1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/stat.h> 28 #include <sys/errno.h> 29 #include <sys/kmem.h> 30 #include <sys/t_lock.h> 31 #include <sys/ksynch.h> 32 #include <sys/buf.h> 33 #include <sys/vfs.h> 34 #include <sys/vnode.h> 35 #include <sys/mode.h> 36 #include <sys/systm.h> 37 #include <vm/seg.h> 38 #include <sys/file.h> 39 #include <sys/acl.h> 40 #include <sys/fs/ufs_inode.h> 41 #include <sys/fs/ufs_acl.h> 42 #include <sys/fs/ufs_quota.h> 43 #include <sys/sysmacros.h> 44 #include <sys/debug.h> 45 #include <sys/policy.h> 46 47 /* Cache routines */ 48 static int si_signature(si_t *); 49 static int si_cachei_get(struct inode *, si_t **); 50 static int si_cachea_get(struct inode *, si_t *, si_t **); 51 static int si_cmp(si_t *, si_t *); 52 static void si_cache_put(si_t *); 53 void si_cache_del(si_t *, int); 54 void si_cache_init(void); 55 56 static void ufs_si_free_mem(si_t *); 57 static int ufs_si_store(struct inode *, si_t *, int, cred_t *); 58 static si_t *ufs_acl_cp(si_t *); 59 static int ufs_sectobuf(si_t *, caddr_t *, size_t *); 60 static int acl_count(ufs_ic_acl_t *); 61 static int acl_validate(aclent_t *, int, int); 62 static int vsecattr2aclentry(vsecattr_t *, si_t **); 63 static int aclentry2vsecattr(si_t *, vsecattr_t *); 64 65 krwlock_t si_cache_lock; /* Protects si_cache */ 66 int si_cachecnt = 64; /* # buckets in si_cache[a|i] */ 67 si_t **si_cachea; /* The 'by acl' cache chains */ 68 si_t **si_cachei; /* The 'by inode' cache chains */ 69 long si_cachehit = 0; 70 long si_cachemiss = 0; 71 72 #define SI_HASH(S) ((int)(S) & (si_cachecnt - 1)) 73 74 /* 75 * Store the new acls in aclp. Attempts to make things atomic. 76 * Search the acl cache for an identical sp and, if found, attach 77 * the cache'd acl to ip. If the acl is new (not in the cache), 78 * add it to the cache, then attach it to ip. Last, remove and 79 * decrement the reference count of any prior acl list attached 80 * to the ip. 81 * 82 * Parameters: 83 * ip - Ptr to inode to receive the acl list 84 * sp - Ptr to in-core acl structure to attach to the inode. 85 * puship - 0 do not push the object inode(ip) 1 push the ip 86 * cr - Ptr to credentials 87 * 88 * Returns: 0 - Success 89 * N - From errno.h 90 */ 91 static int 92 ufs_si_store(struct inode *ip, si_t *sp, int puship, cred_t *cr) 93 { 94 struct vfs *vfsp; 95 struct inode *sip; 96 si_t *oldsp; 97 si_t *csp; 98 caddr_t acldata; 99 ino_t oldshadow; 100 size_t acldatalen; 101 off_t offset; 102 int shadow; 103 int err; 104 int refcnt; 105 int usecnt; 106 int signature; 107 int resid; 108 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 109 struct fs *fs = ufsvfsp->vfs_fs; 110 111 ASSERT(RW_WRITE_HELD(&ip->i_contents)); 112 ASSERT(ip->i_ufs_acl != sp); 113 114 if (!CHECK_ACL_ALLOWED(ip->i_mode & IFMT)) 115 return (ENOSYS); 116 117 /* 118 * if there are only the three owner/group/other then do not 119 * create a shadow inode. If there is already a shadow with 120 * the file, remove it. 121 * 122 */ 123 if (!sp->ausers && 124 !sp->agroups && 125 !sp->downer && 126 !sp->dgroup && 127 !sp->dother && 128 sp->dclass.acl_ismask == 0 && 129 !sp->dusers && 130 !sp->dgroups) { 131 if (ip->i_ufs_acl) 132 err = ufs_si_free(ip->i_ufs_acl, ITOV(ip)->v_vfsp, cr); 133 ip->i_ufs_acl = NULL; 134 ip->i_shadow = 0; 135 ip->i_flag |= IMOD | IACC; 136 ip->i_mode = (ip->i_smode & ~0777) | 137 ((sp->aowner->acl_ic_perm & 07) << 6) | 138 (MASK2MODE(sp)) | 139 (sp->aother->acl_ic_perm & 07); 140 TRANS_INODE(ip->i_ufsvfs, ip); 141 ufs_iupdat(ip, 1); 142 ufs_si_free_mem(sp); 143 return (0); 144 } 145 146 loop: 147 148 /* 149 * Check cache. If in cache, use existing shadow inode. 150 * Increment the shadow link count, then attach to the 151 * cached ufs_acl_entry struct, and increment it's reference 152 * count. Then discard the passed-in ufs_acl_entry and 153 * return. 154 */ 155 if (si_cachea_get(ip, sp, &csp) == 0) { 156 ASSERT(RW_WRITE_HELD(&csp->s_lock)); 157 if (ip->i_ufs_acl == csp) { 158 rw_exit(&csp->s_lock); 159 (void) ufs_si_free_mem(sp); 160 return (0); 161 } 162 vfsp = ITOV(ip)->v_vfsp; 163 ASSERT(csp->s_shadow <= INT_MAX); 164 shadow = (int)csp->s_shadow; 165 /* 166 * We can't call ufs_iget while holding the csp locked, 167 * because we might deadlock. So we drop the 168 * lock on csp, then go search the si_cache again 169 * to see if the csp is still there. 170 */ 171 rw_exit(&csp->s_lock); 172 if ((err = ufs_iget(vfsp, shadow, &sip, cr)) != 0) { 173 (void) ufs_si_free_mem(sp); 174 return (EIO); 175 } 176 rw_enter(&sip->i_contents, RW_WRITER); 177 if ((sip->i_mode & IFMT) != IFSHAD || sip->i_nlink <= 0) { 178 rw_exit(&sip->i_contents); 179 VN_RELE(ITOV(sip)); 180 goto loop; 181 } 182 /* Get the csp again */ 183 if (si_cachea_get(ip, sp, &csp) != 0) { 184 rw_exit(&sip->i_contents); 185 VN_RELE(ITOV(sip)); 186 goto loop; 187 } 188 ASSERT(RW_WRITE_HELD(&csp->s_lock)); 189 /* See if we got the right shadow */ 190 if (csp->s_shadow != shadow) { 191 rw_exit(&csp->s_lock); 192 rw_exit(&sip->i_contents); 193 VN_RELE(ITOV(sip)); 194 goto loop; 195 } 196 ASSERT(RW_WRITE_HELD(&sip->i_contents)); 197 ASSERT(sip->i_dquot == 0); 198 /* Increment link count */ 199 ASSERT(sip->i_nlink > 0); 200 sip->i_nlink++; 201 TRANS_INODE(ufsvfsp, sip); 202 csp->s_use = sip->i_nlink; 203 csp->s_ref++; 204 ASSERT(sp->s_ref >= 0 && sp->s_ref <= sp->s_use); 205 sip->i_flag |= ICHG | IMOD; 206 sip->i_seq++; 207 ITIMES_NOLOCK(sip); 208 /* 209 * Always release s_lock before both releasing i_contents 210 * and calling VN_RELE. 211 */ 212 rw_exit(&csp->s_lock); 213 rw_exit(&sip->i_contents); 214 VN_RELE(ITOV(sip)); 215 (void) ufs_si_free_mem(sp); 216 sp = csp; 217 si_cachehit++; 218 goto switchshadows; 219 } 220 221 /* Alloc a shadow inode and fill it in */ 222 err = ufs_ialloc(ip, ip->i_number, (mode_t)IFSHAD, &sip, cr); 223 if (err) { 224 (void) ufs_si_free_mem(sp); 225 return (err); 226 } 227 rw_enter(&sip->i_contents, RW_WRITER); 228 sip->i_flag |= IACC | IUPD | ICHG; 229 sip->i_seq++; 230 sip->i_mode = (o_mode_t)IFSHAD; 231 ITOV(sip)->v_type = VREG; 232 ufs_reset_vnode(ITOV(sip)); 233 sip->i_nlink = 1; 234 sip->i_uid = crgetuid(cr); 235 sip->i_suid = (ulong_t)sip->i_uid > (ulong_t)USHRT_MAX ? 236 UID_LONG : sip->i_uid; 237 sip->i_gid = crgetgid(cr); 238 sip->i_sgid = (ulong_t)sip->i_gid > (ulong_t)USHRT_MAX ? 239 GID_LONG : sip->i_gid; 240 sip->i_shadow = 0; 241 TRANS_INODE(ufsvfsp, sip); 242 sip->i_ufs_acl = NULL; 243 ASSERT(sip->i_size == 0); 244 245 sp->s_shadow = sip->i_number; 246 247 if ((err = ufs_sectobuf(sp, &acldata, &acldatalen)) != 0) 248 goto errout; 249 offset = 0; 250 251 /* 252 * We don't actually care about the residual count upon failure, 253 * but giving ufs_rdwri() the pointer means it won't translate 254 * all failures to EIO. Our caller needs to know when ENOSPC 255 * gets hit. 256 */ 257 resid = 0; 258 if (((err = ufs_rdwri(UIO_WRITE, FWRITE|FSYNC, sip, acldata, 259 acldatalen, (offset_t)0, UIO_SYSSPACE, &resid, cr)) != 0) || 260 (resid != 0)) { 261 kmem_free(acldata, acldatalen); 262 if ((resid != 0) && (err == 0)) 263 err = ENOSPC; 264 goto errout; 265 } 266 267 offset += acldatalen; 268 if ((acldatalen + fs->fs_bsize) > ufsvfsp->vfs_maxacl) 269 ufsvfsp->vfs_maxacl = acldatalen + fs->fs_bsize; 270 271 kmem_free(acldata, acldatalen); 272 /* Sync & free the shadow inode */ 273 ufs_iupdat(sip, 1); 274 rw_exit(&sip->i_contents); 275 VN_RELE(ITOV(sip)); 276 277 /* We're committed to using this sp */ 278 sp->s_use = 1; 279 sp->s_ref = 1; 280 281 /* Now put the new acl stuff in the cache */ 282 /* XXX Might make a duplicate */ 283 si_cache_put(sp); 284 si_cachemiss++; 285 286 switchshadows: 287 /* Now switch the parent inode to use the new shadow inode */ 288 ASSERT(RW_WRITE_HELD(&ip->i_contents)); 289 rw_enter(&sp->s_lock, RW_READER); 290 oldsp = ip->i_ufs_acl; 291 oldshadow = ip->i_shadow; 292 ip->i_ufs_acl = sp; 293 ASSERT(sp->s_shadow <= INT_MAX); 294 ip->i_shadow = (int32_t)sp->s_shadow; 295 ASSERT(oldsp != sp); 296 ASSERT(oldshadow != ip->i_number); 297 ASSERT(ip->i_number != ip->i_shadow); 298 /* 299 * Change the mode bits to follow the acl list 300 * 301 * NOTE: a directory is not required to have a "regular" acl 302 * bug id's 1238908, 1257173, 1263171 and 1263188 303 * 304 * but if a "regular" acl is present, it must contain 305 * an "owner", "group", and "other" acl 306 * 307 * If an ACL mask exists, the effective group rights are 308 * set to the mask. Otherwise, the effective group rights 309 * are set to the object group bits. 310 */ 311 if (sp->aowner) { /* Owner */ 312 ip->i_mode &= ~0700; /* clear Owner */ 313 ip->i_mode |= (sp->aowner->acl_ic_perm & 07) << 6; 314 ip->i_uid = sp->aowner->acl_ic_who; 315 } 316 317 if (sp->agroup) { /* Group */ 318 ip->i_mode &= ~0070; /* clear Group */ 319 ip->i_mode |= MASK2MODE(sp); /* apply mask */ 320 ip->i_gid = sp->agroup->acl_ic_who; 321 } 322 323 if (sp->aother) { /* Other */ 324 ip->i_mode &= ~0007; /* clear Other */ 325 ip->i_mode |= (sp->aother->acl_ic_perm & 07); 326 } 327 328 if (sp->aclass.acl_ismask) 329 ip->i_mode = (ip->i_mode & ~070) | 330 (((sp->aclass.acl_maskbits & 07) << 3) & 331 ip->i_mode); 332 333 TRANS_INODE(ufsvfsp, ip); 334 rw_exit(&sp->s_lock); 335 ip->i_flag |= ICHG; 336 ip->i_seq++; 337 /* 338 * when creating a file there is no need to push the inode, it 339 * is pushed later 340 */ 341 if (puship == 1) 342 ufs_iupdat(ip, 1); 343 344 /* 345 * Decrement link count on the old shadow inode, 346 * and decrement reference count on the old aclp, 347 */ 348 if (oldshadow) { 349 /* Get the shadow inode */ 350 ASSERT(RW_WRITE_HELD(&ip->i_contents)); 351 vfsp = ITOV(ip)->v_vfsp; 352 if ((err = ufs_iget_alloced(vfsp, oldshadow, &sip, cr)) != 0) { 353 return (EIO); 354 } 355 /* Decrement link count */ 356 rw_enter(&sip->i_contents, RW_WRITER); 357 if (oldsp) 358 rw_enter(&oldsp->s_lock, RW_WRITER); 359 ASSERT(sip->i_dquot == 0); 360 ASSERT(sip->i_nlink > 0); 361 usecnt = --sip->i_nlink; 362 ufs_setreclaim(sip); 363 TRANS_INODE(ufsvfsp, sip); 364 sip->i_flag |= ICHG | IMOD; 365 sip->i_seq++; 366 ITIMES_NOLOCK(sip); 367 if (oldsp) { 368 oldsp->s_use = usecnt; 369 refcnt = --oldsp->s_ref; 370 signature = oldsp->s_signature; 371 /* 372 * Always release s_lock before both releasing 373 * i_contents and calling VN_RELE. 374 */ 375 rw_exit(&oldsp->s_lock); 376 } 377 rw_exit(&sip->i_contents); 378 VN_RELE(ITOV(sip)); 379 if (oldsp && (refcnt == 0)) 380 si_cache_del(oldsp, signature); 381 } 382 return (0); 383 384 errout: 385 /* Throw the newly alloc'd inode away */ 386 sip->i_nlink = 0; 387 ufs_setreclaim(sip); 388 TRANS_INODE(ufsvfsp, sip); 389 ITIMES_NOLOCK(sip); 390 rw_exit(&sip->i_contents); 391 VN_RELE(ITOV(sip)); 392 ASSERT(!sp->s_use && !sp->s_ref && !(sp->s_flags & SI_CACHED)); 393 (void) ufs_si_free_mem(sp); 394 return (err); 395 } 396 397 /* 398 * Load the acls for inode ip either from disk (adding to the cache), 399 * or search the cache and attach the cache'd acl list to the ip. 400 * In either case, maintain the proper reference count on the cached entry. 401 * 402 * Parameters: 403 * ip - Ptr to the inode which needs the acl list loaded 404 * cr - Ptr to credentials 405 * 406 * Returns: 0 - Success 407 * N - From errno.h 408 */ 409 /* 410 * ip parent inode in 411 * cr credentials in 412 */ 413 int 414 ufs_si_load(struct inode *ip, cred_t *cr) 415 { 416 struct vfs *vfsp; 417 struct inode *sip; 418 ufs_fsd_t *fsdp; 419 si_t *sp; 420 vsecattr_t vsecattr = { 0, 0, NULL, 0, NULL}; 421 aclent_t *aclp; 422 ufs_acl_t *ufsaclp; 423 caddr_t acldata = NULL; 424 ino_t maxino; 425 int err; 426 size_t acldatalen; 427 int numacls; 428 int shadow; 429 int usecnt; 430 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 431 struct fs *fs = ufsvfsp->vfs_fs; 432 433 ASSERT(ip != NULL); 434 ASSERT(RW_WRITE_HELD(&ip->i_contents)); 435 ASSERT(ip->i_shadow && ip->i_ufs_acl == NULL); 436 ASSERT((ip->i_mode & IFMT) != IFSHAD); 437 438 if (!CHECK_ACL_ALLOWED(ip->i_mode & IFMT)) 439 return (ENOSYS); 440 441 if (ip->i_shadow == ip->i_number) 442 return (EIO); 443 444 maxino = (ino_t)(ITOF(ip)->fs_ncg * ITOF(ip)->fs_ipg); 445 if (ip->i_shadow < UFSROOTINO || ip->i_shadow > maxino) 446 return (EIO); 447 448 /* 449 * XXX Check cache. If in cache, link to it and increment 450 * the reference count, then return. 451 */ 452 if (si_cachei_get(ip, &sp) == 0) { 453 ASSERT(RW_WRITE_HELD(&sp->s_lock)); 454 ip->i_ufs_acl = sp; 455 sp->s_ref++; 456 ASSERT(sp->s_ref >= 0 && sp->s_ref <= sp->s_use); 457 rw_exit(&sp->s_lock); 458 si_cachehit++; 459 return (0); 460 } 461 462 /* Get the shadow inode */ 463 vfsp = ITOV(ip)->v_vfsp; 464 shadow = ip->i_shadow; 465 if ((err = ufs_iget_alloced(vfsp, shadow, &sip, cr)) != 0) { 466 return (err); 467 } 468 rw_enter(&sip->i_contents, RW_WRITER); 469 470 if ((sip->i_mode & IFMT) != IFSHAD) { 471 rw_exit(&sip->i_contents); 472 err = EINVAL; 473 goto alldone; 474 } 475 476 ASSERT(sip->i_dquot == 0); 477 usecnt = sip->i_nlink; 478 if ((!ULOCKFS_IS_NOIACC(&ufsvfsp->vfs_ulockfs)) && 479 (!(sip)->i_ufsvfs->vfs_noatime)) { 480 sip->i_flag |= IACC; 481 } 482 rw_downgrade(&sip->i_contents); 483 484 ASSERT(sip->i_size <= MAXOFF_T); 485 /* Read the acl's and other stuff from disk */ 486 acldata = kmem_zalloc((size_t)sip->i_size, KM_SLEEP); 487 acldatalen = sip->i_size; 488 489 err = ufs_rdwri(UIO_READ, FREAD, sip, acldata, acldatalen, (offset_t)0, 490 UIO_SYSSPACE, (int *)0, cr); 491 492 rw_exit(&sip->i_contents); 493 494 if (err) 495 goto alldone; 496 497 /* 498 * Convert from disk format 499 * Result is a vsecattr struct which we then convert to the 500 * si struct. 501 */ 502 bzero((caddr_t)&vsecattr, sizeof (vsecattr_t)); 503 for (fsdp = (ufs_fsd_t *)acldata; 504 fsdp < (ufs_fsd_t *)(acldata + acldatalen); 505 fsdp = (ufs_fsd_t *)((caddr_t)fsdp + 506 FSD_RECSZ(fsdp, fsdp->fsd_size))) { 507 if (fsdp->fsd_size <= 0) 508 break; 509 switch (fsdp->fsd_type) { 510 case FSD_ACL: 511 numacls = vsecattr.vsa_aclcnt = 512 (int)((fsdp->fsd_size - 513 2 * sizeof (int)) / sizeof (ufs_acl_t)); 514 aclp = vsecattr.vsa_aclentp = 515 kmem_zalloc(numacls * sizeof (aclent_t), KM_SLEEP); 516 for (ufsaclp = (ufs_acl_t *)fsdp->fsd_data; 517 numacls; ufsaclp++) { 518 aclp->a_type = ufsaclp->acl_tag; 519 aclp->a_id = ufsaclp->acl_who; 520 aclp->a_perm = ufsaclp->acl_perm; 521 aclp++; 522 numacls--; 523 } 524 break; 525 case FSD_DFACL: 526 numacls = vsecattr.vsa_dfaclcnt = 527 (int)((fsdp->fsd_size - 528 2 * sizeof (int)) / sizeof (ufs_acl_t)); 529 aclp = vsecattr.vsa_dfaclentp = 530 kmem_zalloc(numacls * sizeof (aclent_t), KM_SLEEP); 531 for (ufsaclp = (ufs_acl_t *)fsdp->fsd_data; 532 numacls; ufsaclp++) { 533 aclp->a_type = ufsaclp->acl_tag; 534 aclp->a_id = ufsaclp->acl_who; 535 aclp->a_perm = ufsaclp->acl_perm; 536 aclp++; 537 numacls--; 538 } 539 break; 540 } 541 } 542 /* Sort the lists */ 543 if (vsecattr.vsa_aclentp) { 544 ksort((caddr_t)vsecattr.vsa_aclentp, vsecattr.vsa_aclcnt, 545 sizeof (aclent_t), cmp2acls); 546 if ((err = acl_validate(vsecattr.vsa_aclentp, 547 vsecattr.vsa_aclcnt, ACL_CHECK)) != 0) { 548 goto alldone; 549 } 550 } 551 if (vsecattr.vsa_dfaclentp) { 552 ksort((caddr_t)vsecattr.vsa_dfaclentp, vsecattr.vsa_dfaclcnt, 553 sizeof (aclent_t), cmp2acls); 554 if ((err = acl_validate(vsecattr.vsa_dfaclentp, 555 vsecattr.vsa_dfaclcnt, DEF_ACL_CHECK)) != 0) { 556 goto alldone; 557 } 558 } 559 560 /* ignore shadow inodes without ACLs */ 561 if (!vsecattr.vsa_aclentp && !vsecattr.vsa_dfaclentp) { 562 err = 0; 563 goto alldone; 564 } 565 566 /* Convert from vsecattr struct to ufs_acl_entry struct */ 567 if ((err = vsecattr2aclentry(&vsecattr, &sp)) != 0) { 568 goto alldone; 569 } 570 571 /* There aren't filled in by vsecattr2aclentry */ 572 sp->s_shadow = ip->i_shadow; 573 sp->s_dev = ip->i_dev; 574 sp->s_use = usecnt; 575 sp->s_ref = 1; 576 ASSERT(sp->s_ref >= 0 && sp->s_ref <= sp->s_use); 577 578 /* XXX Might make a duplicate */ 579 si_cache_put(sp); 580 581 /* Signal anyone waiting on this shadow to be loaded */ 582 ip->i_ufs_acl = sp; 583 err = 0; 584 si_cachemiss++; 585 if ((acldatalen + fs->fs_bsize) > ufsvfsp->vfs_maxacl) 586 ufsvfsp->vfs_maxacl = acldatalen + fs->fs_bsize; 587 alldone: 588 /* 589 * Common exit point. Mark shadow inode as ISTALE 590 * if we detect an internal inconsistency, to 591 * prevent stray inodes appearing in the cache. 592 */ 593 if (err) { 594 rw_enter(&sip->i_contents, RW_READER); 595 mutex_enter(&sip->i_tlock); 596 sip->i_flag |= ISTALE; 597 mutex_exit(&sip->i_tlock); 598 rw_exit(&sip->i_contents); 599 } 600 VN_RELE(ITOV(sip)); 601 602 /* 603 * Cleanup of data structures allocated 604 * on the fly. 605 */ 606 if (acldata) 607 kmem_free(acldata, acldatalen); 608 609 if (vsecattr.vsa_aclentp) 610 kmem_free(vsecattr.vsa_aclentp, 611 vsecattr.vsa_aclcnt * sizeof (aclent_t)); 612 if (vsecattr.vsa_dfaclentp) 613 kmem_free(vsecattr.vsa_dfaclentp, 614 vsecattr.vsa_dfaclcnt * sizeof (aclent_t)); 615 return (err); 616 } 617 618 /* 619 * Check the inode's ACL's to see if this mode of access is 620 * allowed; return 0 if allowed, EACCES if not. 621 * 622 * We follow the procedure defined in Sec. 3.3.5, ACL Access 623 * Check Algorithm, of the POSIX 1003.6 Draft Standard. 624 */ 625 /* 626 * ip parent inode 627 * mode mode of access read, write, execute/examine 628 * cr credentials 629 */ 630 int 631 ufs_acl_access(struct inode *ip, int mode, cred_t *cr) 632 { 633 ufs_ic_acl_t *acl; 634 int ismask, mask = 0; 635 int gperm = 0; 636 int ngroup = 0; 637 si_t *sp = NULL; 638 uid_t uid = crgetuid(cr); 639 uid_t owner; 640 641 ASSERT(ip->i_ufs_acl != NULL); 642 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 643 644 sp = ip->i_ufs_acl; 645 646 ismask = sp->aclass.acl_ismask ? 647 sp->aclass.acl_ismask : 0; 648 649 if (ismask) 650 mask = sp->aclass.acl_maskbits; 651 else 652 mask = -1; 653 654 /* 655 * (1) If user owns the file, obey user mode bits 656 */ 657 owner = sp->aowner->acl_ic_who; 658 if (uid == owner) { 659 return (MODE_CHECK(owner, mode, (sp->aowner->acl_ic_perm << 6), 660 cr, ip)); 661 } 662 663 /* 664 * (2) Obey any matching ACL_USER entry 665 */ 666 if (sp->ausers) 667 for (acl = sp->ausers; acl != NULL; acl = acl->acl_ic_next) { 668 if (acl->acl_ic_who == uid) { 669 return (MODE_CHECK(owner, mode, 670 (mask & acl->acl_ic_perm) << 6, cr, ip)); 671 } 672 } 673 674 /* 675 * (3) If user belongs to file's group, obey group mode bits 676 * if no ACL mask is defined; if there is an ACL mask, we look 677 * at both the group mode bits and any ACL_GROUP entries. 678 */ 679 if (groupmember((uid_t)sp->agroup->acl_ic_who, cr)) { 680 ngroup++; 681 gperm = (sp->agroup->acl_ic_perm); 682 if (!ismask) 683 return (MODE_CHECK(owner, mode, (gperm << 6), cr, ip)); 684 } 685 686 /* 687 * (4) Accumulate the permissions in matching ACL_GROUP entries 688 */ 689 if (sp->agroups) 690 for (acl = sp->agroups; acl != NULL; acl = acl->acl_ic_next) { 691 if (groupmember(acl->acl_ic_who, cr)) { 692 ngroup++; 693 gperm |= acl->acl_ic_perm; 694 } 695 } 696 697 if (ngroup != 0) 698 return (MODE_CHECK(owner, mode, ((gperm & mask) << 6), cr, ip)); 699 700 /* 701 * (5) Finally, use the "other" mode bits 702 */ 703 return (MODE_CHECK(owner, mode, sp->aother->acl_ic_perm << 6, cr, ip)); 704 } 705 706 /*ARGSUSED2*/ 707 int 708 ufs_acl_get(struct inode *ip, vsecattr_t *vsap, int flag, cred_t *cr) 709 { 710 aclent_t *aclentp; 711 712 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 713 714 /* XXX Range check, sanity check, shadow check */ 715 /* If an ACL is present, get the data from the shadow inode info */ 716 if (ip->i_ufs_acl) 717 return (aclentry2vsecattr(ip->i_ufs_acl, vsap)); 718 719 /* 720 * If no ACLs are present, fabricate one from the mode bits. 721 * This code is almost identical to fs_fab_acl(), but we 722 * already have the mode bits handy, so we'll avoid going 723 * through VOP_GETATTR() again. 724 */ 725 726 vsap->vsa_aclcnt = 0; 727 vsap->vsa_aclentp = NULL; 728 vsap->vsa_dfaclcnt = 0; /* Default ACLs are not fabricated */ 729 vsap->vsa_dfaclentp = NULL; 730 731 if (vsap->vsa_mask & (VSA_ACLCNT | VSA_ACL)) 732 vsap->vsa_aclcnt = 4; /* USER, GROUP, OTHER, and CLASS */ 733 734 if (vsap->vsa_mask & VSA_ACL) { 735 vsap->vsa_aclentp = kmem_zalloc(4 * sizeof (aclent_t), 736 KM_SLEEP); 737 if (vsap->vsa_aclentp == NULL) 738 return (ENOMEM); 739 aclentp = vsap->vsa_aclentp; 740 741 /* Owner */ 742 aclentp->a_type = USER_OBJ; 743 aclentp->a_perm = ((ushort_t)(ip->i_mode & 0700)) >> 6; 744 aclentp->a_id = ip->i_uid; /* Really undefined */ 745 aclentp++; 746 747 /* Group */ 748 aclentp->a_type = GROUP_OBJ; 749 aclentp->a_perm = ((ushort_t)(ip->i_mode & 0070)) >> 3; 750 aclentp->a_id = ip->i_gid; /* Really undefined */ 751 aclentp++; 752 753 /* Other */ 754 aclentp->a_type = OTHER_OBJ; 755 aclentp->a_perm = ip->i_mode & 0007; 756 aclentp->a_id = 0; /* Really undefined */ 757 aclentp++; 758 759 /* Class */ 760 aclentp->a_type = CLASS_OBJ; 761 aclentp->a_perm = ((ushort_t)(ip->i_mode & 0070)) >> 3; 762 aclentp->a_id = 0; /* Really undefined */ 763 ksort((caddr_t)vsap->vsa_aclentp, vsap->vsa_aclcnt, 764 sizeof (aclent_t), cmp2acls); 765 } 766 767 return (0); 768 } 769 770 /*ARGSUSED2*/ 771 int 772 ufs_acl_set(struct inode *ip, vsecattr_t *vsap, int flag, cred_t *cr) 773 { 774 si_t *sp; 775 int err; 776 777 ASSERT(RW_WRITE_HELD(&ip->i_contents)); 778 779 if (!CHECK_ACL_ALLOWED(ip->i_mode & IFMT)) 780 return (ENOSYS); 781 782 /* 783 * only the owner of the file or privileged users can change the ACLs 784 */ 785 if (secpolicy_vnode_setdac(cr, ip->i_uid) != 0) 786 return (EPERM); 787 788 /* Convert from vsecattr struct to ufs_acl_entry struct */ 789 if ((err = vsecattr2aclentry(vsap, &sp)) != 0) 790 return (err); 791 sp->s_dev = ip->i_dev; 792 793 /* 794 * Make the user & group objs in the acl list follow what's 795 * in the inode. 796 */ 797 #ifdef DEBUG 798 if (vsap->vsa_mask == VSA_ACL) { 799 ASSERT(sp->aowner); 800 ASSERT(sp->agroup); 801 ASSERT(sp->aother); 802 } 803 #endif /* DEBUG */ 804 805 if (sp->aowner) 806 sp->aowner->acl_ic_who = ip->i_uid; 807 if (sp->agroup) 808 sp->agroup->acl_ic_who = ip->i_gid; 809 810 /* 811 * Write and cache the new acl list 812 */ 813 err = ufs_si_store(ip, sp, 1, cr); 814 815 return (err); 816 } 817 818 /* 819 * XXX Scan sorted array of acl's, checking for: 820 * 1) Any duplicate/conflicting entries (same type and id) 821 * 2) More than 1 of USER_OBJ, GROUP_OBJ, OTHER_OBJ, CLASS_OBJ 822 * 3) More than 1 of DEF_USER_OBJ, DEF_GROUP_OBJ, DEF_OTHER_OBJ, DEF_CLASS_OBJ 823 * 824 * Parameters: 825 * aclentp - ptr to sorted list of acl entries. 826 * nentries - # acl entries on the list 827 * flag - Bitmap (ACL_CHECK and/or DEF_ACL_CHECK) indicating whether the 828 * list contains regular acls, default acls, or both. 829 * 830 * Returns: 0 - Success 831 * EINVAL - Invalid list (dups or multiple entries of type USER_OBJ, etc) 832 */ 833 static int 834 acl_validate(aclent_t *aclentp, int nentries, int flag) 835 { 836 int i; 837 int nuser_objs = 0; 838 int ngroup_objs = 0; 839 int nother_objs = 0; 840 int nclass_objs = 0; 841 int ndef_user_objs = 0; 842 int ndef_group_objs = 0; 843 int ndef_other_objs = 0; 844 int ndef_class_objs = 0; 845 int nusers = 0; 846 int ngroups = 0; 847 int ndef_users = 0; 848 int ndef_groups = 0; 849 int numdefs = 0; 850 851 /* Null list or list of one */ 852 if (aclentp == NULL) 853 return (0); 854 855 if (nentries <= 0) 856 return (EINVAL); 857 858 for (i = 1; i < nentries; i++) { 859 if (((aclentp[i - 1].a_type == aclentp[i].a_type) && 860 (aclentp[i - 1].a_id == aclentp[i].a_id)) || 861 (aclentp[i - 1].a_perm > 07)) { 862 return (EINVAL); 863 } 864 } 865 866 if (flag == 0 || (flag != ACL_CHECK && flag != DEF_ACL_CHECK)) 867 return (EINVAL); 868 869 /* Count types */ 870 for (i = 0; i < nentries; i++) { 871 switch (aclentp[i].a_type) { 872 case USER_OBJ: /* Owner */ 873 nuser_objs++; 874 break; 875 case GROUP_OBJ: /* Group */ 876 ngroup_objs++; 877 break; 878 case OTHER_OBJ: /* Other */ 879 nother_objs++; 880 break; 881 case CLASS_OBJ: /* Mask */ 882 nclass_objs++; 883 break; 884 case DEF_USER_OBJ: /* Default Owner */ 885 ndef_user_objs++; 886 break; 887 case DEF_GROUP_OBJ: /* Default Group */ 888 ndef_group_objs++; 889 break; 890 case DEF_OTHER_OBJ: /* Default Other */ 891 ndef_other_objs++; 892 break; 893 case DEF_CLASS_OBJ: /* Default Mask */ 894 ndef_class_objs++; 895 break; 896 case USER: /* Users */ 897 nusers++; 898 break; 899 case GROUP: /* Groups */ 900 ngroups++; 901 break; 902 case DEF_USER: /* Default Users */ 903 ndef_users++; 904 break; 905 case DEF_GROUP: /* Default Groups */ 906 ndef_groups++; 907 break; 908 default: /* Unknown type */ 909 return (EINVAL); 910 } 911 } 912 913 /* 914 * For normal acl's, we require there be one (and only one) 915 * USER_OBJ, GROUP_OBJ and OTHER_OBJ. There is either zero 916 * or one CLASS_OBJ. 917 */ 918 if (flag & ACL_CHECK) { 919 if (nuser_objs != 1 || ngroup_objs != 1 || 920 nother_objs != 1 || nclass_objs > 1) { 921 return (EINVAL); 922 } 923 /* 924 * If there are ANY group acls, there MUST be a 925 * class_obj(mask) acl (1003.6/D12 p. 29 lines 75-80). 926 */ 927 if (ngroups && !nclass_objs) { 928 return (EINVAL); 929 } 930 if (nuser_objs + ngroup_objs + nother_objs + nclass_objs + 931 ngroups + nusers > MAX_ACL_ENTRIES) 932 return (EINVAL); 933 } 934 935 /* 936 * For default acl's, we require that there be either one (and only one) 937 * DEF_USER_OBJ, DEF_GROUP_OBJ and DEF_OTHER_OBJ 938 * or there be none of them. 939 */ 940 if (flag & DEF_ACL_CHECK) { 941 if (ndef_other_objs > 1 || ndef_user_objs > 1 || 942 ndef_group_objs > 1 || ndef_class_objs > 1) { 943 return (EINVAL); 944 } 945 946 numdefs = ndef_other_objs + ndef_user_objs + ndef_group_objs; 947 948 if (numdefs != 0 && numdefs != 3) { 949 return (EINVAL); 950 } 951 /* 952 * If there are ANY def_group acls, there MUST be a 953 * def_class_obj(mask) acl (1003.6/D12 P. 29 lines 75-80). 954 * XXX(jimh) This is inferred. 955 */ 956 if (ndef_groups && !ndef_class_objs) { 957 return (EINVAL); 958 } 959 if ((ndef_users || ndef_groups) && 960 ((numdefs != 3) && !ndef_class_objs)) { 961 return (EINVAL); 962 } 963 if (ndef_user_objs + ndef_group_objs + ndef_other_objs + 964 ndef_class_objs + ndef_users + ndef_groups > 965 MAX_ACL_ENTRIES) 966 return (EINVAL); 967 } 968 return (0); 969 } 970 971 static int 972 formacl(ufs_ic_acl_t **aclpp, aclent_t *aclentp) 973 { 974 ufs_ic_acl_t *uaclp; 975 976 uaclp = kmem_alloc(sizeof (ufs_ic_acl_t), KM_SLEEP); 977 uaclp->acl_ic_perm = aclentp->a_perm; 978 uaclp->acl_ic_who = aclentp->a_id; 979 uaclp->acl_ic_next = *aclpp; 980 *aclpp = uaclp; 981 return (0); 982 } 983 984 /* 985 * XXX - Make more efficient 986 * Convert from the vsecattr struct, used by the VOP interface, to 987 * the ufs_acl_entry struct used for in-core storage of acl's. 988 * 989 * Parameters: 990 * vsap - Ptr to array of security attributes. 991 * spp - Ptr to ptr to si struct for the results 992 * 993 * Returns: 0 - Success 994 * N - From errno.h 995 */ 996 static int 997 vsecattr2aclentry(vsecattr_t *vsap, si_t **spp) 998 { 999 aclent_t *aclentp, *aclp; 1000 si_t *sp; 1001 int err; 1002 int i; 1003 1004 /* Sort & validate the lists on the vsap */ 1005 ksort((caddr_t)vsap->vsa_aclentp, vsap->vsa_aclcnt, 1006 sizeof (aclent_t), cmp2acls); 1007 ksort((caddr_t)vsap->vsa_dfaclentp, vsap->vsa_dfaclcnt, 1008 sizeof (aclent_t), cmp2acls); 1009 if ((err = acl_validate(vsap->vsa_aclentp, 1010 vsap->vsa_aclcnt, ACL_CHECK)) != 0) 1011 return (err); 1012 if ((err = acl_validate(vsap->vsa_dfaclentp, 1013 vsap->vsa_dfaclcnt, DEF_ACL_CHECK)) != 0) 1014 return (err); 1015 1016 /* Create new si struct and hang acl's off it */ 1017 sp = kmem_zalloc(sizeof (si_t), KM_SLEEP); 1018 rw_init(&sp->s_lock, NULL, RW_DEFAULT, NULL); 1019 1020 /* Process acl list */ 1021 aclp = (aclent_t *)vsap->vsa_aclentp; 1022 aclentp = aclp + vsap->vsa_aclcnt - 1; 1023 for (i = 0; i < vsap->vsa_aclcnt; i++) { 1024 switch (aclentp->a_type) { 1025 case USER_OBJ: /* Owner */ 1026 if (err = formacl(&sp->aowner, aclentp)) 1027 goto error; 1028 break; 1029 case GROUP_OBJ: /* Group */ 1030 if (err = formacl(&sp->agroup, aclentp)) 1031 goto error; 1032 break; 1033 case OTHER_OBJ: /* Other */ 1034 if (err = formacl(&sp->aother, aclentp)) 1035 goto error; 1036 break; 1037 case USER: 1038 if (err = formacl(&sp->ausers, aclentp)) 1039 goto error; 1040 break; 1041 case CLASS_OBJ: /* Mask */ 1042 sp->aclass.acl_ismask = 1; 1043 sp->aclass.acl_maskbits = aclentp->a_perm; 1044 break; 1045 case GROUP: 1046 if (err = formacl(&sp->agroups, aclentp)) 1047 goto error; 1048 break; 1049 default: 1050 break; 1051 } 1052 aclentp--; 1053 } 1054 1055 /* Process default acl list */ 1056 aclp = (aclent_t *)vsap->vsa_dfaclentp; 1057 aclentp = aclp + vsap->vsa_dfaclcnt - 1; 1058 for (i = 0; i < vsap->vsa_dfaclcnt; i++) { 1059 switch (aclentp->a_type) { 1060 case DEF_USER_OBJ: /* Default Owner */ 1061 if (err = formacl(&sp->downer, aclentp)) 1062 goto error; 1063 break; 1064 case DEF_GROUP_OBJ: /* Default Group */ 1065 if (err = formacl(&sp->dgroup, aclentp)) 1066 goto error; 1067 break; 1068 case DEF_OTHER_OBJ: /* Default Other */ 1069 if (err = formacl(&sp->dother, aclentp)) 1070 goto error; 1071 break; 1072 case DEF_USER: 1073 if (err = formacl(&sp->dusers, aclentp)) 1074 goto error; 1075 break; 1076 case DEF_CLASS_OBJ: /* Default Mask */ 1077 sp->dclass.acl_ismask = 1; 1078 sp->dclass.acl_maskbits = aclentp->a_perm; 1079 break; 1080 case DEF_GROUP: 1081 if (err = formacl(&sp->dgroups, aclentp)) 1082 goto error; 1083 break; 1084 default: 1085 break; 1086 } 1087 aclentp--; 1088 } 1089 *spp = sp; 1090 return (0); 1091 1092 error: 1093 ufs_si_free_mem(sp); 1094 return (err); 1095 } 1096 1097 void 1098 formvsec(int obj_type, ufs_ic_acl_t *aclp, aclent_t **aclentpp) 1099 { 1100 for (; aclp; aclp = aclp->acl_ic_next) { 1101 (*aclentpp)->a_type = obj_type; 1102 (*aclentpp)->a_perm = aclp->acl_ic_perm; 1103 (*aclentpp)->a_id = aclp->acl_ic_who; 1104 (*aclentpp)++; 1105 } 1106 } 1107 1108 /* 1109 * XXX - Make more efficient 1110 * Convert from the ufs_acl_entry struct used for in-core storage of acl's 1111 * to the vsecattr struct, used by the VOP interface. 1112 * 1113 * Parameters: 1114 * sp - Ptr to si struct with the acls 1115 * vsap - Ptr to a vsecattr struct which will take the results. 1116 * 1117 * Returns: 0 - Success 1118 * N - From errno table 1119 */ 1120 static int 1121 aclentry2vsecattr(si_t *sp, vsecattr_t *vsap) 1122 { 1123 aclent_t *aclentp; 1124 int numacls = 0; 1125 int err; 1126 1127 vsap->vsa_aclentp = vsap->vsa_dfaclentp = NULL; 1128 1129 numacls = acl_count(sp->aowner) + 1130 acl_count(sp->agroup) + 1131 acl_count(sp->aother) + 1132 acl_count(sp->ausers) + 1133 acl_count(sp->agroups); 1134 if (sp->aclass.acl_ismask) 1135 numacls++; 1136 1137 if (vsap->vsa_mask & (VSA_ACLCNT | VSA_ACL)) 1138 vsap->vsa_aclcnt = numacls; 1139 1140 if (numacls == 0) 1141 goto do_defaults; 1142 1143 if (vsap->vsa_mask & VSA_ACL) { 1144 vsap->vsa_aclentp = kmem_zalloc(numacls * sizeof (aclent_t), 1145 KM_SLEEP); 1146 aclentp = vsap->vsa_aclentp; 1147 1148 formvsec(USER_OBJ, sp->aowner, &aclentp); 1149 formvsec(USER, sp->ausers, &aclentp); 1150 formvsec(GROUP_OBJ, sp->agroup, &aclentp); 1151 formvsec(GROUP, sp->agroups, &aclentp); 1152 formvsec(OTHER_OBJ, sp->aother, &aclentp); 1153 1154 if (sp->aclass.acl_ismask) { 1155 aclentp->a_type = CLASS_OBJ; /* Mask */ 1156 aclentp->a_perm = sp->aclass.acl_maskbits; 1157 aclentp->a_id = 0; 1158 aclentp++; 1159 } 1160 1161 /* Sort the acl list */ 1162 ksort((caddr_t)vsap->vsa_aclentp, vsap->vsa_aclcnt, 1163 sizeof (aclent_t), cmp2acls); 1164 /* Check the acl list */ 1165 if ((err = acl_validate(vsap->vsa_aclentp, 1166 vsap->vsa_aclcnt, ACL_CHECK)) != 0) { 1167 kmem_free(vsap->vsa_aclentp, 1168 numacls * sizeof (aclent_t)); 1169 vsap->vsa_aclentp = NULL; 1170 return (err); 1171 } 1172 1173 } 1174 do_defaults: 1175 /* Process Defaults */ 1176 1177 numacls = acl_count(sp->downer) + 1178 acl_count(sp->dgroup) + 1179 acl_count(sp->dother) + 1180 acl_count(sp->dusers) + 1181 acl_count(sp->dgroups); 1182 if (sp->dclass.acl_ismask) 1183 numacls++; 1184 1185 if (vsap->vsa_mask & (VSA_DFACLCNT | VSA_DFACL)) 1186 vsap->vsa_dfaclcnt = numacls; 1187 1188 if (numacls == 0) 1189 goto do_others; 1190 1191 if (vsap->vsa_mask & VSA_DFACL) { 1192 vsap->vsa_dfaclentp = 1193 kmem_zalloc(numacls * sizeof (aclent_t), KM_SLEEP); 1194 aclentp = vsap->vsa_dfaclentp; 1195 formvsec(DEF_USER_OBJ, sp->downer, &aclentp); 1196 formvsec(DEF_USER, sp->dusers, &aclentp); 1197 formvsec(DEF_GROUP_OBJ, sp->dgroup, &aclentp); 1198 formvsec(DEF_GROUP, sp->dgroups, &aclentp); 1199 formvsec(DEF_OTHER_OBJ, sp->dother, &aclentp); 1200 1201 if (sp->dclass.acl_ismask) { 1202 aclentp->a_type = DEF_CLASS_OBJ; /* Mask */ 1203 aclentp->a_perm = sp->dclass.acl_maskbits; 1204 aclentp->a_id = 0; 1205 aclentp++; 1206 } 1207 1208 /* Sort the default acl list */ 1209 ksort((caddr_t)vsap->vsa_dfaclentp, vsap->vsa_dfaclcnt, 1210 sizeof (aclent_t), cmp2acls); 1211 if ((err = acl_validate(vsap->vsa_dfaclentp, 1212 vsap->vsa_dfaclcnt, DEF_ACL_CHECK)) != 0) { 1213 if (vsap->vsa_aclentp != NULL) 1214 kmem_free(vsap->vsa_aclentp, 1215 vsap->vsa_aclcnt * sizeof (aclent_t)); 1216 kmem_free(vsap->vsa_dfaclentp, 1217 vsap->vsa_dfaclcnt * sizeof (aclent_t)); 1218 vsap->vsa_aclentp = vsap->vsa_dfaclentp = NULL; 1219 return (err); 1220 } 1221 } 1222 1223 do_others: 1224 return (0); 1225 } 1226 1227 static void 1228 acl_free(ufs_ic_acl_t *aclp) 1229 { 1230 while (aclp != NULL) { 1231 ufs_ic_acl_t *nextaclp = aclp->acl_ic_next; 1232 kmem_free(aclp, sizeof (ufs_ic_acl_t)); 1233 aclp = nextaclp; 1234 } 1235 } 1236 1237 /* 1238 * ufs_si_free_mem will discard the sp, and the acl hanging off of the 1239 * sp. It is required that the sp not be locked, and not be in the 1240 * cache. 1241 * 1242 * input: pointer to sp to discard. 1243 * 1244 * return - nothing. 1245 * 1246 */ 1247 static void 1248 ufs_si_free_mem(si_t *sp) 1249 { 1250 ASSERT(!(sp->s_flags & SI_CACHED)); 1251 ASSERT(!RW_LOCK_HELD(&sp->s_lock)); 1252 /* 1253 * remove from the cache 1254 * free the acl entries 1255 */ 1256 acl_free(sp->aowner); 1257 acl_free(sp->agroup); 1258 acl_free(sp->aother); 1259 acl_free(sp->ausers); 1260 acl_free(sp->agroups); 1261 1262 acl_free(sp->downer); 1263 acl_free(sp->dgroup); 1264 acl_free(sp->dother); 1265 acl_free(sp->dusers); 1266 acl_free(sp->dgroups); 1267 1268 rw_destroy(&sp->s_lock); 1269 kmem_free(sp, sizeof (si_t)); 1270 } 1271 1272 void 1273 acl_cpy(ufs_ic_acl_t *saclp, ufs_ic_acl_t *daclp) 1274 { 1275 ufs_ic_acl_t *aclp, *prev_aclp = NULL, *aclp1; 1276 1277 if (saclp == NULL) { 1278 daclp = NULL; 1279 return; 1280 } 1281 prev_aclp = daclp; 1282 1283 for (aclp = saclp; aclp != NULL; aclp = aclp->acl_ic_next) { 1284 aclp1 = kmem_alloc(sizeof (ufs_ic_acl_t), KM_SLEEP); 1285 aclp1->acl_ic_next = NULL; 1286 aclp1->acl_ic_who = aclp->acl_ic_who; 1287 aclp1->acl_ic_perm = aclp->acl_ic_perm; 1288 prev_aclp->acl_ic_next = aclp1; 1289 prev_aclp = (ufs_ic_acl_t *)&aclp1->acl_ic_next; 1290 } 1291 } 1292 1293 /* 1294 * ufs_si_inherit takes a parent acl structure (saclp) and the inode 1295 * of the object that is inheriting an acl and returns the inode 1296 * with the acl linked to it. It also writes the acl to disk if 1297 * it is a unique inode. 1298 * 1299 * ip - pointer to inode of object inheriting the acl (contents lock) 1300 * tdp - parent inode (rw_lock and contents lock) 1301 * mode - creation modes 1302 * cr - credentials pointer 1303 */ 1304 int 1305 ufs_si_inherit(struct inode *ip, struct inode *tdp, o_mode_t mode, cred_t *cr) 1306 { 1307 si_t *tsp, *sp = tdp->i_ufs_acl; 1308 int error; 1309 o_mode_t old_modes, old_uid, old_gid; 1310 int mask; 1311 1312 ASSERT(RW_WRITE_HELD(&ip->i_contents)); 1313 ASSERT(RW_WRITE_HELD(&tdp->i_rwlock)); 1314 ASSERT(RW_WRITE_HELD(&tdp->i_contents)); 1315 1316 /* 1317 * if links/symbolic links, or other invalid acl objects are copied 1318 * or moved to a directory with a default acl do not allow inheritance 1319 * just return. 1320 */ 1321 if (!CHECK_ACL_ALLOWED(ip->i_mode & IFMT)) 1322 return (0); 1323 1324 /* lock the parent security information */ 1325 rw_enter(&sp->s_lock, RW_READER); 1326 1327 ASSERT(((tdp->i_mode & IFMT) == IFDIR) || 1328 ((tdp->i_mode & IFMT) == IFATTRDIR)); 1329 1330 mask = ((sp->downer != NULL) ? 1 : 0) | 1331 ((sp->dgroup != NULL) ? 2 : 0) | 1332 ((sp->dother != NULL) ? 4 : 0); 1333 1334 if (mask == 0) { 1335 rw_exit(&sp->s_lock); 1336 return (0); 1337 } 1338 1339 if (mask != 7) { 1340 rw_exit(&sp->s_lock); 1341 return (EINVAL); 1342 } 1343 1344 tsp = kmem_zalloc(sizeof (si_t), KM_SLEEP); 1345 rw_init(&tsp->s_lock, NULL, RW_DEFAULT, NULL); 1346 1347 /* copy the default acls */ 1348 1349 ASSERT(RW_READ_HELD(&sp->s_lock)); 1350 acl_cpy(sp->downer, (ufs_ic_acl_t *)&tsp->aowner); 1351 acl_cpy(sp->dgroup, (ufs_ic_acl_t *)&tsp->agroup); 1352 acl_cpy(sp->dother, (ufs_ic_acl_t *)&tsp->aother); 1353 acl_cpy(sp->dusers, (ufs_ic_acl_t *)&tsp->ausers); 1354 acl_cpy(sp->dgroups, (ufs_ic_acl_t *)&tsp->agroups); 1355 tsp->aclass.acl_ismask = sp->dclass.acl_ismask; 1356 tsp->aclass.acl_maskbits = sp->dclass.acl_maskbits; 1357 1358 /* 1359 * set the owner, group, and other values from the master 1360 * inode. 1361 */ 1362 1363 MODE2ACL(tsp->aowner, (mode >> 6), ip->i_uid); 1364 MODE2ACL(tsp->agroup, (mode >> 3), ip->i_gid); 1365 MODE2ACL(tsp->aother, (mode), 0); 1366 1367 if (tsp->aclass.acl_ismask) { 1368 tsp->aclass.acl_maskbits &= mode >> 3; 1369 } 1370 1371 1372 /* copy default acl if necessary */ 1373 1374 if (((ip->i_mode & IFMT) == IFDIR) || 1375 ((ip->i_mode & IFMT) == IFATTRDIR)) { 1376 acl_cpy(sp->downer, (ufs_ic_acl_t *)&tsp->downer); 1377 acl_cpy(sp->dgroup, (ufs_ic_acl_t *)&tsp->dgroup); 1378 acl_cpy(sp->dother, (ufs_ic_acl_t *)&tsp->dother); 1379 acl_cpy(sp->dusers, (ufs_ic_acl_t *)&tsp->dusers); 1380 acl_cpy(sp->dgroups, (ufs_ic_acl_t *)&tsp->dgroups); 1381 tsp->dclass.acl_ismask = sp->dclass.acl_ismask; 1382 tsp->dclass.acl_maskbits = sp->dclass.acl_maskbits; 1383 } 1384 /* 1385 * save the new 9 mode bits in the inode (ip->ic_smode) for 1386 * ufs_getattr. Be sure the mode can be recovered if the store 1387 * fails. 1388 */ 1389 old_modes = ip->i_mode; 1390 old_uid = ip->i_uid; 1391 old_gid = ip->i_gid; 1392 /* 1393 * store the acl, and get back a new security anchor if 1394 * it is a duplicate. 1395 */ 1396 rw_exit(&sp->s_lock); 1397 rw_enter(&ip->i_rwlock, RW_WRITER); 1398 1399 /* 1400 * Suppress out of inodes messages if instructed in the 1401 * tdp inode. 1402 */ 1403 ip->i_flag |= tdp->i_flag & IQUIET; 1404 1405 if ((error = ufs_si_store(ip, tsp, 0, cr)) != 0) { 1406 ip->i_mode = old_modes; 1407 ip->i_uid = old_uid; 1408 ip->i_gid = old_gid; 1409 } 1410 ip->i_flag &= ~IQUIET; 1411 rw_exit(&ip->i_rwlock); 1412 return (error); 1413 } 1414 1415 si_t * 1416 ufs_acl_cp(si_t *sp) 1417 { 1418 1419 si_t *dsp; 1420 1421 ASSERT(RW_READ_HELD(&sp->s_lock)); 1422 ASSERT(sp->s_ref && sp->s_use); 1423 1424 dsp = kmem_zalloc(sizeof (si_t), KM_SLEEP); 1425 rw_init(&dsp->s_lock, NULL, RW_DEFAULT, NULL); 1426 1427 acl_cpy(sp->aowner, (ufs_ic_acl_t *)&dsp->aowner); 1428 acl_cpy(sp->agroup, (ufs_ic_acl_t *)&dsp->agroup); 1429 acl_cpy(sp->aother, (ufs_ic_acl_t *)&dsp->aother); 1430 acl_cpy(sp->ausers, (ufs_ic_acl_t *)&dsp->ausers); 1431 acl_cpy(sp->agroups, (ufs_ic_acl_t *)&dsp->agroups); 1432 1433 dsp->aclass.acl_ismask = sp->aclass.acl_ismask; 1434 dsp->aclass.acl_maskbits = sp->aclass.acl_maskbits; 1435 1436 acl_cpy(sp->downer, (ufs_ic_acl_t *)&dsp->downer); 1437 acl_cpy(sp->dgroup, (ufs_ic_acl_t *)&dsp->dgroup); 1438 acl_cpy(sp->dother, (ufs_ic_acl_t *)&dsp->dother); 1439 acl_cpy(sp->dusers, (ufs_ic_acl_t *)&dsp->dusers); 1440 acl_cpy(sp->dgroups, (ufs_ic_acl_t *)&dsp->dgroups); 1441 1442 dsp->dclass.acl_ismask = sp->dclass.acl_ismask; 1443 dsp->dclass.acl_maskbits = sp->dclass.acl_maskbits; 1444 1445 return (dsp); 1446 1447 } 1448 1449 int 1450 ufs_acl_setattr(struct inode *ip, struct vattr *vap, cred_t *cr) 1451 { 1452 1453 si_t *sp; 1454 int mask = vap->va_mask; 1455 int error = 0; 1456 1457 ASSERT(RW_WRITE_HELD(&ip->i_contents)); 1458 1459 if (!(mask & (AT_MODE|AT_UID|AT_GID))) 1460 return (0); 1461 1462 /* 1463 * if no regular acl's, nothing to do, so let's get out 1464 */ 1465 if (!(ip->i_ufs_acl) || !(ip->i_ufs_acl->aowner)) 1466 return (0); 1467 1468 rw_enter(&ip->i_ufs_acl->s_lock, RW_READER); 1469 sp = ufs_acl_cp(ip->i_ufs_acl); 1470 ASSERT(sp != ip->i_ufs_acl); 1471 1472 /* 1473 * set the mask to the group permissions if a mask entry 1474 * exists. Otherwise, set the group obj bits to the group 1475 * permissions. Since non-trivial ACLs always have a mask, 1476 * and the mask is the final arbiter of group permissions, 1477 * setting the mask has the effect of changing the effective 1478 * group permissions, even if the group_obj permissions in 1479 * the ACL aren't changed. Posix P1003.1e states that when 1480 * an ACL mask exists, chmod(2) must set the acl mask (NOT the 1481 * group_obj permissions) to the requested group permissions. 1482 */ 1483 if (mask & AT_MODE) { 1484 sp->aowner->acl_ic_perm = (o_mode_t)(ip->i_mode & 0700) >> 6; 1485 if (sp->aclass.acl_ismask) 1486 sp->aclass.acl_maskbits = 1487 (o_mode_t)(ip->i_mode & 070) >> 3; 1488 else 1489 sp->agroup->acl_ic_perm = 1490 (o_mode_t)(ip->i_mode & 070) >> 3; 1491 sp->aother->acl_ic_perm = (o_mode_t)(ip->i_mode & 07); 1492 } 1493 1494 if (mask & AT_UID) { 1495 /* Caller has verified our privileges */ 1496 sp->aowner->acl_ic_who = ip->i_uid; 1497 } 1498 1499 if (mask & AT_GID) { 1500 sp->agroup->acl_ic_who = ip->i_gid; 1501 } 1502 1503 rw_exit(&ip->i_ufs_acl->s_lock); 1504 error = ufs_si_store(ip, sp, 0, cr); 1505 return (error); 1506 } 1507 1508 static int 1509 acl_count(ufs_ic_acl_t *p) 1510 { 1511 ufs_ic_acl_t *acl; 1512 int count; 1513 1514 for (count = 0, acl = p; acl; acl = acl->acl_ic_next, count++) 1515 ; 1516 return (count); 1517 } 1518 1519 /* 1520 * Takes as input a security structure and generates a buffer 1521 * with fsd's in a form which be written to the shadow inode. 1522 */ 1523 static int 1524 ufs_sectobuf(si_t *sp, caddr_t *buf, size_t *len) 1525 { 1526 size_t acl_size; 1527 size_t def_acl_size; 1528 caddr_t buffer; 1529 struct ufs_fsd *fsdp; 1530 ufs_acl_t *bufaclp; 1531 1532 /* 1533 * Calc size of buffer to hold all the acls 1534 */ 1535 acl_size = acl_count(sp->aowner) + /* owner */ 1536 acl_count(sp->agroup) + /* owner group */ 1537 acl_count(sp->aother) + /* owner other */ 1538 acl_count(sp->ausers) + /* acl list */ 1539 acl_count(sp->agroups); /* group alcs */ 1540 if (sp->aclass.acl_ismask) 1541 acl_size++; 1542 1543 /* Convert to bytes */ 1544 acl_size *= sizeof (ufs_acl_t); 1545 1546 /* Add fsd header */ 1547 if (acl_size) 1548 acl_size += 2 * sizeof (int); 1549 1550 /* 1551 * Calc size of buffer to hold all the default acls 1552 */ 1553 def_acl_size = 1554 acl_count(sp->downer) + /* def owner */ 1555 acl_count(sp->dgroup) + /* def owner group */ 1556 acl_count(sp->dother) + /* def owner other */ 1557 acl_count(sp->dusers) + /* def users */ 1558 acl_count(sp->dgroups); /* def group acls */ 1559 if (sp->dclass.acl_ismask) 1560 def_acl_size++; 1561 1562 /* 1563 * Convert to bytes 1564 */ 1565 def_acl_size *= sizeof (ufs_acl_t); 1566 1567 /* 1568 * Add fsd header 1569 */ 1570 if (def_acl_size) 1571 def_acl_size += 2 * sizeof (int); 1572 1573 if (acl_size + def_acl_size == 0) 1574 return (0); 1575 1576 buffer = kmem_zalloc((acl_size + def_acl_size), KM_SLEEP); 1577 bufaclp = (ufs_acl_t *)buffer; 1578 1579 if (acl_size == 0) 1580 goto wrtdefs; 1581 1582 /* create fsd and copy acls */ 1583 fsdp = (struct ufs_fsd *)bufaclp; 1584 fsdp->fsd_type = FSD_ACL; 1585 bufaclp = (ufs_acl_t *)&fsdp->fsd_data[0]; 1586 1587 ACL_MOVE(sp->aowner, USER_OBJ, bufaclp); 1588 ACL_MOVE(sp->agroup, GROUP_OBJ, bufaclp); 1589 ACL_MOVE(sp->aother, OTHER_OBJ, bufaclp); 1590 ACL_MOVE(sp->ausers, USER, bufaclp); 1591 ACL_MOVE(sp->agroups, GROUP, bufaclp); 1592 1593 if (sp->aclass.acl_ismask) { 1594 bufaclp->acl_tag = CLASS_OBJ; 1595 bufaclp->acl_who = (uid_t)sp->aclass.acl_ismask; 1596 bufaclp->acl_perm = (o_mode_t)sp->aclass.acl_maskbits; 1597 bufaclp++; 1598 } 1599 ASSERT(acl_size <= INT_MAX); 1600 fsdp->fsd_size = (int)acl_size; 1601 1602 wrtdefs: 1603 if (def_acl_size == 0) 1604 goto alldone; 1605 1606 /* if defaults exist then create fsd and copy default acls */ 1607 fsdp = (struct ufs_fsd *)bufaclp; 1608 fsdp->fsd_type = FSD_DFACL; 1609 bufaclp = (ufs_acl_t *)&fsdp->fsd_data[0]; 1610 1611 ACL_MOVE(sp->downer, DEF_USER_OBJ, bufaclp); 1612 ACL_MOVE(sp->dgroup, DEF_GROUP_OBJ, bufaclp); 1613 ACL_MOVE(sp->dother, DEF_OTHER_OBJ, bufaclp); 1614 ACL_MOVE(sp->dusers, DEF_USER, bufaclp); 1615 ACL_MOVE(sp->dgroups, DEF_GROUP, bufaclp); 1616 if (sp->dclass.acl_ismask) { 1617 bufaclp->acl_tag = DEF_CLASS_OBJ; 1618 bufaclp->acl_who = (uid_t)sp->dclass.acl_ismask; 1619 bufaclp->acl_perm = (o_mode_t)sp->dclass.acl_maskbits; 1620 bufaclp++; 1621 } 1622 ASSERT(def_acl_size <= INT_MAX); 1623 fsdp->fsd_size = (int)def_acl_size; 1624 1625 alldone: 1626 *buf = buffer; 1627 *len = acl_size + def_acl_size; 1628 1629 return (0); 1630 } 1631 1632 /* 1633 * free a shadow inode on disk and in memory 1634 */ 1635 int 1636 ufs_si_free(si_t *sp, struct vfs *vfsp, cred_t *cr) 1637 { 1638 struct inode *sip; 1639 int shadow; 1640 int err = 0; 1641 int refcnt; 1642 int signature; 1643 1644 ASSERT(vfsp); 1645 ASSERT(sp); 1646 1647 rw_enter(&sp->s_lock, RW_READER); 1648 ASSERT(sp->s_shadow <= INT_MAX); 1649 shadow = (int)sp->s_shadow; 1650 ASSERT(sp->s_ref); 1651 rw_exit(&sp->s_lock); 1652 1653 /* 1654 * Decrement link count on the shadow inode, 1655 * and decrement reference count on the sip. 1656 */ 1657 if ((err = ufs_iget_alloced(vfsp, shadow, &sip, cr)) == 0) { 1658 rw_enter(&sip->i_contents, RW_WRITER); 1659 rw_enter(&sp->s_lock, RW_WRITER); 1660 ASSERT(sp->s_shadow == shadow); 1661 ASSERT(sip->i_dquot == 0); 1662 /* Decrement link count */ 1663 ASSERT(sip->i_nlink > 0); 1664 /* 1665 * bug #1264710 assertion failure below 1666 */ 1667 sp->s_use = --sip->i_nlink; 1668 ufs_setreclaim(sip); 1669 TRANS_INODE(sip->i_ufsvfs, sip); 1670 sip->i_flag |= ICHG | IMOD; 1671 sip->i_seq++; 1672 ITIMES_NOLOCK(sip); 1673 /* Dec ref counts on si referenced by this ip */ 1674 refcnt = --sp->s_ref; 1675 signature = sp->s_signature; 1676 ASSERT(sp->s_ref >= 0 && sp->s_ref <= sp->s_use); 1677 /* 1678 * Release s_lock before calling VN_RELE 1679 * (which may want to acquire i_contents). 1680 */ 1681 rw_exit(&sp->s_lock); 1682 rw_exit(&sip->i_contents); 1683 VN_RELE(ITOV(sip)); 1684 } else { 1685 rw_enter(&sp->s_lock, RW_WRITER); 1686 /* Dec ref counts on si referenced by this ip */ 1687 refcnt = --sp->s_ref; 1688 signature = sp->s_signature; 1689 ASSERT(sp->s_ref >= 0 && sp->s_ref <= sp->s_use); 1690 rw_exit(&sp->s_lock); 1691 } 1692 1693 if (refcnt == 0) 1694 si_cache_del(sp, signature); 1695 return (err); 1696 } 1697 1698 /* 1699 * Seach the si cache for an si structure by inode #. 1700 * Returns a locked si structure. 1701 * 1702 * Parameters: 1703 * ip - Ptr to an inode on this fs 1704 * spp - Ptr to ptr to si struct for the results, if found. 1705 * 1706 * Returns: 0 - Success (results in spp) 1707 * 1 - Failure (spp undefined) 1708 */ 1709 static int 1710 si_cachei_get(struct inode *ip, si_t **spp) 1711 { 1712 si_t *sp; 1713 1714 rw_enter(&si_cache_lock, RW_READER); 1715 loop: 1716 for (sp = si_cachei[SI_HASH(ip->i_shadow)]; sp; sp = sp->s_forw) 1717 if (sp->s_shadow == ip->i_shadow && sp->s_dev == ip->i_dev) 1718 break; 1719 1720 if (sp == NULL) { 1721 /* Not in cache */ 1722 rw_exit(&si_cache_lock); 1723 return (1); 1724 } 1725 /* Found it */ 1726 rw_enter(&sp->s_lock, RW_WRITER); 1727 alldone: 1728 rw_exit(&si_cache_lock); 1729 *spp = sp; 1730 return (0); 1731 } 1732 1733 /* 1734 * Seach the si cache by si structure (ie duplicate of the one passed in). 1735 * In order for a match the signatures must be the same and 1736 * the devices must be the same, the acls must match and 1737 * link count of the cached shadow must be less than the 1738 * size of ic_nlink - 1. MAXLINK - 1 is used to allow the count 1739 * to be incremented one more time by the caller. 1740 * Returns a locked si structure. 1741 * 1742 * Parameters: 1743 * ip - Ptr to an inode on this fs 1744 * spi - Ptr to si the struct we're searching the cache for. 1745 * spp - Ptr to ptr to si struct for the results, if found. 1746 * 1747 * Returns: 0 - Success (results in spp) 1748 * 1 - Failure (spp undefined) 1749 */ 1750 static int 1751 si_cachea_get(struct inode *ip, si_t *spi, si_t **spp) 1752 { 1753 si_t *sp; 1754 1755 spi->s_dev = ip->i_dev; 1756 spi->s_signature = si_signature(spi); 1757 rw_enter(&si_cache_lock, RW_READER); 1758 loop: 1759 for (sp = si_cachea[SI_HASH(spi->s_signature)]; sp; sp = sp->s_next) { 1760 if (sp->s_signature == spi->s_signature && 1761 sp->s_dev == spi->s_dev && 1762 sp->s_use > 0 && /* deleting */ 1763 sp->s_use <= (MAXLINK - 1) && /* Too many links */ 1764 !si_cmp(sp, spi)) 1765 break; 1766 } 1767 1768 if (sp == NULL) { 1769 /* Cache miss */ 1770 rw_exit(&si_cache_lock); 1771 return (1); 1772 } 1773 /* Found it */ 1774 rw_enter(&sp->s_lock, RW_WRITER); 1775 alldone: 1776 spi->s_shadow = sp->s_shadow; /* XXX For debugging */ 1777 rw_exit(&si_cache_lock); 1778 *spp = sp; 1779 return (0); 1780 } 1781 1782 /* 1783 * Place an si structure in the si cache. May cause duplicates. 1784 * 1785 * Parameters: 1786 * sp - Ptr to the si struct to add to the cache. 1787 * 1788 * Returns: Nothing (void) 1789 */ 1790 static void 1791 si_cache_put(si_t *sp) 1792 { 1793 si_t **tspp; 1794 1795 ASSERT(sp->s_fore == NULL); 1796 rw_enter(&si_cache_lock, RW_WRITER); 1797 if (!sp->s_signature) 1798 sp->s_signature = si_signature(sp); 1799 sp->s_flags |= SI_CACHED; 1800 sp->s_fore = NULL; 1801 1802 /* The 'by acl' chains */ 1803 tspp = &si_cachea[SI_HASH(sp->s_signature)]; 1804 sp->s_next = *tspp; 1805 *tspp = sp; 1806 1807 /* The 'by inode' chains */ 1808 tspp = &si_cachei[SI_HASH(sp->s_shadow)]; 1809 sp->s_forw = *tspp; 1810 *tspp = sp; 1811 1812 rw_exit(&si_cache_lock); 1813 } 1814 1815 /* 1816 * The sp passed in is a candidate for deletion from the cache. We acquire 1817 * the cache lock first, so no cache searches can be done. Then we search 1818 * for the acl in the cache, and if we find it we can lock it and check that 1819 * nobody else attached to it while we were acquiring the locks. If the acl 1820 * is in the cache and still has a zero reference count, then we remove it 1821 * from the cache and deallocate it. If the reference count is non-zero or 1822 * it is not found in the cache, then someone else attached to it or has 1823 * already freed it, so we just return. 1824 * 1825 * Parameters: 1826 * sp - Ptr to the sp struct which is the candicate for deletion. 1827 * signature - the signature for the acl for lookup in the hash table 1828 * 1829 * Returns: Nothing (void) 1830 */ 1831 void 1832 si_cache_del(si_t *sp, int signature) 1833 { 1834 si_t **tspp; 1835 int hash; 1836 int foundacl = 0; 1837 1838 /* 1839 * Unlink & free the sp from the other queues, then destroy it. 1840 * Search the 'by acl' chain first, then the 'by inode' chain 1841 * after the acl is locked. 1842 */ 1843 rw_enter(&si_cache_lock, RW_WRITER); 1844 hash = SI_HASH(signature); 1845 for (tspp = &si_cachea[hash]; *tspp; tspp = &(*tspp)->s_next) { 1846 if (*tspp == sp) { 1847 /* 1848 * Wait to grab the acl lock until after the acl has 1849 * been found in the cache. Otherwise it might try to 1850 * grab a lock that has already been destroyed, or 1851 * delete an acl that has already been freed. 1852 */ 1853 rw_enter(&sp->s_lock, RW_WRITER); 1854 /* See if someone else attached to it */ 1855 if (sp->s_ref) { 1856 rw_exit(&sp->s_lock); 1857 rw_exit(&si_cache_lock); 1858 return; 1859 } 1860 ASSERT(sp->s_fore == NULL); 1861 ASSERT(sp->s_flags & SI_CACHED); 1862 foundacl = 1; 1863 *tspp = sp->s_next; 1864 break; 1865 } 1866 } 1867 1868 /* 1869 * If the acl was not in the cache, we assume another thread has 1870 * deleted it already. This could happen if another thread attaches to 1871 * the acl and then releases it after this thread has already found the 1872 * reference count to be zero but has not yet taken the cache lock. 1873 * Both threads end up seeing a reference count of zero, and call into 1874 * si_cache_del. See bug 4244827 for details on the race condition. 1875 */ 1876 if (foundacl == 0) { 1877 rw_exit(&si_cache_lock); 1878 return; 1879 } 1880 1881 /* Now check the 'by inode' chain */ 1882 hash = SI_HASH(sp->s_shadow); 1883 for (tspp = &si_cachei[hash]; *tspp; tspp = &(*tspp)->s_forw) { 1884 if (*tspp == sp) { 1885 *tspp = sp->s_forw; 1886 break; 1887 } 1888 } 1889 1890 /* 1891 * At this point, we can unlock everything because this si 1892 * is no longer in the cache, thus cannot be attached to. 1893 */ 1894 rw_exit(&sp->s_lock); 1895 rw_exit(&si_cache_lock); 1896 sp->s_flags &= ~SI_CACHED; 1897 (void) ufs_si_free_mem(sp); 1898 } 1899 1900 /* 1901 * Alloc the hash buckets for the si cache & initialize 1902 * the unreferenced anchor and the cache lock. 1903 */ 1904 void 1905 si_cache_init(void) 1906 { 1907 rw_init(&si_cache_lock, NULL, RW_DEFAULT, NULL); 1908 1909 /* The 'by acl' headers */ 1910 si_cachea = kmem_zalloc(si_cachecnt * sizeof (si_t *), KM_SLEEP); 1911 /* The 'by inode' headers */ 1912 si_cachei = kmem_zalloc(si_cachecnt * sizeof (si_t *), KM_SLEEP); 1913 } 1914 1915 /* 1916 * aclcksum takes an acl and generates a checksum. It takes as input 1917 * the acl to start at. 1918 * 1919 * s_aclp - pointer to starting acl 1920 * 1921 * returns checksum 1922 */ 1923 static int 1924 aclcksum(ufs_ic_acl_t *s_aclp) 1925 { 1926 ufs_ic_acl_t *aclp; 1927 int signature = 0; 1928 for (aclp = s_aclp; aclp; aclp = aclp->acl_ic_next) { 1929 signature += aclp->acl_ic_perm; 1930 signature += aclp->acl_ic_who; 1931 } 1932 return (signature); 1933 } 1934 1935 /* 1936 * Generate a unique signature for an si structure. Used by the 1937 * search routine si_cachea_get() to quickly identify candidates 1938 * prior to calling si_cmp(). 1939 * Parameters: 1940 * sp - Ptr to the si struct to generate the signature for. 1941 * 1942 * Returns: A signature for the si struct (really a checksum) 1943 */ 1944 static int 1945 si_signature(si_t *sp) 1946 { 1947 int signature = sp->s_dev; 1948 1949 signature += aclcksum(sp->aowner) + aclcksum(sp->agroup) + 1950 aclcksum(sp->aother) + aclcksum(sp->ausers) + 1951 aclcksum(sp->agroups) + aclcksum(sp->downer) + 1952 aclcksum(sp->dgroup) + aclcksum(sp->dother) + 1953 aclcksum(sp->dusers) + aclcksum(sp->dgroups); 1954 if (sp->aclass.acl_ismask) 1955 signature += sp->aclass.acl_maskbits; 1956 if (sp->dclass.acl_ismask) 1957 signature += sp->dclass.acl_maskbits; 1958 1959 return (signature); 1960 } 1961 1962 /* 1963 * aclcmp compares to acls to see if they are identical. 1964 * 1965 * sp1 is source 1966 * sp2 is sourceb 1967 * 1968 * returns 0 if equal and 1 if not equal 1969 */ 1970 static int 1971 aclcmp(ufs_ic_acl_t *aclin1p, ufs_ic_acl_t *aclin2p) 1972 { 1973 ufs_ic_acl_t *aclp1; 1974 ufs_ic_acl_t *aclp2; 1975 1976 /* 1977 * if the starting pointers are equal then they are equal so 1978 * just return. 1979 */ 1980 if (aclin1p == aclin2p) 1981 return (0); 1982 /* 1983 * check element by element 1984 */ 1985 for (aclp1 = aclin1p, aclp2 = aclin2p; aclp1 && aclp2; 1986 aclp1 = aclp1->acl_ic_next, aclp2 = aclp2->acl_ic_next) { 1987 if (aclp1->acl_ic_perm != aclp2->acl_ic_perm || 1988 aclp1->acl_ic_who != aclp2->acl_ic_who) 1989 return (1); 1990 } 1991 /* 1992 * both must be zero (at the end of the acl) 1993 */ 1994 if (aclp1 || aclp2) 1995 return (1); 1996 1997 return (0); 1998 } 1999 2000 /* 2001 * Do extensive, field-by-field compare of two si structures. Returns 2002 * 0 if they are exactly identical, 1 otherwise. 2003 * 2004 * Paramters: 2005 * sp1 - Ptr to 1st si struct 2006 * sp2 - Ptr to 2nd si struct 2007 * 2008 * Returns: 2009 * 0 - Not identical 2010 * 1 - Identical 2011 */ 2012 static int 2013 si_cmp(si_t *sp1, si_t *sp2) 2014 { 2015 if (sp1->s_dev != sp2->s_dev) 2016 return (1); 2017 if (aclcmp(sp1->aowner, sp2->aowner) || 2018 aclcmp(sp1->agroup, sp2->agroup) || 2019 aclcmp(sp1->aother, sp2->aother) || 2020 aclcmp(sp1->ausers, sp2->ausers) || 2021 aclcmp(sp1->agroups, sp2->agroups) || 2022 aclcmp(sp1->downer, sp2->downer) || 2023 aclcmp(sp1->dgroup, sp2->dgroup) || 2024 aclcmp(sp1->dother, sp2->dother) || 2025 aclcmp(sp1->dusers, sp2->dusers) || 2026 aclcmp(sp1->dgroups, sp2->dgroups)) 2027 return (1); 2028 if (sp1->aclass.acl_ismask != sp2->aclass.acl_ismask) 2029 return (1); 2030 if (sp1->dclass.acl_ismask != sp2->dclass.acl_ismask) 2031 return (1); 2032 if (sp1->aclass.acl_ismask && 2033 sp1->aclass.acl_maskbits != sp2->aclass.acl_maskbits) 2034 return (1); 2035 if (sp1->dclass.acl_ismask && 2036 sp1->dclass.acl_maskbits != sp2->dclass.acl_maskbits) 2037 return (1); 2038 2039 return (0); 2040 } 2041 2042 /* 2043 * Remove all acls associated with a device. All acls must have 2044 * a reference count of zero. 2045 * 2046 * inputs: 2047 * device - device to remove from the cache 2048 * 2049 * outputs: 2050 * none 2051 */ 2052 void 2053 ufs_si_cache_flush(dev_t dev) 2054 { 2055 si_t *tsp, **tspp; 2056 int i; 2057 2058 rw_enter(&si_cache_lock, RW_WRITER); 2059 for (i = 0; i < si_cachecnt; i++) { 2060 tspp = &si_cachea[i]; 2061 while (*tspp) { 2062 if ((*tspp)->s_dev == dev) { 2063 *tspp = (*tspp)->s_next; 2064 } else { 2065 tspp = &(*tspp)->s_next; 2066 } 2067 } 2068 } 2069 for (i = 0; i < si_cachecnt; i++) { 2070 tspp = &si_cachei[i]; 2071 while (*tspp) { 2072 if ((*tspp)->s_dev == dev) { 2073 tsp = *tspp; 2074 *tspp = (*tspp)->s_forw; 2075 tsp->s_flags &= ~SI_CACHED; 2076 ufs_si_free_mem(tsp); 2077 } else { 2078 tspp = &(*tspp)->s_forw; 2079 } 2080 } 2081 } 2082 rw_exit(&si_cache_lock); 2083 } 2084 2085 /* 2086 * ufs_si_del is used to unhook a sp from a inode in memory 2087 * 2088 * ip is the inode to remove the sp from. 2089 */ 2090 void 2091 ufs_si_del(struct inode *ip) 2092 { 2093 si_t *sp = ip->i_ufs_acl; 2094 int refcnt; 2095 int signature; 2096 2097 if (sp) { 2098 rw_enter(&sp->s_lock, RW_WRITER); 2099 refcnt = --sp->s_ref; 2100 signature = sp->s_signature; 2101 ASSERT(sp->s_ref >= 0 && sp->s_ref <= sp->s_use); 2102 rw_exit(&sp->s_lock); 2103 if (refcnt == 0) 2104 si_cache_del(sp, signature); 2105 ip->i_ufs_acl = NULL; 2106 } 2107 } 2108