1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * University Copyright- Copyright (c) 1982, 1986, 1988 32 * The Regents of the University of California 33 * All Rights Reserved 34 * 35 * University Acknowledgment- Portions of this document are derived from 36 * software developed by the University of California, Berkeley, and its 37 * contributors. 38 */ 39 40 41 #pragma ident "%Z%%M% %I% %E% SMI" 42 43 #include <sys/types.h> 44 #include <sys/t_lock.h> 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/bitmap.h> 48 #include <sys/sysmacros.h> 49 #include <sys/kmem.h> 50 #include <sys/signal.h> 51 #include <sys/user.h> 52 #include <sys/proc.h> 53 #include <sys/disp.h> 54 #include <sys/buf.h> 55 #include <sys/pathname.h> 56 #include <sys/vfs.h> 57 #include <sys/vnode.h> 58 #include <sys/file.h> 59 #include <sys/atomic.h> 60 #include <sys/uio.h> 61 #include <sys/dkio.h> 62 #include <sys/cred.h> 63 #include <sys/conf.h> 64 #include <sys/dnlc.h> 65 #include <sys/kstat.h> 66 #include <sys/acl.h> 67 #include <sys/fs/ufs_fsdir.h> 68 #include <sys/fs/ufs_fs.h> 69 #include <sys/fs/ufs_inode.h> 70 #include <sys/fs/ufs_mount.h> 71 #include <sys/fs/ufs_acl.h> 72 #include <sys/fs/ufs_panic.h> 73 #include <sys/fs/ufs_bio.h> 74 #include <sys/fs/ufs_quota.h> 75 #include <sys/fs/ufs_log.h> 76 #undef NFS 77 #include <sys/statvfs.h> 78 #include <sys/mount.h> 79 #include <sys/mntent.h> 80 #include <sys/swap.h> 81 #include <sys/errno.h> 82 #include <sys/debug.h> 83 #include "fs/fs_subr.h" 84 #include <sys/cmn_err.h> 85 #include <sys/dnlc.h> 86 #include <sys/fssnap_if.h> 87 #include <sys/sunddi.h> 88 #include <sys/bootconf.h> 89 #include <sys/policy.h> 90 #include <sys/zone.h> 91 92 /* 93 * This is the loadable module wrapper. 94 */ 95 #include <sys/modctl.h> 96 97 int ufsfstype; 98 vfsops_t *ufs_vfsops; 99 static int ufsinit(int, char *); 100 static int mountfs(); 101 extern int highbit(); 102 extern struct instats ins; 103 extern struct vnode *common_specvp(struct vnode *vp); 104 extern vfs_t EIO_vfs; 105 106 struct dquot *dquot, *dquotNDQUOT; 107 108 /* 109 * Cylinder group summary information handling tunable. 110 * This defines when these deltas get logged. 111 * If the number of cylinders in the file system is over the 112 * tunable then we log csum updates. Otherwise the updates are only 113 * done for performance on unmount. After a panic they can be 114 * quickly constructed during mounting. See ufs_construct_si() 115 * called from ufs_getsummaryinfo(). 116 * 117 * This performance feature can of course be disabled by setting 118 * ufs_ncg_log to 0, and fully enabled by setting it to 0xffffffff. 119 */ 120 #define UFS_LOG_NCG_DEFAULT 10000 121 uint32_t ufs_ncg_log = UFS_LOG_NCG_DEFAULT; 122 123 /* 124 * ufs_clean_root indicates whether the root fs went down cleanly 125 */ 126 static int ufs_clean_root = 0; 127 128 /* 129 * UFS Mount options table 130 */ 131 static char *intr_cancel[] = { MNTOPT_NOINTR, NULL }; 132 static char *nointr_cancel[] = { MNTOPT_INTR, NULL }; 133 static char *forcedirectio_cancel[] = { MNTOPT_NOFORCEDIRECTIO, NULL }; 134 static char *noforcedirectio_cancel[] = { MNTOPT_FORCEDIRECTIO, NULL }; 135 static char *largefiles_cancel[] = { MNTOPT_NOLARGEFILES, NULL }; 136 static char *nolargefiles_cancel[] = { MNTOPT_LARGEFILES, NULL }; 137 static char *logging_cancel[] = { MNTOPT_NOLOGGING, NULL }; 138 static char *nologging_cancel[] = { MNTOPT_LOGGING, NULL }; 139 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 140 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 141 static char *quota_cancel[] = { MNTOPT_NOQUOTA, NULL }; 142 static char *noquota_cancel[] = { MNTOPT_QUOTA, NULL }; 143 static char *dfratime_cancel[] = { MNTOPT_NODFRATIME, NULL }; 144 static char *nodfratime_cancel[] = { MNTOPT_DFRATIME, NULL }; 145 146 static mntopt_t mntopts[] = { 147 /* 148 * option name cancel option default arg flags 149 * ufs arg flag 150 */ 151 { MNTOPT_INTR, intr_cancel, NULL, MO_DEFAULT, 152 (void *)0 }, 153 { MNTOPT_NOINTR, nointr_cancel, NULL, 0, 154 (void *)UFSMNT_NOINTR }, 155 { MNTOPT_SYNCDIR, NULL, NULL, 0, 156 (void *)UFSMNT_SYNCDIR }, 157 { MNTOPT_FORCEDIRECTIO, forcedirectio_cancel, NULL, 0, 158 (void *)UFSMNT_FORCEDIRECTIO }, 159 { MNTOPT_NOFORCEDIRECTIO, noforcedirectio_cancel, NULL, 0, 160 (void *)UFSMNT_NOFORCEDIRECTIO }, 161 { MNTOPT_NOSETSEC, NULL, NULL, 0, 162 (void *)UFSMNT_NOSETSEC }, 163 { MNTOPT_LARGEFILES, largefiles_cancel, NULL, MO_DEFAULT, 164 (void *)UFSMNT_LARGEFILES }, 165 { MNTOPT_NOLARGEFILES, nolargefiles_cancel, NULL, 0, 166 (void *)0 }, 167 { MNTOPT_LOGGING, logging_cancel, NULL, MO_TAG, 168 (void *)UFSMNT_LOGGING }, 169 { MNTOPT_NOLOGGING, nologging_cancel, NULL, 170 MO_NODISPLAY|MO_DEFAULT|MO_TAG, (void *)0 }, 171 { MNTOPT_QUOTA, quota_cancel, NULL, MO_IGNORE, 172 (void *)0 }, 173 { MNTOPT_NOQUOTA, noquota_cancel, NULL, 174 MO_NODISPLAY|MO_DEFAULT, (void *)0 }, 175 { MNTOPT_GLOBAL, NULL, NULL, 0, 176 (void *)0 }, 177 { MNTOPT_XATTR, xattr_cancel, NULL, MO_DEFAULT, 178 (void *)0 }, 179 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, 180 (void *)0 }, 181 { MNTOPT_NOATIME, NULL, NULL, 0, 182 (void *)UFSMNT_NOATIME }, 183 { MNTOPT_DFRATIME, dfratime_cancel, NULL, 0, 184 (void *)0 }, 185 { MNTOPT_NODFRATIME, nodfratime_cancel, NULL, 186 MO_NODISPLAY|MO_DEFAULT, (void *)UFSMNT_NODFRATIME }, 187 { MNTOPT_ONERROR, NULL, UFSMNT_ONERROR_PANIC_STR, 188 MO_DEFAULT|MO_HASVALUE, (void *)0 }, 189 }; 190 191 static mntopts_t ufs_mntopts = { 192 sizeof (mntopts) / sizeof (mntopt_t), 193 mntopts 194 }; 195 196 static vfsdef_t vfw = { 197 VFSDEF_VERSION, 198 "ufs", 199 ufsinit, 200 VSW_HASPROTO|VSW_CANREMOUNT, 201 &ufs_mntopts 202 }; 203 204 /* 205 * Module linkage information for the kernel. 206 */ 207 extern struct mod_ops mod_fsops; 208 209 static struct modlfs modlfs = { 210 &mod_fsops, "filesystem for ufs", &vfw 211 }; 212 213 static struct modlinkage modlinkage = { 214 MODREV_1, (void *)&modlfs, NULL 215 }; 216 217 /* 218 * An attempt has been made to make this module unloadable. In order to 219 * test it, we need a system in which the root fs is NOT ufs. THIS HAS NOT 220 * BEEN DONE 221 */ 222 223 extern kstat_t *ufs_inode_kstat; 224 extern uint_t ufs_lockfs_key; 225 extern void ufs_lockfs_tsd_destructor(void *); 226 extern uint_t bypass_snapshot_throttle_key; 227 228 int 229 _init(void) 230 { 231 /* 232 * Create an index into the per thread array so that any thread doing 233 * VOP will have a lockfs mark on it. 234 */ 235 tsd_create(&ufs_lockfs_key, ufs_lockfs_tsd_destructor); 236 tsd_create(&bypass_snapshot_throttle_key, NULL); 237 return (mod_install(&modlinkage)); 238 } 239 240 int 241 _fini(void) 242 { 243 return (EBUSY); 244 } 245 246 int 247 _info(struct modinfo *modinfop) 248 { 249 return (mod_info(&modlinkage, modinfop)); 250 } 251 252 extern struct vnode *makespecvp(dev_t dev, vtype_t type); 253 254 extern kmutex_t ufs_scan_lock; 255 256 static int mountfs(struct vfs *, enum whymountroot, struct vnode *, char *, 257 struct cred *, int, void *, int); 258 259 260 static int 261 ufs_mount(struct vfs *vfsp, struct vnode *mvp, struct mounta *uap, 262 struct cred *cr) 263 264 { 265 char *data = uap->dataptr; 266 int datalen = uap->datalen; 267 dev_t dev; 268 struct vnode *bvp; 269 struct pathname dpn; 270 int error; 271 enum whymountroot why = ROOT_INIT; 272 struct ufs_args args; 273 int oflag, aflag; 274 int fromspace = (uap->flags & MS_SYSSPACE) ? 275 UIO_SYSSPACE : UIO_USERSPACE; 276 277 if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0) 278 return (error); 279 280 if (mvp->v_type != VDIR) 281 return (ENOTDIR); 282 283 mutex_enter(&mvp->v_lock); 284 if ((uap->flags & MS_REMOUNT) == 0 && 285 (uap->flags & MS_OVERLAY) == 0 && 286 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 287 mutex_exit(&mvp->v_lock); 288 return (EBUSY); 289 } 290 mutex_exit(&mvp->v_lock); 291 292 /* 293 * Get arguments 294 */ 295 bzero(&args, sizeof (args)); 296 if ((uap->flags & MS_DATA) && data != NULL && datalen != 0) { 297 int copy_result = 0; 298 299 if (datalen > sizeof (args)) 300 return (EINVAL); 301 if (uap->flags & MS_SYSSPACE) 302 bcopy(data, &args, datalen); 303 else 304 copy_result = copyin(data, &args, datalen); 305 if (copy_result) 306 return (EFAULT); 307 datalen = sizeof (struct ufs_args); 308 } else { 309 datalen = 0; 310 } 311 /* 312 * Read in the mount point pathname 313 * (so we can record the directory the file system was last mounted on). 314 */ 315 if (error = pn_get(uap->dir, fromspace, &dpn)) 316 return (error); 317 318 /* 319 * Resolve path name of special file being mounted. 320 */ 321 if (error = lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp)) { 322 pn_free(&dpn); 323 return (error); 324 } 325 if (bvp->v_type != VBLK) { 326 VN_RELE(bvp); 327 pn_free(&dpn); 328 return (ENOTBLK); 329 } 330 dev = bvp->v_rdev; 331 if (getmajor(dev) >= devcnt) { 332 pn_free(&dpn); 333 VN_RELE(bvp); 334 return (ENXIO); 335 } 336 if (uap->flags & MS_REMOUNT) 337 why = ROOT_REMOUNT; 338 339 /* 340 * In SunCluster, requests to a global device are satisfied by 341 * a local device. We substitute the global pxfs node with a 342 * local spec node here. 343 */ 344 if (IS_PXFSVP(bvp)) { 345 VN_RELE(bvp); 346 bvp = makespecvp(dev, VBLK); 347 } 348 349 /* 350 * Open block device mounted on. We need this to 351 * check whether the caller has sufficient rights to 352 * access the device in question. 353 * When bio is fixed for vnodes this can all be vnode 354 * operations. 355 */ 356 if ((vfsp->vfs_flag & VFS_RDONLY) != 0 || 357 (uap->flags & MS_RDONLY) != 0) { 358 oflag = FREAD; 359 aflag = VREAD; 360 } else { 361 oflag = FREAD | FWRITE; 362 aflag = VREAD | VWRITE; 363 } 364 if ((error = VOP_ACCESS(bvp, aflag, 0, cr)) != 0 || 365 (error = secpolicy_spec_open(cr, bvp, oflag)) != 0) { 366 pn_free(&dpn); 367 VN_RELE(bvp); 368 return (error); 369 } 370 371 /* 372 * Ensure that this device isn't already mounted or in progress on a 373 * mount unless this is a REMOUNT request or we are told to suppress 374 * mount checks. Global mounts require special handling. 375 */ 376 if ((uap->flags & MS_NOCHECK) == 0) { 377 if ((uap->flags & MS_GLOBAL) == 0 && 378 vfs_devmounting(dev, vfsp)) { 379 pn_free(&dpn); 380 VN_RELE(bvp); 381 return (EBUSY); 382 } 383 if (vfs_devismounted(dev)) { 384 if ((uap->flags & MS_REMOUNT) == 0) { 385 pn_free(&dpn); 386 VN_RELE(bvp); 387 return (EBUSY); 388 } 389 } 390 } 391 392 /* 393 * If the device is a tape, mount it read only 394 */ 395 if (devopsp[getmajor(dev)]->devo_cb_ops->cb_flag & D_TAPE) { 396 vfsp->vfs_flag |= VFS_RDONLY; 397 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 398 } 399 if (uap->flags & MS_RDONLY) 400 vfsp->vfs_flag |= VFS_RDONLY; 401 402 /* 403 * Mount the filesystem, free the device vnode on error. 404 */ 405 error = mountfs(vfsp, why, bvp, dpn.pn_path, cr, 0, &args, datalen); 406 pn_free(&dpn); 407 if (error) { 408 VN_RELE(bvp); 409 } 410 return (error); 411 } 412 /* 413 * Mount root file system. 414 * "why" is ROOT_INIT on initial call ROOT_REMOUNT if called to 415 * remount the root file system, and ROOT_UNMOUNT if called to 416 * unmount the root (e.g., as part of a system shutdown). 417 * 418 * XXX - this may be partially machine-dependent; it, along with the VFS_SWAPVP 419 * operation, goes along with auto-configuration. A mechanism should be 420 * provided by which machine-INdependent code in the kernel can say "get me the 421 * right root file system" and "get me the right initial swap area", and have 422 * that done in what may well be a machine-dependent fashion. 423 * Unfortunately, it is also file-system-type dependent (NFS gets it via 424 * bootparams calls, UFS gets it from various and sundry machine-dependent 425 * mechanisms, as SPECFS does for swap). 426 */ 427 static int 428 ufs_mountroot(struct vfs *vfsp, enum whymountroot why) 429 { 430 struct fs *fsp; 431 int error; 432 static int ufsrootdone = 0; 433 dev_t rootdev; 434 struct vnode *vp; 435 struct vnode *devvp = 0; 436 int ovflags; 437 int doclkset; 438 ufsvfs_t *ufsvfsp; 439 440 if (why == ROOT_INIT) { 441 if (ufsrootdone++) 442 return (EBUSY); 443 rootdev = getrootdev(); 444 if (rootdev == (dev_t)NODEV) 445 return (ENODEV); 446 vfsp->vfs_dev = rootdev; 447 vfsp->vfs_flag |= VFS_RDONLY; 448 } else if (why == ROOT_REMOUNT) { 449 vp = ((struct ufsvfs *)vfsp->vfs_data)->vfs_devvp; 450 (void) dnlc_purge_vfsp(vfsp, 0); 451 vp = common_specvp(vp); 452 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_INVAL, CRED()); 453 (void) bfinval(vfsp->vfs_dev, 0); 454 fsp = getfs(vfsp); 455 456 ovflags = vfsp->vfs_flag; 457 vfsp->vfs_flag &= ~VFS_RDONLY; 458 vfsp->vfs_flag |= VFS_REMOUNT; 459 rootdev = vfsp->vfs_dev; 460 } else if (why == ROOT_UNMOUNT) { 461 if (vfs_lock(vfsp) == 0) { 462 (void) ufs_flush(vfsp); 463 /* 464 * Mark the log as fully rolled 465 */ 466 ufsvfsp = (ufsvfs_t *)vfsp->vfs_data; 467 fsp = ufsvfsp->vfs_fs; 468 if (TRANS_ISTRANS(ufsvfsp) && 469 !TRANS_ISERROR(ufsvfsp) && 470 (fsp->fs_rolled == FS_NEED_ROLL)) { 471 ml_unit_t *ul = ufsvfsp->vfs_log; 472 473 error = ufs_putsummaryinfo(ul->un_dev, 474 ufsvfsp, fsp); 475 if (error == 0) { 476 fsp->fs_rolled = FS_ALL_ROLLED; 477 UFS_BWRITE2(NULL, ufsvfsp->vfs_bufp); 478 } 479 } 480 vfs_unlock(vfsp); 481 } else { 482 ufs_update(0); 483 } 484 485 vp = ((struct ufsvfs *)vfsp->vfs_data)->vfs_devvp; 486 (void) VOP_CLOSE(vp, FREAD|FWRITE, 1, 487 (offset_t)0, CRED()); 488 return (0); 489 } 490 error = vfs_lock(vfsp); 491 if (error) 492 return (error); 493 494 devvp = makespecvp(rootdev, VBLK); 495 496 /* If RO media, don't call clkset() (see below) */ 497 doclkset = 1; 498 if (why == ROOT_INIT) { 499 error = VOP_OPEN(&devvp, FREAD|FWRITE, CRED()); 500 if (error == 0) { 501 (void) VOP_CLOSE(devvp, FREAD|FWRITE, 1, 502 (offset_t)0, CRED()); 503 } else { 504 doclkset = 0; 505 } 506 } 507 508 error = mountfs(vfsp, why, devvp, "/", CRED(), 1, NULL, 0); 509 /* 510 * XXX - assumes root device is not indirect, because we don't set 511 * rootvp. Is rootvp used for anything? If so, make another arg 512 * to mountfs. 513 */ 514 if (error) { 515 vfs_unlock(vfsp); 516 if (why == ROOT_REMOUNT) 517 vfsp->vfs_flag = ovflags; 518 if (rootvp) { 519 VN_RELE(rootvp); 520 rootvp = (struct vnode *)0; 521 } 522 VN_RELE(devvp); 523 return (error); 524 } 525 if (why == ROOT_INIT) 526 vfs_add((struct vnode *)0, vfsp, 527 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 528 vfs_unlock(vfsp); 529 fsp = getfs(vfsp); 530 clkset(doclkset ? fsp->fs_time : -1); 531 ufsvfsp = (ufsvfs_t *)vfsp->vfs_data; 532 if (ufsvfsp->vfs_log) { 533 vfs_setmntopt(vfsp, MNTOPT_LOGGING, NULL, 0); 534 } 535 return (0); 536 } 537 538 static int 539 remountfs(struct vfs *vfsp, dev_t dev, void *raw_argsp, int args_len) 540 { 541 struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 542 struct ulockfs *ulp = &ufsvfsp->vfs_ulockfs; 543 struct buf *bp = ufsvfsp->vfs_bufp; 544 struct fs *fsp = (struct fs *)bp->b_un.b_addr; 545 struct fs *fspt; 546 struct buf *tpt = 0; 547 int error = 0; 548 int flags = 0; 549 550 if (args_len == sizeof (struct ufs_args) && raw_argsp) 551 flags = ((struct ufs_args *)raw_argsp)->flags; 552 553 /* cannot remount to RDONLY */ 554 if (vfsp->vfs_flag & VFS_RDONLY) 555 return (EINVAL); 556 557 /* whoops, wrong dev */ 558 if (vfsp->vfs_dev != dev) 559 return (EINVAL); 560 561 /* 562 * synchronize w/ufs ioctls 563 */ 564 mutex_enter(&ulp->ul_lock); 565 atomic_add_long(&ufs_quiesce_pend, 1); 566 567 /* 568 * reset options 569 */ 570 ufsvfsp->vfs_nointr = flags & UFSMNT_NOINTR; 571 ufsvfsp->vfs_syncdir = flags & UFSMNT_SYNCDIR; 572 ufsvfsp->vfs_nosetsec = flags & UFSMNT_NOSETSEC; 573 ufsvfsp->vfs_noatime = flags & UFSMNT_NOATIME; 574 if ((flags & UFSMNT_NODFRATIME) || ufsvfsp->vfs_noatime) 575 ufsvfsp->vfs_dfritime &= ~UFS_DFRATIME; 576 else /* dfratime, default behavior */ 577 ufsvfsp->vfs_dfritime |= UFS_DFRATIME; 578 if (flags & UFSMNT_FORCEDIRECTIO) 579 ufsvfsp->vfs_forcedirectio = 1; 580 else /* default is no direct I/O */ 581 ufsvfsp->vfs_forcedirectio = 0; 582 ufsvfsp->vfs_iotstamp = lbolt; 583 584 /* 585 * set largefiles flag in ufsvfs equal to the 586 * value passed in by the mount command. If 587 * it is "nolargefiles", and the flag is set 588 * in the superblock, the mount fails. 589 */ 590 if (!(flags & UFSMNT_LARGEFILES)) { /* "nolargefiles" */ 591 if (fsp->fs_flags & FSLARGEFILES) { 592 error = EFBIG; 593 goto remounterr; 594 } 595 ufsvfsp->vfs_lfflags &= ~UFS_LARGEFILES; 596 } else /* "largefiles" */ 597 ufsvfsp->vfs_lfflags |= UFS_LARGEFILES; 598 /* 599 * read/write to read/write; all done 600 */ 601 if (fsp->fs_ronly == 0) 602 goto remounterr; 603 604 /* 605 * fix-on-panic assumes RO->RW remount implies system-critical fs 606 * if it is shortly after boot; so, don't attempt to lock and fix 607 * (unless the user explicitly asked for another action on error) 608 * XXX UFSMNT_ONERROR_RDONLY rather than UFSMNT_ONERROR_PANIC 609 */ 610 #define BOOT_TIME_LIMIT (180*hz) 611 if (!(flags & UFSMNT_ONERROR_FLGMASK) && lbolt < BOOT_TIME_LIMIT) { 612 cmn_err(CE_WARN, "%s is required to be mounted onerror=%s", 613 ufsvfsp->vfs_fs->fs_fsmnt, UFSMNT_ONERROR_PANIC_STR); 614 flags |= UFSMNT_ONERROR_PANIC; 615 } 616 617 if ((error = ufsfx_mount(ufsvfsp, flags)) != 0) 618 goto remounterr; 619 620 /* 621 * quiesce the file system 622 */ 623 error = ufs_quiesce(ulp); 624 if (error) 625 goto remounterr; 626 627 tpt = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, SBLOCK, SBSIZE); 628 if (tpt->b_flags & B_ERROR) { 629 error = EIO; 630 goto remounterr; 631 } 632 fspt = (struct fs *)tpt->b_un.b_addr; 633 if (((fspt->fs_magic != FS_MAGIC) && 634 (fspt->fs_magic != MTB_UFS_MAGIC)) || 635 (fspt->fs_magic == MTB_UFS_MAGIC && 636 (fspt->fs_version > MTB_UFS_VERSION_1 || 637 fspt->fs_version < MTB_UFS_VERSION_MIN)) || 638 fspt->fs_bsize > MAXBSIZE || fspt->fs_frag > MAXFRAG || 639 fspt->fs_bsize < sizeof (struct fs) || fspt->fs_bsize < PAGESIZE) { 640 tpt->b_flags |= B_STALE | B_AGE; 641 error = EINVAL; 642 goto remounterr; 643 } 644 645 if (ufsvfsp->vfs_log && (ufsvfsp->vfs_log->un_flags & LDL_NOROLL)) { 646 ufsvfsp->vfs_log->un_flags &= ~LDL_NOROLL; 647 logmap_start_roll(ufsvfsp->vfs_log); 648 } 649 650 if (TRANS_ISERROR(ufsvfsp)) 651 goto remounterr; 652 TRANS_DOMATAMAP(ufsvfsp); 653 654 if ((fspt->fs_state + fspt->fs_time == FSOKAY) && 655 fspt->fs_clean == FSLOG && !TRANS_ISTRANS(ufsvfsp)) { 656 ufsvfsp->vfs_log = NULL; 657 ufsvfsp->vfs_domatamap = 0; 658 error = ENOSPC; 659 goto remounterr; 660 } 661 662 if (fspt->fs_state + fspt->fs_time == FSOKAY && 663 (fspt->fs_clean == FSCLEAN || 664 fspt->fs_clean == FSSTABLE || 665 fspt->fs_clean == FSLOG)) { 666 667 /* 668 * Ensure that ufs_getsummaryinfo doesn't reconstruct 669 * the summary info. 670 */ 671 error = ufs_getsummaryinfo(vfsp->vfs_dev, ufsvfsp, fspt); 672 if (error) 673 goto remounterr; 674 675 /* preserve mount name */ 676 (void) strncpy(fspt->fs_fsmnt, fsp->fs_fsmnt, MAXMNTLEN); 677 /* free the old cg space */ 678 kmem_free(fsp->fs_u.fs_csp, fsp->fs_cssize); 679 /* switch in the new superblock */ 680 fspt->fs_rolled = FS_NEED_ROLL; 681 bcopy(tpt->b_un.b_addr, bp->b_un.b_addr, fspt->fs_sbsize); 682 683 fsp->fs_clean = FSSTABLE; 684 } /* superblock updated in memory */ 685 tpt->b_flags |= B_STALE | B_AGE; 686 brelse(tpt); 687 tpt = 0; 688 689 if (fsp->fs_clean != FSSTABLE) { 690 error = ENOSPC; 691 goto remounterr; 692 } 693 694 695 if (TRANS_ISTRANS(ufsvfsp)) { 696 fsp->fs_clean = FSLOG; 697 ufsvfsp->vfs_dio = 0; 698 } else 699 if (ufsvfsp->vfs_dio) 700 fsp->fs_clean = FSSUSPEND; 701 702 TRANS_MATA_MOUNT(ufsvfsp); 703 704 fsp->fs_fmod = 0; 705 fsp->fs_ronly = 0; 706 707 atomic_add_long(&ufs_quiesce_pend, -1); 708 cv_broadcast(&ulp->ul_cv); 709 mutex_exit(&ulp->ul_lock); 710 711 if (TRANS_ISTRANS(ufsvfsp)) { 712 713 /* 714 * start the delete thread 715 */ 716 ufs_thread_start(&ufsvfsp->vfs_delete, ufs_thread_delete, vfsp); 717 718 /* 719 * start the reclaim thread 720 */ 721 if (fsp->fs_reclaim & (FS_RECLAIM|FS_RECLAIMING)) { 722 fsp->fs_reclaim &= ~FS_RECLAIM; 723 fsp->fs_reclaim |= FS_RECLAIMING; 724 ufs_thread_start(&ufsvfsp->vfs_reclaim, 725 ufs_thread_reclaim, vfsp); 726 } 727 } 728 729 TRANS_SBWRITE(ufsvfsp, TOP_MOUNT); 730 731 return (0); 732 733 remounterr: 734 if (tpt) 735 brelse(tpt); 736 atomic_add_long(&ufs_quiesce_pend, -1); 737 cv_broadcast(&ulp->ul_cv); 738 mutex_exit(&ulp->ul_lock); 739 return (error); 740 } 741 742 /* 743 * If the device maxtransfer size is not available, we use ufs_maxmaxphys 744 * along with the system value for maxphys to determine the value for 745 * maxtransfer. 746 */ 747 int ufs_maxmaxphys = (1024 * 1024); 748 749 #include <sys/ddi.h> /* for delay(9f) */ 750 751 int ufs_mount_error_delay = 20; /* default to 20ms */ 752 int ufs_mount_timeout = 60; /* default to 1 minute */ 753 754 static int 755 mountfs(struct vfs *vfsp, enum whymountroot why, struct vnode *devvp, 756 char *path, cred_t *cr, int isroot, void *raw_argsp, int args_len) 757 { 758 dev_t dev = devvp->v_rdev; 759 struct fs *fsp; 760 struct ufsvfs *ufsvfsp = 0; 761 struct buf *bp = 0; 762 struct buf *tp = 0; 763 struct dk_cinfo ci; 764 int error = 0; 765 size_t len; 766 int needclose = 0; 767 int needtrans = 0; 768 struct inode *rip; 769 struct vnode *rvp = NULL; 770 int flags = 0; 771 kmutex_t *ihm; 772 int elapsed; 773 int status; 774 extern int maxphys; 775 776 if (args_len == sizeof (struct ufs_args) && raw_argsp) 777 flags = ((struct ufs_args *)raw_argsp)->flags; 778 779 ASSERT(vfs_lock_held(vfsp)); 780 781 if (why == ROOT_INIT) { 782 /* 783 * Open block device mounted on. 784 * When bio is fixed for vnodes this can all be vnode 785 * operations. 786 */ 787 error = VOP_OPEN(&devvp, 788 (vfsp->vfs_flag & VFS_RDONLY) ? FREAD : FREAD|FWRITE, cr); 789 if (error) 790 goto out; 791 needclose = 1; 792 793 /* 794 * Refuse to go any further if this 795 * device is being used for swapping. 796 */ 797 if (IS_SWAPVP(devvp)) { 798 error = EBUSY; 799 goto out; 800 } 801 } 802 803 /* 804 * check for dev already mounted on 805 */ 806 if (vfsp->vfs_flag & VFS_REMOUNT) { 807 error = remountfs(vfsp, dev, raw_argsp, args_len); 808 if (error == 0) 809 VN_RELE(devvp); 810 return (error); 811 } 812 813 ASSERT(devvp != 0); 814 815 /* 816 * Flush back any dirty pages on the block device to 817 * try and keep the buffer cache in sync with the page 818 * cache if someone is trying to use block devices when 819 * they really should be using the raw device. 820 */ 821 (void) VOP_PUTPAGE(common_specvp(devvp), (offset_t)0, 822 (size_t)0, B_INVAL, cr); 823 824 /* 825 * read in superblock 826 */ 827 ufsvfsp = kmem_zalloc(sizeof (struct ufsvfs), KM_SLEEP); 828 tp = UFS_BREAD(ufsvfsp, dev, SBLOCK, SBSIZE); 829 if (tp->b_flags & B_ERROR) 830 goto out; 831 fsp = (struct fs *)tp->b_un.b_addr; 832 #ifdef _LP64 833 if ((fsp->fs_magic != FS_MAGIC) && (fsp->fs_magic != MTB_UFS_MAGIC)) { 834 if (why == ROOT_INIT) { 835 cmn_err(CE_NOTE, 836 "mount: not a UFS magic number (0x%x)", 837 fsp->fs_magic); 838 } 839 error = EINVAL; 840 goto out; 841 } 842 843 if ((fsp->fs_magic == MTB_UFS_MAGIC) && 844 (fsp->fs_version > MTB_UFS_VERSION_1 || 845 fsp->fs_version < MTB_UFS_VERSION_MIN)) { 846 cmn_err(CE_NOTE, 847 "mount: unrecognized version of UFS on-disk format: %d", 848 fsp->fs_version); 849 error = EINVAL; 850 goto out; 851 } 852 853 #else 854 if (fsp->fs_magic == MTB_UFS_MAGIC) { 855 if (fsp->fs_version > MTB_UFS_VERSION_1 || 856 fsp->fs_version < MTB_UFS_VERSION_MIN) { 857 cmn_err(CE_NOTE, 858 "mount: unrecognized version of UFS" 859 " on-disk format: %d", fsp->fs_version); 860 error = EINVAL; 861 goto out; 862 } 863 864 /* 865 * Find the size of the device in sectors. If the 866 * the size in sectors is greater than INT_MAX, it's 867 * a multi-terabyte file system, which can't be 868 * mounted by a 32-bit kernel. We can't use the 869 * fsbtodb() macro in the next line because the macro 870 * casts the intermediate values to daddr_t, which is 871 * a 32-bit quantity in a 32-bit kernel. Here we 872 * really do need the intermediate values to be held 873 * in 64-bit quantities because we're checking for 874 * overflow of a 32-bit field. 875 */ 876 if ((((diskaddr_t)(fsp->fs_size)) << fsp->fs_fsbtodb) 877 > INT_MAX) { 878 cmn_err(CE_NOTE, 879 "mount: multi-terabyte UFS cannot be" 880 " mounted by a 32-bit kernel"); 881 error = EINVAL; 882 goto out; 883 } 884 885 } else if (fsp->fs_magic != FS_MAGIC) { 886 cmn_err(CE_NOTE, 887 "mount: not a UFS magic number (0x%x)", fsp->fs_magic); 888 error = EINVAL; 889 goto out; 890 } 891 #endif /* _LP64 */ 892 893 if (fsp->fs_bsize > MAXBSIZE || fsp->fs_frag > MAXFRAG || 894 fsp->fs_bsize < sizeof (struct fs) || fsp->fs_bsize < PAGESIZE) { 895 error = EINVAL; /* also needs translation */ 896 goto out; 897 } 898 899 /* 900 * Allocate VFS private data. 901 */ 902 vfsp->vfs_bcount = 0; 903 vfsp->vfs_data = (caddr_t)ufsvfsp; 904 vfsp->vfs_fstype = ufsfstype; 905 vfsp->vfs_dev = dev; 906 vfsp->vfs_flag |= VFS_NOTRUNC; 907 vfs_make_fsid(&vfsp->vfs_fsid, dev, ufsfstype); 908 ufsvfsp->vfs_devvp = devvp; 909 910 /* 911 * Cross-link with vfs and add to instance list. 912 */ 913 ufsvfsp->vfs_vfs = vfsp; 914 ufs_vfs_add(ufsvfsp); 915 916 ufsvfsp->vfs_dev = dev; 917 ufsvfsp->vfs_bufp = tp; 918 919 ufsvfsp->vfs_dirsize = INODESIZE + (4 * ALLOCSIZE) + fsp->fs_fsize; 920 ufsvfsp->vfs_minfrags = (int)((int64_t)fsp->fs_dsize * 921 fsp->fs_minfree / 100); 922 /* 923 * if mount allows largefiles, indicate so in ufsvfs 924 */ 925 if (flags & UFSMNT_LARGEFILES) 926 ufsvfsp->vfs_lfflags |= UFS_LARGEFILES; 927 /* 928 * Initialize threads 929 */ 930 ufs_thread_init(&ufsvfsp->vfs_delete, 1); 931 ufs_thread_init(&ufsvfsp->vfs_reclaim, 0); 932 933 /* 934 * Chicken and egg problem. The superblock may have deltas 935 * in the log. So after the log is scanned we reread the 936 * superblock. We guarantee that the fields needed to 937 * scan the log will not be in the log. 938 */ 939 if (fsp->fs_logbno && fsp->fs_clean == FSLOG && 940 (fsp->fs_state + fsp->fs_time == FSOKAY)) { 941 error = lufs_snarf(ufsvfsp, fsp, (vfsp->vfs_flag & VFS_RDONLY)); 942 if (error) { 943 /* 944 * Allow a ro mount to continue even if the 945 * log cannot be processed - yet. 946 */ 947 if (!(vfsp->vfs_flag & VFS_RDONLY)) { 948 cmn_err(CE_WARN, "Error accessing ufs " 949 "log for %s; Please run fsck(1M)", 950 path); 951 goto out; 952 } 953 } 954 tp->b_flags |= (B_AGE | B_STALE); 955 brelse(tp); 956 tp = UFS_BREAD(ufsvfsp, dev, SBLOCK, SBSIZE); 957 fsp = (struct fs *)tp->b_un.b_addr; 958 ufsvfsp->vfs_bufp = tp; 959 if (tp->b_flags & B_ERROR) 960 goto out; 961 } 962 963 /* 964 * Set logging mounted flag used by lockfs 965 */ 966 ufsvfsp->vfs_validfs = UT_MOUNTED; 967 968 /* 969 * Copy the super block into a buffer in its native size. 970 * Use ngeteblk to allocate the buffer 971 */ 972 bp = ngeteblk(fsp->fs_bsize); 973 ufsvfsp->vfs_bufp = bp; 974 bp->b_edev = dev; 975 bp->b_dev = cmpdev(dev); 976 bp->b_blkno = SBLOCK; 977 bp->b_bcount = fsp->fs_sbsize; 978 bcopy(tp->b_un.b_addr, bp->b_un.b_addr, fsp->fs_sbsize); 979 tp->b_flags |= B_STALE | B_AGE; 980 brelse(tp); 981 tp = 0; 982 983 fsp = (struct fs *)bp->b_un.b_addr; 984 /* 985 * Mount fails if superblock flag indicates presence of large 986 * files and filesystem is attempted to be mounted 'nolargefiles'. 987 * The exception is for a read only mount of root, which we 988 * always want to succeed, so fsck can fix potential problems. 989 * The assumption is that we will remount root at some point, 990 * and the remount will enforce the mount option. 991 */ 992 if (!(isroot & (vfsp->vfs_flag & VFS_RDONLY)) && 993 (fsp->fs_flags & FSLARGEFILES) && 994 !(flags & UFSMNT_LARGEFILES)) { 995 error = EFBIG; 996 goto out; 997 } 998 999 if (vfsp->vfs_flag & VFS_RDONLY) { 1000 fsp->fs_ronly = 1; 1001 fsp->fs_fmod = 0; 1002 if (((fsp->fs_state + fsp->fs_time) == FSOKAY) && 1003 ((fsp->fs_clean == FSCLEAN) || 1004 (fsp->fs_clean == FSSTABLE) || 1005 (fsp->fs_clean == FSLOG))) { 1006 if (isroot) { 1007 if (fsp->fs_clean == FSLOG) { 1008 if (fsp->fs_rolled == FS_ALL_ROLLED) { 1009 ufs_clean_root = 1; 1010 } 1011 } else { 1012 ufs_clean_root = 1; 1013 } 1014 } 1015 fsp->fs_clean = FSSTABLE; 1016 } else { 1017 fsp->fs_clean = FSBAD; 1018 } 1019 } else { 1020 1021 fsp->fs_fmod = 0; 1022 fsp->fs_ronly = 0; 1023 1024 TRANS_DOMATAMAP(ufsvfsp); 1025 1026 if ((TRANS_ISERROR(ufsvfsp)) || 1027 (((fsp->fs_state + fsp->fs_time) == FSOKAY) && 1028 fsp->fs_clean == FSLOG && !TRANS_ISTRANS(ufsvfsp))) { 1029 ufsvfsp->vfs_log = NULL; 1030 ufsvfsp->vfs_domatamap = 0; 1031 error = ENOSPC; 1032 goto out; 1033 } 1034 1035 if (((fsp->fs_state + fsp->fs_time) == FSOKAY) && 1036 (fsp->fs_clean == FSCLEAN || 1037 fsp->fs_clean == FSSTABLE || 1038 fsp->fs_clean == FSLOG)) 1039 fsp->fs_clean = FSSTABLE; 1040 else { 1041 if (isroot) { 1042 /* 1043 * allow root partition to be mounted even 1044 * when fs_state is not ok 1045 * will be fixed later by a remount root 1046 */ 1047 fsp->fs_clean = FSBAD; 1048 ufsvfsp->vfs_log = NULL; 1049 ufsvfsp->vfs_domatamap = 0; 1050 } else { 1051 error = ENOSPC; 1052 goto out; 1053 } 1054 } 1055 1056 if (fsp->fs_clean == FSSTABLE && TRANS_ISTRANS(ufsvfsp)) 1057 fsp->fs_clean = FSLOG; 1058 } 1059 TRANS_MATA_MOUNT(ufsvfsp); 1060 needtrans = 1; 1061 1062 vfsp->vfs_bsize = fsp->fs_bsize; 1063 1064 /* 1065 * Read in summary info 1066 */ 1067 if (error = ufs_getsummaryinfo(dev, ufsvfsp, fsp)) 1068 goto out; 1069 1070 /* 1071 * lastwhinetime is set to zero rather than lbolt, so that after 1072 * mounting if the filesystem is found to be full, then immediately the 1073 * "file system message" will be logged. 1074 */ 1075 ufsvfsp->vfs_lastwhinetime = 0L; 1076 1077 1078 mutex_init(&ufsvfsp->vfs_lock, NULL, MUTEX_DEFAULT, NULL); 1079 (void) copystr(path, fsp->fs_fsmnt, sizeof (fsp->fs_fsmnt) - 1, &len); 1080 bzero(fsp->fs_fsmnt + len, sizeof (fsp->fs_fsmnt) - len); 1081 1082 /* 1083 * Sanity checks for old file systems 1084 */ 1085 if (fsp->fs_postblformat == FS_42POSTBLFMT) 1086 ufsvfsp->vfs_nrpos = 8; 1087 else 1088 ufsvfsp->vfs_nrpos = fsp->fs_nrpos; 1089 1090 /* 1091 * Initialize lockfs structure to support file system locking 1092 */ 1093 bzero(&ufsvfsp->vfs_ulockfs.ul_lockfs, 1094 sizeof (struct lockfs)); 1095 ufsvfsp->vfs_ulockfs.ul_fs_lock = ULOCKFS_ULOCK; 1096 mutex_init(&ufsvfsp->vfs_ulockfs.ul_lock, NULL, 1097 MUTEX_DEFAULT, NULL); 1098 cv_init(&ufsvfsp->vfs_ulockfs.ul_cv, NULL, CV_DEFAULT, NULL); 1099 1100 /* 1101 * We don't need to grab vfs_dqrwlock for this ufs_iget() call. 1102 * We are in the process of mounting the file system so there 1103 * is no need to grab the quota lock. If a quota applies to the 1104 * root inode, then it will be updated when quotas are enabled. 1105 * 1106 * However, we have an ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock)) 1107 * in getinoquota() that we want to keep so grab it anyway. 1108 */ 1109 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 1110 1111 error = ufs_iget_alloced(vfsp, UFSROOTINO, &rip, cr); 1112 1113 rw_exit(&ufsvfsp->vfs_dqrwlock); 1114 1115 if (error) 1116 goto out; 1117 1118 /* 1119 * make sure root inode is a directory. Returning ENOTDIR might 1120 * be confused with the mount point not being a directory, so 1121 * we use EIO instead. 1122 */ 1123 if ((rip->i_mode & IFMT) != IFDIR) { 1124 /* 1125 * Mark this inode as subject for cleanup 1126 * to avoid stray inodes in the cache. 1127 */ 1128 rvp = ITOV(rip); 1129 error = EIO; 1130 goto out; 1131 } 1132 1133 rvp = ITOV(rip); 1134 mutex_enter(&rvp->v_lock); 1135 rvp->v_flag |= VROOT; 1136 mutex_exit(&rvp->v_lock); 1137 ufsvfsp->vfs_root = rvp; 1138 /* The buffer for the root inode does not contain a valid b_vp */ 1139 (void) bfinval(dev, 0); 1140 1141 /* options */ 1142 ufsvfsp->vfs_nosetsec = flags & UFSMNT_NOSETSEC; 1143 ufsvfsp->vfs_nointr = flags & UFSMNT_NOINTR; 1144 ufsvfsp->vfs_syncdir = flags & UFSMNT_SYNCDIR; 1145 ufsvfsp->vfs_noatime = flags & UFSMNT_NOATIME; 1146 if ((flags & UFSMNT_NODFRATIME) || ufsvfsp->vfs_noatime) 1147 ufsvfsp->vfs_dfritime &= ~UFS_DFRATIME; 1148 else /* dfratime, default behavior */ 1149 ufsvfsp->vfs_dfritime |= UFS_DFRATIME; 1150 if (flags & UFSMNT_FORCEDIRECTIO) 1151 ufsvfsp->vfs_forcedirectio = 1; 1152 else if (flags & UFSMNT_NOFORCEDIRECTIO) 1153 ufsvfsp->vfs_forcedirectio = 0; 1154 ufsvfsp->vfs_iotstamp = lbolt; 1155 1156 ufsvfsp->vfs_nindiroffset = fsp->fs_nindir - 1; 1157 ufsvfsp->vfs_nindirshift = highbit(ufsvfsp->vfs_nindiroffset); 1158 ufsvfsp->vfs_ioclustsz = fsp->fs_bsize * fsp->fs_maxcontig; 1159 1160 if (cdev_ioctl(dev, DKIOCINFO, (intptr_t)&ci, 1161 FKIOCTL|FNATIVE|FREAD, CRED(), &status) == 0) { 1162 ufsvfsp->vfs_iotransz = ci.dki_maxtransfer * DEV_BSIZE; 1163 } else { 1164 ufsvfsp->vfs_iotransz = MIN(maxphys, ufs_maxmaxphys); 1165 } 1166 1167 if (ufsvfsp->vfs_iotransz <= 0) { 1168 ufsvfsp->vfs_iotransz = MIN(maxphys, ufs_maxmaxphys); 1169 } 1170 1171 /* 1172 * When logging, used to reserve log space for writes and truncs 1173 */ 1174 ufsvfsp->vfs_avgbfree = fsp->fs_cstotal.cs_nbfree / fsp->fs_ncg; 1175 1176 /* 1177 * Determine whether to log cylinder group summary info. 1178 */ 1179 ufsvfsp->vfs_nolog_si = (fsp->fs_ncg < ufs_ncg_log); 1180 1181 if (TRANS_ISTRANS(ufsvfsp)) { 1182 /* 1183 * start the delete thread 1184 */ 1185 ufs_thread_start(&ufsvfsp->vfs_delete, ufs_thread_delete, vfsp); 1186 1187 /* 1188 * start reclaim thread if the filesystem was not mounted 1189 * read only. 1190 */ 1191 if (!fsp->fs_ronly && (fsp->fs_reclaim & 1192 (FS_RECLAIM|FS_RECLAIMING))) { 1193 fsp->fs_reclaim &= ~FS_RECLAIM; 1194 fsp->fs_reclaim |= FS_RECLAIMING; 1195 ufs_thread_start(&ufsvfsp->vfs_reclaim, 1196 ufs_thread_reclaim, vfsp); 1197 } 1198 1199 /* Mark the fs as unrolled */ 1200 fsp->fs_rolled = FS_NEED_ROLL; 1201 } else if (!fsp->fs_ronly && (fsp->fs_reclaim & 1202 (FS_RECLAIM|FS_RECLAIMING))) { 1203 /* 1204 * If a file system that is mounted nologging, after 1205 * having previously been mounted logging, becomes 1206 * unmounted whilst the reclaim thread is in the throes 1207 * of reclaiming open/deleted inodes, a subsequent mount 1208 * of such a file system with logging disabled could lead 1209 * to inodes becoming lost. So, start reclaim now, even 1210 * though logging was disabled for the previous mount, to 1211 * tidy things up. 1212 */ 1213 fsp->fs_reclaim &= ~FS_RECLAIM; 1214 fsp->fs_reclaim |= FS_RECLAIMING; 1215 ufs_thread_start(&ufsvfsp->vfs_reclaim, 1216 ufs_thread_reclaim, vfsp); 1217 } 1218 1219 if (!fsp->fs_ronly) { 1220 TRANS_SBWRITE(ufsvfsp, TOP_MOUNT); 1221 if (error = geterror(ufsvfsp->vfs_bufp)) 1222 goto out; 1223 } 1224 1225 /* fix-on-panic initialization */ 1226 if (isroot && !(flags & UFSMNT_ONERROR_FLGMASK)) 1227 flags |= UFSMNT_ONERROR_PANIC; /* XXX ..._RDONLY */ 1228 1229 if ((error = ufsfx_mount(ufsvfsp, flags)) != 0) 1230 goto out; 1231 1232 if (why == ROOT_INIT && isroot) 1233 rootvp = devvp; 1234 1235 return (0); 1236 out: 1237 if (error == 0) 1238 error = EIO; 1239 if (rvp) { 1240 /* the following sequence is similar to ufs_unmount() */ 1241 1242 /* 1243 * There's a problem that ufs_iget() puts inodes into 1244 * the inode cache before it returns them. If someone 1245 * traverses that cache and gets a reference to our 1246 * inode, there's a chance they'll still be using it 1247 * after we've destroyed it. This is a hard race to 1248 * hit, but it's happened (putting in a medium delay 1249 * here, and a large delay in ufs_scan_inodes() for 1250 * inodes on the device we're bailing out on, makes 1251 * the race easy to demonstrate). The symptom is some 1252 * other part of UFS faulting on bad inode contents, 1253 * or when grabbing one of the locks inside the inode, 1254 * etc. The usual victim is ufs_scan_inodes() or 1255 * someone called by it. 1256 */ 1257 1258 /* 1259 * First, isolate it so that no new references can be 1260 * gotten via the inode cache. 1261 */ 1262 ihm = &ih_lock[INOHASH(UFSROOTINO)]; 1263 mutex_enter(ihm); 1264 remque(rip); 1265 mutex_exit(ihm); 1266 1267 /* 1268 * Now wait for all outstanding references except our 1269 * own to drain. This could, in theory, take forever, 1270 * so don't wait *too* long. If we time out, mark 1271 * it stale and leak it, so we don't hit the problem 1272 * described above. 1273 * 1274 * Note that v_count is an int, which means we can read 1275 * it in one operation. Thus, there's no need to lock 1276 * around our tests. 1277 */ 1278 elapsed = 0; 1279 while ((rvp->v_count > 1) && (elapsed < ufs_mount_timeout)) { 1280 delay(ufs_mount_error_delay * drv_usectohz(1000)); 1281 elapsed += ufs_mount_error_delay; 1282 } 1283 1284 if (rvp->v_count > 1) { 1285 mutex_enter(&rip->i_tlock); 1286 rip->i_flag |= ISTALE; 1287 mutex_exit(&rip->i_tlock); 1288 cmn_err(CE_WARN, 1289 "Timed out while cleaning up after failed mount of %s", 1290 path); 1291 } else { 1292 1293 /* 1294 * Now we're the only one with a handle left, so tear 1295 * it down the rest of the way. 1296 */ 1297 if (ufs_rmidle(rip)) 1298 VN_RELE(rvp); 1299 ufs_si_del(rip); 1300 rip->i_ufsvfs = NULL; 1301 rvp->v_vfsp = NULL; 1302 rvp->v_type = VBAD; 1303 VN_RELE(rvp); 1304 } 1305 } 1306 if (needtrans) { 1307 TRANS_MATA_UMOUNT(ufsvfsp); 1308 } 1309 if (ufsvfsp) { 1310 ufs_vfs_remove(ufsvfsp); 1311 ufs_thread_exit(&ufsvfsp->vfs_delete); 1312 ufs_thread_exit(&ufsvfsp->vfs_reclaim); 1313 mutex_destroy(&ufsvfsp->vfs_lock); 1314 if (ufsvfsp->vfs_log) { 1315 lufs_unsnarf(ufsvfsp); 1316 } 1317 kmem_free(ufsvfsp, sizeof (struct ufsvfs)); 1318 } 1319 if (bp) { 1320 bp->b_flags |= (B_STALE|B_AGE); 1321 brelse(bp); 1322 } 1323 if (tp) { 1324 tp->b_flags |= (B_STALE|B_AGE); 1325 brelse(tp); 1326 } 1327 if (needclose) { 1328 (void) VOP_CLOSE(devvp, (vfsp->vfs_flag & VFS_RDONLY) ? 1329 FREAD : FREAD|FWRITE, 1, (offset_t)0, cr); 1330 bflush(dev); 1331 (void) bfinval(dev, 1); 1332 } 1333 return (error); 1334 } 1335 1336 /* 1337 * vfs operations 1338 */ 1339 static int 1340 ufs_unmount(struct vfs *vfsp, int fflag, struct cred *cr) 1341 { 1342 dev_t dev = vfsp->vfs_dev; 1343 struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 1344 struct fs *fs = ufsvfsp->vfs_fs; 1345 struct ulockfs *ulp = &ufsvfsp->vfs_ulockfs; 1346 struct vnode *bvp, *vp; 1347 struct buf *bp; 1348 struct inode *ip, *inext, *rip; 1349 union ihead *ih; 1350 int error, flag, i; 1351 struct lockfs lockfs; 1352 int poll_events = POLLPRI; 1353 extern struct pollhead ufs_pollhd; 1354 refstr_t *mountpoint; 1355 1356 ASSERT(vfs_lock_held(vfsp)); 1357 1358 if (secpolicy_fs_unmount(cr, vfsp) != 0) 1359 return (EPERM); 1360 /* 1361 * Forced unmount is now supported through the 1362 * lockfs protocol. 1363 */ 1364 if (fflag & MS_FORCE) { 1365 /* 1366 * Mark the filesystem as being unmounted now in 1367 * case of a forcible umount before we take any 1368 * locks inside UFS to prevent racing with a VFS_VGET() 1369 * request. Throw these VFS_VGET() requests away for 1370 * the duration of the forcible umount so they won't 1371 * use stale or even freed data later on when we're done. 1372 * It may happen that the VFS has had a additional hold 1373 * placed on it by someone other than UFS and thus will 1374 * not get freed immediately once we're done with the 1375 * umount by dounmount() - use VFS_UNMOUNTED to inform 1376 * users of this still-alive VFS that its corresponding 1377 * filesystem being gone so they can detect that and error 1378 * out. 1379 */ 1380 vfsp->vfs_flag |= VFS_UNMOUNTED; 1381 1382 ufs_thread_suspend(&ufsvfsp->vfs_delete); 1383 mutex_enter(&ulp->ul_lock); 1384 /* 1385 * If file system is already hard locked, 1386 * unmount the file system, otherwise 1387 * hard lock it before unmounting. 1388 */ 1389 if (!ULOCKFS_IS_HLOCK(ulp)) { 1390 atomic_add_long(&ufs_quiesce_pend, 1); 1391 lockfs.lf_lock = LOCKFS_HLOCK; 1392 lockfs.lf_flags = 0; 1393 lockfs.lf_key = ulp->ul_lockfs.lf_key + 1; 1394 lockfs.lf_comlen = 0; 1395 lockfs.lf_comment = NULL; 1396 ufs_freeze(ulp, &lockfs); 1397 ULOCKFS_SET_BUSY(ulp); 1398 LOCKFS_SET_BUSY(&ulp->ul_lockfs); 1399 (void) ufs_quiesce(ulp); 1400 (void) ufs_flush(vfsp); 1401 (void) ufs_thaw(vfsp, ufsvfsp, ulp); 1402 atomic_add_long(&ufs_quiesce_pend, -1); 1403 ULOCKFS_CLR_BUSY(ulp); 1404 LOCKFS_CLR_BUSY(&ulp->ul_lockfs); 1405 poll_events |= POLLERR; 1406 pollwakeup(&ufs_pollhd, poll_events); 1407 } 1408 ufs_thread_continue(&ufsvfsp->vfs_delete); 1409 mutex_exit(&ulp->ul_lock); 1410 } 1411 1412 /* let all types of writes go through */ 1413 ufsvfsp->vfs_iotstamp = lbolt; 1414 1415 /* coordinate with global hlock thread */ 1416 if (TRANS_ISTRANS(ufsvfsp) && (ufsvfsp->vfs_validfs == UT_HLOCKING)) { 1417 /* 1418 * last possibility for a forced umount to fail hence clear 1419 * VFS_UNMOUNTED if appropriate. 1420 */ 1421 if (fflag & MS_FORCE) 1422 vfsp->vfs_flag &= ~VFS_UNMOUNTED; 1423 return (EAGAIN); 1424 } 1425 1426 ufsvfsp->vfs_validfs = UT_UNMOUNTED; 1427 1428 /* kill the reclaim thread */ 1429 ufs_thread_exit(&ufsvfsp->vfs_reclaim); 1430 1431 /* suspend the delete thread */ 1432 ufs_thread_suspend(&ufsvfsp->vfs_delete); 1433 1434 /* 1435 * drain the delete and idle queues 1436 */ 1437 ufs_delete_drain(vfsp, -1, 1); 1438 ufs_idle_drain(vfsp); 1439 1440 /* 1441 * use the lockfs protocol to prevent new ops from starting 1442 * a forcible umount can not fail beyond this point as 1443 * we hard-locked the filesystem and drained all current consumers 1444 * before. 1445 */ 1446 mutex_enter(&ulp->ul_lock); 1447 1448 /* 1449 * if the file system is busy; return EBUSY 1450 */ 1451 if (ulp->ul_vnops_cnt || ULOCKFS_IS_SLOCK(ulp)) { 1452 error = EBUSY; 1453 goto out; 1454 } 1455 1456 /* 1457 * if this is not a forced unmount (!hard/error locked), then 1458 * get rid of every inode except the root and quota inodes 1459 * also, commit any outstanding transactions 1460 */ 1461 if (!ULOCKFS_IS_HLOCK(ulp) && !ULOCKFS_IS_ELOCK(ulp)) 1462 if (error = ufs_flush(vfsp)) 1463 goto out; 1464 1465 /* 1466 * ignore inodes in the cache if fs is hard locked or error locked 1467 */ 1468 rip = VTOI(ufsvfsp->vfs_root); 1469 if (!ULOCKFS_IS_HLOCK(ulp) && !ULOCKFS_IS_ELOCK(ulp)) { 1470 /* 1471 * Otherwise, only the quota and root inodes are in the cache. 1472 * 1473 * Avoid racing with ufs_update() and ufs_sync(). 1474 */ 1475 mutex_enter(&ufs_scan_lock); 1476 1477 for (i = 0, ih = ihead; i < inohsz; i++, ih++) { 1478 mutex_enter(&ih_lock[i]); 1479 for (ip = ih->ih_chain[0]; 1480 ip != (struct inode *)ih; 1481 ip = ip->i_forw) { 1482 if (ip->i_ufsvfs != ufsvfsp) 1483 continue; 1484 if (ip == ufsvfsp->vfs_qinod) 1485 continue; 1486 if (ip == rip && ITOV(ip)->v_count == 1) 1487 continue; 1488 mutex_exit(&ih_lock[i]); 1489 mutex_exit(&ufs_scan_lock); 1490 error = EBUSY; 1491 goto out; 1492 } 1493 mutex_exit(&ih_lock[i]); 1494 } 1495 mutex_exit(&ufs_scan_lock); 1496 } 1497 1498 /* 1499 * if a snapshot exists and this is a forced unmount, then delete 1500 * the snapshot. Otherwise return EBUSY. This will insure the 1501 * snapshot always belongs to a valid file system. 1502 */ 1503 if (ufsvfsp->vfs_snapshot) { 1504 if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp)) { 1505 (void) fssnap_delete(&ufsvfsp->vfs_snapshot); 1506 } else { 1507 error = EBUSY; 1508 goto out; 1509 } 1510 } 1511 1512 /* 1513 * Close the quota file and invalidate anything left in the quota 1514 * cache for this file system. Pass kcred to allow all quota 1515 * manipulations. 1516 */ 1517 (void) closedq(ufsvfsp, kcred); 1518 invalidatedq(ufsvfsp); 1519 /* 1520 * drain the delete and idle queues 1521 */ 1522 ufs_delete_drain(vfsp, -1, 0); 1523 ufs_idle_drain(vfsp); 1524 1525 /* 1526 * discard the inodes for this fs (including root, shadow, and quota) 1527 */ 1528 for (i = 0, ih = ihead; i < inohsz; i++, ih++) { 1529 mutex_enter(&ih_lock[i]); 1530 for (inext = 0, ip = ih->ih_chain[0]; 1531 ip != (struct inode *)ih; 1532 ip = inext) { 1533 inext = ip->i_forw; 1534 if (ip->i_ufsvfs != ufsvfsp) 1535 continue; 1536 vp = ITOV(ip); 1537 VN_HOLD(vp) 1538 remque(ip); 1539 if (ufs_rmidle(ip)) 1540 VN_RELE(vp); 1541 ufs_si_del(ip); 1542 /* 1543 * rip->i_ufsvfsp is needed by bflush() 1544 */ 1545 if (ip != rip) 1546 ip->i_ufsvfs = NULL; 1547 /* 1548 * Set vnode's vfsops to dummy ops, which return 1549 * EIO. This is needed to forced unmounts to work 1550 * with lofs/nfs properly. 1551 */ 1552 if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp)) 1553 vp->v_vfsp = &EIO_vfs; 1554 else 1555 vp->v_vfsp = NULL; 1556 vp->v_type = VBAD; 1557 VN_RELE(vp); 1558 } 1559 mutex_exit(&ih_lock[i]); 1560 } 1561 ufs_si_cache_flush(dev); 1562 1563 /* 1564 * kill the delete thread and drain the idle queue 1565 */ 1566 ufs_thread_exit(&ufsvfsp->vfs_delete); 1567 ufs_idle_drain(vfsp); 1568 1569 bp = ufsvfsp->vfs_bufp; 1570 bvp = ufsvfsp->vfs_devvp; 1571 flag = !fs->fs_ronly; 1572 if (flag) { 1573 bflush(dev); 1574 if (fs->fs_clean != FSBAD) { 1575 if (fs->fs_clean == FSSTABLE) 1576 fs->fs_clean = FSCLEAN; 1577 fs->fs_reclaim &= ~FS_RECLAIM; 1578 } 1579 if (TRANS_ISTRANS(ufsvfsp) && 1580 !TRANS_ISERROR(ufsvfsp) && 1581 !ULOCKFS_IS_HLOCK(ulp) && 1582 (fs->fs_rolled == FS_NEED_ROLL)) { 1583 /* 1584 * ufs_flush() above has flushed the last Moby. 1585 * This is needed to ensure the following superblock 1586 * update really is the last metadata update 1587 */ 1588 error = ufs_putsummaryinfo(dev, ufsvfsp, fs); 1589 if (error == 0) { 1590 fs->fs_rolled = FS_ALL_ROLLED; 1591 } 1592 } 1593 TRANS_SBUPDATE(ufsvfsp, vfsp, TOP_SBUPDATE_UNMOUNT); 1594 /* 1595 * push this last transaction 1596 */ 1597 curthread->t_flag |= T_DONTBLOCK; 1598 TRANS_BEGIN_SYNC(ufsvfsp, TOP_COMMIT_UNMOUNT, TOP_COMMIT_SIZE, 1599 error); 1600 if (!error) 1601 TRANS_END_SYNC(ufsvfsp, error, TOP_COMMIT_UNMOUNT, 1602 TOP_COMMIT_SIZE); 1603 curthread->t_flag &= ~T_DONTBLOCK; 1604 } 1605 1606 TRANS_MATA_UMOUNT(ufsvfsp); 1607 lufs_unsnarf(ufsvfsp); /* Release the in-memory structs */ 1608 ufsfx_unmount(ufsvfsp); /* fix-on-panic bookkeeping */ 1609 kmem_free(fs->fs_u.fs_csp, fs->fs_cssize); 1610 1611 bp->b_flags |= B_STALE|B_AGE; 1612 ufsvfsp->vfs_bufp = NULL; /* don't point at freed buf */ 1613 brelse(bp); /* free the superblock buf */ 1614 1615 (void) VOP_PUTPAGE(common_specvp(bvp), (offset_t)0, (size_t)0, 1616 B_INVAL, cr); 1617 (void) VOP_CLOSE(bvp, flag, 1, (offset_t)0, cr); 1618 bflush(dev); 1619 (void) bfinval(dev, 1); 1620 VN_RELE(bvp); 1621 1622 /* 1623 * It is now safe to NULL out the ufsvfs pointer and discard 1624 * the root inode. 1625 */ 1626 rip->i_ufsvfs = NULL; 1627 VN_RELE(ITOV(rip)); 1628 1629 /* free up lockfs comment structure, if any */ 1630 if (ulp->ul_lockfs.lf_comlen && ulp->ul_lockfs.lf_comment) 1631 kmem_free(ulp->ul_lockfs.lf_comment, ulp->ul_lockfs.lf_comlen); 1632 1633 /* 1634 * Remove from instance list. 1635 */ 1636 ufs_vfs_remove(ufsvfsp); 1637 1638 /* 1639 * For a forcible unmount, threads may be asleep in 1640 * ufs_lockfs_begin/ufs_check_lockfs. These threads will need 1641 * the ufsvfs structure so we don't free it, yet. ufs_update 1642 * will free it up after awhile. 1643 */ 1644 if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp)) { 1645 extern kmutex_t ufsvfs_mutex; 1646 extern struct ufsvfs *ufsvfslist; 1647 1648 mutex_enter(&ufsvfs_mutex); 1649 ufsvfsp->vfs_dontblock = 1; 1650 ufsvfsp->vfs_next = ufsvfslist; 1651 ufsvfslist = ufsvfsp; 1652 mutex_exit(&ufsvfs_mutex); 1653 /* wakeup any suspended threads */ 1654 cv_broadcast(&ulp->ul_cv); 1655 mutex_exit(&ulp->ul_lock); 1656 } else { 1657 mutex_destroy(&ufsvfsp->vfs_lock); 1658 kmem_free(ufsvfsp, sizeof (struct ufsvfs)); 1659 } 1660 1661 /* 1662 * Now mark the filesystem as unmounted since we're done with it. 1663 */ 1664 vfsp->vfs_flag |= VFS_UNMOUNTED; 1665 1666 return (0); 1667 out: 1668 /* open the fs to new ops */ 1669 cv_broadcast(&ulp->ul_cv); 1670 mutex_exit(&ulp->ul_lock); 1671 1672 if (TRANS_ISTRANS(ufsvfsp)) { 1673 /* allow the delete thread to continue */ 1674 ufs_thread_continue(&ufsvfsp->vfs_delete); 1675 /* restart the reclaim thread */ 1676 ufs_thread_start(&ufsvfsp->vfs_reclaim, ufs_thread_reclaim, 1677 vfsp); 1678 /* coordinate with global hlock thread */ 1679 ufsvfsp->vfs_validfs = UT_MOUNTED; 1680 /* check for trans errors during umount */ 1681 ufs_trans_onerror(); 1682 1683 /* 1684 * if we have a seperate /usr it will never unmount 1685 * when halting. In order to not re-read all the 1686 * cylinder group summary info on mounting after 1687 * reboot the logging of summary info is re-enabled 1688 * and the super block written out. 1689 */ 1690 mountpoint = vfs_getmntpoint(vfsp); 1691 if ((fs->fs_si == FS_SI_OK) && 1692 (strcmp("/usr", refstr_value(mountpoint)) == 0)) { 1693 ufsvfsp->vfs_nolog_si = 0; 1694 UFS_BWRITE2(NULL, ufsvfsp->vfs_bufp); 1695 } 1696 refstr_rele(mountpoint); 1697 } 1698 1699 return (error); 1700 } 1701 1702 static int 1703 ufs_root(struct vfs *vfsp, struct vnode **vpp) 1704 { 1705 struct ufsvfs *ufsvfsp; 1706 struct vnode *vp; 1707 1708 if (!vfsp) 1709 return (EIO); 1710 1711 ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 1712 if (!ufsvfsp || !ufsvfsp->vfs_root) 1713 return (EIO); /* forced unmount */ 1714 1715 vp = ufsvfsp->vfs_root; 1716 VN_HOLD(vp); 1717 *vpp = vp; 1718 return (0); 1719 } 1720 1721 /* 1722 * Get file system statistics. 1723 */ 1724 static int 1725 ufs_statvfs(struct vfs *vfsp, struct statvfs64 *sp) 1726 { 1727 struct fs *fsp; 1728 struct ufsvfs *ufsvfsp; 1729 int blk, i; 1730 long max_avail, used; 1731 dev32_t d32; 1732 struct ufs_q *delq; 1733 1734 if (vfsp->vfs_flag & VFS_UNMOUNTED) 1735 return (EIO); 1736 1737 ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 1738 fsp = ufsvfsp->vfs_fs; 1739 if ((fsp->fs_magic != FS_MAGIC) && (fsp->fs_magic != MTB_UFS_MAGIC)) 1740 return (EINVAL); 1741 if (fsp->fs_magic == MTB_UFS_MAGIC && 1742 (fsp->fs_version > MTB_UFS_VERSION_1 || 1743 fsp->fs_version < MTB_UFS_VERSION_MIN)) 1744 return (EINVAL); 1745 1746 /* 1747 * Can't get a self-consistent result with the delete thread running 1748 * or if others come in and jumble the queue up for us. This is 1749 * a no-op if there is no delete thread. 1750 */ 1751 delq = &ufsvfsp->vfs_delete; 1752 ufs_thread_suspend(delq); 1753 1754 /* 1755 * get the basic numbers 1756 */ 1757 (void) bzero(sp, sizeof (*sp)); 1758 1759 sp->f_bsize = fsp->fs_bsize; 1760 sp->f_frsize = fsp->fs_fsize; 1761 sp->f_blocks = (fsblkcnt64_t)fsp->fs_dsize; 1762 sp->f_bfree = (fsblkcnt64_t)fsp->fs_cstotal.cs_nbfree * fsp->fs_frag + 1763 fsp->fs_cstotal.cs_nffree; 1764 1765 sp->f_files = (fsfilcnt64_t)fsp->fs_ncg * fsp->fs_ipg; 1766 sp->f_ffree = (fsfilcnt64_t)fsp->fs_cstotal.cs_nifree; 1767 1768 /* 1769 * Adjust the numbers based on things waiting to be deleted. 1770 * modifies f_bfree and f_ffree. Afterwards, everything we 1771 * come up with will be self-consistent. By definition, this 1772 * is a point-in-time snapshot, so the fact that the delete 1773 * thread's probably already invalidated the results is not a 1774 * problem. 1775 */ 1776 ufs_delete_adjust_stats(ufsvfsp, sp); 1777 ufs_thread_continue(delq); 1778 1779 /* 1780 * avail = MAX(max_avail - used, 0) 1781 */ 1782 max_avail = fsp->fs_dsize - ufsvfsp->vfs_minfrags; 1783 1784 used = (fsp->fs_dsize - sp->f_bfree); 1785 1786 if (max_avail > used) 1787 sp->f_bavail = (fsblkcnt64_t)max_avail - used; 1788 else 1789 sp->f_bavail = (fsblkcnt64_t)0; 1790 1791 sp->f_favail = sp->f_ffree; 1792 (void) cmpldev(&d32, vfsp->vfs_dev); 1793 sp->f_fsid = d32; 1794 (void) strcpy(sp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1795 sp->f_flag = vf_to_stf(vfsp->vfs_flag); 1796 1797 /* keep coordinated with ufs_l_pathconf() */ 1798 sp->f_namemax = MAXNAMLEN; 1799 1800 if (fsp->fs_cpc == 0) { 1801 bzero(sp->f_fstr, 14); 1802 return (0); 1803 } 1804 blk = fsp->fs_spc * fsp->fs_cpc / NSPF(fsp); 1805 for (i = 0; i < blk; i += fsp->fs_frag) /* CSTYLED */ 1806 /* void */; 1807 i -= fsp->fs_frag; 1808 blk = i / fsp->fs_frag; 1809 bcopy(&(fs_rotbl(fsp)[blk]), sp->f_fstr, 14); 1810 return (0); 1811 } 1812 1813 /* 1814 * Flush any pending I/O to file system vfsp. 1815 * The ufs_update() routine will only flush *all* ufs files. 1816 * If vfsp is non-NULL, only sync this ufs (in preparation 1817 * for a umount). 1818 */ 1819 /*ARGSUSED*/ 1820 static int 1821 ufs_sync(struct vfs *vfsp, short flag, struct cred *cr) 1822 { 1823 struct ufsvfs *ufsvfsp; 1824 struct fs *fs; 1825 int cheap = flag & SYNC_ATTR; 1826 int error; 1827 1828 /* 1829 * SYNC_CLOSE means we're rebooting. Toss everything 1830 * on the idle queue so we don't have to slog through 1831 * a bunch of uninteresting inodes over and over again. 1832 */ 1833 if (flag & SYNC_CLOSE) 1834 ufs_idle_drain(NULL); 1835 1836 if (vfsp == NULL) { 1837 ufs_update(flag); 1838 return (0); 1839 } 1840 1841 /* Flush a single ufs */ 1842 if (!vfs_matchops(vfsp, ufs_vfsops) || vfs_lock(vfsp) != 0) 1843 return (0); 1844 1845 ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 1846 if (!ufsvfsp) 1847 return (EIO); 1848 fs = ufsvfsp->vfs_fs; 1849 mutex_enter(&ufsvfsp->vfs_lock); 1850 1851 if (ufsvfsp->vfs_dio && 1852 fs->fs_ronly == 0 && 1853 fs->fs_clean != FSBAD && 1854 fs->fs_clean != FSLOG) { 1855 /* turn off fast-io on unmount, so no fsck needed (4029401) */ 1856 ufsvfsp->vfs_dio = 0; 1857 fs->fs_clean = FSACTIVE; 1858 fs->fs_fmod = 1; 1859 } 1860 1861 /* Write back modified superblock */ 1862 if (fs->fs_fmod == 0) { 1863 mutex_exit(&ufsvfsp->vfs_lock); 1864 } else { 1865 if (fs->fs_ronly != 0) { 1866 mutex_exit(&ufsvfsp->vfs_lock); 1867 vfs_unlock(vfsp); 1868 return (ufs_fault(ufsvfsp->vfs_root, 1869 "fs = %s update: ro fs mod\n", 1870 fs->fs_fsmnt)); 1871 } 1872 fs->fs_fmod = 0; 1873 mutex_exit(&ufsvfsp->vfs_lock); 1874 1875 TRANS_SBUPDATE(ufsvfsp, vfsp, TOP_SBUPDATE_UPDATE); 1876 } 1877 vfs_unlock(vfsp); 1878 1879 /* 1880 * Avoid racing with ufs_update() and ufs_unmount(). 1881 * 1882 */ 1883 mutex_enter(&ufs_scan_lock); 1884 1885 (void) ufs_scan_inodes(1, ufs_sync_inode, 1886 (void *)(uintptr_t)cheap, ufsvfsp); 1887 1888 mutex_exit(&ufs_scan_lock); 1889 1890 bflush((dev_t)vfsp->vfs_dev); 1891 1892 /* 1893 * commit any outstanding async transactions 1894 */ 1895 curthread->t_flag |= T_DONTBLOCK; 1896 TRANS_BEGIN_SYNC(ufsvfsp, TOP_COMMIT_UPDATE, TOP_COMMIT_SIZE, error); 1897 if (!error) { 1898 TRANS_END_SYNC(ufsvfsp, error, TOP_COMMIT_UPDATE, 1899 TOP_COMMIT_SIZE); 1900 } 1901 curthread->t_flag &= ~T_DONTBLOCK; 1902 1903 return (0); 1904 } 1905 1906 1907 void 1908 sbupdate(struct vfs *vfsp) 1909 { 1910 struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 1911 struct fs *fs = ufsvfsp->vfs_fs; 1912 struct buf *bp; 1913 int blks; 1914 caddr_t space; 1915 int i; 1916 size_t size; 1917 1918 /* 1919 * for ulockfs processing, limit the superblock writes 1920 */ 1921 if ((ufsvfsp->vfs_ulockfs.ul_sbowner) && 1922 (curthread != ufsvfsp->vfs_ulockfs.ul_sbowner)) { 1923 /* process later */ 1924 fs->fs_fmod = 1; 1925 return; 1926 } 1927 ULOCKFS_SET_MOD((&ufsvfsp->vfs_ulockfs)); 1928 1929 if (TRANS_ISTRANS(ufsvfsp)) { 1930 mutex_enter(&ufsvfsp->vfs_lock); 1931 ufs_sbwrite(ufsvfsp); 1932 mutex_exit(&ufsvfsp->vfs_lock); 1933 return; 1934 } 1935 1936 blks = howmany(fs->fs_cssize, fs->fs_fsize); 1937 space = (caddr_t)fs->fs_u.fs_csp; 1938 for (i = 0; i < blks; i += fs->fs_frag) { 1939 size = fs->fs_bsize; 1940 if (i + fs->fs_frag > blks) 1941 size = (blks - i) * fs->fs_fsize; 1942 bp = UFS_GETBLK(ufsvfsp, ufsvfsp->vfs_dev, 1943 (daddr_t)(fsbtodb(fs, fs->fs_csaddr + i)), 1944 fs->fs_bsize); 1945 bcopy(space, bp->b_un.b_addr, size); 1946 space += size; 1947 bp->b_bcount = size; 1948 UFS_BRWRITE(ufsvfsp, bp); 1949 } 1950 mutex_enter(&ufsvfsp->vfs_lock); 1951 ufs_sbwrite(ufsvfsp); 1952 mutex_exit(&ufsvfsp->vfs_lock); 1953 } 1954 1955 int ufs_vget_idle_count = 2; /* Number of inodes to idle each time */ 1956 static int 1957 ufs_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp) 1958 { 1959 int error = 0; 1960 struct ufid *ufid; 1961 struct inode *ip; 1962 struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 1963 struct ulockfs *ulp; 1964 1965 /* 1966 * Check for unmounted filesystem. 1967 */ 1968 if (vfsp->vfs_flag & VFS_UNMOUNTED) { 1969 error = EIO; 1970 goto errout; 1971 } 1972 1973 /* 1974 * Keep the idle queue from getting too long by 1975 * idling an inode before attempting to allocate another. 1976 * This operation must be performed before entering 1977 * lockfs or a transaction. 1978 */ 1979 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat) 1980 if ((curthread->t_flag & T_DONTBLOCK) == 0) { 1981 ins.in_vidles.value.ul += ufs_vget_idle_count; 1982 ufs_idle_some(ufs_vget_idle_count); 1983 } 1984 1985 ufid = (struct ufid *)fidp; 1986 1987 if (error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_VGET_MASK)) 1988 goto errout; 1989 1990 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 1991 1992 error = ufs_iget(vfsp, ufid->ufid_ino, &ip, CRED()); 1993 1994 rw_exit(&ufsvfsp->vfs_dqrwlock); 1995 1996 ufs_lockfs_end(ulp); 1997 1998 if (error) 1999 goto errout; 2000 2001 /* 2002 * Check if the inode has been deleted or freed or is in transient state 2003 * since the last VFS_VGET() request for it, release it and don't return 2004 * it to the caller, presumably NFS, as it's no longer valid. 2005 */ 2006 if (ip->i_gen != ufid->ufid_gen || ip->i_mode == 0 || 2007 (ip->i_flag & IDEL)) { 2008 VN_RELE(ITOV(ip)); 2009 error = EINVAL; 2010 goto errout; 2011 } 2012 2013 *vpp = ITOV(ip); 2014 return (0); 2015 2016 errout: 2017 *vpp = NULL; 2018 return (error); 2019 } 2020 2021 static int 2022 ufsinit(int fstype, char *name) 2023 { 2024 static const fs_operation_def_t ufs_vfsops_template[] = { 2025 VFSNAME_MOUNT, ufs_mount, 2026 VFSNAME_UNMOUNT, ufs_unmount, 2027 VFSNAME_ROOT, ufs_root, 2028 VFSNAME_STATVFS, ufs_statvfs, 2029 VFSNAME_SYNC, (fs_generic_func_p) ufs_sync, 2030 VFSNAME_VGET, ufs_vget, 2031 VFSNAME_MOUNTROOT, ufs_mountroot, 2032 NULL, NULL 2033 }; 2034 int error; 2035 2036 ufsfstype = fstype; 2037 2038 error = vfs_setfsops(fstype, ufs_vfsops_template, &ufs_vfsops); 2039 if (error != 0) { 2040 cmn_err(CE_WARN, "ufsinit: bad vfs ops template"); 2041 return (error); 2042 } 2043 2044 error = vn_make_ops(name, ufs_vnodeops_template, &ufs_vnodeops); 2045 if (error != 0) { 2046 (void) vfs_freevfsops_by_type(fstype); 2047 cmn_err(CE_WARN, "ufsinit: bad vnode ops template"); 2048 return (error); 2049 } 2050 2051 ufs_iinit(); 2052 return (0); 2053 } 2054 2055 #ifdef __sparc 2056 2057 /* 2058 * Mounting a mirrored SVM volume is only supported on ufs, 2059 * this is special-case boot code to support that configuration. 2060 * At this point, we have booted and mounted root on a 2061 * single component of the mirror. Complete the boot 2062 * by configuring SVM and converting the root to the 2063 * dev_t of the mirrored root device. This dev_t conversion 2064 * only works because the underlying device doesn't change. 2065 */ 2066 int 2067 ufs_remountroot(struct vfs *vfsp) 2068 { 2069 struct ufsvfs *ufsvfsp; 2070 struct ulockfs *ulp; 2071 dev_t new_rootdev; 2072 dev_t old_rootdev; 2073 struct vnode *old_rootvp; 2074 struct vnode *new_rootvp; 2075 int error, sberror = 0; 2076 struct inode *ip; 2077 union ihead *ih; 2078 struct buf *bp; 2079 int i; 2080 2081 old_rootdev = rootdev; 2082 old_rootvp = rootvp; 2083 2084 new_rootdev = getrootdev(); 2085 if (new_rootdev == (dev_t)NODEV) { 2086 return (ENODEV); 2087 } 2088 2089 new_rootvp = makespecvp(new_rootdev, VBLK); 2090 2091 error = VOP_OPEN(&new_rootvp, 2092 (vfsp->vfs_flag & VFS_RDONLY) ? FREAD : FREAD|FWRITE, CRED()); 2093 if (error) { 2094 cmn_err(CE_CONT, 2095 "Cannot open mirrored root device, error %d\n", error); 2096 return (error); 2097 } 2098 2099 if (vfs_lock(vfsp) != 0) { 2100 return (EBUSY); 2101 } 2102 2103 ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 2104 ulp = &ufsvfsp->vfs_ulockfs; 2105 2106 mutex_enter(&ulp->ul_lock); 2107 atomic_add_long(&ufs_quiesce_pend, 1); 2108 2109 (void) ufs_quiesce(ulp); 2110 (void) ufs_flush(vfsp); 2111 2112 /* 2113 * Convert root vfs to new dev_t, including vfs hash 2114 * table and fs id. 2115 */ 2116 vfs_root_redev(vfsp, new_rootdev, ufsfstype); 2117 2118 ufsvfsp->vfs_devvp = new_rootvp; 2119 ufsvfsp->vfs_dev = new_rootdev; 2120 2121 bp = ufsvfsp->vfs_bufp; 2122 bp->b_edev = new_rootdev; 2123 bp->b_dev = cmpdev(new_rootdev); 2124 2125 /* 2126 * The buffer for the root inode does not contain a valid b_vp 2127 */ 2128 (void) bfinval(new_rootdev, 0); 2129 2130 /* 2131 * Here we hand-craft inodes with old root device 2132 * references to refer to the new device instead. 2133 */ 2134 mutex_enter(&ufs_scan_lock); 2135 2136 for (i = 0, ih = ihead; i < inohsz; i++, ih++) { 2137 mutex_enter(&ih_lock[i]); 2138 for (ip = ih->ih_chain[0]; 2139 ip != (struct inode *)ih; 2140 ip = ip->i_forw) { 2141 if (ip->i_ufsvfs != ufsvfsp) 2142 continue; 2143 if (ip == ufsvfsp->vfs_qinod) 2144 continue; 2145 if (ip->i_dev == old_rootdev) { 2146 ip->i_dev = new_rootdev; 2147 } 2148 2149 if (ip->i_devvp == old_rootvp) { 2150 ip->i_devvp = new_rootvp; 2151 } 2152 } 2153 mutex_exit(&ih_lock[i]); 2154 } 2155 2156 mutex_exit(&ufs_scan_lock); 2157 2158 /* 2159 * Make Sure logging structures are using the new device 2160 * if logging is enabled. Also start any logging thread that 2161 * needs to write to the device and couldn't earlier. 2162 */ 2163 if (ufsvfsp->vfs_log) { 2164 buf_t *bp, *tbp; 2165 ml_unit_t *ul = ufsvfsp->vfs_log; 2166 struct fs *fsp = ufsvfsp->vfs_fs; 2167 2168 /* 2169 * Update the main logging structure. 2170 */ 2171 ul->un_dev = new_rootdev; 2172 2173 /* 2174 * Get a new bp for the on disk structures. 2175 */ 2176 bp = ul->un_bp; 2177 tbp = ngeteblk(dbtob(LS_SECTORS)); 2178 tbp->b_edev = new_rootdev; 2179 tbp->b_dev = cmpdev(new_rootdev); 2180 tbp->b_blkno = bp->b_blkno; 2181 bcopy(bp->b_un.b_addr, tbp->b_un.b_addr, DEV_BSIZE); 2182 bcopy(bp->b_un.b_addr, tbp->b_un.b_addr + DEV_BSIZE, DEV_BSIZE); 2183 bp->b_flags |= (B_STALE | B_AGE); 2184 brelse(bp); 2185 ul->un_bp = tbp; 2186 2187 /* 2188 * Allocate new circular buffers. 2189 */ 2190 alloc_rdbuf(&ul->un_rdbuf, MAPBLOCKSIZE, MAPBLOCKSIZE); 2191 alloc_wrbuf(&ul->un_wrbuf, ldl_bufsize(ul)); 2192 2193 /* 2194 * Clear the noroll bit which indicates that logging 2195 * can't roll the log yet and start the logmap roll thread 2196 * unless the filesystem is still read-only in which case 2197 * remountfs() will do it when going to read-write. 2198 */ 2199 ASSERT(ul->un_flags & LDL_NOROLL); 2200 2201 if (!fsp->fs_ronly) { 2202 ul->un_flags &= ~LDL_NOROLL; 2203 logmap_start_roll(ul); 2204 } 2205 2206 /* 2207 * Start the reclaim thread if needed. 2208 */ 2209 if (!fsp->fs_ronly && (fsp->fs_reclaim & 2210 (FS_RECLAIM|FS_RECLAIMING))) { 2211 fsp->fs_reclaim &= ~FS_RECLAIM; 2212 fsp->fs_reclaim |= FS_RECLAIMING; 2213 ufs_thread_start(&ufsvfsp->vfs_reclaim, 2214 ufs_thread_reclaim, vfsp); 2215 TRANS_SBWRITE(ufsvfsp, TOP_SBUPDATE_UPDATE); 2216 if (sberror = geterror(ufsvfsp->vfs_bufp)) { 2217 refstr_t *mntpt; 2218 mntpt = vfs_getmntpoint(vfsp); 2219 cmn_err(CE_WARN, 2220 "Remountroot failed to update Reclaim" 2221 "state for filesystem %s " 2222 "Error writing SuperBlock %d", 2223 refstr_value(mntpt), error); 2224 refstr_rele(mntpt); 2225 } 2226 } 2227 } 2228 2229 rootdev = new_rootdev; 2230 rootvp = new_rootvp; 2231 2232 atomic_add_long(&ufs_quiesce_pend, -1); 2233 cv_broadcast(&ulp->ul_cv); 2234 mutex_exit(&ulp->ul_lock); 2235 2236 vfs_unlock(vfsp); 2237 2238 error = VOP_CLOSE(old_rootvp, FREAD, 1, (offset_t)0, CRED()); 2239 if (error) { 2240 cmn_err(CE_CONT, 2241 "close of root device component failed, error %d\n", 2242 error); 2243 } 2244 VN_RELE(old_rootvp); 2245 2246 return (sberror ? sberror : error); 2247 } 2248 2249 #endif /* __sparc */ 2250