1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * Portions of this source code were derived from Berkeley 4.3 BSD 32 * under license from the Regents of the University of California. 33 */ 34 35 #pragma ident "%Z%%M% %I% %E% SMI" 36 37 #include <sys/types.h> 38 #include <sys/t_lock.h> 39 #include <sys/ksynch.h> 40 #include <sys/param.h> 41 #include <sys/time.h> 42 #include <sys/systm.h> 43 #include <sys/sysmacros.h> 44 #include <sys/resource.h> 45 #include <sys/signal.h> 46 #include <sys/cred.h> 47 #include <sys/user.h> 48 #include <sys/buf.h> 49 #include <sys/vfs.h> 50 #include <sys/vnode.h> 51 #include <sys/proc.h> 52 #include <sys/disp.h> 53 #include <sys/file.h> 54 #include <sys/fcntl.h> 55 #include <sys/flock.h> 56 #include <sys/kmem.h> 57 #include <sys/uio.h> 58 #include <sys/dnlc.h> 59 #include <sys/conf.h> 60 #include <sys/mman.h> 61 #include <sys/pathname.h> 62 #include <sys/debug.h> 63 #include <sys/vmsystm.h> 64 #include <sys/cmn_err.h> 65 #include <sys/vtrace.h> 66 #include <sys/filio.h> 67 #include <sys/policy.h> 68 69 #include <sys/fs/ufs_fs.h> 70 #include <sys/fs/ufs_lockfs.h> 71 #include <sys/fs/ufs_filio.h> 72 #include <sys/fs/ufs_inode.h> 73 #include <sys/fs/ufs_fsdir.h> 74 #include <sys/fs/ufs_quota.h> 75 #include <sys/fs/ufs_log.h> 76 #include <sys/fs/ufs_snap.h> 77 #include <sys/fs/ufs_trans.h> 78 #include <sys/fs/ufs_panic.h> 79 #include <sys/fs/ufs_bio.h> 80 #include <sys/dirent.h> /* must be AFTER <sys/fs/fsdir.h>! */ 81 #include <sys/errno.h> 82 #include <sys/fssnap_if.h> 83 #include <sys/unistd.h> 84 #include <sys/sunddi.h> 85 86 #include <sys/filio.h> /* _FIOIO */ 87 88 #include <vm/hat.h> 89 #include <vm/page.h> 90 #include <vm/pvn.h> 91 #include <vm/as.h> 92 #include <vm/seg.h> 93 #include <vm/seg_map.h> 94 #include <vm/seg_vn.h> 95 #include <vm/seg_kmem.h> 96 #include <vm/rm.h> 97 #include <sys/swap.h> 98 99 #include <fs/fs_subr.h> 100 101 static struct instats ins; 102 103 static int ufs_getpage_ra(struct vnode *, u_offset_t, struct seg *, caddr_t); 104 static int ufs_getpage_miss(struct vnode *, u_offset_t, size_t, struct seg *, 105 caddr_t, struct page **, size_t, enum seg_rw, int); 106 static int ufs_open(struct vnode **, int, struct cred *); 107 static int ufs_close(struct vnode *, int, int, offset_t, struct cred *); 108 static int ufs_read(struct vnode *, struct uio *, int, struct cred *, 109 struct caller_context *); 110 static int ufs_write(struct vnode *, struct uio *, int, struct cred *, 111 struct caller_context *); 112 static int ufs_ioctl(struct vnode *, int, intptr_t, int, struct cred *, int *); 113 static int ufs_getattr(struct vnode *, struct vattr *, int, struct cred *); 114 static int ufs_setattr(struct vnode *, struct vattr *, int, struct cred *, 115 caller_context_t *); 116 static int ufs_access(struct vnode *, int, int, struct cred *); 117 static int ufs_lookup(struct vnode *, char *, struct vnode **, 118 struct pathname *, int, struct vnode *, struct cred *); 119 static int ufs_create(struct vnode *, char *, struct vattr *, enum vcexcl, 120 int, struct vnode **, struct cred *, int); 121 static int ufs_remove(struct vnode *, char *, struct cred *); 122 static int ufs_link(struct vnode *, struct vnode *, char *, struct cred *); 123 static int ufs_rename(struct vnode *, char *, struct vnode *, char *, 124 struct cred *); 125 static int ufs_mkdir(struct vnode *, char *, struct vattr *, struct vnode **, 126 struct cred *); 127 static int ufs_rmdir(struct vnode *, char *, struct vnode *, struct cred *); 128 static int ufs_readdir(struct vnode *, struct uio *, struct cred *, int *); 129 static int ufs_symlink(struct vnode *, char *, struct vattr *, char *, 130 struct cred *); 131 static int ufs_readlink(struct vnode *, struct uio *, struct cred *); 132 static int ufs_fsync(struct vnode *, int, struct cred *); 133 static void ufs_inactive(struct vnode *, struct cred *); 134 static int ufs_fid(struct vnode *, struct fid *); 135 static int ufs_rwlock(struct vnode *, int, caller_context_t *); 136 static void ufs_rwunlock(struct vnode *, int, caller_context_t *); 137 static int ufs_seek(struct vnode *, offset_t, offset_t *); 138 static int ufs_frlock(struct vnode *, int, struct flock64 *, int, offset_t, 139 struct flk_callback *, struct cred *); 140 static int ufs_space(struct vnode *, int, struct flock64 *, int, offset_t, 141 cred_t *, caller_context_t *); 142 static int ufs_getpage(struct vnode *, offset_t, size_t, uint_t *, 143 struct page **, size_t, struct seg *, caddr_t, 144 enum seg_rw, struct cred *); 145 static int ufs_putpage(struct vnode *, offset_t, size_t, int, struct cred *); 146 static int ufs_putpages(struct vnode *, offset_t, size_t, int, struct cred *); 147 static int ufs_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t, 148 uchar_t, uchar_t, uint_t, struct cred *); 149 static int ufs_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 150 uchar_t, uchar_t, uint_t, struct cred *); 151 static int ufs_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 152 uint_t, uint_t, uint_t, struct cred *); 153 static int ufs_poll(vnode_t *, short, int, short *, struct pollhead **); 154 static int ufs_dump(vnode_t *, caddr_t, int, int); 155 static int ufs_l_pathconf(struct vnode *, int, ulong_t *, struct cred *); 156 static int ufs_pageio(struct vnode *, struct page *, u_offset_t, size_t, int, 157 struct cred *); 158 static int ufs_dump(vnode_t *, caddr_t, int, int); 159 static int ufs_dumpctl(vnode_t *, int, int *); 160 static daddr32_t *save_dblks(struct inode *, struct ufsvfs *, daddr32_t *, 161 daddr32_t *, int, int); 162 static int ufs_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *); 163 static int ufs_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *); 164 165 /* 166 * For lockfs: ulockfs begin/end is now inlined in the ufs_xxx functions. 167 * 168 * XXX - ULOCKFS in fs_pathconf and ufs_ioctl is not inlined yet. 169 */ 170 struct vnodeops *ufs_vnodeops; 171 172 const fs_operation_def_t ufs_vnodeops_template[] = { 173 VOPNAME_OPEN, ufs_open, /* will not be blocked by lockfs */ 174 VOPNAME_CLOSE, ufs_close, /* will not be blocked by lockfs */ 175 VOPNAME_READ, ufs_read, 176 VOPNAME_WRITE, ufs_write, 177 VOPNAME_IOCTL, ufs_ioctl, 178 VOPNAME_GETATTR, ufs_getattr, 179 VOPNAME_SETATTR, ufs_setattr, 180 VOPNAME_ACCESS, ufs_access, 181 VOPNAME_LOOKUP, ufs_lookup, 182 VOPNAME_CREATE, ufs_create, 183 VOPNAME_REMOVE, ufs_remove, 184 VOPNAME_LINK, ufs_link, 185 VOPNAME_RENAME, ufs_rename, 186 VOPNAME_MKDIR, ufs_mkdir, 187 VOPNAME_RMDIR, ufs_rmdir, 188 VOPNAME_READDIR, ufs_readdir, 189 VOPNAME_SYMLINK, ufs_symlink, 190 VOPNAME_READLINK, ufs_readlink, 191 VOPNAME_FSYNC, ufs_fsync, 192 VOPNAME_INACTIVE, (fs_generic_func_p) ufs_inactive, /* not blocked */ 193 VOPNAME_FID, ufs_fid, 194 VOPNAME_RWLOCK, ufs_rwlock, /* not blocked */ 195 VOPNAME_RWUNLOCK, (fs_generic_func_p) ufs_rwunlock, /* not blocked */ 196 VOPNAME_SEEK, ufs_seek, 197 VOPNAME_FRLOCK, ufs_frlock, 198 VOPNAME_SPACE, ufs_space, 199 VOPNAME_GETPAGE, ufs_getpage, 200 VOPNAME_PUTPAGE, ufs_putpage, 201 VOPNAME_MAP, (fs_generic_func_p) ufs_map, 202 VOPNAME_ADDMAP, (fs_generic_func_p) ufs_addmap, /* not blocked */ 203 VOPNAME_DELMAP, ufs_delmap, /* will not be blocked by lockfs */ 204 VOPNAME_POLL, (fs_generic_func_p) ufs_poll, /* not blocked */ 205 VOPNAME_DUMP, ufs_dump, 206 VOPNAME_PATHCONF, ufs_l_pathconf, 207 VOPNAME_PAGEIO, ufs_pageio, 208 VOPNAME_DUMPCTL, ufs_dumpctl, 209 VOPNAME_GETSECATTR, ufs_getsecattr, 210 VOPNAME_SETSECATTR, ufs_setsecattr, 211 VOPNAME_VNEVENT, fs_vnevent_support, 212 NULL, NULL 213 }; 214 215 #define MAX_BACKFILE_COUNT 9999 216 217 /* 218 * Created by ufs_dumpctl() to store a file's disk block info into memory. 219 * Used by ufs_dump() to dump data to disk directly. 220 */ 221 struct dump { 222 struct inode *ip; /* the file we contain */ 223 daddr_t fsbs; /* number of blocks stored */ 224 struct timeval32 time; /* time stamp for the struct */ 225 daddr32_t dblk[1]; /* place holder for block info */ 226 }; 227 228 static struct dump *dump_info = NULL; 229 230 /* 231 * Previously there was no special action required for ordinary files. 232 * (Devices are handled through the device file system.) 233 * Now we support Large Files and Large File API requires open to 234 * fail if file is large. 235 * We could take care to prevent data corruption 236 * by doing an atomic check of size and truncate if file is opened with 237 * FTRUNC flag set but traditionally this is being done by the vfs/vnode 238 * layers. So taking care of truncation here is a change in the existing 239 * semantics of VOP_OPEN and therefore we chose not to implement any thing 240 * here. The check for the size of the file > 2GB is being done at the 241 * vfs layer in routine vn_open(). 242 */ 243 244 /* ARGSUSED */ 245 static int 246 ufs_open(struct vnode **vpp, int flag, struct cred *cr) 247 { 248 TRACE_1(TR_FAC_UFS, TR_UFS_OPEN, "ufs_open:vpp %p", vpp); 249 return (0); 250 } 251 252 /*ARGSUSED*/ 253 static int 254 ufs_close(struct vnode *vp, int flag, int count, offset_t offset, 255 struct cred *cr) 256 { 257 TRACE_1(TR_FAC_UFS, TR_UFS_CLOSE, "ufs_close:vp %p", vp); 258 259 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 260 cleanshares(vp, ttoproc(curthread)->p_pid); 261 262 /* 263 * Push partially filled cluster at last close. 264 * ``last close'' is approximated because the dnlc 265 * may have a hold on the vnode. 266 * Checking for VBAD here will also act as a forced umount check. 267 */ 268 if (vp->v_count <= 2 && vp->v_type != VBAD) { 269 struct inode *ip = VTOI(vp); 270 if (ip->i_delaylen) { 271 ins.in_poc.value.ul++; 272 (void) ufs_putpages(vp, ip->i_delayoff, ip->i_delaylen, 273 B_ASYNC | B_FREE, cr); 274 ip->i_delaylen = 0; 275 } 276 } 277 278 return (0); 279 } 280 281 /*ARGSUSED*/ 282 static int 283 ufs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cr, 284 struct caller_context *ct) 285 { 286 struct inode *ip = VTOI(vp); 287 struct ufsvfs *ufsvfsp; 288 struct ulockfs *ulp = NULL; 289 int error = 0; 290 int intrans = 0; 291 292 ASSERT(RW_READ_HELD(&ip->i_rwlock)); 293 TRACE_3(TR_FAC_UFS, TR_UFS_READ_START, 294 "ufs_read_start:vp %p uiop %p ioflag %x", 295 vp, uiop, ioflag); 296 297 /* 298 * Mandatory locking needs to be done before ufs_lockfs_begin() 299 * and TRANS_BEGIN_SYNC() calls since mandatory locks can sleep. 300 */ 301 if (MANDLOCK(vp, ip->i_mode)) { 302 /* 303 * ufs_getattr ends up being called by chklock 304 */ 305 error = chklock(vp, FREAD, uiop->uio_loffset, 306 uiop->uio_resid, uiop->uio_fmode, ct); 307 if (error) 308 goto out; 309 } 310 311 ufsvfsp = ip->i_ufsvfs; 312 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READ_MASK); 313 if (error) 314 goto out; 315 316 /* 317 * In the case that a directory is opened for reading as a file 318 * (eg "cat .") with the O_RSYNC, O_SYNC and O_DSYNC flags set. 319 * The locking order had to be changed to avoid a deadlock with 320 * an update taking place on that directory at the same time. 321 */ 322 if ((ip->i_mode & IFMT) == IFDIR) { 323 324 rw_enter(&ip->i_contents, RW_READER); 325 error = rdip(ip, uiop, ioflag, cr); 326 rw_exit(&ip->i_contents); 327 328 if (error) { 329 if (ulp) 330 ufs_lockfs_end(ulp); 331 goto out; 332 } 333 334 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) && 335 TRANS_ISTRANS(ufsvfsp)) { 336 rw_exit(&ip->i_rwlock); 337 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE, 338 error); 339 ASSERT(!error); 340 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC, 341 TOP_READ_SIZE); 342 rw_enter(&ip->i_rwlock, RW_READER); 343 } 344 } else { 345 /* 346 * Only transact reads to files opened for sync-read and 347 * sync-write on a file system that is not write locked. 348 * 349 * The ``not write locked'' check prevents problems with 350 * enabling/disabling logging on a busy file system. E.g., 351 * logging exists at the beginning of the read but does not 352 * at the end. 353 * 354 */ 355 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) && 356 TRANS_ISTRANS(ufsvfsp)) { 357 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE, 358 error); 359 ASSERT(!error); 360 intrans = 1; 361 } 362 363 rw_enter(&ip->i_contents, RW_READER); 364 error = rdip(ip, uiop, ioflag, cr); 365 rw_exit(&ip->i_contents); 366 367 if (intrans) { 368 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC, 369 TOP_READ_SIZE); 370 } 371 } 372 373 if (ulp) { 374 ufs_lockfs_end(ulp); 375 } 376 out: 377 378 TRACE_2(TR_FAC_UFS, TR_UFS_READ_END, 379 "ufs_read_end:vp %p error %d", vp, error); 380 return (error); 381 } 382 383 extern int ufs_HW; /* high water mark */ 384 extern int ufs_LW; /* low water mark */ 385 int ufs_WRITES = 1; /* XXX - enable/disable */ 386 int ufs_throttles = 0; /* throttling count */ 387 int ufs_allow_shared_writes = 1; /* directio shared writes */ 388 389 static int 390 ufs_check_rewrite(struct inode *ip, struct uio *uiop, int ioflag) 391 { 392 393 /* 394 * Filter to determine if this request is suitable as a 395 * concurrent rewrite. This write must not allocate blocks 396 * by extending the file or filling in holes. No use trying 397 * through FSYNC descriptors as the inode will be synchronously 398 * updated after the write. The uio structure has not yet been 399 * checked for sanity, so assume nothing. 400 */ 401 return (((ip->i_mode & IFMT) == IFREG) && !(ioflag & FAPPEND) && 402 (uiop->uio_loffset >= (offset_t)0) && 403 (uiop->uio_loffset < ip->i_size) && (uiop->uio_resid > 0) && 404 ((ip->i_size - uiop->uio_loffset) >= uiop->uio_resid) && 405 !(ioflag & FSYNC) && !bmap_has_holes(ip) && 406 ufs_allow_shared_writes); 407 } 408 409 /*ARGSUSED*/ 410 static int 411 ufs_write(struct vnode *vp, struct uio *uiop, int ioflag, cred_t *cr, 412 caller_context_t *ct) 413 { 414 struct inode *ip = VTOI(vp); 415 struct ufsvfs *ufsvfsp; 416 struct ulockfs *ulp; 417 int retry = 1; 418 int error, resv, resid = 0; 419 int directio_status; 420 int exclusive; 421 long start_resid = uiop->uio_resid; 422 423 TRACE_3(TR_FAC_UFS, TR_UFS_WRITE_START, 424 "ufs_write_start:vp %p uiop %p ioflag %x", 425 vp, uiop, ioflag); 426 427 ASSERT(RW_LOCK_HELD(&ip->i_rwlock)); 428 429 retry_mandlock: 430 /* 431 * Mandatory locking needs to be done before ufs_lockfs_begin() 432 * and TRANS_BEGIN_[A]SYNC() calls since mandatory locks can sleep. 433 * Check for forced unmounts normally done in ufs_lockfs_begin(). 434 */ 435 if ((ufsvfsp = ip->i_ufsvfs) == NULL) { 436 error = EIO; 437 goto out; 438 } 439 if (MANDLOCK(vp, ip->i_mode)) { 440 441 ASSERT(RW_WRITE_HELD(&ip->i_rwlock)); 442 443 /* 444 * ufs_getattr ends up being called by chklock 445 */ 446 error = chklock(vp, FWRITE, uiop->uio_loffset, 447 uiop->uio_resid, uiop->uio_fmode, ct); 448 if (error) 449 goto out; 450 } 451 452 /* i_rwlock can change in chklock */ 453 exclusive = rw_write_held(&ip->i_rwlock); 454 455 /* 456 * Check for fast-path special case of directio re-writes. 457 */ 458 if ((ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) && 459 !exclusive && ufs_check_rewrite(ip, uiop, ioflag)) { 460 461 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK); 462 if (error) 463 goto out; 464 465 rw_enter(&ip->i_contents, RW_READER); 466 error = ufs_directio_write(ip, uiop, ioflag, 1, cr, 467 &directio_status); 468 if (directio_status == DIRECTIO_SUCCESS) { 469 uint_t i_flag_save; 470 471 if (start_resid != uiop->uio_resid) 472 error = 0; 473 /* 474 * Special treatment of access times for re-writes. 475 * If IMOD is not already set, then convert it 476 * to IMODACC for this operation. This defers 477 * entering a delta into the log until the inode 478 * is flushed. This mimics what is done for read 479 * operations and inode access time. 480 */ 481 mutex_enter(&ip->i_tlock); 482 i_flag_save = ip->i_flag; 483 ip->i_flag |= IUPD | ICHG; 484 ip->i_seq++; 485 ITIMES_NOLOCK(ip); 486 if ((i_flag_save & IMOD) == 0) { 487 ip->i_flag &= ~IMOD; 488 ip->i_flag |= IMODACC; 489 } 490 mutex_exit(&ip->i_tlock); 491 rw_exit(&ip->i_contents); 492 if (ulp) 493 ufs_lockfs_end(ulp); 494 goto out; 495 } 496 rw_exit(&ip->i_contents); 497 if (ulp) 498 ufs_lockfs_end(ulp); 499 } 500 501 if (!exclusive && !rw_tryupgrade(&ip->i_rwlock)) { 502 rw_exit(&ip->i_rwlock); 503 rw_enter(&ip->i_rwlock, RW_WRITER); 504 /* 505 * Mandatory locking could have been enabled 506 * after dropping the i_rwlock. 507 */ 508 if (MANDLOCK(vp, ip->i_mode)) 509 goto retry_mandlock; 510 } 511 512 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK); 513 if (error) 514 goto out; 515 516 /* 517 * Amount of log space needed for this write 518 */ 519 TRANS_WRITE_RESV(ip, uiop, ulp, &resv, &resid); 520 521 /* 522 * Throttle writes. 523 */ 524 if (ufs_WRITES && (ip->i_writes > ufs_HW)) { 525 mutex_enter(&ip->i_tlock); 526 while (ip->i_writes > ufs_HW) { 527 ufs_throttles++; 528 cv_wait(&ip->i_wrcv, &ip->i_tlock); 529 } 530 mutex_exit(&ip->i_tlock); 531 } 532 533 /* 534 * Enter Transaction 535 */ 536 if (ioflag & (FSYNC|FDSYNC)) { 537 if (ulp) { 538 int terr = 0; 539 TRANS_BEGIN_SYNC(ufsvfsp, TOP_WRITE_SYNC, resv, terr); 540 ASSERT(!terr); 541 } 542 } else { 543 if (ulp) 544 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_WRITE, resv); 545 } 546 547 /* 548 * Write the file 549 */ 550 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 551 rw_enter(&ip->i_contents, RW_WRITER); 552 if ((ioflag & FAPPEND) != 0 && (ip->i_mode & IFMT) == IFREG) { 553 /* 554 * In append mode start at end of file. 555 */ 556 uiop->uio_loffset = ip->i_size; 557 } 558 559 /* 560 * Mild optimisation, don't call ufs_trans_write() unless we have to 561 * Also, suppress file system full messages if we will retry. 562 */ 563 if (retry) 564 ip->i_flag |= IQUIET; 565 if (resid) { 566 TRANS_WRITE(ip, uiop, ioflag, error, ulp, cr, resv, resid); 567 } else { 568 error = wrip(ip, uiop, ioflag, cr); 569 } 570 ip->i_flag &= ~IQUIET; 571 572 rw_exit(&ip->i_contents); 573 rw_exit(&ufsvfsp->vfs_dqrwlock); 574 575 /* 576 * Leave Transaction 577 */ 578 if (ulp) { 579 if (ioflag & (FSYNC|FDSYNC)) { 580 int terr = 0; 581 TRANS_END_SYNC(ufsvfsp, terr, TOP_WRITE_SYNC, resv); 582 if (error == 0) 583 error = terr; 584 } else { 585 TRANS_END_ASYNC(ufsvfsp, TOP_WRITE, resv); 586 } 587 ufs_lockfs_end(ulp); 588 } 589 out: 590 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 591 /* 592 * Any blocks tied up in pending deletes? 593 */ 594 ufs_delete_drain_wait(ufsvfsp, 1); 595 retry = 0; 596 goto retry_mandlock; 597 } 598 599 if (error == ENOSPC && (start_resid != uiop->uio_resid)) 600 error = 0; 601 602 TRACE_2(TR_FAC_UFS, TR_UFS_WRITE_END, 603 "ufs_write_end:vp %p error %d", vp, error); 604 return (error); 605 } 606 607 /* 608 * Don't cache write blocks to files with the sticky bit set. 609 * Used to keep swap files from blowing the page cache on a server. 610 */ 611 int stickyhack = 1; 612 613 /* 614 * Free behind hacks. The pager is busted. 615 * XXX - need to pass the information down to writedone() in a flag like B_SEQ 616 * or B_FREE_IF_TIGHT_ON_MEMORY. 617 */ 618 int freebehind = 1; 619 int smallfile = 32 * 1024; 620 621 /* 622 * While we should, in most cases, cache the pages for write, we 623 * may also want to cache the pages for read as long as they are 624 * frequently re-usable. 625 * 626 * If cache_read_ahead = 1, the pages for read will go to the tail 627 * of the cache list when they are released, otherwise go to the head. 628 */ 629 int cache_read_ahead = 0; 630 631 /* 632 * wrip does the real work of write requests for ufs. 633 */ 634 int 635 wrip(struct inode *ip, struct uio *uio, int ioflag, struct cred *cr) 636 { 637 rlim64_t limit = uio->uio_llimit; 638 u_offset_t off; 639 u_offset_t old_i_size; 640 struct fs *fs; 641 struct vnode *vp; 642 struct ufsvfs *ufsvfsp; 643 caddr_t base; 644 long start_resid = uio->uio_resid; /* save starting resid */ 645 long premove_resid; /* resid before uiomove() */ 646 uint_t flags; 647 int newpage; 648 int iupdat_flag, directio_status; 649 int n, on, mapon; 650 int error, pagecreate; 651 int do_dqrwlock; /* drop/reacquire vfs_dqrwlock */ 652 int32_t iblocks; 653 int new_iblocks; 654 655 /* 656 * ip->i_size is incremented before the uiomove 657 * is done on a write. If the move fails (bad user 658 * address) reset ip->i_size. 659 * The better way would be to increment ip->i_size 660 * only if the uiomove succeeds. 661 */ 662 int i_size_changed = 0; 663 o_mode_t type; 664 int i_seq_needed = 0; 665 666 vp = ITOV(ip); 667 668 /* 669 * check for forced unmount - should not happen as 670 * the request passed the lockfs checks. 671 */ 672 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 673 return (EIO); 674 675 fs = ip->i_fs; 676 677 TRACE_1(TR_FAC_UFS, TR_UFS_RWIP_START, 678 "ufs_wrip_start:vp %p", vp); 679 680 ASSERT(RW_WRITE_HELD(&ip->i_contents)); 681 682 /* check for valid filetype */ 683 type = ip->i_mode & IFMT; 684 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) && 685 (type != IFLNK) && (type != IFSHAD)) { 686 return (EIO); 687 } 688 689 /* 690 * the actual limit of UFS file size 691 * is UFS_MAXOFFSET_T 692 */ 693 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 694 limit = MAXOFFSET_T; 695 696 if (uio->uio_loffset >= limit) { 697 proc_t *p = ttoproc(curthread); 698 699 TRACE_2(TR_FAC_UFS, TR_UFS_RWIP_END, 700 "ufs_wrip_end:vp %p error %d", vp, EINVAL); 701 702 mutex_enter(&p->p_lock); 703 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], p->p_rctls, 704 p, RCA_UNSAFE_SIGINFO); 705 mutex_exit(&p->p_lock); 706 return (EFBIG); 707 } 708 709 /* 710 * if largefiles are disallowed, the limit is 711 * the pre-largefiles value of 2GB 712 */ 713 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) 714 limit = MIN(UFS_MAXOFFSET_T, limit); 715 else 716 limit = MIN(MAXOFF32_T, limit); 717 718 if (uio->uio_loffset < (offset_t)0) { 719 TRACE_2(TR_FAC_UFS, TR_UFS_RWIP_END, 720 "ufs_wrip_end:vp %p error %d", vp, EINVAL); 721 return (EINVAL); 722 } 723 if (uio->uio_resid == 0) { 724 TRACE_2(TR_FAC_UFS, TR_UFS_RWIP_END, 725 "ufs_wrip_end:vp %p error %d", vp, 0); 726 return (0); 727 } 728 729 if (uio->uio_loffset >= limit) 730 return (EFBIG); 731 732 ip->i_flag |= INOACC; /* don't update ref time in getpage */ 733 734 if (ioflag & (FSYNC|FDSYNC)) { 735 ip->i_flag |= ISYNC; 736 iupdat_flag = 1; 737 } 738 /* 739 * Try to go direct 740 */ 741 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) { 742 uio->uio_llimit = limit; 743 error = ufs_directio_write(ip, uio, ioflag, 0, cr, 744 &directio_status); 745 /* 746 * If ufs_directio wrote to the file or set the flags, 747 * we need to update i_seq, but it may be deferred. 748 */ 749 if (start_resid != uio->uio_resid || 750 (ip->i_flag & (ICHG|IUPD))) { 751 i_seq_needed = 1; 752 ip->i_flag |= ISEQ; 753 } 754 if (directio_status == DIRECTIO_SUCCESS) 755 goto out; 756 } 757 758 /* 759 * Behavior with respect to dropping/reacquiring vfs_dqrwlock: 760 * 761 * o shadow inodes: vfs_dqrwlock is not held at all 762 * o quota updates: vfs_dqrwlock is read or write held 763 * o other updates: vfs_dqrwlock is read held 764 * 765 * The first case is the only one where we do not hold 766 * vfs_dqrwlock at all while entering wrip(). 767 * We must make sure not to downgrade/drop vfs_dqrwlock if we 768 * have it as writer, i.e. if we are updating the quota inode. 769 * There is no potential deadlock scenario in this case as 770 * ufs_getpage() takes care of this and avoids reacquiring 771 * vfs_dqrwlock in that case. 772 * 773 * This check is done here since the above conditions do not change 774 * and we possibly loop below, so save a few cycles. 775 */ 776 if ((type == IFSHAD) || 777 (rw_owner(&ufsvfsp->vfs_dqrwlock) == curthread)) { 778 do_dqrwlock = 0; 779 } else { 780 do_dqrwlock = 1; 781 } 782 783 /* 784 * Large Files: We cast MAXBMASK to offset_t 785 * inorder to mask out the higher bits. Since offset_t 786 * is a signed value, the high order bit set in MAXBMASK 787 * value makes it do the right thing by having all bits 1 788 * in the higher word. May be removed for _SOLARIS64_. 789 */ 790 791 fs = ip->i_fs; 792 do { 793 u_offset_t uoff = uio->uio_loffset; 794 off = uoff & (offset_t)MAXBMASK; 795 mapon = (int)(uoff & (offset_t)MAXBOFFSET); 796 on = (int)blkoff(fs, uoff); 797 n = (int)MIN(fs->fs_bsize - on, uio->uio_resid); 798 new_iblocks = 1; 799 800 if (type == IFREG && uoff + n >= limit) { 801 if (uoff >= limit) { 802 error = EFBIG; 803 goto out; 804 } 805 /* 806 * since uoff + n >= limit, 807 * therefore n >= limit - uoff, and n is an int 808 * so it is safe to cast it to an int 809 */ 810 n = (int)(limit - (rlim64_t)uoff); 811 } 812 if (uoff + n > ip->i_size) { 813 /* 814 * We are extending the length of the file. 815 * bmap is used so that we are sure that 816 * if we need to allocate new blocks, that it 817 * is done here before we up the file size. 818 */ 819 error = bmap_write(ip, uoff, (int)(on + n), 820 mapon == 0, cr); 821 /* 822 * bmap_write never drops i_contents so if 823 * the flags are set it changed the file. 824 */ 825 if (ip->i_flag & (ICHG|IUPD)) { 826 i_seq_needed = 1; 827 ip->i_flag |= ISEQ; 828 } 829 if (error) 830 break; 831 /* 832 * There is a window of vulnerability here. 833 * The sequence of operations: allocate file 834 * system blocks, uiomove the data into pages, 835 * and then update the size of the file in the 836 * inode, must happen atomically. However, due 837 * to current locking constraints, this can not 838 * be done. 839 */ 840 ASSERT(ip->i_writer == NULL); 841 ip->i_writer = curthread; 842 i_size_changed = 1; 843 /* 844 * If we are writing from the beginning of 845 * the mapping, we can just create the 846 * pages without having to read them. 847 */ 848 pagecreate = (mapon == 0); 849 } else if (n == MAXBSIZE) { 850 /* 851 * Going to do a whole mappings worth, 852 * so we can just create the pages w/o 853 * having to read them in. But before 854 * we do that, we need to make sure any 855 * needed blocks are allocated first. 856 */ 857 iblocks = ip->i_blocks; 858 error = bmap_write(ip, uoff, (int)(on + n), 1, cr); 859 /* 860 * bmap_write never drops i_contents so if 861 * the flags are set it changed the file. 862 */ 863 if (ip->i_flag & (ICHG|IUPD)) { 864 i_seq_needed = 1; 865 ip->i_flag |= ISEQ; 866 } 867 if (error) 868 break; 869 pagecreate = 1; 870 /* 871 * check if the new created page needed the 872 * allocation of new disk blocks. 873 */ 874 if (iblocks == ip->i_blocks) 875 new_iblocks = 0; /* no new blocks allocated */ 876 } else { 877 pagecreate = 0; 878 /* 879 * In sync mode flush the indirect blocks which 880 * may have been allocated and not written on 881 * disk. In above cases bmap_write will allocate 882 * in sync mode. 883 */ 884 if (ioflag & (FSYNC|FDSYNC)) { 885 error = ufs_indirblk_sync(ip, uoff); 886 if (error) 887 break; 888 } 889 } 890 891 /* 892 * At this point we can enter ufs_getpage() in one 893 * of two ways: 894 * 1) segmap_getmapflt() calls ufs_getpage() when the 895 * forcefault parameter is true (pagecreate == 0) 896 * 2) uiomove() causes a page fault. 897 * 898 * We have to drop the contents lock to prevent the VM 899 * system from trying to reaquire it in ufs_getpage() 900 * should the uiomove cause a pagefault. 901 * 902 * We have to drop the reader vfs_dqrwlock here as well. 903 */ 904 rw_exit(&ip->i_contents); 905 if (do_dqrwlock) { 906 ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock)); 907 ASSERT(!(RW_WRITE_HELD(&ufsvfsp->vfs_dqrwlock))); 908 rw_exit(&ufsvfsp->vfs_dqrwlock); 909 } 910 911 base = segmap_getmapflt(segkmap, vp, (off + mapon), 912 (uint_t)n, !pagecreate, S_WRITE); 913 914 /* 915 * segmap_pagecreate() returns 1 if it calls 916 * page_create_va() to allocate any pages. 917 */ 918 newpage = 0; 919 920 if (pagecreate) 921 newpage = segmap_pagecreate(segkmap, base, 922 (size_t)n, 0); 923 924 premove_resid = uio->uio_resid; 925 error = uiomove(base + mapon, (long)n, UIO_WRITE, uio); 926 927 /* 928 * If "newpage" is set, then a new page was created and it 929 * does not contain valid data, so it needs to be initialized 930 * at this point. 931 * Otherwise the page contains old data, which was overwritten 932 * partially or as a whole in uiomove. 933 * If there is only one iovec structure within uio, then 934 * on error uiomove will not be able to update uio->uio_loffset 935 * and we would zero the whole page here! 936 * 937 * If uiomove fails because of an error, the old valid data 938 * is kept instead of filling the rest of the page with zero's. 939 */ 940 if (newpage && 941 uio->uio_loffset < roundup(off + mapon + n, PAGESIZE)) { 942 /* 943 * We created pages w/o initializing them completely, 944 * thus we need to zero the part that wasn't set up. 945 * This happens on most EOF write cases and if 946 * we had some sort of error during the uiomove. 947 */ 948 int nzero, nmoved; 949 950 nmoved = (int)(uio->uio_loffset - (off + mapon)); 951 ASSERT(nmoved >= 0 && nmoved <= n); 952 nzero = roundup(on + n, PAGESIZE) - nmoved; 953 ASSERT(nzero > 0 && mapon + nmoved + nzero <= MAXBSIZE); 954 (void) kzero(base + mapon + nmoved, (uint_t)nzero); 955 } 956 957 /* 958 * Unlock the pages allocated by page_create_va() 959 * in segmap_pagecreate() 960 */ 961 if (newpage) 962 segmap_pageunlock(segkmap, base, (size_t)n, S_WRITE); 963 964 /* 965 * If the size of the file changed, then update the 966 * size field in the inode now. This can't be done 967 * before the call to segmap_pageunlock or there is 968 * a potential deadlock with callers to ufs_putpage(). 969 * They will be holding i_contents and trying to lock 970 * a page, while this thread is holding a page locked 971 * and trying to acquire i_contents. 972 */ 973 if (i_size_changed) { 974 rw_enter(&ip->i_contents, RW_WRITER); 975 old_i_size = ip->i_size; 976 UFS_SET_ISIZE(uoff + n, ip); 977 TRANS_INODE(ufsvfsp, ip); 978 /* 979 * file has grown larger than 2GB. Set flag 980 * in superblock to indicate this, if it 981 * is not already set. 982 */ 983 if ((ip->i_size > MAXOFF32_T) && 984 !(fs->fs_flags & FSLARGEFILES)) { 985 ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES); 986 mutex_enter(&ufsvfsp->vfs_lock); 987 fs->fs_flags |= FSLARGEFILES; 988 ufs_sbwrite(ufsvfsp); 989 mutex_exit(&ufsvfsp->vfs_lock); 990 } 991 mutex_enter(&ip->i_tlock); 992 ip->i_writer = NULL; 993 cv_broadcast(&ip->i_wrcv); 994 mutex_exit(&ip->i_tlock); 995 rw_exit(&ip->i_contents); 996 } 997 998 if (error) { 999 /* 1000 * If we failed on a write, we may have already 1001 * allocated file blocks as well as pages. It's 1002 * hard to undo the block allocation, but we must 1003 * be sure to invalidate any pages that may have 1004 * been allocated. 1005 * 1006 * If the page was created without initialization 1007 * then we must check if it should be possible 1008 * to destroy the new page and to keep the old data 1009 * on the disk. 1010 * 1011 * It is possible to destroy the page without 1012 * having to write back its contents only when 1013 * - the size of the file keeps unchanged 1014 * - bmap_write() did not allocate new disk blocks 1015 * it is possible to create big files using "seek" and 1016 * write to the end of the file. A "write" to a 1017 * position before the end of the file would not 1018 * change the size of the file but it would allocate 1019 * new disk blocks. 1020 * - uiomove intended to overwrite the whole page. 1021 * - a new page was created (newpage == 1). 1022 */ 1023 1024 if (i_size_changed == 0 && new_iblocks == 0 && 1025 newpage) { 1026 1027 /* unwind what uiomove eventually last did */ 1028 uio->uio_resid = premove_resid; 1029 1030 /* 1031 * destroy the page, do not write ambiguous 1032 * data to the disk. 1033 */ 1034 flags = SM_DESTROY; 1035 } else { 1036 /* 1037 * write the page back to the disk, if dirty, 1038 * and remove the page from the cache. 1039 */ 1040 flags = SM_INVAL; 1041 } 1042 (void) segmap_release(segkmap, base, flags); 1043 } else { 1044 flags = 0; 1045 /* 1046 * Force write back for synchronous write cases. 1047 */ 1048 if ((ioflag & (FSYNC|FDSYNC)) || type == IFDIR) { 1049 /* 1050 * If the sticky bit is set but the 1051 * execute bit is not set, we do a 1052 * synchronous write back and free 1053 * the page when done. We set up swap 1054 * files to be handled this way to 1055 * prevent servers from keeping around 1056 * the client's swap pages too long. 1057 * XXX - there ought to be a better way. 1058 */ 1059 if (IS_SWAPVP(vp)) { 1060 flags = SM_WRITE | SM_FREE | 1061 SM_DONTNEED; 1062 iupdat_flag = 0; 1063 } else { 1064 flags = SM_WRITE; 1065 } 1066 } else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 1067 /* 1068 * Have written a whole block. 1069 * Start an asynchronous write and 1070 * mark the buffer to indicate that 1071 * it won't be needed again soon. 1072 */ 1073 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 1074 } 1075 error = segmap_release(segkmap, base, flags); 1076 /* 1077 * If the operation failed and is synchronous, 1078 * then we need to unwind what uiomove() last 1079 * did so we can potentially return an error to 1080 * the caller. If this write operation was 1081 * done in two pieces and the first succeeded, 1082 * then we won't return an error for the second 1083 * piece that failed. However, we only want to 1084 * return a resid value that reflects what was 1085 * really done. 1086 * 1087 * Failures for non-synchronous operations can 1088 * be ignored since the page subsystem will 1089 * retry the operation until it succeeds or the 1090 * file system is unmounted. 1091 */ 1092 if (error) { 1093 if ((ioflag & (FSYNC | FDSYNC)) || 1094 type == IFDIR) { 1095 uio->uio_resid = premove_resid; 1096 } else { 1097 error = 0; 1098 } 1099 } 1100 } 1101 1102 /* 1103 * Re-acquire contents lock. 1104 * If it was dropped, reacquire reader vfs_dqrwlock as well. 1105 */ 1106 if (do_dqrwlock) 1107 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 1108 rw_enter(&ip->i_contents, RW_WRITER); 1109 1110 /* 1111 * If the uiomove() failed or if a synchronous 1112 * page push failed, fix up i_size. 1113 */ 1114 if (error) { 1115 if (i_size_changed) { 1116 /* 1117 * The uiomove failed, and we 1118 * allocated blocks,so get rid 1119 * of them. 1120 */ 1121 (void) ufs_itrunc(ip, old_i_size, 0, cr); 1122 } 1123 } else { 1124 /* 1125 * XXX - Can this be out of the loop? 1126 */ 1127 ip->i_flag |= IUPD | ICHG; 1128 /* 1129 * Only do one increase of i_seq for multiple 1130 * pieces. Because we drop locks, record 1131 * the fact that we changed the timestamp and 1132 * are deferring the increase in case another thread 1133 * pushes our timestamp update. 1134 */ 1135 i_seq_needed = 1; 1136 ip->i_flag |= ISEQ; 1137 if (i_size_changed) 1138 ip->i_flag |= IATTCHG; 1139 if ((ip->i_mode & (IEXEC | (IEXEC >> 3) | 1140 (IEXEC >> 6))) != 0 && 1141 (ip->i_mode & (ISUID | ISGID)) != 0 && 1142 secpolicy_vnode_setid_retain(cr, 1143 (ip->i_mode & ISUID) != 0 && ip->i_uid == 0) != 0) { 1144 /* 1145 * Clear Set-UID & Set-GID bits on 1146 * successful write if not privileged 1147 * and at least one of the execute bits 1148 * is set. If we always clear Set-GID, 1149 * mandatory file and record locking is 1150 * unuseable. 1151 */ 1152 ip->i_mode &= ~(ISUID | ISGID); 1153 } 1154 } 1155 TRANS_INODE(ufsvfsp, ip); 1156 } while (error == 0 && uio->uio_resid > 0 && n != 0); 1157 1158 out: 1159 /* 1160 * Make sure i_seq is increased at least once per write 1161 */ 1162 if (i_seq_needed) { 1163 ip->i_seq++; 1164 ip->i_flag &= ~ISEQ; /* no longer deferred */ 1165 } 1166 1167 /* 1168 * Inode is updated according to this table - 1169 * 1170 * FSYNC FDSYNC(posix.4) 1171 * -------------------------- 1172 * always@ IATTCHG|IBDWRITE 1173 * 1174 * @ - If we are doing synchronous write the only time we should 1175 * not be sync'ing the ip here is if we have the stickyhack 1176 * activated, the file is marked with the sticky bit and 1177 * no exec bit, the file length has not been changed and 1178 * no new blocks have been allocated during this write. 1179 */ 1180 1181 if ((ip->i_flag & ISYNC) != 0) { 1182 /* 1183 * we have eliminated nosync 1184 */ 1185 if ((ip->i_flag & (IATTCHG|IBDWRITE)) || 1186 ((ioflag & FSYNC) && iupdat_flag)) { 1187 ufs_iupdat(ip, 1); 1188 } 1189 } 1190 1191 /* 1192 * If we've already done a partial-write, terminate 1193 * the write but return no error unless the error is ENOSPC 1194 * because the caller can detect this and free resources and 1195 * try again. 1196 */ 1197 if ((start_resid != uio->uio_resid) && (error != ENOSPC)) 1198 error = 0; 1199 1200 ip->i_flag &= ~(INOACC | ISYNC); 1201 ITIMES_NOLOCK(ip); 1202 TRACE_2(TR_FAC_UFS, TR_UFS_RWIP_END, 1203 "ufs_wrip_end:vp %p error %d", vp, error); 1204 return (error); 1205 } 1206 1207 /* 1208 * rdip does the real work of read requests for ufs. 1209 */ 1210 int 1211 rdip(struct inode *ip, struct uio *uio, int ioflag, cred_t *cr) 1212 { 1213 u_offset_t off; 1214 caddr_t base; 1215 struct fs *fs; 1216 struct ufsvfs *ufsvfsp; 1217 struct vnode *vp; 1218 long oresid = uio->uio_resid; 1219 u_offset_t n, on, mapon; 1220 int error = 0; 1221 int doupdate = 1; 1222 uint_t flags, cachemode; 1223 int dofree, directio_status; 1224 krw_t rwtype; 1225 o_mode_t type; 1226 1227 vp = ITOV(ip); 1228 1229 TRACE_1(TR_FAC_UFS, TR_UFS_RWIP_START, 1230 "ufs_rdip_start:vp %p", vp); 1231 1232 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 1233 1234 ufsvfsp = ip->i_ufsvfs; 1235 1236 if (ufsvfsp == NULL) 1237 return (EIO); 1238 1239 fs = ufsvfsp->vfs_fs; 1240 1241 /* check for valid filetype */ 1242 type = ip->i_mode & IFMT; 1243 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) && 1244 (type != IFLNK) && (type != IFSHAD)) { 1245 return (EIO); 1246 } 1247 1248 if (uio->uio_loffset > UFS_MAXOFFSET_T) { 1249 TRACE_2(TR_FAC_UFS, TR_UFS_RWIP_END, 1250 "ufs_rdip_end:vp %p error %d", vp, EINVAL); 1251 error = 0; 1252 goto out; 1253 } 1254 if (uio->uio_loffset < (offset_t)0) { 1255 TRACE_2(TR_FAC_UFS, TR_UFS_RWIP_END, 1256 "ufs_rdip_end:vp %p error %d", vp, EINVAL); 1257 return (EINVAL); 1258 } 1259 if (uio->uio_resid == 0) { 1260 TRACE_2(TR_FAC_UFS, TR_UFS_RWIP_END, 1261 "ufs_rdip_end:vp %p error %d", vp, 0); 1262 return (0); 1263 } 1264 1265 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (fs->fs_ronly == 0) && 1266 (!ufsvfsp->vfs_noatime)) { 1267 mutex_enter(&ip->i_tlock); 1268 ip->i_flag |= IACC; 1269 mutex_exit(&ip->i_tlock); 1270 } 1271 /* 1272 * Try to go direct 1273 */ 1274 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) { 1275 error = ufs_directio_read(ip, uio, cr, &directio_status); 1276 if (directio_status == DIRECTIO_SUCCESS) 1277 goto out; 1278 } 1279 1280 rwtype = (rw_write_held(&ip->i_contents)?RW_WRITER:RW_READER); 1281 1282 /* 1283 * If cache_read_ahead is enabled, we will 1284 * release the pages at the tail of the cache 1285 * list, otherwise we will put them at the head. 1286 */ 1287 if (cache_read_ahead) 1288 cachemode = SM_FREE | SM_ASYNC; 1289 else 1290 cachemode = SM_FREE | SM_DONTNEED | SM_ASYNC; 1291 1292 do { 1293 offset_t diff; 1294 u_offset_t uoff = uio->uio_loffset; 1295 off = uoff & (offset_t)MAXBMASK; 1296 mapon = (u_offset_t)(uoff & (offset_t)MAXBOFFSET); 1297 on = (u_offset_t)blkoff(fs, uoff); 1298 n = MIN((u_offset_t)fs->fs_bsize - on, 1299 (u_offset_t)uio->uio_resid); 1300 1301 diff = ip->i_size - uoff; 1302 1303 if (diff <= (offset_t)0) { 1304 error = 0; 1305 goto out; 1306 } 1307 if (diff < (offset_t)n) 1308 n = (int)diff; 1309 dofree = freebehind && 1310 ip->i_nextr == (off & PAGEMASK) && off > smallfile; 1311 1312 /* 1313 * At this point we can enter ufs_getpage() in one of two 1314 * ways: 1315 * 1) segmap_getmapflt() calls ufs_getpage() when the 1316 * forcefault parameter is true (value of 1 is passed) 1317 * 2) uiomove() causes a page fault. 1318 * 1319 * We cannot hold onto an i_contents reader lock without 1320 * risking deadlock in ufs_getpage() so drop a reader lock. 1321 * The ufs_getpage() dolock logic already allows for a 1322 * thread holding i_contents as writer to work properly 1323 * so we keep a writer lock. 1324 */ 1325 if (rwtype == RW_READER) 1326 rw_exit(&ip->i_contents); 1327 base = segmap_getmapflt(segkmap, vp, (off + mapon), 1328 (uint_t)n, 1, S_READ); 1329 1330 error = uiomove(base + mapon, (long)n, UIO_READ, uio); 1331 1332 flags = 0; 1333 if (!error) { 1334 /* 1335 * If reading sequential we won't need 1336 * this buffer again soon. 1337 */ 1338 if (dofree) { 1339 flags = cachemode; 1340 } 1341 /* 1342 * In POSIX SYNC (FSYNC and FDSYNC) read mode, 1343 * we want to make sure that the page which has 1344 * been read, is written on disk if it is dirty. 1345 * And corresponding indirect blocks should also 1346 * be flushed out. 1347 */ 1348 if ((ioflag & FRSYNC) && (ioflag & (FSYNC|FDSYNC))) { 1349 flags &= ~SM_ASYNC; 1350 flags |= SM_WRITE; 1351 } 1352 error = segmap_release(segkmap, base, flags); 1353 } else 1354 (void) segmap_release(segkmap, base, flags); 1355 1356 if (rwtype == RW_READER) 1357 rw_enter(&ip->i_contents, rwtype); 1358 } while (error == 0 && uio->uio_resid > 0 && n != 0); 1359 out: 1360 /* 1361 * Inode is updated according to this table if FRSYNC is set. 1362 * 1363 * FSYNC FDSYNC(posix.4) 1364 * -------------------------- 1365 * always IATTCHG|IBDWRITE 1366 */ 1367 /* 1368 * The inode is not updated if we're logging and the inode is a 1369 * directory with FRSYNC, FSYNC and FDSYNC flags set. 1370 */ 1371 if (ioflag & FRSYNC) { 1372 if (TRANS_ISTRANS(ufsvfsp) && ((ip->i_mode & IFMT) == IFDIR)) { 1373 doupdate = 0; 1374 } 1375 if (doupdate) { 1376 if ((ioflag & FSYNC) || 1377 ((ioflag & FDSYNC) && 1378 (ip->i_flag & (IATTCHG|IBDWRITE)))) { 1379 ufs_iupdat(ip, 1); 1380 } 1381 } 1382 } 1383 /* 1384 * If we've already done a partial read, terminate 1385 * the read but return no error. 1386 */ 1387 if (oresid != uio->uio_resid) 1388 error = 0; 1389 ITIMES(ip); 1390 1391 TRACE_2(TR_FAC_UFS, TR_UFS_RWIP_END, 1392 "ufs_rdip_end:vp %p error %d", vp, error); 1393 return (error); 1394 } 1395 1396 /* ARGSUSED */ 1397 static int 1398 ufs_ioctl( 1399 struct vnode *vp, 1400 int cmd, 1401 intptr_t arg, 1402 int flag, 1403 struct cred *cr, 1404 int *rvalp) 1405 { 1406 struct lockfs lockfs, lockfs_out; 1407 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 1408 char *comment, *original_comment; 1409 struct fs *fs; 1410 struct ulockfs *ulp; 1411 offset_t off; 1412 extern int maxphys; 1413 int error; 1414 int issync; 1415 int trans_size; 1416 1417 1418 /* 1419 * forcibly unmounted 1420 */ 1421 if (ufsvfsp == NULL) { 1422 return (EIO); 1423 } 1424 1425 fs = ufsvfsp->vfs_fs; 1426 1427 if (cmd == Q_QUOTACTL) { 1428 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_QUOTA_MASK); 1429 if (error) 1430 return (error); 1431 1432 if (ulp) { 1433 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_QUOTA, 1434 TOP_SETQUOTA_SIZE(fs)); 1435 } 1436 1437 error = quotactl(vp, arg, flag, cr); 1438 1439 if (ulp) { 1440 TRANS_END_ASYNC(ufsvfsp, TOP_QUOTA, 1441 TOP_SETQUOTA_SIZE(fs)); 1442 ufs_lockfs_end(ulp); 1443 } 1444 return (error); 1445 } 1446 1447 switch (cmd) { 1448 case _FIOLFS: 1449 /* 1450 * file system locking 1451 */ 1452 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1453 return (EPERM); 1454 1455 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1456 if (copyin((caddr_t)arg, &lockfs, 1457 sizeof (struct lockfs))) 1458 return (EFAULT); 1459 } 1460 #ifdef _SYSCALL32_IMPL 1461 else { 1462 struct lockfs32 lockfs32; 1463 /* Translate ILP32 lockfs to LP64 lockfs */ 1464 if (copyin((caddr_t)arg, &lockfs32, 1465 sizeof (struct lockfs32))) 1466 return (EFAULT); 1467 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock; 1468 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags; 1469 lockfs.lf_key = (ulong_t)lockfs32.lf_key; 1470 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen; 1471 lockfs.lf_comment = 1472 (caddr_t)(uintptr_t)lockfs32.lf_comment; 1473 } 1474 #endif /* _SYSCALL32_IMPL */ 1475 1476 if (lockfs.lf_comlen) { 1477 if (lockfs.lf_comlen > LOCKFS_MAXCOMMENTLEN) 1478 return (ENAMETOOLONG); 1479 comment = kmem_alloc(lockfs.lf_comlen, 1480 KM_SLEEP); 1481 if (copyin(lockfs.lf_comment, comment, 1482 lockfs.lf_comlen)) { 1483 kmem_free(comment, lockfs.lf_comlen); 1484 return (EFAULT); 1485 } 1486 original_comment = lockfs.lf_comment; 1487 lockfs.lf_comment = comment; 1488 } 1489 if ((error = ufs_fiolfs(vp, &lockfs, 0)) == 0) { 1490 lockfs.lf_comment = original_comment; 1491 1492 if ((flag & DATAMODEL_MASK) == 1493 DATAMODEL_NATIVE) { 1494 (void) copyout(&lockfs, (caddr_t)arg, 1495 sizeof (struct lockfs)); 1496 } 1497 #ifdef _SYSCALL32_IMPL 1498 else { 1499 struct lockfs32 lockfs32; 1500 /* Translate LP64 to ILP32 lockfs */ 1501 lockfs32.lf_lock = 1502 (uint32_t)lockfs.lf_lock; 1503 lockfs32.lf_flags = 1504 (uint32_t)lockfs.lf_flags; 1505 lockfs32.lf_key = 1506 (uint32_t)lockfs.lf_key; 1507 lockfs32.lf_comlen = 1508 (uint32_t)lockfs.lf_comlen; 1509 lockfs32.lf_comment = 1510 (uint32_t)(uintptr_t)lockfs.lf_comment; 1511 (void) copyout(&lockfs32, (caddr_t)arg, 1512 sizeof (struct lockfs32)); 1513 } 1514 #endif /* _SYSCALL32_IMPL */ 1515 1516 } else { 1517 if (lockfs.lf_comlen) 1518 kmem_free(comment, lockfs.lf_comlen); 1519 } 1520 return (error); 1521 1522 case _FIOLFSS: 1523 /* 1524 * get file system locking status 1525 */ 1526 1527 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1528 if (copyin((caddr_t)arg, &lockfs, 1529 sizeof (struct lockfs))) 1530 return (EFAULT); 1531 } 1532 #ifdef _SYSCALL32_IMPL 1533 else { 1534 struct lockfs32 lockfs32; 1535 /* Translate ILP32 lockfs to LP64 lockfs */ 1536 if (copyin((caddr_t)arg, &lockfs32, 1537 sizeof (struct lockfs32))) 1538 return (EFAULT); 1539 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock; 1540 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags; 1541 lockfs.lf_key = (ulong_t)lockfs32.lf_key; 1542 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen; 1543 lockfs.lf_comment = 1544 (caddr_t)(uintptr_t)lockfs32.lf_comment; 1545 } 1546 #endif /* _SYSCALL32_IMPL */ 1547 1548 if (error = ufs_fiolfss(vp, &lockfs_out)) 1549 return (error); 1550 lockfs.lf_lock = lockfs_out.lf_lock; 1551 lockfs.lf_key = lockfs_out.lf_key; 1552 lockfs.lf_flags = lockfs_out.lf_flags; 1553 lockfs.lf_comlen = MIN(lockfs.lf_comlen, 1554 lockfs_out.lf_comlen); 1555 1556 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1557 if (copyout(&lockfs, (caddr_t)arg, 1558 sizeof (struct lockfs))) 1559 return (EFAULT); 1560 } 1561 #ifdef _SYSCALL32_IMPL 1562 else { 1563 /* Translate LP64 to ILP32 lockfs */ 1564 struct lockfs32 lockfs32; 1565 lockfs32.lf_lock = (uint32_t)lockfs.lf_lock; 1566 lockfs32.lf_flags = (uint32_t)lockfs.lf_flags; 1567 lockfs32.lf_key = (uint32_t)lockfs.lf_key; 1568 lockfs32.lf_comlen = (uint32_t)lockfs.lf_comlen; 1569 lockfs32.lf_comment = 1570 (uint32_t)(uintptr_t)lockfs.lf_comment; 1571 if (copyout(&lockfs32, (caddr_t)arg, 1572 sizeof (struct lockfs32))) 1573 return (EFAULT); 1574 } 1575 #endif /* _SYSCALL32_IMPL */ 1576 1577 if (lockfs.lf_comlen && 1578 lockfs.lf_comment && lockfs_out.lf_comment) 1579 if (copyout(lockfs_out.lf_comment, 1580 lockfs.lf_comment, 1581 lockfs.lf_comlen)) 1582 return (EFAULT); 1583 return (0); 1584 1585 case _FIOSATIME: 1586 /* 1587 * set access time 1588 */ 1589 1590 /* 1591 * if mounted w/o atime, return quietly. 1592 * I briefly thought about returning ENOSYS, but 1593 * figured that most apps would consider this fatal 1594 * but the idea is to make this as seamless as poss. 1595 */ 1596 if (ufsvfsp->vfs_noatime) 1597 return (0); 1598 1599 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1600 ULOCKFS_SETATTR_MASK); 1601 if (error) 1602 return (error); 1603 1604 if (ulp) { 1605 trans_size = (int)TOP_SETATTR_SIZE(VTOI(vp)); 1606 TRANS_BEGIN_CSYNC(ufsvfsp, issync, 1607 TOP_SETATTR, trans_size); 1608 } 1609 1610 error = ufs_fiosatime(vp, (struct timeval *)arg, 1611 flag, cr); 1612 1613 if (ulp) { 1614 TRANS_END_CSYNC(ufsvfsp, error, issync, 1615 TOP_SETATTR, trans_size); 1616 ufs_lockfs_end(ulp); 1617 } 1618 return (error); 1619 1620 case _FIOSDIO: 1621 /* 1622 * set delayed-io 1623 */ 1624 return (ufs_fiosdio(vp, (uint_t *)arg, flag, cr)); 1625 1626 case _FIOGDIO: 1627 /* 1628 * get delayed-io 1629 */ 1630 return (ufs_fiogdio(vp, (uint_t *)arg, flag, cr)); 1631 1632 case _FIOIO: 1633 /* 1634 * inode open 1635 */ 1636 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1637 ULOCKFS_VGET_MASK); 1638 if (error) 1639 return (error); 1640 1641 error = ufs_fioio(vp, (struct fioio *)arg, flag, cr); 1642 1643 if (ulp) { 1644 ufs_lockfs_end(ulp); 1645 } 1646 return (error); 1647 1648 case _FIOFFS: 1649 /* 1650 * file system flush (push w/invalidate) 1651 */ 1652 if ((caddr_t)arg != NULL) 1653 return (EINVAL); 1654 return (ufs_fioffs(vp, NULL, cr)); 1655 1656 case _FIOISBUSY: 1657 /* 1658 * Contract-private interface for Legato 1659 * Purge this vnode from the DNLC and decide 1660 * if this vnode is busy (*arg == 1) or not 1661 * (*arg == 0) 1662 */ 1663 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1664 return (EPERM); 1665 error = ufs_fioisbusy(vp, (int *)arg, cr); 1666 return (error); 1667 1668 case _FIODIRECTIO: 1669 return (ufs_fiodirectio(vp, (int)arg, cr)); 1670 1671 case _FIOTUNE: 1672 /* 1673 * Tune the file system (aka setting fs attributes) 1674 */ 1675 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1676 ULOCKFS_SETATTR_MASK); 1677 if (error) 1678 return (error); 1679 1680 error = ufs_fiotune(vp, (struct fiotune *)arg, cr); 1681 1682 if (ulp) 1683 ufs_lockfs_end(ulp); 1684 return (error); 1685 1686 case _FIOLOGENABLE: 1687 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1688 return (EPERM); 1689 return (ufs_fiologenable(vp, (void *)arg, cr, flag)); 1690 1691 case _FIOLOGDISABLE: 1692 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1693 return (EPERM); 1694 return (ufs_fiologdisable(vp, (void *)arg, cr, flag)); 1695 1696 case _FIOISLOG: 1697 return (ufs_fioislog(vp, (void *)arg, cr, flag)); 1698 1699 case _FIOSNAPSHOTCREATE_MULTI: 1700 { 1701 struct fiosnapcreate_multi fc, *fcp; 1702 size_t fcm_size; 1703 1704 if (copyin((void *)arg, &fc, sizeof (fc))) 1705 return (EFAULT); 1706 if (fc.backfilecount > MAX_BACKFILE_COUNT) 1707 return (EINVAL); 1708 fcm_size = sizeof (struct fiosnapcreate_multi) + 1709 (fc.backfilecount - 1) * sizeof (int); 1710 fcp = (struct fiosnapcreate_multi *) 1711 kmem_alloc(fcm_size, KM_SLEEP); 1712 if (copyin((void *)arg, fcp, fcm_size)) { 1713 kmem_free(fcp, fcm_size); 1714 return (EFAULT); 1715 } 1716 error = ufs_snap_create(vp, fcp, cr); 1717 if (!error && copyout(fcp, (void *)arg, fcm_size)) 1718 error = EFAULT; 1719 kmem_free(fcp, fcm_size); 1720 return (error); 1721 } 1722 1723 case _FIOSNAPSHOTDELETE: 1724 { 1725 struct fiosnapdelete fc; 1726 1727 if (copyin((void *)arg, &fc, sizeof (fc))) 1728 return (EFAULT); 1729 error = ufs_snap_delete(vp, &fc, cr); 1730 if (!error && copyout(&fc, (void *)arg, sizeof (fc))) 1731 error = EFAULT; 1732 return (error); 1733 } 1734 1735 case _FIOGETSUPERBLOCK: 1736 if (copyout(fs, (void *)arg, SBSIZE)) 1737 return (EFAULT); 1738 return (0); 1739 1740 case _FIOGETMAXPHYS: 1741 if (copyout(&maxphys, (void *)arg, sizeof (maxphys))) 1742 return (EFAULT); 1743 return (0); 1744 1745 /* 1746 * The following 3 ioctls are for TSufs support 1747 * although could potentially be used elsewhere 1748 */ 1749 case _FIO_SET_LUFS_DEBUG: 1750 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1751 return (EPERM); 1752 lufs_debug = (uint32_t)arg; 1753 return (0); 1754 1755 case _FIO_SET_LUFS_ERROR: 1756 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1757 return (EPERM); 1758 TRANS_SETERROR(ufsvfsp); 1759 return (0); 1760 1761 case _FIO_GET_TOP_STATS: 1762 { 1763 fio_lufs_stats_t *ls; 1764 ml_unit_t *ul = ufsvfsp->vfs_log; 1765 1766 ls = kmem_zalloc(sizeof (*ls), KM_SLEEP); 1767 ls->ls_debug = ul->un_debug; /* return debug value */ 1768 /* Copy stucture if statistics are being kept */ 1769 if (ul->un_logmap->mtm_tops) { 1770 ls->ls_topstats = *(ul->un_logmap->mtm_tops); 1771 } 1772 error = 0; 1773 if (copyout(ls, (void *)arg, sizeof (*ls))) 1774 error = EFAULT; 1775 kmem_free(ls, sizeof (*ls)); 1776 return (error); 1777 } 1778 1779 case _FIO_SEEK_DATA: 1780 case _FIO_SEEK_HOLE: 1781 if (ddi_copyin((void *)arg, &off, sizeof (off), flag)) 1782 return (EFAULT); 1783 /* offset paramater is in/out */ 1784 error = ufs_fio_holey(vp, cmd, &off); 1785 if (error) 1786 return (error); 1787 if (ddi_copyout(&off, (void *)arg, sizeof (off), flag)) 1788 return (EFAULT); 1789 return (0); 1790 1791 default: 1792 return (ENOTTY); 1793 } 1794 } 1795 1796 /* ARGSUSED */ 1797 static int 1798 ufs_getattr(struct vnode *vp, struct vattr *vap, int flags, 1799 struct cred *cr) 1800 { 1801 struct inode *ip = VTOI(vp); 1802 struct ufsvfs *ufsvfsp; 1803 int err; 1804 1805 TRACE_2(TR_FAC_UFS, TR_UFS_GETATTR_START, 1806 "ufs_getattr_start:vp %p flags %x", vp, flags); 1807 1808 if (vap->va_mask == AT_SIZE) { 1809 /* 1810 * for performance, if only the size is requested don't bother 1811 * with anything else. 1812 */ 1813 UFS_GET_ISIZE(&vap->va_size, ip); 1814 TRACE_1(TR_FAC_UFS, TR_UFS_GETATTR_END, 1815 "ufs_getattr_end:vp %p", vp); 1816 return (0); 1817 } 1818 1819 /* 1820 * inlined lockfs checks 1821 */ 1822 ufsvfsp = ip->i_ufsvfs; 1823 if ((ufsvfsp == NULL) || ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs)) { 1824 err = EIO; 1825 goto out; 1826 } 1827 1828 rw_enter(&ip->i_contents, RW_READER); 1829 /* 1830 * Return all the attributes. This should be refined so 1831 * that it only returns what's asked for. 1832 */ 1833 1834 /* 1835 * Copy from inode table. 1836 */ 1837 vap->va_type = vp->v_type; 1838 vap->va_mode = ip->i_mode & MODEMASK; 1839 /* 1840 * If there is an ACL and there is a mask entry, then do the 1841 * extra work that completes the equivalent of an acltomode(3) 1842 * call. According to POSIX P1003.1e, the acl mask should be 1843 * returned in the group permissions field. 1844 * 1845 * - start with the original permission and mode bits (from above) 1846 * - clear the group owner bits 1847 * - add in the mask bits. 1848 */ 1849 if (ip->i_ufs_acl && ip->i_ufs_acl->aclass.acl_ismask) { 1850 vap->va_mode &= ~((VREAD | VWRITE | VEXEC) >> 3); 1851 vap->va_mode |= 1852 (ip->i_ufs_acl->aclass.acl_maskbits & PERMMASK) << 3; 1853 } 1854 vap->va_uid = ip->i_uid; 1855 vap->va_gid = ip->i_gid; 1856 vap->va_fsid = ip->i_dev; 1857 vap->va_nodeid = (ino64_t)ip->i_number; 1858 vap->va_nlink = ip->i_nlink; 1859 vap->va_size = ip->i_size; 1860 if (vp->v_type == VCHR || vp->v_type == VBLK) 1861 vap->va_rdev = ip->i_rdev; 1862 else 1863 vap->va_rdev = 0; /* not a b/c spec. */ 1864 mutex_enter(&ip->i_tlock); 1865 ITIMES_NOLOCK(ip); /* mark correct time in inode */ 1866 vap->va_seq = ip->i_seq; 1867 vap->va_atime.tv_sec = (time_t)ip->i_atime.tv_sec; 1868 vap->va_atime.tv_nsec = ip->i_atime.tv_usec*1000; 1869 vap->va_mtime.tv_sec = (time_t)ip->i_mtime.tv_sec; 1870 vap->va_mtime.tv_nsec = ip->i_mtime.tv_usec*1000; 1871 vap->va_ctime.tv_sec = (time_t)ip->i_ctime.tv_sec; 1872 vap->va_ctime.tv_nsec = ip->i_ctime.tv_usec*1000; 1873 mutex_exit(&ip->i_tlock); 1874 1875 switch (ip->i_mode & IFMT) { 1876 1877 case IFBLK: 1878 vap->va_blksize = MAXBSIZE; /* was BLKDEV_IOSIZE */ 1879 break; 1880 1881 case IFCHR: 1882 vap->va_blksize = MAXBSIZE; 1883 break; 1884 1885 default: 1886 vap->va_blksize = ip->i_fs->fs_bsize; 1887 break; 1888 } 1889 vap->va_nblocks = (fsblkcnt64_t)ip->i_blocks; 1890 rw_exit(&ip->i_contents); 1891 err = 0; 1892 1893 out: 1894 TRACE_1(TR_FAC_UFS, TR_UFS_GETATTR_END, "ufs_getattr_end:vp %p", vp); 1895 1896 return (err); 1897 } 1898 1899 /*ARGSUSED4*/ 1900 static int 1901 ufs_setattr( 1902 struct vnode *vp, 1903 struct vattr *vap, 1904 int flags, 1905 struct cred *cr, 1906 caller_context_t *ct) 1907 { 1908 struct inode *ip = VTOI(vp); 1909 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 1910 struct fs *fs; 1911 struct ulockfs *ulp; 1912 char *errmsg1; 1913 char *errmsg2; 1914 long blocks; 1915 long int mask = vap->va_mask; 1916 size_t len1, len2; 1917 int issync; 1918 int trans_size; 1919 int dotrans; 1920 int dorwlock; 1921 int error; 1922 int owner_change; 1923 int dodqlock; 1924 timestruc_t now; 1925 vattr_t oldva; 1926 int retry = 1; 1927 1928 TRACE_2(TR_FAC_UFS, TR_UFS_SETATTR_START, 1929 "ufs_setattr_start:vp %p flags %x", vp, flags); 1930 1931 /* 1932 * Cannot set these attributes. 1933 */ 1934 if (mask & AT_NOSET) { 1935 error = EINVAL; 1936 goto out; 1937 } 1938 1939 /* 1940 * check for forced unmount 1941 */ 1942 if (ufsvfsp == NULL) 1943 return (EIO); 1944 1945 fs = ufsvfsp->vfs_fs; 1946 if (fs->fs_ronly != 0) 1947 return (EROFS); 1948 1949 again: 1950 errmsg1 = NULL; 1951 errmsg2 = NULL; 1952 dotrans = 0; 1953 dorwlock = 0; 1954 dodqlock = 0; 1955 1956 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK); 1957 if (error) 1958 goto out; 1959 1960 /* 1961 * Acquire i_rwlock before TRANS_BEGIN_CSYNC() if this is a file. 1962 * This follows the protocol for read()/write(). 1963 */ 1964 if (vp->v_type != VDIR) { 1965 rw_enter(&ip->i_rwlock, RW_WRITER); 1966 dorwlock = 1; 1967 } 1968 1969 /* 1970 * Truncate file. Must have write permission and not be a directory. 1971 */ 1972 if (mask & AT_SIZE) { 1973 rw_enter(&ip->i_contents, RW_WRITER); 1974 if (vp->v_type == VDIR) { 1975 error = EISDIR; 1976 goto update_inode; 1977 } 1978 if (error = ufs_iaccess(ip, IWRITE, cr)) 1979 goto update_inode; 1980 1981 rw_exit(&ip->i_contents); 1982 error = TRANS_ITRUNC(ip, vap->va_size, 0, cr); 1983 if (error) { 1984 rw_enter(&ip->i_contents, RW_WRITER); 1985 goto update_inode; 1986 } 1987 } 1988 1989 if (ulp) { 1990 trans_size = (int)TOP_SETATTR_SIZE(ip); 1991 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SETATTR, trans_size); 1992 ++dotrans; 1993 } 1994 1995 /* 1996 * Acquire i_rwlock after TRANS_BEGIN_CSYNC() if this is a directory. 1997 * This follows the protocol established by 1998 * ufs_link/create/remove/rename/mkdir/rmdir/symlink. 1999 */ 2000 if (vp->v_type == VDIR) { 2001 rw_enter(&ip->i_rwlock, RW_WRITER); 2002 dorwlock = 1; 2003 } 2004 2005 /* 2006 * Grab quota lock if we are changing the file's owner. 2007 */ 2008 if (mask & AT_UID) { 2009 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2010 dodqlock = 1; 2011 } 2012 rw_enter(&ip->i_contents, RW_WRITER); 2013 2014 oldva.va_mode = ip->i_mode; 2015 oldva.va_uid = ip->i_uid; 2016 oldva.va_gid = ip->i_gid; 2017 2018 vap->va_mask &= ~AT_SIZE; 2019 /* 2020 * ufs_iaccess is "close enough"; that's because it doesn't 2021 * map the defines. 2022 */ 2023 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2024 ufs_iaccess, ip); 2025 if (error) 2026 goto update_inode; 2027 2028 mask = vap->va_mask; 2029 2030 /* 2031 * Change file access modes. 2032 */ 2033 if (mask & AT_MODE) { 2034 ip->i_mode = (ip->i_mode & IFMT) | (vap->va_mode & ~IFMT); 2035 TRANS_INODE(ufsvfsp, ip); 2036 ip->i_flag |= ICHG; 2037 if (stickyhack) { 2038 mutex_enter(&vp->v_lock); 2039 if ((ip->i_mode & (ISVTX | IEXEC | IFDIR)) == ISVTX) 2040 vp->v_flag |= VSWAPLIKE; 2041 else 2042 vp->v_flag &= ~VSWAPLIKE; 2043 mutex_exit(&vp->v_lock); 2044 } 2045 } 2046 if (mask & (AT_UID|AT_GID)) { 2047 if (mask & AT_UID) { 2048 /* 2049 * Don't change ownership of the quota inode. 2050 */ 2051 if (ufsvfsp->vfs_qinod == ip) { 2052 ASSERT(ufsvfsp->vfs_qflags & MQ_ENABLED); 2053 error = EINVAL; 2054 goto update_inode; 2055 } 2056 2057 /* 2058 * No real ownership change. 2059 */ 2060 if (ip->i_uid == vap->va_uid) { 2061 blocks = 0; 2062 owner_change = 0; 2063 } 2064 /* 2065 * Remove the blocks and the file, from the old user's 2066 * quota. 2067 */ 2068 else { 2069 blocks = ip->i_blocks; 2070 owner_change = 1; 2071 2072 (void) chkdq(ip, -blocks, /* force */ 1, cr, 2073 (char **)NULL, (size_t *)NULL); 2074 (void) chkiq(ufsvfsp, /* change */ -1, ip, 2075 (uid_t)ip->i_uid, 2076 /* force */ 1, cr, 2077 (char **)NULL, (size_t *)NULL); 2078 dqrele(ip->i_dquot); 2079 } 2080 2081 ip->i_uid = vap->va_uid; 2082 2083 /* 2084 * There is a real ownership change. 2085 */ 2086 if (owner_change) { 2087 /* 2088 * Add the blocks and the file to the new 2089 * user's quota. 2090 */ 2091 ip->i_dquot = getinoquota(ip); 2092 (void) chkdq(ip, blocks, /* force */ 1, cr, 2093 &errmsg1, &len1); 2094 (void) chkiq(ufsvfsp, /* change */ 1, 2095 (struct inode *)NULL, 2096 (uid_t)ip->i_uid, 2097 /* force */ 1, cr, 2098 &errmsg2, &len2); 2099 } 2100 } 2101 if (mask & AT_GID) { 2102 ip->i_gid = vap->va_gid; 2103 } 2104 TRANS_INODE(ufsvfsp, ip); 2105 ip->i_flag |= ICHG; 2106 } 2107 /* 2108 * Change file access or modified times. 2109 */ 2110 if (mask & (AT_ATIME|AT_MTIME)) { 2111 /* Check that the time value is within ufs range */ 2112 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2113 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2114 error = EOVERFLOW; 2115 goto update_inode; 2116 } 2117 2118 /* 2119 * if the "noaccess" mount option is set and only atime 2120 * update is requested, do nothing. No error is returned. 2121 */ 2122 if ((ufsvfsp->vfs_noatime) && 2123 ((mask & (AT_ATIME|AT_MTIME)) == AT_ATIME)) 2124 goto skip_atime; 2125 2126 if (mask & AT_ATIME) { 2127 ip->i_atime.tv_sec = vap->va_atime.tv_sec; 2128 ip->i_atime.tv_usec = vap->va_atime.tv_nsec / 1000; 2129 ip->i_flag &= ~IACC; 2130 } 2131 if (mask & AT_MTIME) { 2132 ip->i_mtime.tv_sec = vap->va_mtime.tv_sec; 2133 ip->i_mtime.tv_usec = vap->va_mtime.tv_nsec / 1000; 2134 gethrestime(&now); 2135 if (now.tv_sec > TIME32_MAX) { 2136 /* 2137 * In 2038, ctime sticks forever.. 2138 */ 2139 ip->i_ctime.tv_sec = TIME32_MAX; 2140 ip->i_ctime.tv_usec = 0; 2141 } else { 2142 ip->i_ctime.tv_sec = now.tv_sec; 2143 ip->i_ctime.tv_usec = now.tv_nsec / 1000; 2144 } 2145 ip->i_flag &= ~(IUPD|ICHG); 2146 ip->i_flag |= IMODTIME; 2147 } 2148 TRANS_INODE(ufsvfsp, ip); 2149 ip->i_flag |= IMOD; 2150 } 2151 2152 skip_atime: 2153 /* 2154 * The presence of a shadow inode may indicate an ACL, but does 2155 * not imply an ACL. Future FSD types should be handled here too 2156 * and check for the presence of the attribute-specific data 2157 * before referencing it. 2158 */ 2159 if (ip->i_shadow) { 2160 /* 2161 * XXX if ufs_iupdat is changed to sandbagged write fix 2162 * ufs_acl_setattr to push ip to keep acls consistent 2163 * 2164 * Suppress out of inodes messages if we will retry. 2165 */ 2166 if (retry) 2167 ip->i_flag |= IQUIET; 2168 error = ufs_acl_setattr(ip, vap, cr); 2169 ip->i_flag &= ~IQUIET; 2170 } 2171 2172 update_inode: 2173 /* 2174 * Setattr always increases the sequence number 2175 */ 2176 ip->i_seq++; 2177 2178 /* 2179 * if nfsd and not logging; push synchronously 2180 */ 2181 if ((curthread->t_flag & T_DONTPEND) && !TRANS_ISTRANS(ufsvfsp)) { 2182 ufs_iupdat(ip, 1); 2183 } else { 2184 ITIMES_NOLOCK(ip); 2185 } 2186 2187 rw_exit(&ip->i_contents); 2188 if (dodqlock) { 2189 rw_exit(&ufsvfsp->vfs_dqrwlock); 2190 } 2191 if (dorwlock) 2192 rw_exit(&ip->i_rwlock); 2193 2194 if (ulp) { 2195 if (dotrans) { 2196 int terr = 0; 2197 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SETATTR, 2198 trans_size); 2199 if (error == 0) 2200 error = terr; 2201 } 2202 ufs_lockfs_end(ulp); 2203 } 2204 out: 2205 /* 2206 * If out of inodes or blocks, see if we can free something 2207 * up from the delete queue. 2208 */ 2209 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 2210 ufs_delete_drain_wait(ufsvfsp, 1); 2211 retry = 0; 2212 if (errmsg1 != NULL) 2213 kmem_free(errmsg1, len1); 2214 if (errmsg2 != NULL) 2215 kmem_free(errmsg2, len2); 2216 goto again; 2217 } 2218 TRACE_2(TR_FAC_UFS, TR_UFS_SETATTR_END, 2219 "ufs_setattr_end:vp %p error %d", vp, error); 2220 if (errmsg1 != NULL) { 2221 uprintf(errmsg1); 2222 kmem_free(errmsg1, len1); 2223 } 2224 if (errmsg2 != NULL) { 2225 uprintf(errmsg2); 2226 kmem_free(errmsg2, len2); 2227 } 2228 return (error); 2229 } 2230 2231 /*ARGSUSED*/ 2232 static int 2233 ufs_access(struct vnode *vp, int mode, int flags, struct cred *cr) 2234 { 2235 struct inode *ip = VTOI(vp); 2236 int error; 2237 2238 TRACE_3(TR_FAC_UFS, TR_UFS_ACCESS_START, 2239 "ufs_access_start:vp %p mode %x flags %x", vp, mode, flags); 2240 2241 if (ip->i_ufsvfs == NULL) 2242 return (EIO); 2243 2244 rw_enter(&ip->i_contents, RW_READER); 2245 2246 /* 2247 * The ufs_iaccess function wants to be called with 2248 * mode bits expressed as "ufs specific" bits. 2249 * I.e., VWRITE|VREAD|VEXEC do not make sense to 2250 * ufs_iaccess() but IWRITE|IREAD|IEXEC do. 2251 * But since they're the same we just pass the vnode mode 2252 * bit but just verify that assumption at compile time. 2253 */ 2254 #if IWRITE != VWRITE || IREAD != VREAD || IEXEC != VEXEC 2255 #error "ufs_access needs to map Vmodes to Imodes" 2256 #endif 2257 error = ufs_iaccess(ip, mode, cr); 2258 2259 rw_exit(&ip->i_contents); 2260 2261 TRACE_2(TR_FAC_UFS, TR_UFS_ACCESS_END, 2262 "ufs_access_end:vp %p error %d", vp, error); 2263 return (error); 2264 } 2265 2266 /* ARGSUSED */ 2267 static int 2268 ufs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cr) 2269 { 2270 struct inode *ip = VTOI(vp); 2271 struct ufsvfs *ufsvfsp; 2272 struct ulockfs *ulp; 2273 int error; 2274 int fastsymlink; 2275 2276 TRACE_2(TR_FAC_UFS, TR_UFS_READLINK_START, 2277 "ufs_readlink_start:vp %p uiop %p", uiop, vp); 2278 2279 if (vp->v_type != VLNK) { 2280 error = EINVAL; 2281 goto nolockout; 2282 } 2283 2284 /* 2285 * If the symbolic link is empty there is nothing to read. 2286 * Fast-track these empty symbolic links 2287 */ 2288 if (ip->i_size == 0) { 2289 error = 0; 2290 goto nolockout; 2291 } 2292 2293 ufsvfsp = ip->i_ufsvfs; 2294 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READLINK_MASK); 2295 if (error) 2296 goto nolockout; 2297 /* 2298 * The ip->i_rwlock protects the data blocks used for FASTSYMLINK 2299 */ 2300 again: 2301 fastsymlink = 0; 2302 if (ip->i_flag & IFASTSYMLNK) { 2303 rw_enter(&ip->i_rwlock, RW_READER); 2304 rw_enter(&ip->i_contents, RW_READER); 2305 if (ip->i_flag & IFASTSYMLNK) { 2306 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && 2307 (ip->i_fs->fs_ronly == 0) && 2308 (!ufsvfsp->vfs_noatime)) { 2309 mutex_enter(&ip->i_tlock); 2310 ip->i_flag |= IACC; 2311 mutex_exit(&ip->i_tlock); 2312 } 2313 error = uiomove((caddr_t)&ip->i_db[1], 2314 MIN(ip->i_size, uiop->uio_resid), 2315 UIO_READ, uiop); 2316 ITIMES(ip); 2317 ++fastsymlink; 2318 } 2319 rw_exit(&ip->i_contents); 2320 rw_exit(&ip->i_rwlock); 2321 } 2322 if (!fastsymlink) { 2323 ssize_t size; /* number of bytes read */ 2324 caddr_t basep; /* pointer to input data */ 2325 ino_t ino; 2326 long igen; 2327 struct uio tuio; /* temp uio struct */ 2328 struct uio *tuiop; 2329 iovec_t tiov; /* temp iovec struct */ 2330 char kbuf[FSL_SIZE]; /* buffer to hold fast symlink */ 2331 int tflag = 0; /* flag to indicate temp vars used */ 2332 2333 ino = ip->i_number; 2334 igen = ip->i_gen; 2335 size = uiop->uio_resid; 2336 basep = uiop->uio_iov->iov_base; 2337 tuiop = uiop; 2338 2339 rw_enter(&ip->i_rwlock, RW_WRITER); 2340 rw_enter(&ip->i_contents, RW_WRITER); 2341 if (ip->i_flag & IFASTSYMLNK) { 2342 rw_exit(&ip->i_contents); 2343 rw_exit(&ip->i_rwlock); 2344 goto again; 2345 } 2346 2347 /* can this be a fast symlink and is it a user buffer? */ 2348 if (ip->i_size <= FSL_SIZE && 2349 (uiop->uio_segflg == UIO_USERSPACE || 2350 uiop->uio_segflg == UIO_USERISPACE)) { 2351 2352 bzero(&tuio, sizeof (struct uio)); 2353 /* 2354 * setup a kernel buffer to read link into. this 2355 * is to fix a race condition where the user buffer 2356 * got corrupted before copying it into the inode. 2357 */ 2358 size = ip->i_size; 2359 tiov.iov_len = size; 2360 tiov.iov_base = kbuf; 2361 tuio.uio_iov = &tiov; 2362 tuio.uio_iovcnt = 1; 2363 tuio.uio_offset = uiop->uio_offset; 2364 tuio.uio_segflg = UIO_SYSSPACE; 2365 tuio.uio_fmode = uiop->uio_fmode; 2366 tuio.uio_extflg = uiop->uio_extflg; 2367 tuio.uio_limit = uiop->uio_limit; 2368 tuio.uio_resid = size; 2369 2370 basep = tuio.uio_iov->iov_base; 2371 tuiop = &tuio; 2372 tflag = 1; 2373 } 2374 2375 error = rdip(ip, tuiop, 0, cr); 2376 if (!(error == 0 && ip->i_number == ino && ip->i_gen == igen)) { 2377 rw_exit(&ip->i_contents); 2378 rw_exit(&ip->i_rwlock); 2379 goto out; 2380 } 2381 2382 if (tflag == 0) 2383 size -= uiop->uio_resid; 2384 2385 if ((tflag == 0 && ip->i_size <= FSL_SIZE && 2386 ip->i_size == size) || (tflag == 1 && 2387 tuio.uio_resid == 0)) { 2388 error = kcopy(basep, &ip->i_db[1], ip->i_size); 2389 if (error == 0) { 2390 ip->i_flag |= IFASTSYMLNK; 2391 /* 2392 * free page 2393 */ 2394 (void) VOP_PUTPAGE(ITOV(ip), 2395 (offset_t)0, PAGESIZE, 2396 (B_DONTNEED | B_FREE | B_FORCE | B_ASYNC), 2397 cr); 2398 } else { 2399 int i; 2400 /* error, clear garbage left behind */ 2401 for (i = 1; i < NDADDR; i++) 2402 ip->i_db[i] = 0; 2403 for (i = 0; i < NIADDR; i++) 2404 ip->i_ib[i] = 0; 2405 } 2406 } 2407 if (tflag == 1) { 2408 /* now, copy it into the user buffer */ 2409 error = uiomove((caddr_t)kbuf, 2410 MIN(size, uiop->uio_resid), 2411 UIO_READ, uiop); 2412 } 2413 rw_exit(&ip->i_contents); 2414 rw_exit(&ip->i_rwlock); 2415 } 2416 out: 2417 if (ulp) { 2418 ufs_lockfs_end(ulp); 2419 } 2420 nolockout: 2421 TRACE_2(TR_FAC_UFS, TR_UFS_READLINK_END, 2422 "ufs_readlink_end:vp %p error %d", vp, error); 2423 2424 return (error); 2425 } 2426 2427 /* ARGSUSED */ 2428 static int 2429 ufs_fsync(struct vnode *vp, int syncflag, struct cred *cr) 2430 { 2431 struct inode *ip = VTOI(vp); 2432 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 2433 struct ulockfs *ulp; 2434 int error; 2435 2436 TRACE_1(TR_FAC_UFS, TR_UFS_FSYNC_START, 2437 "ufs_fsync_start:vp %p", vp); 2438 2439 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_FSYNC_MASK); 2440 if (error) 2441 return (error); 2442 2443 if (TRANS_ISTRANS(ufsvfsp)) { 2444 /* 2445 * First push out any data pages 2446 */ 2447 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2448 (vp->v_type != VCHR) && !(IS_SWAPVP(vp))) { 2449 error = VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, 2450 0, CRED()); 2451 if (error) 2452 goto out; 2453 } 2454 2455 /* 2456 * Delta any delayed inode times updates 2457 * and push inode to log. 2458 * All other inode deltas will have already been delta'd 2459 * and will be pushed during the commit. 2460 */ 2461 if (!(syncflag & FDSYNC) && 2462 ((ip->i_flag & (IMOD|IMODACC)) == IMODACC)) { 2463 if (ulp) { 2464 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_FSYNC, 2465 TOP_SYNCIP_SIZE); 2466 } 2467 rw_enter(&ip->i_contents, RW_READER); 2468 mutex_enter(&ip->i_tlock); 2469 ip->i_flag &= ~IMODTIME; 2470 mutex_exit(&ip->i_tlock); 2471 ufs_iupdat(ip, I_SYNC); 2472 rw_exit(&ip->i_contents); 2473 if (ulp) { 2474 TRANS_END_ASYNC(ufsvfsp, TOP_FSYNC, 2475 TOP_SYNCIP_SIZE); 2476 } 2477 } 2478 2479 /* 2480 * Commit the Moby transaction 2481 * 2482 * Deltas have already been made so we just need to 2483 * commit them with a synchronous transaction. 2484 * TRANS_BEGIN_SYNC() will return an error 2485 * if there are no deltas to commit, for an 2486 * empty transaction. 2487 */ 2488 if (ulp) { 2489 TRANS_BEGIN_SYNC(ufsvfsp, TOP_FSYNC, TOP_COMMIT_SIZE, 2490 error); 2491 if (error) { 2492 error = 0; /* commit wasn't needed */ 2493 goto out; 2494 } 2495 TRANS_END_SYNC(ufsvfsp, error, TOP_FSYNC, 2496 TOP_COMMIT_SIZE); 2497 } 2498 } else { /* not logging */ 2499 if (!(IS_SWAPVP(vp))) 2500 if (syncflag & FNODSYNC) { 2501 /* Just update the inode only */ 2502 TRANS_IUPDAT(ip, 1); 2503 error = 0; 2504 } else if (syncflag & FDSYNC) 2505 /* Do data-synchronous writes */ 2506 error = TRANS_SYNCIP(ip, 0, I_DSYNC, TOP_FSYNC); 2507 else 2508 /* Do synchronous writes */ 2509 error = TRANS_SYNCIP(ip, 0, I_SYNC, TOP_FSYNC); 2510 2511 rw_enter(&ip->i_contents, RW_WRITER); 2512 if (!error) 2513 error = ufs_sync_indir(ip); 2514 rw_exit(&ip->i_contents); 2515 } 2516 out: 2517 if (ulp) { 2518 ufs_lockfs_end(ulp); 2519 } 2520 TRACE_2(TR_FAC_UFS, TR_UFS_FSYNC_END, 2521 "ufs_fsync_end:vp %p error %d", vp, error); 2522 return (error); 2523 } 2524 2525 /*ARGSUSED*/ 2526 static void 2527 ufs_inactive(struct vnode *vp, struct cred *cr) 2528 { 2529 ufs_iinactive(VTOI(vp)); 2530 } 2531 2532 /* 2533 * Unix file system operations having to do with directory manipulation. 2534 */ 2535 int ufs_lookup_idle_count = 2; /* Number of inodes to idle each time */ 2536 /* ARGSUSED */ 2537 static int 2538 ufs_lookup(struct vnode *dvp, char *nm, struct vnode **vpp, 2539 struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cr) 2540 { 2541 struct inode *ip; 2542 struct inode *sip; 2543 struct inode *xip; 2544 struct ufsvfs *ufsvfsp; 2545 struct ulockfs *ulp; 2546 struct vnode *vp; 2547 int error; 2548 2549 TRACE_2(TR_FAC_UFS, TR_UFS_LOOKUP_START, 2550 "ufs_lookup_start:dvp %p name %s", dvp, nm); 2551 2552 2553 /* 2554 * Check flags for type of lookup (regular file or attribute file) 2555 */ 2556 2557 ip = VTOI(dvp); 2558 2559 if (flags & LOOKUP_XATTR) { 2560 2561 /* 2562 * We don't allow recursive attributes... 2563 * Maybe someday we will. 2564 */ 2565 if ((ip->i_cflags & IXATTR)) { 2566 return (EINVAL); 2567 } 2568 2569 if ((vp = dnlc_lookup(dvp, XATTR_DIR_NAME)) == NULL) { 2570 error = ufs_xattr_getattrdir(dvp, &sip, flags, cr); 2571 if (error) { 2572 *vpp = NULL; 2573 goto out; 2574 } 2575 2576 vp = ITOV(sip); 2577 dnlc_update(dvp, XATTR_DIR_NAME, vp); 2578 } 2579 2580 /* 2581 * Check accessibility of directory. 2582 */ 2583 if (vp == DNLC_NO_VNODE) { 2584 VN_RELE(vp); 2585 error = ENOENT; 2586 goto out; 2587 } 2588 if ((error = ufs_iaccess(VTOI(vp), IEXEC, cr)) != 0) { 2589 VN_RELE(vp); 2590 goto out; 2591 } 2592 2593 *vpp = vp; 2594 return (0); 2595 } 2596 2597 /* 2598 * Check for a null component, which we should treat as 2599 * looking at dvp from within it's parent, so we don't 2600 * need a call to ufs_iaccess(), as it has already been 2601 * done. 2602 */ 2603 if (nm[0] == 0) { 2604 VN_HOLD(dvp); 2605 error = 0; 2606 *vpp = dvp; 2607 goto out; 2608 } 2609 2610 /* 2611 * Check for "." ie itself. this is a quick check and 2612 * avoids adding "." into the dnlc (which have been seen 2613 * to occupy >10% of the cache). 2614 */ 2615 if ((nm[0] == '.') && (nm[1] == 0)) { 2616 /* 2617 * Don't return without checking accessibility 2618 * of the directory. We only need the lock if 2619 * we are going to return it. 2620 */ 2621 if ((error = ufs_iaccess(ip, IEXEC, cr)) == 0) { 2622 VN_HOLD(dvp); 2623 *vpp = dvp; 2624 } 2625 goto out; 2626 } 2627 2628 /* 2629 * Fast path: Check the directory name lookup cache. 2630 */ 2631 if (vp = dnlc_lookup(dvp, nm)) { 2632 /* 2633 * Check accessibility of directory. 2634 */ 2635 if ((error = ufs_iaccess(ip, IEXEC, cr)) != 0) { 2636 VN_RELE(vp); 2637 goto out; 2638 } 2639 if (vp == DNLC_NO_VNODE) { 2640 VN_RELE(vp); 2641 error = ENOENT; 2642 goto out; 2643 } 2644 xip = VTOI(vp); 2645 ulp = NULL; 2646 goto fastpath; 2647 } 2648 2649 /* 2650 * Keep the idle queue from getting too long by 2651 * idling two inodes before attempting to allocate another. 2652 * This operation must be performed before entering 2653 * lockfs or a transaction. 2654 */ 2655 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat) 2656 if ((curthread->t_flag & T_DONTBLOCK) == 0) { 2657 ins.in_lidles.value.ul += ufs_lookup_idle_count; 2658 ufs_idle_some(ufs_lookup_idle_count); 2659 } 2660 2661 ufsvfsp = ip->i_ufsvfs; 2662 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK); 2663 if (error) 2664 goto out; 2665 2666 error = ufs_dirlook(ip, nm, &xip, cr, 1); 2667 2668 fastpath: 2669 if (error == 0) { 2670 ip = xip; 2671 *vpp = ITOV(ip); 2672 2673 /* 2674 * If vnode is a device return special vnode instead. 2675 */ 2676 if (IS_DEVVP(*vpp)) { 2677 struct vnode *newvp; 2678 2679 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, 2680 cr); 2681 VN_RELE(*vpp); 2682 if (newvp == NULL) 2683 error = ENOSYS; 2684 else 2685 *vpp = newvp; 2686 } 2687 } 2688 if (ulp) { 2689 ufs_lockfs_end(ulp); 2690 } 2691 2692 out: 2693 TRACE_3(TR_FAC_UFS, TR_UFS_LOOKUP_END, 2694 "ufs_lookup_end:dvp %p name %s error %d", vpp, nm, error); 2695 return (error); 2696 } 2697 2698 static int 2699 ufs_create(struct vnode *dvp, char *name, struct vattr *vap, enum vcexcl excl, 2700 int mode, struct vnode **vpp, struct cred *cr, int flag) 2701 { 2702 struct inode *ip; 2703 struct inode *xip; 2704 struct inode *dip; 2705 struct vnode *xvp; 2706 struct ufsvfs *ufsvfsp; 2707 struct ulockfs *ulp; 2708 int error; 2709 int issync; 2710 int truncflag; 2711 int trans_size; 2712 int noentry; 2713 int defer_dip_seq_update = 0; /* need to defer update of dip->i_seq */ 2714 int retry = 1; 2715 2716 TRACE_1(TR_FAC_UFS, TR_UFS_CREATE_START, 2717 "ufs_create_start:dvp %p", dvp); 2718 2719 again: 2720 ip = VTOI(dvp); 2721 ufsvfsp = ip->i_ufsvfs; 2722 truncflag = 0; 2723 2724 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_CREATE_MASK); 2725 if (error) 2726 goto out; 2727 2728 if (ulp) { 2729 trans_size = (int)TOP_CREATE_SIZE(ip); 2730 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_CREATE, trans_size); 2731 } 2732 2733 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr) != 0) 2734 vap->va_mode &= ~VSVTX; 2735 2736 if (*name == '\0') { 2737 /* 2738 * Null component name refers to the directory itself. 2739 */ 2740 VN_HOLD(dvp); 2741 /* 2742 * Even though this is an error case, we need to grab the 2743 * quota lock since the error handling code below is common. 2744 */ 2745 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2746 rw_enter(&ip->i_contents, RW_WRITER); 2747 error = EEXIST; 2748 } else { 2749 xip = NULL; 2750 noentry = 0; 2751 rw_enter(&ip->i_rwlock, RW_WRITER); 2752 xvp = dnlc_lookup(dvp, name); 2753 if (xvp == DNLC_NO_VNODE) { 2754 noentry = 1; 2755 VN_RELE(xvp); 2756 xvp = NULL; 2757 } 2758 if (xvp) { 2759 rw_exit(&ip->i_rwlock); 2760 if (error = ufs_iaccess(ip, IEXEC, cr)) { 2761 VN_RELE(xvp); 2762 } else { 2763 error = EEXIST; 2764 xip = VTOI(xvp); 2765 } 2766 } else { 2767 /* 2768 * Suppress file system full message if we will retry 2769 */ 2770 error = ufs_direnter_cm(ip, name, DE_CREATE, 2771 vap, &xip, cr, 2772 (noentry | (retry ? IQUIET : 0))); 2773 rw_exit(&ip->i_rwlock); 2774 } 2775 ip = xip; 2776 if (ip != NULL) { 2777 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2778 rw_enter(&ip->i_contents, RW_WRITER); 2779 } 2780 } 2781 2782 /* 2783 * If the file already exists and this is a non-exclusive create, 2784 * check permissions and allow access for non-directories. 2785 * Read-only create of an existing directory is also allowed. 2786 * We fail an exclusive create of anything which already exists. 2787 */ 2788 if (error == EEXIST) { 2789 dip = VTOI(dvp); 2790 if (excl == NONEXCL) { 2791 if ((((ip->i_mode & IFMT) == IFDIR) || 2792 ((ip->i_mode & IFMT) == IFATTRDIR)) && 2793 (mode & IWRITE)) 2794 error = EISDIR; 2795 else if (mode) 2796 error = ufs_iaccess(ip, mode, cr); 2797 else 2798 error = 0; 2799 } 2800 if (error) { 2801 rw_exit(&ip->i_contents); 2802 rw_exit(&ufsvfsp->vfs_dqrwlock); 2803 VN_RELE(ITOV(ip)); 2804 goto unlock; 2805 } 2806 /* 2807 * If the error EEXIST was set, then i_seq can not 2808 * have been updated. The sequence number interface 2809 * is defined such that a non-error VOP_CREATE must 2810 * increase the dir va_seq it by at least one. If we 2811 * have cleared the error, increase i_seq. Note that 2812 * we are increasing the dir i_seq and in rare cases 2813 * ip may actually be from the dvp, so we already have 2814 * the locks and it will not be subject to truncation. 2815 * In case we have to update i_seq of the parent 2816 * directory dip, we have to defer it till we have 2817 * released our locks on ip due to lock ordering requirements. 2818 */ 2819 if (ip != dip) 2820 defer_dip_seq_update = 1; 2821 else 2822 ip->i_seq++; 2823 2824 if (((ip->i_mode & IFMT) == IFREG) && 2825 (vap->va_mask & AT_SIZE) && vap->va_size == 0) { 2826 /* 2827 * Truncate regular files, if requested by caller. 2828 * Grab i_rwlock to make sure no one else is 2829 * currently writing to the file (we promised 2830 * bmap we would do this). 2831 * Must get the locks in the correct order. 2832 */ 2833 if (ip->i_size == 0) { 2834 ip->i_flag |= ICHG | IUPD; 2835 ip->i_seq++; 2836 TRANS_INODE(ufsvfsp, ip); 2837 } else { 2838 /* 2839 * Large Files: Why this check here? 2840 * Though we do it in vn_create() we really 2841 * want to guarantee that we do not destroy 2842 * Large file data by atomically checking 2843 * the size while holding the contents 2844 * lock. 2845 */ 2846 if (flag && !(flag & FOFFMAX) && 2847 ((ip->i_mode & IFMT) == IFREG) && 2848 (ip->i_size > (offset_t)MAXOFF32_T)) { 2849 rw_exit(&ip->i_contents); 2850 rw_exit(&ufsvfsp->vfs_dqrwlock); 2851 error = EOVERFLOW; 2852 goto unlock; 2853 } 2854 if (TRANS_ISTRANS(ufsvfsp)) 2855 truncflag++; 2856 else { 2857 rw_exit(&ip->i_contents); 2858 rw_exit(&ufsvfsp->vfs_dqrwlock); 2859 rw_enter(&ip->i_rwlock, RW_WRITER); 2860 rw_enter(&ufsvfsp->vfs_dqrwlock, 2861 RW_READER); 2862 rw_enter(&ip->i_contents, RW_WRITER); 2863 (void) ufs_itrunc(ip, (u_offset_t)0, 0, 2864 cr); 2865 rw_exit(&ip->i_rwlock); 2866 } 2867 } 2868 } 2869 } 2870 2871 if (error) { 2872 if (ip != NULL) { 2873 rw_exit(&ufsvfsp->vfs_dqrwlock); 2874 rw_exit(&ip->i_contents); 2875 } 2876 goto unlock; 2877 } 2878 2879 *vpp = ITOV(ip); 2880 ITIMES(ip); 2881 rw_exit(&ip->i_contents); 2882 rw_exit(&ufsvfsp->vfs_dqrwlock); 2883 2884 /* 2885 * If vnode is a device return special vnode instead. 2886 */ 2887 if (!error && IS_DEVVP(*vpp)) { 2888 struct vnode *newvp; 2889 2890 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 2891 VN_RELE(*vpp); 2892 if (newvp == NULL) { 2893 error = ENOSYS; 2894 goto unlock; 2895 } 2896 truncflag = 0; 2897 *vpp = newvp; 2898 } 2899 unlock: 2900 2901 /* 2902 * Do the deferred update of the parent directory's sequence 2903 * number now. 2904 */ 2905 if (defer_dip_seq_update == 1) { 2906 rw_enter(&dip->i_contents, RW_READER); 2907 mutex_enter(&dip->i_tlock); 2908 dip->i_seq++; 2909 mutex_exit(&dip->i_tlock); 2910 rw_exit(&dip->i_contents); 2911 } 2912 2913 if (ulp) { 2914 int terr = 0; 2915 2916 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_CREATE, 2917 trans_size); 2918 2919 /* 2920 * If we haven't had a more interesting failure 2921 * already, then anything that might've happened 2922 * here should be reported. 2923 */ 2924 if (error == 0) 2925 error = terr; 2926 } 2927 2928 if (!error && truncflag) { 2929 rw_enter(&ip->i_rwlock, RW_WRITER); 2930 (void) TRANS_ITRUNC(ip, (u_offset_t)0, 0, cr); 2931 rw_exit(&ip->i_rwlock); 2932 } 2933 2934 if (ulp) 2935 ufs_lockfs_end(ulp); 2936 2937 /* 2938 * If no inodes available, try to free one up out of the 2939 * pending delete queue. 2940 */ 2941 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 2942 ufs_delete_drain_wait(ufsvfsp, 1); 2943 retry = 0; 2944 goto again; 2945 } 2946 2947 out: 2948 TRACE_3(TR_FAC_UFS, TR_UFS_CREATE_END, 2949 "ufs_create_end:dvp %p name %s error %d", vpp, name, error); 2950 return (error); 2951 } 2952 2953 extern int ufs_idle_max; 2954 /*ARGSUSED*/ 2955 static int 2956 ufs_remove(struct vnode *vp, char *nm, struct cred *cr) 2957 { 2958 struct inode *ip = VTOI(vp); 2959 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 2960 struct ulockfs *ulp; 2961 vnode_t *rmvp = NULL; /* Vnode corresponding to name being removed */ 2962 int error; 2963 int issync; 2964 int trans_size; 2965 2966 TRACE_1(TR_FAC_UFS, TR_UFS_REMOVE_START, 2967 "ufs_remove_start:vp %p", vp); 2968 2969 /* 2970 * don't let the delete queue get too long 2971 */ 2972 if (ufsvfsp == NULL) { 2973 error = EIO; 2974 goto out; 2975 } 2976 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max) 2977 ufs_delete_drain(vp->v_vfsp, 1, 1); 2978 2979 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_REMOVE_MASK); 2980 if (error) 2981 goto out; 2982 2983 if (ulp) 2984 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE, 2985 trans_size = (int)TOP_REMOVE_SIZE(VTOI(vp))); 2986 2987 rw_enter(&ip->i_rwlock, RW_WRITER); 2988 error = ufs_dirremove(ip, nm, (struct inode *)0, (struct vnode *)0, 2989 DR_REMOVE, cr, &rmvp); 2990 rw_exit(&ip->i_rwlock); 2991 2992 if (ulp) { 2993 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_REMOVE, trans_size); 2994 ufs_lockfs_end(ulp); 2995 } 2996 2997 /* 2998 * This must be called after the remove transaction is closed. 2999 */ 3000 if (rmvp != NULL) { 3001 /* Only send the event if there were no errors */ 3002 if (error == 0) 3003 vnevent_remove(rmvp); 3004 VN_RELE(rmvp); 3005 } 3006 out: 3007 TRACE_3(TR_FAC_UFS, TR_UFS_REMOVE_END, 3008 "ufs_remove_end:vp %p name %s error %d", vp, nm, error); 3009 return (error); 3010 } 3011 3012 /* 3013 * Link a file or a directory. Only privileged processes are allowed to 3014 * make links to directories. 3015 */ 3016 static int 3017 ufs_link(struct vnode *tdvp, struct vnode *svp, char *tnm, struct cred *cr) 3018 { 3019 struct inode *sip; 3020 struct inode *tdp = VTOI(tdvp); 3021 struct ufsvfs *ufsvfsp = tdp->i_ufsvfs; 3022 struct ulockfs *ulp; 3023 struct vnode *realvp; 3024 int error; 3025 int issync; 3026 int trans_size; 3027 int isdev; 3028 3029 TRACE_1(TR_FAC_UFS, TR_UFS_LINK_START, 3030 "ufs_link_start:tdvp %p", tdvp); 3031 3032 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LINK_MASK); 3033 if (error) 3034 goto out; 3035 3036 if (ulp) 3037 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_LINK, 3038 trans_size = (int)TOP_LINK_SIZE(VTOI(tdvp))); 3039 3040 if (VOP_REALVP(svp, &realvp) == 0) 3041 svp = realvp; 3042 3043 /* 3044 * Make sure link for extended attributes is valid 3045 * We only support hard linking of attr in ATTRDIR to ATTRDIR 3046 * 3047 * Make certain we don't attempt to look at a device node as 3048 * a ufs inode. 3049 */ 3050 3051 isdev = IS_DEVVP(svp); 3052 if (((isdev == 0) && ((VTOI(svp)->i_cflags & IXATTR) == 0) && 3053 ((tdp->i_mode & IFMT) == IFATTRDIR)) || 3054 ((isdev == 0) && (VTOI(svp)->i_cflags & IXATTR) && 3055 ((tdp->i_mode & IFMT) == IFDIR))) { 3056 error = EINVAL; 3057 goto unlock; 3058 } 3059 3060 sip = VTOI(svp); 3061 if ((svp->v_type == VDIR && 3062 secpolicy_fs_linkdir(cr, ufsvfsp->vfs_vfs) != 0) || 3063 (sip->i_uid != crgetuid(cr) && secpolicy_basic_link(cr) != 0)) { 3064 error = EPERM; 3065 goto unlock; 3066 } 3067 rw_enter(&tdp->i_rwlock, RW_WRITER); 3068 error = ufs_direnter_lr(tdp, tnm, DE_LINK, (struct inode *)0, 3069 sip, cr, NULL); 3070 rw_exit(&tdp->i_rwlock); 3071 3072 unlock: 3073 if (ulp) { 3074 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_LINK, trans_size); 3075 ufs_lockfs_end(ulp); 3076 } 3077 out: 3078 TRACE_2(TR_FAC_UFS, TR_UFS_LINK_END, 3079 "ufs_link_end:tdvp %p error %d", tdvp, error); 3080 return (error); 3081 } 3082 3083 uint64_t ufs_rename_retry_cnt; 3084 uint64_t ufs_rename_upgrade_retry_cnt; 3085 uint64_t ufs_rename_dircheck_retry_cnt; 3086 clock_t ufs_rename_backoff_delay = 1; 3087 3088 /* 3089 * Rename a file or directory. 3090 * We are given the vnode and entry string of the source and the 3091 * vnode and entry string of the place we want to move the source 3092 * to (the target). The essential operation is: 3093 * unlink(target); 3094 * link(source, target); 3095 * unlink(source); 3096 * but "atomically". Can't do full commit without saving state in 3097 * the inode on disk, which isn't feasible at this time. Best we 3098 * can do is always guarantee that the TARGET exists. 3099 */ 3100 /*ARGSUSED*/ 3101 static int 3102 ufs_rename( 3103 struct vnode *sdvp, /* old (source) parent vnode */ 3104 char *snm, /* old (source) entry name */ 3105 struct vnode *tdvp, /* new (target) parent vnode */ 3106 char *tnm, /* new (target) entry name */ 3107 struct cred *cr) 3108 { 3109 struct inode *sip = NULL; /* source inode */ 3110 struct inode *sdp; /* old (source) parent inode */ 3111 struct inode *tdp; /* new (target) parent inode */ 3112 struct vnode *tvp = NULL; /* target vnode, if it exists */ 3113 struct vnode *realvp; 3114 struct ufsvfs *ufsvfsp; 3115 struct ulockfs *ulp; 3116 int error; 3117 int issync; 3118 int trans_size; 3119 3120 TRACE_1(TR_FAC_UFS, TR_UFS_RENAME_START, 3121 "ufs_rename_start:sdvp %p", sdvp); 3122 3123 3124 sdp = VTOI(sdvp); 3125 ufsvfsp = sdp->i_ufsvfs; 3126 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RENAME_MASK); 3127 if (error) 3128 goto out; 3129 3130 if (ulp) 3131 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RENAME, 3132 trans_size = (int)TOP_RENAME_SIZE(sdp)); 3133 3134 if (VOP_REALVP(tdvp, &realvp) == 0) 3135 tdvp = realvp; 3136 3137 tdp = VTOI(tdvp); 3138 3139 /* 3140 * We only allow renaming of attributes from ATTRDIR to ATTRDIR. 3141 */ 3142 if ((tdp->i_mode & IFMT) != (sdp->i_mode & IFMT)) { 3143 error = EINVAL; 3144 goto unlock; 3145 } 3146 3147 /* 3148 * Look up inode of file we're supposed to rename. 3149 */ 3150 if (error = ufs_dirlook(sdp, snm, &sip, cr, 0)) { 3151 goto unlock; 3152 } 3153 3154 /* 3155 * Lock both the source and target directories (they may be 3156 * the same) to provide the atomicity semantics that was 3157 * previously provided by the per file system vfs_rename_lock 3158 * 3159 * with vfs_rename_lock removed to allow simultaneous renames 3160 * within a file system, ufs_dircheckpath can deadlock while 3161 * traversing back to ensure that source is not a parent directory 3162 * of target parent directory. This is because we get into 3163 * ufs_dircheckpath with the sdp and tdp locks held as RW_WRITER. 3164 * If the tdp and sdp of the simultaneous renames happen to be 3165 * in the path of each other, it can lead to a deadlock. This 3166 * can be avoided by getting the locks as RW_READER here and then 3167 * upgrading to RW_WRITER after completing the ufs_dircheckpath. 3168 */ 3169 retry: 3170 rw_enter(&tdp->i_rwlock, RW_READER); 3171 if (tdp != sdp) { 3172 /* 3173 * We're locking 2 peer level locks, so must use tryenter 3174 * on the 2nd to avoid deadlocks that would occur 3175 * if we renamed a->b and b->a concurrently. 3176 */ 3177 if (!rw_tryenter(&sdp->i_rwlock, RW_READER)) { 3178 /* 3179 * Reverse the lock grabs in case we have heavy 3180 * contention on the 2nd lock. 3181 */ 3182 rw_exit(&tdp->i_rwlock); 3183 rw_enter(&sdp->i_rwlock, RW_READER); 3184 if (!rw_tryenter(&tdp->i_rwlock, RW_READER)) { 3185 ufs_rename_retry_cnt++; 3186 rw_exit(&sdp->i_rwlock); 3187 goto retry; 3188 } 3189 } 3190 } 3191 3192 if (sip == tdp) { 3193 error = EINVAL; 3194 goto errout; 3195 } 3196 /* 3197 * Make sure we can delete the source entry. This requires 3198 * write permission on the containing directory. 3199 * Check for sticky directories. 3200 */ 3201 rw_enter(&sdp->i_contents, RW_READER); 3202 rw_enter(&sip->i_contents, RW_READER); 3203 if ((error = ufs_iaccess(sdp, IWRITE, cr)) != 0 || 3204 (error = ufs_sticky_remove_access(sdp, sip, cr)) != 0) { 3205 rw_exit(&sip->i_contents); 3206 rw_exit(&sdp->i_contents); 3207 goto errout; 3208 } 3209 3210 /* 3211 * If this is a rename of a directory and the parent is 3212 * different (".." must be changed), then the source 3213 * directory must not be in the directory hierarchy 3214 * above the target, as this would orphan everything 3215 * below the source directory. Also the user must have 3216 * write permission in the source so as to be able to 3217 * change "..". 3218 */ 3219 if ((((sip->i_mode & IFMT) == IFDIR) || 3220 ((sip->i_mode & IFMT) == IFATTRDIR)) && sdp != tdp) { 3221 ino_t inum; 3222 3223 if ((error = ufs_iaccess(sip, IWRITE, cr))) { 3224 rw_exit(&sip->i_contents); 3225 rw_exit(&sdp->i_contents); 3226 goto errout; 3227 } 3228 inum = sip->i_number; 3229 rw_exit(&sip->i_contents); 3230 rw_exit(&sdp->i_contents); 3231 if ((error = ufs_dircheckpath(inum, tdp, sdp, cr))) { 3232 /* 3233 * If we got EAGAIN ufs_dircheckpath detected a 3234 * potential deadlock and backed out. We need 3235 * to retry the operation since sdp and tdp have 3236 * to be released to avoid the deadlock. 3237 */ 3238 if (error == EAGAIN) { 3239 rw_exit(&tdp->i_rwlock); 3240 if (tdp != sdp) 3241 rw_exit(&sdp->i_rwlock); 3242 delay(ufs_rename_backoff_delay); 3243 ufs_rename_dircheck_retry_cnt++; 3244 goto retry; 3245 } 3246 goto errout; 3247 } 3248 } else { 3249 rw_exit(&sip->i_contents); 3250 rw_exit(&sdp->i_contents); 3251 } 3252 3253 3254 /* 3255 * Check for renaming '.' or '..' or alias of '.' 3256 */ 3257 if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0 || sdp == sip) { 3258 error = EINVAL; 3259 goto errout; 3260 } 3261 3262 /* 3263 * Simultaneous renames can deadlock in ufs_dircheckpath since it 3264 * tries to traverse back the file tree with both tdp and sdp held 3265 * as RW_WRITER. To avoid that we have to hold the tdp and sdp locks 3266 * as RW_READERS till ufs_dircheckpath is done. 3267 * Now that ufs_dircheckpath is done with, we can upgrade the locks 3268 * to RW_WRITER. 3269 */ 3270 if (!rw_tryupgrade(&tdp->i_rwlock)) { 3271 /* 3272 * The upgrade failed. We got to give away the lock 3273 * as to avoid deadlocking with someone else who is 3274 * waiting for writer lock. With the lock gone, we 3275 * cannot be sure the checks done above will hold 3276 * good when we eventually get them back as writer. 3277 * So if we can't upgrade we drop the locks and retry 3278 * everything again. 3279 */ 3280 rw_exit(&tdp->i_rwlock); 3281 if (tdp != sdp) 3282 rw_exit(&sdp->i_rwlock); 3283 delay(ufs_rename_backoff_delay); 3284 ufs_rename_upgrade_retry_cnt++; 3285 goto retry; 3286 } 3287 if (tdp != sdp) { 3288 if (!rw_tryupgrade(&sdp->i_rwlock)) { 3289 /* 3290 * The upgrade failed. We got to give away the lock 3291 * as to avoid deadlocking with someone else who is 3292 * waiting for writer lock. With the lock gone, we 3293 * cannot be sure the checks done above will hold 3294 * good when we eventually get them back as writer. 3295 * So if we can't upgrade we drop the locks and retry 3296 * everything again. 3297 */ 3298 rw_exit(&tdp->i_rwlock); 3299 rw_exit(&sdp->i_rwlock); 3300 delay(ufs_rename_backoff_delay); 3301 ufs_rename_upgrade_retry_cnt++; 3302 goto retry; 3303 } 3304 } 3305 /* 3306 * Link source to the target. If a target exists, return its 3307 * vnode pointer in tvp. We'll release it after sending the 3308 * vnevent. 3309 */ 3310 if (error = ufs_direnter_lr(tdp, tnm, DE_RENAME, sdp, sip, cr, &tvp)) { 3311 /* 3312 * ESAME isn't really an error; it indicates that the 3313 * operation should not be done because the source and target 3314 * are the same file, but that no error should be reported. 3315 */ 3316 if (error == ESAME) 3317 error = 0; 3318 goto errout; 3319 } 3320 3321 /* 3322 * Unlink the source. 3323 * Remove the source entry. ufs_dirremove() checks that the entry 3324 * still reflects sip, and returns an error if it doesn't. 3325 * If the entry has changed just forget about it. Release 3326 * the source inode. 3327 */ 3328 if ((error = ufs_dirremove(sdp, snm, sip, (struct vnode *)0, 3329 DR_RENAME, cr, NULL)) == ENOENT) 3330 error = 0; 3331 3332 errout: 3333 rw_exit(&tdp->i_rwlock); 3334 if (sdp != tdp) { 3335 rw_exit(&sdp->i_rwlock); 3336 } 3337 3338 unlock: 3339 if (ulp) { 3340 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, trans_size); 3341 ufs_lockfs_end(ulp); 3342 } 3343 3344 /* 3345 * If no errors, send the appropriate events on the source 3346 * and destination (a.k.a, target) vnodes, if they exist. 3347 * This has to be done after the rename transaction has closed. 3348 */ 3349 if (error == 0) { 3350 if (tvp != NULL) 3351 vnevent_rename_dest(tvp); 3352 /* 3353 * Note that if ufs_direnter_lr() returned ESAME then 3354 * this event will still be sent. This isn't expected 3355 * to be a problem for anticipated usage by consumers. 3356 */ 3357 if (sip != NULL) 3358 vnevent_rename_src(ITOV(sip)); 3359 } 3360 3361 if (tvp != NULL) 3362 VN_RELE(tvp); 3363 3364 if (sip != NULL) 3365 VN_RELE(ITOV(sip)); 3366 3367 out: 3368 TRACE_5(TR_FAC_UFS, TR_UFS_RENAME_END, 3369 "ufs_rename_end:sdvp %p snm %s tdvp %p tnm %s error %d", 3370 sdvp, snm, tdvp, tnm, error); 3371 return (error); 3372 } 3373 3374 /*ARGSUSED*/ 3375 static int 3376 ufs_mkdir(struct vnode *dvp, char *dirname, struct vattr *vap, 3377 struct vnode **vpp, struct cred *cr) 3378 { 3379 struct inode *ip; 3380 struct inode *xip; 3381 struct ufsvfs *ufsvfsp; 3382 struct ulockfs *ulp; 3383 int error; 3384 int issync; 3385 int trans_size; 3386 int retry = 1; 3387 3388 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 3389 3390 TRACE_1(TR_FAC_UFS, TR_UFS_MKDIR_START, 3391 "ufs_mkdir_start:dvp %p", dvp); 3392 3393 /* 3394 * Can't make directory in attr hidden dir 3395 */ 3396 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR) 3397 return (EINVAL); 3398 3399 again: 3400 ip = VTOI(dvp); 3401 ufsvfsp = ip->i_ufsvfs; 3402 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MKDIR_MASK); 3403 if (error) 3404 goto out; 3405 if (ulp) 3406 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_MKDIR, 3407 trans_size = (int)TOP_MKDIR_SIZE(ip)); 3408 3409 rw_enter(&ip->i_rwlock, RW_WRITER); 3410 3411 error = ufs_direnter_cm(ip, dirname, DE_MKDIR, vap, &xip, cr, 3412 (retry ? IQUIET : 0)); 3413 3414 rw_exit(&ip->i_rwlock); 3415 if (error == 0) { 3416 ip = xip; 3417 *vpp = ITOV(ip); 3418 } else if (error == EEXIST) 3419 VN_RELE(ITOV(xip)); 3420 3421 if (ulp) { 3422 int terr = 0; 3423 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_MKDIR, trans_size); 3424 ufs_lockfs_end(ulp); 3425 if (error == 0) 3426 error = terr; 3427 } 3428 out: 3429 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 3430 ufs_delete_drain_wait(ufsvfsp, 1); 3431 retry = 0; 3432 goto again; 3433 } 3434 3435 TRACE_2(TR_FAC_UFS, TR_UFS_MKDIR_END, 3436 "ufs_mkdir_end:dvp %p error %d", dvp, error); 3437 return (error); 3438 } 3439 3440 /*ARGSUSED*/ 3441 static int 3442 ufs_rmdir(struct vnode *vp, char *nm, struct vnode *cdir, struct cred *cr) 3443 { 3444 struct inode *ip = VTOI(vp); 3445 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 3446 struct ulockfs *ulp; 3447 vnode_t *rmvp = NULL; /* Vnode of removed directory */ 3448 int error; 3449 int issync; 3450 3451 TRACE_1(TR_FAC_UFS, TR_UFS_RMDIR_START, 3452 "ufs_rmdir_start:vp %p", vp); 3453 3454 /* 3455 * don't let the delete queue get too long 3456 */ 3457 if (ufsvfsp == NULL) { 3458 error = EIO; 3459 goto out; 3460 } 3461 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max) 3462 ufs_delete_drain(vp->v_vfsp, 1, 1); 3463 3464 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RMDIR_MASK); 3465 if (error) 3466 goto out; 3467 3468 if (ulp) 3469 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RMDIR, TOP_RMDIR_SIZE); 3470 3471 rw_enter(&ip->i_rwlock, RW_WRITER); 3472 error = ufs_dirremove(ip, nm, (struct inode *)0, cdir, DR_RMDIR, cr, 3473 &rmvp); 3474 rw_exit(&ip->i_rwlock); 3475 3476 if (ulp) { 3477 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RMDIR, 3478 TOP_RMDIR_SIZE); 3479 ufs_lockfs_end(ulp); 3480 } 3481 3482 /* 3483 * This must be done AFTER the rmdir transaction has closed. 3484 */ 3485 if (rmvp != NULL) { 3486 /* Only send the event if there were no errors */ 3487 if (error == 0) 3488 vnevent_rmdir(rmvp); 3489 VN_RELE(rmvp); 3490 } 3491 out: 3492 TRACE_2(TR_FAC_UFS, TR_UFS_RMDIR_END, 3493 "ufs_rmdir_end:vp %p error %d", vp, error); 3494 3495 return (error); 3496 } 3497 3498 /* ARGSUSED */ 3499 static int 3500 ufs_readdir( 3501 struct vnode *vp, 3502 struct uio *uiop, 3503 struct cred *cr, 3504 int *eofp) 3505 { 3506 struct iovec *iovp; 3507 struct inode *ip; 3508 struct direct *idp; 3509 struct dirent64 *odp; 3510 struct fbuf *fbp; 3511 struct ufsvfs *ufsvfsp; 3512 struct ulockfs *ulp; 3513 caddr_t outbuf; 3514 size_t bufsize; 3515 uint_t offset; 3516 uint_t bytes_wanted, total_bytes_wanted; 3517 int incount = 0; 3518 int outcount = 0; 3519 int error; 3520 3521 ip = VTOI(vp); 3522 ASSERT(RW_READ_HELD(&ip->i_rwlock)); 3523 3524 TRACE_2(TR_FAC_UFS, TR_UFS_READDIR_START, 3525 "ufs_readdir_start:vp %p uiop %p", vp, uiop); 3526 3527 if (uiop->uio_loffset >= MAXOFF32_T) { 3528 if (eofp) 3529 *eofp = 1; 3530 return (0); 3531 } 3532 3533 /* 3534 * Check if we have been called with a valid iov_len 3535 * and bail out if not, otherwise we may potentially loop 3536 * forever further down. 3537 */ 3538 if (uiop->uio_iov->iov_len <= 0) { 3539 error = EINVAL; 3540 goto out; 3541 } 3542 3543 /* 3544 * Large Files: When we come here we are guaranteed that 3545 * uio_offset can be used safely. The high word is zero. 3546 */ 3547 3548 ufsvfsp = ip->i_ufsvfs; 3549 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READDIR_MASK); 3550 if (error) 3551 goto out; 3552 3553 iovp = uiop->uio_iov; 3554 total_bytes_wanted = iovp->iov_len; 3555 3556 /* Large Files: directory files should not be "large" */ 3557 3558 ASSERT(ip->i_size <= MAXOFF32_T); 3559 3560 /* Force offset to be valid (to guard against bogus lseek() values) */ 3561 offset = (uint_t)uiop->uio_offset & ~(DIRBLKSIZ - 1); 3562 3563 /* Quit if at end of file or link count of zero (posix) */ 3564 if (offset >= (uint_t)ip->i_size || ip->i_nlink <= 0) { 3565 if (eofp) 3566 *eofp = 1; 3567 error = 0; 3568 goto unlock; 3569 } 3570 3571 /* 3572 * Get space to change directory entries into fs independent format. 3573 * Do fast alloc for the most commonly used-request size (filesystem 3574 * block size). 3575 */ 3576 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) { 3577 bufsize = total_bytes_wanted; 3578 outbuf = kmem_alloc(bufsize, KM_SLEEP); 3579 odp = (struct dirent64 *)outbuf; 3580 } else { 3581 bufsize = total_bytes_wanted; 3582 odp = (struct dirent64 *)iovp->iov_base; 3583 } 3584 3585 nextblk: 3586 bytes_wanted = total_bytes_wanted; 3587 3588 /* Truncate request to file size */ 3589 if (offset + bytes_wanted > (int)ip->i_size) 3590 bytes_wanted = (int)(ip->i_size - offset); 3591 3592 /* Comply with MAXBSIZE boundary restrictions of fbread() */ 3593 if ((offset & MAXBOFFSET) + bytes_wanted > MAXBSIZE) 3594 bytes_wanted = MAXBSIZE - (offset & MAXBOFFSET); 3595 3596 /* 3597 * Read in the next chunk. 3598 * We are still holding the i_rwlock. 3599 */ 3600 error = fbread(vp, (offset_t)offset, bytes_wanted, S_OTHER, &fbp); 3601 3602 if (error) 3603 goto update_inode; 3604 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (ip->i_fs->fs_ronly == 0) && 3605 (!ufsvfsp->vfs_noatime)) { 3606 ip->i_flag |= IACC; 3607 } 3608 incount = 0; 3609 idp = (struct direct *)fbp->fb_addr; 3610 if (idp->d_ino == 0 && idp->d_reclen == 0 && 3611 idp->d_namlen == 0) { 3612 cmn_err(CE_WARN, "ufs_readdir: bad dir, inumber = %llu, " 3613 "fs = %s\n", 3614 (u_longlong_t)ip->i_number, ufsvfsp->vfs_fs->fs_fsmnt); 3615 fbrelse(fbp, S_OTHER); 3616 error = ENXIO; 3617 goto update_inode; 3618 } 3619 /* Transform to file-system independent format */ 3620 while (incount < bytes_wanted) { 3621 /* 3622 * If the current directory entry is mangled, then skip 3623 * to the next block. It would be nice to set the FSBAD 3624 * flag in the super-block so that a fsck is forced on 3625 * next reboot, but locking is a problem. 3626 */ 3627 if (idp->d_reclen & 0x3) { 3628 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1); 3629 break; 3630 } 3631 3632 /* Skip to requested offset and skip empty entries */ 3633 if (idp->d_ino != 0 && offset >= (uint_t)uiop->uio_offset) { 3634 ushort_t this_reclen = 3635 DIRENT64_RECLEN(idp->d_namlen); 3636 /* Buffer too small for any entries */ 3637 if (!outcount && this_reclen > bufsize) { 3638 fbrelse(fbp, S_OTHER); 3639 error = EINVAL; 3640 goto update_inode; 3641 } 3642 /* If would overrun the buffer, quit */ 3643 if (outcount + this_reclen > bufsize) { 3644 break; 3645 } 3646 /* Take this entry */ 3647 odp->d_ino = (ino64_t)idp->d_ino; 3648 odp->d_reclen = (ushort_t)this_reclen; 3649 odp->d_off = (offset_t)(offset + idp->d_reclen); 3650 3651 /* use strncpy(9f) to zero out uninitialized bytes */ 3652 3653 ASSERT(strlen(idp->d_name) + 1 <= 3654 DIRENT64_NAMELEN(this_reclen)); 3655 (void) strncpy(odp->d_name, idp->d_name, 3656 DIRENT64_NAMELEN(this_reclen)); 3657 outcount += odp->d_reclen; 3658 odp = (struct dirent64 *)((intptr_t)odp + 3659 odp->d_reclen); 3660 ASSERT(outcount <= bufsize); 3661 } 3662 if (idp->d_reclen) { 3663 incount += idp->d_reclen; 3664 offset += idp->d_reclen; 3665 idp = (struct direct *)((intptr_t)idp + idp->d_reclen); 3666 } else { 3667 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1); 3668 break; 3669 } 3670 } 3671 /* Release the chunk */ 3672 fbrelse(fbp, S_OTHER); 3673 3674 /* Read whole block, but got no entries, read another if not eof */ 3675 3676 /* 3677 * Large Files: casting i_size to int here is not a problem 3678 * because directory sizes are always less than MAXOFF32_T. 3679 * See assertion above. 3680 */ 3681 3682 if (offset < (int)ip->i_size && !outcount) 3683 goto nextblk; 3684 3685 /* Copy out the entry data */ 3686 if (uiop->uio_segflg == UIO_SYSSPACE && uiop->uio_iovcnt == 1) { 3687 iovp->iov_base += outcount; 3688 iovp->iov_len -= outcount; 3689 uiop->uio_resid -= outcount; 3690 uiop->uio_offset = offset; 3691 } else if ((error = uiomove(outbuf, (long)outcount, UIO_READ, 3692 uiop)) == 0) 3693 uiop->uio_offset = offset; 3694 update_inode: 3695 ITIMES(ip); 3696 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) 3697 kmem_free(outbuf, bufsize); 3698 3699 if (eofp && error == 0) 3700 *eofp = (uiop->uio_offset >= (int)ip->i_size); 3701 unlock: 3702 if (ulp) { 3703 ufs_lockfs_end(ulp); 3704 } 3705 out: 3706 TRACE_2(TR_FAC_UFS, TR_UFS_READDIR_END, 3707 "ufs_readdir_end:vp %p error %d", vp, error); 3708 return (error); 3709 } 3710 3711 /*ARGSUSED*/ 3712 static int 3713 ufs_symlink( 3714 struct vnode *dvp, /* ptr to parent dir vnode */ 3715 char *linkname, /* name of symbolic link */ 3716 struct vattr *vap, /* attributes */ 3717 char *target, /* target path */ 3718 struct cred *cr) /* user credentials */ 3719 { 3720 struct inode *ip, *dip = VTOI(dvp); 3721 struct ufsvfs *ufsvfsp = dip->i_ufsvfs; 3722 struct ulockfs *ulp; 3723 int error; 3724 int issync; 3725 int trans_size; 3726 int residual; 3727 int ioflag; 3728 int retry = 1; 3729 3730 TRACE_1(TR_FAC_UFS, TR_UFS_SYMLINK_START, 3731 "ufs_symlink_start:dvp %p", dvp); 3732 3733 /* 3734 * No symlinks in attrdirs at this time 3735 */ 3736 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR) 3737 return (EINVAL); 3738 3739 again: 3740 ip = (struct inode *)NULL; 3741 vap->va_type = VLNK; 3742 vap->va_rdev = 0; 3743 3744 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SYMLINK_MASK); 3745 if (error) 3746 goto out; 3747 3748 if (ulp) 3749 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SYMLINK, 3750 trans_size = (int)TOP_SYMLINK_SIZE(dip)); 3751 3752 /* 3753 * We must create the inode before the directory entry, to avoid 3754 * racing with readlink(). ufs_dirmakeinode requires that we 3755 * hold the quota lock as reader, and directory locks as writer. 3756 */ 3757 3758 rw_enter(&dip->i_rwlock, RW_WRITER); 3759 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 3760 rw_enter(&dip->i_contents, RW_WRITER); 3761 3762 /* 3763 * Suppress any out of inodes messages if we will retry on 3764 * ENOSP 3765 */ 3766 if (retry) 3767 dip->i_flag |= IQUIET; 3768 3769 error = ufs_dirmakeinode(dip, &ip, vap, DE_SYMLINK, cr); 3770 3771 dip->i_flag &= ~IQUIET; 3772 3773 rw_exit(&dip->i_contents); 3774 rw_exit(&ufsvfsp->vfs_dqrwlock); 3775 rw_exit(&dip->i_rwlock); 3776 3777 if (error) 3778 goto unlock; 3779 3780 /* 3781 * OK. The inode has been created. Write out the data of the 3782 * symbolic link. Since symbolic links are metadata, and should 3783 * remain consistent across a system crash, we need to force the 3784 * data out synchronously. 3785 * 3786 * (This is a change from the semantics in earlier releases, which 3787 * only created symbolic links synchronously if the semi-documented 3788 * 'syncdir' option was set, or if we were being invoked by the NFS 3789 * server, which requires symbolic links to be created synchronously.) 3790 * 3791 * We need to pass in a pointer for the residual length; otherwise 3792 * ufs_rdwri() will always return EIO if it can't write the data, 3793 * even if the error was really ENOSPC or EDQUOT. 3794 */ 3795 3796 ioflag = FWRITE | FDSYNC; 3797 residual = 0; 3798 3799 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 3800 rw_enter(&ip->i_contents, RW_WRITER); 3801 3802 /* 3803 * Suppress file system full messages if we will retry 3804 */ 3805 if (retry) 3806 ip->i_flag |= IQUIET; 3807 3808 error = ufs_rdwri(UIO_WRITE, ioflag, ip, target, strlen(target), 3809 (offset_t)0, UIO_SYSSPACE, &residual, cr); 3810 3811 ip->i_flag &= ~IQUIET; 3812 3813 if (error) { 3814 rw_exit(&ip->i_contents); 3815 rw_exit(&ufsvfsp->vfs_dqrwlock); 3816 goto remove; 3817 } 3818 3819 /* 3820 * If the link's data is small enough, we can cache it in the inode. 3821 * This is a "fast symbolic link". We don't use the first direct 3822 * block because that's actually used to point at the symbolic link's 3823 * contents on disk; but we know that none of the other direct or 3824 * indirect blocks can be used because symbolic links are restricted 3825 * to be smaller than a file system block. 3826 */ 3827 3828 ASSERT(MAXPATHLEN <= VBSIZE(ITOV(ip))); 3829 3830 if (ip->i_size > 0 && ip->i_size <= FSL_SIZE) { 3831 if (kcopy(target, &ip->i_db[1], ip->i_size) == 0) { 3832 ip->i_flag |= IFASTSYMLNK; 3833 } else { 3834 int i; 3835 /* error, clear garbage left behind */ 3836 for (i = 1; i < NDADDR; i++) 3837 ip->i_db[i] = 0; 3838 for (i = 0; i < NIADDR; i++) 3839 ip->i_ib[i] = 0; 3840 } 3841 } 3842 3843 rw_exit(&ip->i_contents); 3844 rw_exit(&ufsvfsp->vfs_dqrwlock); 3845 3846 /* 3847 * OK. We've successfully created the symbolic link. All that 3848 * remains is to insert it into the appropriate directory. 3849 */ 3850 3851 rw_enter(&dip->i_rwlock, RW_WRITER); 3852 error = ufs_direnter_lr(dip, linkname, DE_SYMLINK, NULL, ip, cr, NULL); 3853 rw_exit(&dip->i_rwlock); 3854 3855 /* 3856 * Fall through into remove-on-error code. We're either done, or we 3857 * need to remove the inode (if we couldn't insert it). 3858 */ 3859 3860 remove: 3861 if (error && (ip != NULL)) { 3862 rw_enter(&ip->i_contents, RW_WRITER); 3863 ip->i_nlink--; 3864 ip->i_flag |= ICHG; 3865 ip->i_seq++; 3866 ufs_setreclaim(ip); 3867 rw_exit(&ip->i_contents); 3868 } 3869 3870 unlock: 3871 if (ip != NULL) 3872 VN_RELE(ITOV(ip)); 3873 3874 if (ulp) { 3875 int terr = 0; 3876 3877 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SYMLINK, 3878 trans_size); 3879 ufs_lockfs_end(ulp); 3880 if (error == 0) 3881 error = terr; 3882 } 3883 3884 /* 3885 * We may have failed due to lack of an inode or of a block to 3886 * store the target in. Try flushing the delete queue to free 3887 * logically-available things up and try again. 3888 */ 3889 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 3890 ufs_delete_drain_wait(ufsvfsp, 1); 3891 retry = 0; 3892 goto again; 3893 } 3894 3895 out: 3896 TRACE_2(TR_FAC_UFS, TR_UFS_SYMLINK_END, 3897 "ufs_symlink_end:dvp %p error %d", dvp, error); 3898 return (error); 3899 } 3900 3901 /* 3902 * Ufs specific routine used to do ufs io. 3903 */ 3904 int 3905 ufs_rdwri(enum uio_rw rw, int ioflag, struct inode *ip, caddr_t base, 3906 ssize_t len, offset_t offset, enum uio_seg seg, int *aresid, 3907 struct cred *cr) 3908 { 3909 struct uio auio; 3910 struct iovec aiov; 3911 int error; 3912 3913 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 3914 3915 bzero((caddr_t)&auio, sizeof (uio_t)); 3916 bzero((caddr_t)&aiov, sizeof (iovec_t)); 3917 3918 aiov.iov_base = base; 3919 aiov.iov_len = len; 3920 auio.uio_iov = &aiov; 3921 auio.uio_iovcnt = 1; 3922 auio.uio_loffset = offset; 3923 auio.uio_segflg = (short)seg; 3924 auio.uio_resid = len; 3925 3926 if (rw == UIO_WRITE) { 3927 auio.uio_fmode = FWRITE; 3928 auio.uio_extflg = UIO_COPY_DEFAULT; 3929 auio.uio_llimit = curproc->p_fsz_ctl; 3930 error = wrip(ip, &auio, ioflag, cr); 3931 } else { 3932 auio.uio_fmode = FREAD; 3933 auio.uio_extflg = UIO_COPY_CACHED; 3934 auio.uio_llimit = MAXOFFSET_T; 3935 error = rdip(ip, &auio, ioflag, cr); 3936 } 3937 3938 if (aresid) { 3939 *aresid = auio.uio_resid; 3940 } else if (auio.uio_resid) { 3941 error = EIO; 3942 } 3943 return (error); 3944 } 3945 3946 static int 3947 ufs_fid(vp, fidp) 3948 struct vnode *vp; 3949 struct fid *fidp; 3950 { 3951 struct ufid *ufid; 3952 struct inode *ip = VTOI(vp); 3953 3954 if (ip->i_ufsvfs == NULL) 3955 return (EIO); 3956 3957 if (fidp->fid_len < (sizeof (struct ufid) - sizeof (ushort_t))) { 3958 fidp->fid_len = sizeof (struct ufid) - sizeof (ushort_t); 3959 return (ENOSPC); 3960 } 3961 3962 ufid = (struct ufid *)fidp; 3963 bzero((char *)ufid, sizeof (struct ufid)); 3964 ufid->ufid_len = sizeof (struct ufid) - sizeof (ushort_t); 3965 ufid->ufid_ino = ip->i_number; 3966 ufid->ufid_gen = ip->i_gen; 3967 3968 return (0); 3969 } 3970 3971 /* ARGSUSED2 */ 3972 static int 3973 ufs_rwlock(struct vnode *vp, int write_lock, caller_context_t *ctp) 3974 { 3975 struct inode *ip = VTOI(vp); 3976 struct ufsvfs *ufsvfsp; 3977 int forcedirectio; 3978 3979 /* 3980 * Read case is easy. 3981 */ 3982 if (!write_lock) { 3983 rw_enter(&ip->i_rwlock, RW_READER); 3984 return (V_WRITELOCK_FALSE); 3985 } 3986 3987 /* 3988 * Caller has requested a writer lock, but that inhibits any 3989 * concurrency in the VOPs that follow. Acquire the lock shared 3990 * and defer exclusive access until it is known to be needed in 3991 * other VOP handlers. Some cases can be determined here. 3992 */ 3993 3994 /* 3995 * If directio is not set, there is no chance of concurrency, 3996 * so just acquire the lock exclusive. Beware of a forced 3997 * unmount before looking at the mount option. 3998 */ 3999 ufsvfsp = ip->i_ufsvfs; 4000 forcedirectio = ufsvfsp ? ufsvfsp->vfs_forcedirectio : 0; 4001 if (!(ip->i_flag & IDIRECTIO || forcedirectio) || 4002 !ufs_allow_shared_writes) { 4003 rw_enter(&ip->i_rwlock, RW_WRITER); 4004 return (V_WRITELOCK_TRUE); 4005 } 4006 4007 /* 4008 * Mandatory locking forces acquiring i_rwlock exclusive. 4009 */ 4010 if (MANDLOCK(vp, ip->i_mode)) { 4011 rw_enter(&ip->i_rwlock, RW_WRITER); 4012 return (V_WRITELOCK_TRUE); 4013 } 4014 4015 /* 4016 * Acquire the lock shared in case a concurrent write follows. 4017 * Mandatory locking could have become enabled before the lock 4018 * was acquired. Re-check and upgrade if needed. 4019 */ 4020 rw_enter(&ip->i_rwlock, RW_READER); 4021 if (MANDLOCK(vp, ip->i_mode)) { 4022 rw_exit(&ip->i_rwlock); 4023 rw_enter(&ip->i_rwlock, RW_WRITER); 4024 return (V_WRITELOCK_TRUE); 4025 } 4026 return (V_WRITELOCK_FALSE); 4027 } 4028 4029 /*ARGSUSED*/ 4030 static void 4031 ufs_rwunlock(struct vnode *vp, int write_lock, caller_context_t *ctp) 4032 { 4033 struct inode *ip = VTOI(vp); 4034 4035 rw_exit(&ip->i_rwlock); 4036 } 4037 4038 /* ARGSUSED */ 4039 static int 4040 ufs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp) 4041 { 4042 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4043 } 4044 4045 /* ARGSUSED */ 4046 static int 4047 ufs_frlock(struct vnode *vp, int cmd, struct flock64 *bfp, int flag, 4048 offset_t offset, struct flk_callback *flk_cbp, struct cred *cr) 4049 { 4050 struct inode *ip = VTOI(vp); 4051 4052 if (ip->i_ufsvfs == NULL) 4053 return (EIO); 4054 4055 /* 4056 * If file is being mapped, disallow frlock. 4057 * XXX I am not holding tlock while checking i_mapcnt because the 4058 * current locking strategy drops all locks before calling fs_frlock. 4059 * So, mapcnt could change before we enter fs_frlock making is 4060 * meaningless to have held tlock in the first place. 4061 */ 4062 if (ip->i_mapcnt > 0 && MANDLOCK(vp, ip->i_mode)) 4063 return (EAGAIN); 4064 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr)); 4065 } 4066 4067 /* ARGSUSED */ 4068 static int 4069 ufs_space( 4070 struct vnode *vp, 4071 int cmd, 4072 struct flock64 *bfp, 4073 int flag, 4074 offset_t offset, 4075 cred_t *cr, 4076 caller_context_t *ct) 4077 { 4078 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 4079 struct ulockfs *ulp; 4080 int error; 4081 4082 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SPACE_MASK); 4083 if (error) 4084 return (error); 4085 4086 4087 if (cmd != F_FREESP) 4088 error = EINVAL; 4089 else if ((error = convoff(vp, bfp, 0, offset)) == 0) 4090 error = ufs_freesp(vp, bfp, flag, cr); 4091 4092 if (ulp) 4093 ufs_lockfs_end(ulp); 4094 return (error); 4095 } 4096 4097 /* 4098 * Used to determine if read ahead should be done. Also used to 4099 * to determine when write back occurs. 4100 */ 4101 #define CLUSTSZ(ip) ((ip)->i_ufsvfs->vfs_ioclustsz) 4102 4103 /* 4104 * A faster version of ufs_getpage. 4105 * 4106 * We optimize by inlining the pvn_getpages iterator, eliminating 4107 * calls to bmap_read if file doesn't have UFS holes, and avoiding 4108 * the overhead of page_exists(). 4109 * 4110 * When files has UFS_HOLES and ufs_getpage is called with S_READ, 4111 * we set *protp to PROT_READ to avoid calling bmap_read. This approach 4112 * victimizes performance when a file with UFS holes is faulted 4113 * first in the S_READ mode, and then in the S_WRITE mode. We will get 4114 * two MMU faults in this case. 4115 * 4116 * XXX - the inode fields which control the sequential mode are not 4117 * protected by any mutex. The read ahead will act wild if 4118 * multiple processes will access the file concurrently and 4119 * some of them in sequential mode. One particulary bad case 4120 * is if another thread will change the value of i_nextrio between 4121 * the time this thread tests the i_nextrio value and then reads it 4122 * again to use it as the offset for the read ahead. 4123 */ 4124 static int 4125 ufs_getpage(struct vnode *vp, offset_t off, size_t len, uint_t *protp, 4126 page_t *plarr[], size_t plsz, struct seg *seg, caddr_t addr, 4127 enum seg_rw rw, struct cred *cr) 4128 { 4129 u_offset_t uoff = (u_offset_t)off; /* type conversion */ 4130 u_offset_t pgoff; 4131 u_offset_t eoff; 4132 struct inode *ip = VTOI(vp); 4133 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 4134 struct fs *fs; 4135 struct ulockfs *ulp; 4136 page_t **pl; 4137 caddr_t pgaddr; 4138 krw_t rwtype; 4139 int err; 4140 int has_holes; 4141 int beyond_eof; 4142 int seqmode; 4143 int pgsize = PAGESIZE; 4144 int dolock; 4145 int do_qlock; 4146 int trans_size; 4147 4148 TRACE_1(TR_FAC_UFS, TR_UFS_GETPAGE_START, 4149 "ufs_getpage_start:vp %p", vp); 4150 4151 ASSERT((uoff & PAGEOFFSET) == 0); 4152 4153 if (protp) 4154 *protp = PROT_ALL; 4155 4156 /* 4157 * Obey the lockfs protocol 4158 */ 4159 err = ufs_lockfs_begin_getpage(ufsvfsp, &ulp, seg, 4160 rw == S_READ || rw == S_EXEC, protp); 4161 if (err) 4162 goto out; 4163 4164 fs = ufsvfsp->vfs_fs; 4165 4166 if (ulp && (rw == S_CREATE || rw == S_WRITE) && 4167 !(vp->v_flag & VISSWAP)) { 4168 /* 4169 * Try to start a transaction, will return if blocking is 4170 * expected to occur and the address space is not the 4171 * kernel address space. 4172 */ 4173 trans_size = TOP_GETPAGE_SIZE(ip); 4174 if (seg->s_as != &kas) { 4175 TRANS_TRY_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, 4176 trans_size, err) 4177 if (err == EWOULDBLOCK) { 4178 /* 4179 * Use EDEADLK here because the VM code 4180 * can normally never see this error. 4181 */ 4182 err = EDEADLK; 4183 ufs_lockfs_end(ulp); 4184 goto out; 4185 } 4186 } else { 4187 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size); 4188 } 4189 } 4190 4191 if (vp->v_flag & VNOMAP) { 4192 err = ENOSYS; 4193 goto unlock; 4194 } 4195 4196 seqmode = ip->i_nextr == uoff && rw != S_CREATE; 4197 4198 rwtype = RW_READER; /* start as a reader */ 4199 dolock = (rw_owner(&ip->i_contents) != curthread); 4200 /* 4201 * If this thread owns the lock, i.e., this thread grabbed it 4202 * as writer somewhere above, then we don't need to grab the 4203 * lock as reader in this routine. 4204 */ 4205 do_qlock = (rw_owner(&ufsvfsp->vfs_dqrwlock) != curthread); 4206 4207 retrylock: 4208 if (dolock) { 4209 /* 4210 * Grab the quota lock if we need to call 4211 * bmap_write() below (with i_contents as writer). 4212 */ 4213 if (do_qlock && rwtype == RW_WRITER) 4214 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4215 rw_enter(&ip->i_contents, rwtype); 4216 } 4217 4218 /* 4219 * We may be getting called as a side effect of a bmap using 4220 * fbread() when the blocks might be being allocated and the 4221 * size has not yet been up'ed. In this case we want to be 4222 * able to return zero pages if we get back UFS_HOLE from 4223 * calling bmap for a non write case here. We also might have 4224 * to read some frags from the disk into a page if we are 4225 * extending the number of frags for a given lbn in bmap(). 4226 * Large Files: The read of i_size here is atomic because 4227 * i_contents is held here. If dolock is zero, the lock 4228 * is held in bmap routines. 4229 */ 4230 beyond_eof = uoff + len > ip->i_size + PAGEOFFSET; 4231 if (beyond_eof && seg != segkmap) { 4232 if (dolock) { 4233 rw_exit(&ip->i_contents); 4234 if (do_qlock && rwtype == RW_WRITER) 4235 rw_exit(&ufsvfsp->vfs_dqrwlock); 4236 } 4237 err = EFAULT; 4238 goto unlock; 4239 } 4240 4241 /* 4242 * Must hold i_contents lock throughout the call to pvn_getpages 4243 * since locked pages are returned from each call to ufs_getapage. 4244 * Must *not* return locked pages and then try for contents lock 4245 * due to lock ordering requirements (inode > page) 4246 */ 4247 4248 has_holes = bmap_has_holes(ip); 4249 4250 if ((rw == S_WRITE || rw == S_CREATE) && has_holes && !beyond_eof) { 4251 int blk_size; 4252 u_offset_t offset; 4253 4254 /* 4255 * We must acquire the RW_WRITER lock in order to 4256 * call bmap_write(). 4257 */ 4258 if (dolock && rwtype == RW_READER) { 4259 rwtype = RW_WRITER; 4260 4261 /* 4262 * Grab the quota lock before 4263 * upgrading i_contents, but if we can't grab it 4264 * don't wait here due to lock order: 4265 * vfs_dqrwlock > i_contents. 4266 */ 4267 if (do_qlock && rw_tryenter(&ufsvfsp->vfs_dqrwlock, 4268 RW_READER) == 0) { 4269 rw_exit(&ip->i_contents); 4270 goto retrylock; 4271 } 4272 if (!rw_tryupgrade(&ip->i_contents)) { 4273 rw_exit(&ip->i_contents); 4274 if (do_qlock) 4275 rw_exit(&ufsvfsp->vfs_dqrwlock); 4276 goto retrylock; 4277 } 4278 } 4279 4280 /* 4281 * May be allocating disk blocks for holes here as 4282 * a result of mmap faults. write(2) does the bmap_write 4283 * in rdip/wrip, not here. We are not dealing with frags 4284 * in this case. 4285 */ 4286 /* 4287 * Large Files: We cast fs_bmask field to offset_t 4288 * just as we do for MAXBMASK because uoff is a 64-bit 4289 * data type. fs_bmask will still be a 32-bit type 4290 * as we cannot change any ondisk data structures. 4291 */ 4292 4293 offset = uoff & (offset_t)fs->fs_bmask; 4294 while (offset < uoff + len) { 4295 blk_size = (int)blksize(fs, ip, lblkno(fs, offset)); 4296 err = bmap_write(ip, offset, blk_size, 0, cr); 4297 if (ip->i_flag & (ICHG|IUPD)) 4298 ip->i_seq++; 4299 if (err) 4300 goto update_inode; 4301 offset += blk_size; /* XXX - make this contig */ 4302 } 4303 } 4304 4305 /* 4306 * Can be a reader from now on. 4307 */ 4308 if (dolock && rwtype == RW_WRITER) { 4309 rw_downgrade(&ip->i_contents); 4310 /* 4311 * We can release vfs_dqrwlock early so do it, but make 4312 * sure we don't try to release it again at the bottom. 4313 */ 4314 if (do_qlock) { 4315 rw_exit(&ufsvfsp->vfs_dqrwlock); 4316 do_qlock = 0; 4317 } 4318 } 4319 4320 /* 4321 * We remove PROT_WRITE in cases when the file has UFS holes 4322 * because we don't want to call bmap_read() to check each 4323 * page if it is backed with a disk block. 4324 */ 4325 if (protp && has_holes && rw != S_WRITE && rw != S_CREATE) 4326 *protp &= ~PROT_WRITE; 4327 4328 err = 0; 4329 4330 /* 4331 * The loop looks up pages in the range [off, off + len). 4332 * For each page, we first check if we should initiate an asynchronous 4333 * read ahead before we call page_lookup (we may sleep in page_lookup 4334 * for a previously initiated disk read). 4335 */ 4336 eoff = (uoff + len); 4337 for (pgoff = uoff, pgaddr = addr, pl = plarr; 4338 pgoff < eoff; /* empty */) { 4339 page_t *pp; 4340 u_offset_t nextrio; 4341 se_t se; 4342 int retval; 4343 4344 se = ((rw == S_CREATE || rw == S_OTHER) ? SE_EXCL : SE_SHARED); 4345 4346 /* Handle async getpage (faultahead) */ 4347 if (plarr == NULL) { 4348 ip->i_nextrio = pgoff; 4349 (void) ufs_getpage_ra(vp, pgoff, seg, pgaddr); 4350 pgoff += pgsize; 4351 pgaddr += pgsize; 4352 continue; 4353 } 4354 /* 4355 * Check if we should initiate read ahead of next cluster. 4356 * We call page_exists only when we need to confirm that 4357 * we have the current page before we initiate the read ahead. 4358 */ 4359 nextrio = ip->i_nextrio; 4360 if (seqmode && 4361 pgoff + CLUSTSZ(ip) >= nextrio && pgoff <= nextrio && 4362 nextrio < ip->i_size && page_exists(vp, pgoff)) { 4363 retval = ufs_getpage_ra(vp, pgoff, seg, pgaddr); 4364 /* 4365 * We always read ahead the next cluster of data 4366 * starting from i_nextrio. If the page (vp,nextrio) 4367 * is actually in core at this point, the routine 4368 * ufs_getpage_ra() will stop pre-fetching data 4369 * until we read that page in a synchronized manner 4370 * through ufs_getpage_miss(). So, we should increase 4371 * i_nextrio if the page (vp, nextrio) exists. 4372 */ 4373 if ((retval == 0) && page_exists(vp, nextrio)) { 4374 ip->i_nextrio = nextrio + pgsize; 4375 } 4376 } 4377 4378 if ((pp = page_lookup(vp, pgoff, se)) != NULL) { 4379 /* 4380 * We found the page in the page cache. 4381 */ 4382 *pl++ = pp; 4383 pgoff += pgsize; 4384 pgaddr += pgsize; 4385 len -= pgsize; 4386 plsz -= pgsize; 4387 } else { 4388 /* 4389 * We have to create the page, or read it from disk. 4390 */ 4391 if (err = ufs_getpage_miss(vp, pgoff, len, seg, pgaddr, 4392 pl, plsz, rw, seqmode)) 4393 goto error; 4394 4395 while (*pl != NULL) { 4396 pl++; 4397 pgoff += pgsize; 4398 pgaddr += pgsize; 4399 len -= pgsize; 4400 plsz -= pgsize; 4401 } 4402 } 4403 } 4404 4405 /* 4406 * Return pages up to plsz if they are in the page cache. 4407 * We cannot return pages if there is a chance that they are 4408 * backed with a UFS hole and rw is S_WRITE or S_CREATE. 4409 */ 4410 if (plarr && !(has_holes && (rw == S_WRITE || rw == S_CREATE))) { 4411 4412 ASSERT((protp == NULL) || 4413 !(has_holes && (*protp & PROT_WRITE))); 4414 4415 eoff = pgoff + plsz; 4416 while (pgoff < eoff) { 4417 page_t *pp; 4418 4419 if ((pp = page_lookup_nowait(vp, pgoff, 4420 SE_SHARED)) == NULL) 4421 break; 4422 4423 *pl++ = pp; 4424 pgoff += pgsize; 4425 plsz -= pgsize; 4426 } 4427 } 4428 4429 if (plarr) 4430 *pl = NULL; /* Terminate page list */ 4431 ip->i_nextr = pgoff; 4432 4433 error: 4434 if (err && plarr) { 4435 /* 4436 * Release any pages we have locked. 4437 */ 4438 while (pl > &plarr[0]) 4439 page_unlock(*--pl); 4440 4441 plarr[0] = NULL; 4442 } 4443 4444 update_inode: 4445 /* 4446 * If the inode is not already marked for IACC (in rdip() for read) 4447 * and the inode is not marked for no access time update (in wrip() 4448 * for write) then update the inode access time and mod time now. 4449 */ 4450 if ((ip->i_flag & (IACC | INOACC)) == 0) { 4451 if ((rw != S_OTHER) && (ip->i_mode & IFMT) != IFDIR) { 4452 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && 4453 (fs->fs_ronly == 0) && 4454 (!ufsvfsp->vfs_noatime)) { 4455 mutex_enter(&ip->i_tlock); 4456 ip->i_flag |= IACC; 4457 ITIMES_NOLOCK(ip); 4458 mutex_exit(&ip->i_tlock); 4459 } 4460 } 4461 } 4462 4463 if (dolock) { 4464 rw_exit(&ip->i_contents); 4465 if (do_qlock && rwtype == RW_WRITER) 4466 rw_exit(&ufsvfsp->vfs_dqrwlock); 4467 } 4468 4469 unlock: 4470 if (ulp) { 4471 if ((rw == S_CREATE || rw == S_WRITE) && 4472 !(vp->v_flag & VISSWAP)) { 4473 TRANS_END_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size); 4474 } 4475 ufs_lockfs_end(ulp); 4476 } 4477 out: 4478 TRACE_2(TR_FAC_UFS, TR_UFS_GETPAGE_END, 4479 "ufs_getpage_end:vp %p error %d", vp, err); 4480 return (err); 4481 } 4482 4483 /* 4484 * ufs_getpage_miss is called when ufs_getpage missed the page in the page 4485 * cache. The page is either read from the disk, or it's created. 4486 * A page is created (without disk read) if rw == S_CREATE, or if 4487 * the page is not backed with a real disk block (UFS hole). 4488 */ 4489 /* ARGSUSED */ 4490 static int 4491 ufs_getpage_miss(struct vnode *vp, u_offset_t off, size_t len, struct seg *seg, 4492 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw, int seq) 4493 { 4494 struct inode *ip = VTOI(vp); 4495 page_t *pp; 4496 daddr_t bn; 4497 size_t io_len; 4498 int crpage; 4499 int err; 4500 int contig; 4501 int bsize = ip->i_fs->fs_bsize; 4502 4503 /* 4504 * Figure out whether the page can be created, or must be 4505 * must be read from the disk. 4506 */ 4507 if (rw == S_CREATE) 4508 crpage = 1; 4509 else { 4510 contig = 0; 4511 if (err = bmap_read(ip, off, &bn, &contig)) 4512 return (err); 4513 crpage = (bn == UFS_HOLE); 4514 } 4515 4516 if (crpage) { 4517 if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT, seg, 4518 addr)) == NULL) { 4519 return (ufs_fault(vp, 4520 "ufs_getpage_miss: page_create == NULL")); 4521 } 4522 4523 if (rw != S_CREATE) 4524 pagezero(pp, 0, PAGESIZE); 4525 io_len = PAGESIZE; 4526 } else { 4527 u_offset_t io_off; 4528 uint_t xlen; 4529 struct buf *bp; 4530 ufsvfs_t *ufsvfsp = ip->i_ufsvfs; 4531 4532 /* 4533 * If access is not in sequential order, we read from disk 4534 * in bsize units. 4535 * 4536 * We limit the size of the transfer to bsize if we are reading 4537 * from the beginning of the file. Note in this situation we 4538 * will hedge our bets and initiate an async read ahead of 4539 * the second block. 4540 */ 4541 if (!seq || off == 0) 4542 contig = MIN(contig, bsize); 4543 4544 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4545 &io_len, off, contig, 0); 4546 4547 /* 4548 * Some other thread has entered the page. 4549 * ufs_getpage will retry page_lookup. 4550 */ 4551 if (pp == NULL) { 4552 pl[0] = NULL; 4553 return (0); 4554 } 4555 4556 /* 4557 * Zero part of the page which we are not 4558 * going to read from the disk. 4559 */ 4560 xlen = io_len & PAGEOFFSET; 4561 if (xlen != 0) 4562 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 4563 4564 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ); 4565 bp->b_edev = ip->i_dev; 4566 bp->b_dev = cmpdev(ip->i_dev); 4567 bp->b_blkno = bn; 4568 bp->b_un.b_addr = (caddr_t)0; 4569 bp->b_file = ip->i_vnode; 4570 bp->b_offset = off; 4571 4572 if (ufsvfsp->vfs_log) { 4573 lufs_read_strategy(ufsvfsp->vfs_log, bp); 4574 } else if (ufsvfsp->vfs_snapshot) { 4575 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 4576 } else { 4577 ufsvfsp->vfs_iotstamp = lbolt; 4578 ub.ub_getpages.value.ul++; 4579 (void) bdev_strategy(bp); 4580 lwp_stat_update(LWP_STAT_INBLK, 1); 4581 } 4582 4583 ip->i_nextrio = off + ((io_len + PAGESIZE - 1) & PAGEMASK); 4584 4585 /* 4586 * If the file access is sequential, initiate read ahead 4587 * of the next cluster. 4588 */ 4589 if (seq && ip->i_nextrio < ip->i_size) 4590 (void) ufs_getpage_ra(vp, off, seg, addr); 4591 err = biowait(bp); 4592 pageio_done(bp); 4593 4594 if (err) { 4595 pvn_read_done(pp, B_ERROR); 4596 return (err); 4597 } 4598 } 4599 4600 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4601 return (0); 4602 } 4603 4604 /* 4605 * Read ahead a cluster from the disk. Returns the length in bytes. 4606 */ 4607 static int 4608 ufs_getpage_ra(struct vnode *vp, u_offset_t off, struct seg *seg, caddr_t addr) 4609 { 4610 struct inode *ip = VTOI(vp); 4611 page_t *pp; 4612 u_offset_t io_off = ip->i_nextrio; 4613 ufsvfs_t *ufsvfsp; 4614 caddr_t addr2 = addr + (io_off - off); 4615 struct buf *bp; 4616 daddr_t bn; 4617 size_t io_len; 4618 int contig; 4619 int xlen; 4620 int bsize = ip->i_fs->fs_bsize; 4621 4622 /* 4623 * If the directio advisory is in effect on this file, 4624 * then do not do buffered read ahead. Read ahead makes 4625 * it more difficult on threads using directio as they 4626 * will be forced to flush the pages from this vnode. 4627 */ 4628 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 4629 return (0); 4630 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) 4631 return (0); 4632 4633 /* 4634 * Is this test needed? 4635 */ 4636 if (addr2 >= seg->s_base + seg->s_size) 4637 return (0); 4638 4639 contig = 0; 4640 if (bmap_read(ip, io_off, &bn, &contig) != 0 || bn == UFS_HOLE) 4641 return (0); 4642 4643 /* 4644 * Limit the transfer size to bsize if this is the 2nd block. 4645 */ 4646 if (io_off == (u_offset_t)bsize) 4647 contig = MIN(contig, bsize); 4648 4649 if ((pp = pvn_read_kluster(vp, io_off, seg, addr2, &io_off, 4650 &io_len, io_off, contig, 1)) == NULL) 4651 return (0); 4652 4653 /* 4654 * Zero part of page which we are not going to read from disk 4655 */ 4656 if ((xlen = (io_len & PAGEOFFSET)) > 0) 4657 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 4658 4659 ip->i_nextrio = (io_off + io_len + PAGESIZE - 1) & PAGEMASK; 4660 4661 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ | B_ASYNC); 4662 bp->b_edev = ip->i_dev; 4663 bp->b_dev = cmpdev(ip->i_dev); 4664 bp->b_blkno = bn; 4665 bp->b_un.b_addr = (caddr_t)0; 4666 bp->b_file = ip->i_vnode; 4667 bp->b_offset = off; 4668 4669 if (ufsvfsp->vfs_log) { 4670 lufs_read_strategy(ufsvfsp->vfs_log, bp); 4671 } else if (ufsvfsp->vfs_snapshot) { 4672 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 4673 } else { 4674 ufsvfsp->vfs_iotstamp = lbolt; 4675 ub.ub_getras.value.ul++; 4676 (void) bdev_strategy(bp); 4677 lwp_stat_update(LWP_STAT_INBLK, 1); 4678 } 4679 4680 return (io_len); 4681 } 4682 4683 int ufs_delay = 1; 4684 /* 4685 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE, B_ASYNC} 4686 * 4687 * LMXXX - the inode really ought to contain a pointer to one of these 4688 * async args. Stuff gunk in there and just hand the whole mess off. 4689 * This would replace i_delaylen, i_delayoff. 4690 */ 4691 /*ARGSUSED*/ 4692 static int 4693 ufs_putpage(struct vnode *vp, offset_t off, size_t len, int flags, 4694 struct cred *cr) 4695 { 4696 struct inode *ip = VTOI(vp); 4697 int err = 0; 4698 4699 if (vp->v_count == 0) { 4700 return (ufs_fault(vp, "ufs_putpage: bad v_count == 0")); 4701 } 4702 4703 TRACE_1(TR_FAC_UFS, TR_UFS_PUTPAGE_START, 4704 "ufs_putpage_start:vp %p", vp); 4705 4706 /* 4707 * XXX - Why should this check be made here? 4708 */ 4709 if (vp->v_flag & VNOMAP) { 4710 err = ENOSYS; 4711 goto errout; 4712 } 4713 4714 if (ip->i_ufsvfs == NULL) { 4715 err = EIO; 4716 goto errout; 4717 } 4718 4719 if (flags & B_ASYNC) { 4720 if (ufs_delay && len && 4721 (flags & ~(B_ASYNC|B_DONTNEED|B_FREE)) == 0) { 4722 mutex_enter(&ip->i_tlock); 4723 /* 4724 * If nobody stalled, start a new cluster. 4725 */ 4726 if (ip->i_delaylen == 0) { 4727 ip->i_delayoff = off; 4728 ip->i_delaylen = len; 4729 mutex_exit(&ip->i_tlock); 4730 goto errout; 4731 } 4732 /* 4733 * If we have a full cluster or they are not contig, 4734 * then push last cluster and start over. 4735 */ 4736 if (ip->i_delaylen >= CLUSTSZ(ip) || 4737 ip->i_delayoff + ip->i_delaylen != off) { 4738 u_offset_t doff; 4739 size_t dlen; 4740 4741 doff = ip->i_delayoff; 4742 dlen = ip->i_delaylen; 4743 ip->i_delayoff = off; 4744 ip->i_delaylen = len; 4745 mutex_exit(&ip->i_tlock); 4746 err = ufs_putpages(vp, doff, dlen, 4747 flags, cr); 4748 /* LMXXX - flags are new val, not old */ 4749 goto errout; 4750 } 4751 /* 4752 * There is something there, it's not full, and 4753 * it is contig. 4754 */ 4755 ip->i_delaylen += len; 4756 mutex_exit(&ip->i_tlock); 4757 goto errout; 4758 } 4759 /* 4760 * Must have weird flags or we are not clustering. 4761 */ 4762 } 4763 4764 err = ufs_putpages(vp, off, len, flags, cr); 4765 4766 errout: 4767 TRACE_2(TR_FAC_UFS, TR_UFS_PUTPAGE_END, 4768 "ufs_putpage_end:vp %p error %d", vp, err); 4769 return (err); 4770 } 4771 4772 /* 4773 * If len == 0, do from off to EOF. 4774 * 4775 * The normal cases should be len == 0 & off == 0 (entire vp list), 4776 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4777 * (from pageout). 4778 */ 4779 /*ARGSUSED*/ 4780 static int 4781 ufs_putpages( 4782 struct vnode *vp, 4783 offset_t off, 4784 size_t len, 4785 int flags, 4786 struct cred *cr) 4787 { 4788 u_offset_t io_off; 4789 u_offset_t eoff; 4790 struct inode *ip = VTOI(vp); 4791 page_t *pp; 4792 size_t io_len; 4793 int err = 0; 4794 int dolock; 4795 4796 if (vp->v_count == 0) 4797 return (ufs_fault(vp, "ufs_putpages: v_count == 0")); 4798 /* 4799 * Acquire the readers/write inode lock before locking 4800 * any pages in this inode. 4801 * The inode lock is held during i/o. 4802 */ 4803 if (len == 0) { 4804 mutex_enter(&ip->i_tlock); 4805 ip->i_delayoff = ip->i_delaylen = 0; 4806 mutex_exit(&ip->i_tlock); 4807 } 4808 dolock = (rw_owner(&ip->i_contents) != curthread); 4809 if (dolock) { 4810 /* 4811 * Must synchronize this thread and any possible thread 4812 * operating in the window of vulnerability in wrip(). 4813 * It is dangerous to allow both a thread doing a putpage 4814 * and a thread writing, so serialize them. The exception 4815 * is when the thread in wrip() does something which causes 4816 * a putpage operation. Then, the thread must be allowed 4817 * to continue. It may encounter a bmap_read problem in 4818 * ufs_putapage, but that is handled in ufs_putapage. 4819 * Allow async writers to proceed, we don't want to block 4820 * the pageout daemon. 4821 */ 4822 if (ip->i_writer == curthread) 4823 rw_enter(&ip->i_contents, RW_READER); 4824 else { 4825 for (;;) { 4826 rw_enter(&ip->i_contents, RW_READER); 4827 mutex_enter(&ip->i_tlock); 4828 /* 4829 * If there is no thread in the critical 4830 * section of wrip(), then proceed. 4831 * Otherwise, wait until there isn't one. 4832 */ 4833 if (ip->i_writer == NULL) { 4834 mutex_exit(&ip->i_tlock); 4835 break; 4836 } 4837 rw_exit(&ip->i_contents); 4838 /* 4839 * Bounce async writers when we have a writer 4840 * working on this file so we don't deadlock 4841 * the pageout daemon. 4842 */ 4843 if (flags & B_ASYNC) { 4844 mutex_exit(&ip->i_tlock); 4845 return (0); 4846 } 4847 cv_wait(&ip->i_wrcv, &ip->i_tlock); 4848 mutex_exit(&ip->i_tlock); 4849 } 4850 } 4851 } 4852 4853 if (!vn_has_cached_data(vp)) { 4854 if (dolock) 4855 rw_exit(&ip->i_contents); 4856 return (0); 4857 } 4858 4859 if (len == 0) { 4860 /* 4861 * Search the entire vp list for pages >= off. 4862 */ 4863 err = pvn_vplist_dirty(vp, (u_offset_t)off, ufs_putapage, 4864 flags, cr); 4865 } else { 4866 /* 4867 * Loop over all offsets in the range looking for 4868 * pages to deal with. 4869 */ 4870 if ((eoff = blkroundup(ip->i_fs, ip->i_size)) != 0) 4871 eoff = MIN(off + len, eoff); 4872 else 4873 eoff = off + len; 4874 4875 for (io_off = off; io_off < eoff; io_off += io_len) { 4876 /* 4877 * If we are not invalidating, synchronously 4878 * freeing or writing pages, use the routine 4879 * page_lookup_nowait() to prevent reclaiming 4880 * them from the free list. 4881 */ 4882 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4883 pp = page_lookup(vp, io_off, 4884 (flags & (B_INVAL | B_FREE)) ? 4885 SE_EXCL : SE_SHARED); 4886 } else { 4887 pp = page_lookup_nowait(vp, io_off, 4888 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4889 } 4890 4891 if (pp == NULL || pvn_getdirty(pp, flags) == 0) 4892 io_len = PAGESIZE; 4893 else { 4894 u_offset_t *io_offp = &io_off; 4895 4896 err = ufs_putapage(vp, pp, io_offp, &io_len, 4897 flags, cr); 4898 if (err != 0) 4899 break; 4900 /* 4901 * "io_off" and "io_len" are returned as 4902 * the range of pages we actually wrote. 4903 * This allows us to skip ahead more quickly 4904 * since several pages may've been dealt 4905 * with by this iteration of the loop. 4906 */ 4907 } 4908 } 4909 } 4910 if (err == 0 && off == 0 && (len == 0 || len >= ip->i_size)) { 4911 /* 4912 * We have just sync'ed back all the pages on 4913 * the inode, turn off the IMODTIME flag. 4914 */ 4915 mutex_enter(&ip->i_tlock); 4916 ip->i_flag &= ~IMODTIME; 4917 mutex_exit(&ip->i_tlock); 4918 } 4919 if (dolock) 4920 rw_exit(&ip->i_contents); 4921 return (err); 4922 } 4923 4924 static void 4925 ufs_iodone(buf_t *bp) 4926 { 4927 struct inode *ip; 4928 4929 ASSERT((bp->b_pages->p_vnode != NULL) && !(bp->b_flags & B_READ)); 4930 4931 bp->b_iodone = NULL; 4932 4933 ip = VTOI(bp->b_pages->p_vnode); 4934 4935 mutex_enter(&ip->i_tlock); 4936 if (ip->i_writes >= ufs_LW) { 4937 if ((ip->i_writes -= bp->b_bcount) <= ufs_LW) 4938 if (ufs_WRITES) 4939 cv_broadcast(&ip->i_wrcv); /* wake all up */ 4940 } else { 4941 ip->i_writes -= bp->b_bcount; 4942 } 4943 4944 mutex_exit(&ip->i_tlock); 4945 iodone(bp); 4946 } 4947 4948 /* 4949 * Write out a single page, possibly klustering adjacent 4950 * dirty pages. The inode lock must be held. 4951 * 4952 * LMXXX - bsize < pagesize not done. 4953 */ 4954 /*ARGSUSED*/ 4955 int 4956 ufs_putapage( 4957 struct vnode *vp, 4958 page_t *pp, 4959 u_offset_t *offp, 4960 size_t *lenp, /* return values */ 4961 int flags, 4962 struct cred *cr) 4963 { 4964 u_offset_t io_off; 4965 u_offset_t off; 4966 struct inode *ip = VTOI(vp); 4967 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 4968 struct fs *fs; 4969 struct buf *bp; 4970 size_t io_len; 4971 daddr_t bn; 4972 int err; 4973 int contig; 4974 4975 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 4976 4977 TRACE_1(TR_FAC_UFS, TR_UFS_PUTAPAGE_START, 4978 "ufs_putapage_start:vp %p", vp); 4979 4980 if (ufsvfsp == NULL) { 4981 err = EIO; 4982 goto out_trace; 4983 } 4984 4985 fs = ip->i_fs; 4986 ASSERT(fs->fs_ronly == 0); 4987 4988 /* 4989 * If the modified time on the inode has not already been 4990 * set elsewhere (e.g. for write/setattr) we set the time now. 4991 * This gives us approximate modified times for mmap'ed files 4992 * which are modified via stores in the user address space. 4993 */ 4994 if ((ip->i_flag & IMODTIME) == 0) { 4995 mutex_enter(&ip->i_tlock); 4996 ip->i_flag |= IUPD; 4997 ip->i_seq++; 4998 ITIMES_NOLOCK(ip); 4999 mutex_exit(&ip->i_tlock); 5000 } 5001 5002 /* 5003 * Align the request to a block boundry (for old file systems), 5004 * and go ask bmap() how contiguous things are for this file. 5005 */ 5006 off = pp->p_offset & (offset_t)fs->fs_bmask; /* block align it */ 5007 contig = 0; 5008 err = bmap_read(ip, off, &bn, &contig); 5009 if (err) 5010 goto out; 5011 if (bn == UFS_HOLE) { /* putpage never allocates */ 5012 /* 5013 * logging device is in error mode; simply return EIO 5014 */ 5015 if (TRANS_ISERROR(ufsvfsp)) { 5016 err = EIO; 5017 goto out; 5018 } 5019 /* 5020 * Oops, the thread in the window in wrip() did some 5021 * sort of operation which caused a putpage in the bad 5022 * range. In this case, just return an error which will 5023 * cause the software modified bit on the page to set 5024 * and the page will get written out again later. 5025 */ 5026 if (ip->i_writer == curthread) { 5027 err = EIO; 5028 goto out; 5029 } 5030 /* 5031 * If the pager is trying to push a page in the bad range 5032 * just tell him to try again later when things are better. 5033 */ 5034 if (flags & B_ASYNC) { 5035 err = EAGAIN; 5036 goto out; 5037 } 5038 err = ufs_fault(ITOV(ip), "ufs_putapage: bn == UFS_HOLE"); 5039 goto out; 5040 } 5041 5042 /* 5043 * Take the length (of contiguous bytes) passed back from bmap() 5044 * and _try_ and get a set of pages covering that extent. 5045 */ 5046 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, off, contig, flags); 5047 5048 /* 5049 * May have run out of memory and not clustered backwards. 5050 * off p_offset 5051 * [ pp - 1 ][ pp ] 5052 * [ block ] 5053 * We told bmap off, so we have to adjust the bn accordingly. 5054 */ 5055 if (io_off > off) { 5056 bn += btod(io_off - off); 5057 contig -= (io_off - off); 5058 } 5059 5060 /* 5061 * bmap was carefull to tell us the right size so use that. 5062 * There might be unallocated frags at the end. 5063 * LMXXX - bzero the end of the page? We must be writing after EOF. 5064 */ 5065 if (io_len > contig) { 5066 ASSERT(io_len - contig < fs->fs_bsize); 5067 io_len -= (io_len - contig); 5068 } 5069 5070 /* 5071 * Handle the case where we are writing the last page after EOF. 5072 * 5073 * XXX - just a patch for i-mt3. 5074 */ 5075 if (io_len == 0) { 5076 ASSERT(pp->p_offset >= (u_offset_t)(roundup(ip->i_size, 5077 PAGESIZE))); 5078 io_len = PAGESIZE; 5079 } 5080 5081 bp = pageio_setup(pp, io_len, ip->i_devvp, B_WRITE | flags); 5082 5083 ULOCKFS_SET_MOD(ITOUL(ip)); 5084 5085 bp->b_edev = ip->i_dev; 5086 bp->b_dev = cmpdev(ip->i_dev); 5087 bp->b_blkno = bn; 5088 bp->b_un.b_addr = (caddr_t)0; 5089 bp->b_file = ip->i_vnode; 5090 5091 if (TRANS_ISTRANS(ufsvfsp)) { 5092 if ((ip->i_mode & IFMT) == IFSHAD) { 5093 TRANS_BUF(ufsvfsp, 0, io_len, bp, DT_SHAD); 5094 } else if (ufsvfsp->vfs_qinod == ip) { 5095 TRANS_DELTA(ufsvfsp, ldbtob(bn), bp->b_bcount, DT_QR, 5096 0, 0); 5097 } 5098 } 5099 5100 /* write throttle */ 5101 5102 ASSERT(bp->b_iodone == NULL); 5103 bp->b_iodone = (int (*)())ufs_iodone; 5104 mutex_enter(&ip->i_tlock); 5105 ip->i_writes += bp->b_bcount; 5106 mutex_exit(&ip->i_tlock); 5107 5108 if (bp->b_flags & B_ASYNC) { 5109 if (ufsvfsp->vfs_log) { 5110 lufs_write_strategy(ufsvfsp->vfs_log, bp); 5111 } else if (ufsvfsp->vfs_snapshot) { 5112 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5113 } else { 5114 ufsvfsp->vfs_iotstamp = lbolt; 5115 ub.ub_putasyncs.value.ul++; 5116 (void) bdev_strategy(bp); 5117 lwp_stat_update(LWP_STAT_OUBLK, 1); 5118 } 5119 } else { 5120 if (ufsvfsp->vfs_log) { 5121 lufs_write_strategy(ufsvfsp->vfs_log, bp); 5122 } else if (ufsvfsp->vfs_snapshot) { 5123 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5124 } else { 5125 ufsvfsp->vfs_iotstamp = lbolt; 5126 ub.ub_putsyncs.value.ul++; 5127 (void) bdev_strategy(bp); 5128 lwp_stat_update(LWP_STAT_OUBLK, 1); 5129 } 5130 err = biowait(bp); 5131 pageio_done(bp); 5132 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags); 5133 } 5134 5135 pp = NULL; 5136 5137 out: 5138 if (err != 0 && pp != NULL) 5139 pvn_write_done(pp, B_ERROR | B_WRITE | flags); 5140 5141 if (offp) 5142 *offp = io_off; 5143 if (lenp) 5144 *lenp = io_len; 5145 out_trace: 5146 TRACE_2(TR_FAC_UFS, TR_UFS_PUTAPAGE_END, 5147 "ufs_putapage_end:vp %p error %d", vp, err); 5148 return (err); 5149 } 5150 5151 /* ARGSUSED */ 5152 static int 5153 ufs_map(struct vnode *vp, 5154 offset_t off, 5155 struct as *as, 5156 caddr_t *addrp, 5157 size_t len, 5158 uchar_t prot, 5159 uchar_t maxprot, 5160 uint_t flags, 5161 struct cred *cr) 5162 { 5163 struct segvn_crargs vn_a; 5164 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 5165 struct ulockfs *ulp; 5166 int error; 5167 5168 TRACE_1(TR_FAC_UFS, TR_UFS_MAP_START, 5169 "ufs_map_start:vp %p", vp); 5170 5171 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MAP_MASK); 5172 if (error) 5173 goto out; 5174 5175 if (vp->v_flag & VNOMAP) { 5176 error = ENOSYS; 5177 goto unlock; 5178 } 5179 5180 if (off < (offset_t)0 || (offset_t)(off + len) < (offset_t)0) { 5181 error = ENXIO; 5182 goto unlock; 5183 } 5184 5185 if (vp->v_type != VREG) { 5186 error = ENODEV; 5187 goto unlock; 5188 } 5189 5190 /* 5191 * If file is being locked, disallow mapping. 5192 */ 5193 if (vn_has_mandatory_locks(vp, VTOI(vp)->i_mode)) { 5194 error = EAGAIN; 5195 goto unlock; 5196 } 5197 5198 as_rangelock(as); 5199 if ((flags & MAP_FIXED) == 0) { 5200 map_addr(addrp, len, off, 1, flags); 5201 if (*addrp == NULL) { 5202 as_rangeunlock(as); 5203 error = ENOMEM; 5204 goto unlock; 5205 } 5206 } else { 5207 /* 5208 * User specified address - blow away any previous mappings 5209 */ 5210 (void) as_unmap(as, *addrp, len); 5211 } 5212 5213 vn_a.vp = vp; 5214 vn_a.offset = (u_offset_t)off; 5215 vn_a.type = flags & MAP_TYPE; 5216 vn_a.prot = prot; 5217 vn_a.maxprot = maxprot; 5218 vn_a.cred = cr; 5219 vn_a.amp = NULL; 5220 vn_a.flags = flags & ~MAP_TYPE; 5221 vn_a.szc = 0; 5222 vn_a.lgrp_mem_policy_flags = 0; 5223 5224 error = as_map(as, *addrp, len, segvn_create, &vn_a); 5225 as_rangeunlock(as); 5226 5227 unlock: 5228 if (ulp) { 5229 ufs_lockfs_end(ulp); 5230 } 5231 out: 5232 TRACE_2(TR_FAC_UFS, TR_UFS_MAP_END, 5233 "ufs_map_end:vp %p error %d", vp, error); 5234 return (error); 5235 } 5236 5237 /* ARGSUSED */ 5238 static int 5239 ufs_addmap(struct vnode *vp, 5240 offset_t off, 5241 struct as *as, 5242 caddr_t addr, 5243 size_t len, 5244 uchar_t prot, 5245 uchar_t maxprot, 5246 uint_t flags, 5247 struct cred *cr) 5248 { 5249 struct inode *ip = VTOI(vp); 5250 5251 if (vp->v_flag & VNOMAP) { 5252 return (ENOSYS); 5253 } 5254 5255 mutex_enter(&ip->i_tlock); 5256 ip->i_mapcnt += btopr(len); 5257 mutex_exit(&ip->i_tlock); 5258 return (0); 5259 } 5260 5261 /*ARGSUSED*/ 5262 static int 5263 ufs_delmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr, 5264 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 5265 struct cred *cr) 5266 { 5267 struct inode *ip = VTOI(vp); 5268 5269 if (vp->v_flag & VNOMAP) { 5270 return (ENOSYS); 5271 } 5272 5273 mutex_enter(&ip->i_tlock); 5274 ip->i_mapcnt -= btopr(len); /* Count released mappings */ 5275 ASSERT(ip->i_mapcnt >= 0); 5276 mutex_exit(&ip->i_tlock); 5277 return (0); 5278 } 5279 /* 5280 * Return the answer requested to poll() for non-device files 5281 */ 5282 struct pollhead ufs_pollhd; 5283 5284 /* ARGSUSED */ 5285 int 5286 ufs_poll(vnode_t *vp, short ev, int any, short *revp, struct pollhead **phpp) 5287 { 5288 struct ufsvfs *ufsvfsp; 5289 5290 *revp = 0; 5291 ufsvfsp = VTOI(vp)->i_ufsvfs; 5292 5293 if (!ufsvfsp) { 5294 *revp = POLLHUP; 5295 goto out; 5296 } 5297 5298 if (ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs) || 5299 ULOCKFS_IS_ELOCK(&ufsvfsp->vfs_ulockfs)) { 5300 *revp |= POLLERR; 5301 5302 } else { 5303 if ((ev & POLLOUT) && !ufsvfsp->vfs_fs->fs_ronly && 5304 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs)) 5305 *revp |= POLLOUT; 5306 5307 if ((ev & POLLWRBAND) && !ufsvfsp->vfs_fs->fs_ronly && 5308 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs)) 5309 *revp |= POLLWRBAND; 5310 5311 if (ev & POLLIN) 5312 *revp |= POLLIN; 5313 5314 if (ev & POLLRDNORM) 5315 *revp |= POLLRDNORM; 5316 5317 if (ev & POLLRDBAND) 5318 *revp |= POLLRDBAND; 5319 } 5320 5321 if ((ev & POLLPRI) && (*revp & (POLLERR|POLLHUP))) 5322 *revp |= POLLPRI; 5323 out: 5324 *phpp = !any && !*revp ? &ufs_pollhd : (struct pollhead *)NULL; 5325 5326 return (0); 5327 } 5328 5329 /* ARGSUSED */ 5330 static int 5331 ufs_l_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr) 5332 { 5333 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 5334 struct ulockfs *ulp = NULL; 5335 struct inode *sip = NULL; 5336 int error; 5337 struct inode *ip = VTOI(vp); 5338 int issync; 5339 5340 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_PATHCONF_MASK); 5341 if (error) 5342 return (error); 5343 5344 switch (cmd) { 5345 /* 5346 * Have to handle _PC_NAME_MAX here, because the normal way 5347 * [fs_pathconf() -> VOP_STATVFS() -> ufs_statvfs()] 5348 * results in a lock ordering reversal between 5349 * ufs_lockfs_{begin,end}() and 5350 * ufs_thread_{suspend,continue}(). 5351 * 5352 * Keep in sync with ufs_statvfs(). 5353 */ 5354 case _PC_NAME_MAX: 5355 *valp = MAXNAMLEN; 5356 break; 5357 5358 case _PC_FILESIZEBITS: 5359 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) 5360 *valp = UFS_FILESIZE_BITS; 5361 else 5362 *valp = 32; 5363 break; 5364 5365 case _PC_XATTR_EXISTS: 5366 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 5367 5368 error = ufs_xattr_getattrdir(vp, &sip, LOOKUP_XATTR, 5369 cr); 5370 if (error == 0 && sip != NULL) { 5371 /* Start transaction */ 5372 if (ulp) { 5373 TRANS_BEGIN_CSYNC(ufsvfsp, issync, 5374 TOP_RMDIR, TOP_RMDIR_SIZE); 5375 } 5376 /* 5377 * Is directory empty 5378 */ 5379 rw_enter(&sip->i_rwlock, RW_WRITER); 5380 rw_enter(&sip->i_contents, RW_WRITER); 5381 if (ufs_xattrdirempty(sip, 5382 sip->i_number, CRED())) { 5383 rw_enter(&ip->i_contents, RW_WRITER); 5384 ufs_unhook_shadow(ip, sip); 5385 rw_exit(&ip->i_contents); 5386 5387 *valp = 0; 5388 5389 } else 5390 *valp = 1; 5391 rw_exit(&sip->i_contents); 5392 rw_exit(&sip->i_rwlock); 5393 if (ulp) { 5394 TRANS_END_CSYNC(ufsvfsp, error, issync, 5395 TOP_RMDIR, TOP_RMDIR_SIZE); 5396 } 5397 VN_RELE(ITOV(sip)); 5398 } else if (error == ENOENT) { 5399 *valp = 0; 5400 error = 0; 5401 } 5402 } else { 5403 error = fs_pathconf(vp, cmd, valp, cr); 5404 } 5405 break; 5406 5407 case _PC_ACL_ENABLED: 5408 *valp = _ACL_ACLENT_ENABLED; 5409 break; 5410 5411 case _PC_MIN_HOLE_SIZE: 5412 *valp = (ulong_t)ip->i_fs->fs_bsize; 5413 break; 5414 5415 default: 5416 error = fs_pathconf(vp, cmd, valp, cr); 5417 } 5418 5419 if (ulp != NULL) { 5420 ufs_lockfs_end(ulp); 5421 } 5422 return (error); 5423 } 5424 5425 int ufs_pageio_writes, ufs_pageio_reads; 5426 5427 /*ARGSUSED*/ 5428 static int 5429 ufs_pageio(struct vnode *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5430 int flags, struct cred *cr) 5431 { 5432 struct inode *ip = VTOI(vp); 5433 struct ufsvfs *ufsvfsp; 5434 page_t *npp = NULL, *opp = NULL, *cpp = pp; 5435 struct buf *bp; 5436 daddr_t bn; 5437 size_t done_len = 0, cur_len = 0; 5438 int err = 0; 5439 int contig = 0; 5440 int dolock; 5441 int vmpss = 0; 5442 5443 if ((flags & B_READ) && pp != NULL && pp->p_vnode == vp && 5444 vp->v_mpssdata != NULL) { 5445 vmpss = 1; 5446 } 5447 5448 dolock = (rw_owner(&ip->i_contents) != curthread); 5449 /* 5450 * We need a better check. Ideally, we would use another 5451 * vnodeops so that hlocked and forcibly unmounted file 5452 * systems would return EIO where appropriate and w/o the 5453 * need for these checks. 5454 */ 5455 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 5456 return (EIO); 5457 5458 if (dolock) { 5459 /* 5460 * segvn may call VOP_PAGEIO() instead of VOP_GETPAGE() to 5461 * handle a fault against a segment that maps vnode pages with 5462 * large mappings. Segvn creates pages and holds them locked 5463 * SE_EXCL during VOP_PAGEIO() call. In this case we have to 5464 * use rw_tryenter() to avoid a potential deadlock since in 5465 * lock order i_contents needs to be taken first. 5466 * Segvn will retry via VOP_GETPAGE() if VOP_PAGEIO() fails. 5467 */ 5468 if (!vmpss) { 5469 rw_enter(&ip->i_contents, RW_READER); 5470 } else if (!rw_tryenter(&ip->i_contents, RW_READER)) { 5471 return (EDEADLK); 5472 } 5473 } 5474 5475 /* 5476 * Return an error to segvn because the pagefault request is beyond 5477 * PAGESIZE rounded EOF. 5478 */ 5479 if (vmpss && btopr(io_off + io_len) > btopr(ip->i_size)) { 5480 if (dolock) 5481 rw_exit(&ip->i_contents); 5482 return (EFAULT); 5483 } 5484 5485 if (pp == NULL) { 5486 if (bmap_has_holes(ip)) { 5487 err = ENOSYS; 5488 } else { 5489 err = EINVAL; 5490 } 5491 if (dolock) 5492 rw_exit(&ip->i_contents); 5493 return (err); 5494 } 5495 5496 /* 5497 * Break the io request into chunks, one for each contiguous 5498 * stretch of disk blocks in the target file. 5499 */ 5500 while (done_len < io_len) { 5501 ASSERT(cpp); 5502 contig = 0; 5503 if (err = bmap_read(ip, (u_offset_t)(io_off + done_len), 5504 &bn, &contig)) 5505 break; 5506 5507 if (bn == UFS_HOLE) { /* No holey swapfiles */ 5508 if (vmpss) { 5509 err = EFAULT; 5510 break; 5511 } 5512 err = ufs_fault(ITOV(ip), "ufs_pageio: bn == UFS_HOLE"); 5513 break; 5514 } 5515 5516 cur_len = MIN(io_len - done_len, contig); 5517 /* 5518 * Zero out a page beyond EOF, when the last block of 5519 * a file is a UFS fragment so that ufs_pageio() can be used 5520 * instead of ufs_getpage() to handle faults against 5521 * segvn segments that use large pages. 5522 */ 5523 page_list_break(&cpp, &npp, btopr(cur_len)); 5524 if ((flags & B_READ) && (cur_len & PAGEOFFSET)) { 5525 size_t xlen = cur_len & PAGEOFFSET; 5526 pagezero(cpp->p_prev, xlen, PAGESIZE - xlen); 5527 } 5528 5529 bp = pageio_setup(cpp, cur_len, ip->i_devvp, flags); 5530 ASSERT(bp != NULL); 5531 5532 bp->b_edev = ip->i_dev; 5533 bp->b_dev = cmpdev(ip->i_dev); 5534 bp->b_blkno = bn; 5535 bp->b_un.b_addr = (caddr_t)0; 5536 bp->b_file = ip->i_vnode; 5537 5538 ufsvfsp->vfs_iotstamp = lbolt; 5539 ub.ub_pageios.value.ul++; 5540 if (ufsvfsp->vfs_snapshot) 5541 fssnap_strategy(&(ufsvfsp->vfs_snapshot), bp); 5542 else 5543 (void) bdev_strategy(bp); 5544 5545 if (flags & B_READ) 5546 ufs_pageio_reads++; 5547 else 5548 ufs_pageio_writes++; 5549 if (flags & B_READ) 5550 lwp_stat_update(LWP_STAT_INBLK, 1); 5551 else 5552 lwp_stat_update(LWP_STAT_OUBLK, 1); 5553 /* 5554 * If the request is not B_ASYNC, wait for i/o to complete 5555 * and re-assemble the page list to return to the caller. 5556 * If it is B_ASYNC we leave the page list in pieces and 5557 * cleanup() will dispose of them. 5558 */ 5559 if ((flags & B_ASYNC) == 0) { 5560 err = biowait(bp); 5561 pageio_done(bp); 5562 if (err) 5563 break; 5564 page_list_concat(&opp, &cpp); 5565 } 5566 cpp = npp; 5567 npp = NULL; 5568 if (flags & B_READ) 5569 cur_len = P2ROUNDUP_TYPED(cur_len, PAGESIZE, size_t); 5570 done_len += cur_len; 5571 } 5572 ASSERT(err || (cpp == NULL && npp == NULL && done_len == io_len)); 5573 if (err) { 5574 if (flags & B_ASYNC) { 5575 /* Cleanup unprocessed parts of list */ 5576 page_list_concat(&cpp, &npp); 5577 if (flags & B_READ) 5578 pvn_read_done(cpp, B_ERROR); 5579 else 5580 pvn_write_done(cpp, B_ERROR); 5581 } else { 5582 /* Re-assemble list and let caller clean up */ 5583 page_list_concat(&opp, &cpp); 5584 page_list_concat(&opp, &npp); 5585 } 5586 } 5587 if (dolock) 5588 rw_exit(&ip->i_contents); 5589 return (err); 5590 } 5591 5592 /* 5593 * Called when the kernel is in a frozen state to dump data 5594 * directly to the device. It uses a private dump data structure, 5595 * set up by dump_ctl, to locate the correct disk block to which to dump. 5596 */ 5597 static int 5598 ufs_dump(vnode_t *vp, caddr_t addr, int ldbn, int dblks) 5599 { 5600 u_offset_t file_size; 5601 struct inode *ip = VTOI(vp); 5602 struct fs *fs = ip->i_fs; 5603 daddr_t dbn, lfsbn; 5604 int disk_blks = fs->fs_bsize >> DEV_BSHIFT; 5605 int error = 0; 5606 int ndbs, nfsbs; 5607 5608 /* 5609 * forced unmount case 5610 */ 5611 if (ip->i_ufsvfs == NULL) 5612 return (EIO); 5613 /* 5614 * Validate the inode that it has not been modified since 5615 * the dump structure is allocated. 5616 */ 5617 mutex_enter(&ip->i_tlock); 5618 if ((dump_info == NULL) || 5619 (dump_info->ip != ip) || 5620 (dump_info->time.tv_sec != ip->i_mtime.tv_sec) || 5621 (dump_info->time.tv_usec != ip->i_mtime.tv_usec)) { 5622 mutex_exit(&ip->i_tlock); 5623 return (-1); 5624 } 5625 mutex_exit(&ip->i_tlock); 5626 5627 /* 5628 * See that the file has room for this write 5629 */ 5630 UFS_GET_ISIZE(&file_size, ip); 5631 5632 if (ldbtob((offset_t)(ldbn + dblks)) > file_size) 5633 return (ENOSPC); 5634 5635 /* 5636 * Find the physical disk block numbers from the dump 5637 * private data structure directly and write out the data 5638 * in contiguous block lumps 5639 */ 5640 while (dblks > 0 && !error) { 5641 lfsbn = (daddr_t)lblkno(fs, ldbtob((offset_t)ldbn)); 5642 dbn = fsbtodb(fs, dump_info->dblk[lfsbn]) + ldbn % disk_blks; 5643 nfsbs = 1; 5644 ndbs = disk_blks - ldbn % disk_blks; 5645 while (ndbs < dblks && fsbtodb(fs, dump_info->dblk[lfsbn + 5646 nfsbs]) == dbn + ndbs) { 5647 nfsbs++; 5648 ndbs += disk_blks; 5649 } 5650 if (ndbs > dblks) 5651 ndbs = dblks; 5652 error = bdev_dump(ip->i_dev, addr, dbn, ndbs); 5653 addr += ldbtob((offset_t)ndbs); 5654 dblks -= ndbs; 5655 ldbn += ndbs; 5656 } 5657 return (error); 5658 5659 } 5660 5661 /* 5662 * Prepare the file system before and after the dump operation. 5663 * 5664 * action = DUMP_ALLOC: 5665 * Preparation before dump, allocate dump private data structure 5666 * to hold all the direct and indirect block info for dump. 5667 * 5668 * action = DUMP_FREE: 5669 * Clean up after dump, deallocate the dump private data structure. 5670 * 5671 * action = DUMP_SCAN: 5672 * Scan dump_info for *blkp DEV_BSIZE blocks of contig fs space; 5673 * if found, the starting file-relative DEV_BSIZE lbn is written 5674 * to *bklp; that lbn is intended for use with VOP_DUMP() 5675 */ 5676 static int 5677 ufs_dumpctl(vnode_t *vp, int action, int *blkp) 5678 { 5679 struct inode *ip = VTOI(vp); 5680 ufsvfs_t *ufsvfsp = ip->i_ufsvfs; 5681 struct fs *fs; 5682 daddr32_t *dblk, *storeblk; 5683 daddr32_t *nextblk, *endblk; 5684 struct buf *bp; 5685 int i, entry, entries; 5686 int n, ncontig; 5687 5688 /* 5689 * check for forced unmount 5690 */ 5691 if (ufsvfsp == NULL) 5692 return (EIO); 5693 5694 if (action == DUMP_ALLOC) { 5695 /* 5696 * alloc and record dump_info 5697 */ 5698 if (dump_info != NULL) 5699 return (EINVAL); 5700 5701 ASSERT(vp->v_type == VREG); 5702 fs = ufsvfsp->vfs_fs; 5703 5704 rw_enter(&ip->i_contents, RW_READER); 5705 5706 if (bmap_has_holes(ip)) { 5707 rw_exit(&ip->i_contents); 5708 return (EFAULT); 5709 } 5710 5711 /* 5712 * calculate and allocate space needed according to i_size 5713 */ 5714 entries = (int)lblkno(fs, blkroundup(fs, ip->i_size)); 5715 if ((dump_info = (struct dump *) 5716 kmem_alloc(sizeof (struct dump) + 5717 (entries - 1) * sizeof (daddr32_t), KM_NOSLEEP)) == NULL) { 5718 rw_exit(&ip->i_contents); 5719 return (ENOMEM); 5720 } 5721 5722 /* Start saving the info */ 5723 dump_info->fsbs = entries; 5724 dump_info->ip = ip; 5725 storeblk = &dump_info->dblk[0]; 5726 5727 /* Direct Blocks */ 5728 for (entry = 0; entry < NDADDR && entry < entries; entry++) 5729 *storeblk++ = ip->i_db[entry]; 5730 5731 /* Indirect Blocks */ 5732 for (i = 0; i < NIADDR; i++) { 5733 int error = 0; 5734 5735 bp = UFS_BREAD(ufsvfsp, 5736 ip->i_dev, fsbtodb(fs, ip->i_ib[i]), 5737 fs->fs_bsize); 5738 if (bp->b_flags & B_ERROR) 5739 error = EIO; 5740 else { 5741 dblk = bp->b_un.b_daddr; 5742 if ((storeblk = save_dblks(ip, ufsvfsp, 5743 storeblk, dblk, i, entries)) == NULL) 5744 error = EIO; 5745 } 5746 5747 brelse(bp); 5748 5749 if (error != 0) { 5750 kmem_free(dump_info, sizeof (struct dump) + 5751 (entries - 1) * sizeof (daddr32_t)); 5752 rw_exit(&ip->i_contents); 5753 dump_info = NULL; 5754 return (error); 5755 } 5756 } 5757 /* and time stamp the information */ 5758 mutex_enter(&ip->i_tlock); 5759 dump_info->time = ip->i_mtime; 5760 mutex_exit(&ip->i_tlock); 5761 5762 rw_exit(&ip->i_contents); 5763 } else if (action == DUMP_FREE) { 5764 /* 5765 * free dump_info 5766 */ 5767 if (dump_info == NULL) 5768 return (EINVAL); 5769 entries = dump_info->fsbs - 1; 5770 kmem_free(dump_info, sizeof (struct dump) + 5771 entries * sizeof (daddr32_t)); 5772 dump_info = NULL; 5773 } else if (action == DUMP_SCAN) { 5774 /* 5775 * scan dump_info 5776 */ 5777 if (dump_info == NULL) 5778 return (EINVAL); 5779 5780 dblk = dump_info->dblk; 5781 nextblk = dblk + 1; 5782 endblk = dblk + dump_info->fsbs - 1; 5783 fs = ufsvfsp->vfs_fs; 5784 ncontig = *blkp >> (fs->fs_bshift - DEV_BSHIFT); 5785 5786 /* 5787 * scan dblk[] entries; contig fs space is found when: 5788 * ((current blkno + frags per block) == next blkno) 5789 */ 5790 n = 0; 5791 while (n < ncontig && dblk < endblk) { 5792 if ((*dblk + fs->fs_frag) == *nextblk) 5793 n++; 5794 else 5795 n = 0; 5796 dblk++; 5797 nextblk++; 5798 } 5799 5800 /* 5801 * index is where size bytes of contig space begins; 5802 * conversion from index to the file's DEV_BSIZE lbn 5803 * is equivalent to: (index * fs_bsize) / DEV_BSIZE 5804 */ 5805 if (n == ncontig) { 5806 i = (dblk - dump_info->dblk) - ncontig; 5807 *blkp = i << (fs->fs_bshift - DEV_BSHIFT); 5808 } else 5809 return (EFAULT); 5810 } 5811 return (0); 5812 } 5813 5814 /* 5815 * Recursive helper function for ufs_dumpctl(). It follows the indirect file 5816 * system blocks until it reaches the the disk block addresses, which are 5817 * then stored into the given buffer, storeblk. 5818 */ 5819 static daddr32_t * 5820 save_dblks(struct inode *ip, struct ufsvfs *ufsvfsp, daddr32_t *storeblk, 5821 daddr32_t *dblk, int level, int entries) 5822 { 5823 struct fs *fs = ufsvfsp->vfs_fs; 5824 struct buf *bp; 5825 int i; 5826 5827 if (level == 0) { 5828 for (i = 0; i < NINDIR(fs); i++) { 5829 if (storeblk - dump_info->dblk >= entries) 5830 break; 5831 *storeblk++ = dblk[i]; 5832 } 5833 return (storeblk); 5834 } 5835 for (i = 0; i < NINDIR(fs); i++) { 5836 if (storeblk - dump_info->dblk >= entries) 5837 break; 5838 bp = UFS_BREAD(ufsvfsp, 5839 ip->i_dev, fsbtodb(fs, dblk[i]), fs->fs_bsize); 5840 if (bp->b_flags & B_ERROR) { 5841 brelse(bp); 5842 return (NULL); 5843 } 5844 storeblk = save_dblks(ip, ufsvfsp, storeblk, bp->b_un.b_daddr, 5845 level - 1, entries); 5846 brelse(bp); 5847 5848 if (storeblk == NULL) 5849 return (NULL); 5850 } 5851 return (storeblk); 5852 } 5853 5854 /* ARGSUSED */ 5855 static int 5856 ufs_getsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, 5857 struct cred *cr) 5858 { 5859 struct inode *ip = VTOI(vp); 5860 struct ulockfs *ulp; 5861 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 5862 ulong_t vsa_mask = vsap->vsa_mask; 5863 int err = EINVAL; 5864 5865 TRACE_3(TR_FAC_UFS, TR_UFS_GETSECATTR_START, 5866 "ufs_getsecattr_start:vp %p, vsap %p, flags %x", vp, vsap, flag); 5867 5868 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT); 5869 5870 /* 5871 * Only grab locks if needed - they're not needed to check vsa_mask 5872 * or if the mask contains no acl flags. 5873 */ 5874 if (vsa_mask != 0) { 5875 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, 5876 ULOCKFS_GETATTR_MASK)) 5877 return (err); 5878 5879 rw_enter(&ip->i_contents, RW_READER); 5880 err = ufs_acl_get(ip, vsap, flag, cr); 5881 rw_exit(&ip->i_contents); 5882 5883 if (ulp) 5884 ufs_lockfs_end(ulp); 5885 } 5886 TRACE_1(TR_FAC_UFS, TR_UFS_GETSECATTR_END, 5887 "ufs_getsecattr_end:vp %p", vp); 5888 return (err); 5889 } 5890 5891 /* ARGSUSED */ 5892 static int 5893 ufs_setsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr) 5894 { 5895 struct inode *ip = VTOI(vp); 5896 struct ulockfs *ulp = NULL; 5897 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 5898 ulong_t vsa_mask = vsap->vsa_mask; 5899 int err; 5900 int haverwlock = 1; 5901 int trans_size; 5902 int donetrans = 0; 5903 int retry = 1; 5904 5905 5906 TRACE_3(TR_FAC_UFS, TR_UFS_SETSECATTR_START, 5907 "ufs_setsecattr_start:vp %p, vsap %p, flags %x", vp, vsap, flag); 5908 5909 ASSERT(RW_LOCK_HELD(&ip->i_rwlock)); 5910 5911 /* Abort now if the request is either empty or invalid. */ 5912 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT); 5913 if ((vsa_mask == 0) || 5914 ((vsap->vsa_aclentp == NULL) && 5915 (vsap->vsa_dfaclentp == NULL))) { 5916 err = EINVAL; 5917 goto out; 5918 } 5919 5920 /* 5921 * Following convention, if this is a directory then we acquire the 5922 * inode's i_rwlock after starting a UFS logging transaction; 5923 * otherwise, we acquire it beforehand. Since we were called (and 5924 * must therefore return) with the lock held, we will have to drop it, 5925 * and later reacquire it, if operating on a directory. 5926 */ 5927 if (vp->v_type == VDIR) { 5928 rw_exit(&ip->i_rwlock); 5929 haverwlock = 0; 5930 } else { 5931 /* Upgrade the lock if required. */ 5932 if (!rw_write_held(&ip->i_rwlock)) { 5933 rw_exit(&ip->i_rwlock); 5934 rw_enter(&ip->i_rwlock, RW_WRITER); 5935 } 5936 } 5937 5938 again: 5939 ASSERT(!(vp->v_type == VDIR && haverwlock)); 5940 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK)) { 5941 ulp = NULL; 5942 retry = 0; 5943 goto out; 5944 } 5945 5946 /* 5947 * Check that the file system supports this operation. Note that 5948 * ufs_lockfs_begin() will have checked that the file system had 5949 * not been forcibly unmounted. 5950 */ 5951 if (ufsvfsp->vfs_fs->fs_ronly) { 5952 err = EROFS; 5953 goto out; 5954 } 5955 if (ufsvfsp->vfs_nosetsec) { 5956 err = ENOSYS; 5957 goto out; 5958 } 5959 5960 if (ulp) { 5961 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_SETSECATTR, 5962 trans_size = TOP_SETSECATTR_SIZE(VTOI(vp))); 5963 donetrans = 1; 5964 } 5965 5966 if (vp->v_type == VDIR) { 5967 rw_enter(&ip->i_rwlock, RW_WRITER); 5968 haverwlock = 1; 5969 } 5970 5971 ASSERT(haverwlock); 5972 5973 /* Do the actual work. */ 5974 rw_enter(&ip->i_contents, RW_WRITER); 5975 /* 5976 * Suppress out of inodes messages if we will retry. 5977 */ 5978 if (retry) 5979 ip->i_flag |= IQUIET; 5980 err = ufs_acl_set(ip, vsap, flag, cr); 5981 ip->i_flag &= ~IQUIET; 5982 rw_exit(&ip->i_contents); 5983 5984 out: 5985 if (ulp) { 5986 if (donetrans) { 5987 /* 5988 * top_end_async() can eventually call 5989 * top_end_sync(), which can block. We must 5990 * therefore observe the lock-ordering protocol 5991 * here as well. 5992 */ 5993 if (vp->v_type == VDIR) { 5994 rw_exit(&ip->i_rwlock); 5995 haverwlock = 0; 5996 } 5997 TRANS_END_ASYNC(ufsvfsp, TOP_SETSECATTR, trans_size); 5998 } 5999 ufs_lockfs_end(ulp); 6000 } 6001 /* 6002 * If no inodes available, try scaring a logically- 6003 * free one out of the delete queue to someplace 6004 * that we can find it. 6005 */ 6006 if ((err == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 6007 ufs_delete_drain_wait(ufsvfsp, 1); 6008 retry = 0; 6009 if (vp->v_type == VDIR && haverwlock) { 6010 rw_exit(&ip->i_rwlock); 6011 haverwlock = 0; 6012 } 6013 goto again; 6014 } 6015 /* 6016 * If we need to reacquire the lock then it is safe to do so 6017 * as a reader. This is because ufs_rwunlock(), which will be 6018 * called by our caller after we return, does not differentiate 6019 * between shared and exclusive locks. 6020 */ 6021 if (!haverwlock) { 6022 ASSERT(vp->v_type == VDIR); 6023 rw_enter(&ip->i_rwlock, RW_READER); 6024 } 6025 6026 TRACE_1(TR_FAC_UFS, TR_UFS_SETSECATTR_END, 6027 "ufs_setsecattr_end:vp %p", vp); 6028 return (err); 6029 } 6030