xref: /illumos-gate/usr/src/uts/common/fs/vfs.c (revision 4585130b259133a26efae68275dbe56b08366deb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
25  * Copyright 2016 Toomas Soome <tsoome@me.com>
26  * Copyright (c) 2016 by Delphix. All rights reserved.
27  * Copyright 2016 Nexenta Systems, Inc.
28  * Copyright 2017 RackTop Systems.
29  */
30 
31 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
32 /*	  All Rights Reserved  	*/
33 
34 /*
35  * University Copyright- Copyright (c) 1982, 1986, 1988
36  * The Regents of the University of California
37  * All Rights Reserved
38  *
39  * University Acknowledgment- Portions of this document are derived from
40  * software developed by the University of California, Berkeley, and its
41  * contributors.
42  */
43 
44 #include <sys/types.h>
45 #include <sys/t_lock.h>
46 #include <sys/param.h>
47 #include <sys/errno.h>
48 #include <sys/user.h>
49 #include <sys/fstyp.h>
50 #include <sys/kmem.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/mount.h>
54 #include <sys/vfs.h>
55 #include <sys/vfs_opreg.h>
56 #include <sys/fem.h>
57 #include <sys/mntent.h>
58 #include <sys/stat.h>
59 #include <sys/statvfs.h>
60 #include <sys/statfs.h>
61 #include <sys/cred.h>
62 #include <sys/vnode.h>
63 #include <sys/rwstlock.h>
64 #include <sys/dnlc.h>
65 #include <sys/file.h>
66 #include <sys/time.h>
67 #include <sys/atomic.h>
68 #include <sys/cmn_err.h>
69 #include <sys/buf.h>
70 #include <sys/swap.h>
71 #include <sys/debug.h>
72 #include <sys/vnode.h>
73 #include <sys/modctl.h>
74 #include <sys/ddi.h>
75 #include <sys/pathname.h>
76 #include <sys/bootconf.h>
77 #include <sys/dumphdr.h>
78 #include <sys/dc_ki.h>
79 #include <sys/poll.h>
80 #include <sys/sunddi.h>
81 #include <sys/sysmacros.h>
82 #include <sys/zone.h>
83 #include <sys/policy.h>
84 #include <sys/ctfs.h>
85 #include <sys/objfs.h>
86 #include <sys/console.h>
87 #include <sys/reboot.h>
88 #include <sys/attr.h>
89 #include <sys/zio.h>
90 #include <sys/spa.h>
91 #include <sys/lofi.h>
92 #include <sys/bootprops.h>
93 
94 #include <vm/page.h>
95 
96 #include <fs/fs_subr.h>
97 /* Private interfaces to create vopstats-related data structures */
98 extern void		initialize_vopstats(vopstats_t *);
99 extern vopstats_t	*get_fstype_vopstats(struct vfs *, struct vfssw *);
100 extern vsk_anchor_t	*get_vskstat_anchor(struct vfs *);
101 
102 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
103 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
104     const char *, int, int);
105 static int  vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
106 static void vfs_freemnttab(struct vfs *);
107 static void vfs_freeopt(mntopt_t *);
108 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
109 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
110 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
111 static void vfs_createopttbl_extend(mntopts_t *, const char *,
112     const mntopts_t *);
113 static char **vfs_copycancelopt_extend(char **const, int);
114 static void vfs_freecancelopt(char **);
115 static void getrootfs(char **, char **);
116 static int getmacpath(dev_info_t *, void *);
117 static void vfs_mnttabvp_setup(void);
118 
119 struct ipmnt {
120 	struct ipmnt	*mip_next;
121 	dev_t		mip_dev;
122 	struct vfs	*mip_vfsp;
123 };
124 
125 static kmutex_t		vfs_miplist_mutex;
126 static struct ipmnt	*vfs_miplist = NULL;
127 static struct ipmnt	*vfs_miplist_end = NULL;
128 
129 static kmem_cache_t *vfs_cache;	/* Pointer to VFS kmem cache */
130 
131 /*
132  * VFS global data.
133  */
134 vnode_t *rootdir;		/* pointer to root inode vnode. */
135 vnode_t *devicesdir;		/* pointer to inode of devices root */
136 vnode_t	*devdir;		/* pointer to inode of dev root */
137 
138 char *server_rootpath;		/* root path for diskless clients */
139 char *server_hostname;		/* hostname of diskless server */
140 
141 static struct vfs root;
142 static struct vfs devices;
143 static struct vfs dev;
144 struct vfs *rootvfs = &root;	/* pointer to root vfs; head of VFS list. */
145 rvfs_t *rvfs_list;		/* array of vfs ptrs for vfs hash list */
146 int vfshsz = 512;		/* # of heads/locks in vfs hash arrays */
147 				/* must be power of 2!	*/
148 timespec_t vfs_mnttab_ctime;	/* mnttab created time */
149 timespec_t vfs_mnttab_mtime;	/* mnttab last modified time */
150 char *vfs_dummyfstype = "\0";
151 struct pollhead vfs_pollhd;	/* for mnttab pollers */
152 struct vnode *vfs_mntdummyvp;	/* to fake mnttab read/write for file events */
153 int	mntfstype;		/* will be set once mnt fs is mounted */
154 
155 /*
156  * Table for generic options recognized in the VFS layer and acted
157  * on at this level before parsing file system specific options.
158  * The nosuid option is stronger than any of the devices and setuid
159  * options, so those are canceled when nosuid is seen.
160  *
161  * All options which are added here need to be added to the
162  * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
163  */
164 /*
165  * VFS Mount options table
166  */
167 static char *ro_cancel[] = { MNTOPT_RW, NULL };
168 static char *rw_cancel[] = { MNTOPT_RO, NULL };
169 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
170 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
171     MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
172 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
173 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
174 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
175 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
176 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
177 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
178 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
179 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
180 
181 static const mntopt_t mntopts[] = {
182 /*
183  *	option name		cancel options		default arg	flags
184  */
185 	{ MNTOPT_REMOUNT,	NULL,			NULL,
186 		MO_NODISPLAY, (void *)0 },
187 	{ MNTOPT_RO,		ro_cancel,		NULL,		0,
188 		(void *)0 },
189 	{ MNTOPT_RW,		rw_cancel,		NULL,		0,
190 		(void *)0 },
191 	{ MNTOPT_SUID,		suid_cancel,		NULL,		0,
192 		(void *)0 },
193 	{ MNTOPT_NOSUID,	nosuid_cancel,		NULL,		0,
194 		(void *)0 },
195 	{ MNTOPT_DEVICES,	devices_cancel,		NULL,		0,
196 		(void *)0 },
197 	{ MNTOPT_NODEVICES,	nodevices_cancel,	NULL,		0,
198 		(void *)0 },
199 	{ MNTOPT_SETUID,	setuid_cancel,		NULL,		0,
200 		(void *)0 },
201 	{ MNTOPT_NOSETUID,	nosetuid_cancel,	NULL,		0,
202 		(void *)0 },
203 	{ MNTOPT_NBMAND,	nbmand_cancel,		NULL,		0,
204 		(void *)0 },
205 	{ MNTOPT_NONBMAND,	nonbmand_cancel,	NULL,		0,
206 		(void *)0 },
207 	{ MNTOPT_EXEC,		exec_cancel,		NULL,		0,
208 		(void *)0 },
209 	{ MNTOPT_NOEXEC,	noexec_cancel,		NULL,		0,
210 		(void *)0 },
211 };
212 
213 const mntopts_t vfs_mntopts = {
214 	sizeof (mntopts) / sizeof (mntopt_t),
215 	(mntopt_t *)&mntopts[0]
216 };
217 
218 /*
219  * File system operation dispatch functions.
220  */
221 
222 int
223 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
224 {
225 	return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
226 }
227 
228 int
229 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
230 {
231 	return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
232 }
233 
234 int
235 fsop_root(vfs_t *vfsp, vnode_t **vpp)
236 {
237 	refstr_t *mntpt;
238 	int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
239 	/*
240 	 * Make sure this root has a path.  With lofs, it is possible to have
241 	 * a NULL mountpoint.
242 	 */
243 	if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) {
244 		mntpt = vfs_getmntpoint(vfsp);
245 		vn_setpath_str(*vpp, refstr_value(mntpt),
246 		    strlen(refstr_value(mntpt)));
247 		refstr_rele(mntpt);
248 	}
249 
250 	return (ret);
251 }
252 
253 int
254 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
255 {
256 	return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
257 }
258 
259 int
260 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
261 {
262 	return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
263 }
264 
265 int
266 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
267 {
268 	/*
269 	 * In order to handle system attribute fids in a manner
270 	 * transparent to the underlying fs, we embed the fid for
271 	 * the sysattr parent object in the sysattr fid and tack on
272 	 * some extra bytes that only the sysattr layer knows about.
273 	 *
274 	 * This guarantees that sysattr fids are larger than other fids
275 	 * for this vfs. If the vfs supports the sysattr view interface
276 	 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
277 	 * collision with XATTR_FIDSZ.
278 	 */
279 	if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
280 	    fidp->fid_len == XATTR_FIDSZ)
281 		return (xattr_dir_vget(vfsp, vpp, fidp));
282 
283 	return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
284 }
285 
286 int
287 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
288 {
289 	return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
290 }
291 
292 void
293 fsop_freefs(vfs_t *vfsp)
294 {
295 	(*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
296 }
297 
298 int
299 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
300 {
301 	return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
302 }
303 
304 int
305 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
306 {
307 	ASSERT((fstype >= 0) && (fstype < nfstype));
308 
309 	if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
310 		return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
311 	else
312 		return (ENOTSUP);
313 }
314 
315 /*
316  * File system initialization.  vfs_setfsops() must be called from a file
317  * system's init routine.
318  */
319 
320 static int
321 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
322     int *unused_ops)
323 {
324 	static const fs_operation_trans_def_t vfs_ops_table[] = {
325 		VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
326 			fs_nosys, fs_nosys,
327 
328 		VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
329 			fs_nosys, fs_nosys,
330 
331 		VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
332 			fs_nosys, fs_nosys,
333 
334 		VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
335 			fs_nosys, fs_nosys,
336 
337 		VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
338 			(fs_generic_func_p) fs_sync,
339 			(fs_generic_func_p) fs_sync,	/* No errors allowed */
340 
341 		VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
342 			fs_nosys, fs_nosys,
343 
344 		VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
345 			fs_nosys, fs_nosys,
346 
347 		VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
348 			(fs_generic_func_p)fs_freevfs,
349 			(fs_generic_func_p)fs_freevfs,	/* Shouldn't fail */
350 
351 		VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
352 			(fs_generic_func_p)fs_nosys,
353 			(fs_generic_func_p)fs_nosys,
354 
355 		NULL, 0, NULL, NULL
356 	};
357 
358 	return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
359 }
360 
361 void
362 zfs_boot_init(void)
363 {
364 	if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
365 		spa_boot_init();
366 }
367 
368 int
369 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
370 {
371 	int error;
372 	int unused_ops;
373 
374 	/*
375 	 * Verify that fstype refers to a valid fs.  Note that
376 	 * 0 is valid since it's used to set "stray" ops.
377 	 */
378 	if ((fstype < 0) || (fstype >= nfstype))
379 		return (EINVAL);
380 
381 	if (!ALLOCATED_VFSSW(&vfssw[fstype]))
382 		return (EINVAL);
383 
384 	/* Set up the operations vector. */
385 
386 	error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
387 
388 	if (error != 0)
389 		return (error);
390 
391 	vfssw[fstype].vsw_flag |= VSW_INSTALLED;
392 
393 	if (actual != NULL)
394 		*actual = &vfssw[fstype].vsw_vfsops;
395 
396 #if DEBUG
397 	if (unused_ops != 0)
398 		cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
399 		    "but not used", vfssw[fstype].vsw_name, unused_ops);
400 #endif
401 
402 	return (0);
403 }
404 
405 int
406 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
407 {
408 	int error;
409 	int unused_ops;
410 
411 	*actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
412 
413 	error = fs_copyfsops(template, *actual, &unused_ops);
414 	if (error != 0) {
415 		kmem_free(*actual, sizeof (vfsops_t));
416 		*actual = NULL;
417 		return (error);
418 	}
419 
420 	return (0);
421 }
422 
423 /*
424  * Free a vfsops structure created as a result of vfs_makefsops().
425  * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
426  * vfs_freevfsops_by_type().
427  */
428 void
429 vfs_freevfsops(vfsops_t *vfsops)
430 {
431 	kmem_free(vfsops, sizeof (vfsops_t));
432 }
433 
434 /*
435  * Since the vfsops structure is part of the vfssw table and wasn't
436  * really allocated, we're not really freeing anything.  We keep
437  * the name for consistency with vfs_freevfsops().  We do, however,
438  * need to take care of a little bookkeeping.
439  * NOTE: For a vfsops structure created by vfs_setfsops(), use
440  * vfs_freevfsops_by_type().
441  */
442 int
443 vfs_freevfsops_by_type(int fstype)
444 {
445 
446 	/* Verify that fstype refers to a loaded fs (and not fsid 0). */
447 	if ((fstype <= 0) || (fstype >= nfstype))
448 		return (EINVAL);
449 
450 	WLOCK_VFSSW();
451 	if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
452 		WUNLOCK_VFSSW();
453 		return (EINVAL);
454 	}
455 
456 	vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
457 	WUNLOCK_VFSSW();
458 
459 	return (0);
460 }
461 
462 /* Support routines used to reference vfs_op */
463 
464 /* Set the operations vector for a vfs */
465 void
466 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
467 {
468 	vfsops_t	*op;
469 
470 	ASSERT(vfsp != NULL);
471 	ASSERT(vfsops != NULL);
472 
473 	op = vfsp->vfs_op;
474 	membar_consumer();
475 	if (vfsp->vfs_femhead == NULL &&
476 	    atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) {
477 		return;
478 	}
479 	fsem_setvfsops(vfsp, vfsops);
480 }
481 
482 /* Retrieve the operations vector for a vfs */
483 vfsops_t *
484 vfs_getops(vfs_t *vfsp)
485 {
486 	vfsops_t	*op;
487 
488 	ASSERT(vfsp != NULL);
489 
490 	op = vfsp->vfs_op;
491 	membar_consumer();
492 	if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
493 		return (op);
494 	} else {
495 		return (fsem_getvfsops(vfsp));
496 	}
497 }
498 
499 /*
500  * Returns non-zero (1) if the vfsops matches that of the vfs.
501  * Returns zero (0) if not.
502  */
503 int
504 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
505 {
506 	return (vfs_getops(vfsp) == vfsops);
507 }
508 
509 /*
510  * Returns non-zero (1) if the file system has installed a non-default,
511  * non-error vfs_sync routine.  Returns zero (0) otherwise.
512  */
513 int
514 vfs_can_sync(vfs_t *vfsp)
515 {
516 	/* vfs_sync() routine is not the default/error function */
517 	return (vfs_getops(vfsp)->vfs_sync != fs_sync);
518 }
519 
520 /*
521  * Initialize a vfs structure.
522  */
523 void
524 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
525 {
526 	/* Other initialization has been moved to vfs_alloc() */
527 	vfsp->vfs_count = 0;
528 	vfsp->vfs_next = vfsp;
529 	vfsp->vfs_prev = vfsp;
530 	vfsp->vfs_zone_next = vfsp;
531 	vfsp->vfs_zone_prev = vfsp;
532 	vfsp->vfs_lofi_id = 0;
533 	sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
534 	vfsimpl_setup(vfsp);
535 	vfsp->vfs_data = (data);
536 	vfs_setops((vfsp), (op));
537 }
538 
539 /*
540  * Allocate and initialize the vfs implementation private data
541  * structure, vfs_impl_t.
542  */
543 void
544 vfsimpl_setup(vfs_t *vfsp)
545 {
546 	int i;
547 
548 	if (vfsp->vfs_implp != NULL) {
549 		return;
550 	}
551 
552 	vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
553 	/* Note that these are #define'd in vfs.h */
554 	vfsp->vfs_vskap = NULL;
555 	vfsp->vfs_fstypevsp = NULL;
556 
557 	/* Set size of counted array, then zero the array */
558 	vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
559 	for (i = 1; i <  VFS_FEATURE_MAXSZ; i++) {
560 		vfsp->vfs_featureset[i] = 0;
561 	}
562 }
563 
564 /*
565  * Release the vfs_impl_t structure, if it exists. Some unbundled
566  * filesystems may not use the newer version of vfs and thus
567  * would not contain this implementation private data structure.
568  */
569 void
570 vfsimpl_teardown(vfs_t *vfsp)
571 {
572 	vfs_impl_t	*vip = vfsp->vfs_implp;
573 
574 	if (vip == NULL)
575 		return;
576 
577 	kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
578 	vfsp->vfs_implp = NULL;
579 }
580 
581 /*
582  * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
583  * fstatvfs, and sysfs moved to common/syscall.
584  */
585 
586 /*
587  * Update every mounted file system.  We call the vfs_sync operation of
588  * each file system type, passing it a NULL vfsp to indicate that all
589  * mounted file systems of that type should be updated.
590  */
591 void
592 vfs_sync(int flag)
593 {
594 	struct vfssw *vswp;
595 	RLOCK_VFSSW();
596 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
597 		if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
598 			vfs_refvfssw(vswp);
599 			RUNLOCK_VFSSW();
600 			(void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
601 			    CRED());
602 			vfs_unrefvfssw(vswp);
603 			RLOCK_VFSSW();
604 		}
605 	}
606 	RUNLOCK_VFSSW();
607 }
608 
609 void
610 sync(void)
611 {
612 	vfs_sync(0);
613 }
614 
615 /*
616  * External routines.
617  */
618 
619 krwlock_t vfssw_lock;	/* lock accesses to vfssw */
620 
621 /*
622  * Lock for accessing the vfs linked list.  Initialized in vfs_mountroot(),
623  * but otherwise should be accessed only via vfs_list_lock() and
624  * vfs_list_unlock().  Also used to protect the timestamp for mods to the list.
625  */
626 static krwlock_t vfslist;
627 
628 /*
629  * Mount devfs on /devices. This is done right after root is mounted
630  * to provide device access support for the system
631  */
632 static void
633 vfs_mountdevices(void)
634 {
635 	struct vfssw *vsw;
636 	struct vnode *mvp;
637 	struct mounta mounta = {	/* fake mounta for devfs_mount() */
638 		NULL,
639 		NULL,
640 		MS_SYSSPACE,
641 		NULL,
642 		NULL,
643 		0,
644 		NULL,
645 		0
646 	};
647 
648 	/*
649 	 * _init devfs module to fill in the vfssw
650 	 */
651 	if (modload("fs", "devfs") == -1)
652 		panic("Cannot _init devfs module");
653 
654 	/*
655 	 * Hold vfs
656 	 */
657 	RLOCK_VFSSW();
658 	vsw = vfs_getvfsswbyname("devfs");
659 	VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
660 	VFS_HOLD(&devices);
661 
662 	/*
663 	 * Locate mount point
664 	 */
665 	if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
666 		panic("Cannot find /devices");
667 
668 	/*
669 	 * Perform the mount of /devices
670 	 */
671 	if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
672 		panic("Cannot mount /devices");
673 
674 	RUNLOCK_VFSSW();
675 
676 	/*
677 	 * Set appropriate members and add to vfs list for mnttab display
678 	 */
679 	vfs_setresource(&devices, "/devices", 0);
680 	vfs_setmntpoint(&devices, "/devices", 0);
681 
682 	/*
683 	 * Hold the root of /devices so it won't go away
684 	 */
685 	if (VFS_ROOT(&devices, &devicesdir))
686 		panic("vfs_mountdevices: not devices root");
687 
688 	if (vfs_lock(&devices) != 0) {
689 		VN_RELE(devicesdir);
690 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
691 		return;
692 	}
693 
694 	if (vn_vfswlock(mvp) != 0) {
695 		vfs_unlock(&devices);
696 		VN_RELE(devicesdir);
697 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
698 		return;
699 	}
700 
701 	vfs_add(mvp, &devices, 0);
702 	vn_vfsunlock(mvp);
703 	vfs_unlock(&devices);
704 	VN_RELE(devicesdir);
705 }
706 
707 /*
708  * mount the first instance of /dev  to root and remain mounted
709  */
710 static void
711 vfs_mountdev1(void)
712 {
713 	struct vfssw *vsw;
714 	struct vnode *mvp;
715 	struct mounta mounta = {	/* fake mounta for sdev_mount() */
716 		NULL,
717 		NULL,
718 		MS_SYSSPACE | MS_OVERLAY,
719 		NULL,
720 		NULL,
721 		0,
722 		NULL,
723 		0
724 	};
725 
726 	/*
727 	 * _init dev module to fill in the vfssw
728 	 */
729 	if (modload("fs", "dev") == -1)
730 		cmn_err(CE_PANIC, "Cannot _init dev module\n");
731 
732 	/*
733 	 * Hold vfs
734 	 */
735 	RLOCK_VFSSW();
736 	vsw = vfs_getvfsswbyname("dev");
737 	VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
738 	VFS_HOLD(&dev);
739 
740 	/*
741 	 * Locate mount point
742 	 */
743 	if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
744 		cmn_err(CE_PANIC, "Cannot find /dev\n");
745 
746 	/*
747 	 * Perform the mount of /dev
748 	 */
749 	if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
750 		cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
751 
752 	RUNLOCK_VFSSW();
753 
754 	/*
755 	 * Set appropriate members and add to vfs list for mnttab display
756 	 */
757 	vfs_setresource(&dev, "/dev", 0);
758 	vfs_setmntpoint(&dev, "/dev", 0);
759 
760 	/*
761 	 * Hold the root of /dev so it won't go away
762 	 */
763 	if (VFS_ROOT(&dev, &devdir))
764 		cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
765 
766 	if (vfs_lock(&dev) != 0) {
767 		VN_RELE(devdir);
768 		cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
769 		return;
770 	}
771 
772 	if (vn_vfswlock(mvp) != 0) {
773 		vfs_unlock(&dev);
774 		VN_RELE(devdir);
775 		cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
776 		return;
777 	}
778 
779 	vfs_add(mvp, &dev, 0);
780 	vn_vfsunlock(mvp);
781 	vfs_unlock(&dev);
782 	VN_RELE(devdir);
783 }
784 
785 /*
786  * Mount required filesystem. This is done right after root is mounted.
787  */
788 static void
789 vfs_mountfs(char *module, char *spec, char *path)
790 {
791 	struct vnode *mvp;
792 	struct mounta mounta;
793 	vfs_t *vfsp;
794 
795 	bzero(&mounta, sizeof (mounta));
796 	mounta.flags = MS_SYSSPACE | MS_DATA;
797 	mounta.fstype = module;
798 	mounta.spec = spec;
799 	mounta.dir = path;
800 	if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
801 		cmn_err(CE_WARN, "Cannot find %s", path);
802 		return;
803 	}
804 	if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
805 		cmn_err(CE_WARN, "Cannot mount %s", path);
806 	else
807 		VFS_RELE(vfsp);
808 	VN_RELE(mvp);
809 }
810 
811 /*
812  * vfs_mountroot is called by main() to mount the root filesystem.
813  */
814 void
815 vfs_mountroot(void)
816 {
817 	struct vnode	*rvp = NULL;
818 	char		*path;
819 	size_t		plen;
820 	struct vfssw	*vswp;
821 	proc_t		*p;
822 
823 	rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
824 	rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
825 
826 	/*
827 	 * Alloc the vfs hash bucket array and locks
828 	 */
829 	rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
830 
831 	/*
832 	 * Call machine-dependent routine "rootconf" to choose a root
833 	 * file system type.
834 	 */
835 	if (rootconf())
836 		panic("vfs_mountroot: cannot mount root");
837 	/*
838 	 * Get vnode for '/'.  Set up rootdir, u.u_rdir and u.u_cdir
839 	 * to point to it.  These are used by lookuppn() so that it
840 	 * knows where to start from ('/' or '.').
841 	 */
842 	vfs_setmntpoint(rootvfs, "/", 0);
843 	if (VFS_ROOT(rootvfs, &rootdir))
844 		panic("vfs_mountroot: no root vnode");
845 
846 	/*
847 	 * At this point, the process tree consists of p0 and possibly some
848 	 * direct children of p0.  (i.e. there are no grandchildren)
849 	 *
850 	 * Walk through them all, setting their current directory.
851 	 */
852 	mutex_enter(&pidlock);
853 	for (p = practive; p != NULL; p = p->p_next) {
854 		ASSERT(p == &p0 || p->p_parent == &p0);
855 
856 		PTOU(p)->u_cdir = rootdir;
857 		VN_HOLD(PTOU(p)->u_cdir);
858 		PTOU(p)->u_rdir = NULL;
859 	}
860 	mutex_exit(&pidlock);
861 
862 	/*
863 	 * Setup the global zone's rootvp, now that it exists.
864 	 */
865 	global_zone->zone_rootvp = rootdir;
866 	VN_HOLD(global_zone->zone_rootvp);
867 
868 	/*
869 	 * Notify the module code that it can begin using the
870 	 * root filesystem instead of the boot program's services.
871 	 */
872 	modrootloaded = 1;
873 
874 	/*
875 	 * Special handling for a ZFS root file system.
876 	 */
877 	zfs_boot_init();
878 
879 	/*
880 	 * Set up mnttab information for root
881 	 */
882 	vfs_setresource(rootvfs, rootfs.bo_name, 0);
883 
884 	/*
885 	 * Notify cluster software that the root filesystem is available.
886 	 */
887 	clboot_mountroot();
888 
889 	/* Now that we're all done with the root FS, set up its vopstats */
890 	if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
891 		/* Set flag for statistics collection */
892 		if (vswp->vsw_flag & VSW_STATS) {
893 			initialize_vopstats(&rootvfs->vfs_vopstats);
894 			rootvfs->vfs_flag |= VFS_STATS;
895 			rootvfs->vfs_fstypevsp =
896 			    get_fstype_vopstats(rootvfs, vswp);
897 			rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
898 		}
899 		vfs_unrefvfssw(vswp);
900 	}
901 
902 	/*
903 	 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
904 	 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
905 	 */
906 	vfs_mountdevices();
907 	vfs_mountdev1();
908 
909 	vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
910 	vfs_mountfs("proc", "/proc", "/proc");
911 	vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
912 	vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
913 	vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
914 	vfs_mountfs("bootfs", "bootfs", "/system/boot");
915 
916 	if (getzoneid() == GLOBAL_ZONEID) {
917 		vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
918 	}
919 
920 	if (strcmp(rootfs.bo_fstype, "zfs") != 0) {
921 		/*
922 		 * Look up the root device via devfs so that a dv_node is
923 		 * created for it. The vnode is never VN_RELE()ed.
924 		 * We allocate more than MAXPATHLEN so that the
925 		 * buffer passed to i_ddi_prompath_to_devfspath() is
926 		 * exactly MAXPATHLEN (the function expects a buffer
927 		 * of that length).
928 		 */
929 		plen = strlen("/devices");
930 		path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
931 		(void) strcpy(path, "/devices");
932 
933 		if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
934 		    != DDI_SUCCESS ||
935 		    lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
936 
937 			/* NUL terminate in case "path" has garbage */
938 			path[plen + MAXPATHLEN - 1] = '\0';
939 #ifdef	DEBUG
940 			cmn_err(CE_WARN, "!Cannot lookup root device: %s",
941 			    path);
942 #endif
943 		}
944 		kmem_free(path, plen + MAXPATHLEN);
945 	}
946 
947 	vfs_mnttabvp_setup();
948 }
949 
950 /*
951  * Check to see if our "block device" is actually a file.  If so,
952  * automatically add a lofi device, and keep track of this fact.
953  */
954 static int
955 lofi_add(const char *fsname, struct vfs *vfsp,
956     mntopts_t *mntopts, struct mounta *uap)
957 {
958 	int fromspace = (uap->flags & MS_SYSSPACE) ?
959 	    UIO_SYSSPACE : UIO_USERSPACE;
960 	struct lofi_ioctl *li = NULL;
961 	struct vnode *vp = NULL;
962 	struct pathname	pn = { NULL };
963 	ldi_ident_t ldi_id;
964 	ldi_handle_t ldi_hdl;
965 	vfssw_t *vfssw;
966 	int id;
967 	int err = 0;
968 
969 	if ((vfssw = vfs_getvfssw(fsname)) == NULL)
970 		return (0);
971 
972 	if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
973 		vfs_unrefvfssw(vfssw);
974 		return (0);
975 	}
976 
977 	vfs_unrefvfssw(vfssw);
978 	vfssw = NULL;
979 
980 	if (pn_get(uap->spec, fromspace, &pn) != 0)
981 		return (0);
982 
983 	if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
984 		goto out;
985 
986 	if (vp->v_type != VREG)
987 		goto out;
988 
989 	/* OK, this is a lofi mount. */
990 
991 	if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
992 	    vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
993 	    vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
994 	    vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
995 		err = EINVAL;
996 		goto out;
997 	}
998 
999 	ldi_id = ldi_ident_from_anon();
1000 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1001 	(void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1002 
1003 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1004 	    &ldi_hdl, ldi_id);
1005 
1006 	if (err)
1007 		goto out2;
1008 
1009 	err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1010 	    FREAD | FWRITE | FKIOCTL, kcred, &id);
1011 
1012 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1013 
1014 	if (!err)
1015 		vfsp->vfs_lofi_id = id;
1016 
1017 out2:
1018 	ldi_ident_release(ldi_id);
1019 out:
1020 	if (li != NULL)
1021 		kmem_free(li, sizeof (*li));
1022 	if (vp != NULL)
1023 		VN_RELE(vp);
1024 	pn_free(&pn);
1025 	return (err);
1026 }
1027 
1028 static void
1029 lofi_remove(struct vfs *vfsp)
1030 {
1031 	struct lofi_ioctl *li = NULL;
1032 	ldi_ident_t ldi_id;
1033 	ldi_handle_t ldi_hdl;
1034 	int err;
1035 
1036 	if (vfsp->vfs_lofi_id == 0)
1037 		return;
1038 
1039 	ldi_id = ldi_ident_from_anon();
1040 
1041 	li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1042 	li->li_id = vfsp->vfs_lofi_id;
1043 	li->li_cleanup = B_TRUE;
1044 
1045 	err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1046 	    &ldi_hdl, ldi_id);
1047 
1048 	if (err)
1049 		goto out;
1050 
1051 	err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1052 	    FREAD | FWRITE | FKIOCTL, kcred, NULL);
1053 
1054 	(void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1055 
1056 	if (!err)
1057 		vfsp->vfs_lofi_id = 0;
1058 
1059 out:
1060 	ldi_ident_release(ldi_id);
1061 	if (li != NULL)
1062 		kmem_free(li, sizeof (*li));
1063 }
1064 
1065 /*
1066  * Common mount code.  Called from the system call entry point, from autofs,
1067  * nfsv4 trigger mounts, and from pxfs.
1068  *
1069  * Takes the effective file system type, mount arguments, the mount point
1070  * vnode, flags specifying whether the mount is a remount and whether it
1071  * should be entered into the vfs list, and credentials.  Fills in its vfspp
1072  * parameter with the mounted file system instance's vfs.
1073  *
1074  * Note that the effective file system type is specified as a string.  It may
1075  * be null, in which case it's determined from the mount arguments, and may
1076  * differ from the type specified in the mount arguments; this is a hook to
1077  * allow interposition when instantiating file system instances.
1078  *
1079  * The caller is responsible for releasing its own hold on the mount point
1080  * vp (this routine does its own hold when necessary).
1081  * Also note that for remounts, the mount point vp should be the vnode for
1082  * the root of the file system rather than the vnode that the file system
1083  * is mounted on top of.
1084  */
1085 int
1086 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1087     struct vfs **vfspp)
1088 {
1089 	struct vfssw	*vswp;
1090 	vfsops_t	*vfsops;
1091 	struct vfs	*vfsp;
1092 	struct vnode	*bvp;
1093 	dev_t		bdev = 0;
1094 	mntopts_t	mnt_mntopts;
1095 	int		error = 0;
1096 	int		copyout_error = 0;
1097 	int		ovflags;
1098 	char		*opts = uap->optptr;
1099 	char		*inargs = opts;
1100 	int		optlen = uap->optlen;
1101 	int		remount;
1102 	int		rdonly;
1103 	int		nbmand = 0;
1104 	int		delmip = 0;
1105 	int		addmip = 0;
1106 	int		splice = ((uap->flags & MS_NOSPLICE) == 0);
1107 	int		fromspace = (uap->flags & MS_SYSSPACE) ?
1108 	    UIO_SYSSPACE : UIO_USERSPACE;
1109 	char		*resource = NULL, *mountpt = NULL;
1110 	refstr_t	*oldresource, *oldmntpt;
1111 	struct pathname	pn, rpn;
1112 	vsk_anchor_t	*vskap;
1113 	char fstname[FSTYPSZ];
1114 	zone_t		*zone;
1115 
1116 	/*
1117 	 * The v_flag value for the mount point vp is permanently set
1118 	 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1119 	 * for mount point locking.
1120 	 */
1121 	mutex_enter(&vp->v_lock);
1122 	vp->v_flag |= VVFSLOCK;
1123 	mutex_exit(&vp->v_lock);
1124 
1125 	mnt_mntopts.mo_count = 0;
1126 	/*
1127 	 * Find the ops vector to use to invoke the file system-specific mount
1128 	 * method.  If the fsname argument is non-NULL, use it directly.
1129 	 * Otherwise, dig the file system type information out of the mount
1130 	 * arguments.
1131 	 *
1132 	 * A side effect is to hold the vfssw entry.
1133 	 *
1134 	 * Mount arguments can be specified in several ways, which are
1135 	 * distinguished by flag bit settings.  The preferred way is to set
1136 	 * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1137 	 * type supplied as a character string and the last two arguments
1138 	 * being a pointer to a character buffer and the size of the buffer.
1139 	 * On entry, the buffer holds a null terminated list of options; on
1140 	 * return, the string is the list of options the file system
1141 	 * recognized. If MS_DATA is set arguments five and six point to a
1142 	 * block of binary data which the file system interprets.
1143 	 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1144 	 * consistently with these conventions.  To handle them, we check to
1145 	 * see whether the pointer to the file system name has a numeric value
1146 	 * less than 256.  If so, we treat it as an index.
1147 	 */
1148 	if (fsname != NULL) {
1149 		if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1150 			return (EINVAL);
1151 		}
1152 	} else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1153 		size_t n;
1154 		uint_t fstype;
1155 
1156 		fsname = fstname;
1157 
1158 		if ((fstype = (uintptr_t)uap->fstype) < 256) {
1159 			RLOCK_VFSSW();
1160 			if (fstype == 0 || fstype >= nfstype ||
1161 			    !ALLOCATED_VFSSW(&vfssw[fstype])) {
1162 				RUNLOCK_VFSSW();
1163 				return (EINVAL);
1164 			}
1165 			(void) strcpy(fsname, vfssw[fstype].vsw_name);
1166 			RUNLOCK_VFSSW();
1167 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1168 				return (EINVAL);
1169 		} else {
1170 			/*
1171 			 * Handle either kernel or user address space.
1172 			 */
1173 			if (uap->flags & MS_SYSSPACE) {
1174 				error = copystr(uap->fstype, fsname,
1175 				    FSTYPSZ, &n);
1176 			} else {
1177 				error = copyinstr(uap->fstype, fsname,
1178 				    FSTYPSZ, &n);
1179 			}
1180 			if (error) {
1181 				if (error == ENAMETOOLONG)
1182 					return (EINVAL);
1183 				return (error);
1184 			}
1185 			if ((vswp = vfs_getvfssw(fsname)) == NULL)
1186 				return (EINVAL);
1187 		}
1188 	} else {
1189 		if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1190 			return (EINVAL);
1191 		fsname = vswp->vsw_name;
1192 	}
1193 	if (!VFS_INSTALLED(vswp))
1194 		return (EINVAL);
1195 
1196 	if ((error = secpolicy_fs_allowed_mount(fsname)) != 0)  {
1197 		vfs_unrefvfssw(vswp);
1198 		return (error);
1199 	}
1200 
1201 	vfsops = &vswp->vsw_vfsops;
1202 
1203 	vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1204 	/*
1205 	 * Fetch mount options and parse them for generic vfs options
1206 	 */
1207 	if (uap->flags & MS_OPTIONSTR) {
1208 		/*
1209 		 * Limit the buffer size
1210 		 */
1211 		if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1212 			error = EINVAL;
1213 			goto errout;
1214 		}
1215 		if ((uap->flags & MS_SYSSPACE) == 0) {
1216 			inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1217 			inargs[0] = '\0';
1218 			if (optlen) {
1219 				error = copyinstr(opts, inargs, (size_t)optlen,
1220 				    NULL);
1221 				if (error) {
1222 					goto errout;
1223 				}
1224 			}
1225 		}
1226 		vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1227 	}
1228 	/*
1229 	 * Flag bits override the options string.
1230 	 */
1231 	if (uap->flags & MS_REMOUNT)
1232 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1233 	if (uap->flags & MS_RDONLY)
1234 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1235 	if (uap->flags & MS_NOSUID)
1236 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1237 
1238 	/*
1239 	 * Check if this is a remount; must be set in the option string and
1240 	 * the file system must support a remount option.
1241 	 */
1242 	if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1243 	    MNTOPT_REMOUNT, NULL)) {
1244 		if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1245 			error = ENOTSUP;
1246 			goto errout;
1247 		}
1248 		uap->flags |= MS_REMOUNT;
1249 	}
1250 
1251 	/*
1252 	 * uap->flags and vfs_optionisset() should agree.
1253 	 */
1254 	if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1255 		uap->flags |= MS_RDONLY;
1256 	}
1257 	if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1258 		uap->flags |= MS_NOSUID;
1259 	}
1260 	nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1261 	ASSERT(splice || !remount);
1262 	/*
1263 	 * If we are splicing the fs into the namespace,
1264 	 * perform mount point checks.
1265 	 *
1266 	 * We want to resolve the path for the mount point to eliminate
1267 	 * '.' and ".." and symlinks in mount points; we can't do the
1268 	 * same for the resource string, since it would turn
1269 	 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...".  We need to do
1270 	 * this before grabbing vn_vfswlock(), because otherwise we
1271 	 * would deadlock with lookuppn().
1272 	 */
1273 	if (splice) {
1274 		ASSERT(vp->v_count > 0);
1275 
1276 		/*
1277 		 * Pick up mount point and device from appropriate space.
1278 		 */
1279 		if (pn_get(uap->spec, fromspace, &pn) == 0) {
1280 			resource = kmem_alloc(pn.pn_pathlen + 1,
1281 			    KM_SLEEP);
1282 			(void) strcpy(resource, pn.pn_path);
1283 			pn_free(&pn);
1284 		}
1285 		/*
1286 		 * Do a lookupname prior to taking the
1287 		 * writelock. Mark this as completed if
1288 		 * successful for later cleanup and addition to
1289 		 * the mount in progress table.
1290 		 */
1291 		if ((uap->flags & MS_GLOBAL) == 0 &&
1292 		    lookupname(uap->spec, fromspace,
1293 		    FOLLOW, NULL, &bvp) == 0) {
1294 			addmip = 1;
1295 		}
1296 
1297 		if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1298 			pathname_t *pnp;
1299 
1300 			if (*pn.pn_path != '/') {
1301 				error = EINVAL;
1302 				pn_free(&pn);
1303 				goto errout;
1304 			}
1305 			pn_alloc(&rpn);
1306 			/*
1307 			 * Kludge to prevent autofs from deadlocking with
1308 			 * itself when it calls domount().
1309 			 *
1310 			 * If autofs is calling, it is because it is doing
1311 			 * (autofs) mounts in the process of an NFS mount.  A
1312 			 * lookuppn() here would cause us to block waiting for
1313 			 * said NFS mount to complete, which can't since this
1314 			 * is the thread that was supposed to doing it.
1315 			 */
1316 			if (fromspace == UIO_USERSPACE) {
1317 				if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1318 				    NULL)) == 0) {
1319 					pnp = &rpn;
1320 				} else {
1321 					/*
1322 					 * The file disappeared or otherwise
1323 					 * became inaccessible since we opened
1324 					 * it; might as well fail the mount
1325 					 * since the mount point is no longer
1326 					 * accessible.
1327 					 */
1328 					pn_free(&rpn);
1329 					pn_free(&pn);
1330 					goto errout;
1331 				}
1332 			} else {
1333 				pnp = &pn;
1334 			}
1335 			mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1336 			(void) strcpy(mountpt, pnp->pn_path);
1337 
1338 			/*
1339 			 * If the addition of the zone's rootpath
1340 			 * would push us over a total path length
1341 			 * of MAXPATHLEN, we fail the mount with
1342 			 * ENAMETOOLONG, which is what we would have
1343 			 * gotten if we were trying to perform the same
1344 			 * mount in the global zone.
1345 			 *
1346 			 * strlen() doesn't count the trailing
1347 			 * '\0', but zone_rootpathlen counts both a
1348 			 * trailing '/' and the terminating '\0'.
1349 			 */
1350 			if ((curproc->p_zone->zone_rootpathlen - 1 +
1351 			    strlen(mountpt)) > MAXPATHLEN ||
1352 			    (resource != NULL &&
1353 			    (curproc->p_zone->zone_rootpathlen - 1 +
1354 			    strlen(resource)) > MAXPATHLEN)) {
1355 				error = ENAMETOOLONG;
1356 			}
1357 
1358 			pn_free(&rpn);
1359 			pn_free(&pn);
1360 		}
1361 
1362 		if (error)
1363 			goto errout;
1364 
1365 		/*
1366 		 * Prevent path name resolution from proceeding past
1367 		 * the mount point.
1368 		 */
1369 		if (vn_vfswlock(vp) != 0) {
1370 			error = EBUSY;
1371 			goto errout;
1372 		}
1373 
1374 		/*
1375 		 * Verify that it's legitimate to establish a mount on
1376 		 * the prospective mount point.
1377 		 */
1378 		if (vn_mountedvfs(vp) != NULL) {
1379 			/*
1380 			 * The mount point lock was obtained after some
1381 			 * other thread raced through and established a mount.
1382 			 */
1383 			vn_vfsunlock(vp);
1384 			error = EBUSY;
1385 			goto errout;
1386 		}
1387 		if (vp->v_flag & VNOMOUNT) {
1388 			vn_vfsunlock(vp);
1389 			error = EINVAL;
1390 			goto errout;
1391 		}
1392 	}
1393 	if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1394 		uap->dataptr = NULL;
1395 		uap->datalen = 0;
1396 	}
1397 
1398 	/*
1399 	 * If this is a remount, we don't want to create a new VFS.
1400 	 * Instead, we pass the existing one with a remount flag.
1401 	 */
1402 	if (remount) {
1403 		/*
1404 		 * Confirm that the mount point is the root vnode of the
1405 		 * file system that is being remounted.
1406 		 * This can happen if the user specifies a different
1407 		 * mount point directory pathname in the (re)mount command.
1408 		 *
1409 		 * Code below can only be reached if splice is true, so it's
1410 		 * safe to do vn_vfsunlock() here.
1411 		 */
1412 		if ((vp->v_flag & VROOT) == 0) {
1413 			vn_vfsunlock(vp);
1414 			error = ENOENT;
1415 			goto errout;
1416 		}
1417 		/*
1418 		 * Disallow making file systems read-only unless file system
1419 		 * explicitly allows it in its vfssw.  Ignore other flags.
1420 		 */
1421 		if (rdonly && vn_is_readonly(vp) == 0 &&
1422 		    (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1423 			vn_vfsunlock(vp);
1424 			error = EINVAL;
1425 			goto errout;
1426 		}
1427 		/*
1428 		 * Disallow changing the NBMAND disposition of the file
1429 		 * system on remounts.
1430 		 */
1431 		if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1432 		    (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1433 			vn_vfsunlock(vp);
1434 			error = EINVAL;
1435 			goto errout;
1436 		}
1437 		vfsp = vp->v_vfsp;
1438 		ovflags = vfsp->vfs_flag;
1439 		vfsp->vfs_flag |= VFS_REMOUNT;
1440 		vfsp->vfs_flag &= ~VFS_RDONLY;
1441 	} else {
1442 		vfsp = vfs_alloc(KM_SLEEP);
1443 		VFS_INIT(vfsp, vfsops, NULL);
1444 	}
1445 
1446 	VFS_HOLD(vfsp);
1447 
1448 	if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1449 		if (!remount) {
1450 			if (splice)
1451 				vn_vfsunlock(vp);
1452 			vfs_free(vfsp);
1453 		} else {
1454 			vn_vfsunlock(vp);
1455 			VFS_RELE(vfsp);
1456 		}
1457 		goto errout;
1458 	}
1459 
1460 	/*
1461 	 * PRIV_SYS_MOUNT doesn't mean you can become root.
1462 	 */
1463 	if (vfsp->vfs_lofi_id != 0) {
1464 		uap->flags |= MS_NOSUID;
1465 		vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1466 	}
1467 
1468 	/*
1469 	 * The vfs_reflock is not used anymore the code below explicitly
1470 	 * holds it preventing others accesing it directly.
1471 	 */
1472 	if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1473 	    !(vfsp->vfs_flag & VFS_REMOUNT))
1474 		cmn_err(CE_WARN,
1475 		    "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1476 
1477 	/*
1478 	 * Lock the vfs. If this is a remount we want to avoid spurious umount
1479 	 * failures that happen as a side-effect of fsflush() and other mount
1480 	 * and unmount operations that might be going on simultaneously and
1481 	 * may have locked the vfs currently. To not return EBUSY immediately
1482 	 * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1483 	 */
1484 	if (!remount) {
1485 		if (error = vfs_lock(vfsp)) {
1486 			vfsp->vfs_flag = ovflags;
1487 
1488 			lofi_remove(vfsp);
1489 
1490 			if (splice)
1491 				vn_vfsunlock(vp);
1492 			vfs_free(vfsp);
1493 			goto errout;
1494 		}
1495 	} else {
1496 		vfs_lock_wait(vfsp);
1497 	}
1498 
1499 	/*
1500 	 * Add device to mount in progress table, global mounts require special
1501 	 * handling. It is possible that we have already done the lookupname
1502 	 * on a spliced, non-global fs. If so, we don't want to do it again
1503 	 * since we cannot do a lookupname after taking the
1504 	 * wlock above. This case is for a non-spliced, non-global filesystem.
1505 	 */
1506 	if (!addmip) {
1507 		if ((uap->flags & MS_GLOBAL) == 0 &&
1508 		    lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1509 			addmip = 1;
1510 		}
1511 	}
1512 
1513 	if (addmip) {
1514 		vnode_t *lvp = NULL;
1515 
1516 		error = vfs_get_lofi(vfsp, &lvp);
1517 		if (error > 0) {
1518 			lofi_remove(vfsp);
1519 
1520 			if (splice)
1521 				vn_vfsunlock(vp);
1522 			vfs_unlock(vfsp);
1523 
1524 			if (remount) {
1525 				VFS_RELE(vfsp);
1526 			} else {
1527 				vfs_free(vfsp);
1528 			}
1529 
1530 			goto errout;
1531 		} else if (error == -1) {
1532 			bdev = bvp->v_rdev;
1533 			VN_RELE(bvp);
1534 		} else {
1535 			bdev = lvp->v_rdev;
1536 			VN_RELE(lvp);
1537 			VN_RELE(bvp);
1538 		}
1539 
1540 		vfs_addmip(bdev, vfsp);
1541 		addmip = 0;
1542 		delmip = 1;
1543 	}
1544 	/*
1545 	 * Invalidate cached entry for the mount point.
1546 	 */
1547 	if (splice)
1548 		dnlc_purge_vp(vp);
1549 
1550 	/*
1551 	 * If have an option string but the filesystem doesn't supply a
1552 	 * prototype options table, create a table with the global
1553 	 * options and sufficient room to accept all the options in the
1554 	 * string.  Then parse the passed in option string
1555 	 * accepting all the options in the string.  This gives us an
1556 	 * option table with all the proper cancel properties for the
1557 	 * global options.
1558 	 *
1559 	 * Filesystems that supply a prototype options table are handled
1560 	 * earlier in this function.
1561 	 */
1562 	if (uap->flags & MS_OPTIONSTR) {
1563 		if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1564 			mntopts_t tmp_mntopts;
1565 
1566 			tmp_mntopts.mo_count = 0;
1567 			vfs_createopttbl_extend(&tmp_mntopts, inargs,
1568 			    &mnt_mntopts);
1569 			vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1570 			vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1571 			vfs_freeopttbl(&tmp_mntopts);
1572 		}
1573 	}
1574 
1575 	/*
1576 	 * Serialize with zone state transitions.
1577 	 * See vfs_list_add; zone mounted into is:
1578 	 * 	zone_find_by_path(refstr_value(vfsp->vfs_mntpt))
1579 	 * not the zone doing the mount (curproc->p_zone), but if we're already
1580 	 * inside a NGZ, then we know what zone we are.
1581 	 */
1582 	if (INGLOBALZONE(curproc)) {
1583 		zone = zone_find_by_path(mountpt);
1584 		ASSERT(zone != NULL);
1585 	} else {
1586 		zone = curproc->p_zone;
1587 		/*
1588 		 * zone_find_by_path does a hold, so do one here too so that
1589 		 * we can do a zone_rele after mount_completed.
1590 		 */
1591 		zone_hold(zone);
1592 	}
1593 	mount_in_progress(zone);
1594 	/*
1595 	 * Instantiate (or reinstantiate) the file system.  If appropriate,
1596 	 * splice it into the file system name space.
1597 	 *
1598 	 * We want VFS_MOUNT() to be able to override the vfs_resource
1599 	 * string if necessary (ie, mntfs), and also for a remount to
1600 	 * change the same (necessary when remounting '/' during boot).
1601 	 * So we set up vfs_mntpt and vfs_resource to what we think they
1602 	 * should be, then hand off control to VFS_MOUNT() which can
1603 	 * override this.
1604 	 *
1605 	 * For safety's sake, when changing vfs_resource or vfs_mntpt of
1606 	 * a vfs which is on the vfs list (i.e. during a remount), we must
1607 	 * never set those fields to NULL. Several bits of code make
1608 	 * assumptions that the fields are always valid.
1609 	 */
1610 	vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1611 	if (remount) {
1612 		if ((oldresource = vfsp->vfs_resource) != NULL)
1613 			refstr_hold(oldresource);
1614 		if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1615 			refstr_hold(oldmntpt);
1616 	}
1617 	vfs_setresource(vfsp, resource, 0);
1618 	vfs_setmntpoint(vfsp, mountpt, 0);
1619 
1620 	/*
1621 	 * going to mount on this vnode, so notify.
1622 	 */
1623 	vnevent_mountedover(vp, NULL);
1624 	error = VFS_MOUNT(vfsp, vp, uap, credp);
1625 
1626 	if (uap->flags & MS_RDONLY)
1627 		vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1628 	if (uap->flags & MS_NOSUID)
1629 		vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1630 	if (uap->flags & MS_GLOBAL)
1631 		vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1632 
1633 	if (error) {
1634 		lofi_remove(vfsp);
1635 
1636 		if (remount) {
1637 			/* put back pre-remount options */
1638 			vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1639 			vfs_setmntpoint(vfsp, refstr_value(oldmntpt),
1640 			    VFSSP_VERBATIM);
1641 			if (oldmntpt)
1642 				refstr_rele(oldmntpt);
1643 			vfs_setresource(vfsp, refstr_value(oldresource),
1644 			    VFSSP_VERBATIM);
1645 			if (oldresource)
1646 				refstr_rele(oldresource);
1647 			vfsp->vfs_flag = ovflags;
1648 			vfs_unlock(vfsp);
1649 			VFS_RELE(vfsp);
1650 		} else {
1651 			vfs_unlock(vfsp);
1652 			vfs_freemnttab(vfsp);
1653 			vfs_free(vfsp);
1654 		}
1655 	} else {
1656 		/*
1657 		 * Set the mount time to now
1658 		 */
1659 		vfsp->vfs_mtime = ddi_get_time();
1660 		if (remount) {
1661 			vfsp->vfs_flag &= ~VFS_REMOUNT;
1662 			if (oldresource)
1663 				refstr_rele(oldresource);
1664 			if (oldmntpt)
1665 				refstr_rele(oldmntpt);
1666 		} else if (splice) {
1667 			/*
1668 			 * Link vfsp into the name space at the mount
1669 			 * point. Vfs_add() is responsible for
1670 			 * holding the mount point which will be
1671 			 * released when vfs_remove() is called.
1672 			 */
1673 			vfs_add(vp, vfsp, uap->flags);
1674 		} else {
1675 			/*
1676 			 * Hold the reference to file system which is
1677 			 * not linked into the name space.
1678 			 */
1679 			vfsp->vfs_zone = NULL;
1680 			VFS_HOLD(vfsp);
1681 			vfsp->vfs_vnodecovered = NULL;
1682 		}
1683 		/*
1684 		 * Set flags for global options encountered
1685 		 */
1686 		if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1687 			vfsp->vfs_flag |= VFS_RDONLY;
1688 		else
1689 			vfsp->vfs_flag &= ~VFS_RDONLY;
1690 		if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1691 			vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1692 		} else {
1693 			if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1694 				vfsp->vfs_flag |= VFS_NODEVICES;
1695 			else
1696 				vfsp->vfs_flag &= ~VFS_NODEVICES;
1697 			if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1698 				vfsp->vfs_flag |= VFS_NOSETUID;
1699 			else
1700 				vfsp->vfs_flag &= ~VFS_NOSETUID;
1701 		}
1702 		if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1703 			vfsp->vfs_flag |= VFS_NBMAND;
1704 		else
1705 			vfsp->vfs_flag &= ~VFS_NBMAND;
1706 
1707 		if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1708 			vfsp->vfs_flag |= VFS_XATTR;
1709 		else
1710 			vfsp->vfs_flag &= ~VFS_XATTR;
1711 
1712 		if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1713 			vfsp->vfs_flag |= VFS_NOEXEC;
1714 		else
1715 			vfsp->vfs_flag &= ~VFS_NOEXEC;
1716 
1717 		/*
1718 		 * Now construct the output option string of options
1719 		 * we recognized.
1720 		 */
1721 		if (uap->flags & MS_OPTIONSTR) {
1722 			vfs_list_read_lock();
1723 			copyout_error = vfs_buildoptionstr(
1724 			    &vfsp->vfs_mntopts, inargs, optlen);
1725 			vfs_list_unlock();
1726 			if (copyout_error == 0 &&
1727 			    (uap->flags & MS_SYSSPACE) == 0) {
1728 				copyout_error = copyoutstr(inargs, opts,
1729 				    optlen, NULL);
1730 			}
1731 		}
1732 
1733 		/*
1734 		 * If this isn't a remount, set up the vopstats before
1735 		 * anyone can touch this. We only allow spliced file
1736 		 * systems (file systems which are in the namespace) to
1737 		 * have the VFS_STATS flag set.
1738 		 * NOTE: PxFS mounts the underlying file system with
1739 		 * MS_NOSPLICE set and copies those vfs_flags to its private
1740 		 * vfs structure. As a result, PxFS should never have
1741 		 * the VFS_STATS flag or else we might access the vfs
1742 		 * statistics-related fields prior to them being
1743 		 * properly initialized.
1744 		 */
1745 		if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1746 			initialize_vopstats(&vfsp->vfs_vopstats);
1747 			/*
1748 			 * We need to set vfs_vskap to NULL because there's
1749 			 * a chance it won't be set below.  This is checked
1750 			 * in teardown_vopstats() so we can't have garbage.
1751 			 */
1752 			vfsp->vfs_vskap = NULL;
1753 			vfsp->vfs_flag |= VFS_STATS;
1754 			vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1755 		}
1756 
1757 		if (vswp->vsw_flag & VSW_XID)
1758 			vfsp->vfs_flag |= VFS_XID;
1759 
1760 		vfs_unlock(vfsp);
1761 	}
1762 	mount_completed(zone);
1763 	zone_rele(zone);
1764 	if (splice)
1765 		vn_vfsunlock(vp);
1766 
1767 	if ((error == 0) && (copyout_error == 0)) {
1768 		if (!remount) {
1769 			/*
1770 			 * Don't call get_vskstat_anchor() while holding
1771 			 * locks since it allocates memory and calls
1772 			 * VFS_STATVFS().  For NFS, the latter can generate
1773 			 * an over-the-wire call.
1774 			 */
1775 			vskap = get_vskstat_anchor(vfsp);
1776 			/* Only take the lock if we have something to do */
1777 			if (vskap != NULL) {
1778 				vfs_lock_wait(vfsp);
1779 				if (vfsp->vfs_flag & VFS_STATS) {
1780 					vfsp->vfs_vskap = vskap;
1781 				}
1782 				vfs_unlock(vfsp);
1783 			}
1784 		}
1785 		/* Return vfsp to caller. */
1786 		*vfspp = vfsp;
1787 	}
1788 errout:
1789 	vfs_freeopttbl(&mnt_mntopts);
1790 	if (resource != NULL)
1791 		kmem_free(resource, strlen(resource) + 1);
1792 	if (mountpt != NULL)
1793 		kmem_free(mountpt, strlen(mountpt) + 1);
1794 	/*
1795 	 * It is possible we errored prior to adding to mount in progress
1796 	 * table. Must free vnode we acquired with successful lookupname.
1797 	 */
1798 	if (addmip)
1799 		VN_RELE(bvp);
1800 	if (delmip)
1801 		vfs_delmip(vfsp);
1802 	ASSERT(vswp != NULL);
1803 	vfs_unrefvfssw(vswp);
1804 	if (inargs != opts)
1805 		kmem_free(inargs, MAX_MNTOPT_STR);
1806 	if (copyout_error) {
1807 		lofi_remove(vfsp);
1808 		VFS_RELE(vfsp);
1809 		error = copyout_error;
1810 	}
1811 	return (error);
1812 }
1813 
1814 static void
1815 vfs_setpath(
1816     struct vfs *vfsp,		/* vfs being updated */
1817     refstr_t **refp,		/* Ref-count string to contain the new path */
1818     const char *newpath,	/* Path to add to refp (above) */
1819     uint32_t flag)		/* flag */
1820 {
1821 	size_t len;
1822 	refstr_t *ref;
1823 	zone_t *zone = curproc->p_zone;
1824 	char *sp;
1825 	int have_list_lock = 0;
1826 
1827 	ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1828 
1829 	/*
1830 	 * New path must be less than MAXPATHLEN because mntfs
1831 	 * will only display up to MAXPATHLEN bytes. This is currently
1832 	 * safe, because domount() uses pn_get(), and other callers
1833 	 * similarly cap the size to fewer than MAXPATHLEN bytes.
1834 	 */
1835 
1836 	ASSERT(strlen(newpath) < MAXPATHLEN);
1837 
1838 	/* mntfs requires consistency while vfs list lock is held */
1839 
1840 	if (VFS_ON_LIST(vfsp)) {
1841 		have_list_lock = 1;
1842 		vfs_list_lock();
1843 	}
1844 
1845 	if (*refp != NULL)
1846 		refstr_rele(*refp);
1847 
1848 	/*
1849 	 * If we are in a non-global zone then we prefix the supplied path,
1850 	 * newpath, with the zone's root path, with two exceptions. The first
1851 	 * is where we have been explicitly directed to avoid doing so; this
1852 	 * will be the case following a failed remount, where the path supplied
1853 	 * will be a saved version which must now be restored. The second
1854 	 * exception is where newpath is not a pathname but a descriptive name,
1855 	 * e.g. "procfs".
1856 	 */
1857 	if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') {
1858 		ref = refstr_alloc(newpath);
1859 		goto out;
1860 	}
1861 
1862 	/*
1863 	 * Truncate the trailing '/' in the zoneroot, and merge
1864 	 * in the zone's rootpath with the "newpath" (resource
1865 	 * or mountpoint) passed in.
1866 	 *
1867 	 * The size of the required buffer is thus the size of
1868 	 * the buffer required for the passed-in newpath
1869 	 * (strlen(newpath) + 1), plus the size of the buffer
1870 	 * required to hold zone_rootpath (zone_rootpathlen)
1871 	 * minus one for one of the now-superfluous NUL
1872 	 * terminations, minus one for the trailing '/'.
1873 	 *
1874 	 * That gives us:
1875 	 *
1876 	 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1877 	 *
1878 	 * Which is what we have below.
1879 	 */
1880 
1881 	len = strlen(newpath) + zone->zone_rootpathlen - 1;
1882 	sp = kmem_alloc(len, KM_SLEEP);
1883 
1884 	/*
1885 	 * Copy everything including the trailing slash, which
1886 	 * we then overwrite with the NUL character.
1887 	 */
1888 
1889 	(void) strcpy(sp, zone->zone_rootpath);
1890 	sp[zone->zone_rootpathlen - 2] = '\0';
1891 	(void) strcat(sp, newpath);
1892 
1893 	ref = refstr_alloc(sp);
1894 	kmem_free(sp, len);
1895 out:
1896 	*refp = ref;
1897 
1898 	if (have_list_lock) {
1899 		vfs_mnttab_modtimeupd();
1900 		vfs_list_unlock();
1901 	}
1902 }
1903 
1904 /*
1905  * Record a mounted resource name in a vfs structure.
1906  * If vfsp is already mounted, caller must hold the vfs lock.
1907  */
1908 void
1909 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag)
1910 {
1911 	if (resource == NULL || resource[0] == '\0')
1912 		resource = VFS_NORESOURCE;
1913 	vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag);
1914 }
1915 
1916 /*
1917  * Record a mount point name in a vfs structure.
1918  * If vfsp is already mounted, caller must hold the vfs lock.
1919  */
1920 void
1921 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag)
1922 {
1923 	if (mntpt == NULL || mntpt[0] == '\0')
1924 		mntpt = VFS_NOMNTPT;
1925 	vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag);
1926 }
1927 
1928 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1929 
1930 refstr_t *
1931 vfs_getresource(const struct vfs *vfsp)
1932 {
1933 	refstr_t *resource;
1934 
1935 	vfs_list_read_lock();
1936 	resource = vfsp->vfs_resource;
1937 	refstr_hold(resource);
1938 	vfs_list_unlock();
1939 
1940 	return (resource);
1941 }
1942 
1943 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
1944 
1945 refstr_t *
1946 vfs_getmntpoint(const struct vfs *vfsp)
1947 {
1948 	refstr_t *mntpt;
1949 
1950 	vfs_list_read_lock();
1951 	mntpt = vfsp->vfs_mntpt;
1952 	refstr_hold(mntpt);
1953 	vfs_list_unlock();
1954 
1955 	return (mntpt);
1956 }
1957 
1958 /*
1959  * Create an empty options table with enough empty slots to hold all
1960  * The options in the options string passed as an argument.
1961  * Potentially prepend another options table.
1962  *
1963  * Note: caller is responsible for locking the vfs list, if needed,
1964  *       to protect mops.
1965  */
1966 static void
1967 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
1968     const mntopts_t *mtmpl)
1969 {
1970 	const char *s = opts;
1971 	uint_t count;
1972 
1973 	if (opts == NULL || *opts == '\0') {
1974 		count = 0;
1975 	} else {
1976 		count = 1;
1977 
1978 		/*
1979 		 * Count number of options in the string
1980 		 */
1981 		for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
1982 			count++;
1983 			s++;
1984 		}
1985 	}
1986 	vfs_copyopttbl_extend(mtmpl, mops, count);
1987 }
1988 
1989 /*
1990  * Create an empty options table with enough empty slots to hold all
1991  * The options in the options string passed as an argument.
1992  *
1993  * This function is *not* for general use by filesystems.
1994  *
1995  * Note: caller is responsible for locking the vfs list, if needed,
1996  *       to protect mops.
1997  */
1998 void
1999 vfs_createopttbl(mntopts_t *mops, const char *opts)
2000 {
2001 	vfs_createopttbl_extend(mops, opts, NULL);
2002 }
2003 
2004 
2005 /*
2006  * Swap two mount options tables
2007  */
2008 static void
2009 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2010 {
2011 	uint_t tmpcnt;
2012 	mntopt_t *tmplist;
2013 
2014 	tmpcnt = optbl2->mo_count;
2015 	tmplist = optbl2->mo_list;
2016 	optbl2->mo_count = optbl1->mo_count;
2017 	optbl2->mo_list = optbl1->mo_list;
2018 	optbl1->mo_count = tmpcnt;
2019 	optbl1->mo_list = tmplist;
2020 }
2021 
2022 static void
2023 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2024 {
2025 	vfs_list_lock();
2026 	vfs_swapopttbl_nolock(optbl1, optbl2);
2027 	vfs_mnttab_modtimeupd();
2028 	vfs_list_unlock();
2029 }
2030 
2031 static char **
2032 vfs_copycancelopt_extend(char **const moc, int extend)
2033 {
2034 	int i = 0;
2035 	int j;
2036 	char **result;
2037 
2038 	if (moc != NULL) {
2039 		for (; moc[i] != NULL; i++)
2040 			/* count number of options to cancel */;
2041 	}
2042 
2043 	if (i + extend == 0)
2044 		return (NULL);
2045 
2046 	result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2047 
2048 	for (j = 0; j < i; j++) {
2049 		result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2050 		(void) strcpy(result[j], moc[j]);
2051 	}
2052 	for (; j <= i + extend; j++)
2053 		result[j] = NULL;
2054 
2055 	return (result);
2056 }
2057 
2058 static void
2059 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2060 {
2061 	char *sp, *dp;
2062 
2063 	d->mo_flags = s->mo_flags;
2064 	d->mo_data = s->mo_data;
2065 	sp = s->mo_name;
2066 	if (sp != NULL) {
2067 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2068 		(void) strcpy(dp, sp);
2069 		d->mo_name = dp;
2070 	} else {
2071 		d->mo_name = NULL; /* should never happen */
2072 	}
2073 
2074 	d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2075 
2076 	sp = s->mo_arg;
2077 	if (sp != NULL) {
2078 		dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2079 		(void) strcpy(dp, sp);
2080 		d->mo_arg = dp;
2081 	} else {
2082 		d->mo_arg = NULL;
2083 	}
2084 }
2085 
2086 /*
2087  * Copy a mount options table, possibly allocating some spare
2088  * slots at the end.  It is permissible to copy_extend the NULL table.
2089  */
2090 static void
2091 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2092 {
2093 	uint_t i, count;
2094 	mntopt_t *motbl;
2095 
2096 	/*
2097 	 * Clear out any existing stuff in the options table being initialized
2098 	 */
2099 	vfs_freeopttbl(dmo);
2100 	count = (smo == NULL) ? 0 : smo->mo_count;
2101 	if ((count + extra) == 0)	/* nothing to do */
2102 		return;
2103 	dmo->mo_count = count + extra;
2104 	motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2105 	dmo->mo_list = motbl;
2106 	for (i = 0; i < count; i++) {
2107 		vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2108 	}
2109 	for (i = count; i < count + extra; i++) {
2110 		motbl[i].mo_flags = MO_EMPTY;
2111 	}
2112 }
2113 
2114 /*
2115  * Copy a mount options table.
2116  *
2117  * This function is *not* for general use by filesystems.
2118  *
2119  * Note: caller is responsible for locking the vfs list, if needed,
2120  *       to protect smo and dmo.
2121  */
2122 void
2123 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2124 {
2125 	vfs_copyopttbl_extend(smo, dmo, 0);
2126 }
2127 
2128 static char **
2129 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2130 {
2131 	int c1 = 0;
2132 	int c2 = 0;
2133 	char **result;
2134 	char **sp1, **sp2, **dp;
2135 
2136 	/*
2137 	 * First we count both lists of cancel options.
2138 	 * If either is NULL or has no elements, we return a copy of
2139 	 * the other.
2140 	 */
2141 	if (mop1->mo_cancel != NULL) {
2142 		for (; mop1->mo_cancel[c1] != NULL; c1++)
2143 			/* count cancel options in mop1 */;
2144 	}
2145 
2146 	if (c1 == 0)
2147 		return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2148 
2149 	if (mop2->mo_cancel != NULL) {
2150 		for (; mop2->mo_cancel[c2] != NULL; c2++)
2151 			/* count cancel options in mop2 */;
2152 	}
2153 
2154 	result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2155 
2156 	if (c2 == 0)
2157 		return (result);
2158 
2159 	/*
2160 	 * When we get here, we've got two sets of cancel options;
2161 	 * we need to merge the two sets.  We know that the result
2162 	 * array has "c1+c2+1" entries and in the end we might shrink
2163 	 * it.
2164 	 * Result now has a copy of the c1 entries from mop1; we'll
2165 	 * now lookup all the entries of mop2 in mop1 and copy it if
2166 	 * it is unique.
2167 	 * This operation is O(n^2) but it's only called once per
2168 	 * filesystem per duplicate option.  This is a situation
2169 	 * which doesn't arise with the filesystems in ON and
2170 	 * n is generally 1.
2171 	 */
2172 
2173 	dp = &result[c1];
2174 	for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2175 		for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2176 			if (strcmp(*sp1, *sp2) == 0)
2177 				break;
2178 		}
2179 		if (*sp1 == NULL) {
2180 			/*
2181 			 * Option *sp2 not found in mop1, so copy it.
2182 			 * The calls to vfs_copycancelopt_extend()
2183 			 * guarantee that there's enough room.
2184 			 */
2185 			*dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2186 			(void) strcpy(*dp++, *sp2);
2187 		}
2188 	}
2189 	if (dp != &result[c1+c2]) {
2190 		size_t bytes = (dp - result + 1) * sizeof (char *);
2191 		char **nres = kmem_alloc(bytes, KM_SLEEP);
2192 
2193 		bcopy(result, nres, bytes);
2194 		kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2195 		result = nres;
2196 	}
2197 	return (result);
2198 }
2199 
2200 /*
2201  * Merge two mount option tables (outer and inner) into one.  This is very
2202  * similar to "merging" global variables and automatic variables in C.
2203  *
2204  * This isn't (and doesn't have to be) fast.
2205  *
2206  * This function is *not* for general use by filesystems.
2207  *
2208  * Note: caller is responsible for locking the vfs list, if needed,
2209  *       to protect omo, imo & dmo.
2210  */
2211 void
2212 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2213 {
2214 	uint_t i, count;
2215 	mntopt_t *mop, *motbl;
2216 	uint_t freeidx;
2217 
2218 	/*
2219 	 * First determine how much space we need to allocate.
2220 	 */
2221 	count = omo->mo_count;
2222 	for (i = 0; i < imo->mo_count; i++) {
2223 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2224 			continue;
2225 		if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2226 			count++;
2227 	}
2228 	ASSERT(count >= omo->mo_count &&
2229 	    count <= omo->mo_count + imo->mo_count);
2230 	motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2231 	for (i = 0; i < omo->mo_count; i++)
2232 		vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2233 	freeidx = omo->mo_count;
2234 	for (i = 0; i < imo->mo_count; i++) {
2235 		if (imo->mo_list[i].mo_flags & MO_EMPTY)
2236 			continue;
2237 		if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2238 			char **newcanp;
2239 			uint_t index = mop - omo->mo_list;
2240 
2241 			newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2242 
2243 			vfs_freeopt(&motbl[index]);
2244 			vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2245 
2246 			vfs_freecancelopt(motbl[index].mo_cancel);
2247 			motbl[index].mo_cancel = newcanp;
2248 		} else {
2249 			/*
2250 			 * If it's a new option, just copy it over to the first
2251 			 * free location.
2252 			 */
2253 			vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2254 		}
2255 	}
2256 	dmo->mo_count = count;
2257 	dmo->mo_list = motbl;
2258 }
2259 
2260 /*
2261  * Functions to set and clear mount options in a mount options table.
2262  */
2263 
2264 /*
2265  * Clear a mount option, if it exists.
2266  *
2267  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2268  * the vfs list.
2269  */
2270 static void
2271 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2272 {
2273 	struct mntopt *mop;
2274 	uint_t i, count;
2275 
2276 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2277 
2278 	count = mops->mo_count;
2279 	for (i = 0; i < count; i++) {
2280 		mop = &mops->mo_list[i];
2281 
2282 		if (mop->mo_flags & MO_EMPTY)
2283 			continue;
2284 		if (strcmp(opt, mop->mo_name))
2285 			continue;
2286 		mop->mo_flags &= ~MO_SET;
2287 		if (mop->mo_arg != NULL) {
2288 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2289 		}
2290 		mop->mo_arg = NULL;
2291 		if (update_mnttab)
2292 			vfs_mnttab_modtimeupd();
2293 		break;
2294 	}
2295 }
2296 
2297 void
2298 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2299 {
2300 	int gotlock = 0;
2301 
2302 	if (VFS_ON_LIST(vfsp)) {
2303 		gotlock = 1;
2304 		vfs_list_lock();
2305 	}
2306 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2307 	if (gotlock)
2308 		vfs_list_unlock();
2309 }
2310 
2311 
2312 /*
2313  * Set a mount option on.  If it's not found in the table, it's silently
2314  * ignored.  If the option has MO_IGNORE set, it is still set unless the
2315  * VFS_NOFORCEOPT bit is set in the flags.  Also, VFS_DISPLAY/VFS_NODISPLAY flag
2316  * bits can be used to toggle the MO_NODISPLAY bit for the option.
2317  * If the VFS_CREATEOPT flag bit is set then the first option slot with
2318  * MO_EMPTY set is created as the option passed in.
2319  *
2320  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2321  * the vfs list.
2322  */
2323 static void
2324 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2325     const char *arg, int flags, int update_mnttab)
2326 {
2327 	mntopt_t *mop;
2328 	uint_t i, count;
2329 	char *sp;
2330 
2331 	ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2332 
2333 	if (flags & VFS_CREATEOPT) {
2334 		if (vfs_hasopt(mops, opt) != NULL) {
2335 			flags &= ~VFS_CREATEOPT;
2336 		}
2337 	}
2338 	count = mops->mo_count;
2339 	for (i = 0; i < count; i++) {
2340 		mop = &mops->mo_list[i];
2341 
2342 		if (mop->mo_flags & MO_EMPTY) {
2343 			if ((flags & VFS_CREATEOPT) == 0)
2344 				continue;
2345 			sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2346 			(void) strcpy(sp, opt);
2347 			mop->mo_name = sp;
2348 			if (arg != NULL)
2349 				mop->mo_flags = MO_HASVALUE;
2350 			else
2351 				mop->mo_flags = 0;
2352 		} else if (strcmp(opt, mop->mo_name)) {
2353 			continue;
2354 		}
2355 		if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2356 			break;
2357 		if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2358 			sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2359 			(void) strcpy(sp, arg);
2360 		} else {
2361 			sp = NULL;
2362 		}
2363 		if (mop->mo_arg != NULL)
2364 			kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2365 		mop->mo_arg = sp;
2366 		if (flags & VFS_DISPLAY)
2367 			mop->mo_flags &= ~MO_NODISPLAY;
2368 		if (flags & VFS_NODISPLAY)
2369 			mop->mo_flags |= MO_NODISPLAY;
2370 		mop->mo_flags |= MO_SET;
2371 		if (mop->mo_cancel != NULL) {
2372 			char **cp;
2373 
2374 			for (cp = mop->mo_cancel; *cp != NULL; cp++)
2375 				vfs_clearmntopt_nolock(mops, *cp, 0);
2376 		}
2377 		if (update_mnttab)
2378 			vfs_mnttab_modtimeupd();
2379 		break;
2380 	}
2381 }
2382 
2383 void
2384 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2385 {
2386 	int gotlock = 0;
2387 
2388 	if (VFS_ON_LIST(vfsp)) {
2389 		gotlock = 1;
2390 		vfs_list_lock();
2391 	}
2392 	vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2393 	if (gotlock)
2394 		vfs_list_unlock();
2395 }
2396 
2397 
2398 /*
2399  * Add a "tag" option to a mounted file system's options list.
2400  *
2401  * Note: caller is responsible for locking the vfs list, if needed,
2402  *       to protect mops.
2403  */
2404 static mntopt_t *
2405 vfs_addtag(mntopts_t *mops, const char *tag)
2406 {
2407 	uint_t count;
2408 	mntopt_t *mop, *motbl;
2409 
2410 	count = mops->mo_count + 1;
2411 	motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2412 	if (mops->mo_count) {
2413 		size_t len = (count - 1) * sizeof (mntopt_t);
2414 
2415 		bcopy(mops->mo_list, motbl, len);
2416 		kmem_free(mops->mo_list, len);
2417 	}
2418 	mops->mo_count = count;
2419 	mops->mo_list = motbl;
2420 	mop = &motbl[count - 1];
2421 	mop->mo_flags = MO_TAG;
2422 	mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2423 	(void) strcpy(mop->mo_name, tag);
2424 	return (mop);
2425 }
2426 
2427 /*
2428  * Allow users to set arbitrary "tags" in a vfs's mount options.
2429  * Broader use within the kernel is discouraged.
2430  */
2431 int
2432 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2433     cred_t *cr)
2434 {
2435 	vfs_t *vfsp;
2436 	mntopts_t *mops;
2437 	mntopt_t *mop;
2438 	int found = 0;
2439 	dev_t dev = makedevice(major, minor);
2440 	int err = 0;
2441 	char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2442 
2443 	/*
2444 	 * Find the desired mounted file system
2445 	 */
2446 	vfs_list_lock();
2447 	vfsp = rootvfs;
2448 	do {
2449 		if (vfsp->vfs_dev == dev &&
2450 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2451 			found = 1;
2452 			break;
2453 		}
2454 		vfsp = vfsp->vfs_next;
2455 	} while (vfsp != rootvfs);
2456 
2457 	if (!found) {
2458 		err = EINVAL;
2459 		goto out;
2460 	}
2461 	err = secpolicy_fs_config(cr, vfsp);
2462 	if (err != 0)
2463 		goto out;
2464 
2465 	mops = &vfsp->vfs_mntopts;
2466 	/*
2467 	 * Add tag if it doesn't already exist
2468 	 */
2469 	if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2470 		int len;
2471 
2472 		(void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2473 		len = strlen(buf);
2474 		if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2475 			err = ENAMETOOLONG;
2476 			goto out;
2477 		}
2478 		mop = vfs_addtag(mops, tag);
2479 	}
2480 	if ((mop->mo_flags & MO_TAG) == 0) {
2481 		err = EINVAL;
2482 		goto out;
2483 	}
2484 	vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2485 out:
2486 	vfs_list_unlock();
2487 	kmem_free(buf, MAX_MNTOPT_STR);
2488 	return (err);
2489 }
2490 
2491 /*
2492  * Allow users to remove arbitrary "tags" in a vfs's mount options.
2493  * Broader use within the kernel is discouraged.
2494  */
2495 int
2496 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2497     cred_t *cr)
2498 {
2499 	vfs_t *vfsp;
2500 	mntopt_t *mop;
2501 	int found = 0;
2502 	dev_t dev = makedevice(major, minor);
2503 	int err = 0;
2504 
2505 	/*
2506 	 * Find the desired mounted file system
2507 	 */
2508 	vfs_list_lock();
2509 	vfsp = rootvfs;
2510 	do {
2511 		if (vfsp->vfs_dev == dev &&
2512 		    strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2513 			found = 1;
2514 			break;
2515 		}
2516 		vfsp = vfsp->vfs_next;
2517 	} while (vfsp != rootvfs);
2518 
2519 	if (!found) {
2520 		err = EINVAL;
2521 		goto out;
2522 	}
2523 	err = secpolicy_fs_config(cr, vfsp);
2524 	if (err != 0)
2525 		goto out;
2526 
2527 	if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2528 		err = EINVAL;
2529 		goto out;
2530 	}
2531 	if ((mop->mo_flags & MO_TAG) == 0) {
2532 		err = EINVAL;
2533 		goto out;
2534 	}
2535 	vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2536 out:
2537 	vfs_list_unlock();
2538 	return (err);
2539 }
2540 
2541 /*
2542  * Function to parse an option string and fill in a mount options table.
2543  * Unknown options are silently ignored.  The input option string is modified
2544  * by replacing separators with nulls.  If the create flag is set, options
2545  * not found in the table are just added on the fly.  The table must have
2546  * an option slot marked MO_EMPTY to add an option on the fly.
2547  *
2548  * This function is *not* for general use by filesystems.
2549  *
2550  * Note: caller is responsible for locking the vfs list, if needed,
2551  *       to protect mops..
2552  */
2553 void
2554 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2555 {
2556 	char *s = osp, *p, *nextop, *valp, *cp, *ep;
2557 	int setflg = VFS_NOFORCEOPT;
2558 
2559 	if (osp == NULL)
2560 		return;
2561 	while (*s != '\0') {
2562 		p = strchr(s, ',');	/* find next option */
2563 		if (p == NULL) {
2564 			cp = NULL;
2565 			p = s + strlen(s);
2566 		} else {
2567 			cp = p;		/* save location of comma */
2568 			*p++ = '\0';	/* mark end and point to next option */
2569 		}
2570 		nextop = p;
2571 		p = strchr(s, '=');	/* look for value */
2572 		if (p == NULL) {
2573 			valp = NULL;	/* no value supplied */
2574 		} else {
2575 			ep = p;		/* save location of equals */
2576 			*p++ = '\0';	/* end option and point to value */
2577 			valp = p;
2578 		}
2579 		/*
2580 		 * set option into options table
2581 		 */
2582 		if (create)
2583 			setflg |= VFS_CREATEOPT;
2584 		vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2585 		if (cp != NULL)
2586 			*cp = ',';	/* restore the comma */
2587 		if (valp != NULL)
2588 			*ep = '=';	/* restore the equals */
2589 		s = nextop;
2590 	}
2591 }
2592 
2593 /*
2594  * Function to inquire if an option exists in a mount options table.
2595  * Returns a pointer to the option if it exists, else NULL.
2596  *
2597  * This function is *not* for general use by filesystems.
2598  *
2599  * Note: caller is responsible for locking the vfs list, if needed,
2600  *       to protect mops.
2601  */
2602 struct mntopt *
2603 vfs_hasopt(const mntopts_t *mops, const char *opt)
2604 {
2605 	struct mntopt *mop;
2606 	uint_t i, count;
2607 
2608 	count = mops->mo_count;
2609 	for (i = 0; i < count; i++) {
2610 		mop = &mops->mo_list[i];
2611 
2612 		if (mop->mo_flags & MO_EMPTY)
2613 			continue;
2614 		if (strcmp(opt, mop->mo_name) == 0)
2615 			return (mop);
2616 	}
2617 	return (NULL);
2618 }
2619 
2620 /*
2621  * Function to inquire if an option is set in a mount options table.
2622  * Returns non-zero if set and fills in the arg pointer with a pointer to
2623  * the argument string or NULL if there is no argument string.
2624  */
2625 static int
2626 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2627 {
2628 	struct mntopt *mop;
2629 	uint_t i, count;
2630 
2631 	count = mops->mo_count;
2632 	for (i = 0; i < count; i++) {
2633 		mop = &mops->mo_list[i];
2634 
2635 		if (mop->mo_flags & MO_EMPTY)
2636 			continue;
2637 		if (strcmp(opt, mop->mo_name))
2638 			continue;
2639 		if ((mop->mo_flags & MO_SET) == 0)
2640 			return (0);
2641 		if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2642 			*argp = mop->mo_arg;
2643 		return (1);
2644 	}
2645 	return (0);
2646 }
2647 
2648 
2649 int
2650 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2651 {
2652 	int ret;
2653 
2654 	vfs_list_read_lock();
2655 	ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2656 	vfs_list_unlock();
2657 	return (ret);
2658 }
2659 
2660 
2661 /*
2662  * Construct a comma separated string of the options set in the given
2663  * mount table, return the string in the given buffer.  Return non-zero if
2664  * the buffer would overflow.
2665  *
2666  * This function is *not* for general use by filesystems.
2667  *
2668  * Note: caller is responsible for locking the vfs list, if needed,
2669  *       to protect mp.
2670  */
2671 int
2672 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2673 {
2674 	char *cp;
2675 	uint_t i;
2676 
2677 	buf[0] = '\0';
2678 	cp = buf;
2679 	for (i = 0; i < mp->mo_count; i++) {
2680 		struct mntopt *mop;
2681 
2682 		mop = &mp->mo_list[i];
2683 		if (mop->mo_flags & MO_SET) {
2684 			int optlen, comma = 0;
2685 
2686 			if (buf[0] != '\0')
2687 				comma = 1;
2688 			optlen = strlen(mop->mo_name);
2689 			if (strlen(buf) + comma + optlen + 1 > len)
2690 				goto err;
2691 			if (comma)
2692 				*cp++ = ',';
2693 			(void) strcpy(cp, mop->mo_name);
2694 			cp += optlen;
2695 			/*
2696 			 * Append option value if there is one
2697 			 */
2698 			if (mop->mo_arg != NULL) {
2699 				int arglen;
2700 
2701 				arglen = strlen(mop->mo_arg);
2702 				if (strlen(buf) + arglen + 2 > len)
2703 					goto err;
2704 				*cp++ = '=';
2705 				(void) strcpy(cp, mop->mo_arg);
2706 				cp += arglen;
2707 			}
2708 		}
2709 	}
2710 	return (0);
2711 err:
2712 	return (EOVERFLOW);
2713 }
2714 
2715 static void
2716 vfs_freecancelopt(char **moc)
2717 {
2718 	if (moc != NULL) {
2719 		int ccnt = 0;
2720 		char **cp;
2721 
2722 		for (cp = moc; *cp != NULL; cp++) {
2723 			kmem_free(*cp, strlen(*cp) + 1);
2724 			ccnt++;
2725 		}
2726 		kmem_free(moc, (ccnt + 1) * sizeof (char *));
2727 	}
2728 }
2729 
2730 static void
2731 vfs_freeopt(mntopt_t *mop)
2732 {
2733 	if (mop->mo_name != NULL)
2734 		kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2735 
2736 	vfs_freecancelopt(mop->mo_cancel);
2737 
2738 	if (mop->mo_arg != NULL)
2739 		kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2740 }
2741 
2742 /*
2743  * Free a mount options table
2744  *
2745  * This function is *not* for general use by filesystems.
2746  *
2747  * Note: caller is responsible for locking the vfs list, if needed,
2748  *       to protect mp.
2749  */
2750 void
2751 vfs_freeopttbl(mntopts_t *mp)
2752 {
2753 	uint_t i, count;
2754 
2755 	count = mp->mo_count;
2756 	for (i = 0; i < count; i++) {
2757 		vfs_freeopt(&mp->mo_list[i]);
2758 	}
2759 	if (count) {
2760 		kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2761 		mp->mo_count = 0;
2762 		mp->mo_list = NULL;
2763 	}
2764 }
2765 
2766 
2767 /* ARGSUSED */
2768 static int
2769 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2770     caller_context_t *ct)
2771 {
2772 	return (0);
2773 }
2774 
2775 /* ARGSUSED */
2776 static int
2777 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2778     caller_context_t *ct)
2779 {
2780 	return (0);
2781 }
2782 
2783 /*
2784  * The dummy vnode is currently used only by file events notification
2785  * module which is just interested in the timestamps.
2786  */
2787 /* ARGSUSED */
2788 static int
2789 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2790     caller_context_t *ct)
2791 {
2792 	bzero(vap, sizeof (vattr_t));
2793 	vap->va_type = VREG;
2794 	vap->va_nlink = 1;
2795 	vap->va_ctime = vfs_mnttab_ctime;
2796 	/*
2797 	 * it is ok to just copy mtime as the time will be monotonically
2798 	 * increasing.
2799 	 */
2800 	vap->va_mtime = vfs_mnttab_mtime;
2801 	vap->va_atime = vap->va_mtime;
2802 	return (0);
2803 }
2804 
2805 static void
2806 vfs_mnttabvp_setup(void)
2807 {
2808 	vnode_t *tvp;
2809 	vnodeops_t *vfs_mntdummyvnops;
2810 	const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2811 		VOPNAME_READ, 		{ .vop_read = vfs_mntdummyread },
2812 		VOPNAME_WRITE, 		{ .vop_write = vfs_mntdummywrite },
2813 		VOPNAME_GETATTR,	{ .vop_getattr = vfs_mntdummygetattr },
2814 		VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
2815 		NULL,			NULL
2816 	};
2817 
2818 	if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2819 	    &vfs_mntdummyvnops) != 0) {
2820 		cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2821 		/* Shouldn't happen, but not bad enough to panic */
2822 		return;
2823 	}
2824 
2825 	/*
2826 	 * A global dummy vnode is allocated to represent mntfs files.
2827 	 * The mntfs file (/etc/mnttab) can be monitored for file events
2828 	 * and receive an event when mnttab changes. Dummy VOP calls
2829 	 * will be made on this vnode. The file events notification module
2830 	 * intercepts this vnode and delivers relevant events.
2831 	 */
2832 	tvp = vn_alloc(KM_SLEEP);
2833 	tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2834 	vn_setops(tvp, vfs_mntdummyvnops);
2835 	tvp->v_type = VREG;
2836 	/*
2837 	 * The mnt dummy ops do not reference v_data.
2838 	 * No other module intercepting this vnode should either.
2839 	 * Just set it to point to itself.
2840 	 */
2841 	tvp->v_data = (caddr_t)tvp;
2842 	tvp->v_vfsp = rootvfs;
2843 	vfs_mntdummyvp = tvp;
2844 }
2845 
2846 /*
2847  * performs fake read/write ops
2848  */
2849 static void
2850 vfs_mnttab_rwop(int rw)
2851 {
2852 	struct uio	uio;
2853 	struct iovec	iov;
2854 	char	buf[1];
2855 
2856 	if (vfs_mntdummyvp == NULL)
2857 		return;
2858 
2859 	bzero(&uio, sizeof (uio));
2860 	bzero(&iov, sizeof (iov));
2861 	iov.iov_base = buf;
2862 	iov.iov_len = 0;
2863 	uio.uio_iov = &iov;
2864 	uio.uio_iovcnt = 1;
2865 	uio.uio_loffset = 0;
2866 	uio.uio_segflg = UIO_SYSSPACE;
2867 	uio.uio_resid = 0;
2868 	if (rw) {
2869 		(void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2870 	} else {
2871 		(void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2872 	}
2873 }
2874 
2875 /*
2876  * Generate a write operation.
2877  */
2878 void
2879 vfs_mnttab_writeop(void)
2880 {
2881 	vfs_mnttab_rwop(1);
2882 }
2883 
2884 /*
2885  * Generate a read operation.
2886  */
2887 void
2888 vfs_mnttab_readop(void)
2889 {
2890 	vfs_mnttab_rwop(0);
2891 }
2892 
2893 /*
2894  * Free any mnttab information recorded in the vfs struct.
2895  * The vfs must not be on the vfs list.
2896  */
2897 static void
2898 vfs_freemnttab(struct vfs *vfsp)
2899 {
2900 	ASSERT(!VFS_ON_LIST(vfsp));
2901 
2902 	/*
2903 	 * Free device and mount point information
2904 	 */
2905 	if (vfsp->vfs_mntpt != NULL) {
2906 		refstr_rele(vfsp->vfs_mntpt);
2907 		vfsp->vfs_mntpt = NULL;
2908 	}
2909 	if (vfsp->vfs_resource != NULL) {
2910 		refstr_rele(vfsp->vfs_resource);
2911 		vfsp->vfs_resource = NULL;
2912 	}
2913 	/*
2914 	 * Now free mount options information
2915 	 */
2916 	vfs_freeopttbl(&vfsp->vfs_mntopts);
2917 }
2918 
2919 /*
2920  * Return the last mnttab modification time
2921  */
2922 void
2923 vfs_mnttab_modtime(timespec_t *ts)
2924 {
2925 	ASSERT(RW_LOCK_HELD(&vfslist));
2926 	*ts = vfs_mnttab_mtime;
2927 }
2928 
2929 /*
2930  * See if mnttab is changed
2931  */
2932 void
2933 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2934 {
2935 	int changed;
2936 
2937 	*phpp = (struct pollhead *)NULL;
2938 
2939 	/*
2940 	 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
2941 	 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
2942 	 * to not grab the vfs list lock because tv_sec is monotonically
2943 	 * increasing.
2944 	 */
2945 
2946 	changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
2947 	    (old->tv_sec != vfs_mnttab_mtime.tv_sec);
2948 	if (!changed) {
2949 		*phpp = &vfs_pollhd;
2950 	}
2951 }
2952 
2953 /* Provide a unique and monotonically-increasing timestamp. */
2954 void
2955 vfs_mono_time(timespec_t *ts)
2956 {
2957 	static volatile hrtime_t hrt;		/* The saved time. */
2958 	hrtime_t	newhrt, oldhrt;		/* For effecting the CAS. */
2959 	timespec_t	newts;
2960 
2961 	/*
2962 	 * Try gethrestime() first, but be prepared to fabricate a sensible
2963 	 * answer at the first sign of any trouble.
2964 	 */
2965 	gethrestime(&newts);
2966 	newhrt = ts2hrt(&newts);
2967 	for (;;) {
2968 		oldhrt = hrt;
2969 		if (newhrt <= hrt)
2970 			newhrt = hrt + 1;
2971 		if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
2972 			break;
2973 	}
2974 	hrt2ts(newhrt, ts);
2975 }
2976 
2977 /*
2978  * Update the mnttab modification time and wake up any waiters for
2979  * mnttab changes
2980  */
2981 void
2982 vfs_mnttab_modtimeupd()
2983 {
2984 	hrtime_t oldhrt, newhrt;
2985 
2986 	ASSERT(RW_WRITE_HELD(&vfslist));
2987 	oldhrt = ts2hrt(&vfs_mnttab_mtime);
2988 	gethrestime(&vfs_mnttab_mtime);
2989 	newhrt = ts2hrt(&vfs_mnttab_mtime);
2990 	if (oldhrt == (hrtime_t)0)
2991 		vfs_mnttab_ctime = vfs_mnttab_mtime;
2992 	/*
2993 	 * Attempt to provide unique mtime (like uniqtime but not).
2994 	 */
2995 	if (newhrt == oldhrt) {
2996 		newhrt++;
2997 		hrt2ts(newhrt, &vfs_mnttab_mtime);
2998 	}
2999 	pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
3000 	vfs_mnttab_writeop();
3001 }
3002 
3003 int
3004 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3005 {
3006 	vnode_t *coveredvp;
3007 	int error;
3008 	extern void teardown_vopstats(vfs_t *);
3009 
3010 	/*
3011 	 * Get covered vnode. This will be NULL if the vfs is not linked
3012 	 * into the file system name space (i.e., domount() with MNT_NOSPICE).
3013 	 */
3014 	coveredvp = vfsp->vfs_vnodecovered;
3015 	ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3016 
3017 	/*
3018 	 * Purge all dnlc entries for this vfs.
3019 	 */
3020 	(void) dnlc_purge_vfsp(vfsp, 0);
3021 
3022 	/* For forcible umount, skip VFS_SYNC() since it may hang */
3023 	if ((flag & MS_FORCE) == 0)
3024 		(void) VFS_SYNC(vfsp, 0, cr);
3025 
3026 	/*
3027 	 * Lock the vfs to maintain fs status quo during unmount.  This
3028 	 * has to be done after the sync because ufs_update tries to acquire
3029 	 * the vfs_reflock.
3030 	 */
3031 	vfs_lock_wait(vfsp);
3032 
3033 	if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3034 		vfs_unlock(vfsp);
3035 		if (coveredvp != NULL)
3036 			vn_vfsunlock(coveredvp);
3037 	} else if (coveredvp != NULL) {
3038 		teardown_vopstats(vfsp);
3039 		/*
3040 		 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3041 		 * when it frees vfsp so we do a VN_HOLD() so we can
3042 		 * continue to use coveredvp afterwards.
3043 		 */
3044 		VN_HOLD(coveredvp);
3045 		vfs_remove(vfsp);
3046 		vn_vfsunlock(coveredvp);
3047 		VN_RELE(coveredvp);
3048 	} else {
3049 		teardown_vopstats(vfsp);
3050 		/*
3051 		 * Release the reference to vfs that is not linked
3052 		 * into the name space.
3053 		 */
3054 		vfs_unlock(vfsp);
3055 		VFS_RELE(vfsp);
3056 	}
3057 	return (error);
3058 }
3059 
3060 
3061 /*
3062  * Vfs_unmountall() is called by uadmin() to unmount all
3063  * mounted file systems (except the root file system) during shutdown.
3064  * It follows the existing locking protocol when traversing the vfs list
3065  * to sync and unmount vfses. Even though there should be no
3066  * other thread running while the system is shutting down, it is prudent
3067  * to still follow the locking protocol.
3068  */
3069 void
3070 vfs_unmountall(void)
3071 {
3072 	struct vfs *vfsp;
3073 	struct vfs *prev_vfsp = NULL;
3074 	int error;
3075 
3076 	/*
3077 	 * Toss all dnlc entries now so that the per-vfs sync
3078 	 * and unmount operations don't have to slog through
3079 	 * a bunch of uninteresting vnodes over and over again.
3080 	 */
3081 	dnlc_purge();
3082 
3083 	vfs_list_lock();
3084 	for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3085 		prev_vfsp = vfsp->vfs_prev;
3086 
3087 		if (vfs_lock(vfsp) != 0)
3088 			continue;
3089 		error = vn_vfswlock(vfsp->vfs_vnodecovered);
3090 		vfs_unlock(vfsp);
3091 		if (error)
3092 			continue;
3093 
3094 		vfs_list_unlock();
3095 
3096 		(void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3097 		(void) dounmount(vfsp, 0, CRED());
3098 
3099 		/*
3100 		 * Since we dropped the vfslist lock above we must
3101 		 * verify that next_vfsp still exists, else start over.
3102 		 */
3103 		vfs_list_lock();
3104 		for (vfsp = rootvfs->vfs_prev;
3105 		    vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3106 			if (vfsp == prev_vfsp)
3107 				break;
3108 		if (vfsp == rootvfs && prev_vfsp != rootvfs)
3109 			prev_vfsp = rootvfs->vfs_prev;
3110 	}
3111 	vfs_list_unlock();
3112 }
3113 
3114 /*
3115  * Called to add an entry to the end of the vfs mount in progress list
3116  */
3117 void
3118 vfs_addmip(dev_t dev, struct vfs *vfsp)
3119 {
3120 	struct ipmnt *mipp;
3121 
3122 	mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3123 	mipp->mip_next = NULL;
3124 	mipp->mip_dev = dev;
3125 	mipp->mip_vfsp = vfsp;
3126 	mutex_enter(&vfs_miplist_mutex);
3127 	if (vfs_miplist_end != NULL)
3128 		vfs_miplist_end->mip_next = mipp;
3129 	else
3130 		vfs_miplist = mipp;
3131 	vfs_miplist_end = mipp;
3132 	mutex_exit(&vfs_miplist_mutex);
3133 }
3134 
3135 /*
3136  * Called to remove an entry from the mount in progress list
3137  * Either because the mount completed or it failed.
3138  */
3139 void
3140 vfs_delmip(struct vfs *vfsp)
3141 {
3142 	struct ipmnt *mipp, *mipprev;
3143 
3144 	mutex_enter(&vfs_miplist_mutex);
3145 	mipprev = NULL;
3146 	for (mipp = vfs_miplist;
3147 	    mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3148 		mipprev = mipp;
3149 	}
3150 	if (mipp == NULL)
3151 		return; /* shouldn't happen */
3152 	if (mipp == vfs_miplist_end)
3153 		vfs_miplist_end = mipprev;
3154 	if (mipprev == NULL)
3155 		vfs_miplist = mipp->mip_next;
3156 	else
3157 		mipprev->mip_next = mipp->mip_next;
3158 	mutex_exit(&vfs_miplist_mutex);
3159 	kmem_free(mipp, sizeof (struct ipmnt));
3160 }
3161 
3162 /*
3163  * vfs_add is called by a specific filesystem's mount routine to add
3164  * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3165  * The vfs should already have been locked by the caller.
3166  *
3167  * coveredvp is NULL if this is the root.
3168  */
3169 void
3170 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3171 {
3172 	int newflag;
3173 
3174 	ASSERT(vfs_lock_held(vfsp));
3175 	VFS_HOLD(vfsp);
3176 	newflag = vfsp->vfs_flag;
3177 	if (mflag & MS_RDONLY)
3178 		newflag |= VFS_RDONLY;
3179 	else
3180 		newflag &= ~VFS_RDONLY;
3181 	if (mflag & MS_NOSUID)
3182 		newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3183 	else
3184 		newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3185 	if (mflag & MS_NOMNTTAB)
3186 		newflag |= VFS_NOMNTTAB;
3187 	else
3188 		newflag &= ~VFS_NOMNTTAB;
3189 
3190 	if (coveredvp != NULL) {
3191 		ASSERT(vn_vfswlock_held(coveredvp));
3192 		coveredvp->v_vfsmountedhere = vfsp;
3193 		VN_HOLD(coveredvp);
3194 	}
3195 	vfsp->vfs_vnodecovered = coveredvp;
3196 	vfsp->vfs_flag = newflag;
3197 
3198 	vfs_list_add(vfsp);
3199 }
3200 
3201 /*
3202  * Remove a vfs from the vfs list, null out the pointer from the
3203  * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3204  * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3205  * reference to the vfs and to the covered vnode.
3206  *
3207  * Called from dounmount after it's confirmed with the file system
3208  * that the unmount is legal.
3209  */
3210 void
3211 vfs_remove(struct vfs *vfsp)
3212 {
3213 	vnode_t *vp;
3214 
3215 	ASSERT(vfs_lock_held(vfsp));
3216 
3217 	/*
3218 	 * Can't unmount root.  Should never happen because fs will
3219 	 * be busy.
3220 	 */
3221 	if (vfsp == rootvfs)
3222 		panic("vfs_remove: unmounting root");
3223 
3224 	vfs_list_remove(vfsp);
3225 
3226 	/*
3227 	 * Unhook from the file system name space.
3228 	 */
3229 	vp = vfsp->vfs_vnodecovered;
3230 	ASSERT(vn_vfswlock_held(vp));
3231 	vp->v_vfsmountedhere = NULL;
3232 	vfsp->vfs_vnodecovered = NULL;
3233 	VN_RELE(vp);
3234 
3235 	/*
3236 	 * Release lock and wakeup anybody waiting.
3237 	 */
3238 	vfs_unlock(vfsp);
3239 	VFS_RELE(vfsp);
3240 }
3241 
3242 /*
3243  * Lock a filesystem to prevent access to it while mounting,
3244  * unmounting and syncing.  Return EBUSY immediately if lock
3245  * can't be acquired.
3246  */
3247 int
3248 vfs_lock(vfs_t *vfsp)
3249 {
3250 	vn_vfslocks_entry_t *vpvfsentry;
3251 
3252 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3253 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3254 		return (0);
3255 
3256 	vn_vfslocks_rele(vpvfsentry);
3257 	return (EBUSY);
3258 }
3259 
3260 int
3261 vfs_rlock(vfs_t *vfsp)
3262 {
3263 	vn_vfslocks_entry_t *vpvfsentry;
3264 
3265 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3266 
3267 	if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3268 		return (0);
3269 
3270 	vn_vfslocks_rele(vpvfsentry);
3271 	return (EBUSY);
3272 }
3273 
3274 void
3275 vfs_lock_wait(vfs_t *vfsp)
3276 {
3277 	vn_vfslocks_entry_t *vpvfsentry;
3278 
3279 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3280 	rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3281 }
3282 
3283 void
3284 vfs_rlock_wait(vfs_t *vfsp)
3285 {
3286 	vn_vfslocks_entry_t *vpvfsentry;
3287 
3288 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3289 	rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3290 }
3291 
3292 /*
3293  * Unlock a locked filesystem.
3294  */
3295 void
3296 vfs_unlock(vfs_t *vfsp)
3297 {
3298 	vn_vfslocks_entry_t *vpvfsentry;
3299 
3300 	/*
3301 	 * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3302 	 * And these changes should remain for the patch changes as it is.
3303 	 */
3304 	if (panicstr)
3305 		return;
3306 
3307 	/*
3308 	 * ve_refcount needs to be dropped twice here.
3309 	 * 1. To release refernce after a call to vfs_locks_getlock()
3310 	 * 2. To release the reference from the locking routines like
3311 	 *    vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3312 	 */
3313 
3314 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3315 	vn_vfslocks_rele(vpvfsentry);
3316 
3317 	rwst_exit(&vpvfsentry->ve_lock);
3318 	vn_vfslocks_rele(vpvfsentry);
3319 }
3320 
3321 /*
3322  * Utility routine that allows a filesystem to construct its
3323  * fsid in "the usual way" - by munging some underlying dev_t and
3324  * the filesystem type number into the 64-bit fsid.  Note that
3325  * this implicitly relies on dev_t persistence to make filesystem
3326  * id's persistent.
3327  *
3328  * There's nothing to prevent an individual fs from constructing its
3329  * fsid in a different way, and indeed they should.
3330  *
3331  * Since we want fsids to be 32-bit quantities (so that they can be
3332  * exported identically by either 32-bit or 64-bit APIs, as well as
3333  * the fact that fsid's are "known" to NFS), we compress the device
3334  * number given down to 32-bits, and panic if that isn't possible.
3335  */
3336 void
3337 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3338 {
3339 	if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3340 		panic("device number too big for fsid!");
3341 	fsi->val[1] = val;
3342 }
3343 
3344 int
3345 vfs_lock_held(vfs_t *vfsp)
3346 {
3347 	int held;
3348 	vn_vfslocks_entry_t *vpvfsentry;
3349 
3350 	/*
3351 	 * vfs_lock_held will mimic sema_held behaviour
3352 	 * if panicstr is set. And these changes should remain
3353 	 * for the patch changes as it is.
3354 	 */
3355 	if (panicstr)
3356 		return (1);
3357 
3358 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3359 	held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3360 
3361 	vn_vfslocks_rele(vpvfsentry);
3362 	return (held);
3363 }
3364 
3365 struct _kthread *
3366 vfs_lock_owner(vfs_t *vfsp)
3367 {
3368 	struct _kthread *owner;
3369 	vn_vfslocks_entry_t *vpvfsentry;
3370 
3371 	/*
3372 	 * vfs_wlock_held will mimic sema_held behaviour
3373 	 * if panicstr is set. And these changes should remain
3374 	 * for the patch changes as it is.
3375 	 */
3376 	if (panicstr)
3377 		return (NULL);
3378 
3379 	vpvfsentry = vn_vfslocks_getlock(vfsp);
3380 	owner = rwst_owner(&vpvfsentry->ve_lock);
3381 
3382 	vn_vfslocks_rele(vpvfsentry);
3383 	return (owner);
3384 }
3385 
3386 /*
3387  * vfs list locking.
3388  *
3389  * Rather than manipulate the vfslist lock directly, we abstract into lock
3390  * and unlock routines to allow the locking implementation to be changed for
3391  * clustering.
3392  *
3393  * Whenever the vfs list is modified through its hash links, the overall list
3394  * lock must be obtained before locking the relevant hash bucket.  But to see
3395  * whether a given vfs is on the list, it suffices to obtain the lock for the
3396  * hash bucket without getting the overall list lock.  (See getvfs() below.)
3397  */
3398 
3399 void
3400 vfs_list_lock()
3401 {
3402 	rw_enter(&vfslist, RW_WRITER);
3403 }
3404 
3405 void
3406 vfs_list_read_lock()
3407 {
3408 	rw_enter(&vfslist, RW_READER);
3409 }
3410 
3411 void
3412 vfs_list_unlock()
3413 {
3414 	rw_exit(&vfslist);
3415 }
3416 
3417 /*
3418  * Low level worker routines for adding entries to and removing entries from
3419  * the vfs list.
3420  */
3421 
3422 static void
3423 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3424 {
3425 	int vhno;
3426 	struct vfs **hp;
3427 	dev_t dev;
3428 
3429 	ASSERT(RW_WRITE_HELD(&vfslist));
3430 
3431 	dev = expldev(vfsp->vfs_fsid.val[0]);
3432 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3433 
3434 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3435 
3436 	/*
3437 	 * Link into the hash table, inserting it at the end, so that LOFS
3438 	 * with the same fsid as UFS (or other) file systems will not hide the
3439 	 * UFS.
3440 	 */
3441 	if (insert_at_head) {
3442 		vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3443 		rvfs_list[vhno].rvfs_head = vfsp;
3444 	} else {
3445 		for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3446 		    hp = &(*hp)->vfs_hash)
3447 			continue;
3448 		/*
3449 		 * hp now contains the address of the pointer to update
3450 		 * to effect the insertion.
3451 		 */
3452 		vfsp->vfs_hash = NULL;
3453 		*hp = vfsp;
3454 	}
3455 
3456 	rvfs_list[vhno].rvfs_len++;
3457 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3458 }
3459 
3460 
3461 static void
3462 vfs_hash_remove(struct vfs *vfsp)
3463 {
3464 	int vhno;
3465 	struct vfs *tvfsp;
3466 	dev_t dev;
3467 
3468 	ASSERT(RW_WRITE_HELD(&vfslist));
3469 
3470 	dev = expldev(vfsp->vfs_fsid.val[0]);
3471 	vhno = VFSHASH(getmajor(dev), getminor(dev));
3472 
3473 	mutex_enter(&rvfs_list[vhno].rvfs_lock);
3474 
3475 	/*
3476 	 * Remove from hash.
3477 	 */
3478 	if (rvfs_list[vhno].rvfs_head == vfsp) {
3479 		rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3480 		rvfs_list[vhno].rvfs_len--;
3481 		goto foundit;
3482 	}
3483 	for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3484 	    tvfsp = tvfsp->vfs_hash) {
3485 		if (tvfsp->vfs_hash == vfsp) {
3486 			tvfsp->vfs_hash = vfsp->vfs_hash;
3487 			rvfs_list[vhno].rvfs_len--;
3488 			goto foundit;
3489 		}
3490 	}
3491 	cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3492 
3493 foundit:
3494 
3495 	mutex_exit(&rvfs_list[vhno].rvfs_lock);
3496 }
3497 
3498 
3499 void
3500 vfs_list_add(struct vfs *vfsp)
3501 {
3502 	zone_t *zone;
3503 
3504 	/*
3505 	 * Typically, the vfs_t will have been created on behalf of the file
3506 	 * system in vfs_init, where it will have been provided with a
3507 	 * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3508 	 * by an unbundled file system. We therefore check for such an example
3509 	 * before stamping the vfs_t with its creation time for the benefit of
3510 	 * mntfs.
3511 	 */
3512 	if (vfsp->vfs_implp == NULL)
3513 		vfsimpl_setup(vfsp);
3514 	vfs_mono_time(&vfsp->vfs_hrctime);
3515 
3516 	/*
3517 	 * The zone that owns the mount is the one that performed the mount.
3518 	 * Note that this isn't necessarily the same as the zone mounted into.
3519 	 * The corresponding zone_rele_ref() will be done when the vfs_t
3520 	 * is being free'd.
3521 	 */
3522 	vfsp->vfs_zone = curproc->p_zone;
3523 	zone_init_ref(&vfsp->vfs_implp->vi_zone_ref);
3524 	zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref,
3525 	    ZONE_REF_VFS);
3526 
3527 	/*
3528 	 * Find the zone mounted into, and put this mount on its vfs list.
3529 	 */
3530 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3531 	ASSERT(zone != NULL);
3532 	/*
3533 	 * Special casing for the root vfs.  This structure is allocated
3534 	 * statically and hooked onto rootvfs at link time.  During the
3535 	 * vfs_mountroot call at system startup time, the root file system's
3536 	 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3537 	 * as argument.  The code below must detect and handle this special
3538 	 * case.  The only apparent justification for this special casing is
3539 	 * to ensure that the root file system appears at the head of the
3540 	 * list.
3541 	 *
3542 	 * XXX:	I'm assuming that it's ok to do normal list locking when
3543 	 *	adding the entry for the root file system (this used to be
3544 	 *	done with no locks held).
3545 	 */
3546 	vfs_list_lock();
3547 	/*
3548 	 * Link into the vfs list proper.
3549 	 */
3550 	if (vfsp == &root) {
3551 		/*
3552 		 * Assert: This vfs is already on the list as its first entry.
3553 		 * Thus, there's nothing to do.
3554 		 */
3555 		ASSERT(rootvfs == vfsp);
3556 		/*
3557 		 * Add it to the head of the global zone's vfslist.
3558 		 */
3559 		ASSERT(zone == global_zone);
3560 		ASSERT(zone->zone_vfslist == NULL);
3561 		zone->zone_vfslist = vfsp;
3562 	} else {
3563 		/*
3564 		 * Link to end of list using vfs_prev (as rootvfs is now a
3565 		 * doubly linked circular list) so list is in mount order for
3566 		 * mnttab use.
3567 		 */
3568 		rootvfs->vfs_prev->vfs_next = vfsp;
3569 		vfsp->vfs_prev = rootvfs->vfs_prev;
3570 		rootvfs->vfs_prev = vfsp;
3571 		vfsp->vfs_next = rootvfs;
3572 
3573 		/*
3574 		 * Do it again for the zone-private list (which may be NULL).
3575 		 */
3576 		if (zone->zone_vfslist == NULL) {
3577 			ASSERT(zone != global_zone);
3578 			zone->zone_vfslist = vfsp;
3579 		} else {
3580 			zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3581 			vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3582 			zone->zone_vfslist->vfs_zone_prev = vfsp;
3583 			vfsp->vfs_zone_next = zone->zone_vfslist;
3584 		}
3585 	}
3586 
3587 	/*
3588 	 * Link into the hash table, inserting it at the end, so that LOFS
3589 	 * with the same fsid as UFS (or other) file systems will not hide
3590 	 * the UFS.
3591 	 */
3592 	vfs_hash_add(vfsp, 0);
3593 
3594 	/*
3595 	 * update the mnttab modification time
3596 	 */
3597 	vfs_mnttab_modtimeupd();
3598 	vfs_list_unlock();
3599 	zone_rele(zone);
3600 }
3601 
3602 void
3603 vfs_list_remove(struct vfs *vfsp)
3604 {
3605 	zone_t *zone;
3606 
3607 	zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3608 	ASSERT(zone != NULL);
3609 	/*
3610 	 * Callers are responsible for preventing attempts to unmount the
3611 	 * root.
3612 	 */
3613 	ASSERT(vfsp != rootvfs);
3614 
3615 	vfs_list_lock();
3616 
3617 	/*
3618 	 * Remove from hash.
3619 	 */
3620 	vfs_hash_remove(vfsp);
3621 
3622 	/*
3623 	 * Remove from vfs list.
3624 	 */
3625 	vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3626 	vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3627 	vfsp->vfs_next = vfsp->vfs_prev = NULL;
3628 
3629 	/*
3630 	 * Remove from zone-specific vfs list.
3631 	 */
3632 	if (zone->zone_vfslist == vfsp)
3633 		zone->zone_vfslist = vfsp->vfs_zone_next;
3634 
3635 	if (vfsp->vfs_zone_next == vfsp) {
3636 		ASSERT(vfsp->vfs_zone_prev == vfsp);
3637 		ASSERT(zone->zone_vfslist == vfsp);
3638 		zone->zone_vfslist = NULL;
3639 	}
3640 
3641 	vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3642 	vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3643 	vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3644 
3645 	/*
3646 	 * update the mnttab modification time
3647 	 */
3648 	vfs_mnttab_modtimeupd();
3649 	vfs_list_unlock();
3650 	zone_rele(zone);
3651 }
3652 
3653 struct vfs *
3654 getvfs(fsid_t *fsid)
3655 {
3656 	struct vfs *vfsp;
3657 	int val0 = fsid->val[0];
3658 	int val1 = fsid->val[1];
3659 	dev_t dev = expldev(val0);
3660 	int vhno = VFSHASH(getmajor(dev), getminor(dev));
3661 	kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3662 
3663 	mutex_enter(hmp);
3664 	for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3665 		if (vfsp->vfs_fsid.val[0] == val0 &&
3666 		    vfsp->vfs_fsid.val[1] == val1) {
3667 			VFS_HOLD(vfsp);
3668 			mutex_exit(hmp);
3669 			return (vfsp);
3670 		}
3671 	}
3672 	mutex_exit(hmp);
3673 	return (NULL);
3674 }
3675 
3676 /*
3677  * Search the vfs mount in progress list for a specified device/vfs entry.
3678  * Returns 0 if the first entry in the list that the device matches has the
3679  * given vfs pointer as well.  If the device matches but a different vfs
3680  * pointer is encountered in the list before the given vfs pointer then
3681  * a 1 is returned.
3682  */
3683 
3684 int
3685 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3686 {
3687 	int retval = 0;
3688 	struct ipmnt *mipp;
3689 
3690 	mutex_enter(&vfs_miplist_mutex);
3691 	for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3692 		if (mipp->mip_dev == dev) {
3693 			if (mipp->mip_vfsp != vfsp)
3694 				retval = 1;
3695 			break;
3696 		}
3697 	}
3698 	mutex_exit(&vfs_miplist_mutex);
3699 	return (retval);
3700 }
3701 
3702 /*
3703  * Search the vfs list for a specified device.  Returns 1, if entry is found
3704  * or 0 if no suitable entry is found.
3705  */
3706 
3707 int
3708 vfs_devismounted(dev_t dev)
3709 {
3710 	struct vfs *vfsp;
3711 	int found;
3712 
3713 	vfs_list_read_lock();
3714 	vfsp = rootvfs;
3715 	found = 0;
3716 	do {
3717 		if (vfsp->vfs_dev == dev) {
3718 			found = 1;
3719 			break;
3720 		}
3721 		vfsp = vfsp->vfs_next;
3722 	} while (vfsp != rootvfs);
3723 
3724 	vfs_list_unlock();
3725 	return (found);
3726 }
3727 
3728 /*
3729  * Search the vfs list for a specified device.  Returns a pointer to it
3730  * or NULL if no suitable entry is found. The caller of this routine
3731  * is responsible for releasing the returned vfs pointer.
3732  */
3733 struct vfs *
3734 vfs_dev2vfsp(dev_t dev)
3735 {
3736 	struct vfs *vfsp;
3737 	int found;
3738 
3739 	vfs_list_read_lock();
3740 	vfsp = rootvfs;
3741 	found = 0;
3742 	do {
3743 		/*
3744 		 * The following could be made more efficient by making
3745 		 * the entire loop use vfs_zone_next if the call is from
3746 		 * a zone.  The only callers, however, ustat(2) and
3747 		 * umount2(2), don't seem to justify the added
3748 		 * complexity at present.
3749 		 */
3750 		if (vfsp->vfs_dev == dev &&
3751 		    ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3752 		    curproc->p_zone)) {
3753 			VFS_HOLD(vfsp);
3754 			found = 1;
3755 			break;
3756 		}
3757 		vfsp = vfsp->vfs_next;
3758 	} while (vfsp != rootvfs);
3759 	vfs_list_unlock();
3760 	return (found ? vfsp: NULL);
3761 }
3762 
3763 /*
3764  * Search the vfs list for a specified mntpoint.  Returns a pointer to it
3765  * or NULL if no suitable entry is found. The caller of this routine
3766  * is responsible for releasing the returned vfs pointer.
3767  *
3768  * Note that if multiple mntpoints match, the last one matching is
3769  * returned in an attempt to return the "top" mount when overlay
3770  * mounts are covering the same mount point.  This is accomplished by starting
3771  * at the end of the list and working our way backwards, stopping at the first
3772  * matching mount.
3773  */
3774 struct vfs *
3775 vfs_mntpoint2vfsp(const char *mp)
3776 {
3777 	struct vfs *vfsp;
3778 	struct vfs *retvfsp = NULL;
3779 	zone_t *zone = curproc->p_zone;
3780 	struct vfs *list;
3781 
3782 	vfs_list_read_lock();
3783 	if (getzoneid() == GLOBAL_ZONEID) {
3784 		/*
3785 		 * The global zone may see filesystems in any zone.
3786 		 */
3787 		vfsp = rootvfs->vfs_prev;
3788 		do {
3789 			if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) {
3790 				retvfsp = vfsp;
3791 				break;
3792 			}
3793 			vfsp = vfsp->vfs_prev;
3794 		} while (vfsp != rootvfs->vfs_prev);
3795 	} else if ((list = zone->zone_vfslist) != NULL) {
3796 		const char *mntpt;
3797 
3798 		vfsp = list->vfs_zone_prev;
3799 		do {
3800 			mntpt = refstr_value(vfsp->vfs_mntpt);
3801 			mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3802 			if (strcmp(mntpt, mp) == 0) {
3803 				retvfsp = vfsp;
3804 				break;
3805 			}
3806 			vfsp = vfsp->vfs_zone_prev;
3807 		} while (vfsp != list->vfs_zone_prev);
3808 	}
3809 	if (retvfsp)
3810 		VFS_HOLD(retvfsp);
3811 	vfs_list_unlock();
3812 	return (retvfsp);
3813 }
3814 
3815 /*
3816  * Search the vfs list for a specified vfsops.
3817  * if vfs entry is found then return 1, else 0.
3818  */
3819 int
3820 vfs_opsinuse(vfsops_t *ops)
3821 {
3822 	struct vfs *vfsp;
3823 	int found;
3824 
3825 	vfs_list_read_lock();
3826 	vfsp = rootvfs;
3827 	found = 0;
3828 	do {
3829 		if (vfs_getops(vfsp) == ops) {
3830 			found = 1;
3831 			break;
3832 		}
3833 		vfsp = vfsp->vfs_next;
3834 	} while (vfsp != rootvfs);
3835 	vfs_list_unlock();
3836 	return (found);
3837 }
3838 
3839 /*
3840  * Allocate an entry in vfssw for a file system type
3841  */
3842 struct vfssw *
3843 allocate_vfssw(const char *type)
3844 {
3845 	struct vfssw *vswp;
3846 
3847 	if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3848 		/*
3849 		 * The vfssw table uses the empty string to identify an
3850 		 * available entry; we cannot add any type which has
3851 		 * a leading NUL. The string length is limited to
3852 		 * the size of the st_fstype array in struct stat.
3853 		 */
3854 		return (NULL);
3855 	}
3856 
3857 	ASSERT(VFSSW_WRITE_LOCKED());
3858 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3859 		if (!ALLOCATED_VFSSW(vswp)) {
3860 			vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3861 			(void) strcpy(vswp->vsw_name, type);
3862 			ASSERT(vswp->vsw_count == 0);
3863 			vswp->vsw_count = 1;
3864 			mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3865 			return (vswp);
3866 		}
3867 	return (NULL);
3868 }
3869 
3870 /*
3871  * Impose additional layer of translation between vfstype names
3872  * and module names in the filesystem.
3873  */
3874 static const char *
3875 vfs_to_modname(const char *vfstype)
3876 {
3877 	if (strcmp(vfstype, "proc") == 0) {
3878 		vfstype = "procfs";
3879 	} else if (strcmp(vfstype, "fd") == 0) {
3880 		vfstype = "fdfs";
3881 	} else if (strncmp(vfstype, "nfs", 3) == 0) {
3882 		vfstype = "nfs";
3883 	}
3884 
3885 	return (vfstype);
3886 }
3887 
3888 /*
3889  * Find a vfssw entry given a file system type name.
3890  * Try to autoload the filesystem if it's not found.
3891  * If it's installed, return the vfssw locked to prevent unloading.
3892  */
3893 struct vfssw *
3894 vfs_getvfssw(const char *type)
3895 {
3896 	struct vfssw *vswp;
3897 	const char *modname;
3898 
3899 	RLOCK_VFSSW();
3900 	vswp = vfs_getvfsswbyname(type);
3901 	modname = vfs_to_modname(type);
3902 
3903 	if (rootdir == NULL) {
3904 		/*
3905 		 * If we haven't yet loaded the root file system, then our
3906 		 * _init won't be called until later. Allocate vfssw entry,
3907 		 * because mod_installfs won't be called.
3908 		 */
3909 		if (vswp == NULL) {
3910 			RUNLOCK_VFSSW();
3911 			WLOCK_VFSSW();
3912 			if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
3913 				if ((vswp = allocate_vfssw(type)) == NULL) {
3914 					WUNLOCK_VFSSW();
3915 					return (NULL);
3916 				}
3917 			}
3918 			WUNLOCK_VFSSW();
3919 			RLOCK_VFSSW();
3920 		}
3921 		if (!VFS_INSTALLED(vswp)) {
3922 			RUNLOCK_VFSSW();
3923 			(void) modloadonly("fs", modname);
3924 		} else
3925 			RUNLOCK_VFSSW();
3926 		return (vswp);
3927 	}
3928 
3929 	/*
3930 	 * Try to load the filesystem.  Before calling modload(), we drop
3931 	 * our lock on the VFS switch table, and pick it up after the
3932 	 * module is loaded.  However, there is a potential race:  the
3933 	 * module could be unloaded after the call to modload() completes
3934 	 * but before we pick up the lock and drive on.  Therefore,
3935 	 * we keep reloading the module until we've loaded the module
3936 	 * _and_ we have the lock on the VFS switch table.
3937 	 */
3938 	while (vswp == NULL || !VFS_INSTALLED(vswp)) {
3939 		RUNLOCK_VFSSW();
3940 		if (modload("fs", modname) == -1)
3941 			return (NULL);
3942 		RLOCK_VFSSW();
3943 		if (vswp == NULL)
3944 			if ((vswp = vfs_getvfsswbyname(type)) == NULL)
3945 				break;
3946 	}
3947 	RUNLOCK_VFSSW();
3948 
3949 	return (vswp);
3950 }
3951 
3952 /*
3953  * Find a vfssw entry given a file system type name.
3954  */
3955 struct vfssw *
3956 vfs_getvfsswbyname(const char *type)
3957 {
3958 	struct vfssw *vswp;
3959 
3960 	ASSERT(VFSSW_LOCKED());
3961 	if (type == NULL || *type == '\0')
3962 		return (NULL);
3963 
3964 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3965 		if (strcmp(type, vswp->vsw_name) == 0) {
3966 			vfs_refvfssw(vswp);
3967 			return (vswp);
3968 		}
3969 	}
3970 
3971 	return (NULL);
3972 }
3973 
3974 /*
3975  * Find a vfssw entry given a set of vfsops.
3976  */
3977 struct vfssw *
3978 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
3979 {
3980 	struct vfssw *vswp;
3981 
3982 	RLOCK_VFSSW();
3983 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3984 		if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
3985 			vfs_refvfssw(vswp);
3986 			RUNLOCK_VFSSW();
3987 			return (vswp);
3988 		}
3989 	}
3990 	RUNLOCK_VFSSW();
3991 
3992 	return (NULL);
3993 }
3994 
3995 /*
3996  * Reference a vfssw entry.
3997  */
3998 void
3999 vfs_refvfssw(struct vfssw *vswp)
4000 {
4001 
4002 	mutex_enter(&vswp->vsw_lock);
4003 	vswp->vsw_count++;
4004 	mutex_exit(&vswp->vsw_lock);
4005 }
4006 
4007 /*
4008  * Unreference a vfssw entry.
4009  */
4010 void
4011 vfs_unrefvfssw(struct vfssw *vswp)
4012 {
4013 
4014 	mutex_enter(&vswp->vsw_lock);
4015 	vswp->vsw_count--;
4016 	mutex_exit(&vswp->vsw_lock);
4017 }
4018 
4019 static int sync_retries = 20;	/* number of retries when not making progress */
4020 static int sync_triesleft;	/* portion of sync_retries remaining */
4021 
4022 static pgcnt_t old_pgcnt, new_pgcnt;
4023 static int new_bufcnt, old_bufcnt;
4024 
4025 /*
4026  * Sync all of the mounted filesystems, and then wait for the actual i/o to
4027  * complete.  We wait by counting the number of dirty pages and buffers,
4028  * pushing them out using bio_busy() and page_busy(), and then counting again.
4029  * This routine is used during the uadmin A_SHUTDOWN code.  It should only
4030  * be used after some higher-level mechanism has quiesced the system so that
4031  * new writes are not being initiated while we are waiting for completion.
4032  *
4033  * To ensure finite running time, our algorithm uses sync_triesleft (a progress
4034  * counter used by the vfs_syncall() loop below). It is declared above so
4035  * it can be found easily in the debugger.
4036  *
4037  * The sync_triesleft counter is updated by vfs_syncall() itself.  If we make
4038  * sync_retries consecutive calls to bio_busy() and page_busy() without
4039  * decreasing either the number of dirty buffers or dirty pages below the
4040  * lowest count we have seen so far, we give up and return from vfs_syncall().
4041  *
4042  * Each loop iteration ends with a call to delay() one second to allow time for
4043  * i/o completion and to permit the user time to read our progress messages.
4044  */
4045 void
4046 vfs_syncall(void)
4047 {
4048 	if (rootdir == NULL && !modrootloaded)
4049 		return; /* no filesystems have been loaded yet */
4050 
4051 	printf("syncing file systems...");
4052 	sync();
4053 
4054 	sync_triesleft = sync_retries;
4055 
4056 	old_bufcnt = new_bufcnt = INT_MAX;
4057 	old_pgcnt = new_pgcnt = ULONG_MAX;
4058 
4059 	while (sync_triesleft > 0) {
4060 		old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4061 		old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4062 
4063 		new_bufcnt = bio_busy(B_TRUE);
4064 		new_pgcnt = page_busy(B_TRUE);
4065 
4066 		if (new_bufcnt == 0 && new_pgcnt == 0)
4067 			break;
4068 
4069 		if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4070 			sync_triesleft = sync_retries;
4071 		else
4072 			sync_triesleft--;
4073 
4074 		if (new_bufcnt)
4075 			printf(" [%d]", new_bufcnt);
4076 		if (new_pgcnt)
4077 			printf(" %lu", new_pgcnt);
4078 
4079 		delay(hz);
4080 	}
4081 
4082 	if (new_bufcnt != 0 || new_pgcnt != 0)
4083 		printf(" done (not all i/o completed)\n");
4084 	else
4085 		printf(" done\n");
4086 
4087 	delay(hz);
4088 }
4089 
4090 /*
4091  * Map VFS flags to statvfs flags.  These shouldn't really be separate
4092  * flags at all.
4093  */
4094 uint_t
4095 vf_to_stf(uint_t vf)
4096 {
4097 	uint_t stf = 0;
4098 
4099 	if (vf & VFS_RDONLY)
4100 		stf |= ST_RDONLY;
4101 	if (vf & VFS_NOSETUID)
4102 		stf |= ST_NOSUID;
4103 	if (vf & VFS_NOTRUNC)
4104 		stf |= ST_NOTRUNC;
4105 
4106 	return (stf);
4107 }
4108 
4109 /*
4110  * Entries for (illegal) fstype 0.
4111  */
4112 /* ARGSUSED */
4113 int
4114 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4115 {
4116 	cmn_err(CE_PANIC, "stray vfs operation");
4117 	return (0);
4118 }
4119 
4120 /*
4121  * Entries for (illegal) fstype 0.
4122  */
4123 int
4124 vfsstray(void)
4125 {
4126 	cmn_err(CE_PANIC, "stray vfs operation");
4127 	return (0);
4128 }
4129 
4130 /*
4131  * Support for dealing with forced UFS unmount and its interaction with
4132  * LOFS. Could be used by any filesystem.
4133  * See bug 1203132.
4134  */
4135 int
4136 vfs_EIO(void)
4137 {
4138 	return (EIO);
4139 }
4140 
4141 /*
4142  * We've gotta define the op for sync separately, since the compiler gets
4143  * confused if we mix and match ANSI and normal style prototypes when
4144  * a "short" argument is present and spits out a warning.
4145  */
4146 /*ARGSUSED*/
4147 int
4148 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4149 {
4150 	return (EIO);
4151 }
4152 
4153 vfs_t EIO_vfs;
4154 vfsops_t *EIO_vfsops;
4155 
4156 /*
4157  * Called from startup() to initialize all loaded vfs's
4158  */
4159 void
4160 vfsinit(void)
4161 {
4162 	struct vfssw *vswp;
4163 	int error;
4164 	extern int vopstats_enabled;
4165 	extern void vopstats_startup();
4166 
4167 	static const fs_operation_def_t EIO_vfsops_template[] = {
4168 		VFSNAME_MOUNT,		{ .error = vfs_EIO },
4169 		VFSNAME_UNMOUNT,	{ .error = vfs_EIO },
4170 		VFSNAME_ROOT,		{ .error = vfs_EIO },
4171 		VFSNAME_STATVFS,	{ .error = vfs_EIO },
4172 		VFSNAME_SYNC, 		{ .vfs_sync = vfs_EIO_sync },
4173 		VFSNAME_VGET,		{ .error = vfs_EIO },
4174 		VFSNAME_MOUNTROOT,	{ .error = vfs_EIO },
4175 		VFSNAME_FREEVFS,	{ .error = vfs_EIO },
4176 		VFSNAME_VNSTATE,	{ .error = vfs_EIO },
4177 		NULL, NULL
4178 	};
4179 
4180 	static const fs_operation_def_t stray_vfsops_template[] = {
4181 		VFSNAME_MOUNT,		{ .error = vfsstray },
4182 		VFSNAME_UNMOUNT,	{ .error = vfsstray },
4183 		VFSNAME_ROOT,		{ .error = vfsstray },
4184 		VFSNAME_STATVFS,	{ .error = vfsstray },
4185 		VFSNAME_SYNC, 		{ .vfs_sync = vfsstray_sync },
4186 		VFSNAME_VGET,		{ .error = vfsstray },
4187 		VFSNAME_MOUNTROOT,	{ .error = vfsstray },
4188 		VFSNAME_FREEVFS,	{ .error = vfsstray },
4189 		VFSNAME_VNSTATE,	{ .error = vfsstray },
4190 		NULL, NULL
4191 	};
4192 
4193 	/* Create vfs cache */
4194 	vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4195 	    sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4196 
4197 	/* Initialize the vnode cache (file systems may use it during init). */
4198 	vn_create_cache();
4199 
4200 	/* Setup event monitor framework */
4201 	fem_init();
4202 
4203 	/* Initialize the dummy stray file system type. */
4204 	error = vfs_setfsops(0, stray_vfsops_template, NULL);
4205 
4206 	/* Initialize the dummy EIO file system. */
4207 	error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4208 	if (error != 0) {
4209 		cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4210 		/* Shouldn't happen, but not bad enough to panic */
4211 	}
4212 
4213 	VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4214 
4215 	/*
4216 	 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4217 	 * on this vfs can immediately notice it's invalid.
4218 	 */
4219 	EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4220 
4221 	/*
4222 	 * Call the init routines of non-loadable filesystems only.
4223 	 * Filesystems which are loaded as separate modules will be
4224 	 * initialized by the module loading code instead.
4225 	 */
4226 
4227 	for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4228 		RLOCK_VFSSW();
4229 		if (vswp->vsw_init != NULL)
4230 			(*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4231 		RUNLOCK_VFSSW();
4232 	}
4233 
4234 	vopstats_startup();
4235 
4236 	if (vopstats_enabled) {
4237 		/* EIO_vfs can collect stats, but we don't retrieve them */
4238 		initialize_vopstats(&EIO_vfs.vfs_vopstats);
4239 		EIO_vfs.vfs_fstypevsp = NULL;
4240 		EIO_vfs.vfs_vskap = NULL;
4241 		EIO_vfs.vfs_flag |= VFS_STATS;
4242 	}
4243 
4244 	xattr_init();
4245 
4246 	reparse_point_init();
4247 }
4248 
4249 vfs_t *
4250 vfs_alloc(int kmflag)
4251 {
4252 	vfs_t *vfsp;
4253 
4254 	vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4255 
4256 	/*
4257 	 * Do the simplest initialization here.
4258 	 * Everything else gets done in vfs_init()
4259 	 */
4260 	bzero(vfsp, sizeof (vfs_t));
4261 	return (vfsp);
4262 }
4263 
4264 void
4265 vfs_free(vfs_t *vfsp)
4266 {
4267 	/*
4268 	 * One would be tempted to assert that "vfsp->vfs_count == 0".
4269 	 * The problem is that this gets called out of domount() with
4270 	 * a partially initialized vfs and a vfs_count of 1.  This is
4271 	 * also called from vfs_rele() with a vfs_count of 0.  We can't
4272 	 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4273 	 * returned.  This is because VFS_MOUNT() fully initializes the
4274 	 * vfs structure and its associated data.  VFS_RELE() will call
4275 	 * VFS_FREEVFS() which may panic the system if the data structures
4276 	 * aren't fully initialized from a successful VFS_MOUNT()).
4277 	 */
4278 
4279 	/* If FEM was in use, make sure everything gets cleaned up */
4280 	if (vfsp->vfs_femhead) {
4281 		ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4282 		mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4283 		kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4284 		vfsp->vfs_femhead = NULL;
4285 	}
4286 
4287 	if (vfsp->vfs_implp)
4288 		vfsimpl_teardown(vfsp);
4289 	sema_destroy(&vfsp->vfs_reflock);
4290 	kmem_cache_free(vfs_cache, vfsp);
4291 }
4292 
4293 /*
4294  * Increments the vfs reference count by one atomically.
4295  */
4296 void
4297 vfs_hold(vfs_t *vfsp)
4298 {
4299 	atomic_inc_32(&vfsp->vfs_count);
4300 	ASSERT(vfsp->vfs_count != 0);
4301 }
4302 
4303 /*
4304  * Decrements the vfs reference count by one atomically. When
4305  * vfs reference count becomes zero, it calls the file system
4306  * specific vfs_freevfs() to free up the resources.
4307  */
4308 void
4309 vfs_rele(vfs_t *vfsp)
4310 {
4311 	ASSERT(vfsp->vfs_count != 0);
4312 	if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) {
4313 		VFS_FREEVFS(vfsp);
4314 		lofi_remove(vfsp);
4315 		if (vfsp->vfs_zone)
4316 			zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref,
4317 			    ZONE_REF_VFS);
4318 		vfs_freemnttab(vfsp);
4319 		vfs_free(vfsp);
4320 	}
4321 }
4322 
4323 /*
4324  * Generic operations vector support.
4325  *
4326  * This is used to build operations vectors for both the vfs and vnode.
4327  * It's normally called only when a file system is loaded.
4328  *
4329  * There are many possible algorithms for this, including the following:
4330  *
4331  *   (1) scan the list of known operations; for each, see if the file system
4332  *       includes an entry for it, and fill it in as appropriate.
4333  *
4334  *   (2) set up defaults for all known operations.  scan the list of ops
4335  *       supplied by the file system; for each which is both supplied and
4336  *       known, fill it in.
4337  *
4338  *   (3) sort the lists of known ops & supplied ops; scan the list, filling
4339  *       in entries as we go.
4340  *
4341  * we choose (1) for simplicity, and because performance isn't critical here.
4342  * note that (2) could be sped up using a precomputed hash table on known ops.
4343  * (3) could be faster than either, but only if the lists were very large or
4344  * supplied in sorted order.
4345  *
4346  */
4347 
4348 int
4349 fs_build_vector(void *vector, int *unused_ops,
4350     const fs_operation_trans_def_t *translation,
4351     const fs_operation_def_t *operations)
4352 {
4353 	int i, num_trans, num_ops, used;
4354 
4355 	/*
4356 	 * Count the number of translations and the number of supplied
4357 	 * operations.
4358 	 */
4359 
4360 	{
4361 		const fs_operation_trans_def_t *p;
4362 
4363 		for (num_trans = 0, p = translation;
4364 		    p->name != NULL;
4365 		    num_trans++, p++)
4366 			;
4367 	}
4368 
4369 	{
4370 		const fs_operation_def_t *p;
4371 
4372 		for (num_ops = 0, p = operations;
4373 		    p->name != NULL;
4374 		    num_ops++, p++)
4375 			;
4376 	}
4377 
4378 	/* Walk through each operation known to our caller.  There will be */
4379 	/* one entry in the supplied "translation table" for each. */
4380 
4381 	used = 0;
4382 
4383 	for (i = 0; i < num_trans; i++) {
4384 		int j, found;
4385 		char *curname;
4386 		fs_generic_func_p result;
4387 		fs_generic_func_p *location;
4388 
4389 		curname = translation[i].name;
4390 
4391 		/* Look for a matching operation in the list supplied by the */
4392 		/* file system. */
4393 
4394 		found = 0;
4395 
4396 		for (j = 0; j < num_ops; j++) {
4397 			if (strcmp(operations[j].name, curname) == 0) {
4398 				used++;
4399 				found = 1;
4400 				break;
4401 			}
4402 		}
4403 
4404 		/*
4405 		 * If the file system is using a "placeholder" for default
4406 		 * or error functions, grab the appropriate function out of
4407 		 * the translation table.  If the file system didn't supply
4408 		 * this operation at all, use the default function.
4409 		 */
4410 
4411 		if (found) {
4412 			result = operations[j].func.fs_generic;
4413 			if (result == fs_default) {
4414 				result = translation[i].defaultFunc;
4415 			} else if (result == fs_error) {
4416 				result = translation[i].errorFunc;
4417 			} else if (result == NULL) {
4418 				/* Null values are PROHIBITED */
4419 				return (EINVAL);
4420 			}
4421 		} else {
4422 			result = translation[i].defaultFunc;
4423 		}
4424 
4425 		/* Now store the function into the operations vector. */
4426 
4427 		location = (fs_generic_func_p *)
4428 		    (((char *)vector) + translation[i].offset);
4429 
4430 		*location = result;
4431 	}
4432 
4433 	*unused_ops = num_ops - used;
4434 
4435 	return (0);
4436 }
4437 
4438 /* Placeholder functions, should never be called. */
4439 
4440 int
4441 fs_error(void)
4442 {
4443 	cmn_err(CE_PANIC, "fs_error called");
4444 	return (0);
4445 }
4446 
4447 int
4448 fs_default(void)
4449 {
4450 	cmn_err(CE_PANIC, "fs_default called");
4451 	return (0);
4452 }
4453 
4454 #ifdef __sparc
4455 
4456 /*
4457  * Part of the implementation of booting off a mirrored root
4458  * involves a change of dev_t for the root device.  To
4459  * accomplish this, first remove the existing hash table
4460  * entry for the root device, convert to the new dev_t,
4461  * then re-insert in the hash table at the head of the list.
4462  */
4463 void
4464 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4465 {
4466 	vfs_list_lock();
4467 
4468 	vfs_hash_remove(vfsp);
4469 
4470 	vfsp->vfs_dev = ndev;
4471 	vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4472 
4473 	vfs_hash_add(vfsp, 1);
4474 
4475 	vfs_list_unlock();
4476 }
4477 
4478 #else /* x86 NEWBOOT */
4479 
4480 #if defined(__x86)
4481 extern int hvmboot_rootconf();
4482 #endif /* __x86 */
4483 
4484 extern ib_boot_prop_t *iscsiboot_prop;
4485 
4486 int
4487 rootconf()
4488 {
4489 	int error;
4490 	struct vfssw *vsw;
4491 	extern void pm_init();
4492 	char *fstyp, *fsmod;
4493 	int ret = -1;
4494 
4495 	getrootfs(&fstyp, &fsmod);
4496 
4497 #if defined(__x86)
4498 	/*
4499 	 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4500 	 * which lives in /platform/i86hvm, and hence is only available when
4501 	 * booted in an x86 hvm environment.  If the hvm_bootstrap misc module
4502 	 * is not available then the modstub for this function will return 0.
4503 	 * If the hvm_bootstrap misc module is available it will be loaded
4504 	 * and hvmboot_rootconf() will be invoked.
4505 	 */
4506 	if (error = hvmboot_rootconf())
4507 		return (error);
4508 #endif /* __x86 */
4509 
4510 	if (error = clboot_rootconf())
4511 		return (error);
4512 
4513 	if (modload("fs", fsmod) == -1)
4514 		panic("Cannot _init %s module", fsmod);
4515 
4516 	RLOCK_VFSSW();
4517 	vsw = vfs_getvfsswbyname(fstyp);
4518 	RUNLOCK_VFSSW();
4519 	if (vsw == NULL) {
4520 		cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4521 		return (ENXIO);
4522 	}
4523 	VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4524 	VFS_HOLD(rootvfs);
4525 
4526 	/* always mount readonly first */
4527 	rootvfs->vfs_flag |= VFS_RDONLY;
4528 
4529 	pm_init();
4530 
4531 	if (netboot && iscsiboot_prop) {
4532 		cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4533 		    " shouldn't happen in the same time");
4534 		return (EINVAL);
4535 	}
4536 
4537 	if (netboot || iscsiboot_prop) {
4538 		ret = strplumb();
4539 		if (ret != 0) {
4540 			cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4541 			return (EFAULT);
4542 		}
4543 	}
4544 
4545 	if ((ret == 0) && iscsiboot_prop) {
4546 		ret = modload("drv", "iscsi");
4547 		/* -1 indicates fail */
4548 		if (ret == -1) {
4549 			cmn_err(CE_WARN, "Failed to load iscsi module");
4550 			iscsi_boot_prop_free();
4551 			return (EINVAL);
4552 		} else {
4553 			if (!i_ddi_attach_pseudo_node("iscsi")) {
4554 				cmn_err(CE_WARN,
4555 				    "Failed to attach iscsi driver");
4556 				iscsi_boot_prop_free();
4557 				return (ENODEV);
4558 			}
4559 		}
4560 	}
4561 
4562 	error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4563 	vfs_unrefvfssw(vsw);
4564 	rootdev = rootvfs->vfs_dev;
4565 
4566 	if (error)
4567 		cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4568 		    rootfs.bo_name, fstyp);
4569 	else
4570 		cmn_err(CE_CONT, "?root on %s fstype %s\n",
4571 		    rootfs.bo_name, fstyp);
4572 	return (error);
4573 }
4574 
4575 /*
4576  * XXX this is called by nfs only and should probably be removed
4577  * If booted with ASKNAME, prompt on the console for a filesystem
4578  * name and return it.
4579  */
4580 void
4581 getfsname(char *askfor, char *name, size_t namelen)
4582 {
4583 	if (boothowto & RB_ASKNAME) {
4584 		printf("%s name: ", askfor);
4585 		console_gets(name, namelen);
4586 	}
4587 }
4588 
4589 /*
4590  * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4591  * property.
4592  *
4593  * Filesystem types starting with the prefix "nfs" are diskless clients;
4594  * init the root filename name (rootfs.bo_name), too.
4595  *
4596  * If we are booting via NFS we currently have these options:
4597  *	nfs -	dynamically choose NFS V2, V3, or V4 (default)
4598  *	nfs2 -	force NFS V2
4599  *	nfs3 -	force NFS V3
4600  *	nfs4 -	force NFS V4
4601  * Because we need to maintain backward compatibility with the naming
4602  * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4603  * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs".  The dynamic
4604  * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4605  * This is only for root filesystems, all other uses will expect
4606  * that "nfs" == NFS V2.
4607  */
4608 static void
4609 getrootfs(char **fstypp, char **fsmodp)
4610 {
4611 	char *propstr = NULL;
4612 
4613 	/*
4614 	 * Check fstype property; for diskless it should be one of "nfs",
4615 	 * "nfs2", "nfs3" or "nfs4".
4616 	 */
4617 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4618 	    DDI_PROP_DONTPASS, "fstype", &propstr)
4619 	    == DDI_SUCCESS) {
4620 		(void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4621 		ddi_prop_free(propstr);
4622 
4623 	/*
4624 	 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4625 	 * assume the type of this root filesystem is 'zfs'.
4626 	 */
4627 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4628 	    DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4629 	    == DDI_SUCCESS) {
4630 		(void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4631 		ddi_prop_free(propstr);
4632 	}
4633 
4634 	if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4635 		*fstypp = *fsmodp = rootfs.bo_fstype;
4636 		return;
4637 	}
4638 
4639 	++netboot;
4640 
4641 	if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4642 		(void) strcpy(rootfs.bo_fstype, "nfs");
4643 	else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4644 		(void) strcpy(rootfs.bo_fstype, "nfsdyn");
4645 
4646 	/*
4647 	 * check if path to network interface is specified in bootpath
4648 	 * or by a hypervisor domain configuration file.
4649 	 * XXPV - enable strlumb_get_netdev_path()
4650 	 */
4651 	if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4652 	    "xpv-nfsroot")) {
4653 		(void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4654 	} else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4655 	    DDI_PROP_DONTPASS, "bootpath", &propstr)
4656 	    == DDI_SUCCESS) {
4657 		(void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4658 		ddi_prop_free(propstr);
4659 	} else {
4660 		rootfs.bo_name[0] = '\0';
4661 	}
4662 	*fstypp = rootfs.bo_fstype;
4663 	*fsmodp = "nfs";
4664 }
4665 #endif
4666 
4667 /*
4668  * VFS feature routines
4669  */
4670 
4671 #define	VFTINDEX(feature)	(((feature) >> 32) & 0xFFFFFFFF)
4672 #define	VFTBITS(feature)	((feature) & 0xFFFFFFFFLL)
4673 
4674 /* Register a feature in the vfs */
4675 void
4676 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4677 {
4678 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4679 	if (vfsp->vfs_implp == NULL)
4680 		return;
4681 
4682 	vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4683 }
4684 
4685 void
4686 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature)
4687 {
4688 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4689 	if (vfsp->vfs_implp == NULL)
4690 		return;
4691 	vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature);
4692 }
4693 
4694 /*
4695  * Query a vfs for a feature.
4696  * Returns 1 if feature is present, 0 if not
4697  */
4698 int
4699 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4700 {
4701 	int	ret = 0;
4702 
4703 	/* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4704 	if (vfsp->vfs_implp == NULL)
4705 		return (ret);
4706 
4707 	if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4708 		ret = 1;
4709 
4710 	return (ret);
4711 }
4712 
4713 /*
4714  * Propagate feature set from one vfs to another
4715  */
4716 void
4717 vfs_propagate_features(vfs_t *from, vfs_t *to)
4718 {
4719 	int i;
4720 
4721 	if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4722 		return;
4723 
4724 	for (i = 1; i <= to->vfs_featureset[0]; i++) {
4725 		to->vfs_featureset[i] = from->vfs_featureset[i];
4726 	}
4727 }
4728 
4729 #define	LOFINODE_PATH "/dev/lofi/%d"
4730 
4731 /*
4732  * Return the vnode for the lofi node if there's a lofi mount in place.
4733  * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4734  * failure.
4735  */
4736 int
4737 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4738 {
4739 	char *path = NULL;
4740 	int strsize;
4741 	int err;
4742 
4743 	if (vfsp->vfs_lofi_id == 0) {
4744 		*vpp = NULL;
4745 		return (-1);
4746 	}
4747 
4748 	strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_id);
4749 	path = kmem_alloc(strsize + 1, KM_SLEEP);
4750 	(void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_id);
4751 
4752 	/*
4753 	 * We may be inside a zone, so we need to use the /dev path, but
4754 	 * it's created asynchronously, so we wait here.
4755 	 */
4756 	for (;;) {
4757 		err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4758 
4759 		if (err != ENOENT)
4760 			break;
4761 
4762 		if ((err = delay_sig(hz / 8)) == EINTR)
4763 			break;
4764 	}
4765 
4766 	if (err)
4767 		*vpp = NULL;
4768 
4769 	kmem_free(path, strsize + 1);
4770 	return (err);
4771 }
4772