xref: /illumos-gate/usr/src/uts/common/fs/ufs/ufs_thread.c (revision 15e6edf145a9c2bb0e0272cf8debe823bb97529b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * Portions of this source code were derived from Berkeley 4.3 BSD
31  * under license from the Regents of the University of California.
32  */
33 
34 #pragma ident	"%Z%%M%	%I%	%E% SMI"
35 
36 #include <sys/types.h>
37 #include <sys/systm.h>
38 #include <sys/errno.h>
39 #include <sys/kmem.h>
40 #include <sys/buf.h>
41 #include <sys/vnode.h>
42 #include <sys/vfs.h>
43 #include <sys/user.h>
44 #include <sys/callb.h>
45 #include <sys/cpuvar.h>
46 #include <sys/fs/ufs_inode.h>
47 #include <sys/fs/ufs_log.h>
48 #include <sys/fs/ufs_trans.h>
49 #include <sys/fs/ufs_acl.h>
50 #include <sys/fs/ufs_bio.h>
51 #include <sys/fs/ufs_fsdir.h>
52 #include <sys/debug.h>
53 #include <sys/cmn_err.h>
54 #include <sys/sysmacros.h>
55 
56 extern pri_t 			minclsyspri;
57 extern int			hash2ints();
58 extern struct kmem_cache	*inode_cache;	/* cache of free inodes */
59 extern int			ufs_idle_waiters;
60 extern struct instats		ins;
61 
62 static void ufs_attr_purge(struct inode *);
63 
64 /*
65  * initialize a thread's queue struct
66  */
67 void
68 ufs_thread_init(struct ufs_q *uq, int lowat)
69 {
70 	bzero((caddr_t)uq, sizeof (*uq));
71 	cv_init(&uq->uq_cv, NULL, CV_DEFAULT, NULL);
72 	mutex_init(&uq->uq_mutex, NULL, MUTEX_DEFAULT, NULL);
73 	uq->uq_lowat = lowat;
74 	uq->uq_hiwat = 2 * lowat;
75 	uq->uq_threadp = NULL;
76 }
77 
78 /*
79  * start a thread for a queue (assumes success)
80  */
81 void
82 ufs_thread_start(struct ufs_q *uq, void (*func)(), struct vfs *vfsp)
83 {
84 	mutex_enter(&uq->uq_mutex);
85 	if (uq->uq_threadp == NULL) {
86 		uq->uq_threadp = thread_create(NULL, 0, func, vfsp, 0, &p0,
87 		    TS_RUN, minclsyspri);
88 		uq->uq_flags = 0;
89 	}
90 	mutex_exit(&uq->uq_mutex);
91 }
92 
93 /*
94  * wait for the thread to exit
95  */
96 void
97 ufs_thread_exit(struct ufs_q *uq)
98 {
99 	kt_did_t ufs_thread_did = 0;
100 
101 	mutex_enter(&uq->uq_mutex);
102 	uq->uq_flags &= ~(UQ_SUSPEND | UQ_SUSPENDED);
103 	if (uq->uq_threadp != NULL) {
104 		ufs_thread_did = uq->uq_threadp->t_did;
105 		uq->uq_flags |= (UQ_EXIT|UQ_WAIT);
106 		cv_broadcast(&uq->uq_cv);
107 	}
108 	mutex_exit(&uq->uq_mutex);
109 
110 	/*
111 	 * It's safe to call thread_join() with an already-gone
112 	 * t_did, but we have to obtain it before the kernel
113 	 * thread structure is freed. We do so above under the
114 	 * protection of the uq_mutex when we're sure the thread
115 	 * still exists and it's save to de-reference it.
116 	 * We also have to check if ufs_thread_did is != 0
117 	 * before calling thread_join() since thread 0 in the system
118 	 * gets a t_did of 0.
119 	 */
120 	if (ufs_thread_did)
121 		thread_join(ufs_thread_did);
122 }
123 
124 /*
125  * wait for a thread to suspend itself on the caller's behalf
126  *	the caller is responsible for continuing the thread
127  */
128 void
129 ufs_thread_suspend(struct ufs_q *uq)
130 {
131 	mutex_enter(&uq->uq_mutex);
132 	if (uq->uq_threadp != NULL) {
133 		/*
134 		 * wait while another thread is suspending this thread.
135 		 * no need to do a cv_broadcast(), as whoever suspended
136 		 * the thread must continue it at some point.
137 		 */
138 		while ((uq->uq_flags & UQ_SUSPEND) &&
139 		    (uq->uq_threadp != NULL)) {
140 			/*
141 			 * We can't use cv_signal() because if our
142 			 * signal doesn't happen to hit the desired
143 			 * thread but instead some other waiter like
144 			 * ourselves, we'll wait forever for a
145 			 * response.  Well, at least an indeterminate
146 			 * amount of time until we just happen to get
147 			 * lucky from whomever did get signalled doing
148 			 * a cv_signal() of their own.  This is an
149 			 * unfortunate performance lossage.
150 			 */
151 			uq->uq_flags |= UQ_WAIT;
152 			cv_wait(&uq->uq_cv, &uq->uq_mutex);
153 		}
154 
155 		uq->uq_flags |= (UQ_SUSPEND | UQ_WAIT);
156 
157 		/*
158 		 * wait for the thread to suspend itself
159 		 */
160 		if ((uq->uq_flags & UQ_SUSPENDED) == 0 &&
161 		    (uq->uq_threadp != NULL)) {
162 			cv_broadcast(&uq->uq_cv);
163 		}
164 
165 		while (((uq->uq_flags & UQ_SUSPENDED) == 0) &&
166 		    (uq->uq_threadp != NULL)) {
167 			cv_wait(&uq->uq_cv, &uq->uq_mutex);
168 		}
169 	}
170 	mutex_exit(&uq->uq_mutex);
171 }
172 
173 /*
174  * allow a thread to continue from a ufs_thread_suspend()
175  *	This thread must be the same as the thread that called
176  *	ufs_thread_suspend.
177  */
178 void
179 ufs_thread_continue(struct ufs_q *uq)
180 {
181 	mutex_enter(&uq->uq_mutex);
182 	uq->uq_flags &= ~(UQ_SUSPEND | UQ_SUSPENDED);
183 	cv_broadcast(&uq->uq_cv);
184 	mutex_exit(&uq->uq_mutex);
185 }
186 
187 /*
188  * some common code for managing a threads execution
189  *	uq is locked at entry and return
190  *	may sleep
191  *	may exit
192  */
193 /*
194  * Kind of a hack passing in the callb_cpr_t * here.
195  * It should really be part of the ufs_q structure.
196  * I did not put it in there because we are already in beta
197  * and I was concerned that changing ufs_inode.h to include
198  * callb.h might break something.
199  */
200 int
201 ufs_thread_run(struct ufs_q *uq, callb_cpr_t *cprinfop)
202 {
203 again:
204 	ASSERT(uq->uq_ne >= 0);
205 
206 	if (uq->uq_flags & UQ_SUSPEND) {
207 		uq->uq_flags |= UQ_SUSPENDED;
208 	} else if (uq->uq_flags & UQ_EXIT) {
209 		/*
210 		 * exiting; empty the queue (may infinite loop)
211 		 */
212 		if (uq->uq_ne)
213 			return (uq->uq_ne);
214 		uq->uq_threadp = NULL;
215 		if (uq->uq_flags & UQ_WAIT) {
216 			cv_broadcast(&uq->uq_cv);
217 		}
218 		uq->uq_flags &= ~(UQ_EXIT | UQ_WAIT);
219 		CALLB_CPR_EXIT(cprinfop);
220 		thread_exit();
221 	} else if (uq->uq_ne >= uq->uq_lowat) {
222 		/*
223 		 * process a block of entries until below high water mark
224 		 */
225 		return (uq->uq_ne - (uq->uq_lowat >> 1));
226 	}
227 	if (uq->uq_flags & UQ_WAIT) {
228 		uq->uq_flags &= ~UQ_WAIT;
229 		cv_broadcast(&uq->uq_cv);
230 	}
231 	CALLB_CPR_SAFE_BEGIN(cprinfop);
232 	cv_wait(&uq->uq_cv, &uq->uq_mutex);
233 	CALLB_CPR_SAFE_END(cprinfop, &uq->uq_mutex);
234 	goto again;
235 }
236 
237 /*
238  * DELETE INODE
239  * The following routines implement the protocol for freeing the resources
240  * held by an idle and deleted inode.
241  */
242 void
243 ufs_delete(struct ufsvfs *ufsvfsp, struct inode *ip, int dolockfs)
244 {
245 	ushort_t	mode;
246 	struct vnode	*vp	= ITOV(ip);
247 	struct ulockfs	*ulp;
248 	int		trans_size;
249 	int		dorwlock = ((ip->i_mode & IFMT) == IFREG);
250 	int		issync;
251 	int		err;
252 	struct inode	*dp;
253 	struct ufs_q    *delq = &ufsvfsp->vfs_delete;
254 	struct ufs_delq_info *delq_info = &ufsvfsp->vfs_delete_info;
255 
256 	/*
257 	 * Ignore if deletes are not allowed (wlock/hlock)
258 	 */
259 	if (ULOCKFS_IS_NOIDEL(ITOUL(ip))) {
260 		mutex_enter(&delq->uq_mutex);
261 		delq_info->delq_unreclaimed_blocks -= ip->i_blocks;
262 		delq_info->delq_unreclaimed_files--;
263 		mutex_exit(&delq->uq_mutex);
264 		VN_RELE(vp);
265 		return;
266 	}
267 
268 	if ((vp->v_count > 1) || (ip->i_mode == 0)) {
269 		mutex_enter(&delq->uq_mutex);
270 		delq_info->delq_unreclaimed_blocks -= ip->i_blocks;
271 		delq_info->delq_unreclaimed_files--;
272 		mutex_exit(&delq->uq_mutex);
273 		VN_RELE(vp);
274 		return;
275 	}
276 	/*
277 	 * If we are called as part of setting a fs lock, then only
278 	 * do part of the lockfs protocol.  In other words, don't hang.
279 	 */
280 	if (dolockfs) {
281 		if (ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_DELETE_MASK))
282 			return;
283 	} else {
284 		/*
285 		 * check for recursive VOP call
286 		 */
287 		if (curthread->t_flag & T_DONTBLOCK) {
288 			ulp = NULL;
289 		} else {
290 			ulp = &ufsvfsp->vfs_ulockfs;
291 			curthread->t_flag |= T_DONTBLOCK;
292 		}
293 	}
294 
295 	/*
296 	 * Hold rwlock to synchronize with (nfs) writes
297 	 */
298 	if (dorwlock)
299 		rw_enter(&ip->i_rwlock, RW_WRITER);
300 
301 	/*
302 	 * Delete the attribute directory.
303 	 */
304 	if (ip->i_oeftflag != 0) {
305 		TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE,
306 		    trans_size = (int)TOP_REMOVE_SIZE(ip));
307 		rw_enter(&ip->i_contents, RW_WRITER);
308 		err = ufs_iget(ip->i_vfs, ip->i_oeftflag,
309 		    &dp, CRED());
310 		if (err == 0) {
311 			rw_enter(&dp->i_rwlock, RW_WRITER);
312 			rw_enter(&dp->i_contents, RW_WRITER);
313 			dp->i_flag |= IUPD|ICHG;
314 			dp->i_seq++;
315 			TRANS_INODE(dp->i_ufsvfs, dp);
316 			dp->i_nlink -= 2;
317 			ufs_setreclaim(dp);
318 			/*
319 			 * Should get rid of any negative cache entries that
320 			 * might be lingering, as well as ``.'' and
321 			 * ``..''.  If we don't, the VN_RELE() below
322 			 * won't actually put dp on the delete queue
323 			 * and it'll hang out until someone forces it
324 			 * (lockfs -f, umount, ...).  The only reliable
325 			 * way of doing this at the moment is to call
326 			 * dnlc_purge_vp(ITOV(dp)), which is unacceptably
327 			 * slow, so we'll just note the problem in this
328 			 * comment for now.
329 			 */
330 			dnlc_remove(ITOV(dp), ".");
331 			dnlc_remove(ITOV(dp), "..");
332 			ITIMES_NOLOCK(dp);
333 			if (!TRANS_ISTRANS(ufsvfsp)) {
334 				ufs_iupdat(dp, I_SYNC);
335 			}
336 			rw_exit(&dp->i_contents);
337 			rw_exit(&dp->i_rwlock);
338 			VN_RELE(ITOV(dp));
339 		}
340 		/*
341 		 * Clear out attribute pointer
342 		 */
343 		ip->i_oeftflag = 0;
344 		rw_exit(&ip->i_contents);
345 		TRANS_END_CSYNC(ufsvfsp, err, issync,
346 		    TOP_REMOVE, trans_size);
347 		dnlc_remove(ITOV(ip), XATTR_DIR_NAME);
348 	}
349 
350 	if ((ip->i_mode & IFMT) == IFATTRDIR) {
351 		ufs_attr_purge(ip);
352 	}
353 
354 	(void) TRANS_ITRUNC(ip, (u_offset_t)0, I_FREE | I_ACCT, CRED());
355 
356 	/*
357 	 * the inode's space has been freed; now free the inode
358 	 */
359 	if (ulp) {
360 		trans_size = TOP_IFREE_SIZE(ip);
361 		TRANS_BEGIN_ASYNC(ufsvfsp, TOP_IFREE, trans_size);
362 	}
363 	rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
364 	rw_enter(&ip->i_contents, RW_WRITER);
365 	TRANS_INODE(ufsvfsp, ip);
366 	mode = ip->i_mode;
367 	ip->i_mode = 0;
368 	ip->i_rdev = 0;
369 	ip->i_ordev = 0;
370 	ip->i_flag |= IMOD;
371 	if (ip->i_ufs_acl) {
372 		(void) ufs_si_free(ip->i_ufs_acl, vp->v_vfsp, CRED());
373 		ip->i_ufs_acl = NULL;
374 		ip->i_shadow = 0;
375 	}
376 
377 	/*
378 	 * This inode is torn down but still retains it's identity
379 	 * (inode number).  It could get recycled soon so it's best
380 	 * to clean up the vnode just in case.
381 	 */
382 	mutex_enter(&vp->v_lock);
383 	vn_recycle(vp);
384 	mutex_exit(&vp->v_lock);
385 
386 	/*
387 	 * free the inode
388 	 */
389 	ufs_ifree(ip, ip->i_number, mode);
390 	/*
391 	 * release quota resources; can't fail
392 	 */
393 	(void) chkiq((struct ufsvfs *)vp->v_vfsp->vfs_data,
394 	    /* change */ -1, ip, (uid_t)ip->i_uid, 0, CRED(),
395 	    (char **)NULL, (size_t *)NULL);
396 	dqrele(ip->i_dquot);
397 	ip->i_dquot = NULL;
398 	ip->i_flag &= ~(IDEL | IDIRECTIO);
399 	ip->i_cflags = 0;
400 	if (!TRANS_ISTRANS(ufsvfsp)) {
401 		ufs_iupdat(ip, I_SYNC);
402 	} else {
403 		mutex_enter(&delq->uq_mutex);
404 		delq_info->delq_unreclaimed_files--;
405 		mutex_exit(&delq->uq_mutex);
406 	}
407 	rw_exit(&ip->i_contents);
408 	rw_exit(&ufsvfsp->vfs_dqrwlock);
409 	if (dorwlock)
410 		rw_exit(&ip->i_rwlock);
411 	VN_RELE(vp);
412 
413 	/*
414 	 * End of transaction
415 	 */
416 	if (ulp) {
417 		TRANS_END_ASYNC(ufsvfsp, TOP_IFREE, trans_size);
418 		if (dolockfs)
419 			ufs_lockfs_end(ulp);
420 		else
421 			curthread->t_flag &= ~T_DONTBLOCK;
422 	}
423 }
424 
425 /*
426  * Create the delete thread and init the delq_info for this fs
427  */
428 void
429 ufs_delete_init(struct ufsvfs *ufsvfsp, int lowat)
430 {
431 	struct ufs_delq_info *delq_info = &ufsvfsp->vfs_delete_info;
432 
433 	ufs_thread_init(&ufsvfsp->vfs_delete, lowat);
434 	(void) memset((void *)delq_info, 0, sizeof (*delq_info));
435 }
436 
437 /*
438  * thread that frees up deleted inodes
439  */
440 void
441 ufs_thread_delete(struct vfs *vfsp)
442 {
443 	struct ufsvfs	*ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
444 	struct ufs_q	*uq = &ufsvfsp->vfs_delete;
445 	struct inode	*ip;
446 	long		ne;
447 	callb_cpr_t	cprinfo;
448 
449 	CALLB_CPR_INIT(&cprinfo, &uq->uq_mutex, callb_generic_cpr,
450 	    "ufsdelete");
451 
452 	mutex_enter(&uq->uq_mutex);
453 again:
454 	/*
455 	 * Sleep until there is work to do.  Only do one entry at
456 	 * a time, to reduce the wait time for checking for a suspend
457 	 * request.  The ?: is for pedantic portability.
458 	 */
459 	ne = ufs_thread_run(uq, &cprinfo) ? 1 : 0;
460 
461 	/*
462 	 * process an entry, if there are any
463 	 */
464 	if (ne && (ip = uq->uq_ihead)) {
465 		/*
466 		 * process first entry on queue.  Assumed conditions are:
467 		 *	ip is held (v_count >= 1)
468 		 *	ip is referenced (i_flag & IREF)
469 		 *	ip is free (i_nlink <= 0)
470 		 */
471 		if ((uq->uq_ihead = ip->i_freef) == ip)
472 			uq->uq_ihead = NULL;
473 		ip->i_freef->i_freeb = ip->i_freeb;
474 		ip->i_freeb->i_freef = ip->i_freef;
475 		ip->i_freef = ip;
476 		ip->i_freeb = ip;
477 		uq->uq_ne--;
478 		mutex_exit(&uq->uq_mutex);
479 		ufs_delete(ufsvfsp, ip, 1);
480 		mutex_enter(&uq->uq_mutex);
481 	}
482 	goto again;
483 }
484 
485 /*
486  * drain ne entries off the delete queue.  As new queue entries may
487  * be added while we're working, ne is interpreted as follows:
488  *
489  * ne > 0   => remove up to ne entries
490  * ne == 0  => remove all entries currently on the queue
491  * ne == -1 => remove entries until the queue is empty
492  */
493 void
494 ufs_delete_drain(struct vfs *vfsp, int ne, int dolockfs)
495 {
496 	struct ufsvfs	*ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
497 	struct ufs_q	*uq;
498 	struct inode	*ip;
499 	int		drain_cnt = 0;
500 	int		done;
501 
502 	/*
503 	 * if forcibly unmounted; ignore
504 	 */
505 	if (ufsvfsp == NULL)
506 		return;
507 
508 	uq = &ufsvfsp->vfs_delete;
509 	mutex_enter(&uq->uq_mutex);
510 	if (ne == 0)
511 		drain_cnt = uq->uq_ne;
512 	else if (ne > 0)
513 		drain_cnt = ne;
514 
515 	/*
516 	 * process up to ne entries
517 	 */
518 
519 	done = 0;
520 	while (!done && (ip = uq->uq_ihead)) {
521 		if (ne != -1)
522 			drain_cnt--;
523 		if (ne != -1 && drain_cnt == 0)
524 			done = 1;
525 		if ((uq->uq_ihead = ip->i_freef) == ip)
526 			uq->uq_ihead = NULL;
527 		ip->i_freef->i_freeb = ip->i_freeb;
528 		ip->i_freeb->i_freef = ip->i_freef;
529 		ip->i_freef = ip;
530 		ip->i_freeb = ip;
531 		uq->uq_ne--;
532 		mutex_exit(&uq->uq_mutex);
533 		ufs_delete(ufsvfsp, ip, dolockfs);
534 		mutex_enter(&uq->uq_mutex);
535 	}
536 	mutex_exit(&uq->uq_mutex);
537 }
538 
539 void
540 ufs_sync_with_thread(struct ufs_q *uq)
541 {
542 	mutex_enter(&uq->uq_mutex);
543 
544 	/*
545 	 * Wake up delete thread to free up space.
546 	 */
547 	if ((uq->uq_flags & UQ_WAIT) == 0) {
548 		uq->uq_flags |= UQ_WAIT;
549 		cv_broadcast(&uq->uq_cv);
550 	}
551 
552 	while ((uq->uq_threadp != NULL) && (uq->uq_flags & UQ_WAIT)) {
553 		cv_wait(&uq->uq_cv, &uq->uq_mutex);
554 	}
555 
556 	mutex_exit(&uq->uq_mutex);
557 }
558 
559 /*
560  * Get rid of everything that's currently in the delete queue,
561  * plus whatever the delete thread is working on at the moment.
562  *
563  * This ability is required for providing true POSIX semantics
564  * regarding close(2), unlink(2), etc, even when logging is enabled.
565  * The standard requires that the released space be immediately
566  * observable (statvfs(2)) and allocatable (e.g., write(2)).
567  */
568 void
569 ufs_delete_drain_wait(struct ufsvfs *ufsvfsp, int dolockfs)
570 {
571 	struct ufs_q *uq = &ufsvfsp->vfs_delete;
572 	int	error;
573 	struct ufs_q    *delq = &ufsvfsp->vfs_delete;
574 	struct ufs_delq_info *delq_info = &ufsvfsp->vfs_delete_info;
575 
576 	/*
577 	 * If there is something on delq or delete thread
578 	 * working on delq.
579 	 */
580 	mutex_enter(&delq->uq_mutex);
581 	if (delq_info->delq_unreclaimed_files > 0) {
582 		mutex_exit(&delq->uq_mutex);
583 		(void) ufs_delete_drain(ufsvfsp->vfs_vfs, 0, dolockfs);
584 		ufs_sync_with_thread(uq);
585 	} else {
586 		ASSERT(delq_info->delq_unreclaimed_files == 0);
587 		mutex_exit(&delq->uq_mutex);
588 		return;
589 	}
590 
591 	/*
592 	 * Commit any outstanding transactions to make sure
593 	 * any canceled freed blocks are available for allocation.
594 	 */
595 	curthread->t_flag |= T_DONTBLOCK;
596 	TRANS_BEGIN_SYNC(ufsvfsp, TOP_COMMIT_UPDATE, TOP_COMMIT_SIZE, error);
597 	if (!error) {
598 		TRANS_END_SYNC(ufsvfsp, error, TOP_COMMIT_UPDATE,
599 		    TOP_COMMIT_SIZE);
600 	}
601 	curthread->t_flag &= ~T_DONTBLOCK;
602 }
603 
604 /*
605  * Adjust the resource usage in a struct statvfs based on
606  * what's in the delete queue.
607  *
608  * We do not consider the impact of ACLs or extended attributes
609  * that may be deleted as a side-effect of deleting a file.
610  * Those are metadata, and their sizes aren't reflected in the
611  * sizes returned by stat(), so this is not a problem.
612  */
613 void
614 ufs_delete_adjust_stats(struct ufsvfs *ufsvfsp, struct statvfs64 *sp)
615 {
616 	struct ufs_q *uq = &ufsvfsp->vfs_delete;
617 	struct ufs_delq_info *delq_info = &ufsvfsp->vfs_delete_info;
618 
619 	mutex_enter(&uq->uq_mutex);
620 	/*
621 	 * The blocks accounted for in the delete queue info are
622 	 * counted in DEV_BSIZE chunks, but ufs_statvfs counts in
623 	 * filesystem fragments, so a conversion is required here.
624 	 */
625 	sp->f_bfree += dbtofsb(ufsvfsp->vfs_fs,
626 	    delq_info->delq_unreclaimed_blocks);
627 	sp->f_ffree += delq_info->delq_unreclaimed_files;
628 	mutex_exit(&uq->uq_mutex);
629 }
630 
631 /*
632  * IDLE INODE
633  * The following routines implement the protocol for maintaining an
634  * LRU list of idle inodes and for moving the idle inodes to the
635  * reuse list when the number of allocated inodes exceeds the user
636  * tunable high-water mark (ufs_ninode).
637  */
638 
639 /*
640  * clean an idle inode and move it to the reuse list
641  */
642 static void
643 ufs_idle_free(struct inode *ip)
644 {
645 	int			pages;
646 	int			hno;
647 	kmutex_t		*ihm;
648 	struct ufsvfs		*ufsvfsp	= ip->i_ufsvfs;
649 	struct vnode		*vp		= ITOV(ip);
650 
651 	/*
652 	 * inode is held
653 	 */
654 
655 	/*
656 	 * remember `pages' for stats below
657 	 */
658 	pages = (ip->i_mode && vn_has_cached_data(vp) && vp->v_type != VCHR);
659 
660 	/*
661 	 * start the dirty pages to disk and then invalidate them
662 	 * unless the inode is invalid (ISTALE)
663 	 */
664 	if ((ip->i_flag & ISTALE) == 0) {
665 		(void) TRANS_SYNCIP(ip, B_ASYNC, I_ASYNC, TOP_SYNCIP_FREE);
666 		(void) TRANS_SYNCIP(ip,
667 		    (TRANS_ISERROR(ufsvfsp)) ? B_INVAL | B_FORCE : B_INVAL,
668 		    I_ASYNC, TOP_SYNCIP_FREE);
669 	}
670 
671 	/*
672 	 * wait for any current ufs_iget to finish and block future ufs_igets
673 	 */
674 	ASSERT(ip->i_number != 0);
675 	hno = INOHASH(ip->i_number);
676 	ihm = &ih_lock[hno];
677 	mutex_enter(ihm);
678 
679 	/*
680 	 * It must be guaranteed that v_count >= 2, otherwise
681 	 * something must be wrong with this vnode already.
682 	 * That is why we use v_count-- instead of VN_RELE().
683 	 * Acquire the vnode lock in case another thread is in
684 	 * VN_RELE().
685 	 */
686 	mutex_enter(&vp->v_lock);
687 
688 	if (vp->v_count < 2)
689 		cmn_err(CE_PANIC,
690 		    "ufs_idle_free: vnode ref count is less than 2");
691 
692 	vp->v_count--;
693 	if ((vp->v_type != VCHR && vn_has_cached_data(vp)) ||
694 	    vp->v_count != 1 ||
695 	    ip->i_flag & (IMOD|IMODACC|IACC|ICHG|IUPD|IATTCHG)) {
696 		/*
697 		 * Another thread has referenced this inode while
698 		 * we are trying to free it. Call VN_RELE() to
699 		 * release our reference.
700 		 */
701 		mutex_exit(&vp->v_lock);
702 		mutex_exit(ihm);
703 		VN_RELE(vp);
704 	} else {
705 		/*
706 		 * The inode is currently unreferenced and can not
707 		 * acquire further references because it has no pages
708 		 * and the hash is locked.  Inodes acquire references
709 		 * via the hash list or via their pages.
710 		 */
711 
712 		mutex_exit(&vp->v_lock);
713 
714 		/*
715 		 * remove it from the cache
716 		 */
717 		remque(ip);
718 		mutex_exit(ihm);
719 		/*
720 		 * Stale inodes have no valid ufsvfs
721 		 */
722 		if ((ip->i_flag & ISTALE) == 0 && ip->i_dquot) {
723 			TRANS_DQRELE(ufsvfsp, ip->i_dquot);
724 			ip->i_dquot = NULL;
725 		}
726 		ufs_si_del(ip);
727 		if (pages) {
728 			CPU_STATS_ADDQ(CPU, sys, ufsipage, 1);
729 		} else {
730 			CPU_STATS_ADDQ(CPU, sys, ufsinopage, 1);
731 		}
732 		ASSERT((vp->v_type == VCHR) || !vn_has_cached_data(vp));
733 
734 		/*
735 		 * We had better not have a vnode reference count > 1
736 		 * at this point, if we do then something is broken as
737 		 * this inode/vnode acquired a reference underneath of us.
738 		 */
739 		ASSERT(vp->v_count == 1);
740 
741 		ufs_free_inode(ip);
742 	}
743 }
744 
745 /*
746  * this thread processes the global idle queue
747  */
748 iqhead_t *ufs_junk_iq;
749 iqhead_t *ufs_useful_iq;
750 int ufs_njunk_iq = 0;
751 int ufs_nuseful_iq = 0;
752 int ufs_niqhash;
753 int ufs_iqhashmask;
754 struct ufs_q	ufs_idle_q;
755 
756 void
757 ufs_thread_idle(void)
758 {
759 	callb_cpr_t cprinfo;
760 	int i;
761 	int ne;
762 
763 	ufs_niqhash = (ufs_idle_q.uq_lowat >> 1) / IQHASHQLEN;
764 	ufs_niqhash = 1 << highbit(ufs_niqhash); /* round up to power of 2 */
765 	ufs_iqhashmask = ufs_niqhash - 1;
766 	ufs_junk_iq = kmem_alloc(ufs_niqhash * sizeof (*ufs_junk_iq),
767 	    KM_SLEEP);
768 	ufs_useful_iq = kmem_alloc(ufs_niqhash * sizeof (*ufs_useful_iq),
769 	    KM_SLEEP);
770 
771 	/* Initialize hash queue headers */
772 	for (i = 0; i < ufs_niqhash; i++) {
773 		ufs_junk_iq[i].i_freef = (inode_t *)&ufs_junk_iq[i];
774 		ufs_junk_iq[i].i_freeb = (inode_t *)&ufs_junk_iq[i];
775 		ufs_useful_iq[i].i_freef = (inode_t *)&ufs_useful_iq[i];
776 		ufs_useful_iq[i].i_freeb = (inode_t *)&ufs_useful_iq[i];
777 	}
778 
779 	CALLB_CPR_INIT(&cprinfo, &ufs_idle_q.uq_mutex, callb_generic_cpr,
780 	    "ufsidle");
781 again:
782 	/*
783 	 * Whenever the idle thread is awakened, it repeatedly gives
784 	 * back half of the idle queue until the idle queue falls
785 	 * below lowat.
786 	 */
787 	mutex_enter(&ufs_idle_q.uq_mutex);
788 	if (ufs_idle_q.uq_ne < ufs_idle_q.uq_lowat) {
789 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
790 		cv_wait(&ufs_idle_q.uq_cv, &ufs_idle_q.uq_mutex);
791 		CALLB_CPR_SAFE_END(&cprinfo, &ufs_idle_q.uq_mutex);
792 	}
793 	mutex_exit(&ufs_idle_q.uq_mutex);
794 
795 	/*
796 	 * Give back 1/2 of the idle queue
797 	 */
798 	ne = ufs_idle_q.uq_ne >> 1;
799 	ins.in_tidles.value.ul += ne;
800 	ufs_idle_some(ne);
801 	goto again;
802 }
803 
804 /*
805  * Reclaim callback for ufs inode cache.
806  * Invoked by the kernel memory allocator when memory gets tight.
807  */
808 /*ARGSUSED*/
809 void
810 ufs_inode_cache_reclaim(void *cdrarg)
811 {
812 	/*
813 	 * If we are low on memory and the idle queue is over its
814 	 * halfway mark, then free 50% of the idle q
815 	 *
816 	 * We don't free all of the idle inodes because the inodes
817 	 * for popular NFS files may have been kicked from the dnlc.
818 	 * The inodes for these files will end up on the idle queue
819 	 * after every NFS access.
820 	 *
821 	 * If we repeatedly push them from the idle queue then
822 	 * NFS users may be unhappy as an extra buf cache operation
823 	 * is incurred for every NFS operation to these files.
824 	 *
825 	 * It's not common, but I have seen it happen.
826 	 *
827 	 */
828 	if (ufs_idle_q.uq_ne < (ufs_idle_q.uq_lowat >> 1))
829 		return;
830 	mutex_enter(&ufs_idle_q.uq_mutex);
831 	cv_broadcast(&ufs_idle_q.uq_cv);
832 	mutex_exit(&ufs_idle_q.uq_mutex);
833 }
834 
835 /*
836  * Free up some idle inodes
837  */
838 void
839 ufs_idle_some(int ne)
840 {
841 	int i;
842 	struct inode *ip;
843 	struct vnode *vp;
844 	static int junk_rotor = 0;
845 	static int useful_rotor = 0;
846 
847 	for (i = 0; i < ne; ++i) {
848 		mutex_enter(&ufs_idle_q.uq_mutex);
849 
850 		if (ufs_njunk_iq) {
851 			while (ufs_junk_iq[junk_rotor].i_freef ==
852 			    (inode_t *)&ufs_junk_iq[junk_rotor]) {
853 				junk_rotor = IQNEXT(junk_rotor);
854 			}
855 			ip = ufs_junk_iq[junk_rotor].i_freef;
856 			ASSERT(ip->i_flag & IJUNKIQ);
857 		} else if (ufs_nuseful_iq) {
858 			while (ufs_useful_iq[useful_rotor].i_freef ==
859 			    (inode_t *)&ufs_useful_iq[useful_rotor]) {
860 				useful_rotor = IQNEXT(useful_rotor);
861 			}
862 			ip = ufs_useful_iq[useful_rotor].i_freef;
863 			ASSERT(!(ip->i_flag & IJUNKIQ));
864 		} else {
865 			mutex_exit(&ufs_idle_q.uq_mutex);
866 			return;
867 		}
868 
869 		/*
870 		 * emulate ufs_iget
871 		 */
872 		vp = ITOV(ip);
873 		VN_HOLD(vp);
874 		mutex_exit(&ufs_idle_q.uq_mutex);
875 		rw_enter(&ip->i_contents, RW_WRITER);
876 		/*
877 		 * VN_RELE should not be called if
878 		 * ufs_rmidle returns true, as it will
879 		 * effectively be done in ufs_idle_free.
880 		 */
881 		if (ufs_rmidle(ip)) {
882 			rw_exit(&ip->i_contents);
883 			ufs_idle_free(ip);
884 		} else {
885 			rw_exit(&ip->i_contents);
886 			VN_RELE(vp);
887 		}
888 	}
889 }
890 
891 /*
892  * drain entries for vfsp from the idle queue
893  * vfsp == NULL means drain the entire thing
894  */
895 void
896 ufs_idle_drain(struct vfs *vfsp)
897 {
898 	struct inode	*ip, *nip;
899 	struct inode	*ianchor = NULL;
900 	int		i;
901 
902 	mutex_enter(&ufs_idle_q.uq_mutex);
903 	if (ufs_njunk_iq) {
904 		/* for each hash q */
905 		for (i = 0; i < ufs_niqhash; i++) {
906 			/* search down the hash q */
907 			for (ip = ufs_junk_iq[i].i_freef;
908 			    ip != (inode_t *)&ufs_junk_iq[i];
909 			    ip = ip->i_freef) {
910 				if (ip->i_vfs == vfsp || vfsp == NULL) {
911 					/* found a matching entry */
912 					VN_HOLD(ITOV(ip));
913 					mutex_exit(&ufs_idle_q.uq_mutex);
914 					rw_enter(&ip->i_contents, RW_WRITER);
915 					/*
916 					 * See comments in ufs_idle_some()
917 					 * as we will call ufs_idle_free()
918 					 * after scanning both queues.
919 					 */
920 					if (ufs_rmidle(ip)) {
921 						rw_exit(&ip->i_contents);
922 						ip->i_freef = ianchor;
923 						ianchor = ip;
924 					} else {
925 						rw_exit(&ip->i_contents);
926 						VN_RELE(ITOV(ip));
927 					}
928 					/* restart this hash q */
929 					ip = (inode_t *)&ufs_junk_iq[i];
930 					mutex_enter(&ufs_idle_q.uq_mutex);
931 				}
932 			}
933 		}
934 	}
935 	if (ufs_nuseful_iq) {
936 		/* for each hash q */
937 		for (i = 0; i < ufs_niqhash; i++) {
938 			/* search down the hash q */
939 			for (ip = ufs_useful_iq[i].i_freef;
940 			    ip != (inode_t *)&ufs_useful_iq[i];
941 			    ip = ip->i_freef) {
942 				if (ip->i_vfs == vfsp || vfsp == NULL) {
943 					/* found a matching entry */
944 					VN_HOLD(ITOV(ip));
945 					mutex_exit(&ufs_idle_q.uq_mutex);
946 					rw_enter(&ip->i_contents, RW_WRITER);
947 					/*
948 					 * See comments in ufs_idle_some()
949 					 * as we will call ufs_idle_free()
950 					 * after scanning both queues.
951 					 */
952 					if (ufs_rmidle(ip)) {
953 						rw_exit(&ip->i_contents);
954 						ip->i_freef = ianchor;
955 						ianchor = ip;
956 					} else {
957 						rw_exit(&ip->i_contents);
958 						VN_RELE(ITOV(ip));
959 					}
960 					/* restart this hash q */
961 					ip = (inode_t *)&ufs_useful_iq[i];
962 					mutex_enter(&ufs_idle_q.uq_mutex);
963 				}
964 			}
965 		}
966 	}
967 
968 	mutex_exit(&ufs_idle_q.uq_mutex);
969 	/* no more matching entries, release those we have found (if any) */
970 	for (ip = ianchor; ip; ip = nip) {
971 		nip = ip->i_freef;
972 		ip->i_freef = ip;
973 		ufs_idle_free(ip);
974 	}
975 }
976 
977 /*
978  * RECLAIM DELETED INODES
979  * The following thread scans the file system once looking for deleted files
980  */
981 void
982 ufs_thread_reclaim(struct vfs *vfsp)
983 {
984 	struct ufsvfs		*ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
985 	struct ufs_q		*uq	= &ufsvfsp->vfs_reclaim;
986 	struct fs		*fs	= ufsvfsp->vfs_fs;
987 	struct buf		*bp	= 0;
988 	int			err	= 0;
989 	daddr_t			bno;
990 	ino_t			ino;
991 	struct dinode		*dp;
992 	struct inode		*ip;
993 	callb_cpr_t		cprinfo;
994 
995 	CALLB_CPR_INIT(&cprinfo, &uq->uq_mutex, callb_generic_cpr,
996 	    "ufsreclaim");
997 
998 	/*
999 	 * mount decided that we don't need a reclaim thread
1000 	 */
1001 	if ((fs->fs_reclaim & FS_RECLAIMING) == 0)
1002 		err++;
1003 
1004 	/*
1005 	 * don't reclaim if readonly
1006 	 */
1007 	if (fs->fs_ronly)
1008 		err++;
1009 
1010 	for (ino = 0; ino < (fs->fs_ncg * fs->fs_ipg) && !err; ++ino) {
1011 
1012 		/*
1013 		 * Check whether we are the target of another
1014 		 * thread having called ufs_thread_exit() or
1015 		 * ufs_thread_suspend().
1016 		 */
1017 		mutex_enter(&uq->uq_mutex);
1018 again:
1019 		if (uq->uq_flags & UQ_EXIT) {
1020 			err++;
1021 			mutex_exit(&uq->uq_mutex);
1022 			break;
1023 		} else if (uq->uq_flags & UQ_SUSPEND) {
1024 			uq->uq_flags |= UQ_SUSPENDED;
1025 			/*
1026 			 * Release the buf before we cv_wait()
1027 			 * otherwise we may deadlock with the
1028 			 * thread that called ufs_thread_suspend().
1029 			 */
1030 			if (bp) {
1031 				brelse(bp);
1032 				bp = 0;
1033 			}
1034 			if (uq->uq_flags & UQ_WAIT) {
1035 				uq->uq_flags &= ~UQ_WAIT;
1036 				cv_broadcast(&uq->uq_cv);
1037 			}
1038 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
1039 			cv_wait(&uq->uq_cv, &uq->uq_mutex);
1040 			CALLB_CPR_SAFE_END(&cprinfo, &uq->uq_mutex);
1041 			goto again;
1042 		}
1043 		mutex_exit(&uq->uq_mutex);
1044 
1045 		/*
1046 		 * if we don't already have the buf; get it
1047 		 */
1048 		bno = fsbtodb(fs, itod(fs, ino));
1049 		if ((bp == 0) || (bp->b_blkno != bno)) {
1050 			if (bp)
1051 				brelse(bp);
1052 			bp = UFS_BREAD(ufsvfsp,
1053 			    ufsvfsp->vfs_dev, bno, fs->fs_bsize);
1054 			bp->b_flags |= B_AGE;
1055 		}
1056 		if (bp->b_flags & B_ERROR) {
1057 			err++;
1058 			continue;
1059 		}
1060 		/*
1061 		 * nlink <= 0 and mode != 0 means deleted
1062 		 */
1063 		dp = (struct dinode *)bp->b_un.b_addr + itoo(fs, ino);
1064 		if ((dp->di_nlink <= 0) && (dp->di_mode != 0)) {
1065 			/*
1066 			 * can't hold the buf (deadlock)
1067 			 */
1068 			brelse(bp);
1069 			bp = 0;
1070 			rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
1071 			/*
1072 			 * iget/iput sequence will put inode on ifree
1073 			 * thread queue if it is idle.  This is a nop
1074 			 * for busy (open, deleted) inodes
1075 			 */
1076 			if (ufs_iget(vfsp, ino, &ip, CRED()))
1077 				err++;
1078 			else
1079 				VN_RELE(ITOV(ip));
1080 			rw_exit(&ufsvfsp->vfs_dqrwlock);
1081 		}
1082 	}
1083 
1084 	if (bp)
1085 		brelse(bp);
1086 	if (!err) {
1087 		/*
1088 		 * reset the reclaiming-bit
1089 		 */
1090 		mutex_enter(&ufsvfsp->vfs_lock);
1091 		fs->fs_reclaim &= ~FS_RECLAIMING;
1092 		mutex_exit(&ufsvfsp->vfs_lock);
1093 		TRANS_SBWRITE(ufsvfsp, TOP_SBWRITE_RECLAIM);
1094 	}
1095 
1096 	/*
1097 	 * exit the reclaim thread
1098 	 */
1099 	mutex_enter(&uq->uq_mutex);
1100 	uq->uq_threadp = NULL;
1101 	uq->uq_flags &= ~UQ_WAIT;
1102 	cv_broadcast(&uq->uq_cv);
1103 	CALLB_CPR_EXIT(&cprinfo);
1104 	thread_exit();
1105 }
1106 /*
1107  * HLOCK FILE SYSTEM
1108  *	hlock the file system's whose logs have device errors
1109  */
1110 struct ufs_q	ufs_hlock;
1111 /*ARGSUSED*/
1112 void
1113 ufs_thread_hlock(void *ignore)
1114 {
1115 	int		retry;
1116 	callb_cpr_t	cprinfo;
1117 
1118 	CALLB_CPR_INIT(&cprinfo, &ufs_hlock.uq_mutex, callb_generic_cpr,
1119 	    "ufshlock");
1120 
1121 	for (;;) {
1122 		/*
1123 		 * sleep until there is work to do
1124 		 */
1125 		mutex_enter(&ufs_hlock.uq_mutex);
1126 		(void) ufs_thread_run(&ufs_hlock, &cprinfo);
1127 		ufs_hlock.uq_ne = 0;
1128 		mutex_exit(&ufs_hlock.uq_mutex);
1129 		/*
1130 		 * hlock the error'ed fs's
1131 		 *	retry after a bit if another app is doing lockfs stuff
1132 		 */
1133 		do {
1134 			retry = ufs_trans_hlock();
1135 			if (retry) {
1136 				mutex_enter(&ufs_hlock.uq_mutex);
1137 				CALLB_CPR_SAFE_BEGIN(&cprinfo);
1138 				(void) cv_timedwait(&ufs_hlock.uq_cv,
1139 				    &ufs_hlock.uq_mutex, lbolt + hz);
1140 				CALLB_CPR_SAFE_END(&cprinfo,
1141 				    &ufs_hlock.uq_mutex);
1142 				mutex_exit(&ufs_hlock.uq_mutex);
1143 			}
1144 		} while (retry);
1145 	}
1146 }
1147 
1148 static void
1149 ufs_attr_purge(struct inode *dp)
1150 {
1151 	int	err;
1152 	int	error;
1153 	off_t 	dirsize;			/* size of the directory */
1154 	off_t 	offset;	/* offset in the directory */
1155 	int entryoffsetinblk;		/* offset of ep in fbp's buffer */
1156 	struct inode *tp;
1157 	struct fbuf *fbp;	/* pointer to directory block */
1158 	struct direct *ep;	/* directory entry */
1159 	int trans_size;
1160 	int issync;
1161 	struct ufsvfs	*ufsvfsp = dp->i_ufsvfs;
1162 
1163 	rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
1164 
1165 	fbp = NULL;
1166 	dirsize = roundup(dp->i_size, DIRBLKSIZ);
1167 	offset = 0;
1168 	entryoffsetinblk = 0;
1169 
1170 	/*
1171 	 * Purge directory cache
1172 	 */
1173 
1174 	dnlc_dir_purge(&dp->i_danchor);
1175 
1176 	while (offset < dirsize) {
1177 		/*
1178 		 * If offset is on a block boundary,
1179 		 * read the next directory block.
1180 		 * Release previous if it exists.
1181 		 */
1182 		if (blkoff(dp->i_fs, offset) == 0) {
1183 			if (fbp != NULL) {
1184 				fbrelse(fbp, S_OTHER);
1185 			}
1186 
1187 			err = blkatoff(dp, offset, (char **)0, &fbp);
1188 			if (err) {
1189 				goto out;
1190 			}
1191 			entryoffsetinblk = 0;
1192 		}
1193 		ep = (struct direct *)(fbp->fb_addr + entryoffsetinblk);
1194 		if (ep->d_ino == 0 || (ep->d_name[0] == '.' &&
1195 		    ep->d_name[1] == '\0') ||
1196 		    (ep->d_name[0] == '.' && ep->d_name[1] == '.' &&
1197 		    ep->d_name[2] == '\0')) {
1198 
1199 			entryoffsetinblk += ep->d_reclen;
1200 
1201 		} else {
1202 
1203 			if ((err = ufs_iget(dp->i_vfs, ep->d_ino,
1204 			    &tp, CRED())) != 0) {
1205 				goto out;
1206 			}
1207 
1208 			TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE,
1209 			    trans_size = (int)TOP_REMOVE_SIZE(tp));
1210 
1211 			/*
1212 			 * Delete inode.
1213 			 */
1214 
1215 			dnlc_remove(ITOV(dp), ep->d_name);
1216 
1217 			rw_enter(&tp->i_contents, RW_WRITER);
1218 			tp->i_flag |= ICHG;
1219 			tp->i_seq++;
1220 			TRANS_INODE(tp->i_ufsvfs, tp);
1221 			tp->i_nlink--;
1222 			ufs_setreclaim(tp);
1223 			ITIMES_NOLOCK(tp);
1224 			rw_exit(&tp->i_contents);
1225 
1226 			VN_RELE(ITOV(tp));
1227 			entryoffsetinblk += ep->d_reclen;
1228 			TRANS_END_CSYNC(ufsvfsp, error,
1229 			    issync, TOP_REMOVE, trans_size);
1230 
1231 		}
1232 		offset += ep->d_reclen;
1233 	}
1234 
1235 	if (fbp) {
1236 		fbrelse(fbp, S_OTHER);
1237 	}
1238 
1239 out:
1240 	rw_exit(&ufsvfsp->vfs_dqrwlock);
1241 }
1242