xref: /illumos-gate/usr/src/uts/common/fs/vfs.c (revision 48dd5e630c9b1773b7b10d08a3b90b6c9062d713)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25  * Copyright 2016 Toomas Soome <tsoome@me.com>
26  */
27 
28 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
29 /*	  All Rights Reserved  	*/
30 
31 /*
32  * University Copyright- Copyright (c) 1982, 1986, 1988
33  * The Regents of the University of California
34  * All Rights Reserved
35  *
36  * University Acknowledgment- Portions of this document are derived from
37  * software developed by the University of California, Berkeley, and its
38  * contributors.
39  */
40 
41 #include <sys/types.h>
42 #include <sys/t_lock.h>
43 #include <sys/param.h>
44 #include <sys/errno.h>
45 #include <sys/user.h>
46 #include <sys/fstyp.h>
47 #include <sys/kmem.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/mount.h>
51 #include <sys/vfs.h>
52 #include <sys/vfs_opreg.h>
53 #include <sys/fem.h>
54 #include <sys/mntent.h>
55 #include <sys/stat.h>
56 #include <sys/statvfs.h>
57 #include <sys/statfs.h>
58 #include <sys/cred.h>
59 #include <sys/vnode.h>
60 #include <sys/rwstlock.h>
61 #include <sys/dnlc.h>
62 #include <sys/file.h>
63 #include <sys/time.h>
64 #include <sys/atomic.h>
65 #include <sys/cmn_err.h>
66 #include <sys/buf.h>
67 #include <sys/swap.h>
68 #include <sys/debug.h>
69 #include <sys/vnode.h>
70 #include <sys/modctl.h>
71 #include <sys/ddi.h>
72 #include <sys/pathname.h>
73 #include <sys/bootconf.h>
74 #include <sys/dumphdr.h>
75 #include <sys/dc_ki.h>
76 #include <sys/poll.h>
77 #include <sys/sunddi.h>
78 #include <sys/sysmacros.h>
79 #include <sys/zone.h>
80 #include <sys/policy.h>
81 #include <sys/ctfs.h>
82 #include <sys/objfs.h>
83 #include <sys/console.h>
84 #include <sys/reboot.h>
85 #include <sys/attr.h>
86 #include <sys/zio.h>
87 #include <sys/spa.h>
88 #include <sys/lofi.h>
89 #include <sys/bootprops.h>
90 
91 #include <vm/page.h>
92 
93 #include <fs/fs_subr.h>
94 /* Private interfaces to create vopstats-related data structures */
95 extern void		initialize_vopstats(vopstats_t *);
96 extern vopstats_t	*get_fstype_vopstats(struct vfs *, struct vfssw *);
97 extern vsk_anchor_t	*get_vskstat_anchor(struct vfs *);
98 
99 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
100 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
101     const char *, int, int);
102 static int  vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
103 static void vfs_freemnttab(struct vfs *);
104 static void vfs_freeopt(mntopt_t *);
105 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
106 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
107 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
108 static void vfs_createopttbl_extend(mntopts_t *, const char *,
109     const mntopts_t *);
110 static char **vfs_copycancelopt_extend(char **const, int);
111 static void vfs_freecancelopt(char **);
112 static void getrootfs(char **, char **);
113 static int getmacpath(dev_info_t *, void *);
114 static void vfs_mnttabvp_setup(void);
115 
116 struct ipmnt {
117 	struct ipmnt	*mip_next;
118 	dev_t		mip_dev;
119 	struct vfs	*mip_vfsp;
120 };
121 
122 static kmutex_t		vfs_miplist_mutex;
123 static struct ipmnt	*vfs_miplist = NULL;
124 static struct ipmnt	*vfs_miplist_end = NULL;
125 
126 static kmem_cache_t *vfs_cache;	/* Pointer to VFS kmem cache */
127 
128 /*
129  * VFS global data.
130  */
131 vnode_t *rootdir;		/* pointer to root inode vnode. */
132 vnode_t *devicesdir;		/* pointer to inode of devices root */
133 vnode_t	*devdir;		/* pointer to inode of dev root */
134 
135 char *server_rootpath;		/* root path for diskless clients */
136 char *server_hostname;		/* hostname of diskless server */
137 
138 static struct vfs root;
139 static struct vfs devices;
140 static struct vfs dev;
141 struct vfs *rootvfs = &root;	/* pointer to root vfs; head of VFS list. */
142 rvfs_t *rvfs_list;		/* array of vfs ptrs for vfs hash list */
143 int vfshsz = 512;		/* # of heads/locks in vfs hash arrays */
144 				/* must be power of 2!	*/
145 timespec_t vfs_mnttab_ctime;	/* mnttab created time */
146 timespec_t vfs_mnttab_mtime;	/* mnttab last modified time */
147 char *vfs_dummyfstype = "\0";
148 struct pollhead vfs_pollhd;	/* for mnttab pollers */
149 struct vnode *vfs_mntdummyvp;	/* to fake mnttab read/write for file events */
150 int	mntfstype;		/* will be set once mnt fs is mounted */
151 
152 /*
153  * Table for generic options recognized in the VFS layer and acted
154  * on at this level before parsing file system specific options.
155  * The nosuid option is stronger than any of the devices and setuid
156  * options, so those are canceled when nosuid is seen.
157  *
158  * All options which are added here need to be added to the
159  * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
160  */
161 /*
162  * VFS Mount options table
163  */
164 static char *ro_cancel[] = { MNTOPT_RW, NULL };
165 static char *rw_cancel[] = { MNTOPT_RO, NULL };
166 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
167 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
168     MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
169 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
170 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
171 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
172 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
173 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
174 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
175 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
176 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
177 
178 static const mntopt_t mntopts[] = {
179 /*
180  *	option name		cancel options		default arg	flags
181  */
182 	{ MNTOPT_REMOUNT,	NULL,			NULL,
183 		MO_NODISPLAY, (void *)0 },
184 	{ MNTOPT_RO,		ro_cancel,		NULL,		0,
185 		(void *)0 },
186 	{ MNTOPT_RW,		rw_cancel,		NULL,		0,
187 		(void *)0 },
188 	{ MNTOPT_SUID,		suid_cancel,		NULL,		0,
189 		(void *)0 },
190 	{ MNTOPT_NOSUID,	nosuid_cancel,		NULL,		0,
191 		(void *)0 },
192 	{ MNTOPT_DEVICES,	devices_cancel,		NULL,		0,
193 		(void *)0 },
194 	{ MNTOPT_NODEVICES,	nodevices_cancel,	NULL,		0,
195 		(void *)0 },
196 	{ MNTOPT_SETUID,	setuid_cancel,		NULL,		0,
197 		(void *)0 },
198 	{ MNTOPT_NOSETUID,	nosetuid_cancel,	NULL,		0,
199 		(void *)0 },
200 	{ MNTOPT_NBMAND,	nbmand_cancel,		NULL,		0,
201 		(void *)0 },
202 	{ MNTOPT_NONBMAND,	nonbmand_cancel,	NULL,		0,
203 		(void *)0 },
204 	{ MNTOPT_EXEC,		exec_cancel,		NULL,		0,
205 		(void *)0 },
206 	{ MNTOPT_NOEXEC,	noexec_cancel,		NULL,		0,
207 		(void *)0 },
208 };
209 
210 const mntopts_t vfs_mntopts = {
211 	sizeof (mntopts) / sizeof (mntopt_t),
212 	(mntopt_t *)&mntopts[0]
213 };
214 
215 /*
216  * File system operation dispatch functions.
217  */
218 
219 int
220 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
221 {
222 	return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
223 }
224 
225 int
226 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
227 {
228 	return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
229 }
230 
231 int
232 fsop_root(vfs_t *vfsp, vnode_t **vpp)
233 {
234 	refstr_t *mntpt;
235 	int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
236 	/*
237 	 * Make sure this root has a path.  With lofs, it is possible to have
238 	 * a NULL mountpoint.
239 	 */
240 	if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) {
241 		mntpt = vfs_getmntpoint(vfsp);
242 		vn_setpath_str(*vpp, refstr_value(mntpt),
243 		    strlen(refstr_value(mntpt)));
244 		refstr_rele(mntpt);
245 	}
246 
247 	return (ret);
248 }
249 
250 int
251 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
252 {
253 	return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
254 }
255 
256 int
257 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
258 {
259 	return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
260 }
261 
262 int
263 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
264 {
265 	/*
266 	 * In order to handle system attribute fids in a manner
267 	 * transparent to the underlying fs, we embed the fid for
268 	 * the sysattr parent object in the sysattr fid and tack on
269 	 * some extra bytes that only the sysattr layer knows about.
270 	 *
271 	 * This guarantees that sysattr fids are larger than other fids
272 	 * for this vfs. If the vfs supports the sysattr view interface
273 	 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
274 	 * collision with XATTR_FIDSZ.
275 	 */
276 	if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
277 	    fidp->fid_len == XATTR_FIDSZ)
278 		return (xattr_dir_vget(vfsp, vpp, fidp));
279 
280 	return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
281 }
282 
283 int
284 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
285 {
286 	return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
287 }
288 
289 void
290 fsop_freefs(vfs_t *vfsp)
291 {
292 	(*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
293 }
294 
295 int
296 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
297 {
298 	return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
299 }
300 
301 int
302 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
303 {
304 	ASSERT((fstype >= 0) && (fstype < nfstype));
305 
306 	if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
307 		return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
308 	else
309 		return (ENOTSUP);
310 }
311 
312 /*
313  * File system initialization.  vfs_setfsops() must be called from a file
314  * system's init routine.
315  */
316 
317 static int
318 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
319     int *unused_ops)
320 {
321 	static const fs_operation_trans_def_t vfs_ops_table[] = {
322 		VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
323 			fs_nosys, fs_nosys,
324 
325 		VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
326 			fs_nosys, fs_nosys,
327 
328 		VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
329 			fs_nosys, fs_nosys,
330 
331 		VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
332 			fs_nosys, fs_nosys,
333 
334 		VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
335 			(fs_generic_func_p) fs_sync,
336 			(fs_generic_func_p) fs_sync,	/* No errors allowed */
337 
338 		VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
339 			fs_nosys, fs_nosys,
340 
341 		VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
342 			fs_nosys, fs_nosys,
343 
344 		VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
345 			(fs_generic_func_p)fs_freevfs,
346 			(fs_generic_func_p)fs_freevfs,	/* Shouldn't fail */
347 
348 		VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
349 			(fs_generic_func_p)fs_nosys,
350 			(fs_generic_func_p)fs_nosys,
351 
352 		NULL, 0, NULL, NULL
353 	};
354 
355 	return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
356 }
357 
358 void
359 zfs_boot_init(void)
360 {
361 	if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
362 		spa_boot_init();
363 }
364 
365 int
366 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
367 {
368 	int error;
369 	int unused_ops;
370 
371 	/*
372 	 * Verify that fstype refers to a valid fs.  Note that
373 	 * 0 is valid since it's used to set "stray" ops.
374 	 */
375 	if ((fstype < 0) || (fstype >= nfstype))
376 		return (EINVAL);
377 
378 	if (!ALLOCATED_VFSSW(&vfssw[fstype]))
379 		return (EINVAL);
380 
381 	/* Set up the operations vector. */
382 
383 	error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
384 
385 	if (error != 0)
386 		return (error);
387 
388 	vfssw[fstype].vsw_flag |= VSW_INSTALLED;
389 
390 	if (actual != NULL)
391 		*actual = &vfssw[fstype].vsw_vfsops;
392 
393 #if DEBUG
394 	if (unused_ops != 0)
395 		cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
396 		    "but not used", vfssw[fstype].vsw_name, unused_ops);
397 #endif
398 
399 	return (0);
400 }
401 
402 int
403 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
404 {
405 	int error;
406 	int unused_ops;
407 
408 	*actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
409 
410 	error = fs_copyfsops(template, *actual, &unused_ops);
411 	if (error != 0) {
412 		kmem_free(*actual, sizeof (vfsops_t));
413 		*actual = NULL;
414 		return (error);
415 	}
416 
417 	return (0);
418 }
419 
420 /*
421  * Free a vfsops structure created as a result of vfs_makefsops().
422  * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
423  * vfs_freevfsops_by_type().
424  */
425 void
426 vfs_freevfsops(vfsops_t *vfsops)
427 {
428 	kmem_free(vfsops, sizeof (vfsops_t));
429 }
430 
431 /*
432  * Since the vfsops structure is part of the vfssw table and wasn't
433  * really allocated, we're not really freeing anything.  We keep
434  * the name for consistency with vfs_freevfsops().  We do, however,
435  * need to take care of a little bookkeeping.
436  * NOTE: For a vfsops structure created by vfs_setfsops(), use
437  * vfs_freevfsops_by_type().
438  */
439 int
440 vfs_freevfsops_by_type(int fstype)
441 {
442 
443 	/* Verify that fstype refers to a loaded fs (and not fsid 0). */
444 	if ((fstype <= 0) || (fstype >= nfstype))
445 		return (EINVAL);
446 
447 	WLOCK_VFSSW();
448 	if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
449 		WUNLOCK_VFSSW();
450 		return (EINVAL);
451 	}
452 
453 	vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
454 	WUNLOCK_VFSSW();
455 
456 	return (0);
457 }
458 
459 /* Support routines used to reference vfs_op */
460 
461 /* Set the operations vector for a vfs */
462 void
463 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
464 {
465 	vfsops_t	*op;
466 
467 	ASSERT(vfsp != NULL);
468 	ASSERT(vfsops != NULL);
469 
470 	op = vfsp->vfs_op;
471 	membar_consumer();
472 	if (vfsp->vfs_femhead == NULL &&
473 	    atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) {
474 		return;
475 	}
476 	fsem_setvfsops(vfsp, vfsops);
477 }
478 
479 /* Retrieve the operations vector for a vfs */
480 vfsops_t *
481 vfs_getops(vfs_t *vfsp)
482 {
483 	vfsops_t	*op;
484 
485 	ASSERT(vfsp != NULL);
486 
487 	op = vfsp->vfs_op;
488 	membar_consumer();
489 	if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
490 		return (op);
491 	} else {
492 		return (fsem_getvfsops(vfsp));
493 	}
494 }
495 
496 /*
497  * Returns non-zero (1) if the vfsops matches that of the vfs.
498  * Returns zero (0) if not.
499  */
500 int
501 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
502 {
503 	return (vfs_getops(vfsp) == vfsops);
504 }
505 
506 /*
507  * Returns non-zero (1) if the file system has installed a non-default,
508  * non-error vfs_sync routine.  Returns zero (0) otherwise.
509  */
510 int
511 vfs_can_sync(vfs_t *vfsp)
512 {
513 	/* vfs_sync() routine is not the default/error function */
514 	return (vfs_getops(vfsp)->vfs_sync != fs_sync);
515 }
516 
517 /*
518  * Initialize a vfs structure.
519  */
520 void
521 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
522 {
523 	/* Other initialization has been moved to vfs_alloc() */
524 	vfsp->vfs_count = 0;
525 	vfsp->vfs_next = vfsp;
526 	vfsp->vfs_prev = vfsp;
527 	vfsp->vfs_zone_next = vfsp;
528 	vfsp->vfs_zone_prev = vfsp;
529 	vfsp->vfs_lofi_id = 0;
530 	sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
531 	vfsimpl_setup(vfsp);
532 	vfsp->vfs_data = (data);
533 	vfs_setops((vfsp), (op));
534 }
535 
536 /*
537  * Allocate and initialize the vfs implementation private data
538  * structure, vfs_impl_t.
539  */
540 void
541 vfsimpl_setup(vfs_t *vfsp)
542 {
543 	int i;
544 
545 	if (vfsp->vfs_implp != NULL) {
546 		return;
547 	}
548 
549 	vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
550 	/* Note that these are #define'd in vfs.h */
551 	vfsp->vfs_vskap = NULL;
552 	vfsp->vfs_fstypevsp = NULL;
553 
554 	/* Set size of counted array, then zero the array */
555 	vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
556 	for (i = 1; i <  VFS_FEATURE_MAXSZ; i++) {
557 		vfsp->vfs_featureset[i] = 0;
558 	}
559 }
560 
561 /*
562  * Release the vfs_impl_t structure, if it exists. Some unbundled
563  * filesystems may not use the newer version of vfs and thus
564  * would not contain this implementation private data structure.
565  */
566 void
567 vfsimpl_teardown(vfs_t *vfsp)
568 {
569 	vfs_impl_t	*vip = vfsp->vfs_implp;
570 
571 	if (vip == NULL)
572 		return;
573 
574 	kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
575 	vfsp->vfs_implp = NULL;
576 }
577 
578 /*
579  * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
580  * fstatvfs, and sysfs moved to common/syscall.
581  */
582 
583 /*
584  * Update every mounted file system.  We call the vfs_sync operation of
585  * each file system type, passing it a NULL vfsp to indicate that all
586  * mounted file systems of that type should be updated.
587  */
588 void
589 vfs_sync(int flag)
590 {
591 	struct vfssw *vswp;
592 	RLOCK_VFSSW();
593 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
594 		if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
595 			vfs_refvfssw(vswp);
596 			RUNLOCK_VFSSW();
597 			(void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
598 			    CRED());
599 			vfs_unrefvfssw(vswp);
600 			RLOCK_VFSSW();
601 		}
602 	}
603 	RUNLOCK_VFSSW();
604 }
605 
606 void
607 sync(void)
608 {
609 	vfs_sync(0);
610 }
611 
612 /*
613  * External routines.
614  */
615 
616 krwlock_t vfssw_lock;	/* lock accesses to vfssw */
617 
618 /*
619  * Lock for accessing the vfs linked list.  Initialized in vfs_mountroot(),
620  * but otherwise should be accessed only via vfs_list_lock() and
621  * vfs_list_unlock().  Also used to protect the timestamp for mods to the list.
622  */
623 static krwlock_t vfslist;
624 
625 /*
626  * Mount devfs on /devices. This is done right after root is mounted
627  * to provide device access support for the system
628  */
629 static void
630 vfs_mountdevices(void)
631 {
632 	struct vfssw *vsw;
633 	struct vnode *mvp;
634 	struct mounta mounta = {	/* fake mounta for devfs_mount() */
635 		NULL,
636 		NULL,
637 		MS_SYSSPACE,
638 		NULL,
639 		NULL,
640 		0,
641 		NULL,
642 		0
643 	};
644 
645 	/*
646 	 * _init devfs module to fill in the vfssw
647 	 */
648 	if (modload("fs", "devfs") == -1)
649 		panic("Cannot _init devfs module");
650 
651 	/*
652 	 * Hold vfs
653 	 */
654 	RLOCK_VFSSW();
655 	vsw = vfs_getvfsswbyname("devfs");
656 	VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
657 	VFS_HOLD(&devices);
658 
659 	/*
660 	 * Locate mount point
661 	 */
662 	if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
663 		panic("Cannot find /devices");
664 
665 	/*
666 	 * Perform the mount of /devices
667 	 */
668 	if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
669 		panic("Cannot mount /devices");
670 
671 	RUNLOCK_VFSSW();
672 
673 	/*
674 	 * Set appropriate members and add to vfs list for mnttab display
675 	 */
676 	vfs_setresource(&devices, "/devices", 0);
677 	vfs_setmntpoint(&devices, "/devices", 0);
678 
679 	/*
680 	 * Hold the root of /devices so it won't go away
681 	 */
682 	if (VFS_ROOT(&devices, &devicesdir))
683 		panic("vfs_mountdevices: not devices root");
684 
685 	if (vfs_lock(&devices) != 0) {
686 		VN_RELE(devicesdir);
687 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
688 		return;
689 	}
690 
691 	if (vn_vfswlock(mvp) != 0) {
692 		vfs_unlock(&devices);
693 		VN_RELE(devicesdir);
694 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
695 		return;
696 	}
697 
698 	vfs_add(mvp, &devices, 0);
699 	vn_vfsunlock(mvp);
700 	vfs_unlock(&devices);
701 	VN_RELE(devicesdir);
702 }
703 
704 /*
705  * mount the first instance of /dev  to root and remain mounted
706  */
707 static void
708 vfs_mountdev1(void)
709 {
710 	struct vfssw *vsw;
711 	struct vnode *mvp;
712 	struct mounta mounta = {	/* fake mounta for sdev_mount() */
713 		NULL,
714 		NULL,
715 		MS_SYSSPACE | MS_OVERLAY,
716 		NULL,
717 		NULL,
718 		0,
719 		NULL,
720 		0
721 	};
722 
723 	/*
724 	 * _init dev module to fill in the vfssw
725 	 */
726 	if (modload("fs", "dev") == -1)
727 		cmn_err(CE_PANIC, "Cannot _init dev module\n");
728 
729 	/*
730 	 * Hold vfs
731 	 */
732 	RLOCK_VFSSW();
733 	vsw = vfs_getvfsswbyname("dev");
734 	VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
735 	VFS_HOLD(&dev);
736 
737 	/*
738 	 * Locate mount point
739 	 */
740 	if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
741 		cmn_err(CE_PANIC, "Cannot find /dev\n");
742 
743 	/*
744 	 * Perform the mount of /dev
745 	 */
746 	if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
747 		cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
748 
749 	RUNLOCK_VFSSW();
750 
751 	/*
752 	 * Set appropriate members and add to vfs list for mnttab display
753 	 */
754 	vfs_setresource(&dev, "/dev", 0);
755 	vfs_setmntpoint(&dev, "/dev", 0);
756 
757 	/*
758 	 * Hold the root of /dev so it won't go away
759 	 */
760 	if (VFS_ROOT(&dev, &devdir))
761 		cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
762 
763 	if (vfs_lock(&dev) != 0) {
764 		VN_RELE(devdir);
765 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
766 		return;
767 	}
768 
769 	if (vn_vfswlock(mvp) != 0) {
770 		vfs_unlock(&dev);
771 		VN_RELE(devdir);
772 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
773 		return;
774 	}
775 
776 	vfs_add(mvp, &dev, 0);
777 	vn_vfsunlock(mvp);
778 	vfs_unlock(&dev);
779 	VN_RELE(devdir);
780 }
781 
782 /*
783  * Mount required filesystem. This is done right after root is mounted.
784  */
785 static void
786 vfs_mountfs(char *module, char *spec, char *path)
787 {
788 	struct vnode *mvp;
789 	struct mounta mounta;
790 	vfs_t *vfsp;
791 
792 	mounta.flags = MS_SYSSPACE | MS_DATA;
793 	mounta.fstype = module;
794 	mounta.spec = spec;
795 	mounta.dir = path;
796 	if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
797 		cmn_err(CE_WARN, "Cannot find %s", path);
798 		return;
799 	}
800 	if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
801 		cmn_err(CE_WARN, "Cannot mount %s", path);
802 	else
803 		VFS_RELE(vfsp);
804 	VN_RELE(mvp);
805 }
806 
807 /*
808  * vfs_mountroot is called by main() to mount the root filesystem.
809  */
810 void
811 vfs_mountroot(void)
812 {
813 	struct vnode	*rvp = NULL;
814 	char		*path;
815 	size_t		plen;
816 	struct vfssw	*vswp;
817 	proc_t		*p;
818 
819 	rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
820 	rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
821 
822 	/*
823 	 * Alloc the vfs hash bucket array and locks
824 	 */
825 	rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
826 
827 	/*
828 	 * Call machine-dependent routine "rootconf" to choose a root
829 	 * file system type.
830 	 */
831 	if (rootconf())
832 		panic("vfs_mountroot: cannot mount root");
833 	/*
834 	 * Get vnode for '/'.  Set up rootdir, u.u_rdir and u.u_cdir
835 	 * to point to it.  These are used by lookuppn() so that it
836 	 * knows where to start from ('/' or '.').
837 	 */
838 	vfs_setmntpoint(rootvfs, "/", 0);
839 	if (VFS_ROOT(rootvfs, &rootdir))
840 		panic("vfs_mountroot: no root vnode");
841 
842 	/*
843 	 * At this point, the process tree consists of p0 and possibly some
844 	 * direct children of p0.  (i.e. there are no grandchildren)
845 	 *
846 	 * Walk through them all, setting their current directory.
847 	 */
848 	mutex_enter(&pidlock);
849 	for (p = practive; p != NULL; p = p->p_next) {
850 		ASSERT(p == &p0 || p->p_parent == &p0);
851 
852 		PTOU(p)->u_cdir = rootdir;
853 		VN_HOLD(PTOU(p)->u_cdir);
854 		PTOU(p)->u_rdir = NULL;
855 	}
856 	mutex_exit(&pidlock);
857 
858 	/*
859 	 * Setup the global zone's rootvp, now that it exists.
860 	 */
861 	global_zone->zone_rootvp = rootdir;
862 	VN_HOLD(global_zone->zone_rootvp);
863 
864 	/*
865 	 * Notify the module code that it can begin using the
866 	 * root filesystem instead of the boot program's services.
867 	 */
868 	modrootloaded = 1;
869 
870 	/*
871 	 * Special handling for a ZFS root file system.
872 	 */
873 	zfs_boot_init();
874 
875 	/*
876 	 * Set up mnttab information for root
877 	 */
878 	vfs_setresource(rootvfs, rootfs.bo_name, 0);
879 
880 	/*
881 	 * Notify cluster software that the root filesystem is available.
882 	 */
883 	clboot_mountroot();
884 
885 	/* Now that we're all done with the root FS, set up its vopstats */
886 	if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
887 		/* Set flag for statistics collection */
888 		if (vswp->vsw_flag & VSW_STATS) {
889 			initialize_vopstats(&rootvfs->vfs_vopstats);
890 			rootvfs->vfs_flag |= VFS_STATS;
891 			rootvfs->vfs_fstypevsp =
892 			    get_fstype_vopstats(rootvfs, vswp);
893 			rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
894 		}
895 		vfs_unrefvfssw(vswp);
896 	}
897 
898 	/*
899 	 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
900 	 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
901 	 */
902 	vfs_mountdevices();
903 	vfs_mountdev1();
904 
905 	vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
906 	vfs_mountfs("proc", "/proc", "/proc");
907 	vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
908 	vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
909 	vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
910 	vfs_mountfs("bootfs", "bootfs", "/system/boot");
911 
912 	if (getzoneid() == GLOBAL_ZONEID) {
913 		vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
914 	}
915 
916 #ifdef __sparc
917 	/*
918 	 * This bit of magic can go away when we convert sparc to
919 	 * the new boot architecture based on ramdisk.
920 	 *
921 	 * Booting off a mirrored root volume:
922 	 * At this point, we have booted and mounted root on a
923 	 * single component of the mirror.  Complete the boot
924 	 * by configuring SVM and converting the root to the
925 	 * dev_t of the mirrored root device.  This dev_t conversion
926 	 * only works because the underlying device doesn't change.
927 	 */
928 	if (root_is_svm) {
929 		if (svm_rootconf()) {
930 			panic("vfs_mountroot: cannot remount root");
931 		}
932 
933 		/*
934 		 * mnttab should reflect the new root device
935 		 */
936 		vfs_lock_wait(rootvfs);
937 		vfs_setresource(rootvfs, rootfs.bo_name, 0);
938 		vfs_unlock(rootvfs);
939 	}
940 #endif /* __sparc */
941 
942 	if (strcmp(rootfs.bo_fstype, "zfs") != 0) {
943 		/*
944 		 * Look up the root device via devfs so that a dv_node is
945 		 * created for it. The vnode is never VN_RELE()ed.
946 		 * We allocate more than MAXPATHLEN so that the
947 		 * buffer passed to i_ddi_prompath_to_devfspath() is
948 		 * exactly MAXPATHLEN (the function expects a buffer
949 		 * of that length).
950 		 */
951 		plen = strlen("/devices");
952 		path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
953 		(void) strcpy(path, "/devices");
954 
955 		if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
956 		    != DDI_SUCCESS ||
957 		    lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
958 
959 			/* NUL terminate in case "path" has garbage */
960 			path[plen + MAXPATHLEN - 1] = '\0';
961 #ifdef	DEBUG
962 			cmn_err(CE_WARN, "!Cannot lookup root device: %s",
963 			    path);
964 #endif
965 		}
966 		kmem_free(path, plen + MAXPATHLEN);
967 	}
968 
969 	vfs_mnttabvp_setup();
970 }
971 
972 /*
973  * Check to see if our "block device" is actually a file.  If so,
974  * automatically add a lofi device, and keep track of this fact.
975  */
976 static int
977 lofi_add(const char *fsname, struct vfs *vfsp,
978     mntopts_t *mntopts, struct mounta *uap)
979 {
980 	int fromspace = (uap->flags & MS_SYSSPACE) ?
981 	    UIO_SYSSPACE : UIO_USERSPACE;
982 	struct lofi_ioctl *li = NULL;
983 	struct vnode *vp = NULL;
984 	struct pathname	pn = { NULL };
985 	ldi_ident_t ldi_id;
986 	ldi_handle_t ldi_hdl;
987 	vfssw_t *vfssw;
988 	int id;
989 	int err = 0;
990 
991 	if ((vfssw = vfs_getvfssw(fsname)) == NULL)
992 		return (0);
993 
994 	if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
995 		vfs_unrefvfssw(vfssw);
996 		return (0);
997 	}
998 
999 	vfs_unrefvfssw(vfssw);
1000 	vfssw = NULL;
1001 
1002 	if (pn_get(uap->spec, fromspace, &pn) != 0)
1003 		return (0);
1004 
1005 	if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
1006 		goto out;
1007 
1008 	if (vp->v_type != VREG)
1009 		goto out;
1010 
1011 	/* OK, this is a lofi mount. */
1012 
1013 	if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
1014 	    vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
1015 	    vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
1016 	    vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
1017 		err = EINVAL;
1018 		goto out;
1019 	}
1020 
1021 	ldi_id = ldi_ident_from_anon();
1022 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1023 	(void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1024 
1025 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1026 	    &ldi_hdl, ldi_id);
1027 
1028 	if (err)
1029 		goto out2;
1030 
1031 	err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1032 	    FREAD | FWRITE | FKIOCTL, kcred, &id);
1033 
1034 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1035 
1036 	if (!err)
1037 		vfsp->vfs_lofi_id = id;
1038 
1039 out2:
1040 	ldi_ident_release(ldi_id);
1041 out:
1042 	if (li != NULL)
1043 		kmem_free(li, sizeof (*li));
1044 	if (vp != NULL)
1045 		VN_RELE(vp);
1046 	pn_free(&pn);
1047 	return (err);
1048 }
1049 
1050 static void
1051 lofi_remove(struct vfs *vfsp)
1052 {
1053 	struct lofi_ioctl *li = NULL;
1054 	ldi_ident_t ldi_id;
1055 	ldi_handle_t ldi_hdl;
1056 	int err;
1057 
1058 	if (vfsp->vfs_lofi_id == 0)
1059 		return;
1060 
1061 	ldi_id = ldi_ident_from_anon();
1062 
1063 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1064 	li->li_id = vfsp->vfs_lofi_id;
1065 	li->li_cleanup = B_TRUE;
1066 
1067 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1068 	    &ldi_hdl, ldi_id);
1069 
1070 	if (err)
1071 		goto out;
1072 
1073 	err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1074 	    FREAD | FWRITE | FKIOCTL, kcred, NULL);
1075 
1076 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1077 
1078 	if (!err)
1079 		vfsp->vfs_lofi_id = 0;
1080 
1081 out:
1082 	ldi_ident_release(ldi_id);
1083 	if (li != NULL)
1084 		kmem_free(li, sizeof (*li));
1085 }
1086 
1087 /*
1088  * Common mount code.  Called from the system call entry point, from autofs,
1089  * nfsv4 trigger mounts, and from pxfs.
1090  *
1091  * Takes the effective file system type, mount arguments, the mount point
1092  * vnode, flags specifying whether the mount is a remount and whether it
1093  * should be entered into the vfs list, and credentials.  Fills in its vfspp
1094  * parameter with the mounted file system instance's vfs.
1095  *
1096  * Note that the effective file system type is specified as a string.  It may
1097  * be null, in which case it's determined from the mount arguments, and may
1098  * differ from the type specified in the mount arguments; this is a hook to
1099  * allow interposition when instantiating file system instances.
1100  *
1101  * The caller is responsible for releasing its own hold on the mount point
1102  * vp (this routine does its own hold when necessary).
1103  * Also note that for remounts, the mount point vp should be the vnode for
1104  * the root of the file system rather than the vnode that the file system
1105  * is mounted on top of.
1106  */
1107 int
1108 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1109     struct vfs **vfspp)
1110 {
1111 	struct vfssw	*vswp;
1112 	vfsops_t	*vfsops;
1113 	struct vfs	*vfsp;
1114 	struct vnode	*bvp;
1115 	dev_t		bdev = 0;
1116 	mntopts_t	mnt_mntopts;
1117 	int		error = 0;
1118 	int		copyout_error = 0;
1119 	int		ovflags;
1120 	char		*opts = uap->optptr;
1121 	char		*inargs = opts;
1122 	int		optlen = uap->optlen;
1123 	int		remount;
1124 	int		rdonly;
1125 	int		nbmand = 0;
1126 	int		delmip = 0;
1127 	int		addmip = 0;
1128 	int		splice = ((uap->flags & MS_NOSPLICE) == 0);
1129 	int		fromspace = (uap->flags & MS_SYSSPACE) ?
1130 	    UIO_SYSSPACE : UIO_USERSPACE;
1131 	char		*resource = NULL, *mountpt = NULL;
1132 	refstr_t	*oldresource, *oldmntpt;
1133 	struct pathname	pn, rpn;
1134 	vsk_anchor_t	*vskap;
1135 	char fstname[FSTYPSZ];
1136 	zone_t		*zone;
1137 
1138 	/*
1139 	 * The v_flag value for the mount point vp is permanently set
1140 	 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1141 	 * for mount point locking.
1142 	 */
1143 	mutex_enter(&vp->v_lock);
1144 	vp->v_flag |= VVFSLOCK;
1145 	mutex_exit(&vp->v_lock);
1146 
1147 	mnt_mntopts.mo_count = 0;
1148 	/*
1149 	 * Find the ops vector to use to invoke the file system-specific mount
1150 	 * method.  If the fsname argument is non-NULL, use it directly.
1151 	 * Otherwise, dig the file system type information out of the mount
1152 	 * arguments.
1153 	 *
1154 	 * A side effect is to hold the vfssw entry.
1155 	 *
1156 	 * Mount arguments can be specified in several ways, which are
1157 	 * distinguished by flag bit settings.  The preferred way is to set
1158 	 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1159 	 * type supplied as a character string and the last two arguments
1160 	 * being a pointer to a character buffer and the size of the buffer.
1161 	 * On entry, the buffer holds a null terminated list of options; on
1162 	 * return, the string is the list of options the file system
1163 	 * recognized. If MS_DATA is set arguments five and six point to a
1164 	 * block of binary data which the file system interprets.
1165 	 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1166 	 * consistently with these conventions.  To handle them, we check to
1167 	 * see whether the pointer to the file system name has a numeric value
1168 	 * less than 256.  If so, we treat it as an index.
1169 	 */
1170 	if (fsname != NULL) {
1171 		if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1172 			return (EINVAL);
1173 		}
1174 	} else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1175 		size_t n;
1176 		uint_t fstype;
1177 
1178 		fsname = fstname;
1179 
1180 		if ((fstype = (uintptr_t)uap->fstype) < 256) {
1181 			RLOCK_VFSSW();
1182 			if (fstype == 0 || fstype >= nfstype ||
1183 			    !ALLOCATED_VFSSW(&vfssw[fstype])) {
1184 				RUNLOCK_VFSSW();
1185 				return (EINVAL);
1186 			}
1187 			(void) strcpy(fsname, vfssw[fstype].vsw_name);
1188 			RUNLOCK_VFSSW();
1189 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1190 				return (EINVAL);
1191 		} else {
1192 			/*
1193 			 * Handle either kernel or user address space.
1194 			 */
1195 			if (uap->flags & MS_SYSSPACE) {
1196 				error = copystr(uap->fstype, fsname,
1197 				    FSTYPSZ, &n);
1198 			} else {
1199 				error = copyinstr(uap->fstype, fsname,
1200 				    FSTYPSZ, &n);
1201 			}
1202 			if (error) {
1203 				if (error == ENAMETOOLONG)
1204 					return (EINVAL);
1205 				return (error);
1206 			}
1207 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1208 				return (EINVAL);
1209 		}
1210 	} else {
1211 		if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1212 			return (EINVAL);
1213 		fsname = vswp->vsw_name;
1214 	}
1215 	if (!VFS_INSTALLED(vswp))
1216 		return (EINVAL);
1217 
1218 	if ((error = secpolicy_fs_allowed_mount(fsname)) != 0)  {
1219 		vfs_unrefvfssw(vswp);
1220 		return (error);
1221 	}
1222 
1223 	vfsops = &vswp->vsw_vfsops;
1224 
1225 	vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1226 	/*
1227 	 * Fetch mount options and parse them for generic vfs options
1228 	 */
1229 	if (uap->flags & MS_OPTIONSTR) {
1230 		/*
1231 		 * Limit the buffer size
1232 		 */
1233 		if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1234 			error = EINVAL;
1235 			goto errout;
1236 		}
1237 		if ((uap->flags & MS_SYSSPACE) == 0) {
1238 			inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1239 			inargs[0] = '\0';
1240 			if (optlen) {
1241 				error = copyinstr(opts, inargs, (size_t)optlen,
1242 				    NULL);
1243 				if (error) {
1244 					goto errout;
1245 				}
1246 			}
1247 		}
1248 		vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1249 	}
1250 	/*
1251 	 * Flag bits override the options string.
1252 	 */
1253 	if (uap->flags & MS_REMOUNT)
1254 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1255 	if (uap->flags & MS_RDONLY)
1256 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1257 	if (uap->flags & MS_NOSUID)
1258 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1259 
1260 	/*
1261 	 * Check if this is a remount; must be set in the option string and
1262 	 * the file system must support a remount option.
1263 	 */
1264 	if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1265 	    MNTOPT_REMOUNT, NULL)) {
1266 		if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1267 			error = ENOTSUP;
1268 			goto errout;
1269 		}
1270 		uap->flags |= MS_REMOUNT;
1271 	}
1272 
1273 	/*
1274 	 * uap->flags and vfs_optionisset() should agree.
1275 	 */
1276 	if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1277 		uap->flags |= MS_RDONLY;
1278 	}
1279 	if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1280 		uap->flags |= MS_NOSUID;
1281 	}
1282 	nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1283 	ASSERT(splice || !remount);
1284 	/*
1285 	 * If we are splicing the fs into the namespace,
1286 	 * perform mount point checks.
1287 	 *
1288 	 * We want to resolve the path for the mount point to eliminate
1289 	 * '.' and ".." and symlinks in mount points; we can't do the
1290 	 * same for the resource string, since it would turn
1291 	 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...".  We need to do
1292 	 * this before grabbing vn_vfswlock(), because otherwise we
1293 	 * would deadlock with lookuppn().
1294 	 */
1295 	if (splice) {
1296 		ASSERT(vp->v_count > 0);
1297 
1298 		/*
1299 		 * Pick up mount point and device from appropriate space.
1300 		 */
1301 		if (pn_get(uap->spec, fromspace, &pn) == 0) {
1302 			resource = kmem_alloc(pn.pn_pathlen + 1,
1303 			    KM_SLEEP);
1304 			(void) strcpy(resource, pn.pn_path);
1305 			pn_free(&pn);
1306 		}
1307 		/*
1308 		 * Do a lookupname prior to taking the
1309 		 * writelock. Mark this as completed if
1310 		 * successful for later cleanup and addition to
1311 		 * the mount in progress table.
1312 		 */
1313 		if ((uap->flags & MS_GLOBAL) == 0 &&
1314 		    lookupname(uap->spec, fromspace,
1315 		    FOLLOW, NULL, &bvp) == 0) {
1316 			addmip = 1;
1317 		}
1318 
1319 		if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1320 			pathname_t *pnp;
1321 
1322 			if (*pn.pn_path != '/') {
1323 				error = EINVAL;
1324 				pn_free(&pn);
1325 				goto errout;
1326 			}
1327 			pn_alloc(&rpn);
1328 			/*
1329 			 * Kludge to prevent autofs from deadlocking with
1330 			 * itself when it calls domount().
1331 			 *
1332 			 * If autofs is calling, it is because it is doing
1333 			 * (autofs) mounts in the process of an NFS mount.  A
1334 			 * lookuppn() here would cause us to block waiting for
1335 			 * said NFS mount to complete, which can't since this
1336 			 * is the thread that was supposed to doing it.
1337 			 */
1338 			if (fromspace == UIO_USERSPACE) {
1339 				if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1340 				    NULL)) == 0) {
1341 					pnp = &rpn;
1342 				} else {
1343 					/*
1344 					 * The file disappeared or otherwise
1345 					 * became inaccessible since we opened
1346 					 * it; might as well fail the mount
1347 					 * since the mount point is no longer
1348 					 * accessible.
1349 					 */
1350 					pn_free(&rpn);
1351 					pn_free(&pn);
1352 					goto errout;
1353 				}
1354 			} else {
1355 				pnp = &pn;
1356 			}
1357 			mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1358 			(void) strcpy(mountpt, pnp->pn_path);
1359 
1360 			/*
1361 			 * If the addition of the zone's rootpath
1362 			 * would push us over a total path length
1363 			 * of MAXPATHLEN, we fail the mount with
1364 			 * ENAMETOOLONG, which is what we would have
1365 			 * gotten if we were trying to perform the same
1366 			 * mount in the global zone.
1367 			 *
1368 			 * strlen() doesn't count the trailing
1369 			 * '\0', but zone_rootpathlen counts both a
1370 			 * trailing '/' and the terminating '\0'.
1371 			 */
1372 			if ((curproc->p_zone->zone_rootpathlen - 1 +
1373 			    strlen(mountpt)) > MAXPATHLEN ||
1374 			    (resource != NULL &&
1375 			    (curproc->p_zone->zone_rootpathlen - 1 +
1376 			    strlen(resource)) > MAXPATHLEN)) {
1377 				error = ENAMETOOLONG;
1378 			}
1379 
1380 			pn_free(&rpn);
1381 			pn_free(&pn);
1382 		}
1383 
1384 		if (error)
1385 			goto errout;
1386 
1387 		/*
1388 		 * Prevent path name resolution from proceeding past
1389 		 * the mount point.
1390 		 */
1391 		if (vn_vfswlock(vp) != 0) {
1392 			error = EBUSY;
1393 			goto errout;
1394 		}
1395 
1396 		/*
1397 		 * Verify that it's legitimate to establish a mount on
1398 		 * the prospective mount point.
1399 		 */
1400 		if (vn_mountedvfs(vp) != NULL) {
1401 			/*
1402 			 * The mount point lock was obtained after some
1403 			 * other thread raced through and established a mount.
1404 			 */
1405 			vn_vfsunlock(vp);
1406 			error = EBUSY;
1407 			goto errout;
1408 		}
1409 		if (vp->v_flag & VNOMOUNT) {
1410 			vn_vfsunlock(vp);
1411 			error = EINVAL;
1412 			goto errout;
1413 		}
1414 	}
1415 	if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1416 		uap->dataptr = NULL;
1417 		uap->datalen = 0;
1418 	}
1419 
1420 	/*
1421 	 * If this is a remount, we don't want to create a new VFS.
1422 	 * Instead, we pass the existing one with a remount flag.
1423 	 */
1424 	if (remount) {
1425 		/*
1426 		 * Confirm that the mount point is the root vnode of the
1427 		 * file system that is being remounted.
1428 		 * This can happen if the user specifies a different
1429 		 * mount point directory pathname in the (re)mount command.
1430 		 *
1431 		 * Code below can only be reached if splice is true, so it's
1432 		 * safe to do vn_vfsunlock() here.
1433 		 */
1434 		if ((vp->v_flag & VROOT) == 0) {
1435 			vn_vfsunlock(vp);
1436 			error = ENOENT;
1437 			goto errout;
1438 		}
1439 		/*
1440 		 * Disallow making file systems read-only unless file system
1441 		 * explicitly allows it in its vfssw.  Ignore other flags.
1442 		 */
1443 		if (rdonly && vn_is_readonly(vp) == 0 &&
1444 		    (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1445 			vn_vfsunlock(vp);
1446 			error = EINVAL;
1447 			goto errout;
1448 		}
1449 		/*
1450 		 * Disallow changing the NBMAND disposition of the file
1451 		 * system on remounts.
1452 		 */
1453 		if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1454 		    (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1455 			vn_vfsunlock(vp);
1456 			error = EINVAL;
1457 			goto errout;
1458 		}
1459 		vfsp = vp->v_vfsp;
1460 		ovflags = vfsp->vfs_flag;
1461 		vfsp->vfs_flag |= VFS_REMOUNT;
1462 		vfsp->vfs_flag &= ~VFS_RDONLY;
1463 	} else {
1464 		vfsp = vfs_alloc(KM_SLEEP);
1465 		VFS_INIT(vfsp, vfsops, NULL);
1466 	}
1467 
1468 	VFS_HOLD(vfsp);
1469 
1470 	if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1471 		if (!remount) {
1472 			if (splice)
1473 				vn_vfsunlock(vp);
1474 			vfs_free(vfsp);
1475 		} else {
1476 			vn_vfsunlock(vp);
1477 			VFS_RELE(vfsp);
1478 		}
1479 		goto errout;
1480 	}
1481 
1482 	/*
1483 	 * PRIV_SYS_MOUNT doesn't mean you can become root.
1484 	 */
1485 	if (vfsp->vfs_lofi_id != 0) {
1486 		uap->flags |= MS_NOSUID;
1487 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1488 	}
1489 
1490 	/*
1491 	 * The vfs_reflock is not used anymore the code below explicitly
1492 	 * holds it preventing others accesing it directly.
1493 	 */
1494 	if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1495 	    !(vfsp->vfs_flag & VFS_REMOUNT))
1496 		cmn_err(CE_WARN,
1497 		    "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1498 
1499 	/*
1500 	 * Lock the vfs. If this is a remount we want to avoid spurious umount
1501 	 * failures that happen as a side-effect of fsflush() and other mount
1502 	 * and unmount operations that might be going on simultaneously and
1503 	 * may have locked the vfs currently. To not return EBUSY immediately
1504 	 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1505 	 */
1506 	if (!remount) {
1507 		if (error = vfs_lock(vfsp)) {
1508 			vfsp->vfs_flag = ovflags;
1509 
1510 			lofi_remove(vfsp);
1511 
1512 			if (splice)
1513 				vn_vfsunlock(vp);
1514 			vfs_free(vfsp);
1515 			goto errout;
1516 		}
1517 	} else {
1518 		vfs_lock_wait(vfsp);
1519 	}
1520 
1521 	/*
1522 	 * Add device to mount in progress table, global mounts require special
1523 	 * handling. It is possible that we have already done the lookupname
1524 	 * on a spliced, non-global fs. If so, we don't want to do it again
1525 	 * since we cannot do a lookupname after taking the
1526 	 * wlock above. This case is for a non-spliced, non-global filesystem.
1527 	 */
1528 	if (!addmip) {
1529 		if ((uap->flags & MS_GLOBAL) == 0 &&
1530 		    lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1531 			addmip = 1;
1532 		}
1533 	}
1534 
1535 	if (addmip) {
1536 		vnode_t *lvp = NULL;
1537 
1538 		error = vfs_get_lofi(vfsp, &lvp);
1539 		if (error > 0) {
1540 			lofi_remove(vfsp);
1541 
1542 			if (splice)
1543 				vn_vfsunlock(vp);
1544 			vfs_unlock(vfsp);
1545 
1546 			if (remount) {
1547 				VFS_RELE(vfsp);
1548 			} else {
1549 				vfs_free(vfsp);
1550 			}
1551 
1552 			goto errout;
1553 		} else if (error == -1) {
1554 			bdev = bvp->v_rdev;
1555 			VN_RELE(bvp);
1556 		} else {
1557 			bdev = lvp->v_rdev;
1558 			VN_RELE(lvp);
1559 			VN_RELE(bvp);
1560 		}
1561 
1562 		vfs_addmip(bdev, vfsp);
1563 		addmip = 0;
1564 		delmip = 1;
1565 	}
1566 	/*
1567 	 * Invalidate cached entry for the mount point.
1568 	 */
1569 	if (splice)
1570 		dnlc_purge_vp(vp);
1571 
1572 	/*
1573 	 * If have an option string but the filesystem doesn't supply a
1574 	 * prototype options table, create a table with the global
1575 	 * options and sufficient room to accept all the options in the
1576 	 * string.  Then parse the passed in option string
1577 	 * accepting all the options in the string.  This gives us an
1578 	 * option table with all the proper cancel properties for the
1579 	 * global options.
1580 	 *
1581 	 * Filesystems that supply a prototype options table are handled
1582 	 * earlier in this function.
1583 	 */
1584 	if (uap->flags & MS_OPTIONSTR) {
1585 		if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1586 			mntopts_t tmp_mntopts;
1587 
1588 			tmp_mntopts.mo_count = 0;
1589 			vfs_createopttbl_extend(&tmp_mntopts, inargs,
1590 			    &mnt_mntopts);
1591 			vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1592 			vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1593 			vfs_freeopttbl(&tmp_mntopts);
1594 		}
1595 	}
1596 
1597 	/*
1598 	 * Serialize with zone state transitions.
1599 	 * See vfs_list_add; zone mounted into is:
1600 	 * 	zone_find_by_path(refstr_value(vfsp->vfs_mntpt))
1601 	 * not the zone doing the mount (curproc->p_zone), but if we're already
1602 	 * inside a NGZ, then we know what zone we are.
1603 	 */
1604 	if (INGLOBALZONE(curproc)) {
1605 		zone = zone_find_by_path(mountpt);
1606 		ASSERT(zone != NULL);
1607 	} else {
1608 		zone = curproc->p_zone;
1609 		/*
1610 		 * zone_find_by_path does a hold, so do one here too so that
1611 		 * we can do a zone_rele after mount_completed.
1612 		 */
1613 		zone_hold(zone);
1614 	}
1615 	mount_in_progress(zone);
1616 	/*
1617 	 * Instantiate (or reinstantiate) the file system.  If appropriate,
1618 	 * splice it into the file system name space.
1619 	 *
1620 	 * We want VFS_MOUNT() to be able to override the vfs_resource
1621 	 * string if necessary (ie, mntfs), and also for a remount to
1622 	 * change the same (necessary when remounting '/' during boot).
1623 	 * So we set up vfs_mntpt and vfs_resource to what we think they
1624 	 * should be, then hand off control to VFS_MOUNT() which can
1625 	 * override this.
1626 	 *
1627 	 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1628 	 * a vfs which is on the vfs list (i.e. during a remount), we must
1629 	 * never set those fields to NULL. Several bits of code make
1630 	 * assumptions that the fields are always valid.
1631 	 */
1632 	vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1633 	if (remount) {
1634 		if ((oldresource = vfsp->vfs_resource) != NULL)
1635 			refstr_hold(oldresource);
1636 		if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1637 			refstr_hold(oldmntpt);
1638 	}
1639 	vfs_setresource(vfsp, resource, 0);
1640 	vfs_setmntpoint(vfsp, mountpt, 0);
1641 
1642 	/*
1643 	 * going to mount on this vnode, so notify.
1644 	 */
1645 	vnevent_mountedover(vp, NULL);
1646 	error = VFS_MOUNT(vfsp, vp, uap, credp);
1647 
1648 	if (uap->flags & MS_RDONLY)
1649 		vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1650 	if (uap->flags & MS_NOSUID)
1651 		vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1652 	if (uap->flags & MS_GLOBAL)
1653 		vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1654 
1655 	if (error) {
1656 		lofi_remove(vfsp);
1657 
1658 		if (remount) {
1659 			/* put back pre-remount options */
1660 			vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1661 			vfs_setmntpoint(vfsp, refstr_value(oldmntpt),
1662 			    VFSSP_VERBATIM);
1663 			if (oldmntpt)
1664 				refstr_rele(oldmntpt);
1665 			vfs_setresource(vfsp, refstr_value(oldresource),
1666 			    VFSSP_VERBATIM);
1667 			if (oldresource)
1668 				refstr_rele(oldresource);
1669 			vfsp->vfs_flag = ovflags;
1670 			vfs_unlock(vfsp);
1671 			VFS_RELE(vfsp);
1672 		} else {
1673 			vfs_unlock(vfsp);
1674 			vfs_freemnttab(vfsp);
1675 			vfs_free(vfsp);
1676 		}
1677 	} else {
1678 		/*
1679 		 * Set the mount time to now
1680 		 */
1681 		vfsp->vfs_mtime = ddi_get_time();
1682 		if (remount) {
1683 			vfsp->vfs_flag &= ~VFS_REMOUNT;
1684 			if (oldresource)
1685 				refstr_rele(oldresource);
1686 			if (oldmntpt)
1687 				refstr_rele(oldmntpt);
1688 		} else if (splice) {
1689 			/*
1690 			 * Link vfsp into the name space at the mount
1691 			 * point. Vfs_add() is responsible for
1692 			 * holding the mount point which will be
1693 			 * released when vfs_remove() is called.
1694 			 */
1695 			vfs_add(vp, vfsp, uap->flags);
1696 		} else {
1697 			/*
1698 			 * Hold the reference to file system which is
1699 			 * not linked into the name space.
1700 			 */
1701 			vfsp->vfs_zone = NULL;
1702 			VFS_HOLD(vfsp);
1703 			vfsp->vfs_vnodecovered = NULL;
1704 		}
1705 		/*
1706 		 * Set flags for global options encountered
1707 		 */
1708 		if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1709 			vfsp->vfs_flag |= VFS_RDONLY;
1710 		else
1711 			vfsp->vfs_flag &= ~VFS_RDONLY;
1712 		if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1713 			vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1714 		} else {
1715 			if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1716 				vfsp->vfs_flag |= VFS_NODEVICES;
1717 			else
1718 				vfsp->vfs_flag &= ~VFS_NODEVICES;
1719 			if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1720 				vfsp->vfs_flag |= VFS_NOSETUID;
1721 			else
1722 				vfsp->vfs_flag &= ~VFS_NOSETUID;
1723 		}
1724 		if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1725 			vfsp->vfs_flag |= VFS_NBMAND;
1726 		else
1727 			vfsp->vfs_flag &= ~VFS_NBMAND;
1728 
1729 		if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1730 			vfsp->vfs_flag |= VFS_XATTR;
1731 		else
1732 			vfsp->vfs_flag &= ~VFS_XATTR;
1733 
1734 		if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1735 			vfsp->vfs_flag |= VFS_NOEXEC;
1736 		else
1737 			vfsp->vfs_flag &= ~VFS_NOEXEC;
1738 
1739 		/*
1740 		 * Now construct the output option string of options
1741 		 * we recognized.
1742 		 */
1743 		if (uap->flags & MS_OPTIONSTR) {
1744 			vfs_list_read_lock();
1745 			copyout_error = vfs_buildoptionstr(
1746 			    &vfsp->vfs_mntopts, inargs, optlen);
1747 			vfs_list_unlock();
1748 			if (copyout_error == 0 &&
1749 			    (uap->flags & MS_SYSSPACE) == 0) {
1750 				copyout_error = copyoutstr(inargs, opts,
1751 				    optlen, NULL);
1752 			}
1753 		}
1754 
1755 		/*
1756 		 * If this isn't a remount, set up the vopstats before
1757 		 * anyone can touch this. We only allow spliced file
1758 		 * systems (file systems which are in the namespace) to
1759 		 * have the VFS_STATS flag set.
1760 		 * NOTE: PxFS mounts the underlying file system with
1761 		 * MS_NOSPLICE set and copies those vfs_flags to its private
1762 		 * vfs structure. As a result, PxFS should never have
1763 		 * the VFS_STATS flag or else we might access the vfs
1764 		 * statistics-related fields prior to them being
1765 		 * properly initialized.
1766 		 */
1767 		if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1768 			initialize_vopstats(&vfsp->vfs_vopstats);
1769 			/*
1770 			 * We need to set vfs_vskap to NULL because there's
1771 			 * a chance it won't be set below.  This is checked
1772 			 * in teardown_vopstats() so we can't have garbage.
1773 			 */
1774 			vfsp->vfs_vskap = NULL;
1775 			vfsp->vfs_flag |= VFS_STATS;
1776 			vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1777 		}
1778 
1779 		if (vswp->vsw_flag & VSW_XID)
1780 			vfsp->vfs_flag |= VFS_XID;
1781 
1782 		vfs_unlock(vfsp);
1783 	}
1784 	mount_completed(zone);
1785 	zone_rele(zone);
1786 	if (splice)
1787 		vn_vfsunlock(vp);
1788 
1789 	if ((error == 0) && (copyout_error == 0)) {
1790 		if (!remount) {
1791 			/*
1792 			 * Don't call get_vskstat_anchor() while holding
1793 			 * locks since it allocates memory and calls
1794 			 * VFS_STATVFS().  For NFS, the latter can generate
1795 			 * an over-the-wire call.
1796 			 */
1797 			vskap = get_vskstat_anchor(vfsp);
1798 			/* Only take the lock if we have something to do */
1799 			if (vskap != NULL) {
1800 				vfs_lock_wait(vfsp);
1801 				if (vfsp->vfs_flag & VFS_STATS) {
1802 					vfsp->vfs_vskap = vskap;
1803 				}
1804 				vfs_unlock(vfsp);
1805 			}
1806 		}
1807 		/* Return vfsp to caller. */
1808 		*vfspp = vfsp;
1809 	}
1810 errout:
1811 	vfs_freeopttbl(&mnt_mntopts);
1812 	if (resource != NULL)
1813 		kmem_free(resource, strlen(resource) + 1);
1814 	if (mountpt != NULL)
1815 		kmem_free(mountpt, strlen(mountpt) + 1);
1816 	/*
1817 	 * It is possible we errored prior to adding to mount in progress
1818 	 * table. Must free vnode we acquired with successful lookupname.
1819 	 */
1820 	if (addmip)
1821 		VN_RELE(bvp);
1822 	if (delmip)
1823 		vfs_delmip(vfsp);
1824 	ASSERT(vswp != NULL);
1825 	vfs_unrefvfssw(vswp);
1826 	if (inargs != opts)
1827 		kmem_free(inargs, MAX_MNTOPT_STR);
1828 	if (copyout_error) {
1829 		lofi_remove(vfsp);
1830 		VFS_RELE(vfsp);
1831 		error = copyout_error;
1832 	}
1833 	return (error);
1834 }
1835 
1836 static void
1837 vfs_setpath(
1838     struct vfs *vfsp,		/* vfs being updated */
1839     refstr_t **refp,		/* Ref-count string to contain the new path */
1840     const char *newpath,	/* Path to add to refp (above) */
1841     uint32_t flag)		/* flag */
1842 {
1843 	size_t len;
1844 	refstr_t *ref;
1845 	zone_t *zone = curproc->p_zone;
1846 	char *sp;
1847 	int have_list_lock = 0;
1848 
1849 	ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1850 
1851 	/*
1852 	 * New path must be less than MAXPATHLEN because mntfs
1853 	 * will only display up to MAXPATHLEN bytes. This is currently
1854 	 * safe, because domount() uses pn_get(), and other callers
1855 	 * similarly cap the size to fewer than MAXPATHLEN bytes.
1856 	 */
1857 
1858 	ASSERT(strlen(newpath) < MAXPATHLEN);
1859 
1860 	/* mntfs requires consistency while vfs list lock is held */
1861 
1862 	if (VFS_ON_LIST(vfsp)) {
1863 		have_list_lock = 1;
1864 		vfs_list_lock();
1865 	}
1866 
1867 	if (*refp != NULL)
1868 		refstr_rele(*refp);
1869 
1870 	/*
1871 	 * If we are in a non-global zone then we prefix the supplied path,
1872 	 * newpath, with the zone's root path, with two exceptions. The first
1873 	 * is where we have been explicitly directed to avoid doing so; this
1874 	 * will be the case following a failed remount, where the path supplied
1875 	 * will be a saved version which must now be restored. The second
1876 	 * exception is where newpath is not a pathname but a descriptive name,
1877 	 * e.g. "procfs".
1878 	 */
1879 	if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') {
1880 		ref = refstr_alloc(newpath);
1881 		goto out;
1882 	}
1883 
1884 	/*
1885 	 * Truncate the trailing '/' in the zoneroot, and merge
1886 	 * in the zone's rootpath with the "newpath" (resource
1887 	 * or mountpoint) passed in.
1888 	 *
1889 	 * The size of the required buffer is thus the size of
1890 	 * the buffer required for the passed-in newpath
1891 	 * (strlen(newpath) + 1), plus the size of the buffer
1892 	 * required to hold zone_rootpath (zone_rootpathlen)
1893 	 * minus one for one of the now-superfluous NUL
1894 	 * terminations, minus one for the trailing '/'.
1895 	 *
1896 	 * That gives us:
1897 	 *
1898 	 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1899 	 *
1900 	 * Which is what we have below.
1901 	 */
1902 
1903 	len = strlen(newpath) + zone->zone_rootpathlen - 1;
1904 	sp = kmem_alloc(len, KM_SLEEP);
1905 
1906 	/*
1907 	 * Copy everything including the trailing slash, which
1908 	 * we then overwrite with the NUL character.
1909 	 */
1910 
1911 	(void) strcpy(sp, zone->zone_rootpath);
1912 	sp[zone->zone_rootpathlen - 2] = '\0';
1913 	(void) strcat(sp, newpath);
1914 
1915 	ref = refstr_alloc(sp);
1916 	kmem_free(sp, len);
1917 out:
1918 	*refp = ref;
1919 
1920 	if (have_list_lock) {
1921 		vfs_mnttab_modtimeupd();
1922 		vfs_list_unlock();
1923 	}
1924 }
1925 
1926 /*
1927  * Record a mounted resource name in a vfs structure.
1928  * If vfsp is already mounted, caller must hold the vfs lock.
1929  */
1930 void
1931 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag)
1932 {
1933 	if (resource == NULL || resource[0] == '\0')
1934 		resource = VFS_NORESOURCE;
1935 	vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag);
1936 }
1937 
1938 /*
1939  * Record a mount point name in a vfs structure.
1940  * If vfsp is already mounted, caller must hold the vfs lock.
1941  */
1942 void
1943 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag)
1944 {
1945 	if (mntpt == NULL || mntpt[0] == '\0')
1946 		mntpt = VFS_NOMNTPT;
1947 	vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag);
1948 }
1949 
1950 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1951 
1952 refstr_t *
1953 vfs_getresource(const struct vfs *vfsp)
1954 {
1955 	refstr_t *resource;
1956 
1957 	vfs_list_read_lock();
1958 	resource = vfsp->vfs_resource;
1959 	refstr_hold(resource);
1960 	vfs_list_unlock();
1961 
1962 	return (resource);
1963 }
1964 
1965 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
1966 
1967 refstr_t *
1968 vfs_getmntpoint(const struct vfs *vfsp)
1969 {
1970 	refstr_t *mntpt;
1971 
1972 	vfs_list_read_lock();
1973 	mntpt = vfsp->vfs_mntpt;
1974 	refstr_hold(mntpt);
1975 	vfs_list_unlock();
1976 
1977 	return (mntpt);
1978 }
1979 
1980 /*
1981  * Create an empty options table with enough empty slots to hold all
1982  * The options in the options string passed as an argument.
1983  * Potentially prepend another options table.
1984  *
1985  * Note: caller is responsible for locking the vfs list, if needed,
1986  *       to protect mops.
1987  */
1988 static void
1989 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
1990     const mntopts_t *mtmpl)
1991 {
1992 	const char *s = opts;
1993 	uint_t count;
1994 
1995 	if (opts == NULL || *opts == '\0') {
1996 		count = 0;
1997 	} else {
1998 		count = 1;
1999 
2000 		/*
2001 		 * Count number of options in the string
2002 		 */
2003 		for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
2004 			count++;
2005 			s++;
2006 		}
2007 	}
2008 	vfs_copyopttbl_extend(mtmpl, mops, count);
2009 }
2010 
2011 /*
2012  * Create an empty options table with enough empty slots to hold all
2013  * The options in the options string passed as an argument.
2014  *
2015  * This function is *not* for general use by filesystems.
2016  *
2017  * Note: caller is responsible for locking the vfs list, if needed,
2018  *       to protect mops.
2019  */
2020 void
2021 vfs_createopttbl(mntopts_t *mops, const char *opts)
2022 {
2023 	vfs_createopttbl_extend(mops, opts, NULL);
2024 }
2025 
2026 
2027 /*
2028  * Swap two mount options tables
2029  */
2030 static void
2031 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2032 {
2033 	uint_t tmpcnt;
2034 	mntopt_t *tmplist;
2035 
2036 	tmpcnt = optbl2->mo_count;
2037 	tmplist = optbl2->mo_list;
2038 	optbl2->mo_count = optbl1->mo_count;
2039 	optbl2->mo_list = optbl1->mo_list;
2040 	optbl1->mo_count = tmpcnt;
2041 	optbl1->mo_list = tmplist;
2042 }
2043 
2044 static void
2045 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2046 {
2047 	vfs_list_lock();
2048 	vfs_swapopttbl_nolock(optbl1, optbl2);
2049 	vfs_mnttab_modtimeupd();
2050 	vfs_list_unlock();
2051 }
2052 
2053 static char **
2054 vfs_copycancelopt_extend(char **const moc, int extend)
2055 {
2056 	int i = 0;
2057 	int j;
2058 	char **result;
2059 
2060 	if (moc != NULL) {
2061 		for (; moc[i] != NULL; i++)
2062 			/* count number of options to cancel */;
2063 	}
2064 
2065 	if (i + extend == 0)
2066 		return (NULL);
2067 
2068 	result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2069 
2070 	for (j = 0; j < i; j++) {
2071 		result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2072 		(void) strcpy(result[j], moc[j]);
2073 	}
2074 	for (; j <= i + extend; j++)
2075 		result[j] = NULL;
2076 
2077 	return (result);
2078 }
2079 
2080 static void
2081 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2082 {
2083 	char *sp, *dp;
2084 
2085 	d->mo_flags = s->mo_flags;
2086 	d->mo_data = s->mo_data;
2087 	sp = s->mo_name;
2088 	if (sp != NULL) {
2089 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2090 		(void) strcpy(dp, sp);
2091 		d->mo_name = dp;
2092 	} else {
2093 		d->mo_name = NULL; /* should never happen */
2094 	}
2095 
2096 	d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2097 
2098 	sp = s->mo_arg;
2099 	if (sp != NULL) {
2100 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2101 		(void) strcpy(dp, sp);
2102 		d->mo_arg = dp;
2103 	} else {
2104 		d->mo_arg = NULL;
2105 	}
2106 }
2107 
2108 /*
2109  * Copy a mount options table, possibly allocating some spare
2110  * slots at the end.  It is permissible to copy_extend the NULL table.
2111  */
2112 static void
2113 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2114 {
2115 	uint_t i, count;
2116 	mntopt_t *motbl;
2117 
2118 	/*
2119 	 * Clear out any existing stuff in the options table being initialized
2120 	 */
2121 	vfs_freeopttbl(dmo);
2122 	count = (smo == NULL) ? 0 : smo->mo_count;
2123 	if ((count + extra) == 0)	/* nothing to do */
2124 		return;
2125 	dmo->mo_count = count + extra;
2126 	motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2127 	dmo->mo_list = motbl;
2128 	for (i = 0; i < count; i++) {
2129 		vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2130 	}
2131 	for (i = count; i < count + extra; i++) {
2132 		motbl[i].mo_flags = MO_EMPTY;
2133 	}
2134 }
2135 
2136 /*
2137  * Copy a mount options table.
2138  *
2139  * This function is *not* for general use by filesystems.
2140  *
2141  * Note: caller is responsible for locking the vfs list, if needed,
2142  *       to protect smo and dmo.
2143  */
2144 void
2145 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2146 {
2147 	vfs_copyopttbl_extend(smo, dmo, 0);
2148 }
2149 
2150 static char **
2151 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2152 {
2153 	int c1 = 0;
2154 	int c2 = 0;
2155 	char **result;
2156 	char **sp1, **sp2, **dp;
2157 
2158 	/*
2159 	 * First we count both lists of cancel options.
2160 	 * If either is NULL or has no elements, we return a copy of
2161 	 * the other.
2162 	 */
2163 	if (mop1->mo_cancel != NULL) {
2164 		for (; mop1->mo_cancel[c1] != NULL; c1++)
2165 			/* count cancel options in mop1 */;
2166 	}
2167 
2168 	if (c1 == 0)
2169 		return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2170 
2171 	if (mop2->mo_cancel != NULL) {
2172 		for (; mop2->mo_cancel[c2] != NULL; c2++)
2173 			/* count cancel options in mop2 */;
2174 	}
2175 
2176 	result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2177 
2178 	if (c2 == 0)
2179 		return (result);
2180 
2181 	/*
2182 	 * When we get here, we've got two sets of cancel options;
2183 	 * we need to merge the two sets.  We know that the result
2184 	 * array has "c1+c2+1" entries and in the end we might shrink
2185 	 * it.
2186 	 * Result now has a copy of the c1 entries from mop1; we'll
2187 	 * now lookup all the entries of mop2 in mop1 and copy it if
2188 	 * it is unique.
2189 	 * This operation is O(n^2) but it's only called once per
2190 	 * filesystem per duplicate option.  This is a situation
2191 	 * which doesn't arise with the filesystems in ON and
2192 	 * n is generally 1.
2193 	 */
2194 
2195 	dp = &result[c1];
2196 	for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2197 		for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2198 			if (strcmp(*sp1, *sp2) == 0)
2199 				break;
2200 		}
2201 		if (*sp1 == NULL) {
2202 			/*
2203 			 * Option *sp2 not found in mop1, so copy it.
2204 			 * The calls to vfs_copycancelopt_extend()
2205 			 * guarantee that there's enough room.
2206 			 */
2207 			*dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2208 			(void) strcpy(*dp++, *sp2);
2209 		}
2210 	}
2211 	if (dp != &result[c1+c2]) {
2212 		size_t bytes = (dp - result + 1) * sizeof (char *);
2213 		char **nres = kmem_alloc(bytes, KM_SLEEP);
2214 
2215 		bcopy(result, nres, bytes);
2216 		kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2217 		result = nres;
2218 	}
2219 	return (result);
2220 }
2221 
2222 /*
2223  * Merge two mount option tables (outer and inner) into one.  This is very
2224  * similar to "merging" global variables and automatic variables in C.
2225  *
2226  * This isn't (and doesn't have to be) fast.
2227  *
2228  * This function is *not* for general use by filesystems.
2229  *
2230  * Note: caller is responsible for locking the vfs list, if needed,
2231  *       to protect omo, imo & dmo.
2232  */
2233 void
2234 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2235 {
2236 	uint_t i, count;
2237 	mntopt_t *mop, *motbl;
2238 	uint_t freeidx;
2239 
2240 	/*
2241 	 * First determine how much space we need to allocate.
2242 	 */
2243 	count = omo->mo_count;
2244 	for (i = 0; i < imo->mo_count; i++) {
2245 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2246 			continue;
2247 		if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2248 			count++;
2249 	}
2250 	ASSERT(count >= omo->mo_count &&
2251 	    count <= omo->mo_count + imo->mo_count);
2252 	motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2253 	for (i = 0; i < omo->mo_count; i++)
2254 		vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2255 	freeidx = omo->mo_count;
2256 	for (i = 0; i < imo->mo_count; i++) {
2257 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2258 			continue;
2259 		if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2260 			char **newcanp;
2261 			uint_t index = mop - omo->mo_list;
2262 
2263 			newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2264 
2265 			vfs_freeopt(&motbl[index]);
2266 			vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2267 
2268 			vfs_freecancelopt(motbl[index].mo_cancel);
2269 			motbl[index].mo_cancel = newcanp;
2270 		} else {
2271 			/*
2272 			 * If it's a new option, just copy it over to the first
2273 			 * free location.
2274 			 */
2275 			vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2276 		}
2277 	}
2278 	dmo->mo_count = count;
2279 	dmo->mo_list = motbl;
2280 }
2281 
2282 /*
2283  * Functions to set and clear mount options in a mount options table.
2284  */
2285 
2286 /*
2287  * Clear a mount option, if it exists.
2288  *
2289  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2290  * the vfs list.
2291  */
2292 static void
2293 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2294 {
2295 	struct mntopt *mop;
2296 	uint_t i, count;
2297 
2298 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2299 
2300 	count = mops->mo_count;
2301 	for (i = 0; i < count; i++) {
2302 		mop = &mops->mo_list[i];
2303 
2304 		if (mop->mo_flags & MO_EMPTY)
2305 			continue;
2306 		if (strcmp(opt, mop->mo_name))
2307 			continue;
2308 		mop->mo_flags &= ~MO_SET;
2309 		if (mop->mo_arg != NULL) {
2310 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2311 		}
2312 		mop->mo_arg = NULL;
2313 		if (update_mnttab)
2314 			vfs_mnttab_modtimeupd();
2315 		break;
2316 	}
2317 }
2318 
2319 void
2320 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2321 {
2322 	int gotlock = 0;
2323 
2324 	if (VFS_ON_LIST(vfsp)) {
2325 		gotlock = 1;
2326 		vfs_list_lock();
2327 	}
2328 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2329 	if (gotlock)
2330 		vfs_list_unlock();
2331 }
2332 
2333 
2334 /*
2335  * Set a mount option on.  If it's not found in the table, it's silently
2336  * ignored.  If the option has MO_IGNORE set, it is still set unless the
2337  * VFS_NOFORCEOPT bit is set in the flags.  Also, VFS_DISPLAY/VFS_NODISPLAY flag
2338  * bits can be used to toggle the MO_NODISPLAY bit for the option.
2339  * If the VFS_CREATEOPT flag bit is set then the first option slot with
2340  * MO_EMPTY set is created as the option passed in.
2341  *
2342  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2343  * the vfs list.
2344  */
2345 static void
2346 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2347     const char *arg, int flags, int update_mnttab)
2348 {
2349 	mntopt_t *mop;
2350 	uint_t i, count;
2351 	char *sp;
2352 
2353 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2354 
2355 	if (flags & VFS_CREATEOPT) {
2356 		if (vfs_hasopt(mops, opt) != NULL) {
2357 			flags &= ~VFS_CREATEOPT;
2358 		}
2359 	}
2360 	count = mops->mo_count;
2361 	for (i = 0; i < count; i++) {
2362 		mop = &mops->mo_list[i];
2363 
2364 		if (mop->mo_flags & MO_EMPTY) {
2365 			if ((flags & VFS_CREATEOPT) == 0)
2366 				continue;
2367 			sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2368 			(void) strcpy(sp, opt);
2369 			mop->mo_name = sp;
2370 			if (arg != NULL)
2371 				mop->mo_flags = MO_HASVALUE;
2372 			else
2373 				mop->mo_flags = 0;
2374 		} else if (strcmp(opt, mop->mo_name)) {
2375 			continue;
2376 		}
2377 		if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2378 			break;
2379 		if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2380 			sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2381 			(void) strcpy(sp, arg);
2382 		} else {
2383 			sp = NULL;
2384 		}
2385 		if (mop->mo_arg != NULL)
2386 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2387 		mop->mo_arg = sp;
2388 		if (flags & VFS_DISPLAY)
2389 			mop->mo_flags &= ~MO_NODISPLAY;
2390 		if (flags & VFS_NODISPLAY)
2391 			mop->mo_flags |= MO_NODISPLAY;
2392 		mop->mo_flags |= MO_SET;
2393 		if (mop->mo_cancel != NULL) {
2394 			char **cp;
2395 
2396 			for (cp = mop->mo_cancel; *cp != NULL; cp++)
2397 				vfs_clearmntopt_nolock(mops, *cp, 0);
2398 		}
2399 		if (update_mnttab)
2400 			vfs_mnttab_modtimeupd();
2401 		break;
2402 	}
2403 }
2404 
2405 void
2406 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2407 {
2408 	int gotlock = 0;
2409 
2410 	if (VFS_ON_LIST(vfsp)) {
2411 		gotlock = 1;
2412 		vfs_list_lock();
2413 	}
2414 	vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2415 	if (gotlock)
2416 		vfs_list_unlock();
2417 }
2418 
2419 
2420 /*
2421  * Add a "tag" option to a mounted file system's options list.
2422  *
2423  * Note: caller is responsible for locking the vfs list, if needed,
2424  *       to protect mops.
2425  */
2426 static mntopt_t *
2427 vfs_addtag(mntopts_t *mops, const char *tag)
2428 {
2429 	uint_t count;
2430 	mntopt_t *mop, *motbl;
2431 
2432 	count = mops->mo_count + 1;
2433 	motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2434 	if (mops->mo_count) {
2435 		size_t len = (count - 1) * sizeof (mntopt_t);
2436 
2437 		bcopy(mops->mo_list, motbl, len);
2438 		kmem_free(mops->mo_list, len);
2439 	}
2440 	mops->mo_count = count;
2441 	mops->mo_list = motbl;
2442 	mop = &motbl[count - 1];
2443 	mop->mo_flags = MO_TAG;
2444 	mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2445 	(void) strcpy(mop->mo_name, tag);
2446 	return (mop);
2447 }
2448 
2449 /*
2450  * Allow users to set arbitrary "tags" in a vfs's mount options.
2451  * Broader use within the kernel is discouraged.
2452  */
2453 int
2454 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2455     cred_t *cr)
2456 {
2457 	vfs_t *vfsp;
2458 	mntopts_t *mops;
2459 	mntopt_t *mop;
2460 	int found = 0;
2461 	dev_t dev = makedevice(major, minor);
2462 	int err = 0;
2463 	char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2464 
2465 	/*
2466 	 * Find the desired mounted file system
2467 	 */
2468 	vfs_list_lock();
2469 	vfsp = rootvfs;
2470 	do {
2471 		if (vfsp->vfs_dev == dev &&
2472 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2473 			found = 1;
2474 			break;
2475 		}
2476 		vfsp = vfsp->vfs_next;
2477 	} while (vfsp != rootvfs);
2478 
2479 	if (!found) {
2480 		err = EINVAL;
2481 		goto out;
2482 	}
2483 	err = secpolicy_fs_config(cr, vfsp);
2484 	if (err != 0)
2485 		goto out;
2486 
2487 	mops = &vfsp->vfs_mntopts;
2488 	/*
2489 	 * Add tag if it doesn't already exist
2490 	 */
2491 	if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2492 		int len;
2493 
2494 		(void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2495 		len = strlen(buf);
2496 		if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2497 			err = ENAMETOOLONG;
2498 			goto out;
2499 		}
2500 		mop = vfs_addtag(mops, tag);
2501 	}
2502 	if ((mop->mo_flags & MO_TAG) == 0) {
2503 		err = EINVAL;
2504 		goto out;
2505 	}
2506 	vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2507 out:
2508 	vfs_list_unlock();
2509 	kmem_free(buf, MAX_MNTOPT_STR);
2510 	return (err);
2511 }
2512 
2513 /*
2514  * Allow users to remove arbitrary "tags" in a vfs's mount options.
2515  * Broader use within the kernel is discouraged.
2516  */
2517 int
2518 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2519     cred_t *cr)
2520 {
2521 	vfs_t *vfsp;
2522 	mntopt_t *mop;
2523 	int found = 0;
2524 	dev_t dev = makedevice(major, minor);
2525 	int err = 0;
2526 
2527 	/*
2528 	 * Find the desired mounted file system
2529 	 */
2530 	vfs_list_lock();
2531 	vfsp = rootvfs;
2532 	do {
2533 		if (vfsp->vfs_dev == dev &&
2534 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2535 			found = 1;
2536 			break;
2537 		}
2538 		vfsp = vfsp->vfs_next;
2539 	} while (vfsp != rootvfs);
2540 
2541 	if (!found) {
2542 		err = EINVAL;
2543 		goto out;
2544 	}
2545 	err = secpolicy_fs_config(cr, vfsp);
2546 	if (err != 0)
2547 		goto out;
2548 
2549 	if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2550 		err = EINVAL;
2551 		goto out;
2552 	}
2553 	if ((mop->mo_flags & MO_TAG) == 0) {
2554 		err = EINVAL;
2555 		goto out;
2556 	}
2557 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2558 out:
2559 	vfs_list_unlock();
2560 	return (err);
2561 }
2562 
2563 /*
2564  * Function to parse an option string and fill in a mount options table.
2565  * Unknown options are silently ignored.  The input option string is modified
2566  * by replacing separators with nulls.  If the create flag is set, options
2567  * not found in the table are just added on the fly.  The table must have
2568  * an option slot marked MO_EMPTY to add an option on the fly.
2569  *
2570  * This function is *not* for general use by filesystems.
2571  *
2572  * Note: caller is responsible for locking the vfs list, if needed,
2573  *       to protect mops..
2574  */
2575 void
2576 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2577 {
2578 	char *s = osp, *p, *nextop, *valp, *cp, *ep;
2579 	int setflg = VFS_NOFORCEOPT;
2580 
2581 	if (osp == NULL)
2582 		return;
2583 	while (*s != '\0') {
2584 		p = strchr(s, ',');	/* find next option */
2585 		if (p == NULL) {
2586 			cp = NULL;
2587 			p = s + strlen(s);
2588 		} else {
2589 			cp = p;		/* save location of comma */
2590 			*p++ = '\0';	/* mark end and point to next option */
2591 		}
2592 		nextop = p;
2593 		p = strchr(s, '=');	/* look for value */
2594 		if (p == NULL) {
2595 			valp = NULL;	/* no value supplied */
2596 		} else {
2597 			ep = p;		/* save location of equals */
2598 			*p++ = '\0';	/* end option and point to value */
2599 			valp = p;
2600 		}
2601 		/*
2602 		 * set option into options table
2603 		 */
2604 		if (create)
2605 			setflg |= VFS_CREATEOPT;
2606 		vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2607 		if (cp != NULL)
2608 			*cp = ',';	/* restore the comma */
2609 		if (valp != NULL)
2610 			*ep = '=';	/* restore the equals */
2611 		s = nextop;
2612 	}
2613 }
2614 
2615 /*
2616  * Function to inquire if an option exists in a mount options table.
2617  * Returns a pointer to the option if it exists, else NULL.
2618  *
2619  * This function is *not* for general use by filesystems.
2620  *
2621  * Note: caller is responsible for locking the vfs list, if needed,
2622  *       to protect mops.
2623  */
2624 struct mntopt *
2625 vfs_hasopt(const mntopts_t *mops, const char *opt)
2626 {
2627 	struct mntopt *mop;
2628 	uint_t i, count;
2629 
2630 	count = mops->mo_count;
2631 	for (i = 0; i < count; i++) {
2632 		mop = &mops->mo_list[i];
2633 
2634 		if (mop->mo_flags & MO_EMPTY)
2635 			continue;
2636 		if (strcmp(opt, mop->mo_name) == 0)
2637 			return (mop);
2638 	}
2639 	return (NULL);
2640 }
2641 
2642 /*
2643  * Function to inquire if an option is set in a mount options table.
2644  * Returns non-zero if set and fills in the arg pointer with a pointer to
2645  * the argument string or NULL if there is no argument string.
2646  */
2647 static int
2648 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2649 {
2650 	struct mntopt *mop;
2651 	uint_t i, count;
2652 
2653 	count = mops->mo_count;
2654 	for (i = 0; i < count; i++) {
2655 		mop = &mops->mo_list[i];
2656 
2657 		if (mop->mo_flags & MO_EMPTY)
2658 			continue;
2659 		if (strcmp(opt, mop->mo_name))
2660 			continue;
2661 		if ((mop->mo_flags & MO_SET) == 0)
2662 			return (0);
2663 		if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2664 			*argp = mop->mo_arg;
2665 		return (1);
2666 	}
2667 	return (0);
2668 }
2669 
2670 
2671 int
2672 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2673 {
2674 	int ret;
2675 
2676 	vfs_list_read_lock();
2677 	ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2678 	vfs_list_unlock();
2679 	return (ret);
2680 }
2681 
2682 
2683 /*
2684  * Construct a comma separated string of the options set in the given
2685  * mount table, return the string in the given buffer.  Return non-zero if
2686  * the buffer would overflow.
2687  *
2688  * This function is *not* for general use by filesystems.
2689  *
2690  * Note: caller is responsible for locking the vfs list, if needed,
2691  *       to protect mp.
2692  */
2693 int
2694 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2695 {
2696 	char *cp;
2697 	uint_t i;
2698 
2699 	buf[0] = '\0';
2700 	cp = buf;
2701 	for (i = 0; i < mp->mo_count; i++) {
2702 		struct mntopt *mop;
2703 
2704 		mop = &mp->mo_list[i];
2705 		if (mop->mo_flags & MO_SET) {
2706 			int optlen, comma = 0;
2707 
2708 			if (buf[0] != '\0')
2709 				comma = 1;
2710 			optlen = strlen(mop->mo_name);
2711 			if (strlen(buf) + comma + optlen + 1 > len)
2712 				goto err;
2713 			if (comma)
2714 				*cp++ = ',';
2715 			(void) strcpy(cp, mop->mo_name);
2716 			cp += optlen;
2717 			/*
2718 			 * Append option value if there is one
2719 			 */
2720 			if (mop->mo_arg != NULL) {
2721 				int arglen;
2722 
2723 				arglen = strlen(mop->mo_arg);
2724 				if (strlen(buf) + arglen + 2 > len)
2725 					goto err;
2726 				*cp++ = '=';
2727 				(void) strcpy(cp, mop->mo_arg);
2728 				cp += arglen;
2729 			}
2730 		}
2731 	}
2732 	return (0);
2733 err:
2734 	return (EOVERFLOW);
2735 }
2736 
2737 static void
2738 vfs_freecancelopt(char **moc)
2739 {
2740 	if (moc != NULL) {
2741 		int ccnt = 0;
2742 		char **cp;
2743 
2744 		for (cp = moc; *cp != NULL; cp++) {
2745 			kmem_free(*cp, strlen(*cp) + 1);
2746 			ccnt++;
2747 		}
2748 		kmem_free(moc, (ccnt + 1) * sizeof (char *));
2749 	}
2750 }
2751 
2752 static void
2753 vfs_freeopt(mntopt_t *mop)
2754 {
2755 	if (mop->mo_name != NULL)
2756 		kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2757 
2758 	vfs_freecancelopt(mop->mo_cancel);
2759 
2760 	if (mop->mo_arg != NULL)
2761 		kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2762 }
2763 
2764 /*
2765  * Free a mount options table
2766  *
2767  * This function is *not* for general use by filesystems.
2768  *
2769  * Note: caller is responsible for locking the vfs list, if needed,
2770  *       to protect mp.
2771  */
2772 void
2773 vfs_freeopttbl(mntopts_t *mp)
2774 {
2775 	uint_t i, count;
2776 
2777 	count = mp->mo_count;
2778 	for (i = 0; i < count; i++) {
2779 		vfs_freeopt(&mp->mo_list[i]);
2780 	}
2781 	if (count) {
2782 		kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2783 		mp->mo_count = 0;
2784 		mp->mo_list = NULL;
2785 	}
2786 }
2787 
2788 
2789 /* ARGSUSED */
2790 static int
2791 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2792     caller_context_t *ct)
2793 {
2794 	return (0);
2795 }
2796 
2797 /* ARGSUSED */
2798 static int
2799 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2800     caller_context_t *ct)
2801 {
2802 	return (0);
2803 }
2804 
2805 /*
2806  * The dummy vnode is currently used only by file events notification
2807  * module which is just interested in the timestamps.
2808  */
2809 /* ARGSUSED */
2810 static int
2811 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2812     caller_context_t *ct)
2813 {
2814 	bzero(vap, sizeof (vattr_t));
2815 	vap->va_type = VREG;
2816 	vap->va_nlink = 1;
2817 	vap->va_ctime = vfs_mnttab_ctime;
2818 	/*
2819 	 * it is ok to just copy mtime as the time will be monotonically
2820 	 * increasing.
2821 	 */
2822 	vap->va_mtime = vfs_mnttab_mtime;
2823 	vap->va_atime = vap->va_mtime;
2824 	return (0);
2825 }
2826 
2827 static void
2828 vfs_mnttabvp_setup(void)
2829 {
2830 	vnode_t *tvp;
2831 	vnodeops_t *vfs_mntdummyvnops;
2832 	const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2833 		VOPNAME_READ, 		{ .vop_read = vfs_mntdummyread },
2834 		VOPNAME_WRITE, 		{ .vop_write = vfs_mntdummywrite },
2835 		VOPNAME_GETATTR,	{ .vop_getattr = vfs_mntdummygetattr },
2836 		VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
2837 		NULL,			NULL
2838 	};
2839 
2840 	if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2841 	    &vfs_mntdummyvnops) != 0) {
2842 		cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2843 		/* Shouldn't happen, but not bad enough to panic */
2844 		return;
2845 	}
2846 
2847 	/*
2848 	 * A global dummy vnode is allocated to represent mntfs files.
2849 	 * The mntfs file (/etc/mnttab) can be monitored for file events
2850 	 * and receive an event when mnttab changes. Dummy VOP calls
2851 	 * will be made on this vnode. The file events notification module
2852 	 * intercepts this vnode and delivers relevant events.
2853 	 */
2854 	tvp = vn_alloc(KM_SLEEP);
2855 	tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2856 	vn_setops(tvp, vfs_mntdummyvnops);
2857 	tvp->v_type = VREG;
2858 	/*
2859 	 * The mnt dummy ops do not reference v_data.
2860 	 * No other module intercepting this vnode should either.
2861 	 * Just set it to point to itself.
2862 	 */
2863 	tvp->v_data = (caddr_t)tvp;
2864 	tvp->v_vfsp = rootvfs;
2865 	vfs_mntdummyvp = tvp;
2866 }
2867 
2868 /*
2869  * performs fake read/write ops
2870  */
2871 static void
2872 vfs_mnttab_rwop(int rw)
2873 {
2874 	struct uio	uio;
2875 	struct iovec	iov;
2876 	char	buf[1];
2877 
2878 	if (vfs_mntdummyvp == NULL)
2879 		return;
2880 
2881 	bzero(&uio, sizeof (uio));
2882 	bzero(&iov, sizeof (iov));
2883 	iov.iov_base = buf;
2884 	iov.iov_len = 0;
2885 	uio.uio_iov = &iov;
2886 	uio.uio_iovcnt = 1;
2887 	uio.uio_loffset = 0;
2888 	uio.uio_segflg = UIO_SYSSPACE;
2889 	uio.uio_resid = 0;
2890 	if (rw) {
2891 		(void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2892 	} else {
2893 		(void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2894 	}
2895 }
2896 
2897 /*
2898  * Generate a write operation.
2899  */
2900 void
2901 vfs_mnttab_writeop(void)
2902 {
2903 	vfs_mnttab_rwop(1);
2904 }
2905 
2906 /*
2907  * Generate a read operation.
2908  */
2909 void
2910 vfs_mnttab_readop(void)
2911 {
2912 	vfs_mnttab_rwop(0);
2913 }
2914 
2915 /*
2916  * Free any mnttab information recorded in the vfs struct.
2917  * The vfs must not be on the vfs list.
2918  */
2919 static void
2920 vfs_freemnttab(struct vfs *vfsp)
2921 {
2922 	ASSERT(!VFS_ON_LIST(vfsp));
2923 
2924 	/*
2925 	 * Free device and mount point information
2926 	 */
2927 	if (vfsp->vfs_mntpt != NULL) {
2928 		refstr_rele(vfsp->vfs_mntpt);
2929 		vfsp->vfs_mntpt = NULL;
2930 	}
2931 	if (vfsp->vfs_resource != NULL) {
2932 		refstr_rele(vfsp->vfs_resource);
2933 		vfsp->vfs_resource = NULL;
2934 	}
2935 	/*
2936 	 * Now free mount options information
2937 	 */
2938 	vfs_freeopttbl(&vfsp->vfs_mntopts);
2939 }
2940 
2941 /*
2942  * Return the last mnttab modification time
2943  */
2944 void
2945 vfs_mnttab_modtime(timespec_t *ts)
2946 {
2947 	ASSERT(RW_LOCK_HELD(&vfslist));
2948 	*ts = vfs_mnttab_mtime;
2949 }
2950 
2951 /*
2952  * See if mnttab is changed
2953  */
2954 void
2955 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2956 {
2957 	int changed;
2958 
2959 	*phpp = (struct pollhead *)NULL;
2960 
2961 	/*
2962 	 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
2963 	 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
2964 	 * to not grab the vfs list lock because tv_sec is monotonically
2965 	 * increasing.
2966 	 */
2967 
2968 	changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
2969 	    (old->tv_sec != vfs_mnttab_mtime.tv_sec);
2970 	if (!changed) {
2971 		*phpp = &vfs_pollhd;
2972 	}
2973 }
2974 
2975 /* Provide a unique and monotonically-increasing timestamp. */
2976 void
2977 vfs_mono_time(timespec_t *ts)
2978 {
2979 	static volatile hrtime_t hrt;		/* The saved time. */
2980 	hrtime_t	newhrt, oldhrt;		/* For effecting the CAS. */
2981 	timespec_t	newts;
2982 
2983 	/*
2984 	 * Try gethrestime() first, but be prepared to fabricate a sensible
2985 	 * answer at the first sign of any trouble.
2986 	 */
2987 	gethrestime(&newts);
2988 	newhrt = ts2hrt(&newts);
2989 	for (;;) {
2990 		oldhrt = hrt;
2991 		if (newhrt <= hrt)
2992 			newhrt = hrt + 1;
2993 		if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
2994 			break;
2995 	}
2996 	hrt2ts(newhrt, ts);
2997 }
2998 
2999 /*
3000  * Update the mnttab modification time and wake up any waiters for
3001  * mnttab changes
3002  */
3003 void
3004 vfs_mnttab_modtimeupd()
3005 {
3006 	hrtime_t oldhrt, newhrt;
3007 
3008 	ASSERT(RW_WRITE_HELD(&vfslist));
3009 	oldhrt = ts2hrt(&vfs_mnttab_mtime);
3010 	gethrestime(&vfs_mnttab_mtime);
3011 	newhrt = ts2hrt(&vfs_mnttab_mtime);
3012 	if (oldhrt == (hrtime_t)0)
3013 		vfs_mnttab_ctime = vfs_mnttab_mtime;
3014 	/*
3015 	 * Attempt to provide unique mtime (like uniqtime but not).
3016 	 */
3017 	if (newhrt == oldhrt) {
3018 		newhrt++;
3019 		hrt2ts(newhrt, &vfs_mnttab_mtime);
3020 	}
3021 	pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
3022 	vfs_mnttab_writeop();
3023 }
3024 
3025 int
3026 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3027 {
3028 	vnode_t *coveredvp;
3029 	int error;
3030 	extern void teardown_vopstats(vfs_t *);
3031 
3032 	/*
3033 	 * Get covered vnode. This will be NULL if the vfs is not linked
3034 	 * into the file system name space (i.e., domount() with MNT_NOSPICE).
3035 	 */
3036 	coveredvp = vfsp->vfs_vnodecovered;
3037 	ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3038 
3039 	/*
3040 	 * Purge all dnlc entries for this vfs.
3041 	 */
3042 	(void) dnlc_purge_vfsp(vfsp, 0);
3043 
3044 	/* For forcible umount, skip VFS_SYNC() since it may hang */
3045 	if ((flag & MS_FORCE) == 0)
3046 		(void) VFS_SYNC(vfsp, 0, cr);
3047 
3048 	/*
3049 	 * Lock the vfs to maintain fs status quo during unmount.  This
3050 	 * has to be done after the sync because ufs_update tries to acquire
3051 	 * the vfs_reflock.
3052 	 */
3053 	vfs_lock_wait(vfsp);
3054 
3055 	if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3056 		vfs_unlock(vfsp);
3057 		if (coveredvp != NULL)
3058 			vn_vfsunlock(coveredvp);
3059 	} else if (coveredvp != NULL) {
3060 		teardown_vopstats(vfsp);
3061 		/*
3062 		 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3063 		 * when it frees vfsp so we do a VN_HOLD() so we can
3064 		 * continue to use coveredvp afterwards.
3065 		 */
3066 		VN_HOLD(coveredvp);
3067 		vfs_remove(vfsp);
3068 		vn_vfsunlock(coveredvp);
3069 		VN_RELE(coveredvp);
3070 	} else {
3071 		teardown_vopstats(vfsp);
3072 		/*
3073 		 * Release the reference to vfs that is not linked
3074 		 * into the name space.
3075 		 */
3076 		vfs_unlock(vfsp);
3077 		VFS_RELE(vfsp);
3078 	}
3079 	return (error);
3080 }
3081 
3082 
3083 /*
3084  * Vfs_unmountall() is called by uadmin() to unmount all
3085  * mounted file systems (except the root file system) during shutdown.
3086  * It follows the existing locking protocol when traversing the vfs list
3087  * to sync and unmount vfses. Even though there should be no
3088  * other thread running while the system is shutting down, it is prudent
3089  * to still follow the locking protocol.
3090  */
3091 void
3092 vfs_unmountall(void)
3093 {
3094 	struct vfs *vfsp;
3095 	struct vfs *prev_vfsp = NULL;
3096 	int error;
3097 
3098 	/*
3099 	 * Toss all dnlc entries now so that the per-vfs sync
3100 	 * and unmount operations don't have to slog through
3101 	 * a bunch of uninteresting vnodes over and over again.
3102 	 */
3103 	dnlc_purge();
3104 
3105 	vfs_list_lock();
3106 	for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3107 		prev_vfsp = vfsp->vfs_prev;
3108 
3109 		if (vfs_lock(vfsp) != 0)
3110 			continue;
3111 		error = vn_vfswlock(vfsp->vfs_vnodecovered);
3112 		vfs_unlock(vfsp);
3113 		if (error)
3114 			continue;
3115 
3116 		vfs_list_unlock();
3117 
3118 		(void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3119 		(void) dounmount(vfsp, 0, CRED());
3120 
3121 		/*
3122 		 * Since we dropped the vfslist lock above we must
3123 		 * verify that next_vfsp still exists, else start over.
3124 		 */
3125 		vfs_list_lock();
3126 		for (vfsp = rootvfs->vfs_prev;
3127 		    vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3128 			if (vfsp == prev_vfsp)
3129 				break;
3130 		if (vfsp == rootvfs && prev_vfsp != rootvfs)
3131 			prev_vfsp = rootvfs->vfs_prev;
3132 	}
3133 	vfs_list_unlock();
3134 }
3135 
3136 /*
3137  * Called to add an entry to the end of the vfs mount in progress list
3138  */
3139 void
3140 vfs_addmip(dev_t dev, struct vfs *vfsp)
3141 {
3142 	struct ipmnt *mipp;
3143 
3144 	mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3145 	mipp->mip_next = NULL;
3146 	mipp->mip_dev = dev;
3147 	mipp->mip_vfsp = vfsp;
3148 	mutex_enter(&vfs_miplist_mutex);
3149 	if (vfs_miplist_end != NULL)
3150 		vfs_miplist_end->mip_next = mipp;
3151 	else
3152 		vfs_miplist = mipp;
3153 	vfs_miplist_end = mipp;
3154 	mutex_exit(&vfs_miplist_mutex);
3155 }
3156 
3157 /*
3158  * Called to remove an entry from the mount in progress list
3159  * Either because the mount completed or it failed.
3160  */
3161 void
3162 vfs_delmip(struct vfs *vfsp)
3163 {
3164 	struct ipmnt *mipp, *mipprev;
3165 
3166 	mutex_enter(&vfs_miplist_mutex);
3167 	mipprev = NULL;
3168 	for (mipp = vfs_miplist;
3169 	    mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3170 		mipprev = mipp;
3171 	}
3172 	if (mipp == NULL)
3173 		return; /* shouldn't happen */
3174 	if (mipp == vfs_miplist_end)
3175 		vfs_miplist_end = mipprev;
3176 	if (mipprev == NULL)
3177 		vfs_miplist = mipp->mip_next;
3178 	else
3179 		mipprev->mip_next = mipp->mip_next;
3180 	mutex_exit(&vfs_miplist_mutex);
3181 	kmem_free(mipp, sizeof (struct ipmnt));
3182 }
3183 
3184 /*
3185  * vfs_add is called by a specific filesystem's mount routine to add
3186  * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3187  * The vfs should already have been locked by the caller.
3188  *
3189  * coveredvp is NULL if this is the root.
3190  */
3191 void
3192 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3193 {
3194 	int newflag;
3195 
3196 	ASSERT(vfs_lock_held(vfsp));
3197 	VFS_HOLD(vfsp);
3198 	newflag = vfsp->vfs_flag;
3199 	if (mflag & MS_RDONLY)
3200 		newflag |= VFS_RDONLY;
3201 	else
3202 		newflag &= ~VFS_RDONLY;
3203 	if (mflag & MS_NOSUID)
3204 		newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3205 	else
3206 		newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3207 	if (mflag & MS_NOMNTTAB)
3208 		newflag |= VFS_NOMNTTAB;
3209 	else
3210 		newflag &= ~VFS_NOMNTTAB;
3211 
3212 	if (coveredvp != NULL) {
3213 		ASSERT(vn_vfswlock_held(coveredvp));
3214 		coveredvp->v_vfsmountedhere = vfsp;
3215 		VN_HOLD(coveredvp);
3216 	}
3217 	vfsp->vfs_vnodecovered = coveredvp;
3218 	vfsp->vfs_flag = newflag;
3219 
3220 	vfs_list_add(vfsp);
3221 }
3222 
3223 /*
3224  * Remove a vfs from the vfs list, null out the pointer from the
3225  * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3226  * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3227  * reference to the vfs and to the covered vnode.
3228  *
3229  * Called from dounmount after it's confirmed with the file system
3230  * that the unmount is legal.
3231  */
3232 void
3233 vfs_remove(struct vfs *vfsp)
3234 {
3235 	vnode_t *vp;
3236 
3237 	ASSERT(vfs_lock_held(vfsp));
3238 
3239 	/*
3240 	 * Can't unmount root.  Should never happen because fs will
3241 	 * be busy.
3242 	 */
3243 	if (vfsp == rootvfs)
3244 		panic("vfs_remove: unmounting root");
3245 
3246 	vfs_list_remove(vfsp);
3247 
3248 	/*
3249 	 * Unhook from the file system name space.
3250 	 */
3251 	vp = vfsp->vfs_vnodecovered;
3252 	ASSERT(vn_vfswlock_held(vp));
3253 	vp->v_vfsmountedhere = NULL;
3254 	vfsp->vfs_vnodecovered = NULL;
3255 	VN_RELE(vp);
3256 
3257 	/*
3258 	 * Release lock and wakeup anybody waiting.
3259 	 */
3260 	vfs_unlock(vfsp);
3261 	VFS_RELE(vfsp);
3262 }
3263 
3264 /*
3265  * Lock a filesystem to prevent access to it while mounting,
3266  * unmounting and syncing.  Return EBUSY immediately if lock
3267  * can't be acquired.
3268  */
3269 int
3270 vfs_lock(vfs_t *vfsp)
3271 {
3272 	vn_vfslocks_entry_t *vpvfsentry;
3273 
3274 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3275 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3276 		return (0);
3277 
3278 	vn_vfslocks_rele(vpvfsentry);
3279 	return (EBUSY);
3280 }
3281 
3282 int
3283 vfs_rlock(vfs_t *vfsp)
3284 {
3285 	vn_vfslocks_entry_t *vpvfsentry;
3286 
3287 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3288 
3289 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3290 		return (0);
3291 
3292 	vn_vfslocks_rele(vpvfsentry);
3293 	return (EBUSY);
3294 }
3295 
3296 void
3297 vfs_lock_wait(vfs_t *vfsp)
3298 {
3299 	vn_vfslocks_entry_t *vpvfsentry;
3300 
3301 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3302 	rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3303 }
3304 
3305 void
3306 vfs_rlock_wait(vfs_t *vfsp)
3307 {
3308 	vn_vfslocks_entry_t *vpvfsentry;
3309 
3310 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3311 	rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3312 }
3313 
3314 /*
3315  * Unlock a locked filesystem.
3316  */
3317 void
3318 vfs_unlock(vfs_t *vfsp)
3319 {
3320 	vn_vfslocks_entry_t *vpvfsentry;
3321 
3322 	/*
3323 	 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3324 	 * And these changes should remain for the patch changes as it is.
3325 	 */
3326 	if (panicstr)
3327 		return;
3328 
3329 	/*
3330 	 * ve_refcount needs to be dropped twice here.
3331 	 * 1. To release refernce after a call to vfs_locks_getlock()
3332 	 * 2. To release the reference from the locking routines like
3333 	 *    vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3334 	 */
3335 
3336 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3337 	vn_vfslocks_rele(vpvfsentry);
3338 
3339 	rwst_exit(&vpvfsentry->ve_lock);
3340 	vn_vfslocks_rele(vpvfsentry);
3341 }
3342 
3343 /*
3344  * Utility routine that allows a filesystem to construct its
3345  * fsid in "the usual way" - by munging some underlying dev_t and
3346  * the filesystem type number into the 64-bit fsid.  Note that
3347  * this implicitly relies on dev_t persistence to make filesystem
3348  * id's persistent.
3349  *
3350  * There's nothing to prevent an individual fs from constructing its
3351  * fsid in a different way, and indeed they should.
3352  *
3353  * Since we want fsids to be 32-bit quantities (so that they can be
3354  * exported identically by either 32-bit or 64-bit APIs, as well as
3355  * the fact that fsid's are "known" to NFS), we compress the device
3356  * number given down to 32-bits, and panic if that isn't possible.
3357  */
3358 void
3359 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3360 {
3361 	if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3362 		panic("device number too big for fsid!");
3363 	fsi->val[1] = val;
3364 }
3365 
3366 int
3367 vfs_lock_held(vfs_t *vfsp)
3368 {
3369 	int held;
3370 	vn_vfslocks_entry_t *vpvfsentry;
3371 
3372 	/*
3373 	 * vfs_lock_held will mimic sema_held behaviour
3374 	 * if panicstr is set. And these changes should remain
3375 	 * for the patch changes as it is.
3376 	 */
3377 	if (panicstr)
3378 		return (1);
3379 
3380 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3381 	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3382 
3383 	vn_vfslocks_rele(vpvfsentry);
3384 	return (held);
3385 }
3386 
3387 struct _kthread *
3388 vfs_lock_owner(vfs_t *vfsp)
3389 {
3390 	struct _kthread *owner;
3391 	vn_vfslocks_entry_t *vpvfsentry;
3392 
3393 	/*
3394 	 * vfs_wlock_held will mimic sema_held behaviour
3395 	 * if panicstr is set. And these changes should remain
3396 	 * for the patch changes as it is.
3397 	 */
3398 	if (panicstr)
3399 		return (NULL);
3400 
3401 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3402 	owner = rwst_owner(&vpvfsentry->ve_lock);
3403 
3404 	vn_vfslocks_rele(vpvfsentry);
3405 	return (owner);
3406 }
3407 
3408 /*
3409  * vfs list locking.
3410  *
3411  * Rather than manipulate the vfslist lock directly, we abstract into lock
3412  * and unlock routines to allow the locking implementation to be changed for
3413  * clustering.
3414  *
3415  * Whenever the vfs list is modified through its hash links, the overall list
3416  * lock must be obtained before locking the relevant hash bucket.  But to see
3417  * whether a given vfs is on the list, it suffices to obtain the lock for the
3418  * hash bucket without getting the overall list lock.  (See getvfs() below.)
3419  */
3420 
3421 void
3422 vfs_list_lock()
3423 {
3424 	rw_enter(&vfslist, RW_WRITER);
3425 }
3426 
3427 void
3428 vfs_list_read_lock()
3429 {
3430 	rw_enter(&vfslist, RW_READER);
3431 }
3432 
3433 void
3434 vfs_list_unlock()
3435 {
3436 	rw_exit(&vfslist);
3437 }
3438 
3439 /*
3440  * Low level worker routines for adding entries to and removing entries from
3441  * the vfs list.
3442  */
3443 
3444 static void
3445 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3446 {
3447 	int vhno;
3448 	struct vfs **hp;
3449 	dev_t dev;
3450 
3451 	ASSERT(RW_WRITE_HELD(&vfslist));
3452 
3453 	dev = expldev(vfsp->vfs_fsid.val[0]);
3454 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3455 
3456 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3457 
3458 	/*
3459 	 * Link into the hash table, inserting it at the end, so that LOFS
3460 	 * with the same fsid as UFS (or other) file systems will not hide the
3461 	 * UFS.
3462 	 */
3463 	if (insert_at_head) {
3464 		vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3465 		rvfs_list[vhno].rvfs_head = vfsp;
3466 	} else {
3467 		for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3468 		    hp = &(*hp)->vfs_hash)
3469 			continue;
3470 		/*
3471 		 * hp now contains the address of the pointer to update
3472 		 * to effect the insertion.
3473 		 */
3474 		vfsp->vfs_hash = NULL;
3475 		*hp = vfsp;
3476 	}
3477 
3478 	rvfs_list[vhno].rvfs_len++;
3479 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3480 }
3481 
3482 
3483 static void
3484 vfs_hash_remove(struct vfs *vfsp)
3485 {
3486 	int vhno;
3487 	struct vfs *tvfsp;
3488 	dev_t dev;
3489 
3490 	ASSERT(RW_WRITE_HELD(&vfslist));
3491 
3492 	dev = expldev(vfsp->vfs_fsid.val[0]);
3493 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3494 
3495 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3496 
3497 	/*
3498 	 * Remove from hash.
3499 	 */
3500 	if (rvfs_list[vhno].rvfs_head == vfsp) {
3501 		rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3502 		rvfs_list[vhno].rvfs_len--;
3503 		goto foundit;
3504 	}
3505 	for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3506 	    tvfsp = tvfsp->vfs_hash) {
3507 		if (tvfsp->vfs_hash == vfsp) {
3508 			tvfsp->vfs_hash = vfsp->vfs_hash;
3509 			rvfs_list[vhno].rvfs_len--;
3510 			goto foundit;
3511 		}
3512 	}
3513 	cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3514 
3515 foundit:
3516 
3517 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3518 }
3519 
3520 
3521 void
3522 vfs_list_add(struct vfs *vfsp)
3523 {
3524 	zone_t *zone;
3525 
3526 	/*
3527 	 * Typically, the vfs_t will have been created on behalf of the file
3528 	 * system in vfs_init, where it will have been provided with a
3529 	 * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3530 	 * by an unbundled file system. We therefore check for such an example
3531 	 * before stamping the vfs_t with its creation time for the benefit of
3532 	 * mntfs.
3533 	 */
3534 	if (vfsp->vfs_implp == NULL)
3535 		vfsimpl_setup(vfsp);
3536 	vfs_mono_time(&vfsp->vfs_hrctime);
3537 
3538 	/*
3539 	 * The zone that owns the mount is the one that performed the mount.
3540 	 * Note that this isn't necessarily the same as the zone mounted into.
3541 	 * The corresponding zone_rele_ref() will be done when the vfs_t
3542 	 * is being free'd.
3543 	 */
3544 	vfsp->vfs_zone = curproc->p_zone;
3545 	zone_init_ref(&vfsp->vfs_implp->vi_zone_ref);
3546 	zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref,
3547 	    ZONE_REF_VFS);
3548 
3549 	/*
3550 	 * Find the zone mounted into, and put this mount on its vfs list.
3551 	 */
3552 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3553 	ASSERT(zone != NULL);
3554 	/*
3555 	 * Special casing for the root vfs.  This structure is allocated
3556 	 * statically and hooked onto rootvfs at link time.  During the
3557 	 * vfs_mountroot call at system startup time, the root file system's
3558 	 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3559 	 * as argument.  The code below must detect and handle this special
3560 	 * case.  The only apparent justification for this special casing is
3561 	 * to ensure that the root file system appears at the head of the
3562 	 * list.
3563 	 *
3564 	 * XXX:	I'm assuming that it's ok to do normal list locking when
3565 	 *	adding the entry for the root file system (this used to be
3566 	 *	done with no locks held).
3567 	 */
3568 	vfs_list_lock();
3569 	/*
3570 	 * Link into the vfs list proper.
3571 	 */
3572 	if (vfsp == &root) {
3573 		/*
3574 		 * Assert: This vfs is already on the list as its first entry.
3575 		 * Thus, there's nothing to do.
3576 		 */
3577 		ASSERT(rootvfs == vfsp);
3578 		/*
3579 		 * Add it to the head of the global zone's vfslist.
3580 		 */
3581 		ASSERT(zone == global_zone);
3582 		ASSERT(zone->zone_vfslist == NULL);
3583 		zone->zone_vfslist = vfsp;
3584 	} else {
3585 		/*
3586 		 * Link to end of list using vfs_prev (as rootvfs is now a
3587 		 * doubly linked circular list) so list is in mount order for
3588 		 * mnttab use.
3589 		 */
3590 		rootvfs->vfs_prev->vfs_next = vfsp;
3591 		vfsp->vfs_prev = rootvfs->vfs_prev;
3592 		rootvfs->vfs_prev = vfsp;
3593 		vfsp->vfs_next = rootvfs;
3594 
3595 		/*
3596 		 * Do it again for the zone-private list (which may be NULL).
3597 		 */
3598 		if (zone->zone_vfslist == NULL) {
3599 			ASSERT(zone != global_zone);
3600 			zone->zone_vfslist = vfsp;
3601 		} else {
3602 			zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3603 			vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3604 			zone->zone_vfslist->vfs_zone_prev = vfsp;
3605 			vfsp->vfs_zone_next = zone->zone_vfslist;
3606 		}
3607 	}
3608 
3609 	/*
3610 	 * Link into the hash table, inserting it at the end, so that LOFS
3611 	 * with the same fsid as UFS (or other) file systems will not hide
3612 	 * the UFS.
3613 	 */
3614 	vfs_hash_add(vfsp, 0);
3615 
3616 	/*
3617 	 * update the mnttab modification time
3618 	 */
3619 	vfs_mnttab_modtimeupd();
3620 	vfs_list_unlock();
3621 	zone_rele(zone);
3622 }
3623 
3624 void
3625 vfs_list_remove(struct vfs *vfsp)
3626 {
3627 	zone_t *zone;
3628 
3629 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3630 	ASSERT(zone != NULL);
3631 	/*
3632 	 * Callers are responsible for preventing attempts to unmount the
3633 	 * root.
3634 	 */
3635 	ASSERT(vfsp != rootvfs);
3636 
3637 	vfs_list_lock();
3638 
3639 	/*
3640 	 * Remove from hash.
3641 	 */
3642 	vfs_hash_remove(vfsp);
3643 
3644 	/*
3645 	 * Remove from vfs list.
3646 	 */
3647 	vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3648 	vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3649 	vfsp->vfs_next = vfsp->vfs_prev = NULL;
3650 
3651 	/*
3652 	 * Remove from zone-specific vfs list.
3653 	 */
3654 	if (zone->zone_vfslist == vfsp)
3655 		zone->zone_vfslist = vfsp->vfs_zone_next;
3656 
3657 	if (vfsp->vfs_zone_next == vfsp) {
3658 		ASSERT(vfsp->vfs_zone_prev == vfsp);
3659 		ASSERT(zone->zone_vfslist == vfsp);
3660 		zone->zone_vfslist = NULL;
3661 	}
3662 
3663 	vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3664 	vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3665 	vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3666 
3667 	/*
3668 	 * update the mnttab modification time
3669 	 */
3670 	vfs_mnttab_modtimeupd();
3671 	vfs_list_unlock();
3672 	zone_rele(zone);
3673 }
3674 
3675 struct vfs *
3676 getvfs(fsid_t *fsid)
3677 {
3678 	struct vfs *vfsp;
3679 	int val0 = fsid->val[0];
3680 	int val1 = fsid->val[1];
3681 	dev_t dev = expldev(val0);
3682 	int vhno = VFSHASH(getmajor(dev), getminor(dev));
3683 	kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3684 
3685 	mutex_enter(hmp);
3686 	for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3687 		if (vfsp->vfs_fsid.val[0] == val0 &&
3688 		    vfsp->vfs_fsid.val[1] == val1) {
3689 			VFS_HOLD(vfsp);
3690 			mutex_exit(hmp);
3691 			return (vfsp);
3692 		}
3693 	}
3694 	mutex_exit(hmp);
3695 	return (NULL);
3696 }
3697 
3698 /*
3699  * Search the vfs mount in progress list for a specified device/vfs entry.
3700  * Returns 0 if the first entry in the list that the device matches has the
3701  * given vfs pointer as well.  If the device matches but a different vfs
3702  * pointer is encountered in the list before the given vfs pointer then
3703  * a 1 is returned.
3704  */
3705 
3706 int
3707 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3708 {
3709 	int retval = 0;
3710 	struct ipmnt *mipp;
3711 
3712 	mutex_enter(&vfs_miplist_mutex);
3713 	for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3714 		if (mipp->mip_dev == dev) {
3715 			if (mipp->mip_vfsp != vfsp)
3716 				retval = 1;
3717 			break;
3718 		}
3719 	}
3720 	mutex_exit(&vfs_miplist_mutex);
3721 	return (retval);
3722 }
3723 
3724 /*
3725  * Search the vfs list for a specified device.  Returns 1, if entry is found
3726  * or 0 if no suitable entry is found.
3727  */
3728 
3729 int
3730 vfs_devismounted(dev_t dev)
3731 {
3732 	struct vfs *vfsp;
3733 	int found;
3734 
3735 	vfs_list_read_lock();
3736 	vfsp = rootvfs;
3737 	found = 0;
3738 	do {
3739 		if (vfsp->vfs_dev == dev) {
3740 			found = 1;
3741 			break;
3742 		}
3743 		vfsp = vfsp->vfs_next;
3744 	} while (vfsp != rootvfs);
3745 
3746 	vfs_list_unlock();
3747 	return (found);
3748 }
3749 
3750 /*
3751  * Search the vfs list for a specified device.  Returns a pointer to it
3752  * or NULL if no suitable entry is found. The caller of this routine
3753  * is responsible for releasing the returned vfs pointer.
3754  */
3755 struct vfs *
3756 vfs_dev2vfsp(dev_t dev)
3757 {
3758 	struct vfs *vfsp;
3759 	int found;
3760 
3761 	vfs_list_read_lock();
3762 	vfsp = rootvfs;
3763 	found = 0;
3764 	do {
3765 		/*
3766 		 * The following could be made more efficient by making
3767 		 * the entire loop use vfs_zone_next if the call is from
3768 		 * a zone.  The only callers, however, ustat(2) and
3769 		 * umount2(2), don't seem to justify the added
3770 		 * complexity at present.
3771 		 */
3772 		if (vfsp->vfs_dev == dev &&
3773 		    ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3774 		    curproc->p_zone)) {
3775 			VFS_HOLD(vfsp);
3776 			found = 1;
3777 			break;
3778 		}
3779 		vfsp = vfsp->vfs_next;
3780 	} while (vfsp != rootvfs);
3781 	vfs_list_unlock();
3782 	return (found ? vfsp: NULL);
3783 }
3784 
3785 /*
3786  * Search the vfs list for a specified mntpoint.  Returns a pointer to it
3787  * or NULL if no suitable entry is found. The caller of this routine
3788  * is responsible for releasing the returned vfs pointer.
3789  *
3790  * Note that if multiple mntpoints match, the last one matching is
3791  * returned in an attempt to return the "top" mount when overlay
3792  * mounts are covering the same mount point.  This is accomplished by starting
3793  * at the end of the list and working our way backwards, stopping at the first
3794  * matching mount.
3795  */
3796 struct vfs *
3797 vfs_mntpoint2vfsp(const char *mp)
3798 {
3799 	struct vfs *vfsp;
3800 	struct vfs *retvfsp = NULL;
3801 	zone_t *zone = curproc->p_zone;
3802 	struct vfs *list;
3803 
3804 	vfs_list_read_lock();
3805 	if (getzoneid() == GLOBAL_ZONEID) {
3806 		/*
3807 		 * The global zone may see filesystems in any zone.
3808 		 */
3809 		vfsp = rootvfs->vfs_prev;
3810 		do {
3811 			if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) {
3812 				retvfsp = vfsp;
3813 				break;
3814 			}
3815 			vfsp = vfsp->vfs_prev;
3816 		} while (vfsp != rootvfs->vfs_prev);
3817 	} else if ((list = zone->zone_vfslist) != NULL) {
3818 		const char *mntpt;
3819 
3820 		vfsp = list->vfs_zone_prev;
3821 		do {
3822 			mntpt = refstr_value(vfsp->vfs_mntpt);
3823 			mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3824 			if (strcmp(mntpt, mp) == 0) {
3825 				retvfsp = vfsp;
3826 				break;
3827 			}
3828 			vfsp = vfsp->vfs_zone_prev;
3829 		} while (vfsp != list->vfs_zone_prev);
3830 	}
3831 	if (retvfsp)
3832 		VFS_HOLD(retvfsp);
3833 	vfs_list_unlock();
3834 	return (retvfsp);
3835 }
3836 
3837 /*
3838  * Search the vfs list for a specified vfsops.
3839  * if vfs entry is found then return 1, else 0.
3840  */
3841 int
3842 vfs_opsinuse(vfsops_t *ops)
3843 {
3844 	struct vfs *vfsp;
3845 	int found;
3846 
3847 	vfs_list_read_lock();
3848 	vfsp = rootvfs;
3849 	found = 0;
3850 	do {
3851 		if (vfs_getops(vfsp) == ops) {
3852 			found = 1;
3853 			break;
3854 		}
3855 		vfsp = vfsp->vfs_next;
3856 	} while (vfsp != rootvfs);
3857 	vfs_list_unlock();
3858 	return (found);
3859 }
3860 
3861 /*
3862  * Allocate an entry in vfssw for a file system type
3863  */
3864 struct vfssw *
3865 allocate_vfssw(const char *type)
3866 {
3867 	struct vfssw *vswp;
3868 
3869 	if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3870 		/*
3871 		 * The vfssw table uses the empty string to identify an
3872 		 * available entry; we cannot add any type which has
3873 		 * a leading NUL. The string length is limited to
3874 		 * the size of the st_fstype array in struct stat.
3875 		 */
3876 		return (NULL);
3877 	}
3878 
3879 	ASSERT(VFSSW_WRITE_LOCKED());
3880 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3881 		if (!ALLOCATED_VFSSW(vswp)) {
3882 			vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3883 			(void) strcpy(vswp->vsw_name, type);
3884 			ASSERT(vswp->vsw_count == 0);
3885 			vswp->vsw_count = 1;
3886 			mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3887 			return (vswp);
3888 		}
3889 	return (NULL);
3890 }
3891 
3892 /*
3893  * Impose additional layer of translation between vfstype names
3894  * and module names in the filesystem.
3895  */
3896 static const char *
3897 vfs_to_modname(const char *vfstype)
3898 {
3899 	if (strcmp(vfstype, "proc") == 0) {
3900 		vfstype = "procfs";
3901 	} else if (strcmp(vfstype, "fd") == 0) {
3902 		vfstype = "fdfs";
3903 	} else if (strncmp(vfstype, "nfs", 3) == 0) {
3904 		vfstype = "nfs";
3905 	}
3906 
3907 	return (vfstype);
3908 }
3909 
3910 /*
3911  * Find a vfssw entry given a file system type name.
3912  * Try to autoload the filesystem if it's not found.
3913  * If it's installed, return the vfssw locked to prevent unloading.
3914  */
3915 struct vfssw *
3916 vfs_getvfssw(const char *type)
3917 {
3918 	struct vfssw *vswp;
3919 	const char *modname;
3920 
3921 	RLOCK_VFSSW();
3922 	vswp = vfs_getvfsswbyname(type);
3923 	modname = vfs_to_modname(type);
3924 
3925 	if (rootdir == NULL) {
3926 		/*
3927 		 * If we haven't yet loaded the root file system, then our
3928 		 * _init won't be called until later. Allocate vfssw entry,
3929 		 * because mod_installfs won't be called.
3930 		 */
3931 		if (vswp == NULL) {
3932 			RUNLOCK_VFSSW();
3933 			WLOCK_VFSSW();
3934 			if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
3935 				if ((vswp = allocate_vfssw(type)) == NULL) {
3936 					WUNLOCK_VFSSW();
3937 					return (NULL);
3938 				}
3939 			}
3940 			WUNLOCK_VFSSW();
3941 			RLOCK_VFSSW();
3942 		}
3943 		if (!VFS_INSTALLED(vswp)) {
3944 			RUNLOCK_VFSSW();
3945 			(void) modloadonly("fs", modname);
3946 		} else
3947 			RUNLOCK_VFSSW();
3948 		return (vswp);
3949 	}
3950 
3951 	/*
3952 	 * Try to load the filesystem.  Before calling modload(), we drop
3953 	 * our lock on the VFS switch table, and pick it up after the
3954 	 * module is loaded.  However, there is a potential race:  the
3955 	 * module could be unloaded after the call to modload() completes
3956 	 * but before we pick up the lock and drive on.  Therefore,
3957 	 * we keep reloading the module until we've loaded the module
3958 	 * _and_ we have the lock on the VFS switch table.
3959 	 */
3960 	while (vswp == NULL || !VFS_INSTALLED(vswp)) {
3961 		RUNLOCK_VFSSW();
3962 		if (modload("fs", modname) == -1)
3963 			return (NULL);
3964 		RLOCK_VFSSW();
3965 		if (vswp == NULL)
3966 			if ((vswp = vfs_getvfsswbyname(type)) == NULL)
3967 				break;
3968 	}
3969 	RUNLOCK_VFSSW();
3970 
3971 	return (vswp);
3972 }
3973 
3974 /*
3975  * Find a vfssw entry given a file system type name.
3976  */
3977 struct vfssw *
3978 vfs_getvfsswbyname(const char *type)
3979 {
3980 	struct vfssw *vswp;
3981 
3982 	ASSERT(VFSSW_LOCKED());
3983 	if (type == NULL || *type == '\0')
3984 		return (NULL);
3985 
3986 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3987 		if (strcmp(type, vswp->vsw_name) == 0) {
3988 			vfs_refvfssw(vswp);
3989 			return (vswp);
3990 		}
3991 	}
3992 
3993 	return (NULL);
3994 }
3995 
3996 /*
3997  * Find a vfssw entry given a set of vfsops.
3998  */
3999 struct vfssw *
4000 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
4001 {
4002 	struct vfssw *vswp;
4003 
4004 	RLOCK_VFSSW();
4005 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4006 		if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
4007 			vfs_refvfssw(vswp);
4008 			RUNLOCK_VFSSW();
4009 			return (vswp);
4010 		}
4011 	}
4012 	RUNLOCK_VFSSW();
4013 
4014 	return (NULL);
4015 }
4016 
4017 /*
4018  * Reference a vfssw entry.
4019  */
4020 void
4021 vfs_refvfssw(struct vfssw *vswp)
4022 {
4023 
4024 	mutex_enter(&vswp->vsw_lock);
4025 	vswp->vsw_count++;
4026 	mutex_exit(&vswp->vsw_lock);
4027 }
4028 
4029 /*
4030  * Unreference a vfssw entry.
4031  */
4032 void
4033 vfs_unrefvfssw(struct vfssw *vswp)
4034 {
4035 
4036 	mutex_enter(&vswp->vsw_lock);
4037 	vswp->vsw_count--;
4038 	mutex_exit(&vswp->vsw_lock);
4039 }
4040 
4041 int sync_timeout = 30;		/* timeout for syncing a page during panic */
4042 int sync_timeleft;		/* portion of sync_timeout remaining */
4043 
4044 static int sync_retries = 20;	/* number of retries when not making progress */
4045 static int sync_triesleft;	/* portion of sync_retries remaining */
4046 
4047 static pgcnt_t old_pgcnt, new_pgcnt;
4048 static int new_bufcnt, old_bufcnt;
4049 
4050 /*
4051  * Sync all of the mounted filesystems, and then wait for the actual i/o to
4052  * complete.  We wait by counting the number of dirty pages and buffers,
4053  * pushing them out using bio_busy() and page_busy(), and then counting again.
4054  * This routine is used during both the uadmin A_SHUTDOWN code as well as
4055  * the SYNC phase of the panic code (see comments in panic.c).  It should only
4056  * be used after some higher-level mechanism has quiesced the system so that
4057  * new writes are not being initiated while we are waiting for completion.
4058  *
4059  * To ensure finite running time, our algorithm uses two timeout mechanisms:
4060  * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and
4061  * sync_triesleft (a progress counter used by the vfs_syncall() loop below).
4062  * Together these ensure that syncing completes if our i/o paths are stuck.
4063  * The counters are declared above so they can be found easily in the debugger.
4064  *
4065  * The sync_timeleft counter is reset by bio_busy() and page_busy() using the
4066  * vfs_syncprogress() subroutine whenever we make progress through the lists of
4067  * pages and buffers.  It is decremented and expired by the deadman() cyclic.
4068  * When vfs_syncall() decides it is done, we disable the deadman() counter by
4069  * setting sync_timeleft to zero.  This timer guards against vfs_syncall()
4070  * deadlocking or hanging inside of a broken filesystem or driver routine.
4071  *
4072  * The sync_triesleft counter is updated by vfs_syncall() itself.  If we make
4073  * sync_retries consecutive calls to bio_busy() and page_busy() without
4074  * decreasing either the number of dirty buffers or dirty pages below the
4075  * lowest count we have seen so far, we give up and return from vfs_syncall().
4076  *
4077  * Each loop iteration ends with a call to delay() one second to allow time for
4078  * i/o completion and to permit the user time to read our progress messages.
4079  */
4080 void
4081 vfs_syncall(void)
4082 {
4083 	if (rootdir == NULL && !modrootloaded)
4084 		return; /* panic during boot - no filesystems yet */
4085 
4086 	printf("syncing file systems...");
4087 	vfs_syncprogress();
4088 	sync();
4089 
4090 	vfs_syncprogress();
4091 	sync_triesleft = sync_retries;
4092 
4093 	old_bufcnt = new_bufcnt = INT_MAX;
4094 	old_pgcnt = new_pgcnt = ULONG_MAX;
4095 
4096 	while (sync_triesleft > 0) {
4097 		old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4098 		old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4099 
4100 		new_bufcnt = bio_busy(B_TRUE);
4101 		new_pgcnt = page_busy(B_TRUE);
4102 		vfs_syncprogress();
4103 
4104 		if (new_bufcnt == 0 && new_pgcnt == 0)
4105 			break;
4106 
4107 		if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4108 			sync_triesleft = sync_retries;
4109 		else
4110 			sync_triesleft--;
4111 
4112 		if (new_bufcnt)
4113 			printf(" [%d]", new_bufcnt);
4114 		if (new_pgcnt)
4115 			printf(" %lu", new_pgcnt);
4116 
4117 		delay(hz);
4118 	}
4119 
4120 	if (new_bufcnt != 0 || new_pgcnt != 0)
4121 		printf(" done (not all i/o completed)\n");
4122 	else
4123 		printf(" done\n");
4124 
4125 	sync_timeleft = 0;
4126 	delay(hz);
4127 }
4128 
4129 /*
4130  * If we are in the middle of the sync phase of panic, reset sync_timeleft to
4131  * sync_timeout to indicate that we are making progress and the deadman()
4132  * omnipresent cyclic should not yet time us out.  Note that it is safe to
4133  * store to sync_timeleft here since the deadman() is firing at high-level
4134  * on top of us.  If we are racing with the deadman(), either the deadman()
4135  * will decrement the old value and then we will reset it, or we will
4136  * reset it and then the deadman() will immediately decrement it.  In either
4137  * case, correct behavior results.
4138  */
4139 void
4140 vfs_syncprogress(void)
4141 {
4142 	if (panicstr)
4143 		sync_timeleft = sync_timeout;
4144 }
4145 
4146 /*
4147  * Map VFS flags to statvfs flags.  These shouldn't really be separate
4148  * flags at all.
4149  */
4150 uint_t
4151 vf_to_stf(uint_t vf)
4152 {
4153 	uint_t stf = 0;
4154 
4155 	if (vf & VFS_RDONLY)
4156 		stf |= ST_RDONLY;
4157 	if (vf & VFS_NOSETUID)
4158 		stf |= ST_NOSUID;
4159 	if (vf & VFS_NOTRUNC)
4160 		stf |= ST_NOTRUNC;
4161 
4162 	return (stf);
4163 }
4164 
4165 /*
4166  * Entries for (illegal) fstype 0.
4167  */
4168 /* ARGSUSED */
4169 int
4170 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4171 {
4172 	cmn_err(CE_PANIC, "stray vfs operation");
4173 	return (0);
4174 }
4175 
4176 /*
4177  * Entries for (illegal) fstype 0.
4178  */
4179 int
4180 vfsstray(void)
4181 {
4182 	cmn_err(CE_PANIC, "stray vfs operation");
4183 	return (0);
4184 }
4185 
4186 /*
4187  * Support for dealing with forced UFS unmount and its interaction with
4188  * LOFS. Could be used by any filesystem.
4189  * See bug 1203132.
4190  */
4191 int
4192 vfs_EIO(void)
4193 {
4194 	return (EIO);
4195 }
4196 
4197 /*
4198  * We've gotta define the op for sync separately, since the compiler gets
4199  * confused if we mix and match ANSI and normal style prototypes when
4200  * a "short" argument is present and spits out a warning.
4201  */
4202 /*ARGSUSED*/
4203 int
4204 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4205 {
4206 	return (EIO);
4207 }
4208 
4209 vfs_t EIO_vfs;
4210 vfsops_t *EIO_vfsops;
4211 
4212 /*
4213  * Called from startup() to initialize all loaded vfs's
4214  */
4215 void
4216 vfsinit(void)
4217 {
4218 	struct vfssw *vswp;
4219 	int error;
4220 	extern int vopstats_enabled;
4221 	extern void vopstats_startup();
4222 
4223 	static const fs_operation_def_t EIO_vfsops_template[] = {
4224 		VFSNAME_MOUNT,		{ .error = vfs_EIO },
4225 		VFSNAME_UNMOUNT,	{ .error = vfs_EIO },
4226 		VFSNAME_ROOT,		{ .error = vfs_EIO },
4227 		VFSNAME_STATVFS,	{ .error = vfs_EIO },
4228 		VFSNAME_SYNC, 		{ .vfs_sync = vfs_EIO_sync },
4229 		VFSNAME_VGET,		{ .error = vfs_EIO },
4230 		VFSNAME_MOUNTROOT,	{ .error = vfs_EIO },
4231 		VFSNAME_FREEVFS,	{ .error = vfs_EIO },
4232 		VFSNAME_VNSTATE,	{ .error = vfs_EIO },
4233 		NULL, NULL
4234 	};
4235 
4236 	static const fs_operation_def_t stray_vfsops_template[] = {
4237 		VFSNAME_MOUNT,		{ .error = vfsstray },
4238 		VFSNAME_UNMOUNT,	{ .error = vfsstray },
4239 		VFSNAME_ROOT,		{ .error = vfsstray },
4240 		VFSNAME_STATVFS,	{ .error = vfsstray },
4241 		VFSNAME_SYNC, 		{ .vfs_sync = vfsstray_sync },
4242 		VFSNAME_VGET,		{ .error = vfsstray },
4243 		VFSNAME_MOUNTROOT,	{ .error = vfsstray },
4244 		VFSNAME_FREEVFS,	{ .error = vfsstray },
4245 		VFSNAME_VNSTATE,	{ .error = vfsstray },
4246 		NULL, NULL
4247 	};
4248 
4249 	/* Create vfs cache */
4250 	vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4251 	    sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4252 
4253 	/* Initialize the vnode cache (file systems may use it during init). */
4254 	vn_create_cache();
4255 
4256 	/* Setup event monitor framework */
4257 	fem_init();
4258 
4259 	/* Initialize the dummy stray file system type. */
4260 	error = vfs_setfsops(0, stray_vfsops_template, NULL);
4261 
4262 	/* Initialize the dummy EIO file system. */
4263 	error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4264 	if (error != 0) {
4265 		cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4266 		/* Shouldn't happen, but not bad enough to panic */
4267 	}
4268 
4269 	VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4270 
4271 	/*
4272 	 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4273 	 * on this vfs can immediately notice it's invalid.
4274 	 */
4275 	EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4276 
4277 	/*
4278 	 * Call the init routines of non-loadable filesystems only.
4279 	 * Filesystems which are loaded as separate modules will be
4280 	 * initialized by the module loading code instead.
4281 	 */
4282 
4283 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4284 		RLOCK_VFSSW();
4285 		if (vswp->vsw_init != NULL)
4286 			(*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4287 		RUNLOCK_VFSSW();
4288 	}
4289 
4290 	vopstats_startup();
4291 
4292 	if (vopstats_enabled) {
4293 		/* EIO_vfs can collect stats, but we don't retrieve them */
4294 		initialize_vopstats(&EIO_vfs.vfs_vopstats);
4295 		EIO_vfs.vfs_fstypevsp = NULL;
4296 		EIO_vfs.vfs_vskap = NULL;
4297 		EIO_vfs.vfs_flag |= VFS_STATS;
4298 	}
4299 
4300 	xattr_init();
4301 
4302 	reparse_point_init();
4303 }
4304 
4305 vfs_t *
4306 vfs_alloc(int kmflag)
4307 {
4308 	vfs_t *vfsp;
4309 
4310 	vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4311 
4312 	/*
4313 	 * Do the simplest initialization here.
4314 	 * Everything else gets done in vfs_init()
4315 	 */
4316 	bzero(vfsp, sizeof (vfs_t));
4317 	return (vfsp);
4318 }
4319 
4320 void
4321 vfs_free(vfs_t *vfsp)
4322 {
4323 	/*
4324 	 * One would be tempted to assert that "vfsp->vfs_count == 0".
4325 	 * The problem is that this gets called out of domount() with
4326 	 * a partially initialized vfs and a vfs_count of 1.  This is
4327 	 * also called from vfs_rele() with a vfs_count of 0.  We can't
4328 	 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4329 	 * returned.  This is because VFS_MOUNT() fully initializes the
4330 	 * vfs structure and its associated data.  VFS_RELE() will call
4331 	 * VFS_FREEVFS() which may panic the system if the data structures
4332 	 * aren't fully initialized from a successful VFS_MOUNT()).
4333 	 */
4334 
4335 	/* If FEM was in use, make sure everything gets cleaned up */
4336 	if (vfsp->vfs_femhead) {
4337 		ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4338 		mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4339 		kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4340 		vfsp->vfs_femhead = NULL;
4341 	}
4342 
4343 	if (vfsp->vfs_implp)
4344 		vfsimpl_teardown(vfsp);
4345 	sema_destroy(&vfsp->vfs_reflock);
4346 	kmem_cache_free(vfs_cache, vfsp);
4347 }
4348 
4349 /*
4350  * Increments the vfs reference count by one atomically.
4351  */
4352 void
4353 vfs_hold(vfs_t *vfsp)
4354 {
4355 	atomic_inc_32(&vfsp->vfs_count);
4356 	ASSERT(vfsp->vfs_count != 0);
4357 }
4358 
4359 /*
4360  * Decrements the vfs reference count by one atomically. When
4361  * vfs reference count becomes zero, it calls the file system
4362  * specific vfs_freevfs() to free up the resources.
4363  */
4364 void
4365 vfs_rele(vfs_t *vfsp)
4366 {
4367 	ASSERT(vfsp->vfs_count != 0);
4368 	if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) {
4369 		VFS_FREEVFS(vfsp);
4370 		lofi_remove(vfsp);
4371 		if (vfsp->vfs_zone)
4372 			zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref,
4373 			    ZONE_REF_VFS);
4374 		vfs_freemnttab(vfsp);
4375 		vfs_free(vfsp);
4376 	}
4377 }
4378 
4379 /*
4380  * Generic operations vector support.
4381  *
4382  * This is used to build operations vectors for both the vfs and vnode.
4383  * It's normally called only when a file system is loaded.
4384  *
4385  * There are many possible algorithms for this, including the following:
4386  *
4387  *   (1) scan the list of known operations; for each, see if the file system
4388  *       includes an entry for it, and fill it in as appropriate.
4389  *
4390  *   (2) set up defaults for all known operations.  scan the list of ops
4391  *       supplied by the file system; for each which is both supplied and
4392  *       known, fill it in.
4393  *
4394  *   (3) sort the lists of known ops & supplied ops; scan the list, filling
4395  *       in entries as we go.
4396  *
4397  * we choose (1) for simplicity, and because performance isn't critical here.
4398  * note that (2) could be sped up using a precomputed hash table on known ops.
4399  * (3) could be faster than either, but only if the lists were very large or
4400  * supplied in sorted order.
4401  *
4402  */
4403 
4404 int
4405 fs_build_vector(void *vector, int *unused_ops,
4406     const fs_operation_trans_def_t *translation,
4407     const fs_operation_def_t *operations)
4408 {
4409 	int i, num_trans, num_ops, used;
4410 
4411 	/*
4412 	 * Count the number of translations and the number of supplied
4413 	 * operations.
4414 	 */
4415 
4416 	{
4417 		const fs_operation_trans_def_t *p;
4418 
4419 		for (num_trans = 0, p = translation;
4420 		    p->name != NULL;
4421 		    num_trans++, p++)
4422 			;
4423 	}
4424 
4425 	{
4426 		const fs_operation_def_t *p;
4427 
4428 		for (num_ops = 0, p = operations;
4429 		    p->name != NULL;
4430 		    num_ops++, p++)
4431 			;
4432 	}
4433 
4434 	/* Walk through each operation known to our caller.  There will be */
4435 	/* one entry in the supplied "translation table" for each. */
4436 
4437 	used = 0;
4438 
4439 	for (i = 0; i < num_trans; i++) {
4440 		int j, found;
4441 		char *curname;
4442 		fs_generic_func_p result;
4443 		fs_generic_func_p *location;
4444 
4445 		curname = translation[i].name;
4446 
4447 		/* Look for a matching operation in the list supplied by the */
4448 		/* file system. */
4449 
4450 		found = 0;
4451 
4452 		for (j = 0; j < num_ops; j++) {
4453 			if (strcmp(operations[j].name, curname) == 0) {
4454 				used++;
4455 				found = 1;
4456 				break;
4457 			}
4458 		}
4459 
4460 		/*
4461 		 * If the file system is using a "placeholder" for default
4462 		 * or error functions, grab the appropriate function out of
4463 		 * the translation table.  If the file system didn't supply
4464 		 * this operation at all, use the default function.
4465 		 */
4466 
4467 		if (found) {
4468 			result = operations[j].func.fs_generic;
4469 			if (result == fs_default) {
4470 				result = translation[i].defaultFunc;
4471 			} else if (result == fs_error) {
4472 				result = translation[i].errorFunc;
4473 			} else if (result == NULL) {
4474 				/* Null values are PROHIBITED */
4475 				return (EINVAL);
4476 			}
4477 		} else {
4478 			result = translation[i].defaultFunc;
4479 		}
4480 
4481 		/* Now store the function into the operations vector. */
4482 
4483 		location = (fs_generic_func_p *)
4484 		    (((char *)vector) + translation[i].offset);
4485 
4486 		*location = result;
4487 	}
4488 
4489 	*unused_ops = num_ops - used;
4490 
4491 	return (0);
4492 }
4493 
4494 /* Placeholder functions, should never be called. */
4495 
4496 int
4497 fs_error(void)
4498 {
4499 	cmn_err(CE_PANIC, "fs_error called");
4500 	return (0);
4501 }
4502 
4503 int
4504 fs_default(void)
4505 {
4506 	cmn_err(CE_PANIC, "fs_default called");
4507 	return (0);
4508 }
4509 
4510 #ifdef __sparc
4511 
4512 /*
4513  * Part of the implementation of booting off a mirrored root
4514  * involves a change of dev_t for the root device.  To
4515  * accomplish this, first remove the existing hash table
4516  * entry for the root device, convert to the new dev_t,
4517  * then re-insert in the hash table at the head of the list.
4518  */
4519 void
4520 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4521 {
4522 	vfs_list_lock();
4523 
4524 	vfs_hash_remove(vfsp);
4525 
4526 	vfsp->vfs_dev = ndev;
4527 	vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4528 
4529 	vfs_hash_add(vfsp, 1);
4530 
4531 	vfs_list_unlock();
4532 }
4533 
4534 #else /* x86 NEWBOOT */
4535 
4536 #if defined(__x86)
4537 extern int hvmboot_rootconf();
4538 #endif /* __x86 */
4539 
4540 extern ib_boot_prop_t *iscsiboot_prop;
4541 
4542 int
4543 rootconf()
4544 {
4545 	int error;
4546 	struct vfssw *vsw;
4547 	extern void pm_init();
4548 	char *fstyp, *fsmod;
4549 	int ret = -1;
4550 
4551 	getrootfs(&fstyp, &fsmod);
4552 
4553 #if defined(__x86)
4554 	/*
4555 	 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4556 	 * which lives in /platform/i86hvm, and hence is only available when
4557 	 * booted in an x86 hvm environment.  If the hvm_bootstrap misc module
4558 	 * is not available then the modstub for this function will return 0.
4559 	 * If the hvm_bootstrap misc module is available it will be loaded
4560 	 * and hvmboot_rootconf() will be invoked.
4561 	 */
4562 	if (error = hvmboot_rootconf())
4563 		return (error);
4564 #endif /* __x86 */
4565 
4566 	if (error = clboot_rootconf())
4567 		return (error);
4568 
4569 	if (modload("fs", fsmod) == -1)
4570 		panic("Cannot _init %s module", fsmod);
4571 
4572 	RLOCK_VFSSW();
4573 	vsw = vfs_getvfsswbyname(fstyp);
4574 	RUNLOCK_VFSSW();
4575 	if (vsw == NULL) {
4576 		cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4577 		return (ENXIO);
4578 	}
4579 	VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4580 	VFS_HOLD(rootvfs);
4581 
4582 	/* always mount readonly first */
4583 	rootvfs->vfs_flag |= VFS_RDONLY;
4584 
4585 	pm_init();
4586 
4587 	if (netboot && iscsiboot_prop) {
4588 		cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4589 		    " shouldn't happen in the same time");
4590 		return (EINVAL);
4591 	}
4592 
4593 	if (netboot || iscsiboot_prop) {
4594 		ret = strplumb();
4595 		if (ret != 0) {
4596 			cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4597 			return (EFAULT);
4598 		}
4599 	}
4600 
4601 	if ((ret == 0) && iscsiboot_prop) {
4602 		ret = modload("drv", "iscsi");
4603 		/* -1 indicates fail */
4604 		if (ret == -1) {
4605 			cmn_err(CE_WARN, "Failed to load iscsi module");
4606 			iscsi_boot_prop_free();
4607 			return (EINVAL);
4608 		} else {
4609 			if (!i_ddi_attach_pseudo_node("iscsi")) {
4610 				cmn_err(CE_WARN,
4611 				    "Failed to attach iscsi driver");
4612 				iscsi_boot_prop_free();
4613 				return (ENODEV);
4614 			}
4615 		}
4616 	}
4617 
4618 	error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4619 	vfs_unrefvfssw(vsw);
4620 	rootdev = rootvfs->vfs_dev;
4621 
4622 	if (error)
4623 		cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4624 		    rootfs.bo_name, fstyp);
4625 	else
4626 		cmn_err(CE_CONT, "?root on %s fstype %s\n",
4627 		    rootfs.bo_name, fstyp);
4628 	return (error);
4629 }
4630 
4631 /*
4632  * XXX this is called by nfs only and should probably be removed
4633  * If booted with ASKNAME, prompt on the console for a filesystem
4634  * name and return it.
4635  */
4636 void
4637 getfsname(char *askfor, char *name, size_t namelen)
4638 {
4639 	if (boothowto & RB_ASKNAME) {
4640 		printf("%s name: ", askfor);
4641 		console_gets(name, namelen);
4642 	}
4643 }
4644 
4645 /*
4646  * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4647  * property.
4648  *
4649  * Filesystem types starting with the prefix "nfs" are diskless clients;
4650  * init the root filename name (rootfs.bo_name), too.
4651  *
4652  * If we are booting via NFS we currently have these options:
4653  *	nfs -	dynamically choose NFS V2, V3, or V4 (default)
4654  *	nfs2 -	force NFS V2
4655  *	nfs3 -	force NFS V3
4656  *	nfs4 -	force NFS V4
4657  * Because we need to maintain backward compatibility with the naming
4658  * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4659  * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs".  The dynamic
4660  * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4661  * This is only for root filesystems, all other uses will expect
4662  * that "nfs" == NFS V2.
4663  */
4664 static void
4665 getrootfs(char **fstypp, char **fsmodp)
4666 {
4667 	extern char *strplumb_get_netdev_path(void);
4668 	char *propstr = NULL;
4669 
4670 	/*
4671 	 * Check fstype property; for diskless it should be one of "nfs",
4672 	 * "nfs2", "nfs3" or "nfs4".
4673 	 */
4674 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4675 	    DDI_PROP_DONTPASS, "fstype", &propstr)
4676 	    == DDI_SUCCESS) {
4677 		(void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4678 		ddi_prop_free(propstr);
4679 
4680 	/*
4681 	 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4682 	 * assume the type of this root filesystem is 'zfs'.
4683 	 */
4684 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4685 	    DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4686 	    == DDI_SUCCESS) {
4687 		(void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4688 		ddi_prop_free(propstr);
4689 	}
4690 
4691 	if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4692 		*fstypp = *fsmodp = rootfs.bo_fstype;
4693 		return;
4694 	}
4695 
4696 	++netboot;
4697 
4698 	if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4699 		(void) strcpy(rootfs.bo_fstype, "nfs");
4700 	else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4701 		(void) strcpy(rootfs.bo_fstype, "nfsdyn");
4702 
4703 	/*
4704 	 * check if path to network interface is specified in bootpath
4705 	 * or by a hypervisor domain configuration file.
4706 	 * XXPV - enable strlumb_get_netdev_path()
4707 	 */
4708 	if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4709 	    "xpv-nfsroot")) {
4710 		(void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4711 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4712 	    DDI_PROP_DONTPASS, "bootpath", &propstr)
4713 	    == DDI_SUCCESS) {
4714 		(void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4715 		ddi_prop_free(propstr);
4716 	} else {
4717 		/* attempt to determine netdev_path via boot_mac address */
4718 		netdev_path = strplumb_get_netdev_path();
4719 		if (netdev_path == NULL)
4720 			panic("cannot find boot network interface");
4721 		(void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME);
4722 	}
4723 	*fstypp = rootfs.bo_fstype;
4724 	*fsmodp = "nfs";
4725 }
4726 #endif
4727 
4728 /*
4729  * VFS feature routines
4730  */
4731 
4732 #define	VFTINDEX(feature)	(((feature) >> 32) & 0xFFFFFFFF)
4733 #define	VFTBITS(feature)	((feature) & 0xFFFFFFFFLL)
4734 
4735 /* Register a feature in the vfs */
4736 void
4737 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4738 {
4739 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4740 	if (vfsp->vfs_implp == NULL)
4741 		return;
4742 
4743 	vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4744 }
4745 
4746 void
4747 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature)
4748 {
4749 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4750 	if (vfsp->vfs_implp == NULL)
4751 		return;
4752 	vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature);
4753 }
4754 
4755 /*
4756  * Query a vfs for a feature.
4757  * Returns 1 if feature is present, 0 if not
4758  */
4759 int
4760 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4761 {
4762 	int	ret = 0;
4763 
4764 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4765 	if (vfsp->vfs_implp == NULL)
4766 		return (ret);
4767 
4768 	if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4769 		ret = 1;
4770 
4771 	return (ret);
4772 }
4773 
4774 /*
4775  * Propagate feature set from one vfs to another
4776  */
4777 void
4778 vfs_propagate_features(vfs_t *from, vfs_t *to)
4779 {
4780 	int i;
4781 
4782 	if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4783 		return;
4784 
4785 	for (i = 1; i <= to->vfs_featureset[0]; i++) {
4786 		to->vfs_featureset[i] = from->vfs_featureset[i];
4787 	}
4788 }
4789 
4790 #define	LOFINODE_PATH "/dev/lofi/%d"
4791 
4792 /*
4793  * Return the vnode for the lofi node if there's a lofi mount in place.
4794  * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4795  * failure.
4796  */
4797 int
4798 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4799 {
4800 	char *path = NULL;
4801 	int strsize;
4802 	int err;
4803 
4804 	if (vfsp->vfs_lofi_id == 0) {
4805 		*vpp = NULL;
4806 		return (-1);
4807 	}
4808 
4809 	strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_id);
4810 	path = kmem_alloc(strsize + 1, KM_SLEEP);
4811 	(void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_id);
4812 
4813 	/*
4814 	 * We may be inside a zone, so we need to use the /dev path, but
4815 	 * it's created asynchronously, so we wait here.
4816 	 */
4817 	for (;;) {
4818 		err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4819 
4820 		if (err != ENOENT)
4821 			break;
4822 
4823 		if ((err = delay_sig(hz / 8)) == EINTR)
4824 			break;
4825 	}
4826 
4827 	if (err)
4828 		*vpp = NULL;
4829 
4830 	kmem_free(path, strsize + 1);
4831 	return (err);
4832 }
4833