1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * University Copyright- Copyright (c) 1982, 1986, 1988 32 * The Regents of the University of California 33 * All Rights Reserved 34 * 35 * University Acknowledgment- Portions of this document are derived from 36 * software developed by the University of California, Berkeley, and its 37 * contributors. 38 */ 39 40 41 #pragma ident "%Z%%M% %I% %E% SMI" 42 43 #include <sys/types.h> 44 #include <sys/thread.h> 45 #include <sys/t_lock.h> 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/bitmap.h> 49 #include <sys/buf.h> 50 #include <sys/cmn_err.h> 51 #include <sys/conf.h> 52 #include <sys/ddi.h> 53 #include <sys/debug.h> 54 #include <sys/errno.h> 55 #include <sys/time.h> 56 #include <sys/fcntl.h> 57 #include <sys/flock.h> 58 #include <sys/file.h> 59 #include <sys/kmem.h> 60 #include <sys/mman.h> 61 #include <sys/open.h> 62 #include <sys/swap.h> 63 #include <sys/sysmacros.h> 64 #include <sys/uio.h> 65 #include <sys/vfs.h> 66 #include <sys/vnode.h> 67 #include <sys/stat.h> 68 #include <sys/poll.h> 69 #include <sys/stream.h> 70 #include <sys/strsubr.h> 71 #include <sys/policy.h> 72 #include <sys/devpolicy.h> 73 74 #include <sys/proc.h> 75 #include <sys/user.h> 76 #include <sys/session.h> 77 #include <sys/vmsystm.h> 78 #include <sys/vtrace.h> 79 #include <sys/pathname.h> 80 81 #include <sys/fs/snode.h> 82 83 #include <vm/seg.h> 84 #include <vm/seg_map.h> 85 #include <vm/page.h> 86 #include <vm/pvn.h> 87 #include <vm/seg_dev.h> 88 #include <vm/seg_vn.h> 89 90 #include <fs/fs_subr.h> 91 92 #include <sys/esunddi.h> 93 #include <sys/autoconf.h> 94 #include <sys/sunndi.h> 95 96 97 static int spec_open(struct vnode **, int, struct cred *); 98 static int spec_close(struct vnode *, int, int, offset_t, struct cred *); 99 static int spec_read(struct vnode *, struct uio *, int, struct cred *, 100 struct caller_context *); 101 static int spec_write(struct vnode *, struct uio *, int, struct cred *, 102 struct caller_context *); 103 static int spec_ioctl(struct vnode *, int, intptr_t, int, struct cred *, int *); 104 static int spec_getattr(struct vnode *, struct vattr *, int, struct cred *); 105 static int spec_setattr(struct vnode *, struct vattr *, int, struct cred *, 106 caller_context_t *); 107 static int spec_access(struct vnode *, int, int, struct cred *); 108 static int spec_create(struct vnode *, char *, vattr_t *, enum vcexcl, 109 int, struct vnode **, struct cred *, int); 110 static int spec_fsync(struct vnode *, int, struct cred *); 111 static void spec_inactive(struct vnode *, struct cred *); 112 static int spec_fid(struct vnode *, struct fid *); 113 static int spec_seek(struct vnode *, offset_t, offset_t *); 114 static int spec_frlock(struct vnode *, int, struct flock64 *, int, offset_t, 115 struct flk_callback *, struct cred *); 116 static int spec_realvp(struct vnode *, struct vnode **); 117 118 static int spec_getpage(struct vnode *, offset_t, size_t, uint_t *, page_t **, 119 size_t, struct seg *, caddr_t, enum seg_rw, struct cred *); 120 static int spec_putapage(struct vnode *, page_t *, u_offset_t *, size_t *, int, 121 struct cred *); 122 static struct buf *spec_startio(struct vnode *, page_t *, u_offset_t, size_t, 123 int); 124 static int spec_getapage(struct vnode *, u_offset_t, size_t, uint_t *, 125 page_t **, size_t, struct seg *, caddr_t, enum seg_rw, struct cred *); 126 static int spec_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t, 127 uchar_t, uchar_t, uint_t, struct cred *); 128 static int spec_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 129 uchar_t, uchar_t, uint_t, struct cred *); 130 static int spec_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 131 uint_t, uint_t, uint_t, struct cred *); 132 133 static int spec_poll(struct vnode *, short, int, short *, struct pollhead **); 134 static int spec_dump(struct vnode *, caddr_t, int, int); 135 static int spec_pageio(struct vnode *, page_t *, u_offset_t, size_t, int, 136 cred_t *); 137 138 static int spec_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *); 139 static int spec_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *); 140 static int spec_pathconf(struct vnode *, int, ulong_t *, struct cred *); 141 142 #define SN_HOLD(csp) { \ 143 mutex_enter(&csp->s_lock); \ 144 csp->s_count++; \ 145 mutex_exit(&csp->s_lock); \ 146 } 147 148 #define SN_RELE(csp) { \ 149 mutex_enter(&csp->s_lock); \ 150 csp->s_count--; \ 151 mutex_exit(&csp->s_lock); \ 152 } 153 154 struct vnodeops *spec_vnodeops; 155 156 const fs_operation_def_t spec_vnodeops_template[] = { 157 VOPNAME_OPEN, spec_open, 158 VOPNAME_CLOSE, spec_close, 159 VOPNAME_READ, spec_read, 160 VOPNAME_WRITE, spec_write, 161 VOPNAME_IOCTL, spec_ioctl, 162 VOPNAME_GETATTR, spec_getattr, 163 VOPNAME_SETATTR, spec_setattr, 164 VOPNAME_ACCESS, spec_access, 165 VOPNAME_CREATE, spec_create, 166 VOPNAME_FSYNC, spec_fsync, 167 VOPNAME_INACTIVE, (fs_generic_func_p) spec_inactive, 168 VOPNAME_FID, spec_fid, 169 VOPNAME_SEEK, spec_seek, 170 VOPNAME_PATHCONF, spec_pathconf, 171 VOPNAME_FRLOCK, spec_frlock, 172 VOPNAME_REALVP, spec_realvp, 173 VOPNAME_GETPAGE, spec_getpage, 174 VOPNAME_PUTPAGE, spec_putpage, 175 VOPNAME_MAP, (fs_generic_func_p) spec_map, 176 VOPNAME_ADDMAP, (fs_generic_func_p) spec_addmap, 177 VOPNAME_DELMAP, spec_delmap, 178 VOPNAME_POLL, (fs_generic_func_p) spec_poll, 179 VOPNAME_DUMP, spec_dump, 180 VOPNAME_PAGEIO, spec_pageio, 181 VOPNAME_SETSECATTR, spec_setsecattr, 182 VOPNAME_GETSECATTR, spec_getsecattr, 183 NULL, NULL 184 }; 185 186 /* 187 * Return address of spec_vnodeops 188 */ 189 struct vnodeops * 190 spec_getvnodeops(void) 191 { 192 return (spec_vnodeops); 193 } 194 195 extern vnode_t *rconsvp; 196 197 /* 198 * Acquire the serial lock on the common snode. 199 */ 200 #define LOCK_CSP(csp) \ 201 mutex_enter(&csp->s_lock); \ 202 while (csp->s_flag & SLOCKED) { \ 203 csp->s_flag |= SWANT; \ 204 cv_wait(&csp->s_cv, &csp->s_lock); \ 205 } \ 206 csp->s_flag |= SLOCKED; \ 207 mutex_exit(&csp->s_lock); 208 209 #define LOCK_CSP_SIG(csp) lock_csp_sig(csp) 210 211 /* 212 * Acquire the serial lock on the common snode checking for a signal. 213 * cv_wait_sig is used to allow signals to pull us out. 214 * Return 1 if locked, 0 if interrupted 215 */ 216 static int 217 lock_csp_sig(struct snode *csp) 218 { 219 mutex_enter(&csp->s_lock); 220 while (csp->s_flag & SLOCKED) { 221 csp->s_flag |= SWANT; 222 if (!cv_wait_sig(&csp->s_cv, &csp->s_lock)) { 223 mutex_exit(&csp->s_lock); 224 /* interrupted */ 225 return (0); 226 } 227 } 228 csp->s_flag |= SLOCKED; 229 mutex_exit(&csp->s_lock); 230 231 return (1); 232 } 233 234 /* 235 * Unlock the serial lock on the common snode 236 */ 237 #define UNLOCK_CSP_LOCK_HELD(csp) \ 238 ASSERT(mutex_owned(&csp->s_lock)); \ 239 if (csp->s_flag & SWANT) \ 240 cv_broadcast(&csp->s_cv); \ 241 csp->s_flag &= ~(SWANT|SLOCKED); 242 243 #define UNLOCK_CSP(csp) \ 244 mutex_enter(&csp->s_lock); \ 245 UNLOCK_CSP_LOCK_HELD(csp); \ 246 mutex_exit(&csp->s_lock); 247 248 /* 249 * compute/return the size of the device 250 */ 251 #define SPEC_SIZE(csp) \ 252 (((csp)->s_flag & SSIZEVALID) ? (csp)->s_size : spec_size(csp)) 253 254 /* 255 * Compute and return the size. If the size in the common snode is valid then 256 * return it. If not valid then get the size from the driver and set size in 257 * the common snode. If the device has not been attached then we don't ask for 258 * an update from the driver- for non-streams SSIZEVALID stays unset until the 259 * device is attached. A stat of a mknod outside /devices (non-devfs) may 260 * report UNKNOWN_SIZE because the device may not be attached yet (SDIPSET not 261 * established in mknod until open time). An stat in /devices will report the 262 * size correctly. Specfs should always call SPEC_SIZE instead of referring 263 * directly to s_size to initialize/retrieve the size of a device. 264 * 265 * XXX There is an inconsistency between block and raw - "unknown" is 266 * UNKNOWN_SIZE for VBLK and 0 for VCHR(raw). 267 */ 268 static u_offset_t 269 spec_size(struct snode *csp) 270 { 271 struct vnode *cvp = STOV(csp); 272 u_offset_t size; 273 int plen; 274 uint32_t size32; 275 dev_t dev; 276 dev_info_t *devi; 277 major_t maj; 278 279 ASSERT((csp)->s_commonvp == cvp); /* must be common node */ 280 281 /* return cached value */ 282 mutex_enter(&csp->s_lock); 283 if (csp->s_flag & SSIZEVALID) { 284 mutex_exit(&csp->s_lock); 285 return (csp->s_size); 286 } 287 288 /* VOP_GETATTR of mknod has not had devcnt restriction applied */ 289 dev = cvp->v_rdev; 290 maj = getmajor(dev); 291 if (maj >= devcnt) { 292 /* return non-cached UNKNOWN_SIZE */ 293 mutex_exit(&csp->s_lock); 294 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 295 } 296 297 /* establish cached zero size for streams */ 298 if (STREAMSTAB(maj)) { 299 csp->s_size = 0; 300 csp->s_flag |= SSIZEVALID; 301 mutex_exit(&csp->s_lock); 302 return (0); 303 } 304 305 /* 306 * Return non-cached UNKNOWN_SIZE if not open. 307 * 308 * NB: This check is bogus, calling prop_op(9E) should be gated by 309 * attach, not open. Not having this check however opens up a new 310 * context under which a driver's prop_op(9E) could be called. Calling 311 * prop_op(9E) in this new context has been shown to expose latent 312 * driver bugs (insufficient NULL pointer checks that lead to panic). 313 * We are keeping this open check for now to avoid these panics. 314 */ 315 if (csp->s_count == 0) { 316 mutex_exit(&csp->s_lock); 317 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 318 } 319 320 /* Return non-cached UNKNOWN_SIZE if not attached. */ 321 if (((csp->s_flag & SDIPSET) == 0) || (csp->s_dip == NULL) || 322 (i_ddi_node_state(csp->s_dip) < DS_ATTACHED)) { 323 mutex_exit(&csp->s_lock); 324 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 325 } 326 327 devi = csp->s_dip; 328 329 /* 330 * Established cached size obtained from the attached driver. Since we 331 * know the devinfo node, for efficiency we use cdev_prop_op directly 332 * instead of [cb]dev_[Ss]size. 333 */ 334 if (cvp->v_type == VCHR) { 335 size = 0; 336 plen = sizeof (size); 337 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 338 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS | 339 DDI_PROP_CONSUMER_TYPED, "Size", (caddr_t)&size, 340 &plen) != DDI_PROP_SUCCESS) { 341 plen = sizeof (size32); 342 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 343 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 344 "size", (caddr_t)&size32, &plen) == 345 DDI_PROP_SUCCESS) 346 size = size32; 347 } 348 } else { 349 size = UNKNOWN_SIZE; 350 plen = sizeof (size); 351 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 352 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS | 353 DDI_PROP_CONSUMER_TYPED, "Nblocks", (caddr_t)&size, 354 &plen) != DDI_PROP_SUCCESS) { 355 plen = sizeof (size32); 356 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 357 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 358 "nblocks", (caddr_t)&size32, &plen) == 359 DDI_PROP_SUCCESS) 360 size = size32; 361 } 362 363 if (size != UNKNOWN_SIZE) { 364 /* convert from block size to byte size */ 365 if (size < (MAXOFFSET_T >> DEV_BSHIFT)) 366 size = size << DEV_BSHIFT; 367 else 368 size = UNKNOWN_SIZE; 369 } 370 } 371 372 csp->s_size = size; 373 csp->s_flag |= SSIZEVALID; 374 375 mutex_exit(&csp->s_lock); 376 return (size); 377 } 378 379 /* 380 * This function deal with vnode substitution in the case of 381 * device cloning. 382 */ 383 static int 384 spec_clone(struct vnode **vpp, dev_t newdev, int vtype, struct stdata *stp) 385 { 386 dev_t dev = (*vpp)->v_rdev; 387 major_t maj = getmajor(dev); 388 major_t newmaj = getmajor(newdev); 389 int sysclone = (maj == clone_major); 390 int qassociate_used = 0; 391 struct snode *oldsp, *oldcsp; 392 struct snode *newsp, *newcsp; 393 struct vnode *newvp, *newcvp; 394 dev_info_t *dip; 395 queue_t *dq; 396 397 ASSERT(dev != newdev); 398 399 /* 400 * Check for cloning across different drivers. 401 * We only support this under the system provided clone driver 402 */ 403 if ((maj != newmaj) && !sysclone) { 404 cmn_err(CE_NOTE, 405 "unsupported clone open maj = %u, newmaj = %u", 406 maj, newmaj); 407 return (ENXIO); 408 } 409 410 /* old */ 411 oldsp = VTOS(*vpp); 412 oldcsp = VTOS(oldsp->s_commonvp); 413 414 /* new */ 415 newvp = makespecvp(newdev, vtype); 416 ASSERT(newvp != NULL); 417 newsp = VTOS(newvp); 418 newcvp = newsp->s_commonvp; 419 newcsp = VTOS(newcvp); 420 421 /* 422 * Clones inherit fsid, realvp, and dip. 423 * XXX realvp inherit is not occurring, does fstat of clone work? 424 */ 425 newsp->s_fsid = oldsp->s_fsid; 426 if (sysclone) { 427 newsp->s_flag |= SCLONE; 428 dip = NULL; 429 } else { 430 newsp->s_flag |= SSELFCLONE; 431 dip = oldcsp->s_dip; 432 } 433 434 /* 435 * If we cloned to an opened newdev that already has called 436 * spec_assoc_vp_with_devi (SDIPSET set) then the association is 437 * already established. 438 */ 439 if (!(newcsp->s_flag & SDIPSET)) { 440 /* 441 * Establish s_dip association for newdev. 442 * 443 * If we trusted the getinfo(9E) DDI_INFO_DEVT2INSTANCE 444 * implementation of all cloning drivers (SCLONE and SELFCLONE) 445 * we would always use e_ddi_hold_devi_by_dev(). We know that 446 * many drivers have had (still have?) problems with 447 * DDI_INFO_DEVT2INSTANCE, so we try to minimize reliance by 448 * detecting drivers that use QASSOCIATE (by looking down the 449 * stream) and setting their s_dip association to NULL. 450 */ 451 qassociate_used = 0; 452 if (stp) { 453 for (dq = stp->sd_wrq; dq; dq = dq->q_next) { 454 if (_RD(dq)->q_flag & _QASSOCIATED) { 455 qassociate_used = 1; 456 dip = NULL; 457 break; 458 } 459 } 460 } 461 462 if (dip || qassociate_used) { 463 spec_assoc_vp_with_devi(newvp, dip); 464 } else { 465 /* derive association from newdev */ 466 dip = e_ddi_hold_devi_by_dev(newdev, 0); 467 spec_assoc_vp_with_devi(newvp, dip); 468 if (dip) 469 ddi_release_devi(dip); 470 } 471 } 472 473 SN_HOLD(newcsp); 474 475 /* deal with stream stuff */ 476 if (stp != NULL) { 477 LOCK_CSP(newcsp); /* synchronize stream open/close */ 478 mutex_enter(&newcsp->s_lock); 479 newcvp->v_stream = newvp->v_stream = stp; 480 stp->sd_vnode = newcvp; 481 stp->sd_strtab = STREAMSTAB(newmaj); 482 mutex_exit(&newcsp->s_lock); 483 UNLOCK_CSP(newcsp); 484 } 485 486 /* substitute the vnode */ 487 SN_RELE(oldcsp); 488 VN_RELE(*vpp); 489 *vpp = newvp; 490 491 return (0); 492 } 493 494 static int 495 spec_open(struct vnode **vpp, int flag, struct cred *cr) 496 { 497 major_t maj; 498 dev_t dev, newdev; 499 struct vnode *vp, *cvp; 500 struct snode *sp, *csp; 501 struct stdata *stp; 502 dev_info_t *dip; 503 int error, type; 504 505 flag &= ~FCREAT; /* paranoia */ 506 507 vp = *vpp; 508 sp = VTOS(vp); 509 ASSERT((vp->v_type == VCHR) || (vp->v_type == VBLK)); 510 if ((vp->v_type != VCHR) && (vp->v_type != VBLK)) 511 return (ENXIO); 512 513 /* 514 * If the VFS_NODEVICES bit was set for the mount, 515 * do not allow opens of special devices. 516 */ 517 if (sp->s_realvp && (sp->s_realvp->v_vfsp->vfs_flag & VFS_NODEVICES)) 518 return (ENXIO); 519 520 newdev = dev = vp->v_rdev; 521 522 /* 523 * If we are opening a node that has not had spec_assoc_vp_with_devi 524 * called against it (mknod outside /devices or a non-dacf makespecvp 525 * node) then SDIPSET will not be set. In this case we call an 526 * interface which will reconstruct the path and lookup (drive attach) 527 * through devfs (e_ddi_hold_devi_by_dev -> e_ddi_hold_devi_by_path -> 528 * devfs_lookupname). For support of broken drivers that don't call 529 * ddi_create_minor_node for all minor nodes in their instance space, 530 * we call interfaces that operates at the directory/devinfo 531 * (major/instance) level instead of to the leaf/minor node level. 532 * After finding and attaching the dip we associate it with the 533 * common specfs vnode (s_dip), which sets SDIPSET. A DL_DETACH_REQ 534 * to style-2 stream driver may set s_dip to NULL with SDIPSET set. 535 * 536 * NOTE: Although e_ddi_hold_devi_by_dev takes a dev_t argument, its 537 * implementation operates at the major/instance level since it only 538 * need to return a dip. 539 */ 540 cvp = sp->s_commonvp; 541 csp = VTOS(cvp); 542 if (!(csp->s_flag & SDIPSET)) { 543 /* try to attach, return error if we fail */ 544 if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) 545 return (ENXIO); 546 547 /* associate dip with the common snode s_dip */ 548 spec_assoc_vp_with_devi(vp, dip); 549 ddi_release_devi(dip); /* from e_ddi_hold_devi_by_dev */ 550 } 551 552 #ifdef DEBUG 553 /* verify attach/open exclusion guarantee */ 554 dip = csp->s_dip; 555 ASSERT((dip == NULL) || (i_ddi_node_state(dip) >= DS_ATTACHED)); 556 #endif /* DEBUG */ 557 558 if ((error = secpolicy_spec_open(cr, cvp, flag)) != 0) 559 return (error); 560 561 SN_HOLD(csp); /* increment open count */ 562 563 maj = getmajor(dev); 564 if (STREAMSTAB(maj)) 565 goto streams_open; 566 567 /* non streams open */ 568 type = (vp->v_type == VBLK ? OTYP_BLK : OTYP_CHR); 569 error = dev_open(&newdev, flag, type, cr); 570 571 /* deal with clone case */ 572 if (error == 0 && dev != newdev) { 573 error = spec_clone(vpp, newdev, vp->v_type, NULL); 574 /* 575 * bail on clone failure, further processing 576 * results in undefined behaviors. 577 */ 578 if (error != 0) 579 return (error); 580 sp = VTOS(*vpp); 581 csp = VTOS(sp->s_commonvp); 582 } 583 584 if (error == 0) { 585 sp->s_size = SPEC_SIZE(csp); 586 587 if ((csp->s_flag & SNEEDCLOSE) == 0) { 588 int nmaj = getmajor(newdev); 589 mutex_enter(&csp->s_lock); 590 /* successful open needs a close later */ 591 csp->s_flag |= SNEEDCLOSE; 592 593 /* 594 * Invalidate possible cached "unknown" size 595 * established by a VOP_GETATTR while open was in 596 * progress, and the driver might fail prop_op(9E). 597 */ 598 if (((cvp->v_type == VCHR) && (csp->s_size == 0)) || 599 ((cvp->v_type == VBLK) && 600 (csp->s_size == UNKNOWN_SIZE))) 601 csp->s_flag &= ~SSIZEVALID; 602 603 if (devopsp[nmaj]->devo_cb_ops->cb_flag & D_64BIT) 604 csp->s_flag |= SLOFFSET; 605 if (devopsp[nmaj]->devo_cb_ops->cb_flag & D_U64BIT) 606 csp->s_flag |= SLOFFSET | SANYOFFSET; 607 mutex_exit(&csp->s_lock); 608 } 609 return (0); 610 } 611 612 /* 613 * Open failed. If we missed a close operation because 614 * we were trying to get the device open and it is the 615 * last in progress open that is failing then call close. 616 * 617 * NOTE: Only non-streams open has this race condition. 618 */ 619 mutex_enter(&csp->s_lock); 620 csp->s_count--; /* decrement open count : SN_RELE */ 621 if ((csp->s_count == 0) && /* no outstanding open */ 622 (csp->s_mapcnt == 0) && /* no mapping */ 623 (csp->s_flag & SNEEDCLOSE)) { /* need a close */ 624 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 625 626 /* See comment in spec_close() */ 627 if (csp->s_flag & (SCLONE | SSELFCLONE)) 628 csp->s_flag &= ~SDIPSET; 629 630 mutex_exit(&csp->s_lock); 631 ASSERT(*vpp != NULL); 632 (void) device_close(*vpp, flag, cr); 633 } else { 634 mutex_exit(&csp->s_lock); 635 } 636 return (error); 637 638 streams_open: 639 if (vp->v_type != VCHR) { 640 SN_RELE(csp); 641 return (ENXIO); 642 } 643 644 /* 645 * Lock common snode to prevent any new clone opens 646 * on this stream while one is in progress. 647 * This is necessary since the stream currently 648 * associated with the clone device will not be part 649 * of it after the clone open completes. 650 * Unfortunately we don't know in advance if this is 651 * a clone device so we have to lock all opens. 652 * 653 * If we fail, it's because of an interrupt. 654 */ 655 if (LOCK_CSP_SIG(csp) == 0) { 656 SN_RELE(csp); 657 return (EINTR); 658 } 659 660 error = stropen(cvp, &newdev, flag, cr); 661 stp = cvp->v_stream; 662 663 /* deal with the clone case */ 664 if ((error == 0) && (dev != newdev)) { 665 vp->v_stream = cvp->v_stream = NULL; 666 UNLOCK_CSP(csp); 667 error = spec_clone(vpp, newdev, vp->v_type, stp); 668 /* 669 * bail on clone failure, further processing 670 * results in undefined behaviors. 671 */ 672 if (error != 0) 673 return (error); 674 sp = VTOS(*vpp); 675 csp = VTOS(sp->s_commonvp); 676 } else if (error == 0) { 677 vp->v_stream = stp; 678 UNLOCK_CSP(csp); 679 } 680 681 if (error == 0) { 682 /* STREAMS devices don't have a size */ 683 sp->s_size = csp->s_size = 0; 684 685 /* 686 * try to allocate it as a controlling terminal 687 */ 688 if ((stp->sd_flag & STRISTTY) && !(flag & FNOCTTY)) { 689 strctty(stp); 690 } 691 return (0); 692 } 693 694 /* 695 * Deal with stropen failure. 696 * 697 * sd_flag in the stream head cannot change since the 698 * common snode is locked before the call to stropen(). 699 */ 700 if ((stp != NULL) && (stp->sd_flag & STREOPENFAIL)) { 701 /* 702 * Open failed part way through. 703 */ 704 mutex_enter(&stp->sd_lock); 705 stp->sd_flag &= ~STREOPENFAIL; 706 mutex_exit(&stp->sd_lock); 707 708 UNLOCK_CSP(csp); 709 (void) spec_close(vp, flag, 1, 0, cr); 710 } else { 711 UNLOCK_CSP(csp); 712 SN_RELE(csp); 713 } 714 715 return (error); 716 } 717 718 /*ARGSUSED2*/ 719 static int 720 spec_close( 721 struct vnode *vp, 722 int flag, 723 int count, 724 offset_t offset, 725 struct cred *cr) 726 { 727 struct vnode *cvp; 728 struct snode *sp, *csp; 729 enum vtype type; 730 dev_t dev; 731 int error = 0; 732 int sysclone; 733 734 if (!(flag & FKLYR)) { 735 /* this only applies to closes of devices from userland */ 736 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 737 cleanshares(vp, ttoproc(curthread)->p_pid); 738 if (vp->v_stream) 739 strclean(vp); 740 } 741 if (count > 1) 742 return (0); 743 744 sp = VTOS(vp); 745 cvp = sp->s_commonvp; 746 747 dev = sp->s_dev; 748 type = vp->v_type; 749 750 ASSERT(type == VCHR || type == VBLK); 751 752 /* 753 * Prevent close/close and close/open races by serializing closes 754 * on this common snode. Clone opens are held up until after 755 * we have closed this device so the streams linkage is maintained 756 */ 757 csp = VTOS(cvp); 758 759 LOCK_CSP(csp); 760 mutex_enter(&csp->s_lock); 761 762 csp->s_count--; /* one fewer open reference : SN_RELE */ 763 sysclone = sp->s_flag & SCLONE; 764 765 /* 766 * Invalidate size on each close. 767 * 768 * XXX We do this on each close because we don't have interfaces that 769 * allow a driver to invalidate the size. Since clearing this on each 770 * close this causes property overhead we skip /dev/null and 771 * /dev/zero to avoid degrading kenbus performance. 772 */ 773 if (getmajor(dev) != mm_major) 774 csp->s_flag &= ~SSIZEVALID; 775 776 /* 777 * Only call the close routine when the last open reference through 778 * any [s, v]node goes away. This can be checked by looking at 779 * s_count on the common vnode. 780 */ 781 if ((csp->s_count == 0) && (csp->s_mapcnt == 0)) { 782 /* we don't need a close */ 783 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 784 785 /* 786 * A cloning driver may open-clone to the same dev_t that we 787 * are closing before spec_inactive destroys the common snode. 788 * If this occurs the s_dip association needs to be reevaluated. 789 * We clear SDIPSET to force reevaluation in this case. When 790 * reevaluation occurs (by spec_clone after open), if the 791 * devinfo association has changed then the old association 792 * will be released as the new association is established by 793 * spec_assoc_vp_with_devi(). 794 */ 795 if (csp->s_flag & (SCLONE | SSELFCLONE)) 796 csp->s_flag &= ~SDIPSET; 797 798 mutex_exit(&csp->s_lock); 799 error = device_close(vp, flag, cr); 800 801 /* 802 * Decrement the devops held in clnopen() 803 */ 804 if (sysclone) { 805 ddi_rele_driver(getmajor(dev)); 806 } 807 mutex_enter(&csp->s_lock); 808 } 809 810 UNLOCK_CSP_LOCK_HELD(csp); 811 mutex_exit(&csp->s_lock); 812 813 return (error); 814 } 815 816 /*ARGSUSED2*/ 817 static int 818 spec_read( 819 struct vnode *vp, 820 struct uio *uiop, 821 int ioflag, 822 struct cred *cr, 823 struct caller_context *ct) 824 { 825 int error; 826 struct snode *sp = VTOS(vp); 827 dev_t dev = sp->s_dev; 828 size_t n; 829 ulong_t on; 830 u_offset_t bdevsize; 831 offset_t maxoff; 832 offset_t off; 833 struct vnode *blkvp; 834 835 ASSERT(vp->v_type == VCHR || vp->v_type == VBLK); 836 837 if (STREAMSTAB(getmajor(dev))) { /* stream */ 838 ASSERT(vp->v_type == VCHR); 839 smark(sp, SACC); 840 return (strread(vp, uiop, cr)); 841 } 842 843 if (uiop->uio_resid == 0) 844 return (0); 845 846 /* 847 * Plain old character devices that set D_U64BIT can have 848 * unrestricted offsets. 849 */ 850 maxoff = spec_maxoffset(vp); 851 ASSERT(maxoff != -1 || vp->v_type == VCHR); 852 853 if (maxoff != -1 && (uiop->uio_loffset < 0 || 854 uiop->uio_loffset + uiop->uio_resid > maxoff)) 855 return (EINVAL); 856 857 if (vp->v_type == VCHR) { 858 smark(sp, SACC); 859 ASSERT(STREAMSTAB(getmajor(dev)) == 0); 860 return (cdev_read(dev, uiop, cr)); 861 } 862 863 /* 864 * Block device. 865 */ 866 error = 0; 867 blkvp = sp->s_commonvp; 868 bdevsize = SPEC_SIZE(VTOS(blkvp)); 869 870 do { 871 caddr_t base; 872 offset_t diff; 873 874 off = uiop->uio_loffset & (offset_t)MAXBMASK; 875 on = (size_t)(uiop->uio_loffset & MAXBOFFSET); 876 n = (size_t)MIN(MAXBSIZE - on, uiop->uio_resid); 877 diff = bdevsize - uiop->uio_loffset; 878 879 if (diff <= 0) 880 break; 881 if (diff < n) 882 n = (size_t)diff; 883 884 base = segmap_getmapflt(segkmap, blkvp, 885 (u_offset_t)(off + on), n, 1, S_READ); 886 887 if ((error = uiomove(base + on, n, UIO_READ, uiop)) == 0) { 888 int flags = 0; 889 /* 890 * If we read a whole block, we won't need this 891 * buffer again soon. 892 */ 893 if (n + on == MAXBSIZE) 894 flags = SM_DONTNEED | SM_FREE; 895 error = segmap_release(segkmap, base, flags); 896 } else { 897 (void) segmap_release(segkmap, base, 0); 898 if (bdevsize == UNKNOWN_SIZE) { 899 error = 0; 900 break; 901 } 902 } 903 } while (error == 0 && uiop->uio_resid > 0 && n != 0); 904 905 return (error); 906 } 907 908 /*ARGSUSED*/ 909 static int 910 spec_write( 911 struct vnode *vp, 912 struct uio *uiop, 913 int ioflag, 914 struct cred *cr, 915 struct caller_context *ct) 916 { 917 int error; 918 struct snode *sp = VTOS(vp); 919 dev_t dev = sp->s_dev; 920 size_t n; 921 ulong_t on; 922 u_offset_t bdevsize; 923 offset_t maxoff; 924 offset_t off; 925 struct vnode *blkvp; 926 927 ASSERT(vp->v_type == VCHR || vp->v_type == VBLK); 928 929 if (STREAMSTAB(getmajor(dev))) { 930 ASSERT(vp->v_type == VCHR); 931 smark(sp, SUPD); 932 return (strwrite(vp, uiop, cr)); 933 } 934 935 /* 936 * Plain old character devices that set D_U64BIT can have 937 * unrestricted offsets. 938 */ 939 maxoff = spec_maxoffset(vp); 940 ASSERT(maxoff != -1 || vp->v_type == VCHR); 941 942 if (maxoff != -1 && (uiop->uio_loffset < 0 || 943 uiop->uio_loffset + uiop->uio_resid > maxoff)) 944 return (EINVAL); 945 946 if (vp->v_type == VCHR) { 947 smark(sp, SUPD); 948 ASSERT(STREAMSTAB(getmajor(dev)) == 0); 949 return (cdev_write(dev, uiop, cr)); 950 } 951 952 if (uiop->uio_resid == 0) 953 return (0); 954 955 error = 0; 956 blkvp = sp->s_commonvp; 957 bdevsize = SPEC_SIZE(VTOS(blkvp)); 958 959 do { 960 int pagecreate; 961 int newpage; 962 caddr_t base; 963 offset_t diff; 964 965 off = uiop->uio_loffset & (offset_t)MAXBMASK; 966 on = (ulong_t)(uiop->uio_loffset & MAXBOFFSET); 967 n = (size_t)MIN(MAXBSIZE - on, uiop->uio_resid); 968 pagecreate = 0; 969 970 diff = bdevsize - uiop->uio_loffset; 971 if (diff <= 0) { 972 error = ENXIO; 973 break; 974 } 975 if (diff < n) 976 n = (size_t)diff; 977 978 /* 979 * Check to see if we can skip reading in the page 980 * and just allocate the memory. We can do this 981 * if we are going to rewrite the entire mapping 982 * or if we are going to write to end of the device 983 * from the beginning of the mapping. 984 */ 985 if (n == MAXBSIZE || (on == 0 && (off + n) == bdevsize)) 986 pagecreate = 1; 987 988 base = segmap_getmapflt(segkmap, blkvp, 989 (u_offset_t)(off + on), n, !pagecreate, S_WRITE); 990 991 /* 992 * segmap_pagecreate() returns 1 if it calls 993 * page_create_va() to allocate any pages. 994 */ 995 newpage = 0; 996 997 if (pagecreate) 998 newpage = segmap_pagecreate(segkmap, base + on, 999 n, 0); 1000 1001 error = uiomove(base + on, n, UIO_WRITE, uiop); 1002 1003 if (pagecreate && 1004 uiop->uio_loffset < 1005 P2ROUNDUP_TYPED(off + on + n, PAGESIZE, offset_t)) { 1006 /* 1007 * We created pages w/o initializing them completely, 1008 * thus we need to zero the part that wasn't set up. 1009 * This can happen if we write to the end of the device 1010 * or if we had some sort of error during the uiomove. 1011 */ 1012 long nzero; 1013 offset_t nmoved; 1014 1015 nmoved = (uiop->uio_loffset - (off + on)); 1016 if (nmoved < 0 || nmoved > n) { 1017 panic("spec_write: nmoved bogus"); 1018 /*NOTREACHED*/ 1019 } 1020 nzero = (long)P2ROUNDUP(on + n, PAGESIZE) - 1021 (on + nmoved); 1022 if (nzero < 0 || (on + nmoved + nzero > MAXBSIZE)) { 1023 panic("spec_write: nzero bogus"); 1024 /*NOTREACHED*/ 1025 } 1026 (void) kzero(base + on + nmoved, (size_t)nzero); 1027 } 1028 1029 /* 1030 * Unlock the pages which have been allocated by 1031 * page_create_va() in segmap_pagecreate(). 1032 */ 1033 if (newpage) 1034 segmap_pageunlock(segkmap, base + on, 1035 (size_t)n, S_WRITE); 1036 1037 if (error == 0) { 1038 int flags = 0; 1039 1040 /* 1041 * Force write back for synchronous write cases. 1042 */ 1043 if (ioflag & (FSYNC|FDSYNC)) 1044 flags = SM_WRITE; 1045 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 1046 /* 1047 * Have written a whole block. 1048 * Start an asynchronous write and 1049 * mark the buffer to indicate that 1050 * it won't be needed again soon. 1051 * Push swap files here, since it 1052 * won't happen anywhere else. 1053 */ 1054 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 1055 } 1056 smark(sp, SUPD|SCHG); 1057 error = segmap_release(segkmap, base, flags); 1058 } else 1059 (void) segmap_release(segkmap, base, SM_INVAL); 1060 1061 } while (error == 0 && uiop->uio_resid > 0 && n != 0); 1062 1063 return (error); 1064 } 1065 1066 static int 1067 spec_ioctl(struct vnode *vp, int cmd, intptr_t arg, int mode, struct cred *cr, 1068 int *rvalp) 1069 { 1070 struct snode *sp; 1071 dev_t dev; 1072 int error; 1073 1074 if (vp->v_type != VCHR) 1075 return (ENOTTY); 1076 sp = VTOS(vp); 1077 dev = sp->s_dev; 1078 if (STREAMSTAB(getmajor(dev))) { 1079 error = strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp); 1080 } else { 1081 error = cdev_ioctl(dev, cmd, arg, mode, cr, rvalp); 1082 } 1083 return (error); 1084 } 1085 1086 static int 1087 spec_getattr(struct vnode *vp, struct vattr *vap, int flags, struct cred *cr) 1088 { 1089 int error; 1090 struct snode *sp; 1091 struct vnode *realvp; 1092 1093 /* With ATTR_COMM we will not get attributes from realvp */ 1094 if (flags & ATTR_COMM) { 1095 sp = VTOS(vp); 1096 vp = sp->s_commonvp; 1097 } 1098 sp = VTOS(vp); 1099 realvp = sp->s_realvp; 1100 1101 if (realvp == NULL) { 1102 static int snode_shift = 0; 1103 1104 /* 1105 * Calculate the amount of bitshift to a snode pointer which 1106 * will still keep it unique. See below. 1107 */ 1108 if (snode_shift == 0) 1109 snode_shift = highbit(sizeof (struct snode)); 1110 ASSERT(snode_shift > 0); 1111 1112 /* 1113 * No real vnode behind this one. Fill in the fields 1114 * from the snode. 1115 * 1116 * This code should be refined to return only the 1117 * attributes asked for instead of all of them. 1118 */ 1119 vap->va_type = vp->v_type; 1120 vap->va_mode = 0; 1121 vap->va_uid = vap->va_gid = 0; 1122 vap->va_fsid = sp->s_fsid; 1123 1124 /* 1125 * If the va_nodeid is > MAX_USHORT, then i386 stats might 1126 * fail. So we shift down the snode pointer to try and get 1127 * the most uniqueness into 16-bits. 1128 */ 1129 vap->va_nodeid = ((ino64_t)(uintptr_t)sp >> snode_shift) & 1130 0xFFFF; 1131 vap->va_nlink = 0; 1132 vap->va_rdev = sp->s_dev; 1133 1134 /* 1135 * va_nblocks is the number of 512 byte blocks used to store 1136 * the mknod for the device, not the number of blocks on the 1137 * device itself. This is typically zero since the mknod is 1138 * represented directly in the inode itself. 1139 */ 1140 vap->va_nblocks = 0; 1141 } else { 1142 error = VOP_GETATTR(realvp, vap, flags, cr); 1143 if (error != 0) 1144 return (error); 1145 } 1146 1147 /* set the size from the snode */ 1148 vap->va_size = SPEC_SIZE(VTOS(sp->s_commonvp)); 1149 vap->va_blksize = MAXBSIZE; 1150 1151 mutex_enter(&sp->s_lock); 1152 vap->va_atime.tv_sec = sp->s_atime; 1153 vap->va_mtime.tv_sec = sp->s_mtime; 1154 vap->va_ctime.tv_sec = sp->s_ctime; 1155 mutex_exit(&sp->s_lock); 1156 1157 vap->va_atime.tv_nsec = 0; 1158 vap->va_mtime.tv_nsec = 0; 1159 vap->va_ctime.tv_nsec = 0; 1160 vap->va_seq = 0; 1161 1162 return (0); 1163 } 1164 1165 static int 1166 spec_setattr( 1167 struct vnode *vp, 1168 struct vattr *vap, 1169 int flags, 1170 struct cred *cr, 1171 caller_context_t *ctp) 1172 { 1173 struct snode *sp = VTOS(vp); 1174 struct vnode *realvp; 1175 int error; 1176 1177 if (vp->v_type == VCHR && vp->v_stream && (vap->va_mask & AT_SIZE)) { 1178 /* 1179 * 1135080: O_TRUNC should have no effect on 1180 * named pipes and terminal devices. 1181 */ 1182 ASSERT(vap->va_mask == AT_SIZE); 1183 return (0); 1184 } 1185 1186 if ((realvp = sp->s_realvp) == NULL) 1187 error = 0; /* no real vnode to update */ 1188 else 1189 error = VOP_SETATTR(realvp, vap, flags, cr, ctp); 1190 if (error == 0) { 1191 /* 1192 * If times were changed, update snode. 1193 */ 1194 mutex_enter(&sp->s_lock); 1195 if (vap->va_mask & AT_ATIME) 1196 sp->s_atime = vap->va_atime.tv_sec; 1197 if (vap->va_mask & AT_MTIME) { 1198 sp->s_mtime = vap->va_mtime.tv_sec; 1199 sp->s_ctime = gethrestime_sec(); 1200 } 1201 mutex_exit(&sp->s_lock); 1202 } 1203 return (error); 1204 } 1205 1206 static int 1207 spec_access(struct vnode *vp, int mode, int flags, struct cred *cr) 1208 { 1209 struct vnode *realvp; 1210 struct snode *sp = VTOS(vp); 1211 1212 if ((realvp = sp->s_realvp) != NULL) 1213 return (VOP_ACCESS(realvp, mode, flags, cr)); 1214 else 1215 return (0); /* Allow all access. */ 1216 } 1217 1218 /* 1219 * This can be called if creat or an open with O_CREAT is done on the root 1220 * of a lofs mount where the mounted entity is a special file. 1221 */ 1222 /*ARGSUSED*/ 1223 static int 1224 spec_create(struct vnode *dvp, char *name, vattr_t *vap, enum vcexcl excl, 1225 int mode, struct vnode **vpp, struct cred *cr, int flag) 1226 { 1227 int error; 1228 1229 ASSERT(dvp && (dvp->v_flag & VROOT) && *name == '\0'); 1230 if (excl == NONEXCL) { 1231 if (mode && (error = spec_access(dvp, mode, 0, cr))) 1232 return (error); 1233 VN_HOLD(dvp); 1234 return (0); 1235 } 1236 return (EEXIST); 1237 } 1238 1239 /* 1240 * In order to sync out the snode times without multi-client problems, 1241 * make sure the times written out are never earlier than the times 1242 * already set in the vnode. 1243 */ 1244 static int 1245 spec_fsync(struct vnode *vp, int syncflag, struct cred *cr) 1246 { 1247 struct snode *sp = VTOS(vp); 1248 struct vnode *realvp; 1249 struct vnode *cvp; 1250 struct vattr va, vatmp; 1251 1252 /* If times didn't change, don't flush anything. */ 1253 mutex_enter(&sp->s_lock); 1254 if ((sp->s_flag & (SACC|SUPD|SCHG)) == 0 && vp->v_type != VBLK) { 1255 mutex_exit(&sp->s_lock); 1256 return (0); 1257 } 1258 sp->s_flag &= ~(SACC|SUPD|SCHG); 1259 mutex_exit(&sp->s_lock); 1260 cvp = sp->s_commonvp; 1261 realvp = sp->s_realvp; 1262 1263 if (vp->v_type == VBLK && cvp != vp && vn_has_cached_data(cvp) && 1264 (cvp->v_flag & VISSWAP) == 0) 1265 (void) VOP_PUTPAGE(cvp, (offset_t)0, 0, 0, cr); 1266 1267 /* 1268 * If no real vnode to update, don't flush anything. 1269 */ 1270 if (realvp == NULL) 1271 return (0); 1272 1273 vatmp.va_mask = AT_ATIME|AT_MTIME; 1274 if (VOP_GETATTR(realvp, &vatmp, 0, cr) == 0) { 1275 1276 mutex_enter(&sp->s_lock); 1277 if (vatmp.va_atime.tv_sec > sp->s_atime) 1278 va.va_atime = vatmp.va_atime; 1279 else { 1280 va.va_atime.tv_sec = sp->s_atime; 1281 va.va_atime.tv_nsec = 0; 1282 } 1283 if (vatmp.va_mtime.tv_sec > sp->s_mtime) 1284 va.va_mtime = vatmp.va_mtime; 1285 else { 1286 va.va_mtime.tv_sec = sp->s_mtime; 1287 va.va_mtime.tv_nsec = 0; 1288 } 1289 mutex_exit(&sp->s_lock); 1290 1291 va.va_mask = AT_ATIME|AT_MTIME; 1292 (void) VOP_SETATTR(realvp, &va, 0, cr, NULL); 1293 } 1294 (void) VOP_FSYNC(realvp, syncflag, cr); 1295 return (0); 1296 } 1297 1298 /*ARGSUSED*/ 1299 static void 1300 spec_inactive(struct vnode *vp, struct cred *cr) 1301 { 1302 struct snode *sp = VTOS(vp); 1303 struct vnode *cvp; 1304 struct vnode *rvp; 1305 1306 /* 1307 * If no one has reclaimed the vnode, remove from the 1308 * cache now. 1309 */ 1310 if (vp->v_count < 1) { 1311 panic("spec_inactive: Bad v_count"); 1312 /*NOTREACHED*/ 1313 } 1314 mutex_enter(&stable_lock); 1315 1316 mutex_enter(&vp->v_lock); 1317 /* 1318 * Drop the temporary hold by vn_rele now 1319 */ 1320 if (--vp->v_count != 0) { 1321 mutex_exit(&vp->v_lock); 1322 mutex_exit(&stable_lock); 1323 return; 1324 } 1325 mutex_exit(&vp->v_lock); 1326 1327 sdelete(sp); 1328 mutex_exit(&stable_lock); 1329 1330 /* We are the sole owner of sp now */ 1331 cvp = sp->s_commonvp; 1332 rvp = sp->s_realvp; 1333 1334 if (rvp) { 1335 /* 1336 * If the snode times changed, then update the times 1337 * associated with the "realvp". 1338 */ 1339 if ((sp->s_flag & (SACC|SUPD|SCHG)) != 0) { 1340 1341 struct vattr va, vatmp; 1342 1343 mutex_enter(&sp->s_lock); 1344 sp->s_flag &= ~(SACC|SUPD|SCHG); 1345 mutex_exit(&sp->s_lock); 1346 vatmp.va_mask = AT_ATIME|AT_MTIME; 1347 /* 1348 * The user may not own the device, but we 1349 * want to update the attributes anyway. 1350 */ 1351 if (VOP_GETATTR(rvp, &vatmp, 0, kcred) == 0) { 1352 if (vatmp.va_atime.tv_sec > sp->s_atime) 1353 va.va_atime = vatmp.va_atime; 1354 else { 1355 va.va_atime.tv_sec = sp->s_atime; 1356 va.va_atime.tv_nsec = 0; 1357 } 1358 if (vatmp.va_mtime.tv_sec > sp->s_mtime) 1359 va.va_mtime = vatmp.va_mtime; 1360 else { 1361 va.va_mtime.tv_sec = sp->s_mtime; 1362 va.va_mtime.tv_nsec = 0; 1363 } 1364 1365 va.va_mask = AT_ATIME|AT_MTIME; 1366 (void) VOP_SETATTR(rvp, &va, 0, kcred, NULL); 1367 } 1368 } 1369 } 1370 ASSERT(!vn_has_cached_data(vp)); 1371 vn_invalid(vp); 1372 1373 /* if we are sharing another file systems vfs, release it */ 1374 if (vp->v_vfsp && (vp->v_vfsp != &spec_vfs)) 1375 VFS_RELE(vp->v_vfsp); 1376 1377 /* if we have a realvp, release the realvp */ 1378 if (rvp) 1379 VN_RELE(rvp); 1380 1381 /* if we have a common, release the common */ 1382 if (cvp && (cvp != vp)) 1383 VN_RELE(cvp); 1384 1385 /* 1386 * if we have a hold on a devinfo node (established by 1387 * spec_assoc_vp_with_devi), release the hold 1388 */ 1389 if (sp->s_dip) 1390 ddi_release_devi(sp->s_dip); 1391 1392 /* 1393 * If we have an associated device policy, release it. 1394 */ 1395 if (sp->s_plcy != NULL) 1396 dpfree(sp->s_plcy); 1397 1398 /* 1399 * If all holds on the devinfo node are through specfs/devfs 1400 * and we just destroyed the last specfs node associated with the 1401 * device, then the devinfo node reference count should now be 1402 * zero. We can't check this because there may be other holds 1403 * on the node from non file system sources: ddi_hold_devi_by_instance 1404 * for example. 1405 */ 1406 kmem_cache_free(snode_cache, sp); 1407 } 1408 1409 static int 1410 spec_fid(struct vnode *vp, struct fid *fidp) 1411 { 1412 struct vnode *realvp; 1413 struct snode *sp = VTOS(vp); 1414 1415 if ((realvp = sp->s_realvp) != NULL) 1416 return (VOP_FID(realvp, fidp)); 1417 else 1418 return (EINVAL); 1419 } 1420 1421 /*ARGSUSED1*/ 1422 static int 1423 spec_seek(struct vnode *vp, offset_t ooff, offset_t *noffp) 1424 { 1425 offset_t maxoff = spec_maxoffset(vp); 1426 1427 if (maxoff == -1 || *noffp <= maxoff) 1428 return (0); 1429 else 1430 return (EINVAL); 1431 } 1432 1433 static int 1434 spec_frlock( 1435 struct vnode *vp, 1436 int cmd, 1437 struct flock64 *bfp, 1438 int flag, 1439 offset_t offset, 1440 struct flk_callback *flk_cbp, 1441 struct cred *cr) 1442 { 1443 struct snode *sp = VTOS(vp); 1444 struct snode *csp; 1445 1446 csp = VTOS(sp->s_commonvp); 1447 /* 1448 * If file is being mapped, disallow frlock. 1449 */ 1450 if (csp->s_mapcnt > 0) 1451 return (EAGAIN); 1452 1453 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr)); 1454 } 1455 1456 static int 1457 spec_realvp(struct vnode *vp, struct vnode **vpp) 1458 { 1459 struct vnode *rvp; 1460 1461 if ((rvp = VTOS(vp)->s_realvp) != NULL) { 1462 vp = rvp; 1463 if (VOP_REALVP(vp, &rvp) == 0) 1464 vp = rvp; 1465 } 1466 1467 *vpp = vp; 1468 return (0); 1469 } 1470 1471 /* 1472 * Return all the pages from [off..off + len] in block 1473 * or character device. 1474 */ 1475 static int 1476 spec_getpage( 1477 struct vnode *vp, 1478 offset_t off, 1479 size_t len, 1480 uint_t *protp, 1481 page_t *pl[], 1482 size_t plsz, 1483 struct seg *seg, 1484 caddr_t addr, 1485 enum seg_rw rw, 1486 struct cred *cr) 1487 { 1488 struct snode *sp = VTOS(vp); 1489 int err; 1490 1491 ASSERT(sp->s_commonvp == vp); 1492 1493 /* 1494 * XXX Given the above assertion, this might not do 1495 * what is wanted here. 1496 */ 1497 if (vp->v_flag & VNOMAP) 1498 return (ENOSYS); 1499 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_GETPAGE, 1500 "specfs getpage:vp %p off %llx len %ld snode %p", 1501 vp, off, len, sp); 1502 1503 switch (vp->v_type) { 1504 case VBLK: 1505 if (protp != NULL) 1506 *protp = PROT_ALL; 1507 1508 if (((u_offset_t)off + len) > (SPEC_SIZE(sp) + PAGEOFFSET)) 1509 return (EFAULT); /* beyond EOF */ 1510 1511 if (len <= PAGESIZE) 1512 err = spec_getapage(vp, (u_offset_t)off, len, protp, pl, 1513 plsz, seg, addr, rw, cr); 1514 else 1515 err = pvn_getpages(spec_getapage, vp, (u_offset_t)off, 1516 len, protp, pl, plsz, seg, addr, rw, cr); 1517 break; 1518 1519 case VCHR: 1520 cmn_err(CE_NOTE, "spec_getpage called for character device. " 1521 "Check any non-ON consolidation drivers"); 1522 err = 0; 1523 pl[0] = (page_t *)0; 1524 break; 1525 1526 default: 1527 panic("spec_getpage: bad v_type 0x%x", vp->v_type); 1528 /*NOTREACHED*/ 1529 } 1530 1531 return (err); 1532 } 1533 1534 extern int klustsize; /* set in machdep.c */ 1535 1536 int spec_ra = 1; 1537 int spec_lostpage; /* number of times we lost original page */ 1538 1539 /*ARGSUSED2*/ 1540 static int 1541 spec_getapage( 1542 struct vnode *vp, 1543 u_offset_t off, 1544 size_t len, 1545 uint_t *protp, 1546 page_t *pl[], 1547 size_t plsz, 1548 struct seg *seg, 1549 caddr_t addr, 1550 enum seg_rw rw, 1551 struct cred *cr) 1552 { 1553 struct snode *sp; 1554 struct buf *bp; 1555 page_t *pp, *pp2; 1556 u_offset_t io_off1, io_off2; 1557 size_t io_len1; 1558 size_t io_len2; 1559 size_t blksz; 1560 u_offset_t blkoff; 1561 int dora, err; 1562 page_t *pagefound; 1563 uint_t xlen; 1564 size_t adj_klustsize; 1565 u_offset_t size; 1566 u_offset_t tmpoff; 1567 1568 sp = VTOS(vp); 1569 TRACE_3(TR_FAC_SPECFS, TR_SPECFS_GETAPAGE, 1570 "specfs getapage:vp %p off %llx snode %p", vp, off, sp); 1571 reread: 1572 1573 err = 0; 1574 bp = NULL; 1575 pp = NULL; 1576 pp2 = NULL; 1577 1578 if (pl != NULL) 1579 pl[0] = NULL; 1580 1581 size = SPEC_SIZE(VTOS(sp->s_commonvp)); 1582 1583 if (spec_ra && sp->s_nextr == off) 1584 dora = 1; 1585 else 1586 dora = 0; 1587 1588 if (size == UNKNOWN_SIZE) { 1589 dora = 0; 1590 adj_klustsize = PAGESIZE; 1591 } else { 1592 adj_klustsize = dora ? klustsize : PAGESIZE; 1593 } 1594 1595 again: 1596 if ((pagefound = page_exists(vp, off)) == NULL) { 1597 if (rw == S_CREATE) { 1598 /* 1599 * We're allocating a swap slot and it's 1600 * associated page was not found, so allocate 1601 * and return it. 1602 */ 1603 if ((pp = page_create_va(vp, off, 1604 PAGESIZE, PG_WAIT, seg, addr)) == NULL) { 1605 panic("spec_getapage: page_create"); 1606 /*NOTREACHED*/ 1607 } 1608 io_len1 = PAGESIZE; 1609 sp->s_nextr = off + PAGESIZE; 1610 } else { 1611 /* 1612 * Need to really do disk I/O to get the page(s). 1613 */ 1614 blkoff = (off / adj_klustsize) * adj_klustsize; 1615 if (size == UNKNOWN_SIZE) { 1616 blksz = PAGESIZE; 1617 } else { 1618 if (blkoff + adj_klustsize <= size) 1619 blksz = adj_klustsize; 1620 else 1621 blksz = 1622 MIN(size - blkoff, adj_klustsize); 1623 } 1624 1625 pp = pvn_read_kluster(vp, off, seg, addr, &tmpoff, 1626 &io_len1, blkoff, blksz, 0); 1627 io_off1 = tmpoff; 1628 /* 1629 * Make sure the page didn't sneek into the 1630 * cache while we blocked in pvn_read_kluster. 1631 */ 1632 if (pp == NULL) 1633 goto again; 1634 1635 /* 1636 * Zero part of page which we are not 1637 * going to be reading from disk now. 1638 */ 1639 xlen = (uint_t)(io_len1 & PAGEOFFSET); 1640 if (xlen != 0) 1641 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 1642 1643 bp = spec_startio(vp, pp, io_off1, io_len1, 1644 pl == NULL ? (B_ASYNC | B_READ) : B_READ); 1645 sp->s_nextr = io_off1 + io_len1; 1646 } 1647 } 1648 1649 if (dora && rw != S_CREATE) { 1650 u_offset_t off2; 1651 caddr_t addr2; 1652 1653 off2 = ((off / adj_klustsize) + 1) * adj_klustsize; 1654 addr2 = addr + (off2 - off); 1655 1656 pp2 = NULL; 1657 /* 1658 * If we are past EOF then don't bother trying 1659 * with read-ahead. 1660 */ 1661 if (off2 >= size) 1662 pp2 = NULL; 1663 else { 1664 if (off2 + adj_klustsize <= size) 1665 blksz = adj_klustsize; 1666 else 1667 blksz = MIN(size - off2, adj_klustsize); 1668 1669 pp2 = pvn_read_kluster(vp, off2, seg, addr2, &tmpoff, 1670 &io_len2, off2, blksz, 1); 1671 io_off2 = tmpoff; 1672 } 1673 1674 if (pp2 != NULL) { 1675 /* 1676 * Zero part of page which we are not 1677 * going to be reading from disk now. 1678 */ 1679 xlen = (uint_t)(io_len2 & PAGEOFFSET); 1680 if (xlen != 0) 1681 pagezero(pp2->p_prev, xlen, PAGESIZE - xlen); 1682 1683 (void) spec_startio(vp, pp2, io_off2, io_len2, 1684 B_READ | B_ASYNC); 1685 } 1686 } 1687 1688 if (pl == NULL) 1689 return (err); 1690 1691 if (bp != NULL) { 1692 err = biowait(bp); 1693 pageio_done(bp); 1694 1695 if (err) { 1696 if (pp != NULL) 1697 pvn_read_done(pp, B_ERROR); 1698 return (err); 1699 } 1700 } 1701 1702 if (pagefound) { 1703 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 1704 /* 1705 * Page exists in the cache, acquire the appropriate 1706 * lock. If this fails, start all over again. 1707 */ 1708 1709 if ((pp = page_lookup(vp, off, se)) == NULL) { 1710 spec_lostpage++; 1711 goto reread; 1712 } 1713 pl[0] = pp; 1714 pl[1] = NULL; 1715 1716 sp->s_nextr = off + PAGESIZE; 1717 return (0); 1718 } 1719 1720 if (pp != NULL) 1721 pvn_plist_init(pp, pl, plsz, off, io_len1, rw); 1722 return (0); 1723 } 1724 1725 /* 1726 * Flags are composed of {B_INVAL, B_DIRTY B_FREE, B_DONTNEED, B_FORCE}. 1727 * If len == 0, do from off to EOF. 1728 * 1729 * The normal cases should be len == 0 & off == 0 (entire vp list), 1730 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 1731 * (from pageout). 1732 */ 1733 int 1734 spec_putpage( 1735 struct vnode *vp, 1736 offset_t off, 1737 size_t len, 1738 int flags, 1739 struct cred *cr) 1740 { 1741 struct snode *sp = VTOS(vp); 1742 struct vnode *cvp; 1743 page_t *pp; 1744 u_offset_t io_off; 1745 size_t io_len = 0; /* for lint */ 1746 int err = 0; 1747 u_offset_t size; 1748 u_offset_t tmpoff; 1749 1750 ASSERT(vp->v_count != 0); 1751 1752 if (vp->v_flag & VNOMAP) 1753 return (ENOSYS); 1754 1755 cvp = sp->s_commonvp; 1756 size = SPEC_SIZE(VTOS(cvp)); 1757 1758 if (!vn_has_cached_data(vp) || off >= size) 1759 return (0); 1760 1761 ASSERT(vp->v_type == VBLK && cvp == vp); 1762 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_PUTPAGE, 1763 "specfs putpage:vp %p off %llx len %ld snode %p", 1764 vp, off, len, sp); 1765 1766 if (len == 0) { 1767 /* 1768 * Search the entire vp list for pages >= off. 1769 */ 1770 err = pvn_vplist_dirty(vp, off, spec_putapage, 1771 flags, cr); 1772 } else { 1773 u_offset_t eoff; 1774 1775 /* 1776 * Loop over all offsets in the range [off...off + len] 1777 * looking for pages to deal with. We set limits so 1778 * that we kluster to klustsize boundaries. 1779 */ 1780 eoff = off + len; 1781 for (io_off = off; io_off < eoff && io_off < size; 1782 io_off += io_len) { 1783 /* 1784 * If we are not invalidating, synchronously 1785 * freeing or writing pages use the routine 1786 * page_lookup_nowait() to prevent reclaiming 1787 * them from the free list. 1788 */ 1789 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 1790 pp = page_lookup(vp, io_off, 1791 (flags & (B_INVAL | B_FREE)) ? 1792 SE_EXCL : SE_SHARED); 1793 } else { 1794 pp = page_lookup_nowait(vp, io_off, 1795 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 1796 } 1797 1798 if (pp == NULL || pvn_getdirty(pp, flags) == 0) 1799 io_len = PAGESIZE; 1800 else { 1801 err = spec_putapage(vp, pp, &tmpoff, &io_len, 1802 flags, cr); 1803 io_off = tmpoff; 1804 if (err != 0) 1805 break; 1806 /* 1807 * "io_off" and "io_len" are returned as 1808 * the range of pages we actually wrote. 1809 * This allows us to skip ahead more quickly 1810 * since several pages may've been dealt 1811 * with by this iteration of the loop. 1812 */ 1813 } 1814 } 1815 } 1816 return (err); 1817 } 1818 1819 1820 /* 1821 * Write out a single page, possibly klustering adjacent 1822 * dirty pages. 1823 */ 1824 /*ARGSUSED5*/ 1825 static int 1826 spec_putapage( 1827 struct vnode *vp, 1828 page_t *pp, 1829 u_offset_t *offp, /* return value */ 1830 size_t *lenp, /* return value */ 1831 int flags, 1832 struct cred *cr) 1833 { 1834 struct snode *sp = VTOS(vp); 1835 u_offset_t io_off; 1836 size_t io_len; 1837 size_t blksz; 1838 u_offset_t blkoff; 1839 int err = 0; 1840 struct buf *bp; 1841 u_offset_t size; 1842 size_t adj_klustsize; 1843 u_offset_t tmpoff; 1844 1845 /* 1846 * Destroy read ahead value since we are really going to write. 1847 */ 1848 sp->s_nextr = 0; 1849 size = SPEC_SIZE(VTOS(sp->s_commonvp)); 1850 1851 adj_klustsize = klustsize; 1852 1853 blkoff = (pp->p_offset / adj_klustsize) * adj_klustsize; 1854 1855 if (blkoff + adj_klustsize <= size) 1856 blksz = adj_klustsize; 1857 else 1858 blksz = size - blkoff; 1859 1860 /* 1861 * Find a kluster that fits in one contiguous chunk. 1862 */ 1863 pp = pvn_write_kluster(vp, pp, &tmpoff, &io_len, blkoff, 1864 blksz, flags); 1865 io_off = tmpoff; 1866 1867 /* 1868 * Check for page length rounding problems 1869 * XXX - Is this necessary? 1870 */ 1871 if (io_off + io_len > size) { 1872 ASSERT((io_off + io_len) - size < PAGESIZE); 1873 io_len = size - io_off; 1874 } 1875 1876 bp = spec_startio(vp, pp, io_off, io_len, B_WRITE | flags); 1877 1878 /* 1879 * Wait for i/o to complete if the request is not B_ASYNC. 1880 */ 1881 if ((flags & B_ASYNC) == 0) { 1882 err = biowait(bp); 1883 pageio_done(bp); 1884 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags); 1885 } 1886 1887 if (offp) 1888 *offp = io_off; 1889 if (lenp) 1890 *lenp = io_len; 1891 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_PUTAPAGE, 1892 "specfs putapage:vp %p offp %p snode %p err %d", 1893 vp, offp, sp, err); 1894 return (err); 1895 } 1896 1897 /* 1898 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 1899 */ 1900 static struct buf * 1901 spec_startio( 1902 struct vnode *vp, 1903 page_t *pp, 1904 u_offset_t io_off, 1905 size_t io_len, 1906 int flags) 1907 { 1908 struct buf *bp; 1909 1910 bp = pageio_setup(pp, io_len, vp, flags); 1911 1912 bp->b_edev = vp->v_rdev; 1913 bp->b_dev = cmpdev(vp->v_rdev); 1914 bp->b_blkno = btodt(io_off); 1915 bp->b_un.b_addr = (caddr_t)0; 1916 1917 (void) bdev_strategy(bp); 1918 1919 if (flags & B_READ) 1920 lwp_stat_update(LWP_STAT_INBLK, 1); 1921 else 1922 lwp_stat_update(LWP_STAT_OUBLK, 1); 1923 1924 return (bp); 1925 } 1926 1927 static int 1928 spec_poll( 1929 struct vnode *vp, 1930 short events, 1931 int anyyet, 1932 short *reventsp, 1933 struct pollhead **phpp) 1934 { 1935 dev_t dev; 1936 int error; 1937 1938 if (vp->v_type == VBLK) 1939 error = fs_poll(vp, events, anyyet, reventsp, phpp); 1940 else { 1941 ASSERT(vp->v_type == VCHR); 1942 dev = vp->v_rdev; 1943 if (STREAMSTAB(getmajor(dev))) { 1944 ASSERT(vp->v_stream != NULL); 1945 error = strpoll(vp->v_stream, events, anyyet, 1946 reventsp, phpp); 1947 } else if (devopsp[getmajor(dev)]->devo_cb_ops->cb_chpoll) { 1948 error = cdev_poll(dev, events, anyyet, reventsp, phpp); 1949 } else { 1950 error = fs_poll(vp, events, anyyet, reventsp, phpp); 1951 } 1952 } 1953 return (error); 1954 } 1955 1956 /* 1957 * This routine is called through the cdevsw[] table to handle 1958 * traditional mmap'able devices that support a d_mmap function. 1959 */ 1960 /*ARGSUSED8*/ 1961 int 1962 spec_segmap( 1963 dev_t dev, 1964 off_t off, 1965 struct as *as, 1966 caddr_t *addrp, 1967 off_t len, 1968 uint_t prot, 1969 uint_t maxprot, 1970 uint_t flags, 1971 struct cred *cred) 1972 { 1973 struct segdev_crargs dev_a; 1974 int (*mapfunc)(dev_t dev, off_t off, int prot); 1975 size_t i; 1976 int error; 1977 1978 if ((mapfunc = devopsp[getmajor(dev)]->devo_cb_ops->cb_mmap) == nodev) 1979 return (ENODEV); 1980 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_SEGMAP, 1981 "specfs segmap:dev %x as %p len %lx prot %x", 1982 dev, as, len, prot); 1983 1984 /* 1985 * Character devices that support the d_mmap 1986 * interface can only be mmap'ed shared. 1987 */ 1988 if ((flags & MAP_TYPE) != MAP_SHARED) 1989 return (EINVAL); 1990 1991 /* 1992 * Check to ensure that the entire range is 1993 * legal and we are not trying to map in 1994 * more than the device will let us. 1995 */ 1996 for (i = 0; i < len; i += PAGESIZE) { 1997 if (cdev_mmap(mapfunc, dev, off + i, maxprot) == -1) 1998 return (ENXIO); 1999 } 2000 2001 as_rangelock(as); 2002 if ((flags & MAP_FIXED) == 0) { 2003 /* 2004 * Pick an address w/o worrying about 2005 * any vac alignment constraints. 2006 */ 2007 map_addr(addrp, len, (offset_t)off, 0, flags); 2008 if (*addrp == NULL) { 2009 as_rangeunlock(as); 2010 return (ENOMEM); 2011 } 2012 } else { 2013 /* 2014 * User-specified address; blow away any previous mappings. 2015 */ 2016 (void) as_unmap(as, *addrp, len); 2017 } 2018 2019 dev_a.mapfunc = mapfunc; 2020 dev_a.dev = dev; 2021 dev_a.offset = off; 2022 dev_a.prot = (uchar_t)prot; 2023 dev_a.maxprot = (uchar_t)maxprot; 2024 dev_a.hat_flags = 0; 2025 dev_a.hat_attr = 0; 2026 dev_a.devmap_data = NULL; 2027 2028 error = as_map(as, *addrp, len, segdev_create, &dev_a); 2029 as_rangeunlock(as); 2030 return (error); 2031 } 2032 2033 int 2034 spec_char_map( 2035 dev_t dev, 2036 offset_t off, 2037 struct as *as, 2038 caddr_t *addrp, 2039 size_t len, 2040 uchar_t prot, 2041 uchar_t maxprot, 2042 uint_t flags, 2043 struct cred *cred) 2044 { 2045 int error = 0; 2046 major_t maj = getmajor(dev); 2047 int map_flag; 2048 int (*segmap)(dev_t, off_t, struct as *, 2049 caddr_t *, off_t, uint_t, uint_t, uint_t, cred_t *); 2050 int (*devmap)(dev_t, devmap_cookie_t, offset_t, 2051 size_t, size_t *, uint_t); 2052 int (*mmap)(dev_t dev, off_t off, int prot); 2053 2054 /* 2055 * Character device: let the device driver 2056 * pick the appropriate segment driver. 2057 * 2058 * 4.x compat.: allow 'NULL' cb_segmap => spec_segmap 2059 * Kindness: allow 'nulldev' cb_segmap => spec_segmap 2060 */ 2061 segmap = devopsp[maj]->devo_cb_ops->cb_segmap; 2062 if (segmap == NULL || segmap == nulldev || segmap == nodev) { 2063 mmap = devopsp[maj]->devo_cb_ops->cb_mmap; 2064 map_flag = devopsp[maj]->devo_cb_ops->cb_flag; 2065 2066 /* 2067 * Use old mmap framework if the driver has both mmap 2068 * and devmap entry points. This is to prevent the 2069 * system from calling invalid devmap entry point 2070 * for some drivers that might have put garbage in the 2071 * devmap entry point. 2072 */ 2073 if ((map_flag & D_DEVMAP) || mmap == NULL || 2074 mmap == nulldev || mmap == nodev) { 2075 devmap = devopsp[maj]->devo_cb_ops->cb_devmap; 2076 2077 /* 2078 * If driver provides devmap entry point in 2079 * cb_ops but not xx_segmap(9E), call 2080 * devmap_setup with default settings 2081 * (NULL) for callback_ops and driver 2082 * callback private data 2083 */ 2084 if (devmap == nodev || devmap == NULL || 2085 devmap == nulldev) 2086 return (ENODEV); 2087 2088 error = devmap_setup(dev, off, as, addrp, 2089 len, prot, maxprot, flags, cred); 2090 2091 return (error); 2092 } else 2093 segmap = spec_segmap; 2094 } else 2095 segmap = cdev_segmap; 2096 2097 return ((*segmap)(dev, (off_t)off, as, addrp, len, prot, 2098 maxprot, flags, cred)); 2099 } 2100 2101 static int 2102 spec_map( 2103 struct vnode *vp, 2104 offset_t off, 2105 struct as *as, 2106 caddr_t *addrp, 2107 size_t len, 2108 uchar_t prot, 2109 uchar_t maxprot, 2110 uint_t flags, 2111 struct cred *cred) 2112 { 2113 int error = 0; 2114 2115 if (vp->v_flag & VNOMAP) 2116 return (ENOSYS); 2117 2118 /* 2119 * If file is locked, fail mapping attempt. 2120 */ 2121 if (vn_has_flocks(vp)) 2122 return (EAGAIN); 2123 2124 if (vp->v_type == VCHR) { 2125 return (spec_char_map(vp->v_rdev, off, as, addrp, len, prot, 2126 maxprot, flags, cred)); 2127 } else if (vp->v_type == VBLK) { 2128 struct segvn_crargs vn_a; 2129 struct vnode *cvp; 2130 struct snode *sp; 2131 2132 /* 2133 * Block device, use segvn mapping to the underlying commonvp 2134 * for pages. 2135 */ 2136 if (off > spec_maxoffset(vp)) 2137 return (ENXIO); 2138 2139 sp = VTOS(vp); 2140 cvp = sp->s_commonvp; 2141 ASSERT(cvp != NULL); 2142 2143 if (off < 0 || (off + len) < 0) 2144 return (ENXIO); 2145 2146 as_rangelock(as); 2147 if ((flags & MAP_FIXED) == 0) { 2148 map_addr(addrp, len, off, 1, flags); 2149 if (*addrp == NULL) { 2150 as_rangeunlock(as); 2151 return (ENOMEM); 2152 } 2153 } else { 2154 /* 2155 * User-specified address; blow away any 2156 * previous mappings. 2157 */ 2158 (void) as_unmap(as, *addrp, len); 2159 } 2160 2161 vn_a.vp = cvp; 2162 vn_a.offset = off; 2163 vn_a.type = flags & MAP_TYPE; 2164 vn_a.prot = (uchar_t)prot; 2165 vn_a.maxprot = (uchar_t)maxprot; 2166 vn_a.flags = flags & ~MAP_TYPE; 2167 vn_a.cred = cred; 2168 vn_a.amp = NULL; 2169 vn_a.szc = 0; 2170 vn_a.lgrp_mem_policy_flags = 0; 2171 2172 error = as_map(as, *addrp, len, segvn_create, &vn_a); 2173 as_rangeunlock(as); 2174 } else 2175 return (ENODEV); 2176 2177 return (error); 2178 } 2179 2180 /*ARGSUSED1*/ 2181 static int 2182 spec_addmap( 2183 struct vnode *vp, /* the common vnode */ 2184 offset_t off, 2185 struct as *as, 2186 caddr_t addr, 2187 size_t len, /* how many bytes to add */ 2188 uchar_t prot, 2189 uchar_t maxprot, 2190 uint_t flags, 2191 struct cred *cred) 2192 { 2193 int error = 0; 2194 struct snode *csp = VTOS(vp); 2195 ulong_t npages; 2196 2197 ASSERT(vp != NULL && VTOS(vp)->s_commonvp == vp); 2198 2199 /* 2200 * XXX Given the above assertion, this might not 2201 * be a particularly sensible thing to test. 2202 */ 2203 if (vp->v_flag & VNOMAP) 2204 return (ENOSYS); 2205 2206 npages = btopr(len); 2207 LOCK_CSP(csp); 2208 csp->s_mapcnt += npages; 2209 2210 UNLOCK_CSP(csp); 2211 return (error); 2212 } 2213 2214 /*ARGSUSED1*/ 2215 static int 2216 spec_delmap( 2217 struct vnode *vp, /* the common vnode */ 2218 offset_t off, 2219 struct as *as, 2220 caddr_t addr, 2221 size_t len, /* how many bytes to take away */ 2222 uint_t prot, 2223 uint_t maxprot, 2224 uint_t flags, 2225 struct cred *cred) 2226 { 2227 struct snode *csp = VTOS(vp); 2228 ulong_t npages; 2229 long mcnt; 2230 2231 /* segdev passes us the common vp */ 2232 2233 ASSERT(vp != NULL && VTOS(vp)->s_commonvp == vp); 2234 2235 /* 2236 * XXX Given the above assertion, this might not 2237 * be a particularly sensible thing to test.. 2238 */ 2239 if (vp->v_flag & VNOMAP) 2240 return (ENOSYS); 2241 2242 npages = btopr(len); 2243 2244 LOCK_CSP(csp); 2245 mutex_enter(&csp->s_lock); 2246 mcnt = (csp->s_mapcnt -= npages); 2247 2248 if (mcnt == 0) { 2249 /* 2250 * Call the close routine when the last reference of any 2251 * kind through any [s, v]node goes away. The s_dip hold 2252 * on the devinfo node is released when the vnode is 2253 * destroyed. 2254 */ 2255 if (csp->s_count == 0) { 2256 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 2257 2258 /* See comment in spec_close() */ 2259 if (csp->s_flag & (SCLONE | SSELFCLONE)) 2260 csp->s_flag &= ~SDIPSET; 2261 2262 mutex_exit(&csp->s_lock); 2263 2264 (void) device_close(vp, 0, cred); 2265 } else 2266 mutex_exit(&csp->s_lock); 2267 2268 mutex_enter(&csp->s_lock); 2269 } 2270 ASSERT(mcnt >= 0); 2271 2272 UNLOCK_CSP_LOCK_HELD(csp); 2273 mutex_exit(&csp->s_lock); 2274 2275 return (0); 2276 } 2277 2278 static int 2279 spec_dump(struct vnode *vp, caddr_t addr, int bn, int count) 2280 { 2281 ASSERT(vp->v_type == VBLK); 2282 return (bdev_dump(vp->v_rdev, addr, bn, count)); 2283 } 2284 2285 2286 /* 2287 * Do i/o on the given page list from/to vp, io_off for io_len. 2288 * Flags are composed of: 2289 * {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED, B_READ, B_WRITE} 2290 * If B_ASYNC is not set i/o is waited for. 2291 */ 2292 /*ARGSUSED5*/ 2293 static int 2294 spec_pageio( 2295 struct vnode *vp, 2296 page_t *pp, 2297 u_offset_t io_off, 2298 size_t io_len, 2299 int flags, 2300 cred_t *cr) 2301 { 2302 struct buf *bp = NULL; 2303 int err = 0; 2304 2305 if (pp == NULL) 2306 return (EINVAL); 2307 2308 bp = spec_startio(vp, pp, io_off, io_len, flags); 2309 2310 /* 2311 * Wait for i/o to complete if the request is not B_ASYNC. 2312 */ 2313 if ((flags & B_ASYNC) == 0) { 2314 err = biowait(bp); 2315 pageio_done(bp); 2316 } 2317 return (err); 2318 } 2319 2320 /* 2321 * Set ACL on underlying vnode if one exists, or return ENOSYS otherwise. 2322 */ 2323 int 2324 spec_setsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr) 2325 { 2326 struct vnode *realvp; 2327 struct snode *sp = VTOS(vp); 2328 int error; 2329 2330 /* 2331 * The acl(2) system calls VOP_RWLOCK on the file before setting an 2332 * ACL, but since specfs does not serialize reads and writes, this 2333 * VOP does not do anything. However, some backing file systems may 2334 * expect the lock to be held before setting an ACL, so it is taken 2335 * here privately to avoid serializing specfs reads and writes. 2336 */ 2337 if ((realvp = sp->s_realvp) != NULL) { 2338 (void) VOP_RWLOCK(realvp, V_WRITELOCK_TRUE, NULL); 2339 error = VOP_SETSECATTR(realvp, vsap, flag, cr); 2340 (void) VOP_RWUNLOCK(realvp, V_WRITELOCK_TRUE, NULL); 2341 return (error); 2342 } else 2343 return (fs_nosys()); 2344 } 2345 2346 /* 2347 * Get ACL from underlying vnode if one exists, or fabricate it from 2348 * the permissions returned by spec_getattr() otherwise. 2349 */ 2350 int 2351 spec_getsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr) 2352 { 2353 struct vnode *realvp; 2354 struct snode *sp = VTOS(vp); 2355 2356 if ((realvp = sp->s_realvp) != NULL) 2357 return (VOP_GETSECATTR(realvp, vsap, flag, cr)); 2358 else 2359 return (fs_fab_acl(vp, vsap, flag, cr)); 2360 } 2361 2362 int 2363 spec_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 2364 { 2365 vnode_t *realvp; 2366 struct snode *sp = VTOS(vp); 2367 2368 if ((realvp = sp->s_realvp) != NULL) 2369 return (VOP_PATHCONF(realvp, cmd, valp, cr)); 2370 else 2371 return (fs_pathconf(vp, cmd, valp, cr)); 2372 } 2373