1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2015 Joyent, Inc. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/sysmacros.h> 29 #include <sys/kmem.h> 30 #include <sys/time.h> 31 #include <sys/pathname.h> 32 #include <sys/vfs.h> 33 #include <sys/vfs_opreg.h> 34 #include <sys/vnode.h> 35 #include <sys/stat.h> 36 #include <sys/uio.h> 37 #include <sys/stat.h> 38 #include <sys/errno.h> 39 #include <sys/cmn_err.h> 40 #include <sys/cred.h> 41 #include <sys/statvfs.h> 42 #include <sys/mount.h> 43 #include <sys/debug.h> 44 #include <sys/systm.h> 45 #include <sys/mntent.h> 46 #include <fs/fs_subr.h> 47 #include <vm/page.h> 48 #include <vm/anon.h> 49 #include <sys/model.h> 50 #include <sys/policy.h> 51 52 #include <sys/fs/swapnode.h> 53 #include <sys/fs/tmp.h> 54 #include <sys/fs/tmpnode.h> 55 56 static int tmpfsfstype; 57 58 /* 59 * tmpfs vfs operations. 60 */ 61 static int tmpfsinit(int, char *); 62 static int tmp_mount(struct vfs *, struct vnode *, 63 struct mounta *, struct cred *); 64 static int tmp_unmount(struct vfs *, int, struct cred *); 65 static int tmp_root(struct vfs *, struct vnode **); 66 static int tmp_statvfs(struct vfs *, struct statvfs64 *); 67 static int tmp_vget(struct vfs *, struct vnode **, struct fid *); 68 69 /* 70 * Loadable module wrapper 71 */ 72 #include <sys/modctl.h> 73 74 static mntopts_t tmpfs_proto_opttbl; 75 76 static vfsdef_t vfw = { 77 VFSDEF_VERSION, 78 "tmpfs", 79 tmpfsinit, 80 VSW_HASPROTO|VSW_CANREMOUNT|VSW_STATS|VSW_ZMOUNT, 81 &tmpfs_proto_opttbl 82 }; 83 84 /* 85 * in-kernel mnttab options 86 */ 87 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 88 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 89 90 static mntopt_t tmpfs_options[] = { 91 /* Option name Cancel Opt Arg Flags Data */ 92 { MNTOPT_XATTR, xattr_cancel, NULL, MO_DEFAULT, NULL}, 93 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL}, 94 { "size", NULL, "0", MO_HASVALUE, NULL}, 95 { "mode", NULL, NULL, MO_HASVALUE, NULL} 96 }; 97 98 99 static mntopts_t tmpfs_proto_opttbl = { 100 sizeof (tmpfs_options) / sizeof (mntopt_t), 101 tmpfs_options 102 }; 103 104 /* 105 * Module linkage information 106 */ 107 static struct modlfs modlfs = { 108 &mod_fsops, "filesystem for tmpfs", &vfw 109 }; 110 111 static struct modlinkage modlinkage = { 112 MODREV_1, &modlfs, NULL 113 }; 114 115 int 116 _init() 117 { 118 return (mod_install(&modlinkage)); 119 } 120 121 int 122 _fini() 123 { 124 int error; 125 126 error = mod_remove(&modlinkage); 127 if (error) 128 return (error); 129 /* 130 * Tear down the operations vectors 131 */ 132 (void) vfs_freevfsops_by_type(tmpfsfstype); 133 vn_freevnodeops(tmp_vnodeops); 134 return (0); 135 } 136 137 int 138 _info(struct modinfo *modinfop) 139 { 140 return (mod_info(&modlinkage, modinfop)); 141 } 142 143 /* 144 * The following are patchable variables limiting the amount of system 145 * resources tmpfs can use. 146 * 147 * tmpfs_maxkmem limits the amount of kernel kmem_alloc memory 148 * tmpfs can use for it's data structures (e.g. tmpnodes, directory entries) 149 * It is not determined by setting a hard limit but rather as a percentage of 150 * physical memory which is determined when tmpfs is first used in the system. 151 * 152 * tmpfs_minfree is the minimum amount of swap space that tmpfs leaves for 153 * the rest of the system. In other words, if the amount of free swap space 154 * in the system (i.e. anoninfo.ani_free) drops below tmpfs_minfree, tmpfs 155 * anon allocations will fail. 156 * 157 * There is also a per mount limit on the amount of swap space 158 * (tmount.tm_anonmax) settable via a mount option. 159 */ 160 size_t tmpfs_maxkmem = 0; 161 size_t tmpfs_minfree = 0; 162 size_t tmp_kmemspace; /* bytes of kernel heap used by all tmpfs */ 163 164 static major_t tmpfs_major; 165 static minor_t tmpfs_minor; 166 static kmutex_t tmpfs_minor_lock; 167 168 /* 169 * initialize global tmpfs locks and such 170 * called when loading tmpfs module 171 */ 172 static int 173 tmpfsinit(int fstype, char *name) 174 { 175 static const fs_operation_def_t tmp_vfsops_template[] = { 176 VFSNAME_MOUNT, { .vfs_mount = tmp_mount }, 177 VFSNAME_UNMOUNT, { .vfs_unmount = tmp_unmount }, 178 VFSNAME_ROOT, { .vfs_root = tmp_root }, 179 VFSNAME_STATVFS, { .vfs_statvfs = tmp_statvfs }, 180 VFSNAME_VGET, { .vfs_vget = tmp_vget }, 181 VFSNAME_SYNCFS, { .vfs_syncfs = fs_syncfs_nop }, 182 NULL, NULL 183 }; 184 int error; 185 extern void tmpfs_hash_init(); 186 187 tmpfs_hash_init(); 188 tmpfsfstype = fstype; 189 ASSERT(tmpfsfstype != 0); 190 191 error = vfs_setfsops(fstype, tmp_vfsops_template, NULL); 192 if (error != 0) { 193 cmn_err(CE_WARN, "tmpfsinit: bad vfs ops template"); 194 return (error); 195 } 196 197 error = vn_make_ops(name, tmp_vnodeops_template, &tmp_vnodeops); 198 if (error != 0) { 199 (void) vfs_freevfsops_by_type(fstype); 200 cmn_err(CE_WARN, "tmpfsinit: bad vnode ops template"); 201 return (error); 202 } 203 204 /* 205 * tmpfs_minfree doesn't need to be some function of configured 206 * swap space since it really is an absolute limit of swap space 207 * which still allows other processes to execute. 208 */ 209 if (tmpfs_minfree == 0) { 210 /* 211 * Set if not patched 212 */ 213 tmpfs_minfree = btopr(TMPMINFREE); 214 } 215 216 /* 217 * The maximum amount of space tmpfs can allocate is 218 * TMPMAXPROCKMEM percent of kernel memory 219 */ 220 if (tmpfs_maxkmem == 0) 221 tmpfs_maxkmem = MAX(PAGESIZE, kmem_maxavail() / TMPMAXFRACKMEM); 222 223 if ((tmpfs_major = getudev()) == (major_t)-1) { 224 cmn_err(CE_WARN, "tmpfsinit: Can't get unique device number."); 225 tmpfs_major = 0; 226 } 227 mutex_init(&tmpfs_minor_lock, NULL, MUTEX_DEFAULT, NULL); 228 return (0); 229 } 230 231 static int 232 tmp_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 233 { 234 struct tmount *tm = NULL; 235 struct tmpnode *tp; 236 struct pathname dpn; 237 int error; 238 pgcnt_t anonmax; 239 struct vattr rattr; 240 int got_attrs; 241 boolean_t mode_arg = B_FALSE; 242 mode_t root_mode = 0777; 243 char *argstr; 244 245 if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0) 246 return (error); 247 248 if (mvp->v_type != VDIR) 249 return (ENOTDIR); 250 251 mutex_enter(&mvp->v_lock); 252 if ((uap->flags & MS_REMOUNT) == 0 && (uap->flags & MS_OVERLAY) == 0 && 253 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 254 mutex_exit(&mvp->v_lock); 255 return (EBUSY); 256 } 257 mutex_exit(&mvp->v_lock); 258 259 /* 260 * Having the resource be anything but "swap" doesn't make sense. 261 */ 262 vfs_setresource(vfsp, "swap", 0); 263 264 /* 265 * now look for options we understand... 266 */ 267 268 /* tmpfs doesn't support read-only mounts */ 269 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 270 error = EINVAL; 271 goto out; 272 } 273 274 /* 275 * tm_anonmax is set according to the mount arguments 276 * if any. Otherwise, it is set to a maximum value. 277 */ 278 if (vfs_optionisset(vfsp, "size", &argstr)) { 279 if ((error = tmp_convnum(argstr, &anonmax)) != 0) 280 goto out; 281 } else { 282 anonmax = ULONG_MAX; 283 } 284 285 /* 286 * The "mode" mount argument allows the operator to override the 287 * permissions of the root of the tmpfs mount. 288 */ 289 if (vfs_optionisset(vfsp, "mode", &argstr)) { 290 if ((error = tmp_convmode(argstr, &root_mode)) != 0) { 291 goto out; 292 } 293 mode_arg = B_TRUE; 294 } 295 296 if (error = pn_get(uap->dir, 297 (uap->flags & MS_SYSSPACE) ? UIO_SYSSPACE : UIO_USERSPACE, &dpn)) 298 goto out; 299 300 if (uap->flags & MS_REMOUNT) { 301 tm = (struct tmount *)VFSTOTM(vfsp); 302 303 /* 304 * If we change the size so its less than what is currently 305 * being used, we allow that. The file system will simply be 306 * full until enough files have been removed to get below the 307 * new max. 308 */ 309 mutex_enter(&tm->tm_contents); 310 tm->tm_anonmax = anonmax; 311 mutex_exit(&tm->tm_contents); 312 goto out; 313 } 314 315 if ((tm = tmp_memalloc(sizeof (struct tmount), 0)) == NULL) { 316 pn_free(&dpn); 317 error = ENOMEM; 318 goto out; 319 } 320 321 /* 322 * find an available minor device number for this mount 323 */ 324 mutex_enter(&tmpfs_minor_lock); 325 do { 326 tmpfs_minor = (tmpfs_minor + 1) & L_MAXMIN32; 327 tm->tm_dev = makedevice(tmpfs_major, tmpfs_minor); 328 } while (vfs_devismounted(tm->tm_dev)); 329 mutex_exit(&tmpfs_minor_lock); 330 331 /* 332 * Set but don't bother entering the mutex 333 * (tmount not on mount list yet) 334 */ 335 mutex_init(&tm->tm_contents, NULL, MUTEX_DEFAULT, NULL); 336 mutex_init(&tm->tm_renamelck, NULL, MUTEX_DEFAULT, NULL); 337 338 tm->tm_vfsp = vfsp; 339 tm->tm_anonmax = anonmax; 340 341 vfsp->vfs_data = (caddr_t)tm; 342 vfsp->vfs_fstype = tmpfsfstype; 343 vfsp->vfs_dev = tm->tm_dev; 344 vfsp->vfs_bsize = PAGESIZE; 345 vfsp->vfs_flag |= VFS_NOTRUNC; 346 vfs_make_fsid(&vfsp->vfs_fsid, tm->tm_dev, tmpfsfstype); 347 tm->tm_mntpath = tmp_memalloc(dpn.pn_pathlen + 1, TMP_MUSTHAVE); 348 (void) strcpy(tm->tm_mntpath, dpn.pn_path); 349 350 /* 351 * allocate and initialize root tmpnode structure 352 */ 353 bzero(&rattr, sizeof (struct vattr)); 354 rattr.va_mode = (mode_t)(S_IFDIR | root_mode); 355 rattr.va_type = VDIR; 356 rattr.va_rdev = 0; 357 tp = tmp_memalloc(sizeof (struct tmpnode), TMP_MUSTHAVE); 358 tmpnode_init(tm, tp, &rattr, cr); 359 360 /* 361 * Get the mode, uid, and gid from the underlying mount point. 362 */ 363 rattr.va_mask = AT_MODE|AT_UID|AT_GID; /* Hint to getattr */ 364 got_attrs = VOP_GETATTR(mvp, &rattr, 0, cr, NULL); 365 366 rw_enter(&tp->tn_rwlock, RW_WRITER); 367 TNTOV(tp)->v_flag |= VROOT; 368 369 /* 370 * If the getattr succeeded, use its results. Otherwise allow 371 * the previously set hardwired defaults to prevail. 372 */ 373 if (got_attrs == 0) { 374 if (!mode_arg) { 375 /* 376 * Only use the underlying mount point for the 377 * mode if the "mode" mount argument was not 378 * provided. 379 */ 380 tp->tn_mode = rattr.va_mode; 381 } 382 tp->tn_uid = rattr.va_uid; 383 tp->tn_gid = rattr.va_gid; 384 } 385 386 /* 387 * initialize linked list of tmpnodes so that the back pointer of 388 * the root tmpnode always points to the last one on the list 389 * and the forward pointer of the last node is null 390 */ 391 tp->tn_back = tp; 392 tp->tn_forw = NULL; 393 tp->tn_nlink = 0; 394 tm->tm_rootnode = tp; 395 396 tdirinit(tp, tp); 397 398 rw_exit(&tp->tn_rwlock); 399 400 pn_free(&dpn); 401 error = 0; 402 403 out: 404 if (error == 0) 405 vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS); 406 407 return (error); 408 } 409 410 static int 411 tmp_unmount(struct vfs *vfsp, int flag, struct cred *cr) 412 { 413 struct tmount *tm = (struct tmount *)VFSTOTM(vfsp); 414 struct tmpnode *tnp, *cancel; 415 struct vnode *vp; 416 int error; 417 418 if ((error = secpolicy_fs_unmount(cr, vfsp)) != 0) 419 return (error); 420 421 /* 422 * forced unmount is not supported by this file system 423 * and thus, ENOTSUP, is being returned. 424 */ 425 if (flag & MS_FORCE) 426 return (ENOTSUP); 427 428 mutex_enter(&tm->tm_contents); 429 430 /* 431 * If there are no open files, only the root node should have 432 * a reference count. 433 * With tm_contents held, nothing can be added or removed. 434 * There may be some dirty pages. To prevent fsflush from 435 * disrupting the unmount, put a hold on each node while scanning. 436 * If we find a previously referenced node, undo the holds we have 437 * placed and fail EBUSY. 438 */ 439 tnp = tm->tm_rootnode; 440 if (TNTOV(tnp)->v_count > 1) { 441 mutex_exit(&tm->tm_contents); 442 return (EBUSY); 443 } 444 445 for (tnp = tnp->tn_forw; tnp; tnp = tnp->tn_forw) { 446 if ((vp = TNTOV(tnp))->v_count > 0) { 447 cancel = tm->tm_rootnode->tn_forw; 448 while (cancel != tnp) { 449 vp = TNTOV(cancel); 450 ASSERT(vp->v_count > 0); 451 VN_RELE(vp); 452 cancel = cancel->tn_forw; 453 } 454 mutex_exit(&tm->tm_contents); 455 return (EBUSY); 456 } 457 VN_HOLD(vp); 458 } 459 460 /* 461 * We can drop the mutex now because no one can find this mount 462 */ 463 mutex_exit(&tm->tm_contents); 464 465 /* 466 * Free all kmemalloc'd and anonalloc'd memory associated with 467 * this filesystem. To do this, we go through the file list twice, 468 * once to remove all the directory entries, and then to remove 469 * all the files. We do this because there is useful code in 470 * tmpnode_free which assumes that the directory entry has been 471 * removed before the file. 472 */ 473 /* 474 * Remove all directory entries 475 */ 476 for (tnp = tm->tm_rootnode; tnp; tnp = tnp->tn_forw) { 477 rw_enter(&tnp->tn_rwlock, RW_WRITER); 478 if (tnp->tn_type == VDIR) 479 tdirtrunc(tnp); 480 if (tnp->tn_vnode->v_flag & V_XATTRDIR) { 481 /* 482 * Account for implicit attrdir reference. 483 */ 484 ASSERT(tnp->tn_nlink > 0); 485 DECR_COUNT(&tnp->tn_nlink, &tnp->tn_tlock); 486 } 487 rw_exit(&tnp->tn_rwlock); 488 } 489 490 ASSERT(tm->tm_rootnode); 491 492 /* 493 * All links are gone, v_count is keeping nodes in place. 494 * VN_RELE should make the node disappear, unless somebody 495 * is holding pages against it. Nap and retry until it disappears. 496 * 497 * We re-acquire the lock to prevent others who have a HOLD on 498 * a tmpnode via its pages or anon slots from blowing it away 499 * (in tmp_inactive) while we're trying to get to it here. Once 500 * we have a HOLD on it we know it'll stick around. 501 * 502 */ 503 mutex_enter(&tm->tm_contents); 504 /* 505 * Remove all the files (except the rootnode) backwards. 506 */ 507 while ((tnp = tm->tm_rootnode->tn_back) != tm->tm_rootnode) { 508 mutex_exit(&tm->tm_contents); 509 /* 510 * Inhibit tmp_inactive from touching attribute directory 511 * as all nodes will be released here. 512 * Note we handled the link count in pass 2 above. 513 */ 514 rw_enter(&tnp->tn_rwlock, RW_WRITER); 515 tnp->tn_xattrdp = NULL; 516 rw_exit(&tnp->tn_rwlock); 517 vp = TNTOV(tnp); 518 VN_RELE(vp); 519 mutex_enter(&tm->tm_contents); 520 /* 521 * It's still there after the RELE. Someone else like pageout 522 * has a hold on it so wait a bit and then try again - we know 523 * they'll give it up soon. 524 */ 525 if (tnp == tm->tm_rootnode->tn_back) { 526 VN_HOLD(vp); 527 mutex_exit(&tm->tm_contents); 528 delay(hz / 4); 529 mutex_enter(&tm->tm_contents); 530 } 531 } 532 mutex_exit(&tm->tm_contents); 533 534 tm->tm_rootnode->tn_xattrdp = NULL; 535 VN_RELE(TNTOV(tm->tm_rootnode)); 536 537 ASSERT(tm->tm_mntpath); 538 539 tmp_memfree(tm->tm_mntpath, strlen(tm->tm_mntpath) + 1); 540 541 ASSERT(tm->tm_anonmem == 0); 542 543 mutex_destroy(&tm->tm_contents); 544 mutex_destroy(&tm->tm_renamelck); 545 tmp_memfree(tm, sizeof (struct tmount)); 546 547 return (0); 548 } 549 550 /* 551 * return root tmpnode for given vnode 552 */ 553 static int 554 tmp_root(struct vfs *vfsp, struct vnode **vpp) 555 { 556 struct tmount *tm = (struct tmount *)VFSTOTM(vfsp); 557 struct tmpnode *tp = tm->tm_rootnode; 558 struct vnode *vp; 559 560 ASSERT(tp); 561 562 vp = TNTOV(tp); 563 VN_HOLD(vp); 564 *vpp = vp; 565 return (0); 566 } 567 568 static int 569 tmp_statvfs(struct vfs *vfsp, struct statvfs64 *sbp) 570 { 571 struct tmount *tm = (struct tmount *)VFSTOTM(vfsp); 572 ulong_t blocks; 573 dev32_t d32; 574 zoneid_t eff_zid; 575 struct zone *zp; 576 577 /* 578 * The file system may have been mounted by the global zone on 579 * behalf of the non-global zone. In that case, the tmount zone_id 580 * will be the global zone. We still want to show the swap cap inside 581 * the zone in this case, even though the file system was mounted by 582 * the global zone. 583 */ 584 if (curproc->p_zone->zone_id != GLOBAL_ZONEUNIQID) 585 zp = curproc->p_zone; 586 else 587 zp = tm->tm_vfsp->vfs_zone; 588 589 if (zp == NULL) 590 eff_zid = GLOBAL_ZONEUNIQID; 591 else 592 eff_zid = zp->zone_id; 593 594 sbp->f_bsize = PAGESIZE; 595 sbp->f_frsize = PAGESIZE; 596 597 /* 598 * Find the amount of available physical and memory swap 599 */ 600 mutex_enter(&anoninfo_lock); 601 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); 602 blocks = (ulong_t)CURRENT_TOTAL_AVAILABLE_SWAP; 603 mutex_exit(&anoninfo_lock); 604 605 /* 606 * If tm_anonmax for this mount is less than the available swap space 607 * (minus the amount tmpfs can't use), use that instead 608 */ 609 if (blocks > tmpfs_minfree) 610 sbp->f_bfree = MIN(blocks - tmpfs_minfree, 611 tm->tm_anonmax - tm->tm_anonmem); 612 else 613 sbp->f_bfree = 0; 614 615 sbp->f_bavail = sbp->f_bfree; 616 617 /* 618 * Total number of blocks is what's available plus what's been used 619 */ 620 sbp->f_blocks = (fsblkcnt64_t)(sbp->f_bfree + tm->tm_anonmem); 621 622 if (eff_zid != GLOBAL_ZONEUNIQID && 623 zp->zone_max_swap_ctl != UINT64_MAX) { 624 /* 625 * If the fs is used by a non-global zone with a swap cap, 626 * then report the capped size. 627 */ 628 rctl_qty_t cap, used; 629 pgcnt_t pgcap, pgused; 630 631 mutex_enter(&zp->zone_mem_lock); 632 cap = zp->zone_max_swap_ctl; 633 used = zp->zone_max_swap; 634 mutex_exit(&zp->zone_mem_lock); 635 636 pgcap = btop(cap); 637 pgused = btop(used); 638 639 sbp->f_bfree = MIN(pgcap - pgused, sbp->f_bfree); 640 sbp->f_bavail = sbp->f_bfree; 641 sbp->f_blocks = MIN(pgcap, sbp->f_blocks); 642 } 643 644 /* 645 * The maximum number of files available is approximately the number 646 * of tmpnodes we can allocate from the remaining kernel memory 647 * available to tmpfs. This is fairly inaccurate since it doesn't 648 * take into account the names stored in the directory entries. 649 */ 650 if (tmpfs_maxkmem > tmp_kmemspace) 651 sbp->f_ffree = (tmpfs_maxkmem - tmp_kmemspace) / 652 (sizeof (struct tmpnode) + sizeof (struct tdirent)); 653 else 654 sbp->f_ffree = 0; 655 656 sbp->f_files = tmpfs_maxkmem / 657 (sizeof (struct tmpnode) + sizeof (struct tdirent)); 658 sbp->f_favail = (fsfilcnt64_t)(sbp->f_ffree); 659 (void) cmpldev(&d32, vfsp->vfs_dev); 660 sbp->f_fsid = d32; 661 (void) strcpy(sbp->f_basetype, vfssw[tmpfsfstype].vsw_name); 662 (void) strncpy(sbp->f_fstr, tm->tm_mntpath, sizeof (sbp->f_fstr)); 663 /* 664 * ensure null termination 665 */ 666 sbp->f_fstr[sizeof (sbp->f_fstr) - 1] = '\0'; 667 sbp->f_flag = vf_to_stf(vfsp->vfs_flag); 668 sbp->f_namemax = MAXNAMELEN - 1; 669 return (0); 670 } 671 672 static int 673 tmp_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp) 674 { 675 struct tfid *tfid; 676 struct tmount *tm = (struct tmount *)VFSTOTM(vfsp); 677 struct tmpnode *tp = NULL; 678 679 tfid = (struct tfid *)fidp; 680 *vpp = NULL; 681 682 mutex_enter(&tm->tm_contents); 683 for (tp = tm->tm_rootnode; tp; tp = tp->tn_forw) { 684 mutex_enter(&tp->tn_tlock); 685 if (tp->tn_nodeid == tfid->tfid_ino) { 686 /* 687 * If the gen numbers don't match we know the 688 * file won't be found since only one tmpnode 689 * can have this number at a time. 690 */ 691 if (tp->tn_gen != tfid->tfid_gen || tp->tn_nlink == 0) { 692 mutex_exit(&tp->tn_tlock); 693 mutex_exit(&tm->tm_contents); 694 return (0); 695 } 696 *vpp = (struct vnode *)TNTOV(tp); 697 698 VN_HOLD(*vpp); 699 700 if ((tp->tn_mode & S_ISVTX) && 701 !(tp->tn_mode & (S_IXUSR | S_IFDIR))) { 702 mutex_enter(&(*vpp)->v_lock); 703 (*vpp)->v_flag |= VISSWAP; 704 mutex_exit(&(*vpp)->v_lock); 705 } 706 mutex_exit(&tp->tn_tlock); 707 mutex_exit(&tm->tm_contents); 708 return (0); 709 } 710 mutex_exit(&tp->tn_tlock); 711 } 712 mutex_exit(&tm->tm_contents); 713 return (0); 714 } 715