if (panicstr) 2893 return (NULL); 2894 2895 vpvfsentry = vn_vfslocks_getlock(vfsp); 2896 owner = rwst_owner(&vpvfsentry->ve_lock); 2897 2898 vn_vfslocks_rele(vpvfsentry); 2899 return (owner); 2900 } 2901 2902 /* 2903 * vfs list locking. 2904 * 2905 * Rather than manipulate the vfslist lock directly, we abstract into lock 2906 * and unlock routines to allow the locking implementation to be changed for 2907 * clustering. 2908 * 2909 * Whenever the vfs list is modified through its hash links, the overall list 2910 * lock must be obtained before locking the relevant hash bucket. But to see 2911 * whether a given vfs is on the list, it suffices to obtain the lock for the 2912 * hash bucket without getting the overall list lock. (See getvfs() below.) 2913 */ 2914 2915 void 2916 vfs_list_lock() 2917 { 2918 rw_enter(&vfslist, RW_WRITER); 2919 } 2920 2921 void 2922 vfs_list_read_lock() 2923 { 2924 rw_enter(&vfslist, RW_READER); 2925 } 2926 2927 void 2928 vfs_list_unlock() 2929 { 2930 rw_exit(&vfslist); 2931 } 2932 2933 /* 2934 * Low level worker routines for adding entries to and removing entries from 2935 * the vfs list. 2936 */ 2937 2938 static void 2939 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 2940 { 2941 int vhno; 2942 struct vfs **hp; 2943 dev_t dev; 2944 2945 ASSERT(RW_WRITE_HELD(&vfslist)); 2946 2947 dev = expldev(vfsp->vfs_fsid.val[0]); 2948 vhno = VFSHASH(getmajor(dev), getminor(dev)); 2949 2950 mutex_enter(&rvfs_list[vhno].rvfs_lock); 2951 2952 /* 2953 * Link into the hash table, inserting it at the end, so that LOFS 2954 * with the same fsid as UFS (or other) file systems will not hide the 2955 * UFS. 2956 */ 2957 if (insert_at_head) { 2958 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 2959 rvfs_list[vhno].rvfs_head = vfsp; 2960 } else { 2961 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 2962 hp = &(*hp)->vfs_hash) 2963 continue; 2964 /* 2965 * hp now contains the address of the pointer to update 2966 * to effect the insertion. 2967 */ 2968 vfsp->vfs_hash = NULL; 2969 *hp = vfsp; 2970 } 2971 2972 rvfs_list[vhno].rvfs_len++; 2973 mutex_exit(&rvfs_list[vhno].rvfs_lock); 2974 } 2975 2976 2977 static void 2978 vfs_hash_remove(struct vfs *vfsp) 2979 { 2980 int vhno; 2981 struct vfs *tvfsp; 2982 dev_t dev; 2983 2984 ASSERT(RW_WRITE_HELD(&vfslist)); 2985 2986 dev = expldev(vfsp->vfs_fsid.val[0]); 2987 vhno = VFSHASH(getmajor(dev), getminor(dev)); 2988 2989 mutex_enter(&rvfs_list[vhno].rvfs_lock); 2990 2991 /* 2992 * Remove from hash. 2993 */ 2994 if (rvfs_list[vhno].rvfs_head == vfsp) { 2995 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 2996 rvfs_list[vhno].rvfs_len--; 2997 goto foundit; 2998 } 2999 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3000 tvfsp = tvfsp->vfs_hash) { 3001 if (tvfsp->vfs_hash == vfsp) { 3002 tvfsp->vfs_hash = vfsp->vfs_hash; 3003 rvfs_list[vhno].rvfs_len--; 3004 goto foundit; 3005 } 3006 } 3007 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3008 3009 foundit: 3010 3011 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3012 } 3013 3014 3015 void 3016 vfs_list_add(struct vfs *vfsp) 3017 { 3018 zone_t *zone; 3019 3020 /* 3021 * The zone that owns the mount is the one that performed the mount. 3022 * Note that this isn't necessarily the same as the zone mounted into. 3023 * The corresponding zone_rele() will be done when the vfs_t is 3024 * being free'd. 3025 */ 3026 vfsp->vfs_zone = curproc->p_zone; 3027 zone_hold(vfsp->vfs_zone); 3028 3029 /* 3030 * Find the zone mounted into, and put this mount on its vfs list. 3031 */ 3032 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3033 ASSERT(zone != NULL); 3034 /* 3035 * Special casing for the root vfs. This structure is allocated 3036 * statically and hooked onto rootvfs at link time. During the 3037 * vfs_mountroot call at system startup time, the root file system's 3038 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3039 * as argument. The code below must detect and handle this special 3040 * case. The only apparent justification for this special casing is 3041 * to ensure that the root file system appears at the head of the 3042 * list. 3043 * 3044 * XXX: I'm assuming that it's ok to do normal list locking when 3045 * adding the entry for the root file system (this used to be 3046 * done with no locks held). 3047 */ 3048 vfs_list_lock(); 3049 /* 3050 * Link into the vfs list proper. 3051 */ 3052 if (vfsp == &root) { 3053 /* 3054 * Assert: This vfs is already on the list as its first entry. 3055 * Thus, there's nothing to do. 3056 */ 3057 ASSERT(rootvfs == vfsp); 3058 /* 3059 * Add it to the head of the global zone's vfslist. 3060 */ 3061 ASSERT(zone == global_zone); 3062 ASSERT(zone->zone_vfslist == NULL); 3063 zone->zone_vfslist = vfsp; 3064 } else { 3065 /* 3066 * Link to end of list using vfs_prev (as rootvfs is now a 3067 * doubly linked circular list) so list is in mount order for 3068 * mnttab use. 3069 */ 3070 rootvfs->vfs_prev->vfs_next = vfsp; 3071 vfsp->vfs_prev = rootvfs->vfs_prev; 3072 rootvfs->vfs_prev = vfsp; 3073 vfsp->vfs_next = rootvfs; 3074 3075 /* 3076 * Do it again for the zone-private list (which may be NULL). 3077 */ 3078 if (zone->zone_vfslist == NULL) { 3079 ASSERT(zone != global_zone); 3080 zone->zone_vfslist = vfsp; 3081 } else { 3082 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3083 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3084 zone->zone_vfslist->vfs_zone_prev = vfsp; 3085 vfsp->vfs_zone_next = zone->zone_vfslist; 3086 } 3087 } 3088 3089 /* 3090 * Link into the hash table, inserting it at the end, so that LOFS 3091 * with the same fsid as UFS (or other) file systems will not hide 3092 * the UFS. 3093 */ 3094 vfs_hash_add(vfsp, 0); 3095 3096 /* 3097 * update the mnttab modification time 3098 */ 3099 vfs_mnttab_modtimeupd(); 3100 vfs_list_unlock(); 3101 zone_rele(zone); 3102 } 3103 3104 void 3105 vfs_list_remove(struct vfs *vfsp) 3106 { 3107 zone_t *zone; 3108 3109 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3110 ASSERT(zone != NULL); 3111 /* 3112 * Callers are responsible for preventing attempts to unmount the 3113 * root. 3114 */ 3115 ASSERT(vfsp != rootvfs); 3116 3117 vfs_list_lock(); 3118 3119 /* 3120 * Remove from hash. 3121 */ 3122 vfs_hash_remove(vfsp); 3123 3124 /* 3125 * Remove from vfs list. 3126 */ 3127 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3128 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3129 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3130 3131 /* 3132 * Remove from zone-specific vfs list. 3133 */ 3134 if (zone->zone_vfslist == vfsp) 3135 zone->zone_vfslist = vfsp->vfs_zone_next; 3136 3137 if (vfsp->vfs_zone_next == vfsp) { 3138 ASSERT(vfsp->vfs_zone_prev == vfsp); 3139 ASSERT(zone->zone_vfslist == vfsp); 3140 zone->zone_vfslist = NULL; 3141 } 3142 3143 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3144 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3145 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3146 3147 /* 3148 * update the mnttab modification time 3149 */ 3150 vfs_mnttab_modtimeupd(); 3151 vfs_list_unlock(); 3152 zone_rele(zone); 3153 } 3154 3155 struct vfs * 3156 getvfs(fsid_t *fsid) 3157 { 3158 struct vfs *vfsp; 3159 int val0 = fsid->val[0]; 3160 int val1 = fsid->val[1]; 3161 dev_t dev = expldev(val0); 3162 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3163 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3164 3165 mutex_enter(hmp); 3166 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3167 if (vfsp->vfs_fsid.val[0] == val0 && 3168 vfsp->vfs_fsid.val[1] == val1) { 3169 VFS_HOLD(vfsp); 3170 mutex_exit(hmp); 3171 return (vfsp); 3172 } 3173 } 3174 mutex_exit(hmp); 3175 return (NULL); 3176 } 3177 3178 /* 3179 * Search the vfs mount in progress list for a specified device/vfs entry. 3180 * Returns 0 if the first entry in the list that the device matches has the 3181 * given vfs pointer as well. If the device matches but a different vfs 3182 * pointer is encountered in the list before the given vfs pointer then 3183 * a 1 is returned. 3184 */ 3185 3186 int 3187 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3188 { 3189 int retval = 0; 3190 struct ipmnt *mipp; 3191 3192 mutex_enter(&vfs_miplist_mutex); 3193 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3194 if (mipp->mip_dev == dev) { 3195 if (mipp->mip_vfsp != vfsp) 3196 retval = 1; 3197 break; 3198 } 3199 } 3200 mutex_exit(&vfs_miplist_mutex); 3201 return (retval); 3202 } 3203 3204 /* 3205 * Search the vfs list for a specified device. Returns 1, if entry is found 3206 * or 0 if no suitable entry is found. 3207 */ 3208 3209 int 3210 vfs_devismounted(dev_t dev) 3211 { 3212 struct vfs *vfsp; 3213 int found; 3214 3215 vfs_list_read_lock(); 3216 vfsp = rootvfs; 3217 found = 0; 3218 do { 3219 if (vfsp->vfs_dev == dev) { 3220 found = 1; 3221 break; 3222 } 3223 vfsp = vfsp->vfs_next; 3224 } while (vfsp != rootvfs); 3225 3226 vfs_list_unlock(); 3227 return (found); 3228 } 3229 3230 /* 3231 * Search the vfs list for a specified device. Returns a pointer to it 3232 * or NULL if no suitable entry is found. The caller of this routine 3233 * is responsible for releasing the returned vfs pointer. 3234 */ 3235 struct vfs * 3236 vfs_dev2vfsp(dev_t dev) 3237 { 3238 struct vfs *vfsp; 3239 int found; 3240 3241 vfs_list_read_lock(); 3242 vfsp = rootvfs; 3243 found = 0; 3244 do { 3245 /* 3246 * The following could be made more efficient by making 3247 * the entire loop use vfs_zone_next if the call is from 3248 * a zone. The only callers, however, ustat(2) and 3249 * umount2(2), don't seem to justify the added 3250 * complexity at present. 3251 */ 3252 if (vfsp->vfs_dev == dev && 3253 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3254 curproc->p_zone)) { 3255 VFS_HOLD(vfsp); 3256 found = 1; 3257 break; 3258 } 3259 vfsp = vfsp->vfs_next; 3260 } while (vfsp != rootvfs); 3261 vfs_list_unlock(); 3262 return (found ? vfsp: NULL); 3263 } 3264 3265 /* 3266 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3267 * or NULL if no suitable entry is found. The caller of this routine 3268 * is responsible for releasing the returned vfs pointer. 3269 * 3270 * Note that if multiple mntpoints match, the last one matching is 3271 * returned in an attempt to return the "top" mount when overlay 3272 * mounts are covering the same mount point. This is accomplished by starting 3273 * at the end of the list and working our way backwards, stopping at the first 3274 * matching mount. 3275 */ 3276 struct vfs * 3277 vfs_mntpoint2vfsp(const char *mp) 3278 { 3279 struct vfs *vfsp; 3280 struct vfs *retvfsp = NULL; 3281 zone_t *zone = curproc->p_zone; 3282 struct vfs *list; 3283 3284 vfs_list_read_lock(); 3285 if (getzoneid() == GLOBAL_ZONEID) { 3286 /* 3287 * The global zone may see filesystems in any zone. 3288 */ 3289 vfsp = rootvfs->vfs_prev; 3290 do { 3291 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3292 retvfsp = vfsp; 3293 break; 3294 } 3295 vfsp = vfsp->vfs_prev; 3296 } while (vfsp != rootvfs->vfs_prev); 3297 } else if ((list = zone->zone_vfslist) != NULL) { 3298 const char *mntpt; 3299 3300 vfsp = list->vfs_zone_prev; 3301 do { 3302 mntpt = refstr_value(vfsp->vfs_mntpt); 3303 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3304 if (strcmp(mntpt, mp) == 0) { 3305 retvfsp = vfsp; 3306 break; 3307 } 3308 vfsp = vfsp->vfs_zone_prev; 3309 } while (vfsp != list->vfs_zone_prev); 3310 } 3311 if (retvfsp) 3312 VFS_HOLD(retvfsp); 3313 vfs_list_unlock(); 3314 return (retvfsp); 3315 } 3316 3317 /* 3318 * Search the vfs list for a specified vfsops. 3319 * if vfs entry is found then return 1, else 0. 3320 */ 3321 int 3322 vfs_opsinuse(vfsops_t *ops) 3323 { 3324 struct vfs *vfsp; 3325 int found; 3326 3327 vfs_list_read_lock(); 3328 vfsp = rootvfs; 3329 found = 0; 3330 do { 3331 if (vfs_getops(vfsp) == ops) { 3332 found = 1; 3333 break; 3334 } 3335 vfsp = vfsp->vfs_next; 3336 } while (vfsp != rootvfs); 3337 vfs_list_unlock(); 3338 return (found); 3339 } 3340 3341 /* 3342 * Allocate an entry in vfssw for a file system type 3343 */ 3344 struct vfssw * 3345 allocate_vfssw(char *type) 3346 { 3347 struct vfssw *vswp; 3348 3349 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3350 /* 3351 * The vfssw table uses the empty string to identify an 3352 * available entry; we cannot add any type which has 3353 * a leading NUL. The string length is limited to 3354 * the size of the st_fstype array in struct stat. 3355 */ 3356 return (NULL); 3357 } 3358 3359 ASSERT(VFSSW_WRITE_LOCKED()); 3360 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3361 if (!ALLOCATED_VFSSW(vswp)) { 3362 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3363 (void) strcpy(vswp->vsw_name, type); 3364 ASSERT(vswp->vsw_count == 0); 3365 vswp->vsw_count = 1; 3366 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3367 return (vswp); 3368 } 3369 return (NULL); 3370 } 3371 3372 /* 3373 * Impose additional layer of translation between vfstype names 3374 * and module names in the filesystem. 3375 */ 3376 static char * 3377 vfs_to_modname(char *vfstype) 3378 { 3379 if (strcmp(vfstype, "proc") == 0) { 3380 vfstype = "procfs"; 3381 } else if (strcmp(vfstype, "fd") == 0) { 3382 vfstype = "fdfs"; 3383 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3384 vfstype = "nfs"; 3385 } 3386 3387 return (vfstype); 3388 } 3389 3390 /* 3391 * Find a vfssw entry given a file system type name. 3392 * Try to autoload the filesystem if it's not found. 3393 * If it's installed, return the vfssw locked to prevent unloading. 3394 */ 3395 struct vfssw * 3396 vfs_getvfssw(char *type) 3397 { 3398 struct vfssw *vswp; 3399 char *modname; 3400 3401 RLOCK_VFSSW(); 3402 vswp = vfs_getvfsswbyname(type); 3403 modname = vfs_to_modname(type); 3404 3405 if (rootdir == NULL) { 3406 /* 3407 * If we haven't yet loaded the root file system, then our 3408 * _init won't be called until later. Allocate vfssw entry, 3409 * because mod_installfs won't be called. 3410 */ 3411 if (vswp == NULL) { 3412 RUNLOCK_VFSSW(); 3413 WLOCK_VFSSW(); 3414 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3415 if ((vswp = allocate_vfssw(type)) == NULL) { 3416 WUNLOCK_VFSSW(); 3417 return (NULL); 3418 } 3419 } 3420 WUNLOCK_VFSSW(); 3421 RLOCK_VFSSW(); 3422 } 3423 if (!VFS_INSTALLED(vswp)) { 3424 RUNLOCK_VFSSW(); 3425 (void) modloadonly("fs", modname); 3426 } else 3427 RUNLOCK_VFSSW(); 3428 return (vswp); 3429 } 3430 3431 /* 3432 * Try to load the filesystem. Before calling modload(), we drop 3433 * our lock on the VFS switch table, and pick it up after the 3434 * module is loaded. However, there is a potential race: the 3435 * module could be unloaded after the call to modload() completes 3436 * but before we pick up the lock and drive on. Therefore, 3437 * we keep reloading the module until we've loaded the module 3438 * _and_ we have the lock on the VFS switch table. 3439 */ 3440 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3441 RUNLOCK_VFSSW(); 3442 if (modload("fs", modname) == -1) 3443 return (NULL); 3444 RLOCK_VFSSW(); 3445 if (vswp == NULL) 3446 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3447 break; 3448 } 3449 RUNLOCK_VFSSW(); 3450 3451 return (vswp); 3452 } 3453 3454 /* 3455 * Find a vfssw entry given a file system type name. 3456 */ 3457 struct vfssw * 3458 vfs_getvfsswbyname(char *type) 3459 { 3460 struct vfssw *vswp; 3461 3462 ASSERT(VFSSW_LOCKED()); 3463 if (type == NULL || *type == '\0') 3464 return (NULL); 3465 3466 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3467 if (strcmp(type, vswp->vsw_name) == 0) { 3468 vfs_refvfssw(vswp); 3469 return (vswp); 3470 } 3471 } 3472 3473 return (NULL); 3474 } 3475 3476 /* 3477 * Find a vfssw entry given a set of vfsops. 3478 */ 3479 struct vfssw * 3480 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3481 { 3482 struct vfssw *vswp; 3483 3484 RLOCK_VFSSW(); 3485 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3486 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 3487 vfs_refvfssw(vswp); 3488 RUNLOCK_VFSSW(); 3489 return (vswp); 3490 } 3491 } 3492 RUNLOCK_VFSSW(); 3493 3494 return (NULL); 3495 } 3496 3497 /* 3498 * Reference a vfssw entry. 3499 */ 3500 void 3501 vfs_refvfssw(struct vfssw *vswp) 3502 { 3503 3504 mutex_enter(&vswp->vsw_lock); 3505 vswp->vsw_count++; 3506 mutex_exit(&vswp->vsw_lock); 3507 } 3508 3509 /* 3510 * Unreference a vfssw entry. 3511 */ 3512 void 3513 vfs_unrefvfssw(struct vfssw *vswp) 3514 { 3515 3516 mutex_enter(&vswp->vsw_lock); 3517 vswp->vsw_count--; 3518 mutex_exit(&vswp->vsw_lock); 3519 } 3520 3521 int sync_timeout = 30; /* timeout for syncing a page during panic */ 3522 int sync_timeleft; /* portion of sync_timeout remaining */ 3523 3524 static int sync_retries = 20; /* number of retries when not making progress */ 3525 static int sync_triesleft; /* portion of sync_retries remaining */ 3526 3527 static pgcnt_t old_pgcnt, new_pgcnt; 3528 static int new_bufcnt, old_bufcnt; 3529 3530 /* 3531 * Sync all of the mounted filesystems, and then wait for the actual i/o to 3532 * complete. We wait by counting the number of dirty pages and buffers, 3533 * pushing them out using bio_busy() and page_busy(), and then counting again. 3534 * This routine is used during both the uadmin A_SHUTDOWN code as well as 3535 * the SYNC phase of the panic code (see comments in panic.c). It should only 3536 * be used after some higher-level mechanism has quiesced the system so that 3537 * new writes are not being initiated while we are waiting for completion. 3538 * 3539 * To ensure finite running time, our algorithm uses two timeout mechanisms: 3540 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 3541 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 3542 * Together these ensure that syncing completes if our i/o paths are stuck. 3543 * The counters are declared above so they can be found easily in the debugger. 3544 * 3545 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 3546 * vfs_syncprogress() subroutine whenever we make progress through the lists of 3547 * pages and buffers. It is decremented and expired by the deadman() cyclic. 3548 * When vfs_syncall() decides it is done, we disable the deadman() counter by 3549 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 3550 * deadlocking or hanging inside of a broken filesystem or driver routine. 3551 * 3552 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 3553 * sync_retries consecutive calls to bio_busy() and page_busy() without 3554 * decreasing either the number of dirty buffers or dirty pages below the 3555 * lowest count we have seen so far, we give up and return from vfs_syncall(). 3556 * 3557 * Each loop iteration ends with a call to delay() one second to allow time for 3558 * i/o completion and to permit the user time to read our progress messages. 3559 */ 3560 void 3561 vfs_syncall(void) 3562 { 3563 if (rootdir == NULL && !modrootloaded) 3564 return; /* panic during boot - no filesystems yet */ 3565 3566 printf("syncing file systems..."); 3567 vfs_syncprogress(); 3568 sync(); 3569 3570 vfs_syncprogress(); 3571 sync_triesleft = sync_retries; 3572 3573 old_bufcnt = new_bufcnt = INT_MAX; 3574 old_pgcnt = new_pgcnt = ULONG_MAX; 3575 3576 while (sync_triesleft > 0) { 3577 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 3578 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 3579 3580 new_bufcnt = bio_busy(B_TRUE); 3581 new_pgcnt = page_busy(B_TRUE); 3582 vfs_syncprogress(); 3583 3584 if (new_bufcnt == 0 && new_pgcnt == 0) 3585 break; 3586 3587 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 3588 sync_triesleft = sync_retries; 3589 else 3590 sync_triesleft--; 3591 3592 if (new_bufcnt) 3593 printf(" [%d]", new_bufcnt); 3594 if (new_pgcnt) 3595 printf(" %lu", new_pgcnt); 3596 3597 delay(hz); 3598 } 3599 3600 if (new_bufcnt != 0 || new_pgcnt != 0) 3601 printf(" done (not all i/o completed)\n"); 3602 else 3603 printf(" done\n"); 3604 3605 sync_timeleft = 0; 3606 delay(hz); 3607 } 3608 3609 /* 3610 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 3611 * sync_timeout to indicate that we are making progress and the deadman() 3612 * omnipresent cyclic should not yet time us out. Note that it is safe to 3613 * store to sync_timeleft here since the deadman() is firing at high-level 3614 * on top of us. If we are racing with the deadman(), either the deadman() 3615 * will decrement the old value and then we will reset it, or we will 3616 * reset it and then the deadman() will immediately decrement it. In either 3617 * case, correct behavior results. 3618 */ 3619 void 3620 vfs_syncprogress(void) 3621 { 3622 if (panicstr) 3623 sync_timeleft = sync_timeout; 3624 } 3625 3626 /* 3627 * Map VFS flags to statvfs flags. These shouldn't really be separate 3628 * flags at all. 3629 */ 3630 uint_t 3631 vf_to_stf(uint_t vf) 3632 { 3633 uint_t stf = 0; 3634 3635 if (vf & VFS_RDONLY) 3636 stf |= ST_RDONLY; 3637 if (vf & VFS_NOSETUID) 3638 stf |= ST_NOSUID; 3639 if (vf & VFS_NOTRUNC) 3640 stf |= ST_NOTRUNC; 3641 3642 return (stf); 3643 } 3644 3645 /* 3646 * Use old-style function prototype for vfsstray() so 3647 * that we can use it anywhere in the vfsops structure. 3648 */ 3649 int vfsstray(); 3650 3651 /* 3652 * Entries for (illegal) fstype 0. 3653 */ 3654 /* ARGSUSED */ 3655 int 3656 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 3657 { 3658 cmn_err(CE_PANIC, "stray vfs operation"); 3659 return (0); 3660 } 3661 3662 vfsops_t vfs_strayops = { 3663 vfsstray, 3664 vfsstray, 3665 vfsstray, 3666 vfsstray, 3667 vfsstray_sync, 3668 vfsstray, 3669 vfsstray, 3670 vfsstray 3671 }; 3672 3673 /* 3674 * Entries for (illegal) fstype 0. 3675 */ 3676 int 3677 vfsstray(void) 3678 { 3679 cmn_err(CE_PANIC, "stray vfs operation"); 3680 return (0); 3681 } 3682 3683 /* 3684 * Support for dealing with forced UFS unmount and its interaction with 3685 * LOFS. Could be used by any filesystem. 3686 * See bug 1203132. 3687 */ 3688 int 3689 vfs_EIO(void) 3690 { 3691 return (EIO); 3692 } 3693 3694 /* 3695 * We've gotta define the op for sync separately, since the compiler gets 3696 * confused if we mix and match ANSI and normal style prototypes when 3697 * a "short" argument is present and spits out a warning. 3698 */ 3699 /*ARGSUSED*/ 3700 int 3701 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 3702 { 3703 return (EIO); 3704 } 3705 3706 vfs_t EIO_vfs; 3707 vfsops_t *EIO_vfsops; 3708 3709 /* 3710 * Called from startup() to initialize all loaded vfs's 3711 */ 3712 void 3713 vfsinit(void) 3714 { 3715 struct vfssw *vswp; 3716 int error; 3717 extern int vopstats_enabled; 3718 extern void vopstats_startup(); 3719 3720 static const fs_operation_def_t EIO_vfsops_template[] = { 3721 VFSNAME_MOUNT, vfs_EIO, 3722 VFSNAME_UNMOUNT, vfs_EIO, 3723 VFSNAME_ROOT, vfs_EIO, 3724 VFSNAME_STATVFS, vfs_EIO, 3725 VFSNAME_SYNC, (fs_generic_func_p) vfs_EIO_sync, 3726 VFSNAME_VGET, vfs_EIO, 3727 VFSNAME_MOUNTROOT, vfs_EIO, 3728 VFSNAME_FREEVFS, vfs_EIO, 3729 VFSNAME_VNSTATE, vfs_EIO, 3730 NULL, NULL 3731 }; 3732 3733 3734 /* Initialize the vnode cache (file systems may use it during init). */ 3735 3736 vn_create_cache(); 3737 3738 /* Setup event monitor framework */ 3739 3740 fem_init(); 3741 3742 /* Initialize the dummy stray file system type. */ 3743 3744 vfssw[0].vsw_vfsops = vfs_strayops; 3745 3746 /* Initialize the dummy EIO file system. */ 3747 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 3748 if (error != 0) { 3749 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 3750 /* Shouldn't happen, but not bad enough to panic */ 3751 } 3752 3753 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 3754 3755 /* 3756 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 3757 * on this vfs can immediately notice it's invalid. 3758 */ 3759 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 3760 3761 /* 3762 * Call the init routines of non-loadable filesystems only. 3763 * Filesystems which are loaded as separate modules will be 3764 * initialized by the module loading code instead. 3765 */ 3766 3767 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3768 RLOCK_VFSSW(); 3769 if (vswp->vsw_init != NULL) 3770 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 3771 RUNLOCK_VFSSW(); 3772 } 3773 3774 vopstats_startup(); 3775 3776 if (vopstats_enabled) { 3777 /* EIO_vfs can collect stats, but we don't retrieve them */ 3778 initialize_vopstats(&EIO_vfs.vfs_vopstats); 3779 EIO_vfs.vfs_fstypevsp = NULL; 3780 EIO_vfs.vfs_vskap = NULL; 3781 EIO_vfs.vfs_flag |= VFS_STATS; 3782 } 3783 } 3784 3785 /* 3786 * Increments the vfs reference count by one atomically. 3787 */ 3788 void 3789 vfs_hold(vfs_t *vfsp) 3790 { 3791 atomic_add_32(&vfsp->vfs_count, 1); 3792 ASSERT(vfsp->vfs_count != 0); 3793 } 3794 3795 /* 3796 * Decrements the vfs reference count by one atomically. When 3797 * vfs reference count becomes zero, it calls the file system 3798 * specific vfs_freevfs() to free up the resources. 3799 */ 3800 void 3801 vfs_rele(vfs_t *vfsp) 3802 { 3803 ASSERT(vfsp->vfs_count != 0); 3804 if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) { 3805 VFS_FREEVFS(vfsp); 3806 if (vfsp->vfs_zone) 3807 zone_rele(vfsp->vfs_zone); 3808 vfs_freemnttab(vfsp); 3809 sema_destroy(&vfsp->vfs_reflock); 3810 kmem_free(vfsp, sizeof (*vfsp)); 3811 } 3812 } 3813 3814 /* 3815 * Generic operations vector support. 3816 * 3817 * This is used to build operations vectors for both the vfs and vnode. 3818 * It's normally called only when a file system is loaded. 3819 * 3820 * There are many possible algorithms for this, including the following: 3821 * 3822 * (1) scan the list of known operations; for each, see if the file system 3823 * includes an entry for it, and fill it in as appropriate. 3824 * 3825 * (2) set up defaults for all known operations. scan the list of ops 3826 * supplied by the file system; for each which is both supplied and 3827 * known, fill it in. 3828 * 3829 * (3) sort the lists of known ops & supplied ops; scan the list, filling 3830 * in entries as we go. 3831 * 3832 * we choose (1) for simplicity, and because performance isn't critical here. 3833 * note that (2) could be sped up using a precomputed hash table on known ops. 3834 * (3) could be faster than either, but only if the lists were very large or 3835 * supplied in sorted order. 3836 * 3837 */ 3838 3839 int 3840 fs_build_vector(void *vector, int *unused_ops, 3841 const fs_operation_trans_def_t *translation, 3842 const fs_operation_def_t *operations) 3843 { 3844 int i, num_trans, num_ops, used; 3845 3846 /* Count the number of translations and the number of supplied */ 3847 /* operations. */ 3848 3849 { 3850 const fs_operation_trans_def_t *p; 3851 3852 for (num_trans = 0, p = translation; 3853 p->name != NULL; 3854 num_trans++, p++) 3855 ; 3856 } 3857 3858 { 3859 const fs_operation_def_t *p; 3860 3861 for (num_ops = 0, p = operations; 3862 p->name != NULL; 3863 num_ops++, p++) 3864 ; 3865 } 3866 3867 /* Walk through each operation known to our caller. There will be */ 3868 /* one entry in the supplied "translation table" for each. */ 3869 3870 used = 0; 3871 3872 for (i = 0; i < num_trans; i++) { 3873 int j, found; 3874 char *curname; 3875 fs_generic_func_p result; 3876 fs_generic_func_p *location; 3877 3878 curname = translation[i].name; 3879 3880 /* Look for a matching operation in the list supplied by the */ 3881 /* file system. */ 3882 3883 found = 0; 3884 3885 for (j = 0; j < num_ops; j++) { 3886 if (strcmp(operations[j].name, curname) == 0) { 3887 used++; 3888 found = 1; 3889 break; 3890 } 3891 } 3892 3893 /* If the file system is using a "placeholder" for default */ 3894 /* or error functions, grab the appropriate function out of */ 3895 /* the translation table. If the file system didn't supply */ 3896 /* this operation at all, use the default function. */ 3897 3898 if (found) { 3899 result = operations[j].func; 3900 if (result == fs_default) { 3901 result = translation[i].defaultFunc; 3902 } else if (result == fs_error) { 3903 result = translation[i].errorFunc; 3904 } else if (result == NULL) { 3905 /* Null values are PROHIBITED */ 3906 return (EINVAL); 3907 } 3908 } else { 3909 result = translation[i].defaultFunc; 3910 } 3911 3912 /* Now store the function into the operations vector. */ 3913 3914 location = (fs_generic_func_p *) 3915 (((char *)vector) + translation[i].offset); 3916 3917 *location = result; 3918 } 3919 3920 *unused_ops = num_ops - used; 3921 3922 return (0); 3923 } 3924 3925 /* Placeholder functions, should never be called. */ 3926 3927 int 3928 fs_error(void) 3929 { 3930 cmn_err(CE_PANIC, "fs_error called"); 3931 return (0); 3932 } 3933 3934 int 3935 fs_default(void) 3936 { 3937 cmn_err(CE_PANIC, "fs_default called"); 3938 return (0); 3939 } 3940 3941 #ifdef __sparc 3942 3943 /* 3944 * Part of the implementation of booting off a mirrored root 3945 * involves a change of dev_t for the root device. To 3946 * accomplish this, first remove the existing hash table 3947 * entry for the root device, convert to the new dev_t, 3948 * then re-insert in the hash table at the head of the list. 3949 */ 3950 void 3951 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 3952 { 3953 vfs_list_lock(); 3954 3955 vfs_hash_remove(vfsp); 3956 3957 vfsp->vfs_dev = ndev; 3958 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 3959 3960 vfs_hash_add(vfsp, 1); 3961 3962 vfs_list_unlock(); 3963 } 3964 3965 #else /* x86 NEWBOOT */ 3966 3967 int 3968 rootconf() 3969 { 3970 int error; 3971 struct vfssw *vsw; 3972 extern void pm_init(); 3973 char *fstyp; 3974 3975 fstyp = getrootfs(); 3976 3977 if (error = clboot_rootconf()) 3978 return (error); 3979 3980 if (modload("fs", fstyp) == -1) 3981 cmn_err(CE_PANIC, "Cannot _init %s module\n", fstyp); 3982 3983 RLOCK_VFSSW(); 3984 vsw = vfs_getvfsswbyname(fstyp); 3985 RUNLOCK_VFSSW(); 3986 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 3987 VFS_HOLD(rootvfs); 3988 3989 /* always mount readonly first */ 3990 rootvfs->vfs_flag |= VFS_RDONLY; 3991 3992 pm_init(); 3993 3994 if (netboot) 3995 (void) strplumb(); 3996 3997 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 3998 vfs_unrefvfssw(vsw); 3999 rootdev = rootvfs->vfs_dev; 4000 4001 if (error) 4002 cmn_err(CE_PANIC, "cannot mount root path %s", svm_bootpath); 4003 return (error); 4004 } 4005 4006 /* 4007 * XXX this is called by nfs only and should probably be removed 4008 * If booted with ASKNAME, prompt on the console for a filesystem 4009 * name and return it. 4010 */ 4011 void 4012 getfsname(char *askfor, char *name, size_t namelen) 4013 { 4014 if (boothowto & RB_ASKNAME) { 4015 printf("%s name: ", askfor); 4016 console_gets(name, namelen); 4017 } 4018 } 4019 4020 /* 4021 * If server_path exists, then we are booting a diskless 4022 * client. Otherwise, we default to ufs. Zfs should perhaps be 4023 * another property. 4024 */ 4025 static char * 4026 getrootfs(void) 4027 { 4028 extern char *strplumb_get_netdev_path(void); 4029 char *propstr = NULL; 4030 4031 /* check fstype property; it should be nfsdyn for diskless */ 4032 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4033 DDI_PROP_DONTPASS, "fstype", &propstr) 4034 == DDI_SUCCESS) { 4035 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4036 ddi_prop_free(propstr); 4037 } 4038 4039 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) 4040 return (rootfs.bo_fstype); 4041 4042 ++netboot; 4043 /* check if path to network interface is specified in bootpath */ 4044 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4045 DDI_PROP_DONTPASS, "bootpath", &propstr) 4046 == DDI_SUCCESS) { 4047 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4048 ddi_prop_free(propstr); 4049 } else { 4050 /* attempt to determine netdev_path via boot_mac address */ 4051 netdev_path = strplumb_get_netdev_path(); 4052 if (netdev_path == NULL) 4053 cmn_err(CE_PANIC, 4054 "Cannot find boot network interface\n"); 4055 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4056 } 4057 return ("nfs"); 4058 } 4059 #endif 4060