1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 40 #include <sys/types.h> 41 #include <sys/t_lock.h> 42 #include <sys/param.h> 43 #include <sys/errno.h> 44 #include <sys/user.h> 45 #include <sys/fstyp.h> 46 #include <sys/kmem.h> 47 #include <sys/systm.h> 48 #include <sys/proc.h> 49 #include <sys/mount.h> 50 #include <sys/vfs.h> 51 #include <sys/vfs_opreg.h> 52 #include <sys/fem.h> 53 #include <sys/mntent.h> 54 #include <sys/stat.h> 55 #include <sys/statvfs.h> 56 #include <sys/statfs.h> 57 #include <sys/cred.h> 58 #include <sys/vnode.h> 59 #include <sys/rwstlock.h> 60 #include <sys/dnlc.h> 61 #include <sys/file.h> 62 #include <sys/time.h> 63 #include <sys/atomic.h> 64 #include <sys/cmn_err.h> 65 #include <sys/buf.h> 66 #include <sys/swap.h> 67 #include <sys/debug.h> 68 #include <sys/vnode.h> 69 #include <sys/modctl.h> 70 #include <sys/ddi.h> 71 #include <sys/pathname.h> 72 #include <sys/bootconf.h> 73 #include <sys/dumphdr.h> 74 #include <sys/dc_ki.h> 75 #include <sys/poll.h> 76 #include <sys/sunddi.h> 77 #include <sys/sysmacros.h> 78 #include <sys/zone.h> 79 #include <sys/policy.h> 80 #include <sys/ctfs.h> 81 #include <sys/objfs.h> 82 #include <sys/console.h> 83 #include <sys/reboot.h> 84 #include <sys/attr.h> 85 #include <sys/spa.h> 86 #include <sys/lofi.h> 87 88 #include <vm/page.h> 89 90 #include <fs/fs_subr.h> 91 92 /* Private interfaces to create vopstats-related data structures */ 93 extern void initialize_vopstats(vopstats_t *); 94 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 95 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 96 97 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 98 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 99 const char *, int, int); 100 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 101 static void vfs_freemnttab(struct vfs *); 102 static void vfs_freeopt(mntopt_t *); 103 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 104 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 105 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 106 static void vfs_createopttbl_extend(mntopts_t *, const char *, 107 const mntopts_t *); 108 static char **vfs_copycancelopt_extend(char **const, int); 109 static void vfs_freecancelopt(char **); 110 static void getrootfs(char **, char **); 111 static int getmacpath(dev_info_t *, void *); 112 static void vfs_mnttabvp_setup(void); 113 114 struct ipmnt { 115 struct ipmnt *mip_next; 116 dev_t mip_dev; 117 struct vfs *mip_vfsp; 118 }; 119 120 static kmutex_t vfs_miplist_mutex; 121 static struct ipmnt *vfs_miplist = NULL; 122 static struct ipmnt *vfs_miplist_end = NULL; 123 124 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */ 125 126 /* 127 * VFS global data. 128 */ 129 vnode_t *rootdir; /* pointer to root inode vnode. */ 130 vnode_t *devicesdir; /* pointer to inode of devices root */ 131 vnode_t *devdir; /* pointer to inode of dev root */ 132 133 char *server_rootpath; /* root path for diskless clients */ 134 char *server_hostname; /* hostname of diskless server */ 135 136 static struct vfs root; 137 static struct vfs devices; 138 static struct vfs dev; 139 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 140 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 141 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 142 /* must be power of 2! */ 143 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 144 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 145 char *vfs_dummyfstype = "\0"; 146 struct pollhead vfs_pollhd; /* for mnttab pollers */ 147 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */ 148 int mntfstype; /* will be set once mnt fs is mounted */ 149 150 /* 151 * Table for generic options recognized in the VFS layer and acted 152 * on at this level before parsing file system specific options. 153 * The nosuid option is stronger than any of the devices and setuid 154 * options, so those are canceled when nosuid is seen. 155 * 156 * All options which are added here need to be added to the 157 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 158 */ 159 /* 160 * VFS Mount options table 161 */ 162 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 163 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 164 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 165 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 166 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 167 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 168 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 169 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 170 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 171 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 172 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 173 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 174 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 175 176 static const mntopt_t mntopts[] = { 177 /* 178 * option name cancel options default arg flags 179 */ 180 { MNTOPT_REMOUNT, NULL, NULL, 181 MO_NODISPLAY, (void *)0 }, 182 { MNTOPT_RO, ro_cancel, NULL, 0, 183 (void *)0 }, 184 { MNTOPT_RW, rw_cancel, NULL, 0, 185 (void *)0 }, 186 { MNTOPT_SUID, suid_cancel, NULL, 0, 187 (void *)0 }, 188 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 189 (void *)0 }, 190 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 191 (void *)0 }, 192 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 193 (void *)0 }, 194 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 195 (void *)0 }, 196 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 197 (void *)0 }, 198 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 199 (void *)0 }, 200 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 201 (void *)0 }, 202 { MNTOPT_EXEC, exec_cancel, NULL, 0, 203 (void *)0 }, 204 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 205 (void *)0 }, 206 }; 207 208 const mntopts_t vfs_mntopts = { 209 sizeof (mntopts) / sizeof (mntopt_t), 210 (mntopt_t *)&mntopts[0] 211 }; 212 213 /* 214 * File system operation dispatch functions. 215 */ 216 217 int 218 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 219 { 220 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 221 } 222 223 int 224 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 225 { 226 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 227 } 228 229 int 230 fsop_root(vfs_t *vfsp, vnode_t **vpp) 231 { 232 refstr_t *mntpt; 233 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 234 /* 235 * Make sure this root has a path. With lofs, it is possible to have 236 * a NULL mountpoint. 237 */ 238 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 239 mntpt = vfs_getmntpoint(vfsp); 240 vn_setpath_str(*vpp, refstr_value(mntpt), 241 strlen(refstr_value(mntpt))); 242 refstr_rele(mntpt); 243 } 244 245 return (ret); 246 } 247 248 int 249 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 250 { 251 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 252 } 253 254 int 255 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 256 { 257 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 258 } 259 260 int 261 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 262 { 263 /* 264 * In order to handle system attribute fids in a manner 265 * transparent to the underlying fs, we embed the fid for 266 * the sysattr parent object in the sysattr fid and tack on 267 * some extra bytes that only the sysattr layer knows about. 268 * 269 * This guarantees that sysattr fids are larger than other fids 270 * for this vfs. If the vfs supports the sysattr view interface 271 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size 272 * collision with XATTR_FIDSZ. 273 */ 274 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) && 275 fidp->fid_len == XATTR_FIDSZ) 276 return (xattr_dir_vget(vfsp, vpp, fidp)); 277 278 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 279 } 280 281 int 282 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 283 { 284 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 285 } 286 287 void 288 fsop_freefs(vfs_t *vfsp) 289 { 290 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 291 } 292 293 int 294 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 295 { 296 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 297 } 298 299 int 300 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 301 { 302 ASSERT((fstype >= 0) && (fstype < nfstype)); 303 304 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 305 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 306 else 307 return (ENOTSUP); 308 } 309 310 /* 311 * File system initialization. vfs_setfsops() must be called from a file 312 * system's init routine. 313 */ 314 315 static int 316 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 317 int *unused_ops) 318 { 319 static const fs_operation_trans_def_t vfs_ops_table[] = { 320 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 321 fs_nosys, fs_nosys, 322 323 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 324 fs_nosys, fs_nosys, 325 326 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 327 fs_nosys, fs_nosys, 328 329 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 330 fs_nosys, fs_nosys, 331 332 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 333 (fs_generic_func_p) fs_sync, 334 (fs_generic_func_p) fs_sync, /* No errors allowed */ 335 336 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 337 fs_nosys, fs_nosys, 338 339 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 340 fs_nosys, fs_nosys, 341 342 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 343 (fs_generic_func_p)fs_freevfs, 344 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 345 346 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 347 (fs_generic_func_p)fs_nosys, 348 (fs_generic_func_p)fs_nosys, 349 350 NULL, 0, NULL, NULL 351 }; 352 353 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 354 } 355 356 void 357 zfs_boot_init() { 358 359 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0) 360 spa_boot_init(); 361 } 362 363 int 364 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 365 { 366 int error; 367 int unused_ops; 368 369 /* 370 * Verify that fstype refers to a valid fs. Note that 371 * 0 is valid since it's used to set "stray" ops. 372 */ 373 if ((fstype < 0) || (fstype >= nfstype)) 374 return (EINVAL); 375 376 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 377 return (EINVAL); 378 379 /* Set up the operations vector. */ 380 381 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 382 383 if (error != 0) 384 return (error); 385 386 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 387 388 if (actual != NULL) 389 *actual = &vfssw[fstype].vsw_vfsops; 390 391 #if DEBUG 392 if (unused_ops != 0) 393 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 394 "but not used", vfssw[fstype].vsw_name, unused_ops); 395 #endif 396 397 return (0); 398 } 399 400 int 401 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 402 { 403 int error; 404 int unused_ops; 405 406 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 407 408 error = fs_copyfsops(template, *actual, &unused_ops); 409 if (error != 0) { 410 kmem_free(*actual, sizeof (vfsops_t)); 411 *actual = NULL; 412 return (error); 413 } 414 415 return (0); 416 } 417 418 /* 419 * Free a vfsops structure created as a result of vfs_makefsops(). 420 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 421 * vfs_freevfsops_by_type(). 422 */ 423 void 424 vfs_freevfsops(vfsops_t *vfsops) 425 { 426 kmem_free(vfsops, sizeof (vfsops_t)); 427 } 428 429 /* 430 * Since the vfsops structure is part of the vfssw table and wasn't 431 * really allocated, we're not really freeing anything. We keep 432 * the name for consistency with vfs_freevfsops(). We do, however, 433 * need to take care of a little bookkeeping. 434 * NOTE: For a vfsops structure created by vfs_setfsops(), use 435 * vfs_freevfsops_by_type(). 436 */ 437 int 438 vfs_freevfsops_by_type(int fstype) 439 { 440 441 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 442 if ((fstype <= 0) || (fstype >= nfstype)) 443 return (EINVAL); 444 445 WLOCK_VFSSW(); 446 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 447 WUNLOCK_VFSSW(); 448 return (EINVAL); 449 } 450 451 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 452 WUNLOCK_VFSSW(); 453 454 return (0); 455 } 456 457 /* Support routines used to reference vfs_op */ 458 459 /* Set the operations vector for a vfs */ 460 void 461 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 462 { 463 vfsops_t *op; 464 465 ASSERT(vfsp != NULL); 466 ASSERT(vfsops != NULL); 467 468 op = vfsp->vfs_op; 469 membar_consumer(); 470 if (vfsp->vfs_femhead == NULL && 471 casptr(&vfsp->vfs_op, op, vfsops) == op) { 472 return; 473 } 474 fsem_setvfsops(vfsp, vfsops); 475 } 476 477 /* Retrieve the operations vector for a vfs */ 478 vfsops_t * 479 vfs_getops(vfs_t *vfsp) 480 { 481 vfsops_t *op; 482 483 ASSERT(vfsp != NULL); 484 485 op = vfsp->vfs_op; 486 membar_consumer(); 487 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 488 return (op); 489 } else { 490 return (fsem_getvfsops(vfsp)); 491 } 492 } 493 494 /* 495 * Returns non-zero (1) if the vfsops matches that of the vfs. 496 * Returns zero (0) if not. 497 */ 498 int 499 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 500 { 501 return (vfs_getops(vfsp) == vfsops); 502 } 503 504 /* 505 * Returns non-zero (1) if the file system has installed a non-default, 506 * non-error vfs_sync routine. Returns zero (0) otherwise. 507 */ 508 int 509 vfs_can_sync(vfs_t *vfsp) 510 { 511 /* vfs_sync() routine is not the default/error function */ 512 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 513 } 514 515 /* 516 * Initialize a vfs structure. 517 */ 518 void 519 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 520 { 521 /* Other initialization has been moved to vfs_alloc() */ 522 vfsp->vfs_count = 0; 523 vfsp->vfs_next = vfsp; 524 vfsp->vfs_prev = vfsp; 525 vfsp->vfs_zone_next = vfsp; 526 vfsp->vfs_zone_prev = vfsp; 527 vfsp->vfs_lofi_minor = 0; 528 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 529 vfsimpl_setup(vfsp); 530 vfsp->vfs_data = (data); 531 vfs_setops((vfsp), (op)); 532 } 533 534 /* 535 * Allocate and initialize the vfs implementation private data 536 * structure, vfs_impl_t. 537 */ 538 void 539 vfsimpl_setup(vfs_t *vfsp) 540 { 541 int i; 542 543 if (vfsp->vfs_implp != NULL) { 544 return; 545 } 546 547 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 548 /* Note that these are #define'd in vfs.h */ 549 vfsp->vfs_vskap = NULL; 550 vfsp->vfs_fstypevsp = NULL; 551 552 /* Set size of counted array, then zero the array */ 553 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1; 554 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) { 555 vfsp->vfs_featureset[i] = 0; 556 } 557 } 558 559 /* 560 * Release the vfs_impl_t structure, if it exists. Some unbundled 561 * filesystems may not use the newer version of vfs and thus 562 * would not contain this implementation private data structure. 563 */ 564 void 565 vfsimpl_teardown(vfs_t *vfsp) 566 { 567 vfs_impl_t *vip = vfsp->vfs_implp; 568 569 if (vip == NULL) 570 return; 571 572 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 573 vfsp->vfs_implp = NULL; 574 } 575 576 /* 577 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 578 * fstatvfs, and sysfs moved to common/syscall. 579 */ 580 581 /* 582 * Update every mounted file system. We call the vfs_sync operation of 583 * each file system type, passing it a NULL vfsp to indicate that all 584 * mounted file systems of that type should be updated. 585 */ 586 void 587 vfs_sync(int flag) 588 { 589 struct vfssw *vswp; 590 RLOCK_VFSSW(); 591 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 592 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 593 vfs_refvfssw(vswp); 594 RUNLOCK_VFSSW(); 595 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 596 CRED()); 597 vfs_unrefvfssw(vswp); 598 RLOCK_VFSSW(); 599 } 600 } 601 RUNLOCK_VFSSW(); 602 } 603 604 void 605 sync(void) 606 { 607 vfs_sync(0); 608 } 609 610 /* 611 * External routines. 612 */ 613 614 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 615 616 /* 617 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 618 * but otherwise should be accessed only via vfs_list_lock() and 619 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 620 */ 621 static krwlock_t vfslist; 622 623 /* 624 * Mount devfs on /devices. This is done right after root is mounted 625 * to provide device access support for the system 626 */ 627 static void 628 vfs_mountdevices(void) 629 { 630 struct vfssw *vsw; 631 struct vnode *mvp; 632 struct mounta mounta = { /* fake mounta for devfs_mount() */ 633 NULL, 634 NULL, 635 MS_SYSSPACE, 636 NULL, 637 NULL, 638 0, 639 NULL, 640 0 641 }; 642 643 /* 644 * _init devfs module to fill in the vfssw 645 */ 646 if (modload("fs", "devfs") == -1) 647 panic("Cannot _init devfs module"); 648 649 /* 650 * Hold vfs 651 */ 652 RLOCK_VFSSW(); 653 vsw = vfs_getvfsswbyname("devfs"); 654 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 655 VFS_HOLD(&devices); 656 657 /* 658 * Locate mount point 659 */ 660 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 661 panic("Cannot find /devices"); 662 663 /* 664 * Perform the mount of /devices 665 */ 666 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 667 panic("Cannot mount /devices"); 668 669 RUNLOCK_VFSSW(); 670 671 /* 672 * Set appropriate members and add to vfs list for mnttab display 673 */ 674 vfs_setresource(&devices, "/devices"); 675 vfs_setmntpoint(&devices, "/devices"); 676 677 /* 678 * Hold the root of /devices so it won't go away 679 */ 680 if (VFS_ROOT(&devices, &devicesdir)) 681 panic("vfs_mountdevices: not devices root"); 682 683 if (vfs_lock(&devices) != 0) { 684 VN_RELE(devicesdir); 685 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 686 return; 687 } 688 689 if (vn_vfswlock(mvp) != 0) { 690 vfs_unlock(&devices); 691 VN_RELE(devicesdir); 692 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 693 return; 694 } 695 696 vfs_add(mvp, &devices, 0); 697 vn_vfsunlock(mvp); 698 vfs_unlock(&devices); 699 VN_RELE(devicesdir); 700 } 701 702 /* 703 * mount the first instance of /dev to root and remain mounted 704 */ 705 static void 706 vfs_mountdev1(void) 707 { 708 struct vfssw *vsw; 709 struct vnode *mvp; 710 struct mounta mounta = { /* fake mounta for sdev_mount() */ 711 NULL, 712 NULL, 713 MS_SYSSPACE | MS_OVERLAY, 714 NULL, 715 NULL, 716 0, 717 NULL, 718 0 719 }; 720 721 /* 722 * _init dev module to fill in the vfssw 723 */ 724 if (modload("fs", "dev") == -1) 725 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 726 727 /* 728 * Hold vfs 729 */ 730 RLOCK_VFSSW(); 731 vsw = vfs_getvfsswbyname("dev"); 732 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 733 VFS_HOLD(&dev); 734 735 /* 736 * Locate mount point 737 */ 738 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 739 cmn_err(CE_PANIC, "Cannot find /dev\n"); 740 741 /* 742 * Perform the mount of /dev 743 */ 744 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 745 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 746 747 RUNLOCK_VFSSW(); 748 749 /* 750 * Set appropriate members and add to vfs list for mnttab display 751 */ 752 vfs_setresource(&dev, "/dev"); 753 vfs_setmntpoint(&dev, "/dev"); 754 755 /* 756 * Hold the root of /dev so it won't go away 757 */ 758 if (VFS_ROOT(&dev, &devdir)) 759 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 760 761 if (vfs_lock(&dev) != 0) { 762 VN_RELE(devdir); 763 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 764 return; 765 } 766 767 if (vn_vfswlock(mvp) != 0) { 768 vfs_unlock(&dev); 769 VN_RELE(devdir); 770 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 771 return; 772 } 773 774 vfs_add(mvp, &dev, 0); 775 vn_vfsunlock(mvp); 776 vfs_unlock(&dev); 777 VN_RELE(devdir); 778 } 779 780 /* 781 * Mount required filesystem. This is done right after root is mounted. 782 */ 783 static void 784 vfs_mountfs(char *module, char *spec, char *path) 785 { 786 struct vnode *mvp; 787 struct mounta mounta; 788 vfs_t *vfsp; 789 790 mounta.flags = MS_SYSSPACE | MS_DATA; 791 mounta.fstype = module; 792 mounta.spec = spec; 793 mounta.dir = path; 794 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 795 cmn_err(CE_WARN, "Cannot find %s", path); 796 return; 797 } 798 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 799 cmn_err(CE_WARN, "Cannot mount %s", path); 800 else 801 VFS_RELE(vfsp); 802 VN_RELE(mvp); 803 } 804 805 /* 806 * vfs_mountroot is called by main() to mount the root filesystem. 807 */ 808 void 809 vfs_mountroot(void) 810 { 811 struct vnode *rvp = NULL; 812 char *path; 813 size_t plen; 814 struct vfssw *vswp; 815 816 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 817 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 818 819 /* 820 * Alloc the vfs hash bucket array and locks 821 */ 822 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 823 824 /* 825 * Call machine-dependent routine "rootconf" to choose a root 826 * file system type. 827 */ 828 if (rootconf()) 829 panic("vfs_mountroot: cannot mount root"); 830 /* 831 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 832 * to point to it. These are used by lookuppn() so that it 833 * knows where to start from ('/' or '.'). 834 */ 835 vfs_setmntpoint(rootvfs, "/"); 836 if (VFS_ROOT(rootvfs, &rootdir)) 837 panic("vfs_mountroot: no root vnode"); 838 PTOU(curproc)->u_cdir = rootdir; 839 VN_HOLD(PTOU(curproc)->u_cdir); 840 PTOU(curproc)->u_rdir = NULL; 841 842 /* 843 * Setup the global zone's rootvp, now that it exists. 844 */ 845 global_zone->zone_rootvp = rootdir; 846 VN_HOLD(global_zone->zone_rootvp); 847 848 /* 849 * Notify the module code that it can begin using the 850 * root filesystem instead of the boot program's services. 851 */ 852 modrootloaded = 1; 853 854 /* 855 * Special handling for a ZFS root file system. 856 */ 857 zfs_boot_init(); 858 859 /* 860 * Set up mnttab information for root 861 */ 862 vfs_setresource(rootvfs, rootfs.bo_name); 863 864 /* 865 * Notify cluster software that the root filesystem is available. 866 */ 867 clboot_mountroot(); 868 869 /* Now that we're all done with the root FS, set up its vopstats */ 870 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 871 /* Set flag for statistics collection */ 872 if (vswp->vsw_flag & VSW_STATS) { 873 initialize_vopstats(&rootvfs->vfs_vopstats); 874 rootvfs->vfs_flag |= VFS_STATS; 875 rootvfs->vfs_fstypevsp = 876 get_fstype_vopstats(rootvfs, vswp); 877 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 878 } 879 vfs_unrefvfssw(vswp); 880 } 881 882 /* 883 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 884 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 885 */ 886 vfs_mountdevices(); 887 vfs_mountdev1(); 888 889 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 890 vfs_mountfs("proc", "/proc", "/proc"); 891 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 892 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 893 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 894 895 if (getzoneid() == GLOBAL_ZONEID) { 896 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 897 } 898 899 #ifdef __sparc 900 /* 901 * This bit of magic can go away when we convert sparc to 902 * the new boot architecture based on ramdisk. 903 * 904 * Booting off a mirrored root volume: 905 * At this point, we have booted and mounted root on a 906 * single component of the mirror. Complete the boot 907 * by configuring SVM and converting the root to the 908 * dev_t of the mirrored root device. This dev_t conversion 909 * only works because the underlying device doesn't change. 910 */ 911 if (root_is_svm) { 912 if (svm_rootconf()) { 913 panic("vfs_mountroot: cannot remount root"); 914 } 915 916 /* 917 * mnttab should reflect the new root device 918 */ 919 vfs_lock_wait(rootvfs); 920 vfs_setresource(rootvfs, rootfs.bo_name); 921 vfs_unlock(rootvfs); 922 } 923 #endif /* __sparc */ 924 925 /* 926 * Look up the root device via devfs so that a dv_node is 927 * created for it. The vnode is never VN_RELE()ed. 928 * We allocate more than MAXPATHLEN so that the 929 * buffer passed to i_ddi_prompath_to_devfspath() is 930 * exactly MAXPATHLEN (the function expects a buffer 931 * of that length). 932 */ 933 plen = strlen("/devices"); 934 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 935 (void) strcpy(path, "/devices"); 936 937 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 938 != DDI_SUCCESS || 939 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 940 941 /* NUL terminate in case "path" has garbage */ 942 path[plen + MAXPATHLEN - 1] = '\0'; 943 #ifdef DEBUG 944 cmn_err(CE_WARN, "!Cannot lookup root device: %s", path); 945 #endif 946 } 947 kmem_free(path, plen + MAXPATHLEN); 948 vfs_mnttabvp_setup(); 949 } 950 951 /* 952 * If remount failed and we're in a zone we need to check for the zone 953 * root path and strip it before the call to vfs_setpath(). 954 * 955 * If strpath doesn't begin with the zone_rootpath the original 956 * strpath is returned unchanged. 957 */ 958 static const char * 959 stripzonepath(const char *strpath) 960 { 961 char *str1, *str2; 962 int i; 963 zone_t *zonep = curproc->p_zone; 964 965 if (zonep->zone_rootpath == NULL || strpath == NULL) { 966 return (NULL); 967 } 968 969 /* 970 * we check for the end of the string at one past the 971 * current position because the zone_rootpath always 972 * ends with "/" but we don't want to strip that off. 973 */ 974 str1 = zonep->zone_rootpath; 975 str2 = (char *)strpath; 976 ASSERT(str1[0] != '\0'); 977 for (i = 0; str1[i + 1] != '\0'; i++) { 978 if (str1[i] != str2[i]) 979 return ((char *)strpath); 980 } 981 return (&str2[i]); 982 } 983 984 /* 985 * Check to see if our "block device" is actually a file. If so, 986 * automatically add a lofi device, and keep track of this fact. 987 */ 988 static int 989 lofi_add(const char *fsname, struct vfs *vfsp, 990 mntopts_t *mntopts, struct mounta *uap) 991 { 992 int fromspace = (uap->flags & MS_SYSSPACE) ? 993 UIO_SYSSPACE : UIO_USERSPACE; 994 struct lofi_ioctl *li = NULL; 995 struct vnode *vp = NULL; 996 struct pathname pn = { NULL }; 997 ldi_ident_t ldi_id; 998 ldi_handle_t ldi_hdl; 999 vfssw_t *vfssw; 1000 int minor; 1001 int err = 0; 1002 1003 if (fsname == NULL || 1004 (vfssw = vfs_getvfssw(fsname)) == NULL) 1005 return (0); 1006 1007 if (!(vfssw->vsw_flag & VSW_CANLOFI)) { 1008 vfs_unrefvfssw(vfssw); 1009 return (0); 1010 } 1011 1012 vfs_unrefvfssw(vfssw); 1013 vfssw = NULL; 1014 1015 if (pn_get(uap->spec, fromspace, &pn) != 0) 1016 return (0); 1017 1018 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0) 1019 goto out; 1020 1021 if (vp->v_type != VREG) 1022 goto out; 1023 1024 /* OK, this is a lofi mount. */ 1025 1026 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) || 1027 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) || 1028 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) || 1029 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) { 1030 err = EINVAL; 1031 goto out; 1032 } 1033 1034 ldi_id = ldi_ident_from_anon(); 1035 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1036 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN + 1); 1037 1038 /* 1039 * The lofi control node is currently exclusive-open. We'd like 1040 * to improve this, but in the meantime, we'll loop waiting for 1041 * access. 1042 */ 1043 for (;;) { 1044 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE | FEXCL, 1045 kcred, &ldi_hdl, ldi_id); 1046 1047 if (err != EBUSY) 1048 break; 1049 1050 if ((err = delay_sig(hz / 8)) == EINTR) 1051 break; 1052 } 1053 1054 if (err) 1055 goto out2; 1056 1057 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li, 1058 FREAD | FWRITE | FEXCL | FKIOCTL, kcred, &minor); 1059 1060 (void) ldi_close(ldi_hdl, FREAD | FWRITE | FEXCL, kcred); 1061 1062 if (!err) 1063 vfsp->vfs_lofi_minor = minor; 1064 1065 out2: 1066 ldi_ident_release(ldi_id); 1067 out: 1068 if (li != NULL) 1069 kmem_free(li, sizeof (*li)); 1070 if (vp != NULL) 1071 VN_RELE(vp); 1072 pn_free(&pn); 1073 return (err); 1074 } 1075 1076 static void 1077 lofi_remove(struct vfs *vfsp) 1078 { 1079 struct lofi_ioctl *li = NULL; 1080 ldi_ident_t ldi_id; 1081 ldi_handle_t ldi_hdl; 1082 int err; 1083 1084 if (vfsp->vfs_lofi_minor == 0) 1085 return; 1086 1087 ldi_id = ldi_ident_from_anon(); 1088 1089 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1090 li->li_minor = vfsp->vfs_lofi_minor; 1091 li->li_cleanup = B_TRUE; 1092 1093 do { 1094 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE | FEXCL, 1095 kcred, &ldi_hdl, ldi_id); 1096 } while (err == EBUSY); 1097 1098 if (err) 1099 goto out; 1100 1101 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li, 1102 FREAD | FWRITE | FEXCL | FKIOCTL, kcred, NULL); 1103 1104 (void) ldi_close(ldi_hdl, FREAD | FWRITE | FEXCL, kcred); 1105 1106 if (!err) 1107 vfsp->vfs_lofi_minor = 0; 1108 1109 out: 1110 ldi_ident_release(ldi_id); 1111 if (li != NULL) 1112 kmem_free(li, sizeof (*li)); 1113 } 1114 1115 /* 1116 * Common mount code. Called from the system call entry point, from autofs, 1117 * nfsv4 trigger mounts, and from pxfs. 1118 * 1119 * Takes the effective file system type, mount arguments, the mount point 1120 * vnode, flags specifying whether the mount is a remount and whether it 1121 * should be entered into the vfs list, and credentials. Fills in its vfspp 1122 * parameter with the mounted file system instance's vfs. 1123 * 1124 * Note that the effective file system type is specified as a string. It may 1125 * be null, in which case it's determined from the mount arguments, and may 1126 * differ from the type specified in the mount arguments; this is a hook to 1127 * allow interposition when instantiating file system instances. 1128 * 1129 * The caller is responsible for releasing its own hold on the mount point 1130 * vp (this routine does its own hold when necessary). 1131 * Also note that for remounts, the mount point vp should be the vnode for 1132 * the root of the file system rather than the vnode that the file system 1133 * is mounted on top of. 1134 */ 1135 int 1136 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 1137 struct vfs **vfspp) 1138 { 1139 struct vfssw *vswp; 1140 vfsops_t *vfsops; 1141 struct vfs *vfsp; 1142 struct vnode *bvp; 1143 dev_t bdev = 0; 1144 mntopts_t mnt_mntopts; 1145 int error = 0; 1146 int copyout_error = 0; 1147 int ovflags; 1148 char *opts = uap->optptr; 1149 char *inargs = opts; 1150 int optlen = uap->optlen; 1151 int remount; 1152 int rdonly; 1153 int nbmand = 0; 1154 int delmip = 0; 1155 int addmip = 0; 1156 int splice = ((uap->flags & MS_NOSPLICE) == 0); 1157 int fromspace = (uap->flags & MS_SYSSPACE) ? 1158 UIO_SYSSPACE : UIO_USERSPACE; 1159 char *resource = NULL, *mountpt = NULL; 1160 refstr_t *oldresource, *oldmntpt; 1161 struct pathname pn, rpn; 1162 vsk_anchor_t *vskap; 1163 char fstname[FSTYPSZ]; 1164 1165 /* 1166 * The v_flag value for the mount point vp is permanently set 1167 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1168 * for mount point locking. 1169 */ 1170 mutex_enter(&vp->v_lock); 1171 vp->v_flag |= VVFSLOCK; 1172 mutex_exit(&vp->v_lock); 1173 1174 mnt_mntopts.mo_count = 0; 1175 /* 1176 * Find the ops vector to use to invoke the file system-specific mount 1177 * method. If the fsname argument is non-NULL, use it directly. 1178 * Otherwise, dig the file system type information out of the mount 1179 * arguments. 1180 * 1181 * A side effect is to hold the vfssw entry. 1182 * 1183 * Mount arguments can be specified in several ways, which are 1184 * distinguished by flag bit settings. The preferred way is to set 1185 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1186 * type supplied as a character string and the last two arguments 1187 * being a pointer to a character buffer and the size of the buffer. 1188 * On entry, the buffer holds a null terminated list of options; on 1189 * return, the string is the list of options the file system 1190 * recognized. If MS_DATA is set arguments five and six point to a 1191 * block of binary data which the file system interprets. 1192 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1193 * consistently with these conventions. To handle them, we check to 1194 * see whether the pointer to the file system name has a numeric value 1195 * less than 256. If so, we treat it as an index. 1196 */ 1197 if (fsname != NULL) { 1198 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1199 return (EINVAL); 1200 } 1201 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1202 size_t n; 1203 uint_t fstype; 1204 1205 fsname = fstname; 1206 1207 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1208 RLOCK_VFSSW(); 1209 if (fstype == 0 || fstype >= nfstype || 1210 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1211 RUNLOCK_VFSSW(); 1212 return (EINVAL); 1213 } 1214 (void) strcpy(fsname, vfssw[fstype].vsw_name); 1215 RUNLOCK_VFSSW(); 1216 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1217 return (EINVAL); 1218 } else { 1219 /* 1220 * Handle either kernel or user address space. 1221 */ 1222 if (uap->flags & MS_SYSSPACE) { 1223 error = copystr(uap->fstype, fsname, 1224 FSTYPSZ, &n); 1225 } else { 1226 error = copyinstr(uap->fstype, fsname, 1227 FSTYPSZ, &n); 1228 } 1229 if (error) { 1230 if (error == ENAMETOOLONG) 1231 return (EINVAL); 1232 return (error); 1233 } 1234 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1235 return (EINVAL); 1236 } 1237 } else { 1238 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1239 return (EINVAL); 1240 } 1241 if (!VFS_INSTALLED(vswp)) 1242 return (EINVAL); 1243 vfsops = &vswp->vsw_vfsops; 1244 1245 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1246 /* 1247 * Fetch mount options and parse them for generic vfs options 1248 */ 1249 if (uap->flags & MS_OPTIONSTR) { 1250 /* 1251 * Limit the buffer size 1252 */ 1253 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1254 error = EINVAL; 1255 goto errout; 1256 } 1257 if ((uap->flags & MS_SYSSPACE) == 0) { 1258 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1259 inargs[0] = '\0'; 1260 if (optlen) { 1261 error = copyinstr(opts, inargs, (size_t)optlen, 1262 NULL); 1263 if (error) { 1264 goto errout; 1265 } 1266 } 1267 } 1268 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1269 } 1270 /* 1271 * Flag bits override the options string. 1272 */ 1273 if (uap->flags & MS_REMOUNT) 1274 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1275 if (uap->flags & MS_RDONLY) 1276 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1277 if (uap->flags & MS_NOSUID) 1278 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1279 1280 /* 1281 * Check if this is a remount; must be set in the option string and 1282 * the file system must support a remount option. 1283 */ 1284 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1285 MNTOPT_REMOUNT, NULL)) { 1286 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1287 error = ENOTSUP; 1288 goto errout; 1289 } 1290 uap->flags |= MS_REMOUNT; 1291 } 1292 1293 /* 1294 * uap->flags and vfs_optionisset() should agree. 1295 */ 1296 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1297 uap->flags |= MS_RDONLY; 1298 } 1299 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1300 uap->flags |= MS_NOSUID; 1301 } 1302 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1303 ASSERT(splice || !remount); 1304 /* 1305 * If we are splicing the fs into the namespace, 1306 * perform mount point checks. 1307 * 1308 * We want to resolve the path for the mount point to eliminate 1309 * '.' and ".." and symlinks in mount points; we can't do the 1310 * same for the resource string, since it would turn 1311 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1312 * this before grabbing vn_vfswlock(), because otherwise we 1313 * would deadlock with lookuppn(). 1314 */ 1315 if (splice) { 1316 ASSERT(vp->v_count > 0); 1317 1318 /* 1319 * Pick up mount point and device from appropriate space. 1320 */ 1321 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1322 resource = kmem_alloc(pn.pn_pathlen + 1, 1323 KM_SLEEP); 1324 (void) strcpy(resource, pn.pn_path); 1325 pn_free(&pn); 1326 } 1327 /* 1328 * Do a lookupname prior to taking the 1329 * writelock. Mark this as completed if 1330 * successful for later cleanup and addition to 1331 * the mount in progress table. 1332 */ 1333 if ((uap->flags & MS_GLOBAL) == 0 && 1334 lookupname(uap->spec, fromspace, 1335 FOLLOW, NULL, &bvp) == 0) { 1336 addmip = 1; 1337 } 1338 1339 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1340 pathname_t *pnp; 1341 1342 if (*pn.pn_path != '/') { 1343 error = EINVAL; 1344 pn_free(&pn); 1345 goto errout; 1346 } 1347 pn_alloc(&rpn); 1348 /* 1349 * Kludge to prevent autofs from deadlocking with 1350 * itself when it calls domount(). 1351 * 1352 * If autofs is calling, it is because it is doing 1353 * (autofs) mounts in the process of an NFS mount. A 1354 * lookuppn() here would cause us to block waiting for 1355 * said NFS mount to complete, which can't since this 1356 * is the thread that was supposed to doing it. 1357 */ 1358 if (fromspace == UIO_USERSPACE) { 1359 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1360 NULL)) == 0) { 1361 pnp = &rpn; 1362 } else { 1363 /* 1364 * The file disappeared or otherwise 1365 * became inaccessible since we opened 1366 * it; might as well fail the mount 1367 * since the mount point is no longer 1368 * accessible. 1369 */ 1370 pn_free(&rpn); 1371 pn_free(&pn); 1372 goto errout; 1373 } 1374 } else { 1375 pnp = &pn; 1376 } 1377 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1378 (void) strcpy(mountpt, pnp->pn_path); 1379 1380 /* 1381 * If the addition of the zone's rootpath 1382 * would push us over a total path length 1383 * of MAXPATHLEN, we fail the mount with 1384 * ENAMETOOLONG, which is what we would have 1385 * gotten if we were trying to perform the same 1386 * mount in the global zone. 1387 * 1388 * strlen() doesn't count the trailing 1389 * '\0', but zone_rootpathlen counts both a 1390 * trailing '/' and the terminating '\0'. 1391 */ 1392 if ((curproc->p_zone->zone_rootpathlen - 1 + 1393 strlen(mountpt)) > MAXPATHLEN || 1394 (resource != NULL && 1395 (curproc->p_zone->zone_rootpathlen - 1 + 1396 strlen(resource)) > MAXPATHLEN)) { 1397 error = ENAMETOOLONG; 1398 } 1399 1400 pn_free(&rpn); 1401 pn_free(&pn); 1402 } 1403 1404 if (error) 1405 goto errout; 1406 1407 /* 1408 * Prevent path name resolution from proceeding past 1409 * the mount point. 1410 */ 1411 if (vn_vfswlock(vp) != 0) { 1412 error = EBUSY; 1413 goto errout; 1414 } 1415 1416 /* 1417 * Verify that it's legitimate to establish a mount on 1418 * the prospective mount point. 1419 */ 1420 if (vn_mountedvfs(vp) != NULL) { 1421 /* 1422 * The mount point lock was obtained after some 1423 * other thread raced through and established a mount. 1424 */ 1425 vn_vfsunlock(vp); 1426 error = EBUSY; 1427 goto errout; 1428 } 1429 if (vp->v_flag & VNOMOUNT) { 1430 vn_vfsunlock(vp); 1431 error = EINVAL; 1432 goto errout; 1433 } 1434 } 1435 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1436 uap->dataptr = NULL; 1437 uap->datalen = 0; 1438 } 1439 1440 /* 1441 * If this is a remount, we don't want to create a new VFS. 1442 * Instead, we pass the existing one with a remount flag. 1443 */ 1444 if (remount) { 1445 /* 1446 * Confirm that the mount point is the root vnode of the 1447 * file system that is being remounted. 1448 * This can happen if the user specifies a different 1449 * mount point directory pathname in the (re)mount command. 1450 * 1451 * Code below can only be reached if splice is true, so it's 1452 * safe to do vn_vfsunlock() here. 1453 */ 1454 if ((vp->v_flag & VROOT) == 0) { 1455 vn_vfsunlock(vp); 1456 error = ENOENT; 1457 goto errout; 1458 } 1459 /* 1460 * Disallow making file systems read-only unless file system 1461 * explicitly allows it in its vfssw. Ignore other flags. 1462 */ 1463 if (rdonly && vn_is_readonly(vp) == 0 && 1464 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1465 vn_vfsunlock(vp); 1466 error = EINVAL; 1467 goto errout; 1468 } 1469 /* 1470 * Disallow changing the NBMAND disposition of the file 1471 * system on remounts. 1472 */ 1473 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1474 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1475 vn_vfsunlock(vp); 1476 error = EINVAL; 1477 goto errout; 1478 } 1479 vfsp = vp->v_vfsp; 1480 ovflags = vfsp->vfs_flag; 1481 vfsp->vfs_flag |= VFS_REMOUNT; 1482 vfsp->vfs_flag &= ~VFS_RDONLY; 1483 } else { 1484 vfsp = vfs_alloc(KM_SLEEP); 1485 VFS_INIT(vfsp, vfsops, NULL); 1486 } 1487 1488 VFS_HOLD(vfsp); 1489 1490 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) { 1491 if (!remount) { 1492 if (splice) 1493 vn_vfsunlock(vp); 1494 vfs_free(vfsp); 1495 } else { 1496 vn_vfsunlock(vp); 1497 VFS_RELE(vfsp); 1498 } 1499 goto errout; 1500 } 1501 1502 /* 1503 * PRIV_SYS_MOUNT doesn't mean you can become root. 1504 */ 1505 if (vfsp->vfs_lofi_minor != 0) { 1506 uap->flags |= MS_NOSUID; 1507 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1508 } 1509 1510 /* 1511 * The vfs_reflock is not used anymore the code below explicitly 1512 * holds it preventing others accesing it directly. 1513 */ 1514 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1515 !(vfsp->vfs_flag & VFS_REMOUNT)) 1516 cmn_err(CE_WARN, 1517 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1518 1519 /* 1520 * Lock the vfs. If this is a remount we want to avoid spurious umount 1521 * failures that happen as a side-effect of fsflush() and other mount 1522 * and unmount operations that might be going on simultaneously and 1523 * may have locked the vfs currently. To not return EBUSY immediately 1524 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1525 */ 1526 if (!remount) { 1527 if (error = vfs_lock(vfsp)) { 1528 vfsp->vfs_flag = ovflags; 1529 1530 lofi_remove(vfsp); 1531 1532 if (splice) 1533 vn_vfsunlock(vp); 1534 vfs_free(vfsp); 1535 goto errout; 1536 } 1537 } else { 1538 vfs_lock_wait(vfsp); 1539 } 1540 1541 /* 1542 * Add device to mount in progress table, global mounts require special 1543 * handling. It is possible that we have already done the lookupname 1544 * on a spliced, non-global fs. If so, we don't want to do it again 1545 * since we cannot do a lookupname after taking the 1546 * wlock above. This case is for a non-spliced, non-global filesystem. 1547 */ 1548 if (!addmip) { 1549 if ((uap->flags & MS_GLOBAL) == 0 && 1550 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1551 addmip = 1; 1552 } 1553 } 1554 1555 if (addmip) { 1556 vnode_t *lvp = NULL; 1557 1558 error = vfs_get_lofi(vfsp, &lvp); 1559 if (error > 0) { 1560 lofi_remove(vfsp); 1561 1562 if (splice) 1563 vn_vfsunlock(vp); 1564 vfs_unlock(vfsp); 1565 1566 if (remount) { 1567 VFS_RELE(vfsp); 1568 } else { 1569 vfs_free(vfsp); 1570 } 1571 1572 goto errout; 1573 } else if (error == -1) { 1574 bdev = bvp->v_rdev; 1575 VN_RELE(bvp); 1576 } else { 1577 bdev = lvp->v_rdev; 1578 VN_RELE(lvp); 1579 VN_RELE(bvp); 1580 } 1581 1582 vfs_addmip(bdev, vfsp); 1583 addmip = 0; 1584 delmip = 1; 1585 } 1586 /* 1587 * Invalidate cached entry for the mount point. 1588 */ 1589 if (splice) 1590 dnlc_purge_vp(vp); 1591 1592 /* 1593 * If have an option string but the filesystem doesn't supply a 1594 * prototype options table, create a table with the global 1595 * options and sufficient room to accept all the options in the 1596 * string. Then parse the passed in option string 1597 * accepting all the options in the string. This gives us an 1598 * option table with all the proper cancel properties for the 1599 * global options. 1600 * 1601 * Filesystems that supply a prototype options table are handled 1602 * earlier in this function. 1603 */ 1604 if (uap->flags & MS_OPTIONSTR) { 1605 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1606 mntopts_t tmp_mntopts; 1607 1608 tmp_mntopts.mo_count = 0; 1609 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1610 &mnt_mntopts); 1611 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1612 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1613 vfs_freeopttbl(&tmp_mntopts); 1614 } 1615 } 1616 1617 /* 1618 * Serialize with zone creations. 1619 */ 1620 mount_in_progress(); 1621 /* 1622 * Instantiate (or reinstantiate) the file system. If appropriate, 1623 * splice it into the file system name space. 1624 * 1625 * We want VFS_MOUNT() to be able to override the vfs_resource 1626 * string if necessary (ie, mntfs), and also for a remount to 1627 * change the same (necessary when remounting '/' during boot). 1628 * So we set up vfs_mntpt and vfs_resource to what we think they 1629 * should be, then hand off control to VFS_MOUNT() which can 1630 * override this. 1631 * 1632 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1633 * a vfs which is on the vfs list (i.e. during a remount), we must 1634 * never set those fields to NULL. Several bits of code make 1635 * assumptions that the fields are always valid. 1636 */ 1637 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1638 if (remount) { 1639 if ((oldresource = vfsp->vfs_resource) != NULL) 1640 refstr_hold(oldresource); 1641 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1642 refstr_hold(oldmntpt); 1643 } 1644 vfs_setresource(vfsp, resource); 1645 vfs_setmntpoint(vfsp, mountpt); 1646 1647 /* 1648 * going to mount on this vnode, so notify. 1649 */ 1650 vnevent_mountedover(vp, NULL); 1651 error = VFS_MOUNT(vfsp, vp, uap, credp); 1652 1653 if (uap->flags & MS_RDONLY) 1654 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1655 if (uap->flags & MS_NOSUID) 1656 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1657 if (uap->flags & MS_GLOBAL) 1658 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1659 1660 if (error) { 1661 lofi_remove(vfsp); 1662 1663 if (remount) { 1664 /* put back pre-remount options */ 1665 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1666 vfs_setmntpoint(vfsp, (stripzonepath( 1667 refstr_value(oldmntpt)))); 1668 if (oldmntpt) 1669 refstr_rele(oldmntpt); 1670 vfs_setresource(vfsp, (stripzonepath( 1671 refstr_value(oldresource)))); 1672 if (oldresource) 1673 refstr_rele(oldresource); 1674 vfsp->vfs_flag = ovflags; 1675 vfs_unlock(vfsp); 1676 VFS_RELE(vfsp); 1677 } else { 1678 vfs_unlock(vfsp); 1679 vfs_freemnttab(vfsp); 1680 vfs_free(vfsp); 1681 } 1682 } else { 1683 /* 1684 * Set the mount time to now 1685 */ 1686 vfsp->vfs_mtime = ddi_get_time(); 1687 if (remount) { 1688 vfsp->vfs_flag &= ~VFS_REMOUNT; 1689 if (oldresource) 1690 refstr_rele(oldresource); 1691 if (oldmntpt) 1692 refstr_rele(oldmntpt); 1693 } else if (splice) { 1694 /* 1695 * Link vfsp into the name space at the mount 1696 * point. Vfs_add() is responsible for 1697 * holding the mount point which will be 1698 * released when vfs_remove() is called. 1699 */ 1700 vfs_add(vp, vfsp, uap->flags); 1701 } else { 1702 /* 1703 * Hold the reference to file system which is 1704 * not linked into the name space. 1705 */ 1706 vfsp->vfs_zone = NULL; 1707 VFS_HOLD(vfsp); 1708 vfsp->vfs_vnodecovered = NULL; 1709 } 1710 /* 1711 * Set flags for global options encountered 1712 */ 1713 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1714 vfsp->vfs_flag |= VFS_RDONLY; 1715 else 1716 vfsp->vfs_flag &= ~VFS_RDONLY; 1717 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1718 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1719 } else { 1720 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1721 vfsp->vfs_flag |= VFS_NODEVICES; 1722 else 1723 vfsp->vfs_flag &= ~VFS_NODEVICES; 1724 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1725 vfsp->vfs_flag |= VFS_NOSETUID; 1726 else 1727 vfsp->vfs_flag &= ~VFS_NOSETUID; 1728 } 1729 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1730 vfsp->vfs_flag |= VFS_NBMAND; 1731 else 1732 vfsp->vfs_flag &= ~VFS_NBMAND; 1733 1734 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1735 vfsp->vfs_flag |= VFS_XATTR; 1736 else 1737 vfsp->vfs_flag &= ~VFS_XATTR; 1738 1739 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1740 vfsp->vfs_flag |= VFS_NOEXEC; 1741 else 1742 vfsp->vfs_flag &= ~VFS_NOEXEC; 1743 1744 /* 1745 * Now construct the output option string of options 1746 * we recognized. 1747 */ 1748 if (uap->flags & MS_OPTIONSTR) { 1749 vfs_list_read_lock(); 1750 copyout_error = vfs_buildoptionstr( 1751 &vfsp->vfs_mntopts, inargs, optlen); 1752 vfs_list_unlock(); 1753 if (copyout_error == 0 && 1754 (uap->flags & MS_SYSSPACE) == 0) { 1755 copyout_error = copyoutstr(inargs, opts, 1756 optlen, NULL); 1757 } 1758 } 1759 1760 /* 1761 * If this isn't a remount, set up the vopstats before 1762 * anyone can touch this. We only allow spliced file 1763 * systems (file systems which are in the namespace) to 1764 * have the VFS_STATS flag set. 1765 * NOTE: PxFS mounts the underlying file system with 1766 * MS_NOSPLICE set and copies those vfs_flags to its private 1767 * vfs structure. As a result, PxFS should never have 1768 * the VFS_STATS flag or else we might access the vfs 1769 * statistics-related fields prior to them being 1770 * properly initialized. 1771 */ 1772 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1773 initialize_vopstats(&vfsp->vfs_vopstats); 1774 /* 1775 * We need to set vfs_vskap to NULL because there's 1776 * a chance it won't be set below. This is checked 1777 * in teardown_vopstats() so we can't have garbage. 1778 */ 1779 vfsp->vfs_vskap = NULL; 1780 vfsp->vfs_flag |= VFS_STATS; 1781 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1782 } 1783 1784 if (vswp->vsw_flag & VSW_XID) 1785 vfsp->vfs_flag |= VFS_XID; 1786 1787 vfs_unlock(vfsp); 1788 } 1789 mount_completed(); 1790 if (splice) 1791 vn_vfsunlock(vp); 1792 1793 if ((error == 0) && (copyout_error == 0)) { 1794 if (!remount) { 1795 /* 1796 * Don't call get_vskstat_anchor() while holding 1797 * locks since it allocates memory and calls 1798 * VFS_STATVFS(). For NFS, the latter can generate 1799 * an over-the-wire call. 1800 */ 1801 vskap = get_vskstat_anchor(vfsp); 1802 /* Only take the lock if we have something to do */ 1803 if (vskap != NULL) { 1804 vfs_lock_wait(vfsp); 1805 if (vfsp->vfs_flag & VFS_STATS) { 1806 vfsp->vfs_vskap = vskap; 1807 } 1808 vfs_unlock(vfsp); 1809 } 1810 } 1811 /* Return vfsp to caller. */ 1812 *vfspp = vfsp; 1813 } 1814 errout: 1815 vfs_freeopttbl(&mnt_mntopts); 1816 if (resource != NULL) 1817 kmem_free(resource, strlen(resource) + 1); 1818 if (mountpt != NULL) 1819 kmem_free(mountpt, strlen(mountpt) + 1); 1820 /* 1821 * It is possible we errored prior to adding to mount in progress 1822 * table. Must free vnode we acquired with successful lookupname. 1823 */ 1824 if (addmip) 1825 VN_RELE(bvp); 1826 if (delmip) 1827 vfs_delmip(vfsp); 1828 ASSERT(vswp != NULL); 1829 vfs_unrefvfssw(vswp); 1830 if (inargs != opts) 1831 kmem_free(inargs, MAX_MNTOPT_STR); 1832 if (copyout_error) { 1833 lofi_remove(vfsp); 1834 VFS_RELE(vfsp); 1835 error = copyout_error; 1836 } 1837 return (error); 1838 } 1839 1840 static void 1841 vfs_setpath(struct vfs *vfsp, refstr_t **refp, const char *newpath) 1842 { 1843 size_t len; 1844 refstr_t *ref; 1845 zone_t *zone = curproc->p_zone; 1846 char *sp; 1847 int have_list_lock = 0; 1848 1849 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1850 1851 /* 1852 * New path must be less than MAXPATHLEN because mntfs 1853 * will only display up to MAXPATHLEN bytes. This is currently 1854 * safe, because domount() uses pn_get(), and other callers 1855 * similarly cap the size to fewer than MAXPATHLEN bytes. 1856 */ 1857 1858 ASSERT(strlen(newpath) < MAXPATHLEN); 1859 1860 /* mntfs requires consistency while vfs list lock is held */ 1861 1862 if (VFS_ON_LIST(vfsp)) { 1863 have_list_lock = 1; 1864 vfs_list_lock(); 1865 } 1866 1867 if (*refp != NULL) 1868 refstr_rele(*refp); 1869 1870 /* Do we need to modify the path? */ 1871 1872 if (zone == global_zone || *newpath != '/') { 1873 ref = refstr_alloc(newpath); 1874 goto out; 1875 } 1876 1877 /* 1878 * Truncate the trailing '/' in the zoneroot, and merge 1879 * in the zone's rootpath with the "newpath" (resource 1880 * or mountpoint) passed in. 1881 * 1882 * The size of the required buffer is thus the size of 1883 * the buffer required for the passed-in newpath 1884 * (strlen(newpath) + 1), plus the size of the buffer 1885 * required to hold zone_rootpath (zone_rootpathlen) 1886 * minus one for one of the now-superfluous NUL 1887 * terminations, minus one for the trailing '/'. 1888 * 1889 * That gives us: 1890 * 1891 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1892 * 1893 * Which is what we have below. 1894 */ 1895 1896 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1897 sp = kmem_alloc(len, KM_SLEEP); 1898 1899 /* 1900 * Copy everything including the trailing slash, which 1901 * we then overwrite with the NUL character. 1902 */ 1903 1904 (void) strcpy(sp, zone->zone_rootpath); 1905 sp[zone->zone_rootpathlen - 2] = '\0'; 1906 (void) strcat(sp, newpath); 1907 1908 ref = refstr_alloc(sp); 1909 kmem_free(sp, len); 1910 out: 1911 *refp = ref; 1912 1913 if (have_list_lock) { 1914 vfs_mnttab_modtimeupd(); 1915 vfs_list_unlock(); 1916 } 1917 } 1918 1919 /* 1920 * Record a mounted resource name in a vfs structure. 1921 * If vfsp is already mounted, caller must hold the vfs lock. 1922 */ 1923 void 1924 vfs_setresource(struct vfs *vfsp, const char *resource) 1925 { 1926 if (resource == NULL || resource[0] == '\0') 1927 resource = VFS_NORESOURCE; 1928 vfs_setpath(vfsp, &vfsp->vfs_resource, resource); 1929 } 1930 1931 /* 1932 * Record a mount point name in a vfs structure. 1933 * If vfsp is already mounted, caller must hold the vfs lock. 1934 */ 1935 void 1936 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt) 1937 { 1938 if (mntpt == NULL || mntpt[0] == '\0') 1939 mntpt = VFS_NOMNTPT; 1940 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt); 1941 } 1942 1943 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1944 1945 refstr_t * 1946 vfs_getresource(const struct vfs *vfsp) 1947 { 1948 refstr_t *resource; 1949 1950 vfs_list_read_lock(); 1951 resource = vfsp->vfs_resource; 1952 refstr_hold(resource); 1953 vfs_list_unlock(); 1954 1955 return (resource); 1956 } 1957 1958 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1959 1960 refstr_t * 1961 vfs_getmntpoint(const struct vfs *vfsp) 1962 { 1963 refstr_t *mntpt; 1964 1965 vfs_list_read_lock(); 1966 mntpt = vfsp->vfs_mntpt; 1967 refstr_hold(mntpt); 1968 vfs_list_unlock(); 1969 1970 return (mntpt); 1971 } 1972 1973 /* 1974 * Create an empty options table with enough empty slots to hold all 1975 * The options in the options string passed as an argument. 1976 * Potentially prepend another options table. 1977 * 1978 * Note: caller is responsible for locking the vfs list, if needed, 1979 * to protect mops. 1980 */ 1981 static void 1982 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1983 const mntopts_t *mtmpl) 1984 { 1985 const char *s = opts; 1986 uint_t count; 1987 1988 if (opts == NULL || *opts == '\0') { 1989 count = 0; 1990 } else { 1991 count = 1; 1992 1993 /* 1994 * Count number of options in the string 1995 */ 1996 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 1997 count++; 1998 s++; 1999 } 2000 } 2001 vfs_copyopttbl_extend(mtmpl, mops, count); 2002 } 2003 2004 /* 2005 * Create an empty options table with enough empty slots to hold all 2006 * The options in the options string passed as an argument. 2007 * 2008 * This function is *not* for general use by filesystems. 2009 * 2010 * Note: caller is responsible for locking the vfs list, if needed, 2011 * to protect mops. 2012 */ 2013 void 2014 vfs_createopttbl(mntopts_t *mops, const char *opts) 2015 { 2016 vfs_createopttbl_extend(mops, opts, NULL); 2017 } 2018 2019 2020 /* 2021 * Swap two mount options tables 2022 */ 2023 static void 2024 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 2025 { 2026 uint_t tmpcnt; 2027 mntopt_t *tmplist; 2028 2029 tmpcnt = optbl2->mo_count; 2030 tmplist = optbl2->mo_list; 2031 optbl2->mo_count = optbl1->mo_count; 2032 optbl2->mo_list = optbl1->mo_list; 2033 optbl1->mo_count = tmpcnt; 2034 optbl1->mo_list = tmplist; 2035 } 2036 2037 static void 2038 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 2039 { 2040 vfs_list_lock(); 2041 vfs_swapopttbl_nolock(optbl1, optbl2); 2042 vfs_mnttab_modtimeupd(); 2043 vfs_list_unlock(); 2044 } 2045 2046 static char ** 2047 vfs_copycancelopt_extend(char **const moc, int extend) 2048 { 2049 int i = 0; 2050 int j; 2051 char **result; 2052 2053 if (moc != NULL) { 2054 for (; moc[i] != NULL; i++) 2055 /* count number of options to cancel */; 2056 } 2057 2058 if (i + extend == 0) 2059 return (NULL); 2060 2061 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 2062 2063 for (j = 0; j < i; j++) { 2064 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 2065 (void) strcpy(result[j], moc[j]); 2066 } 2067 for (; j <= i + extend; j++) 2068 result[j] = NULL; 2069 2070 return (result); 2071 } 2072 2073 static void 2074 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 2075 { 2076 char *sp, *dp; 2077 2078 d->mo_flags = s->mo_flags; 2079 d->mo_data = s->mo_data; 2080 sp = s->mo_name; 2081 if (sp != NULL) { 2082 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2083 (void) strcpy(dp, sp); 2084 d->mo_name = dp; 2085 } else { 2086 d->mo_name = NULL; /* should never happen */ 2087 } 2088 2089 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 2090 2091 sp = s->mo_arg; 2092 if (sp != NULL) { 2093 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2094 (void) strcpy(dp, sp); 2095 d->mo_arg = dp; 2096 } else { 2097 d->mo_arg = NULL; 2098 } 2099 } 2100 2101 /* 2102 * Copy a mount options table, possibly allocating some spare 2103 * slots at the end. It is permissible to copy_extend the NULL table. 2104 */ 2105 static void 2106 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 2107 { 2108 uint_t i, count; 2109 mntopt_t *motbl; 2110 2111 /* 2112 * Clear out any existing stuff in the options table being initialized 2113 */ 2114 vfs_freeopttbl(dmo); 2115 count = (smo == NULL) ? 0 : smo->mo_count; 2116 if ((count + extra) == 0) /* nothing to do */ 2117 return; 2118 dmo->mo_count = count + extra; 2119 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 2120 dmo->mo_list = motbl; 2121 for (i = 0; i < count; i++) { 2122 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 2123 } 2124 for (i = count; i < count + extra; i++) { 2125 motbl[i].mo_flags = MO_EMPTY; 2126 } 2127 } 2128 2129 /* 2130 * Copy a mount options table. 2131 * 2132 * This function is *not* for general use by filesystems. 2133 * 2134 * Note: caller is responsible for locking the vfs list, if needed, 2135 * to protect smo and dmo. 2136 */ 2137 void 2138 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 2139 { 2140 vfs_copyopttbl_extend(smo, dmo, 0); 2141 } 2142 2143 static char ** 2144 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 2145 { 2146 int c1 = 0; 2147 int c2 = 0; 2148 char **result; 2149 char **sp1, **sp2, **dp; 2150 2151 /* 2152 * First we count both lists of cancel options. 2153 * If either is NULL or has no elements, we return a copy of 2154 * the other. 2155 */ 2156 if (mop1->mo_cancel != NULL) { 2157 for (; mop1->mo_cancel[c1] != NULL; c1++) 2158 /* count cancel options in mop1 */; 2159 } 2160 2161 if (c1 == 0) 2162 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 2163 2164 if (mop2->mo_cancel != NULL) { 2165 for (; mop2->mo_cancel[c2] != NULL; c2++) 2166 /* count cancel options in mop2 */; 2167 } 2168 2169 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 2170 2171 if (c2 == 0) 2172 return (result); 2173 2174 /* 2175 * When we get here, we've got two sets of cancel options; 2176 * we need to merge the two sets. We know that the result 2177 * array has "c1+c2+1" entries and in the end we might shrink 2178 * it. 2179 * Result now has a copy of the c1 entries from mop1; we'll 2180 * now lookup all the entries of mop2 in mop1 and copy it if 2181 * it is unique. 2182 * This operation is O(n^2) but it's only called once per 2183 * filesystem per duplicate option. This is a situation 2184 * which doesn't arise with the filesystems in ON and 2185 * n is generally 1. 2186 */ 2187 2188 dp = &result[c1]; 2189 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 2190 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 2191 if (strcmp(*sp1, *sp2) == 0) 2192 break; 2193 } 2194 if (*sp1 == NULL) { 2195 /* 2196 * Option *sp2 not found in mop1, so copy it. 2197 * The calls to vfs_copycancelopt_extend() 2198 * guarantee that there's enough room. 2199 */ 2200 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 2201 (void) strcpy(*dp++, *sp2); 2202 } 2203 } 2204 if (dp != &result[c1+c2]) { 2205 size_t bytes = (dp - result + 1) * sizeof (char *); 2206 char **nres = kmem_alloc(bytes, KM_SLEEP); 2207 2208 bcopy(result, nres, bytes); 2209 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 2210 result = nres; 2211 } 2212 return (result); 2213 } 2214 2215 /* 2216 * Merge two mount option tables (outer and inner) into one. This is very 2217 * similar to "merging" global variables and automatic variables in C. 2218 * 2219 * This isn't (and doesn't have to be) fast. 2220 * 2221 * This function is *not* for general use by filesystems. 2222 * 2223 * Note: caller is responsible for locking the vfs list, if needed, 2224 * to protect omo, imo & dmo. 2225 */ 2226 void 2227 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2228 { 2229 uint_t i, count; 2230 mntopt_t *mop, *motbl; 2231 uint_t freeidx; 2232 2233 /* 2234 * First determine how much space we need to allocate. 2235 */ 2236 count = omo->mo_count; 2237 for (i = 0; i < imo->mo_count; i++) { 2238 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2239 continue; 2240 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2241 count++; 2242 } 2243 ASSERT(count >= omo->mo_count && 2244 count <= omo->mo_count + imo->mo_count); 2245 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2246 for (i = 0; i < omo->mo_count; i++) 2247 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2248 freeidx = omo->mo_count; 2249 for (i = 0; i < imo->mo_count; i++) { 2250 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2251 continue; 2252 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2253 char **newcanp; 2254 uint_t index = mop - omo->mo_list; 2255 2256 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2257 2258 vfs_freeopt(&motbl[index]); 2259 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2260 2261 vfs_freecancelopt(motbl[index].mo_cancel); 2262 motbl[index].mo_cancel = newcanp; 2263 } else { 2264 /* 2265 * If it's a new option, just copy it over to the first 2266 * free location. 2267 */ 2268 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2269 } 2270 } 2271 dmo->mo_count = count; 2272 dmo->mo_list = motbl; 2273 } 2274 2275 /* 2276 * Functions to set and clear mount options in a mount options table. 2277 */ 2278 2279 /* 2280 * Clear a mount option, if it exists. 2281 * 2282 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2283 * the vfs list. 2284 */ 2285 static void 2286 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2287 { 2288 struct mntopt *mop; 2289 uint_t i, count; 2290 2291 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2292 2293 count = mops->mo_count; 2294 for (i = 0; i < count; i++) { 2295 mop = &mops->mo_list[i]; 2296 2297 if (mop->mo_flags & MO_EMPTY) 2298 continue; 2299 if (strcmp(opt, mop->mo_name)) 2300 continue; 2301 mop->mo_flags &= ~MO_SET; 2302 if (mop->mo_arg != NULL) { 2303 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2304 } 2305 mop->mo_arg = NULL; 2306 if (update_mnttab) 2307 vfs_mnttab_modtimeupd(); 2308 break; 2309 } 2310 } 2311 2312 void 2313 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2314 { 2315 int gotlock = 0; 2316 2317 if (VFS_ON_LIST(vfsp)) { 2318 gotlock = 1; 2319 vfs_list_lock(); 2320 } 2321 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2322 if (gotlock) 2323 vfs_list_unlock(); 2324 } 2325 2326 2327 /* 2328 * Set a mount option on. If it's not found in the table, it's silently 2329 * ignored. If the option has MO_IGNORE set, it is still set unless the 2330 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2331 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2332 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2333 * MO_EMPTY set is created as the option passed in. 2334 * 2335 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2336 * the vfs list. 2337 */ 2338 static void 2339 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2340 const char *arg, int flags, int update_mnttab) 2341 { 2342 mntopt_t *mop; 2343 uint_t i, count; 2344 char *sp; 2345 2346 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2347 2348 if (flags & VFS_CREATEOPT) { 2349 if (vfs_hasopt(mops, opt) != NULL) { 2350 flags &= ~VFS_CREATEOPT; 2351 } 2352 } 2353 count = mops->mo_count; 2354 for (i = 0; i < count; i++) { 2355 mop = &mops->mo_list[i]; 2356 2357 if (mop->mo_flags & MO_EMPTY) { 2358 if ((flags & VFS_CREATEOPT) == 0) 2359 continue; 2360 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2361 (void) strcpy(sp, opt); 2362 mop->mo_name = sp; 2363 if (arg != NULL) 2364 mop->mo_flags = MO_HASVALUE; 2365 else 2366 mop->mo_flags = 0; 2367 } else if (strcmp(opt, mop->mo_name)) { 2368 continue; 2369 } 2370 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2371 break; 2372 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2373 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2374 (void) strcpy(sp, arg); 2375 } else { 2376 sp = NULL; 2377 } 2378 if (mop->mo_arg != NULL) 2379 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2380 mop->mo_arg = sp; 2381 if (flags & VFS_DISPLAY) 2382 mop->mo_flags &= ~MO_NODISPLAY; 2383 if (flags & VFS_NODISPLAY) 2384 mop->mo_flags |= MO_NODISPLAY; 2385 mop->mo_flags |= MO_SET; 2386 if (mop->mo_cancel != NULL) { 2387 char **cp; 2388 2389 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2390 vfs_clearmntopt_nolock(mops, *cp, 0); 2391 } 2392 if (update_mnttab) 2393 vfs_mnttab_modtimeupd(); 2394 break; 2395 } 2396 } 2397 2398 void 2399 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2400 { 2401 int gotlock = 0; 2402 2403 if (VFS_ON_LIST(vfsp)) { 2404 gotlock = 1; 2405 vfs_list_lock(); 2406 } 2407 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2408 if (gotlock) 2409 vfs_list_unlock(); 2410 } 2411 2412 2413 /* 2414 * Add a "tag" option to a mounted file system's options list. 2415 * 2416 * Note: caller is responsible for locking the vfs list, if needed, 2417 * to protect mops. 2418 */ 2419 static mntopt_t * 2420 vfs_addtag(mntopts_t *mops, const char *tag) 2421 { 2422 uint_t count; 2423 mntopt_t *mop, *motbl; 2424 2425 count = mops->mo_count + 1; 2426 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2427 if (mops->mo_count) { 2428 size_t len = (count - 1) * sizeof (mntopt_t); 2429 2430 bcopy(mops->mo_list, motbl, len); 2431 kmem_free(mops->mo_list, len); 2432 } 2433 mops->mo_count = count; 2434 mops->mo_list = motbl; 2435 mop = &motbl[count - 1]; 2436 mop->mo_flags = MO_TAG; 2437 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2438 (void) strcpy(mop->mo_name, tag); 2439 return (mop); 2440 } 2441 2442 /* 2443 * Allow users to set arbitrary "tags" in a vfs's mount options. 2444 * Broader use within the kernel is discouraged. 2445 */ 2446 int 2447 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2448 cred_t *cr) 2449 { 2450 vfs_t *vfsp; 2451 mntopts_t *mops; 2452 mntopt_t *mop; 2453 int found = 0; 2454 dev_t dev = makedevice(major, minor); 2455 int err = 0; 2456 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2457 2458 /* 2459 * Find the desired mounted file system 2460 */ 2461 vfs_list_lock(); 2462 vfsp = rootvfs; 2463 do { 2464 if (vfsp->vfs_dev == dev && 2465 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2466 found = 1; 2467 break; 2468 } 2469 vfsp = vfsp->vfs_next; 2470 } while (vfsp != rootvfs); 2471 2472 if (!found) { 2473 err = EINVAL; 2474 goto out; 2475 } 2476 err = secpolicy_fs_config(cr, vfsp); 2477 if (err != 0) 2478 goto out; 2479 2480 mops = &vfsp->vfs_mntopts; 2481 /* 2482 * Add tag if it doesn't already exist 2483 */ 2484 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2485 int len; 2486 2487 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2488 len = strlen(buf); 2489 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2490 err = ENAMETOOLONG; 2491 goto out; 2492 } 2493 mop = vfs_addtag(mops, tag); 2494 } 2495 if ((mop->mo_flags & MO_TAG) == 0) { 2496 err = EINVAL; 2497 goto out; 2498 } 2499 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2500 out: 2501 vfs_list_unlock(); 2502 kmem_free(buf, MAX_MNTOPT_STR); 2503 return (err); 2504 } 2505 2506 /* 2507 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2508 * Broader use within the kernel is discouraged. 2509 */ 2510 int 2511 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2512 cred_t *cr) 2513 { 2514 vfs_t *vfsp; 2515 mntopt_t *mop; 2516 int found = 0; 2517 dev_t dev = makedevice(major, minor); 2518 int err = 0; 2519 2520 /* 2521 * Find the desired mounted file system 2522 */ 2523 vfs_list_lock(); 2524 vfsp = rootvfs; 2525 do { 2526 if (vfsp->vfs_dev == dev && 2527 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2528 found = 1; 2529 break; 2530 } 2531 vfsp = vfsp->vfs_next; 2532 } while (vfsp != rootvfs); 2533 2534 if (!found) { 2535 err = EINVAL; 2536 goto out; 2537 } 2538 err = secpolicy_fs_config(cr, vfsp); 2539 if (err != 0) 2540 goto out; 2541 2542 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2543 err = EINVAL; 2544 goto out; 2545 } 2546 if ((mop->mo_flags & MO_TAG) == 0) { 2547 err = EINVAL; 2548 goto out; 2549 } 2550 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2551 out: 2552 vfs_list_unlock(); 2553 return (err); 2554 } 2555 2556 /* 2557 * Function to parse an option string and fill in a mount options table. 2558 * Unknown options are silently ignored. The input option string is modified 2559 * by replacing separators with nulls. If the create flag is set, options 2560 * not found in the table are just added on the fly. The table must have 2561 * an option slot marked MO_EMPTY to add an option on the fly. 2562 * 2563 * This function is *not* for general use by filesystems. 2564 * 2565 * Note: caller is responsible for locking the vfs list, if needed, 2566 * to protect mops.. 2567 */ 2568 void 2569 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2570 { 2571 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2572 int setflg = VFS_NOFORCEOPT; 2573 2574 if (osp == NULL) 2575 return; 2576 while (*s != '\0') { 2577 p = strchr(s, ','); /* find next option */ 2578 if (p == NULL) { 2579 cp = NULL; 2580 p = s + strlen(s); 2581 } else { 2582 cp = p; /* save location of comma */ 2583 *p++ = '\0'; /* mark end and point to next option */ 2584 } 2585 nextop = p; 2586 p = strchr(s, '='); /* look for value */ 2587 if (p == NULL) { 2588 valp = NULL; /* no value supplied */ 2589 } else { 2590 ep = p; /* save location of equals */ 2591 *p++ = '\0'; /* end option and point to value */ 2592 valp = p; 2593 } 2594 /* 2595 * set option into options table 2596 */ 2597 if (create) 2598 setflg |= VFS_CREATEOPT; 2599 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2600 if (cp != NULL) 2601 *cp = ','; /* restore the comma */ 2602 if (valp != NULL) 2603 *ep = '='; /* restore the equals */ 2604 s = nextop; 2605 } 2606 } 2607 2608 /* 2609 * Function to inquire if an option exists in a mount options table. 2610 * Returns a pointer to the option if it exists, else NULL. 2611 * 2612 * This function is *not* for general use by filesystems. 2613 * 2614 * Note: caller is responsible for locking the vfs list, if needed, 2615 * to protect mops. 2616 */ 2617 struct mntopt * 2618 vfs_hasopt(const mntopts_t *mops, const char *opt) 2619 { 2620 struct mntopt *mop; 2621 uint_t i, count; 2622 2623 count = mops->mo_count; 2624 for (i = 0; i < count; i++) { 2625 mop = &mops->mo_list[i]; 2626 2627 if (mop->mo_flags & MO_EMPTY) 2628 continue; 2629 if (strcmp(opt, mop->mo_name) == 0) 2630 return (mop); 2631 } 2632 return (NULL); 2633 } 2634 2635 /* 2636 * Function to inquire if an option is set in a mount options table. 2637 * Returns non-zero if set and fills in the arg pointer with a pointer to 2638 * the argument string or NULL if there is no argument string. 2639 */ 2640 static int 2641 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2642 { 2643 struct mntopt *mop; 2644 uint_t i, count; 2645 2646 count = mops->mo_count; 2647 for (i = 0; i < count; i++) { 2648 mop = &mops->mo_list[i]; 2649 2650 if (mop->mo_flags & MO_EMPTY) 2651 continue; 2652 if (strcmp(opt, mop->mo_name)) 2653 continue; 2654 if ((mop->mo_flags & MO_SET) == 0) 2655 return (0); 2656 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2657 *argp = mop->mo_arg; 2658 return (1); 2659 } 2660 return (0); 2661 } 2662 2663 2664 int 2665 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2666 { 2667 int ret; 2668 2669 vfs_list_read_lock(); 2670 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2671 vfs_list_unlock(); 2672 return (ret); 2673 } 2674 2675 2676 /* 2677 * Construct a comma separated string of the options set in the given 2678 * mount table, return the string in the given buffer. Return non-zero if 2679 * the buffer would overflow. 2680 * 2681 * This function is *not* for general use by filesystems. 2682 * 2683 * Note: caller is responsible for locking the vfs list, if needed, 2684 * to protect mp. 2685 */ 2686 int 2687 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2688 { 2689 char *cp; 2690 uint_t i; 2691 2692 buf[0] = '\0'; 2693 cp = buf; 2694 for (i = 0; i < mp->mo_count; i++) { 2695 struct mntopt *mop; 2696 2697 mop = &mp->mo_list[i]; 2698 if (mop->mo_flags & MO_SET) { 2699 int optlen, comma = 0; 2700 2701 if (buf[0] != '\0') 2702 comma = 1; 2703 optlen = strlen(mop->mo_name); 2704 if (strlen(buf) + comma + optlen + 1 > len) 2705 goto err; 2706 if (comma) 2707 *cp++ = ','; 2708 (void) strcpy(cp, mop->mo_name); 2709 cp += optlen; 2710 /* 2711 * Append option value if there is one 2712 */ 2713 if (mop->mo_arg != NULL) { 2714 int arglen; 2715 2716 arglen = strlen(mop->mo_arg); 2717 if (strlen(buf) + arglen + 2 > len) 2718 goto err; 2719 *cp++ = '='; 2720 (void) strcpy(cp, mop->mo_arg); 2721 cp += arglen; 2722 } 2723 } 2724 } 2725 return (0); 2726 err: 2727 return (EOVERFLOW); 2728 } 2729 2730 static void 2731 vfs_freecancelopt(char **moc) 2732 { 2733 if (moc != NULL) { 2734 int ccnt = 0; 2735 char **cp; 2736 2737 for (cp = moc; *cp != NULL; cp++) { 2738 kmem_free(*cp, strlen(*cp) + 1); 2739 ccnt++; 2740 } 2741 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2742 } 2743 } 2744 2745 static void 2746 vfs_freeopt(mntopt_t *mop) 2747 { 2748 if (mop->mo_name != NULL) 2749 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2750 2751 vfs_freecancelopt(mop->mo_cancel); 2752 2753 if (mop->mo_arg != NULL) 2754 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2755 } 2756 2757 /* 2758 * Free a mount options table 2759 * 2760 * This function is *not* for general use by filesystems. 2761 * 2762 * Note: caller is responsible for locking the vfs list, if needed, 2763 * to protect mp. 2764 */ 2765 void 2766 vfs_freeopttbl(mntopts_t *mp) 2767 { 2768 uint_t i, count; 2769 2770 count = mp->mo_count; 2771 for (i = 0; i < count; i++) { 2772 vfs_freeopt(&mp->mo_list[i]); 2773 } 2774 if (count) { 2775 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2776 mp->mo_count = 0; 2777 mp->mo_list = NULL; 2778 } 2779 } 2780 2781 2782 /* ARGSUSED */ 2783 static int 2784 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2785 caller_context_t *ct) 2786 { 2787 return (0); 2788 } 2789 2790 /* ARGSUSED */ 2791 static int 2792 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2793 caller_context_t *ct) 2794 { 2795 return (0); 2796 } 2797 2798 /* 2799 * The dummy vnode is currently used only by file events notification 2800 * module which is just interested in the timestamps. 2801 */ 2802 /* ARGSUSED */ 2803 static int 2804 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2805 caller_context_t *ct) 2806 { 2807 bzero(vap, sizeof (vattr_t)); 2808 vap->va_type = VREG; 2809 vap->va_nlink = 1; 2810 vap->va_ctime = vfs_mnttab_ctime; 2811 /* 2812 * it is ok to just copy mtime as the time will be monotonically 2813 * increasing. 2814 */ 2815 vap->va_mtime = vfs_mnttab_mtime; 2816 vap->va_atime = vap->va_mtime; 2817 return (0); 2818 } 2819 2820 static void 2821 vfs_mnttabvp_setup(void) 2822 { 2823 vnode_t *tvp; 2824 vnodeops_t *vfs_mntdummyvnops; 2825 const fs_operation_def_t mnt_dummyvnodeops_template[] = { 2826 VOPNAME_READ, { .vop_read = vfs_mntdummyread }, 2827 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite }, 2828 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr }, 2829 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 2830 NULL, NULL 2831 }; 2832 2833 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template, 2834 &vfs_mntdummyvnops) != 0) { 2835 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed"); 2836 /* Shouldn't happen, but not bad enough to panic */ 2837 return; 2838 } 2839 2840 /* 2841 * A global dummy vnode is allocated to represent mntfs files. 2842 * The mntfs file (/etc/mnttab) can be monitored for file events 2843 * and receive an event when mnttab changes. Dummy VOP calls 2844 * will be made on this vnode. The file events notification module 2845 * intercepts this vnode and delivers relevant events. 2846 */ 2847 tvp = vn_alloc(KM_SLEEP); 2848 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE; 2849 vn_setops(tvp, vfs_mntdummyvnops); 2850 tvp->v_type = VREG; 2851 /* 2852 * The mnt dummy ops do not reference v_data. 2853 * No other module intercepting this vnode should either. 2854 * Just set it to point to itself. 2855 */ 2856 tvp->v_data = (caddr_t)tvp; 2857 tvp->v_vfsp = rootvfs; 2858 vfs_mntdummyvp = tvp; 2859 } 2860 2861 /* 2862 * performs fake read/write ops 2863 */ 2864 static void 2865 vfs_mnttab_rwop(int rw) 2866 { 2867 struct uio uio; 2868 struct iovec iov; 2869 char buf[1]; 2870 2871 if (vfs_mntdummyvp == NULL) 2872 return; 2873 2874 bzero(&uio, sizeof (uio)); 2875 bzero(&iov, sizeof (iov)); 2876 iov.iov_base = buf; 2877 iov.iov_len = 0; 2878 uio.uio_iov = &iov; 2879 uio.uio_iovcnt = 1; 2880 uio.uio_loffset = 0; 2881 uio.uio_segflg = UIO_SYSSPACE; 2882 uio.uio_resid = 0; 2883 if (rw) { 2884 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2885 } else { 2886 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2887 } 2888 } 2889 2890 /* 2891 * Generate a write operation. 2892 */ 2893 void 2894 vfs_mnttab_writeop(void) 2895 { 2896 vfs_mnttab_rwop(1); 2897 } 2898 2899 /* 2900 * Generate a read operation. 2901 */ 2902 void 2903 vfs_mnttab_readop(void) 2904 { 2905 vfs_mnttab_rwop(0); 2906 } 2907 2908 /* 2909 * Free any mnttab information recorded in the vfs struct. 2910 * The vfs must not be on the vfs list. 2911 */ 2912 static void 2913 vfs_freemnttab(struct vfs *vfsp) 2914 { 2915 ASSERT(!VFS_ON_LIST(vfsp)); 2916 2917 /* 2918 * Free device and mount point information 2919 */ 2920 if (vfsp->vfs_mntpt != NULL) { 2921 refstr_rele(vfsp->vfs_mntpt); 2922 vfsp->vfs_mntpt = NULL; 2923 } 2924 if (vfsp->vfs_resource != NULL) { 2925 refstr_rele(vfsp->vfs_resource); 2926 vfsp->vfs_resource = NULL; 2927 } 2928 /* 2929 * Now free mount options information 2930 */ 2931 vfs_freeopttbl(&vfsp->vfs_mntopts); 2932 } 2933 2934 /* 2935 * Return the last mnttab modification time 2936 */ 2937 void 2938 vfs_mnttab_modtime(timespec_t *ts) 2939 { 2940 ASSERT(RW_LOCK_HELD(&vfslist)); 2941 *ts = vfs_mnttab_mtime; 2942 } 2943 2944 /* 2945 * See if mnttab is changed 2946 */ 2947 void 2948 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2949 { 2950 int changed; 2951 2952 *phpp = (struct pollhead *)NULL; 2953 2954 /* 2955 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2956 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2957 * to not grab the vfs list lock because tv_sec is monotonically 2958 * increasing. 2959 */ 2960 2961 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2962 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2963 if (!changed) { 2964 *phpp = &vfs_pollhd; 2965 } 2966 } 2967 2968 /* 2969 * Update the mnttab modification time and wake up any waiters for 2970 * mnttab changes 2971 */ 2972 void 2973 vfs_mnttab_modtimeupd() 2974 { 2975 hrtime_t oldhrt, newhrt; 2976 2977 ASSERT(RW_WRITE_HELD(&vfslist)); 2978 oldhrt = ts2hrt(&vfs_mnttab_mtime); 2979 gethrestime(&vfs_mnttab_mtime); 2980 newhrt = ts2hrt(&vfs_mnttab_mtime); 2981 if (oldhrt == (hrtime_t)0) 2982 vfs_mnttab_ctime = vfs_mnttab_mtime; 2983 /* 2984 * Attempt to provide unique mtime (like uniqtime but not). 2985 */ 2986 if (newhrt == oldhrt) { 2987 newhrt++; 2988 hrt2ts(newhrt, &vfs_mnttab_mtime); 2989 } 2990 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 2991 vfs_mnttab_writeop(); 2992 } 2993 2994 int 2995 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 2996 { 2997 vnode_t *coveredvp; 2998 int error; 2999 extern void teardown_vopstats(vfs_t *); 3000 3001 /* 3002 * Get covered vnode. This will be NULL if the vfs is not linked 3003 * into the file system name space (i.e., domount() with MNT_NOSPICE). 3004 */ 3005 coveredvp = vfsp->vfs_vnodecovered; 3006 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 3007 3008 /* 3009 * Purge all dnlc entries for this vfs. 3010 */ 3011 (void) dnlc_purge_vfsp(vfsp, 0); 3012 3013 /* For forcible umount, skip VFS_SYNC() since it may hang */ 3014 if ((flag & MS_FORCE) == 0) 3015 (void) VFS_SYNC(vfsp, 0, cr); 3016 3017 /* 3018 * Lock the vfs to maintain fs status quo during unmount. This 3019 * has to be done after the sync because ufs_update tries to acquire 3020 * the vfs_reflock. 3021 */ 3022 vfs_lock_wait(vfsp); 3023 3024 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 3025 vfs_unlock(vfsp); 3026 if (coveredvp != NULL) 3027 vn_vfsunlock(coveredvp); 3028 } else if (coveredvp != NULL) { 3029 teardown_vopstats(vfsp); 3030 /* 3031 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 3032 * when it frees vfsp so we do a VN_HOLD() so we can 3033 * continue to use coveredvp afterwards. 3034 */ 3035 VN_HOLD(coveredvp); 3036 vfs_remove(vfsp); 3037 vn_vfsunlock(coveredvp); 3038 VN_RELE(coveredvp); 3039 } else { 3040 teardown_vopstats(vfsp); 3041 /* 3042 * Release the reference to vfs that is not linked 3043 * into the name space. 3044 */ 3045 vfs_unlock(vfsp); 3046 VFS_RELE(vfsp); 3047 } 3048 return (error); 3049 } 3050 3051 3052 /* 3053 * Vfs_unmountall() is called by uadmin() to unmount all 3054 * mounted file systems (except the root file system) during shutdown. 3055 * It follows the existing locking protocol when traversing the vfs list 3056 * to sync and unmount vfses. Even though there should be no 3057 * other thread running while the system is shutting down, it is prudent 3058 * to still follow the locking protocol. 3059 */ 3060 void 3061 vfs_unmountall(void) 3062 { 3063 struct vfs *vfsp; 3064 struct vfs *prev_vfsp = NULL; 3065 int error; 3066 3067 /* 3068 * Toss all dnlc entries now so that the per-vfs sync 3069 * and unmount operations don't have to slog through 3070 * a bunch of uninteresting vnodes over and over again. 3071 */ 3072 dnlc_purge(); 3073 3074 vfs_list_lock(); 3075 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 3076 prev_vfsp = vfsp->vfs_prev; 3077 3078 if (vfs_lock(vfsp) != 0) 3079 continue; 3080 error = vn_vfswlock(vfsp->vfs_vnodecovered); 3081 vfs_unlock(vfsp); 3082 if (error) 3083 continue; 3084 3085 vfs_list_unlock(); 3086 3087 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 3088 (void) dounmount(vfsp, 0, CRED()); 3089 3090 /* 3091 * Since we dropped the vfslist lock above we must 3092 * verify that next_vfsp still exists, else start over. 3093 */ 3094 vfs_list_lock(); 3095 for (vfsp = rootvfs->vfs_prev; 3096 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 3097 if (vfsp == prev_vfsp) 3098 break; 3099 if (vfsp == rootvfs && prev_vfsp != rootvfs) 3100 prev_vfsp = rootvfs->vfs_prev; 3101 } 3102 vfs_list_unlock(); 3103 } 3104 3105 /* 3106 * Called to add an entry to the end of the vfs mount in progress list 3107 */ 3108 void 3109 vfs_addmip(dev_t dev, struct vfs *vfsp) 3110 { 3111 struct ipmnt *mipp; 3112 3113 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 3114 mipp->mip_next = NULL; 3115 mipp->mip_dev = dev; 3116 mipp->mip_vfsp = vfsp; 3117 mutex_enter(&vfs_miplist_mutex); 3118 if (vfs_miplist_end != NULL) 3119 vfs_miplist_end->mip_next = mipp; 3120 else 3121 vfs_miplist = mipp; 3122 vfs_miplist_end = mipp; 3123 mutex_exit(&vfs_miplist_mutex); 3124 } 3125 3126 /* 3127 * Called to remove an entry from the mount in progress list 3128 * Either because the mount completed or it failed. 3129 */ 3130 void 3131 vfs_delmip(struct vfs *vfsp) 3132 { 3133 struct ipmnt *mipp, *mipprev; 3134 3135 mutex_enter(&vfs_miplist_mutex); 3136 mipprev = NULL; 3137 for (mipp = vfs_miplist; 3138 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 3139 mipprev = mipp; 3140 } 3141 if (mipp == NULL) 3142 return; /* shouldn't happen */ 3143 if (mipp == vfs_miplist_end) 3144 vfs_miplist_end = mipprev; 3145 if (mipprev == NULL) 3146 vfs_miplist = mipp->mip_next; 3147 else 3148 mipprev->mip_next = mipp->mip_next; 3149 mutex_exit(&vfs_miplist_mutex); 3150 kmem_free(mipp, sizeof (struct ipmnt)); 3151 } 3152 3153 /* 3154 * vfs_add is called by a specific filesystem's mount routine to add 3155 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 3156 * The vfs should already have been locked by the caller. 3157 * 3158 * coveredvp is NULL if this is the root. 3159 */ 3160 void 3161 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 3162 { 3163 int newflag; 3164 3165 ASSERT(vfs_lock_held(vfsp)); 3166 VFS_HOLD(vfsp); 3167 newflag = vfsp->vfs_flag; 3168 if (mflag & MS_RDONLY) 3169 newflag |= VFS_RDONLY; 3170 else 3171 newflag &= ~VFS_RDONLY; 3172 if (mflag & MS_NOSUID) 3173 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 3174 else 3175 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 3176 if (mflag & MS_NOMNTTAB) 3177 newflag |= VFS_NOMNTTAB; 3178 else 3179 newflag &= ~VFS_NOMNTTAB; 3180 3181 if (coveredvp != NULL) { 3182 ASSERT(vn_vfswlock_held(coveredvp)); 3183 coveredvp->v_vfsmountedhere = vfsp; 3184 VN_HOLD(coveredvp); 3185 } 3186 vfsp->vfs_vnodecovered = coveredvp; 3187 vfsp->vfs_flag = newflag; 3188 3189 vfs_list_add(vfsp); 3190 } 3191 3192 /* 3193 * Remove a vfs from the vfs list, null out the pointer from the 3194 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 3195 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 3196 * reference to the vfs and to the covered vnode. 3197 * 3198 * Called from dounmount after it's confirmed with the file system 3199 * that the unmount is legal. 3200 */ 3201 void 3202 vfs_remove(struct vfs *vfsp) 3203 { 3204 vnode_t *vp; 3205 3206 ASSERT(vfs_lock_held(vfsp)); 3207 3208 /* 3209 * Can't unmount root. Should never happen because fs will 3210 * be busy. 3211 */ 3212 if (vfsp == rootvfs) 3213 panic("vfs_remove: unmounting root"); 3214 3215 vfs_list_remove(vfsp); 3216 3217 /* 3218 * Unhook from the file system name space. 3219 */ 3220 vp = vfsp->vfs_vnodecovered; 3221 ASSERT(vn_vfswlock_held(vp)); 3222 vp->v_vfsmountedhere = NULL; 3223 vfsp->vfs_vnodecovered = NULL; 3224 VN_RELE(vp); 3225 3226 /* 3227 * Release lock and wakeup anybody waiting. 3228 */ 3229 vfs_unlock(vfsp); 3230 VFS_RELE(vfsp); 3231 } 3232 3233 /* 3234 * Lock a filesystem to prevent access to it while mounting, 3235 * unmounting and syncing. Return EBUSY immediately if lock 3236 * can't be acquired. 3237 */ 3238 int 3239 vfs_lock(vfs_t *vfsp) 3240 { 3241 vn_vfslocks_entry_t *vpvfsentry; 3242 3243 vpvfsentry = vn_vfslocks_getlock(vfsp); 3244 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 3245 return (0); 3246 3247 vn_vfslocks_rele(vpvfsentry); 3248 return (EBUSY); 3249 } 3250 3251 int 3252 vfs_rlock(vfs_t *vfsp) 3253 { 3254 vn_vfslocks_entry_t *vpvfsentry; 3255 3256 vpvfsentry = vn_vfslocks_getlock(vfsp); 3257 3258 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 3259 return (0); 3260 3261 vn_vfslocks_rele(vpvfsentry); 3262 return (EBUSY); 3263 } 3264 3265 void 3266 vfs_lock_wait(vfs_t *vfsp) 3267 { 3268 vn_vfslocks_entry_t *vpvfsentry; 3269 3270 vpvfsentry = vn_vfslocks_getlock(vfsp); 3271 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 3272 } 3273 3274 void 3275 vfs_rlock_wait(vfs_t *vfsp) 3276 { 3277 vn_vfslocks_entry_t *vpvfsentry; 3278 3279 vpvfsentry = vn_vfslocks_getlock(vfsp); 3280 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 3281 } 3282 3283 /* 3284 * Unlock a locked filesystem. 3285 */ 3286 void 3287 vfs_unlock(vfs_t *vfsp) 3288 { 3289 vn_vfslocks_entry_t *vpvfsentry; 3290 3291 /* 3292 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 3293 * And these changes should remain for the patch changes as it is. 3294 */ 3295 if (panicstr) 3296 return; 3297 3298 /* 3299 * ve_refcount needs to be dropped twice here. 3300 * 1. To release refernce after a call to vfs_locks_getlock() 3301 * 2. To release the reference from the locking routines like 3302 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 3303 */ 3304 3305 vpvfsentry = vn_vfslocks_getlock(vfsp); 3306 vn_vfslocks_rele(vpvfsentry); 3307 3308 rwst_exit(&vpvfsentry->ve_lock); 3309 vn_vfslocks_rele(vpvfsentry); 3310 } 3311 3312 /* 3313 * Utility routine that allows a filesystem to construct its 3314 * fsid in "the usual way" - by munging some underlying dev_t and 3315 * the filesystem type number into the 64-bit fsid. Note that 3316 * this implicitly relies on dev_t persistence to make filesystem 3317 * id's persistent. 3318 * 3319 * There's nothing to prevent an individual fs from constructing its 3320 * fsid in a different way, and indeed they should. 3321 * 3322 * Since we want fsids to be 32-bit quantities (so that they can be 3323 * exported identically by either 32-bit or 64-bit APIs, as well as 3324 * the fact that fsid's are "known" to NFS), we compress the device 3325 * number given down to 32-bits, and panic if that isn't possible. 3326 */ 3327 void 3328 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 3329 { 3330 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 3331 panic("device number too big for fsid!"); 3332 fsi->val[1] = val; 3333 } 3334 3335 int 3336 vfs_lock_held(vfs_t *vfsp) 3337 { 3338 int held; 3339 vn_vfslocks_entry_t *vpvfsentry; 3340 3341 /* 3342 * vfs_lock_held will mimic sema_held behaviour 3343 * if panicstr is set. And these changes should remain 3344 * for the patch changes as it is. 3345 */ 3346 if (panicstr) 3347 return (1); 3348 3349 vpvfsentry = vn_vfslocks_getlock(vfsp); 3350 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3351 3352 vn_vfslocks_rele(vpvfsentry); 3353 return (held); 3354 } 3355 3356 struct _kthread * 3357 vfs_lock_owner(vfs_t *vfsp) 3358 { 3359 struct _kthread *owner; 3360 vn_vfslocks_entry_t *vpvfsentry; 3361 3362 /* 3363 * vfs_wlock_held will mimic sema_held behaviour 3364 * if panicstr is set. And these changes should remain 3365 * for the patch changes as it is. 3366 */ 3367 if (panicstr) 3368 return (NULL); 3369 3370 vpvfsentry = vn_vfslocks_getlock(vfsp); 3371 owner = rwst_owner(&vpvfsentry->ve_lock); 3372 3373 vn_vfslocks_rele(vpvfsentry); 3374 return (owner); 3375 } 3376 3377 /* 3378 * vfs list locking. 3379 * 3380 * Rather than manipulate the vfslist lock directly, we abstract into lock 3381 * and unlock routines to allow the locking implementation to be changed for 3382 * clustering. 3383 * 3384 * Whenever the vfs list is modified through its hash links, the overall list 3385 * lock must be obtained before locking the relevant hash bucket. But to see 3386 * whether a given vfs is on the list, it suffices to obtain the lock for the 3387 * hash bucket without getting the overall list lock. (See getvfs() below.) 3388 */ 3389 3390 void 3391 vfs_list_lock() 3392 { 3393 rw_enter(&vfslist, RW_WRITER); 3394 } 3395 3396 void 3397 vfs_list_read_lock() 3398 { 3399 rw_enter(&vfslist, RW_READER); 3400 } 3401 3402 void 3403 vfs_list_unlock() 3404 { 3405 rw_exit(&vfslist); 3406 } 3407 3408 /* 3409 * Low level worker routines for adding entries to and removing entries from 3410 * the vfs list. 3411 */ 3412 3413 static void 3414 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3415 { 3416 int vhno; 3417 struct vfs **hp; 3418 dev_t dev; 3419 3420 ASSERT(RW_WRITE_HELD(&vfslist)); 3421 3422 dev = expldev(vfsp->vfs_fsid.val[0]); 3423 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3424 3425 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3426 3427 /* 3428 * Link into the hash table, inserting it at the end, so that LOFS 3429 * with the same fsid as UFS (or other) file systems will not hide the 3430 * UFS. 3431 */ 3432 if (insert_at_head) { 3433 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3434 rvfs_list[vhno].rvfs_head = vfsp; 3435 } else { 3436 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3437 hp = &(*hp)->vfs_hash) 3438 continue; 3439 /* 3440 * hp now contains the address of the pointer to update 3441 * to effect the insertion. 3442 */ 3443 vfsp->vfs_hash = NULL; 3444 *hp = vfsp; 3445 } 3446 3447 rvfs_list[vhno].rvfs_len++; 3448 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3449 } 3450 3451 3452 static void 3453 vfs_hash_remove(struct vfs *vfsp) 3454 { 3455 int vhno; 3456 struct vfs *tvfsp; 3457 dev_t dev; 3458 3459 ASSERT(RW_WRITE_HELD(&vfslist)); 3460 3461 dev = expldev(vfsp->vfs_fsid.val[0]); 3462 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3463 3464 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3465 3466 /* 3467 * Remove from hash. 3468 */ 3469 if (rvfs_list[vhno].rvfs_head == vfsp) { 3470 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3471 rvfs_list[vhno].rvfs_len--; 3472 goto foundit; 3473 } 3474 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3475 tvfsp = tvfsp->vfs_hash) { 3476 if (tvfsp->vfs_hash == vfsp) { 3477 tvfsp->vfs_hash = vfsp->vfs_hash; 3478 rvfs_list[vhno].rvfs_len--; 3479 goto foundit; 3480 } 3481 } 3482 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3483 3484 foundit: 3485 3486 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3487 } 3488 3489 3490 void 3491 vfs_list_add(struct vfs *vfsp) 3492 { 3493 zone_t *zone; 3494 3495 /* 3496 * The zone that owns the mount is the one that performed the mount. 3497 * Note that this isn't necessarily the same as the zone mounted into. 3498 * The corresponding zone_rele() will be done when the vfs_t is 3499 * being free'd. 3500 */ 3501 vfsp->vfs_zone = curproc->p_zone; 3502 zone_hold(vfsp->vfs_zone); 3503 3504 /* 3505 * Find the zone mounted into, and put this mount on its vfs list. 3506 */ 3507 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3508 ASSERT(zone != NULL); 3509 /* 3510 * Special casing for the root vfs. This structure is allocated 3511 * statically and hooked onto rootvfs at link time. During the 3512 * vfs_mountroot call at system startup time, the root file system's 3513 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3514 * as argument. The code below must detect and handle this special 3515 * case. The only apparent justification for this special casing is 3516 * to ensure that the root file system appears at the head of the 3517 * list. 3518 * 3519 * XXX: I'm assuming that it's ok to do normal list locking when 3520 * adding the entry for the root file system (this used to be 3521 * done with no locks held). 3522 */ 3523 vfs_list_lock(); 3524 /* 3525 * Link into the vfs list proper. 3526 */ 3527 if (vfsp == &root) { 3528 /* 3529 * Assert: This vfs is already on the list as its first entry. 3530 * Thus, there's nothing to do. 3531 */ 3532 ASSERT(rootvfs == vfsp); 3533 /* 3534 * Add it to the head of the global zone's vfslist. 3535 */ 3536 ASSERT(zone == global_zone); 3537 ASSERT(zone->zone_vfslist == NULL); 3538 zone->zone_vfslist = vfsp; 3539 } else { 3540 /* 3541 * Link to end of list using vfs_prev (as rootvfs is now a 3542 * doubly linked circular list) so list is in mount order for 3543 * mnttab use. 3544 */ 3545 rootvfs->vfs_prev->vfs_next = vfsp; 3546 vfsp->vfs_prev = rootvfs->vfs_prev; 3547 rootvfs->vfs_prev = vfsp; 3548 vfsp->vfs_next = rootvfs; 3549 3550 /* 3551 * Do it again for the zone-private list (which may be NULL). 3552 */ 3553 if (zone->zone_vfslist == NULL) { 3554 ASSERT(zone != global_zone); 3555 zone->zone_vfslist = vfsp; 3556 } else { 3557 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3558 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3559 zone->zone_vfslist->vfs_zone_prev = vfsp; 3560 vfsp->vfs_zone_next = zone->zone_vfslist; 3561 } 3562 } 3563 3564 /* 3565 * Link into the hash table, inserting it at the end, so that LOFS 3566 * with the same fsid as UFS (or other) file systems will not hide 3567 * the UFS. 3568 */ 3569 vfs_hash_add(vfsp, 0); 3570 3571 /* 3572 * update the mnttab modification time 3573 */ 3574 vfs_mnttab_modtimeupd(); 3575 vfs_list_unlock(); 3576 zone_rele(zone); 3577 } 3578 3579 void 3580 vfs_list_remove(struct vfs *vfsp) 3581 { 3582 zone_t *zone; 3583 3584 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3585 ASSERT(zone != NULL); 3586 /* 3587 * Callers are responsible for preventing attempts to unmount the 3588 * root. 3589 */ 3590 ASSERT(vfsp != rootvfs); 3591 3592 vfs_list_lock(); 3593 3594 /* 3595 * Remove from hash. 3596 */ 3597 vfs_hash_remove(vfsp); 3598 3599 /* 3600 * Remove from vfs list. 3601 */ 3602 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3603 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3604 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3605 3606 /* 3607 * Remove from zone-specific vfs list. 3608 */ 3609 if (zone->zone_vfslist == vfsp) 3610 zone->zone_vfslist = vfsp->vfs_zone_next; 3611 3612 if (vfsp->vfs_zone_next == vfsp) { 3613 ASSERT(vfsp->vfs_zone_prev == vfsp); 3614 ASSERT(zone->zone_vfslist == vfsp); 3615 zone->zone_vfslist = NULL; 3616 } 3617 3618 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3619 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3620 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3621 3622 /* 3623 * update the mnttab modification time 3624 */ 3625 vfs_mnttab_modtimeupd(); 3626 vfs_list_unlock(); 3627 zone_rele(zone); 3628 } 3629 3630 struct vfs * 3631 getvfs(fsid_t *fsid) 3632 { 3633 struct vfs *vfsp; 3634 int val0 = fsid->val[0]; 3635 int val1 = fsid->val[1]; 3636 dev_t dev = expldev(val0); 3637 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3638 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3639 3640 mutex_enter(hmp); 3641 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3642 if (vfsp->vfs_fsid.val[0] == val0 && 3643 vfsp->vfs_fsid.val[1] == val1) { 3644 VFS_HOLD(vfsp); 3645 mutex_exit(hmp); 3646 return (vfsp); 3647 } 3648 } 3649 mutex_exit(hmp); 3650 return (NULL); 3651 } 3652 3653 /* 3654 * Search the vfs mount in progress list for a specified device/vfs entry. 3655 * Returns 0 if the first entry in the list that the device matches has the 3656 * given vfs pointer as well. If the device matches but a different vfs 3657 * pointer is encountered in the list before the given vfs pointer then 3658 * a 1 is returned. 3659 */ 3660 3661 int 3662 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3663 { 3664 int retval = 0; 3665 struct ipmnt *mipp; 3666 3667 mutex_enter(&vfs_miplist_mutex); 3668 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3669 if (mipp->mip_dev == dev) { 3670 if (mipp->mip_vfsp != vfsp) 3671 retval = 1; 3672 break; 3673 } 3674 } 3675 mutex_exit(&vfs_miplist_mutex); 3676 return (retval); 3677 } 3678 3679 /* 3680 * Search the vfs list for a specified device. Returns 1, if entry is found 3681 * or 0 if no suitable entry is found. 3682 */ 3683 3684 int 3685 vfs_devismounted(dev_t dev) 3686 { 3687 struct vfs *vfsp; 3688 int found; 3689 3690 vfs_list_read_lock(); 3691 vfsp = rootvfs; 3692 found = 0; 3693 do { 3694 if (vfsp->vfs_dev == dev) { 3695 found = 1; 3696 break; 3697 } 3698 vfsp = vfsp->vfs_next; 3699 } while (vfsp != rootvfs); 3700 3701 vfs_list_unlock(); 3702 return (found); 3703 } 3704 3705 /* 3706 * Search the vfs list for a specified device. Returns a pointer to it 3707 * or NULL if no suitable entry is found. The caller of this routine 3708 * is responsible for releasing the returned vfs pointer. 3709 */ 3710 struct vfs * 3711 vfs_dev2vfsp(dev_t dev) 3712 { 3713 struct vfs *vfsp; 3714 int found; 3715 3716 vfs_list_read_lock(); 3717 vfsp = rootvfs; 3718 found = 0; 3719 do { 3720 /* 3721 * The following could be made more efficient by making 3722 * the entire loop use vfs_zone_next if the call is from 3723 * a zone. The only callers, however, ustat(2) and 3724 * umount2(2), don't seem to justify the added 3725 * complexity at present. 3726 */ 3727 if (vfsp->vfs_dev == dev && 3728 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3729 curproc->p_zone)) { 3730 VFS_HOLD(vfsp); 3731 found = 1; 3732 break; 3733 } 3734 vfsp = vfsp->vfs_next; 3735 } while (vfsp != rootvfs); 3736 vfs_list_unlock(); 3737 return (found ? vfsp: NULL); 3738 } 3739 3740 /* 3741 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3742 * or NULL if no suitable entry is found. The caller of this routine 3743 * is responsible for releasing the returned vfs pointer. 3744 * 3745 * Note that if multiple mntpoints match, the last one matching is 3746 * returned in an attempt to return the "top" mount when overlay 3747 * mounts are covering the same mount point. This is accomplished by starting 3748 * at the end of the list and working our way backwards, stopping at the first 3749 * matching mount. 3750 */ 3751 struct vfs * 3752 vfs_mntpoint2vfsp(const char *mp) 3753 { 3754 struct vfs *vfsp; 3755 struct vfs *retvfsp = NULL; 3756 zone_t *zone = curproc->p_zone; 3757 struct vfs *list; 3758 3759 vfs_list_read_lock(); 3760 if (getzoneid() == GLOBAL_ZONEID) { 3761 /* 3762 * The global zone may see filesystems in any zone. 3763 */ 3764 vfsp = rootvfs->vfs_prev; 3765 do { 3766 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3767 retvfsp = vfsp; 3768 break; 3769 } 3770 vfsp = vfsp->vfs_prev; 3771 } while (vfsp != rootvfs->vfs_prev); 3772 } else if ((list = zone->zone_vfslist) != NULL) { 3773 const char *mntpt; 3774 3775 vfsp = list->vfs_zone_prev; 3776 do { 3777 mntpt = refstr_value(vfsp->vfs_mntpt); 3778 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3779 if (strcmp(mntpt, mp) == 0) { 3780 retvfsp = vfsp; 3781 break; 3782 } 3783 vfsp = vfsp->vfs_zone_prev; 3784 } while (vfsp != list->vfs_zone_prev); 3785 } 3786 if (retvfsp) 3787 VFS_HOLD(retvfsp); 3788 vfs_list_unlock(); 3789 return (retvfsp); 3790 } 3791 3792 /* 3793 * Search the vfs list for a specified vfsops. 3794 * if vfs entry is found then return 1, else 0. 3795 */ 3796 int 3797 vfs_opsinuse(vfsops_t *ops) 3798 { 3799 struct vfs *vfsp; 3800 int found; 3801 3802 vfs_list_read_lock(); 3803 vfsp = rootvfs; 3804 found = 0; 3805 do { 3806 if (vfs_getops(vfsp) == ops) { 3807 found = 1; 3808 break; 3809 } 3810 vfsp = vfsp->vfs_next; 3811 } while (vfsp != rootvfs); 3812 vfs_list_unlock(); 3813 return (found); 3814 } 3815 3816 /* 3817 * Allocate an entry in vfssw for a file system type 3818 */ 3819 struct vfssw * 3820 allocate_vfssw(const char *type) 3821 { 3822 struct vfssw *vswp; 3823 3824 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3825 /* 3826 * The vfssw table uses the empty string to identify an 3827 * available entry; we cannot add any type which has 3828 * a leading NUL. The string length is limited to 3829 * the size of the st_fstype array in struct stat. 3830 */ 3831 return (NULL); 3832 } 3833 3834 ASSERT(VFSSW_WRITE_LOCKED()); 3835 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3836 if (!ALLOCATED_VFSSW(vswp)) { 3837 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3838 (void) strcpy(vswp->vsw_name, type); 3839 ASSERT(vswp->vsw_count == 0); 3840 vswp->vsw_count = 1; 3841 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3842 return (vswp); 3843 } 3844 return (NULL); 3845 } 3846 3847 /* 3848 * Impose additional layer of translation between vfstype names 3849 * and module names in the filesystem. 3850 */ 3851 static const char * 3852 vfs_to_modname(const char *vfstype) 3853 { 3854 if (strcmp(vfstype, "proc") == 0) { 3855 vfstype = "procfs"; 3856 } else if (strcmp(vfstype, "fd") == 0) { 3857 vfstype = "fdfs"; 3858 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3859 vfstype = "nfs"; 3860 } 3861 3862 return (vfstype); 3863 } 3864 3865 /* 3866 * Find a vfssw entry given a file system type name. 3867 * Try to autoload the filesystem if it's not found. 3868 * If it's installed, return the vfssw locked to prevent unloading. 3869 */ 3870 struct vfssw * 3871 vfs_getvfssw(const char *type) 3872 { 3873 struct vfssw *vswp; 3874 const char *modname; 3875 3876 RLOCK_VFSSW(); 3877 vswp = vfs_getvfsswbyname(type); 3878 modname = vfs_to_modname(type); 3879 3880 if (rootdir == NULL) { 3881 /* 3882 * If we haven't yet loaded the root file system, then our 3883 * _init won't be called until later. Allocate vfssw entry, 3884 * because mod_installfs won't be called. 3885 */ 3886 if (vswp == NULL) { 3887 RUNLOCK_VFSSW(); 3888 WLOCK_VFSSW(); 3889 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3890 if ((vswp = allocate_vfssw(type)) == NULL) { 3891 WUNLOCK_VFSSW(); 3892 return (NULL); 3893 } 3894 } 3895 WUNLOCK_VFSSW(); 3896 RLOCK_VFSSW(); 3897 } 3898 if (!VFS_INSTALLED(vswp)) { 3899 RUNLOCK_VFSSW(); 3900 (void) modloadonly("fs", modname); 3901 } else 3902 RUNLOCK_VFSSW(); 3903 return (vswp); 3904 } 3905 3906 /* 3907 * Try to load the filesystem. Before calling modload(), we drop 3908 * our lock on the VFS switch table, and pick it up after the 3909 * module is loaded. However, there is a potential race: the 3910 * module could be unloaded after the call to modload() completes 3911 * but before we pick up the lock and drive on. Therefore, 3912 * we keep reloading the module until we've loaded the module 3913 * _and_ we have the lock on the VFS switch table. 3914 */ 3915 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3916 RUNLOCK_VFSSW(); 3917 if (modload("fs", modname) == -1) 3918 return (NULL); 3919 RLOCK_VFSSW(); 3920 if (vswp == NULL) 3921 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3922 break; 3923 } 3924 RUNLOCK_VFSSW(); 3925 3926 return (vswp); 3927 } 3928 3929 /* 3930 * Find a vfssw entry given a file system type name. 3931 */ 3932 struct vfssw * 3933 vfs_getvfsswbyname(const char *type) 3934 { 3935 struct vfssw *vswp; 3936 3937 ASSERT(VFSSW_LOCKED()); 3938 if (type == NULL || *type == '\0') 3939 return (NULL); 3940 3941 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3942 if (strcmp(type, vswp->vsw_name) == 0) { 3943 vfs_refvfssw(vswp); 3944 return (vswp); 3945 } 3946 } 3947 3948 return (NULL); 3949 } 3950 3951 /* 3952 * Find a vfssw entry given a set of vfsops. 3953 */ 3954 struct vfssw * 3955 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3956 { 3957 struct vfssw *vswp; 3958 3959 RLOCK_VFSSW(); 3960 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3961 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 3962 vfs_refvfssw(vswp); 3963 RUNLOCK_VFSSW(); 3964 return (vswp); 3965 } 3966 } 3967 RUNLOCK_VFSSW(); 3968 3969 return (NULL); 3970 } 3971 3972 /* 3973 * Reference a vfssw entry. 3974 */ 3975 void 3976 vfs_refvfssw(struct vfssw *vswp) 3977 { 3978 3979 mutex_enter(&vswp->vsw_lock); 3980 vswp->vsw_count++; 3981 mutex_exit(&vswp->vsw_lock); 3982 } 3983 3984 /* 3985 * Unreference a vfssw entry. 3986 */ 3987 void 3988 vfs_unrefvfssw(struct vfssw *vswp) 3989 { 3990 3991 mutex_enter(&vswp->vsw_lock); 3992 vswp->vsw_count--; 3993 mutex_exit(&vswp->vsw_lock); 3994 } 3995 3996 int sync_timeout = 30; /* timeout for syncing a page during panic */ 3997 int sync_timeleft; /* portion of sync_timeout remaining */ 3998 3999 static int sync_retries = 20; /* number of retries when not making progress */ 4000 static int sync_triesleft; /* portion of sync_retries remaining */ 4001 4002 static pgcnt_t old_pgcnt, new_pgcnt; 4003 static int new_bufcnt, old_bufcnt; 4004 4005 /* 4006 * Sync all of the mounted filesystems, and then wait for the actual i/o to 4007 * complete. We wait by counting the number of dirty pages and buffers, 4008 * pushing them out using bio_busy() and page_busy(), and then counting again. 4009 * This routine is used during both the uadmin A_SHUTDOWN code as well as 4010 * the SYNC phase of the panic code (see comments in panic.c). It should only 4011 * be used after some higher-level mechanism has quiesced the system so that 4012 * new writes are not being initiated while we are waiting for completion. 4013 * 4014 * To ensure finite running time, our algorithm uses two timeout mechanisms: 4015 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 4016 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 4017 * Together these ensure that syncing completes if our i/o paths are stuck. 4018 * The counters are declared above so they can be found easily in the debugger. 4019 * 4020 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 4021 * vfs_syncprogress() subroutine whenever we make progress through the lists of 4022 * pages and buffers. It is decremented and expired by the deadman() cyclic. 4023 * When vfs_syncall() decides it is done, we disable the deadman() counter by 4024 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 4025 * deadlocking or hanging inside of a broken filesystem or driver routine. 4026 * 4027 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 4028 * sync_retries consecutive calls to bio_busy() and page_busy() without 4029 * decreasing either the number of dirty buffers or dirty pages below the 4030 * lowest count we have seen so far, we give up and return from vfs_syncall(). 4031 * 4032 * Each loop iteration ends with a call to delay() one second to allow time for 4033 * i/o completion and to permit the user time to read our progress messages. 4034 */ 4035 void 4036 vfs_syncall(void) 4037 { 4038 if (rootdir == NULL && !modrootloaded) 4039 return; /* panic during boot - no filesystems yet */ 4040 4041 printf("syncing file systems..."); 4042 vfs_syncprogress(); 4043 sync(); 4044 4045 vfs_syncprogress(); 4046 sync_triesleft = sync_retries; 4047 4048 old_bufcnt = new_bufcnt = INT_MAX; 4049 old_pgcnt = new_pgcnt = ULONG_MAX; 4050 4051 while (sync_triesleft > 0) { 4052 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 4053 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 4054 4055 new_bufcnt = bio_busy(B_TRUE); 4056 new_pgcnt = page_busy(B_TRUE); 4057 vfs_syncprogress(); 4058 4059 if (new_bufcnt == 0 && new_pgcnt == 0) 4060 break; 4061 4062 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 4063 sync_triesleft = sync_retries; 4064 else 4065 sync_triesleft--; 4066 4067 if (new_bufcnt) 4068 printf(" [%d]", new_bufcnt); 4069 if (new_pgcnt) 4070 printf(" %lu", new_pgcnt); 4071 4072 delay(hz); 4073 } 4074 4075 if (new_bufcnt != 0 || new_pgcnt != 0) 4076 printf(" done (not all i/o completed)\n"); 4077 else 4078 printf(" done\n"); 4079 4080 sync_timeleft = 0; 4081 delay(hz); 4082 } 4083 4084 /* 4085 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 4086 * sync_timeout to indicate that we are making progress and the deadman() 4087 * omnipresent cyclic should not yet time us out. Note that it is safe to 4088 * store to sync_timeleft here since the deadman() is firing at high-level 4089 * on top of us. If we are racing with the deadman(), either the deadman() 4090 * will decrement the old value and then we will reset it, or we will 4091 * reset it and then the deadman() will immediately decrement it. In either 4092 * case, correct behavior results. 4093 */ 4094 void 4095 vfs_syncprogress(void) 4096 { 4097 if (panicstr) 4098 sync_timeleft = sync_timeout; 4099 } 4100 4101 /* 4102 * Map VFS flags to statvfs flags. These shouldn't really be separate 4103 * flags at all. 4104 */ 4105 uint_t 4106 vf_to_stf(uint_t vf) 4107 { 4108 uint_t stf = 0; 4109 4110 if (vf & VFS_RDONLY) 4111 stf |= ST_RDONLY; 4112 if (vf & VFS_NOSETUID) 4113 stf |= ST_NOSUID; 4114 if (vf & VFS_NOTRUNC) 4115 stf |= ST_NOTRUNC; 4116 4117 return (stf); 4118 } 4119 4120 /* 4121 * Entries for (illegal) fstype 0. 4122 */ 4123 /* ARGSUSED */ 4124 int 4125 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 4126 { 4127 cmn_err(CE_PANIC, "stray vfs operation"); 4128 return (0); 4129 } 4130 4131 /* 4132 * Entries for (illegal) fstype 0. 4133 */ 4134 int 4135 vfsstray(void) 4136 { 4137 cmn_err(CE_PANIC, "stray vfs operation"); 4138 return (0); 4139 } 4140 4141 /* 4142 * Support for dealing with forced UFS unmount and its interaction with 4143 * LOFS. Could be used by any filesystem. 4144 * See bug 1203132. 4145 */ 4146 int 4147 vfs_EIO(void) 4148 { 4149 return (EIO); 4150 } 4151 4152 /* 4153 * We've gotta define the op for sync separately, since the compiler gets 4154 * confused if we mix and match ANSI and normal style prototypes when 4155 * a "short" argument is present and spits out a warning. 4156 */ 4157 /*ARGSUSED*/ 4158 int 4159 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 4160 { 4161 return (EIO); 4162 } 4163 4164 vfs_t EIO_vfs; 4165 vfsops_t *EIO_vfsops; 4166 4167 /* 4168 * Called from startup() to initialize all loaded vfs's 4169 */ 4170 void 4171 vfsinit(void) 4172 { 4173 struct vfssw *vswp; 4174 int error; 4175 extern int vopstats_enabled; 4176 extern void vopstats_startup(); 4177 4178 static const fs_operation_def_t EIO_vfsops_template[] = { 4179 VFSNAME_MOUNT, { .error = vfs_EIO }, 4180 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 4181 VFSNAME_ROOT, { .error = vfs_EIO }, 4182 VFSNAME_STATVFS, { .error = vfs_EIO }, 4183 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 4184 VFSNAME_VGET, { .error = vfs_EIO }, 4185 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 4186 VFSNAME_FREEVFS, { .error = vfs_EIO }, 4187 VFSNAME_VNSTATE, { .error = vfs_EIO }, 4188 NULL, NULL 4189 }; 4190 4191 static const fs_operation_def_t stray_vfsops_template[] = { 4192 VFSNAME_MOUNT, { .error = vfsstray }, 4193 VFSNAME_UNMOUNT, { .error = vfsstray }, 4194 VFSNAME_ROOT, { .error = vfsstray }, 4195 VFSNAME_STATVFS, { .error = vfsstray }, 4196 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 4197 VFSNAME_VGET, { .error = vfsstray }, 4198 VFSNAME_MOUNTROOT, { .error = vfsstray }, 4199 VFSNAME_FREEVFS, { .error = vfsstray }, 4200 VFSNAME_VNSTATE, { .error = vfsstray }, 4201 NULL, NULL 4202 }; 4203 4204 /* Create vfs cache */ 4205 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs), 4206 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0); 4207 4208 /* Initialize the vnode cache (file systems may use it during init). */ 4209 vn_create_cache(); 4210 4211 /* Setup event monitor framework */ 4212 fem_init(); 4213 4214 /* Initialize the dummy stray file system type. */ 4215 error = vfs_setfsops(0, stray_vfsops_template, NULL); 4216 4217 /* Initialize the dummy EIO file system. */ 4218 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 4219 if (error != 0) { 4220 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 4221 /* Shouldn't happen, but not bad enough to panic */ 4222 } 4223 4224 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 4225 4226 /* 4227 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 4228 * on this vfs can immediately notice it's invalid. 4229 */ 4230 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 4231 4232 /* 4233 * Call the init routines of non-loadable filesystems only. 4234 * Filesystems which are loaded as separate modules will be 4235 * initialized by the module loading code instead. 4236 */ 4237 4238 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4239 RLOCK_VFSSW(); 4240 if (vswp->vsw_init != NULL) 4241 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 4242 RUNLOCK_VFSSW(); 4243 } 4244 4245 vopstats_startup(); 4246 4247 if (vopstats_enabled) { 4248 /* EIO_vfs can collect stats, but we don't retrieve them */ 4249 initialize_vopstats(&EIO_vfs.vfs_vopstats); 4250 EIO_vfs.vfs_fstypevsp = NULL; 4251 EIO_vfs.vfs_vskap = NULL; 4252 EIO_vfs.vfs_flag |= VFS_STATS; 4253 } 4254 4255 xattr_init(); 4256 } 4257 4258 vfs_t * 4259 vfs_alloc(int kmflag) 4260 { 4261 vfs_t *vfsp; 4262 4263 vfsp = kmem_cache_alloc(vfs_cache, kmflag); 4264 4265 /* 4266 * Do the simplest initialization here. 4267 * Everything else gets done in vfs_init() 4268 */ 4269 bzero(vfsp, sizeof (vfs_t)); 4270 return (vfsp); 4271 } 4272 4273 void 4274 vfs_free(vfs_t *vfsp) 4275 { 4276 /* 4277 * One would be tempted to assert that "vfsp->vfs_count == 0". 4278 * The problem is that this gets called out of domount() with 4279 * a partially initialized vfs and a vfs_count of 1. This is 4280 * also called from vfs_rele() with a vfs_count of 0. We can't 4281 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully 4282 * returned. This is because VFS_MOUNT() fully initializes the 4283 * vfs structure and its associated data. VFS_RELE() will call 4284 * VFS_FREEVFS() which may panic the system if the data structures 4285 * aren't fully initialized from a successful VFS_MOUNT()). 4286 */ 4287 4288 /* If FEM was in use, make sure everything gets cleaned up */ 4289 if (vfsp->vfs_femhead) { 4290 ASSERT(vfsp->vfs_femhead->femh_list == NULL); 4291 mutex_destroy(&vfsp->vfs_femhead->femh_lock); 4292 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead))); 4293 vfsp->vfs_femhead = NULL; 4294 } 4295 4296 if (vfsp->vfs_implp) 4297 vfsimpl_teardown(vfsp); 4298 sema_destroy(&vfsp->vfs_reflock); 4299 kmem_cache_free(vfs_cache, vfsp); 4300 } 4301 4302 /* 4303 * Increments the vfs reference count by one atomically. 4304 */ 4305 void 4306 vfs_hold(vfs_t *vfsp) 4307 { 4308 atomic_add_32(&vfsp->vfs_count, 1); 4309 ASSERT(vfsp->vfs_count != 0); 4310 } 4311 4312 /* 4313 * Decrements the vfs reference count by one atomically. When 4314 * vfs reference count becomes zero, it calls the file system 4315 * specific vfs_freevfs() to free up the resources. 4316 */ 4317 void 4318 vfs_rele(vfs_t *vfsp) 4319 { 4320 ASSERT(vfsp->vfs_count != 0); 4321 if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) { 4322 VFS_FREEVFS(vfsp); 4323 lofi_remove(vfsp); 4324 if (vfsp->vfs_zone) 4325 zone_rele(vfsp->vfs_zone); 4326 vfs_freemnttab(vfsp); 4327 vfs_free(vfsp); 4328 } 4329 } 4330 4331 /* 4332 * Generic operations vector support. 4333 * 4334 * This is used to build operations vectors for both the vfs and vnode. 4335 * It's normally called only when a file system is loaded. 4336 * 4337 * There are many possible algorithms for this, including the following: 4338 * 4339 * (1) scan the list of known operations; for each, see if the file system 4340 * includes an entry for it, and fill it in as appropriate. 4341 * 4342 * (2) set up defaults for all known operations. scan the list of ops 4343 * supplied by the file system; for each which is both supplied and 4344 * known, fill it in. 4345 * 4346 * (3) sort the lists of known ops & supplied ops; scan the list, filling 4347 * in entries as we go. 4348 * 4349 * we choose (1) for simplicity, and because performance isn't critical here. 4350 * note that (2) could be sped up using a precomputed hash table on known ops. 4351 * (3) could be faster than either, but only if the lists were very large or 4352 * supplied in sorted order. 4353 * 4354 */ 4355 4356 int 4357 fs_build_vector(void *vector, int *unused_ops, 4358 const fs_operation_trans_def_t *translation, 4359 const fs_operation_def_t *operations) 4360 { 4361 int i, num_trans, num_ops, used; 4362 4363 /* 4364 * Count the number of translations and the number of supplied 4365 * operations. 4366 */ 4367 4368 { 4369 const fs_operation_trans_def_t *p; 4370 4371 for (num_trans = 0, p = translation; 4372 p->name != NULL; 4373 num_trans++, p++) 4374 ; 4375 } 4376 4377 { 4378 const fs_operation_def_t *p; 4379 4380 for (num_ops = 0, p = operations; 4381 p->name != NULL; 4382 num_ops++, p++) 4383 ; 4384 } 4385 4386 /* Walk through each operation known to our caller. There will be */ 4387 /* one entry in the supplied "translation table" for each. */ 4388 4389 used = 0; 4390 4391 for (i = 0; i < num_trans; i++) { 4392 int j, found; 4393 char *curname; 4394 fs_generic_func_p result; 4395 fs_generic_func_p *location; 4396 4397 curname = translation[i].name; 4398 4399 /* Look for a matching operation in the list supplied by the */ 4400 /* file system. */ 4401 4402 found = 0; 4403 4404 for (j = 0; j < num_ops; j++) { 4405 if (strcmp(operations[j].name, curname) == 0) { 4406 used++; 4407 found = 1; 4408 break; 4409 } 4410 } 4411 4412 /* 4413 * If the file system is using a "placeholder" for default 4414 * or error functions, grab the appropriate function out of 4415 * the translation table. If the file system didn't supply 4416 * this operation at all, use the default function. 4417 */ 4418 4419 if (found) { 4420 result = operations[j].func.fs_generic; 4421 if (result == fs_default) { 4422 result = translation[i].defaultFunc; 4423 } else if (result == fs_error) { 4424 result = translation[i].errorFunc; 4425 } else if (result == NULL) { 4426 /* Null values are PROHIBITED */ 4427 return (EINVAL); 4428 } 4429 } else { 4430 result = translation[i].defaultFunc; 4431 } 4432 4433 /* Now store the function into the operations vector. */ 4434 4435 location = (fs_generic_func_p *) 4436 (((char *)vector) + translation[i].offset); 4437 4438 *location = result; 4439 } 4440 4441 *unused_ops = num_ops - used; 4442 4443 return (0); 4444 } 4445 4446 /* Placeholder functions, should never be called. */ 4447 4448 int 4449 fs_error(void) 4450 { 4451 cmn_err(CE_PANIC, "fs_error called"); 4452 return (0); 4453 } 4454 4455 int 4456 fs_default(void) 4457 { 4458 cmn_err(CE_PANIC, "fs_default called"); 4459 return (0); 4460 } 4461 4462 #ifdef __sparc 4463 4464 /* 4465 * Part of the implementation of booting off a mirrored root 4466 * involves a change of dev_t for the root device. To 4467 * accomplish this, first remove the existing hash table 4468 * entry for the root device, convert to the new dev_t, 4469 * then re-insert in the hash table at the head of the list. 4470 */ 4471 void 4472 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4473 { 4474 vfs_list_lock(); 4475 4476 vfs_hash_remove(vfsp); 4477 4478 vfsp->vfs_dev = ndev; 4479 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4480 4481 vfs_hash_add(vfsp, 1); 4482 4483 vfs_list_unlock(); 4484 } 4485 4486 #else /* x86 NEWBOOT */ 4487 4488 #if defined(__x86) 4489 extern int hvmboot_rootconf(); 4490 #endif /* __x86 */ 4491 4492 int 4493 rootconf() 4494 { 4495 int error; 4496 struct vfssw *vsw; 4497 extern void pm_init(); 4498 char *fstyp, *fsmod; 4499 4500 getrootfs(&fstyp, &fsmod); 4501 4502 #if defined(__x86) 4503 /* 4504 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module, 4505 * which lives in /platform/i86hvm, and hence is only available when 4506 * booted in an x86 hvm environment. If the hvm_bootstrap misc module 4507 * is not available then the modstub for this function will return 0. 4508 * If the hvm_bootstrap misc module is available it will be loaded 4509 * and hvmboot_rootconf() will be invoked. 4510 */ 4511 if (error = hvmboot_rootconf()) 4512 return (error); 4513 #endif /* __x86 */ 4514 4515 if (error = clboot_rootconf()) 4516 return (error); 4517 4518 if (modload("fs", fsmod) == -1) 4519 panic("Cannot _init %s module", fsmod); 4520 4521 RLOCK_VFSSW(); 4522 vsw = vfs_getvfsswbyname(fstyp); 4523 RUNLOCK_VFSSW(); 4524 if (vsw == NULL) { 4525 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp); 4526 return (ENXIO); 4527 } 4528 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4529 VFS_HOLD(rootvfs); 4530 4531 /* always mount readonly first */ 4532 rootvfs->vfs_flag |= VFS_RDONLY; 4533 4534 pm_init(); 4535 4536 if (netboot) 4537 (void) strplumb(); 4538 4539 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4540 vfs_unrefvfssw(vsw); 4541 rootdev = rootvfs->vfs_dev; 4542 4543 if (error) 4544 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n", 4545 rootfs.bo_name, fstyp); 4546 else 4547 cmn_err(CE_CONT, "?root on %s fstype %s\n", 4548 rootfs.bo_name, fstyp); 4549 return (error); 4550 } 4551 4552 /* 4553 * XXX this is called by nfs only and should probably be removed 4554 * If booted with ASKNAME, prompt on the console for a filesystem 4555 * name and return it. 4556 */ 4557 void 4558 getfsname(char *askfor, char *name, size_t namelen) 4559 { 4560 if (boothowto & RB_ASKNAME) { 4561 printf("%s name: ", askfor); 4562 console_gets(name, namelen); 4563 } 4564 } 4565 4566 /* 4567 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype" 4568 * property. 4569 * 4570 * Filesystem types starting with the prefix "nfs" are diskless clients; 4571 * init the root filename name (rootfs.bo_name), too. 4572 * 4573 * If we are booting via NFS we currently have these options: 4574 * nfs - dynamically choose NFS V2, V3, or V4 (default) 4575 * nfs2 - force NFS V2 4576 * nfs3 - force NFS V3 4577 * nfs4 - force NFS V4 4578 * Because we need to maintain backward compatibility with the naming 4579 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c) 4580 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic 4581 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4". 4582 * This is only for root filesystems, all other uses such as cachefs 4583 * will expect that "nfs" == NFS V2. 4584 */ 4585 static void 4586 getrootfs(char **fstypp, char **fsmodp) 4587 { 4588 extern char *strplumb_get_netdev_path(void); 4589 char *propstr = NULL; 4590 4591 /* 4592 * Check fstype property; for diskless it should be one of "nfs", 4593 * "nfs2", "nfs3" or "nfs4". 4594 */ 4595 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4596 DDI_PROP_DONTPASS, "fstype", &propstr) 4597 == DDI_SUCCESS) { 4598 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4599 ddi_prop_free(propstr); 4600 4601 /* 4602 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4603 * assume the type of this root filesystem is 'zfs'. 4604 */ 4605 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4606 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4607 == DDI_SUCCESS) { 4608 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4609 ddi_prop_free(propstr); 4610 } 4611 4612 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) { 4613 *fstypp = *fsmodp = rootfs.bo_fstype; 4614 return; 4615 } 4616 4617 ++netboot; 4618 4619 if (strcmp(rootfs.bo_fstype, "nfs2") == 0) 4620 (void) strcpy(rootfs.bo_fstype, "nfs"); 4621 else if (strcmp(rootfs.bo_fstype, "nfs") == 0) 4622 (void) strcpy(rootfs.bo_fstype, "nfsdyn"); 4623 4624 /* 4625 * check if path to network interface is specified in bootpath 4626 * or by a hypervisor domain configuration file. 4627 * XXPV - enable strlumb_get_netdev_path() 4628 */ 4629 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, 4630 "xpv-nfsroot")) { 4631 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0"); 4632 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4633 DDI_PROP_DONTPASS, "bootpath", &propstr) 4634 == DDI_SUCCESS) { 4635 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4636 ddi_prop_free(propstr); 4637 } else { 4638 /* attempt to determine netdev_path via boot_mac address */ 4639 netdev_path = strplumb_get_netdev_path(); 4640 if (netdev_path == NULL) 4641 panic("cannot find boot network interface"); 4642 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4643 } 4644 *fstypp = rootfs.bo_fstype; 4645 *fsmodp = "nfs"; 4646 } 4647 #endif 4648 4649 /* 4650 * VFS feature routines 4651 */ 4652 4653 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF) 4654 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL) 4655 4656 /* Register a feature in the vfs */ 4657 void 4658 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature) 4659 { 4660 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4661 if (vfsp->vfs_implp == NULL) 4662 return; 4663 4664 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature); 4665 } 4666 4667 /* 4668 * Query a vfs for a feature. 4669 * Returns 1 if feature is present, 0 if not 4670 */ 4671 int 4672 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature) 4673 { 4674 int ret = 0; 4675 4676 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4677 if (vfsp->vfs_implp == NULL) 4678 return (ret); 4679 4680 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature)) 4681 ret = 1; 4682 4683 return (ret); 4684 } 4685 4686 /* 4687 * Propagate feature set from one vfs to another 4688 */ 4689 void 4690 vfs_propagate_features(vfs_t *from, vfs_t *to) 4691 { 4692 int i; 4693 4694 if (to->vfs_implp == NULL || from->vfs_implp == NULL) 4695 return; 4696 4697 for (i = 1; i <= to->vfs_featureset[0]; i++) { 4698 to->vfs_featureset[i] = from->vfs_featureset[i]; 4699 } 4700 } 4701 4702 #define LOFICTL_PATH "/devices/pseudo/lofi@0:%d" 4703 4704 /* 4705 * Return the vnode for the lofi node if there's a lofi mount in place. 4706 * Returns -1 when there's no lofi node, 0 on success, and > 0 on 4707 * failure. 4708 */ 4709 int 4710 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp) 4711 { 4712 char *path = NULL; 4713 int strsize; 4714 int err; 4715 4716 if (vfsp->vfs_lofi_minor == 0) { 4717 *vpp = NULL; 4718 return (-1); 4719 } 4720 4721 strsize = snprintf(NULL, 0, LOFICTL_PATH, vfsp->vfs_lofi_minor); 4722 path = kmem_alloc(strsize + 1, KM_SLEEP); 4723 (void) snprintf(path, strsize + 1, LOFICTL_PATH, vfsp->vfs_lofi_minor); 4724 4725 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp); 4726 4727 if (err) 4728 *vpp = NULL; 4729 4730 kmem_free(path, strsize + 1); 4731 return (err); 4732 } 4733