xref: /illumos-gate/usr/src/uts/common/fs/vfs.c (revision 4c28a617e3922d92a58e813a5b955eb526b9c386)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2016 Joyent, Inc.
25  * Copyright 2016 Toomas Soome <tsoome@me.com>
26  * Copyright (c) 2016, 2017 by Delphix. All rights reserved.
27  * Copyright 2016 Nexenta Systems, Inc.
28  * Copyright 2017 RackTop Systems.
29  */
30 
31 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
32 /*	  All Rights Reserved  	*/
33 
34 /*
35  * University Copyright- Copyright (c) 1982, 1986, 1988
36  * The Regents of the University of California
37  * All Rights Reserved
38  *
39  * University Acknowledgment- Portions of this document are derived from
40  * software developed by the University of California, Berkeley, and its
41  * contributors.
42  */
43 
44 #include <sys/types.h>
45 #include <sys/t_lock.h>
46 #include <sys/param.h>
47 #include <sys/errno.h>
48 #include <sys/user.h>
49 #include <sys/fstyp.h>
50 #include <sys/kmem.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/vfs.h>
55 #include <sys/vfs_opreg.h>
56 #include <sys/fem.h>
57 #include <sys/mntent.h>
58 #include <sys/stat.h>
59 #include <sys/statvfs.h>
60 #include <sys/statfs.h>
61 #include <sys/cred.h>
62 #include <sys/vnode.h>
63 #include <sys/rwstlock.h>
64 #include <sys/dnlc.h>
65 #include <sys/file.h>
66 #include <sys/time.h>
67 #include <sys/atomic.h>
68 #include <sys/cmn_err.h>
69 #include <sys/buf.h>
70 #include <sys/swap.h>
71 #include <sys/debug.h>
72 #include <sys/vnode.h>
73 #include <sys/modctl.h>
74 #include <sys/ddi.h>
75 #include <sys/pathname.h>
76 #include <sys/bootconf.h>
77 #include <sys/dumphdr.h>
78 #include <sys/dc_ki.h>
79 #include <sys/poll.h>
80 #include <sys/sunddi.h>
81 #include <sys/sysmacros.h>
82 #include <sys/zone.h>
83 #include <sys/policy.h>
84 #include <sys/ctfs.h>
85 #include <sys/objfs.h>
86 #include <sys/console.h>
87 #include <sys/reboot.h>
88 #include <sys/attr.h>
89 #include <sys/zio.h>
90 #include <sys/spa.h>
91 #include <sys/lofi.h>
92 #include <sys/bootprops.h>
93 
94 #include <vm/page.h>
95 
96 #include <fs/fs_subr.h>
97 /* Private interfaces to create vopstats-related data structures */
98 extern void		initialize_vopstats(vopstats_t *);
99 extern vopstats_t	*get_fstype_vopstats(struct vfs *, struct vfssw *);
100 extern vsk_anchor_t	*get_vskstat_anchor(struct vfs *);
101 
102 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
103 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
104     const char *, int, int);
105 static int  vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
106 static void vfs_freemnttab(struct vfs *);
107 static void vfs_freeopt(mntopt_t *);
108 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
109 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
110 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
111 static void vfs_createopttbl_extend(mntopts_t *, const char *,
112     const mntopts_t *);
113 static char **vfs_copycancelopt_extend(char **const, int);
114 static void vfs_freecancelopt(char **);
115 static void getrootfs(char **, char **);
116 static int getmacpath(dev_info_t *, void *);
117 static void vfs_mnttabvp_setup(void);
118 
119 struct ipmnt {
120 	struct ipmnt	*mip_next;
121 	dev_t		mip_dev;
122 	struct vfs	*mip_vfsp;
123 };
124 
125 static kmutex_t		vfs_miplist_mutex;
126 static struct ipmnt	*vfs_miplist = NULL;
127 static struct ipmnt	*vfs_miplist_end = NULL;
128 
129 static kmem_cache_t *vfs_cache;	/* Pointer to VFS kmem cache */
130 
131 /*
132  * VFS global data.
133  */
134 vnode_t *rootdir;		/* pointer to root inode vnode. */
135 vnode_t *devicesdir;		/* pointer to inode of devices root */
136 vnode_t	*devdir;		/* pointer to inode of dev root */
137 
138 char *server_rootpath;		/* root path for diskless clients */
139 char *server_hostname;		/* hostname of diskless server */
140 
141 static struct vfs root;
142 static struct vfs devices;
143 static struct vfs dev;
144 struct vfs *rootvfs = &root;	/* pointer to root vfs; head of VFS list. */
145 rvfs_t *rvfs_list;		/* array of vfs ptrs for vfs hash list */
146 int vfshsz = 512;		/* # of heads/locks in vfs hash arrays */
147 				/* must be power of 2!	*/
148 timespec_t vfs_mnttab_ctime;	/* mnttab created time */
149 timespec_t vfs_mnttab_mtime;	/* mnttab last modified time */
150 char *vfs_dummyfstype = "\0";
151 struct pollhead vfs_pollhd;	/* for mnttab pollers */
152 struct vnode *vfs_mntdummyvp;	/* to fake mnttab read/write for file events */
153 int	mntfstype;		/* will be set once mnt fs is mounted */
154 
155 /*
156  * Table for generic options recognized in the VFS layer and acted
157  * on at this level before parsing file system specific options.
158  * The nosuid option is stronger than any of the devices and setuid
159  * options, so those are canceled when nosuid is seen.
160  *
161  * All options which are added here need to be added to the
162  * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
163  */
164 /*
165  * VFS Mount options table
166  */
167 static char *ro_cancel[] = { MNTOPT_RW, NULL };
168 static char *rw_cancel[] = { MNTOPT_RO, NULL };
169 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
170 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
171     MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
172 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
173 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
174 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
175 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
176 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
177 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
178 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
179 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
180 
181 static const mntopt_t mntopts[] = {
182 /*
183  *	option name		cancel options		default arg	flags
184  */
185 	{ MNTOPT_REMOUNT,	NULL,			NULL,
186 		MO_NODISPLAY, (void *)0 },
187 	{ MNTOPT_RO,		ro_cancel,		NULL,		0,
188 		(void *)0 },
189 	{ MNTOPT_RW,		rw_cancel,		NULL,		0,
190 		(void *)0 },
191 	{ MNTOPT_SUID,		suid_cancel,		NULL,		0,
192 		(void *)0 },
193 	{ MNTOPT_NOSUID,	nosuid_cancel,		NULL,		0,
194 		(void *)0 },
195 	{ MNTOPT_DEVICES,	devices_cancel,		NULL,		0,
196 		(void *)0 },
197 	{ MNTOPT_NODEVICES,	nodevices_cancel,	NULL,		0,
198 		(void *)0 },
199 	{ MNTOPT_SETUID,	setuid_cancel,		NULL,		0,
200 		(void *)0 },
201 	{ MNTOPT_NOSETUID,	nosetuid_cancel,	NULL,		0,
202 		(void *)0 },
203 	{ MNTOPT_NBMAND,	nbmand_cancel,		NULL,		0,
204 		(void *)0 },
205 	{ MNTOPT_NONBMAND,	nonbmand_cancel,	NULL,		0,
206 		(void *)0 },
207 	{ MNTOPT_EXEC,		exec_cancel,		NULL,		0,
208 		(void *)0 },
209 	{ MNTOPT_NOEXEC,	noexec_cancel,		NULL,		0,
210 		(void *)0 },
211 };
212 
213 const mntopts_t vfs_mntopts = {
214 	sizeof (mntopts) / sizeof (mntopt_t),
215 	(mntopt_t *)&mntopts[0]
216 };
217 
218 /*
219  * File system operation dispatch functions.
220  */
221 
222 int
223 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
224 {
225 	return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
226 }
227 
228 int
229 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
230 {
231 	return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
232 }
233 
234 int
235 fsop_root(vfs_t *vfsp, vnode_t **vpp)
236 {
237 	refstr_t *mntpt;
238 	int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
239 	/*
240 	 * Make sure this root has a path.  With lofs, it is possible to have
241 	 * a NULL mountpoint.
242 	 */
243 	if (ret == 0 && vfsp->vfs_mntpt != NULL &&
244 	    (*vpp)->v_path == vn_vpath_empty) {
245 		const char *path;
246 
247 		mntpt = vfs_getmntpoint(vfsp);
248 		path = refstr_value(mntpt);
249 		vn_setpath_str(*vpp, path, strlen(path));
250 		refstr_rele(mntpt);
251 	}
252 
253 	return (ret);
254 }
255 
256 int
257 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
258 {
259 	return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
260 }
261 
262 int
263 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
264 {
265 	return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
266 }
267 
268 int
269 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
270 {
271 	/*
272 	 * In order to handle system attribute fids in a manner
273 	 * transparent to the underlying fs, we embed the fid for
274 	 * the sysattr parent object in the sysattr fid and tack on
275 	 * some extra bytes that only the sysattr layer knows about.
276 	 *
277 	 * This guarantees that sysattr fids are larger than other fids
278 	 * for this vfs. If the vfs supports the sysattr view interface
279 	 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
280 	 * collision with XATTR_FIDSZ.
281 	 */
282 	if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
283 	    fidp->fid_len == XATTR_FIDSZ)
284 		return (xattr_dir_vget(vfsp, vpp, fidp));
285 
286 	return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
287 }
288 
289 int
290 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
291 {
292 	return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
293 }
294 
295 void
296 fsop_freefs(vfs_t *vfsp)
297 {
298 	(*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
299 }
300 
301 int
302 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
303 {
304 	return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
305 }
306 
307 int
308 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
309 {
310 	ASSERT((fstype >= 0) && (fstype < nfstype));
311 
312 	if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
313 		return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
314 	else
315 		return (ENOTSUP);
316 }
317 
318 /*
319  * File system initialization.  vfs_setfsops() must be called from a file
320  * system's init routine.
321  */
322 
323 static int
324 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
325     int *unused_ops)
326 {
327 	static const fs_operation_trans_def_t vfs_ops_table[] = {
328 		VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
329 			fs_nosys, fs_nosys,
330 
331 		VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
332 			fs_nosys, fs_nosys,
333 
334 		VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
335 			fs_nosys, fs_nosys,
336 
337 		VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
338 			fs_nosys, fs_nosys,
339 
340 		VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
341 			(fs_generic_func_p) fs_sync,
342 			(fs_generic_func_p) fs_sync,	/* No errors allowed */
343 
344 		VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
345 			fs_nosys, fs_nosys,
346 
347 		VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
348 			fs_nosys, fs_nosys,
349 
350 		VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
351 			(fs_generic_func_p)fs_freevfs,
352 			(fs_generic_func_p)fs_freevfs,	/* Shouldn't fail */
353 
354 		VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
355 			(fs_generic_func_p)fs_nosys,
356 			(fs_generic_func_p)fs_nosys,
357 
358 		NULL, 0, NULL, NULL
359 	};
360 
361 	return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
362 }
363 
364 void
365 zfs_boot_init(void)
366 {
367 	if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
368 		spa_boot_init();
369 }
370 
371 int
372 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
373 {
374 	int error;
375 	int unused_ops;
376 
377 	/*
378 	 * Verify that fstype refers to a valid fs.  Note that
379 	 * 0 is valid since it's used to set "stray" ops.
380 	 */
381 	if ((fstype < 0) || (fstype >= nfstype))
382 		return (EINVAL);
383 
384 	if (!ALLOCATED_VFSSW(&vfssw[fstype]))
385 		return (EINVAL);
386 
387 	/* Set up the operations vector. */
388 
389 	error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
390 
391 	if (error != 0)
392 		return (error);
393 
394 	vfssw[fstype].vsw_flag |= VSW_INSTALLED;
395 
396 	if (actual != NULL)
397 		*actual = &vfssw[fstype].vsw_vfsops;
398 
399 #if DEBUG
400 	if (unused_ops != 0)
401 		cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
402 		    "but not used", vfssw[fstype].vsw_name, unused_ops);
403 #endif
404 
405 	return (0);
406 }
407 
408 int
409 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
410 {
411 	int error;
412 	int unused_ops;
413 
414 	*actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
415 
416 	error = fs_copyfsops(template, *actual, &unused_ops);
417 	if (error != 0) {
418 		kmem_free(*actual, sizeof (vfsops_t));
419 		*actual = NULL;
420 		return (error);
421 	}
422 
423 	return (0);
424 }
425 
426 /*
427  * Free a vfsops structure created as a result of vfs_makefsops().
428  * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
429  * vfs_freevfsops_by_type().
430  */
431 void
432 vfs_freevfsops(vfsops_t *vfsops)
433 {
434 	kmem_free(vfsops, sizeof (vfsops_t));
435 }
436 
437 /*
438  * Since the vfsops structure is part of the vfssw table and wasn't
439  * really allocated, we're not really freeing anything.  We keep
440  * the name for consistency with vfs_freevfsops().  We do, however,
441  * need to take care of a little bookkeeping.
442  * NOTE: For a vfsops structure created by vfs_setfsops(), use
443  * vfs_freevfsops_by_type().
444  */
445 int
446 vfs_freevfsops_by_type(int fstype)
447 {
448 
449 	/* Verify that fstype refers to a loaded fs (and not fsid 0). */
450 	if ((fstype <= 0) || (fstype >= nfstype))
451 		return (EINVAL);
452 
453 	WLOCK_VFSSW();
454 	if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
455 		WUNLOCK_VFSSW();
456 		return (EINVAL);
457 	}
458 
459 	vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
460 	WUNLOCK_VFSSW();
461 
462 	return (0);
463 }
464 
465 /* Support routines used to reference vfs_op */
466 
467 /* Set the operations vector for a vfs */
468 void
469 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
470 {
471 	vfsops_t	*op;
472 
473 	ASSERT(vfsp != NULL);
474 	ASSERT(vfsops != NULL);
475 
476 	op = vfsp->vfs_op;
477 	membar_consumer();
478 	if (vfsp->vfs_femhead == NULL &&
479 	    atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) {
480 		return;
481 	}
482 	fsem_setvfsops(vfsp, vfsops);
483 }
484 
485 /* Retrieve the operations vector for a vfs */
486 vfsops_t *
487 vfs_getops(vfs_t *vfsp)
488 {
489 	vfsops_t	*op;
490 
491 	ASSERT(vfsp != NULL);
492 
493 	op = vfsp->vfs_op;
494 	membar_consumer();
495 	if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
496 		return (op);
497 	} else {
498 		return (fsem_getvfsops(vfsp));
499 	}
500 }
501 
502 /*
503  * Returns non-zero (1) if the vfsops matches that of the vfs.
504  * Returns zero (0) if not.
505  */
506 int
507 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
508 {
509 	return (vfs_getops(vfsp) == vfsops);
510 }
511 
512 /*
513  * Returns non-zero (1) if the file system has installed a non-default,
514  * non-error vfs_sync routine.  Returns zero (0) otherwise.
515  */
516 int
517 vfs_can_sync(vfs_t *vfsp)
518 {
519 	/* vfs_sync() routine is not the default/error function */
520 	return (vfs_getops(vfsp)->vfs_sync != fs_sync);
521 }
522 
523 /*
524  * Initialize a vfs structure.
525  */
526 void
527 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
528 {
529 	/* Other initialization has been moved to vfs_alloc() */
530 	vfsp->vfs_count = 0;
531 	vfsp->vfs_next = vfsp;
532 	vfsp->vfs_prev = vfsp;
533 	vfsp->vfs_zone_next = vfsp;
534 	vfsp->vfs_zone_prev = vfsp;
535 	vfsp->vfs_lofi_id = 0;
536 	sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
537 	vfsimpl_setup(vfsp);
538 	vfsp->vfs_data = (data);
539 	vfs_setops((vfsp), (op));
540 }
541 
542 /*
543  * Allocate and initialize the vfs implementation private data
544  * structure, vfs_impl_t.
545  */
546 void
547 vfsimpl_setup(vfs_t *vfsp)
548 {
549 	int i;
550 
551 	if (vfsp->vfs_implp != NULL) {
552 		return;
553 	}
554 
555 	vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
556 	/* Note that these are #define'd in vfs.h */
557 	vfsp->vfs_vskap = NULL;
558 	vfsp->vfs_fstypevsp = NULL;
559 
560 	/* Set size of counted array, then zero the array */
561 	vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
562 	for (i = 1; i <  VFS_FEATURE_MAXSZ; i++) {
563 		vfsp->vfs_featureset[i] = 0;
564 	}
565 }
566 
567 /*
568  * Release the vfs_impl_t structure, if it exists. Some unbundled
569  * filesystems may not use the newer version of vfs and thus
570  * would not contain this implementation private data structure.
571  */
572 void
573 vfsimpl_teardown(vfs_t *vfsp)
574 {
575 	vfs_impl_t	*vip = vfsp->vfs_implp;
576 
577 	if (vip == NULL)
578 		return;
579 
580 	kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
581 	vfsp->vfs_implp = NULL;
582 }
583 
584 /*
585  * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
586  * fstatvfs, and sysfs moved to common/syscall.
587  */
588 
589 /*
590  * Update every mounted file system.  We call the vfs_sync operation of
591  * each file system type, passing it a NULL vfsp to indicate that all
592  * mounted file systems of that type should be updated.
593  */
594 void
595 vfs_sync(int flag)
596 {
597 	struct vfssw *vswp;
598 	RLOCK_VFSSW();
599 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
600 		if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
601 			vfs_refvfssw(vswp);
602 			RUNLOCK_VFSSW();
603 			(void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
604 			    CRED());
605 			vfs_unrefvfssw(vswp);
606 			RLOCK_VFSSW();
607 		}
608 	}
609 	RUNLOCK_VFSSW();
610 }
611 
612 void
613 sync(void)
614 {
615 	vfs_sync(0);
616 }
617 
618 /*
619  * External routines.
620  */
621 
622 krwlock_t vfssw_lock;	/* lock accesses to vfssw */
623 
624 /*
625  * Lock for accessing the vfs linked list.  Initialized in vfs_mountroot(),
626  * but otherwise should be accessed only via vfs_list_lock() and
627  * vfs_list_unlock().  Also used to protect the timestamp for mods to the list.
628  */
629 static krwlock_t vfslist;
630 
631 /*
632  * Mount devfs on /devices. This is done right after root is mounted
633  * to provide device access support for the system
634  */
635 static void
636 vfs_mountdevices(void)
637 {
638 	struct vfssw *vsw;
639 	struct vnode *mvp;
640 	struct mounta mounta = {	/* fake mounta for devfs_mount() */
641 		NULL,
642 		NULL,
643 		MS_SYSSPACE,
644 		NULL,
645 		NULL,
646 		0,
647 		NULL,
648 		0
649 	};
650 
651 	/*
652 	 * _init devfs module to fill in the vfssw
653 	 */
654 	if (modload("fs", "devfs") == -1)
655 		panic("Cannot _init devfs module");
656 
657 	/*
658 	 * Hold vfs
659 	 */
660 	RLOCK_VFSSW();
661 	vsw = vfs_getvfsswbyname("devfs");
662 	VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
663 	VFS_HOLD(&devices);
664 
665 	/*
666 	 * Locate mount point
667 	 */
668 	if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
669 		panic("Cannot find /devices");
670 
671 	/*
672 	 * Perform the mount of /devices
673 	 */
674 	if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
675 		panic("Cannot mount /devices");
676 
677 	RUNLOCK_VFSSW();
678 
679 	/*
680 	 * Set appropriate members and add to vfs list for mnttab display
681 	 */
682 	vfs_setresource(&devices, "/devices", 0);
683 	vfs_setmntpoint(&devices, "/devices", 0);
684 
685 	/*
686 	 * Hold the root of /devices so it won't go away
687 	 */
688 	if (VFS_ROOT(&devices, &devicesdir))
689 		panic("vfs_mountdevices: not devices root");
690 
691 	if (vfs_lock(&devices) != 0) {
692 		VN_RELE(devicesdir);
693 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
694 		return;
695 	}
696 
697 	if (vn_vfswlock(mvp) != 0) {
698 		vfs_unlock(&devices);
699 		VN_RELE(devicesdir);
700 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
701 		return;
702 	}
703 
704 	vfs_add(mvp, &devices, 0);
705 	vn_vfsunlock(mvp);
706 	vfs_unlock(&devices);
707 	VN_RELE(devicesdir);
708 }
709 
710 /*
711  * mount the first instance of /dev  to root and remain mounted
712  */
713 static void
714 vfs_mountdev1(void)
715 {
716 	struct vfssw *vsw;
717 	struct vnode *mvp;
718 	struct mounta mounta = {	/* fake mounta for sdev_mount() */
719 		NULL,
720 		NULL,
721 		MS_SYSSPACE | MS_OVERLAY,
722 		NULL,
723 		NULL,
724 		0,
725 		NULL,
726 		0
727 	};
728 
729 	/*
730 	 * _init dev module to fill in the vfssw
731 	 */
732 	if (modload("fs", "dev") == -1)
733 		cmn_err(CE_PANIC, "Cannot _init dev module\n");
734 
735 	/*
736 	 * Hold vfs
737 	 */
738 	RLOCK_VFSSW();
739 	vsw = vfs_getvfsswbyname("dev");
740 	VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
741 	VFS_HOLD(&dev);
742 
743 	/*
744 	 * Locate mount point
745 	 */
746 	if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
747 		cmn_err(CE_PANIC, "Cannot find /dev\n");
748 
749 	/*
750 	 * Perform the mount of /dev
751 	 */
752 	if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
753 		cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
754 
755 	RUNLOCK_VFSSW();
756 
757 	/*
758 	 * Set appropriate members and add to vfs list for mnttab display
759 	 */
760 	vfs_setresource(&dev, "/dev", 0);
761 	vfs_setmntpoint(&dev, "/dev", 0);
762 
763 	/*
764 	 * Hold the root of /dev so it won't go away
765 	 */
766 	if (VFS_ROOT(&dev, &devdir))
767 		cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
768 
769 	if (vfs_lock(&dev) != 0) {
770 		VN_RELE(devdir);
771 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
772 		return;
773 	}
774 
775 	if (vn_vfswlock(mvp) != 0) {
776 		vfs_unlock(&dev);
777 		VN_RELE(devdir);
778 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
779 		return;
780 	}
781 
782 	vfs_add(mvp, &dev, 0);
783 	vn_vfsunlock(mvp);
784 	vfs_unlock(&dev);
785 	VN_RELE(devdir);
786 }
787 
788 /*
789  * Mount required filesystem. This is done right after root is mounted.
790  */
791 static void
792 vfs_mountfs(char *module, char *spec, char *path)
793 {
794 	struct vnode *mvp;
795 	struct mounta mounta;
796 	vfs_t *vfsp;
797 
798 	bzero(&mounta, sizeof (mounta));
799 	mounta.flags = MS_SYSSPACE | MS_DATA;
800 	mounta.fstype = module;
801 	mounta.spec = spec;
802 	mounta.dir = path;
803 	if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
804 		cmn_err(CE_WARN, "Cannot find %s", path);
805 		return;
806 	}
807 	if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
808 		cmn_err(CE_WARN, "Cannot mount %s", path);
809 	else
810 		VFS_RELE(vfsp);
811 	VN_RELE(mvp);
812 }
813 
814 /*
815  * vfs_mountroot is called by main() to mount the root filesystem.
816  */
817 void
818 vfs_mountroot(void)
819 {
820 	struct vnode	*rvp = NULL;
821 	char		*path;
822 	size_t		plen;
823 	struct vfssw	*vswp;
824 	proc_t		*p;
825 
826 	rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
827 	rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
828 
829 	/*
830 	 * Alloc the vfs hash bucket array and locks
831 	 */
832 	rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
833 
834 	/*
835 	 * Call machine-dependent routine "rootconf" to choose a root
836 	 * file system type.
837 	 */
838 	if (rootconf())
839 		panic("vfs_mountroot: cannot mount root");
840 	/*
841 	 * Get vnode for '/'.  Set up rootdir, u.u_rdir and u.u_cdir
842 	 * to point to it.  These are used by lookuppn() so that it
843 	 * knows where to start from ('/' or '.').
844 	 */
845 	vfs_setmntpoint(rootvfs, "/", 0);
846 	if (VFS_ROOT(rootvfs, &rootdir))
847 		panic("vfs_mountroot: no root vnode");
848 
849 	/*
850 	 * At this point, the process tree consists of p0 and possibly some
851 	 * direct children of p0.  (i.e. there are no grandchildren)
852 	 *
853 	 * Walk through them all, setting their current directory.
854 	 */
855 	mutex_enter(&pidlock);
856 	for (p = practive; p != NULL; p = p->p_next) {
857 		ASSERT(p == &p0 || p->p_parent == &p0);
858 
859 		PTOU(p)->u_cdir = rootdir;
860 		VN_HOLD(PTOU(p)->u_cdir);
861 		PTOU(p)->u_rdir = NULL;
862 	}
863 	mutex_exit(&pidlock);
864 
865 	/*
866 	 * Setup the global zone's rootvp, now that it exists.
867 	 */
868 	global_zone->zone_rootvp = rootdir;
869 	VN_HOLD(global_zone->zone_rootvp);
870 
871 	/*
872 	 * Notify the module code that it can begin using the
873 	 * root filesystem instead of the boot program's services.
874 	 */
875 	modrootloaded = 1;
876 
877 	/*
878 	 * Special handling for a ZFS root file system.
879 	 */
880 	zfs_boot_init();
881 
882 	/*
883 	 * Set up mnttab information for root
884 	 */
885 	vfs_setresource(rootvfs, rootfs.bo_name, 0);
886 
887 	/*
888 	 * Notify cluster software that the root filesystem is available.
889 	 */
890 	clboot_mountroot();
891 
892 	/* Now that we're all done with the root FS, set up its vopstats */
893 	if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
894 		/* Set flag for statistics collection */
895 		if (vswp->vsw_flag & VSW_STATS) {
896 			initialize_vopstats(&rootvfs->vfs_vopstats);
897 			rootvfs->vfs_flag |= VFS_STATS;
898 			rootvfs->vfs_fstypevsp =
899 			    get_fstype_vopstats(rootvfs, vswp);
900 			rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
901 		}
902 		vfs_unrefvfssw(vswp);
903 	}
904 
905 	/*
906 	 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
907 	 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
908 	 */
909 	vfs_mountdevices();
910 	vfs_mountdev1();
911 
912 	vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
913 	vfs_mountfs("proc", "/proc", "/proc");
914 	vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
915 	vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
916 	vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
917 	vfs_mountfs("bootfs", "bootfs", "/system/boot");
918 
919 	if (getzoneid() == GLOBAL_ZONEID) {
920 		vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
921 	}
922 
923 	if (strcmp(rootfs.bo_fstype, "zfs") != 0) {
924 		/*
925 		 * Look up the root device via devfs so that a dv_node is
926 		 * created for it. The vnode is never VN_RELE()ed.
927 		 * We allocate more than MAXPATHLEN so that the
928 		 * buffer passed to i_ddi_prompath_to_devfspath() is
929 		 * exactly MAXPATHLEN (the function expects a buffer
930 		 * of that length).
931 		 */
932 		plen = strlen("/devices");
933 		path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
934 		(void) strcpy(path, "/devices");
935 
936 		if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
937 		    != DDI_SUCCESS ||
938 		    lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
939 
940 			/* NUL terminate in case "path" has garbage */
941 			path[plen + MAXPATHLEN - 1] = '\0';
942 #ifdef	DEBUG
943 			cmn_err(CE_WARN, "!Cannot lookup root device: %s",
944 			    path);
945 #endif
946 		}
947 		kmem_free(path, plen + MAXPATHLEN);
948 	}
949 
950 	vfs_mnttabvp_setup();
951 }
952 
953 /*
954  * Check to see if our "block device" is actually a file.  If so,
955  * automatically add a lofi device, and keep track of this fact.
956  */
957 static int
958 lofi_add(const char *fsname, struct vfs *vfsp,
959     mntopts_t *mntopts, struct mounta *uap)
960 {
961 	int fromspace = (uap->flags & MS_SYSSPACE) ?
962 	    UIO_SYSSPACE : UIO_USERSPACE;
963 	struct lofi_ioctl *li = NULL;
964 	struct vnode *vp = NULL;
965 	struct pathname	pn = { NULL };
966 	ldi_ident_t ldi_id;
967 	ldi_handle_t ldi_hdl;
968 	vfssw_t *vfssw;
969 	int id;
970 	int err = 0;
971 
972 	if ((vfssw = vfs_getvfssw(fsname)) == NULL)
973 		return (0);
974 
975 	if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
976 		vfs_unrefvfssw(vfssw);
977 		return (0);
978 	}
979 
980 	vfs_unrefvfssw(vfssw);
981 	vfssw = NULL;
982 
983 	if (pn_get(uap->spec, fromspace, &pn) != 0)
984 		return (0);
985 
986 	if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
987 		goto out;
988 
989 	if (vp->v_type != VREG)
990 		goto out;
991 
992 	/* OK, this is a lofi mount. */
993 
994 	if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
995 	    vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
996 	    vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
997 	    vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
998 		err = EINVAL;
999 		goto out;
1000 	}
1001 
1002 	ldi_id = ldi_ident_from_anon();
1003 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1004 	(void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1005 
1006 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1007 	    &ldi_hdl, ldi_id);
1008 
1009 	if (err)
1010 		goto out2;
1011 
1012 	err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1013 	    FREAD | FWRITE | FKIOCTL, kcred, &id);
1014 
1015 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1016 
1017 	if (!err)
1018 		vfsp->vfs_lofi_id = id;
1019 
1020 out2:
1021 	ldi_ident_release(ldi_id);
1022 out:
1023 	if (li != NULL)
1024 		kmem_free(li, sizeof (*li));
1025 	if (vp != NULL)
1026 		VN_RELE(vp);
1027 	pn_free(&pn);
1028 	return (err);
1029 }
1030 
1031 static void
1032 lofi_remove(struct vfs *vfsp)
1033 {
1034 	struct lofi_ioctl *li = NULL;
1035 	ldi_ident_t ldi_id;
1036 	ldi_handle_t ldi_hdl;
1037 	int err;
1038 
1039 	if (vfsp->vfs_lofi_id == 0)
1040 		return;
1041 
1042 	ldi_id = ldi_ident_from_anon();
1043 
1044 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1045 	li->li_id = vfsp->vfs_lofi_id;
1046 	li->li_cleanup = B_TRUE;
1047 
1048 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1049 	    &ldi_hdl, ldi_id);
1050 
1051 	if (err)
1052 		goto out;
1053 
1054 	err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1055 	    FREAD | FWRITE | FKIOCTL, kcred, NULL);
1056 
1057 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1058 
1059 	if (!err)
1060 		vfsp->vfs_lofi_id = 0;
1061 
1062 out:
1063 	ldi_ident_release(ldi_id);
1064 	if (li != NULL)
1065 		kmem_free(li, sizeof (*li));
1066 }
1067 
1068 /*
1069  * Common mount code.  Called from the system call entry point, from autofs,
1070  * nfsv4 trigger mounts, and from pxfs.
1071  *
1072  * Takes the effective file system type, mount arguments, the mount point
1073  * vnode, flags specifying whether the mount is a remount and whether it
1074  * should be entered into the vfs list, and credentials.  Fills in its vfspp
1075  * parameter with the mounted file system instance's vfs.
1076  *
1077  * Note that the effective file system type is specified as a string.  It may
1078  * be null, in which case it's determined from the mount arguments, and may
1079  * differ from the type specified in the mount arguments; this is a hook to
1080  * allow interposition when instantiating file system instances.
1081  *
1082  * The caller is responsible for releasing its own hold on the mount point
1083  * vp (this routine does its own hold when necessary).
1084  * Also note that for remounts, the mount point vp should be the vnode for
1085  * the root of the file system rather than the vnode that the file system
1086  * is mounted on top of.
1087  */
1088 int
1089 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1090     struct vfs **vfspp)
1091 {
1092 	struct vfssw	*vswp;
1093 	vfsops_t	*vfsops;
1094 	struct vfs	*vfsp;
1095 	struct vnode	*bvp;
1096 	dev_t		bdev = 0;
1097 	mntopts_t	mnt_mntopts;
1098 	int		error = 0;
1099 	int		copyout_error = 0;
1100 	int		ovflags;
1101 	char		*opts = uap->optptr;
1102 	char		*inargs = opts;
1103 	int		optlen = uap->optlen;
1104 	int		remount;
1105 	int		rdonly;
1106 	int		nbmand = 0;
1107 	int		delmip = 0;
1108 	int		addmip = 0;
1109 	int		splice = ((uap->flags & MS_NOSPLICE) == 0);
1110 	int		fromspace = (uap->flags & MS_SYSSPACE) ?
1111 	    UIO_SYSSPACE : UIO_USERSPACE;
1112 	char		*resource = NULL, *mountpt = NULL;
1113 	refstr_t	*oldresource, *oldmntpt;
1114 	struct pathname	pn, rpn;
1115 	vsk_anchor_t	*vskap;
1116 	char fstname[FSTYPSZ];
1117 	zone_t		*zone;
1118 
1119 	/*
1120 	 * The v_flag value for the mount point vp is permanently set
1121 	 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1122 	 * for mount point locking.
1123 	 */
1124 	mutex_enter(&vp->v_lock);
1125 	vp->v_flag |= VVFSLOCK;
1126 	mutex_exit(&vp->v_lock);
1127 
1128 	mnt_mntopts.mo_count = 0;
1129 	/*
1130 	 * Find the ops vector to use to invoke the file system-specific mount
1131 	 * method.  If the fsname argument is non-NULL, use it directly.
1132 	 * Otherwise, dig the file system type information out of the mount
1133 	 * arguments.
1134 	 *
1135 	 * A side effect is to hold the vfssw entry.
1136 	 *
1137 	 * Mount arguments can be specified in several ways, which are
1138 	 * distinguished by flag bit settings.  The preferred way is to set
1139 	 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1140 	 * type supplied as a character string and the last two arguments
1141 	 * being a pointer to a character buffer and the size of the buffer.
1142 	 * On entry, the buffer holds a null terminated list of options; on
1143 	 * return, the string is the list of options the file system
1144 	 * recognized. If MS_DATA is set arguments five and six point to a
1145 	 * block of binary data which the file system interprets.
1146 	 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1147 	 * consistently with these conventions.  To handle them, we check to
1148 	 * see whether the pointer to the file system name has a numeric value
1149 	 * less than 256.  If so, we treat it as an index.
1150 	 */
1151 	if (fsname != NULL) {
1152 		if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1153 			return (EINVAL);
1154 		}
1155 	} else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1156 		size_t n;
1157 		uint_t fstype;
1158 
1159 		fsname = fstname;
1160 
1161 		if ((fstype = (uintptr_t)uap->fstype) < 256) {
1162 			RLOCK_VFSSW();
1163 			if (fstype == 0 || fstype >= nfstype ||
1164 			    !ALLOCATED_VFSSW(&vfssw[fstype])) {
1165 				RUNLOCK_VFSSW();
1166 				return (EINVAL);
1167 			}
1168 			(void) strcpy(fsname, vfssw[fstype].vsw_name);
1169 			RUNLOCK_VFSSW();
1170 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1171 				return (EINVAL);
1172 		} else {
1173 			/*
1174 			 * Handle either kernel or user address space.
1175 			 */
1176 			if (uap->flags & MS_SYSSPACE) {
1177 				error = copystr(uap->fstype, fsname,
1178 				    FSTYPSZ, &n);
1179 			} else {
1180 				error = copyinstr(uap->fstype, fsname,
1181 				    FSTYPSZ, &n);
1182 			}
1183 			if (error) {
1184 				if (error == ENAMETOOLONG)
1185 					return (EINVAL);
1186 				return (error);
1187 			}
1188 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1189 				return (EINVAL);
1190 		}
1191 	} else {
1192 		if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1193 			return (EINVAL);
1194 		fsname = vswp->vsw_name;
1195 	}
1196 	if (!VFS_INSTALLED(vswp))
1197 		return (EINVAL);
1198 
1199 	if ((error = secpolicy_fs_allowed_mount(fsname)) != 0)  {
1200 		vfs_unrefvfssw(vswp);
1201 		return (error);
1202 	}
1203 
1204 	vfsops = &vswp->vsw_vfsops;
1205 
1206 	vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1207 	/*
1208 	 * Fetch mount options and parse them for generic vfs options
1209 	 */
1210 	if (uap->flags & MS_OPTIONSTR) {
1211 		/*
1212 		 * Limit the buffer size
1213 		 */
1214 		if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1215 			error = EINVAL;
1216 			goto errout;
1217 		}
1218 		if ((uap->flags & MS_SYSSPACE) == 0) {
1219 			inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1220 			inargs[0] = '\0';
1221 			if (optlen) {
1222 				error = copyinstr(opts, inargs, (size_t)optlen,
1223 				    NULL);
1224 				if (error) {
1225 					goto errout;
1226 				}
1227 			}
1228 		}
1229 		vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1230 	}
1231 	/*
1232 	 * Flag bits override the options string.
1233 	 */
1234 	if (uap->flags & MS_REMOUNT)
1235 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1236 	if (uap->flags & MS_RDONLY)
1237 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1238 	if (uap->flags & MS_NOSUID)
1239 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1240 
1241 	/*
1242 	 * Check if this is a remount; must be set in the option string and
1243 	 * the file system must support a remount option.
1244 	 */
1245 	if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1246 	    MNTOPT_REMOUNT, NULL)) {
1247 		if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1248 			error = ENOTSUP;
1249 			goto errout;
1250 		}
1251 		uap->flags |= MS_REMOUNT;
1252 	}
1253 
1254 	/*
1255 	 * uap->flags and vfs_optionisset() should agree.
1256 	 */
1257 	if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1258 		uap->flags |= MS_RDONLY;
1259 	}
1260 	if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1261 		uap->flags |= MS_NOSUID;
1262 	}
1263 	nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1264 	ASSERT(splice || !remount);
1265 	/*
1266 	 * If we are splicing the fs into the namespace,
1267 	 * perform mount point checks.
1268 	 *
1269 	 * We want to resolve the path for the mount point to eliminate
1270 	 * '.' and ".." and symlinks in mount points; we can't do the
1271 	 * same for the resource string, since it would turn
1272 	 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...".  We need to do
1273 	 * this before grabbing vn_vfswlock(), because otherwise we
1274 	 * would deadlock with lookuppn().
1275 	 */
1276 	if (splice) {
1277 		ASSERT(vp->v_count > 0);
1278 
1279 		/*
1280 		 * Pick up mount point and device from appropriate space.
1281 		 */
1282 		if (pn_get(uap->spec, fromspace, &pn) == 0) {
1283 			resource = kmem_alloc(pn.pn_pathlen + 1,
1284 			    KM_SLEEP);
1285 			(void) strcpy(resource, pn.pn_path);
1286 			pn_free(&pn);
1287 		}
1288 		/*
1289 		 * Do a lookupname prior to taking the
1290 		 * writelock. Mark this as completed if
1291 		 * successful for later cleanup and addition to
1292 		 * the mount in progress table.
1293 		 */
1294 		if ((vswp->vsw_flag & VSW_MOUNTDEV) &&
1295 		    (uap->flags & MS_GLOBAL) == 0 &&
1296 		    lookupname(uap->spec, fromspace,
1297 		    FOLLOW, NULL, &bvp) == 0) {
1298 			addmip = 1;
1299 		}
1300 
1301 		if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1302 			pathname_t *pnp;
1303 
1304 			if (*pn.pn_path != '/') {
1305 				error = EINVAL;
1306 				pn_free(&pn);
1307 				goto errout;
1308 			}
1309 			pn_alloc(&rpn);
1310 			/*
1311 			 * Kludge to prevent autofs from deadlocking with
1312 			 * itself when it calls domount().
1313 			 *
1314 			 * If autofs is calling, it is because it is doing
1315 			 * (autofs) mounts in the process of an NFS mount.  A
1316 			 * lookuppn() here would cause us to block waiting for
1317 			 * said NFS mount to complete, which can't since this
1318 			 * is the thread that was supposed to doing it.
1319 			 */
1320 			if (fromspace == UIO_USERSPACE) {
1321 				if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1322 				    NULL)) == 0) {
1323 					pnp = &rpn;
1324 				} else {
1325 					/*
1326 					 * The file disappeared or otherwise
1327 					 * became inaccessible since we opened
1328 					 * it; might as well fail the mount
1329 					 * since the mount point is no longer
1330 					 * accessible.
1331 					 */
1332 					pn_free(&rpn);
1333 					pn_free(&pn);
1334 					goto errout;
1335 				}
1336 			} else {
1337 				pnp = &pn;
1338 			}
1339 			mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1340 			(void) strcpy(mountpt, pnp->pn_path);
1341 
1342 			/*
1343 			 * If the addition of the zone's rootpath
1344 			 * would push us over a total path length
1345 			 * of MAXPATHLEN, we fail the mount with
1346 			 * ENAMETOOLONG, which is what we would have
1347 			 * gotten if we were trying to perform the same
1348 			 * mount in the global zone.
1349 			 *
1350 			 * strlen() doesn't count the trailing
1351 			 * '\0', but zone_rootpathlen counts both a
1352 			 * trailing '/' and the terminating '\0'.
1353 			 */
1354 			if ((curproc->p_zone->zone_rootpathlen - 1 +
1355 			    strlen(mountpt)) > MAXPATHLEN ||
1356 			    (resource != NULL &&
1357 			    (curproc->p_zone->zone_rootpathlen - 1 +
1358 			    strlen(resource)) > MAXPATHLEN)) {
1359 				error = ENAMETOOLONG;
1360 			}
1361 
1362 			pn_free(&rpn);
1363 			pn_free(&pn);
1364 		}
1365 
1366 		if (error)
1367 			goto errout;
1368 
1369 		/*
1370 		 * Prevent path name resolution from proceeding past
1371 		 * the mount point.
1372 		 */
1373 		if (vn_vfswlock(vp) != 0) {
1374 			error = EBUSY;
1375 			goto errout;
1376 		}
1377 
1378 		/*
1379 		 * Verify that it's legitimate to establish a mount on
1380 		 * the prospective mount point.
1381 		 */
1382 		if (vn_mountedvfs(vp) != NULL) {
1383 			/*
1384 			 * The mount point lock was obtained after some
1385 			 * other thread raced through and established a mount.
1386 			 */
1387 			vn_vfsunlock(vp);
1388 			error = EBUSY;
1389 			goto errout;
1390 		}
1391 		if (vp->v_flag & VNOMOUNT) {
1392 			vn_vfsunlock(vp);
1393 			error = EINVAL;
1394 			goto errout;
1395 		}
1396 	}
1397 	if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1398 		uap->dataptr = NULL;
1399 		uap->datalen = 0;
1400 	}
1401 
1402 	/*
1403 	 * If this is a remount, we don't want to create a new VFS.
1404 	 * Instead, we pass the existing one with a remount flag.
1405 	 */
1406 	if (remount) {
1407 		/*
1408 		 * Confirm that the mount point is the root vnode of the
1409 		 * file system that is being remounted.
1410 		 * This can happen if the user specifies a different
1411 		 * mount point directory pathname in the (re)mount command.
1412 		 *
1413 		 * Code below can only be reached if splice is true, so it's
1414 		 * safe to do vn_vfsunlock() here.
1415 		 */
1416 		if ((vp->v_flag & VROOT) == 0) {
1417 			vn_vfsunlock(vp);
1418 			error = ENOENT;
1419 			goto errout;
1420 		}
1421 		/*
1422 		 * Disallow making file systems read-only unless file system
1423 		 * explicitly allows it in its vfssw.  Ignore other flags.
1424 		 */
1425 		if (rdonly && vn_is_readonly(vp) == 0 &&
1426 		    (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1427 			vn_vfsunlock(vp);
1428 			error = EINVAL;
1429 			goto errout;
1430 		}
1431 		/*
1432 		 * Disallow changing the NBMAND disposition of the file
1433 		 * system on remounts.
1434 		 */
1435 		if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1436 		    (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1437 			vn_vfsunlock(vp);
1438 			error = EINVAL;
1439 			goto errout;
1440 		}
1441 		vfsp = vp->v_vfsp;
1442 		ovflags = vfsp->vfs_flag;
1443 		vfsp->vfs_flag |= VFS_REMOUNT;
1444 		vfsp->vfs_flag &= ~VFS_RDONLY;
1445 	} else {
1446 		vfsp = vfs_alloc(KM_SLEEP);
1447 		VFS_INIT(vfsp, vfsops, NULL);
1448 	}
1449 
1450 	VFS_HOLD(vfsp);
1451 
1452 	if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1453 		if (!remount) {
1454 			if (splice)
1455 				vn_vfsunlock(vp);
1456 			vfs_free(vfsp);
1457 		} else {
1458 			vn_vfsunlock(vp);
1459 			VFS_RELE(vfsp);
1460 		}
1461 		goto errout;
1462 	}
1463 
1464 	/*
1465 	 * PRIV_SYS_MOUNT doesn't mean you can become root.
1466 	 */
1467 	if (vfsp->vfs_lofi_id != 0) {
1468 		uap->flags |= MS_NOSUID;
1469 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1470 	}
1471 
1472 	/*
1473 	 * The vfs_reflock is not used anymore the code below explicitly
1474 	 * holds it preventing others accesing it directly.
1475 	 */
1476 	if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1477 	    !(vfsp->vfs_flag & VFS_REMOUNT))
1478 		cmn_err(CE_WARN,
1479 		    "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1480 
1481 	/*
1482 	 * Lock the vfs. If this is a remount we want to avoid spurious umount
1483 	 * failures that happen as a side-effect of fsflush() and other mount
1484 	 * and unmount operations that might be going on simultaneously and
1485 	 * may have locked the vfs currently. To not return EBUSY immediately
1486 	 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1487 	 */
1488 	if (!remount) {
1489 		if (error = vfs_lock(vfsp)) {
1490 			vfsp->vfs_flag = ovflags;
1491 
1492 			lofi_remove(vfsp);
1493 
1494 			if (splice)
1495 				vn_vfsunlock(vp);
1496 			vfs_free(vfsp);
1497 			goto errout;
1498 		}
1499 	} else {
1500 		vfs_lock_wait(vfsp);
1501 	}
1502 
1503 	/*
1504 	 * Add device to mount in progress table, global mounts require special
1505 	 * handling. It is possible that we have already done the lookupname
1506 	 * on a spliced, non-global fs. If so, we don't want to do it again
1507 	 * since we cannot do a lookupname after taking the
1508 	 * wlock above. This case is for a non-spliced, non-global filesystem.
1509 	 */
1510 	if (!addmip) {
1511 		if ((vswp->vsw_flag & VSW_MOUNTDEV) &&
1512 		    (uap->flags & MS_GLOBAL) == 0 &&
1513 		    lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1514 			addmip = 1;
1515 		}
1516 	}
1517 
1518 	if (addmip) {
1519 		vnode_t *lvp = NULL;
1520 
1521 		error = vfs_get_lofi(vfsp, &lvp);
1522 		if (error > 0) {
1523 			lofi_remove(vfsp);
1524 
1525 			if (splice)
1526 				vn_vfsunlock(vp);
1527 			vfs_unlock(vfsp);
1528 
1529 			if (remount) {
1530 				VFS_RELE(vfsp);
1531 			} else {
1532 				vfs_free(vfsp);
1533 			}
1534 
1535 			goto errout;
1536 		} else if (error == -1) {
1537 			bdev = bvp->v_rdev;
1538 			VN_RELE(bvp);
1539 		} else {
1540 			bdev = lvp->v_rdev;
1541 			VN_RELE(lvp);
1542 			VN_RELE(bvp);
1543 		}
1544 
1545 		vfs_addmip(bdev, vfsp);
1546 		addmip = 0;
1547 		delmip = 1;
1548 	}
1549 	/*
1550 	 * Invalidate cached entry for the mount point.
1551 	 */
1552 	if (splice)
1553 		dnlc_purge_vp(vp);
1554 
1555 	/*
1556 	 * If have an option string but the filesystem doesn't supply a
1557 	 * prototype options table, create a table with the global
1558 	 * options and sufficient room to accept all the options in the
1559 	 * string.  Then parse the passed in option string
1560 	 * accepting all the options in the string.  This gives us an
1561 	 * option table with all the proper cancel properties for the
1562 	 * global options.
1563 	 *
1564 	 * Filesystems that supply a prototype options table are handled
1565 	 * earlier in this function.
1566 	 */
1567 	if (uap->flags & MS_OPTIONSTR) {
1568 		if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1569 			mntopts_t tmp_mntopts;
1570 
1571 			tmp_mntopts.mo_count = 0;
1572 			vfs_createopttbl_extend(&tmp_mntopts, inargs,
1573 			    &mnt_mntopts);
1574 			vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1575 			vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1576 			vfs_freeopttbl(&tmp_mntopts);
1577 		}
1578 	}
1579 
1580 	/*
1581 	 * Serialize with zone state transitions.
1582 	 * See vfs_list_add; zone mounted into is:
1583 	 * 	zone_find_by_path(refstr_value(vfsp->vfs_mntpt))
1584 	 * not the zone doing the mount (curproc->p_zone), but if we're already
1585 	 * inside a NGZ, then we know what zone we are.
1586 	 */
1587 	if (INGLOBALZONE(curproc)) {
1588 		zone = zone_find_by_path(mountpt);
1589 		ASSERT(zone != NULL);
1590 	} else {
1591 		zone = curproc->p_zone;
1592 		/*
1593 		 * zone_find_by_path does a hold, so do one here too so that
1594 		 * we can do a zone_rele after mount_completed.
1595 		 */
1596 		zone_hold(zone);
1597 	}
1598 	mount_in_progress(zone);
1599 	/*
1600 	 * Instantiate (or reinstantiate) the file system.  If appropriate,
1601 	 * splice it into the file system name space.
1602 	 *
1603 	 * We want VFS_MOUNT() to be able to override the vfs_resource
1604 	 * string if necessary (ie, mntfs), and also for a remount to
1605 	 * change the same (necessary when remounting '/' during boot).
1606 	 * So we set up vfs_mntpt and vfs_resource to what we think they
1607 	 * should be, then hand off control to VFS_MOUNT() which can
1608 	 * override this.
1609 	 *
1610 	 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1611 	 * a vfs which is on the vfs list (i.e. during a remount), we must
1612 	 * never set those fields to NULL. Several bits of code make
1613 	 * assumptions that the fields are always valid.
1614 	 */
1615 	vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1616 	if (remount) {
1617 		if ((oldresource = vfsp->vfs_resource) != NULL)
1618 			refstr_hold(oldresource);
1619 		if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1620 			refstr_hold(oldmntpt);
1621 	}
1622 	vfs_setresource(vfsp, resource, 0);
1623 	vfs_setmntpoint(vfsp, mountpt, 0);
1624 
1625 	/*
1626 	 * going to mount on this vnode, so notify.
1627 	 */
1628 	vnevent_mountedover(vp, NULL);
1629 	error = VFS_MOUNT(vfsp, vp, uap, credp);
1630 
1631 	if (uap->flags & MS_RDONLY)
1632 		vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1633 	if (uap->flags & MS_NOSUID)
1634 		vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1635 	if (uap->flags & MS_GLOBAL)
1636 		vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1637 
1638 	if (error) {
1639 		lofi_remove(vfsp);
1640 
1641 		if (remount) {
1642 			/* put back pre-remount options */
1643 			vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1644 			vfs_setmntpoint(vfsp, refstr_value(oldmntpt),
1645 			    VFSSP_VERBATIM);
1646 			if (oldmntpt)
1647 				refstr_rele(oldmntpt);
1648 			vfs_setresource(vfsp, refstr_value(oldresource),
1649 			    VFSSP_VERBATIM);
1650 			if (oldresource)
1651 				refstr_rele(oldresource);
1652 			vfsp->vfs_flag = ovflags;
1653 			vfs_unlock(vfsp);
1654 			VFS_RELE(vfsp);
1655 		} else {
1656 			vfs_unlock(vfsp);
1657 			vfs_freemnttab(vfsp);
1658 			vfs_free(vfsp);
1659 		}
1660 	} else {
1661 		/*
1662 		 * Set the mount time to now
1663 		 */
1664 		vfsp->vfs_mtime = ddi_get_time();
1665 		if (remount) {
1666 			vfsp->vfs_flag &= ~VFS_REMOUNT;
1667 			if (oldresource)
1668 				refstr_rele(oldresource);
1669 			if (oldmntpt)
1670 				refstr_rele(oldmntpt);
1671 		} else if (splice) {
1672 			/*
1673 			 * Link vfsp into the name space at the mount
1674 			 * point. Vfs_add() is responsible for
1675 			 * holding the mount point which will be
1676 			 * released when vfs_remove() is called.
1677 			 */
1678 			vfs_add(vp, vfsp, uap->flags);
1679 		} else {
1680 			/*
1681 			 * Hold the reference to file system which is
1682 			 * not linked into the name space.
1683 			 */
1684 			vfsp->vfs_zone = NULL;
1685 			VFS_HOLD(vfsp);
1686 			vfsp->vfs_vnodecovered = NULL;
1687 		}
1688 		/*
1689 		 * Set flags for global options encountered
1690 		 */
1691 		if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1692 			vfsp->vfs_flag |= VFS_RDONLY;
1693 		else
1694 			vfsp->vfs_flag &= ~VFS_RDONLY;
1695 		if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1696 			vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1697 		} else {
1698 			if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1699 				vfsp->vfs_flag |= VFS_NODEVICES;
1700 			else
1701 				vfsp->vfs_flag &= ~VFS_NODEVICES;
1702 			if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1703 				vfsp->vfs_flag |= VFS_NOSETUID;
1704 			else
1705 				vfsp->vfs_flag &= ~VFS_NOSETUID;
1706 		}
1707 		if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1708 			vfsp->vfs_flag |= VFS_NBMAND;
1709 		else
1710 			vfsp->vfs_flag &= ~VFS_NBMAND;
1711 
1712 		if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1713 			vfsp->vfs_flag |= VFS_XATTR;
1714 		else
1715 			vfsp->vfs_flag &= ~VFS_XATTR;
1716 
1717 		if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1718 			vfsp->vfs_flag |= VFS_NOEXEC;
1719 		else
1720 			vfsp->vfs_flag &= ~VFS_NOEXEC;
1721 
1722 		/*
1723 		 * Now construct the output option string of options
1724 		 * we recognized.
1725 		 */
1726 		if (uap->flags & MS_OPTIONSTR) {
1727 			vfs_list_read_lock();
1728 			copyout_error = vfs_buildoptionstr(
1729 			    &vfsp->vfs_mntopts, inargs, optlen);
1730 			vfs_list_unlock();
1731 			if (copyout_error == 0 &&
1732 			    (uap->flags & MS_SYSSPACE) == 0) {
1733 				copyout_error = copyoutstr(inargs, opts,
1734 				    optlen, NULL);
1735 			}
1736 		}
1737 
1738 		/*
1739 		 * If this isn't a remount, set up the vopstats before
1740 		 * anyone can touch this. We only allow spliced file
1741 		 * systems (file systems which are in the namespace) to
1742 		 * have the VFS_STATS flag set.
1743 		 * NOTE: PxFS mounts the underlying file system with
1744 		 * MS_NOSPLICE set and copies those vfs_flags to its private
1745 		 * vfs structure. As a result, PxFS should never have
1746 		 * the VFS_STATS flag or else we might access the vfs
1747 		 * statistics-related fields prior to them being
1748 		 * properly initialized.
1749 		 */
1750 		if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1751 			initialize_vopstats(&vfsp->vfs_vopstats);
1752 			/*
1753 			 * We need to set vfs_vskap to NULL because there's
1754 			 * a chance it won't be set below.  This is checked
1755 			 * in teardown_vopstats() so we can't have garbage.
1756 			 */
1757 			vfsp->vfs_vskap = NULL;
1758 			vfsp->vfs_flag |= VFS_STATS;
1759 			vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1760 		}
1761 
1762 		if (vswp->vsw_flag & VSW_XID)
1763 			vfsp->vfs_flag |= VFS_XID;
1764 
1765 		vfs_unlock(vfsp);
1766 	}
1767 	mount_completed(zone);
1768 	zone_rele(zone);
1769 	if (splice)
1770 		vn_vfsunlock(vp);
1771 
1772 	if ((error == 0) && (copyout_error == 0)) {
1773 		if (!remount) {
1774 			/*
1775 			 * Don't call get_vskstat_anchor() while holding
1776 			 * locks since it allocates memory and calls
1777 			 * VFS_STATVFS().  For NFS, the latter can generate
1778 			 * an over-the-wire call.
1779 			 */
1780 			vskap = get_vskstat_anchor(vfsp);
1781 			/* Only take the lock if we have something to do */
1782 			if (vskap != NULL) {
1783 				vfs_lock_wait(vfsp);
1784 				if (vfsp->vfs_flag & VFS_STATS) {
1785 					vfsp->vfs_vskap = vskap;
1786 				}
1787 				vfs_unlock(vfsp);
1788 			}
1789 		}
1790 		/* Return vfsp to caller. */
1791 		*vfspp = vfsp;
1792 	}
1793 errout:
1794 	vfs_freeopttbl(&mnt_mntopts);
1795 	if (resource != NULL)
1796 		kmem_free(resource, strlen(resource) + 1);
1797 	if (mountpt != NULL)
1798 		kmem_free(mountpt, strlen(mountpt) + 1);
1799 	/*
1800 	 * It is possible we errored prior to adding to mount in progress
1801 	 * table. Must free vnode we acquired with successful lookupname.
1802 	 */
1803 	if (addmip)
1804 		VN_RELE(bvp);
1805 	if (delmip)
1806 		vfs_delmip(vfsp);
1807 	ASSERT(vswp != NULL);
1808 	vfs_unrefvfssw(vswp);
1809 	if (inargs != opts)
1810 		kmem_free(inargs, MAX_MNTOPT_STR);
1811 	if (copyout_error) {
1812 		lofi_remove(vfsp);
1813 		VFS_RELE(vfsp);
1814 		error = copyout_error;
1815 	}
1816 	return (error);
1817 }
1818 
1819 static void
1820 vfs_setpath(
1821     struct vfs *vfsp,		/* vfs being updated */
1822     refstr_t **refp,		/* Ref-count string to contain the new path */
1823     const char *newpath,	/* Path to add to refp (above) */
1824     uint32_t flag)		/* flag */
1825 {
1826 	size_t len;
1827 	refstr_t *ref;
1828 	zone_t *zone = curproc->p_zone;
1829 	char *sp;
1830 	int have_list_lock = 0;
1831 
1832 	ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1833 
1834 	/*
1835 	 * New path must be less than MAXPATHLEN because mntfs
1836 	 * will only display up to MAXPATHLEN bytes. This is currently
1837 	 * safe, because domount() uses pn_get(), and other callers
1838 	 * similarly cap the size to fewer than MAXPATHLEN bytes.
1839 	 */
1840 
1841 	ASSERT(strlen(newpath) < MAXPATHLEN);
1842 
1843 	/* mntfs requires consistency while vfs list lock is held */
1844 
1845 	if (VFS_ON_LIST(vfsp)) {
1846 		have_list_lock = 1;
1847 		vfs_list_lock();
1848 	}
1849 
1850 	if (*refp != NULL)
1851 		refstr_rele(*refp);
1852 
1853 	/*
1854 	 * If we are in a non-global zone then we prefix the supplied path,
1855 	 * newpath, with the zone's root path, with two exceptions. The first
1856 	 * is where we have been explicitly directed to avoid doing so; this
1857 	 * will be the case following a failed remount, where the path supplied
1858 	 * will be a saved version which must now be restored. The second
1859 	 * exception is where newpath is not a pathname but a descriptive name,
1860 	 * e.g. "procfs".
1861 	 */
1862 	if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') {
1863 		ref = refstr_alloc(newpath);
1864 		goto out;
1865 	}
1866 
1867 	/*
1868 	 * Truncate the trailing '/' in the zoneroot, and merge
1869 	 * in the zone's rootpath with the "newpath" (resource
1870 	 * or mountpoint) passed in.
1871 	 *
1872 	 * The size of the required buffer is thus the size of
1873 	 * the buffer required for the passed-in newpath
1874 	 * (strlen(newpath) + 1), plus the size of the buffer
1875 	 * required to hold zone_rootpath (zone_rootpathlen)
1876 	 * minus one for one of the now-superfluous NUL
1877 	 * terminations, minus one for the trailing '/'.
1878 	 *
1879 	 * That gives us:
1880 	 *
1881 	 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1882 	 *
1883 	 * Which is what we have below.
1884 	 */
1885 
1886 	len = strlen(newpath) + zone->zone_rootpathlen - 1;
1887 	sp = kmem_alloc(len, KM_SLEEP);
1888 
1889 	/*
1890 	 * Copy everything including the trailing slash, which
1891 	 * we then overwrite with the NUL character.
1892 	 */
1893 
1894 	(void) strcpy(sp, zone->zone_rootpath);
1895 	sp[zone->zone_rootpathlen - 2] = '\0';
1896 	(void) strcat(sp, newpath);
1897 
1898 	ref = refstr_alloc(sp);
1899 	kmem_free(sp, len);
1900 out:
1901 	*refp = ref;
1902 
1903 	if (have_list_lock) {
1904 		vfs_mnttab_modtimeupd();
1905 		vfs_list_unlock();
1906 	}
1907 }
1908 
1909 /*
1910  * Record a mounted resource name in a vfs structure.
1911  * If vfsp is already mounted, caller must hold the vfs lock.
1912  */
1913 void
1914 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag)
1915 {
1916 	if (resource == NULL || resource[0] == '\0')
1917 		resource = VFS_NORESOURCE;
1918 	vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag);
1919 }
1920 
1921 /*
1922  * Record a mount point name in a vfs structure.
1923  * If vfsp is already mounted, caller must hold the vfs lock.
1924  */
1925 void
1926 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag)
1927 {
1928 	if (mntpt == NULL || mntpt[0] == '\0')
1929 		mntpt = VFS_NOMNTPT;
1930 	vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag);
1931 }
1932 
1933 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1934 
1935 refstr_t *
1936 vfs_getresource(const struct vfs *vfsp)
1937 {
1938 	refstr_t *resource;
1939 
1940 	vfs_list_read_lock();
1941 	resource = vfsp->vfs_resource;
1942 	refstr_hold(resource);
1943 	vfs_list_unlock();
1944 
1945 	return (resource);
1946 }
1947 
1948 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
1949 
1950 refstr_t *
1951 vfs_getmntpoint(const struct vfs *vfsp)
1952 {
1953 	refstr_t *mntpt;
1954 
1955 	vfs_list_read_lock();
1956 	mntpt = vfsp->vfs_mntpt;
1957 	refstr_hold(mntpt);
1958 	vfs_list_unlock();
1959 
1960 	return (mntpt);
1961 }
1962 
1963 /*
1964  * Create an empty options table with enough empty slots to hold all
1965  * The options in the options string passed as an argument.
1966  * Potentially prepend another options table.
1967  *
1968  * Note: caller is responsible for locking the vfs list, if needed,
1969  *       to protect mops.
1970  */
1971 static void
1972 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
1973     const mntopts_t *mtmpl)
1974 {
1975 	const char *s = opts;
1976 	uint_t count;
1977 
1978 	if (opts == NULL || *opts == '\0') {
1979 		count = 0;
1980 	} else {
1981 		count = 1;
1982 
1983 		/*
1984 		 * Count number of options in the string
1985 		 */
1986 		for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
1987 			count++;
1988 			s++;
1989 		}
1990 	}
1991 	vfs_copyopttbl_extend(mtmpl, mops, count);
1992 }
1993 
1994 /*
1995  * Create an empty options table with enough empty slots to hold all
1996  * The options in the options string passed as an argument.
1997  *
1998  * This function is *not* for general use by filesystems.
1999  *
2000  * Note: caller is responsible for locking the vfs list, if needed,
2001  *       to protect mops.
2002  */
2003 void
2004 vfs_createopttbl(mntopts_t *mops, const char *opts)
2005 {
2006 	vfs_createopttbl_extend(mops, opts, NULL);
2007 }
2008 
2009 
2010 /*
2011  * Swap two mount options tables
2012  */
2013 static void
2014 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2015 {
2016 	uint_t tmpcnt;
2017 	mntopt_t *tmplist;
2018 
2019 	tmpcnt = optbl2->mo_count;
2020 	tmplist = optbl2->mo_list;
2021 	optbl2->mo_count = optbl1->mo_count;
2022 	optbl2->mo_list = optbl1->mo_list;
2023 	optbl1->mo_count = tmpcnt;
2024 	optbl1->mo_list = tmplist;
2025 }
2026 
2027 static void
2028 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2029 {
2030 	vfs_list_lock();
2031 	vfs_swapopttbl_nolock(optbl1, optbl2);
2032 	vfs_mnttab_modtimeupd();
2033 	vfs_list_unlock();
2034 }
2035 
2036 static char **
2037 vfs_copycancelopt_extend(char **const moc, int extend)
2038 {
2039 	int i = 0;
2040 	int j;
2041 	char **result;
2042 
2043 	if (moc != NULL) {
2044 		for (; moc[i] != NULL; i++)
2045 			/* count number of options to cancel */;
2046 	}
2047 
2048 	if (i + extend == 0)
2049 		return (NULL);
2050 
2051 	result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2052 
2053 	for (j = 0; j < i; j++) {
2054 		result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2055 		(void) strcpy(result[j], moc[j]);
2056 	}
2057 	for (; j <= i + extend; j++)
2058 		result[j] = NULL;
2059 
2060 	return (result);
2061 }
2062 
2063 static void
2064 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2065 {
2066 	char *sp, *dp;
2067 
2068 	d->mo_flags = s->mo_flags;
2069 	d->mo_data = s->mo_data;
2070 	sp = s->mo_name;
2071 	if (sp != NULL) {
2072 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2073 		(void) strcpy(dp, sp);
2074 		d->mo_name = dp;
2075 	} else {
2076 		d->mo_name = NULL; /* should never happen */
2077 	}
2078 
2079 	d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2080 
2081 	sp = s->mo_arg;
2082 	if (sp != NULL) {
2083 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2084 		(void) strcpy(dp, sp);
2085 		d->mo_arg = dp;
2086 	} else {
2087 		d->mo_arg = NULL;
2088 	}
2089 }
2090 
2091 /*
2092  * Copy a mount options table, possibly allocating some spare
2093  * slots at the end.  It is permissible to copy_extend the NULL table.
2094  */
2095 static void
2096 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2097 {
2098 	uint_t i, count;
2099 	mntopt_t *motbl;
2100 
2101 	/*
2102 	 * Clear out any existing stuff in the options table being initialized
2103 	 */
2104 	vfs_freeopttbl(dmo);
2105 	count = (smo == NULL) ? 0 : smo->mo_count;
2106 	if ((count + extra) == 0)	/* nothing to do */
2107 		return;
2108 	dmo->mo_count = count + extra;
2109 	motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2110 	dmo->mo_list = motbl;
2111 	for (i = 0; i < count; i++) {
2112 		vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2113 	}
2114 	for (i = count; i < count + extra; i++) {
2115 		motbl[i].mo_flags = MO_EMPTY;
2116 	}
2117 }
2118 
2119 /*
2120  * Copy a mount options table.
2121  *
2122  * This function is *not* for general use by filesystems.
2123  *
2124  * Note: caller is responsible for locking the vfs list, if needed,
2125  *       to protect smo and dmo.
2126  */
2127 void
2128 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2129 {
2130 	vfs_copyopttbl_extend(smo, dmo, 0);
2131 }
2132 
2133 static char **
2134 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2135 {
2136 	int c1 = 0;
2137 	int c2 = 0;
2138 	char **result;
2139 	char **sp1, **sp2, **dp;
2140 
2141 	/*
2142 	 * First we count both lists of cancel options.
2143 	 * If either is NULL or has no elements, we return a copy of
2144 	 * the other.
2145 	 */
2146 	if (mop1->mo_cancel != NULL) {
2147 		for (; mop1->mo_cancel[c1] != NULL; c1++)
2148 			/* count cancel options in mop1 */;
2149 	}
2150 
2151 	if (c1 == 0)
2152 		return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2153 
2154 	if (mop2->mo_cancel != NULL) {
2155 		for (; mop2->mo_cancel[c2] != NULL; c2++)
2156 			/* count cancel options in mop2 */;
2157 	}
2158 
2159 	result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2160 
2161 	if (c2 == 0)
2162 		return (result);
2163 
2164 	/*
2165 	 * When we get here, we've got two sets of cancel options;
2166 	 * we need to merge the two sets.  We know that the result
2167 	 * array has "c1+c2+1" entries and in the end we might shrink
2168 	 * it.
2169 	 * Result now has a copy of the c1 entries from mop1; we'll
2170 	 * now lookup all the entries of mop2 in mop1 and copy it if
2171 	 * it is unique.
2172 	 * This operation is O(n^2) but it's only called once per
2173 	 * filesystem per duplicate option.  This is a situation
2174 	 * which doesn't arise with the filesystems in ON and
2175 	 * n is generally 1.
2176 	 */
2177 
2178 	dp = &result[c1];
2179 	for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2180 		for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2181 			if (strcmp(*sp1, *sp2) == 0)
2182 				break;
2183 		}
2184 		if (*sp1 == NULL) {
2185 			/*
2186 			 * Option *sp2 not found in mop1, so copy it.
2187 			 * The calls to vfs_copycancelopt_extend()
2188 			 * guarantee that there's enough room.
2189 			 */
2190 			*dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2191 			(void) strcpy(*dp++, *sp2);
2192 		}
2193 	}
2194 	if (dp != &result[c1+c2]) {
2195 		size_t bytes = (dp - result + 1) * sizeof (char *);
2196 		char **nres = kmem_alloc(bytes, KM_SLEEP);
2197 
2198 		bcopy(result, nres, bytes);
2199 		kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2200 		result = nres;
2201 	}
2202 	return (result);
2203 }
2204 
2205 /*
2206  * Merge two mount option tables (outer and inner) into one.  This is very
2207  * similar to "merging" global variables and automatic variables in C.
2208  *
2209  * This isn't (and doesn't have to be) fast.
2210  *
2211  * This function is *not* for general use by filesystems.
2212  *
2213  * Note: caller is responsible for locking the vfs list, if needed,
2214  *       to protect omo, imo & dmo.
2215  */
2216 void
2217 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2218 {
2219 	uint_t i, count;
2220 	mntopt_t *mop, *motbl;
2221 	uint_t freeidx;
2222 
2223 	/*
2224 	 * First determine how much space we need to allocate.
2225 	 */
2226 	count = omo->mo_count;
2227 	for (i = 0; i < imo->mo_count; i++) {
2228 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2229 			continue;
2230 		if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2231 			count++;
2232 	}
2233 	ASSERT(count >= omo->mo_count &&
2234 	    count <= omo->mo_count + imo->mo_count);
2235 	motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2236 	for (i = 0; i < omo->mo_count; i++)
2237 		vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2238 	freeidx = omo->mo_count;
2239 	for (i = 0; i < imo->mo_count; i++) {
2240 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2241 			continue;
2242 		if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2243 			char **newcanp;
2244 			uint_t index = mop - omo->mo_list;
2245 
2246 			newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2247 
2248 			vfs_freeopt(&motbl[index]);
2249 			vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2250 
2251 			vfs_freecancelopt(motbl[index].mo_cancel);
2252 			motbl[index].mo_cancel = newcanp;
2253 		} else {
2254 			/*
2255 			 * If it's a new option, just copy it over to the first
2256 			 * free location.
2257 			 */
2258 			vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2259 		}
2260 	}
2261 	dmo->mo_count = count;
2262 	dmo->mo_list = motbl;
2263 }
2264 
2265 /*
2266  * Functions to set and clear mount options in a mount options table.
2267  */
2268 
2269 /*
2270  * Clear a mount option, if it exists.
2271  *
2272  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2273  * the vfs list.
2274  */
2275 static void
2276 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2277 {
2278 	struct mntopt *mop;
2279 	uint_t i, count;
2280 
2281 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2282 
2283 	count = mops->mo_count;
2284 	for (i = 0; i < count; i++) {
2285 		mop = &mops->mo_list[i];
2286 
2287 		if (mop->mo_flags & MO_EMPTY)
2288 			continue;
2289 		if (strcmp(opt, mop->mo_name))
2290 			continue;
2291 		mop->mo_flags &= ~MO_SET;
2292 		if (mop->mo_arg != NULL) {
2293 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2294 		}
2295 		mop->mo_arg = NULL;
2296 		if (update_mnttab)
2297 			vfs_mnttab_modtimeupd();
2298 		break;
2299 	}
2300 }
2301 
2302 void
2303 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2304 {
2305 	int gotlock = 0;
2306 
2307 	if (VFS_ON_LIST(vfsp)) {
2308 		gotlock = 1;
2309 		vfs_list_lock();
2310 	}
2311 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2312 	if (gotlock)
2313 		vfs_list_unlock();
2314 }
2315 
2316 
2317 /*
2318  * Set a mount option on.  If it's not found in the table, it's silently
2319  * ignored.  If the option has MO_IGNORE set, it is still set unless the
2320  * VFS_NOFORCEOPT bit is set in the flags.  Also, VFS_DISPLAY/VFS_NODISPLAY flag
2321  * bits can be used to toggle the MO_NODISPLAY bit for the option.
2322  * If the VFS_CREATEOPT flag bit is set then the first option slot with
2323  * MO_EMPTY set is created as the option passed in.
2324  *
2325  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2326  * the vfs list.
2327  */
2328 static void
2329 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2330     const char *arg, int flags, int update_mnttab)
2331 {
2332 	mntopt_t *mop;
2333 	uint_t i, count;
2334 	char *sp;
2335 
2336 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2337 
2338 	if (flags & VFS_CREATEOPT) {
2339 		if (vfs_hasopt(mops, opt) != NULL) {
2340 			flags &= ~VFS_CREATEOPT;
2341 		}
2342 	}
2343 	count = mops->mo_count;
2344 	for (i = 0; i < count; i++) {
2345 		mop = &mops->mo_list[i];
2346 
2347 		if (mop->mo_flags & MO_EMPTY) {
2348 			if ((flags & VFS_CREATEOPT) == 0)
2349 				continue;
2350 			sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2351 			(void) strcpy(sp, opt);
2352 			mop->mo_name = sp;
2353 			if (arg != NULL)
2354 				mop->mo_flags = MO_HASVALUE;
2355 			else
2356 				mop->mo_flags = 0;
2357 		} else if (strcmp(opt, mop->mo_name)) {
2358 			continue;
2359 		}
2360 		if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2361 			break;
2362 		if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2363 			sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2364 			(void) strcpy(sp, arg);
2365 		} else {
2366 			sp = NULL;
2367 		}
2368 		if (mop->mo_arg != NULL)
2369 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2370 		mop->mo_arg = sp;
2371 		if (flags & VFS_DISPLAY)
2372 			mop->mo_flags &= ~MO_NODISPLAY;
2373 		if (flags & VFS_NODISPLAY)
2374 			mop->mo_flags |= MO_NODISPLAY;
2375 		mop->mo_flags |= MO_SET;
2376 		if (mop->mo_cancel != NULL) {
2377 			char **cp;
2378 
2379 			for (cp = mop->mo_cancel; *cp != NULL; cp++)
2380 				vfs_clearmntopt_nolock(mops, *cp, 0);
2381 		}
2382 		if (update_mnttab)
2383 			vfs_mnttab_modtimeupd();
2384 		break;
2385 	}
2386 }
2387 
2388 void
2389 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2390 {
2391 	int gotlock = 0;
2392 
2393 	if (VFS_ON_LIST(vfsp)) {
2394 		gotlock = 1;
2395 		vfs_list_lock();
2396 	}
2397 	vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2398 	if (gotlock)
2399 		vfs_list_unlock();
2400 }
2401 
2402 
2403 /*
2404  * Add a "tag" option to a mounted file system's options list.
2405  *
2406  * Note: caller is responsible for locking the vfs list, if needed,
2407  *       to protect mops.
2408  */
2409 static mntopt_t *
2410 vfs_addtag(mntopts_t *mops, const char *tag)
2411 {
2412 	uint_t count;
2413 	mntopt_t *mop, *motbl;
2414 
2415 	count = mops->mo_count + 1;
2416 	motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2417 	if (mops->mo_count) {
2418 		size_t len = (count - 1) * sizeof (mntopt_t);
2419 
2420 		bcopy(mops->mo_list, motbl, len);
2421 		kmem_free(mops->mo_list, len);
2422 	}
2423 	mops->mo_count = count;
2424 	mops->mo_list = motbl;
2425 	mop = &motbl[count - 1];
2426 	mop->mo_flags = MO_TAG;
2427 	mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2428 	(void) strcpy(mop->mo_name, tag);
2429 	return (mop);
2430 }
2431 
2432 /*
2433  * Allow users to set arbitrary "tags" in a vfs's mount options.
2434  * Broader use within the kernel is discouraged.
2435  */
2436 int
2437 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2438     cred_t *cr)
2439 {
2440 	vfs_t *vfsp;
2441 	mntopts_t *mops;
2442 	mntopt_t *mop;
2443 	int found = 0;
2444 	dev_t dev = makedevice(major, minor);
2445 	int err = 0;
2446 	char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2447 
2448 	/*
2449 	 * Find the desired mounted file system
2450 	 */
2451 	vfs_list_lock();
2452 	vfsp = rootvfs;
2453 	do {
2454 		if (vfsp->vfs_dev == dev &&
2455 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2456 			found = 1;
2457 			break;
2458 		}
2459 		vfsp = vfsp->vfs_next;
2460 	} while (vfsp != rootvfs);
2461 
2462 	if (!found) {
2463 		err = EINVAL;
2464 		goto out;
2465 	}
2466 	err = secpolicy_fs_config(cr, vfsp);
2467 	if (err != 0)
2468 		goto out;
2469 
2470 	mops = &vfsp->vfs_mntopts;
2471 	/*
2472 	 * Add tag if it doesn't already exist
2473 	 */
2474 	if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2475 		int len;
2476 
2477 		(void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2478 		len = strlen(buf);
2479 		if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2480 			err = ENAMETOOLONG;
2481 			goto out;
2482 		}
2483 		mop = vfs_addtag(mops, tag);
2484 	}
2485 	if ((mop->mo_flags & MO_TAG) == 0) {
2486 		err = EINVAL;
2487 		goto out;
2488 	}
2489 	vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2490 out:
2491 	vfs_list_unlock();
2492 	kmem_free(buf, MAX_MNTOPT_STR);
2493 	return (err);
2494 }
2495 
2496 /*
2497  * Allow users to remove arbitrary "tags" in a vfs's mount options.
2498  * Broader use within the kernel is discouraged.
2499  */
2500 int
2501 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2502     cred_t *cr)
2503 {
2504 	vfs_t *vfsp;
2505 	mntopt_t *mop;
2506 	int found = 0;
2507 	dev_t dev = makedevice(major, minor);
2508 	int err = 0;
2509 
2510 	/*
2511 	 * Find the desired mounted file system
2512 	 */
2513 	vfs_list_lock();
2514 	vfsp = rootvfs;
2515 	do {
2516 		if (vfsp->vfs_dev == dev &&
2517 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2518 			found = 1;
2519 			break;
2520 		}
2521 		vfsp = vfsp->vfs_next;
2522 	} while (vfsp != rootvfs);
2523 
2524 	if (!found) {
2525 		err = EINVAL;
2526 		goto out;
2527 	}
2528 	err = secpolicy_fs_config(cr, vfsp);
2529 	if (err != 0)
2530 		goto out;
2531 
2532 	if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2533 		err = EINVAL;
2534 		goto out;
2535 	}
2536 	if ((mop->mo_flags & MO_TAG) == 0) {
2537 		err = EINVAL;
2538 		goto out;
2539 	}
2540 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2541 out:
2542 	vfs_list_unlock();
2543 	return (err);
2544 }
2545 
2546 /*
2547  * Function to parse an option string and fill in a mount options table.
2548  * Unknown options are silently ignored.  The input option string is modified
2549  * by replacing separators with nulls.  If the create flag is set, options
2550  * not found in the table are just added on the fly.  The table must have
2551  * an option slot marked MO_EMPTY to add an option on the fly.
2552  *
2553  * This function is *not* for general use by filesystems.
2554  *
2555  * Note: caller is responsible for locking the vfs list, if needed,
2556  *       to protect mops..
2557  */
2558 void
2559 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2560 {
2561 	char *s = osp, *p, *nextop, *valp, *cp, *ep;
2562 	int setflg = VFS_NOFORCEOPT;
2563 
2564 	if (osp == NULL)
2565 		return;
2566 	while (*s != '\0') {
2567 		p = strchr(s, ',');	/* find next option */
2568 		if (p == NULL) {
2569 			cp = NULL;
2570 			p = s + strlen(s);
2571 		} else {
2572 			cp = p;		/* save location of comma */
2573 			*p++ = '\0';	/* mark end and point to next option */
2574 		}
2575 		nextop = p;
2576 		p = strchr(s, '=');	/* look for value */
2577 		if (p == NULL) {
2578 			valp = NULL;	/* no value supplied */
2579 		} else {
2580 			ep = p;		/* save location of equals */
2581 			*p++ = '\0';	/* end option and point to value */
2582 			valp = p;
2583 		}
2584 		/*
2585 		 * set option into options table
2586 		 */
2587 		if (create)
2588 			setflg |= VFS_CREATEOPT;
2589 		vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2590 		if (cp != NULL)
2591 			*cp = ',';	/* restore the comma */
2592 		if (valp != NULL)
2593 			*ep = '=';	/* restore the equals */
2594 		s = nextop;
2595 	}
2596 }
2597 
2598 /*
2599  * Function to inquire if an option exists in a mount options table.
2600  * Returns a pointer to the option if it exists, else NULL.
2601  *
2602  * This function is *not* for general use by filesystems.
2603  *
2604  * Note: caller is responsible for locking the vfs list, if needed,
2605  *       to protect mops.
2606  */
2607 struct mntopt *
2608 vfs_hasopt(const mntopts_t *mops, const char *opt)
2609 {
2610 	struct mntopt *mop;
2611 	uint_t i, count;
2612 
2613 	count = mops->mo_count;
2614 	for (i = 0; i < count; i++) {
2615 		mop = &mops->mo_list[i];
2616 
2617 		if (mop->mo_flags & MO_EMPTY)
2618 			continue;
2619 		if (strcmp(opt, mop->mo_name) == 0)
2620 			return (mop);
2621 	}
2622 	return (NULL);
2623 }
2624 
2625 /*
2626  * Function to inquire if an option is set in a mount options table.
2627  * Returns non-zero if set and fills in the arg pointer with a pointer to
2628  * the argument string or NULL if there is no argument string.
2629  */
2630 static int
2631 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2632 {
2633 	struct mntopt *mop;
2634 	uint_t i, count;
2635 
2636 	count = mops->mo_count;
2637 	for (i = 0; i < count; i++) {
2638 		mop = &mops->mo_list[i];
2639 
2640 		if (mop->mo_flags & MO_EMPTY)
2641 			continue;
2642 		if (strcmp(opt, mop->mo_name))
2643 			continue;
2644 		if ((mop->mo_flags & MO_SET) == 0)
2645 			return (0);
2646 		if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2647 			*argp = mop->mo_arg;
2648 		return (1);
2649 	}
2650 	return (0);
2651 }
2652 
2653 
2654 int
2655 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2656 {
2657 	int ret;
2658 
2659 	vfs_list_read_lock();
2660 	ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2661 	vfs_list_unlock();
2662 	return (ret);
2663 }
2664 
2665 
2666 /*
2667  * Construct a comma separated string of the options set in the given
2668  * mount table, return the string in the given buffer.  Return non-zero if
2669  * the buffer would overflow.
2670  *
2671  * This function is *not* for general use by filesystems.
2672  *
2673  * Note: caller is responsible for locking the vfs list, if needed,
2674  *       to protect mp.
2675  */
2676 int
2677 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2678 {
2679 	char *cp;
2680 	uint_t i;
2681 
2682 	buf[0] = '\0';
2683 	cp = buf;
2684 	for (i = 0; i < mp->mo_count; i++) {
2685 		struct mntopt *mop;
2686 
2687 		mop = &mp->mo_list[i];
2688 		if (mop->mo_flags & MO_SET) {
2689 			int optlen, comma = 0;
2690 
2691 			if (buf[0] != '\0')
2692 				comma = 1;
2693 			optlen = strlen(mop->mo_name);
2694 			if (strlen(buf) + comma + optlen + 1 > len)
2695 				goto err;
2696 			if (comma)
2697 				*cp++ = ',';
2698 			(void) strcpy(cp, mop->mo_name);
2699 			cp += optlen;
2700 			/*
2701 			 * Append option value if there is one
2702 			 */
2703 			if (mop->mo_arg != NULL) {
2704 				int arglen;
2705 
2706 				arglen = strlen(mop->mo_arg);
2707 				if (strlen(buf) + arglen + 2 > len)
2708 					goto err;
2709 				*cp++ = '=';
2710 				(void) strcpy(cp, mop->mo_arg);
2711 				cp += arglen;
2712 			}
2713 		}
2714 	}
2715 	return (0);
2716 err:
2717 	return (EOVERFLOW);
2718 }
2719 
2720 static void
2721 vfs_freecancelopt(char **moc)
2722 {
2723 	if (moc != NULL) {
2724 		int ccnt = 0;
2725 		char **cp;
2726 
2727 		for (cp = moc; *cp != NULL; cp++) {
2728 			kmem_free(*cp, strlen(*cp) + 1);
2729 			ccnt++;
2730 		}
2731 		kmem_free(moc, (ccnt + 1) * sizeof (char *));
2732 	}
2733 }
2734 
2735 static void
2736 vfs_freeopt(mntopt_t *mop)
2737 {
2738 	if (mop->mo_name != NULL)
2739 		kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2740 
2741 	vfs_freecancelopt(mop->mo_cancel);
2742 
2743 	if (mop->mo_arg != NULL)
2744 		kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2745 }
2746 
2747 /*
2748  * Free a mount options table
2749  *
2750  * This function is *not* for general use by filesystems.
2751  *
2752  * Note: caller is responsible for locking the vfs list, if needed,
2753  *       to protect mp.
2754  */
2755 void
2756 vfs_freeopttbl(mntopts_t *mp)
2757 {
2758 	uint_t i, count;
2759 
2760 	count = mp->mo_count;
2761 	for (i = 0; i < count; i++) {
2762 		vfs_freeopt(&mp->mo_list[i]);
2763 	}
2764 	if (count) {
2765 		kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2766 		mp->mo_count = 0;
2767 		mp->mo_list = NULL;
2768 	}
2769 }
2770 
2771 
2772 /* ARGSUSED */
2773 static int
2774 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2775     caller_context_t *ct)
2776 {
2777 	return (0);
2778 }
2779 
2780 /* ARGSUSED */
2781 static int
2782 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2783     caller_context_t *ct)
2784 {
2785 	return (0);
2786 }
2787 
2788 /*
2789  * The dummy vnode is currently used only by file events notification
2790  * module which is just interested in the timestamps.
2791  */
2792 /* ARGSUSED */
2793 static int
2794 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2795     caller_context_t *ct)
2796 {
2797 	bzero(vap, sizeof (vattr_t));
2798 	vap->va_type = VREG;
2799 	vap->va_nlink = 1;
2800 	vap->va_ctime = vfs_mnttab_ctime;
2801 	/*
2802 	 * it is ok to just copy mtime as the time will be monotonically
2803 	 * increasing.
2804 	 */
2805 	vap->va_mtime = vfs_mnttab_mtime;
2806 	vap->va_atime = vap->va_mtime;
2807 	return (0);
2808 }
2809 
2810 static void
2811 vfs_mnttabvp_setup(void)
2812 {
2813 	vnode_t *tvp;
2814 	vnodeops_t *vfs_mntdummyvnops;
2815 	const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2816 		VOPNAME_READ, 		{ .vop_read = vfs_mntdummyread },
2817 		VOPNAME_WRITE, 		{ .vop_write = vfs_mntdummywrite },
2818 		VOPNAME_GETATTR,	{ .vop_getattr = vfs_mntdummygetattr },
2819 		VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
2820 		NULL,			NULL
2821 	};
2822 
2823 	if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2824 	    &vfs_mntdummyvnops) != 0) {
2825 		cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2826 		/* Shouldn't happen, but not bad enough to panic */
2827 		return;
2828 	}
2829 
2830 	/*
2831 	 * A global dummy vnode is allocated to represent mntfs files.
2832 	 * The mntfs file (/etc/mnttab) can be monitored for file events
2833 	 * and receive an event when mnttab changes. Dummy VOP calls
2834 	 * will be made on this vnode. The file events notification module
2835 	 * intercepts this vnode and delivers relevant events.
2836 	 */
2837 	tvp = vn_alloc(KM_SLEEP);
2838 	tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2839 	vn_setops(tvp, vfs_mntdummyvnops);
2840 	tvp->v_type = VREG;
2841 	/*
2842 	 * The mnt dummy ops do not reference v_data.
2843 	 * No other module intercepting this vnode should either.
2844 	 * Just set it to point to itself.
2845 	 */
2846 	tvp->v_data = (caddr_t)tvp;
2847 	tvp->v_vfsp = rootvfs;
2848 	vfs_mntdummyvp = tvp;
2849 }
2850 
2851 /*
2852  * performs fake read/write ops
2853  */
2854 static void
2855 vfs_mnttab_rwop(int rw)
2856 {
2857 	struct uio	uio;
2858 	struct iovec	iov;
2859 	char	buf[1];
2860 
2861 	if (vfs_mntdummyvp == NULL)
2862 		return;
2863 
2864 	bzero(&uio, sizeof (uio));
2865 	bzero(&iov, sizeof (iov));
2866 	iov.iov_base = buf;
2867 	iov.iov_len = 0;
2868 	uio.uio_iov = &iov;
2869 	uio.uio_iovcnt = 1;
2870 	uio.uio_loffset = 0;
2871 	uio.uio_segflg = UIO_SYSSPACE;
2872 	uio.uio_resid = 0;
2873 	if (rw) {
2874 		(void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2875 	} else {
2876 		(void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2877 	}
2878 }
2879 
2880 /*
2881  * Generate a write operation.
2882  */
2883 void
2884 vfs_mnttab_writeop(void)
2885 {
2886 	vfs_mnttab_rwop(1);
2887 }
2888 
2889 /*
2890  * Generate a read operation.
2891  */
2892 void
2893 vfs_mnttab_readop(void)
2894 {
2895 	vfs_mnttab_rwop(0);
2896 }
2897 
2898 /*
2899  * Free any mnttab information recorded in the vfs struct.
2900  * The vfs must not be on the vfs list.
2901  */
2902 static void
2903 vfs_freemnttab(struct vfs *vfsp)
2904 {
2905 	ASSERT(!VFS_ON_LIST(vfsp));
2906 
2907 	/*
2908 	 * Free device and mount point information
2909 	 */
2910 	if (vfsp->vfs_mntpt != NULL) {
2911 		refstr_rele(vfsp->vfs_mntpt);
2912 		vfsp->vfs_mntpt = NULL;
2913 	}
2914 	if (vfsp->vfs_resource != NULL) {
2915 		refstr_rele(vfsp->vfs_resource);
2916 		vfsp->vfs_resource = NULL;
2917 	}
2918 	/*
2919 	 * Now free mount options information
2920 	 */
2921 	vfs_freeopttbl(&vfsp->vfs_mntopts);
2922 }
2923 
2924 /*
2925  * Return the last mnttab modification time
2926  */
2927 void
2928 vfs_mnttab_modtime(timespec_t *ts)
2929 {
2930 	ASSERT(RW_LOCK_HELD(&vfslist));
2931 	*ts = vfs_mnttab_mtime;
2932 }
2933 
2934 /*
2935  * See if mnttab is changed
2936  */
2937 void
2938 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2939 {
2940 	int changed;
2941 
2942 	*phpp = (struct pollhead *)NULL;
2943 
2944 	/*
2945 	 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
2946 	 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
2947 	 * to not grab the vfs list lock because tv_sec is monotonically
2948 	 * increasing.
2949 	 */
2950 
2951 	changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
2952 	    (old->tv_sec != vfs_mnttab_mtime.tv_sec);
2953 	if (!changed) {
2954 		*phpp = &vfs_pollhd;
2955 	}
2956 }
2957 
2958 /* Provide a unique and monotonically-increasing timestamp. */
2959 void
2960 vfs_mono_time(timespec_t *ts)
2961 {
2962 	static volatile hrtime_t hrt;		/* The saved time. */
2963 	hrtime_t	newhrt, oldhrt;		/* For effecting the CAS. */
2964 	timespec_t	newts;
2965 
2966 	/*
2967 	 * Try gethrestime() first, but be prepared to fabricate a sensible
2968 	 * answer at the first sign of any trouble.
2969 	 */
2970 	gethrestime(&newts);
2971 	newhrt = ts2hrt(&newts);
2972 	for (;;) {
2973 		oldhrt = hrt;
2974 		if (newhrt <= hrt)
2975 			newhrt = hrt + 1;
2976 		if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
2977 			break;
2978 	}
2979 	hrt2ts(newhrt, ts);
2980 }
2981 
2982 /*
2983  * Update the mnttab modification time and wake up any waiters for
2984  * mnttab changes
2985  */
2986 void
2987 vfs_mnttab_modtimeupd()
2988 {
2989 	hrtime_t oldhrt, newhrt;
2990 
2991 	ASSERT(RW_WRITE_HELD(&vfslist));
2992 	oldhrt = ts2hrt(&vfs_mnttab_mtime);
2993 	gethrestime(&vfs_mnttab_mtime);
2994 	newhrt = ts2hrt(&vfs_mnttab_mtime);
2995 	if (oldhrt == (hrtime_t)0)
2996 		vfs_mnttab_ctime = vfs_mnttab_mtime;
2997 	/*
2998 	 * Attempt to provide unique mtime (like uniqtime but not).
2999 	 */
3000 	if (newhrt == oldhrt) {
3001 		newhrt++;
3002 		hrt2ts(newhrt, &vfs_mnttab_mtime);
3003 	}
3004 	pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
3005 	vfs_mnttab_writeop();
3006 }
3007 
3008 int
3009 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3010 {
3011 	vnode_t *coveredvp;
3012 	int error;
3013 	extern void teardown_vopstats(vfs_t *);
3014 
3015 	/*
3016 	 * Get covered vnode. This will be NULL if the vfs is not linked
3017 	 * into the file system name space (i.e., domount() with MNT_NOSPICE).
3018 	 */
3019 	coveredvp = vfsp->vfs_vnodecovered;
3020 	ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3021 
3022 	/*
3023 	 * Purge all dnlc entries for this vfs.
3024 	 */
3025 	(void) dnlc_purge_vfsp(vfsp, 0);
3026 
3027 	/* For forcible umount, skip VFS_SYNC() since it may hang */
3028 	if ((flag & MS_FORCE) == 0)
3029 		(void) VFS_SYNC(vfsp, 0, cr);
3030 
3031 	/*
3032 	 * Lock the vfs to maintain fs status quo during unmount.  This
3033 	 * has to be done after the sync because ufs_update tries to acquire
3034 	 * the vfs_reflock.
3035 	 */
3036 	vfs_lock_wait(vfsp);
3037 
3038 	if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3039 		vfs_unlock(vfsp);
3040 		if (coveredvp != NULL)
3041 			vn_vfsunlock(coveredvp);
3042 	} else if (coveredvp != NULL) {
3043 		teardown_vopstats(vfsp);
3044 		/*
3045 		 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3046 		 * when it frees vfsp so we do a VN_HOLD() so we can
3047 		 * continue to use coveredvp afterwards.
3048 		 */
3049 		VN_HOLD(coveredvp);
3050 		vfs_remove(vfsp);
3051 		vn_vfsunlock(coveredvp);
3052 		VN_RELE(coveredvp);
3053 	} else {
3054 		teardown_vopstats(vfsp);
3055 		/*
3056 		 * Release the reference to vfs that is not linked
3057 		 * into the name space.
3058 		 */
3059 		vfs_unlock(vfsp);
3060 		VFS_RELE(vfsp);
3061 	}
3062 	return (error);
3063 }
3064 
3065 
3066 /*
3067  * Vfs_unmountall() is called by uadmin() to unmount all
3068  * mounted file systems (except the root file system) during shutdown.
3069  * It follows the existing locking protocol when traversing the vfs list
3070  * to sync and unmount vfses. Even though there should be no
3071  * other thread running while the system is shutting down, it is prudent
3072  * to still follow the locking protocol.
3073  */
3074 void
3075 vfs_unmountall(void)
3076 {
3077 	struct vfs *vfsp;
3078 	struct vfs *prev_vfsp = NULL;
3079 	int error;
3080 
3081 	/*
3082 	 * Toss all dnlc entries now so that the per-vfs sync
3083 	 * and unmount operations don't have to slog through
3084 	 * a bunch of uninteresting vnodes over and over again.
3085 	 */
3086 	dnlc_purge();
3087 
3088 	vfs_list_lock();
3089 	for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3090 		prev_vfsp = vfsp->vfs_prev;
3091 
3092 		if (vfs_lock(vfsp) != 0)
3093 			continue;
3094 		error = vn_vfswlock(vfsp->vfs_vnodecovered);
3095 		vfs_unlock(vfsp);
3096 		if (error)
3097 			continue;
3098 
3099 		vfs_list_unlock();
3100 
3101 		(void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3102 		(void) dounmount(vfsp, 0, CRED());
3103 
3104 		/*
3105 		 * Since we dropped the vfslist lock above we must
3106 		 * verify that next_vfsp still exists, else start over.
3107 		 */
3108 		vfs_list_lock();
3109 		for (vfsp = rootvfs->vfs_prev;
3110 		    vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3111 			if (vfsp == prev_vfsp)
3112 				break;
3113 		if (vfsp == rootvfs && prev_vfsp != rootvfs)
3114 			prev_vfsp = rootvfs->vfs_prev;
3115 	}
3116 	vfs_list_unlock();
3117 }
3118 
3119 /*
3120  * Called to add an entry to the end of the vfs mount in progress list
3121  */
3122 void
3123 vfs_addmip(dev_t dev, struct vfs *vfsp)
3124 {
3125 	struct ipmnt *mipp;
3126 
3127 	mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3128 	mipp->mip_next = NULL;
3129 	mipp->mip_dev = dev;
3130 	mipp->mip_vfsp = vfsp;
3131 	mutex_enter(&vfs_miplist_mutex);
3132 	if (vfs_miplist_end != NULL)
3133 		vfs_miplist_end->mip_next = mipp;
3134 	else
3135 		vfs_miplist = mipp;
3136 	vfs_miplist_end = mipp;
3137 	mutex_exit(&vfs_miplist_mutex);
3138 }
3139 
3140 /*
3141  * Called to remove an entry from the mount in progress list
3142  * Either because the mount completed or it failed.
3143  */
3144 void
3145 vfs_delmip(struct vfs *vfsp)
3146 {
3147 	struct ipmnt *mipp, *mipprev;
3148 
3149 	mutex_enter(&vfs_miplist_mutex);
3150 	mipprev = NULL;
3151 	for (mipp = vfs_miplist;
3152 	    mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3153 		mipprev = mipp;
3154 	}
3155 	if (mipp == NULL)
3156 		return; /* shouldn't happen */
3157 	if (mipp == vfs_miplist_end)
3158 		vfs_miplist_end = mipprev;
3159 	if (mipprev == NULL)
3160 		vfs_miplist = mipp->mip_next;
3161 	else
3162 		mipprev->mip_next = mipp->mip_next;
3163 	mutex_exit(&vfs_miplist_mutex);
3164 	kmem_free(mipp, sizeof (struct ipmnt));
3165 }
3166 
3167 /*
3168  * vfs_add is called by a specific filesystem's mount routine to add
3169  * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3170  * The vfs should already have been locked by the caller.
3171  *
3172  * coveredvp is NULL if this is the root.
3173  */
3174 void
3175 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3176 {
3177 	int newflag;
3178 
3179 	ASSERT(vfs_lock_held(vfsp));
3180 	VFS_HOLD(vfsp);
3181 	newflag = vfsp->vfs_flag;
3182 	if (mflag & MS_RDONLY)
3183 		newflag |= VFS_RDONLY;
3184 	else
3185 		newflag &= ~VFS_RDONLY;
3186 	if (mflag & MS_NOSUID)
3187 		newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3188 	else
3189 		newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3190 	if (mflag & MS_NOMNTTAB)
3191 		newflag |= VFS_NOMNTTAB;
3192 	else
3193 		newflag &= ~VFS_NOMNTTAB;
3194 
3195 	if (coveredvp != NULL) {
3196 		ASSERT(vn_vfswlock_held(coveredvp));
3197 		coveredvp->v_vfsmountedhere = vfsp;
3198 		VN_HOLD(coveredvp);
3199 	}
3200 	vfsp->vfs_vnodecovered = coveredvp;
3201 	vfsp->vfs_flag = newflag;
3202 
3203 	vfs_list_add(vfsp);
3204 }
3205 
3206 /*
3207  * Remove a vfs from the vfs list, null out the pointer from the
3208  * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3209  * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3210  * reference to the vfs and to the covered vnode.
3211  *
3212  * Called from dounmount after it's confirmed with the file system
3213  * that the unmount is legal.
3214  */
3215 void
3216 vfs_remove(struct vfs *vfsp)
3217 {
3218 	vnode_t *vp;
3219 
3220 	ASSERT(vfs_lock_held(vfsp));
3221 
3222 	/*
3223 	 * Can't unmount root.  Should never happen because fs will
3224 	 * be busy.
3225 	 */
3226 	if (vfsp == rootvfs)
3227 		panic("vfs_remove: unmounting root");
3228 
3229 	vfs_list_remove(vfsp);
3230 
3231 	/*
3232 	 * Unhook from the file system name space.
3233 	 */
3234 	vp = vfsp->vfs_vnodecovered;
3235 	ASSERT(vn_vfswlock_held(vp));
3236 	vp->v_vfsmountedhere = NULL;
3237 	vfsp->vfs_vnodecovered = NULL;
3238 	VN_RELE(vp);
3239 
3240 	/*
3241 	 * Release lock and wakeup anybody waiting.
3242 	 */
3243 	vfs_unlock(vfsp);
3244 	VFS_RELE(vfsp);
3245 }
3246 
3247 /*
3248  * Lock a filesystem to prevent access to it while mounting,
3249  * unmounting and syncing.  Return EBUSY immediately if lock
3250  * can't be acquired.
3251  */
3252 int
3253 vfs_lock(vfs_t *vfsp)
3254 {
3255 	vn_vfslocks_entry_t *vpvfsentry;
3256 
3257 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3258 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3259 		return (0);
3260 
3261 	vn_vfslocks_rele(vpvfsentry);
3262 	return (EBUSY);
3263 }
3264 
3265 int
3266 vfs_rlock(vfs_t *vfsp)
3267 {
3268 	vn_vfslocks_entry_t *vpvfsentry;
3269 
3270 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3271 
3272 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3273 		return (0);
3274 
3275 	vn_vfslocks_rele(vpvfsentry);
3276 	return (EBUSY);
3277 }
3278 
3279 void
3280 vfs_lock_wait(vfs_t *vfsp)
3281 {
3282 	vn_vfslocks_entry_t *vpvfsentry;
3283 
3284 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3285 	rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3286 }
3287 
3288 void
3289 vfs_rlock_wait(vfs_t *vfsp)
3290 {
3291 	vn_vfslocks_entry_t *vpvfsentry;
3292 
3293 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3294 	rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3295 }
3296 
3297 /*
3298  * Unlock a locked filesystem.
3299  */
3300 void
3301 vfs_unlock(vfs_t *vfsp)
3302 {
3303 	vn_vfslocks_entry_t *vpvfsentry;
3304 
3305 	/*
3306 	 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3307 	 * And these changes should remain for the patch changes as it is.
3308 	 */
3309 	if (panicstr)
3310 		return;
3311 
3312 	/*
3313 	 * ve_refcount needs to be dropped twice here.
3314 	 * 1. To release refernce after a call to vfs_locks_getlock()
3315 	 * 2. To release the reference from the locking routines like
3316 	 *    vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3317 	 */
3318 
3319 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3320 	vn_vfslocks_rele(vpvfsentry);
3321 
3322 	rwst_exit(&vpvfsentry->ve_lock);
3323 	vn_vfslocks_rele(vpvfsentry);
3324 }
3325 
3326 /*
3327  * Utility routine that allows a filesystem to construct its
3328  * fsid in "the usual way" - by munging some underlying dev_t and
3329  * the filesystem type number into the 64-bit fsid.  Note that
3330  * this implicitly relies on dev_t persistence to make filesystem
3331  * id's persistent.
3332  *
3333  * There's nothing to prevent an individual fs from constructing its
3334  * fsid in a different way, and indeed they should.
3335  *
3336  * Since we want fsids to be 32-bit quantities (so that they can be
3337  * exported identically by either 32-bit or 64-bit APIs, as well as
3338  * the fact that fsid's are "known" to NFS), we compress the device
3339  * number given down to 32-bits, and panic if that isn't possible.
3340  */
3341 void
3342 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3343 {
3344 	if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3345 		panic("device number too big for fsid!");
3346 	fsi->val[1] = val;
3347 }
3348 
3349 int
3350 vfs_lock_held(vfs_t *vfsp)
3351 {
3352 	int held;
3353 	vn_vfslocks_entry_t *vpvfsentry;
3354 
3355 	/*
3356 	 * vfs_lock_held will mimic sema_held behaviour
3357 	 * if panicstr is set. And these changes should remain
3358 	 * for the patch changes as it is.
3359 	 */
3360 	if (panicstr)
3361 		return (1);
3362 
3363 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3364 	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3365 
3366 	vn_vfslocks_rele(vpvfsentry);
3367 	return (held);
3368 }
3369 
3370 struct _kthread *
3371 vfs_lock_owner(vfs_t *vfsp)
3372 {
3373 	struct _kthread *owner;
3374 	vn_vfslocks_entry_t *vpvfsentry;
3375 
3376 	/*
3377 	 * vfs_wlock_held will mimic sema_held behaviour
3378 	 * if panicstr is set. And these changes should remain
3379 	 * for the patch changes as it is.
3380 	 */
3381 	if (panicstr)
3382 		return (NULL);
3383 
3384 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3385 	owner = rwst_owner(&vpvfsentry->ve_lock);
3386 
3387 	vn_vfslocks_rele(vpvfsentry);
3388 	return (owner);
3389 }
3390 
3391 /*
3392  * vfs list locking.
3393  *
3394  * Rather than manipulate the vfslist lock directly, we abstract into lock
3395  * and unlock routines to allow the locking implementation to be changed for
3396  * clustering.
3397  *
3398  * Whenever the vfs list is modified through its hash links, the overall list
3399  * lock must be obtained before locking the relevant hash bucket.  But to see
3400  * whether a given vfs is on the list, it suffices to obtain the lock for the
3401  * hash bucket without getting the overall list lock.  (See getvfs() below.)
3402  */
3403 
3404 void
3405 vfs_list_lock()
3406 {
3407 	rw_enter(&vfslist, RW_WRITER);
3408 }
3409 
3410 void
3411 vfs_list_read_lock()
3412 {
3413 	rw_enter(&vfslist, RW_READER);
3414 }
3415 
3416 void
3417 vfs_list_unlock()
3418 {
3419 	rw_exit(&vfslist);
3420 }
3421 
3422 /*
3423  * Low level worker routines for adding entries to and removing entries from
3424  * the vfs list.
3425  */
3426 
3427 static void
3428 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3429 {
3430 	int vhno;
3431 	struct vfs **hp;
3432 	dev_t dev;
3433 
3434 	ASSERT(RW_WRITE_HELD(&vfslist));
3435 
3436 	dev = expldev(vfsp->vfs_fsid.val[0]);
3437 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3438 
3439 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3440 
3441 	/*
3442 	 * Link into the hash table, inserting it at the end, so that LOFS
3443 	 * with the same fsid as UFS (or other) file systems will not hide the
3444 	 * UFS.
3445 	 */
3446 	if (insert_at_head) {
3447 		vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3448 		rvfs_list[vhno].rvfs_head = vfsp;
3449 	} else {
3450 		for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3451 		    hp = &(*hp)->vfs_hash)
3452 			continue;
3453 		/*
3454 		 * hp now contains the address of the pointer to update
3455 		 * to effect the insertion.
3456 		 */
3457 		vfsp->vfs_hash = NULL;
3458 		*hp = vfsp;
3459 	}
3460 
3461 	rvfs_list[vhno].rvfs_len++;
3462 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3463 }
3464 
3465 
3466 static void
3467 vfs_hash_remove(struct vfs *vfsp)
3468 {
3469 	int vhno;
3470 	struct vfs *tvfsp;
3471 	dev_t dev;
3472 
3473 	ASSERT(RW_WRITE_HELD(&vfslist));
3474 
3475 	dev = expldev(vfsp->vfs_fsid.val[0]);
3476 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3477 
3478 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3479 
3480 	/*
3481 	 * Remove from hash.
3482 	 */
3483 	if (rvfs_list[vhno].rvfs_head == vfsp) {
3484 		rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3485 		rvfs_list[vhno].rvfs_len--;
3486 		goto foundit;
3487 	}
3488 	for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3489 	    tvfsp = tvfsp->vfs_hash) {
3490 		if (tvfsp->vfs_hash == vfsp) {
3491 			tvfsp->vfs_hash = vfsp->vfs_hash;
3492 			rvfs_list[vhno].rvfs_len--;
3493 			goto foundit;
3494 		}
3495 	}
3496 	cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3497 
3498 foundit:
3499 
3500 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3501 }
3502 
3503 
3504 void
3505 vfs_list_add(struct vfs *vfsp)
3506 {
3507 	zone_t *zone;
3508 
3509 	/*
3510 	 * Typically, the vfs_t will have been created on behalf of the file
3511 	 * system in vfs_init, where it will have been provided with a
3512 	 * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3513 	 * by an unbundled file system. We therefore check for such an example
3514 	 * before stamping the vfs_t with its creation time for the benefit of
3515 	 * mntfs.
3516 	 */
3517 	if (vfsp->vfs_implp == NULL)
3518 		vfsimpl_setup(vfsp);
3519 	vfs_mono_time(&vfsp->vfs_hrctime);
3520 
3521 	/*
3522 	 * The zone that owns the mount is the one that performed the mount.
3523 	 * Note that this isn't necessarily the same as the zone mounted into.
3524 	 * The corresponding zone_rele_ref() will be done when the vfs_t
3525 	 * is being free'd.
3526 	 */
3527 	vfsp->vfs_zone = curproc->p_zone;
3528 	zone_init_ref(&vfsp->vfs_implp->vi_zone_ref);
3529 	zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref,
3530 	    ZONE_REF_VFS);
3531 
3532 	/*
3533 	 * Find the zone mounted into, and put this mount on its vfs list.
3534 	 */
3535 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3536 	ASSERT(zone != NULL);
3537 	/*
3538 	 * Special casing for the root vfs.  This structure is allocated
3539 	 * statically and hooked onto rootvfs at link time.  During the
3540 	 * vfs_mountroot call at system startup time, the root file system's
3541 	 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3542 	 * as argument.  The code below must detect and handle this special
3543 	 * case.  The only apparent justification for this special casing is
3544 	 * to ensure that the root file system appears at the head of the
3545 	 * list.
3546 	 *
3547 	 * XXX:	I'm assuming that it's ok to do normal list locking when
3548 	 *	adding the entry for the root file system (this used to be
3549 	 *	done with no locks held).
3550 	 */
3551 	vfs_list_lock();
3552 	/*
3553 	 * Link into the vfs list proper.
3554 	 */
3555 	if (vfsp == &root) {
3556 		/*
3557 		 * Assert: This vfs is already on the list as its first entry.
3558 		 * Thus, there's nothing to do.
3559 		 */
3560 		ASSERT(rootvfs == vfsp);
3561 		/*
3562 		 * Add it to the head of the global zone's vfslist.
3563 		 */
3564 		ASSERT(zone == global_zone);
3565 		ASSERT(zone->zone_vfslist == NULL);
3566 		zone->zone_vfslist = vfsp;
3567 	} else {
3568 		/*
3569 		 * Link to end of list using vfs_prev (as rootvfs is now a
3570 		 * doubly linked circular list) so list is in mount order for
3571 		 * mnttab use.
3572 		 */
3573 		rootvfs->vfs_prev->vfs_next = vfsp;
3574 		vfsp->vfs_prev = rootvfs->vfs_prev;
3575 		rootvfs->vfs_prev = vfsp;
3576 		vfsp->vfs_next = rootvfs;
3577 
3578 		/*
3579 		 * Do it again for the zone-private list (which may be NULL).
3580 		 */
3581 		if (zone->zone_vfslist == NULL) {
3582 			ASSERT(zone != global_zone);
3583 			zone->zone_vfslist = vfsp;
3584 		} else {
3585 			zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3586 			vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3587 			zone->zone_vfslist->vfs_zone_prev = vfsp;
3588 			vfsp->vfs_zone_next = zone->zone_vfslist;
3589 		}
3590 	}
3591 
3592 	/*
3593 	 * Link into the hash table, inserting it at the end, so that LOFS
3594 	 * with the same fsid as UFS (or other) file systems will not hide
3595 	 * the UFS.
3596 	 */
3597 	vfs_hash_add(vfsp, 0);
3598 
3599 	/*
3600 	 * update the mnttab modification time
3601 	 */
3602 	vfs_mnttab_modtimeupd();
3603 	vfs_list_unlock();
3604 	zone_rele(zone);
3605 }
3606 
3607 void
3608 vfs_list_remove(struct vfs *vfsp)
3609 {
3610 	zone_t *zone;
3611 
3612 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3613 	ASSERT(zone != NULL);
3614 	/*
3615 	 * Callers are responsible for preventing attempts to unmount the
3616 	 * root.
3617 	 */
3618 	ASSERT(vfsp != rootvfs);
3619 
3620 	vfs_list_lock();
3621 
3622 	/*
3623 	 * Remove from hash.
3624 	 */
3625 	vfs_hash_remove(vfsp);
3626 
3627 	/*
3628 	 * Remove from vfs list.
3629 	 */
3630 	vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3631 	vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3632 	vfsp->vfs_next = vfsp->vfs_prev = NULL;
3633 
3634 	/*
3635 	 * Remove from zone-specific vfs list.
3636 	 */
3637 	if (zone->zone_vfslist == vfsp)
3638 		zone->zone_vfslist = vfsp->vfs_zone_next;
3639 
3640 	if (vfsp->vfs_zone_next == vfsp) {
3641 		ASSERT(vfsp->vfs_zone_prev == vfsp);
3642 		ASSERT(zone->zone_vfslist == vfsp);
3643 		zone->zone_vfslist = NULL;
3644 	}
3645 
3646 	vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3647 	vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3648 	vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3649 
3650 	/*
3651 	 * update the mnttab modification time
3652 	 */
3653 	vfs_mnttab_modtimeupd();
3654 	vfs_list_unlock();
3655 	zone_rele(zone);
3656 }
3657 
3658 struct vfs *
3659 getvfs(fsid_t *fsid)
3660 {
3661 	struct vfs *vfsp;
3662 	int val0 = fsid->val[0];
3663 	int val1 = fsid->val[1];
3664 	dev_t dev = expldev(val0);
3665 	int vhno = VFSHASH(getmajor(dev), getminor(dev));
3666 	kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3667 
3668 	mutex_enter(hmp);
3669 	for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3670 		if (vfsp->vfs_fsid.val[0] == val0 &&
3671 		    vfsp->vfs_fsid.val[1] == val1) {
3672 			VFS_HOLD(vfsp);
3673 			mutex_exit(hmp);
3674 			return (vfsp);
3675 		}
3676 	}
3677 	mutex_exit(hmp);
3678 	return (NULL);
3679 }
3680 
3681 /*
3682  * Search the vfs mount in progress list for a specified device/vfs entry.
3683  * Returns 0 if the first entry in the list that the device matches has the
3684  * given vfs pointer as well.  If the device matches but a different vfs
3685  * pointer is encountered in the list before the given vfs pointer then
3686  * a 1 is returned.
3687  */
3688 
3689 int
3690 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3691 {
3692 	int retval = 0;
3693 	struct ipmnt *mipp;
3694 
3695 	mutex_enter(&vfs_miplist_mutex);
3696 	for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3697 		if (mipp->mip_dev == dev) {
3698 			if (mipp->mip_vfsp != vfsp)
3699 				retval = 1;
3700 			break;
3701 		}
3702 	}
3703 	mutex_exit(&vfs_miplist_mutex);
3704 	return (retval);
3705 }
3706 
3707 /*
3708  * Search the vfs list for a specified device.  Returns 1, if entry is found
3709  * or 0 if no suitable entry is found.
3710  */
3711 
3712 int
3713 vfs_devismounted(dev_t dev)
3714 {
3715 	struct vfs *vfsp;
3716 	int found;
3717 
3718 	vfs_list_read_lock();
3719 	vfsp = rootvfs;
3720 	found = 0;
3721 	do {
3722 		if (vfsp->vfs_dev == dev) {
3723 			found = 1;
3724 			break;
3725 		}
3726 		vfsp = vfsp->vfs_next;
3727 	} while (vfsp != rootvfs);
3728 
3729 	vfs_list_unlock();
3730 	return (found);
3731 }
3732 
3733 /*
3734  * Search the vfs list for a specified device.  Returns a pointer to it
3735  * or NULL if no suitable entry is found. The caller of this routine
3736  * is responsible for releasing the returned vfs pointer.
3737  */
3738 struct vfs *
3739 vfs_dev2vfsp(dev_t dev)
3740 {
3741 	struct vfs *vfsp;
3742 	int found;
3743 
3744 	vfs_list_read_lock();
3745 	vfsp = rootvfs;
3746 	found = 0;
3747 	do {
3748 		/*
3749 		 * The following could be made more efficient by making
3750 		 * the entire loop use vfs_zone_next if the call is from
3751 		 * a zone.  The only callers, however, ustat(2) and
3752 		 * umount2(2), don't seem to justify the added
3753 		 * complexity at present.
3754 		 */
3755 		if (vfsp->vfs_dev == dev &&
3756 		    ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3757 		    curproc->p_zone)) {
3758 			VFS_HOLD(vfsp);
3759 			found = 1;
3760 			break;
3761 		}
3762 		vfsp = vfsp->vfs_next;
3763 	} while (vfsp != rootvfs);
3764 	vfs_list_unlock();
3765 	return (found ? vfsp: NULL);
3766 }
3767 
3768 /*
3769  * Search the vfs list for a specified mntpoint.  Returns a pointer to it
3770  * or NULL if no suitable entry is found. The caller of this routine
3771  * is responsible for releasing the returned vfs pointer.
3772  *
3773  * Note that if multiple mntpoints match, the last one matching is
3774  * returned in an attempt to return the "top" mount when overlay
3775  * mounts are covering the same mount point.  This is accomplished by starting
3776  * at the end of the list and working our way backwards, stopping at the first
3777  * matching mount.
3778  */
3779 struct vfs *
3780 vfs_mntpoint2vfsp(const char *mp)
3781 {
3782 	struct vfs *vfsp;
3783 	struct vfs *retvfsp = NULL;
3784 	zone_t *zone = curproc->p_zone;
3785 	struct vfs *list;
3786 
3787 	vfs_list_read_lock();
3788 	if (getzoneid() == GLOBAL_ZONEID) {
3789 		/*
3790 		 * The global zone may see filesystems in any zone.
3791 		 */
3792 		vfsp = rootvfs->vfs_prev;
3793 		do {
3794 			if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) {
3795 				retvfsp = vfsp;
3796 				break;
3797 			}
3798 			vfsp = vfsp->vfs_prev;
3799 		} while (vfsp != rootvfs->vfs_prev);
3800 	} else if ((list = zone->zone_vfslist) != NULL) {
3801 		const char *mntpt;
3802 
3803 		vfsp = list->vfs_zone_prev;
3804 		do {
3805 			mntpt = refstr_value(vfsp->vfs_mntpt);
3806 			mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3807 			if (strcmp(mntpt, mp) == 0) {
3808 				retvfsp = vfsp;
3809 				break;
3810 			}
3811 			vfsp = vfsp->vfs_zone_prev;
3812 		} while (vfsp != list->vfs_zone_prev);
3813 	}
3814 	if (retvfsp)
3815 		VFS_HOLD(retvfsp);
3816 	vfs_list_unlock();
3817 	return (retvfsp);
3818 }
3819 
3820 /*
3821  * Search the vfs list for a specified vfsops.
3822  * if vfs entry is found then return 1, else 0.
3823  */
3824 int
3825 vfs_opsinuse(vfsops_t *ops)
3826 {
3827 	struct vfs *vfsp;
3828 	int found;
3829 
3830 	vfs_list_read_lock();
3831 	vfsp = rootvfs;
3832 	found = 0;
3833 	do {
3834 		if (vfs_getops(vfsp) == ops) {
3835 			found = 1;
3836 			break;
3837 		}
3838 		vfsp = vfsp->vfs_next;
3839 	} while (vfsp != rootvfs);
3840 	vfs_list_unlock();
3841 	return (found);
3842 }
3843 
3844 /*
3845  * Allocate an entry in vfssw for a file system type
3846  */
3847 struct vfssw *
3848 allocate_vfssw(const char *type)
3849 {
3850 	struct vfssw *vswp;
3851 
3852 	if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3853 		/*
3854 		 * The vfssw table uses the empty string to identify an
3855 		 * available entry; we cannot add any type which has
3856 		 * a leading NUL. The string length is limited to
3857 		 * the size of the st_fstype array in struct stat.
3858 		 */
3859 		return (NULL);
3860 	}
3861 
3862 	ASSERT(VFSSW_WRITE_LOCKED());
3863 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3864 		if (!ALLOCATED_VFSSW(vswp)) {
3865 			vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3866 			(void) strcpy(vswp->vsw_name, type);
3867 			ASSERT(vswp->vsw_count == 0);
3868 			vswp->vsw_count = 1;
3869 			mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3870 			return (vswp);
3871 		}
3872 	return (NULL);
3873 }
3874 
3875 /*
3876  * Impose additional layer of translation between vfstype names
3877  * and module names in the filesystem.
3878  */
3879 static const char *
3880 vfs_to_modname(const char *vfstype)
3881 {
3882 	if (strcmp(vfstype, "proc") == 0) {
3883 		vfstype = "procfs";
3884 	} else if (strcmp(vfstype, "fd") == 0) {
3885 		vfstype = "fdfs";
3886 	} else if (strncmp(vfstype, "nfs", 3) == 0) {
3887 		vfstype = "nfs";
3888 	}
3889 
3890 	return (vfstype);
3891 }
3892 
3893 /*
3894  * Find a vfssw entry given a file system type name.
3895  * Try to autoload the filesystem if it's not found.
3896  * If it's installed, return the vfssw locked to prevent unloading.
3897  */
3898 struct vfssw *
3899 vfs_getvfssw(const char *type)
3900 {
3901 	struct vfssw *vswp;
3902 	const char *modname;
3903 
3904 	RLOCK_VFSSW();
3905 	vswp = vfs_getvfsswbyname(type);
3906 	modname = vfs_to_modname(type);
3907 
3908 	if (rootdir == NULL) {
3909 		/*
3910 		 * If we haven't yet loaded the root file system, then our
3911 		 * _init won't be called until later. Allocate vfssw entry,
3912 		 * because mod_installfs won't be called.
3913 		 */
3914 		if (vswp == NULL) {
3915 			RUNLOCK_VFSSW();
3916 			WLOCK_VFSSW();
3917 			if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
3918 				if ((vswp = allocate_vfssw(type)) == NULL) {
3919 					WUNLOCK_VFSSW();
3920 					return (NULL);
3921 				}
3922 			}
3923 			WUNLOCK_VFSSW();
3924 			RLOCK_VFSSW();
3925 		}
3926 		if (!VFS_INSTALLED(vswp)) {
3927 			RUNLOCK_VFSSW();
3928 			(void) modloadonly("fs", modname);
3929 		} else
3930 			RUNLOCK_VFSSW();
3931 		return (vswp);
3932 	}
3933 
3934 	/*
3935 	 * Try to load the filesystem.  Before calling modload(), we drop
3936 	 * our lock on the VFS switch table, and pick it up after the
3937 	 * module is loaded.  However, there is a potential race:  the
3938 	 * module could be unloaded after the call to modload() completes
3939 	 * but before we pick up the lock and drive on.  Therefore,
3940 	 * we keep reloading the module until we've loaded the module
3941 	 * _and_ we have the lock on the VFS switch table.
3942 	 */
3943 	while (vswp == NULL || !VFS_INSTALLED(vswp)) {
3944 		RUNLOCK_VFSSW();
3945 		if (modload("fs", modname) == -1)
3946 			return (NULL);
3947 		RLOCK_VFSSW();
3948 		if (vswp == NULL)
3949 			if ((vswp = vfs_getvfsswbyname(type)) == NULL)
3950 				break;
3951 	}
3952 	RUNLOCK_VFSSW();
3953 
3954 	return (vswp);
3955 }
3956 
3957 /*
3958  * Find a vfssw entry given a file system type name.
3959  */
3960 struct vfssw *
3961 vfs_getvfsswbyname(const char *type)
3962 {
3963 	struct vfssw *vswp;
3964 
3965 	ASSERT(VFSSW_LOCKED());
3966 	if (type == NULL || *type == '\0')
3967 		return (NULL);
3968 
3969 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3970 		if (strcmp(type, vswp->vsw_name) == 0) {
3971 			vfs_refvfssw(vswp);
3972 			return (vswp);
3973 		}
3974 	}
3975 
3976 	return (NULL);
3977 }
3978 
3979 /*
3980  * Find a vfssw entry given a set of vfsops.
3981  */
3982 struct vfssw *
3983 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
3984 {
3985 	struct vfssw *vswp;
3986 
3987 	RLOCK_VFSSW();
3988 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3989 		if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
3990 			vfs_refvfssw(vswp);
3991 			RUNLOCK_VFSSW();
3992 			return (vswp);
3993 		}
3994 	}
3995 	RUNLOCK_VFSSW();
3996 
3997 	return (NULL);
3998 }
3999 
4000 /*
4001  * Reference a vfssw entry.
4002  */
4003 void
4004 vfs_refvfssw(struct vfssw *vswp)
4005 {
4006 
4007 	mutex_enter(&vswp->vsw_lock);
4008 	vswp->vsw_count++;
4009 	mutex_exit(&vswp->vsw_lock);
4010 }
4011 
4012 /*
4013  * Unreference a vfssw entry.
4014  */
4015 void
4016 vfs_unrefvfssw(struct vfssw *vswp)
4017 {
4018 
4019 	mutex_enter(&vswp->vsw_lock);
4020 	vswp->vsw_count--;
4021 	mutex_exit(&vswp->vsw_lock);
4022 }
4023 
4024 static int sync_retries = 20;	/* number of retries when not making progress */
4025 static int sync_triesleft;	/* portion of sync_retries remaining */
4026 
4027 static pgcnt_t old_pgcnt, new_pgcnt;
4028 static int new_bufcnt, old_bufcnt;
4029 
4030 /*
4031  * Sync all of the mounted filesystems, and then wait for the actual i/o to
4032  * complete.  We wait by counting the number of dirty pages and buffers,
4033  * pushing them out using bio_busy() and page_busy(), and then counting again.
4034  * This routine is used during the uadmin A_SHUTDOWN code.  It should only
4035  * be used after some higher-level mechanism has quiesced the system so that
4036  * new writes are not being initiated while we are waiting for completion.
4037  *
4038  * To ensure finite running time, our algorithm uses sync_triesleft (a progress
4039  * counter used by the vfs_syncall() loop below). It is declared above so
4040  * it can be found easily in the debugger.
4041  *
4042  * The sync_triesleft counter is updated by vfs_syncall() itself.  If we make
4043  * sync_retries consecutive calls to bio_busy() and page_busy() without
4044  * decreasing either the number of dirty buffers or dirty pages below the
4045  * lowest count we have seen so far, we give up and return from vfs_syncall().
4046  *
4047  * Each loop iteration ends with a call to delay() one second to allow time for
4048  * i/o completion and to permit the user time to read our progress messages.
4049  */
4050 void
4051 vfs_syncall(void)
4052 {
4053 	if (rootdir == NULL && !modrootloaded)
4054 		return; /* no filesystems have been loaded yet */
4055 
4056 	printf("syncing file systems...");
4057 	sync();
4058 
4059 	sync_triesleft = sync_retries;
4060 
4061 	old_bufcnt = new_bufcnt = INT_MAX;
4062 	old_pgcnt = new_pgcnt = ULONG_MAX;
4063 
4064 	while (sync_triesleft > 0) {
4065 		old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4066 		old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4067 
4068 		new_bufcnt = bio_busy(B_TRUE);
4069 		new_pgcnt = page_busy(B_TRUE);
4070 
4071 		if (new_bufcnt == 0 && new_pgcnt == 0)
4072 			break;
4073 
4074 		if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4075 			sync_triesleft = sync_retries;
4076 		else
4077 			sync_triesleft--;
4078 
4079 		if (new_bufcnt)
4080 			printf(" [%d]", new_bufcnt);
4081 		if (new_pgcnt)
4082 			printf(" %lu", new_pgcnt);
4083 
4084 		delay(hz);
4085 	}
4086 
4087 	if (new_bufcnt != 0 || new_pgcnt != 0)
4088 		printf(" done (not all i/o completed)\n");
4089 	else
4090 		printf(" done\n");
4091 
4092 	delay(hz);
4093 }
4094 
4095 /*
4096  * Map VFS flags to statvfs flags.  These shouldn't really be separate
4097  * flags at all.
4098  */
4099 uint_t
4100 vf_to_stf(uint_t vf)
4101 {
4102 	uint_t stf = 0;
4103 
4104 	if (vf & VFS_RDONLY)
4105 		stf |= ST_RDONLY;
4106 	if (vf & VFS_NOSETUID)
4107 		stf |= ST_NOSUID;
4108 	if (vf & VFS_NOTRUNC)
4109 		stf |= ST_NOTRUNC;
4110 
4111 	return (stf);
4112 }
4113 
4114 /*
4115  * Entries for (illegal) fstype 0.
4116  */
4117 /* ARGSUSED */
4118 int
4119 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4120 {
4121 	cmn_err(CE_PANIC, "stray vfs operation");
4122 	return (0);
4123 }
4124 
4125 /*
4126  * Entries for (illegal) fstype 0.
4127  */
4128 int
4129 vfsstray(void)
4130 {
4131 	cmn_err(CE_PANIC, "stray vfs operation");
4132 	return (0);
4133 }
4134 
4135 /*
4136  * Support for dealing with forced UFS unmount and its interaction with
4137  * LOFS. Could be used by any filesystem.
4138  * See bug 1203132.
4139  */
4140 int
4141 vfs_EIO(void)
4142 {
4143 	return (EIO);
4144 }
4145 
4146 /*
4147  * We've gotta define the op for sync separately, since the compiler gets
4148  * confused if we mix and match ANSI and normal style prototypes when
4149  * a "short" argument is present and spits out a warning.
4150  */
4151 /*ARGSUSED*/
4152 int
4153 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4154 {
4155 	return (EIO);
4156 }
4157 
4158 vfs_t EIO_vfs;
4159 vfsops_t *EIO_vfsops;
4160 
4161 /*
4162  * Called from startup() to initialize all loaded vfs's
4163  */
4164 void
4165 vfsinit(void)
4166 {
4167 	struct vfssw *vswp;
4168 	int error;
4169 	extern int vopstats_enabled;
4170 	extern void vopstats_startup();
4171 
4172 	static const fs_operation_def_t EIO_vfsops_template[] = {
4173 		VFSNAME_MOUNT,		{ .error = vfs_EIO },
4174 		VFSNAME_UNMOUNT,	{ .error = vfs_EIO },
4175 		VFSNAME_ROOT,		{ .error = vfs_EIO },
4176 		VFSNAME_STATVFS,	{ .error = vfs_EIO },
4177 		VFSNAME_SYNC, 		{ .vfs_sync = vfs_EIO_sync },
4178 		VFSNAME_VGET,		{ .error = vfs_EIO },
4179 		VFSNAME_MOUNTROOT,	{ .error = vfs_EIO },
4180 		VFSNAME_FREEVFS,	{ .error = vfs_EIO },
4181 		VFSNAME_VNSTATE,	{ .error = vfs_EIO },
4182 		NULL, NULL
4183 	};
4184 
4185 	static const fs_operation_def_t stray_vfsops_template[] = {
4186 		VFSNAME_MOUNT,		{ .error = vfsstray },
4187 		VFSNAME_UNMOUNT,	{ .error = vfsstray },
4188 		VFSNAME_ROOT,		{ .error = vfsstray },
4189 		VFSNAME_STATVFS,	{ .error = vfsstray },
4190 		VFSNAME_SYNC, 		{ .vfs_sync = vfsstray_sync },
4191 		VFSNAME_VGET,		{ .error = vfsstray },
4192 		VFSNAME_MOUNTROOT,	{ .error = vfsstray },
4193 		VFSNAME_FREEVFS,	{ .error = vfsstray },
4194 		VFSNAME_VNSTATE,	{ .error = vfsstray },
4195 		NULL, NULL
4196 	};
4197 
4198 	/* Create vfs cache */
4199 	vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4200 	    sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4201 
4202 	/* Initialize the vnode cache (file systems may use it during init). */
4203 	vn_create_cache();
4204 
4205 	/* Setup event monitor framework */
4206 	fem_init();
4207 
4208 	/* Initialize the dummy stray file system type. */
4209 	error = vfs_setfsops(0, stray_vfsops_template, NULL);
4210 
4211 	/* Initialize the dummy EIO file system. */
4212 	error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4213 	if (error != 0) {
4214 		cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4215 		/* Shouldn't happen, but not bad enough to panic */
4216 	}
4217 
4218 	VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4219 
4220 	/*
4221 	 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4222 	 * on this vfs can immediately notice it's invalid.
4223 	 */
4224 	EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4225 
4226 	/*
4227 	 * Call the init routines of non-loadable filesystems only.
4228 	 * Filesystems which are loaded as separate modules will be
4229 	 * initialized by the module loading code instead.
4230 	 */
4231 
4232 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4233 		RLOCK_VFSSW();
4234 		if (vswp->vsw_init != NULL)
4235 			(*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4236 		RUNLOCK_VFSSW();
4237 	}
4238 
4239 	vopstats_startup();
4240 
4241 	if (vopstats_enabled) {
4242 		/* EIO_vfs can collect stats, but we don't retrieve them */
4243 		initialize_vopstats(&EIO_vfs.vfs_vopstats);
4244 		EIO_vfs.vfs_fstypevsp = NULL;
4245 		EIO_vfs.vfs_vskap = NULL;
4246 		EIO_vfs.vfs_flag |= VFS_STATS;
4247 	}
4248 
4249 	xattr_init();
4250 
4251 	reparse_point_init();
4252 }
4253 
4254 vfs_t *
4255 vfs_alloc(int kmflag)
4256 {
4257 	vfs_t *vfsp;
4258 
4259 	vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4260 
4261 	/*
4262 	 * Do the simplest initialization here.
4263 	 * Everything else gets done in vfs_init()
4264 	 */
4265 	bzero(vfsp, sizeof (vfs_t));
4266 	return (vfsp);
4267 }
4268 
4269 void
4270 vfs_free(vfs_t *vfsp)
4271 {
4272 	/*
4273 	 * One would be tempted to assert that "vfsp->vfs_count == 0".
4274 	 * The problem is that this gets called out of domount() with
4275 	 * a partially initialized vfs and a vfs_count of 1.  This is
4276 	 * also called from vfs_rele() with a vfs_count of 0.  We can't
4277 	 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4278 	 * returned.  This is because VFS_MOUNT() fully initializes the
4279 	 * vfs structure and its associated data.  VFS_RELE() will call
4280 	 * VFS_FREEVFS() which may panic the system if the data structures
4281 	 * aren't fully initialized from a successful VFS_MOUNT()).
4282 	 */
4283 
4284 	/* If FEM was in use, make sure everything gets cleaned up */
4285 	if (vfsp->vfs_femhead) {
4286 		ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4287 		mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4288 		kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4289 		vfsp->vfs_femhead = NULL;
4290 	}
4291 
4292 	if (vfsp->vfs_implp)
4293 		vfsimpl_teardown(vfsp);
4294 	sema_destroy(&vfsp->vfs_reflock);
4295 	kmem_cache_free(vfs_cache, vfsp);
4296 }
4297 
4298 /*
4299  * Increments the vfs reference count by one atomically.
4300  */
4301 void
4302 vfs_hold(vfs_t *vfsp)
4303 {
4304 	atomic_inc_32(&vfsp->vfs_count);
4305 	ASSERT(vfsp->vfs_count != 0);
4306 }
4307 
4308 /*
4309  * Decrements the vfs reference count by one atomically. When
4310  * vfs reference count becomes zero, it calls the file system
4311  * specific vfs_freevfs() to free up the resources.
4312  */
4313 void
4314 vfs_rele(vfs_t *vfsp)
4315 {
4316 	ASSERT(vfsp->vfs_count != 0);
4317 	if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) {
4318 		VFS_FREEVFS(vfsp);
4319 		lofi_remove(vfsp);
4320 		if (vfsp->vfs_zone)
4321 			zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref,
4322 			    ZONE_REF_VFS);
4323 		vfs_freemnttab(vfsp);
4324 		vfs_free(vfsp);
4325 	}
4326 }
4327 
4328 /*
4329  * Generic operations vector support.
4330  *
4331  * This is used to build operations vectors for both the vfs and vnode.
4332  * It's normally called only when a file system is loaded.
4333  *
4334  * There are many possible algorithms for this, including the following:
4335  *
4336  *   (1) scan the list of known operations; for each, see if the file system
4337  *       includes an entry for it, and fill it in as appropriate.
4338  *
4339  *   (2) set up defaults for all known operations.  scan the list of ops
4340  *       supplied by the file system; for each which is both supplied and
4341  *       known, fill it in.
4342  *
4343  *   (3) sort the lists of known ops & supplied ops; scan the list, filling
4344  *       in entries as we go.
4345  *
4346  * we choose (1) for simplicity, and because performance isn't critical here.
4347  * note that (2) could be sped up using a precomputed hash table on known ops.
4348  * (3) could be faster than either, but only if the lists were very large or
4349  * supplied in sorted order.
4350  *
4351  */
4352 
4353 int
4354 fs_build_vector(void *vector, int *unused_ops,
4355     const fs_operation_trans_def_t *translation,
4356     const fs_operation_def_t *operations)
4357 {
4358 	int i, num_trans, num_ops, used;
4359 
4360 	/*
4361 	 * Count the number of translations and the number of supplied
4362 	 * operations.
4363 	 */
4364 
4365 	{
4366 		const fs_operation_trans_def_t *p;
4367 
4368 		for (num_trans = 0, p = translation;
4369 		    p->name != NULL;
4370 		    num_trans++, p++)
4371 			;
4372 	}
4373 
4374 	{
4375 		const fs_operation_def_t *p;
4376 
4377 		for (num_ops = 0, p = operations;
4378 		    p->name != NULL;
4379 		    num_ops++, p++)
4380 			;
4381 	}
4382 
4383 	/* Walk through each operation known to our caller.  There will be */
4384 	/* one entry in the supplied "translation table" for each. */
4385 
4386 	used = 0;
4387 
4388 	for (i = 0; i < num_trans; i++) {
4389 		int j, found;
4390 		char *curname;
4391 		fs_generic_func_p result;
4392 		fs_generic_func_p *location;
4393 
4394 		curname = translation[i].name;
4395 
4396 		/* Look for a matching operation in the list supplied by the */
4397 		/* file system. */
4398 
4399 		found = 0;
4400 
4401 		for (j = 0; j < num_ops; j++) {
4402 			if (strcmp(operations[j].name, curname) == 0) {
4403 				used++;
4404 				found = 1;
4405 				break;
4406 			}
4407 		}
4408 
4409 		/*
4410 		 * If the file system is using a "placeholder" for default
4411 		 * or error functions, grab the appropriate function out of
4412 		 * the translation table.  If the file system didn't supply
4413 		 * this operation at all, use the default function.
4414 		 */
4415 
4416 		if (found) {
4417 			result = operations[j].func.fs_generic;
4418 			if (result == fs_default) {
4419 				result = translation[i].defaultFunc;
4420 			} else if (result == fs_error) {
4421 				result = translation[i].errorFunc;
4422 			} else if (result == NULL) {
4423 				/* Null values are PROHIBITED */
4424 				return (EINVAL);
4425 			}
4426 		} else {
4427 			result = translation[i].defaultFunc;
4428 		}
4429 
4430 		/* Now store the function into the operations vector. */
4431 
4432 		location = (fs_generic_func_p *)
4433 		    (((char *)vector) + translation[i].offset);
4434 
4435 		*location = result;
4436 	}
4437 
4438 	*unused_ops = num_ops - used;
4439 
4440 	return (0);
4441 }
4442 
4443 /* Placeholder functions, should never be called. */
4444 
4445 int
4446 fs_error(void)
4447 {
4448 	cmn_err(CE_PANIC, "fs_error called");
4449 	return (0);
4450 }
4451 
4452 int
4453 fs_default(void)
4454 {
4455 	cmn_err(CE_PANIC, "fs_default called");
4456 	return (0);
4457 }
4458 
4459 #ifdef __sparc
4460 
4461 /*
4462  * Part of the implementation of booting off a mirrored root
4463  * involves a change of dev_t for the root device.  To
4464  * accomplish this, first remove the existing hash table
4465  * entry for the root device, convert to the new dev_t,
4466  * then re-insert in the hash table at the head of the list.
4467  */
4468 void
4469 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4470 {
4471 	vfs_list_lock();
4472 
4473 	vfs_hash_remove(vfsp);
4474 
4475 	vfsp->vfs_dev = ndev;
4476 	vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4477 
4478 	vfs_hash_add(vfsp, 1);
4479 
4480 	vfs_list_unlock();
4481 }
4482 
4483 #else /* x86 NEWBOOT */
4484 
4485 #if defined(__x86)
4486 extern int hvmboot_rootconf();
4487 #endif /* __x86 */
4488 
4489 extern ib_boot_prop_t *iscsiboot_prop;
4490 
4491 int
4492 rootconf()
4493 {
4494 	int error;
4495 	struct vfssw *vsw;
4496 	extern void pm_init();
4497 	char *fstyp, *fsmod;
4498 	int ret = -1;
4499 
4500 	getrootfs(&fstyp, &fsmod);
4501 
4502 #if defined(__x86)
4503 	/*
4504 	 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4505 	 * which lives in /platform/i86hvm, and hence is only available when
4506 	 * booted in an x86 hvm environment.  If the hvm_bootstrap misc module
4507 	 * is not available then the modstub for this function will return 0.
4508 	 * If the hvm_bootstrap misc module is available it will be loaded
4509 	 * and hvmboot_rootconf() will be invoked.
4510 	 */
4511 	if (error = hvmboot_rootconf())
4512 		return (error);
4513 #endif /* __x86 */
4514 
4515 	if (error = clboot_rootconf())
4516 		return (error);
4517 
4518 	if (modload("fs", fsmod) == -1)
4519 		panic("Cannot _init %s module", fsmod);
4520 
4521 	RLOCK_VFSSW();
4522 	vsw = vfs_getvfsswbyname(fstyp);
4523 	RUNLOCK_VFSSW();
4524 	if (vsw == NULL) {
4525 		cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4526 		return (ENXIO);
4527 	}
4528 	VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4529 	VFS_HOLD(rootvfs);
4530 
4531 	/* always mount readonly first */
4532 	rootvfs->vfs_flag |= VFS_RDONLY;
4533 
4534 	pm_init();
4535 
4536 	if (netboot && iscsiboot_prop) {
4537 		cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4538 		    " shouldn't happen in the same time");
4539 		return (EINVAL);
4540 	}
4541 
4542 	if (netboot || iscsiboot_prop) {
4543 		ret = strplumb();
4544 		if (ret != 0) {
4545 			cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4546 			return (EFAULT);
4547 		}
4548 	}
4549 
4550 	if ((ret == 0) && iscsiboot_prop) {
4551 		ret = modload("drv", "iscsi");
4552 		/* -1 indicates fail */
4553 		if (ret == -1) {
4554 			cmn_err(CE_WARN, "Failed to load iscsi module");
4555 			iscsi_boot_prop_free();
4556 			return (EINVAL);
4557 		} else {
4558 			if (!i_ddi_attach_pseudo_node("iscsi")) {
4559 				cmn_err(CE_WARN,
4560 				    "Failed to attach iscsi driver");
4561 				iscsi_boot_prop_free();
4562 				return (ENODEV);
4563 			}
4564 		}
4565 	}
4566 
4567 	error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4568 	vfs_unrefvfssw(vsw);
4569 	rootdev = rootvfs->vfs_dev;
4570 
4571 	if (error)
4572 		cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4573 		    rootfs.bo_name, fstyp);
4574 	else
4575 		cmn_err(CE_CONT, "?root on %s fstype %s\n",
4576 		    rootfs.bo_name, fstyp);
4577 	return (error);
4578 }
4579 
4580 /*
4581  * XXX this is called by nfs only and should probably be removed
4582  * If booted with ASKNAME, prompt on the console for a filesystem
4583  * name and return it.
4584  */
4585 void
4586 getfsname(char *askfor, char *name, size_t namelen)
4587 {
4588 	if (boothowto & RB_ASKNAME) {
4589 		printf("%s name: ", askfor);
4590 		console_gets(name, namelen);
4591 	}
4592 }
4593 
4594 /*
4595  * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4596  * property.
4597  *
4598  * Filesystem types starting with the prefix "nfs" are diskless clients;
4599  * init the root filename name (rootfs.bo_name), too.
4600  *
4601  * If we are booting via NFS we currently have these options:
4602  *	nfs -	dynamically choose NFS V2, V3, or V4 (default)
4603  *	nfs2 -	force NFS V2
4604  *	nfs3 -	force NFS V3
4605  *	nfs4 -	force NFS V4
4606  * Because we need to maintain backward compatibility with the naming
4607  * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4608  * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs".  The dynamic
4609  * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4610  * This is only for root filesystems, all other uses will expect
4611  * that "nfs" == NFS V2.
4612  */
4613 static void
4614 getrootfs(char **fstypp, char **fsmodp)
4615 {
4616 	char *propstr = NULL;
4617 
4618 	/*
4619 	 * Check fstype property; for diskless it should be one of "nfs",
4620 	 * "nfs2", "nfs3" or "nfs4".
4621 	 */
4622 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4623 	    DDI_PROP_DONTPASS, "fstype", &propstr)
4624 	    == DDI_SUCCESS) {
4625 		(void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4626 		ddi_prop_free(propstr);
4627 
4628 	/*
4629 	 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4630 	 * assume the type of this root filesystem is 'zfs'.
4631 	 */
4632 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4633 	    DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4634 	    == DDI_SUCCESS) {
4635 		(void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4636 		ddi_prop_free(propstr);
4637 	}
4638 
4639 	if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4640 		*fstypp = *fsmodp = rootfs.bo_fstype;
4641 		return;
4642 	}
4643 
4644 	++netboot;
4645 
4646 	if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4647 		(void) strcpy(rootfs.bo_fstype, "nfs");
4648 	else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4649 		(void) strcpy(rootfs.bo_fstype, "nfsdyn");
4650 
4651 	/*
4652 	 * check if path to network interface is specified in bootpath
4653 	 * or by a hypervisor domain configuration file.
4654 	 * XXPV - enable strlumb_get_netdev_path()
4655 	 */
4656 	if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4657 	    "xpv-nfsroot")) {
4658 		(void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4659 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4660 	    DDI_PROP_DONTPASS, "bootpath", &propstr)
4661 	    == DDI_SUCCESS) {
4662 		(void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4663 		ddi_prop_free(propstr);
4664 	} else {
4665 		rootfs.bo_name[0] = '\0';
4666 	}
4667 	*fstypp = rootfs.bo_fstype;
4668 	*fsmodp = "nfs";
4669 }
4670 #endif
4671 
4672 /*
4673  * VFS feature routines
4674  */
4675 
4676 #define	VFTINDEX(feature)	(((feature) >> 32) & 0xFFFFFFFF)
4677 #define	VFTBITS(feature)	((feature) & 0xFFFFFFFFLL)
4678 
4679 /* Register a feature in the vfs */
4680 void
4681 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4682 {
4683 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4684 	if (vfsp->vfs_implp == NULL)
4685 		return;
4686 
4687 	vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4688 }
4689 
4690 void
4691 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature)
4692 {
4693 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4694 	if (vfsp->vfs_implp == NULL)
4695 		return;
4696 	vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature);
4697 }
4698 
4699 /*
4700  * Query a vfs for a feature.
4701  * Returns 1 if feature is present, 0 if not
4702  */
4703 int
4704 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4705 {
4706 	int	ret = 0;
4707 
4708 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4709 	if (vfsp->vfs_implp == NULL)
4710 		return (ret);
4711 
4712 	if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4713 		ret = 1;
4714 
4715 	return (ret);
4716 }
4717 
4718 /*
4719  * Propagate feature set from one vfs to another
4720  */
4721 void
4722 vfs_propagate_features(vfs_t *from, vfs_t *to)
4723 {
4724 	int i;
4725 
4726 	if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4727 		return;
4728 
4729 	for (i = 1; i <= to->vfs_featureset[0]; i++) {
4730 		to->vfs_featureset[i] = from->vfs_featureset[i];
4731 	}
4732 }
4733 
4734 #define	LOFINODE_PATH "/dev/lofi/%d"
4735 
4736 /*
4737  * Return the vnode for the lofi node if there's a lofi mount in place.
4738  * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4739  * failure.
4740  */
4741 int
4742 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4743 {
4744 	char *path = NULL;
4745 	int strsize;
4746 	int err;
4747 
4748 	if (vfsp->vfs_lofi_id == 0) {
4749 		*vpp = NULL;
4750 		return (-1);
4751 	}
4752 
4753 	strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_id);
4754 	path = kmem_alloc(strsize + 1, KM_SLEEP);
4755 	(void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_id);
4756 
4757 	/*
4758 	 * We may be inside a zone, so we need to use the /dev path, but
4759 	 * it's created asynchronously, so we wait here.
4760 	 */
4761 	for (;;) {
4762 		err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4763 
4764 		if (err != ENOENT)
4765 			break;
4766 
4767 		if ((err = delay_sig(hz / 8)) == EINTR)
4768 			break;
4769 	}
4770 
4771 	if (err)
4772 		*vpp = NULL;
4773 
4774 	kmem_free(path, strsize + 1);
4775 	return (err);
4776 }
4777