xref: /illumos-gate/usr/src/uts/common/fs/ufs/ufs_inode.c (revision 448bf8594153765bb5fce82a8888e01e3f6c3bad)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1983, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
26 /*	  All Rights Reserved  	*/
27 
28 /*
29  * University Copyright- Copyright (c) 1982, 1986, 1988
30  * The Regents of the University of California
31  * All Rights Reserved
32  *
33  * University Acknowledgment- Portions of this document are derived from
34  * software developed by the University of California, Berkeley, and its
35  * contributors.
36  */
37 
38 #include <sys/types.h>
39 #include <sys/t_lock.h>
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/uio.h>
43 #include <sys/bitmap.h>
44 #include <sys/signal.h>
45 #include <sys/cred.h>
46 #include <sys/user.h>
47 #include <sys/vfs.h>
48 #include <sys/stat.h>
49 #include <sys/vnode.h>
50 #include <sys/buf.h>
51 #include <sys/proc.h>
52 #include <sys/disp.h>
53 #include <sys/dnlc.h>
54 #include <sys/mode.h>
55 #include <sys/cmn_err.h>
56 #include <sys/kstat.h>
57 #include <sys/acl.h>
58 #include <sys/var.h>
59 #include <sys/fs/ufs_inode.h>
60 #include <sys/fs/ufs_fs.h>
61 #include <sys/fs/ufs_trans.h>
62 #include <sys/fs/ufs_acl.h>
63 #include <sys/fs/ufs_bio.h>
64 #include <sys/fs/ufs_quota.h>
65 #include <sys/fs/ufs_log.h>
66 #include <vm/hat.h>
67 #include <vm/as.h>
68 #include <vm/pvn.h>
69 #include <vm/seg.h>
70 #include <sys/swap.h>
71 #include <sys/cpuvar.h>
72 #include <sys/sysmacros.h>
73 #include <sys/errno.h>
74 #include <sys/kmem.h>
75 #include <sys/debug.h>
76 #include <fs/fs_subr.h>
77 #include <sys/policy.h>
78 
79 struct kmem_cache *inode_cache;		/* cache of free inodes */
80 
81 /* UFS Inode Cache Stats -- Not protected */
82 struct	instats ins = {
83 	{ "size",		KSTAT_DATA_ULONG },
84 	{ "maxsize",		KSTAT_DATA_ULONG },
85 	{ "hits",		KSTAT_DATA_ULONG },
86 	{ "misses",		KSTAT_DATA_ULONG },
87 	{ "kmem allocs",	KSTAT_DATA_ULONG },
88 	{ "kmem frees",		KSTAT_DATA_ULONG },
89 	{ "maxsize reached",	KSTAT_DATA_ULONG },
90 	{ "puts at frontlist",	KSTAT_DATA_ULONG },
91 	{ "puts at backlist",	KSTAT_DATA_ULONG },
92 	{ "queues to free",	KSTAT_DATA_ULONG },
93 	{ "scans",		KSTAT_DATA_ULONG },
94 	{ "thread idles",	KSTAT_DATA_ULONG },
95 	{ "lookup idles",	KSTAT_DATA_ULONG },
96 	{ "vget idles",		KSTAT_DATA_ULONG },
97 	{ "cache allocs",	KSTAT_DATA_ULONG },
98 	{ "cache frees",	KSTAT_DATA_ULONG },
99 	{ "pushes at close",	KSTAT_DATA_ULONG }
100 };
101 
102 /* kstat data */
103 static kstat_t		*ufs_inode_kstat = NULL;
104 
105 union ihead *ihead;	/* inode LRU cache, Chris Maltby */
106 kmutex_t *ih_lock;	/* protect inode cache hash table */
107 static int ino_hashlen = 4;	/* desired average hash chain length */
108 int inohsz;		/* number of buckets in the hash table */
109 
110 kmutex_t	ufs_scan_lock;	/* stop racing multiple ufs_scan_inodes() */
111 kmutex_t	ufs_iuniqtime_lock; /* protect iuniqtime */
112 kmutex_t	ufsvfs_mutex;
113 struct ufsvfs	*oldufsvfslist, *ufsvfslist;
114 
115 /*
116  * time to wait after ufsvfsp->vfs_iotstamp before declaring that no
117  * I/Os are going on.
118  */
119 clock_t	ufs_iowait;
120 
121 /*
122  * the threads that process idle inodes and free (deleted) inodes
123  * have high water marks that are set in ufsinit().
124  * These values but can be no less then the minimum shown below
125  */
126 int	ufs_idle_max;	/* # of allowable idle inodes */
127 ulong_t	ufs_inode_max;	/* hard limit of allowable idle inodes */
128 #define	UFS_IDLE_MAX	(16)	/* min # of allowable idle inodes */
129 
130 /*
131  * Tunables for ufs write throttling.
132  * These are validated in ufs_iinit() since improper settings
133  * can lead to filesystem hangs.
134  */
135 #define	UFS_HW_DEFAULT	(16 * 1024 * 1024)
136 #define	UFS_LW_DEFAULT	(8 * 1024 * 1024)
137 int	ufs_HW = UFS_HW_DEFAULT;
138 int	ufs_LW = UFS_LW_DEFAULT;
139 
140 static void ihinit(void);
141 extern int hash2ints(int, int);
142 
143 static int ufs_iget_internal(struct vfs *, ino_t, struct inode **,
144     struct cred *, int);
145 
146 /* ARGSUSED */
147 static int
148 ufs_inode_kstat_update(kstat_t *ksp, int rw)
149 {
150 	if (rw == KSTAT_WRITE)
151 		return (EACCES);
152 
153 	ins.in_malloc.value.ul	= (ulong_t)kmem_cache_stat(inode_cache,
154 	    "slab_alloc");
155 	ins.in_mfree.value.ul	= (ulong_t)kmem_cache_stat(inode_cache,
156 	    "slab_free");
157 	ins.in_kcalloc.value.ul	= (ulong_t)kmem_cache_stat(inode_cache,
158 	    "alloc");
159 	ins.in_kcfree.value.ul	= (ulong_t)kmem_cache_stat(inode_cache,
160 	    "free");
161 	ins.in_size.value.ul	= (ulong_t)kmem_cache_stat(inode_cache,
162 	    "buf_inuse");
163 	ins.in_maxreached.value.ul = (ulong_t)kmem_cache_stat(inode_cache,
164 	    "buf_max");
165 	ins.in_misses.value.ul = ins.in_kcalloc.value.ul;
166 
167 	return (0);
168 }
169 
170 void
171 ufs_iinit(void)
172 {
173 	/*
174 	 * Validate that ufs_HW > ufs_LW.
175 	 * The default values for these two tunables have been increased.
176 	 * There is now a range of values for ufs_HW that used to be
177 	 * legal on previous Solaris versions but no longer is now.
178 	 * Upgrading a machine which has an /etc/system setting for ufs_HW
179 	 * from that range can lead to filesystem hangs unless the values
180 	 * are checked here.
181 	 */
182 	if (ufs_HW <= ufs_LW) {
183 		cmn_err(CE_WARN,
184 		    "ufs_HW (%d) <= ufs_LW (%d). Check /etc/system.",
185 		    ufs_HW, ufs_LW);
186 		ufs_LW = UFS_LW_DEFAULT;
187 		ufs_HW = UFS_HW_DEFAULT;
188 		cmn_err(CE_CONT, "using defaults, ufs_HW = %d, ufs_LW = %d\n",
189 		    ufs_HW, ufs_LW);
190 	}
191 
192 	/*
193 	 * Adjust the tunable `ufs_ninode' to a reasonable value
194 	 */
195 	if (ufs_ninode <= 0)
196 		ufs_ninode = ncsize;
197 	if (ufs_inode_max == 0)
198 		ufs_inode_max =
199 		    (ulong_t)((kmem_maxavail() >> 2) / sizeof (struct inode));
200 	if (ufs_ninode > ufs_inode_max || (ufs_ninode == 0 && ncsize == 0)) {
201 		cmn_err(CE_NOTE, "setting ufs_ninode to max value of %ld",
202 		    ufs_inode_max);
203 		ufs_ninode = ufs_inode_max;
204 	}
205 	/*
206 	 * Wait till third call of ufs_update to declare that no I/Os are
207 	 * going on. This allows deferred access times to be flushed to disk.
208 	 */
209 	ufs_iowait = v.v_autoup * hz * 2;
210 
211 	/*
212 	 * idle thread runs when 25% of ufs_ninode entries are on the queue
213 	 */
214 	if (ufs_idle_max == 0)
215 		ufs_idle_max = ufs_ninode >> 2;
216 	if (ufs_idle_max < UFS_IDLE_MAX)
217 		ufs_idle_max = UFS_IDLE_MAX;
218 	if (ufs_idle_max > ufs_ninode)
219 		ufs_idle_max = ufs_ninode;
220 	/*
221 	 * This is really a misnomer, it is ufs_queue_init
222 	 */
223 	ufs_thread_init(&ufs_idle_q, ufs_idle_max);
224 	ufs_thread_start(&ufs_idle_q, ufs_thread_idle, NULL);
225 
226 	/*
227 	 * global hlock thread
228 	 */
229 	ufs_thread_init(&ufs_hlock, 1);
230 	ufs_thread_start(&ufs_hlock, ufs_thread_hlock, NULL);
231 
232 	ihinit();
233 	qtinit();
234 	ins.in_maxsize.value.ul = ufs_ninode;
235 	if ((ufs_inode_kstat = kstat_create("ufs", 0, "inode_cache", "ufs",
236 	    KSTAT_TYPE_NAMED, sizeof (ins) / sizeof (kstat_named_t),
237 	    KSTAT_FLAG_VIRTUAL)) != NULL) {
238 		ufs_inode_kstat->ks_data = (void *)&ins;
239 		ufs_inode_kstat->ks_update = ufs_inode_kstat_update;
240 		kstat_install(ufs_inode_kstat);
241 	}
242 	ufsfx_init();		/* fix-on-panic initialization */
243 	si_cache_init();
244 	ufs_directio_init();
245 	lufs_init();
246 	mutex_init(&ufs_iuniqtime_lock, NULL, MUTEX_DEFAULT, NULL);
247 }
248 
249 /* ARGSUSED */
250 static int
251 ufs_inode_cache_constructor(void *buf, void *cdrarg, int kmflags)
252 {
253 	struct inode *ip = buf;
254 	struct vnode *vp;
255 
256 	vp = ip->i_vnode = vn_alloc(kmflags);
257 	if (vp == NULL) {
258 		return (-1);
259 	}
260 	vn_setops(vp, ufs_vnodeops);
261 	vp->v_data = ip;
262 
263 	rw_init(&ip->i_rwlock, NULL, RW_DEFAULT, NULL);
264 	rw_init(&ip->i_contents, NULL, RW_DEFAULT, NULL);
265 	mutex_init(&ip->i_tlock, NULL, MUTEX_DEFAULT, NULL);
266 	dnlc_dir_init(&ip->i_danchor);
267 
268 	cv_init(&ip->i_wrcv, NULL, CV_DRIVER, NULL);
269 
270 	return (0);
271 }
272 
273 /* ARGSUSED */
274 static void
275 ufs_inode_cache_destructor(void *buf, void *cdrarg)
276 {
277 	struct inode *ip = buf;
278 	struct vnode *vp;
279 
280 	vp = ITOV(ip);
281 
282 	rw_destroy(&ip->i_rwlock);
283 	rw_destroy(&ip->i_contents);
284 	mutex_destroy(&ip->i_tlock);
285 	if (vp->v_type == VDIR) {
286 		dnlc_dir_fini(&ip->i_danchor);
287 	}
288 
289 	cv_destroy(&ip->i_wrcv);
290 
291 	vn_free(vp);
292 }
293 
294 /*
295  * Initialize hash links for inodes
296  * and build inode free list.
297  */
298 void
299 ihinit(void)
300 {
301 	int i;
302 	union	ihead *ih = ihead;
303 
304 	mutex_init(&ufs_scan_lock, NULL, MUTEX_DEFAULT, NULL);
305 
306 	inohsz = 1 << highbit(ufs_ninode / ino_hashlen);
307 	ihead = kmem_zalloc(inohsz * sizeof (union ihead), KM_SLEEP);
308 	ih_lock = kmem_zalloc(inohsz * sizeof (kmutex_t), KM_SLEEP);
309 
310 	for (i = 0, ih = ihead; i < inohsz; i++,  ih++) {
311 		ih->ih_head[0] = ih;
312 		ih->ih_head[1] = ih;
313 		mutex_init(&ih_lock[i], NULL, MUTEX_DEFAULT, NULL);
314 	}
315 	inode_cache = kmem_cache_create("ufs_inode_cache",
316 	    sizeof (struct inode), 0, ufs_inode_cache_constructor,
317 	    ufs_inode_cache_destructor, ufs_inode_cache_reclaim,
318 	    NULL, NULL, 0);
319 }
320 
321 /*
322  * Free an inode structure
323  */
324 void
325 ufs_free_inode(struct inode *ip)
326 {
327 	vn_invalid(ITOV(ip));
328 	kmem_cache_free(inode_cache, ip);
329 }
330 
331 /*
332  * Allocate an inode structure
333  */
334 struct inode *
335 ufs_alloc_inode(ufsvfs_t *ufsvfsp, ino_t ino)
336 {
337 	struct inode *ip;
338 	vnode_t *vp;
339 
340 	ip = kmem_cache_alloc(inode_cache, KM_SLEEP);
341 	/*
342 	 * at this point we have a newly allocated inode
343 	 */
344 	ip->i_freef = ip;
345 	ip->i_freeb = ip;
346 	ip->i_flag = IREF;
347 	ip->i_seq = 0xFF;	/* Unique initial value */
348 	ip->i_dev = ufsvfsp->vfs_dev;
349 	ip->i_ufsvfs = ufsvfsp;
350 	ip->i_devvp = ufsvfsp->vfs_devvp;
351 	ip->i_number = ino;
352 	ip->i_diroff = 0;
353 	ip->i_nextr = 0;
354 	ip->i_map = NULL;
355 	ip->i_rdev = 0;
356 	ip->i_writes = 0;
357 	ip->i_mode = 0;
358 	ip->i_delaylen = 0;
359 	ip->i_delayoff = 0;
360 	ip->i_nextrio = 0;
361 	ip->i_ufs_acl = NULL;
362 	ip->i_cflags = 0;
363 	ip->i_mapcnt = 0;
364 	ip->i_dquot = NULL;
365 	ip->i_cachedir = CD_ENABLED;
366 	ip->i_writer = NULL;
367 
368 	/*
369 	 * the vnode for this inode was allocated by the constructor
370 	 */
371 	vp = ITOV(ip);
372 	vn_reinit(vp);
373 	if (ino == (ino_t)UFSROOTINO)
374 		vp->v_flag = VROOT;
375 	vp->v_vfsp = ufsvfsp->vfs_vfs;
376 	vn_exists(vp);
377 	return (ip);
378 }
379 
380 /*
381  * Look up an inode by device, inumber.  If it is in core (in the
382  * inode structure), honor the locking protocol.  If it is not in
383  * core, read it in from the specified device after freeing any pages.
384  * In all cases, a pointer to a VN_HELD inode structure is returned.
385  */
386 int
387 ufs_iget(struct vfs *vfsp, ino_t ino, struct inode **ipp, struct cred *cr)
388 {
389 	return (ufs_iget_internal(vfsp, ino, ipp, cr, 0));
390 }
391 
392 /*
393  * A version of ufs_iget which returns only allocated, linked inodes.
394  * This is appropriate for any callers who do not expect a free inode.
395  */
396 int
397 ufs_iget_alloced(struct vfs *vfsp, ino_t ino, struct inode **ipp,
398     struct cred *cr)
399 {
400 	return (ufs_iget_internal(vfsp, ino, ipp, cr, 1));
401 }
402 
403 /*
404  * Set vnode attributes based on v_type, this should be called whenever
405  * an inode's i_mode is changed.
406  */
407 void
408 ufs_reset_vnode(vnode_t *vp)
409 {
410 	/*
411 	 * an old DBE hack
412 	 */
413 	if ((VTOI(vp)->i_mode & (ISVTX | IEXEC | IFDIR)) == ISVTX)
414 		vp->v_flag |= VSWAPLIKE;
415 	else
416 		vp->v_flag &= ~VSWAPLIKE;
417 
418 	/*
419 	 * if not swap like and it's just a regular file, we want
420 	 * to maintain the vnode's pages sorted by clean/modified
421 	 * for faster sync'ing to disk
422 	 */
423 	if (vp->v_type == VREG)
424 		vp->v_flag |= VMODSORT;
425 	else
426 		vp->v_flag &= ~VMODSORT;
427 
428 	/*
429 	 * Is this an attribute hidden dir?
430 	 */
431 	if ((VTOI(vp)->i_mode & IFMT) == IFATTRDIR)
432 		vp->v_flag |= V_XATTRDIR;
433 	else
434 		vp->v_flag &= ~V_XATTRDIR;
435 }
436 
437 /*
438  * Shared implementation of ufs_iget and ufs_iget_alloced.  The 'validate'
439  * flag is used to distinguish the two; when true, we validate that the inode
440  * being retrieved looks like a linked and allocated inode.
441  */
442 /* ARGSUSED */
443 static int
444 ufs_iget_internal(struct vfs *vfsp, ino_t ino, struct inode **ipp,
445     struct cred *cr, int validate)
446 {
447 	struct inode *ip, *sp;
448 	union ihead *ih;
449 	kmutex_t *ihm;
450 	struct buf *bp;
451 	struct dinode *dp;
452 	struct vnode *vp;
453 	extern vfs_t EIO_vfs;
454 	int error;
455 	int ftype;	/* XXX - Remove later on */
456 	dev_t vfs_dev;
457 	struct ufsvfs *ufsvfsp;
458 	struct fs *fs;
459 	int hno;
460 	daddr_t bno;
461 	ulong_t ioff;
462 
463 	CPU_STATS_ADD_K(sys, ufsiget, 1);
464 
465 	/*
466 	 * Lookup inode in cache.
467 	 */
468 	vfs_dev = vfsp->vfs_dev;
469 	hno = INOHASH(ino);
470 	ih = &ihead[hno];
471 	ihm = &ih_lock[hno];
472 
473 again:
474 	mutex_enter(ihm);
475 	for (ip = ih->ih_chain[0]; ip != (struct inode *)ih; ip = ip->i_forw) {
476 		if (ino != ip->i_number || vfs_dev != ip->i_dev ||
477 		    (ip->i_flag & ISTALE))
478 			continue;
479 
480 		/*
481 		 * Found the interesting inode; hold it and drop the cache lock
482 		 */
483 		vp = ITOV(ip);	/* for locknest */
484 		VN_HOLD(vp);
485 		mutex_exit(ihm);
486 		rw_enter(&ip->i_contents, RW_READER);
487 
488 		/*
489 		 * if necessary, remove from idle list
490 		 */
491 		if ((ip->i_flag & IREF) == 0) {
492 			if (ufs_rmidle(ip))
493 				VN_RELE(vp);
494 		}
495 
496 		/*
497 		 * Could the inode be read from disk?
498 		 */
499 		if (ip->i_flag & ISTALE) {
500 			rw_exit(&ip->i_contents);
501 			VN_RELE(vp);
502 			goto again;
503 		}
504 
505 		ins.in_hits.value.ul++;
506 		*ipp = ip;
507 
508 		/*
509 		 * Reset the vnode's attribute flags
510 		 */
511 		mutex_enter(&vp->v_lock);
512 		ufs_reset_vnode(vp);
513 		mutex_exit(&vp->v_lock);
514 
515 		rw_exit(&ip->i_contents);
516 
517 		return (0);
518 	}
519 	mutex_exit(ihm);
520 
521 	/*
522 	 * Inode was not in cache.
523 	 *
524 	 * Allocate a new entry
525 	 */
526 	ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
527 	fs = ufsvfsp->vfs_fs;
528 
529 	ip = ufs_alloc_inode(ufsvfsp, ino);
530 	vp = ITOV(ip);
531 
532 	bno = fsbtodb(fs, itod(fs, ino));
533 	ioff = (sizeof (struct dinode)) * (itoo(fs, ino));
534 	ip->i_doff = (offset_t)ioff + ldbtob(bno);
535 
536 	/*
537 	 * put a place holder in the cache (if not already there)
538 	 */
539 	mutex_enter(ihm);
540 	for (sp = ih->ih_chain[0]; sp != (struct inode *)ih; sp = sp->i_forw)
541 		if (ino == sp->i_number && vfs_dev == sp->i_dev &&
542 		    ((sp->i_flag & ISTALE) == 0)) {
543 			mutex_exit(ihm);
544 			ufs_free_inode(ip);
545 			goto again;
546 		}
547 	/*
548 	 * It would be nice to ASSERT(RW_READ_HELD(&ufsvfsp->vfs_dqrwlock))
549 	 * here, but if we do, then shadow inode allocations panic the
550 	 * system.  We don't have to hold vfs_dqrwlock for shadow inodes
551 	 * and the ufs_iget() parameters don't tell us what we are getting
552 	 * so we have no way of knowing this is a ufs_iget() call from
553 	 * a ufs_ialloc() call for a shadow inode.
554 	 */
555 	rw_enter(&ip->i_contents, RW_WRITER);
556 	insque(ip, ih);
557 	mutex_exit(ihm);
558 	/*
559 	 * read the dinode
560 	 */
561 	bp = UFS_BREAD(ufsvfsp, ip->i_dev, bno, (int)fs->fs_bsize);
562 
563 	/*
564 	 * Check I/O errors
565 	 */
566 	error = ((bp->b_flags & B_ERROR) ? geterror(bp) : 0);
567 	if (error) {
568 		brelse(bp);
569 		ip->i_flag |= ISTALE;	/* in case someone is looking it up */
570 		rw_exit(&ip->i_contents);
571 		vp->v_vfsp = &EIO_vfs;
572 		VN_RELE(vp);
573 		return (error);
574 	}
575 	/*
576 	 * initialize the inode's dinode
577 	 */
578 	dp = (struct dinode *)(ioff + bp->b_un.b_addr);
579 	ip->i_ic = dp->di_ic;			/* structure assignment */
580 	brelse(bp);
581 
582 	/*
583 	 * Maintain compatibility with Solaris 1.x UFS
584 	 */
585 	if (ip->i_suid != UID_LONG)
586 		ip->i_uid = ip->i_suid;
587 	if (ip->i_sgid != GID_LONG)
588 		ip->i_gid = ip->i_sgid;
589 
590 	ftype = ip->i_mode & IFMT;
591 	if (ftype == IFBLK || ftype == IFCHR) {
592 		dev_t dv;
593 		uint_t top16 = ip->i_ordev & 0xffff0000u;
594 
595 		if (top16 == 0 || top16 == 0xffff0000u)
596 			dv = expdev(ip->i_ordev);
597 		else
598 			dv = expldev(ip->i_ordev);
599 		vp->v_rdev = ip->i_rdev = dv;
600 	}
601 
602 	/*
603 	 * if our caller only expects allocated inodes, verify that
604 	 * this inode looks good; throw it out if it's bad.
605 	 */
606 	if (validate) {
607 		if ((ftype == 0) || (ip->i_nlink <= 0)) {
608 			ip->i_flag |= ISTALE;
609 			rw_exit(&ip->i_contents);
610 			vp->v_vfsp = &EIO_vfs;
611 			VN_RELE(vp);
612 			cmn_err(CE_NOTE,
613 			    "%s: unexpected free inode %d, run fsck(1M)%s",
614 			    fs->fs_fsmnt, (int)ino,
615 			    (TRANS_ISTRANS(ufsvfsp) ? " -o f" : ""));
616 			return (EIO);
617 		}
618 	}
619 
620 	/*
621 	 * Finish initializing the vnode, special handling for shadow inodes
622 	 * because IFTOVT() will produce a v_type of VNON which is not what we
623 	 * want, set v_type to VREG explicitly in that case.
624 	 */
625 	if (ftype == IFSHAD) {
626 		vp->v_type = VREG;
627 	} else {
628 		vp->v_type = IFTOVT((mode_t)ip->i_mode);
629 	}
630 
631 	ufs_reset_vnode(vp);
632 
633 	/*
634 	 * read the shadow
635 	 */
636 	if (ftype != 0 && ip->i_shadow != 0) {
637 		if ((error = ufs_si_load(ip, cr)) != 0) {
638 			ip->i_flag |= ISTALE;
639 			ip->i_ufs_acl = NULL;
640 			rw_exit(&ip->i_contents);
641 			vp->v_vfsp = &EIO_vfs;
642 			VN_RELE(vp);
643 			return (error);
644 		}
645 	}
646 
647 	/*
648 	 * Only attach quota information if the inode has a type and if
649 	 * that type is not a shadow inode.
650 	 */
651 	if (ip->i_mode && ((ip->i_mode & IFMT) != IFSHAD) &&
652 	    ((ip->i_mode & IFMT) != IFATTRDIR)) {
653 		ip->i_dquot = getinoquota(ip);
654 	}
655 	TRANS_MATA_IGET(ufsvfsp, ip);
656 	*ipp = ip;
657 	rw_exit(&ip->i_contents);
658 
659 	return (0);
660 }
661 
662 /*
663  * Vnode is no longer referenced, write the inode out
664  * and if necessary, truncate and deallocate the file.
665  */
666 void
667 ufs_iinactive(struct inode *ip)
668 {
669 	int		front;
670 	struct inode	*iq;
671 	struct inode	*hip;
672 	struct ufs_q	*uq;
673 	struct vnode	*vp = ITOV(ip);
674 	struct ufsvfs   *ufsvfsp = ip->i_ufsvfs;
675 	struct ufs_delq_info *delq_info = &ufsvfsp->vfs_delete_info;
676 
677 	/*
678 	 * Because the vnode type might have been changed,
679 	 * the dnlc_dir_purge must be called unconditionally.
680 	 */
681 	dnlc_dir_purge(&ip->i_danchor);
682 
683 	/*
684 	 * Get exclusive access to inode data.
685 	 */
686 	rw_enter(&ip->i_contents, RW_WRITER);
687 	ASSERT(ip->i_flag & IREF);
688 
689 	/*
690 	 * Make sure no one reclaimed the inode before we put it on
691 	 * the freelist or destroy it. We keep our 'hold' on the vnode
692 	 * from vn_rele until we are ready to do something with the inode.
693 	 *
694 	 * Pageout may put a VN_HOLD/VN_RELE at anytime during this
695 	 * operation via an async putpage, so we must make sure
696 	 * we don't free/destroy the inode more than once. ufs_iget
697 	 * may also put a VN_HOLD on the inode before it grabs
698 	 * the i_contents lock. This is done so we don't free
699 	 * an inode that a thread is waiting on.
700 	 */
701 	mutex_enter(&vp->v_lock);
702 
703 	if (vp->v_count > 1) {
704 		vp->v_count--;  /* release our hold from vn_rele */
705 		mutex_exit(&vp->v_lock);
706 		rw_exit(&ip->i_contents);
707 		return;
708 	}
709 	mutex_exit(&vp->v_lock);
710 
711 	/*
712 	 * For umount case: if ufsvfs ptr is NULL, the inode is unhashed
713 	 * and clean.  It can be safely destroyed (cyf).
714 	 */
715 	if (ip->i_ufsvfs == NULL) {
716 		rw_exit(&ip->i_contents);
717 		ufs_si_del(ip);
718 		ASSERT((vp->v_type == VCHR) || !vn_has_cached_data(vp));
719 		ufs_free_inode(ip);
720 		return;
721 	}
722 
723 	/*
724 	 * queue idle inode to appropriate thread. Will check v_count == 1
725 	 * prior to putting this on the appropriate queue.
726 	 * Stale inodes will be unhashed and freed by the ufs idle thread
727 	 * in ufs_idle_free()
728 	 */
729 	front = 1;
730 	if ((ip->i_flag & ISTALE) == 0 && ip->i_fs->fs_ronly == 0 &&
731 	    ip->i_mode && ip->i_nlink <= 0) {
732 		/*
733 		 * Mark the i_flag to indicate that inode is being deleted.
734 		 * This flag will be cleared when the deletion is complete.
735 		 * This prevents nfs from sneaking in via ufs_vget() while
736 		 * the delete is in progress (bugid 1242481).
737 		 */
738 		ip->i_flag |= IDEL;
739 
740 		/*
741 		 * NOIDEL means that deletes are not allowed at this time;
742 		 * whoever resets NOIDEL will also send this inode back
743 		 * through ufs_iinactive.  IREF remains set.
744 		 */
745 		if (ULOCKFS_IS_NOIDEL(ITOUL(ip))) {
746 			mutex_enter(&vp->v_lock);
747 			vp->v_count--;
748 			mutex_exit(&vp->v_lock);
749 			rw_exit(&ip->i_contents);
750 			return;
751 		}
752 		if (!TRANS_ISTRANS(ip->i_ufsvfs)) {
753 			rw_exit(&ip->i_contents);
754 			ufs_delete(ip->i_ufsvfs, ip, 0);
755 			return;
756 		}
757 
758 		/* queue to delete thread; IREF remains set */
759 		ins.in_qfree.value.ul++;
760 		uq = &ip->i_ufsvfs->vfs_delete;
761 
762 		mutex_enter(&uq->uq_mutex);
763 
764 		/* add to q */
765 		if ((iq = uq->uq_ihead) != 0) {
766 			ip->i_freef = iq;
767 			ip->i_freeb = iq->i_freeb;
768 			iq->i_freeb->i_freef = ip;
769 			iq->i_freeb = ip;
770 			if (front)
771 				uq->uq_ihead = ip;
772 		} else {
773 			uq->uq_ihead = ip;
774 			ip->i_freef = ip;
775 			ip->i_freeb = ip;
776 		}
777 
778 		delq_info->delq_unreclaimed_files += 1;
779 		delq_info->delq_unreclaimed_blocks += ip->i_blocks;
780 	} else {
781 		/*
782 		 * queue to idle thread
783 		 *  Check the v_count == 1 again.
784 		 *
785 		 */
786 		mutex_enter(&vp->v_lock);
787 		if (vp->v_count > 1) {
788 			vp->v_count--;  /* release our hold from vn_rele */
789 			mutex_exit(&vp->v_lock);
790 			rw_exit(&ip->i_contents);
791 			return;
792 		}
793 		mutex_exit(&vp->v_lock);
794 		uq = &ufs_idle_q;
795 
796 		/*
797 		 * useful iff it has pages or is a fastsymlink; otherwise junk
798 		 */
799 		mutex_enter(&uq->uq_mutex);
800 
801 		/* clear IREF means `on idle list' */
802 		ip->i_flag &= ~(IREF | IDIRECTIO);
803 
804 		if (vn_has_cached_data(vp) || ip->i_flag & IFASTSYMLNK) {
805 			ins.in_frback.value.ul++;
806 			hip = (inode_t *)&ufs_useful_iq[IQHASH(ip)];
807 			ufs_nuseful_iq++;
808 		} else {
809 			ins.in_frfront.value.ul++;
810 			hip = (inode_t *)&ufs_junk_iq[IQHASH(ip)];
811 			ip->i_flag |= IJUNKIQ;
812 			ufs_njunk_iq++;
813 		}
814 		ip->i_freef = hip;
815 		ip->i_freeb = hip->i_freeb;
816 		hip->i_freeb->i_freef = ip;
817 		hip->i_freeb = ip;
818 	}
819 
820 	/* wakeup thread(s) if q is overfull */
821 	if (++uq->uq_ne == uq->uq_lowat)
822 		cv_broadcast(&uq->uq_cv);
823 
824 	/* all done, release the q and inode */
825 	mutex_exit(&uq->uq_mutex);
826 	rw_exit(&ip->i_contents);
827 }
828 
829 /*
830  * Check accessed and update flags on an inode structure.
831  * If any are on, update the inode with the (unique) current time.
832  * If waitfor is given, insure I/O order so wait for write to complete.
833  */
834 void
835 ufs_iupdat(struct inode *ip, int waitfor)
836 {
837 	struct buf	*bp;
838 	struct fs	*fp;
839 	struct dinode	*dp;
840 	struct ufsvfs	*ufsvfsp 	= ip->i_ufsvfs;
841 	int 		i;
842 	int		do_trans_times;
843 	ushort_t	flag;
844 	o_uid_t		suid;
845 	o_gid_t		sgid;
846 
847 	/*
848 	 * This function is now safe to be called with either the reader
849 	 * or writer i_contents lock.
850 	 */
851 	ASSERT(RW_LOCK_HELD(&ip->i_contents));
852 
853 	/*
854 	 * Return if file system has been forcibly umounted.
855 	 */
856 	if (ufsvfsp == NULL)
857 		return;
858 
859 	flag = ip->i_flag;	/* Atomic read */
860 	/*
861 	 * We better not update the disk inode from a stale inode.
862 	 */
863 	if (flag & ISTALE)
864 		return;
865 
866 	fp = ip->i_fs;
867 
868 	if ((flag & (IUPD|IACC|ICHG|IMOD|IMODACC|IATTCHG)) != 0) {
869 		if (fp->fs_ronly) {
870 			mutex_enter(&ip->i_tlock);
871 			ip->i_flag &= ~(IUPD|IACC|ICHG|IMOD|IMODACC|IATTCHG);
872 			mutex_exit(&ip->i_tlock);
873 			return;
874 		}
875 		/*
876 		 * fs is active while metadata is being written
877 		 */
878 		mutex_enter(&ufsvfsp->vfs_lock);
879 		ufs_notclean(ufsvfsp);
880 		/*
881 		 * get the dinode
882 		 */
883 		bp = UFS_BREAD(ufsvfsp, ip->i_dev,
884 		    (daddr_t)fsbtodb(fp, itod(fp, ip->i_number)),
885 		    (int)fp->fs_bsize);
886 		if (bp->b_flags & B_ERROR) {
887 			mutex_enter(&ip->i_tlock);
888 			ip->i_flag &=
889 			    ~(IUPD|IACC|ICHG|IMOD|IMODACC|IATTCHG);
890 			mutex_exit(&ip->i_tlock);
891 			brelse(bp);
892 			return;
893 		}
894 		/*
895 		 * munge inode fields
896 		 */
897 		mutex_enter(&ip->i_tlock);
898 		ITIMES_NOLOCK(ip);
899 		do_trans_times = ((ip->i_flag & (IMOD|IMODACC)) == IMODACC);
900 		ip->i_flag &= ~(IUPD|IACC|ICHG|IMOD|IMODACC|IATTCHG);
901 		mutex_exit(&ip->i_tlock);
902 
903 		/*
904 		 * For reads and concurrent re-writes, no deltas were
905 		 * entered for the access time changes - do it now.
906 		 */
907 		if (do_trans_times) {
908 			TRANS_INODE_TIMES(ufsvfsp, ip);
909 		}
910 
911 		/*
912 		 * For SunOS 5.0->5.4, these lines below read:
913 		 *
914 		 * suid = (ip->i_uid > MAXUID) ? UID_LONG : ip->i_uid;
915 		 * sgid = (ip->i_gid > MAXUID) ? GID_LONG : ip->i_gid;
916 		 *
917 		 * where MAXUID was set to 60002.  This was incorrect -
918 		 * the uids should have been constrained to what fitted into
919 		 * a 16-bit word.
920 		 *
921 		 * This means that files from 4.x filesystems that have an
922 		 * i_suid field larger than 60002 will have that field
923 		 * changed to 65535.
924 		 *
925 		 * Security note: 4.x UFS could never create a i_suid of
926 		 * UID_LONG since that would've corresponded to -1.
927 		 */
928 		suid = (ulong_t)ip->i_uid > (ulong_t)USHRT_MAX ?
929 		    UID_LONG : ip->i_uid;
930 		sgid = (ulong_t)ip->i_gid > (ulong_t)USHRT_MAX ?
931 		    GID_LONG : ip->i_gid;
932 
933 		if ((ip->i_suid != suid) || (ip->i_sgid != sgid)) {
934 			ip->i_suid = suid;
935 			ip->i_sgid = sgid;
936 			TRANS_INODE(ufsvfsp, ip);
937 		}
938 
939 		if ((ip->i_mode & IFMT) == IFBLK ||
940 		    (ip->i_mode & IFMT) == IFCHR) {
941 			dev_t d = ip->i_rdev;
942 			dev32_t dev32;
943 
944 			/*
945 			 * load first direct block only if special device
946 			 */
947 			if (!cmpldev(&dev32, d)) {
948 				/*
949 				 * We panic here because there's "no way"
950 				 * we should have been able to create a large
951 				 * inode with a large dev_t.  Earlier layers
952 				 * should've caught this.
953 				 */
954 				panic("ip %p: i_rdev too big", (void *)ip);
955 			}
956 
957 			if (dev32 & ~((O_MAXMAJ << L_BITSMINOR32) | O_MAXMIN)) {
958 				ip->i_ordev = dev32;	/* can't use old fmt. */
959 			} else {
960 				ip->i_ordev = cmpdev(d);
961 			}
962 		}
963 
964 		/*
965 		 * copy inode to dinode (zero fastsymlnk in dinode)
966 		 */
967 		dp = (struct dinode *)bp->b_un.b_addr + itoo(fp, ip->i_number);
968 		dp->di_ic = ip->i_ic;	/* structure assignment */
969 		if (flag & IFASTSYMLNK) {
970 			for (i = 1; i < NDADDR; i++)
971 				dp->di_db[i] = 0;
972 			for (i = 0; i < NIADDR; i++)
973 				dp->di_ib[i] = 0;
974 		}
975 		if (TRANS_ISTRANS(ufsvfsp)) {
976 			/*
977 			 * Pass only a sector size buffer containing
978 			 * the inode, otherwise when the buffer is copied
979 			 * into a cached roll buffer then too much memory
980 			 * gets consumed if 8KB inode buffers are passed.
981 			 */
982 			TRANS_LOG(ufsvfsp, (caddr_t)dp, ip->i_doff,
983 			    sizeof (struct dinode),
984 			    (caddr_t)P2ALIGN((uintptr_t)dp, DEV_BSIZE),
985 			    DEV_BSIZE);
986 
987 			brelse(bp);
988 		} else if (waitfor && (ip->i_ufsvfs->vfs_dio == 0)) {
989 			UFS_BRWRITE(ufsvfsp, bp);
990 
991 			/*
992 			 * Synchronous write has guaranteed that inode
993 			 * has been written on disk so clear the flag
994 			 */
995 			mutex_enter(&ip->i_tlock);
996 			ip->i_flag &= ~IBDWRITE;
997 			mutex_exit(&ip->i_tlock);
998 		} else {
999 			bdrwrite(bp);
1000 
1001 			/*
1002 			 * This write hasn't guaranteed that inode has been
1003 			 * written on the disk.
1004 			 * Since, all updat flags on inode are cleared, we must
1005 			 * remember the condition in case inode is to be updated
1006 			 * synchronously later (e.g.- fsync()/fdatasync())
1007 			 * and inode has not been modified yet.
1008 			 */
1009 			mutex_enter(&ip->i_tlock);
1010 			ip->i_flag |= IBDWRITE;
1011 			mutex_exit(&ip->i_tlock);
1012 		}
1013 	} else {
1014 		/*
1015 		 * In case previous inode update was done asynchronously
1016 		 * (IBDWRITE) and this inode update request wants guaranteed
1017 		 * (synchronous) disk update, flush the inode.
1018 		 */
1019 		if (waitfor && (flag & IBDWRITE)) {
1020 			blkflush(ip->i_dev,
1021 			    (daddr_t)fsbtodb(fp, itod(fp, ip->i_number)));
1022 			mutex_enter(&ip->i_tlock);
1023 			ip->i_flag &= ~IBDWRITE;
1024 			mutex_exit(&ip->i_tlock);
1025 		}
1026 	}
1027 }
1028 
1029 #define	SINGLE	0	/* index of single indirect block */
1030 #define	DOUBLE	1	/* index of double indirect block */
1031 #define	TRIPLE	2	/* index of triple indirect block */
1032 
1033 /*
1034  * Release blocks associated with the inode ip and
1035  * stored in the indirect block bn.  Blocks are free'd
1036  * in LIFO order up to (but not including) lastbn.  If
1037  * level is greater than SINGLE, the block is an indirect
1038  * block and recursive calls to indirtrunc must be used to
1039  * cleanse other indirect blocks.
1040  *
1041  * N.B.: triple indirect blocks are untested.
1042  */
1043 static long
1044 indirtrunc(struct inode *ip, daddr_t bn, daddr_t lastbn, int level, int flags)
1045 {
1046 	int i;
1047 	struct buf *bp, *copy;
1048 	daddr32_t *bap;
1049 	struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
1050 	struct fs *fs = ufsvfsp->vfs_fs;
1051 	daddr_t nb, last;
1052 	long factor;
1053 	int blocksreleased = 0, nblocks;
1054 
1055 	ASSERT(RW_WRITE_HELD(&ip->i_contents));
1056 	/*
1057 	 * Calculate index in current block of last
1058 	 * block to be kept.  -1 indicates the entire
1059 	 * block so we need not calculate the index.
1060 	 */
1061 	factor = 1;
1062 	for (i = SINGLE; i < level; i++)
1063 		factor *= NINDIR(fs);
1064 	last = lastbn;
1065 	if (lastbn > 0)
1066 		last /= factor;
1067 	nblocks = btodb(fs->fs_bsize);
1068 	/*
1069 	 * Get buffer of block pointers, zero those
1070 	 * entries corresponding to blocks to be free'd,
1071 	 * and update on disk copy first.
1072 	 * *Unless* the root pointer has been synchronously
1073 	 * written to disk.  If nothing points to this
1074 	 * indirect block then don't bother zero'ing and
1075 	 * writing it.
1076 	 */
1077 	bp = UFS_BREAD(ufsvfsp,
1078 	    ip->i_dev, (daddr_t)fsbtodb(fs, bn), (int)fs->fs_bsize);
1079 	if (bp->b_flags & B_ERROR) {
1080 		brelse(bp);
1081 		return (0);
1082 	}
1083 	bap = bp->b_un.b_daddr;
1084 	if ((flags & I_CHEAP) == 0) {
1085 		uint_t	zb;
1086 
1087 		zb = (uint_t)((NINDIR(fs) - (last + 1)) * sizeof (daddr32_t));
1088 
1089 		if (zb) {
1090 			/*
1091 			 * push any data into the log before we zero it
1092 			 */
1093 			if (bp->b_flags & B_DELWRI)
1094 				TRANS_LOG(ufsvfsp, (caddr_t)bap,
1095 				    ldbtob(bp->b_blkno), bp->b_bcount,
1096 				    bp->b_un.b_addr, bp->b_bcount);
1097 			copy = ngeteblk(fs->fs_bsize);
1098 			bcopy((caddr_t)bap, (caddr_t)copy->b_un.b_daddr,
1099 			    (uint_t)fs->fs_bsize);
1100 			bzero((caddr_t)&bap[last + 1], zb);
1101 
1102 			TRANS_BUF(ufsvfsp,
1103 			    (caddr_t)&bap[last + 1] - (caddr_t)bap,
1104 			    zb, bp, DT_ABZERO);
1105 
1106 			UFS_BRWRITE(ufsvfsp, bp);
1107 			bp = copy, bap = bp->b_un.b_daddr;
1108 		}
1109 	} else {
1110 		/* make sure write retries are also cleared */
1111 		bp->b_flags &= ~(B_DELWRI | B_RETRYWRI);
1112 		bp->b_flags |= B_STALE | B_AGE;
1113 	}
1114 
1115 	/*
1116 	 * Recursively free totally unused blocks.
1117 	 */
1118 	flags |= I_CHEAP;
1119 	for (i = NINDIR(fs) - 1; i > last; i--) {
1120 		nb = bap[i];
1121 		if (nb == 0)
1122 			continue;
1123 		if (level > SINGLE) {
1124 			blocksreleased +=
1125 			    indirtrunc(ip, nb, (daddr_t)-1, level - 1, flags);
1126 			free(ip, nb, (off_t)fs->fs_bsize, flags | I_IBLK);
1127 		} else
1128 			free(ip, nb, (off_t)fs->fs_bsize, flags);
1129 		blocksreleased += nblocks;
1130 	}
1131 	flags &= ~I_CHEAP;
1132 
1133 	/*
1134 	 * Recursively free last partial block.
1135 	 */
1136 	if (level > SINGLE && lastbn >= 0) {
1137 		last = lastbn % factor;
1138 		nb = bap[i];
1139 		if (nb != 0)
1140 			blocksreleased +=
1141 			    indirtrunc(ip, nb, last, level - 1, flags);
1142 	}
1143 	brelse(bp);
1144 	return (blocksreleased);
1145 }
1146 
1147 /*
1148  * Truncate the inode ip to at most length size.
1149  * Free affected disk blocks -- the blocks of the
1150  * file are removed in reverse order.
1151  *
1152  * N.B.: triple indirect blocks are untested.
1153  */
1154 static int i_genrand = 1234;
1155 int
1156 ufs_itrunc(struct inode *oip, u_offset_t length, int flags, cred_t *cr)
1157 {
1158 	struct fs *fs = oip->i_fs;
1159 	struct ufsvfs *ufsvfsp = oip->i_ufsvfs;
1160 	struct inode *ip;
1161 	daddr_t lastblock;
1162 	off_t bsize;
1163 	int boff;
1164 	daddr_t bn, lastiblock[NIADDR];
1165 	int level;
1166 	long nblocks, blocksreleased = 0;
1167 	int i;
1168 	ushort_t mode;
1169 	struct inode tip;
1170 	int err;
1171 	u_offset_t maxoffset = (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) ?
1172 	    (UFS_MAXOFFSET_T) : (MAXOFF32_T);
1173 
1174 	/*
1175 	 * Shadow inodes do not need to hold the vfs_dqrwlock lock. Most
1176 	 * other uses need the reader lock. opendq() holds the writer lock.
1177 	 */
1178 	ASSERT((oip->i_mode & IFMT) == IFSHAD ||
1179 	    RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock));
1180 	ASSERT(RW_WRITE_HELD(&oip->i_contents));
1181 	/*
1182 	 * We only allow truncation of regular files and directories
1183 	 * to arbitrary lengths here.  In addition, we allow symbolic
1184 	 * links to be truncated only to zero length.  Other inode
1185 	 * types cannot have their length set here.  Disk blocks are
1186 	 * being dealt with - especially device inodes where
1187 	 * ip->i_ordev is actually being stored in ip->i_db[0]!
1188 	 */
1189 	TRANS_INODE(ufsvfsp, oip);
1190 	mode = oip->i_mode & IFMT;
1191 	if (flags & I_FREE) {
1192 		i_genrand *= 16843009;  /* turns into shift and adds */
1193 		i_genrand++;
1194 		oip->i_gen += ((i_genrand + ddi_get_lbolt()) & 0xffff) + 1;
1195 		oip->i_flag |= ICHG |IUPD;
1196 		oip->i_seq++;
1197 		if (length == oip->i_size)
1198 			return (0);
1199 		flags |= I_CHEAP;
1200 	}
1201 	if (mode == IFIFO)
1202 		return (0);
1203 	if (mode != IFREG && mode != IFDIR && mode != IFATTRDIR &&
1204 	    !(mode == IFLNK && length == (offset_t)0) && mode != IFSHAD)
1205 		return (EINVAL);
1206 	if (length > maxoffset)
1207 		return (EFBIG);
1208 	if ((mode == IFDIR) || (mode == IFATTRDIR))
1209 		flags |= I_DIR;
1210 	if (mode == IFSHAD)
1211 		flags |= I_SHAD;
1212 	if (oip == ufsvfsp->vfs_qinod)
1213 		flags |= I_QUOTA;
1214 	if (length == oip->i_size) {
1215 		/* update ctime and mtime to please POSIX tests */
1216 		oip->i_flag |= ICHG |IUPD;
1217 		oip->i_seq++;
1218 		if (length == 0) {
1219 			/* nothing to cache so clear the flag */
1220 			oip->i_flag &= ~IFASTSYMLNK;
1221 		}
1222 		return (0);
1223 	}
1224 	/* wipe out fast symlink till next access */
1225 	if (oip->i_flag & IFASTSYMLNK) {
1226 		int j;
1227 
1228 		ASSERT(ITOV(oip)->v_type == VLNK);
1229 
1230 		oip->i_flag &= ~IFASTSYMLNK;
1231 
1232 		for (j = 1; j < NDADDR; j++)
1233 			oip->i_db[j] = 0;
1234 		for (j = 0; j < NIADDR; j++)
1235 			oip->i_ib[j] = 0;
1236 	}
1237 
1238 	boff = (int)blkoff(fs, length);
1239 
1240 	if (length > oip->i_size) {
1241 		/*
1242 		 * Trunc up case.  BMAPALLOC will insure that the right blocks
1243 		 * are allocated.  This includes extending the old frag to a
1244 		 * full block (if needed) in addition to doing any work
1245 		 * needed for allocating the last block.
1246 		 */
1247 		if (boff == 0)
1248 			err = BMAPALLOC(oip, length - 1, (int)fs->fs_bsize, cr);
1249 		else
1250 			err = BMAPALLOC(oip, length - 1, boff, cr);
1251 
1252 		if (err == 0) {
1253 			/*
1254 			 * Save old size and set inode's size now
1255 			 * so that we don't cause too much of the
1256 			 * file to be zero'd and pushed.
1257 			 */
1258 			u_offset_t osize = oip->i_size;
1259 			oip->i_size  = length;
1260 			/*
1261 			 * Make sure we zero out the remaining bytes of
1262 			 * the page in case a mmap scribbled on it. We
1263 			 * can't prevent a mmap from writing beyond EOF
1264 			 * on the last page of a file.
1265 			 *
1266 			 */
1267 			if ((boff = (int)blkoff(fs, osize)) != 0) {
1268 				bsize = (int)lblkno(fs, osize - 1) >= NDADDR ?
1269 				    fs->fs_bsize : fragroundup(fs, boff);
1270 				pvn_vpzero(ITOV(oip), osize,
1271 				    (size_t)(bsize - boff));
1272 			}
1273 			oip->i_flag |= ICHG|IATTCHG;
1274 			oip->i_seq++;
1275 			ITIMES_NOLOCK(oip);
1276 			/*
1277 			 * MAXOFF32_T is old 2GB size limit. If
1278 			 * this operation caused a large file to be
1279 			 * created, turn on the superblock flag
1280 			 * and update the superblock, if the flag
1281 			 * is not already on.
1282 			 */
1283 			if ((length > (u_offset_t)MAXOFF32_T) &&
1284 			    !(fs->fs_flags & FSLARGEFILES)) {
1285 				ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES);
1286 				mutex_enter(&ufsvfsp->vfs_lock);
1287 				fs->fs_flags |= FSLARGEFILES;
1288 				ufs_sbwrite(ufsvfsp);
1289 				mutex_exit(&ufsvfsp->vfs_lock);
1290 			}
1291 		}
1292 
1293 		return (err);
1294 	}
1295 
1296 	/*
1297 	 * Update the pages of the file.  If the file is not being
1298 	 * truncated to a block boundary, the contents of the
1299 	 * pages following the end of the file must be zero'ed
1300 	 * in case it ever become accessible again because
1301 	 * of subsequent file growth.
1302 	 */
1303 	if (boff == 0) {
1304 		(void) pvn_vplist_dirty(ITOV(oip), length, ufs_putapage,
1305 		    B_INVAL | B_TRUNC, CRED());
1306 	} else {
1307 		/*
1308 		 * Make sure that the last block is properly allocated.
1309 		 * We only really have to do this if the last block is
1310 		 * actually allocated since ufs_bmap will now handle the case
1311 		 * of an fragment which has no block allocated.  Just to
1312 		 * be sure, we do it now independent of current allocation.
1313 		 */
1314 		err = BMAPALLOC(oip, length - 1, boff, cr);
1315 		if (err)
1316 			return (err);
1317 
1318 		/*
1319 		 * BMAPALLOC will call bmap_write which defers i_seq
1320 		 * processing.  If the timestamps were changed, update
1321 		 * i_seq before rdip drops i_contents or syncs the inode.
1322 		 */
1323 		if (oip->i_flag & (ICHG|IUPD))
1324 			oip->i_seq++;
1325 
1326 		/*
1327 		 * BugId 4069932
1328 		 * Make sure that the relevant partial page appears in
1329 		 * the v_pages list, so that pvn_vpzero() will do its
1330 		 * job.  Since doing this correctly requires everything
1331 		 * in rdip() except for the uiomove(), it's easier and
1332 		 * safer to do the uiomove() rather than duplicate the
1333 		 * rest of rdip() here.
1334 		 *
1335 		 * To get here, we know that length indicates a byte
1336 		 * that is not the first byte of a block.  (length - 1)
1337 		 * is the last actual byte known to exist.  Deduction
1338 		 * shows it is in the same block as byte (length).
1339 		 * Thus, this rdip() invocation should always succeed
1340 		 * except in the face of i/o errors, and give us the
1341 		 * block we care about.
1342 		 *
1343 		 * rdip() makes the same locking assertions and
1344 		 * assumptions as we do.  We do not acquire any locks
1345 		 * before calling it, so we have not changed the locking
1346 		 * situation.  Finally, there do not appear to be any
1347 		 * paths whereby rdip() ends up invoking us again.
1348 		 * Thus, infinite recursion is avoided.
1349 		 */
1350 		{
1351 			uio_t uio;
1352 			iovec_t iov[1];
1353 			char buffer;
1354 
1355 			uio.uio_iov = iov;
1356 			uio.uio_iovcnt = 1;
1357 			uio.uio_loffset = length - 1;
1358 			uio.uio_resid = 1;
1359 			uio.uio_segflg = UIO_SYSSPACE;
1360 			uio.uio_extflg = UIO_COPY_CACHED;
1361 
1362 			iov[0].iov_base = &buffer;
1363 			iov[0].iov_len = 1;
1364 
1365 			err = rdip(oip, &uio, UIO_READ, NULL);
1366 			if (err)
1367 				return (err);
1368 		}
1369 
1370 		bsize = (int)lblkno(fs, length - 1) >= NDADDR ?
1371 		    fs->fs_bsize : fragroundup(fs, boff);
1372 		pvn_vpzero(ITOV(oip), length, (size_t)(bsize - boff));
1373 		/*
1374 		 * Ensure full fs block is marked as dirty.
1375 		 */
1376 		(void) pvn_vplist_dirty(ITOV(oip), length + (bsize - boff),
1377 		    ufs_putapage, B_INVAL | B_TRUNC, CRED());
1378 	}
1379 
1380 	/*
1381 	 * Calculate index into inode's block list of
1382 	 * last direct and indirect blocks (if any)
1383 	 * which we want to keep.  Lastblock is -1 when
1384 	 * the file is truncated to 0.
1385 	 */
1386 	lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
1387 	lastiblock[SINGLE] = lastblock - NDADDR;
1388 	lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
1389 	lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
1390 	nblocks = btodb(fs->fs_bsize);
1391 
1392 	/*
1393 	 * Update file and block pointers
1394 	 * on disk before we start freeing blocks.
1395 	 * If we crash before free'ing blocks below,
1396 	 * the blocks will be returned to the free list.
1397 	 * lastiblock values are also normalized to -1
1398 	 * for calls to indirtrunc below.
1399 	 */
1400 	tip = *oip;			/* structure copy */
1401 	ip = &tip;
1402 
1403 	for (level = TRIPLE; level >= SINGLE; level--)
1404 		if (lastiblock[level] < 0) {
1405 			oip->i_ib[level] = 0;
1406 			lastiblock[level] = -1;
1407 		}
1408 	for (i = NDADDR - 1; i > lastblock; i--) {
1409 		oip->i_db[i] = 0;
1410 		flags |= I_CHEAP;
1411 	}
1412 	oip->i_size = length;
1413 	oip->i_flag |= ICHG|IUPD|IATTCHG;
1414 	oip->i_seq++;
1415 	if (!TRANS_ISTRANS(ufsvfsp))
1416 		ufs_iupdat(oip, I_SYNC);	/* do sync inode update */
1417 
1418 	/*
1419 	 * Indirect blocks first.
1420 	 */
1421 	for (level = TRIPLE; level >= SINGLE; level--) {
1422 		bn = ip->i_ib[level];
1423 		if (bn != 0) {
1424 			blocksreleased +=
1425 			    indirtrunc(ip, bn, lastiblock[level], level, flags);
1426 			if (lastiblock[level] < 0) {
1427 				ip->i_ib[level] = 0;
1428 				free(ip, bn, (off_t)fs->fs_bsize,
1429 				    flags | I_IBLK);
1430 				blocksreleased += nblocks;
1431 			}
1432 		}
1433 		if (lastiblock[level] >= 0)
1434 			goto done;
1435 	}
1436 
1437 	/*
1438 	 * All whole direct blocks or frags.
1439 	 */
1440 	for (i = NDADDR - 1; i > lastblock; i--) {
1441 		bn = ip->i_db[i];
1442 		if (bn == 0)
1443 			continue;
1444 		ip->i_db[i] = 0;
1445 		bsize = (off_t)blksize(fs, ip, i);
1446 		free(ip, bn, bsize, flags);
1447 		blocksreleased += btodb(bsize);
1448 	}
1449 	if (lastblock < 0)
1450 		goto done;
1451 
1452 	/*
1453 	 * Finally, look for a change in size of the
1454 	 * last direct block; release any frags.
1455 	 */
1456 	bn = ip->i_db[lastblock];
1457 	if (bn != 0) {
1458 		off_t oldspace, newspace;
1459 
1460 		/*
1461 		 * Calculate amount of space we're giving
1462 		 * back as old block size minus new block size.
1463 		 */
1464 		oldspace = blksize(fs, ip, lastblock);
1465 		UFS_SET_ISIZE(length, ip);
1466 		newspace = blksize(fs, ip, lastblock);
1467 		if (newspace == 0) {
1468 			err = ufs_fault(ITOV(ip), "ufs_itrunc: newspace == 0");
1469 			return (err);
1470 		}
1471 		if (oldspace - newspace > 0) {
1472 			/*
1473 			 * Block number of space to be free'd is
1474 			 * the old block # plus the number of frags
1475 			 * required for the storage we're keeping.
1476 			 */
1477 			bn += numfrags(fs, newspace);
1478 			free(ip, bn, oldspace - newspace, flags);
1479 			blocksreleased += btodb(oldspace - newspace);
1480 		}
1481 	}
1482 done:
1483 /* BEGIN PARANOIA */
1484 	for (level = SINGLE; level <= TRIPLE; level++)
1485 		if (ip->i_ib[level] != oip->i_ib[level]) {
1486 			err = ufs_fault(ITOV(ip), "ufs_itrunc: indirect block");
1487 			return (err);
1488 		}
1489 
1490 	for (i = 0; i < NDADDR; i++)
1491 		if (ip->i_db[i] != oip->i_db[i]) {
1492 			err = ufs_fault(ITOV(ip), "ufs_itrunc: direct block");
1493 			return (err);
1494 		}
1495 /* END PARANOIA */
1496 	oip->i_blocks -= blocksreleased;
1497 
1498 	if (oip->i_blocks < 0) {		/* sanity */
1499 		cmn_err(CE_NOTE,
1500 		    "ufs_itrunc: %s/%d new size = %lld, blocks = %d\n",
1501 		    fs->fs_fsmnt, (int)oip->i_number, oip->i_size,
1502 		    (int)oip->i_blocks);
1503 		oip->i_blocks = 0;
1504 	}
1505 	oip->i_flag |= ICHG|IATTCHG;
1506 	oip->i_seq++;
1507 	/* blocksreleased is >= zero, so this can not fail */
1508 	(void) chkdq(oip, -blocksreleased, 0, cr, (char **)NULL,
1509 	    (size_t *)NULL);
1510 	return (0);
1511 }
1512 
1513 /*
1514  * Check mode permission on inode.  Mode is READ, WRITE or EXEC.
1515  * In the case of WRITE, the read-only status of the file system
1516  * is checked.  Depending on the calling user, the appropriate
1517  * mode bits are selected; privileges to override missing permission
1518  * bits are checked through secpolicy_vnode_access().
1519  * The i_contens lock must be held as reader here to prevent racing with
1520  * the acl subsystem removing/setting/changing acls on this inode.
1521  * The caller is responsible for indicating whether or not the i_contents
1522  * lock needs to be acquired here or if already held.
1523  */
1524 int
1525 ufs_iaccess(struct inode  *ip, int mode, struct cred *cr, int dolock)
1526 {
1527 	int shift = 0;
1528 	int ret = 0;
1529 
1530 	if (dolock)
1531 		rw_enter(&ip->i_contents, RW_READER);
1532 	ASSERT(RW_LOCK_HELD(&ip->i_contents));
1533 
1534 	if (mode & IWRITE) {
1535 		/*
1536 		 * Disallow write attempts on read-only
1537 		 * file systems, unless the file is a block
1538 		 * or character device or a FIFO.
1539 		 */
1540 		if (ip->i_fs->fs_ronly != 0) {
1541 			if ((ip->i_mode & IFMT) != IFCHR &&
1542 			    (ip->i_mode & IFMT) != IFBLK &&
1543 			    (ip->i_mode & IFMT) != IFIFO) {
1544 				ret = EROFS;
1545 				goto out;
1546 			}
1547 		}
1548 	}
1549 	/*
1550 	 * If there is an acl, check the acl and return.
1551 	 */
1552 	if (ip->i_ufs_acl && ip->i_ufs_acl->aowner) {
1553 		ret = ufs_acl_access(ip, mode, cr);
1554 		goto out;
1555 	}
1556 
1557 	/*
1558 	 * Access check is based on only one of owner, group, public.
1559 	 * If not owner, then check group.
1560 	 * If not a member of the group, then check public access.
1561 	 */
1562 	if (crgetuid(cr) != ip->i_uid) {
1563 		shift += 3;
1564 		if (!groupmember((uid_t)ip->i_gid, cr))
1565 			shift += 3;
1566 	}
1567 
1568 	/* test missing privilege bits */
1569 	ret = secpolicy_vnode_access2(cr, ITOV(ip), ip->i_uid,
1570 	    ip->i_mode << shift, mode);
1571 out:
1572 	if (dolock)
1573 		rw_exit(&ip->i_contents);
1574 	return (ret);
1575 }
1576 
1577 /*
1578  * if necessary, remove an inode from the free list
1579  *	i_contents is held except at unmount
1580  *
1581  * Return 1 if the inode is taken off of the ufs_idle_q,
1582  * and the caller is expected to call VN_RELE.
1583  *
1584  * Return 0 otherwise.
1585  */
1586 int
1587 ufs_rmidle(struct inode *ip)
1588 {
1589 	int rval = 0;
1590 
1591 	mutex_enter(&ip->i_tlock);
1592 	if ((ip->i_flag & IREF) == 0) {
1593 		mutex_enter(&ufs_idle_q.uq_mutex);
1594 		ip->i_freef->i_freeb = ip->i_freeb;
1595 		ip->i_freeb->i_freef = ip->i_freef;
1596 		ip->i_freef = ip;
1597 		ip->i_freeb = ip;
1598 		ip->i_flag |= IREF;
1599 		ufs_idle_q.uq_ne--;
1600 		if (ip->i_flag & IJUNKIQ) {
1601 			ufs_njunk_iq--;
1602 			ip->i_flag &= ~IJUNKIQ;
1603 		} else {
1604 			ufs_nuseful_iq--;
1605 		}
1606 		mutex_exit(&ufs_idle_q.uq_mutex);
1607 		rval = 1;
1608 	}
1609 	mutex_exit(&ip->i_tlock);
1610 	return (rval);
1611 }
1612 
1613 /*
1614  * scan the hash of inodes and call func with the inode locked
1615  */
1616 int
1617 ufs_scan_inodes(int rwtry, int (*func)(struct inode *, void *), void *arg,
1618 		struct ufsvfs *ufsvfsp)
1619 {
1620 	struct inode		*ip;		/* current inode */
1621 	struct inode		*lip = NULL;	/* last/previous inode */
1622 	union ihead		*ih;		/* current hash chain */
1623 	int			error, i;
1624 	int			saverror = 0;
1625 	int			lip_held;	/* lip needs a VN_RELE() */
1626 
1627 	/*
1628 	 * If ufsvfsp is NULL, then our caller should be holding
1629 	 * ufs_scan_lock to avoid conflicts between ufs_unmount() and
1630 	 * ufs_update().  Otherwise, to avoid false-positives in
1631 	 * ufs_unmount()'s v_count-based EBUSY check, we only hold
1632 	 * those inodes that are in the file system our caller cares
1633 	 * about.
1634 	 *
1635 	 * We know that ip is a valid inode in the hash chain (and thus
1636 	 * we can trust i_ufsvfs) because the inode we chained from
1637 	 * (lip) is still in the hash chain.  This is true because either:
1638 	 *
1639 	 * 1. We did not drop the hash chain lock since the last
1640 	 *    iteration (because we were not interested in the last inode),
1641 	 * or
1642 	 * 2. We maintained a hold on the last inode while we
1643 	 *    we were processing it, so it could not be removed
1644 	 *    from the hash chain.
1645 	 *
1646 	 * The whole reason we're dropping and re-grabbing the chain
1647 	 * lock on every inode is so that we don't present a major
1648 	 * choke point on throughput, particularly when we've been
1649 	 * called on behalf of fsflush.
1650 	 */
1651 
1652 	for (i = 0, ih = ihead; i < inohsz; i++, ih++) {
1653 		mutex_enter(&ih_lock[i]);
1654 		for (ip = ih->ih_chain[0], lip_held = 0;
1655 		    ip != (struct inode *)ih;
1656 		    ip = lip->i_forw) {
1657 
1658 			ins.in_scan.value.ul++;
1659 
1660 			/*
1661 			 * Undo the previous iteration's VN_HOLD(), but
1662 			 * only if one was done.
1663 			 */
1664 			if (lip_held)
1665 				VN_RELE(ITOV(lip));
1666 
1667 			lip = ip;
1668 			if (ufsvfsp != NULL && ip->i_ufsvfs != ufsvfsp) {
1669 				/*
1670 				 * We're not processing all inodes, and
1671 				 * this inode is not in the filesystem of
1672 				 * interest, so skip it.  No need to do a
1673 				 * VN_HOLD() since we're not dropping the
1674 				 * hash chain lock until after we've
1675 				 * done the i_forw traversal above.
1676 				 */
1677 				lip_held = 0;
1678 				continue;
1679 			}
1680 			VN_HOLD(ITOV(ip));
1681 			lip_held = 1;
1682 			mutex_exit(&ih_lock[i]);
1683 
1684 			/*
1685 			 * Acquire the contents lock as writer to make
1686 			 * sure that the inode has been initialized in
1687 			 * the cache or removed from the idle list by
1688 			 * ufs_iget().  This works because ufs_iget()
1689 			 * acquires the contents lock before putting
1690 			 * the inode into the cache.  If we can lock
1691 			 * it, then he's done with it.
1692 			 */
1693 
1694 			if (rwtry) {
1695 				if (!rw_tryenter(&ip->i_contents, RW_WRITER)) {
1696 					mutex_enter(&ih_lock[i]);
1697 					continue;
1698 				}
1699 			} else {
1700 				rw_enter(&ip->i_contents, RW_WRITER);
1701 			}
1702 
1703 			rw_exit(&ip->i_contents);
1704 
1705 			/*
1706 			 * ISTALE means the inode couldn't be read
1707 			 *
1708 			 * We don't have to hold the i_contents lock
1709 			 * for this check for a couple of
1710 			 * reasons. First, if ISTALE is set then the
1711 			 * flag cannot be cleared until the inode is
1712 			 * removed from the cache and that cannot
1713 			 * happen until after we VN_RELE() it.
1714 			 * Second, if ISTALE is not set, then the
1715 			 * inode is in the cache and does not need to
1716 			 * be read from disk so ISTALE cannot be set
1717 			 * while we are not looking.
1718 			 */
1719 			if ((ip->i_flag & ISTALE) == 0) {
1720 				if ((error = (*func)(ip, arg)) != 0)
1721 					saverror = error;
1722 			}
1723 
1724 			mutex_enter(&ih_lock[i]);
1725 		}
1726 		if (lip_held)
1727 			VN_RELE(ITOV(lip));
1728 		mutex_exit(&ih_lock[i]);
1729 	}
1730 	return (saverror);
1731 }
1732 
1733 /*
1734  * Mark inode with the current time, plus a unique increment.
1735  *
1736  * Since we only keep 32-bit time on disk, if UFS is still alive
1737  * beyond 2038, filesystem times will simply stick at the last
1738  * possible second of 32-bit time. Not ideal, but probably better
1739  * than going into the remote past, or confusing applications with
1740  * negative time.
1741  */
1742 void
1743 ufs_imark(struct inode *ip)
1744 {
1745 	timestruc_t now;
1746 	int32_t usec, nsec;
1747 
1748 	/*
1749 	 * The update of i_seq may have been deferred, increase i_seq here
1750 	 * to make sure it is in sync with the timestamps.
1751 	 */
1752 	if (ip->i_flag & ISEQ) {
1753 		ASSERT(ip->i_flag & (IUPD|ICHG));
1754 		ip->i_seq++;
1755 		ip->i_flag &= ~ISEQ;
1756 	}
1757 
1758 	gethrestime(&now);
1759 
1760 	/*
1761 	 * Fast algorithm to convert nsec to usec -- see hrt2ts()
1762 	 * in common/os/timers.c for a full description.
1763 	 */
1764 	nsec = now.tv_nsec;
1765 	usec = nsec + (nsec >> 2);
1766 	usec = nsec + (usec >> 1);
1767 	usec = nsec + (usec >> 2);
1768 	usec = nsec + (usec >> 4);
1769 	usec = nsec - (usec >> 3);
1770 	usec = nsec + (usec >> 2);
1771 	usec = nsec + (usec >> 3);
1772 	usec = nsec + (usec >> 4);
1773 	usec = nsec + (usec >> 1);
1774 	usec = nsec + (usec >> 6);
1775 	usec = usec >> 10;
1776 
1777 	mutex_enter(&ufs_iuniqtime_lock);
1778 	if (now.tv_sec > (time_t)iuniqtime.tv_sec ||
1779 	    usec > iuniqtime.tv_usec) {
1780 		if (now.tv_sec < TIME32_MAX) {
1781 			iuniqtime.tv_sec = (time32_t)now.tv_sec;
1782 			iuniqtime.tv_usec = usec;
1783 		}
1784 	} else {
1785 		if (iuniqtime.tv_sec < TIME32_MAX) {
1786 			iuniqtime.tv_usec++;
1787 			/* Check for usec overflow */
1788 			if (iuniqtime.tv_usec >= MICROSEC) {
1789 				iuniqtime.tv_sec++;
1790 				iuniqtime.tv_usec = 0;
1791 			}
1792 		}
1793 	}
1794 
1795 	if ((ip->i_flag & IACC) && !(ip->i_ufsvfs->vfs_noatime)) {
1796 		ip->i_atime = iuniqtime;
1797 	}
1798 	if (ip->i_flag & IUPD) {
1799 		ip->i_mtime = iuniqtime;
1800 		ip->i_flag |= IMODTIME;
1801 	}
1802 	if (ip->i_flag & ICHG) {
1803 		ip->i_diroff = 0;
1804 		ip->i_ctime = iuniqtime;
1805 	}
1806 	mutex_exit(&ufs_iuniqtime_lock);
1807 }
1808 
1809 /*
1810  * Update timestamps in inode.
1811  */
1812 void
1813 ufs_itimes_nolock(struct inode *ip)
1814 {
1815 
1816 	/*
1817 	 * if noatime is set and the inode access time is the only field that
1818 	 * must be changed, exit immediately.
1819 	 */
1820 	if (((ip->i_flag & (IUPD|IACC|ICHG)) == IACC) &&
1821 	    (ip->i_ufsvfs->vfs_noatime)) {
1822 		return;
1823 	}
1824 
1825 	if (ip->i_flag & (IUPD|IACC|ICHG)) {
1826 		if (ip->i_flag & ICHG)
1827 			ip->i_flag |= IMOD;
1828 		else
1829 			ip->i_flag |= IMODACC;
1830 		ufs_imark(ip);
1831 		ip->i_flag &= ~(IACC|IUPD|ICHG);
1832 	}
1833 }
1834