1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * Portions of this source code were derived from Berkeley 4.3 BSD 32 * under license from the Regents of the University of California. 33 */ 34 35 #include <sys/types.h> 36 #include <sys/t_lock.h> 37 #include <sys/ksynch.h> 38 #include <sys/param.h> 39 #include <sys/time.h> 40 #include <sys/systm.h> 41 #include <sys/sysmacros.h> 42 #include <sys/resource.h> 43 #include <sys/signal.h> 44 #include <sys/cred.h> 45 #include <sys/user.h> 46 #include <sys/buf.h> 47 #include <sys/vfs.h> 48 #include <sys/vfs_opreg.h> 49 #include <sys/vnode.h> 50 #include <sys/proc.h> 51 #include <sys/disp.h> 52 #include <sys/file.h> 53 #include <sys/fcntl.h> 54 #include <sys/flock.h> 55 #include <sys/atomic.h> 56 #include <sys/kmem.h> 57 #include <sys/uio.h> 58 #include <sys/dnlc.h> 59 #include <sys/conf.h> 60 #include <sys/mman.h> 61 #include <sys/pathname.h> 62 #include <sys/debug.h> 63 #include <sys/vmsystm.h> 64 #include <sys/cmn_err.h> 65 #include <sys/filio.h> 66 #include <sys/policy.h> 67 68 #include <sys/fs/ufs_fs.h> 69 #include <sys/fs/ufs_lockfs.h> 70 #include <sys/fs/ufs_filio.h> 71 #include <sys/fs/ufs_inode.h> 72 #include <sys/fs/ufs_fsdir.h> 73 #include <sys/fs/ufs_quota.h> 74 #include <sys/fs/ufs_log.h> 75 #include <sys/fs/ufs_snap.h> 76 #include <sys/fs/ufs_trans.h> 77 #include <sys/fs/ufs_panic.h> 78 #include <sys/fs/ufs_bio.h> 79 #include <sys/dirent.h> /* must be AFTER <sys/fs/fsdir.h>! */ 80 #include <sys/errno.h> 81 #include <sys/fssnap_if.h> 82 #include <sys/unistd.h> 83 #include <sys/sunddi.h> 84 85 #include <sys/filio.h> /* _FIOIO */ 86 87 #include <vm/hat.h> 88 #include <vm/page.h> 89 #include <vm/pvn.h> 90 #include <vm/as.h> 91 #include <vm/seg.h> 92 #include <vm/seg_map.h> 93 #include <vm/seg_vn.h> 94 #include <vm/seg_kmem.h> 95 #include <vm/rm.h> 96 #include <sys/swap.h> 97 98 #include <fs/fs_subr.h> 99 100 #include <sys/fs/decomp.h> 101 102 static struct instats ins; 103 104 static int ufs_getpage_ra(struct vnode *, u_offset_t, struct seg *, caddr_t); 105 static int ufs_getpage_miss(struct vnode *, u_offset_t, size_t, struct seg *, 106 caddr_t, struct page **, size_t, enum seg_rw, int); 107 static int ufs_open(struct vnode **, int, struct cred *, caller_context_t *); 108 static int ufs_close(struct vnode *, int, int, offset_t, struct cred *, 109 caller_context_t *); 110 static int ufs_read(struct vnode *, struct uio *, int, struct cred *, 111 struct caller_context *); 112 static int ufs_write(struct vnode *, struct uio *, int, struct cred *, 113 struct caller_context *); 114 static int ufs_ioctl(struct vnode *, int, intptr_t, int, struct cred *, 115 int *, caller_context_t *); 116 static int ufs_getattr(struct vnode *, struct vattr *, int, struct cred *, 117 caller_context_t *); 118 static int ufs_setattr(struct vnode *, struct vattr *, int, struct cred *, 119 caller_context_t *); 120 static int ufs_access(struct vnode *, int, int, struct cred *, 121 caller_context_t *); 122 static int ufs_lookup(struct vnode *, char *, struct vnode **, 123 struct pathname *, int, struct vnode *, struct cred *, 124 caller_context_t *, int *, pathname_t *); 125 static int ufs_create(struct vnode *, char *, struct vattr *, enum vcexcl, 126 int, struct vnode **, struct cred *, int, 127 caller_context_t *, vsecattr_t *); 128 static int ufs_remove(struct vnode *, char *, struct cred *, 129 caller_context_t *, int); 130 static int ufs_link(struct vnode *, struct vnode *, char *, struct cred *, 131 caller_context_t *, int); 132 static int ufs_rename(struct vnode *, char *, struct vnode *, char *, 133 struct cred *, caller_context_t *, int); 134 static int ufs_mkdir(struct vnode *, char *, struct vattr *, struct vnode **, 135 struct cred *, caller_context_t *, int, vsecattr_t *); 136 static int ufs_rmdir(struct vnode *, char *, struct vnode *, struct cred *, 137 caller_context_t *, int); 138 static int ufs_readdir(struct vnode *, struct uio *, struct cred *, int *, 139 caller_context_t *, int); 140 static int ufs_symlink(struct vnode *, char *, struct vattr *, char *, 141 struct cred *, caller_context_t *, int); 142 static int ufs_readlink(struct vnode *, struct uio *, struct cred *, 143 caller_context_t *); 144 static int ufs_fsync(struct vnode *, int, struct cred *, caller_context_t *); 145 static void ufs_inactive(struct vnode *, struct cred *, caller_context_t *); 146 static int ufs_fid(struct vnode *, struct fid *, caller_context_t *); 147 static int ufs_rwlock(struct vnode *, int, caller_context_t *); 148 static void ufs_rwunlock(struct vnode *, int, caller_context_t *); 149 static int ufs_seek(struct vnode *, offset_t, offset_t *, caller_context_t *); 150 static int ufs_frlock(struct vnode *, int, struct flock64 *, int, offset_t, 151 struct flk_callback *, struct cred *, 152 caller_context_t *); 153 static int ufs_space(struct vnode *, int, struct flock64 *, int, offset_t, 154 cred_t *, caller_context_t *); 155 static int ufs_getpage(struct vnode *, offset_t, size_t, uint_t *, 156 struct page **, size_t, struct seg *, caddr_t, 157 enum seg_rw, struct cred *, caller_context_t *); 158 static int ufs_putpage(struct vnode *, offset_t, size_t, int, struct cred *, 159 caller_context_t *); 160 static int ufs_putpages(struct vnode *, offset_t, size_t, int, struct cred *); 161 static int ufs_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t, 162 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 163 static int ufs_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 164 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 165 static int ufs_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 166 uint_t, uint_t, uint_t, struct cred *, caller_context_t *); 167 static int ufs_poll(vnode_t *, short, int, short *, struct pollhead **, 168 caller_context_t *); 169 static int ufs_dump(vnode_t *, caddr_t, offset_t, offset_t, 170 caller_context_t *); 171 static int ufs_l_pathconf(struct vnode *, int, ulong_t *, struct cred *, 172 caller_context_t *); 173 static int ufs_pageio(struct vnode *, struct page *, u_offset_t, size_t, int, 174 struct cred *, caller_context_t *); 175 static int ufs_dumpctl(vnode_t *, int, offset_t *, caller_context_t *); 176 static daddr32_t *save_dblks(struct inode *, struct ufsvfs *, daddr32_t *, 177 daddr32_t *, int, int); 178 static int ufs_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 179 caller_context_t *); 180 static int ufs_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 181 caller_context_t *); 182 static int ufs_priv_access(void *, int, struct cred *); 183 extern int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *); 184 185 /* 186 * For lockfs: ulockfs begin/end is now inlined in the ufs_xxx functions. 187 * 188 * XXX - ULOCKFS in fs_pathconf and ufs_ioctl is not inlined yet. 189 */ 190 struct vnodeops *ufs_vnodeops; 191 192 /* NOTE: "not blkd" below means that the operation isn't blocked by lockfs */ 193 const fs_operation_def_t ufs_vnodeops_template[] = { 194 VOPNAME_OPEN, { .vop_open = ufs_open }, /* not blkd */ 195 VOPNAME_CLOSE, { .vop_close = ufs_close }, /* not blkd */ 196 VOPNAME_READ, { .vop_read = ufs_read }, 197 VOPNAME_WRITE, { .vop_write = ufs_write }, 198 VOPNAME_IOCTL, { .vop_ioctl = ufs_ioctl }, 199 VOPNAME_GETATTR, { .vop_getattr = ufs_getattr }, 200 VOPNAME_SETATTR, { .vop_setattr = ufs_setattr }, 201 VOPNAME_ACCESS, { .vop_access = ufs_access }, 202 VOPNAME_LOOKUP, { .vop_lookup = ufs_lookup }, 203 VOPNAME_CREATE, { .vop_create = ufs_create }, 204 VOPNAME_REMOVE, { .vop_remove = ufs_remove }, 205 VOPNAME_LINK, { .vop_link = ufs_link }, 206 VOPNAME_RENAME, { .vop_rename = ufs_rename }, 207 VOPNAME_MKDIR, { .vop_mkdir = ufs_mkdir }, 208 VOPNAME_RMDIR, { .vop_rmdir = ufs_rmdir }, 209 VOPNAME_READDIR, { .vop_readdir = ufs_readdir }, 210 VOPNAME_SYMLINK, { .vop_symlink = ufs_symlink }, 211 VOPNAME_READLINK, { .vop_readlink = ufs_readlink }, 212 VOPNAME_FSYNC, { .vop_fsync = ufs_fsync }, 213 VOPNAME_INACTIVE, { .vop_inactive = ufs_inactive }, /* not blkd */ 214 VOPNAME_FID, { .vop_fid = ufs_fid }, 215 VOPNAME_RWLOCK, { .vop_rwlock = ufs_rwlock }, /* not blkd */ 216 VOPNAME_RWUNLOCK, { .vop_rwunlock = ufs_rwunlock }, /* not blkd */ 217 VOPNAME_SEEK, { .vop_seek = ufs_seek }, 218 VOPNAME_FRLOCK, { .vop_frlock = ufs_frlock }, 219 VOPNAME_SPACE, { .vop_space = ufs_space }, 220 VOPNAME_GETPAGE, { .vop_getpage = ufs_getpage }, 221 VOPNAME_PUTPAGE, { .vop_putpage = ufs_putpage }, 222 VOPNAME_MAP, { .vop_map = ufs_map }, 223 VOPNAME_ADDMAP, { .vop_addmap = ufs_addmap }, /* not blkd */ 224 VOPNAME_DELMAP, { .vop_delmap = ufs_delmap }, /* not blkd */ 225 VOPNAME_POLL, { .vop_poll = ufs_poll }, /* not blkd */ 226 VOPNAME_DUMP, { .vop_dump = ufs_dump }, 227 VOPNAME_PATHCONF, { .vop_pathconf = ufs_l_pathconf }, 228 VOPNAME_PAGEIO, { .vop_pageio = ufs_pageio }, 229 VOPNAME_DUMPCTL, { .vop_dumpctl = ufs_dumpctl }, 230 VOPNAME_GETSECATTR, { .vop_getsecattr = ufs_getsecattr }, 231 VOPNAME_SETSECATTR, { .vop_setsecattr = ufs_setsecattr }, 232 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 233 NULL, NULL 234 }; 235 236 #define MAX_BACKFILE_COUNT 9999 237 238 /* 239 * Created by ufs_dumpctl() to store a file's disk block info into memory. 240 * Used by ufs_dump() to dump data to disk directly. 241 */ 242 struct dump { 243 struct inode *ip; /* the file we contain */ 244 daddr_t fsbs; /* number of blocks stored */ 245 struct timeval32 time; /* time stamp for the struct */ 246 daddr32_t dblk[1]; /* place holder for block info */ 247 }; 248 249 static struct dump *dump_info = NULL; 250 251 /* 252 * Previously there was no special action required for ordinary files. 253 * (Devices are handled through the device file system.) 254 * Now we support Large Files and Large File API requires open to 255 * fail if file is large. 256 * We could take care to prevent data corruption 257 * by doing an atomic check of size and truncate if file is opened with 258 * FTRUNC flag set but traditionally this is being done by the vfs/vnode 259 * layers. So taking care of truncation here is a change in the existing 260 * semantics of VOP_OPEN and therefore we chose not to implement any thing 261 * here. The check for the size of the file > 2GB is being done at the 262 * vfs layer in routine vn_open(). 263 */ 264 265 /* ARGSUSED */ 266 static int 267 ufs_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *ct) 268 { 269 return (0); 270 } 271 272 /*ARGSUSED*/ 273 static int 274 ufs_close(struct vnode *vp, int flag, int count, offset_t offset, 275 struct cred *cr, caller_context_t *ct) 276 { 277 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 278 cleanshares(vp, ttoproc(curthread)->p_pid); 279 280 /* 281 * Push partially filled cluster at last close. 282 * ``last close'' is approximated because the dnlc 283 * may have a hold on the vnode. 284 * Checking for VBAD here will also act as a forced umount check. 285 */ 286 if (vp->v_count <= 2 && vp->v_type != VBAD) { 287 struct inode *ip = VTOI(vp); 288 if (ip->i_delaylen) { 289 ins.in_poc.value.ul++; 290 (void) ufs_putpages(vp, ip->i_delayoff, ip->i_delaylen, 291 B_ASYNC | B_FREE, cr); 292 ip->i_delaylen = 0; 293 } 294 } 295 296 return (0); 297 } 298 299 /*ARGSUSED*/ 300 static int 301 ufs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cr, 302 struct caller_context *ct) 303 { 304 struct inode *ip = VTOI(vp); 305 struct ufsvfs *ufsvfsp; 306 struct ulockfs *ulp = NULL; 307 int error = 0; 308 int intrans = 0; 309 310 ASSERT(RW_READ_HELD(&ip->i_rwlock)); 311 312 /* 313 * Mandatory locking needs to be done before ufs_lockfs_begin() 314 * and TRANS_BEGIN_SYNC() calls since mandatory locks can sleep. 315 */ 316 if (MANDLOCK(vp, ip->i_mode)) { 317 /* 318 * ufs_getattr ends up being called by chklock 319 */ 320 error = chklock(vp, FREAD, uiop->uio_loffset, 321 uiop->uio_resid, uiop->uio_fmode, ct); 322 if (error) 323 goto out; 324 } 325 326 ufsvfsp = ip->i_ufsvfs; 327 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READ_MASK); 328 if (error) 329 goto out; 330 331 /* 332 * In the case that a directory is opened for reading as a file 333 * (eg "cat .") with the O_RSYNC, O_SYNC and O_DSYNC flags set. 334 * The locking order had to be changed to avoid a deadlock with 335 * an update taking place on that directory at the same time. 336 */ 337 if ((ip->i_mode & IFMT) == IFDIR) { 338 339 rw_enter(&ip->i_contents, RW_READER); 340 error = rdip(ip, uiop, ioflag, cr); 341 rw_exit(&ip->i_contents); 342 343 if (error) { 344 if (ulp) 345 ufs_lockfs_end(ulp); 346 goto out; 347 } 348 349 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) && 350 TRANS_ISTRANS(ufsvfsp)) { 351 rw_exit(&ip->i_rwlock); 352 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE, 353 error); 354 ASSERT(!error); 355 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC, 356 TOP_READ_SIZE); 357 rw_enter(&ip->i_rwlock, RW_READER); 358 } 359 } else { 360 /* 361 * Only transact reads to files opened for sync-read and 362 * sync-write on a file system that is not write locked. 363 * 364 * The ``not write locked'' check prevents problems with 365 * enabling/disabling logging on a busy file system. E.g., 366 * logging exists at the beginning of the read but does not 367 * at the end. 368 * 369 */ 370 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) && 371 TRANS_ISTRANS(ufsvfsp)) { 372 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE, 373 error); 374 ASSERT(!error); 375 intrans = 1; 376 } 377 378 rw_enter(&ip->i_contents, RW_READER); 379 error = rdip(ip, uiop, ioflag, cr); 380 rw_exit(&ip->i_contents); 381 382 if (intrans) { 383 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC, 384 TOP_READ_SIZE); 385 } 386 } 387 388 if (ulp) { 389 ufs_lockfs_end(ulp); 390 } 391 out: 392 393 return (error); 394 } 395 396 extern int ufs_HW; /* high water mark */ 397 extern int ufs_LW; /* low water mark */ 398 int ufs_WRITES = 1; /* XXX - enable/disable */ 399 int ufs_throttles = 0; /* throttling count */ 400 int ufs_allow_shared_writes = 1; /* directio shared writes */ 401 402 static int 403 ufs_check_rewrite(struct inode *ip, struct uio *uiop, int ioflag) 404 { 405 int shared_write; 406 407 /* 408 * If the FDSYNC flag is set then ignore the global 409 * ufs_allow_shared_writes in this case. 410 */ 411 shared_write = (ioflag & FDSYNC) | ufs_allow_shared_writes; 412 413 /* 414 * Filter to determine if this request is suitable as a 415 * concurrent rewrite. This write must not allocate blocks 416 * by extending the file or filling in holes. No use trying 417 * through FSYNC descriptors as the inode will be synchronously 418 * updated after the write. The uio structure has not yet been 419 * checked for sanity, so assume nothing. 420 */ 421 return (((ip->i_mode & IFMT) == IFREG) && !(ioflag & FAPPEND) && 422 (uiop->uio_loffset >= (offset_t)0) && 423 (uiop->uio_loffset < ip->i_size) && (uiop->uio_resid > 0) && 424 ((ip->i_size - uiop->uio_loffset) >= uiop->uio_resid) && 425 !(ioflag & FSYNC) && !bmap_has_holes(ip) && 426 shared_write); 427 } 428 429 /*ARGSUSED*/ 430 static int 431 ufs_write(struct vnode *vp, struct uio *uiop, int ioflag, cred_t *cr, 432 caller_context_t *ct) 433 { 434 struct inode *ip = VTOI(vp); 435 struct ufsvfs *ufsvfsp; 436 struct ulockfs *ulp; 437 int retry = 1; 438 int error, resv, resid = 0; 439 int directio_status; 440 int exclusive; 441 int rewriteflg; 442 long start_resid = uiop->uio_resid; 443 444 ASSERT(RW_LOCK_HELD(&ip->i_rwlock)); 445 446 retry_mandlock: 447 /* 448 * Mandatory locking needs to be done before ufs_lockfs_begin() 449 * and TRANS_BEGIN_[A]SYNC() calls since mandatory locks can sleep. 450 * Check for forced unmounts normally done in ufs_lockfs_begin(). 451 */ 452 if ((ufsvfsp = ip->i_ufsvfs) == NULL) { 453 error = EIO; 454 goto out; 455 } 456 if (MANDLOCK(vp, ip->i_mode)) { 457 458 ASSERT(RW_WRITE_HELD(&ip->i_rwlock)); 459 460 /* 461 * ufs_getattr ends up being called by chklock 462 */ 463 error = chklock(vp, FWRITE, uiop->uio_loffset, 464 uiop->uio_resid, uiop->uio_fmode, ct); 465 if (error) 466 goto out; 467 } 468 469 /* i_rwlock can change in chklock */ 470 exclusive = rw_write_held(&ip->i_rwlock); 471 rewriteflg = ufs_check_rewrite(ip, uiop, ioflag); 472 473 /* 474 * Check for fast-path special case of directio re-writes. 475 */ 476 if ((ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) && 477 !exclusive && rewriteflg) { 478 479 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK); 480 if (error) 481 goto out; 482 483 rw_enter(&ip->i_contents, RW_READER); 484 error = ufs_directio_write(ip, uiop, ioflag, 1, cr, 485 &directio_status); 486 if (directio_status == DIRECTIO_SUCCESS) { 487 uint_t i_flag_save; 488 489 if (start_resid != uiop->uio_resid) 490 error = 0; 491 /* 492 * Special treatment of access times for re-writes. 493 * If IMOD is not already set, then convert it 494 * to IMODACC for this operation. This defers 495 * entering a delta into the log until the inode 496 * is flushed. This mimics what is done for read 497 * operations and inode access time. 498 */ 499 mutex_enter(&ip->i_tlock); 500 i_flag_save = ip->i_flag; 501 ip->i_flag |= IUPD | ICHG; 502 ip->i_seq++; 503 ITIMES_NOLOCK(ip); 504 if ((i_flag_save & IMOD) == 0) { 505 ip->i_flag &= ~IMOD; 506 ip->i_flag |= IMODACC; 507 } 508 mutex_exit(&ip->i_tlock); 509 rw_exit(&ip->i_contents); 510 if (ulp) 511 ufs_lockfs_end(ulp); 512 goto out; 513 } 514 rw_exit(&ip->i_contents); 515 if (ulp) 516 ufs_lockfs_end(ulp); 517 } 518 519 if (!exclusive && !rw_tryupgrade(&ip->i_rwlock)) { 520 rw_exit(&ip->i_rwlock); 521 rw_enter(&ip->i_rwlock, RW_WRITER); 522 /* 523 * Mandatory locking could have been enabled 524 * after dropping the i_rwlock. 525 */ 526 if (MANDLOCK(vp, ip->i_mode)) 527 goto retry_mandlock; 528 } 529 530 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK); 531 if (error) 532 goto out; 533 534 /* 535 * Amount of log space needed for this write 536 */ 537 if (!rewriteflg || !(ioflag & FDSYNC)) 538 TRANS_WRITE_RESV(ip, uiop, ulp, &resv, &resid); 539 540 /* 541 * Throttle writes. 542 */ 543 if (ufs_WRITES && (ip->i_writes > ufs_HW)) { 544 mutex_enter(&ip->i_tlock); 545 while (ip->i_writes > ufs_HW) { 546 ufs_throttles++; 547 cv_wait(&ip->i_wrcv, &ip->i_tlock); 548 } 549 mutex_exit(&ip->i_tlock); 550 } 551 552 /* 553 * Enter Transaction 554 * 555 * If the write is a rewrite there is no need to open a transaction 556 * if the FDSYNC flag is set and not the FSYNC. In this case just 557 * set the IMODACC flag to modify do the update at a later time 558 * thus avoiding the overhead of the logging transaction that is 559 * not required. 560 */ 561 if (ioflag & (FSYNC|FDSYNC)) { 562 if (ulp) { 563 if (rewriteflg) { 564 uint_t i_flag_save; 565 566 rw_enter(&ip->i_contents, RW_READER); 567 mutex_enter(&ip->i_tlock); 568 i_flag_save = ip->i_flag; 569 ip->i_flag |= IUPD | ICHG; 570 ip->i_seq++; 571 ITIMES_NOLOCK(ip); 572 if ((i_flag_save & IMOD) == 0) { 573 ip->i_flag &= ~IMOD; 574 ip->i_flag |= IMODACC; 575 } 576 mutex_exit(&ip->i_tlock); 577 rw_exit(&ip->i_contents); 578 } else { 579 int terr = 0; 580 TRANS_BEGIN_SYNC(ufsvfsp, TOP_WRITE_SYNC, resv, 581 terr); 582 ASSERT(!terr); 583 } 584 } 585 } else { 586 if (ulp) 587 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_WRITE, resv); 588 } 589 590 /* 591 * Write the file 592 */ 593 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 594 rw_enter(&ip->i_contents, RW_WRITER); 595 if ((ioflag & FAPPEND) != 0 && (ip->i_mode & IFMT) == IFREG) { 596 /* 597 * In append mode start at end of file. 598 */ 599 uiop->uio_loffset = ip->i_size; 600 } 601 602 /* 603 * Mild optimisation, don't call ufs_trans_write() unless we have to 604 * Also, suppress file system full messages if we will retry. 605 */ 606 if (retry) 607 ip->i_flag |= IQUIET; 608 if (resid) { 609 TRANS_WRITE(ip, uiop, ioflag, error, ulp, cr, resv, resid); 610 } else { 611 error = wrip(ip, uiop, ioflag, cr); 612 } 613 ip->i_flag &= ~IQUIET; 614 615 rw_exit(&ip->i_contents); 616 rw_exit(&ufsvfsp->vfs_dqrwlock); 617 618 /* 619 * Leave Transaction 620 */ 621 if (ulp) { 622 if (ioflag & (FSYNC|FDSYNC)) { 623 if (!rewriteflg) { 624 int terr = 0; 625 626 TRANS_END_SYNC(ufsvfsp, terr, TOP_WRITE_SYNC, 627 resv); 628 if (error == 0) 629 error = terr; 630 } 631 } else { 632 TRANS_END_ASYNC(ufsvfsp, TOP_WRITE, resv); 633 } 634 ufs_lockfs_end(ulp); 635 } 636 out: 637 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 638 /* 639 * Any blocks tied up in pending deletes? 640 */ 641 ufs_delete_drain_wait(ufsvfsp, 1); 642 retry = 0; 643 goto retry_mandlock; 644 } 645 646 if (error == ENOSPC && (start_resid != uiop->uio_resid)) 647 error = 0; 648 649 return (error); 650 } 651 652 /* 653 * Don't cache write blocks to files with the sticky bit set. 654 * Used to keep swap files from blowing the page cache on a server. 655 */ 656 int stickyhack = 1; 657 658 /* 659 * Free behind hacks. The pager is busted. 660 * XXX - need to pass the information down to writedone() in a flag like B_SEQ 661 * or B_FREE_IF_TIGHT_ON_MEMORY. 662 */ 663 int freebehind = 1; 664 int smallfile = 0; 665 u_offset_t smallfile64 = 32 * 1024; 666 667 /* 668 * While we should, in most cases, cache the pages for write, we 669 * may also want to cache the pages for read as long as they are 670 * frequently re-usable. 671 * 672 * If cache_read_ahead = 1, the pages for read will go to the tail 673 * of the cache list when they are released, otherwise go to the head. 674 */ 675 int cache_read_ahead = 0; 676 677 /* 678 * Freebehind exists so that as we read large files sequentially we 679 * don't consume most of memory with pages from a few files. It takes 680 * longer to re-read from disk multiple small files as it does reading 681 * one large one sequentially. As system memory grows customers need 682 * to retain bigger chunks of files in memory. The advent of the 683 * cachelist opens up of the possibility freeing pages to the head or 684 * tail of the list. 685 * 686 * Not freeing a page is a bet that the page will be read again before 687 * it's segmap slot is needed for something else. If we loose the bet, 688 * it means some other thread is burdened with the page free we did 689 * not do. If we win we save a free and reclaim. 690 * 691 * Freeing it at the tail vs the head of cachelist is a bet that the 692 * page will survive until the next read. It's also saying that this 693 * page is more likely to be re-used than a page freed some time ago 694 * and never reclaimed. 695 * 696 * Freebehind maintains a range of file offset [smallfile1; smallfile2] 697 * 698 * 0 < offset < smallfile1 : pages are not freed. 699 * smallfile1 < offset < smallfile2 : pages freed to tail of cachelist. 700 * smallfile2 < offset : pages freed to head of cachelist. 701 * 702 * The range is computed at most once per second and depends on 703 * freemem and ncpus_online. Both parameters are bounded to be 704 * >= smallfile && >= smallfile64. 705 * 706 * smallfile1 = (free memory / ncpu) / 1000 707 * smallfile2 = (free memory / ncpu) / 10 708 * 709 * A few examples values: 710 * 711 * Free Mem (in Bytes) [smallfile1; smallfile2] [smallfile1; smallfile2] 712 * ncpus_online = 4 ncpus_online = 64 713 * ------------------ ----------------------- ----------------------- 714 * 1G [256K; 25M] [32K; 1.5M] 715 * 10G [2.5M; 250M] [156K; 15M] 716 * 100G [25M; 2.5G] [1.5M; 150M] 717 * 718 */ 719 720 #define SMALLFILE1_D 1000 721 #define SMALLFILE2_D 10 722 static u_offset_t smallfile1 = 32 * 1024; 723 static u_offset_t smallfile2 = 32 * 1024; 724 static clock_t smallfile_update = 0; /* lbolt value of when to recompute */ 725 uint_t smallfile1_d = SMALLFILE1_D; 726 uint_t smallfile2_d = SMALLFILE2_D; 727 728 /* 729 * wrip does the real work of write requests for ufs. 730 */ 731 int 732 wrip(struct inode *ip, struct uio *uio, int ioflag, struct cred *cr) 733 { 734 rlim64_t limit = uio->uio_llimit; 735 u_offset_t off; 736 u_offset_t old_i_size; 737 struct fs *fs; 738 struct vnode *vp; 739 struct ufsvfs *ufsvfsp; 740 caddr_t base; 741 long start_resid = uio->uio_resid; /* save starting resid */ 742 long premove_resid; /* resid before uiomove() */ 743 uint_t flags; 744 int newpage; 745 int iupdat_flag, directio_status; 746 int n, on, mapon; 747 int error, pagecreate; 748 int do_dqrwlock; /* drop/reacquire vfs_dqrwlock */ 749 int32_t iblocks; 750 int new_iblocks; 751 752 /* 753 * ip->i_size is incremented before the uiomove 754 * is done on a write. If the move fails (bad user 755 * address) reset ip->i_size. 756 * The better way would be to increment ip->i_size 757 * only if the uiomove succeeds. 758 */ 759 int i_size_changed = 0; 760 o_mode_t type; 761 int i_seq_needed = 0; 762 763 vp = ITOV(ip); 764 765 /* 766 * check for forced unmount - should not happen as 767 * the request passed the lockfs checks. 768 */ 769 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 770 return (EIO); 771 772 fs = ip->i_fs; 773 774 ASSERT(RW_WRITE_HELD(&ip->i_contents)); 775 776 /* check for valid filetype */ 777 type = ip->i_mode & IFMT; 778 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) && 779 (type != IFLNK) && (type != IFSHAD)) { 780 return (EIO); 781 } 782 783 /* 784 * the actual limit of UFS file size 785 * is UFS_MAXOFFSET_T 786 */ 787 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 788 limit = MAXOFFSET_T; 789 790 if (uio->uio_loffset >= limit) { 791 proc_t *p = ttoproc(curthread); 792 793 mutex_enter(&p->p_lock); 794 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], p->p_rctls, 795 p, RCA_UNSAFE_SIGINFO); 796 mutex_exit(&p->p_lock); 797 return (EFBIG); 798 } 799 800 /* 801 * if largefiles are disallowed, the limit is 802 * the pre-largefiles value of 2GB 803 */ 804 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) 805 limit = MIN(UFS_MAXOFFSET_T, limit); 806 else 807 limit = MIN(MAXOFF32_T, limit); 808 809 if (uio->uio_loffset < (offset_t)0) { 810 return (EINVAL); 811 } 812 if (uio->uio_resid == 0) { 813 return (0); 814 } 815 816 if (uio->uio_loffset >= limit) 817 return (EFBIG); 818 819 ip->i_flag |= INOACC; /* don't update ref time in getpage */ 820 821 if (ioflag & (FSYNC|FDSYNC)) { 822 ip->i_flag |= ISYNC; 823 iupdat_flag = 1; 824 } 825 /* 826 * Try to go direct 827 */ 828 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) { 829 uio->uio_llimit = limit; 830 error = ufs_directio_write(ip, uio, ioflag, 0, cr, 831 &directio_status); 832 /* 833 * If ufs_directio wrote to the file or set the flags, 834 * we need to update i_seq, but it may be deferred. 835 */ 836 if (start_resid != uio->uio_resid || 837 (ip->i_flag & (ICHG|IUPD))) { 838 i_seq_needed = 1; 839 ip->i_flag |= ISEQ; 840 } 841 if (directio_status == DIRECTIO_SUCCESS) 842 goto out; 843 } 844 845 /* 846 * Behavior with respect to dropping/reacquiring vfs_dqrwlock: 847 * 848 * o shadow inodes: vfs_dqrwlock is not held at all 849 * o quota updates: vfs_dqrwlock is read or write held 850 * o other updates: vfs_dqrwlock is read held 851 * 852 * The first case is the only one where we do not hold 853 * vfs_dqrwlock at all while entering wrip(). 854 * We must make sure not to downgrade/drop vfs_dqrwlock if we 855 * have it as writer, i.e. if we are updating the quota inode. 856 * There is no potential deadlock scenario in this case as 857 * ufs_getpage() takes care of this and avoids reacquiring 858 * vfs_dqrwlock in that case. 859 * 860 * This check is done here since the above conditions do not change 861 * and we possibly loop below, so save a few cycles. 862 */ 863 if ((type == IFSHAD) || 864 (rw_owner(&ufsvfsp->vfs_dqrwlock) == curthread)) { 865 do_dqrwlock = 0; 866 } else { 867 do_dqrwlock = 1; 868 } 869 870 /* 871 * Large Files: We cast MAXBMASK to offset_t 872 * inorder to mask out the higher bits. Since offset_t 873 * is a signed value, the high order bit set in MAXBMASK 874 * value makes it do the right thing by having all bits 1 875 * in the higher word. May be removed for _SOLARIS64_. 876 */ 877 878 fs = ip->i_fs; 879 do { 880 u_offset_t uoff = uio->uio_loffset; 881 off = uoff & (offset_t)MAXBMASK; 882 mapon = (int)(uoff & (offset_t)MAXBOFFSET); 883 on = (int)blkoff(fs, uoff); 884 n = (int)MIN(fs->fs_bsize - on, uio->uio_resid); 885 new_iblocks = 1; 886 887 if (type == IFREG && uoff + n >= limit) { 888 if (uoff >= limit) { 889 error = EFBIG; 890 goto out; 891 } 892 /* 893 * since uoff + n >= limit, 894 * therefore n >= limit - uoff, and n is an int 895 * so it is safe to cast it to an int 896 */ 897 n = (int)(limit - (rlim64_t)uoff); 898 } 899 if (uoff + n > ip->i_size) { 900 /* 901 * We are extending the length of the file. 902 * bmap is used so that we are sure that 903 * if we need to allocate new blocks, that it 904 * is done here before we up the file size. 905 */ 906 error = bmap_write(ip, uoff, (int)(on + n), 907 mapon == 0, NULL, cr); 908 /* 909 * bmap_write never drops i_contents so if 910 * the flags are set it changed the file. 911 */ 912 if (ip->i_flag & (ICHG|IUPD)) { 913 i_seq_needed = 1; 914 ip->i_flag |= ISEQ; 915 } 916 if (error) 917 break; 918 /* 919 * There is a window of vulnerability here. 920 * The sequence of operations: allocate file 921 * system blocks, uiomove the data into pages, 922 * and then update the size of the file in the 923 * inode, must happen atomically. However, due 924 * to current locking constraints, this can not 925 * be done. 926 */ 927 ASSERT(ip->i_writer == NULL); 928 ip->i_writer = curthread; 929 i_size_changed = 1; 930 /* 931 * If we are writing from the beginning of 932 * the mapping, we can just create the 933 * pages without having to read them. 934 */ 935 pagecreate = (mapon == 0); 936 } else if (n == MAXBSIZE) { 937 /* 938 * Going to do a whole mappings worth, 939 * so we can just create the pages w/o 940 * having to read them in. But before 941 * we do that, we need to make sure any 942 * needed blocks are allocated first. 943 */ 944 iblocks = ip->i_blocks; 945 error = bmap_write(ip, uoff, (int)(on + n), 946 BI_ALLOC_ONLY, NULL, cr); 947 /* 948 * bmap_write never drops i_contents so if 949 * the flags are set it changed the file. 950 */ 951 if (ip->i_flag & (ICHG|IUPD)) { 952 i_seq_needed = 1; 953 ip->i_flag |= ISEQ; 954 } 955 if (error) 956 break; 957 pagecreate = 1; 958 /* 959 * check if the new created page needed the 960 * allocation of new disk blocks. 961 */ 962 if (iblocks == ip->i_blocks) 963 new_iblocks = 0; /* no new blocks allocated */ 964 } else { 965 pagecreate = 0; 966 /* 967 * In sync mode flush the indirect blocks which 968 * may have been allocated and not written on 969 * disk. In above cases bmap_write will allocate 970 * in sync mode. 971 */ 972 if (ioflag & (FSYNC|FDSYNC)) { 973 error = ufs_indirblk_sync(ip, uoff); 974 if (error) 975 break; 976 } 977 } 978 979 /* 980 * At this point we can enter ufs_getpage() in one 981 * of two ways: 982 * 1) segmap_getmapflt() calls ufs_getpage() when the 983 * forcefault parameter is true (pagecreate == 0) 984 * 2) uiomove() causes a page fault. 985 * 986 * We have to drop the contents lock to prevent the VM 987 * system from trying to reacquire it in ufs_getpage() 988 * should the uiomove cause a pagefault. 989 * 990 * We have to drop the reader vfs_dqrwlock here as well. 991 */ 992 rw_exit(&ip->i_contents); 993 if (do_dqrwlock) { 994 ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock)); 995 ASSERT(!(RW_WRITE_HELD(&ufsvfsp->vfs_dqrwlock))); 996 rw_exit(&ufsvfsp->vfs_dqrwlock); 997 } 998 999 newpage = 0; 1000 premove_resid = uio->uio_resid; 1001 1002 /* 1003 * Touch the page and fault it in if it is not in core 1004 * before segmap_getmapflt or vpm_data_copy can lock it. 1005 * This is to avoid the deadlock if the buffer is mapped 1006 * to the same file through mmap which we want to write. 1007 */ 1008 uio_prefaultpages((long)n, uio); 1009 1010 if (vpm_enable) { 1011 /* 1012 * Copy data. If new pages are created, part of 1013 * the page that is not written will be initizliazed 1014 * with zeros. 1015 */ 1016 error = vpm_data_copy(vp, (off + mapon), (uint_t)n, 1017 uio, !pagecreate, &newpage, 0, S_WRITE); 1018 } else { 1019 1020 base = segmap_getmapflt(segkmap, vp, (off + mapon), 1021 (uint_t)n, !pagecreate, S_WRITE); 1022 1023 /* 1024 * segmap_pagecreate() returns 1 if it calls 1025 * page_create_va() to allocate any pages. 1026 */ 1027 1028 if (pagecreate) 1029 newpage = segmap_pagecreate(segkmap, base, 1030 (size_t)n, 0); 1031 1032 error = uiomove(base + mapon, (long)n, UIO_WRITE, uio); 1033 } 1034 1035 /* 1036 * If "newpage" is set, then a new page was created and it 1037 * does not contain valid data, so it needs to be initialized 1038 * at this point. 1039 * Otherwise the page contains old data, which was overwritten 1040 * partially or as a whole in uiomove. 1041 * If there is only one iovec structure within uio, then 1042 * on error uiomove will not be able to update uio->uio_loffset 1043 * and we would zero the whole page here! 1044 * 1045 * If uiomove fails because of an error, the old valid data 1046 * is kept instead of filling the rest of the page with zero's. 1047 */ 1048 if (!vpm_enable && newpage && 1049 uio->uio_loffset < roundup(off + mapon + n, PAGESIZE)) { 1050 /* 1051 * We created pages w/o initializing them completely, 1052 * thus we need to zero the part that wasn't set up. 1053 * This happens on most EOF write cases and if 1054 * we had some sort of error during the uiomove. 1055 */ 1056 int nzero, nmoved; 1057 1058 nmoved = (int)(uio->uio_loffset - (off + mapon)); 1059 ASSERT(nmoved >= 0 && nmoved <= n); 1060 nzero = roundup(on + n, PAGESIZE) - nmoved; 1061 ASSERT(nzero > 0 && mapon + nmoved + nzero <= MAXBSIZE); 1062 (void) kzero(base + mapon + nmoved, (uint_t)nzero); 1063 } 1064 1065 /* 1066 * Unlock the pages allocated by page_create_va() 1067 * in segmap_pagecreate() 1068 */ 1069 if (!vpm_enable && newpage) 1070 segmap_pageunlock(segkmap, base, (size_t)n, S_WRITE); 1071 1072 /* 1073 * If the size of the file changed, then update the 1074 * size field in the inode now. This can't be done 1075 * before the call to segmap_pageunlock or there is 1076 * a potential deadlock with callers to ufs_putpage(). 1077 * They will be holding i_contents and trying to lock 1078 * a page, while this thread is holding a page locked 1079 * and trying to acquire i_contents. 1080 */ 1081 if (i_size_changed) { 1082 rw_enter(&ip->i_contents, RW_WRITER); 1083 old_i_size = ip->i_size; 1084 UFS_SET_ISIZE(uoff + n, ip); 1085 TRANS_INODE(ufsvfsp, ip); 1086 /* 1087 * file has grown larger than 2GB. Set flag 1088 * in superblock to indicate this, if it 1089 * is not already set. 1090 */ 1091 if ((ip->i_size > MAXOFF32_T) && 1092 !(fs->fs_flags & FSLARGEFILES)) { 1093 ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES); 1094 mutex_enter(&ufsvfsp->vfs_lock); 1095 fs->fs_flags |= FSLARGEFILES; 1096 ufs_sbwrite(ufsvfsp); 1097 mutex_exit(&ufsvfsp->vfs_lock); 1098 } 1099 mutex_enter(&ip->i_tlock); 1100 ip->i_writer = NULL; 1101 cv_broadcast(&ip->i_wrcv); 1102 mutex_exit(&ip->i_tlock); 1103 rw_exit(&ip->i_contents); 1104 } 1105 1106 if (error) { 1107 /* 1108 * If we failed on a write, we may have already 1109 * allocated file blocks as well as pages. It's 1110 * hard to undo the block allocation, but we must 1111 * be sure to invalidate any pages that may have 1112 * been allocated. 1113 * 1114 * If the page was created without initialization 1115 * then we must check if it should be possible 1116 * to destroy the new page and to keep the old data 1117 * on the disk. 1118 * 1119 * It is possible to destroy the page without 1120 * having to write back its contents only when 1121 * - the size of the file keeps unchanged 1122 * - bmap_write() did not allocate new disk blocks 1123 * it is possible to create big files using "seek" and 1124 * write to the end of the file. A "write" to a 1125 * position before the end of the file would not 1126 * change the size of the file but it would allocate 1127 * new disk blocks. 1128 * - uiomove intended to overwrite the whole page. 1129 * - a new page was created (newpage == 1). 1130 */ 1131 1132 if (i_size_changed == 0 && new_iblocks == 0 && 1133 newpage) { 1134 1135 /* unwind what uiomove eventually last did */ 1136 uio->uio_resid = premove_resid; 1137 1138 /* 1139 * destroy the page, do not write ambiguous 1140 * data to the disk. 1141 */ 1142 flags = SM_DESTROY; 1143 } else { 1144 /* 1145 * write the page back to the disk, if dirty, 1146 * and remove the page from the cache. 1147 */ 1148 flags = SM_INVAL; 1149 } 1150 1151 if (vpm_enable) { 1152 /* 1153 * Flush pages. 1154 */ 1155 (void) vpm_sync_pages(vp, off, n, flags); 1156 } else { 1157 (void) segmap_release(segkmap, base, flags); 1158 } 1159 } else { 1160 flags = 0; 1161 /* 1162 * Force write back for synchronous write cases. 1163 */ 1164 if ((ioflag & (FSYNC|FDSYNC)) || type == IFDIR) { 1165 /* 1166 * If the sticky bit is set but the 1167 * execute bit is not set, we do a 1168 * synchronous write back and free 1169 * the page when done. We set up swap 1170 * files to be handled this way to 1171 * prevent servers from keeping around 1172 * the client's swap pages too long. 1173 * XXX - there ought to be a better way. 1174 */ 1175 if (IS_SWAPVP(vp)) { 1176 flags = SM_WRITE | SM_FREE | 1177 SM_DONTNEED; 1178 iupdat_flag = 0; 1179 } else { 1180 flags = SM_WRITE; 1181 } 1182 } else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 1183 /* 1184 * Have written a whole block. 1185 * Start an asynchronous write and 1186 * mark the buffer to indicate that 1187 * it won't be needed again soon. 1188 */ 1189 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 1190 } 1191 if (vpm_enable) { 1192 /* 1193 * Flush pages. 1194 */ 1195 error = vpm_sync_pages(vp, off, n, flags); 1196 } else { 1197 error = segmap_release(segkmap, base, flags); 1198 } 1199 /* 1200 * If the operation failed and is synchronous, 1201 * then we need to unwind what uiomove() last 1202 * did so we can potentially return an error to 1203 * the caller. If this write operation was 1204 * done in two pieces and the first succeeded, 1205 * then we won't return an error for the second 1206 * piece that failed. However, we only want to 1207 * return a resid value that reflects what was 1208 * really done. 1209 * 1210 * Failures for non-synchronous operations can 1211 * be ignored since the page subsystem will 1212 * retry the operation until it succeeds or the 1213 * file system is unmounted. 1214 */ 1215 if (error) { 1216 if ((ioflag & (FSYNC | FDSYNC)) || 1217 type == IFDIR) { 1218 uio->uio_resid = premove_resid; 1219 } else { 1220 error = 0; 1221 } 1222 } 1223 } 1224 1225 /* 1226 * Re-acquire contents lock. 1227 * If it was dropped, reacquire reader vfs_dqrwlock as well. 1228 */ 1229 if (do_dqrwlock) 1230 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 1231 rw_enter(&ip->i_contents, RW_WRITER); 1232 1233 /* 1234 * If the uiomove() failed or if a synchronous 1235 * page push failed, fix up i_size. 1236 */ 1237 if (error) { 1238 if (i_size_changed) { 1239 /* 1240 * The uiomove failed, and we 1241 * allocated blocks,so get rid 1242 * of them. 1243 */ 1244 (void) ufs_itrunc(ip, old_i_size, 0, cr); 1245 } 1246 } else { 1247 /* 1248 * XXX - Can this be out of the loop? 1249 */ 1250 ip->i_flag |= IUPD | ICHG; 1251 /* 1252 * Only do one increase of i_seq for multiple 1253 * pieces. Because we drop locks, record 1254 * the fact that we changed the timestamp and 1255 * are deferring the increase in case another thread 1256 * pushes our timestamp update. 1257 */ 1258 i_seq_needed = 1; 1259 ip->i_flag |= ISEQ; 1260 if (i_size_changed) 1261 ip->i_flag |= IATTCHG; 1262 if ((ip->i_mode & (IEXEC | (IEXEC >> 3) | 1263 (IEXEC >> 6))) != 0 && 1264 (ip->i_mode & (ISUID | ISGID)) != 0 && 1265 secpolicy_vnode_setid_retain(cr, 1266 (ip->i_mode & ISUID) != 0 && ip->i_uid == 0) != 0) { 1267 /* 1268 * Clear Set-UID & Set-GID bits on 1269 * successful write if not privileged 1270 * and at least one of the execute bits 1271 * is set. If we always clear Set-GID, 1272 * mandatory file and record locking is 1273 * unuseable. 1274 */ 1275 ip->i_mode &= ~(ISUID | ISGID); 1276 } 1277 } 1278 /* 1279 * In the case the FDSYNC flag is set and this is a 1280 * "rewrite" we won't log a delta. 1281 * The FSYNC flag overrides all cases. 1282 */ 1283 if (!ufs_check_rewrite(ip, uio, ioflag) || !(ioflag & FDSYNC)) { 1284 TRANS_INODE(ufsvfsp, ip); 1285 } 1286 } while (error == 0 && uio->uio_resid > 0 && n != 0); 1287 1288 out: 1289 /* 1290 * Make sure i_seq is increased at least once per write 1291 */ 1292 if (i_seq_needed) { 1293 ip->i_seq++; 1294 ip->i_flag &= ~ISEQ; /* no longer deferred */ 1295 } 1296 1297 /* 1298 * Inode is updated according to this table - 1299 * 1300 * FSYNC FDSYNC(posix.4) 1301 * -------------------------- 1302 * always@ IATTCHG|IBDWRITE 1303 * 1304 * @ - If we are doing synchronous write the only time we should 1305 * not be sync'ing the ip here is if we have the stickyhack 1306 * activated, the file is marked with the sticky bit and 1307 * no exec bit, the file length has not been changed and 1308 * no new blocks have been allocated during this write. 1309 */ 1310 1311 if ((ip->i_flag & ISYNC) != 0) { 1312 /* 1313 * we have eliminated nosync 1314 */ 1315 if ((ip->i_flag & (IATTCHG|IBDWRITE)) || 1316 ((ioflag & FSYNC) && iupdat_flag)) { 1317 ufs_iupdat(ip, 1); 1318 } 1319 } 1320 1321 /* 1322 * If we've already done a partial-write, terminate 1323 * the write but return no error unless the error is ENOSPC 1324 * because the caller can detect this and free resources and 1325 * try again. 1326 */ 1327 if ((start_resid != uio->uio_resid) && (error != ENOSPC)) 1328 error = 0; 1329 1330 ip->i_flag &= ~(INOACC | ISYNC); 1331 ITIMES_NOLOCK(ip); 1332 return (error); 1333 } 1334 1335 /* 1336 * rdip does the real work of read requests for ufs. 1337 */ 1338 int 1339 rdip(struct inode *ip, struct uio *uio, int ioflag, cred_t *cr) 1340 { 1341 u_offset_t off; 1342 caddr_t base; 1343 struct fs *fs; 1344 struct ufsvfs *ufsvfsp; 1345 struct vnode *vp; 1346 long oresid = uio->uio_resid; 1347 u_offset_t n, on, mapon; 1348 int error = 0; 1349 int doupdate = 1; 1350 uint_t flags; 1351 int dofree, directio_status; 1352 krw_t rwtype; 1353 o_mode_t type; 1354 1355 vp = ITOV(ip); 1356 1357 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 1358 1359 ufsvfsp = ip->i_ufsvfs; 1360 1361 if (ufsvfsp == NULL) 1362 return (EIO); 1363 1364 fs = ufsvfsp->vfs_fs; 1365 1366 /* check for valid filetype */ 1367 type = ip->i_mode & IFMT; 1368 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) && 1369 (type != IFLNK) && (type != IFSHAD)) { 1370 return (EIO); 1371 } 1372 1373 if (uio->uio_loffset > UFS_MAXOFFSET_T) { 1374 error = 0; 1375 goto out; 1376 } 1377 if (uio->uio_loffset < (offset_t)0) { 1378 return (EINVAL); 1379 } 1380 if (uio->uio_resid == 0) { 1381 return (0); 1382 } 1383 1384 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (fs->fs_ronly == 0) && 1385 (!ufsvfsp->vfs_noatime)) { 1386 mutex_enter(&ip->i_tlock); 1387 ip->i_flag |= IACC; 1388 mutex_exit(&ip->i_tlock); 1389 } 1390 /* 1391 * Try to go direct 1392 */ 1393 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) { 1394 error = ufs_directio_read(ip, uio, cr, &directio_status); 1395 if (directio_status == DIRECTIO_SUCCESS) 1396 goto out; 1397 } 1398 1399 rwtype = (rw_write_held(&ip->i_contents)?RW_WRITER:RW_READER); 1400 1401 do { 1402 offset_t diff; 1403 u_offset_t uoff = uio->uio_loffset; 1404 off = uoff & (offset_t)MAXBMASK; 1405 mapon = (u_offset_t)(uoff & (offset_t)MAXBOFFSET); 1406 on = (u_offset_t)blkoff(fs, uoff); 1407 n = MIN((u_offset_t)fs->fs_bsize - on, 1408 (u_offset_t)uio->uio_resid); 1409 1410 diff = ip->i_size - uoff; 1411 1412 if (diff <= (offset_t)0) { 1413 error = 0; 1414 goto out; 1415 } 1416 if (diff < (offset_t)n) 1417 n = (int)diff; 1418 1419 /* 1420 * We update smallfile2 and smallfile1 at most every second. 1421 */ 1422 if (lbolt >= smallfile_update) { 1423 uint64_t percpufreeb; 1424 if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D; 1425 if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D; 1426 percpufreeb = ptob((uint64_t)freemem) / ncpus_online; 1427 smallfile1 = percpufreeb / smallfile1_d; 1428 smallfile2 = percpufreeb / smallfile2_d; 1429 smallfile1 = MAX(smallfile1, smallfile); 1430 smallfile1 = MAX(smallfile1, smallfile64); 1431 smallfile2 = MAX(smallfile1, smallfile2); 1432 smallfile_update = lbolt + hz; 1433 } 1434 1435 dofree = freebehind && 1436 ip->i_nextr == (off & PAGEMASK) && off > smallfile1; 1437 1438 /* 1439 * At this point we can enter ufs_getpage() in one of two 1440 * ways: 1441 * 1) segmap_getmapflt() calls ufs_getpage() when the 1442 * forcefault parameter is true (value of 1 is passed) 1443 * 2) uiomove() causes a page fault. 1444 * 1445 * We cannot hold onto an i_contents reader lock without 1446 * risking deadlock in ufs_getpage() so drop a reader lock. 1447 * The ufs_getpage() dolock logic already allows for a 1448 * thread holding i_contents as writer to work properly 1449 * so we keep a writer lock. 1450 */ 1451 if (rwtype == RW_READER) 1452 rw_exit(&ip->i_contents); 1453 1454 if (vpm_enable) { 1455 /* 1456 * Copy data. 1457 */ 1458 error = vpm_data_copy(vp, (off + mapon), (uint_t)n, 1459 uio, 1, NULL, 0, S_READ); 1460 } else { 1461 base = segmap_getmapflt(segkmap, vp, (off + mapon), 1462 (uint_t)n, 1, S_READ); 1463 error = uiomove(base + mapon, (long)n, UIO_READ, uio); 1464 } 1465 1466 flags = 0; 1467 if (!error) { 1468 /* 1469 * If reading sequential we won't need this 1470 * buffer again soon. For offsets in range 1471 * [smallfile1, smallfile2] release the pages 1472 * at the tail of the cache list, larger 1473 * offsets are released at the head. 1474 */ 1475 if (dofree) { 1476 flags = SM_FREE | SM_ASYNC; 1477 if ((cache_read_ahead == 0) && 1478 (off > smallfile2)) 1479 flags |= SM_DONTNEED; 1480 } 1481 /* 1482 * In POSIX SYNC (FSYNC and FDSYNC) read mode, 1483 * we want to make sure that the page which has 1484 * been read, is written on disk if it is dirty. 1485 * And corresponding indirect blocks should also 1486 * be flushed out. 1487 */ 1488 if ((ioflag & FRSYNC) && (ioflag & (FSYNC|FDSYNC))) { 1489 flags &= ~SM_ASYNC; 1490 flags |= SM_WRITE; 1491 } 1492 if (vpm_enable) { 1493 error = vpm_sync_pages(vp, off, n, flags); 1494 } else { 1495 error = segmap_release(segkmap, base, flags); 1496 } 1497 } else { 1498 if (vpm_enable) { 1499 (void) vpm_sync_pages(vp, off, n, flags); 1500 } else { 1501 (void) segmap_release(segkmap, base, flags); 1502 } 1503 } 1504 1505 if (rwtype == RW_READER) 1506 rw_enter(&ip->i_contents, rwtype); 1507 } while (error == 0 && uio->uio_resid > 0 && n != 0); 1508 out: 1509 /* 1510 * Inode is updated according to this table if FRSYNC is set. 1511 * 1512 * FSYNC FDSYNC(posix.4) 1513 * -------------------------- 1514 * always IATTCHG|IBDWRITE 1515 */ 1516 /* 1517 * The inode is not updated if we're logging and the inode is a 1518 * directory with FRSYNC, FSYNC and FDSYNC flags set. 1519 */ 1520 if (ioflag & FRSYNC) { 1521 if (TRANS_ISTRANS(ufsvfsp) && ((ip->i_mode & IFMT) == IFDIR)) { 1522 doupdate = 0; 1523 } 1524 if (doupdate) { 1525 if ((ioflag & FSYNC) || 1526 ((ioflag & FDSYNC) && 1527 (ip->i_flag & (IATTCHG|IBDWRITE)))) { 1528 ufs_iupdat(ip, 1); 1529 } 1530 } 1531 } 1532 /* 1533 * If we've already done a partial read, terminate 1534 * the read but return no error. 1535 */ 1536 if (oresid != uio->uio_resid) 1537 error = 0; 1538 ITIMES(ip); 1539 1540 return (error); 1541 } 1542 1543 /* ARGSUSED */ 1544 static int 1545 ufs_ioctl( 1546 struct vnode *vp, 1547 int cmd, 1548 intptr_t arg, 1549 int flag, 1550 struct cred *cr, 1551 int *rvalp, 1552 caller_context_t *ct) 1553 { 1554 struct lockfs lockfs, lockfs_out; 1555 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 1556 char *comment, *original_comment; 1557 struct fs *fs; 1558 struct ulockfs *ulp; 1559 offset_t off; 1560 extern int maxphys; 1561 int error; 1562 int issync; 1563 int trans_size; 1564 1565 1566 /* 1567 * forcibly unmounted 1568 */ 1569 if (ufsvfsp == NULL || vp->v_vfsp == NULL || 1570 vp->v_vfsp->vfs_flag & VFS_UNMOUNTED) 1571 return (EIO); 1572 fs = ufsvfsp->vfs_fs; 1573 1574 if (cmd == Q_QUOTACTL) { 1575 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_QUOTA_MASK); 1576 if (error) 1577 return (error); 1578 1579 if (ulp) { 1580 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_QUOTA, 1581 TOP_SETQUOTA_SIZE(fs)); 1582 } 1583 1584 error = quotactl(vp, arg, flag, cr); 1585 1586 if (ulp) { 1587 TRANS_END_ASYNC(ufsvfsp, TOP_QUOTA, 1588 TOP_SETQUOTA_SIZE(fs)); 1589 ufs_lockfs_end(ulp); 1590 } 1591 return (error); 1592 } 1593 1594 switch (cmd) { 1595 case _FIOLFS: 1596 /* 1597 * file system locking 1598 */ 1599 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1600 return (EPERM); 1601 1602 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1603 if (copyin((caddr_t)arg, &lockfs, 1604 sizeof (struct lockfs))) 1605 return (EFAULT); 1606 } 1607 #ifdef _SYSCALL32_IMPL 1608 else { 1609 struct lockfs32 lockfs32; 1610 /* Translate ILP32 lockfs to LP64 lockfs */ 1611 if (copyin((caddr_t)arg, &lockfs32, 1612 sizeof (struct lockfs32))) 1613 return (EFAULT); 1614 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock; 1615 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags; 1616 lockfs.lf_key = (ulong_t)lockfs32.lf_key; 1617 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen; 1618 lockfs.lf_comment = 1619 (caddr_t)(uintptr_t)lockfs32.lf_comment; 1620 } 1621 #endif /* _SYSCALL32_IMPL */ 1622 1623 if (lockfs.lf_comlen) { 1624 if (lockfs.lf_comlen > LOCKFS_MAXCOMMENTLEN) 1625 return (ENAMETOOLONG); 1626 comment = 1627 kmem_alloc(lockfs.lf_comlen, KM_SLEEP); 1628 if (copyin(lockfs.lf_comment, comment, 1629 lockfs.lf_comlen)) { 1630 kmem_free(comment, lockfs.lf_comlen); 1631 return (EFAULT); 1632 } 1633 original_comment = lockfs.lf_comment; 1634 lockfs.lf_comment = comment; 1635 } 1636 if ((error = ufs_fiolfs(vp, &lockfs, 0)) == 0) { 1637 lockfs.lf_comment = original_comment; 1638 1639 if ((flag & DATAMODEL_MASK) == 1640 DATAMODEL_NATIVE) { 1641 (void) copyout(&lockfs, (caddr_t)arg, 1642 sizeof (struct lockfs)); 1643 } 1644 #ifdef _SYSCALL32_IMPL 1645 else { 1646 struct lockfs32 lockfs32; 1647 /* Translate LP64 to ILP32 lockfs */ 1648 lockfs32.lf_lock = 1649 (uint32_t)lockfs.lf_lock; 1650 lockfs32.lf_flags = 1651 (uint32_t)lockfs.lf_flags; 1652 lockfs32.lf_key = 1653 (uint32_t)lockfs.lf_key; 1654 lockfs32.lf_comlen = 1655 (uint32_t)lockfs.lf_comlen; 1656 lockfs32.lf_comment = 1657 (uint32_t)(uintptr_t) 1658 lockfs.lf_comment; 1659 (void) copyout(&lockfs32, (caddr_t)arg, 1660 sizeof (struct lockfs32)); 1661 } 1662 #endif /* _SYSCALL32_IMPL */ 1663 1664 } else { 1665 if (lockfs.lf_comlen) 1666 kmem_free(comment, lockfs.lf_comlen); 1667 } 1668 return (error); 1669 1670 case _FIOLFSS: 1671 /* 1672 * get file system locking status 1673 */ 1674 1675 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1676 if (copyin((caddr_t)arg, &lockfs, 1677 sizeof (struct lockfs))) 1678 return (EFAULT); 1679 } 1680 #ifdef _SYSCALL32_IMPL 1681 else { 1682 struct lockfs32 lockfs32; 1683 /* Translate ILP32 lockfs to LP64 lockfs */ 1684 if (copyin((caddr_t)arg, &lockfs32, 1685 sizeof (struct lockfs32))) 1686 return (EFAULT); 1687 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock; 1688 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags; 1689 lockfs.lf_key = (ulong_t)lockfs32.lf_key; 1690 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen; 1691 lockfs.lf_comment = 1692 (caddr_t)(uintptr_t)lockfs32.lf_comment; 1693 } 1694 #endif /* _SYSCALL32_IMPL */ 1695 1696 if (error = ufs_fiolfss(vp, &lockfs_out)) 1697 return (error); 1698 lockfs.lf_lock = lockfs_out.lf_lock; 1699 lockfs.lf_key = lockfs_out.lf_key; 1700 lockfs.lf_flags = lockfs_out.lf_flags; 1701 lockfs.lf_comlen = MIN(lockfs.lf_comlen, 1702 lockfs_out.lf_comlen); 1703 1704 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1705 if (copyout(&lockfs, (caddr_t)arg, 1706 sizeof (struct lockfs))) 1707 return (EFAULT); 1708 } 1709 #ifdef _SYSCALL32_IMPL 1710 else { 1711 /* Translate LP64 to ILP32 lockfs */ 1712 struct lockfs32 lockfs32; 1713 lockfs32.lf_lock = (uint32_t)lockfs.lf_lock; 1714 lockfs32.lf_flags = (uint32_t)lockfs.lf_flags; 1715 lockfs32.lf_key = (uint32_t)lockfs.lf_key; 1716 lockfs32.lf_comlen = (uint32_t)lockfs.lf_comlen; 1717 lockfs32.lf_comment = 1718 (uint32_t)(uintptr_t)lockfs.lf_comment; 1719 if (copyout(&lockfs32, (caddr_t)arg, 1720 sizeof (struct lockfs32))) 1721 return (EFAULT); 1722 } 1723 #endif /* _SYSCALL32_IMPL */ 1724 1725 if (lockfs.lf_comlen && 1726 lockfs.lf_comment && lockfs_out.lf_comment) 1727 if (copyout(lockfs_out.lf_comment, 1728 lockfs.lf_comment, lockfs.lf_comlen)) 1729 return (EFAULT); 1730 return (0); 1731 1732 case _FIOSATIME: 1733 /* 1734 * set access time 1735 */ 1736 1737 /* 1738 * if mounted w/o atime, return quietly. 1739 * I briefly thought about returning ENOSYS, but 1740 * figured that most apps would consider this fatal 1741 * but the idea is to make this as seamless as poss. 1742 */ 1743 if (ufsvfsp->vfs_noatime) 1744 return (0); 1745 1746 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1747 ULOCKFS_SETATTR_MASK); 1748 if (error) 1749 return (error); 1750 1751 if (ulp) { 1752 trans_size = (int)TOP_SETATTR_SIZE(VTOI(vp)); 1753 TRANS_BEGIN_CSYNC(ufsvfsp, issync, 1754 TOP_SETATTR, trans_size); 1755 } 1756 1757 error = ufs_fiosatime(vp, (struct timeval *)arg, 1758 flag, cr); 1759 1760 if (ulp) { 1761 TRANS_END_CSYNC(ufsvfsp, error, issync, 1762 TOP_SETATTR, trans_size); 1763 ufs_lockfs_end(ulp); 1764 } 1765 return (error); 1766 1767 case _FIOSDIO: 1768 /* 1769 * set delayed-io 1770 */ 1771 return (ufs_fiosdio(vp, (uint_t *)arg, flag, cr)); 1772 1773 case _FIOGDIO: 1774 /* 1775 * get delayed-io 1776 */ 1777 return (ufs_fiogdio(vp, (uint_t *)arg, flag, cr)); 1778 1779 case _FIOIO: 1780 /* 1781 * inode open 1782 */ 1783 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1784 ULOCKFS_VGET_MASK); 1785 if (error) 1786 return (error); 1787 1788 error = ufs_fioio(vp, (struct fioio *)arg, flag, cr); 1789 1790 if (ulp) { 1791 ufs_lockfs_end(ulp); 1792 } 1793 return (error); 1794 1795 case _FIOFFS: 1796 /* 1797 * file system flush (push w/invalidate) 1798 */ 1799 if ((caddr_t)arg != NULL) 1800 return (EINVAL); 1801 return (ufs_fioffs(vp, NULL, cr)); 1802 1803 case _FIOISBUSY: 1804 /* 1805 * Contract-private interface for Legato 1806 * Purge this vnode from the DNLC and decide 1807 * if this vnode is busy (*arg == 1) or not 1808 * (*arg == 0) 1809 */ 1810 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1811 return (EPERM); 1812 error = ufs_fioisbusy(vp, (int *)arg, cr); 1813 return (error); 1814 1815 case _FIODIRECTIO: 1816 return (ufs_fiodirectio(vp, (int)arg, cr)); 1817 1818 case _FIOTUNE: 1819 /* 1820 * Tune the file system (aka setting fs attributes) 1821 */ 1822 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1823 ULOCKFS_SETATTR_MASK); 1824 if (error) 1825 return (error); 1826 1827 error = ufs_fiotune(vp, (struct fiotune *)arg, cr); 1828 1829 if (ulp) 1830 ufs_lockfs_end(ulp); 1831 return (error); 1832 1833 case _FIOLOGENABLE: 1834 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1835 return (EPERM); 1836 return (ufs_fiologenable(vp, (void *)arg, cr, flag)); 1837 1838 case _FIOLOGDISABLE: 1839 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1840 return (EPERM); 1841 return (ufs_fiologdisable(vp, (void *)arg, cr, flag)); 1842 1843 case _FIOISLOG: 1844 return (ufs_fioislog(vp, (void *)arg, cr, flag)); 1845 1846 case _FIOSNAPSHOTCREATE_MULTI: 1847 { 1848 struct fiosnapcreate_multi fc, *fcp; 1849 size_t fcm_size; 1850 1851 if (copyin((void *)arg, &fc, sizeof (fc))) 1852 return (EFAULT); 1853 if (fc.backfilecount > MAX_BACKFILE_COUNT) 1854 return (EINVAL); 1855 fcm_size = sizeof (struct fiosnapcreate_multi) + 1856 (fc.backfilecount - 1) * sizeof (int); 1857 fcp = (struct fiosnapcreate_multi *) 1858 kmem_alloc(fcm_size, KM_SLEEP); 1859 if (copyin((void *)arg, fcp, fcm_size)) { 1860 kmem_free(fcp, fcm_size); 1861 return (EFAULT); 1862 } 1863 error = ufs_snap_create(vp, fcp, cr); 1864 /* 1865 * Do copyout even if there is an error because 1866 * the details of error is stored in fcp. 1867 */ 1868 if (copyout(fcp, (void *)arg, fcm_size)) 1869 error = EFAULT; 1870 kmem_free(fcp, fcm_size); 1871 return (error); 1872 } 1873 1874 case _FIOSNAPSHOTDELETE: 1875 { 1876 struct fiosnapdelete fc; 1877 1878 if (copyin((void *)arg, &fc, sizeof (fc))) 1879 return (EFAULT); 1880 error = ufs_snap_delete(vp, &fc, cr); 1881 if (!error && copyout(&fc, (void *)arg, sizeof (fc))) 1882 error = EFAULT; 1883 return (error); 1884 } 1885 1886 case _FIOGETSUPERBLOCK: 1887 if (copyout(fs, (void *)arg, SBSIZE)) 1888 return (EFAULT); 1889 return (0); 1890 1891 case _FIOGETMAXPHYS: 1892 if (copyout(&maxphys, (void *)arg, sizeof (maxphys))) 1893 return (EFAULT); 1894 return (0); 1895 1896 /* 1897 * The following 3 ioctls are for TSufs support 1898 * although could potentially be used elsewhere 1899 */ 1900 case _FIO_SET_LUFS_DEBUG: 1901 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1902 return (EPERM); 1903 lufs_debug = (uint32_t)arg; 1904 return (0); 1905 1906 case _FIO_SET_LUFS_ERROR: 1907 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1908 return (EPERM); 1909 TRANS_SETERROR(ufsvfsp); 1910 return (0); 1911 1912 case _FIO_GET_TOP_STATS: 1913 { 1914 fio_lufs_stats_t *ls; 1915 ml_unit_t *ul = ufsvfsp->vfs_log; 1916 1917 ls = kmem_zalloc(sizeof (*ls), KM_SLEEP); 1918 ls->ls_debug = ul->un_debug; /* return debug value */ 1919 /* Copy stucture if statistics are being kept */ 1920 if (ul->un_logmap->mtm_tops) { 1921 ls->ls_topstats = *(ul->un_logmap->mtm_tops); 1922 } 1923 error = 0; 1924 if (copyout(ls, (void *)arg, sizeof (*ls))) 1925 error = EFAULT; 1926 kmem_free(ls, sizeof (*ls)); 1927 return (error); 1928 } 1929 1930 case _FIO_SEEK_DATA: 1931 case _FIO_SEEK_HOLE: 1932 if (ddi_copyin((void *)arg, &off, sizeof (off), flag)) 1933 return (EFAULT); 1934 /* offset paramater is in/out */ 1935 error = ufs_fio_holey(vp, cmd, &off); 1936 if (error) 1937 return (error); 1938 if (ddi_copyout(&off, (void *)arg, sizeof (off), flag)) 1939 return (EFAULT); 1940 return (0); 1941 1942 case _FIO_COMPRESSED: 1943 { 1944 /* 1945 * This is a project private ufs ioctl() to mark 1946 * the inode as that belonging to a compressed 1947 * file. This is used to mark individual 1948 * compressed files in a miniroot archive. 1949 * The files compressed in this manner are 1950 * automatically decompressed by the dcfs filesystem 1951 * (via an interception in ufs_lookup - see decompvp()) 1952 * which is layered on top of ufs on a system running 1953 * from the archive. See uts/common/fs/dcfs for details. 1954 * This ioctl only marks the file as compressed - the 1955 * actual compression is done by fiocompress (a 1956 * userland utility) which invokes this ioctl(). 1957 */ 1958 struct inode *ip = VTOI(vp); 1959 1960 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1961 ULOCKFS_SETATTR_MASK); 1962 if (error) 1963 return (error); 1964 1965 if (ulp) { 1966 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_IUPDAT, 1967 TOP_IUPDAT_SIZE(ip)); 1968 } 1969 1970 error = ufs_mark_compressed(vp); 1971 1972 if (ulp) { 1973 TRANS_END_ASYNC(ufsvfsp, TOP_IUPDAT, 1974 TOP_IUPDAT_SIZE(ip)); 1975 ufs_lockfs_end(ulp); 1976 } 1977 1978 return (error); 1979 1980 } 1981 1982 default: 1983 return (ENOTTY); 1984 } 1985 } 1986 1987 1988 /* ARGSUSED */ 1989 static int 1990 ufs_getattr(struct vnode *vp, struct vattr *vap, int flags, 1991 struct cred *cr, caller_context_t *ct) 1992 { 1993 struct inode *ip = VTOI(vp); 1994 struct ufsvfs *ufsvfsp; 1995 int err; 1996 1997 if (vap->va_mask == AT_SIZE) { 1998 /* 1999 * for performance, if only the size is requested don't bother 2000 * with anything else. 2001 */ 2002 UFS_GET_ISIZE(&vap->va_size, ip); 2003 return (0); 2004 } 2005 2006 /* 2007 * inlined lockfs checks 2008 */ 2009 ufsvfsp = ip->i_ufsvfs; 2010 if ((ufsvfsp == NULL) || ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs)) { 2011 err = EIO; 2012 goto out; 2013 } 2014 2015 rw_enter(&ip->i_contents, RW_READER); 2016 /* 2017 * Return all the attributes. This should be refined so 2018 * that it only returns what's asked for. 2019 */ 2020 2021 /* 2022 * Copy from inode table. 2023 */ 2024 vap->va_type = vp->v_type; 2025 vap->va_mode = ip->i_mode & MODEMASK; 2026 /* 2027 * If there is an ACL and there is a mask entry, then do the 2028 * extra work that completes the equivalent of an acltomode(3) 2029 * call. According to POSIX P1003.1e, the acl mask should be 2030 * returned in the group permissions field. 2031 * 2032 * - start with the original permission and mode bits (from above) 2033 * - clear the group owner bits 2034 * - add in the mask bits. 2035 */ 2036 if (ip->i_ufs_acl && ip->i_ufs_acl->aclass.acl_ismask) { 2037 vap->va_mode &= ~((VREAD | VWRITE | VEXEC) >> 3); 2038 vap->va_mode |= 2039 (ip->i_ufs_acl->aclass.acl_maskbits & PERMMASK) << 3; 2040 } 2041 vap->va_uid = ip->i_uid; 2042 vap->va_gid = ip->i_gid; 2043 vap->va_fsid = ip->i_dev; 2044 vap->va_nodeid = (ino64_t)ip->i_number; 2045 vap->va_nlink = ip->i_nlink; 2046 vap->va_size = ip->i_size; 2047 if (vp->v_type == VCHR || vp->v_type == VBLK) 2048 vap->va_rdev = ip->i_rdev; 2049 else 2050 vap->va_rdev = 0; /* not a b/c spec. */ 2051 mutex_enter(&ip->i_tlock); 2052 ITIMES_NOLOCK(ip); /* mark correct time in inode */ 2053 vap->va_seq = ip->i_seq; 2054 vap->va_atime.tv_sec = (time_t)ip->i_atime.tv_sec; 2055 vap->va_atime.tv_nsec = ip->i_atime.tv_usec*1000; 2056 vap->va_mtime.tv_sec = (time_t)ip->i_mtime.tv_sec; 2057 vap->va_mtime.tv_nsec = ip->i_mtime.tv_usec*1000; 2058 vap->va_ctime.tv_sec = (time_t)ip->i_ctime.tv_sec; 2059 vap->va_ctime.tv_nsec = ip->i_ctime.tv_usec*1000; 2060 mutex_exit(&ip->i_tlock); 2061 2062 switch (ip->i_mode & IFMT) { 2063 2064 case IFBLK: 2065 vap->va_blksize = MAXBSIZE; /* was BLKDEV_IOSIZE */ 2066 break; 2067 2068 case IFCHR: 2069 vap->va_blksize = MAXBSIZE; 2070 break; 2071 2072 default: 2073 vap->va_blksize = ip->i_fs->fs_bsize; 2074 break; 2075 } 2076 vap->va_nblocks = (fsblkcnt64_t)ip->i_blocks; 2077 rw_exit(&ip->i_contents); 2078 err = 0; 2079 2080 out: 2081 return (err); 2082 } 2083 2084 /* 2085 * Special wrapper to provide a callback for secpolicy_vnode_setattr(). 2086 * The i_contents lock is already held by the caller and we need to 2087 * declare the inode as 'void *' argument. 2088 */ 2089 static int 2090 ufs_priv_access(void *vip, int mode, struct cred *cr) 2091 { 2092 struct inode *ip = vip; 2093 2094 return (ufs_iaccess(ip, mode, cr, 0)); 2095 } 2096 2097 /*ARGSUSED4*/ 2098 static int 2099 ufs_setattr( 2100 struct vnode *vp, 2101 struct vattr *vap, 2102 int flags, 2103 struct cred *cr, 2104 caller_context_t *ct) 2105 { 2106 struct inode *ip = VTOI(vp); 2107 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 2108 struct fs *fs; 2109 struct ulockfs *ulp; 2110 char *errmsg1; 2111 char *errmsg2; 2112 long blocks; 2113 long int mask = vap->va_mask; 2114 size_t len1, len2; 2115 int issync; 2116 int trans_size; 2117 int dotrans; 2118 int dorwlock; 2119 int error; 2120 int owner_change; 2121 int dodqlock; 2122 timestruc_t now; 2123 vattr_t oldva; 2124 int retry = 1; 2125 int indeadlock; 2126 2127 /* 2128 * Cannot set these attributes. 2129 */ 2130 if ((mask & AT_NOSET) || (mask & AT_XVATTR)) 2131 return (EINVAL); 2132 2133 /* 2134 * check for forced unmount 2135 */ 2136 if (ufsvfsp == NULL) 2137 return (EIO); 2138 2139 fs = ufsvfsp->vfs_fs; 2140 if (fs->fs_ronly != 0) 2141 return (EROFS); 2142 2143 again: 2144 errmsg1 = NULL; 2145 errmsg2 = NULL; 2146 dotrans = 0; 2147 dorwlock = 0; 2148 dodqlock = 0; 2149 2150 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK); 2151 if (error) 2152 goto out; 2153 2154 /* 2155 * Acquire i_rwlock before TRANS_BEGIN_CSYNC() if this is a file. 2156 * This follows the protocol for read()/write(). 2157 */ 2158 if (vp->v_type != VDIR) { 2159 /* 2160 * ufs_tryirwlock uses rw_tryenter and checks for SLOCK to 2161 * avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 2162 * possible, retries the operation. 2163 */ 2164 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_file); 2165 if (indeadlock) { 2166 if (ulp) 2167 ufs_lockfs_end(ulp); 2168 goto again; 2169 } 2170 dorwlock = 1; 2171 } 2172 2173 /* 2174 * Truncate file. Must have write permission and not be a directory. 2175 */ 2176 if (mask & AT_SIZE) { 2177 rw_enter(&ip->i_contents, RW_WRITER); 2178 if (vp->v_type == VDIR) { 2179 error = EISDIR; 2180 goto update_inode; 2181 } 2182 if (error = ufs_iaccess(ip, IWRITE, cr, 0)) 2183 goto update_inode; 2184 2185 rw_exit(&ip->i_contents); 2186 error = TRANS_ITRUNC(ip, vap->va_size, 0, cr); 2187 if (error) { 2188 rw_enter(&ip->i_contents, RW_WRITER); 2189 goto update_inode; 2190 } 2191 } 2192 2193 if (ulp) { 2194 trans_size = (int)TOP_SETATTR_SIZE(ip); 2195 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SETATTR, trans_size); 2196 ++dotrans; 2197 } 2198 2199 /* 2200 * Acquire i_rwlock after TRANS_BEGIN_CSYNC() if this is a directory. 2201 * This follows the protocol established by 2202 * ufs_link/create/remove/rename/mkdir/rmdir/symlink. 2203 */ 2204 if (vp->v_type == VDIR) { 2205 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_SETATTR, 2206 retry_dir); 2207 if (indeadlock) 2208 goto again; 2209 dorwlock = 1; 2210 } 2211 2212 /* 2213 * Grab quota lock if we are changing the file's owner. 2214 */ 2215 if (mask & AT_UID) { 2216 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2217 dodqlock = 1; 2218 } 2219 rw_enter(&ip->i_contents, RW_WRITER); 2220 2221 oldva.va_mode = ip->i_mode; 2222 oldva.va_uid = ip->i_uid; 2223 oldva.va_gid = ip->i_gid; 2224 2225 vap->va_mask &= ~AT_SIZE; 2226 2227 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2228 ufs_priv_access, ip); 2229 if (error) 2230 goto update_inode; 2231 2232 mask = vap->va_mask; 2233 2234 /* 2235 * Change file access modes. 2236 */ 2237 if (mask & AT_MODE) { 2238 ip->i_mode = (ip->i_mode & IFMT) | (vap->va_mode & ~IFMT); 2239 TRANS_INODE(ufsvfsp, ip); 2240 ip->i_flag |= ICHG; 2241 if (stickyhack) { 2242 mutex_enter(&vp->v_lock); 2243 if ((ip->i_mode & (ISVTX | IEXEC | IFDIR)) == ISVTX) 2244 vp->v_flag |= VSWAPLIKE; 2245 else 2246 vp->v_flag &= ~VSWAPLIKE; 2247 mutex_exit(&vp->v_lock); 2248 } 2249 } 2250 if (mask & (AT_UID|AT_GID)) { 2251 if (mask & AT_UID) { 2252 /* 2253 * Don't change ownership of the quota inode. 2254 */ 2255 if (ufsvfsp->vfs_qinod == ip) { 2256 ASSERT(ufsvfsp->vfs_qflags & MQ_ENABLED); 2257 error = EINVAL; 2258 goto update_inode; 2259 } 2260 2261 /* 2262 * No real ownership change. 2263 */ 2264 if (ip->i_uid == vap->va_uid) { 2265 blocks = 0; 2266 owner_change = 0; 2267 } 2268 /* 2269 * Remove the blocks and the file, from the old user's 2270 * quota. 2271 */ 2272 else { 2273 blocks = ip->i_blocks; 2274 owner_change = 1; 2275 2276 (void) chkdq(ip, -blocks, /* force */ 1, cr, 2277 (char **)NULL, (size_t *)NULL); 2278 (void) chkiq(ufsvfsp, /* change */ -1, ip, 2279 (uid_t)ip->i_uid, /* force */ 1, cr, 2280 (char **)NULL, (size_t *)NULL); 2281 dqrele(ip->i_dquot); 2282 } 2283 2284 ip->i_uid = vap->va_uid; 2285 2286 /* 2287 * There is a real ownership change. 2288 */ 2289 if (owner_change) { 2290 /* 2291 * Add the blocks and the file to the new 2292 * user's quota. 2293 */ 2294 ip->i_dquot = getinoquota(ip); 2295 (void) chkdq(ip, blocks, /* force */ 1, cr, 2296 &errmsg1, &len1); 2297 (void) chkiq(ufsvfsp, /* change */ 1, 2298 (struct inode *)NULL, (uid_t)ip->i_uid, 2299 /* force */ 1, cr, &errmsg2, &len2); 2300 } 2301 } 2302 if (mask & AT_GID) { 2303 ip->i_gid = vap->va_gid; 2304 } 2305 TRANS_INODE(ufsvfsp, ip); 2306 ip->i_flag |= ICHG; 2307 } 2308 /* 2309 * Change file access or modified times. 2310 */ 2311 if (mask & (AT_ATIME|AT_MTIME)) { 2312 /* Check that the time value is within ufs range */ 2313 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2314 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2315 error = EOVERFLOW; 2316 goto update_inode; 2317 } 2318 2319 /* 2320 * if the "noaccess" mount option is set and only atime 2321 * update is requested, do nothing. No error is returned. 2322 */ 2323 if ((ufsvfsp->vfs_noatime) && 2324 ((mask & (AT_ATIME|AT_MTIME)) == AT_ATIME)) 2325 goto skip_atime; 2326 2327 if (mask & AT_ATIME) { 2328 ip->i_atime.tv_sec = vap->va_atime.tv_sec; 2329 ip->i_atime.tv_usec = vap->va_atime.tv_nsec / 1000; 2330 ip->i_flag &= ~IACC; 2331 } 2332 if (mask & AT_MTIME) { 2333 ip->i_mtime.tv_sec = vap->va_mtime.tv_sec; 2334 ip->i_mtime.tv_usec = vap->va_mtime.tv_nsec / 1000; 2335 gethrestime(&now); 2336 if (now.tv_sec > TIME32_MAX) { 2337 /* 2338 * In 2038, ctime sticks forever.. 2339 */ 2340 ip->i_ctime.tv_sec = TIME32_MAX; 2341 ip->i_ctime.tv_usec = 0; 2342 } else { 2343 ip->i_ctime.tv_sec = now.tv_sec; 2344 ip->i_ctime.tv_usec = now.tv_nsec / 1000; 2345 } 2346 ip->i_flag &= ~(IUPD|ICHG); 2347 ip->i_flag |= IMODTIME; 2348 } 2349 TRANS_INODE(ufsvfsp, ip); 2350 ip->i_flag |= IMOD; 2351 } 2352 2353 skip_atime: 2354 /* 2355 * The presence of a shadow inode may indicate an ACL, but does 2356 * not imply an ACL. Future FSD types should be handled here too 2357 * and check for the presence of the attribute-specific data 2358 * before referencing it. 2359 */ 2360 if (ip->i_shadow) { 2361 /* 2362 * XXX if ufs_iupdat is changed to sandbagged write fix 2363 * ufs_acl_setattr to push ip to keep acls consistent 2364 * 2365 * Suppress out of inodes messages if we will retry. 2366 */ 2367 if (retry) 2368 ip->i_flag |= IQUIET; 2369 error = ufs_acl_setattr(ip, vap, cr); 2370 ip->i_flag &= ~IQUIET; 2371 } 2372 2373 update_inode: 2374 /* 2375 * Setattr always increases the sequence number 2376 */ 2377 ip->i_seq++; 2378 2379 /* 2380 * if nfsd and not logging; push synchronously 2381 */ 2382 if ((curthread->t_flag & T_DONTPEND) && !TRANS_ISTRANS(ufsvfsp)) { 2383 ufs_iupdat(ip, 1); 2384 } else { 2385 ITIMES_NOLOCK(ip); 2386 } 2387 2388 rw_exit(&ip->i_contents); 2389 if (dodqlock) { 2390 rw_exit(&ufsvfsp->vfs_dqrwlock); 2391 } 2392 if (dorwlock) 2393 rw_exit(&ip->i_rwlock); 2394 2395 if (ulp) { 2396 if (dotrans) { 2397 int terr = 0; 2398 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SETATTR, 2399 trans_size); 2400 if (error == 0) 2401 error = terr; 2402 } 2403 ufs_lockfs_end(ulp); 2404 } 2405 out: 2406 /* 2407 * If out of inodes or blocks, see if we can free something 2408 * up from the delete queue. 2409 */ 2410 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 2411 ufs_delete_drain_wait(ufsvfsp, 1); 2412 retry = 0; 2413 if (errmsg1 != NULL) 2414 kmem_free(errmsg1, len1); 2415 if (errmsg2 != NULL) 2416 kmem_free(errmsg2, len2); 2417 goto again; 2418 } 2419 if (errmsg1 != NULL) { 2420 uprintf(errmsg1); 2421 kmem_free(errmsg1, len1); 2422 } 2423 if (errmsg2 != NULL) { 2424 uprintf(errmsg2); 2425 kmem_free(errmsg2, len2); 2426 } 2427 return (error); 2428 } 2429 2430 /*ARGSUSED*/ 2431 static int 2432 ufs_access(struct vnode *vp, int mode, int flags, struct cred *cr, 2433 caller_context_t *ct) 2434 { 2435 struct inode *ip = VTOI(vp); 2436 2437 if (ip->i_ufsvfs == NULL) 2438 return (EIO); 2439 2440 /* 2441 * The ufs_iaccess function wants to be called with 2442 * mode bits expressed as "ufs specific" bits. 2443 * I.e., VWRITE|VREAD|VEXEC do not make sense to 2444 * ufs_iaccess() but IWRITE|IREAD|IEXEC do. 2445 * But since they're the same we just pass the vnode mode 2446 * bit but just verify that assumption at compile time. 2447 */ 2448 #if IWRITE != VWRITE || IREAD != VREAD || IEXEC != VEXEC 2449 #error "ufs_access needs to map Vmodes to Imodes" 2450 #endif 2451 return (ufs_iaccess(ip, mode, cr, 1)); 2452 } 2453 2454 /* ARGSUSED */ 2455 static int 2456 ufs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cr, 2457 caller_context_t *ct) 2458 { 2459 struct inode *ip = VTOI(vp); 2460 struct ufsvfs *ufsvfsp; 2461 struct ulockfs *ulp; 2462 int error; 2463 int fastsymlink; 2464 2465 if (vp->v_type != VLNK) { 2466 error = EINVAL; 2467 goto nolockout; 2468 } 2469 2470 /* 2471 * If the symbolic link is empty there is nothing to read. 2472 * Fast-track these empty symbolic links 2473 */ 2474 if (ip->i_size == 0) { 2475 error = 0; 2476 goto nolockout; 2477 } 2478 2479 ufsvfsp = ip->i_ufsvfs; 2480 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READLINK_MASK); 2481 if (error) 2482 goto nolockout; 2483 /* 2484 * The ip->i_rwlock protects the data blocks used for FASTSYMLINK 2485 */ 2486 again: 2487 fastsymlink = 0; 2488 if (ip->i_flag & IFASTSYMLNK) { 2489 rw_enter(&ip->i_rwlock, RW_READER); 2490 rw_enter(&ip->i_contents, RW_READER); 2491 if (ip->i_flag & IFASTSYMLNK) { 2492 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && 2493 (ip->i_fs->fs_ronly == 0) && 2494 (!ufsvfsp->vfs_noatime)) { 2495 mutex_enter(&ip->i_tlock); 2496 ip->i_flag |= IACC; 2497 mutex_exit(&ip->i_tlock); 2498 } 2499 error = uiomove((caddr_t)&ip->i_db[1], 2500 MIN(ip->i_size, uiop->uio_resid), 2501 UIO_READ, uiop); 2502 ITIMES(ip); 2503 ++fastsymlink; 2504 } 2505 rw_exit(&ip->i_contents); 2506 rw_exit(&ip->i_rwlock); 2507 } 2508 if (!fastsymlink) { 2509 ssize_t size; /* number of bytes read */ 2510 caddr_t basep; /* pointer to input data */ 2511 ino_t ino; 2512 long igen; 2513 struct uio tuio; /* temp uio struct */ 2514 struct uio *tuiop; 2515 iovec_t tiov; /* temp iovec struct */ 2516 char kbuf[FSL_SIZE]; /* buffer to hold fast symlink */ 2517 int tflag = 0; /* flag to indicate temp vars used */ 2518 2519 ino = ip->i_number; 2520 igen = ip->i_gen; 2521 size = uiop->uio_resid; 2522 basep = uiop->uio_iov->iov_base; 2523 tuiop = uiop; 2524 2525 rw_enter(&ip->i_rwlock, RW_WRITER); 2526 rw_enter(&ip->i_contents, RW_WRITER); 2527 if (ip->i_flag & IFASTSYMLNK) { 2528 rw_exit(&ip->i_contents); 2529 rw_exit(&ip->i_rwlock); 2530 goto again; 2531 } 2532 2533 /* can this be a fast symlink and is it a user buffer? */ 2534 if (ip->i_size <= FSL_SIZE && 2535 (uiop->uio_segflg == UIO_USERSPACE || 2536 uiop->uio_segflg == UIO_USERISPACE)) { 2537 2538 bzero(&tuio, sizeof (struct uio)); 2539 /* 2540 * setup a kernel buffer to read link into. this 2541 * is to fix a race condition where the user buffer 2542 * got corrupted before copying it into the inode. 2543 */ 2544 size = ip->i_size; 2545 tiov.iov_len = size; 2546 tiov.iov_base = kbuf; 2547 tuio.uio_iov = &tiov; 2548 tuio.uio_iovcnt = 1; 2549 tuio.uio_offset = uiop->uio_offset; 2550 tuio.uio_segflg = UIO_SYSSPACE; 2551 tuio.uio_fmode = uiop->uio_fmode; 2552 tuio.uio_extflg = uiop->uio_extflg; 2553 tuio.uio_limit = uiop->uio_limit; 2554 tuio.uio_resid = size; 2555 2556 basep = tuio.uio_iov->iov_base; 2557 tuiop = &tuio; 2558 tflag = 1; 2559 } 2560 2561 error = rdip(ip, tuiop, 0, cr); 2562 if (!(error == 0 && ip->i_number == ino && ip->i_gen == igen)) { 2563 rw_exit(&ip->i_contents); 2564 rw_exit(&ip->i_rwlock); 2565 goto out; 2566 } 2567 2568 if (tflag == 0) 2569 size -= uiop->uio_resid; 2570 2571 if ((tflag == 0 && ip->i_size <= FSL_SIZE && 2572 ip->i_size == size) || (tflag == 1 && 2573 tuio.uio_resid == 0)) { 2574 error = kcopy(basep, &ip->i_db[1], ip->i_size); 2575 if (error == 0) { 2576 ip->i_flag |= IFASTSYMLNK; 2577 /* 2578 * free page 2579 */ 2580 (void) VOP_PUTPAGE(ITOV(ip), 2581 (offset_t)0, PAGESIZE, 2582 (B_DONTNEED | B_FREE | B_FORCE | B_ASYNC), 2583 cr, ct); 2584 } else { 2585 int i; 2586 /* error, clear garbage left behind */ 2587 for (i = 1; i < NDADDR; i++) 2588 ip->i_db[i] = 0; 2589 for (i = 0; i < NIADDR; i++) 2590 ip->i_ib[i] = 0; 2591 } 2592 } 2593 if (tflag == 1) { 2594 /* now, copy it into the user buffer */ 2595 error = uiomove((caddr_t)kbuf, 2596 MIN(size, uiop->uio_resid), 2597 UIO_READ, uiop); 2598 } 2599 rw_exit(&ip->i_contents); 2600 rw_exit(&ip->i_rwlock); 2601 } 2602 out: 2603 if (ulp) { 2604 ufs_lockfs_end(ulp); 2605 } 2606 nolockout: 2607 return (error); 2608 } 2609 2610 /* ARGSUSED */ 2611 static int 2612 ufs_fsync(struct vnode *vp, int syncflag, struct cred *cr, 2613 caller_context_t *ct) 2614 { 2615 struct inode *ip = VTOI(vp); 2616 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 2617 struct ulockfs *ulp; 2618 int error; 2619 2620 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_FSYNC_MASK); 2621 if (error) 2622 return (error); 2623 2624 if (TRANS_ISTRANS(ufsvfsp)) { 2625 /* 2626 * First push out any data pages 2627 */ 2628 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2629 (vp->v_type != VCHR) && !(IS_SWAPVP(vp))) { 2630 error = VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, 2631 0, CRED(), ct); 2632 if (error) 2633 goto out; 2634 } 2635 2636 /* 2637 * Delta any delayed inode times updates 2638 * and push inode to log. 2639 * All other inode deltas will have already been delta'd 2640 * and will be pushed during the commit. 2641 */ 2642 if (!(syncflag & FDSYNC) && 2643 ((ip->i_flag & (IMOD|IMODACC)) == IMODACC)) { 2644 if (ulp) { 2645 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_FSYNC, 2646 TOP_SYNCIP_SIZE); 2647 } 2648 rw_enter(&ip->i_contents, RW_READER); 2649 mutex_enter(&ip->i_tlock); 2650 ip->i_flag &= ~IMODTIME; 2651 mutex_exit(&ip->i_tlock); 2652 ufs_iupdat(ip, I_SYNC); 2653 rw_exit(&ip->i_contents); 2654 if (ulp) { 2655 TRANS_END_ASYNC(ufsvfsp, TOP_FSYNC, 2656 TOP_SYNCIP_SIZE); 2657 } 2658 } 2659 2660 /* 2661 * Commit the Moby transaction 2662 * 2663 * Deltas have already been made so we just need to 2664 * commit them with a synchronous transaction. 2665 * TRANS_BEGIN_SYNC() will return an error 2666 * if there are no deltas to commit, for an 2667 * empty transaction. 2668 */ 2669 if (ulp) { 2670 TRANS_BEGIN_SYNC(ufsvfsp, TOP_FSYNC, TOP_COMMIT_SIZE, 2671 error); 2672 if (error) { 2673 error = 0; /* commit wasn't needed */ 2674 goto out; 2675 } 2676 TRANS_END_SYNC(ufsvfsp, error, TOP_FSYNC, 2677 TOP_COMMIT_SIZE); 2678 } 2679 } else { /* not logging */ 2680 if (!(IS_SWAPVP(vp))) 2681 if (syncflag & FNODSYNC) { 2682 /* Just update the inode only */ 2683 TRANS_IUPDAT(ip, 1); 2684 error = 0; 2685 } else if (syncflag & FDSYNC) 2686 /* Do data-synchronous writes */ 2687 error = TRANS_SYNCIP(ip, 0, I_DSYNC, TOP_FSYNC); 2688 else 2689 /* Do synchronous writes */ 2690 error = TRANS_SYNCIP(ip, 0, I_SYNC, TOP_FSYNC); 2691 2692 rw_enter(&ip->i_contents, RW_WRITER); 2693 if (!error) 2694 error = ufs_sync_indir(ip); 2695 rw_exit(&ip->i_contents); 2696 } 2697 out: 2698 if (ulp) { 2699 ufs_lockfs_end(ulp); 2700 } 2701 return (error); 2702 } 2703 2704 /*ARGSUSED*/ 2705 static void 2706 ufs_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct) 2707 { 2708 ufs_iinactive(VTOI(vp)); 2709 } 2710 2711 /* 2712 * Unix file system operations having to do with directory manipulation. 2713 */ 2714 int ufs_lookup_idle_count = 2; /* Number of inodes to idle each time */ 2715 /* ARGSUSED */ 2716 static int 2717 ufs_lookup(struct vnode *dvp, char *nm, struct vnode **vpp, 2718 struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cr, 2719 caller_context_t *ct, int *direntflags, pathname_t *realpnp) 2720 { 2721 struct inode *ip; 2722 struct inode *sip; 2723 struct inode *xip; 2724 struct ufsvfs *ufsvfsp; 2725 struct ulockfs *ulp; 2726 struct vnode *vp; 2727 int error; 2728 2729 /* 2730 * Check flags for type of lookup (regular file or attribute file) 2731 */ 2732 2733 ip = VTOI(dvp); 2734 2735 if (flags & LOOKUP_XATTR) { 2736 2737 /* 2738 * If not mounted with XATTR support then return EINVAL 2739 */ 2740 2741 if (!(ip->i_ufsvfs->vfs_vfs->vfs_flag & VFS_XATTR)) 2742 return (EINVAL); 2743 /* 2744 * We don't allow recursive attributes... 2745 * Maybe someday we will. 2746 */ 2747 if ((ip->i_cflags & IXATTR)) { 2748 return (EINVAL); 2749 } 2750 2751 if ((vp = dnlc_lookup(dvp, XATTR_DIR_NAME)) == NULL) { 2752 error = ufs_xattr_getattrdir(dvp, &sip, flags, cr); 2753 if (error) { 2754 *vpp = NULL; 2755 goto out; 2756 } 2757 2758 vp = ITOV(sip); 2759 dnlc_update(dvp, XATTR_DIR_NAME, vp); 2760 } 2761 2762 /* 2763 * Check accessibility of directory. 2764 */ 2765 if (vp == DNLC_NO_VNODE) { 2766 VN_RELE(vp); 2767 error = ENOENT; 2768 goto out; 2769 } 2770 if ((error = ufs_iaccess(VTOI(vp), IEXEC, cr, 1)) != 0) { 2771 VN_RELE(vp); 2772 goto out; 2773 } 2774 2775 *vpp = vp; 2776 return (0); 2777 } 2778 2779 /* 2780 * Check for a null component, which we should treat as 2781 * looking at dvp from within it's parent, so we don't 2782 * need a call to ufs_iaccess(), as it has already been 2783 * done. 2784 */ 2785 if (nm[0] == 0) { 2786 VN_HOLD(dvp); 2787 error = 0; 2788 *vpp = dvp; 2789 goto out; 2790 } 2791 2792 /* 2793 * Check for "." ie itself. this is a quick check and 2794 * avoids adding "." into the dnlc (which have been seen 2795 * to occupy >10% of the cache). 2796 */ 2797 if ((nm[0] == '.') && (nm[1] == 0)) { 2798 /* 2799 * Don't return without checking accessibility 2800 * of the directory. We only need the lock if 2801 * we are going to return it. 2802 */ 2803 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) == 0) { 2804 VN_HOLD(dvp); 2805 *vpp = dvp; 2806 } 2807 goto out; 2808 } 2809 2810 /* 2811 * Fast path: Check the directory name lookup cache. 2812 */ 2813 if (vp = dnlc_lookup(dvp, nm)) { 2814 /* 2815 * Check accessibility of directory. 2816 */ 2817 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) != 0) { 2818 VN_RELE(vp); 2819 goto out; 2820 } 2821 if (vp == DNLC_NO_VNODE) { 2822 VN_RELE(vp); 2823 error = ENOENT; 2824 goto out; 2825 } 2826 xip = VTOI(vp); 2827 ulp = NULL; 2828 goto fastpath; 2829 } 2830 2831 /* 2832 * Keep the idle queue from getting too long by 2833 * idling two inodes before attempting to allocate another. 2834 * This operation must be performed before entering 2835 * lockfs or a transaction. 2836 */ 2837 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat) 2838 if ((curthread->t_flag & T_DONTBLOCK) == 0) { 2839 ins.in_lidles.value.ul += ufs_lookup_idle_count; 2840 ufs_idle_some(ufs_lookup_idle_count); 2841 } 2842 2843 retry_lookup: 2844 /* 2845 * Check accessibility of directory. 2846 */ 2847 if (error = ufs_diraccess(ip, IEXEC, cr)) 2848 goto out; 2849 2850 ufsvfsp = ip->i_ufsvfs; 2851 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK); 2852 if (error) 2853 goto out; 2854 2855 error = ufs_dirlook(ip, nm, &xip, cr, 1); 2856 2857 fastpath: 2858 if (error == 0) { 2859 ip = xip; 2860 *vpp = ITOV(ip); 2861 2862 /* 2863 * If vnode is a device return special vnode instead. 2864 */ 2865 if (IS_DEVVP(*vpp)) { 2866 struct vnode *newvp; 2867 2868 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, 2869 cr); 2870 VN_RELE(*vpp); 2871 if (newvp == NULL) 2872 error = ENOSYS; 2873 else 2874 *vpp = newvp; 2875 } else if (ip->i_cflags & ICOMPRESS) { 2876 struct vnode *newvp; 2877 2878 /* 2879 * Compressed file, substitute dcfs vnode 2880 */ 2881 newvp = decompvp(*vpp, cr, ct); 2882 VN_RELE(*vpp); 2883 if (newvp == NULL) 2884 error = ENOSYS; 2885 else 2886 *vpp = newvp; 2887 } 2888 } 2889 if (ulp) { 2890 ufs_lockfs_end(ulp); 2891 } 2892 2893 if (error == EAGAIN) 2894 goto retry_lookup; 2895 2896 out: 2897 return (error); 2898 } 2899 2900 /*ARGSUSED*/ 2901 static int 2902 ufs_create(struct vnode *dvp, char *name, struct vattr *vap, enum vcexcl excl, 2903 int mode, struct vnode **vpp, struct cred *cr, int flag, 2904 caller_context_t *ct, vsecattr_t *vsecp) 2905 { 2906 struct inode *ip; 2907 struct inode *xip; 2908 struct inode *dip; 2909 struct vnode *xvp; 2910 struct ufsvfs *ufsvfsp; 2911 struct ulockfs *ulp; 2912 int error; 2913 int issync; 2914 int truncflag; 2915 int trans_size; 2916 int noentry; 2917 int defer_dip_seq_update = 0; /* need to defer update of dip->i_seq */ 2918 int retry = 1; 2919 int indeadlock; 2920 2921 again: 2922 ip = VTOI(dvp); 2923 ufsvfsp = ip->i_ufsvfs; 2924 truncflag = 0; 2925 2926 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_CREATE_MASK); 2927 if (error) 2928 goto out; 2929 2930 if (ulp) { 2931 trans_size = (int)TOP_CREATE_SIZE(ip); 2932 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_CREATE, trans_size); 2933 } 2934 2935 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr) != 0) 2936 vap->va_mode &= ~VSVTX; 2937 2938 if (*name == '\0') { 2939 /* 2940 * Null component name refers to the directory itself. 2941 */ 2942 VN_HOLD(dvp); 2943 /* 2944 * Even though this is an error case, we need to grab the 2945 * quota lock since the error handling code below is common. 2946 */ 2947 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2948 rw_enter(&ip->i_contents, RW_WRITER); 2949 error = EEXIST; 2950 } else { 2951 xip = NULL; 2952 noentry = 0; 2953 /* 2954 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 2955 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 2956 * possible, retries the operation. 2957 */ 2958 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_CREATE, 2959 retry_dir); 2960 if (indeadlock) 2961 goto again; 2962 2963 xvp = dnlc_lookup(dvp, name); 2964 if (xvp == DNLC_NO_VNODE) { 2965 noentry = 1; 2966 VN_RELE(xvp); 2967 xvp = NULL; 2968 } 2969 if (xvp) { 2970 rw_exit(&ip->i_rwlock); 2971 if (error = ufs_iaccess(ip, IEXEC, cr, 1)) { 2972 VN_RELE(xvp); 2973 } else { 2974 error = EEXIST; 2975 xip = VTOI(xvp); 2976 } 2977 } else { 2978 /* 2979 * Suppress file system full message if we will retry 2980 */ 2981 error = ufs_direnter_cm(ip, name, DE_CREATE, 2982 vap, &xip, cr, (noentry | (retry ? IQUIET : 0))); 2983 if (error == EAGAIN) { 2984 if (ulp) { 2985 TRANS_END_CSYNC(ufsvfsp, error, issync, 2986 TOP_CREATE, trans_size); 2987 ufs_lockfs_end(ulp); 2988 } 2989 goto again; 2990 } 2991 rw_exit(&ip->i_rwlock); 2992 } 2993 ip = xip; 2994 if (ip != NULL) { 2995 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2996 rw_enter(&ip->i_contents, RW_WRITER); 2997 } 2998 } 2999 3000 /* 3001 * If the file already exists and this is a non-exclusive create, 3002 * check permissions and allow access for non-directories. 3003 * Read-only create of an existing directory is also allowed. 3004 * We fail an exclusive create of anything which already exists. 3005 */ 3006 if (error == EEXIST) { 3007 dip = VTOI(dvp); 3008 if (excl == NONEXCL) { 3009 if ((((ip->i_mode & IFMT) == IFDIR) || 3010 ((ip->i_mode & IFMT) == IFATTRDIR)) && 3011 (mode & IWRITE)) 3012 error = EISDIR; 3013 else if (mode) 3014 error = ufs_iaccess(ip, mode, cr, 0); 3015 else 3016 error = 0; 3017 } 3018 if (error) { 3019 rw_exit(&ip->i_contents); 3020 rw_exit(&ufsvfsp->vfs_dqrwlock); 3021 VN_RELE(ITOV(ip)); 3022 goto unlock; 3023 } 3024 /* 3025 * If the error EEXIST was set, then i_seq can not 3026 * have been updated. The sequence number interface 3027 * is defined such that a non-error VOP_CREATE must 3028 * increase the dir va_seq it by at least one. If we 3029 * have cleared the error, increase i_seq. Note that 3030 * we are increasing the dir i_seq and in rare cases 3031 * ip may actually be from the dvp, so we already have 3032 * the locks and it will not be subject to truncation. 3033 * In case we have to update i_seq of the parent 3034 * directory dip, we have to defer it till we have 3035 * released our locks on ip due to lock ordering requirements. 3036 */ 3037 if (ip != dip) 3038 defer_dip_seq_update = 1; 3039 else 3040 ip->i_seq++; 3041 3042 if (((ip->i_mode & IFMT) == IFREG) && 3043 (vap->va_mask & AT_SIZE) && vap->va_size == 0) { 3044 /* 3045 * Truncate regular files, if requested by caller. 3046 * Grab i_rwlock to make sure no one else is 3047 * currently writing to the file (we promised 3048 * bmap we would do this). 3049 * Must get the locks in the correct order. 3050 */ 3051 if (ip->i_size == 0) { 3052 ip->i_flag |= ICHG | IUPD; 3053 ip->i_seq++; 3054 TRANS_INODE(ufsvfsp, ip); 3055 } else { 3056 /* 3057 * Large Files: Why this check here? 3058 * Though we do it in vn_create() we really 3059 * want to guarantee that we do not destroy 3060 * Large file data by atomically checking 3061 * the size while holding the contents 3062 * lock. 3063 */ 3064 if (flag && !(flag & FOFFMAX) && 3065 ((ip->i_mode & IFMT) == IFREG) && 3066 (ip->i_size > (offset_t)MAXOFF32_T)) { 3067 rw_exit(&ip->i_contents); 3068 rw_exit(&ufsvfsp->vfs_dqrwlock); 3069 error = EOVERFLOW; 3070 goto unlock; 3071 } 3072 if (TRANS_ISTRANS(ufsvfsp)) 3073 truncflag++; 3074 else { 3075 rw_exit(&ip->i_contents); 3076 rw_exit(&ufsvfsp->vfs_dqrwlock); 3077 ufs_tryirwlock_trans(&ip->i_rwlock, 3078 RW_WRITER, TOP_CREATE, 3079 retry_file); 3080 if (indeadlock) { 3081 VN_RELE(ITOV(ip)); 3082 goto again; 3083 } 3084 rw_enter(&ufsvfsp->vfs_dqrwlock, 3085 RW_READER); 3086 rw_enter(&ip->i_contents, RW_WRITER); 3087 (void) ufs_itrunc(ip, (u_offset_t)0, 0, 3088 cr); 3089 rw_exit(&ip->i_rwlock); 3090 } 3091 3092 } 3093 if (error == 0) { 3094 vnevent_create(ITOV(ip), ct); 3095 } 3096 } 3097 } 3098 3099 if (error) { 3100 if (ip != NULL) { 3101 rw_exit(&ufsvfsp->vfs_dqrwlock); 3102 rw_exit(&ip->i_contents); 3103 } 3104 goto unlock; 3105 } 3106 3107 *vpp = ITOV(ip); 3108 ITIMES(ip); 3109 rw_exit(&ip->i_contents); 3110 rw_exit(&ufsvfsp->vfs_dqrwlock); 3111 3112 /* 3113 * If vnode is a device return special vnode instead. 3114 */ 3115 if (!error && IS_DEVVP(*vpp)) { 3116 struct vnode *newvp; 3117 3118 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 3119 VN_RELE(*vpp); 3120 if (newvp == NULL) { 3121 error = ENOSYS; 3122 goto unlock; 3123 } 3124 truncflag = 0; 3125 *vpp = newvp; 3126 } 3127 unlock: 3128 3129 /* 3130 * Do the deferred update of the parent directory's sequence 3131 * number now. 3132 */ 3133 if (defer_dip_seq_update == 1) { 3134 rw_enter(&dip->i_contents, RW_READER); 3135 mutex_enter(&dip->i_tlock); 3136 dip->i_seq++; 3137 mutex_exit(&dip->i_tlock); 3138 rw_exit(&dip->i_contents); 3139 } 3140 3141 if (ulp) { 3142 int terr = 0; 3143 3144 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_CREATE, 3145 trans_size); 3146 3147 /* 3148 * If we haven't had a more interesting failure 3149 * already, then anything that might've happened 3150 * here should be reported. 3151 */ 3152 if (error == 0) 3153 error = terr; 3154 } 3155 3156 if (!error && truncflag) { 3157 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_trunc); 3158 if (indeadlock) { 3159 if (ulp) 3160 ufs_lockfs_end(ulp); 3161 VN_RELE(ITOV(ip)); 3162 goto again; 3163 } 3164 (void) TRANS_ITRUNC(ip, (u_offset_t)0, 0, cr); 3165 rw_exit(&ip->i_rwlock); 3166 } 3167 3168 if (ulp) 3169 ufs_lockfs_end(ulp); 3170 3171 /* 3172 * If no inodes available, try to free one up out of the 3173 * pending delete queue. 3174 */ 3175 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 3176 ufs_delete_drain_wait(ufsvfsp, 1); 3177 retry = 0; 3178 goto again; 3179 } 3180 3181 out: 3182 return (error); 3183 } 3184 3185 extern int ufs_idle_max; 3186 /*ARGSUSED*/ 3187 static int 3188 ufs_remove(struct vnode *vp, char *nm, struct cred *cr, 3189 caller_context_t *ct, int flags) 3190 { 3191 struct inode *ip = VTOI(vp); 3192 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 3193 struct ulockfs *ulp; 3194 vnode_t *rmvp = NULL; /* Vnode corresponding to name being removed */ 3195 int indeadlock; 3196 int error; 3197 int issync; 3198 int trans_size; 3199 3200 /* 3201 * don't let the delete queue get too long 3202 */ 3203 if (ufsvfsp == NULL) { 3204 error = EIO; 3205 goto out; 3206 } 3207 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max) 3208 ufs_delete_drain(vp->v_vfsp, 1, 1); 3209 3210 retry_remove: 3211 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_REMOVE_MASK); 3212 if (error) 3213 goto out; 3214 3215 if (ulp) 3216 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE, 3217 trans_size = (int)TOP_REMOVE_SIZE(VTOI(vp))); 3218 3219 /* 3220 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3221 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3222 * possible, retries the operation. 3223 */ 3224 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_REMOVE, retry); 3225 if (indeadlock) 3226 goto retry_remove; 3227 error = ufs_dirremove(ip, nm, (struct inode *)0, (struct vnode *)0, 3228 DR_REMOVE, cr, &rmvp); 3229 rw_exit(&ip->i_rwlock); 3230 3231 if (ulp) { 3232 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_REMOVE, trans_size); 3233 ufs_lockfs_end(ulp); 3234 } 3235 3236 /* 3237 * This must be called after the remove transaction is closed. 3238 */ 3239 if (rmvp != NULL) { 3240 /* Only send the event if there were no errors */ 3241 if (error == 0) 3242 vnevent_remove(rmvp, vp, nm, ct); 3243 VN_RELE(rmvp); 3244 } 3245 out: 3246 return (error); 3247 } 3248 3249 /* 3250 * Link a file or a directory. Only privileged processes are allowed to 3251 * make links to directories. 3252 */ 3253 /*ARGSUSED*/ 3254 static int 3255 ufs_link(struct vnode *tdvp, struct vnode *svp, char *tnm, struct cred *cr, 3256 caller_context_t *ct, int flags) 3257 { 3258 struct inode *sip; 3259 struct inode *tdp = VTOI(tdvp); 3260 struct ufsvfs *ufsvfsp = tdp->i_ufsvfs; 3261 struct ulockfs *ulp; 3262 struct vnode *realvp; 3263 int error; 3264 int issync; 3265 int trans_size; 3266 int isdev; 3267 int indeadlock; 3268 3269 retry_link: 3270 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LINK_MASK); 3271 if (error) 3272 goto out; 3273 3274 if (ulp) 3275 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_LINK, 3276 trans_size = (int)TOP_LINK_SIZE(VTOI(tdvp))); 3277 3278 if (VOP_REALVP(svp, &realvp, ct) == 0) 3279 svp = realvp; 3280 3281 /* 3282 * Make sure link for extended attributes is valid 3283 * We only support hard linking of attr in ATTRDIR to ATTRDIR 3284 * 3285 * Make certain we don't attempt to look at a device node as 3286 * a ufs inode. 3287 */ 3288 3289 isdev = IS_DEVVP(svp); 3290 if (((isdev == 0) && ((VTOI(svp)->i_cflags & IXATTR) == 0) && 3291 ((tdp->i_mode & IFMT) == IFATTRDIR)) || 3292 ((isdev == 0) && (VTOI(svp)->i_cflags & IXATTR) && 3293 ((tdp->i_mode & IFMT) == IFDIR))) { 3294 error = EINVAL; 3295 goto unlock; 3296 } 3297 3298 sip = VTOI(svp); 3299 if ((svp->v_type == VDIR && 3300 secpolicy_fs_linkdir(cr, ufsvfsp->vfs_vfs) != 0) || 3301 (sip->i_uid != crgetuid(cr) && secpolicy_basic_link(cr) != 0)) { 3302 error = EPERM; 3303 goto unlock; 3304 } 3305 3306 /* 3307 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3308 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3309 * possible, retries the operation. 3310 */ 3311 ufs_tryirwlock_trans(&tdp->i_rwlock, RW_WRITER, TOP_LINK, retry); 3312 if (indeadlock) 3313 goto retry_link; 3314 error = ufs_direnter_lr(tdp, tnm, DE_LINK, (struct inode *)0, 3315 sip, cr, NULL); 3316 rw_exit(&tdp->i_rwlock); 3317 3318 unlock: 3319 if (ulp) { 3320 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_LINK, trans_size); 3321 ufs_lockfs_end(ulp); 3322 } 3323 3324 if (!error) { 3325 vnevent_link(svp, ct); 3326 } 3327 out: 3328 return (error); 3329 } 3330 3331 uint64_t ufs_rename_retry_cnt; 3332 uint64_t ufs_rename_upgrade_retry_cnt; 3333 uint64_t ufs_rename_dircheck_retry_cnt; 3334 clock_t ufs_rename_backoff_delay = 1; 3335 3336 /* 3337 * Rename a file or directory. 3338 * We are given the vnode and entry string of the source and the 3339 * vnode and entry string of the place we want to move the source 3340 * to (the target). The essential operation is: 3341 * unlink(target); 3342 * link(source, target); 3343 * unlink(source); 3344 * but "atomically". Can't do full commit without saving state in 3345 * the inode on disk, which isn't feasible at this time. Best we 3346 * can do is always guarantee that the TARGET exists. 3347 */ 3348 3349 /*ARGSUSED*/ 3350 static int 3351 ufs_rename( 3352 struct vnode *sdvp, /* old (source) parent vnode */ 3353 char *snm, /* old (source) entry name */ 3354 struct vnode *tdvp, /* new (target) parent vnode */ 3355 char *tnm, /* new (target) entry name */ 3356 struct cred *cr, 3357 caller_context_t *ct, 3358 int flags) 3359 { 3360 struct inode *sip = NULL; /* source inode */ 3361 struct inode *ip = NULL; /* check inode */ 3362 struct inode *sdp; /* old (source) parent inode */ 3363 struct inode *tdp; /* new (target) parent inode */ 3364 struct vnode *tvp = NULL; /* target vnode, if it exists */ 3365 struct vnode *realvp; 3366 struct ufsvfs *ufsvfsp; 3367 struct ulockfs *ulp; 3368 struct ufs_slot slot; 3369 timestruc_t now; 3370 int error; 3371 int issync; 3372 int trans_size; 3373 krwlock_t *first_lock; 3374 krwlock_t *second_lock; 3375 krwlock_t *reverse_lock; 3376 3377 sdp = VTOI(sdvp); 3378 slot.fbp = NULL; 3379 ufsvfsp = sdp->i_ufsvfs; 3380 retry_rename: 3381 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RENAME_MASK); 3382 if (error) 3383 goto out; 3384 3385 if (ulp) 3386 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RENAME, 3387 trans_size = (int)TOP_RENAME_SIZE(sdp)); 3388 3389 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3390 tdvp = realvp; 3391 3392 tdp = VTOI(tdvp); 3393 3394 /* 3395 * We only allow renaming of attributes from ATTRDIR to ATTRDIR. 3396 */ 3397 if ((tdp->i_mode & IFMT) != (sdp->i_mode & IFMT)) { 3398 error = EINVAL; 3399 goto unlock; 3400 } 3401 3402 /* 3403 * Check accessibility of directory. 3404 */ 3405 if (error = ufs_diraccess(sdp, IEXEC, cr)) 3406 goto unlock; 3407 3408 /* 3409 * Look up inode of file we're supposed to rename. 3410 */ 3411 gethrestime(&now); 3412 if (error = ufs_dirlook(sdp, snm, &sip, cr, 0)) { 3413 if (error == EAGAIN) { 3414 if (ulp) { 3415 TRANS_END_CSYNC(ufsvfsp, error, issync, 3416 TOP_RENAME, trans_size); 3417 ufs_lockfs_end(ulp); 3418 } 3419 goto retry_rename; 3420 } 3421 3422 goto unlock; 3423 } 3424 3425 /* 3426 * Lock both the source and target directories (they may be 3427 * the same) to provide the atomicity semantics that was 3428 * previously provided by the per file system vfs_rename_lock 3429 * 3430 * with vfs_rename_lock removed to allow simultaneous renames 3431 * within a file system, ufs_dircheckpath can deadlock while 3432 * traversing back to ensure that source is not a parent directory 3433 * of target parent directory. This is because we get into 3434 * ufs_dircheckpath with the sdp and tdp locks held as RW_WRITER. 3435 * If the tdp and sdp of the simultaneous renames happen to be 3436 * in the path of each other, it can lead to a deadlock. This 3437 * can be avoided by getting the locks as RW_READER here and then 3438 * upgrading to RW_WRITER after completing the ufs_dircheckpath. 3439 * 3440 * We hold the target directory's i_rwlock after calling 3441 * ufs_lockfs_begin but in many other operations (like ufs_readdir) 3442 * VOP_RWLOCK is explicitly called by the filesystem independent code 3443 * before calling the file system operation. In these cases the order 3444 * is reversed (i.e i_rwlock is taken first and then ufs_lockfs_begin 3445 * is called). This is fine as long as ufs_lockfs_begin acts as a VOP 3446 * counter but with ufs_quiesce setting the SLOCK bit this becomes a 3447 * synchronizing object which might lead to a deadlock. So we use 3448 * rw_tryenter instead of rw_enter. If we fail to get this lock and 3449 * find that SLOCK bit is set, we call ufs_lockfs_end and restart the 3450 * operation. 3451 */ 3452 retry: 3453 first_lock = &tdp->i_rwlock; 3454 second_lock = &sdp->i_rwlock; 3455 retry_firstlock: 3456 if (!rw_tryenter(first_lock, RW_READER)) { 3457 /* 3458 * We didn't get the lock. Check if the SLOCK is set in the 3459 * ufsvfs. If yes, we might be in a deadlock. Safer to give up 3460 * and wait for SLOCK to be cleared. 3461 */ 3462 3463 if (ulp && ULOCKFS_IS_SLOCK(ulp)) { 3464 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, 3465 trans_size); 3466 ufs_lockfs_end(ulp); 3467 goto retry_rename; 3468 3469 } else { 3470 /* 3471 * SLOCK isn't set so this is a genuine synchronization 3472 * case. Let's try again after giving them a breather. 3473 */ 3474 delay(RETRY_LOCK_DELAY); 3475 goto retry_firstlock; 3476 } 3477 } 3478 /* 3479 * Need to check if the tdp and sdp are same !!! 3480 */ 3481 if ((tdp != sdp) && (!rw_tryenter(second_lock, RW_READER))) { 3482 /* 3483 * We didn't get the lock. Check if the SLOCK is set in the 3484 * ufsvfs. If yes, we might be in a deadlock. Safer to give up 3485 * and wait for SLOCK to be cleared. 3486 */ 3487 3488 rw_exit(first_lock); 3489 if (ulp && ULOCKFS_IS_SLOCK(ulp)) { 3490 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, 3491 trans_size); 3492 ufs_lockfs_end(ulp); 3493 goto retry_rename; 3494 3495 } else { 3496 /* 3497 * So we couldn't get the second level peer lock *and* 3498 * the SLOCK bit isn't set. Too bad we can be 3499 * contentding with someone wanting these locks otherway 3500 * round. Reverse the locks in case there is a heavy 3501 * contention for the second level lock. 3502 */ 3503 reverse_lock = first_lock; 3504 first_lock = second_lock; 3505 second_lock = reverse_lock; 3506 ufs_rename_retry_cnt++; 3507 goto retry_firstlock; 3508 } 3509 } 3510 3511 if (sip == tdp) { 3512 error = EINVAL; 3513 goto errout; 3514 } 3515 /* 3516 * Make sure we can delete the source entry. This requires 3517 * write permission on the containing directory. 3518 * Check for sticky directories. 3519 */ 3520 rw_enter(&sdp->i_contents, RW_READER); 3521 rw_enter(&sip->i_contents, RW_READER); 3522 if ((error = ufs_iaccess(sdp, IWRITE, cr, 0)) != 0 || 3523 (error = ufs_sticky_remove_access(sdp, sip, cr)) != 0) { 3524 rw_exit(&sip->i_contents); 3525 rw_exit(&sdp->i_contents); 3526 goto errout; 3527 } 3528 3529 /* 3530 * If this is a rename of a directory and the parent is 3531 * different (".." must be changed), then the source 3532 * directory must not be in the directory hierarchy 3533 * above the target, as this would orphan everything 3534 * below the source directory. Also the user must have 3535 * write permission in the source so as to be able to 3536 * change "..". 3537 */ 3538 if ((((sip->i_mode & IFMT) == IFDIR) || 3539 ((sip->i_mode & IFMT) == IFATTRDIR)) && sdp != tdp) { 3540 ino_t inum; 3541 3542 if (error = ufs_iaccess(sip, IWRITE, cr, 0)) { 3543 rw_exit(&sip->i_contents); 3544 rw_exit(&sdp->i_contents); 3545 goto errout; 3546 } 3547 inum = sip->i_number; 3548 rw_exit(&sip->i_contents); 3549 rw_exit(&sdp->i_contents); 3550 if ((error = ufs_dircheckpath(inum, tdp, sdp, cr))) { 3551 /* 3552 * If we got EAGAIN ufs_dircheckpath detected a 3553 * potential deadlock and backed out. We need 3554 * to retry the operation since sdp and tdp have 3555 * to be released to avoid the deadlock. 3556 */ 3557 if (error == EAGAIN) { 3558 rw_exit(&tdp->i_rwlock); 3559 if (tdp != sdp) 3560 rw_exit(&sdp->i_rwlock); 3561 delay(ufs_rename_backoff_delay); 3562 ufs_rename_dircheck_retry_cnt++; 3563 goto retry; 3564 } 3565 goto errout; 3566 } 3567 } else { 3568 rw_exit(&sip->i_contents); 3569 rw_exit(&sdp->i_contents); 3570 } 3571 3572 3573 /* 3574 * Check for renaming '.' or '..' or alias of '.' 3575 */ 3576 if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0 || sdp == sip) { 3577 error = EINVAL; 3578 goto errout; 3579 } 3580 3581 /* 3582 * Simultaneous renames can deadlock in ufs_dircheckpath since it 3583 * tries to traverse back the file tree with both tdp and sdp held 3584 * as RW_WRITER. To avoid that we have to hold the tdp and sdp locks 3585 * as RW_READERS till ufs_dircheckpath is done. 3586 * Now that ufs_dircheckpath is done with, we can upgrade the locks 3587 * to RW_WRITER. 3588 */ 3589 if (!rw_tryupgrade(&tdp->i_rwlock)) { 3590 /* 3591 * The upgrade failed. We got to give away the lock 3592 * as to avoid deadlocking with someone else who is 3593 * waiting for writer lock. With the lock gone, we 3594 * cannot be sure the checks done above will hold 3595 * good when we eventually get them back as writer. 3596 * So if we can't upgrade we drop the locks and retry 3597 * everything again. 3598 */ 3599 rw_exit(&tdp->i_rwlock); 3600 if (tdp != sdp) 3601 rw_exit(&sdp->i_rwlock); 3602 delay(ufs_rename_backoff_delay); 3603 ufs_rename_upgrade_retry_cnt++; 3604 goto retry; 3605 } 3606 if (tdp != sdp) { 3607 if (!rw_tryupgrade(&sdp->i_rwlock)) { 3608 /* 3609 * The upgrade failed. We got to give away the lock 3610 * as to avoid deadlocking with someone else who is 3611 * waiting for writer lock. With the lock gone, we 3612 * cannot be sure the checks done above will hold 3613 * good when we eventually get them back as writer. 3614 * So if we can't upgrade we drop the locks and retry 3615 * everything again. 3616 */ 3617 rw_exit(&tdp->i_rwlock); 3618 rw_exit(&sdp->i_rwlock); 3619 delay(ufs_rename_backoff_delay); 3620 ufs_rename_upgrade_retry_cnt++; 3621 goto retry; 3622 } 3623 } 3624 3625 /* 3626 * Now that all the locks are held check to make sure another thread 3627 * didn't slip in and take out the sip. 3628 */ 3629 slot.status = NONE; 3630 if ((sip->i_ctime.tv_usec * 1000) > now.tv_nsec || 3631 sip->i_ctime.tv_sec > now.tv_sec) { 3632 rw_enter(&sdp->i_ufsvfs->vfs_dqrwlock, RW_READER); 3633 rw_enter(&sdp->i_contents, RW_WRITER); 3634 error = ufs_dircheckforname(sdp, snm, strlen(snm), &slot, 3635 &ip, cr, 0); 3636 rw_exit(&sdp->i_contents); 3637 rw_exit(&sdp->i_ufsvfs->vfs_dqrwlock); 3638 if (error) { 3639 goto errout; 3640 } 3641 if (ip == NULL) { 3642 error = ENOENT; 3643 goto errout; 3644 } else { 3645 /* 3646 * If the inode was found need to drop the v_count 3647 * so as not to keep the filesystem from being 3648 * unmounted at a later time. 3649 */ 3650 VN_RELE(ITOV(ip)); 3651 } 3652 3653 /* 3654 * Release the slot.fbp that has the page mapped and 3655 * locked SE_SHARED, and could be used in in 3656 * ufs_direnter_lr() which needs to get the SE_EXCL lock 3657 * on said page. 3658 */ 3659 if (slot.fbp) { 3660 fbrelse(slot.fbp, S_OTHER); 3661 slot.fbp = NULL; 3662 } 3663 } 3664 3665 /* 3666 * Link source to the target. If a target exists, return its 3667 * vnode pointer in tvp. We'll release it after sending the 3668 * vnevent. 3669 */ 3670 if (error = ufs_direnter_lr(tdp, tnm, DE_RENAME, sdp, sip, cr, &tvp)) { 3671 /* 3672 * ESAME isn't really an error; it indicates that the 3673 * operation should not be done because the source and target 3674 * are the same file, but that no error should be reported. 3675 */ 3676 if (error == ESAME) 3677 error = 0; 3678 goto errout; 3679 } 3680 3681 /* 3682 * Unlink the source. 3683 * Remove the source entry. ufs_dirremove() checks that the entry 3684 * still reflects sip, and returns an error if it doesn't. 3685 * If the entry has changed just forget about it. Release 3686 * the source inode. 3687 */ 3688 if ((error = ufs_dirremove(sdp, snm, sip, (struct vnode *)0, 3689 DR_RENAME, cr, NULL)) == ENOENT) 3690 error = 0; 3691 3692 errout: 3693 if (slot.fbp) 3694 fbrelse(slot.fbp, S_OTHER); 3695 3696 rw_exit(&tdp->i_rwlock); 3697 if (sdp != tdp) { 3698 rw_exit(&sdp->i_rwlock); 3699 } 3700 3701 unlock: 3702 if (ulp) { 3703 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, trans_size); 3704 ufs_lockfs_end(ulp); 3705 } 3706 3707 /* 3708 * If no errors, send the appropriate events on the source 3709 * and destination (a.k.a, target) vnodes, if they exist. 3710 * This has to be done after the rename transaction has closed. 3711 */ 3712 if (error == 0) { 3713 if (tvp != NULL) 3714 vnevent_rename_dest(tvp, tdvp, tnm, ct); 3715 3716 /* 3717 * Notify the target directory of the rename event 3718 * if source and target directories are not same. 3719 */ 3720 if (sdvp != tdvp) 3721 vnevent_rename_dest_dir(tdvp, ct); 3722 3723 /* 3724 * Note that if ufs_direnter_lr() returned ESAME then 3725 * this event will still be sent. This isn't expected 3726 * to be a problem for anticipated usage by consumers. 3727 */ 3728 if (sip != NULL) 3729 vnevent_rename_src(ITOV(sip), sdvp, snm, ct); 3730 } 3731 3732 if (tvp != NULL) 3733 VN_RELE(tvp); 3734 3735 if (sip != NULL) 3736 VN_RELE(ITOV(sip)); 3737 3738 out: 3739 return (error); 3740 } 3741 3742 /*ARGSUSED*/ 3743 static int 3744 ufs_mkdir(struct vnode *dvp, char *dirname, struct vattr *vap, 3745 struct vnode **vpp, struct cred *cr, caller_context_t *ct, int flags, 3746 vsecattr_t *vsecp) 3747 { 3748 struct inode *ip; 3749 struct inode *xip; 3750 struct ufsvfs *ufsvfsp; 3751 struct ulockfs *ulp; 3752 int error; 3753 int issync; 3754 int trans_size; 3755 int indeadlock; 3756 int retry = 1; 3757 3758 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 3759 3760 /* 3761 * Can't make directory in attr hidden dir 3762 */ 3763 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR) 3764 return (EINVAL); 3765 3766 again: 3767 ip = VTOI(dvp); 3768 ufsvfsp = ip->i_ufsvfs; 3769 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MKDIR_MASK); 3770 if (error) 3771 goto out; 3772 if (ulp) 3773 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_MKDIR, 3774 trans_size = (int)TOP_MKDIR_SIZE(ip)); 3775 3776 /* 3777 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3778 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3779 * possible, retries the operation. 3780 */ 3781 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_MKDIR, retry); 3782 if (indeadlock) 3783 goto again; 3784 3785 error = ufs_direnter_cm(ip, dirname, DE_MKDIR, vap, &xip, cr, 3786 (retry ? IQUIET : 0)); 3787 if (error == EAGAIN) { 3788 if (ulp) { 3789 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_MKDIR, 3790 trans_size); 3791 ufs_lockfs_end(ulp); 3792 } 3793 goto again; 3794 } 3795 3796 rw_exit(&ip->i_rwlock); 3797 if (error == 0) { 3798 ip = xip; 3799 *vpp = ITOV(ip); 3800 } else if (error == EEXIST) 3801 VN_RELE(ITOV(xip)); 3802 3803 if (ulp) { 3804 int terr = 0; 3805 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_MKDIR, trans_size); 3806 ufs_lockfs_end(ulp); 3807 if (error == 0) 3808 error = terr; 3809 } 3810 out: 3811 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 3812 ufs_delete_drain_wait(ufsvfsp, 1); 3813 retry = 0; 3814 goto again; 3815 } 3816 3817 return (error); 3818 } 3819 3820 /*ARGSUSED*/ 3821 static int 3822 ufs_rmdir(struct vnode *vp, char *nm, struct vnode *cdir, struct cred *cr, 3823 caller_context_t *ct, int flags) 3824 { 3825 struct inode *ip = VTOI(vp); 3826 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 3827 struct ulockfs *ulp; 3828 vnode_t *rmvp = NULL; /* Vnode of removed directory */ 3829 int error; 3830 int issync; 3831 int trans_size; 3832 int indeadlock; 3833 3834 /* 3835 * don't let the delete queue get too long 3836 */ 3837 if (ufsvfsp == NULL) { 3838 error = EIO; 3839 goto out; 3840 } 3841 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max) 3842 ufs_delete_drain(vp->v_vfsp, 1, 1); 3843 3844 retry_rmdir: 3845 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RMDIR_MASK); 3846 if (error) 3847 goto out; 3848 3849 if (ulp) 3850 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RMDIR, 3851 trans_size = TOP_RMDIR_SIZE); 3852 3853 /* 3854 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3855 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3856 * possible, retries the operation. 3857 */ 3858 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_RMDIR, retry); 3859 if (indeadlock) 3860 goto retry_rmdir; 3861 error = ufs_dirremove(ip, nm, (struct inode *)0, cdir, DR_RMDIR, cr, 3862 &rmvp); 3863 rw_exit(&ip->i_rwlock); 3864 3865 if (ulp) { 3866 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RMDIR, 3867 trans_size); 3868 ufs_lockfs_end(ulp); 3869 } 3870 3871 /* 3872 * This must be done AFTER the rmdir transaction has closed. 3873 */ 3874 if (rmvp != NULL) { 3875 /* Only send the event if there were no errors */ 3876 if (error == 0) 3877 vnevent_rmdir(rmvp, vp, nm, ct); 3878 VN_RELE(rmvp); 3879 } 3880 out: 3881 return (error); 3882 } 3883 3884 /* ARGSUSED */ 3885 static int 3886 ufs_readdir( 3887 struct vnode *vp, 3888 struct uio *uiop, 3889 struct cred *cr, 3890 int *eofp, 3891 caller_context_t *ct, 3892 int flags) 3893 { 3894 struct iovec *iovp; 3895 struct inode *ip; 3896 struct direct *idp; 3897 struct dirent64 *odp; 3898 struct fbuf *fbp; 3899 struct ufsvfs *ufsvfsp; 3900 struct ulockfs *ulp; 3901 caddr_t outbuf; 3902 size_t bufsize; 3903 uint_t offset; 3904 uint_t bytes_wanted, total_bytes_wanted; 3905 int incount = 0; 3906 int outcount = 0; 3907 int error; 3908 3909 ip = VTOI(vp); 3910 ASSERT(RW_READ_HELD(&ip->i_rwlock)); 3911 3912 if (uiop->uio_loffset >= MAXOFF32_T) { 3913 if (eofp) 3914 *eofp = 1; 3915 return (0); 3916 } 3917 3918 /* 3919 * Check if we have been called with a valid iov_len 3920 * and bail out if not, otherwise we may potentially loop 3921 * forever further down. 3922 */ 3923 if (uiop->uio_iov->iov_len <= 0) { 3924 error = EINVAL; 3925 goto out; 3926 } 3927 3928 /* 3929 * Large Files: When we come here we are guaranteed that 3930 * uio_offset can be used safely. The high word is zero. 3931 */ 3932 3933 ufsvfsp = ip->i_ufsvfs; 3934 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READDIR_MASK); 3935 if (error) 3936 goto out; 3937 3938 iovp = uiop->uio_iov; 3939 total_bytes_wanted = iovp->iov_len; 3940 3941 /* Large Files: directory files should not be "large" */ 3942 3943 ASSERT(ip->i_size <= MAXOFF32_T); 3944 3945 /* Force offset to be valid (to guard against bogus lseek() values) */ 3946 offset = (uint_t)uiop->uio_offset & ~(DIRBLKSIZ - 1); 3947 3948 /* Quit if at end of file or link count of zero (posix) */ 3949 if (offset >= (uint_t)ip->i_size || ip->i_nlink <= 0) { 3950 if (eofp) 3951 *eofp = 1; 3952 error = 0; 3953 goto unlock; 3954 } 3955 3956 /* 3957 * Get space to change directory entries into fs independent format. 3958 * Do fast alloc for the most commonly used-request size (filesystem 3959 * block size). 3960 */ 3961 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) { 3962 bufsize = total_bytes_wanted; 3963 outbuf = kmem_alloc(bufsize, KM_SLEEP); 3964 odp = (struct dirent64 *)outbuf; 3965 } else { 3966 bufsize = total_bytes_wanted; 3967 odp = (struct dirent64 *)iovp->iov_base; 3968 } 3969 3970 nextblk: 3971 bytes_wanted = total_bytes_wanted; 3972 3973 /* Truncate request to file size */ 3974 if (offset + bytes_wanted > (int)ip->i_size) 3975 bytes_wanted = (int)(ip->i_size - offset); 3976 3977 /* Comply with MAXBSIZE boundary restrictions of fbread() */ 3978 if ((offset & MAXBOFFSET) + bytes_wanted > MAXBSIZE) 3979 bytes_wanted = MAXBSIZE - (offset & MAXBOFFSET); 3980 3981 /* 3982 * Read in the next chunk. 3983 * We are still holding the i_rwlock. 3984 */ 3985 error = fbread(vp, (offset_t)offset, bytes_wanted, S_OTHER, &fbp); 3986 3987 if (error) 3988 goto update_inode; 3989 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (ip->i_fs->fs_ronly == 0) && 3990 (!ufsvfsp->vfs_noatime)) { 3991 ip->i_flag |= IACC; 3992 } 3993 incount = 0; 3994 idp = (struct direct *)fbp->fb_addr; 3995 if (idp->d_ino == 0 && idp->d_reclen == 0 && idp->d_namlen == 0) { 3996 cmn_err(CE_WARN, "ufs_readdir: bad dir, inumber = %llu, " 3997 "fs = %s\n", 3998 (u_longlong_t)ip->i_number, ufsvfsp->vfs_fs->fs_fsmnt); 3999 fbrelse(fbp, S_OTHER); 4000 error = ENXIO; 4001 goto update_inode; 4002 } 4003 /* Transform to file-system independent format */ 4004 while (incount < bytes_wanted) { 4005 /* 4006 * If the current directory entry is mangled, then skip 4007 * to the next block. It would be nice to set the FSBAD 4008 * flag in the super-block so that a fsck is forced on 4009 * next reboot, but locking is a problem. 4010 */ 4011 if (idp->d_reclen & 0x3) { 4012 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1); 4013 break; 4014 } 4015 4016 /* Skip to requested offset and skip empty entries */ 4017 if (idp->d_ino != 0 && offset >= (uint_t)uiop->uio_offset) { 4018 ushort_t this_reclen = 4019 DIRENT64_RECLEN(idp->d_namlen); 4020 /* Buffer too small for any entries */ 4021 if (!outcount && this_reclen > bufsize) { 4022 fbrelse(fbp, S_OTHER); 4023 error = EINVAL; 4024 goto update_inode; 4025 } 4026 /* If would overrun the buffer, quit */ 4027 if (outcount + this_reclen > bufsize) { 4028 break; 4029 } 4030 /* Take this entry */ 4031 odp->d_ino = (ino64_t)idp->d_ino; 4032 odp->d_reclen = (ushort_t)this_reclen; 4033 odp->d_off = (offset_t)(offset + idp->d_reclen); 4034 4035 /* use strncpy(9f) to zero out uninitialized bytes */ 4036 4037 ASSERT(strlen(idp->d_name) + 1 <= 4038 DIRENT64_NAMELEN(this_reclen)); 4039 (void) strncpy(odp->d_name, idp->d_name, 4040 DIRENT64_NAMELEN(this_reclen)); 4041 outcount += odp->d_reclen; 4042 odp = (struct dirent64 *) 4043 ((intptr_t)odp + odp->d_reclen); 4044 ASSERT(outcount <= bufsize); 4045 } 4046 if (idp->d_reclen) { 4047 incount += idp->d_reclen; 4048 offset += idp->d_reclen; 4049 idp = (struct direct *)((intptr_t)idp + idp->d_reclen); 4050 } else { 4051 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1); 4052 break; 4053 } 4054 } 4055 /* Release the chunk */ 4056 fbrelse(fbp, S_OTHER); 4057 4058 /* Read whole block, but got no entries, read another if not eof */ 4059 4060 /* 4061 * Large Files: casting i_size to int here is not a problem 4062 * because directory sizes are always less than MAXOFF32_T. 4063 * See assertion above. 4064 */ 4065 4066 if (offset < (int)ip->i_size && !outcount) 4067 goto nextblk; 4068 4069 /* Copy out the entry data */ 4070 if (uiop->uio_segflg == UIO_SYSSPACE && uiop->uio_iovcnt == 1) { 4071 iovp->iov_base += outcount; 4072 iovp->iov_len -= outcount; 4073 uiop->uio_resid -= outcount; 4074 uiop->uio_offset = offset; 4075 } else if ((error = uiomove(outbuf, (long)outcount, UIO_READ, 4076 uiop)) == 0) 4077 uiop->uio_offset = offset; 4078 update_inode: 4079 ITIMES(ip); 4080 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) 4081 kmem_free(outbuf, bufsize); 4082 4083 if (eofp && error == 0) 4084 *eofp = (uiop->uio_offset >= (int)ip->i_size); 4085 unlock: 4086 if (ulp) { 4087 ufs_lockfs_end(ulp); 4088 } 4089 out: 4090 return (error); 4091 } 4092 4093 /*ARGSUSED*/ 4094 static int 4095 ufs_symlink( 4096 struct vnode *dvp, /* ptr to parent dir vnode */ 4097 char *linkname, /* name of symbolic link */ 4098 struct vattr *vap, /* attributes */ 4099 char *target, /* target path */ 4100 struct cred *cr, /* user credentials */ 4101 caller_context_t *ct, 4102 int flags) 4103 { 4104 struct inode *ip, *dip = VTOI(dvp); 4105 struct ufsvfs *ufsvfsp = dip->i_ufsvfs; 4106 struct ulockfs *ulp; 4107 int error; 4108 int issync; 4109 int trans_size; 4110 int residual; 4111 int ioflag; 4112 int retry = 1; 4113 4114 /* 4115 * No symlinks in attrdirs at this time 4116 */ 4117 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR) 4118 return (EINVAL); 4119 4120 again: 4121 ip = (struct inode *)NULL; 4122 vap->va_type = VLNK; 4123 vap->va_rdev = 0; 4124 4125 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SYMLINK_MASK); 4126 if (error) 4127 goto out; 4128 4129 if (ulp) 4130 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SYMLINK, 4131 trans_size = (int)TOP_SYMLINK_SIZE(dip)); 4132 4133 /* 4134 * We must create the inode before the directory entry, to avoid 4135 * racing with readlink(). ufs_dirmakeinode requires that we 4136 * hold the quota lock as reader, and directory locks as writer. 4137 */ 4138 4139 rw_enter(&dip->i_rwlock, RW_WRITER); 4140 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4141 rw_enter(&dip->i_contents, RW_WRITER); 4142 4143 /* 4144 * Suppress any out of inodes messages if we will retry on 4145 * ENOSP 4146 */ 4147 if (retry) 4148 dip->i_flag |= IQUIET; 4149 4150 error = ufs_dirmakeinode(dip, &ip, vap, DE_SYMLINK, cr); 4151 4152 dip->i_flag &= ~IQUIET; 4153 4154 rw_exit(&dip->i_contents); 4155 rw_exit(&ufsvfsp->vfs_dqrwlock); 4156 rw_exit(&dip->i_rwlock); 4157 4158 if (error) 4159 goto unlock; 4160 4161 /* 4162 * OK. The inode has been created. Write out the data of the 4163 * symbolic link. Since symbolic links are metadata, and should 4164 * remain consistent across a system crash, we need to force the 4165 * data out synchronously. 4166 * 4167 * (This is a change from the semantics in earlier releases, which 4168 * only created symbolic links synchronously if the semi-documented 4169 * 'syncdir' option was set, or if we were being invoked by the NFS 4170 * server, which requires symbolic links to be created synchronously.) 4171 * 4172 * We need to pass in a pointer for the residual length; otherwise 4173 * ufs_rdwri() will always return EIO if it can't write the data, 4174 * even if the error was really ENOSPC or EDQUOT. 4175 */ 4176 4177 ioflag = FWRITE | FDSYNC; 4178 residual = 0; 4179 4180 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4181 rw_enter(&ip->i_contents, RW_WRITER); 4182 4183 /* 4184 * Suppress file system full messages if we will retry 4185 */ 4186 if (retry) 4187 ip->i_flag |= IQUIET; 4188 4189 error = ufs_rdwri(UIO_WRITE, ioflag, ip, target, strlen(target), 4190 (offset_t)0, UIO_SYSSPACE, &residual, cr); 4191 4192 ip->i_flag &= ~IQUIET; 4193 4194 if (error) { 4195 rw_exit(&ip->i_contents); 4196 rw_exit(&ufsvfsp->vfs_dqrwlock); 4197 goto remove; 4198 } 4199 4200 /* 4201 * If the link's data is small enough, we can cache it in the inode. 4202 * This is a "fast symbolic link". We don't use the first direct 4203 * block because that's actually used to point at the symbolic link's 4204 * contents on disk; but we know that none of the other direct or 4205 * indirect blocks can be used because symbolic links are restricted 4206 * to be smaller than a file system block. 4207 */ 4208 4209 ASSERT(MAXPATHLEN <= VBSIZE(ITOV(ip))); 4210 4211 if (ip->i_size > 0 && ip->i_size <= FSL_SIZE) { 4212 if (kcopy(target, &ip->i_db[1], ip->i_size) == 0) { 4213 ip->i_flag |= IFASTSYMLNK; 4214 } else { 4215 int i; 4216 /* error, clear garbage left behind */ 4217 for (i = 1; i < NDADDR; i++) 4218 ip->i_db[i] = 0; 4219 for (i = 0; i < NIADDR; i++) 4220 ip->i_ib[i] = 0; 4221 } 4222 } 4223 4224 rw_exit(&ip->i_contents); 4225 rw_exit(&ufsvfsp->vfs_dqrwlock); 4226 4227 /* 4228 * OK. We've successfully created the symbolic link. All that 4229 * remains is to insert it into the appropriate directory. 4230 */ 4231 4232 rw_enter(&dip->i_rwlock, RW_WRITER); 4233 error = ufs_direnter_lr(dip, linkname, DE_SYMLINK, NULL, ip, cr, NULL); 4234 rw_exit(&dip->i_rwlock); 4235 4236 /* 4237 * Fall through into remove-on-error code. We're either done, or we 4238 * need to remove the inode (if we couldn't insert it). 4239 */ 4240 4241 remove: 4242 if (error && (ip != NULL)) { 4243 rw_enter(&ip->i_contents, RW_WRITER); 4244 ip->i_nlink--; 4245 ip->i_flag |= ICHG; 4246 ip->i_seq++; 4247 ufs_setreclaim(ip); 4248 rw_exit(&ip->i_contents); 4249 } 4250 4251 unlock: 4252 if (ip != NULL) 4253 VN_RELE(ITOV(ip)); 4254 4255 if (ulp) { 4256 int terr = 0; 4257 4258 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SYMLINK, 4259 trans_size); 4260 ufs_lockfs_end(ulp); 4261 if (error == 0) 4262 error = terr; 4263 } 4264 4265 /* 4266 * We may have failed due to lack of an inode or of a block to 4267 * store the target in. Try flushing the delete queue to free 4268 * logically-available things up and try again. 4269 */ 4270 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 4271 ufs_delete_drain_wait(ufsvfsp, 1); 4272 retry = 0; 4273 goto again; 4274 } 4275 4276 out: 4277 return (error); 4278 } 4279 4280 /* 4281 * Ufs specific routine used to do ufs io. 4282 */ 4283 int 4284 ufs_rdwri(enum uio_rw rw, int ioflag, struct inode *ip, caddr_t base, 4285 ssize_t len, offset_t offset, enum uio_seg seg, int *aresid, 4286 struct cred *cr) 4287 { 4288 struct uio auio; 4289 struct iovec aiov; 4290 int error; 4291 4292 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 4293 4294 bzero((caddr_t)&auio, sizeof (uio_t)); 4295 bzero((caddr_t)&aiov, sizeof (iovec_t)); 4296 4297 aiov.iov_base = base; 4298 aiov.iov_len = len; 4299 auio.uio_iov = &aiov; 4300 auio.uio_iovcnt = 1; 4301 auio.uio_loffset = offset; 4302 auio.uio_segflg = (short)seg; 4303 auio.uio_resid = len; 4304 4305 if (rw == UIO_WRITE) { 4306 auio.uio_fmode = FWRITE; 4307 auio.uio_extflg = UIO_COPY_DEFAULT; 4308 auio.uio_llimit = curproc->p_fsz_ctl; 4309 error = wrip(ip, &auio, ioflag, cr); 4310 } else { 4311 auio.uio_fmode = FREAD; 4312 auio.uio_extflg = UIO_COPY_CACHED; 4313 auio.uio_llimit = MAXOFFSET_T; 4314 error = rdip(ip, &auio, ioflag, cr); 4315 } 4316 4317 if (aresid) { 4318 *aresid = auio.uio_resid; 4319 } else if (auio.uio_resid) { 4320 error = EIO; 4321 } 4322 return (error); 4323 } 4324 4325 /*ARGSUSED*/ 4326 static int 4327 ufs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct) 4328 { 4329 struct ufid *ufid; 4330 struct inode *ip = VTOI(vp); 4331 4332 if (ip->i_ufsvfs == NULL) 4333 return (EIO); 4334 4335 if (fidp->fid_len < (sizeof (struct ufid) - sizeof (ushort_t))) { 4336 fidp->fid_len = sizeof (struct ufid) - sizeof (ushort_t); 4337 return (ENOSPC); 4338 } 4339 4340 ufid = (struct ufid *)fidp; 4341 bzero((char *)ufid, sizeof (struct ufid)); 4342 ufid->ufid_len = sizeof (struct ufid) - sizeof (ushort_t); 4343 ufid->ufid_ino = ip->i_number; 4344 ufid->ufid_gen = ip->i_gen; 4345 4346 return (0); 4347 } 4348 4349 /* ARGSUSED2 */ 4350 static int 4351 ufs_rwlock(struct vnode *vp, int write_lock, caller_context_t *ctp) 4352 { 4353 struct inode *ip = VTOI(vp); 4354 struct ufsvfs *ufsvfsp; 4355 int forcedirectio; 4356 4357 /* 4358 * Read case is easy. 4359 */ 4360 if (!write_lock) { 4361 rw_enter(&ip->i_rwlock, RW_READER); 4362 return (V_WRITELOCK_FALSE); 4363 } 4364 4365 /* 4366 * Caller has requested a writer lock, but that inhibits any 4367 * concurrency in the VOPs that follow. Acquire the lock shared 4368 * and defer exclusive access until it is known to be needed in 4369 * other VOP handlers. Some cases can be determined here. 4370 */ 4371 4372 /* 4373 * If directio is not set, there is no chance of concurrency, 4374 * so just acquire the lock exclusive. Beware of a forced 4375 * unmount before looking at the mount option. 4376 */ 4377 ufsvfsp = ip->i_ufsvfs; 4378 forcedirectio = ufsvfsp ? ufsvfsp->vfs_forcedirectio : 0; 4379 if (!(ip->i_flag & IDIRECTIO || forcedirectio) || 4380 !ufs_allow_shared_writes) { 4381 rw_enter(&ip->i_rwlock, RW_WRITER); 4382 return (V_WRITELOCK_TRUE); 4383 } 4384 4385 /* 4386 * Mandatory locking forces acquiring i_rwlock exclusive. 4387 */ 4388 if (MANDLOCK(vp, ip->i_mode)) { 4389 rw_enter(&ip->i_rwlock, RW_WRITER); 4390 return (V_WRITELOCK_TRUE); 4391 } 4392 4393 /* 4394 * Acquire the lock shared in case a concurrent write follows. 4395 * Mandatory locking could have become enabled before the lock 4396 * was acquired. Re-check and upgrade if needed. 4397 */ 4398 rw_enter(&ip->i_rwlock, RW_READER); 4399 if (MANDLOCK(vp, ip->i_mode)) { 4400 rw_exit(&ip->i_rwlock); 4401 rw_enter(&ip->i_rwlock, RW_WRITER); 4402 return (V_WRITELOCK_TRUE); 4403 } 4404 return (V_WRITELOCK_FALSE); 4405 } 4406 4407 /*ARGSUSED*/ 4408 static void 4409 ufs_rwunlock(struct vnode *vp, int write_lock, caller_context_t *ctp) 4410 { 4411 struct inode *ip = VTOI(vp); 4412 4413 rw_exit(&ip->i_rwlock); 4414 } 4415 4416 /* ARGSUSED */ 4417 static int 4418 ufs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp, 4419 caller_context_t *ct) 4420 { 4421 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4422 } 4423 4424 /* ARGSUSED */ 4425 static int 4426 ufs_frlock(struct vnode *vp, int cmd, struct flock64 *bfp, int flag, 4427 offset_t offset, struct flk_callback *flk_cbp, struct cred *cr, 4428 caller_context_t *ct) 4429 { 4430 struct inode *ip = VTOI(vp); 4431 4432 if (ip->i_ufsvfs == NULL) 4433 return (EIO); 4434 4435 /* 4436 * If file is being mapped, disallow frlock. 4437 * XXX I am not holding tlock while checking i_mapcnt because the 4438 * current locking strategy drops all locks before calling fs_frlock. 4439 * So, mapcnt could change before we enter fs_frlock making is 4440 * meaningless to have held tlock in the first place. 4441 */ 4442 if (ip->i_mapcnt > 0 && MANDLOCK(vp, ip->i_mode)) 4443 return (EAGAIN); 4444 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4445 } 4446 4447 /* ARGSUSED */ 4448 static int 4449 ufs_space(struct vnode *vp, int cmd, struct flock64 *bfp, int flag, 4450 offset_t offset, cred_t *cr, caller_context_t *ct) 4451 { 4452 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 4453 struct ulockfs *ulp; 4454 int error; 4455 4456 if ((error = convoff(vp, bfp, 0, offset)) == 0) { 4457 if (cmd == F_FREESP) { 4458 error = ufs_lockfs_begin(ufsvfsp, &ulp, 4459 ULOCKFS_SPACE_MASK); 4460 if (error) 4461 return (error); 4462 error = ufs_freesp(vp, bfp, flag, cr); 4463 } else if (cmd == F_ALLOCSP) { 4464 error = ufs_lockfs_begin(ufsvfsp, &ulp, 4465 ULOCKFS_FALLOCATE_MASK); 4466 if (error) 4467 return (error); 4468 error = ufs_allocsp(vp, bfp, cr); 4469 } else 4470 return (EINVAL); /* Command not handled here */ 4471 4472 if (ulp) 4473 ufs_lockfs_end(ulp); 4474 4475 } 4476 return (error); 4477 } 4478 4479 /* 4480 * Used to determine if read ahead should be done. Also used to 4481 * to determine when write back occurs. 4482 */ 4483 #define CLUSTSZ(ip) ((ip)->i_ufsvfs->vfs_ioclustsz) 4484 4485 /* 4486 * A faster version of ufs_getpage. 4487 * 4488 * We optimize by inlining the pvn_getpages iterator, eliminating 4489 * calls to bmap_read if file doesn't have UFS holes, and avoiding 4490 * the overhead of page_exists(). 4491 * 4492 * When files has UFS_HOLES and ufs_getpage is called with S_READ, 4493 * we set *protp to PROT_READ to avoid calling bmap_read. This approach 4494 * victimizes performance when a file with UFS holes is faulted 4495 * first in the S_READ mode, and then in the S_WRITE mode. We will get 4496 * two MMU faults in this case. 4497 * 4498 * XXX - the inode fields which control the sequential mode are not 4499 * protected by any mutex. The read ahead will act wild if 4500 * multiple processes will access the file concurrently and 4501 * some of them in sequential mode. One particulary bad case 4502 * is if another thread will change the value of i_nextrio between 4503 * the time this thread tests the i_nextrio value and then reads it 4504 * again to use it as the offset for the read ahead. 4505 */ 4506 /*ARGSUSED*/ 4507 static int 4508 ufs_getpage(struct vnode *vp, offset_t off, size_t len, uint_t *protp, 4509 page_t *plarr[], size_t plsz, struct seg *seg, caddr_t addr, 4510 enum seg_rw rw, struct cred *cr, caller_context_t *ct) 4511 { 4512 u_offset_t uoff = (u_offset_t)off; /* type conversion */ 4513 u_offset_t pgoff; 4514 u_offset_t eoff; 4515 struct inode *ip = VTOI(vp); 4516 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 4517 struct fs *fs; 4518 struct ulockfs *ulp; 4519 page_t **pl; 4520 caddr_t pgaddr; 4521 krw_t rwtype; 4522 int err; 4523 int has_holes; 4524 int beyond_eof; 4525 int seqmode; 4526 int pgsize = PAGESIZE; 4527 int dolock; 4528 int do_qlock; 4529 int trans_size; 4530 4531 ASSERT((uoff & PAGEOFFSET) == 0); 4532 4533 if (protp) 4534 *protp = PROT_ALL; 4535 4536 /* 4537 * Obey the lockfs protocol 4538 */ 4539 err = ufs_lockfs_begin_getpage(ufsvfsp, &ulp, seg, 4540 rw == S_READ || rw == S_EXEC, protp); 4541 if (err) 4542 goto out; 4543 4544 fs = ufsvfsp->vfs_fs; 4545 4546 if (ulp && (rw == S_CREATE || rw == S_WRITE) && 4547 !(vp->v_flag & VISSWAP)) { 4548 /* 4549 * Try to start a transaction, will return if blocking is 4550 * expected to occur and the address space is not the 4551 * kernel address space. 4552 */ 4553 trans_size = TOP_GETPAGE_SIZE(ip); 4554 if (seg->s_as != &kas) { 4555 TRANS_TRY_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, 4556 trans_size, err) 4557 if (err == EWOULDBLOCK) { 4558 /* 4559 * Use EDEADLK here because the VM code 4560 * can normally never see this error. 4561 */ 4562 err = EDEADLK; 4563 ufs_lockfs_end(ulp); 4564 goto out; 4565 } 4566 } else { 4567 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size); 4568 } 4569 } 4570 4571 if (vp->v_flag & VNOMAP) { 4572 err = ENOSYS; 4573 goto unlock; 4574 } 4575 4576 seqmode = ip->i_nextr == uoff && rw != S_CREATE; 4577 4578 rwtype = RW_READER; /* start as a reader */ 4579 dolock = (rw_owner(&ip->i_contents) != curthread); 4580 /* 4581 * If this thread owns the lock, i.e., this thread grabbed it 4582 * as writer somewhere above, then we don't need to grab the 4583 * lock as reader in this routine. 4584 */ 4585 do_qlock = (rw_owner(&ufsvfsp->vfs_dqrwlock) != curthread); 4586 4587 retrylock: 4588 if (dolock) { 4589 /* 4590 * Grab the quota lock if we need to call 4591 * bmap_write() below (with i_contents as writer). 4592 */ 4593 if (do_qlock && rwtype == RW_WRITER) 4594 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4595 rw_enter(&ip->i_contents, rwtype); 4596 } 4597 4598 /* 4599 * We may be getting called as a side effect of a bmap using 4600 * fbread() when the blocks might be being allocated and the 4601 * size has not yet been up'ed. In this case we want to be 4602 * able to return zero pages if we get back UFS_HOLE from 4603 * calling bmap for a non write case here. We also might have 4604 * to read some frags from the disk into a page if we are 4605 * extending the number of frags for a given lbn in bmap(). 4606 * Large Files: The read of i_size here is atomic because 4607 * i_contents is held here. If dolock is zero, the lock 4608 * is held in bmap routines. 4609 */ 4610 beyond_eof = uoff + len > 4611 P2ROUNDUP_TYPED(ip->i_size, PAGESIZE, u_offset_t); 4612 if (beyond_eof && seg != segkmap) { 4613 if (dolock) { 4614 rw_exit(&ip->i_contents); 4615 if (do_qlock && rwtype == RW_WRITER) 4616 rw_exit(&ufsvfsp->vfs_dqrwlock); 4617 } 4618 err = EFAULT; 4619 goto unlock; 4620 } 4621 4622 /* 4623 * Must hold i_contents lock throughout the call to pvn_getpages 4624 * since locked pages are returned from each call to ufs_getapage. 4625 * Must *not* return locked pages and then try for contents lock 4626 * due to lock ordering requirements (inode > page) 4627 */ 4628 4629 has_holes = bmap_has_holes(ip); 4630 4631 if ((rw == S_WRITE || rw == S_CREATE) && has_holes && !beyond_eof) { 4632 int blk_size; 4633 u_offset_t offset; 4634 4635 /* 4636 * We must acquire the RW_WRITER lock in order to 4637 * call bmap_write(). 4638 */ 4639 if (dolock && rwtype == RW_READER) { 4640 rwtype = RW_WRITER; 4641 4642 /* 4643 * Grab the quota lock before 4644 * upgrading i_contents, but if we can't grab it 4645 * don't wait here due to lock order: 4646 * vfs_dqrwlock > i_contents. 4647 */ 4648 if (do_qlock && 4649 rw_tryenter(&ufsvfsp->vfs_dqrwlock, RW_READER) 4650 == 0) { 4651 rw_exit(&ip->i_contents); 4652 goto retrylock; 4653 } 4654 if (!rw_tryupgrade(&ip->i_contents)) { 4655 rw_exit(&ip->i_contents); 4656 if (do_qlock) 4657 rw_exit(&ufsvfsp->vfs_dqrwlock); 4658 goto retrylock; 4659 } 4660 } 4661 4662 /* 4663 * May be allocating disk blocks for holes here as 4664 * a result of mmap faults. write(2) does the bmap_write 4665 * in rdip/wrip, not here. We are not dealing with frags 4666 * in this case. 4667 */ 4668 /* 4669 * Large Files: We cast fs_bmask field to offset_t 4670 * just as we do for MAXBMASK because uoff is a 64-bit 4671 * data type. fs_bmask will still be a 32-bit type 4672 * as we cannot change any ondisk data structures. 4673 */ 4674 4675 offset = uoff & (offset_t)fs->fs_bmask; 4676 while (offset < uoff + len) { 4677 blk_size = (int)blksize(fs, ip, lblkno(fs, offset)); 4678 err = bmap_write(ip, offset, blk_size, 4679 BI_NORMAL, NULL, cr); 4680 if (ip->i_flag & (ICHG|IUPD)) 4681 ip->i_seq++; 4682 if (err) 4683 goto update_inode; 4684 offset += blk_size; /* XXX - make this contig */ 4685 } 4686 } 4687 4688 /* 4689 * Can be a reader from now on. 4690 */ 4691 if (dolock && rwtype == RW_WRITER) { 4692 rw_downgrade(&ip->i_contents); 4693 /* 4694 * We can release vfs_dqrwlock early so do it, but make 4695 * sure we don't try to release it again at the bottom. 4696 */ 4697 if (do_qlock) { 4698 rw_exit(&ufsvfsp->vfs_dqrwlock); 4699 do_qlock = 0; 4700 } 4701 } 4702 4703 /* 4704 * We remove PROT_WRITE in cases when the file has UFS holes 4705 * because we don't want to call bmap_read() to check each 4706 * page if it is backed with a disk block. 4707 */ 4708 if (protp && has_holes && rw != S_WRITE && rw != S_CREATE) 4709 *protp &= ~PROT_WRITE; 4710 4711 err = 0; 4712 4713 /* 4714 * The loop looks up pages in the range [off, off + len). 4715 * For each page, we first check if we should initiate an asynchronous 4716 * read ahead before we call page_lookup (we may sleep in page_lookup 4717 * for a previously initiated disk read). 4718 */ 4719 eoff = (uoff + len); 4720 for (pgoff = uoff, pgaddr = addr, pl = plarr; 4721 pgoff < eoff; /* empty */) { 4722 page_t *pp; 4723 u_offset_t nextrio; 4724 se_t se; 4725 int retval; 4726 4727 se = ((rw == S_CREATE || rw == S_OTHER) ? SE_EXCL : SE_SHARED); 4728 4729 /* Handle async getpage (faultahead) */ 4730 if (plarr == NULL) { 4731 ip->i_nextrio = pgoff; 4732 (void) ufs_getpage_ra(vp, pgoff, seg, pgaddr); 4733 pgoff += pgsize; 4734 pgaddr += pgsize; 4735 continue; 4736 } 4737 /* 4738 * Check if we should initiate read ahead of next cluster. 4739 * We call page_exists only when we need to confirm that 4740 * we have the current page before we initiate the read ahead. 4741 */ 4742 nextrio = ip->i_nextrio; 4743 if (seqmode && 4744 pgoff + CLUSTSZ(ip) >= nextrio && pgoff <= nextrio && 4745 nextrio < ip->i_size && page_exists(vp, pgoff)) { 4746 retval = ufs_getpage_ra(vp, pgoff, seg, pgaddr); 4747 /* 4748 * We always read ahead the next cluster of data 4749 * starting from i_nextrio. If the page (vp,nextrio) 4750 * is actually in core at this point, the routine 4751 * ufs_getpage_ra() will stop pre-fetching data 4752 * until we read that page in a synchronized manner 4753 * through ufs_getpage_miss(). So, we should increase 4754 * i_nextrio if the page (vp, nextrio) exists. 4755 */ 4756 if ((retval == 0) && page_exists(vp, nextrio)) { 4757 ip->i_nextrio = nextrio + pgsize; 4758 } 4759 } 4760 4761 if ((pp = page_lookup(vp, pgoff, se)) != NULL) { 4762 /* 4763 * We found the page in the page cache. 4764 */ 4765 *pl++ = pp; 4766 pgoff += pgsize; 4767 pgaddr += pgsize; 4768 len -= pgsize; 4769 plsz -= pgsize; 4770 } else { 4771 /* 4772 * We have to create the page, or read it from disk. 4773 */ 4774 if (err = ufs_getpage_miss(vp, pgoff, len, seg, pgaddr, 4775 pl, plsz, rw, seqmode)) 4776 goto error; 4777 4778 while (*pl != NULL) { 4779 pl++; 4780 pgoff += pgsize; 4781 pgaddr += pgsize; 4782 len -= pgsize; 4783 plsz -= pgsize; 4784 } 4785 } 4786 } 4787 4788 /* 4789 * Return pages up to plsz if they are in the page cache. 4790 * We cannot return pages if there is a chance that they are 4791 * backed with a UFS hole and rw is S_WRITE or S_CREATE. 4792 */ 4793 if (plarr && !(has_holes && (rw == S_WRITE || rw == S_CREATE))) { 4794 4795 ASSERT((protp == NULL) || 4796 !(has_holes && (*protp & PROT_WRITE))); 4797 4798 eoff = pgoff + plsz; 4799 while (pgoff < eoff) { 4800 page_t *pp; 4801 4802 if ((pp = page_lookup_nowait(vp, pgoff, 4803 SE_SHARED)) == NULL) 4804 break; 4805 4806 *pl++ = pp; 4807 pgoff += pgsize; 4808 plsz -= pgsize; 4809 } 4810 } 4811 4812 if (plarr) 4813 *pl = NULL; /* Terminate page list */ 4814 ip->i_nextr = pgoff; 4815 4816 error: 4817 if (err && plarr) { 4818 /* 4819 * Release any pages we have locked. 4820 */ 4821 while (pl > &plarr[0]) 4822 page_unlock(*--pl); 4823 4824 plarr[0] = NULL; 4825 } 4826 4827 update_inode: 4828 /* 4829 * If the inode is not already marked for IACC (in rdip() for read) 4830 * and the inode is not marked for no access time update (in wrip() 4831 * for write) then update the inode access time and mod time now. 4832 */ 4833 if ((ip->i_flag & (IACC | INOACC)) == 0) { 4834 if ((rw != S_OTHER) && (ip->i_mode & IFMT) != IFDIR) { 4835 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && 4836 (fs->fs_ronly == 0) && 4837 (!ufsvfsp->vfs_noatime)) { 4838 mutex_enter(&ip->i_tlock); 4839 ip->i_flag |= IACC; 4840 ITIMES_NOLOCK(ip); 4841 mutex_exit(&ip->i_tlock); 4842 } 4843 } 4844 } 4845 4846 if (dolock) { 4847 rw_exit(&ip->i_contents); 4848 if (do_qlock && rwtype == RW_WRITER) 4849 rw_exit(&ufsvfsp->vfs_dqrwlock); 4850 } 4851 4852 unlock: 4853 if (ulp) { 4854 if ((rw == S_CREATE || rw == S_WRITE) && 4855 !(vp->v_flag & VISSWAP)) { 4856 TRANS_END_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size); 4857 } 4858 ufs_lockfs_end(ulp); 4859 } 4860 out: 4861 return (err); 4862 } 4863 4864 /* 4865 * ufs_getpage_miss is called when ufs_getpage missed the page in the page 4866 * cache. The page is either read from the disk, or it's created. 4867 * A page is created (without disk read) if rw == S_CREATE, or if 4868 * the page is not backed with a real disk block (UFS hole). 4869 */ 4870 /* ARGSUSED */ 4871 static int 4872 ufs_getpage_miss(struct vnode *vp, u_offset_t off, size_t len, struct seg *seg, 4873 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw, int seq) 4874 { 4875 struct inode *ip = VTOI(vp); 4876 page_t *pp; 4877 daddr_t bn; 4878 size_t io_len; 4879 int crpage = 0; 4880 int err; 4881 int contig; 4882 int bsize = ip->i_fs->fs_bsize; 4883 4884 /* 4885 * Figure out whether the page can be created, or must be 4886 * must be read from the disk. 4887 */ 4888 if (rw == S_CREATE) 4889 crpage = 1; 4890 else { 4891 contig = 0; 4892 if (err = bmap_read(ip, off, &bn, &contig)) 4893 return (err); 4894 4895 crpage = (bn == UFS_HOLE); 4896 4897 /* 4898 * If its also a fallocated block that hasn't been written to 4899 * yet, we will treat it just like a UFS_HOLE and create 4900 * a zero page for it 4901 */ 4902 if (ISFALLOCBLK(ip, bn)) 4903 crpage = 1; 4904 } 4905 4906 if (crpage) { 4907 if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT, seg, 4908 addr)) == NULL) { 4909 return (ufs_fault(vp, 4910 "ufs_getpage_miss: page_create == NULL")); 4911 } 4912 4913 if (rw != S_CREATE) 4914 pagezero(pp, 0, PAGESIZE); 4915 4916 io_len = PAGESIZE; 4917 } else { 4918 u_offset_t io_off; 4919 uint_t xlen; 4920 struct buf *bp; 4921 ufsvfs_t *ufsvfsp = ip->i_ufsvfs; 4922 4923 /* 4924 * If access is not in sequential order, we read from disk 4925 * in bsize units. 4926 * 4927 * We limit the size of the transfer to bsize if we are reading 4928 * from the beginning of the file. Note in this situation we 4929 * will hedge our bets and initiate an async read ahead of 4930 * the second block. 4931 */ 4932 if (!seq || off == 0) 4933 contig = MIN(contig, bsize); 4934 4935 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4936 &io_len, off, contig, 0); 4937 4938 /* 4939 * Some other thread has entered the page. 4940 * ufs_getpage will retry page_lookup. 4941 */ 4942 if (pp == NULL) { 4943 pl[0] = NULL; 4944 return (0); 4945 } 4946 4947 /* 4948 * Zero part of the page which we are not 4949 * going to read from the disk. 4950 */ 4951 xlen = io_len & PAGEOFFSET; 4952 if (xlen != 0) 4953 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 4954 4955 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ); 4956 bp->b_edev = ip->i_dev; 4957 bp->b_dev = cmpdev(ip->i_dev); 4958 bp->b_blkno = bn; 4959 bp->b_un.b_addr = (caddr_t)0; 4960 bp->b_file = ip->i_vnode; 4961 bp->b_offset = off; 4962 4963 if (ufsvfsp->vfs_log) { 4964 lufs_read_strategy(ufsvfsp->vfs_log, bp); 4965 } else if (ufsvfsp->vfs_snapshot) { 4966 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 4967 } else { 4968 ufsvfsp->vfs_iotstamp = lbolt; 4969 ub.ub_getpages.value.ul++; 4970 (void) bdev_strategy(bp); 4971 lwp_stat_update(LWP_STAT_INBLK, 1); 4972 } 4973 4974 ip->i_nextrio = off + ((io_len + PAGESIZE - 1) & PAGEMASK); 4975 4976 /* 4977 * If the file access is sequential, initiate read ahead 4978 * of the next cluster. 4979 */ 4980 if (seq && ip->i_nextrio < ip->i_size) 4981 (void) ufs_getpage_ra(vp, off, seg, addr); 4982 err = biowait(bp); 4983 pageio_done(bp); 4984 4985 if (err) { 4986 pvn_read_done(pp, B_ERROR); 4987 return (err); 4988 } 4989 } 4990 4991 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4992 return (0); 4993 } 4994 4995 /* 4996 * Read ahead a cluster from the disk. Returns the length in bytes. 4997 */ 4998 static int 4999 ufs_getpage_ra(struct vnode *vp, u_offset_t off, struct seg *seg, caddr_t addr) 5000 { 5001 struct inode *ip = VTOI(vp); 5002 page_t *pp; 5003 u_offset_t io_off = ip->i_nextrio; 5004 ufsvfs_t *ufsvfsp; 5005 caddr_t addr2 = addr + (io_off - off); 5006 struct buf *bp; 5007 daddr_t bn; 5008 size_t io_len; 5009 int err; 5010 int contig; 5011 int xlen; 5012 int bsize = ip->i_fs->fs_bsize; 5013 5014 /* 5015 * If the directio advisory is in effect on this file, 5016 * then do not do buffered read ahead. Read ahead makes 5017 * it more difficult on threads using directio as they 5018 * will be forced to flush the pages from this vnode. 5019 */ 5020 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 5021 return (0); 5022 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) 5023 return (0); 5024 5025 /* 5026 * Is this test needed? 5027 */ 5028 if (addr2 >= seg->s_base + seg->s_size) 5029 return (0); 5030 5031 contig = 0; 5032 err = bmap_read(ip, io_off, &bn, &contig); 5033 /* 5034 * If its a UFS_HOLE or a fallocated block, do not perform 5035 * any read ahead's since there probably is nothing to read ahead 5036 */ 5037 if (err || bn == UFS_HOLE || ISFALLOCBLK(ip, bn)) 5038 return (0); 5039 5040 /* 5041 * Limit the transfer size to bsize if this is the 2nd block. 5042 */ 5043 if (io_off == (u_offset_t)bsize) 5044 contig = MIN(contig, bsize); 5045 5046 if ((pp = pvn_read_kluster(vp, io_off, seg, addr2, &io_off, 5047 &io_len, io_off, contig, 1)) == NULL) 5048 return (0); 5049 5050 /* 5051 * Zero part of page which we are not going to read from disk 5052 */ 5053 if ((xlen = (io_len & PAGEOFFSET)) > 0) 5054 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 5055 5056 ip->i_nextrio = (io_off + io_len + PAGESIZE - 1) & PAGEMASK; 5057 5058 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ | B_ASYNC); 5059 bp->b_edev = ip->i_dev; 5060 bp->b_dev = cmpdev(ip->i_dev); 5061 bp->b_blkno = bn; 5062 bp->b_un.b_addr = (caddr_t)0; 5063 bp->b_file = ip->i_vnode; 5064 bp->b_offset = off; 5065 5066 if (ufsvfsp->vfs_log) { 5067 lufs_read_strategy(ufsvfsp->vfs_log, bp); 5068 } else if (ufsvfsp->vfs_snapshot) { 5069 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5070 } else { 5071 ufsvfsp->vfs_iotstamp = lbolt; 5072 ub.ub_getras.value.ul++; 5073 (void) bdev_strategy(bp); 5074 lwp_stat_update(LWP_STAT_INBLK, 1); 5075 } 5076 5077 return (io_len); 5078 } 5079 5080 int ufs_delay = 1; 5081 /* 5082 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE, B_ASYNC} 5083 * 5084 * LMXXX - the inode really ought to contain a pointer to one of these 5085 * async args. Stuff gunk in there and just hand the whole mess off. 5086 * This would replace i_delaylen, i_delayoff. 5087 */ 5088 /*ARGSUSED*/ 5089 static int 5090 ufs_putpage(struct vnode *vp, offset_t off, size_t len, int flags, 5091 struct cred *cr, caller_context_t *ct) 5092 { 5093 struct inode *ip = VTOI(vp); 5094 int err = 0; 5095 5096 if (vp->v_count == 0) { 5097 return (ufs_fault(vp, "ufs_putpage: bad v_count == 0")); 5098 } 5099 5100 /* 5101 * XXX - Why should this check be made here? 5102 */ 5103 if (vp->v_flag & VNOMAP) { 5104 err = ENOSYS; 5105 goto errout; 5106 } 5107 5108 if (ip->i_ufsvfs == NULL) { 5109 err = EIO; 5110 goto errout; 5111 } 5112 5113 if (flags & B_ASYNC) { 5114 if (ufs_delay && len && 5115 (flags & ~(B_ASYNC|B_DONTNEED|B_FREE)) == 0) { 5116 mutex_enter(&ip->i_tlock); 5117 /* 5118 * If nobody stalled, start a new cluster. 5119 */ 5120 if (ip->i_delaylen == 0) { 5121 ip->i_delayoff = off; 5122 ip->i_delaylen = len; 5123 mutex_exit(&ip->i_tlock); 5124 goto errout; 5125 } 5126 /* 5127 * If we have a full cluster or they are not contig, 5128 * then push last cluster and start over. 5129 */ 5130 if (ip->i_delaylen >= CLUSTSZ(ip) || 5131 ip->i_delayoff + ip->i_delaylen != off) { 5132 u_offset_t doff; 5133 size_t dlen; 5134 5135 doff = ip->i_delayoff; 5136 dlen = ip->i_delaylen; 5137 ip->i_delayoff = off; 5138 ip->i_delaylen = len; 5139 mutex_exit(&ip->i_tlock); 5140 err = ufs_putpages(vp, doff, dlen, 5141 flags, cr); 5142 /* LMXXX - flags are new val, not old */ 5143 goto errout; 5144 } 5145 /* 5146 * There is something there, it's not full, and 5147 * it is contig. 5148 */ 5149 ip->i_delaylen += len; 5150 mutex_exit(&ip->i_tlock); 5151 goto errout; 5152 } 5153 /* 5154 * Must have weird flags or we are not clustering. 5155 */ 5156 } 5157 5158 err = ufs_putpages(vp, off, len, flags, cr); 5159 5160 errout: 5161 return (err); 5162 } 5163 5164 /* 5165 * If len == 0, do from off to EOF. 5166 * 5167 * The normal cases should be len == 0 & off == 0 (entire vp list), 5168 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 5169 * (from pageout). 5170 */ 5171 /*ARGSUSED*/ 5172 static int 5173 ufs_putpages( 5174 struct vnode *vp, 5175 offset_t off, 5176 size_t len, 5177 int flags, 5178 struct cred *cr) 5179 { 5180 u_offset_t io_off; 5181 u_offset_t eoff; 5182 struct inode *ip = VTOI(vp); 5183 page_t *pp; 5184 size_t io_len; 5185 int err = 0; 5186 int dolock; 5187 5188 if (vp->v_count == 0) 5189 return (ufs_fault(vp, "ufs_putpages: v_count == 0")); 5190 /* 5191 * Acquire the readers/write inode lock before locking 5192 * any pages in this inode. 5193 * The inode lock is held during i/o. 5194 */ 5195 if (len == 0) { 5196 mutex_enter(&ip->i_tlock); 5197 ip->i_delayoff = ip->i_delaylen = 0; 5198 mutex_exit(&ip->i_tlock); 5199 } 5200 dolock = (rw_owner(&ip->i_contents) != curthread); 5201 if (dolock) { 5202 /* 5203 * Must synchronize this thread and any possible thread 5204 * operating in the window of vulnerability in wrip(). 5205 * It is dangerous to allow both a thread doing a putpage 5206 * and a thread writing, so serialize them. The exception 5207 * is when the thread in wrip() does something which causes 5208 * a putpage operation. Then, the thread must be allowed 5209 * to continue. It may encounter a bmap_read problem in 5210 * ufs_putapage, but that is handled in ufs_putapage. 5211 * Allow async writers to proceed, we don't want to block 5212 * the pageout daemon. 5213 */ 5214 if (ip->i_writer == curthread) 5215 rw_enter(&ip->i_contents, RW_READER); 5216 else { 5217 for (;;) { 5218 rw_enter(&ip->i_contents, RW_READER); 5219 mutex_enter(&ip->i_tlock); 5220 /* 5221 * If there is no thread in the critical 5222 * section of wrip(), then proceed. 5223 * Otherwise, wait until there isn't one. 5224 */ 5225 if (ip->i_writer == NULL) { 5226 mutex_exit(&ip->i_tlock); 5227 break; 5228 } 5229 rw_exit(&ip->i_contents); 5230 /* 5231 * Bounce async writers when we have a writer 5232 * working on this file so we don't deadlock 5233 * the pageout daemon. 5234 */ 5235 if (flags & B_ASYNC) { 5236 mutex_exit(&ip->i_tlock); 5237 return (0); 5238 } 5239 cv_wait(&ip->i_wrcv, &ip->i_tlock); 5240 mutex_exit(&ip->i_tlock); 5241 } 5242 } 5243 } 5244 5245 if (!vn_has_cached_data(vp)) { 5246 if (dolock) 5247 rw_exit(&ip->i_contents); 5248 return (0); 5249 } 5250 5251 if (len == 0) { 5252 /* 5253 * Search the entire vp list for pages >= off. 5254 */ 5255 err = pvn_vplist_dirty(vp, (u_offset_t)off, ufs_putapage, 5256 flags, cr); 5257 } else { 5258 /* 5259 * Loop over all offsets in the range looking for 5260 * pages to deal with. 5261 */ 5262 if ((eoff = blkroundup(ip->i_fs, ip->i_size)) != 0) 5263 eoff = MIN(off + len, eoff); 5264 else 5265 eoff = off + len; 5266 5267 for (io_off = off; io_off < eoff; io_off += io_len) { 5268 /* 5269 * If we are not invalidating, synchronously 5270 * freeing or writing pages, use the routine 5271 * page_lookup_nowait() to prevent reclaiming 5272 * them from the free list. 5273 */ 5274 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 5275 pp = page_lookup(vp, io_off, 5276 (flags & (B_INVAL | B_FREE)) ? 5277 SE_EXCL : SE_SHARED); 5278 } else { 5279 pp = page_lookup_nowait(vp, io_off, 5280 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 5281 } 5282 5283 if (pp == NULL || pvn_getdirty(pp, flags) == 0) 5284 io_len = PAGESIZE; 5285 else { 5286 u_offset_t *io_offp = &io_off; 5287 5288 err = ufs_putapage(vp, pp, io_offp, &io_len, 5289 flags, cr); 5290 if (err != 0) 5291 break; 5292 /* 5293 * "io_off" and "io_len" are returned as 5294 * the range of pages we actually wrote. 5295 * This allows us to skip ahead more quickly 5296 * since several pages may've been dealt 5297 * with by this iteration of the loop. 5298 */ 5299 } 5300 } 5301 } 5302 if (err == 0 && off == 0 && (len == 0 || len >= ip->i_size)) { 5303 /* 5304 * We have just sync'ed back all the pages on 5305 * the inode, turn off the IMODTIME flag. 5306 */ 5307 mutex_enter(&ip->i_tlock); 5308 ip->i_flag &= ~IMODTIME; 5309 mutex_exit(&ip->i_tlock); 5310 } 5311 if (dolock) 5312 rw_exit(&ip->i_contents); 5313 return (err); 5314 } 5315 5316 static void 5317 ufs_iodone(buf_t *bp) 5318 { 5319 struct inode *ip; 5320 5321 ASSERT((bp->b_pages->p_vnode != NULL) && !(bp->b_flags & B_READ)); 5322 5323 bp->b_iodone = NULL; 5324 5325 ip = VTOI(bp->b_pages->p_vnode); 5326 5327 mutex_enter(&ip->i_tlock); 5328 if (ip->i_writes >= ufs_LW) { 5329 if ((ip->i_writes -= bp->b_bcount) <= ufs_LW) 5330 if (ufs_WRITES) 5331 cv_broadcast(&ip->i_wrcv); /* wake all up */ 5332 } else { 5333 ip->i_writes -= bp->b_bcount; 5334 } 5335 5336 mutex_exit(&ip->i_tlock); 5337 iodone(bp); 5338 } 5339 5340 /* 5341 * Write out a single page, possibly klustering adjacent 5342 * dirty pages. The inode lock must be held. 5343 * 5344 * LMXXX - bsize < pagesize not done. 5345 */ 5346 /*ARGSUSED*/ 5347 int 5348 ufs_putapage( 5349 struct vnode *vp, 5350 page_t *pp, 5351 u_offset_t *offp, 5352 size_t *lenp, /* return values */ 5353 int flags, 5354 struct cred *cr) 5355 { 5356 u_offset_t io_off; 5357 u_offset_t off; 5358 struct inode *ip = VTOI(vp); 5359 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 5360 struct fs *fs; 5361 struct buf *bp; 5362 size_t io_len; 5363 daddr_t bn; 5364 int err; 5365 int contig; 5366 int dotrans; 5367 5368 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 5369 5370 if (ufsvfsp == NULL) { 5371 err = EIO; 5372 goto out_trace; 5373 } 5374 5375 fs = ip->i_fs; 5376 ASSERT(fs->fs_ronly == 0); 5377 5378 /* 5379 * If the modified time on the inode has not already been 5380 * set elsewhere (e.g. for write/setattr) we set the time now. 5381 * This gives us approximate modified times for mmap'ed files 5382 * which are modified via stores in the user address space. 5383 */ 5384 if ((ip->i_flag & IMODTIME) == 0) { 5385 mutex_enter(&ip->i_tlock); 5386 ip->i_flag |= IUPD; 5387 ip->i_seq++; 5388 ITIMES_NOLOCK(ip); 5389 mutex_exit(&ip->i_tlock); 5390 } 5391 5392 /* 5393 * Align the request to a block boundry (for old file systems), 5394 * and go ask bmap() how contiguous things are for this file. 5395 */ 5396 off = pp->p_offset & (offset_t)fs->fs_bmask; /* block align it */ 5397 contig = 0; 5398 err = bmap_read(ip, off, &bn, &contig); 5399 if (err) 5400 goto out; 5401 if (bn == UFS_HOLE) { /* putpage never allocates */ 5402 /* 5403 * logging device is in error mode; simply return EIO 5404 */ 5405 if (TRANS_ISERROR(ufsvfsp)) { 5406 err = EIO; 5407 goto out; 5408 } 5409 /* 5410 * Oops, the thread in the window in wrip() did some 5411 * sort of operation which caused a putpage in the bad 5412 * range. In this case, just return an error which will 5413 * cause the software modified bit on the page to set 5414 * and the page will get written out again later. 5415 */ 5416 if (ip->i_writer == curthread) { 5417 err = EIO; 5418 goto out; 5419 } 5420 /* 5421 * If the pager is trying to push a page in the bad range 5422 * just tell him to try again later when things are better. 5423 */ 5424 if (flags & B_ASYNC) { 5425 err = EAGAIN; 5426 goto out; 5427 } 5428 err = ufs_fault(ITOV(ip), "ufs_putapage: bn == UFS_HOLE"); 5429 goto out; 5430 } 5431 5432 /* 5433 * If it is an fallocate'd block, reverse the negativity since 5434 * we are now writing to it 5435 */ 5436 if (ISFALLOCBLK(ip, bn)) { 5437 err = bmap_set_bn(vp, off, dbtofsb(fs, -bn)); 5438 if (err) 5439 goto out; 5440 5441 bn = -bn; 5442 } 5443 5444 /* 5445 * Take the length (of contiguous bytes) passed back from bmap() 5446 * and _try_ and get a set of pages covering that extent. 5447 */ 5448 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, off, contig, flags); 5449 5450 /* 5451 * May have run out of memory and not clustered backwards. 5452 * off p_offset 5453 * [ pp - 1 ][ pp ] 5454 * [ block ] 5455 * We told bmap off, so we have to adjust the bn accordingly. 5456 */ 5457 if (io_off > off) { 5458 bn += btod(io_off - off); 5459 contig -= (io_off - off); 5460 } 5461 5462 /* 5463 * bmap was carefull to tell us the right size so use that. 5464 * There might be unallocated frags at the end. 5465 * LMXXX - bzero the end of the page? We must be writing after EOF. 5466 */ 5467 if (io_len > contig) { 5468 ASSERT(io_len - contig < fs->fs_bsize); 5469 io_len -= (io_len - contig); 5470 } 5471 5472 /* 5473 * Handle the case where we are writing the last page after EOF. 5474 * 5475 * XXX - just a patch for i-mt3. 5476 */ 5477 if (io_len == 0) { 5478 ASSERT(pp->p_offset >= 5479 (u_offset_t)(roundup(ip->i_size, PAGESIZE))); 5480 io_len = PAGESIZE; 5481 } 5482 5483 bp = pageio_setup(pp, io_len, ip->i_devvp, B_WRITE | flags); 5484 5485 ULOCKFS_SET_MOD(ITOUL(ip)); 5486 5487 bp->b_edev = ip->i_dev; 5488 bp->b_dev = cmpdev(ip->i_dev); 5489 bp->b_blkno = bn; 5490 bp->b_un.b_addr = (caddr_t)0; 5491 bp->b_file = ip->i_vnode; 5492 5493 /* 5494 * File contents of shadow or quota inodes are metadata, and updates 5495 * to these need to be put into a logging transaction. All direct 5496 * callers in UFS do that, but fsflush can come here _before_ the 5497 * normal codepath. An example would be updating ACL information, for 5498 * which the normal codepath would be: 5499 * ufs_si_store() 5500 * ufs_rdwri() 5501 * wrip() 5502 * segmap_release() 5503 * VOP_PUTPAGE() 5504 * Here, fsflush can pick up the dirty page before segmap_release() 5505 * forces it out. If that happens, there's no transaction. 5506 * We therefore need to test whether a transaction exists, and if not 5507 * create one - for fsflush. 5508 */ 5509 dotrans = 5510 (((ip->i_mode & IFMT) == IFSHAD || ufsvfsp->vfs_qinod == ip) && 5511 ((curthread->t_flag & T_DONTBLOCK) == 0) && 5512 (TRANS_ISTRANS(ufsvfsp))); 5513 5514 if (dotrans) { 5515 curthread->t_flag |= T_DONTBLOCK; 5516 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip)); 5517 } 5518 if (TRANS_ISTRANS(ufsvfsp)) { 5519 if ((ip->i_mode & IFMT) == IFSHAD) { 5520 TRANS_BUF(ufsvfsp, 0, io_len, bp, DT_SHAD); 5521 } else if (ufsvfsp->vfs_qinod == ip) { 5522 TRANS_DELTA(ufsvfsp, ldbtob(bn), bp->b_bcount, DT_QR, 5523 0, 0); 5524 } 5525 } 5526 if (dotrans) { 5527 TRANS_END_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip)); 5528 curthread->t_flag &= ~T_DONTBLOCK; 5529 } 5530 5531 /* write throttle */ 5532 5533 ASSERT(bp->b_iodone == NULL); 5534 bp->b_iodone = (int (*)())ufs_iodone; 5535 mutex_enter(&ip->i_tlock); 5536 ip->i_writes += bp->b_bcount; 5537 mutex_exit(&ip->i_tlock); 5538 5539 if (bp->b_flags & B_ASYNC) { 5540 if (ufsvfsp->vfs_log) { 5541 lufs_write_strategy(ufsvfsp->vfs_log, bp); 5542 } else if (ufsvfsp->vfs_snapshot) { 5543 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5544 } else { 5545 ufsvfsp->vfs_iotstamp = lbolt; 5546 ub.ub_putasyncs.value.ul++; 5547 (void) bdev_strategy(bp); 5548 lwp_stat_update(LWP_STAT_OUBLK, 1); 5549 } 5550 } else { 5551 if (ufsvfsp->vfs_log) { 5552 lufs_write_strategy(ufsvfsp->vfs_log, bp); 5553 } else if (ufsvfsp->vfs_snapshot) { 5554 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5555 } else { 5556 ufsvfsp->vfs_iotstamp = lbolt; 5557 ub.ub_putsyncs.value.ul++; 5558 (void) bdev_strategy(bp); 5559 lwp_stat_update(LWP_STAT_OUBLK, 1); 5560 } 5561 err = biowait(bp); 5562 pageio_done(bp); 5563 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags); 5564 } 5565 5566 pp = NULL; 5567 5568 out: 5569 if (err != 0 && pp != NULL) 5570 pvn_write_done(pp, B_ERROR | B_WRITE | flags); 5571 5572 if (offp) 5573 *offp = io_off; 5574 if (lenp) 5575 *lenp = io_len; 5576 out_trace: 5577 return (err); 5578 } 5579 5580 uint64_t ufs_map_alock_retry_cnt; 5581 uint64_t ufs_map_lockfs_retry_cnt; 5582 5583 /* ARGSUSED */ 5584 static int 5585 ufs_map(struct vnode *vp, 5586 offset_t off, 5587 struct as *as, 5588 caddr_t *addrp, 5589 size_t len, 5590 uchar_t prot, 5591 uchar_t maxprot, 5592 uint_t flags, 5593 struct cred *cr, 5594 caller_context_t *ct) 5595 { 5596 struct segvn_crargs vn_a; 5597 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 5598 struct ulockfs *ulp; 5599 int error, sig; 5600 k_sigset_t smask; 5601 caddr_t hint = *addrp; 5602 5603 if (vp->v_flag & VNOMAP) { 5604 error = ENOSYS; 5605 goto out; 5606 } 5607 5608 if (off < (offset_t)0 || (offset_t)(off + len) < (offset_t)0) { 5609 error = ENXIO; 5610 goto out; 5611 } 5612 5613 if (vp->v_type != VREG) { 5614 error = ENODEV; 5615 goto out; 5616 } 5617 5618 retry_map: 5619 *addrp = hint; 5620 /* 5621 * If file is being locked, disallow mapping. 5622 */ 5623 if (vn_has_mandatory_locks(vp, VTOI(vp)->i_mode)) { 5624 error = EAGAIN; 5625 goto out; 5626 } 5627 5628 as_rangelock(as); 5629 /* 5630 * Note that if we are retrying (because ufs_lockfs_trybegin failed in 5631 * the previous attempt), some other thread could have grabbed 5632 * the same VA range if MAP_FIXED is set. In that case, choose_addr 5633 * would unmap the valid VA range, that is ok. 5634 */ 5635 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 5636 if (error != 0) { 5637 as_rangeunlock(as); 5638 goto out; 5639 } 5640 5641 /* 5642 * a_lock has to be acquired before entering the lockfs protocol 5643 * because that is the order in which pagefault works. Also we cannot 5644 * block on a_lock here because this waiting writer will prevent 5645 * further readers like ufs_read from progressing and could cause 5646 * deadlock between ufs_read/ufs_map/pagefault when a quiesce is 5647 * pending. 5648 */ 5649 while (!AS_LOCK_TRYENTER(as, &as->a_lock, RW_WRITER)) { 5650 ufs_map_alock_retry_cnt++; 5651 delay(RETRY_LOCK_DELAY); 5652 } 5653 5654 /* 5655 * We can't hold as->a_lock and wait for lockfs to succeed because 5656 * the proc tools might hang on a_lock, so call ufs_lockfs_trybegin() 5657 * instead. 5658 */ 5659 if (error = ufs_lockfs_trybegin(ufsvfsp, &ulp, ULOCKFS_MAP_MASK)) { 5660 /* 5661 * ufs_lockfs_trybegin() did not succeed. It is safer to give up 5662 * as->a_lock and wait for ulp->ul_fs_lock status to change. 5663 */ 5664 ufs_map_lockfs_retry_cnt++; 5665 AS_LOCK_EXIT(as, &as->a_lock); 5666 as_rangeunlock(as); 5667 if (error == EIO) 5668 goto out; 5669 5670 mutex_enter(&ulp->ul_lock); 5671 while (ulp->ul_fs_lock & ULOCKFS_MAP_MASK) { 5672 if (ULOCKFS_IS_SLOCK(ulp) || ufsvfsp->vfs_nointr) { 5673 cv_wait(&ulp->ul_cv, &ulp->ul_lock); 5674 } else { 5675 sigintr(&smask, 1); 5676 sig = cv_wait_sig(&ulp->ul_cv, &ulp->ul_lock); 5677 sigunintr(&smask); 5678 if (((ulp->ul_fs_lock & ULOCKFS_MAP_MASK) && 5679 !sig) || ufsvfsp->vfs_dontblock) { 5680 mutex_exit(&ulp->ul_lock); 5681 return (EINTR); 5682 } 5683 } 5684 } 5685 mutex_exit(&ulp->ul_lock); 5686 goto retry_map; 5687 } 5688 5689 vn_a.vp = vp; 5690 vn_a.offset = (u_offset_t)off; 5691 vn_a.type = flags & MAP_TYPE; 5692 vn_a.prot = prot; 5693 vn_a.maxprot = maxprot; 5694 vn_a.cred = cr; 5695 vn_a.amp = NULL; 5696 vn_a.flags = flags & ~MAP_TYPE; 5697 vn_a.szc = 0; 5698 vn_a.lgrp_mem_policy_flags = 0; 5699 5700 error = as_map_locked(as, *addrp, len, segvn_create, &vn_a); 5701 if (ulp) 5702 ufs_lockfs_end(ulp); 5703 as_rangeunlock(as); 5704 out: 5705 return (error); 5706 } 5707 5708 /* ARGSUSED */ 5709 static int 5710 ufs_addmap(struct vnode *vp, 5711 offset_t off, 5712 struct as *as, 5713 caddr_t addr, 5714 size_t len, 5715 uchar_t prot, 5716 uchar_t maxprot, 5717 uint_t flags, 5718 struct cred *cr, 5719 caller_context_t *ct) 5720 { 5721 struct inode *ip = VTOI(vp); 5722 5723 if (vp->v_flag & VNOMAP) { 5724 return (ENOSYS); 5725 } 5726 5727 mutex_enter(&ip->i_tlock); 5728 ip->i_mapcnt += btopr(len); 5729 mutex_exit(&ip->i_tlock); 5730 return (0); 5731 } 5732 5733 /*ARGSUSED*/ 5734 static int 5735 ufs_delmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr, 5736 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 5737 struct cred *cr, caller_context_t *ct) 5738 { 5739 struct inode *ip = VTOI(vp); 5740 5741 if (vp->v_flag & VNOMAP) { 5742 return (ENOSYS); 5743 } 5744 5745 mutex_enter(&ip->i_tlock); 5746 ip->i_mapcnt -= btopr(len); /* Count released mappings */ 5747 ASSERT(ip->i_mapcnt >= 0); 5748 mutex_exit(&ip->i_tlock); 5749 return (0); 5750 } 5751 /* 5752 * Return the answer requested to poll() for non-device files 5753 */ 5754 struct pollhead ufs_pollhd; 5755 5756 /* ARGSUSED */ 5757 int 5758 ufs_poll(vnode_t *vp, short ev, int any, short *revp, struct pollhead **phpp, 5759 caller_context_t *ct) 5760 { 5761 struct ufsvfs *ufsvfsp; 5762 5763 *revp = 0; 5764 ufsvfsp = VTOI(vp)->i_ufsvfs; 5765 5766 if (!ufsvfsp) { 5767 *revp = POLLHUP; 5768 goto out; 5769 } 5770 5771 if (ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs) || 5772 ULOCKFS_IS_ELOCK(&ufsvfsp->vfs_ulockfs)) { 5773 *revp |= POLLERR; 5774 5775 } else { 5776 if ((ev & POLLOUT) && !ufsvfsp->vfs_fs->fs_ronly && 5777 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs)) 5778 *revp |= POLLOUT; 5779 5780 if ((ev & POLLWRBAND) && !ufsvfsp->vfs_fs->fs_ronly && 5781 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs)) 5782 *revp |= POLLWRBAND; 5783 5784 if (ev & POLLIN) 5785 *revp |= POLLIN; 5786 5787 if (ev & POLLRDNORM) 5788 *revp |= POLLRDNORM; 5789 5790 if (ev & POLLRDBAND) 5791 *revp |= POLLRDBAND; 5792 } 5793 5794 if ((ev & POLLPRI) && (*revp & (POLLERR|POLLHUP))) 5795 *revp |= POLLPRI; 5796 out: 5797 *phpp = !any && !*revp ? &ufs_pollhd : (struct pollhead *)NULL; 5798 5799 return (0); 5800 } 5801 5802 /* ARGSUSED */ 5803 static int 5804 ufs_l_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr, 5805 caller_context_t *ct) 5806 { 5807 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 5808 struct ulockfs *ulp = NULL; 5809 struct inode *sip = NULL; 5810 int error; 5811 struct inode *ip = VTOI(vp); 5812 int issync; 5813 5814 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_PATHCONF_MASK); 5815 if (error) 5816 return (error); 5817 5818 switch (cmd) { 5819 /* 5820 * Have to handle _PC_NAME_MAX here, because the normal way 5821 * [fs_pathconf() -> VOP_STATVFS() -> ufs_statvfs()] 5822 * results in a lock ordering reversal between 5823 * ufs_lockfs_{begin,end}() and 5824 * ufs_thread_{suspend,continue}(). 5825 * 5826 * Keep in sync with ufs_statvfs(). 5827 */ 5828 case _PC_NAME_MAX: 5829 *valp = MAXNAMLEN; 5830 break; 5831 5832 case _PC_FILESIZEBITS: 5833 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) 5834 *valp = UFS_FILESIZE_BITS; 5835 else 5836 *valp = 32; 5837 break; 5838 5839 case _PC_XATTR_EXISTS: 5840 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 5841 5842 error = 5843 ufs_xattr_getattrdir(vp, &sip, LOOKUP_XATTR, cr); 5844 if (error == 0 && sip != NULL) { 5845 /* Start transaction */ 5846 if (ulp) { 5847 TRANS_BEGIN_CSYNC(ufsvfsp, issync, 5848 TOP_RMDIR, TOP_RMDIR_SIZE); 5849 } 5850 /* 5851 * Is directory empty 5852 */ 5853 rw_enter(&sip->i_rwlock, RW_WRITER); 5854 rw_enter(&sip->i_contents, RW_WRITER); 5855 if (ufs_xattrdirempty(sip, 5856 sip->i_number, CRED())) { 5857 rw_enter(&ip->i_contents, RW_WRITER); 5858 ufs_unhook_shadow(ip, sip); 5859 rw_exit(&ip->i_contents); 5860 5861 *valp = 0; 5862 5863 } else 5864 *valp = 1; 5865 rw_exit(&sip->i_contents); 5866 rw_exit(&sip->i_rwlock); 5867 if (ulp) { 5868 TRANS_END_CSYNC(ufsvfsp, error, issync, 5869 TOP_RMDIR, TOP_RMDIR_SIZE); 5870 } 5871 VN_RELE(ITOV(sip)); 5872 } else if (error == ENOENT) { 5873 *valp = 0; 5874 error = 0; 5875 } 5876 } else { 5877 error = fs_pathconf(vp, cmd, valp, cr, ct); 5878 } 5879 break; 5880 5881 case _PC_ACL_ENABLED: 5882 *valp = _ACL_ACLENT_ENABLED; 5883 break; 5884 5885 case _PC_MIN_HOLE_SIZE: 5886 *valp = (ulong_t)ip->i_fs->fs_bsize; 5887 break; 5888 5889 case _PC_SATTR_ENABLED: 5890 case _PC_SATTR_EXISTS: 5891 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 5892 (vp->v_type == VREG || vp->v_type == VDIR); 5893 break; 5894 5895 default: 5896 error = fs_pathconf(vp, cmd, valp, cr, ct); 5897 } 5898 5899 if (ulp != NULL) { 5900 ufs_lockfs_end(ulp); 5901 } 5902 return (error); 5903 } 5904 5905 int ufs_pageio_writes, ufs_pageio_reads; 5906 5907 /*ARGSUSED*/ 5908 static int 5909 ufs_pageio(struct vnode *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5910 int flags, struct cred *cr, caller_context_t *ct) 5911 { 5912 struct inode *ip = VTOI(vp); 5913 struct ufsvfs *ufsvfsp; 5914 page_t *npp = NULL, *opp = NULL, *cpp = pp; 5915 struct buf *bp; 5916 daddr_t bn; 5917 size_t done_len = 0, cur_len = 0; 5918 int err = 0; 5919 int contig = 0; 5920 int dolock; 5921 int vmpss = 0; 5922 struct ulockfs *ulp; 5923 5924 if ((flags & B_READ) && pp != NULL && pp->p_vnode == vp && 5925 vp->v_mpssdata != NULL) { 5926 vmpss = 1; 5927 } 5928 5929 dolock = (rw_owner(&ip->i_contents) != curthread); 5930 /* 5931 * We need a better check. Ideally, we would use another 5932 * vnodeops so that hlocked and forcibly unmounted file 5933 * systems would return EIO where appropriate and w/o the 5934 * need for these checks. 5935 */ 5936 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 5937 return (EIO); 5938 5939 /* 5940 * For vmpss (pp can be NULL) case respect the quiesce protocol. 5941 * ul_lock must be taken before locking pages so we can't use it here 5942 * if pp is non NULL because segvn already locked pages 5943 * SE_EXCL. Instead we rely on the fact that a forced umount or 5944 * applying a filesystem lock via ufs_fiolfs() will block in the 5945 * implicit call to ufs_flush() until we unlock the pages after the 5946 * return to segvn. Other ufs_quiesce() callers keep ufs_quiesce_pend 5947 * above 0 until they are done. We have to be careful not to increment 5948 * ul_vnops_cnt here after forceful unmount hlocks the file system. 5949 * 5950 * If pp is NULL use ul_lock to make sure we don't increment 5951 * ul_vnops_cnt after forceful unmount hlocks the file system. 5952 */ 5953 if (vmpss || pp == NULL) { 5954 ulp = &ufsvfsp->vfs_ulockfs; 5955 if (pp == NULL) 5956 mutex_enter(&ulp->ul_lock); 5957 if (ulp->ul_fs_lock & ULOCKFS_GETREAD_MASK) { 5958 if (pp == NULL) { 5959 mutex_exit(&ulp->ul_lock); 5960 } 5961 return (vmpss ? EIO : EINVAL); 5962 } 5963 atomic_add_long(&ulp->ul_vnops_cnt, 1); 5964 if (pp == NULL) 5965 mutex_exit(&ulp->ul_lock); 5966 if (ufs_quiesce_pend) { 5967 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5968 cv_broadcast(&ulp->ul_cv); 5969 return (vmpss ? EIO : EINVAL); 5970 } 5971 } 5972 5973 if (dolock) { 5974 /* 5975 * segvn may call VOP_PAGEIO() instead of VOP_GETPAGE() to 5976 * handle a fault against a segment that maps vnode pages with 5977 * large mappings. Segvn creates pages and holds them locked 5978 * SE_EXCL during VOP_PAGEIO() call. In this case we have to 5979 * use rw_tryenter() to avoid a potential deadlock since in 5980 * lock order i_contents needs to be taken first. 5981 * Segvn will retry via VOP_GETPAGE() if VOP_PAGEIO() fails. 5982 */ 5983 if (!vmpss) { 5984 rw_enter(&ip->i_contents, RW_READER); 5985 } else if (!rw_tryenter(&ip->i_contents, RW_READER)) { 5986 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5987 cv_broadcast(&ulp->ul_cv); 5988 return (EDEADLK); 5989 } 5990 } 5991 5992 /* 5993 * Return an error to segvn because the pagefault request is beyond 5994 * PAGESIZE rounded EOF. 5995 */ 5996 if (vmpss && btopr(io_off + io_len) > btopr(ip->i_size)) { 5997 if (dolock) 5998 rw_exit(&ip->i_contents); 5999 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 6000 cv_broadcast(&ulp->ul_cv); 6001 return (EFAULT); 6002 } 6003 6004 if (pp == NULL) { 6005 if (bmap_has_holes(ip)) { 6006 err = ENOSYS; 6007 } else { 6008 err = EINVAL; 6009 } 6010 if (dolock) 6011 rw_exit(&ip->i_contents); 6012 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 6013 cv_broadcast(&ulp->ul_cv); 6014 return (err); 6015 } 6016 6017 /* 6018 * Break the io request into chunks, one for each contiguous 6019 * stretch of disk blocks in the target file. 6020 */ 6021 while (done_len < io_len) { 6022 ASSERT(cpp); 6023 contig = 0; 6024 if (err = bmap_read(ip, (u_offset_t)(io_off + done_len), 6025 &bn, &contig)) 6026 break; 6027 6028 if (bn == UFS_HOLE) { /* No holey swapfiles */ 6029 if (vmpss) { 6030 err = EFAULT; 6031 break; 6032 } 6033 err = ufs_fault(ITOV(ip), "ufs_pageio: bn == UFS_HOLE"); 6034 break; 6035 } 6036 6037 cur_len = MIN(io_len - done_len, contig); 6038 /* 6039 * Zero out a page beyond EOF, when the last block of 6040 * a file is a UFS fragment so that ufs_pageio() can be used 6041 * instead of ufs_getpage() to handle faults against 6042 * segvn segments that use large pages. 6043 */ 6044 page_list_break(&cpp, &npp, btopr(cur_len)); 6045 if ((flags & B_READ) && (cur_len & PAGEOFFSET)) { 6046 size_t xlen = cur_len & PAGEOFFSET; 6047 pagezero(cpp->p_prev, xlen, PAGESIZE - xlen); 6048 } 6049 6050 bp = pageio_setup(cpp, cur_len, ip->i_devvp, flags); 6051 ASSERT(bp != NULL); 6052 6053 bp->b_edev = ip->i_dev; 6054 bp->b_dev = cmpdev(ip->i_dev); 6055 bp->b_blkno = bn; 6056 bp->b_un.b_addr = (caddr_t)0; 6057 bp->b_file = ip->i_vnode; 6058 6059 ufsvfsp->vfs_iotstamp = lbolt; 6060 ub.ub_pageios.value.ul++; 6061 if (ufsvfsp->vfs_snapshot) 6062 fssnap_strategy(&(ufsvfsp->vfs_snapshot), bp); 6063 else 6064 (void) bdev_strategy(bp); 6065 6066 if (flags & B_READ) 6067 ufs_pageio_reads++; 6068 else 6069 ufs_pageio_writes++; 6070 if (flags & B_READ) 6071 lwp_stat_update(LWP_STAT_INBLK, 1); 6072 else 6073 lwp_stat_update(LWP_STAT_OUBLK, 1); 6074 /* 6075 * If the request is not B_ASYNC, wait for i/o to complete 6076 * and re-assemble the page list to return to the caller. 6077 * If it is B_ASYNC we leave the page list in pieces and 6078 * cleanup() will dispose of them. 6079 */ 6080 if ((flags & B_ASYNC) == 0) { 6081 err = biowait(bp); 6082 pageio_done(bp); 6083 if (err) 6084 break; 6085 page_list_concat(&opp, &cpp); 6086 } 6087 cpp = npp; 6088 npp = NULL; 6089 if (flags & B_READ) 6090 cur_len = P2ROUNDUP_TYPED(cur_len, PAGESIZE, size_t); 6091 done_len += cur_len; 6092 } 6093 ASSERT(err || (cpp == NULL && npp == NULL && done_len == io_len)); 6094 if (err) { 6095 if (flags & B_ASYNC) { 6096 /* Cleanup unprocessed parts of list */ 6097 page_list_concat(&cpp, &npp); 6098 if (flags & B_READ) 6099 pvn_read_done(cpp, B_ERROR); 6100 else 6101 pvn_write_done(cpp, B_ERROR); 6102 } else { 6103 /* Re-assemble list and let caller clean up */ 6104 page_list_concat(&opp, &cpp); 6105 page_list_concat(&opp, &npp); 6106 } 6107 } 6108 6109 if (vmpss && !(ip->i_flag & IACC) && !ULOCKFS_IS_NOIACC(ulp) && 6110 ufsvfsp->vfs_fs->fs_ronly == 0 && !ufsvfsp->vfs_noatime) { 6111 mutex_enter(&ip->i_tlock); 6112 ip->i_flag |= IACC; 6113 ITIMES_NOLOCK(ip); 6114 mutex_exit(&ip->i_tlock); 6115 } 6116 6117 if (dolock) 6118 rw_exit(&ip->i_contents); 6119 if (vmpss && !atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 6120 cv_broadcast(&ulp->ul_cv); 6121 return (err); 6122 } 6123 6124 /* 6125 * Called when the kernel is in a frozen state to dump data 6126 * directly to the device. It uses a private dump data structure, 6127 * set up by dump_ctl, to locate the correct disk block to which to dump. 6128 */ 6129 /*ARGSUSED*/ 6130 static int 6131 ufs_dump(vnode_t *vp, caddr_t addr, offset_t ldbn, offset_t dblks, 6132 caller_context_t *ct) 6133 { 6134 u_offset_t file_size; 6135 struct inode *ip = VTOI(vp); 6136 struct fs *fs = ip->i_fs; 6137 daddr_t dbn, lfsbn; 6138 int disk_blks = fs->fs_bsize >> DEV_BSHIFT; 6139 int error = 0; 6140 int ndbs, nfsbs; 6141 6142 /* 6143 * forced unmount case 6144 */ 6145 if (ip->i_ufsvfs == NULL) 6146 return (EIO); 6147 /* 6148 * Validate the inode that it has not been modified since 6149 * the dump structure is allocated. 6150 */ 6151 mutex_enter(&ip->i_tlock); 6152 if ((dump_info == NULL) || 6153 (dump_info->ip != ip) || 6154 (dump_info->time.tv_sec != ip->i_mtime.tv_sec) || 6155 (dump_info->time.tv_usec != ip->i_mtime.tv_usec)) { 6156 mutex_exit(&ip->i_tlock); 6157 return (-1); 6158 } 6159 mutex_exit(&ip->i_tlock); 6160 6161 /* 6162 * See that the file has room for this write 6163 */ 6164 UFS_GET_ISIZE(&file_size, ip); 6165 6166 if (ldbtob(ldbn + dblks) > file_size) 6167 return (ENOSPC); 6168 6169 /* 6170 * Find the physical disk block numbers from the dump 6171 * private data structure directly and write out the data 6172 * in contiguous block lumps 6173 */ 6174 while (dblks > 0 && !error) { 6175 lfsbn = (daddr_t)lblkno(fs, ldbtob(ldbn)); 6176 dbn = fsbtodb(fs, dump_info->dblk[lfsbn]) + ldbn % disk_blks; 6177 nfsbs = 1; 6178 ndbs = disk_blks - ldbn % disk_blks; 6179 while (ndbs < dblks && fsbtodb(fs, dump_info->dblk[lfsbn + 6180 nfsbs]) == dbn + ndbs) { 6181 nfsbs++; 6182 ndbs += disk_blks; 6183 } 6184 if (ndbs > dblks) 6185 ndbs = dblks; 6186 error = bdev_dump(ip->i_dev, addr, dbn, ndbs); 6187 addr += ldbtob((offset_t)ndbs); 6188 dblks -= ndbs; 6189 ldbn += ndbs; 6190 } 6191 return (error); 6192 6193 } 6194 6195 /* 6196 * Prepare the file system before and after the dump operation. 6197 * 6198 * action = DUMP_ALLOC: 6199 * Preparation before dump, allocate dump private data structure 6200 * to hold all the direct and indirect block info for dump. 6201 * 6202 * action = DUMP_FREE: 6203 * Clean up after dump, deallocate the dump private data structure. 6204 * 6205 * action = DUMP_SCAN: 6206 * Scan dump_info for *blkp DEV_BSIZE blocks of contig fs space; 6207 * if found, the starting file-relative DEV_BSIZE lbn is written 6208 * to *bklp; that lbn is intended for use with VOP_DUMP() 6209 */ 6210 /*ARGSUSED*/ 6211 static int 6212 ufs_dumpctl(vnode_t *vp, int action, offset_t *blkp, caller_context_t *ct) 6213 { 6214 struct inode *ip = VTOI(vp); 6215 ufsvfs_t *ufsvfsp = ip->i_ufsvfs; 6216 struct fs *fs; 6217 daddr32_t *dblk, *storeblk; 6218 daddr32_t *nextblk, *endblk; 6219 struct buf *bp; 6220 int i, entry, entries; 6221 int n, ncontig; 6222 6223 /* 6224 * check for forced unmount 6225 */ 6226 if (ufsvfsp == NULL) 6227 return (EIO); 6228 6229 if (action == DUMP_ALLOC) { 6230 /* 6231 * alloc and record dump_info 6232 */ 6233 if (dump_info != NULL) 6234 return (EINVAL); 6235 6236 ASSERT(vp->v_type == VREG); 6237 fs = ufsvfsp->vfs_fs; 6238 6239 rw_enter(&ip->i_contents, RW_READER); 6240 6241 if (bmap_has_holes(ip)) { 6242 rw_exit(&ip->i_contents); 6243 return (EFAULT); 6244 } 6245 6246 /* 6247 * calculate and allocate space needed according to i_size 6248 */ 6249 entries = (int)lblkno(fs, blkroundup(fs, ip->i_size)); 6250 dump_info = kmem_alloc(sizeof (struct dump) + 6251 (entries - 1) * sizeof (daddr32_t), KM_NOSLEEP); 6252 if (dump_info == NULL) { 6253 rw_exit(&ip->i_contents); 6254 return (ENOMEM); 6255 } 6256 6257 /* Start saving the info */ 6258 dump_info->fsbs = entries; 6259 dump_info->ip = ip; 6260 storeblk = &dump_info->dblk[0]; 6261 6262 /* Direct Blocks */ 6263 for (entry = 0; entry < NDADDR && entry < entries; entry++) 6264 *storeblk++ = ip->i_db[entry]; 6265 6266 /* Indirect Blocks */ 6267 for (i = 0; i < NIADDR; i++) { 6268 int error = 0; 6269 6270 bp = UFS_BREAD(ufsvfsp, 6271 ip->i_dev, fsbtodb(fs, ip->i_ib[i]), fs->fs_bsize); 6272 if (bp->b_flags & B_ERROR) 6273 error = EIO; 6274 else { 6275 dblk = bp->b_un.b_daddr; 6276 if ((storeblk = save_dblks(ip, ufsvfsp, 6277 storeblk, dblk, i, entries)) == NULL) 6278 error = EIO; 6279 } 6280 6281 brelse(bp); 6282 6283 if (error != 0) { 6284 kmem_free(dump_info, sizeof (struct dump) + 6285 (entries - 1) * sizeof (daddr32_t)); 6286 rw_exit(&ip->i_contents); 6287 dump_info = NULL; 6288 return (error); 6289 } 6290 } 6291 /* and time stamp the information */ 6292 mutex_enter(&ip->i_tlock); 6293 dump_info->time = ip->i_mtime; 6294 mutex_exit(&ip->i_tlock); 6295 6296 rw_exit(&ip->i_contents); 6297 } else if (action == DUMP_FREE) { 6298 /* 6299 * free dump_info 6300 */ 6301 if (dump_info == NULL) 6302 return (EINVAL); 6303 entries = dump_info->fsbs - 1; 6304 kmem_free(dump_info, sizeof (struct dump) + 6305 entries * sizeof (daddr32_t)); 6306 dump_info = NULL; 6307 } else if (action == DUMP_SCAN) { 6308 /* 6309 * scan dump_info 6310 */ 6311 if (dump_info == NULL) 6312 return (EINVAL); 6313 6314 dblk = dump_info->dblk; 6315 nextblk = dblk + 1; 6316 endblk = dblk + dump_info->fsbs - 1; 6317 fs = ufsvfsp->vfs_fs; 6318 ncontig = *blkp >> (fs->fs_bshift - DEV_BSHIFT); 6319 6320 /* 6321 * scan dblk[] entries; contig fs space is found when: 6322 * ((current blkno + frags per block) == next blkno) 6323 */ 6324 n = 0; 6325 while (n < ncontig && dblk < endblk) { 6326 if ((*dblk + fs->fs_frag) == *nextblk) 6327 n++; 6328 else 6329 n = 0; 6330 dblk++; 6331 nextblk++; 6332 } 6333 6334 /* 6335 * index is where size bytes of contig space begins; 6336 * conversion from index to the file's DEV_BSIZE lbn 6337 * is equivalent to: (index * fs_bsize) / DEV_BSIZE 6338 */ 6339 if (n == ncontig) { 6340 i = (dblk - dump_info->dblk) - ncontig; 6341 *blkp = i << (fs->fs_bshift - DEV_BSHIFT); 6342 } else 6343 return (EFAULT); 6344 } 6345 return (0); 6346 } 6347 6348 /* 6349 * Recursive helper function for ufs_dumpctl(). It follows the indirect file 6350 * system blocks until it reaches the the disk block addresses, which are 6351 * then stored into the given buffer, storeblk. 6352 */ 6353 static daddr32_t * 6354 save_dblks(struct inode *ip, struct ufsvfs *ufsvfsp, daddr32_t *storeblk, 6355 daddr32_t *dblk, int level, int entries) 6356 { 6357 struct fs *fs = ufsvfsp->vfs_fs; 6358 struct buf *bp; 6359 int i; 6360 6361 if (level == 0) { 6362 for (i = 0; i < NINDIR(fs); i++) { 6363 if (storeblk - dump_info->dblk >= entries) 6364 break; 6365 *storeblk++ = dblk[i]; 6366 } 6367 return (storeblk); 6368 } 6369 for (i = 0; i < NINDIR(fs); i++) { 6370 if (storeblk - dump_info->dblk >= entries) 6371 break; 6372 bp = UFS_BREAD(ufsvfsp, 6373 ip->i_dev, fsbtodb(fs, dblk[i]), fs->fs_bsize); 6374 if (bp->b_flags & B_ERROR) { 6375 brelse(bp); 6376 return (NULL); 6377 } 6378 storeblk = save_dblks(ip, ufsvfsp, storeblk, bp->b_un.b_daddr, 6379 level - 1, entries); 6380 brelse(bp); 6381 6382 if (storeblk == NULL) 6383 return (NULL); 6384 } 6385 return (storeblk); 6386 } 6387 6388 /* ARGSUSED */ 6389 static int 6390 ufs_getsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, 6391 struct cred *cr, caller_context_t *ct) 6392 { 6393 struct inode *ip = VTOI(vp); 6394 struct ulockfs *ulp; 6395 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 6396 ulong_t vsa_mask = vsap->vsa_mask; 6397 int err = EINVAL; 6398 6399 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT); 6400 6401 /* 6402 * Only grab locks if needed - they're not needed to check vsa_mask 6403 * or if the mask contains no acl flags. 6404 */ 6405 if (vsa_mask != 0) { 6406 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, 6407 ULOCKFS_GETATTR_MASK)) 6408 return (err); 6409 6410 rw_enter(&ip->i_contents, RW_READER); 6411 err = ufs_acl_get(ip, vsap, flag, cr); 6412 rw_exit(&ip->i_contents); 6413 6414 if (ulp) 6415 ufs_lockfs_end(ulp); 6416 } 6417 return (err); 6418 } 6419 6420 /* ARGSUSED */ 6421 static int 6422 ufs_setsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr, 6423 caller_context_t *ct) 6424 { 6425 struct inode *ip = VTOI(vp); 6426 struct ulockfs *ulp = NULL; 6427 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 6428 ulong_t vsa_mask = vsap->vsa_mask; 6429 int err; 6430 int haverwlock = 1; 6431 int trans_size; 6432 int donetrans = 0; 6433 int retry = 1; 6434 6435 ASSERT(RW_LOCK_HELD(&ip->i_rwlock)); 6436 6437 /* Abort now if the request is either empty or invalid. */ 6438 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT); 6439 if ((vsa_mask == 0) || 6440 ((vsap->vsa_aclentp == NULL) && 6441 (vsap->vsa_dfaclentp == NULL))) { 6442 err = EINVAL; 6443 goto out; 6444 } 6445 6446 /* 6447 * Following convention, if this is a directory then we acquire the 6448 * inode's i_rwlock after starting a UFS logging transaction; 6449 * otherwise, we acquire it beforehand. Since we were called (and 6450 * must therefore return) with the lock held, we will have to drop it, 6451 * and later reacquire it, if operating on a directory. 6452 */ 6453 if (vp->v_type == VDIR) { 6454 rw_exit(&ip->i_rwlock); 6455 haverwlock = 0; 6456 } else { 6457 /* Upgrade the lock if required. */ 6458 if (!rw_write_held(&ip->i_rwlock)) { 6459 rw_exit(&ip->i_rwlock); 6460 rw_enter(&ip->i_rwlock, RW_WRITER); 6461 } 6462 } 6463 6464 again: 6465 ASSERT(!(vp->v_type == VDIR && haverwlock)); 6466 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK)) { 6467 ulp = NULL; 6468 retry = 0; 6469 goto out; 6470 } 6471 6472 /* 6473 * Check that the file system supports this operation. Note that 6474 * ufs_lockfs_begin() will have checked that the file system had 6475 * not been forcibly unmounted. 6476 */ 6477 if (ufsvfsp->vfs_fs->fs_ronly) { 6478 err = EROFS; 6479 goto out; 6480 } 6481 if (ufsvfsp->vfs_nosetsec) { 6482 err = ENOSYS; 6483 goto out; 6484 } 6485 6486 if (ulp) { 6487 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_SETSECATTR, 6488 trans_size = TOP_SETSECATTR_SIZE(VTOI(vp))); 6489 donetrans = 1; 6490 } 6491 6492 if (vp->v_type == VDIR) { 6493 rw_enter(&ip->i_rwlock, RW_WRITER); 6494 haverwlock = 1; 6495 } 6496 6497 ASSERT(haverwlock); 6498 6499 /* Do the actual work. */ 6500 rw_enter(&ip->i_contents, RW_WRITER); 6501 /* 6502 * Suppress out of inodes messages if we will retry. 6503 */ 6504 if (retry) 6505 ip->i_flag |= IQUIET; 6506 err = ufs_acl_set(ip, vsap, flag, cr); 6507 ip->i_flag &= ~IQUIET; 6508 rw_exit(&ip->i_contents); 6509 6510 out: 6511 if (ulp) { 6512 if (donetrans) { 6513 /* 6514 * top_end_async() can eventually call 6515 * top_end_sync(), which can block. We must 6516 * therefore observe the lock-ordering protocol 6517 * here as well. 6518 */ 6519 if (vp->v_type == VDIR) { 6520 rw_exit(&ip->i_rwlock); 6521 haverwlock = 0; 6522 } 6523 TRANS_END_ASYNC(ufsvfsp, TOP_SETSECATTR, trans_size); 6524 } 6525 ufs_lockfs_end(ulp); 6526 } 6527 /* 6528 * If no inodes available, try scaring a logically- 6529 * free one out of the delete queue to someplace 6530 * that we can find it. 6531 */ 6532 if ((err == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 6533 ufs_delete_drain_wait(ufsvfsp, 1); 6534 retry = 0; 6535 if (vp->v_type == VDIR && haverwlock) { 6536 rw_exit(&ip->i_rwlock); 6537 haverwlock = 0; 6538 } 6539 goto again; 6540 } 6541 /* 6542 * If we need to reacquire the lock then it is safe to do so 6543 * as a reader. This is because ufs_rwunlock(), which will be 6544 * called by our caller after we return, does not differentiate 6545 * between shared and exclusive locks. 6546 */ 6547 if (!haverwlock) { 6548 ASSERT(vp->v_type == VDIR); 6549 rw_enter(&ip->i_rwlock, RW_READER); 6550 } 6551 6552 return (err); 6553 } 6554