1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * University Copyright- Copyright (c) 1982, 1986, 1988 32 * The Regents of the University of California 33 * All Rights Reserved 34 * 35 * University Acknowledgment- Portions of this document are derived from 36 * software developed by the University of California, Berkeley, and its 37 * contributors. 38 */ 39 40 #include <sys/types.h> 41 #include <sys/t_lock.h> 42 #include <sys/param.h> 43 #include <sys/errno.h> 44 #include <sys/user.h> 45 #include <sys/fstyp.h> 46 #include <sys/kmem.h> 47 #include <sys/systm.h> 48 #include <sys/proc.h> 49 #include <sys/mount.h> 50 #include <sys/vfs.h> 51 #include <sys/vfs_opreg.h> 52 #include <sys/fem.h> 53 #include <sys/mntent.h> 54 #include <sys/stat.h> 55 #include <sys/statvfs.h> 56 #include <sys/statfs.h> 57 #include <sys/cred.h> 58 #include <sys/vnode.h> 59 #include <sys/rwstlock.h> 60 #include <sys/dnlc.h> 61 #include <sys/file.h> 62 #include <sys/time.h> 63 #include <sys/atomic.h> 64 #include <sys/cmn_err.h> 65 #include <sys/buf.h> 66 #include <sys/swap.h> 67 #include <sys/debug.h> 68 #include <sys/vnode.h> 69 #include <sys/modctl.h> 70 #include <sys/ddi.h> 71 #include <sys/pathname.h> 72 #include <sys/bootconf.h> 73 #include <sys/dumphdr.h> 74 #include <sys/dc_ki.h> 75 #include <sys/poll.h> 76 #include <sys/sunddi.h> 77 #include <sys/sysmacros.h> 78 #include <sys/zone.h> 79 #include <sys/policy.h> 80 #include <sys/ctfs.h> 81 #include <sys/objfs.h> 82 #include <sys/console.h> 83 #include <sys/reboot.h> 84 #include <sys/attr.h> 85 #include <sys/zio.h> 86 #include <sys/spa.h> 87 #include <sys/lofi.h> 88 #include <sys/bootprops.h> 89 90 #include <vm/page.h> 91 92 #include <fs/fs_subr.h> 93 /* Private interfaces to create vopstats-related data structures */ 94 extern void initialize_vopstats(vopstats_t *); 95 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 96 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 97 98 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 99 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 100 const char *, int, int); 101 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 102 static void vfs_freemnttab(struct vfs *); 103 static void vfs_freeopt(mntopt_t *); 104 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 105 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 106 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 107 static void vfs_createopttbl_extend(mntopts_t *, const char *, 108 const mntopts_t *); 109 static char **vfs_copycancelopt_extend(char **const, int); 110 static void vfs_freecancelopt(char **); 111 static void getrootfs(char **, char **); 112 static int getmacpath(dev_info_t *, void *); 113 static void vfs_mnttabvp_setup(void); 114 115 struct ipmnt { 116 struct ipmnt *mip_next; 117 dev_t mip_dev; 118 struct vfs *mip_vfsp; 119 }; 120 121 static kmutex_t vfs_miplist_mutex; 122 static struct ipmnt *vfs_miplist = NULL; 123 static struct ipmnt *vfs_miplist_end = NULL; 124 125 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */ 126 127 /* 128 * VFS global data. 129 */ 130 vnode_t *rootdir; /* pointer to root inode vnode. */ 131 vnode_t *devicesdir; /* pointer to inode of devices root */ 132 vnode_t *devdir; /* pointer to inode of dev root */ 133 134 char *server_rootpath; /* root path for diskless clients */ 135 char *server_hostname; /* hostname of diskless server */ 136 137 static struct vfs root; 138 static struct vfs devices; 139 static struct vfs dev; 140 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 141 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 142 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 143 /* must be power of 2! */ 144 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 145 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 146 char *vfs_dummyfstype = "\0"; 147 struct pollhead vfs_pollhd; /* for mnttab pollers */ 148 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */ 149 int mntfstype; /* will be set once mnt fs is mounted */ 150 151 /* 152 * Table for generic options recognized in the VFS layer and acted 153 * on at this level before parsing file system specific options. 154 * The nosuid option is stronger than any of the devices and setuid 155 * options, so those are canceled when nosuid is seen. 156 * 157 * All options which are added here need to be added to the 158 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 159 */ 160 /* 161 * VFS Mount options table 162 */ 163 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 164 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 165 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 166 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 167 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 168 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 169 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 170 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 171 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 172 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 173 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 174 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 175 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 176 177 static const mntopt_t mntopts[] = { 178 /* 179 * option name cancel options default arg flags 180 */ 181 { MNTOPT_REMOUNT, NULL, NULL, 182 MO_NODISPLAY, (void *)0 }, 183 { MNTOPT_RO, ro_cancel, NULL, 0, 184 (void *)0 }, 185 { MNTOPT_RW, rw_cancel, NULL, 0, 186 (void *)0 }, 187 { MNTOPT_SUID, suid_cancel, NULL, 0, 188 (void *)0 }, 189 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 190 (void *)0 }, 191 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 192 (void *)0 }, 193 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 194 (void *)0 }, 195 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 196 (void *)0 }, 197 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 198 (void *)0 }, 199 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 200 (void *)0 }, 201 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 202 (void *)0 }, 203 { MNTOPT_EXEC, exec_cancel, NULL, 0, 204 (void *)0 }, 205 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 206 (void *)0 }, 207 }; 208 209 const mntopts_t vfs_mntopts = { 210 sizeof (mntopts) / sizeof (mntopt_t), 211 (mntopt_t *)&mntopts[0] 212 }; 213 214 /* 215 * File system operation dispatch functions. 216 */ 217 218 int 219 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 220 { 221 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 222 } 223 224 int 225 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 226 { 227 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 228 } 229 230 int 231 fsop_root(vfs_t *vfsp, vnode_t **vpp) 232 { 233 refstr_t *mntpt; 234 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 235 /* 236 * Make sure this root has a path. With lofs, it is possible to have 237 * a NULL mountpoint. 238 */ 239 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 240 mntpt = vfs_getmntpoint(vfsp); 241 vn_setpath_str(*vpp, refstr_value(mntpt), 242 strlen(refstr_value(mntpt))); 243 refstr_rele(mntpt); 244 } 245 246 return (ret); 247 } 248 249 int 250 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 251 { 252 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 253 } 254 255 int 256 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 257 { 258 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 259 } 260 261 int 262 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 263 { 264 /* 265 * In order to handle system attribute fids in a manner 266 * transparent to the underlying fs, we embed the fid for 267 * the sysattr parent object in the sysattr fid and tack on 268 * some extra bytes that only the sysattr layer knows about. 269 * 270 * This guarantees that sysattr fids are larger than other fids 271 * for this vfs. If the vfs supports the sysattr view interface 272 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size 273 * collision with XATTR_FIDSZ. 274 */ 275 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) && 276 fidp->fid_len == XATTR_FIDSZ) 277 return (xattr_dir_vget(vfsp, vpp, fidp)); 278 279 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 280 } 281 282 int 283 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 284 { 285 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 286 } 287 288 void 289 fsop_freefs(vfs_t *vfsp) 290 { 291 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 292 } 293 294 int 295 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 296 { 297 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 298 } 299 300 int 301 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 302 { 303 ASSERT((fstype >= 0) && (fstype < nfstype)); 304 305 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 306 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 307 else 308 return (ENOTSUP); 309 } 310 311 /* 312 * File system initialization. vfs_setfsops() must be called from a file 313 * system's init routine. 314 */ 315 316 static int 317 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 318 int *unused_ops) 319 { 320 static const fs_operation_trans_def_t vfs_ops_table[] = { 321 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 322 fs_nosys, fs_nosys, 323 324 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 325 fs_nosys, fs_nosys, 326 327 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 328 fs_nosys, fs_nosys, 329 330 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 331 fs_nosys, fs_nosys, 332 333 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 334 (fs_generic_func_p) fs_sync, 335 (fs_generic_func_p) fs_sync, /* No errors allowed */ 336 337 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 338 fs_nosys, fs_nosys, 339 340 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 341 fs_nosys, fs_nosys, 342 343 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 344 (fs_generic_func_p)fs_freevfs, 345 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 346 347 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 348 (fs_generic_func_p)fs_nosys, 349 (fs_generic_func_p)fs_nosys, 350 351 NULL, 0, NULL, NULL 352 }; 353 354 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 355 } 356 357 void 358 zfs_boot_init() { 359 360 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0) 361 spa_boot_init(); 362 } 363 364 int 365 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 366 { 367 int error; 368 int unused_ops; 369 370 /* 371 * Verify that fstype refers to a valid fs. Note that 372 * 0 is valid since it's used to set "stray" ops. 373 */ 374 if ((fstype < 0) || (fstype >= nfstype)) 375 return (EINVAL); 376 377 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 378 return (EINVAL); 379 380 /* Set up the operations vector. */ 381 382 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 383 384 if (error != 0) 385 return (error); 386 387 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 388 389 if (actual != NULL) 390 *actual = &vfssw[fstype].vsw_vfsops; 391 392 #if DEBUG 393 if (unused_ops != 0) 394 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 395 "but not used", vfssw[fstype].vsw_name, unused_ops); 396 #endif 397 398 return (0); 399 } 400 401 int 402 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 403 { 404 int error; 405 int unused_ops; 406 407 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 408 409 error = fs_copyfsops(template, *actual, &unused_ops); 410 if (error != 0) { 411 kmem_free(*actual, sizeof (vfsops_t)); 412 *actual = NULL; 413 return (error); 414 } 415 416 return (0); 417 } 418 419 /* 420 * Free a vfsops structure created as a result of vfs_makefsops(). 421 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 422 * vfs_freevfsops_by_type(). 423 */ 424 void 425 vfs_freevfsops(vfsops_t *vfsops) 426 { 427 kmem_free(vfsops, sizeof (vfsops_t)); 428 } 429 430 /* 431 * Since the vfsops structure is part of the vfssw table and wasn't 432 * really allocated, we're not really freeing anything. We keep 433 * the name for consistency with vfs_freevfsops(). We do, however, 434 * need to take care of a little bookkeeping. 435 * NOTE: For a vfsops structure created by vfs_setfsops(), use 436 * vfs_freevfsops_by_type(). 437 */ 438 int 439 vfs_freevfsops_by_type(int fstype) 440 { 441 442 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 443 if ((fstype <= 0) || (fstype >= nfstype)) 444 return (EINVAL); 445 446 WLOCK_VFSSW(); 447 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 448 WUNLOCK_VFSSW(); 449 return (EINVAL); 450 } 451 452 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 453 WUNLOCK_VFSSW(); 454 455 return (0); 456 } 457 458 /* Support routines used to reference vfs_op */ 459 460 /* Set the operations vector for a vfs */ 461 void 462 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 463 { 464 vfsops_t *op; 465 466 ASSERT(vfsp != NULL); 467 ASSERT(vfsops != NULL); 468 469 op = vfsp->vfs_op; 470 membar_consumer(); 471 if (vfsp->vfs_femhead == NULL && 472 atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) { 473 return; 474 } 475 fsem_setvfsops(vfsp, vfsops); 476 } 477 478 /* Retrieve the operations vector for a vfs */ 479 vfsops_t * 480 vfs_getops(vfs_t *vfsp) 481 { 482 vfsops_t *op; 483 484 ASSERT(vfsp != NULL); 485 486 op = vfsp->vfs_op; 487 membar_consumer(); 488 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 489 return (op); 490 } else { 491 return (fsem_getvfsops(vfsp)); 492 } 493 } 494 495 /* 496 * Returns non-zero (1) if the vfsops matches that of the vfs. 497 * Returns zero (0) if not. 498 */ 499 int 500 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 501 { 502 return (vfs_getops(vfsp) == vfsops); 503 } 504 505 /* 506 * Returns non-zero (1) if the file system has installed a non-default, 507 * non-error vfs_sync routine. Returns zero (0) otherwise. 508 */ 509 int 510 vfs_can_sync(vfs_t *vfsp) 511 { 512 /* vfs_sync() routine is not the default/error function */ 513 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 514 } 515 516 /* 517 * Initialize a vfs structure. 518 */ 519 void 520 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 521 { 522 /* Other initialization has been moved to vfs_alloc() */ 523 vfsp->vfs_count = 0; 524 vfsp->vfs_next = vfsp; 525 vfsp->vfs_prev = vfsp; 526 vfsp->vfs_zone_next = vfsp; 527 vfsp->vfs_zone_prev = vfsp; 528 vfsp->vfs_lofi_minor = 0; 529 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 530 vfsimpl_setup(vfsp); 531 vfsp->vfs_data = (data); 532 vfs_setops((vfsp), (op)); 533 } 534 535 /* 536 * Allocate and initialize the vfs implementation private data 537 * structure, vfs_impl_t. 538 */ 539 void 540 vfsimpl_setup(vfs_t *vfsp) 541 { 542 int i; 543 544 if (vfsp->vfs_implp != NULL) { 545 return; 546 } 547 548 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 549 /* Note that these are #define'd in vfs.h */ 550 vfsp->vfs_vskap = NULL; 551 vfsp->vfs_fstypevsp = NULL; 552 553 /* Set size of counted array, then zero the array */ 554 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1; 555 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) { 556 vfsp->vfs_featureset[i] = 0; 557 } 558 } 559 560 /* 561 * Release the vfs_impl_t structure, if it exists. Some unbundled 562 * filesystems may not use the newer version of vfs and thus 563 * would not contain this implementation private data structure. 564 */ 565 void 566 vfsimpl_teardown(vfs_t *vfsp) 567 { 568 vfs_impl_t *vip = vfsp->vfs_implp; 569 570 if (vip == NULL) 571 return; 572 573 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 574 vfsp->vfs_implp = NULL; 575 } 576 577 /* 578 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 579 * fstatvfs, and sysfs moved to common/syscall. 580 */ 581 582 /* 583 * Update every mounted file system. We call the vfs_sync operation of 584 * each file system type, passing it a NULL vfsp to indicate that all 585 * mounted file systems of that type should be updated. 586 */ 587 void 588 vfs_sync(int flag) 589 { 590 struct vfssw *vswp; 591 RLOCK_VFSSW(); 592 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 593 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 594 vfs_refvfssw(vswp); 595 RUNLOCK_VFSSW(); 596 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 597 CRED()); 598 vfs_unrefvfssw(vswp); 599 RLOCK_VFSSW(); 600 } 601 } 602 RUNLOCK_VFSSW(); 603 } 604 605 void 606 sync(void) 607 { 608 vfs_sync(0); 609 } 610 611 /* 612 * External routines. 613 */ 614 615 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 616 617 /* 618 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 619 * but otherwise should be accessed only via vfs_list_lock() and 620 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 621 */ 622 static krwlock_t vfslist; 623 624 /* 625 * Mount devfs on /devices. This is done right after root is mounted 626 * to provide device access support for the system 627 */ 628 static void 629 vfs_mountdevices(void) 630 { 631 struct vfssw *vsw; 632 struct vnode *mvp; 633 struct mounta mounta = { /* fake mounta for devfs_mount() */ 634 NULL, 635 NULL, 636 MS_SYSSPACE, 637 NULL, 638 NULL, 639 0, 640 NULL, 641 0 642 }; 643 644 /* 645 * _init devfs module to fill in the vfssw 646 */ 647 if (modload("fs", "devfs") == -1) 648 panic("Cannot _init devfs module"); 649 650 /* 651 * Hold vfs 652 */ 653 RLOCK_VFSSW(); 654 vsw = vfs_getvfsswbyname("devfs"); 655 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 656 VFS_HOLD(&devices); 657 658 /* 659 * Locate mount point 660 */ 661 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 662 panic("Cannot find /devices"); 663 664 /* 665 * Perform the mount of /devices 666 */ 667 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 668 panic("Cannot mount /devices"); 669 670 RUNLOCK_VFSSW(); 671 672 /* 673 * Set appropriate members and add to vfs list for mnttab display 674 */ 675 vfs_setresource(&devices, "/devices", 0); 676 vfs_setmntpoint(&devices, "/devices", 0); 677 678 /* 679 * Hold the root of /devices so it won't go away 680 */ 681 if (VFS_ROOT(&devices, &devicesdir)) 682 panic("vfs_mountdevices: not devices root"); 683 684 if (vfs_lock(&devices) != 0) { 685 VN_RELE(devicesdir); 686 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 687 return; 688 } 689 690 if (vn_vfswlock(mvp) != 0) { 691 vfs_unlock(&devices); 692 VN_RELE(devicesdir); 693 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 694 return; 695 } 696 697 vfs_add(mvp, &devices, 0); 698 vn_vfsunlock(mvp); 699 vfs_unlock(&devices); 700 VN_RELE(devicesdir); 701 } 702 703 /* 704 * mount the first instance of /dev to root and remain mounted 705 */ 706 static void 707 vfs_mountdev1(void) 708 { 709 struct vfssw *vsw; 710 struct vnode *mvp; 711 struct mounta mounta = { /* fake mounta for sdev_mount() */ 712 NULL, 713 NULL, 714 MS_SYSSPACE | MS_OVERLAY, 715 NULL, 716 NULL, 717 0, 718 NULL, 719 0 720 }; 721 722 /* 723 * _init dev module to fill in the vfssw 724 */ 725 if (modload("fs", "dev") == -1) 726 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 727 728 /* 729 * Hold vfs 730 */ 731 RLOCK_VFSSW(); 732 vsw = vfs_getvfsswbyname("dev"); 733 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 734 VFS_HOLD(&dev); 735 736 /* 737 * Locate mount point 738 */ 739 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 740 cmn_err(CE_PANIC, "Cannot find /dev\n"); 741 742 /* 743 * Perform the mount of /dev 744 */ 745 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 746 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 747 748 RUNLOCK_VFSSW(); 749 750 /* 751 * Set appropriate members and add to vfs list for mnttab display 752 */ 753 vfs_setresource(&dev, "/dev", 0); 754 vfs_setmntpoint(&dev, "/dev", 0); 755 756 /* 757 * Hold the root of /dev so it won't go away 758 */ 759 if (VFS_ROOT(&dev, &devdir)) 760 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 761 762 if (vfs_lock(&dev) != 0) { 763 VN_RELE(devdir); 764 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 765 return; 766 } 767 768 if (vn_vfswlock(mvp) != 0) { 769 vfs_unlock(&dev); 770 VN_RELE(devdir); 771 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 772 return; 773 } 774 775 vfs_add(mvp, &dev, 0); 776 vn_vfsunlock(mvp); 777 vfs_unlock(&dev); 778 VN_RELE(devdir); 779 } 780 781 /* 782 * Mount required filesystem. This is done right after root is mounted. 783 */ 784 static void 785 vfs_mountfs(char *module, char *spec, char *path) 786 { 787 struct vnode *mvp; 788 struct mounta mounta; 789 vfs_t *vfsp; 790 791 mounta.flags = MS_SYSSPACE | MS_DATA; 792 mounta.fstype = module; 793 mounta.spec = spec; 794 mounta.dir = path; 795 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 796 cmn_err(CE_WARN, "Cannot find %s", path); 797 return; 798 } 799 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 800 cmn_err(CE_WARN, "Cannot mount %s", path); 801 else 802 VFS_RELE(vfsp); 803 VN_RELE(mvp); 804 } 805 806 /* 807 * vfs_mountroot is called by main() to mount the root filesystem. 808 */ 809 void 810 vfs_mountroot(void) 811 { 812 struct vnode *rvp = NULL; 813 char *path; 814 size_t plen; 815 struct vfssw *vswp; 816 proc_t *p; 817 818 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 819 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 820 821 /* 822 * Alloc the vfs hash bucket array and locks 823 */ 824 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 825 826 /* 827 * Call machine-dependent routine "rootconf" to choose a root 828 * file system type. 829 */ 830 if (rootconf()) 831 panic("vfs_mountroot: cannot mount root"); 832 /* 833 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 834 * to point to it. These are used by lookuppn() so that it 835 * knows where to start from ('/' or '.'). 836 */ 837 vfs_setmntpoint(rootvfs, "/", 0); 838 if (VFS_ROOT(rootvfs, &rootdir)) 839 panic("vfs_mountroot: no root vnode"); 840 841 /* 842 * At this point, the process tree consists of p0 and possibly some 843 * direct children of p0. (i.e. there are no grandchildren) 844 * 845 * Walk through them all, setting their current directory. 846 */ 847 mutex_enter(&pidlock); 848 for (p = practive; p != NULL; p = p->p_next) { 849 ASSERT(p == &p0 || p->p_parent == &p0); 850 851 PTOU(p)->u_cdir = rootdir; 852 VN_HOLD(PTOU(p)->u_cdir); 853 PTOU(p)->u_rdir = NULL; 854 } 855 mutex_exit(&pidlock); 856 857 /* 858 * Setup the global zone's rootvp, now that it exists. 859 */ 860 global_zone->zone_rootvp = rootdir; 861 VN_HOLD(global_zone->zone_rootvp); 862 863 /* 864 * Notify the module code that it can begin using the 865 * root filesystem instead of the boot program's services. 866 */ 867 modrootloaded = 1; 868 869 /* 870 * Special handling for a ZFS root file system. 871 */ 872 zfs_boot_init(); 873 874 /* 875 * Set up mnttab information for root 876 */ 877 vfs_setresource(rootvfs, rootfs.bo_name, 0); 878 879 /* 880 * Notify cluster software that the root filesystem is available. 881 */ 882 clboot_mountroot(); 883 884 /* Now that we're all done with the root FS, set up its vopstats */ 885 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 886 /* Set flag for statistics collection */ 887 if (vswp->vsw_flag & VSW_STATS) { 888 initialize_vopstats(&rootvfs->vfs_vopstats); 889 rootvfs->vfs_flag |= VFS_STATS; 890 rootvfs->vfs_fstypevsp = 891 get_fstype_vopstats(rootvfs, vswp); 892 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 893 } 894 vfs_unrefvfssw(vswp); 895 } 896 897 /* 898 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 899 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 900 */ 901 vfs_mountdevices(); 902 vfs_mountdev1(); 903 904 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 905 vfs_mountfs("proc", "/proc", "/proc"); 906 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 907 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 908 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 909 vfs_mountfs("bootfs", "bootfs", "/system/boot"); 910 911 if (getzoneid() == GLOBAL_ZONEID) { 912 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 913 } 914 915 #ifdef __sparc 916 /* 917 * This bit of magic can go away when we convert sparc to 918 * the new boot architecture based on ramdisk. 919 * 920 * Booting off a mirrored root volume: 921 * At this point, we have booted and mounted root on a 922 * single component of the mirror. Complete the boot 923 * by configuring SVM and converting the root to the 924 * dev_t of the mirrored root device. This dev_t conversion 925 * only works because the underlying device doesn't change. 926 */ 927 if (root_is_svm) { 928 if (svm_rootconf()) { 929 panic("vfs_mountroot: cannot remount root"); 930 } 931 932 /* 933 * mnttab should reflect the new root device 934 */ 935 vfs_lock_wait(rootvfs); 936 vfs_setresource(rootvfs, rootfs.bo_name, 0); 937 vfs_unlock(rootvfs); 938 } 939 #endif /* __sparc */ 940 941 if (strcmp(rootfs.bo_fstype, "zfs") != 0) { 942 /* 943 * Look up the root device via devfs so that a dv_node is 944 * created for it. The vnode is never VN_RELE()ed. 945 * We allocate more than MAXPATHLEN so that the 946 * buffer passed to i_ddi_prompath_to_devfspath() is 947 * exactly MAXPATHLEN (the function expects a buffer 948 * of that length). 949 */ 950 plen = strlen("/devices"); 951 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 952 (void) strcpy(path, "/devices"); 953 954 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 955 != DDI_SUCCESS || 956 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 957 958 /* NUL terminate in case "path" has garbage */ 959 path[plen + MAXPATHLEN - 1] = '\0'; 960 #ifdef DEBUG 961 cmn_err(CE_WARN, "!Cannot lookup root device: %s", 962 path); 963 #endif 964 } 965 kmem_free(path, plen + MAXPATHLEN); 966 } 967 968 vfs_mnttabvp_setup(); 969 } 970 971 /* 972 * Check to see if our "block device" is actually a file. If so, 973 * automatically add a lofi device, and keep track of this fact. 974 */ 975 static int 976 lofi_add(const char *fsname, struct vfs *vfsp, 977 mntopts_t *mntopts, struct mounta *uap) 978 { 979 int fromspace = (uap->flags & MS_SYSSPACE) ? 980 UIO_SYSSPACE : UIO_USERSPACE; 981 struct lofi_ioctl *li = NULL; 982 struct vnode *vp = NULL; 983 struct pathname pn = { NULL }; 984 ldi_ident_t ldi_id; 985 ldi_handle_t ldi_hdl; 986 vfssw_t *vfssw; 987 int minor; 988 int err = 0; 989 990 if ((vfssw = vfs_getvfssw(fsname)) == NULL) 991 return (0); 992 993 if (!(vfssw->vsw_flag & VSW_CANLOFI)) { 994 vfs_unrefvfssw(vfssw); 995 return (0); 996 } 997 998 vfs_unrefvfssw(vfssw); 999 vfssw = NULL; 1000 1001 if (pn_get(uap->spec, fromspace, &pn) != 0) 1002 return (0); 1003 1004 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0) 1005 goto out; 1006 1007 if (vp->v_type != VREG) 1008 goto out; 1009 1010 /* OK, this is a lofi mount. */ 1011 1012 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) || 1013 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) || 1014 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) || 1015 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) { 1016 err = EINVAL; 1017 goto out; 1018 } 1019 1020 ldi_id = ldi_ident_from_anon(); 1021 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1022 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN); 1023 1024 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1025 &ldi_hdl, ldi_id); 1026 1027 if (err) 1028 goto out2; 1029 1030 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li, 1031 FREAD | FWRITE | FKIOCTL, kcred, &minor); 1032 1033 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1034 1035 if (!err) 1036 vfsp->vfs_lofi_minor = minor; 1037 1038 out2: 1039 ldi_ident_release(ldi_id); 1040 out: 1041 if (li != NULL) 1042 kmem_free(li, sizeof (*li)); 1043 if (vp != NULL) 1044 VN_RELE(vp); 1045 pn_free(&pn); 1046 return (err); 1047 } 1048 1049 static void 1050 lofi_remove(struct vfs *vfsp) 1051 { 1052 struct lofi_ioctl *li = NULL; 1053 ldi_ident_t ldi_id; 1054 ldi_handle_t ldi_hdl; 1055 int err; 1056 1057 if (vfsp->vfs_lofi_minor == 0) 1058 return; 1059 1060 ldi_id = ldi_ident_from_anon(); 1061 1062 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1063 li->li_minor = vfsp->vfs_lofi_minor; 1064 li->li_cleanup = B_TRUE; 1065 1066 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1067 &ldi_hdl, ldi_id); 1068 1069 if (err) 1070 goto out; 1071 1072 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li, 1073 FREAD | FWRITE | FKIOCTL, kcred, NULL); 1074 1075 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1076 1077 if (!err) 1078 vfsp->vfs_lofi_minor = 0; 1079 1080 out: 1081 ldi_ident_release(ldi_id); 1082 if (li != NULL) 1083 kmem_free(li, sizeof (*li)); 1084 } 1085 1086 /* 1087 * Common mount code. Called from the system call entry point, from autofs, 1088 * nfsv4 trigger mounts, and from pxfs. 1089 * 1090 * Takes the effective file system type, mount arguments, the mount point 1091 * vnode, flags specifying whether the mount is a remount and whether it 1092 * should be entered into the vfs list, and credentials. Fills in its vfspp 1093 * parameter with the mounted file system instance's vfs. 1094 * 1095 * Note that the effective file system type is specified as a string. It may 1096 * be null, in which case it's determined from the mount arguments, and may 1097 * differ from the type specified in the mount arguments; this is a hook to 1098 * allow interposition when instantiating file system instances. 1099 * 1100 * The caller is responsible for releasing its own hold on the mount point 1101 * vp (this routine does its own hold when necessary). 1102 * Also note that for remounts, the mount point vp should be the vnode for 1103 * the root of the file system rather than the vnode that the file system 1104 * is mounted on top of. 1105 */ 1106 int 1107 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 1108 struct vfs **vfspp) 1109 { 1110 struct vfssw *vswp; 1111 vfsops_t *vfsops; 1112 struct vfs *vfsp; 1113 struct vnode *bvp; 1114 dev_t bdev = 0; 1115 mntopts_t mnt_mntopts; 1116 int error = 0; 1117 int copyout_error = 0; 1118 int ovflags; 1119 char *opts = uap->optptr; 1120 char *inargs = opts; 1121 int optlen = uap->optlen; 1122 int remount; 1123 int rdonly; 1124 int nbmand = 0; 1125 int delmip = 0; 1126 int addmip = 0; 1127 int splice = ((uap->flags & MS_NOSPLICE) == 0); 1128 int fromspace = (uap->flags & MS_SYSSPACE) ? 1129 UIO_SYSSPACE : UIO_USERSPACE; 1130 char *resource = NULL, *mountpt = NULL; 1131 refstr_t *oldresource, *oldmntpt; 1132 struct pathname pn, rpn; 1133 vsk_anchor_t *vskap; 1134 char fstname[FSTYPSZ]; 1135 zone_t *zone; 1136 1137 /* 1138 * The v_flag value for the mount point vp is permanently set 1139 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1140 * for mount point locking. 1141 */ 1142 mutex_enter(&vp->v_lock); 1143 vp->v_flag |= VVFSLOCK; 1144 mutex_exit(&vp->v_lock); 1145 1146 mnt_mntopts.mo_count = 0; 1147 /* 1148 * Find the ops vector to use to invoke the file system-specific mount 1149 * method. If the fsname argument is non-NULL, use it directly. 1150 * Otherwise, dig the file system type information out of the mount 1151 * arguments. 1152 * 1153 * A side effect is to hold the vfssw entry. 1154 * 1155 * Mount arguments can be specified in several ways, which are 1156 * distinguished by flag bit settings. The preferred way is to set 1157 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1158 * type supplied as a character string and the last two arguments 1159 * being a pointer to a character buffer and the size of the buffer. 1160 * On entry, the buffer holds a null terminated list of options; on 1161 * return, the string is the list of options the file system 1162 * recognized. If MS_DATA is set arguments five and six point to a 1163 * block of binary data which the file system interprets. 1164 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1165 * consistently with these conventions. To handle them, we check to 1166 * see whether the pointer to the file system name has a numeric value 1167 * less than 256. If so, we treat it as an index. 1168 */ 1169 if (fsname != NULL) { 1170 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1171 return (EINVAL); 1172 } 1173 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1174 size_t n; 1175 uint_t fstype; 1176 1177 fsname = fstname; 1178 1179 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1180 RLOCK_VFSSW(); 1181 if (fstype == 0 || fstype >= nfstype || 1182 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1183 RUNLOCK_VFSSW(); 1184 return (EINVAL); 1185 } 1186 (void) strcpy(fsname, vfssw[fstype].vsw_name); 1187 RUNLOCK_VFSSW(); 1188 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1189 return (EINVAL); 1190 } else { 1191 /* 1192 * Handle either kernel or user address space. 1193 */ 1194 if (uap->flags & MS_SYSSPACE) { 1195 error = copystr(uap->fstype, fsname, 1196 FSTYPSZ, &n); 1197 } else { 1198 error = copyinstr(uap->fstype, fsname, 1199 FSTYPSZ, &n); 1200 } 1201 if (error) { 1202 if (error == ENAMETOOLONG) 1203 return (EINVAL); 1204 return (error); 1205 } 1206 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1207 return (EINVAL); 1208 } 1209 } else { 1210 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1211 return (EINVAL); 1212 fsname = vswp->vsw_name; 1213 } 1214 if (!VFS_INSTALLED(vswp)) 1215 return (EINVAL); 1216 1217 if ((error = secpolicy_fs_allowed_mount(fsname)) != 0) { 1218 vfs_unrefvfssw(vswp); 1219 return (error); 1220 } 1221 1222 vfsops = &vswp->vsw_vfsops; 1223 1224 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1225 /* 1226 * Fetch mount options and parse them for generic vfs options 1227 */ 1228 if (uap->flags & MS_OPTIONSTR) { 1229 /* 1230 * Limit the buffer size 1231 */ 1232 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1233 error = EINVAL; 1234 goto errout; 1235 } 1236 if ((uap->flags & MS_SYSSPACE) == 0) { 1237 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1238 inargs[0] = '\0'; 1239 if (optlen) { 1240 error = copyinstr(opts, inargs, (size_t)optlen, 1241 NULL); 1242 if (error) { 1243 goto errout; 1244 } 1245 } 1246 } 1247 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1248 } 1249 /* 1250 * Flag bits override the options string. 1251 */ 1252 if (uap->flags & MS_REMOUNT) 1253 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1254 if (uap->flags & MS_RDONLY) 1255 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1256 if (uap->flags & MS_NOSUID) 1257 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1258 1259 /* 1260 * Check if this is a remount; must be set in the option string and 1261 * the file system must support a remount option. 1262 */ 1263 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1264 MNTOPT_REMOUNT, NULL)) { 1265 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1266 error = ENOTSUP; 1267 goto errout; 1268 } 1269 uap->flags |= MS_REMOUNT; 1270 } 1271 1272 /* 1273 * uap->flags and vfs_optionisset() should agree. 1274 */ 1275 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1276 uap->flags |= MS_RDONLY; 1277 } 1278 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1279 uap->flags |= MS_NOSUID; 1280 } 1281 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1282 ASSERT(splice || !remount); 1283 /* 1284 * If we are splicing the fs into the namespace, 1285 * perform mount point checks. 1286 * 1287 * We want to resolve the path for the mount point to eliminate 1288 * '.' and ".." and symlinks in mount points; we can't do the 1289 * same for the resource string, since it would turn 1290 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1291 * this before grabbing vn_vfswlock(), because otherwise we 1292 * would deadlock with lookuppn(). 1293 */ 1294 if (splice) { 1295 ASSERT(vp->v_count > 0); 1296 1297 /* 1298 * Pick up mount point and device from appropriate space. 1299 */ 1300 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1301 resource = kmem_alloc(pn.pn_pathlen + 1, 1302 KM_SLEEP); 1303 (void) strcpy(resource, pn.pn_path); 1304 pn_free(&pn); 1305 } 1306 /* 1307 * Do a lookupname prior to taking the 1308 * writelock. Mark this as completed if 1309 * successful for later cleanup and addition to 1310 * the mount in progress table. 1311 */ 1312 if ((uap->flags & MS_GLOBAL) == 0 && 1313 lookupname(uap->spec, fromspace, 1314 FOLLOW, NULL, &bvp) == 0) { 1315 addmip = 1; 1316 } 1317 1318 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1319 pathname_t *pnp; 1320 1321 if (*pn.pn_path != '/') { 1322 error = EINVAL; 1323 pn_free(&pn); 1324 goto errout; 1325 } 1326 pn_alloc(&rpn); 1327 /* 1328 * Kludge to prevent autofs from deadlocking with 1329 * itself when it calls domount(). 1330 * 1331 * If autofs is calling, it is because it is doing 1332 * (autofs) mounts in the process of an NFS mount. A 1333 * lookuppn() here would cause us to block waiting for 1334 * said NFS mount to complete, which can't since this 1335 * is the thread that was supposed to doing it. 1336 */ 1337 if (fromspace == UIO_USERSPACE) { 1338 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1339 NULL)) == 0) { 1340 pnp = &rpn; 1341 } else { 1342 /* 1343 * The file disappeared or otherwise 1344 * became inaccessible since we opened 1345 * it; might as well fail the mount 1346 * since the mount point is no longer 1347 * accessible. 1348 */ 1349 pn_free(&rpn); 1350 pn_free(&pn); 1351 goto errout; 1352 } 1353 } else { 1354 pnp = &pn; 1355 } 1356 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1357 (void) strcpy(mountpt, pnp->pn_path); 1358 1359 /* 1360 * If the addition of the zone's rootpath 1361 * would push us over a total path length 1362 * of MAXPATHLEN, we fail the mount with 1363 * ENAMETOOLONG, which is what we would have 1364 * gotten if we were trying to perform the same 1365 * mount in the global zone. 1366 * 1367 * strlen() doesn't count the trailing 1368 * '\0', but zone_rootpathlen counts both a 1369 * trailing '/' and the terminating '\0'. 1370 */ 1371 if ((curproc->p_zone->zone_rootpathlen - 1 + 1372 strlen(mountpt)) > MAXPATHLEN || 1373 (resource != NULL && 1374 (curproc->p_zone->zone_rootpathlen - 1 + 1375 strlen(resource)) > MAXPATHLEN)) { 1376 error = ENAMETOOLONG; 1377 } 1378 1379 pn_free(&rpn); 1380 pn_free(&pn); 1381 } 1382 1383 if (error) 1384 goto errout; 1385 1386 /* 1387 * Prevent path name resolution from proceeding past 1388 * the mount point. 1389 */ 1390 if (vn_vfswlock(vp) != 0) { 1391 error = EBUSY; 1392 goto errout; 1393 } 1394 1395 /* 1396 * Verify that it's legitimate to establish a mount on 1397 * the prospective mount point. 1398 */ 1399 if (vn_mountedvfs(vp) != NULL) { 1400 /* 1401 * The mount point lock was obtained after some 1402 * other thread raced through and established a mount. 1403 */ 1404 vn_vfsunlock(vp); 1405 error = EBUSY; 1406 goto errout; 1407 } 1408 if (vp->v_flag & VNOMOUNT) { 1409 vn_vfsunlock(vp); 1410 error = EINVAL; 1411 goto errout; 1412 } 1413 } 1414 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1415 uap->dataptr = NULL; 1416 uap->datalen = 0; 1417 } 1418 1419 /* 1420 * If this is a remount, we don't want to create a new VFS. 1421 * Instead, we pass the existing one with a remount flag. 1422 */ 1423 if (remount) { 1424 /* 1425 * Confirm that the mount point is the root vnode of the 1426 * file system that is being remounted. 1427 * This can happen if the user specifies a different 1428 * mount point directory pathname in the (re)mount command. 1429 * 1430 * Code below can only be reached if splice is true, so it's 1431 * safe to do vn_vfsunlock() here. 1432 */ 1433 if ((vp->v_flag & VROOT) == 0) { 1434 vn_vfsunlock(vp); 1435 error = ENOENT; 1436 goto errout; 1437 } 1438 /* 1439 * Disallow making file systems read-only unless file system 1440 * explicitly allows it in its vfssw. Ignore other flags. 1441 */ 1442 if (rdonly && vn_is_readonly(vp) == 0 && 1443 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1444 vn_vfsunlock(vp); 1445 error = EINVAL; 1446 goto errout; 1447 } 1448 /* 1449 * Disallow changing the NBMAND disposition of the file 1450 * system on remounts. 1451 */ 1452 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1453 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1454 vn_vfsunlock(vp); 1455 error = EINVAL; 1456 goto errout; 1457 } 1458 vfsp = vp->v_vfsp; 1459 ovflags = vfsp->vfs_flag; 1460 vfsp->vfs_flag |= VFS_REMOUNT; 1461 vfsp->vfs_flag &= ~VFS_RDONLY; 1462 } else { 1463 vfsp = vfs_alloc(KM_SLEEP); 1464 VFS_INIT(vfsp, vfsops, NULL); 1465 } 1466 1467 VFS_HOLD(vfsp); 1468 1469 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) { 1470 if (!remount) { 1471 if (splice) 1472 vn_vfsunlock(vp); 1473 vfs_free(vfsp); 1474 } else { 1475 vn_vfsunlock(vp); 1476 VFS_RELE(vfsp); 1477 } 1478 goto errout; 1479 } 1480 1481 /* 1482 * PRIV_SYS_MOUNT doesn't mean you can become root. 1483 */ 1484 if (vfsp->vfs_lofi_minor != 0) { 1485 uap->flags |= MS_NOSUID; 1486 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1487 } 1488 1489 /* 1490 * The vfs_reflock is not used anymore the code below explicitly 1491 * holds it preventing others accesing it directly. 1492 */ 1493 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1494 !(vfsp->vfs_flag & VFS_REMOUNT)) 1495 cmn_err(CE_WARN, 1496 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1497 1498 /* 1499 * Lock the vfs. If this is a remount we want to avoid spurious umount 1500 * failures that happen as a side-effect of fsflush() and other mount 1501 * and unmount operations that might be going on simultaneously and 1502 * may have locked the vfs currently. To not return EBUSY immediately 1503 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1504 */ 1505 if (!remount) { 1506 if (error = vfs_lock(vfsp)) { 1507 vfsp->vfs_flag = ovflags; 1508 1509 lofi_remove(vfsp); 1510 1511 if (splice) 1512 vn_vfsunlock(vp); 1513 vfs_free(vfsp); 1514 goto errout; 1515 } 1516 } else { 1517 vfs_lock_wait(vfsp); 1518 } 1519 1520 /* 1521 * Add device to mount in progress table, global mounts require special 1522 * handling. It is possible that we have already done the lookupname 1523 * on a spliced, non-global fs. If so, we don't want to do it again 1524 * since we cannot do a lookupname after taking the 1525 * wlock above. This case is for a non-spliced, non-global filesystem. 1526 */ 1527 if (!addmip) { 1528 if ((uap->flags & MS_GLOBAL) == 0 && 1529 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1530 addmip = 1; 1531 } 1532 } 1533 1534 if (addmip) { 1535 vnode_t *lvp = NULL; 1536 1537 error = vfs_get_lofi(vfsp, &lvp); 1538 if (error > 0) { 1539 lofi_remove(vfsp); 1540 1541 if (splice) 1542 vn_vfsunlock(vp); 1543 vfs_unlock(vfsp); 1544 1545 if (remount) { 1546 VFS_RELE(vfsp); 1547 } else { 1548 vfs_free(vfsp); 1549 } 1550 1551 goto errout; 1552 } else if (error == -1) { 1553 bdev = bvp->v_rdev; 1554 VN_RELE(bvp); 1555 } else { 1556 bdev = lvp->v_rdev; 1557 VN_RELE(lvp); 1558 VN_RELE(bvp); 1559 } 1560 1561 vfs_addmip(bdev, vfsp); 1562 addmip = 0; 1563 delmip = 1; 1564 } 1565 /* 1566 * Invalidate cached entry for the mount point. 1567 */ 1568 if (splice) 1569 dnlc_purge_vp(vp); 1570 1571 /* 1572 * If have an option string but the filesystem doesn't supply a 1573 * prototype options table, create a table with the global 1574 * options and sufficient room to accept all the options in the 1575 * string. Then parse the passed in option string 1576 * accepting all the options in the string. This gives us an 1577 * option table with all the proper cancel properties for the 1578 * global options. 1579 * 1580 * Filesystems that supply a prototype options table are handled 1581 * earlier in this function. 1582 */ 1583 if (uap->flags & MS_OPTIONSTR) { 1584 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1585 mntopts_t tmp_mntopts; 1586 1587 tmp_mntopts.mo_count = 0; 1588 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1589 &mnt_mntopts); 1590 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1591 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1592 vfs_freeopttbl(&tmp_mntopts); 1593 } 1594 } 1595 1596 /* 1597 * Serialize with zone state transitions. 1598 * See vfs_list_add; zone mounted into is: 1599 * zone_find_by_path(refstr_value(vfsp->vfs_mntpt)) 1600 * not the zone doing the mount (curproc->p_zone), but if we're already 1601 * inside a NGZ, then we know what zone we are. 1602 */ 1603 if (INGLOBALZONE(curproc)) { 1604 zone = zone_find_by_path(mountpt); 1605 ASSERT(zone != NULL); 1606 } else { 1607 zone = curproc->p_zone; 1608 /* 1609 * zone_find_by_path does a hold, so do one here too so that 1610 * we can do a zone_rele after mount_completed. 1611 */ 1612 zone_hold(zone); 1613 } 1614 mount_in_progress(zone); 1615 /* 1616 * Instantiate (or reinstantiate) the file system. If appropriate, 1617 * splice it into the file system name space. 1618 * 1619 * We want VFS_MOUNT() to be able to override the vfs_resource 1620 * string if necessary (ie, mntfs), and also for a remount to 1621 * change the same (necessary when remounting '/' during boot). 1622 * So we set up vfs_mntpt and vfs_resource to what we think they 1623 * should be, then hand off control to VFS_MOUNT() which can 1624 * override this. 1625 * 1626 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1627 * a vfs which is on the vfs list (i.e. during a remount), we must 1628 * never set those fields to NULL. Several bits of code make 1629 * assumptions that the fields are always valid. 1630 */ 1631 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1632 if (remount) { 1633 if ((oldresource = vfsp->vfs_resource) != NULL) 1634 refstr_hold(oldresource); 1635 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1636 refstr_hold(oldmntpt); 1637 } 1638 vfs_setresource(vfsp, resource, 0); 1639 vfs_setmntpoint(vfsp, mountpt, 0); 1640 1641 /* 1642 * going to mount on this vnode, so notify. 1643 */ 1644 vnevent_mountedover(vp, NULL); 1645 error = VFS_MOUNT(vfsp, vp, uap, credp); 1646 1647 if (uap->flags & MS_RDONLY) 1648 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1649 if (uap->flags & MS_NOSUID) 1650 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1651 if (uap->flags & MS_GLOBAL) 1652 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1653 1654 if (error) { 1655 lofi_remove(vfsp); 1656 1657 if (remount) { 1658 /* put back pre-remount options */ 1659 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1660 vfs_setmntpoint(vfsp, refstr_value(oldmntpt), 1661 VFSSP_VERBATIM); 1662 if (oldmntpt) 1663 refstr_rele(oldmntpt); 1664 vfs_setresource(vfsp, refstr_value(oldresource), 1665 VFSSP_VERBATIM); 1666 if (oldresource) 1667 refstr_rele(oldresource); 1668 vfsp->vfs_flag = ovflags; 1669 vfs_unlock(vfsp); 1670 VFS_RELE(vfsp); 1671 } else { 1672 vfs_unlock(vfsp); 1673 vfs_freemnttab(vfsp); 1674 vfs_free(vfsp); 1675 } 1676 } else { 1677 /* 1678 * Set the mount time to now 1679 */ 1680 vfsp->vfs_mtime = ddi_get_time(); 1681 if (remount) { 1682 vfsp->vfs_flag &= ~VFS_REMOUNT; 1683 if (oldresource) 1684 refstr_rele(oldresource); 1685 if (oldmntpt) 1686 refstr_rele(oldmntpt); 1687 } else if (splice) { 1688 /* 1689 * Link vfsp into the name space at the mount 1690 * point. Vfs_add() is responsible for 1691 * holding the mount point which will be 1692 * released when vfs_remove() is called. 1693 */ 1694 vfs_add(vp, vfsp, uap->flags); 1695 } else { 1696 /* 1697 * Hold the reference to file system which is 1698 * not linked into the name space. 1699 */ 1700 vfsp->vfs_zone = NULL; 1701 VFS_HOLD(vfsp); 1702 vfsp->vfs_vnodecovered = NULL; 1703 } 1704 /* 1705 * Set flags for global options encountered 1706 */ 1707 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1708 vfsp->vfs_flag |= VFS_RDONLY; 1709 else 1710 vfsp->vfs_flag &= ~VFS_RDONLY; 1711 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1712 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1713 } else { 1714 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1715 vfsp->vfs_flag |= VFS_NODEVICES; 1716 else 1717 vfsp->vfs_flag &= ~VFS_NODEVICES; 1718 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1719 vfsp->vfs_flag |= VFS_NOSETUID; 1720 else 1721 vfsp->vfs_flag &= ~VFS_NOSETUID; 1722 } 1723 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1724 vfsp->vfs_flag |= VFS_NBMAND; 1725 else 1726 vfsp->vfs_flag &= ~VFS_NBMAND; 1727 1728 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1729 vfsp->vfs_flag |= VFS_XATTR; 1730 else 1731 vfsp->vfs_flag &= ~VFS_XATTR; 1732 1733 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1734 vfsp->vfs_flag |= VFS_NOEXEC; 1735 else 1736 vfsp->vfs_flag &= ~VFS_NOEXEC; 1737 1738 /* 1739 * Now construct the output option string of options 1740 * we recognized. 1741 */ 1742 if (uap->flags & MS_OPTIONSTR) { 1743 vfs_list_read_lock(); 1744 copyout_error = vfs_buildoptionstr( 1745 &vfsp->vfs_mntopts, inargs, optlen); 1746 vfs_list_unlock(); 1747 if (copyout_error == 0 && 1748 (uap->flags & MS_SYSSPACE) == 0) { 1749 copyout_error = copyoutstr(inargs, opts, 1750 optlen, NULL); 1751 } 1752 } 1753 1754 /* 1755 * If this isn't a remount, set up the vopstats before 1756 * anyone can touch this. We only allow spliced file 1757 * systems (file systems which are in the namespace) to 1758 * have the VFS_STATS flag set. 1759 * NOTE: PxFS mounts the underlying file system with 1760 * MS_NOSPLICE set and copies those vfs_flags to its private 1761 * vfs structure. As a result, PxFS should never have 1762 * the VFS_STATS flag or else we might access the vfs 1763 * statistics-related fields prior to them being 1764 * properly initialized. 1765 */ 1766 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1767 initialize_vopstats(&vfsp->vfs_vopstats); 1768 /* 1769 * We need to set vfs_vskap to NULL because there's 1770 * a chance it won't be set below. This is checked 1771 * in teardown_vopstats() so we can't have garbage. 1772 */ 1773 vfsp->vfs_vskap = NULL; 1774 vfsp->vfs_flag |= VFS_STATS; 1775 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1776 } 1777 1778 if (vswp->vsw_flag & VSW_XID) 1779 vfsp->vfs_flag |= VFS_XID; 1780 1781 vfs_unlock(vfsp); 1782 } 1783 mount_completed(zone); 1784 zone_rele(zone); 1785 if (splice) 1786 vn_vfsunlock(vp); 1787 1788 if ((error == 0) && (copyout_error == 0)) { 1789 if (!remount) { 1790 /* 1791 * Don't call get_vskstat_anchor() while holding 1792 * locks since it allocates memory and calls 1793 * VFS_STATVFS(). For NFS, the latter can generate 1794 * an over-the-wire call. 1795 */ 1796 vskap = get_vskstat_anchor(vfsp); 1797 /* Only take the lock if we have something to do */ 1798 if (vskap != NULL) { 1799 vfs_lock_wait(vfsp); 1800 if (vfsp->vfs_flag & VFS_STATS) { 1801 vfsp->vfs_vskap = vskap; 1802 } 1803 vfs_unlock(vfsp); 1804 } 1805 } 1806 /* Return vfsp to caller. */ 1807 *vfspp = vfsp; 1808 } 1809 errout: 1810 vfs_freeopttbl(&mnt_mntopts); 1811 if (resource != NULL) 1812 kmem_free(resource, strlen(resource) + 1); 1813 if (mountpt != NULL) 1814 kmem_free(mountpt, strlen(mountpt) + 1); 1815 /* 1816 * It is possible we errored prior to adding to mount in progress 1817 * table. Must free vnode we acquired with successful lookupname. 1818 */ 1819 if (addmip) 1820 VN_RELE(bvp); 1821 if (delmip) 1822 vfs_delmip(vfsp); 1823 ASSERT(vswp != NULL); 1824 vfs_unrefvfssw(vswp); 1825 if (inargs != opts) 1826 kmem_free(inargs, MAX_MNTOPT_STR); 1827 if (copyout_error) { 1828 lofi_remove(vfsp); 1829 VFS_RELE(vfsp); 1830 error = copyout_error; 1831 } 1832 return (error); 1833 } 1834 1835 static void 1836 vfs_setpath( 1837 struct vfs *vfsp, /* vfs being updated */ 1838 refstr_t **refp, /* Ref-count string to contain the new path */ 1839 const char *newpath, /* Path to add to refp (above) */ 1840 uint32_t flag) /* flag */ 1841 { 1842 size_t len; 1843 refstr_t *ref; 1844 zone_t *zone = curproc->p_zone; 1845 char *sp; 1846 int have_list_lock = 0; 1847 1848 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1849 1850 /* 1851 * New path must be less than MAXPATHLEN because mntfs 1852 * will only display up to MAXPATHLEN bytes. This is currently 1853 * safe, because domount() uses pn_get(), and other callers 1854 * similarly cap the size to fewer than MAXPATHLEN bytes. 1855 */ 1856 1857 ASSERT(strlen(newpath) < MAXPATHLEN); 1858 1859 /* mntfs requires consistency while vfs list lock is held */ 1860 1861 if (VFS_ON_LIST(vfsp)) { 1862 have_list_lock = 1; 1863 vfs_list_lock(); 1864 } 1865 1866 if (*refp != NULL) 1867 refstr_rele(*refp); 1868 1869 /* 1870 * If we are in a non-global zone then we prefix the supplied path, 1871 * newpath, with the zone's root path, with two exceptions. The first 1872 * is where we have been explicitly directed to avoid doing so; this 1873 * will be the case following a failed remount, where the path supplied 1874 * will be a saved version which must now be restored. The second 1875 * exception is where newpath is not a pathname but a descriptive name, 1876 * e.g. "procfs". 1877 */ 1878 if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') { 1879 ref = refstr_alloc(newpath); 1880 goto out; 1881 } 1882 1883 /* 1884 * Truncate the trailing '/' in the zoneroot, and merge 1885 * in the zone's rootpath with the "newpath" (resource 1886 * or mountpoint) passed in. 1887 * 1888 * The size of the required buffer is thus the size of 1889 * the buffer required for the passed-in newpath 1890 * (strlen(newpath) + 1), plus the size of the buffer 1891 * required to hold zone_rootpath (zone_rootpathlen) 1892 * minus one for one of the now-superfluous NUL 1893 * terminations, minus one for the trailing '/'. 1894 * 1895 * That gives us: 1896 * 1897 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1898 * 1899 * Which is what we have below. 1900 */ 1901 1902 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1903 sp = kmem_alloc(len, KM_SLEEP); 1904 1905 /* 1906 * Copy everything including the trailing slash, which 1907 * we then overwrite with the NUL character. 1908 */ 1909 1910 (void) strcpy(sp, zone->zone_rootpath); 1911 sp[zone->zone_rootpathlen - 2] = '\0'; 1912 (void) strcat(sp, newpath); 1913 1914 ref = refstr_alloc(sp); 1915 kmem_free(sp, len); 1916 out: 1917 *refp = ref; 1918 1919 if (have_list_lock) { 1920 vfs_mnttab_modtimeupd(); 1921 vfs_list_unlock(); 1922 } 1923 } 1924 1925 /* 1926 * Record a mounted resource name in a vfs structure. 1927 * If vfsp is already mounted, caller must hold the vfs lock. 1928 */ 1929 void 1930 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag) 1931 { 1932 if (resource == NULL || resource[0] == '\0') 1933 resource = VFS_NORESOURCE; 1934 vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag); 1935 } 1936 1937 /* 1938 * Record a mount point name in a vfs structure. 1939 * If vfsp is already mounted, caller must hold the vfs lock. 1940 */ 1941 void 1942 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag) 1943 { 1944 if (mntpt == NULL || mntpt[0] == '\0') 1945 mntpt = VFS_NOMNTPT; 1946 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag); 1947 } 1948 1949 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1950 1951 refstr_t * 1952 vfs_getresource(const struct vfs *vfsp) 1953 { 1954 refstr_t *resource; 1955 1956 vfs_list_read_lock(); 1957 resource = vfsp->vfs_resource; 1958 refstr_hold(resource); 1959 vfs_list_unlock(); 1960 1961 return (resource); 1962 } 1963 1964 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1965 1966 refstr_t * 1967 vfs_getmntpoint(const struct vfs *vfsp) 1968 { 1969 refstr_t *mntpt; 1970 1971 vfs_list_read_lock(); 1972 mntpt = vfsp->vfs_mntpt; 1973 refstr_hold(mntpt); 1974 vfs_list_unlock(); 1975 1976 return (mntpt); 1977 } 1978 1979 /* 1980 * Create an empty options table with enough empty slots to hold all 1981 * The options in the options string passed as an argument. 1982 * Potentially prepend another options table. 1983 * 1984 * Note: caller is responsible for locking the vfs list, if needed, 1985 * to protect mops. 1986 */ 1987 static void 1988 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1989 const mntopts_t *mtmpl) 1990 { 1991 const char *s = opts; 1992 uint_t count; 1993 1994 if (opts == NULL || *opts == '\0') { 1995 count = 0; 1996 } else { 1997 count = 1; 1998 1999 /* 2000 * Count number of options in the string 2001 */ 2002 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 2003 count++; 2004 s++; 2005 } 2006 } 2007 vfs_copyopttbl_extend(mtmpl, mops, count); 2008 } 2009 2010 /* 2011 * Create an empty options table with enough empty slots to hold all 2012 * The options in the options string passed as an argument. 2013 * 2014 * This function is *not* for general use by filesystems. 2015 * 2016 * Note: caller is responsible for locking the vfs list, if needed, 2017 * to protect mops. 2018 */ 2019 void 2020 vfs_createopttbl(mntopts_t *mops, const char *opts) 2021 { 2022 vfs_createopttbl_extend(mops, opts, NULL); 2023 } 2024 2025 2026 /* 2027 * Swap two mount options tables 2028 */ 2029 static void 2030 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 2031 { 2032 uint_t tmpcnt; 2033 mntopt_t *tmplist; 2034 2035 tmpcnt = optbl2->mo_count; 2036 tmplist = optbl2->mo_list; 2037 optbl2->mo_count = optbl1->mo_count; 2038 optbl2->mo_list = optbl1->mo_list; 2039 optbl1->mo_count = tmpcnt; 2040 optbl1->mo_list = tmplist; 2041 } 2042 2043 static void 2044 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 2045 { 2046 vfs_list_lock(); 2047 vfs_swapopttbl_nolock(optbl1, optbl2); 2048 vfs_mnttab_modtimeupd(); 2049 vfs_list_unlock(); 2050 } 2051 2052 static char ** 2053 vfs_copycancelopt_extend(char **const moc, int extend) 2054 { 2055 int i = 0; 2056 int j; 2057 char **result; 2058 2059 if (moc != NULL) { 2060 for (; moc[i] != NULL; i++) 2061 /* count number of options to cancel */; 2062 } 2063 2064 if (i + extend == 0) 2065 return (NULL); 2066 2067 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 2068 2069 for (j = 0; j < i; j++) { 2070 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 2071 (void) strcpy(result[j], moc[j]); 2072 } 2073 for (; j <= i + extend; j++) 2074 result[j] = NULL; 2075 2076 return (result); 2077 } 2078 2079 static void 2080 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 2081 { 2082 char *sp, *dp; 2083 2084 d->mo_flags = s->mo_flags; 2085 d->mo_data = s->mo_data; 2086 sp = s->mo_name; 2087 if (sp != NULL) { 2088 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2089 (void) strcpy(dp, sp); 2090 d->mo_name = dp; 2091 } else { 2092 d->mo_name = NULL; /* should never happen */ 2093 } 2094 2095 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 2096 2097 sp = s->mo_arg; 2098 if (sp != NULL) { 2099 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2100 (void) strcpy(dp, sp); 2101 d->mo_arg = dp; 2102 } else { 2103 d->mo_arg = NULL; 2104 } 2105 } 2106 2107 /* 2108 * Copy a mount options table, possibly allocating some spare 2109 * slots at the end. It is permissible to copy_extend the NULL table. 2110 */ 2111 static void 2112 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 2113 { 2114 uint_t i, count; 2115 mntopt_t *motbl; 2116 2117 /* 2118 * Clear out any existing stuff in the options table being initialized 2119 */ 2120 vfs_freeopttbl(dmo); 2121 count = (smo == NULL) ? 0 : smo->mo_count; 2122 if ((count + extra) == 0) /* nothing to do */ 2123 return; 2124 dmo->mo_count = count + extra; 2125 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 2126 dmo->mo_list = motbl; 2127 for (i = 0; i < count; i++) { 2128 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 2129 } 2130 for (i = count; i < count + extra; i++) { 2131 motbl[i].mo_flags = MO_EMPTY; 2132 } 2133 } 2134 2135 /* 2136 * Copy a mount options table. 2137 * 2138 * This function is *not* for general use by filesystems. 2139 * 2140 * Note: caller is responsible for locking the vfs list, if needed, 2141 * to protect smo and dmo. 2142 */ 2143 void 2144 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 2145 { 2146 vfs_copyopttbl_extend(smo, dmo, 0); 2147 } 2148 2149 static char ** 2150 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 2151 { 2152 int c1 = 0; 2153 int c2 = 0; 2154 char **result; 2155 char **sp1, **sp2, **dp; 2156 2157 /* 2158 * First we count both lists of cancel options. 2159 * If either is NULL or has no elements, we return a copy of 2160 * the other. 2161 */ 2162 if (mop1->mo_cancel != NULL) { 2163 for (; mop1->mo_cancel[c1] != NULL; c1++) 2164 /* count cancel options in mop1 */; 2165 } 2166 2167 if (c1 == 0) 2168 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 2169 2170 if (mop2->mo_cancel != NULL) { 2171 for (; mop2->mo_cancel[c2] != NULL; c2++) 2172 /* count cancel options in mop2 */; 2173 } 2174 2175 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 2176 2177 if (c2 == 0) 2178 return (result); 2179 2180 /* 2181 * When we get here, we've got two sets of cancel options; 2182 * we need to merge the two sets. We know that the result 2183 * array has "c1+c2+1" entries and in the end we might shrink 2184 * it. 2185 * Result now has a copy of the c1 entries from mop1; we'll 2186 * now lookup all the entries of mop2 in mop1 and copy it if 2187 * it is unique. 2188 * This operation is O(n^2) but it's only called once per 2189 * filesystem per duplicate option. This is a situation 2190 * which doesn't arise with the filesystems in ON and 2191 * n is generally 1. 2192 */ 2193 2194 dp = &result[c1]; 2195 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 2196 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 2197 if (strcmp(*sp1, *sp2) == 0) 2198 break; 2199 } 2200 if (*sp1 == NULL) { 2201 /* 2202 * Option *sp2 not found in mop1, so copy it. 2203 * The calls to vfs_copycancelopt_extend() 2204 * guarantee that there's enough room. 2205 */ 2206 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 2207 (void) strcpy(*dp++, *sp2); 2208 } 2209 } 2210 if (dp != &result[c1+c2]) { 2211 size_t bytes = (dp - result + 1) * sizeof (char *); 2212 char **nres = kmem_alloc(bytes, KM_SLEEP); 2213 2214 bcopy(result, nres, bytes); 2215 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 2216 result = nres; 2217 } 2218 return (result); 2219 } 2220 2221 /* 2222 * Merge two mount option tables (outer and inner) into one. This is very 2223 * similar to "merging" global variables and automatic variables in C. 2224 * 2225 * This isn't (and doesn't have to be) fast. 2226 * 2227 * This function is *not* for general use by filesystems. 2228 * 2229 * Note: caller is responsible for locking the vfs list, if needed, 2230 * to protect omo, imo & dmo. 2231 */ 2232 void 2233 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2234 { 2235 uint_t i, count; 2236 mntopt_t *mop, *motbl; 2237 uint_t freeidx; 2238 2239 /* 2240 * First determine how much space we need to allocate. 2241 */ 2242 count = omo->mo_count; 2243 for (i = 0; i < imo->mo_count; i++) { 2244 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2245 continue; 2246 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2247 count++; 2248 } 2249 ASSERT(count >= omo->mo_count && 2250 count <= omo->mo_count + imo->mo_count); 2251 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2252 for (i = 0; i < omo->mo_count; i++) 2253 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2254 freeidx = omo->mo_count; 2255 for (i = 0; i < imo->mo_count; i++) { 2256 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2257 continue; 2258 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2259 char **newcanp; 2260 uint_t index = mop - omo->mo_list; 2261 2262 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2263 2264 vfs_freeopt(&motbl[index]); 2265 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2266 2267 vfs_freecancelopt(motbl[index].mo_cancel); 2268 motbl[index].mo_cancel = newcanp; 2269 } else { 2270 /* 2271 * If it's a new option, just copy it over to the first 2272 * free location. 2273 */ 2274 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2275 } 2276 } 2277 dmo->mo_count = count; 2278 dmo->mo_list = motbl; 2279 } 2280 2281 /* 2282 * Functions to set and clear mount options in a mount options table. 2283 */ 2284 2285 /* 2286 * Clear a mount option, if it exists. 2287 * 2288 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2289 * the vfs list. 2290 */ 2291 static void 2292 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2293 { 2294 struct mntopt *mop; 2295 uint_t i, count; 2296 2297 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2298 2299 count = mops->mo_count; 2300 for (i = 0; i < count; i++) { 2301 mop = &mops->mo_list[i]; 2302 2303 if (mop->mo_flags & MO_EMPTY) 2304 continue; 2305 if (strcmp(opt, mop->mo_name)) 2306 continue; 2307 mop->mo_flags &= ~MO_SET; 2308 if (mop->mo_arg != NULL) { 2309 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2310 } 2311 mop->mo_arg = NULL; 2312 if (update_mnttab) 2313 vfs_mnttab_modtimeupd(); 2314 break; 2315 } 2316 } 2317 2318 void 2319 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2320 { 2321 int gotlock = 0; 2322 2323 if (VFS_ON_LIST(vfsp)) { 2324 gotlock = 1; 2325 vfs_list_lock(); 2326 } 2327 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2328 if (gotlock) 2329 vfs_list_unlock(); 2330 } 2331 2332 2333 /* 2334 * Set a mount option on. If it's not found in the table, it's silently 2335 * ignored. If the option has MO_IGNORE set, it is still set unless the 2336 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2337 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2338 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2339 * MO_EMPTY set is created as the option passed in. 2340 * 2341 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2342 * the vfs list. 2343 */ 2344 static void 2345 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2346 const char *arg, int flags, int update_mnttab) 2347 { 2348 mntopt_t *mop; 2349 uint_t i, count; 2350 char *sp; 2351 2352 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2353 2354 if (flags & VFS_CREATEOPT) { 2355 if (vfs_hasopt(mops, opt) != NULL) { 2356 flags &= ~VFS_CREATEOPT; 2357 } 2358 } 2359 count = mops->mo_count; 2360 for (i = 0; i < count; i++) { 2361 mop = &mops->mo_list[i]; 2362 2363 if (mop->mo_flags & MO_EMPTY) { 2364 if ((flags & VFS_CREATEOPT) == 0) 2365 continue; 2366 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2367 (void) strcpy(sp, opt); 2368 mop->mo_name = sp; 2369 if (arg != NULL) 2370 mop->mo_flags = MO_HASVALUE; 2371 else 2372 mop->mo_flags = 0; 2373 } else if (strcmp(opt, mop->mo_name)) { 2374 continue; 2375 } 2376 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2377 break; 2378 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2379 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2380 (void) strcpy(sp, arg); 2381 } else { 2382 sp = NULL; 2383 } 2384 if (mop->mo_arg != NULL) 2385 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2386 mop->mo_arg = sp; 2387 if (flags & VFS_DISPLAY) 2388 mop->mo_flags &= ~MO_NODISPLAY; 2389 if (flags & VFS_NODISPLAY) 2390 mop->mo_flags |= MO_NODISPLAY; 2391 mop->mo_flags |= MO_SET; 2392 if (mop->mo_cancel != NULL) { 2393 char **cp; 2394 2395 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2396 vfs_clearmntopt_nolock(mops, *cp, 0); 2397 } 2398 if (update_mnttab) 2399 vfs_mnttab_modtimeupd(); 2400 break; 2401 } 2402 } 2403 2404 void 2405 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2406 { 2407 int gotlock = 0; 2408 2409 if (VFS_ON_LIST(vfsp)) { 2410 gotlock = 1; 2411 vfs_list_lock(); 2412 } 2413 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2414 if (gotlock) 2415 vfs_list_unlock(); 2416 } 2417 2418 2419 /* 2420 * Add a "tag" option to a mounted file system's options list. 2421 * 2422 * Note: caller is responsible for locking the vfs list, if needed, 2423 * to protect mops. 2424 */ 2425 static mntopt_t * 2426 vfs_addtag(mntopts_t *mops, const char *tag) 2427 { 2428 uint_t count; 2429 mntopt_t *mop, *motbl; 2430 2431 count = mops->mo_count + 1; 2432 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2433 if (mops->mo_count) { 2434 size_t len = (count - 1) * sizeof (mntopt_t); 2435 2436 bcopy(mops->mo_list, motbl, len); 2437 kmem_free(mops->mo_list, len); 2438 } 2439 mops->mo_count = count; 2440 mops->mo_list = motbl; 2441 mop = &motbl[count - 1]; 2442 mop->mo_flags = MO_TAG; 2443 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2444 (void) strcpy(mop->mo_name, tag); 2445 return (mop); 2446 } 2447 2448 /* 2449 * Allow users to set arbitrary "tags" in a vfs's mount options. 2450 * Broader use within the kernel is discouraged. 2451 */ 2452 int 2453 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2454 cred_t *cr) 2455 { 2456 vfs_t *vfsp; 2457 mntopts_t *mops; 2458 mntopt_t *mop; 2459 int found = 0; 2460 dev_t dev = makedevice(major, minor); 2461 int err = 0; 2462 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2463 2464 /* 2465 * Find the desired mounted file system 2466 */ 2467 vfs_list_lock(); 2468 vfsp = rootvfs; 2469 do { 2470 if (vfsp->vfs_dev == dev && 2471 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2472 found = 1; 2473 break; 2474 } 2475 vfsp = vfsp->vfs_next; 2476 } while (vfsp != rootvfs); 2477 2478 if (!found) { 2479 err = EINVAL; 2480 goto out; 2481 } 2482 err = secpolicy_fs_config(cr, vfsp); 2483 if (err != 0) 2484 goto out; 2485 2486 mops = &vfsp->vfs_mntopts; 2487 /* 2488 * Add tag if it doesn't already exist 2489 */ 2490 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2491 int len; 2492 2493 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2494 len = strlen(buf); 2495 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2496 err = ENAMETOOLONG; 2497 goto out; 2498 } 2499 mop = vfs_addtag(mops, tag); 2500 } 2501 if ((mop->mo_flags & MO_TAG) == 0) { 2502 err = EINVAL; 2503 goto out; 2504 } 2505 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2506 out: 2507 vfs_list_unlock(); 2508 kmem_free(buf, MAX_MNTOPT_STR); 2509 return (err); 2510 } 2511 2512 /* 2513 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2514 * Broader use within the kernel is discouraged. 2515 */ 2516 int 2517 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2518 cred_t *cr) 2519 { 2520 vfs_t *vfsp; 2521 mntopt_t *mop; 2522 int found = 0; 2523 dev_t dev = makedevice(major, minor); 2524 int err = 0; 2525 2526 /* 2527 * Find the desired mounted file system 2528 */ 2529 vfs_list_lock(); 2530 vfsp = rootvfs; 2531 do { 2532 if (vfsp->vfs_dev == dev && 2533 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2534 found = 1; 2535 break; 2536 } 2537 vfsp = vfsp->vfs_next; 2538 } while (vfsp != rootvfs); 2539 2540 if (!found) { 2541 err = EINVAL; 2542 goto out; 2543 } 2544 err = secpolicy_fs_config(cr, vfsp); 2545 if (err != 0) 2546 goto out; 2547 2548 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2549 err = EINVAL; 2550 goto out; 2551 } 2552 if ((mop->mo_flags & MO_TAG) == 0) { 2553 err = EINVAL; 2554 goto out; 2555 } 2556 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2557 out: 2558 vfs_list_unlock(); 2559 return (err); 2560 } 2561 2562 /* 2563 * Function to parse an option string and fill in a mount options table. 2564 * Unknown options are silently ignored. The input option string is modified 2565 * by replacing separators with nulls. If the create flag is set, options 2566 * not found in the table are just added on the fly. The table must have 2567 * an option slot marked MO_EMPTY to add an option on the fly. 2568 * 2569 * This function is *not* for general use by filesystems. 2570 * 2571 * Note: caller is responsible for locking the vfs list, if needed, 2572 * to protect mops.. 2573 */ 2574 void 2575 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2576 { 2577 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2578 int setflg = VFS_NOFORCEOPT; 2579 2580 if (osp == NULL) 2581 return; 2582 while (*s != '\0') { 2583 p = strchr(s, ','); /* find next option */ 2584 if (p == NULL) { 2585 cp = NULL; 2586 p = s + strlen(s); 2587 } else { 2588 cp = p; /* save location of comma */ 2589 *p++ = '\0'; /* mark end and point to next option */ 2590 } 2591 nextop = p; 2592 p = strchr(s, '='); /* look for value */ 2593 if (p == NULL) { 2594 valp = NULL; /* no value supplied */ 2595 } else { 2596 ep = p; /* save location of equals */ 2597 *p++ = '\0'; /* end option and point to value */ 2598 valp = p; 2599 } 2600 /* 2601 * set option into options table 2602 */ 2603 if (create) 2604 setflg |= VFS_CREATEOPT; 2605 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2606 if (cp != NULL) 2607 *cp = ','; /* restore the comma */ 2608 if (valp != NULL) 2609 *ep = '='; /* restore the equals */ 2610 s = nextop; 2611 } 2612 } 2613 2614 /* 2615 * Function to inquire if an option exists in a mount options table. 2616 * Returns a pointer to the option if it exists, else NULL. 2617 * 2618 * This function is *not* for general use by filesystems. 2619 * 2620 * Note: caller is responsible for locking the vfs list, if needed, 2621 * to protect mops. 2622 */ 2623 struct mntopt * 2624 vfs_hasopt(const mntopts_t *mops, const char *opt) 2625 { 2626 struct mntopt *mop; 2627 uint_t i, count; 2628 2629 count = mops->mo_count; 2630 for (i = 0; i < count; i++) { 2631 mop = &mops->mo_list[i]; 2632 2633 if (mop->mo_flags & MO_EMPTY) 2634 continue; 2635 if (strcmp(opt, mop->mo_name) == 0) 2636 return (mop); 2637 } 2638 return (NULL); 2639 } 2640 2641 /* 2642 * Function to inquire if an option is set in a mount options table. 2643 * Returns non-zero if set and fills in the arg pointer with a pointer to 2644 * the argument string or NULL if there is no argument string. 2645 */ 2646 static int 2647 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2648 { 2649 struct mntopt *mop; 2650 uint_t i, count; 2651 2652 count = mops->mo_count; 2653 for (i = 0; i < count; i++) { 2654 mop = &mops->mo_list[i]; 2655 2656 if (mop->mo_flags & MO_EMPTY) 2657 continue; 2658 if (strcmp(opt, mop->mo_name)) 2659 continue; 2660 if ((mop->mo_flags & MO_SET) == 0) 2661 return (0); 2662 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2663 *argp = mop->mo_arg; 2664 return (1); 2665 } 2666 return (0); 2667 } 2668 2669 2670 int 2671 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2672 { 2673 int ret; 2674 2675 vfs_list_read_lock(); 2676 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2677 vfs_list_unlock(); 2678 return (ret); 2679 } 2680 2681 2682 /* 2683 * Construct a comma separated string of the options set in the given 2684 * mount table, return the string in the given buffer. Return non-zero if 2685 * the buffer would overflow. 2686 * 2687 * This function is *not* for general use by filesystems. 2688 * 2689 * Note: caller is responsible for locking the vfs list, if needed, 2690 * to protect mp. 2691 */ 2692 int 2693 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2694 { 2695 char *cp; 2696 uint_t i; 2697 2698 buf[0] = '\0'; 2699 cp = buf; 2700 for (i = 0; i < mp->mo_count; i++) { 2701 struct mntopt *mop; 2702 2703 mop = &mp->mo_list[i]; 2704 if (mop->mo_flags & MO_SET) { 2705 int optlen, comma = 0; 2706 2707 if (buf[0] != '\0') 2708 comma = 1; 2709 optlen = strlen(mop->mo_name); 2710 if (strlen(buf) + comma + optlen + 1 > len) 2711 goto err; 2712 if (comma) 2713 *cp++ = ','; 2714 (void) strcpy(cp, mop->mo_name); 2715 cp += optlen; 2716 /* 2717 * Append option value if there is one 2718 */ 2719 if (mop->mo_arg != NULL) { 2720 int arglen; 2721 2722 arglen = strlen(mop->mo_arg); 2723 if (strlen(buf) + arglen + 2 > len) 2724 goto err; 2725 *cp++ = '='; 2726 (void) strcpy(cp, mop->mo_arg); 2727 cp += arglen; 2728 } 2729 } 2730 } 2731 return (0); 2732 err: 2733 return (EOVERFLOW); 2734 } 2735 2736 static void 2737 vfs_freecancelopt(char **moc) 2738 { 2739 if (moc != NULL) { 2740 int ccnt = 0; 2741 char **cp; 2742 2743 for (cp = moc; *cp != NULL; cp++) { 2744 kmem_free(*cp, strlen(*cp) + 1); 2745 ccnt++; 2746 } 2747 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2748 } 2749 } 2750 2751 static void 2752 vfs_freeopt(mntopt_t *mop) 2753 { 2754 if (mop->mo_name != NULL) 2755 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2756 2757 vfs_freecancelopt(mop->mo_cancel); 2758 2759 if (mop->mo_arg != NULL) 2760 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2761 } 2762 2763 /* 2764 * Free a mount options table 2765 * 2766 * This function is *not* for general use by filesystems. 2767 * 2768 * Note: caller is responsible for locking the vfs list, if needed, 2769 * to protect mp. 2770 */ 2771 void 2772 vfs_freeopttbl(mntopts_t *mp) 2773 { 2774 uint_t i, count; 2775 2776 count = mp->mo_count; 2777 for (i = 0; i < count; i++) { 2778 vfs_freeopt(&mp->mo_list[i]); 2779 } 2780 if (count) { 2781 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2782 mp->mo_count = 0; 2783 mp->mo_list = NULL; 2784 } 2785 } 2786 2787 2788 /* ARGSUSED */ 2789 static int 2790 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2791 caller_context_t *ct) 2792 { 2793 return (0); 2794 } 2795 2796 /* ARGSUSED */ 2797 static int 2798 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2799 caller_context_t *ct) 2800 { 2801 return (0); 2802 } 2803 2804 /* 2805 * The dummy vnode is currently used only by file events notification 2806 * module which is just interested in the timestamps. 2807 */ 2808 /* ARGSUSED */ 2809 static int 2810 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2811 caller_context_t *ct) 2812 { 2813 bzero(vap, sizeof (vattr_t)); 2814 vap->va_type = VREG; 2815 vap->va_nlink = 1; 2816 vap->va_ctime = vfs_mnttab_ctime; 2817 /* 2818 * it is ok to just copy mtime as the time will be monotonically 2819 * increasing. 2820 */ 2821 vap->va_mtime = vfs_mnttab_mtime; 2822 vap->va_atime = vap->va_mtime; 2823 return (0); 2824 } 2825 2826 static void 2827 vfs_mnttabvp_setup(void) 2828 { 2829 vnode_t *tvp; 2830 vnodeops_t *vfs_mntdummyvnops; 2831 const fs_operation_def_t mnt_dummyvnodeops_template[] = { 2832 VOPNAME_READ, { .vop_read = vfs_mntdummyread }, 2833 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite }, 2834 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr }, 2835 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 2836 NULL, NULL 2837 }; 2838 2839 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template, 2840 &vfs_mntdummyvnops) != 0) { 2841 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed"); 2842 /* Shouldn't happen, but not bad enough to panic */ 2843 return; 2844 } 2845 2846 /* 2847 * A global dummy vnode is allocated to represent mntfs files. 2848 * The mntfs file (/etc/mnttab) can be monitored for file events 2849 * and receive an event when mnttab changes. Dummy VOP calls 2850 * will be made on this vnode. The file events notification module 2851 * intercepts this vnode and delivers relevant events. 2852 */ 2853 tvp = vn_alloc(KM_SLEEP); 2854 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE; 2855 vn_setops(tvp, vfs_mntdummyvnops); 2856 tvp->v_type = VREG; 2857 /* 2858 * The mnt dummy ops do not reference v_data. 2859 * No other module intercepting this vnode should either. 2860 * Just set it to point to itself. 2861 */ 2862 tvp->v_data = (caddr_t)tvp; 2863 tvp->v_vfsp = rootvfs; 2864 vfs_mntdummyvp = tvp; 2865 } 2866 2867 /* 2868 * performs fake read/write ops 2869 */ 2870 static void 2871 vfs_mnttab_rwop(int rw) 2872 { 2873 struct uio uio; 2874 struct iovec iov; 2875 char buf[1]; 2876 2877 if (vfs_mntdummyvp == NULL) 2878 return; 2879 2880 bzero(&uio, sizeof (uio)); 2881 bzero(&iov, sizeof (iov)); 2882 iov.iov_base = buf; 2883 iov.iov_len = 0; 2884 uio.uio_iov = &iov; 2885 uio.uio_iovcnt = 1; 2886 uio.uio_loffset = 0; 2887 uio.uio_segflg = UIO_SYSSPACE; 2888 uio.uio_resid = 0; 2889 if (rw) { 2890 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2891 } else { 2892 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2893 } 2894 } 2895 2896 /* 2897 * Generate a write operation. 2898 */ 2899 void 2900 vfs_mnttab_writeop(void) 2901 { 2902 vfs_mnttab_rwop(1); 2903 } 2904 2905 /* 2906 * Generate a read operation. 2907 */ 2908 void 2909 vfs_mnttab_readop(void) 2910 { 2911 vfs_mnttab_rwop(0); 2912 } 2913 2914 /* 2915 * Free any mnttab information recorded in the vfs struct. 2916 * The vfs must not be on the vfs list. 2917 */ 2918 static void 2919 vfs_freemnttab(struct vfs *vfsp) 2920 { 2921 ASSERT(!VFS_ON_LIST(vfsp)); 2922 2923 /* 2924 * Free device and mount point information 2925 */ 2926 if (vfsp->vfs_mntpt != NULL) { 2927 refstr_rele(vfsp->vfs_mntpt); 2928 vfsp->vfs_mntpt = NULL; 2929 } 2930 if (vfsp->vfs_resource != NULL) { 2931 refstr_rele(vfsp->vfs_resource); 2932 vfsp->vfs_resource = NULL; 2933 } 2934 /* 2935 * Now free mount options information 2936 */ 2937 vfs_freeopttbl(&vfsp->vfs_mntopts); 2938 } 2939 2940 /* 2941 * Return the last mnttab modification time 2942 */ 2943 void 2944 vfs_mnttab_modtime(timespec_t *ts) 2945 { 2946 ASSERT(RW_LOCK_HELD(&vfslist)); 2947 *ts = vfs_mnttab_mtime; 2948 } 2949 2950 /* 2951 * See if mnttab is changed 2952 */ 2953 void 2954 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2955 { 2956 int changed; 2957 2958 *phpp = (struct pollhead *)NULL; 2959 2960 /* 2961 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2962 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2963 * to not grab the vfs list lock because tv_sec is monotonically 2964 * increasing. 2965 */ 2966 2967 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2968 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2969 if (!changed) { 2970 *phpp = &vfs_pollhd; 2971 } 2972 } 2973 2974 /* Provide a unique and monotonically-increasing timestamp. */ 2975 void 2976 vfs_mono_time(timespec_t *ts) 2977 { 2978 static volatile hrtime_t hrt; /* The saved time. */ 2979 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */ 2980 timespec_t newts; 2981 2982 /* 2983 * Try gethrestime() first, but be prepared to fabricate a sensible 2984 * answer at the first sign of any trouble. 2985 */ 2986 gethrestime(&newts); 2987 newhrt = ts2hrt(&newts); 2988 for (;;) { 2989 oldhrt = hrt; 2990 if (newhrt <= hrt) 2991 newhrt = hrt + 1; 2992 if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt) 2993 break; 2994 } 2995 hrt2ts(newhrt, ts); 2996 } 2997 2998 /* 2999 * Update the mnttab modification time and wake up any waiters for 3000 * mnttab changes 3001 */ 3002 void 3003 vfs_mnttab_modtimeupd() 3004 { 3005 hrtime_t oldhrt, newhrt; 3006 3007 ASSERT(RW_WRITE_HELD(&vfslist)); 3008 oldhrt = ts2hrt(&vfs_mnttab_mtime); 3009 gethrestime(&vfs_mnttab_mtime); 3010 newhrt = ts2hrt(&vfs_mnttab_mtime); 3011 if (oldhrt == (hrtime_t)0) 3012 vfs_mnttab_ctime = vfs_mnttab_mtime; 3013 /* 3014 * Attempt to provide unique mtime (like uniqtime but not). 3015 */ 3016 if (newhrt == oldhrt) { 3017 newhrt++; 3018 hrt2ts(newhrt, &vfs_mnttab_mtime); 3019 } 3020 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 3021 vfs_mnttab_writeop(); 3022 } 3023 3024 int 3025 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 3026 { 3027 vnode_t *coveredvp; 3028 int error; 3029 extern void teardown_vopstats(vfs_t *); 3030 3031 /* 3032 * Get covered vnode. This will be NULL if the vfs is not linked 3033 * into the file system name space (i.e., domount() with MNT_NOSPICE). 3034 */ 3035 coveredvp = vfsp->vfs_vnodecovered; 3036 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 3037 3038 /* 3039 * Purge all dnlc entries for this vfs. 3040 */ 3041 (void) dnlc_purge_vfsp(vfsp, 0); 3042 3043 /* For forcible umount, skip VFS_SYNC() since it may hang */ 3044 if ((flag & MS_FORCE) == 0) 3045 (void) VFS_SYNC(vfsp, 0, cr); 3046 3047 /* 3048 * Lock the vfs to maintain fs status quo during unmount. This 3049 * has to be done after the sync because ufs_update tries to acquire 3050 * the vfs_reflock. 3051 */ 3052 vfs_lock_wait(vfsp); 3053 3054 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 3055 vfs_unlock(vfsp); 3056 if (coveredvp != NULL) 3057 vn_vfsunlock(coveredvp); 3058 } else if (coveredvp != NULL) { 3059 teardown_vopstats(vfsp); 3060 /* 3061 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 3062 * when it frees vfsp so we do a VN_HOLD() so we can 3063 * continue to use coveredvp afterwards. 3064 */ 3065 VN_HOLD(coveredvp); 3066 vfs_remove(vfsp); 3067 vn_vfsunlock(coveredvp); 3068 VN_RELE(coveredvp); 3069 } else { 3070 teardown_vopstats(vfsp); 3071 /* 3072 * Release the reference to vfs that is not linked 3073 * into the name space. 3074 */ 3075 vfs_unlock(vfsp); 3076 VFS_RELE(vfsp); 3077 } 3078 return (error); 3079 } 3080 3081 3082 /* 3083 * Vfs_unmountall() is called by uadmin() to unmount all 3084 * mounted file systems (except the root file system) during shutdown. 3085 * It follows the existing locking protocol when traversing the vfs list 3086 * to sync and unmount vfses. Even though there should be no 3087 * other thread running while the system is shutting down, it is prudent 3088 * to still follow the locking protocol. 3089 */ 3090 void 3091 vfs_unmountall(void) 3092 { 3093 struct vfs *vfsp; 3094 struct vfs *prev_vfsp = NULL; 3095 int error; 3096 3097 /* 3098 * Toss all dnlc entries now so that the per-vfs sync 3099 * and unmount operations don't have to slog through 3100 * a bunch of uninteresting vnodes over and over again. 3101 */ 3102 dnlc_purge(); 3103 3104 vfs_list_lock(); 3105 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 3106 prev_vfsp = vfsp->vfs_prev; 3107 3108 if (vfs_lock(vfsp) != 0) 3109 continue; 3110 error = vn_vfswlock(vfsp->vfs_vnodecovered); 3111 vfs_unlock(vfsp); 3112 if (error) 3113 continue; 3114 3115 vfs_list_unlock(); 3116 3117 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 3118 (void) dounmount(vfsp, 0, CRED()); 3119 3120 /* 3121 * Since we dropped the vfslist lock above we must 3122 * verify that next_vfsp still exists, else start over. 3123 */ 3124 vfs_list_lock(); 3125 for (vfsp = rootvfs->vfs_prev; 3126 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 3127 if (vfsp == prev_vfsp) 3128 break; 3129 if (vfsp == rootvfs && prev_vfsp != rootvfs) 3130 prev_vfsp = rootvfs->vfs_prev; 3131 } 3132 vfs_list_unlock(); 3133 } 3134 3135 /* 3136 * Called to add an entry to the end of the vfs mount in progress list 3137 */ 3138 void 3139 vfs_addmip(dev_t dev, struct vfs *vfsp) 3140 { 3141 struct ipmnt *mipp; 3142 3143 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 3144 mipp->mip_next = NULL; 3145 mipp->mip_dev = dev; 3146 mipp->mip_vfsp = vfsp; 3147 mutex_enter(&vfs_miplist_mutex); 3148 if (vfs_miplist_end != NULL) 3149 vfs_miplist_end->mip_next = mipp; 3150 else 3151 vfs_miplist = mipp; 3152 vfs_miplist_end = mipp; 3153 mutex_exit(&vfs_miplist_mutex); 3154 } 3155 3156 /* 3157 * Called to remove an entry from the mount in progress list 3158 * Either because the mount completed or it failed. 3159 */ 3160 void 3161 vfs_delmip(struct vfs *vfsp) 3162 { 3163 struct ipmnt *mipp, *mipprev; 3164 3165 mutex_enter(&vfs_miplist_mutex); 3166 mipprev = NULL; 3167 for (mipp = vfs_miplist; 3168 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 3169 mipprev = mipp; 3170 } 3171 if (mipp == NULL) 3172 return; /* shouldn't happen */ 3173 if (mipp == vfs_miplist_end) 3174 vfs_miplist_end = mipprev; 3175 if (mipprev == NULL) 3176 vfs_miplist = mipp->mip_next; 3177 else 3178 mipprev->mip_next = mipp->mip_next; 3179 mutex_exit(&vfs_miplist_mutex); 3180 kmem_free(mipp, sizeof (struct ipmnt)); 3181 } 3182 3183 /* 3184 * vfs_add is called by a specific filesystem's mount routine to add 3185 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 3186 * The vfs should already have been locked by the caller. 3187 * 3188 * coveredvp is NULL if this is the root. 3189 */ 3190 void 3191 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 3192 { 3193 int newflag; 3194 3195 ASSERT(vfs_lock_held(vfsp)); 3196 VFS_HOLD(vfsp); 3197 newflag = vfsp->vfs_flag; 3198 if (mflag & MS_RDONLY) 3199 newflag |= VFS_RDONLY; 3200 else 3201 newflag &= ~VFS_RDONLY; 3202 if (mflag & MS_NOSUID) 3203 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 3204 else 3205 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 3206 if (mflag & MS_NOMNTTAB) 3207 newflag |= VFS_NOMNTTAB; 3208 else 3209 newflag &= ~VFS_NOMNTTAB; 3210 3211 if (coveredvp != NULL) { 3212 ASSERT(vn_vfswlock_held(coveredvp)); 3213 coveredvp->v_vfsmountedhere = vfsp; 3214 VN_HOLD(coveredvp); 3215 } 3216 vfsp->vfs_vnodecovered = coveredvp; 3217 vfsp->vfs_flag = newflag; 3218 3219 vfs_list_add(vfsp); 3220 } 3221 3222 /* 3223 * Remove a vfs from the vfs list, null out the pointer from the 3224 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 3225 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 3226 * reference to the vfs and to the covered vnode. 3227 * 3228 * Called from dounmount after it's confirmed with the file system 3229 * that the unmount is legal. 3230 */ 3231 void 3232 vfs_remove(struct vfs *vfsp) 3233 { 3234 vnode_t *vp; 3235 3236 ASSERT(vfs_lock_held(vfsp)); 3237 3238 /* 3239 * Can't unmount root. Should never happen because fs will 3240 * be busy. 3241 */ 3242 if (vfsp == rootvfs) 3243 panic("vfs_remove: unmounting root"); 3244 3245 vfs_list_remove(vfsp); 3246 3247 /* 3248 * Unhook from the file system name space. 3249 */ 3250 vp = vfsp->vfs_vnodecovered; 3251 ASSERT(vn_vfswlock_held(vp)); 3252 vp->v_vfsmountedhere = NULL; 3253 vfsp->vfs_vnodecovered = NULL; 3254 VN_RELE(vp); 3255 3256 /* 3257 * Release lock and wakeup anybody waiting. 3258 */ 3259 vfs_unlock(vfsp); 3260 VFS_RELE(vfsp); 3261 } 3262 3263 /* 3264 * Lock a filesystem to prevent access to it while mounting, 3265 * unmounting and syncing. Return EBUSY immediately if lock 3266 * can't be acquired. 3267 */ 3268 int 3269 vfs_lock(vfs_t *vfsp) 3270 { 3271 vn_vfslocks_entry_t *vpvfsentry; 3272 3273 vpvfsentry = vn_vfslocks_getlock(vfsp); 3274 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 3275 return (0); 3276 3277 vn_vfslocks_rele(vpvfsentry); 3278 return (EBUSY); 3279 } 3280 3281 int 3282 vfs_rlock(vfs_t *vfsp) 3283 { 3284 vn_vfslocks_entry_t *vpvfsentry; 3285 3286 vpvfsentry = vn_vfslocks_getlock(vfsp); 3287 3288 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 3289 return (0); 3290 3291 vn_vfslocks_rele(vpvfsentry); 3292 return (EBUSY); 3293 } 3294 3295 void 3296 vfs_lock_wait(vfs_t *vfsp) 3297 { 3298 vn_vfslocks_entry_t *vpvfsentry; 3299 3300 vpvfsentry = vn_vfslocks_getlock(vfsp); 3301 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 3302 } 3303 3304 void 3305 vfs_rlock_wait(vfs_t *vfsp) 3306 { 3307 vn_vfslocks_entry_t *vpvfsentry; 3308 3309 vpvfsentry = vn_vfslocks_getlock(vfsp); 3310 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 3311 } 3312 3313 /* 3314 * Unlock a locked filesystem. 3315 */ 3316 void 3317 vfs_unlock(vfs_t *vfsp) 3318 { 3319 vn_vfslocks_entry_t *vpvfsentry; 3320 3321 /* 3322 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 3323 * And these changes should remain for the patch changes as it is. 3324 */ 3325 if (panicstr) 3326 return; 3327 3328 /* 3329 * ve_refcount needs to be dropped twice here. 3330 * 1. To release refernce after a call to vfs_locks_getlock() 3331 * 2. To release the reference from the locking routines like 3332 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 3333 */ 3334 3335 vpvfsentry = vn_vfslocks_getlock(vfsp); 3336 vn_vfslocks_rele(vpvfsentry); 3337 3338 rwst_exit(&vpvfsentry->ve_lock); 3339 vn_vfslocks_rele(vpvfsentry); 3340 } 3341 3342 /* 3343 * Utility routine that allows a filesystem to construct its 3344 * fsid in "the usual way" - by munging some underlying dev_t and 3345 * the filesystem type number into the 64-bit fsid. Note that 3346 * this implicitly relies on dev_t persistence to make filesystem 3347 * id's persistent. 3348 * 3349 * There's nothing to prevent an individual fs from constructing its 3350 * fsid in a different way, and indeed they should. 3351 * 3352 * Since we want fsids to be 32-bit quantities (so that they can be 3353 * exported identically by either 32-bit or 64-bit APIs, as well as 3354 * the fact that fsid's are "known" to NFS), we compress the device 3355 * number given down to 32-bits, and panic if that isn't possible. 3356 */ 3357 void 3358 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 3359 { 3360 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 3361 panic("device number too big for fsid!"); 3362 fsi->val[1] = val; 3363 } 3364 3365 int 3366 vfs_lock_held(vfs_t *vfsp) 3367 { 3368 int held; 3369 vn_vfslocks_entry_t *vpvfsentry; 3370 3371 /* 3372 * vfs_lock_held will mimic sema_held behaviour 3373 * if panicstr is set. And these changes should remain 3374 * for the patch changes as it is. 3375 */ 3376 if (panicstr) 3377 return (1); 3378 3379 vpvfsentry = vn_vfslocks_getlock(vfsp); 3380 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3381 3382 vn_vfslocks_rele(vpvfsentry); 3383 return (held); 3384 } 3385 3386 struct _kthread * 3387 vfs_lock_owner(vfs_t *vfsp) 3388 { 3389 struct _kthread *owner; 3390 vn_vfslocks_entry_t *vpvfsentry; 3391 3392 /* 3393 * vfs_wlock_held will mimic sema_held behaviour 3394 * if panicstr is set. And these changes should remain 3395 * for the patch changes as it is. 3396 */ 3397 if (panicstr) 3398 return (NULL); 3399 3400 vpvfsentry = vn_vfslocks_getlock(vfsp); 3401 owner = rwst_owner(&vpvfsentry->ve_lock); 3402 3403 vn_vfslocks_rele(vpvfsentry); 3404 return (owner); 3405 } 3406 3407 /* 3408 * vfs list locking. 3409 * 3410 * Rather than manipulate the vfslist lock directly, we abstract into lock 3411 * and unlock routines to allow the locking implementation to be changed for 3412 * clustering. 3413 * 3414 * Whenever the vfs list is modified through its hash links, the overall list 3415 * lock must be obtained before locking the relevant hash bucket. But to see 3416 * whether a given vfs is on the list, it suffices to obtain the lock for the 3417 * hash bucket without getting the overall list lock. (See getvfs() below.) 3418 */ 3419 3420 void 3421 vfs_list_lock() 3422 { 3423 rw_enter(&vfslist, RW_WRITER); 3424 } 3425 3426 void 3427 vfs_list_read_lock() 3428 { 3429 rw_enter(&vfslist, RW_READER); 3430 } 3431 3432 void 3433 vfs_list_unlock() 3434 { 3435 rw_exit(&vfslist); 3436 } 3437 3438 /* 3439 * Low level worker routines for adding entries to and removing entries from 3440 * the vfs list. 3441 */ 3442 3443 static void 3444 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3445 { 3446 int vhno; 3447 struct vfs **hp; 3448 dev_t dev; 3449 3450 ASSERT(RW_WRITE_HELD(&vfslist)); 3451 3452 dev = expldev(vfsp->vfs_fsid.val[0]); 3453 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3454 3455 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3456 3457 /* 3458 * Link into the hash table, inserting it at the end, so that LOFS 3459 * with the same fsid as UFS (or other) file systems will not hide the 3460 * UFS. 3461 */ 3462 if (insert_at_head) { 3463 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3464 rvfs_list[vhno].rvfs_head = vfsp; 3465 } else { 3466 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3467 hp = &(*hp)->vfs_hash) 3468 continue; 3469 /* 3470 * hp now contains the address of the pointer to update 3471 * to effect the insertion. 3472 */ 3473 vfsp->vfs_hash = NULL; 3474 *hp = vfsp; 3475 } 3476 3477 rvfs_list[vhno].rvfs_len++; 3478 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3479 } 3480 3481 3482 static void 3483 vfs_hash_remove(struct vfs *vfsp) 3484 { 3485 int vhno; 3486 struct vfs *tvfsp; 3487 dev_t dev; 3488 3489 ASSERT(RW_WRITE_HELD(&vfslist)); 3490 3491 dev = expldev(vfsp->vfs_fsid.val[0]); 3492 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3493 3494 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3495 3496 /* 3497 * Remove from hash. 3498 */ 3499 if (rvfs_list[vhno].rvfs_head == vfsp) { 3500 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3501 rvfs_list[vhno].rvfs_len--; 3502 goto foundit; 3503 } 3504 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3505 tvfsp = tvfsp->vfs_hash) { 3506 if (tvfsp->vfs_hash == vfsp) { 3507 tvfsp->vfs_hash = vfsp->vfs_hash; 3508 rvfs_list[vhno].rvfs_len--; 3509 goto foundit; 3510 } 3511 } 3512 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3513 3514 foundit: 3515 3516 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3517 } 3518 3519 3520 void 3521 vfs_list_add(struct vfs *vfsp) 3522 { 3523 zone_t *zone; 3524 3525 /* 3526 * Typically, the vfs_t will have been created on behalf of the file 3527 * system in vfs_init, where it will have been provided with a 3528 * vfs_impl_t. This, however, might be lacking if the vfs_t was created 3529 * by an unbundled file system. We therefore check for such an example 3530 * before stamping the vfs_t with its creation time for the benefit of 3531 * mntfs. 3532 */ 3533 if (vfsp->vfs_implp == NULL) 3534 vfsimpl_setup(vfsp); 3535 vfs_mono_time(&vfsp->vfs_hrctime); 3536 3537 /* 3538 * The zone that owns the mount is the one that performed the mount. 3539 * Note that this isn't necessarily the same as the zone mounted into. 3540 * The corresponding zone_rele_ref() will be done when the vfs_t 3541 * is being free'd. 3542 */ 3543 vfsp->vfs_zone = curproc->p_zone; 3544 zone_init_ref(&vfsp->vfs_implp->vi_zone_ref); 3545 zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref, 3546 ZONE_REF_VFS); 3547 3548 /* 3549 * Find the zone mounted into, and put this mount on its vfs list. 3550 */ 3551 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3552 ASSERT(zone != NULL); 3553 /* 3554 * Special casing for the root vfs. This structure is allocated 3555 * statically and hooked onto rootvfs at link time. During the 3556 * vfs_mountroot call at system startup time, the root file system's 3557 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3558 * as argument. The code below must detect and handle this special 3559 * case. The only apparent justification for this special casing is 3560 * to ensure that the root file system appears at the head of the 3561 * list. 3562 * 3563 * XXX: I'm assuming that it's ok to do normal list locking when 3564 * adding the entry for the root file system (this used to be 3565 * done with no locks held). 3566 */ 3567 vfs_list_lock(); 3568 /* 3569 * Link into the vfs list proper. 3570 */ 3571 if (vfsp == &root) { 3572 /* 3573 * Assert: This vfs is already on the list as its first entry. 3574 * Thus, there's nothing to do. 3575 */ 3576 ASSERT(rootvfs == vfsp); 3577 /* 3578 * Add it to the head of the global zone's vfslist. 3579 */ 3580 ASSERT(zone == global_zone); 3581 ASSERT(zone->zone_vfslist == NULL); 3582 zone->zone_vfslist = vfsp; 3583 } else { 3584 /* 3585 * Link to end of list using vfs_prev (as rootvfs is now a 3586 * doubly linked circular list) so list is in mount order for 3587 * mnttab use. 3588 */ 3589 rootvfs->vfs_prev->vfs_next = vfsp; 3590 vfsp->vfs_prev = rootvfs->vfs_prev; 3591 rootvfs->vfs_prev = vfsp; 3592 vfsp->vfs_next = rootvfs; 3593 3594 /* 3595 * Do it again for the zone-private list (which may be NULL). 3596 */ 3597 if (zone->zone_vfslist == NULL) { 3598 ASSERT(zone != global_zone); 3599 zone->zone_vfslist = vfsp; 3600 } else { 3601 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3602 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3603 zone->zone_vfslist->vfs_zone_prev = vfsp; 3604 vfsp->vfs_zone_next = zone->zone_vfslist; 3605 } 3606 } 3607 3608 /* 3609 * Link into the hash table, inserting it at the end, so that LOFS 3610 * with the same fsid as UFS (or other) file systems will not hide 3611 * the UFS. 3612 */ 3613 vfs_hash_add(vfsp, 0); 3614 3615 /* 3616 * update the mnttab modification time 3617 */ 3618 vfs_mnttab_modtimeupd(); 3619 vfs_list_unlock(); 3620 zone_rele(zone); 3621 } 3622 3623 void 3624 vfs_list_remove(struct vfs *vfsp) 3625 { 3626 zone_t *zone; 3627 3628 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3629 ASSERT(zone != NULL); 3630 /* 3631 * Callers are responsible for preventing attempts to unmount the 3632 * root. 3633 */ 3634 ASSERT(vfsp != rootvfs); 3635 3636 vfs_list_lock(); 3637 3638 /* 3639 * Remove from hash. 3640 */ 3641 vfs_hash_remove(vfsp); 3642 3643 /* 3644 * Remove from vfs list. 3645 */ 3646 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3647 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3648 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3649 3650 /* 3651 * Remove from zone-specific vfs list. 3652 */ 3653 if (zone->zone_vfslist == vfsp) 3654 zone->zone_vfslist = vfsp->vfs_zone_next; 3655 3656 if (vfsp->vfs_zone_next == vfsp) { 3657 ASSERT(vfsp->vfs_zone_prev == vfsp); 3658 ASSERT(zone->zone_vfslist == vfsp); 3659 zone->zone_vfslist = NULL; 3660 } 3661 3662 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3663 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3664 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3665 3666 /* 3667 * update the mnttab modification time 3668 */ 3669 vfs_mnttab_modtimeupd(); 3670 vfs_list_unlock(); 3671 zone_rele(zone); 3672 } 3673 3674 struct vfs * 3675 getvfs(fsid_t *fsid) 3676 { 3677 struct vfs *vfsp; 3678 int val0 = fsid->val[0]; 3679 int val1 = fsid->val[1]; 3680 dev_t dev = expldev(val0); 3681 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3682 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3683 3684 mutex_enter(hmp); 3685 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3686 if (vfsp->vfs_fsid.val[0] == val0 && 3687 vfsp->vfs_fsid.val[1] == val1) { 3688 VFS_HOLD(vfsp); 3689 mutex_exit(hmp); 3690 return (vfsp); 3691 } 3692 } 3693 mutex_exit(hmp); 3694 return (NULL); 3695 } 3696 3697 /* 3698 * Search the vfs mount in progress list for a specified device/vfs entry. 3699 * Returns 0 if the first entry in the list that the device matches has the 3700 * given vfs pointer as well. If the device matches but a different vfs 3701 * pointer is encountered in the list before the given vfs pointer then 3702 * a 1 is returned. 3703 */ 3704 3705 int 3706 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3707 { 3708 int retval = 0; 3709 struct ipmnt *mipp; 3710 3711 mutex_enter(&vfs_miplist_mutex); 3712 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3713 if (mipp->mip_dev == dev) { 3714 if (mipp->mip_vfsp != vfsp) 3715 retval = 1; 3716 break; 3717 } 3718 } 3719 mutex_exit(&vfs_miplist_mutex); 3720 return (retval); 3721 } 3722 3723 /* 3724 * Search the vfs list for a specified device. Returns 1, if entry is found 3725 * or 0 if no suitable entry is found. 3726 */ 3727 3728 int 3729 vfs_devismounted(dev_t dev) 3730 { 3731 struct vfs *vfsp; 3732 int found; 3733 3734 vfs_list_read_lock(); 3735 vfsp = rootvfs; 3736 found = 0; 3737 do { 3738 if (vfsp->vfs_dev == dev) { 3739 found = 1; 3740 break; 3741 } 3742 vfsp = vfsp->vfs_next; 3743 } while (vfsp != rootvfs); 3744 3745 vfs_list_unlock(); 3746 return (found); 3747 } 3748 3749 /* 3750 * Search the vfs list for a specified device. Returns a pointer to it 3751 * or NULL if no suitable entry is found. The caller of this routine 3752 * is responsible for releasing the returned vfs pointer. 3753 */ 3754 struct vfs * 3755 vfs_dev2vfsp(dev_t dev) 3756 { 3757 struct vfs *vfsp; 3758 int found; 3759 3760 vfs_list_read_lock(); 3761 vfsp = rootvfs; 3762 found = 0; 3763 do { 3764 /* 3765 * The following could be made more efficient by making 3766 * the entire loop use vfs_zone_next if the call is from 3767 * a zone. The only callers, however, ustat(2) and 3768 * umount2(2), don't seem to justify the added 3769 * complexity at present. 3770 */ 3771 if (vfsp->vfs_dev == dev && 3772 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3773 curproc->p_zone)) { 3774 VFS_HOLD(vfsp); 3775 found = 1; 3776 break; 3777 } 3778 vfsp = vfsp->vfs_next; 3779 } while (vfsp != rootvfs); 3780 vfs_list_unlock(); 3781 return (found ? vfsp: NULL); 3782 } 3783 3784 /* 3785 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3786 * or NULL if no suitable entry is found. The caller of this routine 3787 * is responsible for releasing the returned vfs pointer. 3788 * 3789 * Note that if multiple mntpoints match, the last one matching is 3790 * returned in an attempt to return the "top" mount when overlay 3791 * mounts are covering the same mount point. This is accomplished by starting 3792 * at the end of the list and working our way backwards, stopping at the first 3793 * matching mount. 3794 */ 3795 struct vfs * 3796 vfs_mntpoint2vfsp(const char *mp) 3797 { 3798 struct vfs *vfsp; 3799 struct vfs *retvfsp = NULL; 3800 zone_t *zone = curproc->p_zone; 3801 struct vfs *list; 3802 3803 vfs_list_read_lock(); 3804 if (getzoneid() == GLOBAL_ZONEID) { 3805 /* 3806 * The global zone may see filesystems in any zone. 3807 */ 3808 vfsp = rootvfs->vfs_prev; 3809 do { 3810 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3811 retvfsp = vfsp; 3812 break; 3813 } 3814 vfsp = vfsp->vfs_prev; 3815 } while (vfsp != rootvfs->vfs_prev); 3816 } else if ((list = zone->zone_vfslist) != NULL) { 3817 const char *mntpt; 3818 3819 vfsp = list->vfs_zone_prev; 3820 do { 3821 mntpt = refstr_value(vfsp->vfs_mntpt); 3822 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3823 if (strcmp(mntpt, mp) == 0) { 3824 retvfsp = vfsp; 3825 break; 3826 } 3827 vfsp = vfsp->vfs_zone_prev; 3828 } while (vfsp != list->vfs_zone_prev); 3829 } 3830 if (retvfsp) 3831 VFS_HOLD(retvfsp); 3832 vfs_list_unlock(); 3833 return (retvfsp); 3834 } 3835 3836 /* 3837 * Search the vfs list for a specified vfsops. 3838 * if vfs entry is found then return 1, else 0. 3839 */ 3840 int 3841 vfs_opsinuse(vfsops_t *ops) 3842 { 3843 struct vfs *vfsp; 3844 int found; 3845 3846 vfs_list_read_lock(); 3847 vfsp = rootvfs; 3848 found = 0; 3849 do { 3850 if (vfs_getops(vfsp) == ops) { 3851 found = 1; 3852 break; 3853 } 3854 vfsp = vfsp->vfs_next; 3855 } while (vfsp != rootvfs); 3856 vfs_list_unlock(); 3857 return (found); 3858 } 3859 3860 /* 3861 * Allocate an entry in vfssw for a file system type 3862 */ 3863 struct vfssw * 3864 allocate_vfssw(const char *type) 3865 { 3866 struct vfssw *vswp; 3867 3868 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3869 /* 3870 * The vfssw table uses the empty string to identify an 3871 * available entry; we cannot add any type which has 3872 * a leading NUL. The string length is limited to 3873 * the size of the st_fstype array in struct stat. 3874 */ 3875 return (NULL); 3876 } 3877 3878 ASSERT(VFSSW_WRITE_LOCKED()); 3879 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3880 if (!ALLOCATED_VFSSW(vswp)) { 3881 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3882 (void) strcpy(vswp->vsw_name, type); 3883 ASSERT(vswp->vsw_count == 0); 3884 vswp->vsw_count = 1; 3885 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3886 return (vswp); 3887 } 3888 return (NULL); 3889 } 3890 3891 /* 3892 * Impose additional layer of translation between vfstype names 3893 * and module names in the filesystem. 3894 */ 3895 static const char * 3896 vfs_to_modname(const char *vfstype) 3897 { 3898 if (strcmp(vfstype, "proc") == 0) { 3899 vfstype = "procfs"; 3900 } else if (strcmp(vfstype, "fd") == 0) { 3901 vfstype = "fdfs"; 3902 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3903 vfstype = "nfs"; 3904 } 3905 3906 return (vfstype); 3907 } 3908 3909 /* 3910 * Find a vfssw entry given a file system type name. 3911 * Try to autoload the filesystem if it's not found. 3912 * If it's installed, return the vfssw locked to prevent unloading. 3913 */ 3914 struct vfssw * 3915 vfs_getvfssw(const char *type) 3916 { 3917 struct vfssw *vswp; 3918 const char *modname; 3919 3920 RLOCK_VFSSW(); 3921 vswp = vfs_getvfsswbyname(type); 3922 modname = vfs_to_modname(type); 3923 3924 if (rootdir == NULL) { 3925 /* 3926 * If we haven't yet loaded the root file system, then our 3927 * _init won't be called until later. Allocate vfssw entry, 3928 * because mod_installfs won't be called. 3929 */ 3930 if (vswp == NULL) { 3931 RUNLOCK_VFSSW(); 3932 WLOCK_VFSSW(); 3933 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3934 if ((vswp = allocate_vfssw(type)) == NULL) { 3935 WUNLOCK_VFSSW(); 3936 return (NULL); 3937 } 3938 } 3939 WUNLOCK_VFSSW(); 3940 RLOCK_VFSSW(); 3941 } 3942 if (!VFS_INSTALLED(vswp)) { 3943 RUNLOCK_VFSSW(); 3944 (void) modloadonly("fs", modname); 3945 } else 3946 RUNLOCK_VFSSW(); 3947 return (vswp); 3948 } 3949 3950 /* 3951 * Try to load the filesystem. Before calling modload(), we drop 3952 * our lock on the VFS switch table, and pick it up after the 3953 * module is loaded. However, there is a potential race: the 3954 * module could be unloaded after the call to modload() completes 3955 * but before we pick up the lock and drive on. Therefore, 3956 * we keep reloading the module until we've loaded the module 3957 * _and_ we have the lock on the VFS switch table. 3958 */ 3959 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3960 RUNLOCK_VFSSW(); 3961 if (modload("fs", modname) == -1) 3962 return (NULL); 3963 RLOCK_VFSSW(); 3964 if (vswp == NULL) 3965 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3966 break; 3967 } 3968 RUNLOCK_VFSSW(); 3969 3970 return (vswp); 3971 } 3972 3973 /* 3974 * Find a vfssw entry given a file system type name. 3975 */ 3976 struct vfssw * 3977 vfs_getvfsswbyname(const char *type) 3978 { 3979 struct vfssw *vswp; 3980 3981 ASSERT(VFSSW_LOCKED()); 3982 if (type == NULL || *type == '\0') 3983 return (NULL); 3984 3985 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3986 if (strcmp(type, vswp->vsw_name) == 0) { 3987 vfs_refvfssw(vswp); 3988 return (vswp); 3989 } 3990 } 3991 3992 return (NULL); 3993 } 3994 3995 /* 3996 * Find a vfssw entry given a set of vfsops. 3997 */ 3998 struct vfssw * 3999 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 4000 { 4001 struct vfssw *vswp; 4002 4003 RLOCK_VFSSW(); 4004 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4005 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 4006 vfs_refvfssw(vswp); 4007 RUNLOCK_VFSSW(); 4008 return (vswp); 4009 } 4010 } 4011 RUNLOCK_VFSSW(); 4012 4013 return (NULL); 4014 } 4015 4016 /* 4017 * Reference a vfssw entry. 4018 */ 4019 void 4020 vfs_refvfssw(struct vfssw *vswp) 4021 { 4022 4023 mutex_enter(&vswp->vsw_lock); 4024 vswp->vsw_count++; 4025 mutex_exit(&vswp->vsw_lock); 4026 } 4027 4028 /* 4029 * Unreference a vfssw entry. 4030 */ 4031 void 4032 vfs_unrefvfssw(struct vfssw *vswp) 4033 { 4034 4035 mutex_enter(&vswp->vsw_lock); 4036 vswp->vsw_count--; 4037 mutex_exit(&vswp->vsw_lock); 4038 } 4039 4040 int sync_timeout = 30; /* timeout for syncing a page during panic */ 4041 int sync_timeleft; /* portion of sync_timeout remaining */ 4042 4043 static int sync_retries = 20; /* number of retries when not making progress */ 4044 static int sync_triesleft; /* portion of sync_retries remaining */ 4045 4046 static pgcnt_t old_pgcnt, new_pgcnt; 4047 static int new_bufcnt, old_bufcnt; 4048 4049 /* 4050 * Sync all of the mounted filesystems, and then wait for the actual i/o to 4051 * complete. We wait by counting the number of dirty pages and buffers, 4052 * pushing them out using bio_busy() and page_busy(), and then counting again. 4053 * This routine is used during both the uadmin A_SHUTDOWN code as well as 4054 * the SYNC phase of the panic code (see comments in panic.c). It should only 4055 * be used after some higher-level mechanism has quiesced the system so that 4056 * new writes are not being initiated while we are waiting for completion. 4057 * 4058 * To ensure finite running time, our algorithm uses two timeout mechanisms: 4059 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 4060 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 4061 * Together these ensure that syncing completes if our i/o paths are stuck. 4062 * The counters are declared above so they can be found easily in the debugger. 4063 * 4064 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 4065 * vfs_syncprogress() subroutine whenever we make progress through the lists of 4066 * pages and buffers. It is decremented and expired by the deadman() cyclic. 4067 * When vfs_syncall() decides it is done, we disable the deadman() counter by 4068 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 4069 * deadlocking or hanging inside of a broken filesystem or driver routine. 4070 * 4071 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 4072 * sync_retries consecutive calls to bio_busy() and page_busy() without 4073 * decreasing either the number of dirty buffers or dirty pages below the 4074 * lowest count we have seen so far, we give up and return from vfs_syncall(). 4075 * 4076 * Each loop iteration ends with a call to delay() one second to allow time for 4077 * i/o completion and to permit the user time to read our progress messages. 4078 */ 4079 void 4080 vfs_syncall(void) 4081 { 4082 if (rootdir == NULL && !modrootloaded) 4083 return; /* panic during boot - no filesystems yet */ 4084 4085 printf("syncing file systems..."); 4086 vfs_syncprogress(); 4087 sync(); 4088 4089 vfs_syncprogress(); 4090 sync_triesleft = sync_retries; 4091 4092 old_bufcnt = new_bufcnt = INT_MAX; 4093 old_pgcnt = new_pgcnt = ULONG_MAX; 4094 4095 while (sync_triesleft > 0) { 4096 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 4097 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 4098 4099 new_bufcnt = bio_busy(B_TRUE); 4100 new_pgcnt = page_busy(B_TRUE); 4101 vfs_syncprogress(); 4102 4103 if (new_bufcnt == 0 && new_pgcnt == 0) 4104 break; 4105 4106 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 4107 sync_triesleft = sync_retries; 4108 else 4109 sync_triesleft--; 4110 4111 if (new_bufcnt) 4112 printf(" [%d]", new_bufcnt); 4113 if (new_pgcnt) 4114 printf(" %lu", new_pgcnt); 4115 4116 delay(hz); 4117 } 4118 4119 if (new_bufcnt != 0 || new_pgcnt != 0) 4120 printf(" done (not all i/o completed)\n"); 4121 else 4122 printf(" done\n"); 4123 4124 sync_timeleft = 0; 4125 delay(hz); 4126 } 4127 4128 /* 4129 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 4130 * sync_timeout to indicate that we are making progress and the deadman() 4131 * omnipresent cyclic should not yet time us out. Note that it is safe to 4132 * store to sync_timeleft here since the deadman() is firing at high-level 4133 * on top of us. If we are racing with the deadman(), either the deadman() 4134 * will decrement the old value and then we will reset it, or we will 4135 * reset it and then the deadman() will immediately decrement it. In either 4136 * case, correct behavior results. 4137 */ 4138 void 4139 vfs_syncprogress(void) 4140 { 4141 if (panicstr) 4142 sync_timeleft = sync_timeout; 4143 } 4144 4145 /* 4146 * Map VFS flags to statvfs flags. These shouldn't really be separate 4147 * flags at all. 4148 */ 4149 uint_t 4150 vf_to_stf(uint_t vf) 4151 { 4152 uint_t stf = 0; 4153 4154 if (vf & VFS_RDONLY) 4155 stf |= ST_RDONLY; 4156 if (vf & VFS_NOSETUID) 4157 stf |= ST_NOSUID; 4158 if (vf & VFS_NOTRUNC) 4159 stf |= ST_NOTRUNC; 4160 4161 return (stf); 4162 } 4163 4164 /* 4165 * Entries for (illegal) fstype 0. 4166 */ 4167 /* ARGSUSED */ 4168 int 4169 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 4170 { 4171 cmn_err(CE_PANIC, "stray vfs operation"); 4172 return (0); 4173 } 4174 4175 /* 4176 * Entries for (illegal) fstype 0. 4177 */ 4178 int 4179 vfsstray(void) 4180 { 4181 cmn_err(CE_PANIC, "stray vfs operation"); 4182 return (0); 4183 } 4184 4185 /* 4186 * Support for dealing with forced UFS unmount and its interaction with 4187 * LOFS. Could be used by any filesystem. 4188 * See bug 1203132. 4189 */ 4190 int 4191 vfs_EIO(void) 4192 { 4193 return (EIO); 4194 } 4195 4196 /* 4197 * We've gotta define the op for sync separately, since the compiler gets 4198 * confused if we mix and match ANSI and normal style prototypes when 4199 * a "short" argument is present and spits out a warning. 4200 */ 4201 /*ARGSUSED*/ 4202 int 4203 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 4204 { 4205 return (EIO); 4206 } 4207 4208 vfs_t EIO_vfs; 4209 vfsops_t *EIO_vfsops; 4210 4211 /* 4212 * Called from startup() to initialize all loaded vfs's 4213 */ 4214 void 4215 vfsinit(void) 4216 { 4217 struct vfssw *vswp; 4218 int error; 4219 extern int vopstats_enabled; 4220 extern void vopstats_startup(); 4221 4222 static const fs_operation_def_t EIO_vfsops_template[] = { 4223 VFSNAME_MOUNT, { .error = vfs_EIO }, 4224 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 4225 VFSNAME_ROOT, { .error = vfs_EIO }, 4226 VFSNAME_STATVFS, { .error = vfs_EIO }, 4227 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 4228 VFSNAME_VGET, { .error = vfs_EIO }, 4229 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 4230 VFSNAME_FREEVFS, { .error = vfs_EIO }, 4231 VFSNAME_VNSTATE, { .error = vfs_EIO }, 4232 NULL, NULL 4233 }; 4234 4235 static const fs_operation_def_t stray_vfsops_template[] = { 4236 VFSNAME_MOUNT, { .error = vfsstray }, 4237 VFSNAME_UNMOUNT, { .error = vfsstray }, 4238 VFSNAME_ROOT, { .error = vfsstray }, 4239 VFSNAME_STATVFS, { .error = vfsstray }, 4240 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 4241 VFSNAME_VGET, { .error = vfsstray }, 4242 VFSNAME_MOUNTROOT, { .error = vfsstray }, 4243 VFSNAME_FREEVFS, { .error = vfsstray }, 4244 VFSNAME_VNSTATE, { .error = vfsstray }, 4245 NULL, NULL 4246 }; 4247 4248 /* Create vfs cache */ 4249 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs), 4250 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0); 4251 4252 /* Initialize the vnode cache (file systems may use it during init). */ 4253 vn_create_cache(); 4254 4255 /* Setup event monitor framework */ 4256 fem_init(); 4257 4258 /* Initialize the dummy stray file system type. */ 4259 error = vfs_setfsops(0, stray_vfsops_template, NULL); 4260 4261 /* Initialize the dummy EIO file system. */ 4262 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 4263 if (error != 0) { 4264 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 4265 /* Shouldn't happen, but not bad enough to panic */ 4266 } 4267 4268 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 4269 4270 /* 4271 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 4272 * on this vfs can immediately notice it's invalid. 4273 */ 4274 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 4275 4276 /* 4277 * Call the init routines of non-loadable filesystems only. 4278 * Filesystems which are loaded as separate modules will be 4279 * initialized by the module loading code instead. 4280 */ 4281 4282 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4283 RLOCK_VFSSW(); 4284 if (vswp->vsw_init != NULL) 4285 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 4286 RUNLOCK_VFSSW(); 4287 } 4288 4289 vopstats_startup(); 4290 4291 if (vopstats_enabled) { 4292 /* EIO_vfs can collect stats, but we don't retrieve them */ 4293 initialize_vopstats(&EIO_vfs.vfs_vopstats); 4294 EIO_vfs.vfs_fstypevsp = NULL; 4295 EIO_vfs.vfs_vskap = NULL; 4296 EIO_vfs.vfs_flag |= VFS_STATS; 4297 } 4298 4299 xattr_init(); 4300 4301 reparse_point_init(); 4302 } 4303 4304 vfs_t * 4305 vfs_alloc(int kmflag) 4306 { 4307 vfs_t *vfsp; 4308 4309 vfsp = kmem_cache_alloc(vfs_cache, kmflag); 4310 4311 /* 4312 * Do the simplest initialization here. 4313 * Everything else gets done in vfs_init() 4314 */ 4315 bzero(vfsp, sizeof (vfs_t)); 4316 return (vfsp); 4317 } 4318 4319 void 4320 vfs_free(vfs_t *vfsp) 4321 { 4322 /* 4323 * One would be tempted to assert that "vfsp->vfs_count == 0". 4324 * The problem is that this gets called out of domount() with 4325 * a partially initialized vfs and a vfs_count of 1. This is 4326 * also called from vfs_rele() with a vfs_count of 0. We can't 4327 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully 4328 * returned. This is because VFS_MOUNT() fully initializes the 4329 * vfs structure and its associated data. VFS_RELE() will call 4330 * VFS_FREEVFS() which may panic the system if the data structures 4331 * aren't fully initialized from a successful VFS_MOUNT()). 4332 */ 4333 4334 /* If FEM was in use, make sure everything gets cleaned up */ 4335 if (vfsp->vfs_femhead) { 4336 ASSERT(vfsp->vfs_femhead->femh_list == NULL); 4337 mutex_destroy(&vfsp->vfs_femhead->femh_lock); 4338 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead))); 4339 vfsp->vfs_femhead = NULL; 4340 } 4341 4342 if (vfsp->vfs_implp) 4343 vfsimpl_teardown(vfsp); 4344 sema_destroy(&vfsp->vfs_reflock); 4345 kmem_cache_free(vfs_cache, vfsp); 4346 } 4347 4348 /* 4349 * Increments the vfs reference count by one atomically. 4350 */ 4351 void 4352 vfs_hold(vfs_t *vfsp) 4353 { 4354 atomic_inc_32(&vfsp->vfs_count); 4355 ASSERT(vfsp->vfs_count != 0); 4356 } 4357 4358 /* 4359 * Decrements the vfs reference count by one atomically. When 4360 * vfs reference count becomes zero, it calls the file system 4361 * specific vfs_freevfs() to free up the resources. 4362 */ 4363 void 4364 vfs_rele(vfs_t *vfsp) 4365 { 4366 ASSERT(vfsp->vfs_count != 0); 4367 if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) { 4368 VFS_FREEVFS(vfsp); 4369 lofi_remove(vfsp); 4370 if (vfsp->vfs_zone) 4371 zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref, 4372 ZONE_REF_VFS); 4373 vfs_freemnttab(vfsp); 4374 vfs_free(vfsp); 4375 } 4376 } 4377 4378 /* 4379 * Generic operations vector support. 4380 * 4381 * This is used to build operations vectors for both the vfs and vnode. 4382 * It's normally called only when a file system is loaded. 4383 * 4384 * There are many possible algorithms for this, including the following: 4385 * 4386 * (1) scan the list of known operations; for each, see if the file system 4387 * includes an entry for it, and fill it in as appropriate. 4388 * 4389 * (2) set up defaults for all known operations. scan the list of ops 4390 * supplied by the file system; for each which is both supplied and 4391 * known, fill it in. 4392 * 4393 * (3) sort the lists of known ops & supplied ops; scan the list, filling 4394 * in entries as we go. 4395 * 4396 * we choose (1) for simplicity, and because performance isn't critical here. 4397 * note that (2) could be sped up using a precomputed hash table on known ops. 4398 * (3) could be faster than either, but only if the lists were very large or 4399 * supplied in sorted order. 4400 * 4401 */ 4402 4403 int 4404 fs_build_vector(void *vector, int *unused_ops, 4405 const fs_operation_trans_def_t *translation, 4406 const fs_operation_def_t *operations) 4407 { 4408 int i, num_trans, num_ops, used; 4409 4410 /* 4411 * Count the number of translations and the number of supplied 4412 * operations. 4413 */ 4414 4415 { 4416 const fs_operation_trans_def_t *p; 4417 4418 for (num_trans = 0, p = translation; 4419 p->name != NULL; 4420 num_trans++, p++) 4421 ; 4422 } 4423 4424 { 4425 const fs_operation_def_t *p; 4426 4427 for (num_ops = 0, p = operations; 4428 p->name != NULL; 4429 num_ops++, p++) 4430 ; 4431 } 4432 4433 /* Walk through each operation known to our caller. There will be */ 4434 /* one entry in the supplied "translation table" for each. */ 4435 4436 used = 0; 4437 4438 for (i = 0; i < num_trans; i++) { 4439 int j, found; 4440 char *curname; 4441 fs_generic_func_p result; 4442 fs_generic_func_p *location; 4443 4444 curname = translation[i].name; 4445 4446 /* Look for a matching operation in the list supplied by the */ 4447 /* file system. */ 4448 4449 found = 0; 4450 4451 for (j = 0; j < num_ops; j++) { 4452 if (strcmp(operations[j].name, curname) == 0) { 4453 used++; 4454 found = 1; 4455 break; 4456 } 4457 } 4458 4459 /* 4460 * If the file system is using a "placeholder" for default 4461 * or error functions, grab the appropriate function out of 4462 * the translation table. If the file system didn't supply 4463 * this operation at all, use the default function. 4464 */ 4465 4466 if (found) { 4467 result = operations[j].func.fs_generic; 4468 if (result == fs_default) { 4469 result = translation[i].defaultFunc; 4470 } else if (result == fs_error) { 4471 result = translation[i].errorFunc; 4472 } else if (result == NULL) { 4473 /* Null values are PROHIBITED */ 4474 return (EINVAL); 4475 } 4476 } else { 4477 result = translation[i].defaultFunc; 4478 } 4479 4480 /* Now store the function into the operations vector. */ 4481 4482 location = (fs_generic_func_p *) 4483 (((char *)vector) + translation[i].offset); 4484 4485 *location = result; 4486 } 4487 4488 *unused_ops = num_ops - used; 4489 4490 return (0); 4491 } 4492 4493 /* Placeholder functions, should never be called. */ 4494 4495 int 4496 fs_error(void) 4497 { 4498 cmn_err(CE_PANIC, "fs_error called"); 4499 return (0); 4500 } 4501 4502 int 4503 fs_default(void) 4504 { 4505 cmn_err(CE_PANIC, "fs_default called"); 4506 return (0); 4507 } 4508 4509 #ifdef __sparc 4510 4511 /* 4512 * Part of the implementation of booting off a mirrored root 4513 * involves a change of dev_t for the root device. To 4514 * accomplish this, first remove the existing hash table 4515 * entry for the root device, convert to the new dev_t, 4516 * then re-insert in the hash table at the head of the list. 4517 */ 4518 void 4519 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4520 { 4521 vfs_list_lock(); 4522 4523 vfs_hash_remove(vfsp); 4524 4525 vfsp->vfs_dev = ndev; 4526 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4527 4528 vfs_hash_add(vfsp, 1); 4529 4530 vfs_list_unlock(); 4531 } 4532 4533 #else /* x86 NEWBOOT */ 4534 4535 #if defined(__x86) 4536 extern int hvmboot_rootconf(); 4537 #endif /* __x86 */ 4538 4539 extern ib_boot_prop_t *iscsiboot_prop; 4540 4541 int 4542 rootconf() 4543 { 4544 int error; 4545 struct vfssw *vsw; 4546 extern void pm_init(); 4547 char *fstyp, *fsmod; 4548 int ret = -1; 4549 4550 getrootfs(&fstyp, &fsmod); 4551 4552 #if defined(__x86) 4553 /* 4554 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module, 4555 * which lives in /platform/i86hvm, and hence is only available when 4556 * booted in an x86 hvm environment. If the hvm_bootstrap misc module 4557 * is not available then the modstub for this function will return 0. 4558 * If the hvm_bootstrap misc module is available it will be loaded 4559 * and hvmboot_rootconf() will be invoked. 4560 */ 4561 if (error = hvmboot_rootconf()) 4562 return (error); 4563 #endif /* __x86 */ 4564 4565 if (error = clboot_rootconf()) 4566 return (error); 4567 4568 if (modload("fs", fsmod) == -1) 4569 panic("Cannot _init %s module", fsmod); 4570 4571 RLOCK_VFSSW(); 4572 vsw = vfs_getvfsswbyname(fstyp); 4573 RUNLOCK_VFSSW(); 4574 if (vsw == NULL) { 4575 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp); 4576 return (ENXIO); 4577 } 4578 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4579 VFS_HOLD(rootvfs); 4580 4581 /* always mount readonly first */ 4582 rootvfs->vfs_flag |= VFS_RDONLY; 4583 4584 pm_init(); 4585 4586 if (netboot && iscsiboot_prop) { 4587 cmn_err(CE_WARN, "NFS boot and iSCSI boot" 4588 " shouldn't happen in the same time"); 4589 return (EINVAL); 4590 } 4591 4592 if (netboot || iscsiboot_prop) { 4593 ret = strplumb(); 4594 if (ret != 0) { 4595 cmn_err(CE_WARN, "Cannot plumb network device %d", ret); 4596 return (EFAULT); 4597 } 4598 } 4599 4600 if ((ret == 0) && iscsiboot_prop) { 4601 ret = modload("drv", "iscsi"); 4602 /* -1 indicates fail */ 4603 if (ret == -1) { 4604 cmn_err(CE_WARN, "Failed to load iscsi module"); 4605 iscsi_boot_prop_free(); 4606 return (EINVAL); 4607 } else { 4608 if (!i_ddi_attach_pseudo_node("iscsi")) { 4609 cmn_err(CE_WARN, 4610 "Failed to attach iscsi driver"); 4611 iscsi_boot_prop_free(); 4612 return (ENODEV); 4613 } 4614 } 4615 } 4616 4617 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4618 vfs_unrefvfssw(vsw); 4619 rootdev = rootvfs->vfs_dev; 4620 4621 if (error) 4622 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n", 4623 rootfs.bo_name, fstyp); 4624 else 4625 cmn_err(CE_CONT, "?root on %s fstype %s\n", 4626 rootfs.bo_name, fstyp); 4627 return (error); 4628 } 4629 4630 /* 4631 * XXX this is called by nfs only and should probably be removed 4632 * If booted with ASKNAME, prompt on the console for a filesystem 4633 * name and return it. 4634 */ 4635 void 4636 getfsname(char *askfor, char *name, size_t namelen) 4637 { 4638 if (boothowto & RB_ASKNAME) { 4639 printf("%s name: ", askfor); 4640 console_gets(name, namelen); 4641 } 4642 } 4643 4644 /* 4645 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype" 4646 * property. 4647 * 4648 * Filesystem types starting with the prefix "nfs" are diskless clients; 4649 * init the root filename name (rootfs.bo_name), too. 4650 * 4651 * If we are booting via NFS we currently have these options: 4652 * nfs - dynamically choose NFS V2, V3, or V4 (default) 4653 * nfs2 - force NFS V2 4654 * nfs3 - force NFS V3 4655 * nfs4 - force NFS V4 4656 * Because we need to maintain backward compatibility with the naming 4657 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c) 4658 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic 4659 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4". 4660 * This is only for root filesystems, all other uses will expect 4661 * that "nfs" == NFS V2. 4662 */ 4663 static void 4664 getrootfs(char **fstypp, char **fsmodp) 4665 { 4666 extern char *strplumb_get_netdev_path(void); 4667 char *propstr = NULL; 4668 4669 /* 4670 * Check fstype property; for diskless it should be one of "nfs", 4671 * "nfs2", "nfs3" or "nfs4". 4672 */ 4673 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4674 DDI_PROP_DONTPASS, "fstype", &propstr) 4675 == DDI_SUCCESS) { 4676 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4677 ddi_prop_free(propstr); 4678 4679 /* 4680 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4681 * assume the type of this root filesystem is 'zfs'. 4682 */ 4683 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4684 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4685 == DDI_SUCCESS) { 4686 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4687 ddi_prop_free(propstr); 4688 } 4689 4690 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) { 4691 *fstypp = *fsmodp = rootfs.bo_fstype; 4692 return; 4693 } 4694 4695 ++netboot; 4696 4697 if (strcmp(rootfs.bo_fstype, "nfs2") == 0) 4698 (void) strcpy(rootfs.bo_fstype, "nfs"); 4699 else if (strcmp(rootfs.bo_fstype, "nfs") == 0) 4700 (void) strcpy(rootfs.bo_fstype, "nfsdyn"); 4701 4702 /* 4703 * check if path to network interface is specified in bootpath 4704 * or by a hypervisor domain configuration file. 4705 * XXPV - enable strlumb_get_netdev_path() 4706 */ 4707 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, 4708 "xpv-nfsroot")) { 4709 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0"); 4710 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4711 DDI_PROP_DONTPASS, "bootpath", &propstr) 4712 == DDI_SUCCESS) { 4713 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4714 ddi_prop_free(propstr); 4715 } else { 4716 /* attempt to determine netdev_path via boot_mac address */ 4717 netdev_path = strplumb_get_netdev_path(); 4718 if (netdev_path == NULL) 4719 panic("cannot find boot network interface"); 4720 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4721 } 4722 *fstypp = rootfs.bo_fstype; 4723 *fsmodp = "nfs"; 4724 } 4725 #endif 4726 4727 /* 4728 * VFS feature routines 4729 */ 4730 4731 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF) 4732 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL) 4733 4734 /* Register a feature in the vfs */ 4735 void 4736 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature) 4737 { 4738 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4739 if (vfsp->vfs_implp == NULL) 4740 return; 4741 4742 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature); 4743 } 4744 4745 void 4746 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature) 4747 { 4748 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4749 if (vfsp->vfs_implp == NULL) 4750 return; 4751 vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature); 4752 } 4753 4754 /* 4755 * Query a vfs for a feature. 4756 * Returns 1 if feature is present, 0 if not 4757 */ 4758 int 4759 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature) 4760 { 4761 int ret = 0; 4762 4763 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4764 if (vfsp->vfs_implp == NULL) 4765 return (ret); 4766 4767 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature)) 4768 ret = 1; 4769 4770 return (ret); 4771 } 4772 4773 /* 4774 * Propagate feature set from one vfs to another 4775 */ 4776 void 4777 vfs_propagate_features(vfs_t *from, vfs_t *to) 4778 { 4779 int i; 4780 4781 if (to->vfs_implp == NULL || from->vfs_implp == NULL) 4782 return; 4783 4784 for (i = 1; i <= to->vfs_featureset[0]; i++) { 4785 to->vfs_featureset[i] = from->vfs_featureset[i]; 4786 } 4787 } 4788 4789 #define LOFINODE_PATH "/dev/lofi/%d" 4790 4791 /* 4792 * Return the vnode for the lofi node if there's a lofi mount in place. 4793 * Returns -1 when there's no lofi node, 0 on success, and > 0 on 4794 * failure. 4795 */ 4796 int 4797 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp) 4798 { 4799 char *path = NULL; 4800 int strsize; 4801 int err; 4802 4803 if (vfsp->vfs_lofi_minor == 0) { 4804 *vpp = NULL; 4805 return (-1); 4806 } 4807 4808 strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_minor); 4809 path = kmem_alloc(strsize + 1, KM_SLEEP); 4810 (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_minor); 4811 4812 /* 4813 * We may be inside a zone, so we need to use the /dev path, but 4814 * it's created asynchronously, so we wait here. 4815 */ 4816 for (;;) { 4817 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp); 4818 4819 if (err != ENOENT) 4820 break; 4821 4822 if ((err = delay_sig(hz / 8)) == EINTR) 4823 break; 4824 } 4825 4826 if (err) 4827 *vpp = NULL; 4828 4829 kmem_free(path, strsize + 1); 4830 return (err); 4831 } 4832