xref: /illumos-gate/usr/src/uts/common/fs/tmpfs/tmp_vfsops.c (revision a0fb1590788f4dcbcee3fabaeb082ab7d1ad4203)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/sysmacros.h>
29 #include <sys/kmem.h>
30 #include <sys/time.h>
31 #include <sys/pathname.h>
32 #include <sys/vfs.h>
33 #include <sys/vfs_opreg.h>
34 #include <sys/vnode.h>
35 #include <sys/stat.h>
36 #include <sys/uio.h>
37 #include <sys/stat.h>
38 #include <sys/errno.h>
39 #include <sys/cmn_err.h>
40 #include <sys/cred.h>
41 #include <sys/statvfs.h>
42 #include <sys/mount.h>
43 #include <sys/debug.h>
44 #include <sys/systm.h>
45 #include <sys/mntent.h>
46 #include <fs/fs_subr.h>
47 #include <vm/page.h>
48 #include <vm/anon.h>
49 #include <sys/model.h>
50 #include <sys/policy.h>
51 
52 #include <sys/fs/swapnode.h>
53 #include <sys/fs/tmp.h>
54 #include <sys/fs/tmpnode.h>
55 
56 static int tmpfsfstype;
57 
58 /*
59  * tmpfs vfs operations.
60  */
61 static int tmpfsinit(int, char *);
62 static int tmp_mount(struct vfs *, struct vnode *,
63 	struct mounta *, struct cred *);
64 static int tmp_unmount(struct vfs *, int, struct cred *);
65 static int tmp_root(struct vfs *, struct vnode **);
66 static int tmp_statvfs(struct vfs *, struct statvfs64 *);
67 static int tmp_vget(struct vfs *, struct vnode **, struct fid *);
68 
69 /*
70  * Loadable module wrapper
71  */
72 #include <sys/modctl.h>
73 
74 static mntopts_t tmpfs_proto_opttbl;
75 
76 static vfsdef_t vfw = {
77 	VFSDEF_VERSION,
78 	"tmpfs",
79 	tmpfsinit,
80 	VSW_HASPROTO|VSW_CANREMOUNT|VSW_STATS|VSW_ZMOUNT,
81 	&tmpfs_proto_opttbl
82 };
83 
84 /*
85  * in-kernel mnttab options
86  */
87 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
88 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
89 
90 static mntopt_t tmpfs_options[] = {
91 	/* Option name		Cancel Opt	Arg	Flags		Data */
92 	{ MNTOPT_XATTR,		xattr_cancel,	NULL,	MO_DEFAULT,	NULL},
93 	{ MNTOPT_NOXATTR,	noxattr_cancel,	NULL,	NULL,		NULL},
94 	{ "size",		NULL,		"0",	MO_HASVALUE,	NULL}
95 };
96 
97 
98 static mntopts_t tmpfs_proto_opttbl = {
99 	sizeof (tmpfs_options) / sizeof (mntopt_t),
100 	tmpfs_options
101 };
102 
103 /*
104  * Module linkage information
105  */
106 static struct modlfs modlfs = {
107 	&mod_fsops, "filesystem for tmpfs", &vfw
108 };
109 
110 static struct modlinkage modlinkage = {
111 	MODREV_1, &modlfs, NULL
112 };
113 
114 int
115 _init()
116 {
117 	return (mod_install(&modlinkage));
118 }
119 
120 int
121 _fini()
122 {
123 	int error;
124 
125 	error = mod_remove(&modlinkage);
126 	if (error)
127 		return (error);
128 	/*
129 	 * Tear down the operations vectors
130 	 */
131 	(void) vfs_freevfsops_by_type(tmpfsfstype);
132 	vn_freevnodeops(tmp_vnodeops);
133 	return (0);
134 }
135 
136 int
137 _info(struct modinfo *modinfop)
138 {
139 	return (mod_info(&modlinkage, modinfop));
140 }
141 
142 /*
143  * The following are patchable variables limiting the amount of system
144  * resources tmpfs can use.
145  *
146  * tmpfs_maxkmem limits the amount of kernel kmem_alloc memory
147  * tmpfs can use for it's data structures (e.g. tmpnodes, directory entries)
148  * It is not determined by setting a hard limit but rather as a percentage of
149  * physical memory which is determined when tmpfs is first used in the system.
150  *
151  * tmpfs_minfree is the minimum amount of swap space that tmpfs leaves for
152  * the rest of the system.  In other words, if the amount of free swap space
153  * in the system (i.e. anoninfo.ani_free) drops below tmpfs_minfree, tmpfs
154  * anon allocations will fail.
155  *
156  * There is also a per mount limit on the amount of swap space
157  * (tmount.tm_anonmax) settable via a mount option.
158  */
159 size_t tmpfs_maxkmem = 0;
160 size_t tmpfs_minfree = 0;
161 size_t tmp_kmemspace;		/* bytes of kernel heap used by all tmpfs */
162 
163 static major_t tmpfs_major;
164 static minor_t tmpfs_minor;
165 static kmutex_t	tmpfs_minor_lock;
166 
167 /*
168  * initialize global tmpfs locks and such
169  * called when loading tmpfs module
170  */
171 static int
172 tmpfsinit(int fstype, char *name)
173 {
174 	static const fs_operation_def_t tmp_vfsops_template[] = {
175 		VFSNAME_MOUNT,		{ .vfs_mount = tmp_mount },
176 		VFSNAME_UNMOUNT,	{ .vfs_unmount = tmp_unmount },
177 		VFSNAME_ROOT,		{ .vfs_root = tmp_root },
178 		VFSNAME_STATVFS,	{ .vfs_statvfs = tmp_statvfs },
179 		VFSNAME_VGET,		{ .vfs_vget = tmp_vget },
180 		NULL,			NULL
181 	};
182 	int error;
183 	extern  void    tmpfs_hash_init();
184 
185 	tmpfs_hash_init();
186 	tmpfsfstype = fstype;
187 	ASSERT(tmpfsfstype != 0);
188 
189 	error = vfs_setfsops(fstype, tmp_vfsops_template, NULL);
190 	if (error != 0) {
191 		cmn_err(CE_WARN, "tmpfsinit: bad vfs ops template");
192 		return (error);
193 	}
194 
195 	error = vn_make_ops(name, tmp_vnodeops_template, &tmp_vnodeops);
196 	if (error != 0) {
197 		(void) vfs_freevfsops_by_type(fstype);
198 		cmn_err(CE_WARN, "tmpfsinit: bad vnode ops template");
199 		return (error);
200 	}
201 
202 	/*
203 	 * tmpfs_minfree doesn't need to be some function of configured
204 	 * swap space since it really is an absolute limit of swap space
205 	 * which still allows other processes to execute.
206 	 */
207 	if (tmpfs_minfree == 0) {
208 		/*
209 		 * Set if not patched
210 		 */
211 		tmpfs_minfree = btopr(TMPMINFREE);
212 	}
213 
214 	/*
215 	 * The maximum amount of space tmpfs can allocate is
216 	 * TMPMAXPROCKMEM percent of kernel memory
217 	 */
218 	if (tmpfs_maxkmem == 0)
219 		tmpfs_maxkmem = MAX(PAGESIZE, kmem_maxavail() / TMPMAXFRACKMEM);
220 
221 	if ((tmpfs_major = getudev()) == (major_t)-1) {
222 		cmn_err(CE_WARN, "tmpfsinit: Can't get unique device number.");
223 		tmpfs_major = 0;
224 	}
225 	mutex_init(&tmpfs_minor_lock, NULL, MUTEX_DEFAULT, NULL);
226 	return (0);
227 }
228 
229 static int
230 tmp_mount(
231 	struct vfs *vfsp,
232 	struct vnode *mvp,
233 	struct mounta *uap,
234 	struct cred *cr)
235 {
236 	struct tmount *tm = NULL;
237 	struct tmpnode *tp;
238 	struct pathname dpn;
239 	int error;
240 	pgcnt_t anonmax;
241 	struct vattr rattr;
242 	int got_attrs;
243 
244 	char *sizestr;
245 
246 	if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0)
247 		return (error);
248 
249 	if (mvp->v_type != VDIR)
250 		return (ENOTDIR);
251 
252 	mutex_enter(&mvp->v_lock);
253 	if ((uap->flags & MS_REMOUNT) == 0 && (uap->flags & MS_OVERLAY) == 0 &&
254 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
255 		mutex_exit(&mvp->v_lock);
256 		return (EBUSY);
257 	}
258 	mutex_exit(&mvp->v_lock);
259 
260 	/*
261 	 * Having the resource be anything but "swap" doesn't make sense.
262 	 */
263 	vfs_setresource(vfsp, "swap", 0);
264 
265 	/*
266 	 * now look for options we understand...
267 	 */
268 
269 	/* tmpfs doesn't support read-only mounts */
270 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
271 		error = EINVAL;
272 		goto out;
273 	}
274 
275 	/*
276 	 * tm_anonmax is set according to the mount arguments
277 	 * if any.  Otherwise, it is set to a maximum value.
278 	 */
279 	if (vfs_optionisset(vfsp, "size", &sizestr)) {
280 		if ((error = tmp_convnum(sizestr, &anonmax)) != 0)
281 			goto out;
282 	} else {
283 		anonmax = ULONG_MAX;
284 	}
285 
286 	if (error = pn_get(uap->dir,
287 	    (uap->flags & MS_SYSSPACE) ? UIO_SYSSPACE : UIO_USERSPACE, &dpn))
288 		goto out;
289 
290 	if (uap->flags & MS_REMOUNT) {
291 		tm = (struct tmount *)VFSTOTM(vfsp);
292 
293 		/*
294 		 * If we change the size so its less than what is currently
295 		 * being used, we allow that. The file system will simply be
296 		 * full until enough files have been removed to get below the
297 		 * new max.
298 		 */
299 		mutex_enter(&tm->tm_contents);
300 		tm->tm_anonmax = anonmax;
301 		mutex_exit(&tm->tm_contents);
302 		goto out;
303 	}
304 
305 	if ((tm = tmp_memalloc(sizeof (struct tmount), 0)) == NULL) {
306 		pn_free(&dpn);
307 		error = ENOMEM;
308 		goto out;
309 	}
310 
311 	/*
312 	 * find an available minor device number for this mount
313 	 */
314 	mutex_enter(&tmpfs_minor_lock);
315 	do {
316 		tmpfs_minor = (tmpfs_minor + 1) & L_MAXMIN32;
317 		tm->tm_dev = makedevice(tmpfs_major, tmpfs_minor);
318 	} while (vfs_devismounted(tm->tm_dev));
319 	mutex_exit(&tmpfs_minor_lock);
320 
321 	/*
322 	 * Set but don't bother entering the mutex
323 	 * (tmount not on mount list yet)
324 	 */
325 	mutex_init(&tm->tm_contents, NULL, MUTEX_DEFAULT, NULL);
326 	mutex_init(&tm->tm_renamelck, NULL, MUTEX_DEFAULT, NULL);
327 
328 	tm->tm_vfsp = vfsp;
329 	tm->tm_anonmax = anonmax;
330 
331 	vfsp->vfs_data = (caddr_t)tm;
332 	vfsp->vfs_fstype = tmpfsfstype;
333 	vfsp->vfs_dev = tm->tm_dev;
334 	vfsp->vfs_bsize = PAGESIZE;
335 	vfsp->vfs_flag |= VFS_NOTRUNC;
336 	vfs_make_fsid(&vfsp->vfs_fsid, tm->tm_dev, tmpfsfstype);
337 	tm->tm_mntpath = tmp_memalloc(dpn.pn_pathlen + 1, TMP_MUSTHAVE);
338 	(void) strcpy(tm->tm_mntpath, dpn.pn_path);
339 
340 	/*
341 	 * allocate and initialize root tmpnode structure
342 	 */
343 	bzero(&rattr, sizeof (struct vattr));
344 	rattr.va_mode = (mode_t)(S_IFDIR | 0777);	/* XXX modes */
345 	rattr.va_type = VDIR;
346 	rattr.va_rdev = 0;
347 	tp = tmp_memalloc(sizeof (struct tmpnode), TMP_MUSTHAVE);
348 	tmpnode_init(tm, tp, &rattr, cr);
349 
350 	/*
351 	 * Get the mode, uid, and gid from the underlying mount point.
352 	 */
353 	rattr.va_mask = AT_MODE|AT_UID|AT_GID;	/* Hint to getattr */
354 	got_attrs = VOP_GETATTR(mvp, &rattr, 0, cr, NULL);
355 
356 	rw_enter(&tp->tn_rwlock, RW_WRITER);
357 	TNTOV(tp)->v_flag |= VROOT;
358 
359 	/*
360 	 * If the getattr succeeded, use its results.  Otherwise allow
361 	 * the previously set hardwired defaults to prevail.
362 	 */
363 	if (got_attrs == 0) {
364 		tp->tn_mode = rattr.va_mode;
365 		tp->tn_uid = rattr.va_uid;
366 		tp->tn_gid = rattr.va_gid;
367 	}
368 
369 	/*
370 	 * initialize linked list of tmpnodes so that the back pointer of
371 	 * the root tmpnode always points to the last one on the list
372 	 * and the forward pointer of the last node is null
373 	 */
374 	tp->tn_back = tp;
375 	tp->tn_forw = NULL;
376 	tp->tn_nlink = 0;
377 	tm->tm_rootnode = tp;
378 
379 	tdirinit(tp, tp);
380 
381 	rw_exit(&tp->tn_rwlock);
382 
383 	pn_free(&dpn);
384 	error = 0;
385 
386 out:
387 	if (error == 0)
388 		vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS);
389 
390 	return (error);
391 }
392 
393 static int
394 tmp_unmount(struct vfs *vfsp, int flag, struct cred *cr)
395 {
396 	struct tmount *tm = (struct tmount *)VFSTOTM(vfsp);
397 	struct tmpnode *tnp, *cancel;
398 	struct vnode	*vp;
399 	int error;
400 
401 	if ((error = secpolicy_fs_unmount(cr, vfsp)) != 0)
402 		return (error);
403 
404 	/*
405 	 * forced unmount is not supported by this file system
406 	 * and thus, ENOTSUP, is being returned.
407 	 */
408 	if (flag & MS_FORCE)
409 		return (ENOTSUP);
410 
411 	mutex_enter(&tm->tm_contents);
412 
413 	/*
414 	 * If there are no open files, only the root node should have
415 	 * a reference count.
416 	 * With tm_contents held, nothing can be added or removed.
417 	 * There may be some dirty pages.  To prevent fsflush from
418 	 * disrupting the unmount, put a hold on each node while scanning.
419 	 * If we find a previously referenced node, undo the holds we have
420 	 * placed and fail EBUSY.
421 	 */
422 	tnp = tm->tm_rootnode;
423 	if (TNTOV(tnp)->v_count > 1) {
424 		mutex_exit(&tm->tm_contents);
425 		return (EBUSY);
426 	}
427 
428 	for (tnp = tnp->tn_forw; tnp; tnp = tnp->tn_forw) {
429 		if ((vp = TNTOV(tnp))->v_count > 0) {
430 			cancel = tm->tm_rootnode->tn_forw;
431 			while (cancel != tnp) {
432 				vp = TNTOV(cancel);
433 				ASSERT(vp->v_count > 0);
434 				VN_RELE(vp);
435 				cancel = cancel->tn_forw;
436 			}
437 			mutex_exit(&tm->tm_contents);
438 			return (EBUSY);
439 		}
440 		VN_HOLD(vp);
441 	}
442 
443 	/*
444 	 * We can drop the mutex now because no one can find this mount
445 	 */
446 	mutex_exit(&tm->tm_contents);
447 
448 	/*
449 	 * Free all kmemalloc'd and anonalloc'd memory associated with
450 	 * this filesystem.  To do this, we go through the file list twice,
451 	 * once to remove all the directory entries, and then to remove
452 	 * all the files.  We do this because there is useful code in
453 	 * tmpnode_free which assumes that the directory entry has been
454 	 * removed before the file.
455 	 */
456 	/*
457 	 * Remove all directory entries
458 	 */
459 	for (tnp = tm->tm_rootnode; tnp; tnp = tnp->tn_forw) {
460 		rw_enter(&tnp->tn_rwlock, RW_WRITER);
461 		if (tnp->tn_type == VDIR)
462 			tdirtrunc(tnp);
463 		if (tnp->tn_vnode->v_flag & V_XATTRDIR) {
464 			/*
465 			 * Account for implicit attrdir reference.
466 			 */
467 			ASSERT(tnp->tn_nlink > 0);
468 			DECR_COUNT(&tnp->tn_nlink, &tnp->tn_tlock);
469 		}
470 		rw_exit(&tnp->tn_rwlock);
471 	}
472 
473 	ASSERT(tm->tm_rootnode);
474 
475 	/*
476 	 * All links are gone, v_count is keeping nodes in place.
477 	 * VN_RELE should make the node disappear, unless somebody
478 	 * is holding pages against it.  Nap and retry until it disappears.
479 	 *
480 	 * We re-acquire the lock to prevent others who have a HOLD on
481 	 * a tmpnode via its pages or anon slots from blowing it away
482 	 * (in tmp_inactive) while we're trying to get to it here. Once
483 	 * we have a HOLD on it we know it'll stick around.
484 	 *
485 	 */
486 	mutex_enter(&tm->tm_contents);
487 	/*
488 	 * Remove all the files (except the rootnode) backwards.
489 	 */
490 	while ((tnp = tm->tm_rootnode->tn_back) != tm->tm_rootnode) {
491 		mutex_exit(&tm->tm_contents);
492 		/*
493 		 * Inhibit tmp_inactive from touching attribute directory
494 		 * as all nodes will be released here.
495 		 * Note we handled the link count in pass 2 above.
496 		 */
497 		rw_enter(&tnp->tn_rwlock, RW_WRITER);
498 		tnp->tn_xattrdp = NULL;
499 		rw_exit(&tnp->tn_rwlock);
500 		vp = TNTOV(tnp);
501 		VN_RELE(vp);
502 		mutex_enter(&tm->tm_contents);
503 		/*
504 		 * It's still there after the RELE. Someone else like pageout
505 		 * has a hold on it so wait a bit and then try again - we know
506 		 * they'll give it up soon.
507 		 */
508 		if (tnp == tm->tm_rootnode->tn_back) {
509 			VN_HOLD(vp);
510 			mutex_exit(&tm->tm_contents);
511 			delay(hz / 4);
512 			mutex_enter(&tm->tm_contents);
513 		}
514 	}
515 	mutex_exit(&tm->tm_contents);
516 
517 	tm->tm_rootnode->tn_xattrdp = NULL;
518 	VN_RELE(TNTOV(tm->tm_rootnode));
519 
520 	ASSERT(tm->tm_mntpath);
521 
522 	tmp_memfree(tm->tm_mntpath, strlen(tm->tm_mntpath) + 1);
523 
524 	ASSERT(tm->tm_anonmem == 0);
525 
526 	mutex_destroy(&tm->tm_contents);
527 	mutex_destroy(&tm->tm_renamelck);
528 	tmp_memfree(tm, sizeof (struct tmount));
529 
530 	return (0);
531 }
532 
533 /*
534  * return root tmpnode for given vnode
535  */
536 static int
537 tmp_root(struct vfs *vfsp, struct vnode **vpp)
538 {
539 	struct tmount *tm = (struct tmount *)VFSTOTM(vfsp);
540 	struct tmpnode *tp = tm->tm_rootnode;
541 	struct vnode *vp;
542 
543 	ASSERT(tp);
544 
545 	vp = TNTOV(tp);
546 	VN_HOLD(vp);
547 	*vpp = vp;
548 	return (0);
549 }
550 
551 static int
552 tmp_statvfs(struct vfs *vfsp, struct statvfs64 *sbp)
553 {
554 	struct tmount	*tm = (struct tmount *)VFSTOTM(vfsp);
555 	ulong_t	blocks;
556 	dev32_t d32;
557 	zoneid_t eff_zid;
558 	struct zone *zp;
559 
560 	/*
561 	 * The file system may have been mounted by the global zone on
562 	 * behalf of the non-global zone.  In that case, the tmount zone_id
563 	 * will be the global zone.  We still want to show the swap cap inside
564 	 * the zone in this case, even though the file system was mounted by
565 	 * the global zone.
566 	 */
567 	if (curproc->p_zone->zone_id != GLOBAL_ZONEUNIQID)
568 		zp = curproc->p_zone;
569 	else
570 		zp = tm->tm_vfsp->vfs_zone;
571 
572 	if (zp == NULL)
573 		eff_zid = GLOBAL_ZONEUNIQID;
574 	else
575 		eff_zid = zp->zone_id;
576 
577 	sbp->f_bsize = PAGESIZE;
578 	sbp->f_frsize = PAGESIZE;
579 
580 	/*
581 	 * Find the amount of available physical and memory swap
582 	 */
583 	mutex_enter(&anoninfo_lock);
584 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
585 	blocks = (ulong_t)CURRENT_TOTAL_AVAILABLE_SWAP;
586 	mutex_exit(&anoninfo_lock);
587 
588 	/*
589 	 * If tm_anonmax for this mount is less than the available swap space
590 	 * (minus the amount tmpfs can't use), use that instead
591 	 */
592 	if (blocks > tmpfs_minfree)
593 		sbp->f_bfree = MIN(blocks - tmpfs_minfree,
594 		    tm->tm_anonmax - tm->tm_anonmem);
595 	else
596 		sbp->f_bfree = 0;
597 
598 	sbp->f_bavail = sbp->f_bfree;
599 
600 	/*
601 	 * Total number of blocks is what's available plus what's been used
602 	 */
603 	sbp->f_blocks = (fsblkcnt64_t)(sbp->f_bfree + tm->tm_anonmem);
604 
605 	if (eff_zid != GLOBAL_ZONEUNIQID &&
606 	    zp->zone_max_swap_ctl != UINT64_MAX) {
607 		/*
608 		 * If the fs is used by a non-global zone with a swap cap,
609 		 * then report the capped size.
610 		 */
611 		rctl_qty_t cap, used;
612 		pgcnt_t pgcap, pgused;
613 
614 		mutex_enter(&zp->zone_mem_lock);
615 		cap = zp->zone_max_swap_ctl;
616 		used = zp->zone_max_swap;
617 		mutex_exit(&zp->zone_mem_lock);
618 
619 		pgcap = btop(cap);
620 		pgused = btop(used);
621 
622 		sbp->f_bfree = MIN(pgcap - pgused, sbp->f_bfree);
623 		sbp->f_bavail = sbp->f_bfree;
624 		sbp->f_blocks = MIN(pgcap, sbp->f_blocks);
625 	}
626 
627 	/*
628 	 * The maximum number of files available is approximately the number
629 	 * of tmpnodes we can allocate from the remaining kernel memory
630 	 * available to tmpfs.  This is fairly inaccurate since it doesn't
631 	 * take into account the names stored in the directory entries.
632 	 */
633 	if (tmpfs_maxkmem > tmp_kmemspace)
634 		sbp->f_ffree = (tmpfs_maxkmem - tmp_kmemspace) /
635 		    (sizeof (struct tmpnode) + sizeof (struct tdirent));
636 	else
637 		sbp->f_ffree = 0;
638 
639 	sbp->f_files = tmpfs_maxkmem /
640 	    (sizeof (struct tmpnode) + sizeof (struct tdirent));
641 	sbp->f_favail = (fsfilcnt64_t)(sbp->f_ffree);
642 	(void) cmpldev(&d32, vfsp->vfs_dev);
643 	sbp->f_fsid = d32;
644 	(void) strcpy(sbp->f_basetype, vfssw[tmpfsfstype].vsw_name);
645 	(void) strncpy(sbp->f_fstr, tm->tm_mntpath, sizeof (sbp->f_fstr));
646 	/*
647 	 * ensure null termination
648 	 */
649 	sbp->f_fstr[sizeof (sbp->f_fstr) - 1] = '\0';
650 	sbp->f_flag = vf_to_stf(vfsp->vfs_flag);
651 	sbp->f_namemax = MAXNAMELEN - 1;
652 	return (0);
653 }
654 
655 static int
656 tmp_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp)
657 {
658 	struct tfid *tfid;
659 	struct tmount *tm = (struct tmount *)VFSTOTM(vfsp);
660 	struct tmpnode *tp = NULL;
661 
662 	tfid = (struct tfid *)fidp;
663 	*vpp = NULL;
664 
665 	mutex_enter(&tm->tm_contents);
666 	for (tp = tm->tm_rootnode; tp; tp = tp->tn_forw) {
667 		mutex_enter(&tp->tn_tlock);
668 		if (tp->tn_nodeid == tfid->tfid_ino) {
669 			/*
670 			 * If the gen numbers don't match we know the
671 			 * file won't be found since only one tmpnode
672 			 * can have this number at a time.
673 			 */
674 			if (tp->tn_gen != tfid->tfid_gen || tp->tn_nlink == 0) {
675 				mutex_exit(&tp->tn_tlock);
676 				mutex_exit(&tm->tm_contents);
677 				return (0);
678 			}
679 			*vpp = (struct vnode *)TNTOV(tp);
680 
681 			VN_HOLD(*vpp);
682 
683 			if ((tp->tn_mode & S_ISVTX) &&
684 			    !(tp->tn_mode & (S_IXUSR | S_IFDIR))) {
685 				mutex_enter(&(*vpp)->v_lock);
686 				(*vpp)->v_flag |= VISSWAP;
687 				mutex_exit(&(*vpp)->v_lock);
688 			}
689 			mutex_exit(&tp->tn_tlock);
690 			mutex_exit(&tm->tm_contents);
691 			return (0);
692 		}
693 		mutex_exit(&tp->tn_tlock);
694 	}
695 	mutex_exit(&tm->tm_contents);
696 	return (0);
697 }
698