xref: /illumos-gate/usr/src/uts/common/fs/ufs/lufs.c (revision 9a5d73e03cd3312ddb571a748c40a63c58bd66e5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/systm.h>
27 #include <sys/types.h>
28 #include <sys/vnode.h>
29 #include <sys/buf.h>
30 #include <sys/errno.h>
31 #include <sys/fssnap_if.h>
32 #include <sys/fs/ufs_inode.h>
33 #include <sys/fs/ufs_filio.h>
34 #include <sys/sysmacros.h>
35 #include <sys/modctl.h>
36 #include <sys/fs/ufs_log.h>
37 #include <sys/fs/ufs_bio.h>
38 #include <sys/fs/ufs_fsdir.h>
39 #include <sys/debug.h>
40 #include <sys/atomic.h>
41 #include <sys/kmem.h>
42 #include <sys/inttypes.h>
43 #include <sys/vfs.h>
44 #include <sys/mntent.h>
45 #include <sys/conf.h>
46 #include <sys/param.h>
47 #include <sys/kstat.h>
48 #include <sys/cmn_err.h>
49 #include <sys/sdt.h>
50 
51 #define	LUFS_GENID_PRIME	UINT64_C(4294967291)
52 #define	LUFS_GENID_BASE		UINT64_C(311)
53 #define	LUFS_NEXT_ID(id)	((uint32_t)(((id) * LUFS_GENID_BASE) % \
54 				    LUFS_GENID_PRIME))
55 
56 extern	kmutex_t	ufs_scan_lock;
57 
58 static kmutex_t	log_mutex;	/* general purpose log layer lock */
59 kmutex_t	ml_scan;	/* Scan thread syncronization */
60 kcondvar_t	ml_scan_cv;	/* Scan thread syncronization */
61 
62 struct kmem_cache	*lufs_sv;
63 struct kmem_cache	*lufs_bp;
64 
65 /* Tunables */
66 uint_t		ldl_maxlogsize	= LDL_MAXLOGSIZE;
67 uint_t		ldl_minlogsize	= LDL_MINLOGSIZE;
68 uint32_t	ldl_divisor	= LDL_DIVISOR;
69 uint32_t	ldl_mintransfer	= LDL_MINTRANSFER;
70 uint32_t	ldl_maxtransfer	= LDL_MAXTRANSFER;
71 uint32_t	ldl_minbufsize	= LDL_MINBUFSIZE;
72 
73 /* Generation of header ids */
74 static kmutex_t	genid_mutex;
75 static uint32_t	last_loghead_ident = UINT32_C(0);
76 
77 /*
78  * Logging delta and roll statistics
79  */
80 struct delta_kstats {
81 	kstat_named_t ds_superblock_deltas;
82 	kstat_named_t ds_bitmap_deltas;
83 	kstat_named_t ds_suminfo_deltas;
84 	kstat_named_t ds_allocblk_deltas;
85 	kstat_named_t ds_ab0_deltas;
86 	kstat_named_t ds_dir_deltas;
87 	kstat_named_t ds_inode_deltas;
88 	kstat_named_t ds_fbiwrite_deltas;
89 	kstat_named_t ds_quota_deltas;
90 	kstat_named_t ds_shadow_deltas;
91 
92 	kstat_named_t ds_superblock_rolled;
93 	kstat_named_t ds_bitmap_rolled;
94 	kstat_named_t ds_suminfo_rolled;
95 	kstat_named_t ds_allocblk_rolled;
96 	kstat_named_t ds_ab0_rolled;
97 	kstat_named_t ds_dir_rolled;
98 	kstat_named_t ds_inode_rolled;
99 	kstat_named_t ds_fbiwrite_rolled;
100 	kstat_named_t ds_quota_rolled;
101 	kstat_named_t ds_shadow_rolled;
102 } dkstats = {
103 	{ "superblock_deltas",	KSTAT_DATA_UINT64 },
104 	{ "bitmap_deltas",	KSTAT_DATA_UINT64 },
105 	{ "suminfo_deltas",	KSTAT_DATA_UINT64 },
106 	{ "allocblk_deltas",	KSTAT_DATA_UINT64 },
107 	{ "ab0_deltas",		KSTAT_DATA_UINT64 },
108 	{ "dir_deltas",		KSTAT_DATA_UINT64 },
109 	{ "inode_deltas",	KSTAT_DATA_UINT64 },
110 	{ "fbiwrite_deltas",	KSTAT_DATA_UINT64 },
111 	{ "quota_deltas",	KSTAT_DATA_UINT64 },
112 	{ "shadow_deltas",	KSTAT_DATA_UINT64 },
113 
114 	{ "superblock_rolled",	KSTAT_DATA_UINT64 },
115 	{ "bitmap_rolled",	KSTAT_DATA_UINT64 },
116 	{ "suminfo_rolled",	KSTAT_DATA_UINT64 },
117 	{ "allocblk_rolled",	KSTAT_DATA_UINT64 },
118 	{ "ab0_rolled",		KSTAT_DATA_UINT64 },
119 	{ "dir_rolled",		KSTAT_DATA_UINT64 },
120 	{ "inode_rolled",	KSTAT_DATA_UINT64 },
121 	{ "fbiwrite_rolled",	KSTAT_DATA_UINT64 },
122 	{ "quota_rolled",	KSTAT_DATA_UINT64 },
123 	{ "shadow_rolled",	KSTAT_DATA_UINT64 }
124 };
125 
126 uint64_t delta_stats[DT_MAX];
127 uint64_t roll_stats[DT_MAX];
128 
129 /*
130  * General logging kstats
131  */
132 struct logstats logstats = {
133 	{ "master_reads",		KSTAT_DATA_UINT64 },
134 	{ "master_writes",		KSTAT_DATA_UINT64 },
135 	{ "log_reads_inmem",		KSTAT_DATA_UINT64 },
136 	{ "log_reads",			KSTAT_DATA_UINT64 },
137 	{ "log_writes",			KSTAT_DATA_UINT64 },
138 	{ "log_master_reads",		KSTAT_DATA_UINT64 },
139 	{ "log_roll_reads",		KSTAT_DATA_UINT64 },
140 	{ "log_roll_writes",		KSTAT_DATA_UINT64 }
141 };
142 
143 int
144 trans_not_done(struct buf *cb)
145 {
146 	sema_v(&cb->b_io);
147 	return (0);
148 }
149 
150 static void
151 trans_wait_panic(struct buf *cb)
152 {
153 	while ((cb->b_flags & B_DONE) == 0)
154 		drv_usecwait(10);
155 }
156 
157 int
158 trans_not_wait(struct buf *cb)
159 {
160 	/*
161 	 * In case of panic, busy wait for completion
162 	 */
163 	if (panicstr)
164 		trans_wait_panic(cb);
165 	else
166 		sema_p(&cb->b_io);
167 
168 	return (geterror(cb));
169 }
170 
171 int
172 trans_wait(struct buf *cb)
173 {
174 	/*
175 	 * In case of panic, busy wait for completion and run md daemon queues
176 	 */
177 	if (panicstr)
178 		trans_wait_panic(cb);
179 	return (biowait(cb));
180 }
181 
182 static void
183 setsum(int32_t *sp, int32_t *lp, int nb)
184 {
185 	int32_t csum = 0;
186 
187 	*sp = 0;
188 	nb /= sizeof (int32_t);
189 	while (nb--)
190 		csum += *lp++;
191 	*sp = csum;
192 }
193 
194 static int
195 checksum(int32_t *sp, int32_t *lp, int nb)
196 {
197 	int32_t ssum = *sp;
198 
199 	setsum(sp, lp, nb);
200 	if (ssum != *sp) {
201 		*sp = ssum;
202 		return (0);
203 	}
204 	return (1);
205 }
206 
207 void
208 lufs_unsnarf(ufsvfs_t *ufsvfsp)
209 {
210 	ml_unit_t *ul;
211 	mt_map_t *mtm;
212 
213 	ul = ufsvfsp->vfs_log;
214 	if (ul == NULL)
215 		return;
216 
217 	mtm = ul->un_logmap;
218 
219 	/*
220 	 * Wait for a pending top_issue_sync which is
221 	 * dispatched (via taskq_dispatch()) but hasnt completed yet.
222 	 */
223 
224 	mutex_enter(&mtm->mtm_lock);
225 
226 	while (mtm->mtm_taskq_sync_count != 0) {
227 		cv_wait(&mtm->mtm_cv, &mtm->mtm_lock);
228 	}
229 
230 	mutex_exit(&mtm->mtm_lock);
231 
232 	/* Roll committed transactions */
233 	logmap_roll_dev(ul);
234 
235 	/* Kill the roll thread */
236 	logmap_kill_roll(ul);
237 
238 	/* release saved alloction info */
239 	if (ul->un_ebp)
240 		kmem_free(ul->un_ebp, ul->un_nbeb);
241 
242 	/* release circular bufs */
243 	free_cirbuf(&ul->un_rdbuf);
244 	free_cirbuf(&ul->un_wrbuf);
245 
246 	/* release maps */
247 	if (ul->un_logmap)
248 		ul->un_logmap = map_put(ul->un_logmap);
249 	if (ul->un_deltamap)
250 		ul->un_deltamap = map_put(ul->un_deltamap);
251 	if (ul->un_matamap)
252 		ul->un_matamap = map_put(ul->un_matamap);
253 
254 	mutex_destroy(&ul->un_log_mutex);
255 	mutex_destroy(&ul->un_state_mutex);
256 
257 	/* release state buffer MUST BE LAST!! (contains our ondisk data) */
258 	if (ul->un_bp)
259 		brelse(ul->un_bp);
260 	kmem_free(ul, sizeof (*ul));
261 
262 	ufsvfsp->vfs_log = NULL;
263 }
264 
265 int
266 lufs_snarf(ufsvfs_t *ufsvfsp, struct fs *fs, int ronly)
267 {
268 	buf_t		*bp, *tbp;
269 	ml_unit_t	*ul;
270 	extent_block_t	*ebp;
271 	ic_extent_block_t  *nebp;
272 	size_t		nb;
273 	daddr_t		bno;	/* in disk blocks */
274 	int		i;
275 
276 	/* LINTED: warning: logical expression always true: op "||" */
277 	ASSERT(sizeof (ml_odunit_t) < DEV_BSIZE);
278 
279 	/*
280 	 * Get the allocation table
281 	 *	During a remount the superblock pointed to by the ufsvfsp
282 	 *	is out of date.  Hence the need for the ``new'' superblock
283 	 *	pointer, fs, passed in as a parameter.
284 	 */
285 	bp = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, logbtodb(fs, fs->fs_logbno),
286 	    fs->fs_bsize);
287 	if (bp->b_flags & B_ERROR) {
288 		brelse(bp);
289 		return (EIO);
290 	}
291 	ebp = (void *)bp->b_un.b_addr;
292 	if (!checksum(&ebp->chksum, (int32_t *)bp->b_un.b_addr,
293 	    fs->fs_bsize)) {
294 		brelse(bp);
295 		return (ENODEV);
296 	}
297 
298 	/*
299 	 * It is possible to get log blocks with all zeros.
300 	 * We should also check for nextents to be zero in such case.
301 	 */
302 	if (ebp->type != LUFS_EXTENTS || ebp->nextents == 0) {
303 		brelse(bp);
304 		return (EDOM);
305 	}
306 	/*
307 	 * Put allocation into memory.  This requires conversion between
308 	 * on the ondisk format of the extent (type extent_t) and the
309 	 * in-core format of the extent (type ic_extent_t).  The
310 	 * difference is the in-core form of the extent block stores
311 	 * the physical offset of the extent in disk blocks, which
312 	 * can require more than a 32-bit field.
313 	 */
314 	nb = (size_t)(sizeof (ic_extent_block_t) +
315 	    ((ebp->nextents - 1) * sizeof (ic_extent_t)));
316 	nebp = kmem_alloc(nb, KM_SLEEP);
317 	nebp->ic_nextents = ebp->nextents;
318 	nebp->ic_nbytes = ebp->nbytes;
319 	nebp->ic_nextbno = ebp->nextbno;
320 	for (i = 0; i < ebp->nextents; i++) {
321 		nebp->ic_extents[i].ic_lbno = ebp->extents[i].lbno;
322 		nebp->ic_extents[i].ic_nbno = ebp->extents[i].nbno;
323 		nebp->ic_extents[i].ic_pbno =
324 		    logbtodb(fs, ebp->extents[i].pbno);
325 	}
326 	brelse(bp);
327 
328 	/*
329 	 * Get the log state
330 	 */
331 	bno = nebp->ic_extents[0].ic_pbno;
332 	bp = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, bno, DEV_BSIZE);
333 	if (bp->b_flags & B_ERROR) {
334 		brelse(bp);
335 		bp = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, bno + 1, DEV_BSIZE);
336 		if (bp->b_flags & B_ERROR) {
337 			brelse(bp);
338 			kmem_free(nebp, nb);
339 			return (EIO);
340 		}
341 	}
342 
343 	/*
344 	 * Put ondisk struct into an anonymous buffer
345 	 *	This buffer will contain the memory for the ml_odunit struct
346 	 */
347 	tbp = ngeteblk(dbtob(LS_SECTORS));
348 	tbp->b_edev = bp->b_edev;
349 	tbp->b_dev = bp->b_dev;
350 	tbp->b_blkno = bno;
351 	bcopy(bp->b_un.b_addr, tbp->b_un.b_addr, DEV_BSIZE);
352 	bcopy(bp->b_un.b_addr, tbp->b_un.b_addr + DEV_BSIZE, DEV_BSIZE);
353 	bp->b_flags |= (B_STALE | B_AGE);
354 	brelse(bp);
355 	bp = tbp;
356 
357 	/*
358 	 * Verify the log state
359 	 *
360 	 * read/only mounts w/bad logs are allowed.  umount will
361 	 * eventually roll the bad log until the first IO error.
362 	 * fsck will then repair the file system.
363 	 *
364 	 * read/write mounts with bad logs are not allowed.
365 	 *
366 	 */
367 	ul = (ml_unit_t *)kmem_zalloc(sizeof (*ul), KM_SLEEP);
368 	bcopy(bp->b_un.b_addr, &ul->un_ondisk, sizeof (ml_odunit_t));
369 	if ((ul->un_chksum != ul->un_head_ident + ul->un_tail_ident) ||
370 	    (ul->un_version != LUFS_VERSION_LATEST) ||
371 	    (!ronly && ul->un_badlog)) {
372 		kmem_free(ul, sizeof (*ul));
373 		brelse(bp);
374 		kmem_free(nebp, nb);
375 		return (EIO);
376 	}
377 	/*
378 	 * Initialize the incore-only fields
379 	 */
380 	if (ronly)
381 		ul->un_flags |= LDL_NOROLL;
382 	ul->un_bp = bp;
383 	ul->un_ufsvfs = ufsvfsp;
384 	ul->un_dev = ufsvfsp->vfs_dev;
385 	ul->un_ebp = nebp;
386 	ul->un_nbeb = nb;
387 	ul->un_maxresv = btodb(ul->un_logsize) * LDL_USABLE_BSIZE;
388 	ul->un_deltamap = map_get(ul, deltamaptype, DELTAMAP_NHASH);
389 	ul->un_logmap = map_get(ul, logmaptype, LOGMAP_NHASH);
390 	if (ul->un_debug & MT_MATAMAP)
391 		ul->un_matamap = map_get(ul, matamaptype, DELTAMAP_NHASH);
392 	mutex_init(&ul->un_log_mutex, NULL, MUTEX_DEFAULT, NULL);
393 	mutex_init(&ul->un_state_mutex, NULL, MUTEX_DEFAULT, NULL);
394 
395 	/*
396 	 * Aquire the ufs_scan_lock before linking the mtm data
397 	 * structure so that we keep ufs_sync() and ufs_update() away
398 	 * when they execute the ufs_scan_inodes() run while we're in
399 	 * progress of enabling/disabling logging.
400 	 */
401 	mutex_enter(&ufs_scan_lock);
402 	ufsvfsp->vfs_log = ul;
403 
404 	/* remember the state of the log before the log scan */
405 	logmap_logscan(ul);
406 	mutex_exit(&ufs_scan_lock);
407 
408 	/*
409 	 * Error during scan
410 	 *
411 	 * If this is a read/only mount; ignore the error.
412 	 * At a later time umount/fsck will repair the fs.
413 	 *
414 	 */
415 	if (ul->un_flags & LDL_ERROR) {
416 		if (!ronly) {
417 			/*
418 			 * Aquire the ufs_scan_lock before de-linking
419 			 * the mtm data structure so that we keep ufs_sync()
420 			 * and ufs_update() away when they execute the
421 			 * ufs_scan_inodes() run while we're in progress of
422 			 * enabling/disabling logging.
423 			 */
424 			mutex_enter(&ufs_scan_lock);
425 			lufs_unsnarf(ufsvfsp);
426 			mutex_exit(&ufs_scan_lock);
427 			return (EIO);
428 		}
429 		ul->un_flags &= ~LDL_ERROR;
430 	}
431 	if (!ronly)
432 		logmap_start_roll(ul);
433 	return (0);
434 }
435 
436 uint32_t
437 lufs_hd_genid(const ml_unit_t *up)
438 {
439 	uint32_t id;
440 
441 	mutex_enter(&genid_mutex);
442 
443 	/*
444 	 * The formula below implements an exponential, modular sequence.
445 	 *
446 	 * ID(N) = (SEED * (BASE^N)) % PRIME
447 	 *
448 	 * The numbers will be pseudo random.  They depend on SEED, BASE, PRIME,
449 	 * but will sweep through almost all of the range 1....PRIME-1.
450 	 * Most  importantly  they  will  not  repeat  for PRIME-2 (4294967289)
451 	 * repetitions.  If they would repeat that  could possibly cause  hangs,
452 	 * panics at mount/umount and failed mount operations.
453 	 */
454 	id = LUFS_NEXT_ID(last_loghead_ident);
455 
456 	/* Checking if new identity used already */
457 	if (up != NULL && up->un_head_ident == id) {
458 		DTRACE_PROBE1(head_ident_collision, uint32_t, id);
459 
460 		/*
461 		 * The  following  preserves  the  algorithm  for  the fix  for
462 		 * "panic: free: freeing free frag, dev:0x2000000018, blk:34605,
463 		 * cg:26, ino:148071,".
464 		 * If  the header identities  un_head_ident  are  equal  to the
465 		 * present element  in the sequence,  the next element  of  the
466 		 * sequence is returned instead.
467 		 */
468 		id = LUFS_NEXT_ID(id);
469 	}
470 
471 	last_loghead_ident = id;
472 
473 	mutex_exit(&genid_mutex);
474 
475 	return (id);
476 }
477 
478 static void
479 lufs_genid_init(void)
480 {
481 	uint64_t seed;
482 
483 	/* Initialization */
484 	mutex_init(&genid_mutex, NULL, MUTEX_DEFAULT, NULL);
485 
486 	/* Seed the algorithm */
487 	do {
488 		timestruc_t tv;
489 
490 		gethrestime(&tv);
491 
492 		seed = (tv.tv_nsec << 3);
493 		seed ^= tv.tv_sec;
494 
495 		last_loghead_ident = (uint32_t)(seed % LUFS_GENID_PRIME);
496 	} while (last_loghead_ident == UINT32_C(0));
497 }
498 
499 static int
500 lufs_initialize(
501 	ufsvfs_t *ufsvfsp,
502 	daddr_t bno,
503 	size_t nb,
504 	struct fiolog *flp)
505 {
506 	ml_odunit_t	*ud, *ud2;
507 	buf_t		*bp;
508 
509 	/* LINTED: warning: logical expression always true: op "||" */
510 	ASSERT(sizeof (ml_odunit_t) < DEV_BSIZE);
511 	ASSERT(nb >= ldl_minlogsize);
512 
513 	bp = UFS_GETBLK(ufsvfsp, ufsvfsp->vfs_dev, bno, dbtob(LS_SECTORS));
514 	bzero(bp->b_un.b_addr, bp->b_bcount);
515 
516 	ud = (void *)bp->b_un.b_addr;
517 	ud->od_version = LUFS_VERSION_LATEST;
518 	ud->od_maxtransfer = MIN(ufsvfsp->vfs_iotransz, ldl_maxtransfer);
519 	if (ud->od_maxtransfer < ldl_mintransfer)
520 		ud->od_maxtransfer = ldl_mintransfer;
521 	ud->od_devbsize = DEV_BSIZE;
522 
523 	ud->od_requestsize = flp->nbytes_actual;
524 	ud->od_statesize = dbtob(LS_SECTORS);
525 	ud->od_logsize = nb - ud->od_statesize;
526 
527 	ud->od_statebno = INT32_C(0);
528 
529 	ud->od_head_ident = lufs_hd_genid(NULL);
530 	ud->od_tail_ident = ud->od_head_ident;
531 	ud->od_chksum = ud->od_head_ident + ud->od_tail_ident;
532 
533 	ud->od_bol_lof = dbtob(ud->od_statebno) + ud->od_statesize;
534 	ud->od_eol_lof = ud->od_bol_lof + ud->od_logsize;
535 	ud->od_head_lof = ud->od_bol_lof;
536 	ud->od_tail_lof = ud->od_bol_lof;
537 
538 	ASSERT(lufs_initialize_debug(ud));
539 
540 	ud2 = (void *)(bp->b_un.b_addr + DEV_BSIZE);
541 	bcopy(ud, ud2, sizeof (*ud));
542 
543 	UFS_BWRITE2(ufsvfsp, bp);
544 	if (bp->b_flags & B_ERROR) {
545 		brelse(bp);
546 		return (EIO);
547 	}
548 	brelse(bp);
549 
550 	return (0);
551 }
552 
553 /*
554  * Free log space
555  *	Assumes the file system is write locked and is not logging
556  */
557 static int
558 lufs_free(struct ufsvfs *ufsvfsp)
559 {
560 	int		error = 0, i, j;
561 	buf_t		*bp = NULL;
562 	extent_t	*ep;
563 	extent_block_t	*ebp;
564 	struct fs	*fs = ufsvfsp->vfs_fs;
565 	daddr_t		fno;
566 	int32_t		logbno;
567 	long		nfno;
568 	inode_t		*ip = NULL;
569 	char		clean;
570 
571 	/*
572 	 * Nothing to free
573 	 */
574 	if (fs->fs_logbno == 0)
575 		return (0);
576 
577 	/*
578 	 * Mark the file system as FSACTIVE and no log but honor the
579 	 * current value of fs_reclaim.  The reclaim thread could have
580 	 * been active when lufs_disable() was called and if fs_reclaim
581 	 * is reset to zero here it could lead to lost inodes.
582 	 */
583 	ufsvfsp->vfs_ulockfs.ul_sbowner = curthread;
584 	mutex_enter(&ufsvfsp->vfs_lock);
585 	clean = fs->fs_clean;
586 	logbno = fs->fs_logbno;
587 	fs->fs_clean = FSACTIVE;
588 	fs->fs_logbno = INT32_C(0);
589 	ufs_sbwrite(ufsvfsp);
590 	mutex_exit(&ufsvfsp->vfs_lock);
591 	ufsvfsp->vfs_ulockfs.ul_sbowner = (kthread_id_t)-1;
592 	if (ufsvfsp->vfs_bufp->b_flags & B_ERROR) {
593 		error = EIO;
594 		fs->fs_clean = clean;
595 		fs->fs_logbno = logbno;
596 		goto errout;
597 	}
598 
599 	/*
600 	 * fetch the allocation block
601 	 *	superblock -> one block of extents -> log data
602 	 */
603 	bp = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, logbtodb(fs, logbno),
604 	    fs->fs_bsize);
605 	if (bp->b_flags & B_ERROR) {
606 		error = EIO;
607 		goto errout;
608 	}
609 
610 	/*
611 	 * Free up the allocated space (dummy inode needed for free())
612 	 */
613 	ip = ufs_alloc_inode(ufsvfsp, UFSROOTINO);
614 	ebp = (void *)bp->b_un.b_addr;
615 	for (i = 0, ep = &ebp->extents[0]; i < ebp->nextents; ++i, ++ep) {
616 		fno = logbtofrag(fs, ep->pbno);
617 		nfno = dbtofsb(fs, ep->nbno);
618 		for (j = 0; j < nfno; j += fs->fs_frag, fno += fs->fs_frag)
619 			free(ip, fno, fs->fs_bsize, 0);
620 	}
621 	free(ip, logbtofrag(fs, logbno), fs->fs_bsize, 0);
622 	brelse(bp);
623 	bp = NULL;
624 
625 	/*
626 	 * Push the metadata dirtied during the allocations
627 	 */
628 	ufsvfsp->vfs_ulockfs.ul_sbowner = curthread;
629 	sbupdate(ufsvfsp->vfs_vfs);
630 	ufsvfsp->vfs_ulockfs.ul_sbowner = (kthread_id_t)-1;
631 	bflush(ufsvfsp->vfs_dev);
632 	error = bfinval(ufsvfsp->vfs_dev, 0);
633 	if (error)
634 		goto errout;
635 
636 	/*
637 	 * Free the dummy inode
638 	 */
639 	ufs_free_inode(ip);
640 
641 	return (0);
642 
643 errout:
644 	/*
645 	 * Free up all resources
646 	 */
647 	if (bp)
648 		brelse(bp);
649 	if (ip)
650 		ufs_free_inode(ip);
651 	return (error);
652 }
653 
654 /*
655  * Allocate log space
656  *	Assumes the file system is write locked and is not logging
657  */
658 static int
659 lufs_alloc(struct ufsvfs *ufsvfsp, struct fiolog *flp, cred_t *cr)
660 {
661 	int		error = 0;
662 	buf_t		*bp = NULL;
663 	extent_t	*ep, *nep;
664 	extent_block_t	*ebp;
665 	struct fs	*fs = ufsvfsp->vfs_fs;
666 	daddr_t		fno;	/* in frags */
667 	daddr_t		bno;	/* in disk blocks */
668 	int32_t		logbno = INT32_C(0);	/* will be fs_logbno */
669 	struct inode	*ip = NULL;
670 	size_t		nb = flp->nbytes_actual;
671 	size_t		tb = 0;
672 
673 	/*
674 	 * Mark the file system as FSACTIVE
675 	 */
676 	ufsvfsp->vfs_ulockfs.ul_sbowner = curthread;
677 	mutex_enter(&ufsvfsp->vfs_lock);
678 	fs->fs_clean = FSACTIVE;
679 	ufs_sbwrite(ufsvfsp);
680 	mutex_exit(&ufsvfsp->vfs_lock);
681 	ufsvfsp->vfs_ulockfs.ul_sbowner = (kthread_id_t)-1;
682 
683 	/*
684 	 * Allocate the allocation block (need dummy shadow inode;
685 	 * we use a shadow inode so the quota sub-system ignores
686 	 * the block allocations.)
687 	 *	superblock -> one block of extents -> log data
688 	 */
689 	ip = ufs_alloc_inode(ufsvfsp, UFSROOTINO);
690 	ip->i_mode = IFSHAD;		/* make the dummy a shadow inode */
691 	rw_enter(&ip->i_contents, RW_WRITER);
692 	fno = contigpref(ufsvfsp, nb + fs->fs_bsize);
693 	error = alloc(ip, fno, fs->fs_bsize, &fno, cr);
694 	if (error)
695 		goto errout;
696 	bno = fsbtodb(fs, fno);
697 
698 	bp = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, bno, fs->fs_bsize);
699 	if (bp->b_flags & B_ERROR) {
700 		error = EIO;
701 		goto errout;
702 	}
703 
704 	ebp = (void *)bp->b_un.b_addr;
705 	ebp->type = LUFS_EXTENTS;
706 	ebp->nextbno = UINT32_C(0);
707 	ebp->nextents = UINT32_C(0);
708 	ebp->chksum = INT32_C(0);
709 	if (fs->fs_magic == FS_MAGIC)
710 		logbno = bno;
711 	else
712 		logbno = dbtofsb(fs, bno);
713 
714 	/*
715 	 * Initialize the first extent
716 	 */
717 	ep = &ebp->extents[0];
718 	error = alloc(ip, fno + fs->fs_frag, fs->fs_bsize, &fno, cr);
719 	if (error)
720 		goto errout;
721 	bno = fsbtodb(fs, fno);
722 
723 	ep->lbno = UINT32_C(0);
724 	if (fs->fs_magic == FS_MAGIC)
725 		ep->pbno = (uint32_t)bno;
726 	else
727 		ep->pbno = (uint32_t)fno;
728 	ep->nbno = (uint32_t)fsbtodb(fs, fs->fs_frag);
729 	ebp->nextents = UINT32_C(1);
730 	tb = fs->fs_bsize;
731 	nb -= fs->fs_bsize;
732 
733 	while (nb) {
734 		error = alloc(ip, fno + fs->fs_frag, fs->fs_bsize, &fno, cr);
735 		if (error) {
736 			if (tb < ldl_minlogsize)
737 				goto errout;
738 			error = 0;
739 			break;
740 		}
741 		bno = fsbtodb(fs, fno);
742 		if ((daddr_t)((logbtodb(fs, ep->pbno) + ep->nbno) == bno))
743 			ep->nbno += (uint32_t)(fsbtodb(fs, fs->fs_frag));
744 		else {
745 			nep = ep + 1;
746 			if ((caddr_t)(nep + 1) >
747 			    (bp->b_un.b_addr + fs->fs_bsize)) {
748 				free(ip, fno, fs->fs_bsize, 0);
749 				break;
750 			}
751 			nep->lbno = ep->lbno + ep->nbno;
752 			if (fs->fs_magic == FS_MAGIC)
753 				nep->pbno = (uint32_t)bno;
754 			else
755 				nep->pbno = (uint32_t)fno;
756 			nep->nbno = (uint32_t)(fsbtodb(fs, fs->fs_frag));
757 			ebp->nextents++;
758 			ep = nep;
759 		}
760 		tb += fs->fs_bsize;
761 		nb -= fs->fs_bsize;
762 	}
763 	ebp->nbytes = (uint32_t)tb;
764 	setsum(&ebp->chksum, (int32_t *)bp->b_un.b_addr, fs->fs_bsize);
765 	UFS_BWRITE2(ufsvfsp, bp);
766 	if (bp->b_flags & B_ERROR) {
767 		error = EIO;
768 		goto errout;
769 	}
770 	/*
771 	 * Initialize the first two sectors of the log
772 	 */
773 	error = lufs_initialize(ufsvfsp, logbtodb(fs, ebp->extents[0].pbno),
774 	    tb, flp);
775 	if (error)
776 		goto errout;
777 
778 	/*
779 	 * We are done initializing the allocation block and the log
780 	 */
781 	brelse(bp);
782 	bp = NULL;
783 
784 	/*
785 	 * Update the superblock and push the dirty metadata
786 	 */
787 	ufsvfsp->vfs_ulockfs.ul_sbowner = curthread;
788 	sbupdate(ufsvfsp->vfs_vfs);
789 	ufsvfsp->vfs_ulockfs.ul_sbowner = (kthread_id_t)-1;
790 	bflush(ufsvfsp->vfs_dev);
791 	error = bfinval(ufsvfsp->vfs_dev, 1);
792 	if (error)
793 		goto errout;
794 	if (ufsvfsp->vfs_bufp->b_flags & B_ERROR) {
795 		error = EIO;
796 		goto errout;
797 	}
798 
799 	/*
800 	 * Everything is safely on disk; update log space pointer in sb
801 	 */
802 	ufsvfsp->vfs_ulockfs.ul_sbowner = curthread;
803 	mutex_enter(&ufsvfsp->vfs_lock);
804 	fs->fs_logbno = (uint32_t)logbno;
805 	ufs_sbwrite(ufsvfsp);
806 	mutex_exit(&ufsvfsp->vfs_lock);
807 	ufsvfsp->vfs_ulockfs.ul_sbowner = (kthread_id_t)-1;
808 
809 	/*
810 	 * Free the dummy inode
811 	 */
812 	rw_exit(&ip->i_contents);
813 	ufs_free_inode(ip);
814 
815 	/* inform user of real log size */
816 	flp->nbytes_actual = tb;
817 	return (0);
818 
819 errout:
820 	/*
821 	 * Free all resources
822 	 */
823 	if (bp)
824 		brelse(bp);
825 	if (logbno) {
826 		fs->fs_logbno = logbno;
827 		(void) lufs_free(ufsvfsp);
828 	}
829 	if (ip) {
830 		rw_exit(&ip->i_contents);
831 		ufs_free_inode(ip);
832 	}
833 	return (error);
834 }
835 
836 /*
837  * Disable logging
838  */
839 int
840 lufs_disable(vnode_t *vp, struct fiolog *flp)
841 {
842 	int		error = 0;
843 	inode_t		*ip = VTOI(vp);
844 	ufsvfs_t	*ufsvfsp = ip->i_ufsvfs;
845 	struct fs	*fs = ufsvfsp->vfs_fs;
846 	struct lockfs	lf;
847 	struct ulockfs	*ulp;
848 
849 	flp->error = FIOLOG_ENONE;
850 
851 	/*
852 	 * Logging is already disabled; done
853 	 */
854 	if (fs->fs_logbno == 0 || ufsvfsp->vfs_log == NULL)
855 		return (0);
856 
857 	/*
858 	 * Readonly file system
859 	 */
860 	if (fs->fs_ronly) {
861 		flp->error = FIOLOG_EROFS;
862 		return (0);
863 	}
864 
865 	/*
866 	 * File system must be write locked to disable logging
867 	 */
868 	error = ufs_fiolfss(vp, &lf);
869 	if (error) {
870 		return (error);
871 	}
872 	if (!LOCKFS_IS_ULOCK(&lf)) {
873 		flp->error = FIOLOG_EULOCK;
874 		return (0);
875 	}
876 	lf.lf_lock = LOCKFS_WLOCK;
877 	lf.lf_flags = 0;
878 	lf.lf_comment = NULL;
879 	error = ufs_fiolfs(vp, &lf, 1);
880 	if (error) {
881 		flp->error = FIOLOG_EWLOCK;
882 		return (0);
883 	}
884 
885 	if (ufsvfsp->vfs_log == NULL || fs->fs_logbno == 0)
886 		goto errout;
887 
888 	/*
889 	 * WE ARE COMMITTED TO DISABLING LOGGING PAST THIS POINT
890 	 */
891 
892 	/*
893 	 * Disable logging:
894 	 * Suspend the reclaim thread and force the delete thread to exit.
895 	 *	When a nologging mount has completed there may still be
896 	 *	work for reclaim to do so just suspend this thread until
897 	 *	it's [deadlock-] safe for it to continue.  The delete
898 	 *	thread won't be needed as ufs_iinactive() calls
899 	 *	ufs_delete() when logging is disabled.
900 	 * Freeze and drain reader ops.
901 	 *	Commit any outstanding reader transactions (ufs_flush).
902 	 *	Set the ``unmounted'' bit in the ufstrans struct.
903 	 *	If debug, remove metadata from matamap.
904 	 *	Disable matamap processing.
905 	 *	NULL the trans ops table.
906 	 *	Free all of the incore structs related to logging.
907 	 * Allow reader ops.
908 	 */
909 	ufs_thread_suspend(&ufsvfsp->vfs_reclaim);
910 	ufs_thread_exit(&ufsvfsp->vfs_delete);
911 
912 	vfs_lock_wait(ufsvfsp->vfs_vfs);
913 	ulp = &ufsvfsp->vfs_ulockfs;
914 	mutex_enter(&ulp->ul_lock);
915 	atomic_add_long(&ufs_quiesce_pend, 1);
916 	(void) ufs_quiesce(ulp);
917 
918 	(void) ufs_flush(ufsvfsp->vfs_vfs);
919 
920 	TRANS_MATA_UMOUNT(ufsvfsp);
921 	ufsvfsp->vfs_domatamap = 0;
922 
923 	/*
924 	 * Free all of the incore structs
925 	 * Aquire the ufs_scan_lock before de-linking the mtm data
926 	 * structure so that we keep ufs_sync() and ufs_update() away
927 	 * when they execute the ufs_scan_inodes() run while we're in
928 	 * progress of enabling/disabling logging.
929 	 */
930 	mutex_enter(&ufs_scan_lock);
931 	(void) lufs_unsnarf(ufsvfsp);
932 	mutex_exit(&ufs_scan_lock);
933 
934 	atomic_add_long(&ufs_quiesce_pend, -1);
935 	mutex_exit(&ulp->ul_lock);
936 	vfs_setmntopt(ufsvfsp->vfs_vfs, MNTOPT_NOLOGGING, NULL, 0);
937 	vfs_unlock(ufsvfsp->vfs_vfs);
938 
939 	fs->fs_rolled = FS_ALL_ROLLED;
940 	ufsvfsp->vfs_nolog_si = 0;
941 
942 	/*
943 	 * Free the log space and mark the superblock as FSACTIVE
944 	 */
945 	(void) lufs_free(ufsvfsp);
946 
947 	/*
948 	 * Allow the reclaim thread to continue.
949 	 */
950 	ufs_thread_continue(&ufsvfsp->vfs_reclaim);
951 
952 	/*
953 	 * Unlock the file system
954 	 */
955 	lf.lf_lock = LOCKFS_ULOCK;
956 	lf.lf_flags = 0;
957 	error = ufs_fiolfs(vp, &lf, 1);
958 	if (error)
959 		flp->error = FIOLOG_ENOULOCK;
960 
961 	return (0);
962 
963 errout:
964 	lf.lf_lock = LOCKFS_ULOCK;
965 	lf.lf_flags = 0;
966 	(void) ufs_fiolfs(vp, &lf, 1);
967 	return (error);
968 }
969 
970 /*
971  * Enable logging
972  */
973 int
974 lufs_enable(struct vnode *vp, struct fiolog *flp, cred_t *cr)
975 {
976 	int		error;
977 	int		reclaim;
978 	inode_t		*ip = VTOI(vp);
979 	ufsvfs_t	*ufsvfsp = ip->i_ufsvfs;
980 	struct fs	*fs;
981 	ml_unit_t	*ul;
982 	struct lockfs	lf;
983 	struct ulockfs	*ulp;
984 	vfs_t		*vfsp = ufsvfsp->vfs_vfs;
985 	uint64_t	tmp_nbytes_actual;
986 
987 	/*
988 	 * Check if logging is already enabled
989 	 */
990 	if (ufsvfsp->vfs_log) {
991 		flp->error = FIOLOG_ETRANS;
992 		/* for root ensure logging option is set */
993 		vfs_setmntopt(vfsp, MNTOPT_LOGGING, NULL, 0);
994 		return (0);
995 	}
996 	fs = ufsvfsp->vfs_fs;
997 
998 	/*
999 	 * Come back here to recheck if we had to disable the log.
1000 	 */
1001 recheck:
1002 	error = 0;
1003 	reclaim = 0;
1004 	flp->error = FIOLOG_ENONE;
1005 
1006 	/*
1007 	 * Adjust requested log size
1008 	 */
1009 	flp->nbytes_actual = flp->nbytes_requested;
1010 	if (flp->nbytes_actual == 0) {
1011 		tmp_nbytes_actual =
1012 		    (((uint64_t)fs->fs_size) / ldl_divisor) << fs->fs_fshift;
1013 		flp->nbytes_actual = (uint_t)MIN(tmp_nbytes_actual, INT_MAX);
1014 	}
1015 	flp->nbytes_actual = MAX(flp->nbytes_actual, ldl_minlogsize);
1016 	flp->nbytes_actual = MIN(flp->nbytes_actual, ldl_maxlogsize);
1017 	flp->nbytes_actual = blkroundup(fs, flp->nbytes_actual);
1018 
1019 	/*
1020 	 * logging is enabled and the log is the right size; done
1021 	 */
1022 	ul = ufsvfsp->vfs_log;
1023 	if (ul && fs->fs_logbno && (flp->nbytes_actual == ul->un_requestsize))
1024 			return (0);
1025 
1026 	/*
1027 	 * Readonly file system
1028 	 */
1029 	if (fs->fs_ronly) {
1030 		flp->error = FIOLOG_EROFS;
1031 		return (0);
1032 	}
1033 
1034 	/*
1035 	 * File system must be write locked to enable logging
1036 	 */
1037 	error = ufs_fiolfss(vp, &lf);
1038 	if (error) {
1039 		return (error);
1040 	}
1041 	if (!LOCKFS_IS_ULOCK(&lf)) {
1042 		flp->error = FIOLOG_EULOCK;
1043 		return (0);
1044 	}
1045 	lf.lf_lock = LOCKFS_WLOCK;
1046 	lf.lf_flags = 0;
1047 	lf.lf_comment = NULL;
1048 	error = ufs_fiolfs(vp, &lf, 1);
1049 	if (error) {
1050 		flp->error = FIOLOG_EWLOCK;
1051 		return (0);
1052 	}
1053 
1054 	/*
1055 	 * Grab appropriate locks to synchronize with the rest
1056 	 * of the system
1057 	 */
1058 	vfs_lock_wait(vfsp);
1059 	ulp = &ufsvfsp->vfs_ulockfs;
1060 	mutex_enter(&ulp->ul_lock);
1061 
1062 	/*
1063 	 * File system must be fairly consistent to enable logging
1064 	 */
1065 	if (fs->fs_clean != FSLOG &&
1066 	    fs->fs_clean != FSACTIVE &&
1067 	    fs->fs_clean != FSSTABLE &&
1068 	    fs->fs_clean != FSCLEAN) {
1069 		flp->error = FIOLOG_ECLEAN;
1070 		goto unlockout;
1071 	}
1072 
1073 	/*
1074 	 * A write-locked file system is only active if there are
1075 	 * open deleted files; so remember to set FS_RECLAIM later.
1076 	 */
1077 	if (fs->fs_clean == FSACTIVE)
1078 		reclaim = FS_RECLAIM;
1079 
1080 	/*
1081 	 * Logging is already enabled; must be changing the log's size
1082 	 */
1083 	if (fs->fs_logbno && ufsvfsp->vfs_log) {
1084 		/*
1085 		 * Before we can disable logging, we must give up our
1086 		 * lock.  As a consequence of unlocking and disabling the
1087 		 * log, the fs structure may change.  Because of this, when
1088 		 * disabling is complete, we will go back to recheck to
1089 		 * repeat all of the checks that we performed to get to
1090 		 * this point.  Disabling sets fs->fs_logbno to 0, so this
1091 		 * will not put us into an infinite loop.
1092 		 */
1093 		mutex_exit(&ulp->ul_lock);
1094 		vfs_unlock(vfsp);
1095 
1096 		lf.lf_lock = LOCKFS_ULOCK;
1097 		lf.lf_flags = 0;
1098 		error = ufs_fiolfs(vp, &lf, 1);
1099 		if (error) {
1100 			flp->error = FIOLOG_ENOULOCK;
1101 			return (0);
1102 		}
1103 		error = lufs_disable(vp, flp);
1104 		if (error || (flp->error != FIOLOG_ENONE))
1105 			return (0);
1106 		goto recheck;
1107 	}
1108 
1109 	error = lufs_alloc(ufsvfsp, flp, cr);
1110 	if (error)
1111 		goto errout;
1112 
1113 	/*
1114 	 * Create all of the incore structs
1115 	 */
1116 	error = lufs_snarf(ufsvfsp, fs, 0);
1117 	if (error)
1118 		goto errout;
1119 
1120 	/*
1121 	 * DON'T ``GOTO ERROUT'' PAST THIS POINT
1122 	 */
1123 
1124 	/*
1125 	 * Pretend we were just mounted with logging enabled
1126 	 *		Get the ops vector
1127 	 *		If debug, record metadata locations with log subsystem
1128 	 *		Start the delete thread
1129 	 *		Start the reclaim thread, if necessary
1130 	 */
1131 	vfs_setmntopt(vfsp, MNTOPT_LOGGING, NULL, 0);
1132 
1133 	TRANS_DOMATAMAP(ufsvfsp);
1134 	TRANS_MATA_MOUNT(ufsvfsp);
1135 	TRANS_MATA_SI(ufsvfsp, fs);
1136 	ufs_thread_start(&ufsvfsp->vfs_delete, ufs_thread_delete, vfsp);
1137 	if (fs->fs_reclaim & (FS_RECLAIM|FS_RECLAIMING)) {
1138 		fs->fs_reclaim &= ~FS_RECLAIM;
1139 		fs->fs_reclaim |=  FS_RECLAIMING;
1140 		ufs_thread_start(&ufsvfsp->vfs_reclaim,
1141 		    ufs_thread_reclaim, vfsp);
1142 	} else
1143 		fs->fs_reclaim |= reclaim;
1144 
1145 	mutex_exit(&ulp->ul_lock);
1146 	vfs_unlock(vfsp);
1147 
1148 	/*
1149 	 * Unlock the file system
1150 	 */
1151 	lf.lf_lock = LOCKFS_ULOCK;
1152 	lf.lf_flags = 0;
1153 	error = ufs_fiolfs(vp, &lf, 1);
1154 	if (error) {
1155 		flp->error = FIOLOG_ENOULOCK;
1156 		return (0);
1157 	}
1158 
1159 	/*
1160 	 * There's nothing in the log yet (we've just allocated it)
1161 	 * so directly write out the super block.
1162 	 * Note, we have to force this sb out to disk
1163 	 * (not just to the log) so that if we crash we know we are logging
1164 	 */
1165 	mutex_enter(&ufsvfsp->vfs_lock);
1166 	fs->fs_clean = FSLOG;
1167 	fs->fs_rolled = FS_NEED_ROLL; /* Mark the fs as unrolled */
1168 	UFS_BWRITE2(NULL, ufsvfsp->vfs_bufp);
1169 	mutex_exit(&ufsvfsp->vfs_lock);
1170 
1171 	return (0);
1172 
1173 errout:
1174 	/*
1175 	 * Aquire the ufs_scan_lock before de-linking the mtm data
1176 	 * structure so that we keep ufs_sync() and ufs_update() away
1177 	 * when they execute the ufs_scan_inodes() run while we're in
1178 	 * progress of enabling/disabling logging.
1179 	 */
1180 	mutex_enter(&ufs_scan_lock);
1181 	(void) lufs_unsnarf(ufsvfsp);
1182 	mutex_exit(&ufs_scan_lock);
1183 
1184 	(void) lufs_free(ufsvfsp);
1185 unlockout:
1186 	mutex_exit(&ulp->ul_lock);
1187 	vfs_unlock(vfsp);
1188 
1189 	lf.lf_lock = LOCKFS_ULOCK;
1190 	lf.lf_flags = 0;
1191 	(void) ufs_fiolfs(vp, &lf, 1);
1192 	return (error);
1193 }
1194 
1195 void
1196 lufs_read_strategy(ml_unit_t *ul, buf_t *bp)
1197 {
1198 	mt_map_t	*logmap	= ul->un_logmap;
1199 	offset_t	mof	= ldbtob(bp->b_blkno);
1200 	off_t		nb	= bp->b_bcount;
1201 	mapentry_t	*age;
1202 	char		*va;
1203 	int		(*saviodone)();
1204 	int		entire_range;
1205 
1206 	/*
1207 	 * get a linked list of overlapping deltas
1208 	 * returns with &mtm->mtm_rwlock held
1209 	 */
1210 	entire_range = logmap_list_get(logmap, mof, nb, &age);
1211 
1212 	/*
1213 	 * no overlapping deltas were found; read master
1214 	 */
1215 	if (age == NULL) {
1216 		rw_exit(&logmap->mtm_rwlock);
1217 		if (ul->un_flags & LDL_ERROR) {
1218 			bp->b_flags |= B_ERROR;
1219 			bp->b_error = EIO;
1220 			biodone(bp);
1221 		} else {
1222 			ul->un_ufsvfs->vfs_iotstamp = lbolt;
1223 			logstats.ls_lreads.value.ui64++;
1224 			(void) bdev_strategy(bp);
1225 			lwp_stat_update(LWP_STAT_INBLK, 1);
1226 		}
1227 		return;
1228 	}
1229 
1230 	va = bp_mapin_common(bp, VM_SLEEP);
1231 	/*
1232 	 * if necessary, sync read the data from master
1233 	 *	errors are returned in bp
1234 	 */
1235 	if (!entire_range) {
1236 		saviodone = bp->b_iodone;
1237 		bp->b_iodone = trans_not_done;
1238 		logstats.ls_mreads.value.ui64++;
1239 		(void) bdev_strategy(bp);
1240 		lwp_stat_update(LWP_STAT_INBLK, 1);
1241 		if (trans_not_wait(bp))
1242 			ldl_seterror(ul, "Error reading master");
1243 		bp->b_iodone = saviodone;
1244 	}
1245 
1246 	/*
1247 	 * sync read the data from the log
1248 	 *	errors are returned inline
1249 	 */
1250 	if (ldl_read(ul, va, mof, nb, age)) {
1251 		bp->b_flags |= B_ERROR;
1252 		bp->b_error = EIO;
1253 	}
1254 
1255 	/*
1256 	 * unlist the deltas
1257 	 */
1258 	logmap_list_put(logmap, age);
1259 
1260 	/*
1261 	 * all done
1262 	 */
1263 	if (ul->un_flags & LDL_ERROR) {
1264 		bp->b_flags |= B_ERROR;
1265 		bp->b_error = EIO;
1266 	}
1267 	biodone(bp);
1268 }
1269 
1270 void
1271 lufs_write_strategy(ml_unit_t *ul, buf_t *bp)
1272 {
1273 	offset_t	mof	= ldbtob(bp->b_blkno);
1274 	off_t		nb	= bp->b_bcount;
1275 	char		*va;
1276 	mapentry_t	*me;
1277 
1278 	ASSERT((nb & DEV_BMASK) == 0);
1279 	ul->un_logmap->mtm_ref = 1;
1280 
1281 	/*
1282 	 * if there are deltas, move into log
1283 	 */
1284 	me = deltamap_remove(ul->un_deltamap, mof, nb);
1285 	if (me) {
1286 
1287 		va = bp_mapin_common(bp, VM_SLEEP);
1288 
1289 		ASSERT(((ul->un_debug & MT_WRITE_CHECK) == 0) ||
1290 		    (ul->un_matamap == NULL)||
1291 		    matamap_within(ul->un_matamap, mof, nb));
1292 
1293 		/*
1294 		 * move to logmap
1295 		 */
1296 		if (ufs_crb_enable) {
1297 			logmap_add_buf(ul, va, mof, me,
1298 			    bp->b_un.b_addr, nb);
1299 		} else {
1300 			logmap_add(ul, va, mof, me);
1301 		}
1302 
1303 		if (ul->un_flags & LDL_ERROR) {
1304 			bp->b_flags |= B_ERROR;
1305 			bp->b_error = EIO;
1306 		}
1307 		biodone(bp);
1308 		return;
1309 	}
1310 	if (ul->un_flags & LDL_ERROR) {
1311 		bp->b_flags |= B_ERROR;
1312 		bp->b_error = EIO;
1313 		biodone(bp);
1314 		return;
1315 	}
1316 
1317 	/*
1318 	 * Check that we are not updating metadata, or if so then via B_PHYS.
1319 	 */
1320 	ASSERT((ul->un_matamap == NULL) ||
1321 	    !(matamap_overlap(ul->un_matamap, mof, nb) &&
1322 	    ((bp->b_flags & B_PHYS) == 0)));
1323 
1324 	ul->un_ufsvfs->vfs_iotstamp = lbolt;
1325 	logstats.ls_lwrites.value.ui64++;
1326 
1327 	/* If snapshots are enabled, write through the snapshot driver */
1328 	if (ul->un_ufsvfs->vfs_snapshot)
1329 		fssnap_strategy(&ul->un_ufsvfs->vfs_snapshot, bp);
1330 	else
1331 		(void) bdev_strategy(bp);
1332 
1333 	lwp_stat_update(LWP_STAT_OUBLK, 1);
1334 }
1335 
1336 void
1337 lufs_strategy(ml_unit_t *ul, buf_t *bp)
1338 {
1339 	if (bp->b_flags & B_READ)
1340 		lufs_read_strategy(ul, bp);
1341 	else
1342 		lufs_write_strategy(ul, bp);
1343 }
1344 
1345 /* ARGSUSED */
1346 static int
1347 delta_stats_update(kstat_t *ksp, int rw)
1348 {
1349 	if (rw == KSTAT_WRITE) {
1350 		delta_stats[DT_SB] = dkstats.ds_superblock_deltas.value.ui64;
1351 		delta_stats[DT_CG] = dkstats.ds_bitmap_deltas.value.ui64;
1352 		delta_stats[DT_SI] = dkstats.ds_suminfo_deltas.value.ui64;
1353 		delta_stats[DT_AB] = dkstats.ds_allocblk_deltas.value.ui64;
1354 		delta_stats[DT_ABZERO] = dkstats.ds_ab0_deltas.value.ui64;
1355 		delta_stats[DT_DIR] = dkstats.ds_dir_deltas.value.ui64;
1356 		delta_stats[DT_INODE] = dkstats.ds_inode_deltas.value.ui64;
1357 		delta_stats[DT_FBI] = dkstats.ds_fbiwrite_deltas.value.ui64;
1358 		delta_stats[DT_QR] = dkstats.ds_quota_deltas.value.ui64;
1359 		delta_stats[DT_SHAD] = dkstats.ds_shadow_deltas.value.ui64;
1360 
1361 		roll_stats[DT_SB] = dkstats.ds_superblock_rolled.value.ui64;
1362 		roll_stats[DT_CG] = dkstats.ds_bitmap_rolled.value.ui64;
1363 		roll_stats[DT_SI] = dkstats.ds_suminfo_rolled.value.ui64;
1364 		roll_stats[DT_AB] = dkstats.ds_allocblk_rolled.value.ui64;
1365 		roll_stats[DT_ABZERO] = dkstats.ds_ab0_rolled.value.ui64;
1366 		roll_stats[DT_DIR] = dkstats.ds_dir_rolled.value.ui64;
1367 		roll_stats[DT_INODE] = dkstats.ds_inode_rolled.value.ui64;
1368 		roll_stats[DT_FBI] = dkstats.ds_fbiwrite_rolled.value.ui64;
1369 		roll_stats[DT_QR] = dkstats.ds_quota_rolled.value.ui64;
1370 		roll_stats[DT_SHAD] = dkstats.ds_shadow_rolled.value.ui64;
1371 	} else {
1372 		dkstats.ds_superblock_deltas.value.ui64 = delta_stats[DT_SB];
1373 		dkstats.ds_bitmap_deltas.value.ui64 = delta_stats[DT_CG];
1374 		dkstats.ds_suminfo_deltas.value.ui64 = delta_stats[DT_SI];
1375 		dkstats.ds_allocblk_deltas.value.ui64 = delta_stats[DT_AB];
1376 		dkstats.ds_ab0_deltas.value.ui64 = delta_stats[DT_ABZERO];
1377 		dkstats.ds_dir_deltas.value.ui64 = delta_stats[DT_DIR];
1378 		dkstats.ds_inode_deltas.value.ui64 = delta_stats[DT_INODE];
1379 		dkstats.ds_fbiwrite_deltas.value.ui64 = delta_stats[DT_FBI];
1380 		dkstats.ds_quota_deltas.value.ui64 = delta_stats[DT_QR];
1381 		dkstats.ds_shadow_deltas.value.ui64 = delta_stats[DT_SHAD];
1382 
1383 		dkstats.ds_superblock_rolled.value.ui64 = roll_stats[DT_SB];
1384 		dkstats.ds_bitmap_rolled.value.ui64 = roll_stats[DT_CG];
1385 		dkstats.ds_suminfo_rolled.value.ui64 = roll_stats[DT_SI];
1386 		dkstats.ds_allocblk_rolled.value.ui64 = roll_stats[DT_AB];
1387 		dkstats.ds_ab0_rolled.value.ui64 = roll_stats[DT_ABZERO];
1388 		dkstats.ds_dir_rolled.value.ui64 = roll_stats[DT_DIR];
1389 		dkstats.ds_inode_rolled.value.ui64 = roll_stats[DT_INODE];
1390 		dkstats.ds_fbiwrite_rolled.value.ui64 = roll_stats[DT_FBI];
1391 		dkstats.ds_quota_rolled.value.ui64 = roll_stats[DT_QR];
1392 		dkstats.ds_shadow_rolled.value.ui64 = roll_stats[DT_SHAD];
1393 	}
1394 	return (0);
1395 }
1396 
1397 extern size_t ufs_crb_limit;
1398 extern int ufs_max_crb_divisor;
1399 
1400 void
1401 lufs_init(void)
1402 {
1403 	kstat_t *ksp;
1404 
1405 	/* Create kmem caches */
1406 	lufs_sv = kmem_cache_create("lufs_save", sizeof (lufs_save_t), 0,
1407 	    NULL, NULL, NULL, NULL, NULL, 0);
1408 	lufs_bp = kmem_cache_create("lufs_bufs", sizeof (lufs_buf_t), 0,
1409 	    NULL, NULL, NULL, NULL, NULL, 0);
1410 
1411 	mutex_init(&log_mutex, NULL, MUTEX_DEFAULT, NULL);
1412 
1413 	_init_top();
1414 
1415 	if (&bio_lufs_strategy != NULL)
1416 		bio_lufs_strategy = (void (*) (void *, buf_t *)) lufs_strategy;
1417 
1418 	/*
1419 	 * Initialise general logging and delta kstats
1420 	 */
1421 	ksp = kstat_create("ufs_log", 0, "logstats", "ufs", KSTAT_TYPE_NAMED,
1422 	    sizeof (logstats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
1423 	if (ksp) {
1424 		ksp->ks_data = (void *) &logstats;
1425 		kstat_install(ksp);
1426 	}
1427 
1428 	ksp = kstat_create("ufs_log", 0, "deltastats", "ufs", KSTAT_TYPE_NAMED,
1429 	    sizeof (dkstats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
1430 	if (ksp) {
1431 		ksp->ks_data = (void *) &dkstats;
1432 		ksp->ks_update = delta_stats_update;
1433 		kstat_install(ksp);
1434 	}
1435 
1436 	/* Initialize  generation of logging ids */
1437 	lufs_genid_init();
1438 
1439 	/*
1440 	 * Set up the maximum amount of kmem that the crbs (system wide)
1441 	 * can use.
1442 	 */
1443 	ufs_crb_limit = kmem_maxavail() / ufs_max_crb_divisor;
1444 }
1445