1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1984, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2018 Joyent, Inc. 25 * Copyright (c) 2016 by Delphix. All rights reserved. 26 */ 27 28 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 29 /* All Rights Reserved */ 30 31 /* 32 * Portions of this source code were derived from Berkeley 4.3 BSD 33 * under license from the Regents of the University of California. 34 */ 35 36 #include <sys/types.h> 37 #include <sys/t_lock.h> 38 #include <sys/ksynch.h> 39 #include <sys/param.h> 40 #include <sys/time.h> 41 #include <sys/systm.h> 42 #include <sys/sysmacros.h> 43 #include <sys/resource.h> 44 #include <sys/signal.h> 45 #include <sys/cred.h> 46 #include <sys/user.h> 47 #include <sys/buf.h> 48 #include <sys/vfs.h> 49 #include <sys/vfs_opreg.h> 50 #include <sys/vnode.h> 51 #include <sys/proc.h> 52 #include <sys/disp.h> 53 #include <sys/file.h> 54 #include <sys/fcntl.h> 55 #include <sys/flock.h> 56 #include <sys/atomic.h> 57 #include <sys/kmem.h> 58 #include <sys/uio.h> 59 #include <sys/dnlc.h> 60 #include <sys/conf.h> 61 #include <sys/mman.h> 62 #include <sys/pathname.h> 63 #include <sys/debug.h> 64 #include <sys/vmsystm.h> 65 #include <sys/cmn_err.h> 66 #include <sys/filio.h> 67 #include <sys/policy.h> 68 69 #include <sys/fs/ufs_fs.h> 70 #include <sys/fs/ufs_lockfs.h> 71 #include <sys/fs/ufs_filio.h> 72 #include <sys/fs/ufs_inode.h> 73 #include <sys/fs/ufs_fsdir.h> 74 #include <sys/fs/ufs_quota.h> 75 #include <sys/fs/ufs_log.h> 76 #include <sys/fs/ufs_snap.h> 77 #include <sys/fs/ufs_trans.h> 78 #include <sys/fs/ufs_panic.h> 79 #include <sys/fs/ufs_bio.h> 80 #include <sys/dirent.h> /* must be AFTER <sys/fs/fsdir.h>! */ 81 #include <sys/errno.h> 82 #include <sys/fssnap_if.h> 83 #include <sys/unistd.h> 84 #include <sys/sunddi.h> 85 86 #include <sys/filio.h> /* _FIOIO */ 87 88 #include <vm/hat.h> 89 #include <vm/page.h> 90 #include <vm/pvn.h> 91 #include <vm/as.h> 92 #include <vm/seg.h> 93 #include <vm/seg_map.h> 94 #include <vm/seg_vn.h> 95 #include <vm/seg_kmem.h> 96 #include <vm/rm.h> 97 #include <sys/swap.h> 98 99 #include <fs/fs_subr.h> 100 101 #include <sys/fs/decomp.h> 102 103 static struct instats ins; 104 105 static int ufs_getpage_ra(struct vnode *, u_offset_t, struct seg *, caddr_t); 106 static int ufs_getpage_miss(struct vnode *, u_offset_t, size_t, struct seg *, 107 caddr_t, struct page **, size_t, enum seg_rw, int); 108 static int ufs_open(struct vnode **, int, struct cred *, caller_context_t *); 109 static int ufs_close(struct vnode *, int, int, offset_t, struct cred *, 110 caller_context_t *); 111 static int ufs_read(struct vnode *, struct uio *, int, struct cred *, 112 struct caller_context *); 113 static int ufs_write(struct vnode *, struct uio *, int, struct cred *, 114 struct caller_context *); 115 static int ufs_ioctl(struct vnode *, int, intptr_t, int, struct cred *, 116 int *, caller_context_t *); 117 static int ufs_getattr(struct vnode *, struct vattr *, int, struct cred *, 118 caller_context_t *); 119 static int ufs_setattr(struct vnode *, struct vattr *, int, struct cred *, 120 caller_context_t *); 121 static int ufs_access(struct vnode *, int, int, struct cred *, 122 caller_context_t *); 123 static int ufs_lookup(struct vnode *, char *, struct vnode **, 124 struct pathname *, int, struct vnode *, struct cred *, 125 caller_context_t *, int *, pathname_t *); 126 static int ufs_create(struct vnode *, char *, struct vattr *, enum vcexcl, 127 int, struct vnode **, struct cred *, int, 128 caller_context_t *, vsecattr_t *); 129 static int ufs_remove(struct vnode *, char *, struct cred *, 130 caller_context_t *, int); 131 static int ufs_link(struct vnode *, struct vnode *, char *, struct cred *, 132 caller_context_t *, int); 133 static int ufs_rename(struct vnode *, char *, struct vnode *, char *, 134 struct cred *, caller_context_t *, int); 135 static int ufs_mkdir(struct vnode *, char *, struct vattr *, struct vnode **, 136 struct cred *, caller_context_t *, int, vsecattr_t *); 137 static int ufs_rmdir(struct vnode *, char *, struct vnode *, struct cred *, 138 caller_context_t *, int); 139 static int ufs_readdir(struct vnode *, struct uio *, struct cred *, int *, 140 caller_context_t *, int); 141 static int ufs_symlink(struct vnode *, char *, struct vattr *, char *, 142 struct cred *, caller_context_t *, int); 143 static int ufs_readlink(struct vnode *, struct uio *, struct cred *, 144 caller_context_t *); 145 static int ufs_fsync(struct vnode *, int, struct cred *, caller_context_t *); 146 static void ufs_inactive(struct vnode *, struct cred *, caller_context_t *); 147 static int ufs_fid(struct vnode *, struct fid *, caller_context_t *); 148 static int ufs_rwlock(struct vnode *, int, caller_context_t *); 149 static void ufs_rwunlock(struct vnode *, int, caller_context_t *); 150 static int ufs_seek(struct vnode *, offset_t, offset_t *, caller_context_t *); 151 static int ufs_frlock(struct vnode *, int, struct flock64 *, int, offset_t, 152 struct flk_callback *, struct cred *, 153 caller_context_t *); 154 static int ufs_space(struct vnode *, int, struct flock64 *, int, offset_t, 155 cred_t *, caller_context_t *); 156 static int ufs_getpage(struct vnode *, offset_t, size_t, uint_t *, 157 struct page **, size_t, struct seg *, caddr_t, 158 enum seg_rw, struct cred *, caller_context_t *); 159 static int ufs_putpage(struct vnode *, offset_t, size_t, int, struct cred *, 160 caller_context_t *); 161 static int ufs_putpages(struct vnode *, offset_t, size_t, int, struct cred *); 162 static int ufs_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t, 163 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 164 static int ufs_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 165 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 166 static int ufs_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 167 uint_t, uint_t, uint_t, struct cred *, caller_context_t *); 168 static int ufs_poll(vnode_t *, short, int, short *, struct pollhead **, 169 caller_context_t *); 170 static int ufs_dump(vnode_t *, caddr_t, offset_t, offset_t, 171 caller_context_t *); 172 static int ufs_l_pathconf(struct vnode *, int, ulong_t *, struct cred *, 173 caller_context_t *); 174 static int ufs_pageio(struct vnode *, struct page *, u_offset_t, size_t, int, 175 struct cred *, caller_context_t *); 176 static int ufs_dumpctl(vnode_t *, int, offset_t *, caller_context_t *); 177 static daddr32_t *save_dblks(struct inode *, struct ufsvfs *, daddr32_t *, 178 daddr32_t *, int, int); 179 static int ufs_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 180 caller_context_t *); 181 static int ufs_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 182 caller_context_t *); 183 static int ufs_priv_access(void *, int, struct cred *); 184 static int ufs_eventlookup(struct vnode *, char *, struct cred *, 185 struct vnode **); 186 187 /* 188 * For lockfs: ulockfs begin/end is now inlined in the ufs_xxx functions. 189 * 190 * XXX - ULOCKFS in fs_pathconf and ufs_ioctl is not inlined yet. 191 */ 192 struct vnodeops *ufs_vnodeops; 193 194 /* NOTE: "not blkd" below means that the operation isn't blocked by lockfs */ 195 const fs_operation_def_t ufs_vnodeops_template[] = { 196 VOPNAME_OPEN, { .vop_open = ufs_open }, /* not blkd */ 197 VOPNAME_CLOSE, { .vop_close = ufs_close }, /* not blkd */ 198 VOPNAME_READ, { .vop_read = ufs_read }, 199 VOPNAME_WRITE, { .vop_write = ufs_write }, 200 VOPNAME_IOCTL, { .vop_ioctl = ufs_ioctl }, 201 VOPNAME_GETATTR, { .vop_getattr = ufs_getattr }, 202 VOPNAME_SETATTR, { .vop_setattr = ufs_setattr }, 203 VOPNAME_ACCESS, { .vop_access = ufs_access }, 204 VOPNAME_LOOKUP, { .vop_lookup = ufs_lookup }, 205 VOPNAME_CREATE, { .vop_create = ufs_create }, 206 VOPNAME_REMOVE, { .vop_remove = ufs_remove }, 207 VOPNAME_LINK, { .vop_link = ufs_link }, 208 VOPNAME_RENAME, { .vop_rename = ufs_rename }, 209 VOPNAME_MKDIR, { .vop_mkdir = ufs_mkdir }, 210 VOPNAME_RMDIR, { .vop_rmdir = ufs_rmdir }, 211 VOPNAME_READDIR, { .vop_readdir = ufs_readdir }, 212 VOPNAME_SYMLINK, { .vop_symlink = ufs_symlink }, 213 VOPNAME_READLINK, { .vop_readlink = ufs_readlink }, 214 VOPNAME_FSYNC, { .vop_fsync = ufs_fsync }, 215 VOPNAME_INACTIVE, { .vop_inactive = ufs_inactive }, /* not blkd */ 216 VOPNAME_FID, { .vop_fid = ufs_fid }, 217 VOPNAME_RWLOCK, { .vop_rwlock = ufs_rwlock }, /* not blkd */ 218 VOPNAME_RWUNLOCK, { .vop_rwunlock = ufs_rwunlock }, /* not blkd */ 219 VOPNAME_SEEK, { .vop_seek = ufs_seek }, 220 VOPNAME_FRLOCK, { .vop_frlock = ufs_frlock }, 221 VOPNAME_SPACE, { .vop_space = ufs_space }, 222 VOPNAME_GETPAGE, { .vop_getpage = ufs_getpage }, 223 VOPNAME_PUTPAGE, { .vop_putpage = ufs_putpage }, 224 VOPNAME_MAP, { .vop_map = ufs_map }, 225 VOPNAME_ADDMAP, { .vop_addmap = ufs_addmap }, /* not blkd */ 226 VOPNAME_DELMAP, { .vop_delmap = ufs_delmap }, /* not blkd */ 227 VOPNAME_POLL, { .vop_poll = ufs_poll }, /* not blkd */ 228 VOPNAME_DUMP, { .vop_dump = ufs_dump }, 229 VOPNAME_PATHCONF, { .vop_pathconf = ufs_l_pathconf }, 230 VOPNAME_PAGEIO, { .vop_pageio = ufs_pageio }, 231 VOPNAME_DUMPCTL, { .vop_dumpctl = ufs_dumpctl }, 232 VOPNAME_GETSECATTR, { .vop_getsecattr = ufs_getsecattr }, 233 VOPNAME_SETSECATTR, { .vop_setsecattr = ufs_setsecattr }, 234 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 235 NULL, NULL 236 }; 237 238 #define MAX_BACKFILE_COUNT 9999 239 240 /* 241 * Created by ufs_dumpctl() to store a file's disk block info into memory. 242 * Used by ufs_dump() to dump data to disk directly. 243 */ 244 struct dump { 245 struct inode *ip; /* the file we contain */ 246 daddr_t fsbs; /* number of blocks stored */ 247 struct timeval32 time; /* time stamp for the struct */ 248 daddr32_t dblk[1]; /* place holder for block info */ 249 }; 250 251 static struct dump *dump_info = NULL; 252 253 /* 254 * Previously there was no special action required for ordinary files. 255 * (Devices are handled through the device file system.) 256 * Now we support Large Files and Large File API requires open to 257 * fail if file is large. 258 * We could take care to prevent data corruption 259 * by doing an atomic check of size and truncate if file is opened with 260 * FTRUNC flag set but traditionally this is being done by the vfs/vnode 261 * layers. So taking care of truncation here is a change in the existing 262 * semantics of VOP_OPEN and therefore we chose not to implement any thing 263 * here. The check for the size of the file > 2GB is being done at the 264 * vfs layer in routine vn_open(). 265 */ 266 267 /* ARGSUSED */ 268 static int 269 ufs_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *ct) 270 { 271 return (0); 272 } 273 274 /*ARGSUSED*/ 275 static int 276 ufs_close(struct vnode *vp, int flag, int count, offset_t offset, 277 struct cred *cr, caller_context_t *ct) 278 { 279 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 280 cleanshares(vp, ttoproc(curthread)->p_pid); 281 282 /* 283 * Push partially filled cluster at last close. 284 * ``last close'' is approximated because the dnlc 285 * may have a hold on the vnode. 286 * Checking for VBAD here will also act as a forced umount check. 287 */ 288 if (vp->v_count <= 2 && vp->v_type != VBAD) { 289 struct inode *ip = VTOI(vp); 290 if (ip->i_delaylen) { 291 ins.in_poc.value.ul++; 292 (void) ufs_putpages(vp, ip->i_delayoff, ip->i_delaylen, 293 B_ASYNC | B_FREE, cr); 294 ip->i_delaylen = 0; 295 } 296 } 297 298 return (0); 299 } 300 301 /*ARGSUSED*/ 302 static int 303 ufs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cr, 304 struct caller_context *ct) 305 { 306 struct inode *ip = VTOI(vp); 307 struct ufsvfs *ufsvfsp; 308 struct ulockfs *ulp = NULL; 309 int error = 0; 310 int intrans = 0; 311 312 ASSERT(RW_READ_HELD(&ip->i_rwlock)); 313 314 /* 315 * Mandatory locking needs to be done before ufs_lockfs_begin() 316 * and TRANS_BEGIN_SYNC() calls since mandatory locks can sleep. 317 */ 318 if (MANDLOCK(vp, ip->i_mode)) { 319 /* 320 * ufs_getattr ends up being called by chklock 321 */ 322 error = chklock(vp, FREAD, uiop->uio_loffset, 323 uiop->uio_resid, uiop->uio_fmode, ct); 324 if (error) 325 goto out; 326 } 327 328 ufsvfsp = ip->i_ufsvfs; 329 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READ_MASK); 330 if (error) 331 goto out; 332 333 /* 334 * In the case that a directory is opened for reading as a file 335 * (eg "cat .") with the O_RSYNC, O_SYNC and O_DSYNC flags set. 336 * The locking order had to be changed to avoid a deadlock with 337 * an update taking place on that directory at the same time. 338 */ 339 if ((ip->i_mode & IFMT) == IFDIR) { 340 341 rw_enter(&ip->i_contents, RW_READER); 342 error = rdip(ip, uiop, ioflag, cr); 343 rw_exit(&ip->i_contents); 344 345 if (error) { 346 if (ulp) 347 ufs_lockfs_end(ulp); 348 goto out; 349 } 350 351 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) && 352 TRANS_ISTRANS(ufsvfsp)) { 353 rw_exit(&ip->i_rwlock); 354 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE, 355 error); 356 ASSERT(!error); 357 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC, 358 TOP_READ_SIZE); 359 rw_enter(&ip->i_rwlock, RW_READER); 360 } 361 } else { 362 /* 363 * Only transact reads to files opened for sync-read and 364 * sync-write on a file system that is not write locked. 365 * 366 * The ``not write locked'' check prevents problems with 367 * enabling/disabling logging on a busy file system. E.g., 368 * logging exists at the beginning of the read but does not 369 * at the end. 370 * 371 */ 372 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) && 373 TRANS_ISTRANS(ufsvfsp)) { 374 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE, 375 error); 376 ASSERT(!error); 377 intrans = 1; 378 } 379 380 rw_enter(&ip->i_contents, RW_READER); 381 error = rdip(ip, uiop, ioflag, cr); 382 rw_exit(&ip->i_contents); 383 384 if (intrans) { 385 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC, 386 TOP_READ_SIZE); 387 } 388 } 389 390 if (ulp) { 391 ufs_lockfs_end(ulp); 392 } 393 out: 394 395 return (error); 396 } 397 398 extern int ufs_HW; /* high water mark */ 399 extern int ufs_LW; /* low water mark */ 400 int ufs_WRITES = 1; /* XXX - enable/disable */ 401 int ufs_throttles = 0; /* throttling count */ 402 int ufs_allow_shared_writes = 1; /* directio shared writes */ 403 404 static int 405 ufs_check_rewrite(struct inode *ip, struct uio *uiop, int ioflag) 406 { 407 int shared_write; 408 409 /* 410 * If the FDSYNC flag is set then ignore the global 411 * ufs_allow_shared_writes in this case. 412 */ 413 shared_write = (ioflag & FDSYNC) | ufs_allow_shared_writes; 414 415 /* 416 * Filter to determine if this request is suitable as a 417 * concurrent rewrite. This write must not allocate blocks 418 * by extending the file or filling in holes. No use trying 419 * through FSYNC descriptors as the inode will be synchronously 420 * updated after the write. The uio structure has not yet been 421 * checked for sanity, so assume nothing. 422 */ 423 return (((ip->i_mode & IFMT) == IFREG) && !(ioflag & FAPPEND) && 424 (uiop->uio_loffset >= (offset_t)0) && 425 (uiop->uio_loffset < ip->i_size) && (uiop->uio_resid > 0) && 426 ((ip->i_size - uiop->uio_loffset) >= uiop->uio_resid) && 427 !(ioflag & FSYNC) && !bmap_has_holes(ip) && 428 shared_write); 429 } 430 431 /*ARGSUSED*/ 432 static int 433 ufs_write(struct vnode *vp, struct uio *uiop, int ioflag, cred_t *cr, 434 caller_context_t *ct) 435 { 436 struct inode *ip = VTOI(vp); 437 struct ufsvfs *ufsvfsp; 438 struct ulockfs *ulp; 439 int retry = 1; 440 int error, resv, resid = 0; 441 int directio_status; 442 int exclusive; 443 int rewriteflg; 444 long start_resid = uiop->uio_resid; 445 446 ASSERT(RW_LOCK_HELD(&ip->i_rwlock)); 447 448 retry_mandlock: 449 /* 450 * Mandatory locking needs to be done before ufs_lockfs_begin() 451 * and TRANS_BEGIN_[A]SYNC() calls since mandatory locks can sleep. 452 * Check for forced unmounts normally done in ufs_lockfs_begin(). 453 */ 454 if ((ufsvfsp = ip->i_ufsvfs) == NULL) { 455 error = EIO; 456 goto out; 457 } 458 if (MANDLOCK(vp, ip->i_mode)) { 459 460 ASSERT(RW_WRITE_HELD(&ip->i_rwlock)); 461 462 /* 463 * ufs_getattr ends up being called by chklock 464 */ 465 error = chklock(vp, FWRITE, uiop->uio_loffset, 466 uiop->uio_resid, uiop->uio_fmode, ct); 467 if (error) 468 goto out; 469 } 470 471 /* i_rwlock can change in chklock */ 472 exclusive = rw_write_held(&ip->i_rwlock); 473 rewriteflg = ufs_check_rewrite(ip, uiop, ioflag); 474 475 /* 476 * Check for fast-path special case of directio re-writes. 477 */ 478 if ((ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) && 479 !exclusive && rewriteflg) { 480 481 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK); 482 if (error) 483 goto out; 484 485 rw_enter(&ip->i_contents, RW_READER); 486 error = ufs_directio_write(ip, uiop, ioflag, 1, cr, 487 &directio_status); 488 if (directio_status == DIRECTIO_SUCCESS) { 489 uint_t i_flag_save; 490 491 if (start_resid != uiop->uio_resid) 492 error = 0; 493 /* 494 * Special treatment of access times for re-writes. 495 * If IMOD is not already set, then convert it 496 * to IMODACC for this operation. This defers 497 * entering a delta into the log until the inode 498 * is flushed. This mimics what is done for read 499 * operations and inode access time. 500 */ 501 mutex_enter(&ip->i_tlock); 502 i_flag_save = ip->i_flag; 503 ip->i_flag |= IUPD | ICHG; 504 ip->i_seq++; 505 ITIMES_NOLOCK(ip); 506 if ((i_flag_save & IMOD) == 0) { 507 ip->i_flag &= ~IMOD; 508 ip->i_flag |= IMODACC; 509 } 510 mutex_exit(&ip->i_tlock); 511 rw_exit(&ip->i_contents); 512 if (ulp) 513 ufs_lockfs_end(ulp); 514 goto out; 515 } 516 rw_exit(&ip->i_contents); 517 if (ulp) 518 ufs_lockfs_end(ulp); 519 } 520 521 if (!exclusive && !rw_tryupgrade(&ip->i_rwlock)) { 522 rw_exit(&ip->i_rwlock); 523 rw_enter(&ip->i_rwlock, RW_WRITER); 524 /* 525 * Mandatory locking could have been enabled 526 * after dropping the i_rwlock. 527 */ 528 if (MANDLOCK(vp, ip->i_mode)) 529 goto retry_mandlock; 530 } 531 532 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK); 533 if (error) 534 goto out; 535 536 /* 537 * Amount of log space needed for this write 538 */ 539 if (!rewriteflg || !(ioflag & FDSYNC)) 540 TRANS_WRITE_RESV(ip, uiop, ulp, &resv, &resid); 541 542 /* 543 * Throttle writes. 544 */ 545 if (ufs_WRITES && (ip->i_writes > ufs_HW)) { 546 mutex_enter(&ip->i_tlock); 547 while (ip->i_writes > ufs_HW) { 548 ufs_throttles++; 549 cv_wait(&ip->i_wrcv, &ip->i_tlock); 550 } 551 mutex_exit(&ip->i_tlock); 552 } 553 554 /* 555 * Enter Transaction 556 * 557 * If the write is a rewrite there is no need to open a transaction 558 * if the FDSYNC flag is set and not the FSYNC. In this case just 559 * set the IMODACC flag to modify do the update at a later time 560 * thus avoiding the overhead of the logging transaction that is 561 * not required. 562 */ 563 if (ioflag & (FSYNC|FDSYNC)) { 564 if (ulp) { 565 if (rewriteflg) { 566 uint_t i_flag_save; 567 568 rw_enter(&ip->i_contents, RW_READER); 569 mutex_enter(&ip->i_tlock); 570 i_flag_save = ip->i_flag; 571 ip->i_flag |= IUPD | ICHG; 572 ip->i_seq++; 573 ITIMES_NOLOCK(ip); 574 if ((i_flag_save & IMOD) == 0) { 575 ip->i_flag &= ~IMOD; 576 ip->i_flag |= IMODACC; 577 } 578 mutex_exit(&ip->i_tlock); 579 rw_exit(&ip->i_contents); 580 } else { 581 int terr = 0; 582 TRANS_BEGIN_SYNC(ufsvfsp, TOP_WRITE_SYNC, resv, 583 terr); 584 ASSERT(!terr); 585 } 586 } 587 } else { 588 if (ulp) 589 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_WRITE, resv); 590 } 591 592 /* 593 * Write the file 594 */ 595 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 596 rw_enter(&ip->i_contents, RW_WRITER); 597 if ((ioflag & FAPPEND) != 0 && (ip->i_mode & IFMT) == IFREG) { 598 /* 599 * In append mode start at end of file. 600 */ 601 uiop->uio_loffset = ip->i_size; 602 } 603 604 /* 605 * Mild optimisation, don't call ufs_trans_write() unless we have to 606 * Also, suppress file system full messages if we will retry. 607 */ 608 if (retry) 609 ip->i_flag |= IQUIET; 610 if (resid) { 611 TRANS_WRITE(ip, uiop, ioflag, error, ulp, cr, resv, resid); 612 } else { 613 error = wrip(ip, uiop, ioflag, cr); 614 } 615 ip->i_flag &= ~IQUIET; 616 617 rw_exit(&ip->i_contents); 618 rw_exit(&ufsvfsp->vfs_dqrwlock); 619 620 /* 621 * Leave Transaction 622 */ 623 if (ulp) { 624 if (ioflag & (FSYNC|FDSYNC)) { 625 if (!rewriteflg) { 626 int terr = 0; 627 628 TRANS_END_SYNC(ufsvfsp, terr, TOP_WRITE_SYNC, 629 resv); 630 if (error == 0) 631 error = terr; 632 } 633 } else { 634 TRANS_END_ASYNC(ufsvfsp, TOP_WRITE, resv); 635 } 636 ufs_lockfs_end(ulp); 637 } 638 out: 639 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 640 /* 641 * Any blocks tied up in pending deletes? 642 */ 643 ufs_delete_drain_wait(ufsvfsp, 1); 644 retry = 0; 645 goto retry_mandlock; 646 } 647 648 if (error == ENOSPC && (start_resid != uiop->uio_resid)) 649 error = 0; 650 651 return (error); 652 } 653 654 /* 655 * Don't cache write blocks to files with the sticky bit set. 656 * Used to keep swap files from blowing the page cache on a server. 657 */ 658 int stickyhack = 1; 659 660 /* 661 * Free behind hacks. The pager is busted. 662 * XXX - need to pass the information down to writedone() in a flag like B_SEQ 663 * or B_FREE_IF_TIGHT_ON_MEMORY. 664 */ 665 int freebehind = 1; 666 int smallfile = 0; 667 u_offset_t smallfile64 = 32 * 1024; 668 669 /* 670 * While we should, in most cases, cache the pages for write, we 671 * may also want to cache the pages for read as long as they are 672 * frequently re-usable. 673 * 674 * If cache_read_ahead = 1, the pages for read will go to the tail 675 * of the cache list when they are released, otherwise go to the head. 676 */ 677 int cache_read_ahead = 0; 678 679 /* 680 * Freebehind exists so that as we read large files sequentially we 681 * don't consume most of memory with pages from a few files. It takes 682 * longer to re-read from disk multiple small files as it does reading 683 * one large one sequentially. As system memory grows customers need 684 * to retain bigger chunks of files in memory. The advent of the 685 * cachelist opens up of the possibility freeing pages to the head or 686 * tail of the list. 687 * 688 * Not freeing a page is a bet that the page will be read again before 689 * it's segmap slot is needed for something else. If we loose the bet, 690 * it means some other thread is burdened with the page free we did 691 * not do. If we win we save a free and reclaim. 692 * 693 * Freeing it at the tail vs the head of cachelist is a bet that the 694 * page will survive until the next read. It's also saying that this 695 * page is more likely to be re-used than a page freed some time ago 696 * and never reclaimed. 697 * 698 * Freebehind maintains a range of file offset [smallfile1; smallfile2] 699 * 700 * 0 < offset < smallfile1 : pages are not freed. 701 * smallfile1 < offset < smallfile2 : pages freed to tail of cachelist. 702 * smallfile2 < offset : pages freed to head of cachelist. 703 * 704 * The range is computed at most once per second and depends on 705 * freemem and ncpus_online. Both parameters are bounded to be 706 * >= smallfile && >= smallfile64. 707 * 708 * smallfile1 = (free memory / ncpu) / 1000 709 * smallfile2 = (free memory / ncpu) / 10 710 * 711 * A few examples values: 712 * 713 * Free Mem (in Bytes) [smallfile1; smallfile2] [smallfile1; smallfile2] 714 * ncpus_online = 4 ncpus_online = 64 715 * ------------------ ----------------------- ----------------------- 716 * 1G [256K; 25M] [32K; 1.5M] 717 * 10G [2.5M; 250M] [156K; 15M] 718 * 100G [25M; 2.5G] [1.5M; 150M] 719 * 720 */ 721 722 #define SMALLFILE1_D 1000 723 #define SMALLFILE2_D 10 724 static u_offset_t smallfile1 = 32 * 1024; 725 static u_offset_t smallfile2 = 32 * 1024; 726 static clock_t smallfile_update = 0; /* lbolt value of when to recompute */ 727 uint_t smallfile1_d = SMALLFILE1_D; 728 uint_t smallfile2_d = SMALLFILE2_D; 729 730 /* 731 * wrip does the real work of write requests for ufs. 732 */ 733 int 734 wrip(struct inode *ip, struct uio *uio, int ioflag, struct cred *cr) 735 { 736 rlim64_t limit = uio->uio_llimit; 737 u_offset_t off; 738 u_offset_t old_i_size; 739 struct fs *fs; 740 struct vnode *vp; 741 struct ufsvfs *ufsvfsp; 742 caddr_t base; 743 long start_resid = uio->uio_resid; /* save starting resid */ 744 long premove_resid; /* resid before uiomove() */ 745 uint_t flags; 746 int newpage; 747 int iupdat_flag, directio_status; 748 int n, on, mapon; 749 int error, pagecreate; 750 int do_dqrwlock; /* drop/reacquire vfs_dqrwlock */ 751 int32_t iblocks; 752 int new_iblocks; 753 754 /* 755 * ip->i_size is incremented before the uiomove 756 * is done on a write. If the move fails (bad user 757 * address) reset ip->i_size. 758 * The better way would be to increment ip->i_size 759 * only if the uiomove succeeds. 760 */ 761 int i_size_changed = 0; 762 o_mode_t type; 763 int i_seq_needed = 0; 764 765 vp = ITOV(ip); 766 767 /* 768 * check for forced unmount - should not happen as 769 * the request passed the lockfs checks. 770 */ 771 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 772 return (EIO); 773 774 fs = ip->i_fs; 775 776 ASSERT(RW_WRITE_HELD(&ip->i_contents)); 777 778 /* check for valid filetype */ 779 type = ip->i_mode & IFMT; 780 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) && 781 (type != IFLNK) && (type != IFSHAD)) { 782 return (EIO); 783 } 784 785 /* 786 * the actual limit of UFS file size 787 * is UFS_MAXOFFSET_T 788 */ 789 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 790 limit = MAXOFFSET_T; 791 792 if (uio->uio_loffset >= limit) { 793 proc_t *p = ttoproc(curthread); 794 795 mutex_enter(&p->p_lock); 796 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], p->p_rctls, 797 p, RCA_UNSAFE_SIGINFO); 798 mutex_exit(&p->p_lock); 799 return (EFBIG); 800 } 801 802 /* 803 * if largefiles are disallowed, the limit is 804 * the pre-largefiles value of 2GB 805 */ 806 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) 807 limit = MIN(UFS_MAXOFFSET_T, limit); 808 else 809 limit = MIN(MAXOFF32_T, limit); 810 811 if (uio->uio_loffset < (offset_t)0) { 812 return (EINVAL); 813 } 814 if (uio->uio_resid == 0) { 815 return (0); 816 } 817 818 if (uio->uio_loffset >= limit) 819 return (EFBIG); 820 821 ip->i_flag |= INOACC; /* don't update ref time in getpage */ 822 823 if (ioflag & (FSYNC|FDSYNC)) { 824 ip->i_flag |= ISYNC; 825 iupdat_flag = 1; 826 } 827 /* 828 * Try to go direct 829 */ 830 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) { 831 uio->uio_llimit = limit; 832 error = ufs_directio_write(ip, uio, ioflag, 0, cr, 833 &directio_status); 834 /* 835 * If ufs_directio wrote to the file or set the flags, 836 * we need to update i_seq, but it may be deferred. 837 */ 838 if (start_resid != uio->uio_resid || 839 (ip->i_flag & (ICHG|IUPD))) { 840 i_seq_needed = 1; 841 ip->i_flag |= ISEQ; 842 } 843 if (directio_status == DIRECTIO_SUCCESS) 844 goto out; 845 } 846 847 /* 848 * Behavior with respect to dropping/reacquiring vfs_dqrwlock: 849 * 850 * o shadow inodes: vfs_dqrwlock is not held at all 851 * o quota updates: vfs_dqrwlock is read or write held 852 * o other updates: vfs_dqrwlock is read held 853 * 854 * The first case is the only one where we do not hold 855 * vfs_dqrwlock at all while entering wrip(). 856 * We must make sure not to downgrade/drop vfs_dqrwlock if we 857 * have it as writer, i.e. if we are updating the quota inode. 858 * There is no potential deadlock scenario in this case as 859 * ufs_getpage() takes care of this and avoids reacquiring 860 * vfs_dqrwlock in that case. 861 * 862 * This check is done here since the above conditions do not change 863 * and we possibly loop below, so save a few cycles. 864 */ 865 if ((type == IFSHAD) || 866 (rw_owner(&ufsvfsp->vfs_dqrwlock) == curthread)) { 867 do_dqrwlock = 0; 868 } else { 869 do_dqrwlock = 1; 870 } 871 872 /* 873 * Large Files: We cast MAXBMASK to offset_t 874 * inorder to mask out the higher bits. Since offset_t 875 * is a signed value, the high order bit set in MAXBMASK 876 * value makes it do the right thing by having all bits 1 877 * in the higher word. May be removed for _SOLARIS64_. 878 */ 879 880 fs = ip->i_fs; 881 do { 882 u_offset_t uoff = uio->uio_loffset; 883 off = uoff & (offset_t)MAXBMASK; 884 mapon = (int)(uoff & (offset_t)MAXBOFFSET); 885 on = (int)blkoff(fs, uoff); 886 n = (int)MIN(fs->fs_bsize - on, uio->uio_resid); 887 new_iblocks = 1; 888 889 if (type == IFREG && uoff + n >= limit) { 890 if (uoff >= limit) { 891 error = EFBIG; 892 goto out; 893 } 894 /* 895 * since uoff + n >= limit, 896 * therefore n >= limit - uoff, and n is an int 897 * so it is safe to cast it to an int 898 */ 899 n = (int)(limit - (rlim64_t)uoff); 900 } 901 if (uoff + n > ip->i_size) { 902 /* 903 * We are extending the length of the file. 904 * bmap is used so that we are sure that 905 * if we need to allocate new blocks, that it 906 * is done here before we up the file size. 907 */ 908 error = bmap_write(ip, uoff, (int)(on + n), 909 mapon == 0, NULL, cr); 910 /* 911 * bmap_write never drops i_contents so if 912 * the flags are set it changed the file. 913 */ 914 if (ip->i_flag & (ICHG|IUPD)) { 915 i_seq_needed = 1; 916 ip->i_flag |= ISEQ; 917 } 918 if (error) 919 break; 920 /* 921 * There is a window of vulnerability here. 922 * The sequence of operations: allocate file 923 * system blocks, uiomove the data into pages, 924 * and then update the size of the file in the 925 * inode, must happen atomically. However, due 926 * to current locking constraints, this can not 927 * be done. 928 */ 929 ASSERT(ip->i_writer == NULL); 930 ip->i_writer = curthread; 931 i_size_changed = 1; 932 /* 933 * If we are writing from the beginning of 934 * the mapping, we can just create the 935 * pages without having to read them. 936 */ 937 pagecreate = (mapon == 0); 938 } else if (n == MAXBSIZE) { 939 /* 940 * Going to do a whole mappings worth, 941 * so we can just create the pages w/o 942 * having to read them in. But before 943 * we do that, we need to make sure any 944 * needed blocks are allocated first. 945 */ 946 iblocks = ip->i_blocks; 947 error = bmap_write(ip, uoff, (int)(on + n), 948 BI_ALLOC_ONLY, NULL, cr); 949 /* 950 * bmap_write never drops i_contents so if 951 * the flags are set it changed the file. 952 */ 953 if (ip->i_flag & (ICHG|IUPD)) { 954 i_seq_needed = 1; 955 ip->i_flag |= ISEQ; 956 } 957 if (error) 958 break; 959 pagecreate = 1; 960 /* 961 * check if the new created page needed the 962 * allocation of new disk blocks. 963 */ 964 if (iblocks == ip->i_blocks) 965 new_iblocks = 0; /* no new blocks allocated */ 966 } else { 967 pagecreate = 0; 968 /* 969 * In sync mode flush the indirect blocks which 970 * may have been allocated and not written on 971 * disk. In above cases bmap_write will allocate 972 * in sync mode. 973 */ 974 if (ioflag & (FSYNC|FDSYNC)) { 975 error = ufs_indirblk_sync(ip, uoff); 976 if (error) 977 break; 978 } 979 } 980 981 /* 982 * At this point we can enter ufs_getpage() in one 983 * of two ways: 984 * 1) segmap_getmapflt() calls ufs_getpage() when the 985 * forcefault parameter is true (pagecreate == 0) 986 * 2) uiomove() causes a page fault. 987 * 988 * We have to drop the contents lock to prevent the VM 989 * system from trying to reacquire it in ufs_getpage() 990 * should the uiomove cause a pagefault. 991 * 992 * We have to drop the reader vfs_dqrwlock here as well. 993 */ 994 rw_exit(&ip->i_contents); 995 if (do_dqrwlock) { 996 ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock)); 997 ASSERT(!(RW_WRITE_HELD(&ufsvfsp->vfs_dqrwlock))); 998 rw_exit(&ufsvfsp->vfs_dqrwlock); 999 } 1000 1001 newpage = 0; 1002 premove_resid = uio->uio_resid; 1003 1004 /* 1005 * Touch the page and fault it in if it is not in core 1006 * before segmap_getmapflt or vpm_data_copy can lock it. 1007 * This is to avoid the deadlock if the buffer is mapped 1008 * to the same file through mmap which we want to write. 1009 */ 1010 uio_prefaultpages((long)n, uio); 1011 1012 if (vpm_enable) { 1013 /* 1014 * Copy data. If new pages are created, part of 1015 * the page that is not written will be initizliazed 1016 * with zeros. 1017 */ 1018 error = vpm_data_copy(vp, (off + mapon), (uint_t)n, 1019 uio, !pagecreate, &newpage, 0, S_WRITE); 1020 } else { 1021 1022 base = segmap_getmapflt(segkmap, vp, (off + mapon), 1023 (uint_t)n, !pagecreate, S_WRITE); 1024 1025 /* 1026 * segmap_pagecreate() returns 1 if it calls 1027 * page_create_va() to allocate any pages. 1028 */ 1029 1030 if (pagecreate) 1031 newpage = segmap_pagecreate(segkmap, base, 1032 (size_t)n, 0); 1033 1034 error = uiomove(base + mapon, (long)n, UIO_WRITE, uio); 1035 } 1036 1037 /* 1038 * If "newpage" is set, then a new page was created and it 1039 * does not contain valid data, so it needs to be initialized 1040 * at this point. 1041 * Otherwise the page contains old data, which was overwritten 1042 * partially or as a whole in uiomove. 1043 * If there is only one iovec structure within uio, then 1044 * on error uiomove will not be able to update uio->uio_loffset 1045 * and we would zero the whole page here! 1046 * 1047 * If uiomove fails because of an error, the old valid data 1048 * is kept instead of filling the rest of the page with zero's. 1049 */ 1050 if (!vpm_enable && newpage && 1051 uio->uio_loffset < roundup(off + mapon + n, PAGESIZE)) { 1052 /* 1053 * We created pages w/o initializing them completely, 1054 * thus we need to zero the part that wasn't set up. 1055 * This happens on most EOF write cases and if 1056 * we had some sort of error during the uiomove. 1057 */ 1058 int nzero, nmoved; 1059 1060 nmoved = (int)(uio->uio_loffset - (off + mapon)); 1061 ASSERT(nmoved >= 0 && nmoved <= n); 1062 nzero = roundup(on + n, PAGESIZE) - nmoved; 1063 ASSERT(nzero > 0 && mapon + nmoved + nzero <= MAXBSIZE); 1064 (void) kzero(base + mapon + nmoved, (uint_t)nzero); 1065 } 1066 1067 /* 1068 * Unlock the pages allocated by page_create_va() 1069 * in segmap_pagecreate() 1070 */ 1071 if (!vpm_enable && newpage) 1072 segmap_pageunlock(segkmap, base, (size_t)n, S_WRITE); 1073 1074 /* 1075 * If the size of the file changed, then update the 1076 * size field in the inode now. This can't be done 1077 * before the call to segmap_pageunlock or there is 1078 * a potential deadlock with callers to ufs_putpage(). 1079 * They will be holding i_contents and trying to lock 1080 * a page, while this thread is holding a page locked 1081 * and trying to acquire i_contents. 1082 */ 1083 if (i_size_changed) { 1084 rw_enter(&ip->i_contents, RW_WRITER); 1085 old_i_size = ip->i_size; 1086 UFS_SET_ISIZE(uoff + n, ip); 1087 TRANS_INODE(ufsvfsp, ip); 1088 /* 1089 * file has grown larger than 2GB. Set flag 1090 * in superblock to indicate this, if it 1091 * is not already set. 1092 */ 1093 if ((ip->i_size > MAXOFF32_T) && 1094 !(fs->fs_flags & FSLARGEFILES)) { 1095 ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES); 1096 mutex_enter(&ufsvfsp->vfs_lock); 1097 fs->fs_flags |= FSLARGEFILES; 1098 ufs_sbwrite(ufsvfsp); 1099 mutex_exit(&ufsvfsp->vfs_lock); 1100 } 1101 mutex_enter(&ip->i_tlock); 1102 ip->i_writer = NULL; 1103 cv_broadcast(&ip->i_wrcv); 1104 mutex_exit(&ip->i_tlock); 1105 rw_exit(&ip->i_contents); 1106 } 1107 1108 if (error) { 1109 /* 1110 * If we failed on a write, we may have already 1111 * allocated file blocks as well as pages. It's 1112 * hard to undo the block allocation, but we must 1113 * be sure to invalidate any pages that may have 1114 * been allocated. 1115 * 1116 * If the page was created without initialization 1117 * then we must check if it should be possible 1118 * to destroy the new page and to keep the old data 1119 * on the disk. 1120 * 1121 * It is possible to destroy the page without 1122 * having to write back its contents only when 1123 * - the size of the file keeps unchanged 1124 * - bmap_write() did not allocate new disk blocks 1125 * it is possible to create big files using "seek" and 1126 * write to the end of the file. A "write" to a 1127 * position before the end of the file would not 1128 * change the size of the file but it would allocate 1129 * new disk blocks. 1130 * - uiomove intended to overwrite the whole page. 1131 * - a new page was created (newpage == 1). 1132 */ 1133 1134 if (i_size_changed == 0 && new_iblocks == 0 && 1135 newpage) { 1136 1137 /* unwind what uiomove eventually last did */ 1138 uio->uio_resid = premove_resid; 1139 1140 /* 1141 * destroy the page, do not write ambiguous 1142 * data to the disk. 1143 */ 1144 flags = SM_DESTROY; 1145 } else { 1146 /* 1147 * write the page back to the disk, if dirty, 1148 * and remove the page from the cache. 1149 */ 1150 flags = SM_INVAL; 1151 } 1152 1153 if (vpm_enable) { 1154 /* 1155 * Flush pages. 1156 */ 1157 (void) vpm_sync_pages(vp, off, n, flags); 1158 } else { 1159 (void) segmap_release(segkmap, base, flags); 1160 } 1161 } else { 1162 flags = 0; 1163 /* 1164 * Force write back for synchronous write cases. 1165 */ 1166 if ((ioflag & (FSYNC|FDSYNC)) || type == IFDIR) { 1167 /* 1168 * If the sticky bit is set but the 1169 * execute bit is not set, we do a 1170 * synchronous write back and free 1171 * the page when done. We set up swap 1172 * files to be handled this way to 1173 * prevent servers from keeping around 1174 * the client's swap pages too long. 1175 * XXX - there ought to be a better way. 1176 */ 1177 if (IS_SWAPVP(vp)) { 1178 flags = SM_WRITE | SM_FREE | 1179 SM_DONTNEED; 1180 iupdat_flag = 0; 1181 } else { 1182 flags = SM_WRITE; 1183 } 1184 } else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 1185 /* 1186 * Have written a whole block. 1187 * Start an asynchronous write and 1188 * mark the buffer to indicate that 1189 * it won't be needed again soon. 1190 */ 1191 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 1192 } 1193 if (vpm_enable) { 1194 /* 1195 * Flush pages. 1196 */ 1197 error = vpm_sync_pages(vp, off, n, flags); 1198 } else { 1199 error = segmap_release(segkmap, base, flags); 1200 } 1201 /* 1202 * If the operation failed and is synchronous, 1203 * then we need to unwind what uiomove() last 1204 * did so we can potentially return an error to 1205 * the caller. If this write operation was 1206 * done in two pieces and the first succeeded, 1207 * then we won't return an error for the second 1208 * piece that failed. However, we only want to 1209 * return a resid value that reflects what was 1210 * really done. 1211 * 1212 * Failures for non-synchronous operations can 1213 * be ignored since the page subsystem will 1214 * retry the operation until it succeeds or the 1215 * file system is unmounted. 1216 */ 1217 if (error) { 1218 if ((ioflag & (FSYNC | FDSYNC)) || 1219 type == IFDIR) { 1220 uio->uio_resid = premove_resid; 1221 } else { 1222 error = 0; 1223 } 1224 } 1225 } 1226 1227 /* 1228 * Re-acquire contents lock. 1229 * If it was dropped, reacquire reader vfs_dqrwlock as well. 1230 */ 1231 if (do_dqrwlock) 1232 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 1233 rw_enter(&ip->i_contents, RW_WRITER); 1234 1235 /* 1236 * If the uiomove() failed or if a synchronous 1237 * page push failed, fix up i_size. 1238 */ 1239 if (error) { 1240 if (i_size_changed) { 1241 /* 1242 * The uiomove failed, and we 1243 * allocated blocks,so get rid 1244 * of them. 1245 */ 1246 (void) ufs_itrunc(ip, old_i_size, 0, cr); 1247 } 1248 } else { 1249 /* 1250 * XXX - Can this be out of the loop? 1251 */ 1252 ip->i_flag |= IUPD | ICHG; 1253 /* 1254 * Only do one increase of i_seq for multiple 1255 * pieces. Because we drop locks, record 1256 * the fact that we changed the timestamp and 1257 * are deferring the increase in case another thread 1258 * pushes our timestamp update. 1259 */ 1260 i_seq_needed = 1; 1261 ip->i_flag |= ISEQ; 1262 if (i_size_changed) 1263 ip->i_flag |= IATTCHG; 1264 if ((ip->i_mode & (IEXEC | (IEXEC >> 3) | 1265 (IEXEC >> 6))) != 0 && 1266 (ip->i_mode & (ISUID | ISGID)) != 0 && 1267 secpolicy_vnode_setid_retain(cr, 1268 (ip->i_mode & ISUID) != 0 && ip->i_uid == 0) != 0) { 1269 /* 1270 * Clear Set-UID & Set-GID bits on 1271 * successful write if not privileged 1272 * and at least one of the execute bits 1273 * is set. If we always clear Set-GID, 1274 * mandatory file and record locking is 1275 * unuseable. 1276 */ 1277 ip->i_mode &= ~(ISUID | ISGID); 1278 } 1279 } 1280 /* 1281 * In the case the FDSYNC flag is set and this is a 1282 * "rewrite" we won't log a delta. 1283 * The FSYNC flag overrides all cases. 1284 */ 1285 if (!ufs_check_rewrite(ip, uio, ioflag) || !(ioflag & FDSYNC)) { 1286 TRANS_INODE(ufsvfsp, ip); 1287 } 1288 } while (error == 0 && uio->uio_resid > 0 && n != 0); 1289 1290 out: 1291 /* 1292 * Make sure i_seq is increased at least once per write 1293 */ 1294 if (i_seq_needed) { 1295 ip->i_seq++; 1296 ip->i_flag &= ~ISEQ; /* no longer deferred */ 1297 } 1298 1299 /* 1300 * Inode is updated according to this table - 1301 * 1302 * FSYNC FDSYNC(posix.4) 1303 * -------------------------- 1304 * always@ IATTCHG|IBDWRITE 1305 * 1306 * @ - If we are doing synchronous write the only time we should 1307 * not be sync'ing the ip here is if we have the stickyhack 1308 * activated, the file is marked with the sticky bit and 1309 * no exec bit, the file length has not been changed and 1310 * no new blocks have been allocated during this write. 1311 */ 1312 1313 if ((ip->i_flag & ISYNC) != 0) { 1314 /* 1315 * we have eliminated nosync 1316 */ 1317 if ((ip->i_flag & (IATTCHG|IBDWRITE)) || 1318 ((ioflag & FSYNC) && iupdat_flag)) { 1319 ufs_iupdat(ip, 1); 1320 } 1321 } 1322 1323 /* 1324 * If we've already done a partial-write, terminate 1325 * the write but return no error unless the error is ENOSPC 1326 * because the caller can detect this and free resources and 1327 * try again. 1328 */ 1329 if ((start_resid != uio->uio_resid) && (error != ENOSPC)) 1330 error = 0; 1331 1332 ip->i_flag &= ~(INOACC | ISYNC); 1333 ITIMES_NOLOCK(ip); 1334 return (error); 1335 } 1336 1337 /* 1338 * rdip does the real work of read requests for ufs. 1339 */ 1340 int 1341 rdip(struct inode *ip, struct uio *uio, int ioflag, cred_t *cr) 1342 { 1343 u_offset_t off; 1344 caddr_t base; 1345 struct fs *fs; 1346 struct ufsvfs *ufsvfsp; 1347 struct vnode *vp; 1348 long oresid = uio->uio_resid; 1349 u_offset_t n, on, mapon; 1350 int error = 0; 1351 int doupdate = 1; 1352 uint_t flags; 1353 int dofree, directio_status; 1354 krw_t rwtype; 1355 o_mode_t type; 1356 clock_t now; 1357 1358 vp = ITOV(ip); 1359 1360 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 1361 1362 ufsvfsp = ip->i_ufsvfs; 1363 1364 if (ufsvfsp == NULL) 1365 return (EIO); 1366 1367 fs = ufsvfsp->vfs_fs; 1368 1369 /* check for valid filetype */ 1370 type = ip->i_mode & IFMT; 1371 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) && 1372 (type != IFLNK) && (type != IFSHAD)) { 1373 return (EIO); 1374 } 1375 1376 if (uio->uio_loffset > UFS_MAXOFFSET_T) { 1377 error = 0; 1378 goto out; 1379 } 1380 if (uio->uio_loffset < (offset_t)0) { 1381 return (EINVAL); 1382 } 1383 if (uio->uio_resid == 0) { 1384 return (0); 1385 } 1386 1387 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (fs->fs_ronly == 0) && 1388 (!ufsvfsp->vfs_noatime)) { 1389 mutex_enter(&ip->i_tlock); 1390 ip->i_flag |= IACC; 1391 mutex_exit(&ip->i_tlock); 1392 } 1393 /* 1394 * Try to go direct 1395 */ 1396 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) { 1397 error = ufs_directio_read(ip, uio, cr, &directio_status); 1398 if (directio_status == DIRECTIO_SUCCESS) 1399 goto out; 1400 } 1401 1402 rwtype = (rw_write_held(&ip->i_contents)?RW_WRITER:RW_READER); 1403 1404 do { 1405 offset_t diff; 1406 u_offset_t uoff = uio->uio_loffset; 1407 off = uoff & (offset_t)MAXBMASK; 1408 mapon = (u_offset_t)(uoff & (offset_t)MAXBOFFSET); 1409 on = (u_offset_t)blkoff(fs, uoff); 1410 n = MIN((u_offset_t)fs->fs_bsize - on, 1411 (u_offset_t)uio->uio_resid); 1412 1413 diff = ip->i_size - uoff; 1414 1415 if (diff <= (offset_t)0) { 1416 error = 0; 1417 goto out; 1418 } 1419 if (diff < (offset_t)n) 1420 n = (int)diff; 1421 1422 /* 1423 * We update smallfile2 and smallfile1 at most every second. 1424 */ 1425 now = ddi_get_lbolt(); 1426 if (now >= smallfile_update) { 1427 uint64_t percpufreeb; 1428 if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D; 1429 if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D; 1430 percpufreeb = ptob((uint64_t)freemem) / ncpus_online; 1431 smallfile1 = percpufreeb / smallfile1_d; 1432 smallfile2 = percpufreeb / smallfile2_d; 1433 smallfile1 = MAX(smallfile1, smallfile); 1434 smallfile1 = MAX(smallfile1, smallfile64); 1435 smallfile2 = MAX(smallfile1, smallfile2); 1436 smallfile_update = now + hz; 1437 } 1438 1439 dofree = freebehind && 1440 ip->i_nextr == (off & PAGEMASK) && off > smallfile1; 1441 1442 /* 1443 * At this point we can enter ufs_getpage() in one of two 1444 * ways: 1445 * 1) segmap_getmapflt() calls ufs_getpage() when the 1446 * forcefault parameter is true (value of 1 is passed) 1447 * 2) uiomove() causes a page fault. 1448 * 1449 * We cannot hold onto an i_contents reader lock without 1450 * risking deadlock in ufs_getpage() so drop a reader lock. 1451 * The ufs_getpage() dolock logic already allows for a 1452 * thread holding i_contents as writer to work properly 1453 * so we keep a writer lock. 1454 */ 1455 if (rwtype == RW_READER) 1456 rw_exit(&ip->i_contents); 1457 1458 if (vpm_enable) { 1459 /* 1460 * Copy data. 1461 */ 1462 error = vpm_data_copy(vp, (off + mapon), (uint_t)n, 1463 uio, 1, NULL, 0, S_READ); 1464 } else { 1465 base = segmap_getmapflt(segkmap, vp, (off + mapon), 1466 (uint_t)n, 1, S_READ); 1467 error = uiomove(base + mapon, (long)n, UIO_READ, uio); 1468 } 1469 1470 flags = 0; 1471 if (!error) { 1472 /* 1473 * If reading sequential we won't need this 1474 * buffer again soon. For offsets in range 1475 * [smallfile1, smallfile2] release the pages 1476 * at the tail of the cache list, larger 1477 * offsets are released at the head. 1478 */ 1479 if (dofree) { 1480 flags = SM_FREE | SM_ASYNC; 1481 if ((cache_read_ahead == 0) && 1482 (off > smallfile2)) 1483 flags |= SM_DONTNEED; 1484 } 1485 /* 1486 * In POSIX SYNC (FSYNC and FDSYNC) read mode, 1487 * we want to make sure that the page which has 1488 * been read, is written on disk if it is dirty. 1489 * And corresponding indirect blocks should also 1490 * be flushed out. 1491 */ 1492 if ((ioflag & FRSYNC) && (ioflag & (FSYNC|FDSYNC))) { 1493 flags &= ~SM_ASYNC; 1494 flags |= SM_WRITE; 1495 } 1496 if (vpm_enable) { 1497 error = vpm_sync_pages(vp, off, n, flags); 1498 } else { 1499 error = segmap_release(segkmap, base, flags); 1500 } 1501 } else { 1502 if (vpm_enable) { 1503 (void) vpm_sync_pages(vp, off, n, flags); 1504 } else { 1505 (void) segmap_release(segkmap, base, flags); 1506 } 1507 } 1508 1509 if (rwtype == RW_READER) 1510 rw_enter(&ip->i_contents, rwtype); 1511 } while (error == 0 && uio->uio_resid > 0 && n != 0); 1512 out: 1513 /* 1514 * Inode is updated according to this table if FRSYNC is set. 1515 * 1516 * FSYNC FDSYNC(posix.4) 1517 * -------------------------- 1518 * always IATTCHG|IBDWRITE 1519 */ 1520 /* 1521 * The inode is not updated if we're logging and the inode is a 1522 * directory with FRSYNC, FSYNC and FDSYNC flags set. 1523 */ 1524 if (ioflag & FRSYNC) { 1525 if (TRANS_ISTRANS(ufsvfsp) && ((ip->i_mode & IFMT) == IFDIR)) { 1526 doupdate = 0; 1527 } 1528 if (doupdate) { 1529 if ((ioflag & FSYNC) || 1530 ((ioflag & FDSYNC) && 1531 (ip->i_flag & (IATTCHG|IBDWRITE)))) { 1532 ufs_iupdat(ip, 1); 1533 } 1534 } 1535 } 1536 /* 1537 * If we've already done a partial read, terminate 1538 * the read but return no error. 1539 */ 1540 if (oresid != uio->uio_resid) 1541 error = 0; 1542 ITIMES(ip); 1543 1544 return (error); 1545 } 1546 1547 /* ARGSUSED */ 1548 static int 1549 ufs_ioctl( 1550 struct vnode *vp, 1551 int cmd, 1552 intptr_t arg, 1553 int flag, 1554 struct cred *cr, 1555 int *rvalp, 1556 caller_context_t *ct) 1557 { 1558 struct lockfs lockfs, lockfs_out; 1559 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 1560 char *comment, *original_comment; 1561 struct fs *fs; 1562 struct ulockfs *ulp; 1563 offset_t off; 1564 extern int maxphys; 1565 int error; 1566 int issync; 1567 int trans_size; 1568 1569 1570 /* 1571 * forcibly unmounted 1572 */ 1573 if (ufsvfsp == NULL || vp->v_vfsp == NULL || 1574 vp->v_vfsp->vfs_flag & VFS_UNMOUNTED) 1575 return (EIO); 1576 fs = ufsvfsp->vfs_fs; 1577 1578 if (cmd == Q_QUOTACTL) { 1579 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_QUOTA_MASK); 1580 if (error) 1581 return (error); 1582 1583 if (ulp) { 1584 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_QUOTA, 1585 TOP_SETQUOTA_SIZE(fs)); 1586 } 1587 1588 error = quotactl(vp, arg, flag, cr); 1589 1590 if (ulp) { 1591 TRANS_END_ASYNC(ufsvfsp, TOP_QUOTA, 1592 TOP_SETQUOTA_SIZE(fs)); 1593 ufs_lockfs_end(ulp); 1594 } 1595 return (error); 1596 } 1597 1598 switch (cmd) { 1599 case _FIOLFS: 1600 /* 1601 * file system locking 1602 */ 1603 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1604 return (EPERM); 1605 1606 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1607 if (copyin((caddr_t)arg, &lockfs, 1608 sizeof (struct lockfs))) 1609 return (EFAULT); 1610 } 1611 #ifdef _SYSCALL32_IMPL 1612 else { 1613 struct lockfs32 lockfs32; 1614 /* Translate ILP32 lockfs to LP64 lockfs */ 1615 if (copyin((caddr_t)arg, &lockfs32, 1616 sizeof (struct lockfs32))) 1617 return (EFAULT); 1618 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock; 1619 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags; 1620 lockfs.lf_key = (ulong_t)lockfs32.lf_key; 1621 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen; 1622 lockfs.lf_comment = 1623 (caddr_t)(uintptr_t)lockfs32.lf_comment; 1624 } 1625 #endif /* _SYSCALL32_IMPL */ 1626 1627 if (lockfs.lf_comlen) { 1628 if (lockfs.lf_comlen > LOCKFS_MAXCOMMENTLEN) 1629 return (ENAMETOOLONG); 1630 comment = 1631 kmem_alloc(lockfs.lf_comlen, KM_SLEEP); 1632 if (copyin(lockfs.lf_comment, comment, 1633 lockfs.lf_comlen)) { 1634 kmem_free(comment, lockfs.lf_comlen); 1635 return (EFAULT); 1636 } 1637 original_comment = lockfs.lf_comment; 1638 lockfs.lf_comment = comment; 1639 } 1640 if ((error = ufs_fiolfs(vp, &lockfs, 0)) == 0) { 1641 lockfs.lf_comment = original_comment; 1642 1643 if ((flag & DATAMODEL_MASK) == 1644 DATAMODEL_NATIVE) { 1645 (void) copyout(&lockfs, (caddr_t)arg, 1646 sizeof (struct lockfs)); 1647 } 1648 #ifdef _SYSCALL32_IMPL 1649 else { 1650 struct lockfs32 lockfs32; 1651 /* Translate LP64 to ILP32 lockfs */ 1652 lockfs32.lf_lock = 1653 (uint32_t)lockfs.lf_lock; 1654 lockfs32.lf_flags = 1655 (uint32_t)lockfs.lf_flags; 1656 lockfs32.lf_key = 1657 (uint32_t)lockfs.lf_key; 1658 lockfs32.lf_comlen = 1659 (uint32_t)lockfs.lf_comlen; 1660 lockfs32.lf_comment = 1661 (uint32_t)(uintptr_t) 1662 lockfs.lf_comment; 1663 (void) copyout(&lockfs32, (caddr_t)arg, 1664 sizeof (struct lockfs32)); 1665 } 1666 #endif /* _SYSCALL32_IMPL */ 1667 1668 } else { 1669 if (lockfs.lf_comlen) 1670 kmem_free(comment, lockfs.lf_comlen); 1671 } 1672 return (error); 1673 1674 case _FIOLFSS: 1675 /* 1676 * get file system locking status 1677 */ 1678 1679 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1680 if (copyin((caddr_t)arg, &lockfs, 1681 sizeof (struct lockfs))) 1682 return (EFAULT); 1683 } 1684 #ifdef _SYSCALL32_IMPL 1685 else { 1686 struct lockfs32 lockfs32; 1687 /* Translate ILP32 lockfs to LP64 lockfs */ 1688 if (copyin((caddr_t)arg, &lockfs32, 1689 sizeof (struct lockfs32))) 1690 return (EFAULT); 1691 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock; 1692 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags; 1693 lockfs.lf_key = (ulong_t)lockfs32.lf_key; 1694 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen; 1695 lockfs.lf_comment = 1696 (caddr_t)(uintptr_t)lockfs32.lf_comment; 1697 } 1698 #endif /* _SYSCALL32_IMPL */ 1699 1700 if (error = ufs_fiolfss(vp, &lockfs_out)) 1701 return (error); 1702 lockfs.lf_lock = lockfs_out.lf_lock; 1703 lockfs.lf_key = lockfs_out.lf_key; 1704 lockfs.lf_flags = lockfs_out.lf_flags; 1705 lockfs.lf_comlen = MIN(lockfs.lf_comlen, 1706 lockfs_out.lf_comlen); 1707 1708 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1709 if (copyout(&lockfs, (caddr_t)arg, 1710 sizeof (struct lockfs))) 1711 return (EFAULT); 1712 } 1713 #ifdef _SYSCALL32_IMPL 1714 else { 1715 /* Translate LP64 to ILP32 lockfs */ 1716 struct lockfs32 lockfs32; 1717 lockfs32.lf_lock = (uint32_t)lockfs.lf_lock; 1718 lockfs32.lf_flags = (uint32_t)lockfs.lf_flags; 1719 lockfs32.lf_key = (uint32_t)lockfs.lf_key; 1720 lockfs32.lf_comlen = (uint32_t)lockfs.lf_comlen; 1721 lockfs32.lf_comment = 1722 (uint32_t)(uintptr_t)lockfs.lf_comment; 1723 if (copyout(&lockfs32, (caddr_t)arg, 1724 sizeof (struct lockfs32))) 1725 return (EFAULT); 1726 } 1727 #endif /* _SYSCALL32_IMPL */ 1728 1729 if (lockfs.lf_comlen && 1730 lockfs.lf_comment && lockfs_out.lf_comment) 1731 if (copyout(lockfs_out.lf_comment, 1732 lockfs.lf_comment, lockfs.lf_comlen)) 1733 return (EFAULT); 1734 return (0); 1735 1736 case _FIOSATIME: 1737 /* 1738 * set access time 1739 */ 1740 1741 /* 1742 * if mounted w/o atime, return quietly. 1743 * I briefly thought about returning ENOSYS, but 1744 * figured that most apps would consider this fatal 1745 * but the idea is to make this as seamless as poss. 1746 */ 1747 if (ufsvfsp->vfs_noatime) 1748 return (0); 1749 1750 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1751 ULOCKFS_SETATTR_MASK); 1752 if (error) 1753 return (error); 1754 1755 if (ulp) { 1756 trans_size = (int)TOP_SETATTR_SIZE(VTOI(vp)); 1757 TRANS_BEGIN_CSYNC(ufsvfsp, issync, 1758 TOP_SETATTR, trans_size); 1759 } 1760 1761 error = ufs_fiosatime(vp, (struct timeval *)arg, 1762 flag, cr); 1763 1764 if (ulp) { 1765 TRANS_END_CSYNC(ufsvfsp, error, issync, 1766 TOP_SETATTR, trans_size); 1767 ufs_lockfs_end(ulp); 1768 } 1769 return (error); 1770 1771 case _FIOSDIO: 1772 /* 1773 * set delayed-io 1774 */ 1775 return (ufs_fiosdio(vp, (uint_t *)arg, flag, cr)); 1776 1777 case _FIOGDIO: 1778 /* 1779 * get delayed-io 1780 */ 1781 return (ufs_fiogdio(vp, (uint_t *)arg, flag, cr)); 1782 1783 case _FIOIO: 1784 /* 1785 * inode open 1786 */ 1787 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1788 ULOCKFS_VGET_MASK); 1789 if (error) 1790 return (error); 1791 1792 error = ufs_fioio(vp, (struct fioio *)arg, flag, cr); 1793 1794 if (ulp) { 1795 ufs_lockfs_end(ulp); 1796 } 1797 return (error); 1798 1799 case _FIOFFS: 1800 /* 1801 * file system flush (push w/invalidate) 1802 */ 1803 if ((caddr_t)arg != NULL) 1804 return (EINVAL); 1805 return (ufs_fioffs(vp, NULL, cr)); 1806 1807 case _FIOISBUSY: 1808 /* 1809 * Contract-private interface for Legato 1810 * Purge this vnode from the DNLC and decide 1811 * if this vnode is busy (*arg == 1) or not 1812 * (*arg == 0) 1813 */ 1814 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1815 return (EPERM); 1816 error = ufs_fioisbusy(vp, (int *)arg, cr); 1817 return (error); 1818 1819 case _FIODIRECTIO: 1820 return (ufs_fiodirectio(vp, (int)arg, cr)); 1821 1822 case _FIOTUNE: 1823 /* 1824 * Tune the file system (aka setting fs attributes) 1825 */ 1826 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1827 ULOCKFS_SETATTR_MASK); 1828 if (error) 1829 return (error); 1830 1831 error = ufs_fiotune(vp, (struct fiotune *)arg, cr); 1832 1833 if (ulp) 1834 ufs_lockfs_end(ulp); 1835 return (error); 1836 1837 case _FIOLOGENABLE: 1838 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1839 return (EPERM); 1840 return (ufs_fiologenable(vp, (void *)arg, cr, flag)); 1841 1842 case _FIOLOGDISABLE: 1843 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1844 return (EPERM); 1845 return (ufs_fiologdisable(vp, (void *)arg, cr, flag)); 1846 1847 case _FIOISLOG: 1848 return (ufs_fioislog(vp, (void *)arg, cr, flag)); 1849 1850 case _FIOSNAPSHOTCREATE_MULTI: 1851 { 1852 struct fiosnapcreate_multi fc, *fcp; 1853 size_t fcm_size; 1854 1855 if (copyin((void *)arg, &fc, sizeof (fc))) 1856 return (EFAULT); 1857 if (fc.backfilecount > MAX_BACKFILE_COUNT) 1858 return (EINVAL); 1859 fcm_size = sizeof (struct fiosnapcreate_multi) + 1860 (fc.backfilecount - 1) * sizeof (int); 1861 fcp = (struct fiosnapcreate_multi *) 1862 kmem_alloc(fcm_size, KM_SLEEP); 1863 if (copyin((void *)arg, fcp, fcm_size)) { 1864 kmem_free(fcp, fcm_size); 1865 return (EFAULT); 1866 } 1867 error = ufs_snap_create(vp, fcp, cr); 1868 /* 1869 * Do copyout even if there is an error because 1870 * the details of error is stored in fcp. 1871 */ 1872 if (copyout(fcp, (void *)arg, fcm_size)) 1873 error = EFAULT; 1874 kmem_free(fcp, fcm_size); 1875 return (error); 1876 } 1877 1878 case _FIOSNAPSHOTDELETE: 1879 { 1880 struct fiosnapdelete fc; 1881 1882 if (copyin((void *)arg, &fc, sizeof (fc))) 1883 return (EFAULT); 1884 error = ufs_snap_delete(vp, &fc, cr); 1885 if (!error && copyout(&fc, (void *)arg, sizeof (fc))) 1886 error = EFAULT; 1887 return (error); 1888 } 1889 1890 case _FIOGETSUPERBLOCK: 1891 if (copyout(fs, (void *)arg, SBSIZE)) 1892 return (EFAULT); 1893 return (0); 1894 1895 case _FIOGETMAXPHYS: 1896 if (copyout(&maxphys, (void *)arg, sizeof (maxphys))) 1897 return (EFAULT); 1898 return (0); 1899 1900 /* 1901 * The following 3 ioctls are for TSufs support 1902 * although could potentially be used elsewhere 1903 */ 1904 case _FIO_SET_LUFS_DEBUG: 1905 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1906 return (EPERM); 1907 lufs_debug = (uint32_t)arg; 1908 return (0); 1909 1910 case _FIO_SET_LUFS_ERROR: 1911 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1912 return (EPERM); 1913 TRANS_SETERROR(ufsvfsp); 1914 return (0); 1915 1916 case _FIO_GET_TOP_STATS: 1917 { 1918 fio_lufs_stats_t *ls; 1919 ml_unit_t *ul = ufsvfsp->vfs_log; 1920 1921 ls = kmem_zalloc(sizeof (*ls), KM_SLEEP); 1922 ls->ls_debug = ul->un_debug; /* return debug value */ 1923 /* Copy stucture if statistics are being kept */ 1924 if (ul->un_logmap->mtm_tops) { 1925 ls->ls_topstats = *(ul->un_logmap->mtm_tops); 1926 } 1927 error = 0; 1928 if (copyout(ls, (void *)arg, sizeof (*ls))) 1929 error = EFAULT; 1930 kmem_free(ls, sizeof (*ls)); 1931 return (error); 1932 } 1933 1934 case _FIO_SEEK_DATA: 1935 case _FIO_SEEK_HOLE: 1936 if (ddi_copyin((void *)arg, &off, sizeof (off), flag)) 1937 return (EFAULT); 1938 /* offset paramater is in/out */ 1939 error = ufs_fio_holey(vp, cmd, &off); 1940 if (error) 1941 return (error); 1942 if (ddi_copyout(&off, (void *)arg, sizeof (off), flag)) 1943 return (EFAULT); 1944 return (0); 1945 1946 case _FIO_COMPRESSED: 1947 { 1948 /* 1949 * This is a project private ufs ioctl() to mark 1950 * the inode as that belonging to a compressed 1951 * file. This is used to mark individual 1952 * compressed files in a miniroot archive. 1953 * The files compressed in this manner are 1954 * automatically decompressed by the dcfs filesystem 1955 * (via an interception in ufs_lookup - see decompvp()) 1956 * which is layered on top of ufs on a system running 1957 * from the archive. See uts/common/fs/dcfs for details. 1958 * This ioctl only marks the file as compressed - the 1959 * actual compression is done by fiocompress (a 1960 * userland utility) which invokes this ioctl(). 1961 */ 1962 struct inode *ip = VTOI(vp); 1963 1964 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1965 ULOCKFS_SETATTR_MASK); 1966 if (error) 1967 return (error); 1968 1969 if (ulp) { 1970 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_IUPDAT, 1971 TOP_IUPDAT_SIZE(ip)); 1972 } 1973 1974 error = ufs_mark_compressed(vp); 1975 1976 if (ulp) { 1977 TRANS_END_ASYNC(ufsvfsp, TOP_IUPDAT, 1978 TOP_IUPDAT_SIZE(ip)); 1979 ufs_lockfs_end(ulp); 1980 } 1981 1982 return (error); 1983 1984 } 1985 1986 default: 1987 return (ENOTTY); 1988 } 1989 } 1990 1991 1992 /* ARGSUSED */ 1993 static int 1994 ufs_getattr(struct vnode *vp, struct vattr *vap, int flags, 1995 struct cred *cr, caller_context_t *ct) 1996 { 1997 struct inode *ip = VTOI(vp); 1998 struct ufsvfs *ufsvfsp; 1999 int err; 2000 2001 if (vap->va_mask == AT_SIZE) { 2002 /* 2003 * for performance, if only the size is requested don't bother 2004 * with anything else. 2005 */ 2006 UFS_GET_ISIZE(&vap->va_size, ip); 2007 return (0); 2008 } 2009 2010 /* 2011 * inlined lockfs checks 2012 */ 2013 ufsvfsp = ip->i_ufsvfs; 2014 if ((ufsvfsp == NULL) || ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs)) { 2015 err = EIO; 2016 goto out; 2017 } 2018 2019 rw_enter(&ip->i_contents, RW_READER); 2020 /* 2021 * Return all the attributes. This should be refined so 2022 * that it only returns what's asked for. 2023 */ 2024 2025 /* 2026 * Copy from inode table. 2027 */ 2028 vap->va_type = vp->v_type; 2029 vap->va_mode = ip->i_mode & MODEMASK; 2030 /* 2031 * If there is an ACL and there is a mask entry, then do the 2032 * extra work that completes the equivalent of an acltomode(3) 2033 * call. According to POSIX P1003.1e, the acl mask should be 2034 * returned in the group permissions field. 2035 * 2036 * - start with the original permission and mode bits (from above) 2037 * - clear the group owner bits 2038 * - add in the mask bits. 2039 */ 2040 if (ip->i_ufs_acl && ip->i_ufs_acl->aclass.acl_ismask) { 2041 vap->va_mode &= ~((VREAD | VWRITE | VEXEC) >> 3); 2042 vap->va_mode |= 2043 (ip->i_ufs_acl->aclass.acl_maskbits & PERMMASK) << 3; 2044 } 2045 vap->va_uid = ip->i_uid; 2046 vap->va_gid = ip->i_gid; 2047 vap->va_fsid = ip->i_dev; 2048 vap->va_nodeid = (ino64_t)ip->i_number; 2049 vap->va_nlink = ip->i_nlink; 2050 vap->va_size = ip->i_size; 2051 if (vp->v_type == VCHR || vp->v_type == VBLK) 2052 vap->va_rdev = ip->i_rdev; 2053 else 2054 vap->va_rdev = 0; /* not a b/c spec. */ 2055 mutex_enter(&ip->i_tlock); 2056 ITIMES_NOLOCK(ip); /* mark correct time in inode */ 2057 vap->va_seq = ip->i_seq; 2058 vap->va_atime.tv_sec = (time_t)ip->i_atime.tv_sec; 2059 vap->va_atime.tv_nsec = ip->i_atime.tv_usec*1000; 2060 vap->va_mtime.tv_sec = (time_t)ip->i_mtime.tv_sec; 2061 vap->va_mtime.tv_nsec = ip->i_mtime.tv_usec*1000; 2062 vap->va_ctime.tv_sec = (time_t)ip->i_ctime.tv_sec; 2063 vap->va_ctime.tv_nsec = ip->i_ctime.tv_usec*1000; 2064 mutex_exit(&ip->i_tlock); 2065 2066 switch (ip->i_mode & IFMT) { 2067 2068 case IFBLK: 2069 vap->va_blksize = MAXBSIZE; /* was BLKDEV_IOSIZE */ 2070 break; 2071 2072 case IFCHR: 2073 vap->va_blksize = MAXBSIZE; 2074 break; 2075 2076 default: 2077 vap->va_blksize = ip->i_fs->fs_bsize; 2078 break; 2079 } 2080 vap->va_nblocks = (fsblkcnt64_t)ip->i_blocks; 2081 rw_exit(&ip->i_contents); 2082 err = 0; 2083 2084 out: 2085 return (err); 2086 } 2087 2088 /* 2089 * Special wrapper to provide a callback for secpolicy_vnode_setattr(). 2090 * The i_contents lock is already held by the caller and we need to 2091 * declare the inode as 'void *' argument. 2092 */ 2093 static int 2094 ufs_priv_access(void *vip, int mode, struct cred *cr) 2095 { 2096 struct inode *ip = vip; 2097 2098 return (ufs_iaccess(ip, mode, cr, 0)); 2099 } 2100 2101 /*ARGSUSED4*/ 2102 static int 2103 ufs_setattr(struct vnode *vp, struct vattr *vap, int flags, struct cred *cr, 2104 caller_context_t *ct) 2105 { 2106 struct inode *ip = VTOI(vp); 2107 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 2108 struct fs *fs; 2109 struct ulockfs *ulp; 2110 char *errmsg1; 2111 char *errmsg2; 2112 long blocks; 2113 long int mask = vap->va_mask; 2114 size_t len1, len2; 2115 int issync; 2116 int trans_size; 2117 int dotrans; 2118 int dorwlock; 2119 int error; 2120 int owner_change; 2121 int dodqlock; 2122 timestruc_t now; 2123 vattr_t oldva; 2124 int retry = 1; 2125 int indeadlock; 2126 2127 /* 2128 * Cannot set these attributes. 2129 */ 2130 if ((mask & AT_NOSET) || (mask & AT_XVATTR)) 2131 return (EINVAL); 2132 2133 /* 2134 * check for forced unmount 2135 */ 2136 if (ufsvfsp == NULL) 2137 return (EIO); 2138 2139 fs = ufsvfsp->vfs_fs; 2140 if (fs->fs_ronly != 0) 2141 return (EROFS); 2142 2143 again: 2144 errmsg1 = NULL; 2145 errmsg2 = NULL; 2146 dotrans = 0; 2147 dorwlock = 0; 2148 dodqlock = 0; 2149 2150 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK); 2151 if (error) 2152 goto out; 2153 2154 /* 2155 * Acquire i_rwlock before TRANS_BEGIN_CSYNC() if this is a file. 2156 * This follows the protocol for read()/write(). 2157 */ 2158 if (vp->v_type != VDIR) { 2159 /* 2160 * ufs_tryirwlock uses rw_tryenter and checks for SLOCK to 2161 * avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 2162 * possible, retries the operation. 2163 */ 2164 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_file); 2165 if (indeadlock) { 2166 if (ulp) 2167 ufs_lockfs_end(ulp); 2168 goto again; 2169 } 2170 dorwlock = 1; 2171 } 2172 2173 /* 2174 * Truncate file. Must have write permission and not be a directory. 2175 */ 2176 if (mask & AT_SIZE) { 2177 rw_enter(&ip->i_contents, RW_WRITER); 2178 if (vp->v_type == VDIR) { 2179 error = EISDIR; 2180 goto update_inode; 2181 } 2182 if (error = ufs_iaccess(ip, IWRITE, cr, 0)) 2183 goto update_inode; 2184 2185 rw_exit(&ip->i_contents); 2186 error = TRANS_ITRUNC(ip, vap->va_size, 0, cr); 2187 if (error) { 2188 rw_enter(&ip->i_contents, RW_WRITER); 2189 goto update_inode; 2190 } 2191 2192 if (error == 0 && vap->va_size) 2193 vnevent_truncate(vp, ct); 2194 } 2195 2196 if (ulp) { 2197 trans_size = (int)TOP_SETATTR_SIZE(ip); 2198 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SETATTR, trans_size); 2199 ++dotrans; 2200 } 2201 2202 /* 2203 * Acquire i_rwlock after TRANS_BEGIN_CSYNC() if this is a directory. 2204 * This follows the protocol established by 2205 * ufs_link/create/remove/rename/mkdir/rmdir/symlink. 2206 */ 2207 if (vp->v_type == VDIR) { 2208 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_SETATTR, 2209 retry_dir); 2210 if (indeadlock) 2211 goto again; 2212 dorwlock = 1; 2213 } 2214 2215 /* 2216 * Grab quota lock if we are changing the file's owner. 2217 */ 2218 if (mask & AT_UID) { 2219 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2220 dodqlock = 1; 2221 } 2222 rw_enter(&ip->i_contents, RW_WRITER); 2223 2224 oldva.va_mode = ip->i_mode; 2225 oldva.va_uid = ip->i_uid; 2226 oldva.va_gid = ip->i_gid; 2227 2228 vap->va_mask &= ~AT_SIZE; 2229 2230 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2231 ufs_priv_access, ip); 2232 if (error) 2233 goto update_inode; 2234 2235 mask = vap->va_mask; 2236 2237 /* 2238 * Change file access modes. 2239 */ 2240 if (mask & AT_MODE) { 2241 ip->i_mode = (ip->i_mode & IFMT) | (vap->va_mode & ~IFMT); 2242 TRANS_INODE(ufsvfsp, ip); 2243 ip->i_flag |= ICHG; 2244 if (stickyhack) { 2245 mutex_enter(&vp->v_lock); 2246 if ((ip->i_mode & (ISVTX | IEXEC | IFDIR)) == ISVTX) 2247 vp->v_flag |= VSWAPLIKE; 2248 else 2249 vp->v_flag &= ~VSWAPLIKE; 2250 mutex_exit(&vp->v_lock); 2251 } 2252 } 2253 if (mask & (AT_UID|AT_GID)) { 2254 if (mask & AT_UID) { 2255 /* 2256 * Don't change ownership of the quota inode. 2257 */ 2258 if (ufsvfsp->vfs_qinod == ip) { 2259 ASSERT(ufsvfsp->vfs_qflags & MQ_ENABLED); 2260 error = EINVAL; 2261 goto update_inode; 2262 } 2263 2264 /* 2265 * No real ownership change. 2266 */ 2267 if (ip->i_uid == vap->va_uid) { 2268 blocks = 0; 2269 owner_change = 0; 2270 } 2271 /* 2272 * Remove the blocks and the file, from the old user's 2273 * quota. 2274 */ 2275 else { 2276 blocks = ip->i_blocks; 2277 owner_change = 1; 2278 2279 (void) chkdq(ip, -blocks, /* force */ 1, cr, 2280 (char **)NULL, (size_t *)NULL); 2281 (void) chkiq(ufsvfsp, /* change */ -1, ip, 2282 (uid_t)ip->i_uid, /* force */ 1, cr, 2283 (char **)NULL, (size_t *)NULL); 2284 dqrele(ip->i_dquot); 2285 } 2286 2287 ip->i_uid = vap->va_uid; 2288 2289 /* 2290 * There is a real ownership change. 2291 */ 2292 if (owner_change) { 2293 /* 2294 * Add the blocks and the file to the new 2295 * user's quota. 2296 */ 2297 ip->i_dquot = getinoquota(ip); 2298 (void) chkdq(ip, blocks, /* force */ 1, cr, 2299 &errmsg1, &len1); 2300 (void) chkiq(ufsvfsp, /* change */ 1, 2301 (struct inode *)NULL, (uid_t)ip->i_uid, 2302 /* force */ 1, cr, &errmsg2, &len2); 2303 } 2304 } 2305 if (mask & AT_GID) { 2306 ip->i_gid = vap->va_gid; 2307 } 2308 TRANS_INODE(ufsvfsp, ip); 2309 ip->i_flag |= ICHG; 2310 } 2311 /* 2312 * Change file access or modified times. 2313 */ 2314 if (mask & (AT_ATIME|AT_MTIME)) { 2315 /* Check that the time value is within ufs range */ 2316 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2317 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2318 error = EOVERFLOW; 2319 goto update_inode; 2320 } 2321 2322 /* 2323 * if the "noaccess" mount option is set and only atime 2324 * update is requested, do nothing. No error is returned. 2325 */ 2326 if ((ufsvfsp->vfs_noatime) && 2327 ((mask & (AT_ATIME|AT_MTIME)) == AT_ATIME)) 2328 goto skip_atime; 2329 2330 if (mask & AT_ATIME) { 2331 ip->i_atime.tv_sec = vap->va_atime.tv_sec; 2332 ip->i_atime.tv_usec = vap->va_atime.tv_nsec / 1000; 2333 ip->i_flag &= ~IACC; 2334 } 2335 if (mask & AT_MTIME) { 2336 ip->i_mtime.tv_sec = vap->va_mtime.tv_sec; 2337 ip->i_mtime.tv_usec = vap->va_mtime.tv_nsec / 1000; 2338 gethrestime(&now); 2339 if (now.tv_sec > TIME32_MAX) { 2340 /* 2341 * In 2038, ctime sticks forever.. 2342 */ 2343 ip->i_ctime.tv_sec = TIME32_MAX; 2344 ip->i_ctime.tv_usec = 0; 2345 } else { 2346 ip->i_ctime.tv_sec = now.tv_sec; 2347 ip->i_ctime.tv_usec = now.tv_nsec / 1000; 2348 } 2349 ip->i_flag &= ~(IUPD|ICHG); 2350 ip->i_flag |= IMODTIME; 2351 } 2352 TRANS_INODE(ufsvfsp, ip); 2353 ip->i_flag |= IMOD; 2354 } 2355 2356 skip_atime: 2357 /* 2358 * The presence of a shadow inode may indicate an ACL, but does 2359 * not imply an ACL. Future FSD types should be handled here too 2360 * and check for the presence of the attribute-specific data 2361 * before referencing it. 2362 */ 2363 if (ip->i_shadow) { 2364 /* 2365 * XXX if ufs_iupdat is changed to sandbagged write fix 2366 * ufs_acl_setattr to push ip to keep acls consistent 2367 * 2368 * Suppress out of inodes messages if we will retry. 2369 */ 2370 if (retry) 2371 ip->i_flag |= IQUIET; 2372 error = ufs_acl_setattr(ip, vap, cr); 2373 ip->i_flag &= ~IQUIET; 2374 } 2375 2376 update_inode: 2377 /* 2378 * Setattr always increases the sequence number 2379 */ 2380 ip->i_seq++; 2381 2382 /* 2383 * if nfsd and not logging; push synchronously 2384 */ 2385 if ((curthread->t_flag & T_DONTPEND) && !TRANS_ISTRANS(ufsvfsp)) { 2386 ufs_iupdat(ip, 1); 2387 } else { 2388 ITIMES_NOLOCK(ip); 2389 } 2390 2391 rw_exit(&ip->i_contents); 2392 if (dodqlock) { 2393 rw_exit(&ufsvfsp->vfs_dqrwlock); 2394 } 2395 if (dorwlock) 2396 rw_exit(&ip->i_rwlock); 2397 2398 if (ulp) { 2399 if (dotrans) { 2400 int terr = 0; 2401 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SETATTR, 2402 trans_size); 2403 if (error == 0) 2404 error = terr; 2405 } 2406 ufs_lockfs_end(ulp); 2407 } 2408 out: 2409 /* 2410 * If out of inodes or blocks, see if we can free something 2411 * up from the delete queue. 2412 */ 2413 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 2414 ufs_delete_drain_wait(ufsvfsp, 1); 2415 retry = 0; 2416 if (errmsg1 != NULL) 2417 kmem_free(errmsg1, len1); 2418 if (errmsg2 != NULL) 2419 kmem_free(errmsg2, len2); 2420 goto again; 2421 } 2422 if (errmsg1 != NULL) { 2423 uprintf(errmsg1); 2424 kmem_free(errmsg1, len1); 2425 } 2426 if (errmsg2 != NULL) { 2427 uprintf(errmsg2); 2428 kmem_free(errmsg2, len2); 2429 } 2430 return (error); 2431 } 2432 2433 /*ARGSUSED*/ 2434 static int 2435 ufs_access(struct vnode *vp, int mode, int flags, struct cred *cr, 2436 caller_context_t *ct) 2437 { 2438 struct inode *ip = VTOI(vp); 2439 2440 if (ip->i_ufsvfs == NULL) 2441 return (EIO); 2442 2443 /* 2444 * The ufs_iaccess function wants to be called with 2445 * mode bits expressed as "ufs specific" bits. 2446 * I.e., VWRITE|VREAD|VEXEC do not make sense to 2447 * ufs_iaccess() but IWRITE|IREAD|IEXEC do. 2448 * But since they're the same we just pass the vnode mode 2449 * bit but just verify that assumption at compile time. 2450 */ 2451 #if IWRITE != VWRITE || IREAD != VREAD || IEXEC != VEXEC 2452 #error "ufs_access needs to map Vmodes to Imodes" 2453 #endif 2454 return (ufs_iaccess(ip, mode, cr, 1)); 2455 } 2456 2457 /* ARGSUSED */ 2458 static int 2459 ufs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cr, 2460 caller_context_t *ct) 2461 { 2462 struct inode *ip = VTOI(vp); 2463 struct ufsvfs *ufsvfsp; 2464 struct ulockfs *ulp; 2465 int error; 2466 int fastsymlink; 2467 2468 if (vp->v_type != VLNK) { 2469 error = EINVAL; 2470 goto nolockout; 2471 } 2472 2473 /* 2474 * If the symbolic link is empty there is nothing to read. 2475 * Fast-track these empty symbolic links 2476 */ 2477 if (ip->i_size == 0) { 2478 error = 0; 2479 goto nolockout; 2480 } 2481 2482 ufsvfsp = ip->i_ufsvfs; 2483 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READLINK_MASK); 2484 if (error) 2485 goto nolockout; 2486 /* 2487 * The ip->i_rwlock protects the data blocks used for FASTSYMLINK 2488 */ 2489 again: 2490 fastsymlink = 0; 2491 if (ip->i_flag & IFASTSYMLNK) { 2492 rw_enter(&ip->i_rwlock, RW_READER); 2493 rw_enter(&ip->i_contents, RW_READER); 2494 if (ip->i_flag & IFASTSYMLNK) { 2495 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && 2496 (ip->i_fs->fs_ronly == 0) && 2497 (!ufsvfsp->vfs_noatime)) { 2498 mutex_enter(&ip->i_tlock); 2499 ip->i_flag |= IACC; 2500 mutex_exit(&ip->i_tlock); 2501 } 2502 error = uiomove((caddr_t)&ip->i_db[1], 2503 MIN(ip->i_size, uiop->uio_resid), 2504 UIO_READ, uiop); 2505 ITIMES(ip); 2506 ++fastsymlink; 2507 } 2508 rw_exit(&ip->i_contents); 2509 rw_exit(&ip->i_rwlock); 2510 } 2511 if (!fastsymlink) { 2512 ssize_t size; /* number of bytes read */ 2513 caddr_t basep; /* pointer to input data */ 2514 ino_t ino; 2515 long igen; 2516 struct uio tuio; /* temp uio struct */ 2517 struct uio *tuiop; 2518 iovec_t tiov; /* temp iovec struct */ 2519 char kbuf[FSL_SIZE]; /* buffer to hold fast symlink */ 2520 int tflag = 0; /* flag to indicate temp vars used */ 2521 2522 ino = ip->i_number; 2523 igen = ip->i_gen; 2524 size = uiop->uio_resid; 2525 basep = uiop->uio_iov->iov_base; 2526 tuiop = uiop; 2527 2528 rw_enter(&ip->i_rwlock, RW_WRITER); 2529 rw_enter(&ip->i_contents, RW_WRITER); 2530 if (ip->i_flag & IFASTSYMLNK) { 2531 rw_exit(&ip->i_contents); 2532 rw_exit(&ip->i_rwlock); 2533 goto again; 2534 } 2535 2536 /* can this be a fast symlink and is it a user buffer? */ 2537 if (ip->i_size <= FSL_SIZE && 2538 (uiop->uio_segflg == UIO_USERSPACE || 2539 uiop->uio_segflg == UIO_USERISPACE)) { 2540 2541 bzero(&tuio, sizeof (struct uio)); 2542 /* 2543 * setup a kernel buffer to read link into. this 2544 * is to fix a race condition where the user buffer 2545 * got corrupted before copying it into the inode. 2546 */ 2547 size = ip->i_size; 2548 tiov.iov_len = size; 2549 tiov.iov_base = kbuf; 2550 tuio.uio_iov = &tiov; 2551 tuio.uio_iovcnt = 1; 2552 tuio.uio_offset = uiop->uio_offset; 2553 tuio.uio_segflg = UIO_SYSSPACE; 2554 tuio.uio_fmode = uiop->uio_fmode; 2555 tuio.uio_extflg = uiop->uio_extflg; 2556 tuio.uio_limit = uiop->uio_limit; 2557 tuio.uio_resid = size; 2558 2559 basep = tuio.uio_iov->iov_base; 2560 tuiop = &tuio; 2561 tflag = 1; 2562 } 2563 2564 error = rdip(ip, tuiop, 0, cr); 2565 if (!(error == 0 && ip->i_number == ino && ip->i_gen == igen)) { 2566 rw_exit(&ip->i_contents); 2567 rw_exit(&ip->i_rwlock); 2568 goto out; 2569 } 2570 2571 if (tflag == 0) 2572 size -= uiop->uio_resid; 2573 2574 if ((tflag == 0 && ip->i_size <= FSL_SIZE && 2575 ip->i_size == size) || (tflag == 1 && 2576 tuio.uio_resid == 0)) { 2577 error = kcopy(basep, &ip->i_db[1], ip->i_size); 2578 if (error == 0) { 2579 ip->i_flag |= IFASTSYMLNK; 2580 /* 2581 * free page 2582 */ 2583 (void) VOP_PUTPAGE(ITOV(ip), 2584 (offset_t)0, PAGESIZE, 2585 (B_DONTNEED | B_FREE | B_FORCE | B_ASYNC), 2586 cr, ct); 2587 } else { 2588 int i; 2589 /* error, clear garbage left behind */ 2590 for (i = 1; i < NDADDR; i++) 2591 ip->i_db[i] = 0; 2592 for (i = 0; i < NIADDR; i++) 2593 ip->i_ib[i] = 0; 2594 } 2595 } 2596 if (tflag == 1) { 2597 /* now, copy it into the user buffer */ 2598 error = uiomove((caddr_t)kbuf, 2599 MIN(size, uiop->uio_resid), 2600 UIO_READ, uiop); 2601 } 2602 rw_exit(&ip->i_contents); 2603 rw_exit(&ip->i_rwlock); 2604 } 2605 out: 2606 if (ulp) { 2607 ufs_lockfs_end(ulp); 2608 } 2609 nolockout: 2610 return (error); 2611 } 2612 2613 /* ARGSUSED */ 2614 static int 2615 ufs_fsync(struct vnode *vp, int syncflag, struct cred *cr, caller_context_t *ct) 2616 { 2617 struct inode *ip = VTOI(vp); 2618 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 2619 struct ulockfs *ulp; 2620 int error; 2621 2622 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_FSYNC_MASK); 2623 if (error) 2624 return (error); 2625 2626 if (TRANS_ISTRANS(ufsvfsp)) { 2627 /* 2628 * First push out any data pages 2629 */ 2630 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2631 (vp->v_type != VCHR) && !(IS_SWAPVP(vp))) { 2632 error = VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, 2633 0, CRED(), ct); 2634 if (error) 2635 goto out; 2636 } 2637 2638 /* 2639 * Delta any delayed inode times updates 2640 * and push inode to log. 2641 * All other inode deltas will have already been delta'd 2642 * and will be pushed during the commit. 2643 */ 2644 if (!(syncflag & FDSYNC) && 2645 ((ip->i_flag & (IMOD|IMODACC)) == IMODACC)) { 2646 if (ulp) { 2647 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_FSYNC, 2648 TOP_SYNCIP_SIZE); 2649 } 2650 rw_enter(&ip->i_contents, RW_READER); 2651 mutex_enter(&ip->i_tlock); 2652 ip->i_flag &= ~IMODTIME; 2653 mutex_exit(&ip->i_tlock); 2654 ufs_iupdat(ip, I_SYNC); 2655 rw_exit(&ip->i_contents); 2656 if (ulp) { 2657 TRANS_END_ASYNC(ufsvfsp, TOP_FSYNC, 2658 TOP_SYNCIP_SIZE); 2659 } 2660 } 2661 2662 /* 2663 * Commit the Moby transaction 2664 * 2665 * Deltas have already been made so we just need to 2666 * commit them with a synchronous transaction. 2667 * TRANS_BEGIN_SYNC() will return an error 2668 * if there are no deltas to commit, for an 2669 * empty transaction. 2670 */ 2671 if (ulp) { 2672 TRANS_BEGIN_SYNC(ufsvfsp, TOP_FSYNC, TOP_COMMIT_SIZE, 2673 error); 2674 if (error) { 2675 error = 0; /* commit wasn't needed */ 2676 goto out; 2677 } 2678 TRANS_END_SYNC(ufsvfsp, error, TOP_FSYNC, 2679 TOP_COMMIT_SIZE); 2680 } 2681 } else { /* not logging */ 2682 if (!(IS_SWAPVP(vp))) 2683 if (syncflag & FNODSYNC) { 2684 /* Just update the inode only */ 2685 TRANS_IUPDAT(ip, 1); 2686 error = 0; 2687 } else if (syncflag & FDSYNC) 2688 /* Do data-synchronous writes */ 2689 error = TRANS_SYNCIP(ip, 0, I_DSYNC, TOP_FSYNC); 2690 else 2691 /* Do synchronous writes */ 2692 error = TRANS_SYNCIP(ip, 0, I_SYNC, TOP_FSYNC); 2693 2694 rw_enter(&ip->i_contents, RW_WRITER); 2695 if (!error) 2696 error = ufs_sync_indir(ip); 2697 rw_exit(&ip->i_contents); 2698 } 2699 out: 2700 if (ulp) { 2701 ufs_lockfs_end(ulp); 2702 } 2703 return (error); 2704 } 2705 2706 /*ARGSUSED*/ 2707 static void 2708 ufs_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct) 2709 { 2710 ufs_iinactive(VTOI(vp)); 2711 } 2712 2713 /* 2714 * Unix file system operations having to do with directory manipulation. 2715 */ 2716 int ufs_lookup_idle_count = 2; /* Number of inodes to idle each time */ 2717 /* ARGSUSED */ 2718 static int 2719 ufs_lookup(struct vnode *dvp, char *nm, struct vnode **vpp, 2720 struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cr, 2721 caller_context_t *ct, int *direntflags, pathname_t *realpnp) 2722 { 2723 struct inode *ip; 2724 struct inode *sip; 2725 struct inode *xip; 2726 struct ufsvfs *ufsvfsp; 2727 struct ulockfs *ulp; 2728 struct vnode *vp; 2729 int error; 2730 2731 /* 2732 * Check flags for type of lookup (regular file or attribute file) 2733 */ 2734 2735 ip = VTOI(dvp); 2736 2737 if (flags & LOOKUP_XATTR) { 2738 2739 /* 2740 * If not mounted with XATTR support then return EINVAL 2741 */ 2742 2743 if (!(ip->i_ufsvfs->vfs_vfs->vfs_flag & VFS_XATTR)) 2744 return (EINVAL); 2745 /* 2746 * We don't allow recursive attributes... 2747 * Maybe someday we will. 2748 */ 2749 if ((ip->i_cflags & IXATTR)) { 2750 return (EINVAL); 2751 } 2752 2753 if ((vp = dnlc_lookup(dvp, XATTR_DIR_NAME)) == NULL) { 2754 error = ufs_xattr_getattrdir(dvp, &sip, flags, cr); 2755 if (error) { 2756 *vpp = NULL; 2757 goto out; 2758 } 2759 2760 vp = ITOV(sip); 2761 dnlc_update(dvp, XATTR_DIR_NAME, vp); 2762 } 2763 2764 /* 2765 * Check accessibility of directory. 2766 */ 2767 if (vp == DNLC_NO_VNODE) { 2768 VN_RELE(vp); 2769 error = ENOENT; 2770 goto out; 2771 } 2772 if ((error = ufs_iaccess(VTOI(vp), IEXEC, cr, 1)) != 0) { 2773 VN_RELE(vp); 2774 goto out; 2775 } 2776 2777 *vpp = vp; 2778 return (0); 2779 } 2780 2781 /* 2782 * Check for a null component, which we should treat as 2783 * looking at dvp from within it's parent, so we don't 2784 * need a call to ufs_iaccess(), as it has already been 2785 * done. 2786 */ 2787 if (nm[0] == 0) { 2788 VN_HOLD(dvp); 2789 error = 0; 2790 *vpp = dvp; 2791 goto out; 2792 } 2793 2794 /* 2795 * Check for "." ie itself. this is a quick check and 2796 * avoids adding "." into the dnlc (which have been seen 2797 * to occupy >10% of the cache). 2798 */ 2799 if ((nm[0] == '.') && (nm[1] == 0)) { 2800 /* 2801 * Don't return without checking accessibility 2802 * of the directory. We only need the lock if 2803 * we are going to return it. 2804 */ 2805 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) == 0) { 2806 VN_HOLD(dvp); 2807 *vpp = dvp; 2808 } 2809 goto out; 2810 } 2811 2812 /* 2813 * Fast path: Check the directory name lookup cache. 2814 */ 2815 if (vp = dnlc_lookup(dvp, nm)) { 2816 /* 2817 * Check accessibility of directory. 2818 */ 2819 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) != 0) { 2820 VN_RELE(vp); 2821 goto out; 2822 } 2823 if (vp == DNLC_NO_VNODE) { 2824 VN_RELE(vp); 2825 error = ENOENT; 2826 goto out; 2827 } 2828 xip = VTOI(vp); 2829 ulp = NULL; 2830 goto fastpath; 2831 } 2832 2833 /* 2834 * Keep the idle queue from getting too long by 2835 * idling two inodes before attempting to allocate another. 2836 * This operation must be performed before entering 2837 * lockfs or a transaction. 2838 */ 2839 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat) 2840 if ((curthread->t_flag & T_DONTBLOCK) == 0) { 2841 ins.in_lidles.value.ul += ufs_lookup_idle_count; 2842 ufs_idle_some(ufs_lookup_idle_count); 2843 } 2844 2845 retry_lookup: 2846 /* 2847 * Check accessibility of directory. 2848 */ 2849 if (error = ufs_diraccess(ip, IEXEC, cr)) 2850 goto out; 2851 2852 ufsvfsp = ip->i_ufsvfs; 2853 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK); 2854 if (error) 2855 goto out; 2856 2857 error = ufs_dirlook(ip, nm, &xip, cr, 1, 0); 2858 2859 fastpath: 2860 if (error == 0) { 2861 ip = xip; 2862 *vpp = ITOV(ip); 2863 2864 /* 2865 * If vnode is a device return special vnode instead. 2866 */ 2867 if (IS_DEVVP(*vpp)) { 2868 struct vnode *newvp; 2869 2870 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, 2871 cr); 2872 VN_RELE(*vpp); 2873 if (newvp == NULL) 2874 error = ENOSYS; 2875 else 2876 *vpp = newvp; 2877 } else if (ip->i_cflags & ICOMPRESS) { 2878 struct vnode *newvp; 2879 2880 /* 2881 * Compressed file, substitute dcfs vnode 2882 */ 2883 newvp = decompvp(*vpp, cr, ct); 2884 VN_RELE(*vpp); 2885 if (newvp == NULL) 2886 error = ENOSYS; 2887 else 2888 *vpp = newvp; 2889 } 2890 } 2891 if (ulp) { 2892 ufs_lockfs_end(ulp); 2893 } 2894 2895 if (error == EAGAIN) 2896 goto retry_lookup; 2897 2898 out: 2899 return (error); 2900 } 2901 2902 /*ARGSUSED*/ 2903 static int 2904 ufs_create(struct vnode *dvp, char *name, struct vattr *vap, enum vcexcl excl, 2905 int mode, struct vnode **vpp, struct cred *cr, int flag, 2906 caller_context_t *ct, vsecattr_t *vsecp) 2907 { 2908 struct inode *ip; 2909 struct inode *xip; 2910 struct inode *dip; 2911 struct vnode *xvp; 2912 struct ufsvfs *ufsvfsp; 2913 struct ulockfs *ulp; 2914 int error; 2915 int issync; 2916 int truncflag; 2917 int trans_size; 2918 int noentry; 2919 int defer_dip_seq_update = 0; /* need to defer update of dip->i_seq */ 2920 int retry = 1; 2921 int indeadlock; 2922 2923 again: 2924 ip = VTOI(dvp); 2925 ufsvfsp = ip->i_ufsvfs; 2926 truncflag = 0; 2927 2928 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_CREATE_MASK); 2929 if (error) 2930 goto out; 2931 2932 if (ulp) { 2933 trans_size = (int)TOP_CREATE_SIZE(ip); 2934 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_CREATE, trans_size); 2935 } 2936 2937 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr) != 0) 2938 vap->va_mode &= ~VSVTX; 2939 2940 if (*name == '\0') { 2941 /* 2942 * Null component name refers to the directory itself. 2943 */ 2944 VN_HOLD(dvp); 2945 /* 2946 * Even though this is an error case, we need to grab the 2947 * quota lock since the error handling code below is common. 2948 */ 2949 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2950 rw_enter(&ip->i_contents, RW_WRITER); 2951 error = EEXIST; 2952 } else { 2953 xip = NULL; 2954 noentry = 0; 2955 /* 2956 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 2957 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 2958 * possible, retries the operation. 2959 */ 2960 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_CREATE, 2961 retry_dir); 2962 if (indeadlock) 2963 goto again; 2964 2965 xvp = dnlc_lookup(dvp, name); 2966 if (xvp == DNLC_NO_VNODE) { 2967 noentry = 1; 2968 VN_RELE(xvp); 2969 xvp = NULL; 2970 } 2971 if (xvp) { 2972 rw_exit(&ip->i_rwlock); 2973 if (error = ufs_iaccess(ip, IEXEC, cr, 1)) { 2974 VN_RELE(xvp); 2975 } else { 2976 error = EEXIST; 2977 xip = VTOI(xvp); 2978 } 2979 } else { 2980 /* 2981 * Suppress file system full message if we will retry 2982 */ 2983 error = ufs_direnter_cm(ip, name, DE_CREATE, 2984 vap, &xip, cr, (noentry | (retry ? IQUIET : 0))); 2985 if (error == EAGAIN) { 2986 if (ulp) { 2987 TRANS_END_CSYNC(ufsvfsp, error, issync, 2988 TOP_CREATE, trans_size); 2989 ufs_lockfs_end(ulp); 2990 } 2991 goto again; 2992 } 2993 rw_exit(&ip->i_rwlock); 2994 } 2995 ip = xip; 2996 if (ip != NULL) { 2997 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2998 rw_enter(&ip->i_contents, RW_WRITER); 2999 } 3000 } 3001 3002 /* 3003 * If the file already exists and this is a non-exclusive create, 3004 * check permissions and allow access for non-directories. 3005 * Read-only create of an existing directory is also allowed. 3006 * We fail an exclusive create of anything which already exists. 3007 */ 3008 if (error == EEXIST) { 3009 dip = VTOI(dvp); 3010 if (excl == NONEXCL) { 3011 if ((((ip->i_mode & IFMT) == IFDIR) || 3012 ((ip->i_mode & IFMT) == IFATTRDIR)) && 3013 (mode & IWRITE)) 3014 error = EISDIR; 3015 else if (mode) 3016 error = ufs_iaccess(ip, mode, cr, 0); 3017 else 3018 error = 0; 3019 } 3020 if (error) { 3021 rw_exit(&ip->i_contents); 3022 rw_exit(&ufsvfsp->vfs_dqrwlock); 3023 VN_RELE(ITOV(ip)); 3024 goto unlock; 3025 } 3026 /* 3027 * If the error EEXIST was set, then i_seq can not 3028 * have been updated. The sequence number interface 3029 * is defined such that a non-error VOP_CREATE must 3030 * increase the dir va_seq it by at least one. If we 3031 * have cleared the error, increase i_seq. Note that 3032 * we are increasing the dir i_seq and in rare cases 3033 * ip may actually be from the dvp, so we already have 3034 * the locks and it will not be subject to truncation. 3035 * In case we have to update i_seq of the parent 3036 * directory dip, we have to defer it till we have 3037 * released our locks on ip due to lock ordering requirements. 3038 */ 3039 if (ip != dip) 3040 defer_dip_seq_update = 1; 3041 else 3042 ip->i_seq++; 3043 3044 if (((ip->i_mode & IFMT) == IFREG) && 3045 (vap->va_mask & AT_SIZE) && vap->va_size == 0) { 3046 /* 3047 * Truncate regular files, if requested by caller. 3048 * Grab i_rwlock to make sure no one else is 3049 * currently writing to the file (we promised 3050 * bmap we would do this). 3051 * Must get the locks in the correct order. 3052 */ 3053 if (ip->i_size == 0) { 3054 ip->i_flag |= ICHG | IUPD; 3055 ip->i_seq++; 3056 TRANS_INODE(ufsvfsp, ip); 3057 } else { 3058 /* 3059 * Large Files: Why this check here? 3060 * Though we do it in vn_create() we really 3061 * want to guarantee that we do not destroy 3062 * Large file data by atomically checking 3063 * the size while holding the contents 3064 * lock. 3065 */ 3066 if (flag && !(flag & FOFFMAX) && 3067 ((ip->i_mode & IFMT) == IFREG) && 3068 (ip->i_size > (offset_t)MAXOFF32_T)) { 3069 rw_exit(&ip->i_contents); 3070 rw_exit(&ufsvfsp->vfs_dqrwlock); 3071 error = EOVERFLOW; 3072 goto unlock; 3073 } 3074 if (TRANS_ISTRANS(ufsvfsp)) 3075 truncflag++; 3076 else { 3077 rw_exit(&ip->i_contents); 3078 rw_exit(&ufsvfsp->vfs_dqrwlock); 3079 ufs_tryirwlock_trans(&ip->i_rwlock, 3080 RW_WRITER, TOP_CREATE, 3081 retry_file); 3082 if (indeadlock) { 3083 VN_RELE(ITOV(ip)); 3084 goto again; 3085 } 3086 rw_enter(&ufsvfsp->vfs_dqrwlock, 3087 RW_READER); 3088 rw_enter(&ip->i_contents, RW_WRITER); 3089 (void) ufs_itrunc(ip, (u_offset_t)0, 0, 3090 cr); 3091 rw_exit(&ip->i_rwlock); 3092 } 3093 3094 } 3095 if (error == 0) { 3096 vnevent_create(ITOV(ip), ct); 3097 } 3098 } 3099 } 3100 3101 if (error) { 3102 if (ip != NULL) { 3103 rw_exit(&ufsvfsp->vfs_dqrwlock); 3104 rw_exit(&ip->i_contents); 3105 } 3106 goto unlock; 3107 } 3108 3109 *vpp = ITOV(ip); 3110 ITIMES(ip); 3111 rw_exit(&ip->i_contents); 3112 rw_exit(&ufsvfsp->vfs_dqrwlock); 3113 3114 /* 3115 * If vnode is a device return special vnode instead. 3116 */ 3117 if (!error && IS_DEVVP(*vpp)) { 3118 struct vnode *newvp; 3119 3120 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 3121 VN_RELE(*vpp); 3122 if (newvp == NULL) { 3123 error = ENOSYS; 3124 goto unlock; 3125 } 3126 truncflag = 0; 3127 *vpp = newvp; 3128 } 3129 unlock: 3130 3131 /* 3132 * Do the deferred update of the parent directory's sequence 3133 * number now. 3134 */ 3135 if (defer_dip_seq_update == 1) { 3136 rw_enter(&dip->i_contents, RW_READER); 3137 mutex_enter(&dip->i_tlock); 3138 dip->i_seq++; 3139 mutex_exit(&dip->i_tlock); 3140 rw_exit(&dip->i_contents); 3141 } 3142 3143 if (ulp) { 3144 int terr = 0; 3145 3146 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_CREATE, 3147 trans_size); 3148 3149 /* 3150 * If we haven't had a more interesting failure 3151 * already, then anything that might've happened 3152 * here should be reported. 3153 */ 3154 if (error == 0) 3155 error = terr; 3156 } 3157 3158 if (!error && truncflag) { 3159 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_trunc); 3160 if (indeadlock) { 3161 if (ulp) 3162 ufs_lockfs_end(ulp); 3163 VN_RELE(ITOV(ip)); 3164 goto again; 3165 } 3166 (void) TRANS_ITRUNC(ip, (u_offset_t)0, 0, cr); 3167 rw_exit(&ip->i_rwlock); 3168 } 3169 3170 if (ulp) 3171 ufs_lockfs_end(ulp); 3172 3173 /* 3174 * If no inodes available, try to free one up out of the 3175 * pending delete queue. 3176 */ 3177 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 3178 ufs_delete_drain_wait(ufsvfsp, 1); 3179 retry = 0; 3180 goto again; 3181 } 3182 3183 out: 3184 return (error); 3185 } 3186 3187 extern int ufs_idle_max; 3188 /*ARGSUSED*/ 3189 static int 3190 ufs_remove(struct vnode *vp, char *nm, struct cred *cr, caller_context_t *ct, 3191 int flags) 3192 { 3193 struct inode *ip = VTOI(vp); 3194 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 3195 struct ulockfs *ulp; 3196 vnode_t *rmvp = NULL; /* Vnode corresponding to name being removed */ 3197 int indeadlock; 3198 int error; 3199 int issync; 3200 int trans_size; 3201 3202 /* 3203 * don't let the delete queue get too long 3204 */ 3205 if (ufsvfsp == NULL) { 3206 error = EIO; 3207 goto out; 3208 } 3209 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max) 3210 ufs_delete_drain(vp->v_vfsp, 1, 1); 3211 3212 error = ufs_eventlookup(vp, nm, cr, &rmvp); 3213 if (rmvp != NULL) { 3214 /* Only send the event if there were no errors */ 3215 if (error == 0) 3216 vnevent_remove(rmvp, vp, nm, ct); 3217 VN_RELE(rmvp); 3218 } 3219 3220 retry_remove: 3221 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_REMOVE_MASK); 3222 if (error) 3223 goto out; 3224 3225 if (ulp) 3226 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE, 3227 trans_size = (int)TOP_REMOVE_SIZE(VTOI(vp))); 3228 3229 /* 3230 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3231 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3232 * possible, retries the operation. 3233 */ 3234 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_REMOVE, retry); 3235 if (indeadlock) 3236 goto retry_remove; 3237 error = ufs_dirremove(ip, nm, (struct inode *)0, (struct vnode *)0, 3238 DR_REMOVE, cr); 3239 rw_exit(&ip->i_rwlock); 3240 3241 if (ulp) { 3242 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_REMOVE, trans_size); 3243 ufs_lockfs_end(ulp); 3244 } 3245 3246 out: 3247 return (error); 3248 } 3249 3250 /* 3251 * Link a file or a directory. Only privileged processes are allowed to 3252 * make links to directories. 3253 */ 3254 /*ARGSUSED*/ 3255 static int 3256 ufs_link(struct vnode *tdvp, struct vnode *svp, char *tnm, struct cred *cr, 3257 caller_context_t *ct, int flags) 3258 { 3259 struct inode *sip; 3260 struct inode *tdp = VTOI(tdvp); 3261 struct ufsvfs *ufsvfsp = tdp->i_ufsvfs; 3262 struct ulockfs *ulp; 3263 struct vnode *realvp; 3264 int error; 3265 int issync; 3266 int trans_size; 3267 int isdev; 3268 int indeadlock; 3269 3270 retry_link: 3271 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LINK_MASK); 3272 if (error) 3273 goto out; 3274 3275 if (ulp) 3276 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_LINK, 3277 trans_size = (int)TOP_LINK_SIZE(VTOI(tdvp))); 3278 3279 if (VOP_REALVP(svp, &realvp, ct) == 0) 3280 svp = realvp; 3281 3282 /* 3283 * Make sure link for extended attributes is valid 3284 * We only support hard linking of attr in ATTRDIR to ATTRDIR 3285 * 3286 * Make certain we don't attempt to look at a device node as 3287 * a ufs inode. 3288 */ 3289 3290 isdev = IS_DEVVP(svp); 3291 if (((isdev == 0) && ((VTOI(svp)->i_cflags & IXATTR) == 0) && 3292 ((tdp->i_mode & IFMT) == IFATTRDIR)) || 3293 ((isdev == 0) && (VTOI(svp)->i_cflags & IXATTR) && 3294 ((tdp->i_mode & IFMT) == IFDIR))) { 3295 error = EINVAL; 3296 goto unlock; 3297 } 3298 3299 sip = VTOI(svp); 3300 if ((svp->v_type == VDIR && 3301 secpolicy_fs_linkdir(cr, ufsvfsp->vfs_vfs) != 0) || 3302 (sip->i_uid != crgetuid(cr) && secpolicy_basic_link(cr) != 0)) { 3303 error = EPERM; 3304 goto unlock; 3305 } 3306 3307 /* 3308 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3309 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3310 * possible, retries the operation. 3311 */ 3312 ufs_tryirwlock_trans(&tdp->i_rwlock, RW_WRITER, TOP_LINK, retry); 3313 if (indeadlock) 3314 goto retry_link; 3315 error = ufs_direnter_lr(tdp, tnm, DE_LINK, (struct inode *)0, 3316 sip, cr); 3317 rw_exit(&tdp->i_rwlock); 3318 3319 unlock: 3320 if (ulp) { 3321 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_LINK, trans_size); 3322 ufs_lockfs_end(ulp); 3323 } 3324 3325 if (!error) { 3326 vnevent_link(svp, ct); 3327 } 3328 out: 3329 return (error); 3330 } 3331 3332 uint64_t ufs_rename_retry_cnt; 3333 uint64_t ufs_rename_upgrade_retry_cnt; 3334 uint64_t ufs_rename_dircheck_retry_cnt; 3335 clock_t ufs_rename_backoff_delay = 1; 3336 3337 /* 3338 * Rename a file or directory. 3339 * We are given the vnode and entry string of the source and the 3340 * vnode and entry string of the place we want to move the source 3341 * to (the target). The essential operation is: 3342 * unlink(target); 3343 * link(source, target); 3344 * unlink(source); 3345 * but "atomically". Can't do full commit without saving state in 3346 * the inode on disk, which isn't feasible at this time. Best we 3347 * can do is always guarantee that the TARGET exists. 3348 */ 3349 3350 /*ARGSUSED*/ 3351 static int 3352 ufs_rename(struct vnode *sdvp, char *snm, struct vnode *tdvp, char *tnm, 3353 struct cred *cr, caller_context_t *ct, int flags) 3354 { 3355 struct inode *sip = NULL; /* source inode */ 3356 struct inode *ip = NULL; /* check inode */ 3357 struct inode *sdp; /* old (source) parent inode */ 3358 struct inode *tdp; /* new (target) parent inode */ 3359 struct vnode *svp = NULL; /* source vnode */ 3360 struct vnode *tvp = NULL; /* target vnode, if it exists */ 3361 struct vnode *realvp; 3362 struct ufsvfs *ufsvfsp; 3363 struct ulockfs *ulp = NULL; 3364 struct ufs_slot slot; 3365 timestruc_t now; 3366 int error; 3367 int issync; 3368 int trans_size; 3369 krwlock_t *first_lock; 3370 krwlock_t *second_lock; 3371 krwlock_t *reverse_lock; 3372 int serr, terr; 3373 3374 sdp = VTOI(sdvp); 3375 slot.fbp = NULL; 3376 ufsvfsp = sdp->i_ufsvfs; 3377 3378 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3379 tdvp = realvp; 3380 3381 /* Must do this before taking locks in case of DNLC miss */ 3382 terr = ufs_eventlookup(tdvp, tnm, cr, &tvp); 3383 serr = ufs_eventlookup(sdvp, snm, cr, &svp); 3384 3385 if ((serr == 0) && ((terr == 0) || (terr == ENOENT))) { 3386 if (tvp != NULL) 3387 vnevent_pre_rename_dest(tvp, tdvp, tnm, ct); 3388 3389 /* 3390 * Notify the target directory of the rename event 3391 * if source and target directories are not the same. 3392 */ 3393 if (sdvp != tdvp) 3394 vnevent_pre_rename_dest_dir(tdvp, svp, tnm, ct); 3395 3396 if (svp != NULL) 3397 vnevent_pre_rename_src(svp, sdvp, snm, ct); 3398 } 3399 3400 if (svp != NULL) 3401 VN_RELE(svp); 3402 3403 retry_rename: 3404 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RENAME_MASK); 3405 if (error) 3406 goto unlock; 3407 3408 if (ulp) 3409 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RENAME, 3410 trans_size = (int)TOP_RENAME_SIZE(sdp)); 3411 3412 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3413 tdvp = realvp; 3414 3415 tdp = VTOI(tdvp); 3416 3417 /* 3418 * We only allow renaming of attributes from ATTRDIR to ATTRDIR. 3419 */ 3420 if ((tdp->i_mode & IFMT) != (sdp->i_mode & IFMT)) { 3421 error = EINVAL; 3422 goto unlock; 3423 } 3424 3425 /* 3426 * Check accessibility of directory. 3427 */ 3428 if (error = ufs_diraccess(sdp, IEXEC, cr)) 3429 goto unlock; 3430 3431 /* 3432 * Look up inode of file we're supposed to rename. 3433 */ 3434 gethrestime(&now); 3435 if (error = ufs_dirlook(sdp, snm, &sip, cr, 0, 0)) { 3436 if (error == EAGAIN) { 3437 if (ulp) { 3438 TRANS_END_CSYNC(ufsvfsp, error, issync, 3439 TOP_RENAME, trans_size); 3440 ufs_lockfs_end(ulp); 3441 } 3442 goto retry_rename; 3443 } 3444 3445 goto unlock; 3446 } 3447 3448 /* 3449 * Lock both the source and target directories (they may be 3450 * the same) to provide the atomicity semantics that was 3451 * previously provided by the per file system vfs_rename_lock 3452 * 3453 * with vfs_rename_lock removed to allow simultaneous renames 3454 * within a file system, ufs_dircheckpath can deadlock while 3455 * traversing back to ensure that source is not a parent directory 3456 * of target parent directory. This is because we get into 3457 * ufs_dircheckpath with the sdp and tdp locks held as RW_WRITER. 3458 * If the tdp and sdp of the simultaneous renames happen to be 3459 * in the path of each other, it can lead to a deadlock. This 3460 * can be avoided by getting the locks as RW_READER here and then 3461 * upgrading to RW_WRITER after completing the ufs_dircheckpath. 3462 * 3463 * We hold the target directory's i_rwlock after calling 3464 * ufs_lockfs_begin but in many other operations (like ufs_readdir) 3465 * VOP_RWLOCK is explicitly called by the filesystem independent code 3466 * before calling the file system operation. In these cases the order 3467 * is reversed (i.e i_rwlock is taken first and then ufs_lockfs_begin 3468 * is called). This is fine as long as ufs_lockfs_begin acts as a VOP 3469 * counter but with ufs_quiesce setting the SLOCK bit this becomes a 3470 * synchronizing object which might lead to a deadlock. So we use 3471 * rw_tryenter instead of rw_enter. If we fail to get this lock and 3472 * find that SLOCK bit is set, we call ufs_lockfs_end and restart the 3473 * operation. 3474 */ 3475 retry: 3476 first_lock = &tdp->i_rwlock; 3477 second_lock = &sdp->i_rwlock; 3478 retry_firstlock: 3479 if (!rw_tryenter(first_lock, RW_READER)) { 3480 /* 3481 * We didn't get the lock. Check if the SLOCK is set in the 3482 * ufsvfs. If yes, we might be in a deadlock. Safer to give up 3483 * and wait for SLOCK to be cleared. 3484 */ 3485 3486 if (ulp && ULOCKFS_IS_SLOCK(ulp)) { 3487 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, 3488 trans_size); 3489 ufs_lockfs_end(ulp); 3490 goto retry_rename; 3491 3492 } else { 3493 /* 3494 * SLOCK isn't set so this is a genuine synchronization 3495 * case. Let's try again after giving them a breather. 3496 */ 3497 delay(RETRY_LOCK_DELAY); 3498 goto retry_firstlock; 3499 } 3500 } 3501 /* 3502 * Need to check if the tdp and sdp are same !!! 3503 */ 3504 if ((tdp != sdp) && (!rw_tryenter(second_lock, RW_READER))) { 3505 /* 3506 * We didn't get the lock. Check if the SLOCK is set in the 3507 * ufsvfs. If yes, we might be in a deadlock. Safer to give up 3508 * and wait for SLOCK to be cleared. 3509 */ 3510 3511 rw_exit(first_lock); 3512 if (ulp && ULOCKFS_IS_SLOCK(ulp)) { 3513 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, 3514 trans_size); 3515 ufs_lockfs_end(ulp); 3516 goto retry_rename; 3517 3518 } else { 3519 /* 3520 * So we couldn't get the second level peer lock *and* 3521 * the SLOCK bit isn't set. Too bad we can be 3522 * contentding with someone wanting these locks otherway 3523 * round. Reverse the locks in case there is a heavy 3524 * contention for the second level lock. 3525 */ 3526 reverse_lock = first_lock; 3527 first_lock = second_lock; 3528 second_lock = reverse_lock; 3529 ufs_rename_retry_cnt++; 3530 goto retry_firstlock; 3531 } 3532 } 3533 3534 if (sip == tdp) { 3535 error = EINVAL; 3536 goto errout; 3537 } 3538 /* 3539 * Make sure we can delete the source entry. This requires 3540 * write permission on the containing directory. 3541 * Check for sticky directories. 3542 */ 3543 rw_enter(&sdp->i_contents, RW_READER); 3544 rw_enter(&sip->i_contents, RW_READER); 3545 if ((error = ufs_iaccess(sdp, IWRITE, cr, 0)) != 0 || 3546 (error = ufs_sticky_remove_access(sdp, sip, cr)) != 0) { 3547 rw_exit(&sip->i_contents); 3548 rw_exit(&sdp->i_contents); 3549 goto errout; 3550 } 3551 3552 /* 3553 * If this is a rename of a directory and the parent is 3554 * different (".." must be changed), then the source 3555 * directory must not be in the directory hierarchy 3556 * above the target, as this would orphan everything 3557 * below the source directory. Also the user must have 3558 * write permission in the source so as to be able to 3559 * change "..". 3560 */ 3561 if ((((sip->i_mode & IFMT) == IFDIR) || 3562 ((sip->i_mode & IFMT) == IFATTRDIR)) && sdp != tdp) { 3563 ino_t inum; 3564 3565 if (error = ufs_iaccess(sip, IWRITE, cr, 0)) { 3566 rw_exit(&sip->i_contents); 3567 rw_exit(&sdp->i_contents); 3568 goto errout; 3569 } 3570 inum = sip->i_number; 3571 rw_exit(&sip->i_contents); 3572 rw_exit(&sdp->i_contents); 3573 if ((error = ufs_dircheckpath(inum, tdp, sdp, cr))) { 3574 /* 3575 * If we got EAGAIN ufs_dircheckpath detected a 3576 * potential deadlock and backed out. We need 3577 * to retry the operation since sdp and tdp have 3578 * to be released to avoid the deadlock. 3579 */ 3580 if (error == EAGAIN) { 3581 rw_exit(&tdp->i_rwlock); 3582 if (tdp != sdp) 3583 rw_exit(&sdp->i_rwlock); 3584 delay(ufs_rename_backoff_delay); 3585 ufs_rename_dircheck_retry_cnt++; 3586 goto retry; 3587 } 3588 goto errout; 3589 } 3590 } else { 3591 rw_exit(&sip->i_contents); 3592 rw_exit(&sdp->i_contents); 3593 } 3594 3595 3596 /* 3597 * Check for renaming '.' or '..' or alias of '.' 3598 */ 3599 if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0 || sdp == sip) { 3600 error = EINVAL; 3601 goto errout; 3602 } 3603 3604 /* 3605 * Simultaneous renames can deadlock in ufs_dircheckpath since it 3606 * tries to traverse back the file tree with both tdp and sdp held 3607 * as RW_WRITER. To avoid that we have to hold the tdp and sdp locks 3608 * as RW_READERS till ufs_dircheckpath is done. 3609 * Now that ufs_dircheckpath is done with, we can upgrade the locks 3610 * to RW_WRITER. 3611 */ 3612 if (!rw_tryupgrade(&tdp->i_rwlock)) { 3613 /* 3614 * The upgrade failed. We got to give away the lock 3615 * as to avoid deadlocking with someone else who is 3616 * waiting for writer lock. With the lock gone, we 3617 * cannot be sure the checks done above will hold 3618 * good when we eventually get them back as writer. 3619 * So if we can't upgrade we drop the locks and retry 3620 * everything again. 3621 */ 3622 rw_exit(&tdp->i_rwlock); 3623 if (tdp != sdp) 3624 rw_exit(&sdp->i_rwlock); 3625 delay(ufs_rename_backoff_delay); 3626 ufs_rename_upgrade_retry_cnt++; 3627 goto retry; 3628 } 3629 if (tdp != sdp) { 3630 if (!rw_tryupgrade(&sdp->i_rwlock)) { 3631 /* 3632 * The upgrade failed. We got to give away the lock 3633 * as to avoid deadlocking with someone else who is 3634 * waiting for writer lock. With the lock gone, we 3635 * cannot be sure the checks done above will hold 3636 * good when we eventually get them back as writer. 3637 * So if we can't upgrade we drop the locks and retry 3638 * everything again. 3639 */ 3640 rw_exit(&tdp->i_rwlock); 3641 rw_exit(&sdp->i_rwlock); 3642 delay(ufs_rename_backoff_delay); 3643 ufs_rename_upgrade_retry_cnt++; 3644 goto retry; 3645 } 3646 } 3647 3648 /* 3649 * Now that all the locks are held check to make sure another thread 3650 * didn't slip in and take out the sip. 3651 */ 3652 slot.status = NONE; 3653 if ((sip->i_ctime.tv_usec * 1000) > now.tv_nsec || 3654 sip->i_ctime.tv_sec > now.tv_sec) { 3655 rw_enter(&sdp->i_ufsvfs->vfs_dqrwlock, RW_READER); 3656 rw_enter(&sdp->i_contents, RW_WRITER); 3657 error = ufs_dircheckforname(sdp, snm, strlen(snm), &slot, 3658 &ip, cr, 0); 3659 rw_exit(&sdp->i_contents); 3660 rw_exit(&sdp->i_ufsvfs->vfs_dqrwlock); 3661 if (error) { 3662 goto errout; 3663 } 3664 if (ip == NULL) { 3665 error = ENOENT; 3666 goto errout; 3667 } else { 3668 /* 3669 * If the inode was found need to drop the v_count 3670 * so as not to keep the filesystem from being 3671 * unmounted at a later time. 3672 */ 3673 VN_RELE(ITOV(ip)); 3674 } 3675 3676 /* 3677 * Release the slot.fbp that has the page mapped and 3678 * locked SE_SHARED, and could be used in in 3679 * ufs_direnter_lr() which needs to get the SE_EXCL lock 3680 * on said page. 3681 */ 3682 if (slot.fbp) { 3683 fbrelse(slot.fbp, S_OTHER); 3684 slot.fbp = NULL; 3685 } 3686 } 3687 3688 /* 3689 * Link source to the target. 3690 */ 3691 if (error = ufs_direnter_lr(tdp, tnm, DE_RENAME, sdp, sip, cr)) { 3692 /* 3693 * ESAME isn't really an error; it indicates that the 3694 * operation should not be done because the source and target 3695 * are the same file, but that no error should be reported. 3696 */ 3697 if (error == ESAME) 3698 error = 0; 3699 goto errout; 3700 } 3701 3702 if (error == 0 && tvp != NULL) 3703 vnevent_rename_dest(tvp, tdvp, tnm, ct); 3704 3705 /* 3706 * Unlink the source. 3707 * Remove the source entry. ufs_dirremove() checks that the entry 3708 * still reflects sip, and returns an error if it doesn't. 3709 * If the entry has changed just forget about it. Release 3710 * the source inode. 3711 */ 3712 if ((error = ufs_dirremove(sdp, snm, sip, (struct vnode *)0, 3713 DR_RENAME, cr)) == ENOENT) 3714 error = 0; 3715 3716 if (error == 0) { 3717 vnevent_rename_src(ITOV(sip), sdvp, snm, ct); 3718 /* 3719 * Notify the target directory of the rename event 3720 * if source and target directories are not the same. 3721 */ 3722 if (sdvp != tdvp) 3723 vnevent_rename_dest_dir(tdvp, ct); 3724 } 3725 3726 errout: 3727 if (slot.fbp) 3728 fbrelse(slot.fbp, S_OTHER); 3729 3730 rw_exit(&tdp->i_rwlock); 3731 if (sdp != tdp) { 3732 rw_exit(&sdp->i_rwlock); 3733 } 3734 3735 unlock: 3736 if (tvp != NULL) 3737 VN_RELE(tvp); 3738 if (sip != NULL) 3739 VN_RELE(ITOV(sip)); 3740 3741 if (ulp) { 3742 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, trans_size); 3743 ufs_lockfs_end(ulp); 3744 } 3745 3746 return (error); 3747 } 3748 3749 /*ARGSUSED*/ 3750 static int 3751 ufs_mkdir(struct vnode *dvp, char *dirname, struct vattr *vap, 3752 struct vnode **vpp, struct cred *cr, caller_context_t *ct, int flags, 3753 vsecattr_t *vsecp) 3754 { 3755 struct inode *ip; 3756 struct inode *xip; 3757 struct ufsvfs *ufsvfsp; 3758 struct ulockfs *ulp; 3759 int error; 3760 int issync; 3761 int trans_size; 3762 int indeadlock; 3763 int retry = 1; 3764 3765 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 3766 3767 /* 3768 * Can't make directory in attr hidden dir 3769 */ 3770 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR) 3771 return (EINVAL); 3772 3773 again: 3774 ip = VTOI(dvp); 3775 ufsvfsp = ip->i_ufsvfs; 3776 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MKDIR_MASK); 3777 if (error) 3778 goto out; 3779 if (ulp) 3780 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_MKDIR, 3781 trans_size = (int)TOP_MKDIR_SIZE(ip)); 3782 3783 /* 3784 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3785 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3786 * possible, retries the operation. 3787 */ 3788 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_MKDIR, retry); 3789 if (indeadlock) 3790 goto again; 3791 3792 error = ufs_direnter_cm(ip, dirname, DE_MKDIR, vap, &xip, cr, 3793 (retry ? IQUIET : 0)); 3794 if (error == EAGAIN) { 3795 if (ulp) { 3796 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_MKDIR, 3797 trans_size); 3798 ufs_lockfs_end(ulp); 3799 } 3800 goto again; 3801 } 3802 3803 rw_exit(&ip->i_rwlock); 3804 if (error == 0) { 3805 ip = xip; 3806 *vpp = ITOV(ip); 3807 } else if (error == EEXIST) 3808 VN_RELE(ITOV(xip)); 3809 3810 if (ulp) { 3811 int terr = 0; 3812 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_MKDIR, trans_size); 3813 ufs_lockfs_end(ulp); 3814 if (error == 0) 3815 error = terr; 3816 } 3817 out: 3818 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 3819 ufs_delete_drain_wait(ufsvfsp, 1); 3820 retry = 0; 3821 goto again; 3822 } 3823 3824 return (error); 3825 } 3826 3827 /*ARGSUSED*/ 3828 static int 3829 ufs_rmdir(struct vnode *vp, char *nm, struct vnode *cdir, struct cred *cr, 3830 caller_context_t *ct, int flags) 3831 { 3832 struct inode *ip = VTOI(vp); 3833 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 3834 struct ulockfs *ulp; 3835 vnode_t *rmvp = NULL; /* Vnode of removed directory */ 3836 int error; 3837 int issync; 3838 int trans_size; 3839 int indeadlock; 3840 3841 /* 3842 * don't let the delete queue get too long 3843 */ 3844 if (ufsvfsp == NULL) { 3845 error = EIO; 3846 goto out; 3847 } 3848 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max) 3849 ufs_delete_drain(vp->v_vfsp, 1, 1); 3850 3851 error = ufs_eventlookup(vp, nm, cr, &rmvp); 3852 if (rmvp != NULL) { 3853 /* Only send the event if there were no errors */ 3854 if (error == 0) 3855 vnevent_rmdir(rmvp, vp, nm, ct); 3856 VN_RELE(rmvp); 3857 } 3858 3859 retry_rmdir: 3860 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RMDIR_MASK); 3861 if (error) 3862 goto out; 3863 3864 if (ulp) 3865 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RMDIR, 3866 trans_size = TOP_RMDIR_SIZE); 3867 3868 /* 3869 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3870 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3871 * possible, retries the operation. 3872 */ 3873 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_RMDIR, retry); 3874 if (indeadlock) 3875 goto retry_rmdir; 3876 error = ufs_dirremove(ip, nm, (struct inode *)0, cdir, DR_RMDIR, cr); 3877 3878 rw_exit(&ip->i_rwlock); 3879 3880 if (ulp) { 3881 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RMDIR, 3882 trans_size); 3883 ufs_lockfs_end(ulp); 3884 } 3885 3886 out: 3887 return (error); 3888 } 3889 3890 /* ARGSUSED */ 3891 static int 3892 ufs_readdir(struct vnode *vp, struct uio *uiop, struct cred *cr, int *eofp, 3893 caller_context_t *ct, int flags) 3894 { 3895 struct iovec *iovp; 3896 struct inode *ip; 3897 struct direct *idp; 3898 struct dirent64 *odp; 3899 struct fbuf *fbp; 3900 struct ufsvfs *ufsvfsp; 3901 struct ulockfs *ulp; 3902 caddr_t outbuf; 3903 size_t bufsize; 3904 uint_t offset; 3905 uint_t bytes_wanted, total_bytes_wanted; 3906 int incount = 0; 3907 int outcount = 0; 3908 int error; 3909 3910 ip = VTOI(vp); 3911 ASSERT(RW_READ_HELD(&ip->i_rwlock)); 3912 3913 if (uiop->uio_loffset >= MAXOFF32_T) { 3914 if (eofp) 3915 *eofp = 1; 3916 return (0); 3917 } 3918 3919 /* 3920 * Check if we have been called with a valid iov_len 3921 * and bail out if not, otherwise we may potentially loop 3922 * forever further down. 3923 */ 3924 if (uiop->uio_iov->iov_len <= 0) { 3925 error = EINVAL; 3926 goto out; 3927 } 3928 3929 /* 3930 * Large Files: When we come here we are guaranteed that 3931 * uio_offset can be used safely. The high word is zero. 3932 */ 3933 3934 ufsvfsp = ip->i_ufsvfs; 3935 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READDIR_MASK); 3936 if (error) 3937 goto out; 3938 3939 iovp = uiop->uio_iov; 3940 total_bytes_wanted = iovp->iov_len; 3941 3942 /* Large Files: directory files should not be "large" */ 3943 3944 ASSERT(ip->i_size <= MAXOFF32_T); 3945 3946 /* Force offset to be valid (to guard against bogus lseek() values) */ 3947 offset = (uint_t)uiop->uio_offset & ~(DIRBLKSIZ - 1); 3948 3949 /* Quit if at end of file or link count of zero (posix) */ 3950 if (offset >= (uint_t)ip->i_size || ip->i_nlink <= 0) { 3951 if (eofp) 3952 *eofp = 1; 3953 error = 0; 3954 goto unlock; 3955 } 3956 3957 /* 3958 * Get space to change directory entries into fs independent format. 3959 * Do fast alloc for the most commonly used-request size (filesystem 3960 * block size). 3961 */ 3962 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) { 3963 bufsize = total_bytes_wanted; 3964 outbuf = kmem_alloc(bufsize, KM_SLEEP); 3965 odp = (struct dirent64 *)outbuf; 3966 } else { 3967 bufsize = total_bytes_wanted; 3968 odp = (struct dirent64 *)iovp->iov_base; 3969 } 3970 3971 nextblk: 3972 bytes_wanted = total_bytes_wanted; 3973 3974 /* Truncate request to file size */ 3975 if (offset + bytes_wanted > (int)ip->i_size) 3976 bytes_wanted = (int)(ip->i_size - offset); 3977 3978 /* Comply with MAXBSIZE boundary restrictions of fbread() */ 3979 if ((offset & MAXBOFFSET) + bytes_wanted > MAXBSIZE) 3980 bytes_wanted = MAXBSIZE - (offset & MAXBOFFSET); 3981 3982 /* 3983 * Read in the next chunk. 3984 * We are still holding the i_rwlock. 3985 */ 3986 error = fbread(vp, (offset_t)offset, bytes_wanted, S_OTHER, &fbp); 3987 3988 if (error) 3989 goto update_inode; 3990 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (ip->i_fs->fs_ronly == 0) && 3991 (!ufsvfsp->vfs_noatime)) { 3992 ip->i_flag |= IACC; 3993 } 3994 incount = 0; 3995 idp = (struct direct *)fbp->fb_addr; 3996 if (idp->d_ino == 0 && idp->d_reclen == 0 && idp->d_namlen == 0) { 3997 cmn_err(CE_WARN, "ufs_readdir: bad dir, inumber = %llu, " 3998 "fs = %s\n", 3999 (u_longlong_t)ip->i_number, ufsvfsp->vfs_fs->fs_fsmnt); 4000 fbrelse(fbp, S_OTHER); 4001 error = ENXIO; 4002 goto update_inode; 4003 } 4004 /* Transform to file-system independent format */ 4005 while (incount < bytes_wanted) { 4006 /* 4007 * If the current directory entry is mangled, then skip 4008 * to the next block. It would be nice to set the FSBAD 4009 * flag in the super-block so that a fsck is forced on 4010 * next reboot, but locking is a problem. 4011 */ 4012 if (idp->d_reclen & 0x3) { 4013 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1); 4014 break; 4015 } 4016 4017 /* Skip to requested offset and skip empty entries */ 4018 if (idp->d_ino != 0 && offset >= (uint_t)uiop->uio_offset) { 4019 ushort_t this_reclen = 4020 DIRENT64_RECLEN(idp->d_namlen); 4021 /* Buffer too small for any entries */ 4022 if (!outcount && this_reclen > bufsize) { 4023 fbrelse(fbp, S_OTHER); 4024 error = EINVAL; 4025 goto update_inode; 4026 } 4027 /* If would overrun the buffer, quit */ 4028 if (outcount + this_reclen > bufsize) { 4029 break; 4030 } 4031 /* Take this entry */ 4032 odp->d_ino = (ino64_t)idp->d_ino; 4033 odp->d_reclen = (ushort_t)this_reclen; 4034 odp->d_off = (offset_t)(offset + idp->d_reclen); 4035 4036 /* use strncpy(9f) to zero out uninitialized bytes */ 4037 4038 ASSERT(strlen(idp->d_name) + 1 <= 4039 DIRENT64_NAMELEN(this_reclen)); 4040 (void) strncpy(odp->d_name, idp->d_name, 4041 DIRENT64_NAMELEN(this_reclen)); 4042 outcount += odp->d_reclen; 4043 odp = (struct dirent64 *) 4044 ((intptr_t)odp + odp->d_reclen); 4045 ASSERT(outcount <= bufsize); 4046 } 4047 if (idp->d_reclen) { 4048 incount += idp->d_reclen; 4049 offset += idp->d_reclen; 4050 idp = (struct direct *)((intptr_t)idp + idp->d_reclen); 4051 } else { 4052 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1); 4053 break; 4054 } 4055 } 4056 /* Release the chunk */ 4057 fbrelse(fbp, S_OTHER); 4058 4059 /* Read whole block, but got no entries, read another if not eof */ 4060 4061 /* 4062 * Large Files: casting i_size to int here is not a problem 4063 * because directory sizes are always less than MAXOFF32_T. 4064 * See assertion above. 4065 */ 4066 4067 if (offset < (int)ip->i_size && !outcount) 4068 goto nextblk; 4069 4070 /* Copy out the entry data */ 4071 if (uiop->uio_segflg == UIO_SYSSPACE && uiop->uio_iovcnt == 1) { 4072 iovp->iov_base += outcount; 4073 iovp->iov_len -= outcount; 4074 uiop->uio_resid -= outcount; 4075 uiop->uio_offset = offset; 4076 } else if ((error = uiomove(outbuf, (long)outcount, UIO_READ, 4077 uiop)) == 0) 4078 uiop->uio_offset = offset; 4079 update_inode: 4080 ITIMES(ip); 4081 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) 4082 kmem_free(outbuf, bufsize); 4083 4084 if (eofp && error == 0) 4085 *eofp = (uiop->uio_offset >= (int)ip->i_size); 4086 unlock: 4087 if (ulp) { 4088 ufs_lockfs_end(ulp); 4089 } 4090 out: 4091 return (error); 4092 } 4093 4094 /*ARGSUSED*/ 4095 static int 4096 ufs_symlink(struct vnode *dvp, char *linkname, struct vattr *vap, char *target, 4097 struct cred *cr, caller_context_t *ct, int flags) 4098 { 4099 struct inode *ip, *dip = VTOI(dvp); 4100 struct ufsvfs *ufsvfsp = dip->i_ufsvfs; 4101 struct ulockfs *ulp; 4102 int error; 4103 int issync; 4104 int trans_size; 4105 int residual; 4106 int ioflag; 4107 int retry = 1; 4108 4109 /* 4110 * No symlinks in attrdirs at this time 4111 */ 4112 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR) 4113 return (EINVAL); 4114 4115 again: 4116 ip = (struct inode *)NULL; 4117 vap->va_type = VLNK; 4118 vap->va_rdev = 0; 4119 4120 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SYMLINK_MASK); 4121 if (error) 4122 goto out; 4123 4124 if (ulp) 4125 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SYMLINK, 4126 trans_size = (int)TOP_SYMLINK_SIZE(dip)); 4127 4128 /* 4129 * We must create the inode before the directory entry, to avoid 4130 * racing with readlink(). ufs_dirmakeinode requires that we 4131 * hold the quota lock as reader, and directory locks as writer. 4132 */ 4133 4134 rw_enter(&dip->i_rwlock, RW_WRITER); 4135 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4136 rw_enter(&dip->i_contents, RW_WRITER); 4137 4138 /* 4139 * Suppress any out of inodes messages if we will retry on 4140 * ENOSP 4141 */ 4142 if (retry) 4143 dip->i_flag |= IQUIET; 4144 4145 error = ufs_dirmakeinode(dip, &ip, vap, DE_SYMLINK, cr); 4146 4147 dip->i_flag &= ~IQUIET; 4148 4149 rw_exit(&dip->i_contents); 4150 rw_exit(&ufsvfsp->vfs_dqrwlock); 4151 rw_exit(&dip->i_rwlock); 4152 4153 if (error) 4154 goto unlock; 4155 4156 /* 4157 * OK. The inode has been created. Write out the data of the 4158 * symbolic link. Since symbolic links are metadata, and should 4159 * remain consistent across a system crash, we need to force the 4160 * data out synchronously. 4161 * 4162 * (This is a change from the semantics in earlier releases, which 4163 * only created symbolic links synchronously if the semi-documented 4164 * 'syncdir' option was set, or if we were being invoked by the NFS 4165 * server, which requires symbolic links to be created synchronously.) 4166 * 4167 * We need to pass in a pointer for the residual length; otherwise 4168 * ufs_rdwri() will always return EIO if it can't write the data, 4169 * even if the error was really ENOSPC or EDQUOT. 4170 */ 4171 4172 ioflag = FWRITE | FDSYNC; 4173 residual = 0; 4174 4175 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4176 rw_enter(&ip->i_contents, RW_WRITER); 4177 4178 /* 4179 * Suppress file system full messages if we will retry 4180 */ 4181 if (retry) 4182 ip->i_flag |= IQUIET; 4183 4184 error = ufs_rdwri(UIO_WRITE, ioflag, ip, target, strlen(target), 4185 (offset_t)0, UIO_SYSSPACE, &residual, cr); 4186 4187 ip->i_flag &= ~IQUIET; 4188 4189 if (error) { 4190 rw_exit(&ip->i_contents); 4191 rw_exit(&ufsvfsp->vfs_dqrwlock); 4192 goto remove; 4193 } 4194 4195 /* 4196 * If the link's data is small enough, we can cache it in the inode. 4197 * This is a "fast symbolic link". We don't use the first direct 4198 * block because that's actually used to point at the symbolic link's 4199 * contents on disk; but we know that none of the other direct or 4200 * indirect blocks can be used because symbolic links are restricted 4201 * to be smaller than a file system block. 4202 */ 4203 4204 ASSERT(MAXPATHLEN <= VBSIZE(ITOV(ip))); 4205 4206 if (ip->i_size > 0 && ip->i_size <= FSL_SIZE) { 4207 if (kcopy(target, &ip->i_db[1], ip->i_size) == 0) { 4208 ip->i_flag |= IFASTSYMLNK; 4209 } else { 4210 int i; 4211 /* error, clear garbage left behind */ 4212 for (i = 1; i < NDADDR; i++) 4213 ip->i_db[i] = 0; 4214 for (i = 0; i < NIADDR; i++) 4215 ip->i_ib[i] = 0; 4216 } 4217 } 4218 4219 rw_exit(&ip->i_contents); 4220 rw_exit(&ufsvfsp->vfs_dqrwlock); 4221 4222 /* 4223 * OK. We've successfully created the symbolic link. All that 4224 * remains is to insert it into the appropriate directory. 4225 */ 4226 4227 rw_enter(&dip->i_rwlock, RW_WRITER); 4228 error = ufs_direnter_lr(dip, linkname, DE_SYMLINK, NULL, ip, cr); 4229 rw_exit(&dip->i_rwlock); 4230 4231 /* 4232 * Fall through into remove-on-error code. We're either done, or we 4233 * need to remove the inode (if we couldn't insert it). 4234 */ 4235 4236 remove: 4237 if (error && (ip != NULL)) { 4238 rw_enter(&ip->i_contents, RW_WRITER); 4239 ip->i_nlink--; 4240 ip->i_flag |= ICHG; 4241 ip->i_seq++; 4242 ufs_setreclaim(ip); 4243 rw_exit(&ip->i_contents); 4244 } 4245 4246 unlock: 4247 if (ip != NULL) 4248 VN_RELE(ITOV(ip)); 4249 4250 if (ulp) { 4251 int terr = 0; 4252 4253 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SYMLINK, 4254 trans_size); 4255 ufs_lockfs_end(ulp); 4256 if (error == 0) 4257 error = terr; 4258 } 4259 4260 /* 4261 * We may have failed due to lack of an inode or of a block to 4262 * store the target in. Try flushing the delete queue to free 4263 * logically-available things up and try again. 4264 */ 4265 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 4266 ufs_delete_drain_wait(ufsvfsp, 1); 4267 retry = 0; 4268 goto again; 4269 } 4270 4271 out: 4272 return (error); 4273 } 4274 4275 /* 4276 * Ufs specific routine used to do ufs io. 4277 */ 4278 int 4279 ufs_rdwri(enum uio_rw rw, int ioflag, struct inode *ip, caddr_t base, 4280 ssize_t len, offset_t offset, enum uio_seg seg, int *aresid, 4281 struct cred *cr) 4282 { 4283 struct uio auio; 4284 struct iovec aiov; 4285 int error; 4286 4287 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 4288 4289 bzero((caddr_t)&auio, sizeof (uio_t)); 4290 bzero((caddr_t)&aiov, sizeof (iovec_t)); 4291 4292 aiov.iov_base = base; 4293 aiov.iov_len = len; 4294 auio.uio_iov = &aiov; 4295 auio.uio_iovcnt = 1; 4296 auio.uio_loffset = offset; 4297 auio.uio_segflg = (short)seg; 4298 auio.uio_resid = len; 4299 4300 if (rw == UIO_WRITE) { 4301 auio.uio_fmode = FWRITE; 4302 auio.uio_extflg = UIO_COPY_DEFAULT; 4303 auio.uio_llimit = curproc->p_fsz_ctl; 4304 error = wrip(ip, &auio, ioflag, cr); 4305 } else { 4306 auio.uio_fmode = FREAD; 4307 auio.uio_extflg = UIO_COPY_CACHED; 4308 auio.uio_llimit = MAXOFFSET_T; 4309 error = rdip(ip, &auio, ioflag, cr); 4310 } 4311 4312 if (aresid) { 4313 *aresid = auio.uio_resid; 4314 } else if (auio.uio_resid) { 4315 error = EIO; 4316 } 4317 return (error); 4318 } 4319 4320 /*ARGSUSED*/ 4321 static int 4322 ufs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct) 4323 { 4324 struct ufid *ufid; 4325 struct inode *ip = VTOI(vp); 4326 4327 if (ip->i_ufsvfs == NULL) 4328 return (EIO); 4329 4330 if (fidp->fid_len < (sizeof (struct ufid) - sizeof (ushort_t))) { 4331 fidp->fid_len = sizeof (struct ufid) - sizeof (ushort_t); 4332 return (ENOSPC); 4333 } 4334 4335 ufid = (struct ufid *)fidp; 4336 bzero((char *)ufid, sizeof (struct ufid)); 4337 ufid->ufid_len = sizeof (struct ufid) - sizeof (ushort_t); 4338 ufid->ufid_ino = ip->i_number; 4339 ufid->ufid_gen = ip->i_gen; 4340 4341 return (0); 4342 } 4343 4344 /* ARGSUSED2 */ 4345 static int 4346 ufs_rwlock(struct vnode *vp, int write_lock, caller_context_t *ctp) 4347 { 4348 struct inode *ip = VTOI(vp); 4349 struct ufsvfs *ufsvfsp; 4350 int forcedirectio; 4351 4352 /* 4353 * Read case is easy. 4354 */ 4355 if (!write_lock) { 4356 rw_enter(&ip->i_rwlock, RW_READER); 4357 return (V_WRITELOCK_FALSE); 4358 } 4359 4360 /* 4361 * Caller has requested a writer lock, but that inhibits any 4362 * concurrency in the VOPs that follow. Acquire the lock shared 4363 * and defer exclusive access until it is known to be needed in 4364 * other VOP handlers. Some cases can be determined here. 4365 */ 4366 4367 /* 4368 * If directio is not set, there is no chance of concurrency, 4369 * so just acquire the lock exclusive. Beware of a forced 4370 * unmount before looking at the mount option. 4371 */ 4372 ufsvfsp = ip->i_ufsvfs; 4373 forcedirectio = ufsvfsp ? ufsvfsp->vfs_forcedirectio : 0; 4374 if (!(ip->i_flag & IDIRECTIO || forcedirectio) || 4375 !ufs_allow_shared_writes) { 4376 rw_enter(&ip->i_rwlock, RW_WRITER); 4377 return (V_WRITELOCK_TRUE); 4378 } 4379 4380 /* 4381 * Mandatory locking forces acquiring i_rwlock exclusive. 4382 */ 4383 if (MANDLOCK(vp, ip->i_mode)) { 4384 rw_enter(&ip->i_rwlock, RW_WRITER); 4385 return (V_WRITELOCK_TRUE); 4386 } 4387 4388 /* 4389 * Acquire the lock shared in case a concurrent write follows. 4390 * Mandatory locking could have become enabled before the lock 4391 * was acquired. Re-check and upgrade if needed. 4392 */ 4393 rw_enter(&ip->i_rwlock, RW_READER); 4394 if (MANDLOCK(vp, ip->i_mode)) { 4395 rw_exit(&ip->i_rwlock); 4396 rw_enter(&ip->i_rwlock, RW_WRITER); 4397 return (V_WRITELOCK_TRUE); 4398 } 4399 return (V_WRITELOCK_FALSE); 4400 } 4401 4402 /*ARGSUSED*/ 4403 static void 4404 ufs_rwunlock(struct vnode *vp, int write_lock, caller_context_t *ctp) 4405 { 4406 struct inode *ip = VTOI(vp); 4407 4408 rw_exit(&ip->i_rwlock); 4409 } 4410 4411 /* ARGSUSED */ 4412 static int 4413 ufs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 4414 { 4415 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4416 } 4417 4418 /* ARGSUSED */ 4419 static int 4420 ufs_frlock(struct vnode *vp, int cmd, struct flock64 *bfp, int flag, 4421 offset_t offset, struct flk_callback *flk_cbp, struct cred *cr, 4422 caller_context_t *ct) 4423 { 4424 struct inode *ip = VTOI(vp); 4425 4426 if (ip->i_ufsvfs == NULL) 4427 return (EIO); 4428 4429 /* 4430 * If file is being mapped, disallow frlock. 4431 * XXX I am not holding tlock while checking i_mapcnt because the 4432 * current locking strategy drops all locks before calling fs_frlock. 4433 * So, mapcnt could change before we enter fs_frlock making is 4434 * meaningless to have held tlock in the first place. 4435 */ 4436 if (ip->i_mapcnt > 0 && MANDLOCK(vp, ip->i_mode)) 4437 return (EAGAIN); 4438 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4439 } 4440 4441 /* ARGSUSED */ 4442 static int 4443 ufs_space(struct vnode *vp, int cmd, struct flock64 *bfp, int flag, 4444 offset_t offset, cred_t *cr, caller_context_t *ct) 4445 { 4446 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 4447 struct ulockfs *ulp; 4448 int error; 4449 4450 if ((error = convoff(vp, bfp, 0, offset)) == 0) { 4451 if (cmd == F_FREESP) { 4452 error = ufs_lockfs_begin(ufsvfsp, &ulp, 4453 ULOCKFS_SPACE_MASK); 4454 if (error) 4455 return (error); 4456 error = ufs_freesp(vp, bfp, flag, cr); 4457 4458 if (error == 0 && bfp->l_start == 0) 4459 vnevent_truncate(vp, ct); 4460 } else if (cmd == F_ALLOCSP) { 4461 error = ufs_lockfs_begin(ufsvfsp, &ulp, 4462 ULOCKFS_FALLOCATE_MASK); 4463 if (error) 4464 return (error); 4465 error = ufs_allocsp(vp, bfp, cr); 4466 } else 4467 return (EINVAL); /* Command not handled here */ 4468 4469 if (ulp) 4470 ufs_lockfs_end(ulp); 4471 4472 } 4473 return (error); 4474 } 4475 4476 /* 4477 * Used to determine if read ahead should be done. Also used to 4478 * to determine when write back occurs. 4479 */ 4480 #define CLUSTSZ(ip) ((ip)->i_ufsvfs->vfs_ioclustsz) 4481 4482 /* 4483 * A faster version of ufs_getpage. 4484 * 4485 * We optimize by inlining the pvn_getpages iterator, eliminating 4486 * calls to bmap_read if file doesn't have UFS holes, and avoiding 4487 * the overhead of page_exists(). 4488 * 4489 * When files has UFS_HOLES and ufs_getpage is called with S_READ, 4490 * we set *protp to PROT_READ to avoid calling bmap_read. This approach 4491 * victimizes performance when a file with UFS holes is faulted 4492 * first in the S_READ mode, and then in the S_WRITE mode. We will get 4493 * two MMU faults in this case. 4494 * 4495 * XXX - the inode fields which control the sequential mode are not 4496 * protected by any mutex. The read ahead will act wild if 4497 * multiple processes will access the file concurrently and 4498 * some of them in sequential mode. One particulary bad case 4499 * is if another thread will change the value of i_nextrio between 4500 * the time this thread tests the i_nextrio value and then reads it 4501 * again to use it as the offset for the read ahead. 4502 */ 4503 /*ARGSUSED*/ 4504 static int 4505 ufs_getpage(struct vnode *vp, offset_t off, size_t len, uint_t *protp, 4506 page_t *plarr[], size_t plsz, struct seg *seg, caddr_t addr, 4507 enum seg_rw rw, struct cred *cr, caller_context_t *ct) 4508 { 4509 u_offset_t uoff = (u_offset_t)off; /* type conversion */ 4510 u_offset_t pgoff; 4511 u_offset_t eoff; 4512 struct inode *ip = VTOI(vp); 4513 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 4514 struct fs *fs; 4515 struct ulockfs *ulp; 4516 page_t **pl; 4517 caddr_t pgaddr; 4518 krw_t rwtype; 4519 int err; 4520 int has_holes; 4521 int beyond_eof; 4522 int seqmode; 4523 int pgsize = PAGESIZE; 4524 int dolock; 4525 int do_qlock; 4526 int trans_size; 4527 4528 ASSERT((uoff & PAGEOFFSET) == 0); 4529 4530 if (protp) 4531 *protp = PROT_ALL; 4532 4533 /* 4534 * Obey the lockfs protocol 4535 */ 4536 err = ufs_lockfs_begin_getpage(ufsvfsp, &ulp, seg, 4537 rw == S_READ || rw == S_EXEC, protp); 4538 if (err) 4539 goto out; 4540 4541 fs = ufsvfsp->vfs_fs; 4542 4543 if (ulp && (rw == S_CREATE || rw == S_WRITE) && 4544 !(vp->v_flag & VISSWAP)) { 4545 /* 4546 * Try to start a transaction, will return if blocking is 4547 * expected to occur and the address space is not the 4548 * kernel address space. 4549 */ 4550 trans_size = TOP_GETPAGE_SIZE(ip); 4551 if (seg->s_as != &kas) { 4552 TRANS_TRY_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, 4553 trans_size, err) 4554 if (err == EWOULDBLOCK) { 4555 /* 4556 * Use EDEADLK here because the VM code 4557 * can normally never see this error. 4558 */ 4559 err = EDEADLK; 4560 ufs_lockfs_end(ulp); 4561 goto out; 4562 } 4563 } else { 4564 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size); 4565 } 4566 } 4567 4568 if (vp->v_flag & VNOMAP) { 4569 err = ENOSYS; 4570 goto unlock; 4571 } 4572 4573 seqmode = ip->i_nextr == uoff && rw != S_CREATE; 4574 4575 rwtype = RW_READER; /* start as a reader */ 4576 dolock = (rw_owner(&ip->i_contents) != curthread); 4577 /* 4578 * If this thread owns the lock, i.e., this thread grabbed it 4579 * as writer somewhere above, then we don't need to grab the 4580 * lock as reader in this routine. 4581 */ 4582 do_qlock = (rw_owner(&ufsvfsp->vfs_dqrwlock) != curthread); 4583 4584 retrylock: 4585 if (dolock) { 4586 /* 4587 * Grab the quota lock if we need to call 4588 * bmap_write() below (with i_contents as writer). 4589 */ 4590 if (do_qlock && rwtype == RW_WRITER) 4591 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4592 rw_enter(&ip->i_contents, rwtype); 4593 } 4594 4595 /* 4596 * We may be getting called as a side effect of a bmap using 4597 * fbread() when the blocks might be being allocated and the 4598 * size has not yet been up'ed. In this case we want to be 4599 * able to return zero pages if we get back UFS_HOLE from 4600 * calling bmap for a non write case here. We also might have 4601 * to read some frags from the disk into a page if we are 4602 * extending the number of frags for a given lbn in bmap(). 4603 * Large Files: The read of i_size here is atomic because 4604 * i_contents is held here. If dolock is zero, the lock 4605 * is held in bmap routines. 4606 */ 4607 beyond_eof = uoff + len > 4608 P2ROUNDUP_TYPED(ip->i_size, PAGESIZE, u_offset_t); 4609 if (beyond_eof && seg != segkmap) { 4610 if (dolock) { 4611 rw_exit(&ip->i_contents); 4612 if (do_qlock && rwtype == RW_WRITER) 4613 rw_exit(&ufsvfsp->vfs_dqrwlock); 4614 } 4615 err = EFAULT; 4616 goto unlock; 4617 } 4618 4619 /* 4620 * Must hold i_contents lock throughout the call to pvn_getpages 4621 * since locked pages are returned from each call to ufs_getapage. 4622 * Must *not* return locked pages and then try for contents lock 4623 * due to lock ordering requirements (inode > page) 4624 */ 4625 4626 has_holes = bmap_has_holes(ip); 4627 4628 if ((rw == S_WRITE || rw == S_CREATE) && has_holes && !beyond_eof) { 4629 int blk_size; 4630 u_offset_t offset; 4631 4632 /* 4633 * We must acquire the RW_WRITER lock in order to 4634 * call bmap_write(). 4635 */ 4636 if (dolock && rwtype == RW_READER) { 4637 rwtype = RW_WRITER; 4638 4639 /* 4640 * Grab the quota lock before 4641 * upgrading i_contents, but if we can't grab it 4642 * don't wait here due to lock order: 4643 * vfs_dqrwlock > i_contents. 4644 */ 4645 if (do_qlock && 4646 rw_tryenter(&ufsvfsp->vfs_dqrwlock, RW_READER) 4647 == 0) { 4648 rw_exit(&ip->i_contents); 4649 goto retrylock; 4650 } 4651 if (!rw_tryupgrade(&ip->i_contents)) { 4652 rw_exit(&ip->i_contents); 4653 if (do_qlock) 4654 rw_exit(&ufsvfsp->vfs_dqrwlock); 4655 goto retrylock; 4656 } 4657 } 4658 4659 /* 4660 * May be allocating disk blocks for holes here as 4661 * a result of mmap faults. write(2) does the bmap_write 4662 * in rdip/wrip, not here. We are not dealing with frags 4663 * in this case. 4664 */ 4665 /* 4666 * Large Files: We cast fs_bmask field to offset_t 4667 * just as we do for MAXBMASK because uoff is a 64-bit 4668 * data type. fs_bmask will still be a 32-bit type 4669 * as we cannot change any ondisk data structures. 4670 */ 4671 4672 offset = uoff & (offset_t)fs->fs_bmask; 4673 while (offset < uoff + len) { 4674 blk_size = (int)blksize(fs, ip, lblkno(fs, offset)); 4675 err = bmap_write(ip, offset, blk_size, 4676 BI_NORMAL, NULL, cr); 4677 if (ip->i_flag & (ICHG|IUPD)) 4678 ip->i_seq++; 4679 if (err) 4680 goto update_inode; 4681 offset += blk_size; /* XXX - make this contig */ 4682 } 4683 } 4684 4685 /* 4686 * Can be a reader from now on. 4687 */ 4688 if (dolock && rwtype == RW_WRITER) { 4689 rw_downgrade(&ip->i_contents); 4690 /* 4691 * We can release vfs_dqrwlock early so do it, but make 4692 * sure we don't try to release it again at the bottom. 4693 */ 4694 if (do_qlock) { 4695 rw_exit(&ufsvfsp->vfs_dqrwlock); 4696 do_qlock = 0; 4697 } 4698 } 4699 4700 /* 4701 * We remove PROT_WRITE in cases when the file has UFS holes 4702 * because we don't want to call bmap_read() to check each 4703 * page if it is backed with a disk block. 4704 */ 4705 if (protp && has_holes && rw != S_WRITE && rw != S_CREATE) 4706 *protp &= ~PROT_WRITE; 4707 4708 err = 0; 4709 4710 /* 4711 * The loop looks up pages in the range [off, off + len). 4712 * For each page, we first check if we should initiate an asynchronous 4713 * read ahead before we call page_lookup (we may sleep in page_lookup 4714 * for a previously initiated disk read). 4715 */ 4716 eoff = (uoff + len); 4717 for (pgoff = uoff, pgaddr = addr, pl = plarr; 4718 pgoff < eoff; /* empty */) { 4719 page_t *pp; 4720 u_offset_t nextrio; 4721 se_t se; 4722 int retval; 4723 4724 se = ((rw == S_CREATE || rw == S_OTHER) ? SE_EXCL : SE_SHARED); 4725 4726 /* Handle async getpage (faultahead) */ 4727 if (plarr == NULL) { 4728 ip->i_nextrio = pgoff; 4729 (void) ufs_getpage_ra(vp, pgoff, seg, pgaddr); 4730 pgoff += pgsize; 4731 pgaddr += pgsize; 4732 continue; 4733 } 4734 /* 4735 * Check if we should initiate read ahead of next cluster. 4736 * We call page_exists only when we need to confirm that 4737 * we have the current page before we initiate the read ahead. 4738 */ 4739 nextrio = ip->i_nextrio; 4740 if (seqmode && 4741 pgoff + CLUSTSZ(ip) >= nextrio && pgoff <= nextrio && 4742 nextrio < ip->i_size && page_exists(vp, pgoff)) { 4743 retval = ufs_getpage_ra(vp, pgoff, seg, pgaddr); 4744 /* 4745 * We always read ahead the next cluster of data 4746 * starting from i_nextrio. If the page (vp,nextrio) 4747 * is actually in core at this point, the routine 4748 * ufs_getpage_ra() will stop pre-fetching data 4749 * until we read that page in a synchronized manner 4750 * through ufs_getpage_miss(). So, we should increase 4751 * i_nextrio if the page (vp, nextrio) exists. 4752 */ 4753 if ((retval == 0) && page_exists(vp, nextrio)) { 4754 ip->i_nextrio = nextrio + pgsize; 4755 } 4756 } 4757 4758 if ((pp = page_lookup(vp, pgoff, se)) != NULL) { 4759 /* 4760 * We found the page in the page cache. 4761 */ 4762 *pl++ = pp; 4763 pgoff += pgsize; 4764 pgaddr += pgsize; 4765 len -= pgsize; 4766 plsz -= pgsize; 4767 } else { 4768 /* 4769 * We have to create the page, or read it from disk. 4770 */ 4771 if (err = ufs_getpage_miss(vp, pgoff, len, seg, pgaddr, 4772 pl, plsz, rw, seqmode)) 4773 goto error; 4774 4775 while (*pl != NULL) { 4776 pl++; 4777 pgoff += pgsize; 4778 pgaddr += pgsize; 4779 len -= pgsize; 4780 plsz -= pgsize; 4781 } 4782 } 4783 } 4784 4785 /* 4786 * Return pages up to plsz if they are in the page cache. 4787 * We cannot return pages if there is a chance that they are 4788 * backed with a UFS hole and rw is S_WRITE or S_CREATE. 4789 */ 4790 if (plarr && !(has_holes && (rw == S_WRITE || rw == S_CREATE))) { 4791 4792 ASSERT((protp == NULL) || 4793 !(has_holes && (*protp & PROT_WRITE))); 4794 4795 eoff = pgoff + plsz; 4796 while (pgoff < eoff) { 4797 page_t *pp; 4798 4799 if ((pp = page_lookup_nowait(vp, pgoff, 4800 SE_SHARED)) == NULL) 4801 break; 4802 4803 *pl++ = pp; 4804 pgoff += pgsize; 4805 plsz -= pgsize; 4806 } 4807 } 4808 4809 if (plarr) 4810 *pl = NULL; /* Terminate page list */ 4811 ip->i_nextr = pgoff; 4812 4813 error: 4814 if (err && plarr) { 4815 /* 4816 * Release any pages we have locked. 4817 */ 4818 while (pl > &plarr[0]) 4819 page_unlock(*--pl); 4820 4821 plarr[0] = NULL; 4822 } 4823 4824 update_inode: 4825 /* 4826 * If the inode is not already marked for IACC (in rdip() for read) 4827 * and the inode is not marked for no access time update (in wrip() 4828 * for write) then update the inode access time and mod time now. 4829 */ 4830 if ((ip->i_flag & (IACC | INOACC)) == 0) { 4831 if ((rw != S_OTHER) && (ip->i_mode & IFMT) != IFDIR) { 4832 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && 4833 (fs->fs_ronly == 0) && 4834 (!ufsvfsp->vfs_noatime)) { 4835 mutex_enter(&ip->i_tlock); 4836 ip->i_flag |= IACC; 4837 ITIMES_NOLOCK(ip); 4838 mutex_exit(&ip->i_tlock); 4839 } 4840 } 4841 } 4842 4843 if (dolock) { 4844 rw_exit(&ip->i_contents); 4845 if (do_qlock && rwtype == RW_WRITER) 4846 rw_exit(&ufsvfsp->vfs_dqrwlock); 4847 } 4848 4849 unlock: 4850 if (ulp) { 4851 if ((rw == S_CREATE || rw == S_WRITE) && 4852 !(vp->v_flag & VISSWAP)) { 4853 TRANS_END_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size); 4854 } 4855 ufs_lockfs_end(ulp); 4856 } 4857 out: 4858 return (err); 4859 } 4860 4861 /* 4862 * ufs_getpage_miss is called when ufs_getpage missed the page in the page 4863 * cache. The page is either read from the disk, or it's created. 4864 * A page is created (without disk read) if rw == S_CREATE, or if 4865 * the page is not backed with a real disk block (UFS hole). 4866 */ 4867 /* ARGSUSED */ 4868 static int 4869 ufs_getpage_miss(struct vnode *vp, u_offset_t off, size_t len, struct seg *seg, 4870 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw, int seq) 4871 { 4872 struct inode *ip = VTOI(vp); 4873 page_t *pp; 4874 daddr_t bn; 4875 size_t io_len; 4876 int crpage = 0; 4877 int err; 4878 int contig; 4879 int bsize = ip->i_fs->fs_bsize; 4880 4881 /* 4882 * Figure out whether the page can be created, or must be 4883 * must be read from the disk. 4884 */ 4885 if (rw == S_CREATE) 4886 crpage = 1; 4887 else { 4888 contig = 0; 4889 if (err = bmap_read(ip, off, &bn, &contig)) 4890 return (err); 4891 4892 crpage = (bn == UFS_HOLE); 4893 4894 /* 4895 * If its also a fallocated block that hasn't been written to 4896 * yet, we will treat it just like a UFS_HOLE and create 4897 * a zero page for it 4898 */ 4899 if (ISFALLOCBLK(ip, bn)) 4900 crpage = 1; 4901 } 4902 4903 if (crpage) { 4904 if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT, seg, 4905 addr)) == NULL) { 4906 return (ufs_fault(vp, 4907 "ufs_getpage_miss: page_create == NULL")); 4908 } 4909 4910 if (rw != S_CREATE) 4911 pagezero(pp, 0, PAGESIZE); 4912 4913 io_len = PAGESIZE; 4914 } else { 4915 u_offset_t io_off; 4916 uint_t xlen; 4917 struct buf *bp; 4918 ufsvfs_t *ufsvfsp = ip->i_ufsvfs; 4919 4920 /* 4921 * If access is not in sequential order, we read from disk 4922 * in bsize units. 4923 * 4924 * We limit the size of the transfer to bsize if we are reading 4925 * from the beginning of the file. Note in this situation we 4926 * will hedge our bets and initiate an async read ahead of 4927 * the second block. 4928 */ 4929 if (!seq || off == 0) 4930 contig = MIN(contig, bsize); 4931 4932 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4933 &io_len, off, contig, 0); 4934 4935 /* 4936 * Some other thread has entered the page. 4937 * ufs_getpage will retry page_lookup. 4938 */ 4939 if (pp == NULL) { 4940 pl[0] = NULL; 4941 return (0); 4942 } 4943 4944 /* 4945 * Zero part of the page which we are not 4946 * going to read from the disk. 4947 */ 4948 xlen = io_len & PAGEOFFSET; 4949 if (xlen != 0) 4950 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 4951 4952 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ); 4953 bp->b_edev = ip->i_dev; 4954 bp->b_dev = cmpdev(ip->i_dev); 4955 bp->b_blkno = bn; 4956 bp->b_un.b_addr = (caddr_t)0; 4957 bp->b_file = ip->i_vnode; 4958 bp->b_offset = off; 4959 4960 if (ufsvfsp->vfs_log) { 4961 lufs_read_strategy(ufsvfsp->vfs_log, bp); 4962 } else if (ufsvfsp->vfs_snapshot) { 4963 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 4964 } else { 4965 ufsvfsp->vfs_iotstamp = ddi_get_lbolt(); 4966 ub.ub_getpages.value.ul++; 4967 (void) bdev_strategy(bp); 4968 lwp_stat_update(LWP_STAT_INBLK, 1); 4969 } 4970 4971 ip->i_nextrio = off + ((io_len + PAGESIZE - 1) & PAGEMASK); 4972 4973 /* 4974 * If the file access is sequential, initiate read ahead 4975 * of the next cluster. 4976 */ 4977 if (seq && ip->i_nextrio < ip->i_size) 4978 (void) ufs_getpage_ra(vp, off, seg, addr); 4979 err = biowait(bp); 4980 pageio_done(bp); 4981 4982 if (err) { 4983 pvn_read_done(pp, B_ERROR); 4984 return (err); 4985 } 4986 } 4987 4988 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4989 return (0); 4990 } 4991 4992 /* 4993 * Read ahead a cluster from the disk. Returns the length in bytes. 4994 */ 4995 static int 4996 ufs_getpage_ra(struct vnode *vp, u_offset_t off, struct seg *seg, caddr_t addr) 4997 { 4998 struct inode *ip = VTOI(vp); 4999 page_t *pp; 5000 u_offset_t io_off = ip->i_nextrio; 5001 ufsvfs_t *ufsvfsp; 5002 caddr_t addr2 = addr + (io_off - off); 5003 struct buf *bp; 5004 daddr_t bn; 5005 size_t io_len; 5006 int err; 5007 int contig; 5008 int xlen; 5009 int bsize = ip->i_fs->fs_bsize; 5010 5011 /* 5012 * If the directio advisory is in effect on this file, 5013 * then do not do buffered read ahead. Read ahead makes 5014 * it more difficult on threads using directio as they 5015 * will be forced to flush the pages from this vnode. 5016 */ 5017 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 5018 return (0); 5019 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) 5020 return (0); 5021 5022 /* 5023 * Is this test needed? 5024 */ 5025 if (addr2 >= seg->s_base + seg->s_size) 5026 return (0); 5027 5028 contig = 0; 5029 err = bmap_read(ip, io_off, &bn, &contig); 5030 /* 5031 * If its a UFS_HOLE or a fallocated block, do not perform 5032 * any read ahead's since there probably is nothing to read ahead 5033 */ 5034 if (err || bn == UFS_HOLE || ISFALLOCBLK(ip, bn)) 5035 return (0); 5036 5037 /* 5038 * Limit the transfer size to bsize if this is the 2nd block. 5039 */ 5040 if (io_off == (u_offset_t)bsize) 5041 contig = MIN(contig, bsize); 5042 5043 if ((pp = pvn_read_kluster(vp, io_off, seg, addr2, &io_off, 5044 &io_len, io_off, contig, 1)) == NULL) 5045 return (0); 5046 5047 /* 5048 * Zero part of page which we are not going to read from disk 5049 */ 5050 if ((xlen = (io_len & PAGEOFFSET)) > 0) 5051 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 5052 5053 ip->i_nextrio = (io_off + io_len + PAGESIZE - 1) & PAGEMASK; 5054 5055 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ | B_ASYNC); 5056 bp->b_edev = ip->i_dev; 5057 bp->b_dev = cmpdev(ip->i_dev); 5058 bp->b_blkno = bn; 5059 bp->b_un.b_addr = (caddr_t)0; 5060 bp->b_file = ip->i_vnode; 5061 bp->b_offset = off; 5062 5063 if (ufsvfsp->vfs_log) { 5064 lufs_read_strategy(ufsvfsp->vfs_log, bp); 5065 } else if (ufsvfsp->vfs_snapshot) { 5066 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5067 } else { 5068 ufsvfsp->vfs_iotstamp = ddi_get_lbolt(); 5069 ub.ub_getras.value.ul++; 5070 (void) bdev_strategy(bp); 5071 lwp_stat_update(LWP_STAT_INBLK, 1); 5072 } 5073 5074 return (io_len); 5075 } 5076 5077 int ufs_delay = 1; 5078 /* 5079 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE, B_ASYNC} 5080 * 5081 * LMXXX - the inode really ought to contain a pointer to one of these 5082 * async args. Stuff gunk in there and just hand the whole mess off. 5083 * This would replace i_delaylen, i_delayoff. 5084 */ 5085 /*ARGSUSED*/ 5086 static int 5087 ufs_putpage(struct vnode *vp, offset_t off, size_t len, int flags, 5088 struct cred *cr, caller_context_t *ct) 5089 { 5090 struct inode *ip = VTOI(vp); 5091 int err = 0; 5092 5093 if (vp->v_count == 0) { 5094 return (ufs_fault(vp, "ufs_putpage: bad v_count == 0")); 5095 } 5096 5097 /* 5098 * XXX - Why should this check be made here? 5099 */ 5100 if (vp->v_flag & VNOMAP) { 5101 err = ENOSYS; 5102 goto errout; 5103 } 5104 5105 if (ip->i_ufsvfs == NULL) { 5106 err = EIO; 5107 goto errout; 5108 } 5109 5110 if (flags & B_ASYNC) { 5111 if (ufs_delay && len && 5112 (flags & ~(B_ASYNC|B_DONTNEED|B_FREE)) == 0) { 5113 mutex_enter(&ip->i_tlock); 5114 /* 5115 * If nobody stalled, start a new cluster. 5116 */ 5117 if (ip->i_delaylen == 0) { 5118 ip->i_delayoff = off; 5119 ip->i_delaylen = len; 5120 mutex_exit(&ip->i_tlock); 5121 goto errout; 5122 } 5123 /* 5124 * If we have a full cluster or they are not contig, 5125 * then push last cluster and start over. 5126 */ 5127 if (ip->i_delaylen >= CLUSTSZ(ip) || 5128 ip->i_delayoff + ip->i_delaylen != off) { 5129 u_offset_t doff; 5130 size_t dlen; 5131 5132 doff = ip->i_delayoff; 5133 dlen = ip->i_delaylen; 5134 ip->i_delayoff = off; 5135 ip->i_delaylen = len; 5136 mutex_exit(&ip->i_tlock); 5137 err = ufs_putpages(vp, doff, dlen, 5138 flags, cr); 5139 /* LMXXX - flags are new val, not old */ 5140 goto errout; 5141 } 5142 /* 5143 * There is something there, it's not full, and 5144 * it is contig. 5145 */ 5146 ip->i_delaylen += len; 5147 mutex_exit(&ip->i_tlock); 5148 goto errout; 5149 } 5150 /* 5151 * Must have weird flags or we are not clustering. 5152 */ 5153 } 5154 5155 err = ufs_putpages(vp, off, len, flags, cr); 5156 5157 errout: 5158 return (err); 5159 } 5160 5161 /* 5162 * If len == 0, do from off to EOF. 5163 * 5164 * The normal cases should be len == 0 & off == 0 (entire vp list), 5165 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 5166 * (from pageout). 5167 */ 5168 /*ARGSUSED*/ 5169 static int 5170 ufs_putpages(struct vnode *vp, offset_t off, size_t len, int flags, 5171 struct cred *cr) 5172 { 5173 u_offset_t io_off; 5174 u_offset_t eoff; 5175 struct inode *ip = VTOI(vp); 5176 page_t *pp; 5177 size_t io_len; 5178 int err = 0; 5179 int dolock; 5180 5181 if (vp->v_count == 0) 5182 return (ufs_fault(vp, "ufs_putpages: v_count == 0")); 5183 /* 5184 * Acquire the readers/write inode lock before locking 5185 * any pages in this inode. 5186 * The inode lock is held during i/o. 5187 */ 5188 if (len == 0) { 5189 mutex_enter(&ip->i_tlock); 5190 ip->i_delayoff = ip->i_delaylen = 0; 5191 mutex_exit(&ip->i_tlock); 5192 } 5193 dolock = (rw_owner(&ip->i_contents) != curthread); 5194 if (dolock) { 5195 /* 5196 * Must synchronize this thread and any possible thread 5197 * operating in the window of vulnerability in wrip(). 5198 * It is dangerous to allow both a thread doing a putpage 5199 * and a thread writing, so serialize them. The exception 5200 * is when the thread in wrip() does something which causes 5201 * a putpage operation. Then, the thread must be allowed 5202 * to continue. It may encounter a bmap_read problem in 5203 * ufs_putapage, but that is handled in ufs_putapage. 5204 * Allow async writers to proceed, we don't want to block 5205 * the pageout daemon. 5206 */ 5207 if (ip->i_writer == curthread) 5208 rw_enter(&ip->i_contents, RW_READER); 5209 else { 5210 for (;;) { 5211 rw_enter(&ip->i_contents, RW_READER); 5212 mutex_enter(&ip->i_tlock); 5213 /* 5214 * If there is no thread in the critical 5215 * section of wrip(), then proceed. 5216 * Otherwise, wait until there isn't one. 5217 */ 5218 if (ip->i_writer == NULL) { 5219 mutex_exit(&ip->i_tlock); 5220 break; 5221 } 5222 rw_exit(&ip->i_contents); 5223 /* 5224 * Bounce async writers when we have a writer 5225 * working on this file so we don't deadlock 5226 * the pageout daemon. 5227 */ 5228 if (flags & B_ASYNC) { 5229 mutex_exit(&ip->i_tlock); 5230 return (0); 5231 } 5232 cv_wait(&ip->i_wrcv, &ip->i_tlock); 5233 mutex_exit(&ip->i_tlock); 5234 } 5235 } 5236 } 5237 5238 if (!vn_has_cached_data(vp)) { 5239 if (dolock) 5240 rw_exit(&ip->i_contents); 5241 return (0); 5242 } 5243 5244 if (len == 0) { 5245 /* 5246 * Search the entire vp list for pages >= off. 5247 */ 5248 err = pvn_vplist_dirty(vp, (u_offset_t)off, ufs_putapage, 5249 flags, cr); 5250 } else { 5251 /* 5252 * Loop over all offsets in the range looking for 5253 * pages to deal with. 5254 */ 5255 if ((eoff = blkroundup(ip->i_fs, ip->i_size)) != 0) 5256 eoff = MIN(off + len, eoff); 5257 else 5258 eoff = off + len; 5259 5260 for (io_off = off; io_off < eoff; io_off += io_len) { 5261 /* 5262 * If we are not invalidating, synchronously 5263 * freeing or writing pages, use the routine 5264 * page_lookup_nowait() to prevent reclaiming 5265 * them from the free list. 5266 */ 5267 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 5268 pp = page_lookup(vp, io_off, 5269 (flags & (B_INVAL | B_FREE)) ? 5270 SE_EXCL : SE_SHARED); 5271 } else { 5272 pp = page_lookup_nowait(vp, io_off, 5273 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 5274 } 5275 5276 if (pp == NULL || pvn_getdirty(pp, flags) == 0) 5277 io_len = PAGESIZE; 5278 else { 5279 u_offset_t *io_offp = &io_off; 5280 5281 err = ufs_putapage(vp, pp, io_offp, &io_len, 5282 flags, cr); 5283 if (err != 0) 5284 break; 5285 /* 5286 * "io_off" and "io_len" are returned as 5287 * the range of pages we actually wrote. 5288 * This allows us to skip ahead more quickly 5289 * since several pages may've been dealt 5290 * with by this iteration of the loop. 5291 */ 5292 } 5293 } 5294 } 5295 if (err == 0 && off == 0 && (len == 0 || len >= ip->i_size)) { 5296 /* 5297 * We have just sync'ed back all the pages on 5298 * the inode, turn off the IMODTIME flag. 5299 */ 5300 mutex_enter(&ip->i_tlock); 5301 ip->i_flag &= ~IMODTIME; 5302 mutex_exit(&ip->i_tlock); 5303 } 5304 if (dolock) 5305 rw_exit(&ip->i_contents); 5306 return (err); 5307 } 5308 5309 static void 5310 ufs_iodone(buf_t *bp) 5311 { 5312 struct inode *ip; 5313 5314 ASSERT((bp->b_pages->p_vnode != NULL) && !(bp->b_flags & B_READ)); 5315 5316 bp->b_iodone = NULL; 5317 5318 ip = VTOI(bp->b_pages->p_vnode); 5319 5320 mutex_enter(&ip->i_tlock); 5321 if (ip->i_writes >= ufs_LW) { 5322 if ((ip->i_writes -= bp->b_bcount) <= ufs_LW) 5323 if (ufs_WRITES) 5324 cv_broadcast(&ip->i_wrcv); /* wake all up */ 5325 } else { 5326 ip->i_writes -= bp->b_bcount; 5327 } 5328 5329 mutex_exit(&ip->i_tlock); 5330 iodone(bp); 5331 } 5332 5333 /* 5334 * Write out a single page, possibly klustering adjacent 5335 * dirty pages. The inode lock must be held. 5336 * 5337 * LMXXX - bsize < pagesize not done. 5338 */ 5339 /*ARGSUSED*/ 5340 int 5341 ufs_putapage(struct vnode *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 5342 int flags, struct cred *cr) 5343 { 5344 u_offset_t io_off; 5345 u_offset_t off; 5346 struct inode *ip = VTOI(vp); 5347 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 5348 struct fs *fs; 5349 struct buf *bp; 5350 size_t io_len; 5351 daddr_t bn; 5352 int err; 5353 int contig; 5354 int dotrans; 5355 5356 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 5357 5358 if (ufsvfsp == NULL) { 5359 err = EIO; 5360 goto out_trace; 5361 } 5362 5363 fs = ip->i_fs; 5364 ASSERT(fs->fs_ronly == 0); 5365 5366 /* 5367 * If the modified time on the inode has not already been 5368 * set elsewhere (e.g. for write/setattr) we set the time now. 5369 * This gives us approximate modified times for mmap'ed files 5370 * which are modified via stores in the user address space. 5371 */ 5372 if ((ip->i_flag & IMODTIME) == 0) { 5373 mutex_enter(&ip->i_tlock); 5374 ip->i_flag |= IUPD; 5375 ip->i_seq++; 5376 ITIMES_NOLOCK(ip); 5377 mutex_exit(&ip->i_tlock); 5378 } 5379 5380 /* 5381 * Align the request to a block boundry (for old file systems), 5382 * and go ask bmap() how contiguous things are for this file. 5383 */ 5384 off = pp->p_offset & (offset_t)fs->fs_bmask; /* block align it */ 5385 contig = 0; 5386 err = bmap_read(ip, off, &bn, &contig); 5387 if (err) 5388 goto out; 5389 if (bn == UFS_HOLE) { /* putpage never allocates */ 5390 /* 5391 * logging device is in error mode; simply return EIO 5392 */ 5393 if (TRANS_ISERROR(ufsvfsp)) { 5394 err = EIO; 5395 goto out; 5396 } 5397 /* 5398 * Oops, the thread in the window in wrip() did some 5399 * sort of operation which caused a putpage in the bad 5400 * range. In this case, just return an error which will 5401 * cause the software modified bit on the page to set 5402 * and the page will get written out again later. 5403 */ 5404 if (ip->i_writer == curthread) { 5405 err = EIO; 5406 goto out; 5407 } 5408 /* 5409 * If the pager is trying to push a page in the bad range 5410 * just tell it to try again later when things are better. 5411 */ 5412 if (flags & B_ASYNC) { 5413 err = EAGAIN; 5414 goto out; 5415 } 5416 err = ufs_fault(ITOV(ip), "ufs_putapage: bn == UFS_HOLE"); 5417 goto out; 5418 } 5419 5420 /* 5421 * If it is an fallocate'd block, reverse the negativity since 5422 * we are now writing to it 5423 */ 5424 if (ISFALLOCBLK(ip, bn)) { 5425 err = bmap_set_bn(vp, off, dbtofsb(fs, -bn)); 5426 if (err) 5427 goto out; 5428 5429 bn = -bn; 5430 } 5431 5432 /* 5433 * Take the length (of contiguous bytes) passed back from bmap() 5434 * and _try_ and get a set of pages covering that extent. 5435 */ 5436 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, off, contig, flags); 5437 5438 /* 5439 * May have run out of memory and not clustered backwards. 5440 * off p_offset 5441 * [ pp - 1 ][ pp ] 5442 * [ block ] 5443 * We told bmap off, so we have to adjust the bn accordingly. 5444 */ 5445 if (io_off > off) { 5446 bn += btod(io_off - off); 5447 contig -= (io_off - off); 5448 } 5449 5450 /* 5451 * bmap was carefull to tell us the right size so use that. 5452 * There might be unallocated frags at the end. 5453 * LMXXX - bzero the end of the page? We must be writing after EOF. 5454 */ 5455 if (io_len > contig) { 5456 ASSERT(io_len - contig < fs->fs_bsize); 5457 io_len -= (io_len - contig); 5458 } 5459 5460 /* 5461 * Handle the case where we are writing the last page after EOF. 5462 * 5463 * XXX - just a patch for i-mt3. 5464 */ 5465 if (io_len == 0) { 5466 ASSERT(pp->p_offset >= 5467 (u_offset_t)(roundup(ip->i_size, PAGESIZE))); 5468 io_len = PAGESIZE; 5469 } 5470 5471 bp = pageio_setup(pp, io_len, ip->i_devvp, B_WRITE | flags); 5472 5473 ULOCKFS_SET_MOD(ITOUL(ip)); 5474 5475 bp->b_edev = ip->i_dev; 5476 bp->b_dev = cmpdev(ip->i_dev); 5477 bp->b_blkno = bn; 5478 bp->b_un.b_addr = (caddr_t)0; 5479 bp->b_file = ip->i_vnode; 5480 5481 /* 5482 * File contents of shadow or quota inodes are metadata, and updates 5483 * to these need to be put into a logging transaction. All direct 5484 * callers in UFS do that, but fsflush can come here _before_ the 5485 * normal codepath. An example would be updating ACL information, for 5486 * which the normal codepath would be: 5487 * ufs_si_store() 5488 * ufs_rdwri() 5489 * wrip() 5490 * segmap_release() 5491 * VOP_PUTPAGE() 5492 * Here, fsflush can pick up the dirty page before segmap_release() 5493 * forces it out. If that happens, there's no transaction. 5494 * We therefore need to test whether a transaction exists, and if not 5495 * create one - for fsflush. 5496 */ 5497 dotrans = 5498 (((ip->i_mode & IFMT) == IFSHAD || ufsvfsp->vfs_qinod == ip) && 5499 ((curthread->t_flag & T_DONTBLOCK) == 0) && 5500 (TRANS_ISTRANS(ufsvfsp))); 5501 5502 if (dotrans) { 5503 curthread->t_flag |= T_DONTBLOCK; 5504 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip)); 5505 } 5506 if (TRANS_ISTRANS(ufsvfsp)) { 5507 if ((ip->i_mode & IFMT) == IFSHAD) { 5508 TRANS_BUF(ufsvfsp, 0, io_len, bp, DT_SHAD); 5509 } else if (ufsvfsp->vfs_qinod == ip) { 5510 TRANS_DELTA(ufsvfsp, ldbtob(bn), bp->b_bcount, DT_QR, 5511 0, 0); 5512 } 5513 } 5514 if (dotrans) { 5515 TRANS_END_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip)); 5516 curthread->t_flag &= ~T_DONTBLOCK; 5517 } 5518 5519 /* write throttle */ 5520 5521 ASSERT(bp->b_iodone == NULL); 5522 bp->b_iodone = (int (*)())ufs_iodone; 5523 mutex_enter(&ip->i_tlock); 5524 ip->i_writes += bp->b_bcount; 5525 mutex_exit(&ip->i_tlock); 5526 5527 if (bp->b_flags & B_ASYNC) { 5528 if (ufsvfsp->vfs_log) { 5529 lufs_write_strategy(ufsvfsp->vfs_log, bp); 5530 } else if (ufsvfsp->vfs_snapshot) { 5531 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5532 } else { 5533 ufsvfsp->vfs_iotstamp = ddi_get_lbolt(); 5534 ub.ub_putasyncs.value.ul++; 5535 (void) bdev_strategy(bp); 5536 lwp_stat_update(LWP_STAT_OUBLK, 1); 5537 } 5538 } else { 5539 if (ufsvfsp->vfs_log) { 5540 lufs_write_strategy(ufsvfsp->vfs_log, bp); 5541 } else if (ufsvfsp->vfs_snapshot) { 5542 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5543 } else { 5544 ufsvfsp->vfs_iotstamp = ddi_get_lbolt(); 5545 ub.ub_putsyncs.value.ul++; 5546 (void) bdev_strategy(bp); 5547 lwp_stat_update(LWP_STAT_OUBLK, 1); 5548 } 5549 err = biowait(bp); 5550 pageio_done(bp); 5551 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags); 5552 } 5553 5554 pp = NULL; 5555 5556 out: 5557 if (err != 0 && pp != NULL) 5558 pvn_write_done(pp, B_ERROR | B_WRITE | flags); 5559 5560 if (offp) 5561 *offp = io_off; 5562 if (lenp) 5563 *lenp = io_len; 5564 out_trace: 5565 return (err); 5566 } 5567 5568 uint64_t ufs_map_alock_retry_cnt; 5569 uint64_t ufs_map_lockfs_retry_cnt; 5570 5571 /* ARGSUSED */ 5572 static int 5573 ufs_map(struct vnode *vp, offset_t off, struct as *as, caddr_t *addrp, 5574 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, struct cred *cr, 5575 caller_context_t *ct) 5576 { 5577 struct segvn_crargs vn_a; 5578 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 5579 struct ulockfs *ulp; 5580 int error, sig; 5581 k_sigset_t smask; 5582 caddr_t hint = *addrp; 5583 5584 if (vp->v_flag & VNOMAP) { 5585 error = ENOSYS; 5586 goto out; 5587 } 5588 5589 if (off < (offset_t)0 || (offset_t)(off + len) < (offset_t)0) { 5590 error = ENXIO; 5591 goto out; 5592 } 5593 5594 if (vp->v_type != VREG) { 5595 error = ENODEV; 5596 goto out; 5597 } 5598 5599 retry_map: 5600 *addrp = hint; 5601 /* 5602 * If file is being locked, disallow mapping. 5603 */ 5604 if (vn_has_mandatory_locks(vp, VTOI(vp)->i_mode)) { 5605 error = EAGAIN; 5606 goto out; 5607 } 5608 5609 as_rangelock(as); 5610 /* 5611 * Note that if we are retrying (because ufs_lockfs_trybegin failed in 5612 * the previous attempt), some other thread could have grabbed 5613 * the same VA range if MAP_FIXED is set. In that case, choose_addr 5614 * would unmap the valid VA range, that is ok. 5615 */ 5616 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 5617 if (error != 0) { 5618 as_rangeunlock(as); 5619 goto out; 5620 } 5621 5622 /* 5623 * a_lock has to be acquired before entering the lockfs protocol 5624 * because that is the order in which pagefault works. Also we cannot 5625 * block on a_lock here because this waiting writer will prevent 5626 * further readers like ufs_read from progressing and could cause 5627 * deadlock between ufs_read/ufs_map/pagefault when a quiesce is 5628 * pending. 5629 */ 5630 while (!AS_LOCK_TRYENTER(as, RW_WRITER)) { 5631 ufs_map_alock_retry_cnt++; 5632 delay(RETRY_LOCK_DELAY); 5633 } 5634 5635 /* 5636 * We can't hold as->a_lock and wait for lockfs to succeed because 5637 * the proc tools might hang on a_lock, so call ufs_lockfs_trybegin() 5638 * instead. 5639 */ 5640 if (error = ufs_lockfs_trybegin(ufsvfsp, &ulp, ULOCKFS_MAP_MASK)) { 5641 /* 5642 * ufs_lockfs_trybegin() did not succeed. It is safer to give up 5643 * as->a_lock and wait for ulp->ul_fs_lock status to change. 5644 */ 5645 ufs_map_lockfs_retry_cnt++; 5646 AS_LOCK_EXIT(as); 5647 as_rangeunlock(as); 5648 if (error == EIO) 5649 goto out; 5650 5651 mutex_enter(&ulp->ul_lock); 5652 while (ulp->ul_fs_lock & ULOCKFS_MAP_MASK) { 5653 if (ULOCKFS_IS_SLOCK(ulp) || ufsvfsp->vfs_nointr) { 5654 cv_wait(&ulp->ul_cv, &ulp->ul_lock); 5655 } else { 5656 sigintr(&smask, 1); 5657 sig = cv_wait_sig(&ulp->ul_cv, &ulp->ul_lock); 5658 sigunintr(&smask); 5659 if (((ulp->ul_fs_lock & ULOCKFS_MAP_MASK) && 5660 !sig) || ufsvfsp->vfs_dontblock) { 5661 mutex_exit(&ulp->ul_lock); 5662 return (EINTR); 5663 } 5664 } 5665 } 5666 mutex_exit(&ulp->ul_lock); 5667 goto retry_map; 5668 } 5669 5670 vn_a.vp = vp; 5671 vn_a.offset = (u_offset_t)off; 5672 vn_a.type = flags & MAP_TYPE; 5673 vn_a.prot = prot; 5674 vn_a.maxprot = maxprot; 5675 vn_a.cred = cr; 5676 vn_a.amp = NULL; 5677 vn_a.flags = flags & ~MAP_TYPE; 5678 vn_a.szc = 0; 5679 vn_a.lgrp_mem_policy_flags = 0; 5680 5681 error = as_map_locked(as, *addrp, len, segvn_create, &vn_a); 5682 if (ulp) 5683 ufs_lockfs_end(ulp); 5684 as_rangeunlock(as); 5685 out: 5686 return (error); 5687 } 5688 5689 /* ARGSUSED */ 5690 static int 5691 ufs_addmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr, 5692 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, 5693 struct cred *cr, caller_context_t *ct) 5694 { 5695 struct inode *ip = VTOI(vp); 5696 5697 if (vp->v_flag & VNOMAP) { 5698 return (ENOSYS); 5699 } 5700 5701 mutex_enter(&ip->i_tlock); 5702 ip->i_mapcnt += btopr(len); 5703 mutex_exit(&ip->i_tlock); 5704 return (0); 5705 } 5706 5707 /*ARGSUSED*/ 5708 static int 5709 ufs_delmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr, 5710 size_t len, uint_t prot, uint_t maxprot, uint_t flags, struct cred *cr, 5711 caller_context_t *ct) 5712 { 5713 struct inode *ip = VTOI(vp); 5714 5715 if (vp->v_flag & VNOMAP) { 5716 return (ENOSYS); 5717 } 5718 5719 mutex_enter(&ip->i_tlock); 5720 ip->i_mapcnt -= btopr(len); /* Count released mappings */ 5721 ASSERT(ip->i_mapcnt >= 0); 5722 mutex_exit(&ip->i_tlock); 5723 return (0); 5724 } 5725 /* 5726 * Return the answer requested to poll() for non-device files 5727 */ 5728 struct pollhead ufs_pollhd; 5729 5730 /* ARGSUSED */ 5731 int 5732 ufs_poll(vnode_t *vp, short ev, int any, short *revp, struct pollhead **phpp, 5733 caller_context_t *ct) 5734 { 5735 struct ufsvfs *ufsvfsp; 5736 5737 /* 5738 * Regular files reject edge-triggered pollers. 5739 * See the comment in fs_poll() for a more detailed explanation. 5740 */ 5741 if (ev & POLLET) { 5742 return (EPERM); 5743 } 5744 5745 *revp = 0; 5746 ufsvfsp = VTOI(vp)->i_ufsvfs; 5747 5748 if (!ufsvfsp) { 5749 *revp = POLLHUP; 5750 goto out; 5751 } 5752 5753 if (ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs) || 5754 ULOCKFS_IS_ELOCK(&ufsvfsp->vfs_ulockfs)) { 5755 *revp |= POLLERR; 5756 5757 } else { 5758 if ((ev & POLLOUT) && !ufsvfsp->vfs_fs->fs_ronly && 5759 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs)) 5760 *revp |= POLLOUT; 5761 5762 if ((ev & POLLWRBAND) && !ufsvfsp->vfs_fs->fs_ronly && 5763 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs)) 5764 *revp |= POLLWRBAND; 5765 5766 if (ev & POLLIN) 5767 *revp |= POLLIN; 5768 5769 if (ev & POLLRDNORM) 5770 *revp |= POLLRDNORM; 5771 5772 if (ev & POLLRDBAND) 5773 *revp |= POLLRDBAND; 5774 } 5775 5776 if ((ev & POLLPRI) && (*revp & (POLLERR|POLLHUP))) 5777 *revp |= POLLPRI; 5778 out: 5779 if (*revp == 0 && ! any) { 5780 *phpp = &ufs_pollhd; 5781 } 5782 5783 return (0); 5784 } 5785 5786 /* ARGSUSED */ 5787 static int 5788 ufs_l_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr, 5789 caller_context_t *ct) 5790 { 5791 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 5792 struct ulockfs *ulp = NULL; 5793 struct inode *sip = NULL; 5794 int error; 5795 struct inode *ip = VTOI(vp); 5796 int issync; 5797 5798 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_PATHCONF_MASK); 5799 if (error) 5800 return (error); 5801 5802 switch (cmd) { 5803 /* 5804 * Have to handle _PC_NAME_MAX here, because the normal way 5805 * [fs_pathconf() -> VOP_STATVFS() -> ufs_statvfs()] 5806 * results in a lock ordering reversal between 5807 * ufs_lockfs_{begin,end}() and 5808 * ufs_thread_{suspend,continue}(). 5809 * 5810 * Keep in sync with ufs_statvfs(). 5811 */ 5812 case _PC_NAME_MAX: 5813 *valp = MAXNAMLEN; 5814 break; 5815 5816 case _PC_FILESIZEBITS: 5817 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) 5818 *valp = UFS_FILESIZE_BITS; 5819 else 5820 *valp = 32; 5821 break; 5822 5823 case _PC_XATTR_EXISTS: 5824 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 5825 5826 error = 5827 ufs_xattr_getattrdir(vp, &sip, LOOKUP_XATTR, cr); 5828 if (error == 0 && sip != NULL) { 5829 /* Start transaction */ 5830 if (ulp) { 5831 TRANS_BEGIN_CSYNC(ufsvfsp, issync, 5832 TOP_RMDIR, TOP_RMDIR_SIZE); 5833 } 5834 /* 5835 * Is directory empty 5836 */ 5837 rw_enter(&sip->i_rwlock, RW_WRITER); 5838 rw_enter(&sip->i_contents, RW_WRITER); 5839 if (ufs_xattrdirempty(sip, 5840 sip->i_number, CRED())) { 5841 rw_enter(&ip->i_contents, RW_WRITER); 5842 ufs_unhook_shadow(ip, sip); 5843 rw_exit(&ip->i_contents); 5844 5845 *valp = 0; 5846 5847 } else 5848 *valp = 1; 5849 rw_exit(&sip->i_contents); 5850 rw_exit(&sip->i_rwlock); 5851 if (ulp) { 5852 TRANS_END_CSYNC(ufsvfsp, error, issync, 5853 TOP_RMDIR, TOP_RMDIR_SIZE); 5854 } 5855 VN_RELE(ITOV(sip)); 5856 } else if (error == ENOENT) { 5857 *valp = 0; 5858 error = 0; 5859 } 5860 } else { 5861 error = fs_pathconf(vp, cmd, valp, cr, ct); 5862 } 5863 break; 5864 5865 case _PC_ACL_ENABLED: 5866 *valp = _ACL_ACLENT_ENABLED; 5867 break; 5868 5869 case _PC_MIN_HOLE_SIZE: 5870 *valp = (ulong_t)ip->i_fs->fs_bsize; 5871 break; 5872 5873 case _PC_SATTR_ENABLED: 5874 case _PC_SATTR_EXISTS: 5875 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 5876 (vp->v_type == VREG || vp->v_type == VDIR); 5877 break; 5878 5879 case _PC_TIMESTAMP_RESOLUTION: 5880 /* 5881 * UFS keeps only microsecond timestamp resolution. 5882 * This is historical and will probably never change. 5883 */ 5884 *valp = 1000L; 5885 break; 5886 5887 default: 5888 error = fs_pathconf(vp, cmd, valp, cr, ct); 5889 break; 5890 } 5891 5892 if (ulp != NULL) { 5893 ufs_lockfs_end(ulp); 5894 } 5895 return (error); 5896 } 5897 5898 int ufs_pageio_writes, ufs_pageio_reads; 5899 5900 /*ARGSUSED*/ 5901 static int 5902 ufs_pageio(struct vnode *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5903 int flags, struct cred *cr, caller_context_t *ct) 5904 { 5905 struct inode *ip = VTOI(vp); 5906 struct ufsvfs *ufsvfsp; 5907 page_t *npp = NULL, *opp = NULL, *cpp = pp; 5908 struct buf *bp; 5909 daddr_t bn; 5910 size_t done_len = 0, cur_len = 0; 5911 int err = 0; 5912 int contig = 0; 5913 int dolock; 5914 int vmpss = 0; 5915 struct ulockfs *ulp; 5916 5917 if ((flags & B_READ) && pp != NULL && pp->p_vnode == vp && 5918 vp->v_mpssdata != NULL) { 5919 vmpss = 1; 5920 } 5921 5922 dolock = (rw_owner(&ip->i_contents) != curthread); 5923 /* 5924 * We need a better check. Ideally, we would use another 5925 * vnodeops so that hlocked and forcibly unmounted file 5926 * systems would return EIO where appropriate and w/o the 5927 * need for these checks. 5928 */ 5929 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 5930 return (EIO); 5931 5932 /* 5933 * For vmpss (pp can be NULL) case respect the quiesce protocol. 5934 * ul_lock must be taken before locking pages so we can't use it here 5935 * if pp is non NULL because segvn already locked pages 5936 * SE_EXCL. Instead we rely on the fact that a forced umount or 5937 * applying a filesystem lock via ufs_fiolfs() will block in the 5938 * implicit call to ufs_flush() until we unlock the pages after the 5939 * return to segvn. Other ufs_quiesce() callers keep ufs_quiesce_pend 5940 * above 0 until they are done. We have to be careful not to increment 5941 * ul_vnops_cnt here after forceful unmount hlocks the file system. 5942 * 5943 * If pp is NULL use ul_lock to make sure we don't increment 5944 * ul_vnops_cnt after forceful unmount hlocks the file system. 5945 */ 5946 if (vmpss || pp == NULL) { 5947 ulp = &ufsvfsp->vfs_ulockfs; 5948 if (pp == NULL) 5949 mutex_enter(&ulp->ul_lock); 5950 if (ulp->ul_fs_lock & ULOCKFS_GETREAD_MASK) { 5951 if (pp == NULL) { 5952 mutex_exit(&ulp->ul_lock); 5953 } 5954 return (vmpss ? EIO : EINVAL); 5955 } 5956 atomic_inc_ulong(&ulp->ul_vnops_cnt); 5957 if (pp == NULL) 5958 mutex_exit(&ulp->ul_lock); 5959 if (ufs_quiesce_pend) { 5960 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt)) 5961 cv_broadcast(&ulp->ul_cv); 5962 return (vmpss ? EIO : EINVAL); 5963 } 5964 } 5965 5966 if (dolock) { 5967 /* 5968 * segvn may call VOP_PAGEIO() instead of VOP_GETPAGE() to 5969 * handle a fault against a segment that maps vnode pages with 5970 * large mappings. Segvn creates pages and holds them locked 5971 * SE_EXCL during VOP_PAGEIO() call. In this case we have to 5972 * use rw_tryenter() to avoid a potential deadlock since in 5973 * lock order i_contents needs to be taken first. 5974 * Segvn will retry via VOP_GETPAGE() if VOP_PAGEIO() fails. 5975 */ 5976 if (!vmpss) { 5977 rw_enter(&ip->i_contents, RW_READER); 5978 } else if (!rw_tryenter(&ip->i_contents, RW_READER)) { 5979 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt)) 5980 cv_broadcast(&ulp->ul_cv); 5981 return (EDEADLK); 5982 } 5983 } 5984 5985 /* 5986 * Return an error to segvn because the pagefault request is beyond 5987 * PAGESIZE rounded EOF. 5988 */ 5989 if (vmpss && btopr(io_off + io_len) > btopr(ip->i_size)) { 5990 if (dolock) 5991 rw_exit(&ip->i_contents); 5992 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt)) 5993 cv_broadcast(&ulp->ul_cv); 5994 return (EFAULT); 5995 } 5996 5997 if (pp == NULL) { 5998 if (bmap_has_holes(ip)) { 5999 err = ENOSYS; 6000 } else { 6001 err = EINVAL; 6002 } 6003 if (dolock) 6004 rw_exit(&ip->i_contents); 6005 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt)) 6006 cv_broadcast(&ulp->ul_cv); 6007 return (err); 6008 } 6009 6010 /* 6011 * Break the io request into chunks, one for each contiguous 6012 * stretch of disk blocks in the target file. 6013 */ 6014 while (done_len < io_len) { 6015 ASSERT(cpp); 6016 contig = 0; 6017 if (err = bmap_read(ip, (u_offset_t)(io_off + done_len), 6018 &bn, &contig)) 6019 break; 6020 6021 if (bn == UFS_HOLE) { /* No holey swapfiles */ 6022 if (vmpss) { 6023 err = EFAULT; 6024 break; 6025 } 6026 err = ufs_fault(ITOV(ip), "ufs_pageio: bn == UFS_HOLE"); 6027 break; 6028 } 6029 6030 cur_len = MIN(io_len - done_len, contig); 6031 /* 6032 * Zero out a page beyond EOF, when the last block of 6033 * a file is a UFS fragment so that ufs_pageio() can be used 6034 * instead of ufs_getpage() to handle faults against 6035 * segvn segments that use large pages. 6036 */ 6037 page_list_break(&cpp, &npp, btopr(cur_len)); 6038 if ((flags & B_READ) && (cur_len & PAGEOFFSET)) { 6039 size_t xlen = cur_len & PAGEOFFSET; 6040 pagezero(cpp->p_prev, xlen, PAGESIZE - xlen); 6041 } 6042 6043 bp = pageio_setup(cpp, cur_len, ip->i_devvp, flags); 6044 ASSERT(bp != NULL); 6045 6046 bp->b_edev = ip->i_dev; 6047 bp->b_dev = cmpdev(ip->i_dev); 6048 bp->b_blkno = bn; 6049 bp->b_un.b_addr = (caddr_t)0; 6050 bp->b_file = ip->i_vnode; 6051 6052 ufsvfsp->vfs_iotstamp = ddi_get_lbolt(); 6053 ub.ub_pageios.value.ul++; 6054 if (ufsvfsp->vfs_snapshot) 6055 fssnap_strategy(&(ufsvfsp->vfs_snapshot), bp); 6056 else 6057 (void) bdev_strategy(bp); 6058 6059 if (flags & B_READ) 6060 ufs_pageio_reads++; 6061 else 6062 ufs_pageio_writes++; 6063 if (flags & B_READ) 6064 lwp_stat_update(LWP_STAT_INBLK, 1); 6065 else 6066 lwp_stat_update(LWP_STAT_OUBLK, 1); 6067 /* 6068 * If the request is not B_ASYNC, wait for i/o to complete 6069 * and re-assemble the page list to return to the caller. 6070 * If it is B_ASYNC we leave the page list in pieces and 6071 * cleanup() will dispose of them. 6072 */ 6073 if ((flags & B_ASYNC) == 0) { 6074 err = biowait(bp); 6075 pageio_done(bp); 6076 if (err) 6077 break; 6078 page_list_concat(&opp, &cpp); 6079 } 6080 cpp = npp; 6081 npp = NULL; 6082 if (flags & B_READ) 6083 cur_len = P2ROUNDUP_TYPED(cur_len, PAGESIZE, size_t); 6084 done_len += cur_len; 6085 } 6086 ASSERT(err || (cpp == NULL && npp == NULL && done_len == io_len)); 6087 if (err) { 6088 if (flags & B_ASYNC) { 6089 /* Cleanup unprocessed parts of list */ 6090 page_list_concat(&cpp, &npp); 6091 if (flags & B_READ) 6092 pvn_read_done(cpp, B_ERROR); 6093 else 6094 pvn_write_done(cpp, B_ERROR); 6095 } else { 6096 /* Re-assemble list and let caller clean up */ 6097 page_list_concat(&opp, &cpp); 6098 page_list_concat(&opp, &npp); 6099 } 6100 } 6101 6102 if (vmpss && !(ip->i_flag & IACC) && !ULOCKFS_IS_NOIACC(ulp) && 6103 ufsvfsp->vfs_fs->fs_ronly == 0 && !ufsvfsp->vfs_noatime) { 6104 mutex_enter(&ip->i_tlock); 6105 ip->i_flag |= IACC; 6106 ITIMES_NOLOCK(ip); 6107 mutex_exit(&ip->i_tlock); 6108 } 6109 6110 if (dolock) 6111 rw_exit(&ip->i_contents); 6112 if (vmpss && !atomic_dec_ulong_nv(&ulp->ul_vnops_cnt)) 6113 cv_broadcast(&ulp->ul_cv); 6114 return (err); 6115 } 6116 6117 /* 6118 * Called when the kernel is in a frozen state to dump data 6119 * directly to the device. It uses a private dump data structure, 6120 * set up by dump_ctl, to locate the correct disk block to which to dump. 6121 */ 6122 /*ARGSUSED*/ 6123 static int 6124 ufs_dump(vnode_t *vp, caddr_t addr, offset_t ldbn, offset_t dblks, 6125 caller_context_t *ct) 6126 { 6127 u_offset_t file_size; 6128 struct inode *ip = VTOI(vp); 6129 struct fs *fs = ip->i_fs; 6130 daddr_t dbn, lfsbn; 6131 int disk_blks = fs->fs_bsize >> DEV_BSHIFT; 6132 int error = 0; 6133 int ndbs, nfsbs; 6134 6135 /* 6136 * forced unmount case 6137 */ 6138 if (ip->i_ufsvfs == NULL) 6139 return (EIO); 6140 /* 6141 * Validate the inode that it has not been modified since 6142 * the dump structure is allocated. 6143 */ 6144 mutex_enter(&ip->i_tlock); 6145 if ((dump_info == NULL) || 6146 (dump_info->ip != ip) || 6147 (dump_info->time.tv_sec != ip->i_mtime.tv_sec) || 6148 (dump_info->time.tv_usec != ip->i_mtime.tv_usec)) { 6149 mutex_exit(&ip->i_tlock); 6150 return (-1); 6151 } 6152 mutex_exit(&ip->i_tlock); 6153 6154 /* 6155 * See that the file has room for this write 6156 */ 6157 UFS_GET_ISIZE(&file_size, ip); 6158 6159 if (ldbtob(ldbn + dblks) > file_size) 6160 return (ENOSPC); 6161 6162 /* 6163 * Find the physical disk block numbers from the dump 6164 * private data structure directly and write out the data 6165 * in contiguous block lumps 6166 */ 6167 while (dblks > 0 && !error) { 6168 lfsbn = (daddr_t)lblkno(fs, ldbtob(ldbn)); 6169 dbn = fsbtodb(fs, dump_info->dblk[lfsbn]) + ldbn % disk_blks; 6170 nfsbs = 1; 6171 ndbs = disk_blks - ldbn % disk_blks; 6172 while (ndbs < dblks && fsbtodb(fs, dump_info->dblk[lfsbn + 6173 nfsbs]) == dbn + ndbs) { 6174 nfsbs++; 6175 ndbs += disk_blks; 6176 } 6177 if (ndbs > dblks) 6178 ndbs = dblks; 6179 error = bdev_dump(ip->i_dev, addr, dbn, ndbs); 6180 addr += ldbtob((offset_t)ndbs); 6181 dblks -= ndbs; 6182 ldbn += ndbs; 6183 } 6184 return (error); 6185 6186 } 6187 6188 /* 6189 * Prepare the file system before and after the dump operation. 6190 * 6191 * action = DUMP_ALLOC: 6192 * Preparation before dump, allocate dump private data structure 6193 * to hold all the direct and indirect block info for dump. 6194 * 6195 * action = DUMP_FREE: 6196 * Clean up after dump, deallocate the dump private data structure. 6197 * 6198 * action = DUMP_SCAN: 6199 * Scan dump_info for *blkp DEV_BSIZE blocks of contig fs space; 6200 * if found, the starting file-relative DEV_BSIZE lbn is written 6201 * to *bklp; that lbn is intended for use with VOP_DUMP() 6202 */ 6203 /*ARGSUSED*/ 6204 static int 6205 ufs_dumpctl(vnode_t *vp, int action, offset_t *blkp, caller_context_t *ct) 6206 { 6207 struct inode *ip = VTOI(vp); 6208 ufsvfs_t *ufsvfsp = ip->i_ufsvfs; 6209 struct fs *fs; 6210 daddr32_t *dblk, *storeblk; 6211 daddr32_t *nextblk, *endblk; 6212 struct buf *bp; 6213 int i, entry, entries; 6214 int n, ncontig; 6215 6216 /* 6217 * check for forced unmount 6218 */ 6219 if (ufsvfsp == NULL) 6220 return (EIO); 6221 6222 if (action == DUMP_ALLOC) { 6223 /* 6224 * alloc and record dump_info 6225 */ 6226 if (dump_info != NULL) 6227 return (EINVAL); 6228 6229 ASSERT(vp->v_type == VREG); 6230 fs = ufsvfsp->vfs_fs; 6231 6232 rw_enter(&ip->i_contents, RW_READER); 6233 6234 if (bmap_has_holes(ip)) { 6235 rw_exit(&ip->i_contents); 6236 return (EFAULT); 6237 } 6238 6239 /* 6240 * calculate and allocate space needed according to i_size 6241 */ 6242 entries = (int)lblkno(fs, blkroundup(fs, ip->i_size)); 6243 dump_info = kmem_alloc(sizeof (struct dump) + 6244 (entries - 1) * sizeof (daddr32_t), KM_NOSLEEP); 6245 if (dump_info == NULL) { 6246 rw_exit(&ip->i_contents); 6247 return (ENOMEM); 6248 } 6249 6250 /* Start saving the info */ 6251 dump_info->fsbs = entries; 6252 dump_info->ip = ip; 6253 storeblk = &dump_info->dblk[0]; 6254 6255 /* Direct Blocks */ 6256 for (entry = 0; entry < NDADDR && entry < entries; entry++) 6257 *storeblk++ = ip->i_db[entry]; 6258 6259 /* Indirect Blocks */ 6260 for (i = 0; i < NIADDR; i++) { 6261 int error = 0; 6262 6263 bp = UFS_BREAD(ufsvfsp, 6264 ip->i_dev, fsbtodb(fs, ip->i_ib[i]), fs->fs_bsize); 6265 if (bp->b_flags & B_ERROR) 6266 error = EIO; 6267 else { 6268 dblk = bp->b_un.b_daddr; 6269 if ((storeblk = save_dblks(ip, ufsvfsp, 6270 storeblk, dblk, i, entries)) == NULL) 6271 error = EIO; 6272 } 6273 6274 brelse(bp); 6275 6276 if (error != 0) { 6277 kmem_free(dump_info, sizeof (struct dump) + 6278 (entries - 1) * sizeof (daddr32_t)); 6279 rw_exit(&ip->i_contents); 6280 dump_info = NULL; 6281 return (error); 6282 } 6283 } 6284 /* and time stamp the information */ 6285 mutex_enter(&ip->i_tlock); 6286 dump_info->time = ip->i_mtime; 6287 mutex_exit(&ip->i_tlock); 6288 6289 rw_exit(&ip->i_contents); 6290 } else if (action == DUMP_FREE) { 6291 /* 6292 * free dump_info 6293 */ 6294 if (dump_info == NULL) 6295 return (EINVAL); 6296 entries = dump_info->fsbs - 1; 6297 kmem_free(dump_info, sizeof (struct dump) + 6298 entries * sizeof (daddr32_t)); 6299 dump_info = NULL; 6300 } else if (action == DUMP_SCAN) { 6301 /* 6302 * scan dump_info 6303 */ 6304 if (dump_info == NULL) 6305 return (EINVAL); 6306 6307 dblk = dump_info->dblk; 6308 nextblk = dblk + 1; 6309 endblk = dblk + dump_info->fsbs - 1; 6310 fs = ufsvfsp->vfs_fs; 6311 ncontig = *blkp >> (fs->fs_bshift - DEV_BSHIFT); 6312 6313 /* 6314 * scan dblk[] entries; contig fs space is found when: 6315 * ((current blkno + frags per block) == next blkno) 6316 */ 6317 n = 0; 6318 while (n < ncontig && dblk < endblk) { 6319 if ((*dblk + fs->fs_frag) == *nextblk) 6320 n++; 6321 else 6322 n = 0; 6323 dblk++; 6324 nextblk++; 6325 } 6326 6327 /* 6328 * index is where size bytes of contig space begins; 6329 * conversion from index to the file's DEV_BSIZE lbn 6330 * is equivalent to: (index * fs_bsize) / DEV_BSIZE 6331 */ 6332 if (n == ncontig) { 6333 i = (dblk - dump_info->dblk) - ncontig; 6334 *blkp = i << (fs->fs_bshift - DEV_BSHIFT); 6335 } else 6336 return (EFAULT); 6337 } 6338 return (0); 6339 } 6340 6341 /* 6342 * Recursive helper function for ufs_dumpctl(). It follows the indirect file 6343 * system blocks until it reaches the the disk block addresses, which are 6344 * then stored into the given buffer, storeblk. 6345 */ 6346 static daddr32_t * 6347 save_dblks(struct inode *ip, struct ufsvfs *ufsvfsp, daddr32_t *storeblk, 6348 daddr32_t *dblk, int level, int entries) 6349 { 6350 struct fs *fs = ufsvfsp->vfs_fs; 6351 struct buf *bp; 6352 int i; 6353 6354 if (level == 0) { 6355 for (i = 0; i < NINDIR(fs); i++) { 6356 if (storeblk - dump_info->dblk >= entries) 6357 break; 6358 *storeblk++ = dblk[i]; 6359 } 6360 return (storeblk); 6361 } 6362 for (i = 0; i < NINDIR(fs); i++) { 6363 if (storeblk - dump_info->dblk >= entries) 6364 break; 6365 bp = UFS_BREAD(ufsvfsp, 6366 ip->i_dev, fsbtodb(fs, dblk[i]), fs->fs_bsize); 6367 if (bp->b_flags & B_ERROR) { 6368 brelse(bp); 6369 return (NULL); 6370 } 6371 storeblk = save_dblks(ip, ufsvfsp, storeblk, bp->b_un.b_daddr, 6372 level - 1, entries); 6373 brelse(bp); 6374 6375 if (storeblk == NULL) 6376 return (NULL); 6377 } 6378 return (storeblk); 6379 } 6380 6381 /* ARGSUSED */ 6382 static int 6383 ufs_getsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, 6384 struct cred *cr, caller_context_t *ct) 6385 { 6386 struct inode *ip = VTOI(vp); 6387 struct ulockfs *ulp; 6388 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 6389 ulong_t vsa_mask = vsap->vsa_mask; 6390 int err = EINVAL; 6391 6392 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT); 6393 6394 /* 6395 * Only grab locks if needed - they're not needed to check vsa_mask 6396 * or if the mask contains no acl flags. 6397 */ 6398 if (vsa_mask != 0) { 6399 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, 6400 ULOCKFS_GETATTR_MASK)) 6401 return (err); 6402 6403 rw_enter(&ip->i_contents, RW_READER); 6404 err = ufs_acl_get(ip, vsap, flag, cr); 6405 rw_exit(&ip->i_contents); 6406 6407 if (ulp) 6408 ufs_lockfs_end(ulp); 6409 } 6410 return (err); 6411 } 6412 6413 /* ARGSUSED */ 6414 static int 6415 ufs_setsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr, 6416 caller_context_t *ct) 6417 { 6418 struct inode *ip = VTOI(vp); 6419 struct ulockfs *ulp = NULL; 6420 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 6421 ulong_t vsa_mask = vsap->vsa_mask; 6422 int err; 6423 int haverwlock = 1; 6424 int trans_size; 6425 int donetrans = 0; 6426 int retry = 1; 6427 6428 ASSERT(RW_LOCK_HELD(&ip->i_rwlock)); 6429 6430 /* Abort now if the request is either empty or invalid. */ 6431 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT); 6432 if ((vsa_mask == 0) || 6433 ((vsap->vsa_aclentp == NULL) && 6434 (vsap->vsa_dfaclentp == NULL))) { 6435 err = EINVAL; 6436 goto out; 6437 } 6438 6439 /* 6440 * Following convention, if this is a directory then we acquire the 6441 * inode's i_rwlock after starting a UFS logging transaction; 6442 * otherwise, we acquire it beforehand. Since we were called (and 6443 * must therefore return) with the lock held, we will have to drop it, 6444 * and later reacquire it, if operating on a directory. 6445 */ 6446 if (vp->v_type == VDIR) { 6447 rw_exit(&ip->i_rwlock); 6448 haverwlock = 0; 6449 } else { 6450 /* Upgrade the lock if required. */ 6451 if (!rw_write_held(&ip->i_rwlock)) { 6452 rw_exit(&ip->i_rwlock); 6453 rw_enter(&ip->i_rwlock, RW_WRITER); 6454 } 6455 } 6456 6457 again: 6458 ASSERT(!(vp->v_type == VDIR && haverwlock)); 6459 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK)) { 6460 ulp = NULL; 6461 retry = 0; 6462 goto out; 6463 } 6464 6465 /* 6466 * Check that the file system supports this operation. Note that 6467 * ufs_lockfs_begin() will have checked that the file system had 6468 * not been forcibly unmounted. 6469 */ 6470 if (ufsvfsp->vfs_fs->fs_ronly) { 6471 err = EROFS; 6472 goto out; 6473 } 6474 if (ufsvfsp->vfs_nosetsec) { 6475 err = ENOSYS; 6476 goto out; 6477 } 6478 6479 if (ulp) { 6480 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_SETSECATTR, 6481 trans_size = TOP_SETSECATTR_SIZE(VTOI(vp))); 6482 donetrans = 1; 6483 } 6484 6485 if (vp->v_type == VDIR) { 6486 rw_enter(&ip->i_rwlock, RW_WRITER); 6487 haverwlock = 1; 6488 } 6489 6490 ASSERT(haverwlock); 6491 6492 /* Do the actual work. */ 6493 rw_enter(&ip->i_contents, RW_WRITER); 6494 /* 6495 * Suppress out of inodes messages if we will retry. 6496 */ 6497 if (retry) 6498 ip->i_flag |= IQUIET; 6499 err = ufs_acl_set(ip, vsap, flag, cr); 6500 ip->i_flag &= ~IQUIET; 6501 rw_exit(&ip->i_contents); 6502 6503 out: 6504 if (ulp) { 6505 if (donetrans) { 6506 /* 6507 * top_end_async() can eventually call 6508 * top_end_sync(), which can block. We must 6509 * therefore observe the lock-ordering protocol 6510 * here as well. 6511 */ 6512 if (vp->v_type == VDIR) { 6513 rw_exit(&ip->i_rwlock); 6514 haverwlock = 0; 6515 } 6516 TRANS_END_ASYNC(ufsvfsp, TOP_SETSECATTR, trans_size); 6517 } 6518 ufs_lockfs_end(ulp); 6519 } 6520 /* 6521 * If no inodes available, try scaring a logically- 6522 * free one out of the delete queue to someplace 6523 * that we can find it. 6524 */ 6525 if ((err == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 6526 ufs_delete_drain_wait(ufsvfsp, 1); 6527 retry = 0; 6528 if (vp->v_type == VDIR && haverwlock) { 6529 rw_exit(&ip->i_rwlock); 6530 haverwlock = 0; 6531 } 6532 goto again; 6533 } 6534 /* 6535 * If we need to reacquire the lock then it is safe to do so 6536 * as a reader. This is because ufs_rwunlock(), which will be 6537 * called by our caller after we return, does not differentiate 6538 * between shared and exclusive locks. 6539 */ 6540 if (!haverwlock) { 6541 ASSERT(vp->v_type == VDIR); 6542 rw_enter(&ip->i_rwlock, RW_READER); 6543 } 6544 6545 return (err); 6546 } 6547 6548 /* 6549 * Locate the vnode to be used for an event notification. As this will 6550 * be called prior to the name space change perform basic verification 6551 * that the change will be allowed. 6552 */ 6553 6554 static int 6555 ufs_eventlookup(struct vnode *dvp, char *nm, struct cred *cr, 6556 struct vnode **vpp) 6557 { 6558 int namlen; 6559 int error; 6560 struct vnode *vp; 6561 struct inode *ip; 6562 struct inode *xip; 6563 struct ufsvfs *ufsvfsp; 6564 struct ulockfs *ulp; 6565 6566 ip = VTOI(dvp); 6567 *vpp = NULL; 6568 6569 if ((namlen = strlen(nm)) == 0) 6570 return (EINVAL); 6571 6572 if (nm[0] == '.') { 6573 if (namlen == 1) 6574 return (EINVAL); 6575 else if ((namlen == 2) && nm[1] == '.') { 6576 return (EEXIST); 6577 } 6578 } 6579 6580 /* 6581 * Check accessibility and write access of parent directory as we 6582 * only want to post the event if we're able to make a change. 6583 */ 6584 if (error = ufs_diraccess(ip, IEXEC|IWRITE, cr)) 6585 return (error); 6586 6587 if (vp = dnlc_lookup(dvp, nm)) { 6588 if (vp == DNLC_NO_VNODE) { 6589 VN_RELE(vp); 6590 return (ENOENT); 6591 } 6592 6593 *vpp = vp; 6594 return (0); 6595 } 6596 6597 /* 6598 * Keep the idle queue from getting too long by idling two 6599 * inodes before attempting to allocate another. 6600 * This operation must be performed before entering lockfs 6601 * or a transaction. 6602 */ 6603 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat) 6604 if ((curthread->t_flag & T_DONTBLOCK) == 0) { 6605 ins.in_lidles.value.ul += ufs_lookup_idle_count; 6606 ufs_idle_some(ufs_lookup_idle_count); 6607 } 6608 6609 ufsvfsp = ip->i_ufsvfs; 6610 6611 retry_lookup: 6612 if (error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK)) 6613 return (error); 6614 6615 if ((error = ufs_dirlook(ip, nm, &xip, cr, 1, 1)) == 0) { 6616 vp = ITOV(xip); 6617 *vpp = vp; 6618 } 6619 6620 if (ulp) { 6621 ufs_lockfs_end(ulp); 6622 } 6623 6624 if (error == EAGAIN) 6625 goto retry_lookup; 6626 6627 return (error); 6628 } 6629