1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2017 by Delphix. All rights reserved. 26 */ 27 28 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 29 /* All Rights Reserved */ 30 31 /* 32 * University Copyright- Copyright (c) 1982, 1986, 1988 33 * The Regents of the University of California 34 * All Rights Reserved 35 * 36 * University Acknowledgment- Portions of this document are derived from 37 * software developed by the University of California, Berkeley, and its 38 * contributors. 39 */ 40 41 #include <sys/types.h> 42 #include <sys/thread.h> 43 #include <sys/t_lock.h> 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/bitmap.h> 47 #include <sys/buf.h> 48 #include <sys/cmn_err.h> 49 #include <sys/conf.h> 50 #include <sys/ddi.h> 51 #include <sys/debug.h> 52 #include <sys/dkio.h> 53 #include <sys/errno.h> 54 #include <sys/time.h> 55 #include <sys/fcntl.h> 56 #include <sys/flock.h> 57 #include <sys/file.h> 58 #include <sys/kmem.h> 59 #include <sys/mman.h> 60 #include <sys/open.h> 61 #include <sys/swap.h> 62 #include <sys/sysmacros.h> 63 #include <sys/uio.h> 64 #include <sys/vfs.h> 65 #include <sys/vfs_opreg.h> 66 #include <sys/vnode.h> 67 #include <sys/stat.h> 68 #include <sys/poll.h> 69 #include <sys/stream.h> 70 #include <sys/strsubr.h> 71 #include <sys/policy.h> 72 #include <sys/devpolicy.h> 73 74 #include <sys/proc.h> 75 #include <sys/user.h> 76 #include <sys/session.h> 77 #include <sys/vmsystm.h> 78 #include <sys/vtrace.h> 79 #include <sys/pathname.h> 80 81 #include <sys/fs/snode.h> 82 83 #include <vm/seg.h> 84 #include <vm/seg_map.h> 85 #include <vm/page.h> 86 #include <vm/pvn.h> 87 #include <vm/seg_dev.h> 88 #include <vm/seg_vn.h> 89 90 #include <fs/fs_subr.h> 91 92 #include <sys/esunddi.h> 93 #include <sys/autoconf.h> 94 #include <sys/sunndi.h> 95 #include <sys/contract/device_impl.h> 96 97 98 static int spec_open(struct vnode **, int, struct cred *, caller_context_t *); 99 static int spec_close(struct vnode *, int, int, offset_t, struct cred *, 100 caller_context_t *); 101 static int spec_read(struct vnode *, struct uio *, int, struct cred *, 102 caller_context_t *); 103 static int spec_write(struct vnode *, struct uio *, int, struct cred *, 104 caller_context_t *); 105 static int spec_ioctl(struct vnode *, int, intptr_t, int, struct cred *, int *, 106 caller_context_t *); 107 static int spec_getattr(struct vnode *, struct vattr *, int, struct cred *, 108 caller_context_t *); 109 static int spec_setattr(struct vnode *, struct vattr *, int, struct cred *, 110 caller_context_t *); 111 static int spec_access(struct vnode *, int, int, struct cred *, 112 caller_context_t *); 113 static int spec_create(struct vnode *, char *, vattr_t *, enum vcexcl, int, 114 struct vnode **, struct cred *, int, caller_context_t *, vsecattr_t *); 115 static int spec_fsync(struct vnode *, int, struct cred *, caller_context_t *); 116 static void spec_inactive(struct vnode *, struct cred *, caller_context_t *); 117 static int spec_fid(struct vnode *, struct fid *, caller_context_t *); 118 static int spec_seek(struct vnode *, offset_t, offset_t *, caller_context_t *); 119 static int spec_frlock(struct vnode *, int, struct flock64 *, int, offset_t, 120 struct flk_callback *, struct cred *, caller_context_t *); 121 static int spec_realvp(struct vnode *, struct vnode **, caller_context_t *); 122 123 static int spec_getpage(struct vnode *, offset_t, size_t, uint_t *, page_t **, 124 size_t, struct seg *, caddr_t, enum seg_rw, struct cred *, 125 caller_context_t *); 126 static int spec_putapage(struct vnode *, page_t *, u_offset_t *, size_t *, int, 127 struct cred *); 128 static struct buf *spec_startio(struct vnode *, page_t *, u_offset_t, size_t, 129 int); 130 static int spec_getapage(struct vnode *, u_offset_t, size_t, uint_t *, 131 page_t **, size_t, struct seg *, caddr_t, enum seg_rw, struct cred *); 132 static int spec_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t, 133 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 134 static int spec_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 135 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 136 static int spec_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 137 uint_t, uint_t, uint_t, struct cred *, caller_context_t *); 138 139 static int spec_poll(struct vnode *, short, int, short *, struct pollhead **, 140 caller_context_t *); 141 static int spec_dump(struct vnode *, caddr_t, offset_t, offset_t, 142 caller_context_t *); 143 static int spec_pageio(struct vnode *, page_t *, u_offset_t, size_t, int, 144 cred_t *, caller_context_t *); 145 146 static int spec_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 147 caller_context_t *); 148 static int spec_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 149 caller_context_t *); 150 static int spec_pathconf(struct vnode *, int, ulong_t *, struct cred *, 151 caller_context_t *); 152 153 #define SN_HOLD(csp) { \ 154 mutex_enter(&csp->s_lock); \ 155 csp->s_count++; \ 156 mutex_exit(&csp->s_lock); \ 157 } 158 159 #define SN_RELE(csp) { \ 160 mutex_enter(&csp->s_lock); \ 161 csp->s_count--; \ 162 ASSERT((csp->s_count > 0) || (csp->s_vnode->v_stream == NULL)); \ 163 mutex_exit(&csp->s_lock); \ 164 } 165 166 #define S_ISFENCED(sp) ((VTOS((sp)->s_commonvp))->s_flag & SFENCED) 167 168 struct vnodeops *spec_vnodeops; 169 170 /* 171 * *PLEASE NOTE*: If you add new entry points to specfs, do 172 * not forget to add support for fencing. A fenced snode 173 * is indicated by the SFENCED flag in the common snode. 174 * If a snode is fenced, determine if your entry point is 175 * a configuration operation (Example: open), a detection 176 * operation (Example: gettattr), an I/O operation (Example: ioctl()) 177 * or an unconfiguration operation (Example: close). If it is 178 * a configuration or detection operation, fail the operation 179 * for a fenced snode with an ENXIO or EIO as appropriate. If 180 * it is any other operation, let it through. 181 */ 182 183 const fs_operation_def_t spec_vnodeops_template[] = { 184 VOPNAME_OPEN, { .vop_open = spec_open }, 185 VOPNAME_CLOSE, { .vop_close = spec_close }, 186 VOPNAME_READ, { .vop_read = spec_read }, 187 VOPNAME_WRITE, { .vop_write = spec_write }, 188 VOPNAME_IOCTL, { .vop_ioctl = spec_ioctl }, 189 VOPNAME_GETATTR, { .vop_getattr = spec_getattr }, 190 VOPNAME_SETATTR, { .vop_setattr = spec_setattr }, 191 VOPNAME_ACCESS, { .vop_access = spec_access }, 192 VOPNAME_CREATE, { .vop_create = spec_create }, 193 VOPNAME_FSYNC, { .vop_fsync = spec_fsync }, 194 VOPNAME_INACTIVE, { .vop_inactive = spec_inactive }, 195 VOPNAME_FID, { .vop_fid = spec_fid }, 196 VOPNAME_SEEK, { .vop_seek = spec_seek }, 197 VOPNAME_PATHCONF, { .vop_pathconf = spec_pathconf }, 198 VOPNAME_FRLOCK, { .vop_frlock = spec_frlock }, 199 VOPNAME_REALVP, { .vop_realvp = spec_realvp }, 200 VOPNAME_GETPAGE, { .vop_getpage = spec_getpage }, 201 VOPNAME_PUTPAGE, { .vop_putpage = spec_putpage }, 202 VOPNAME_MAP, { .vop_map = spec_map }, 203 VOPNAME_ADDMAP, { .vop_addmap = spec_addmap }, 204 VOPNAME_DELMAP, { .vop_delmap = spec_delmap }, 205 VOPNAME_POLL, { .vop_poll = spec_poll }, 206 VOPNAME_DUMP, { .vop_dump = spec_dump }, 207 VOPNAME_PAGEIO, { .vop_pageio = spec_pageio }, 208 VOPNAME_SETSECATTR, { .vop_setsecattr = spec_setsecattr }, 209 VOPNAME_GETSECATTR, { .vop_getsecattr = spec_getsecattr }, 210 NULL, NULL 211 }; 212 213 /* 214 * Return address of spec_vnodeops 215 */ 216 struct vnodeops * 217 spec_getvnodeops(void) 218 { 219 return (spec_vnodeops); 220 } 221 222 extern vnode_t *rconsvp; 223 224 /* 225 * Acquire the serial lock on the common snode. 226 */ 227 #define LOCK_CSP(csp) (void) spec_lockcsp(csp, 0, 1, 0) 228 #define LOCKHOLD_CSP_SIG(csp) spec_lockcsp(csp, 1, 1, 1) 229 #define SYNCHOLD_CSP_SIG(csp, intr) spec_lockcsp(csp, intr, 0, 1) 230 231 typedef enum { 232 LOOP, 233 INTR, 234 SUCCESS 235 } slock_ret_t; 236 237 /* 238 * Synchronize with active SLOCKED snode, optionally checking for a signal and 239 * optionally returning with SLOCKED set and SN_HOLD done. The 'intr' 240 * argument determines if the thread is interruptible by a signal while 241 * waiting, the function returns INTR if interrupted while there is another 242 * thread closing this snonde and LOOP if interrupted otherwise. 243 * When SUCCESS is returned the 'hold' argument determines if the open 244 * count (SN_HOLD) has been incremented and the 'setlock' argument 245 * determines if the function returns with SLOCKED set. 246 */ 247 static slock_ret_t 248 spec_lockcsp(struct snode *csp, int intr, int setlock, int hold) 249 { 250 slock_ret_t ret = SUCCESS; 251 mutex_enter(&csp->s_lock); 252 while (csp->s_flag & SLOCKED) { 253 csp->s_flag |= SWANT; 254 if (intr) { 255 if (!cv_wait_sig(&csp->s_cv, &csp->s_lock)) { 256 if (csp->s_flag & SCLOSING) 257 ret = INTR; 258 else 259 ret = LOOP; 260 mutex_exit(&csp->s_lock); 261 return (ret); /* interrupted */ 262 } 263 } else { 264 cv_wait(&csp->s_cv, &csp->s_lock); 265 } 266 } 267 if (setlock) 268 csp->s_flag |= SLOCKED; 269 if (hold) 270 csp->s_count++; /* one more open reference : SN_HOLD */ 271 mutex_exit(&csp->s_lock); 272 return (ret); /* serialized/locked */ 273 } 274 275 /* 276 * Unlock the serial lock on the common snode 277 */ 278 #define UNLOCK_CSP_LOCK_HELD(csp) \ 279 ASSERT(mutex_owned(&csp->s_lock)); \ 280 if (csp->s_flag & SWANT) \ 281 cv_broadcast(&csp->s_cv); \ 282 csp->s_flag &= ~(SWANT|SLOCKED); 283 284 #define UNLOCK_CSP(csp) \ 285 mutex_enter(&csp->s_lock); \ 286 UNLOCK_CSP_LOCK_HELD(csp); \ 287 mutex_exit(&csp->s_lock); 288 289 /* 290 * compute/return the size of the device 291 */ 292 #define SPEC_SIZE(csp) \ 293 (((csp)->s_flag & SSIZEVALID) ? (csp)->s_size : spec_size(csp)) 294 295 /* 296 * Compute and return the size. If the size in the common snode is valid then 297 * return it. If not valid then get the size from the driver and set size in 298 * the common snode. If the device has not been attached then we don't ask for 299 * an update from the driver- for non-streams SSIZEVALID stays unset until the 300 * device is attached. A stat of a mknod outside /devices (non-devfs) may 301 * report UNKNOWN_SIZE because the device may not be attached yet (SDIPSET not 302 * established in mknod until open time). An stat in /devices will report the 303 * size correctly. Specfs should always call SPEC_SIZE instead of referring 304 * directly to s_size to initialize/retrieve the size of a device. 305 * 306 * XXX There is an inconsistency between block and raw - "unknown" is 307 * UNKNOWN_SIZE for VBLK and 0 for VCHR(raw). 308 */ 309 static u_offset_t 310 spec_size(struct snode *csp) 311 { 312 struct vnode *cvp = STOV(csp); 313 u_offset_t size; 314 int plen; 315 uint32_t size32; 316 dev_t dev; 317 dev_info_t *devi; 318 major_t maj; 319 uint_t blksize; 320 int blkshift; 321 322 ASSERT((csp)->s_commonvp == cvp); /* must be common node */ 323 324 /* return cached value */ 325 mutex_enter(&csp->s_lock); 326 if (csp->s_flag & SSIZEVALID) { 327 mutex_exit(&csp->s_lock); 328 return (csp->s_size); 329 } 330 331 /* VOP_GETATTR of mknod has not had devcnt restriction applied */ 332 dev = cvp->v_rdev; 333 maj = getmajor(dev); 334 if (maj >= devcnt) { 335 /* return non-cached UNKNOWN_SIZE */ 336 mutex_exit(&csp->s_lock); 337 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 338 } 339 340 /* establish cached zero size for streams */ 341 if (STREAMSTAB(maj)) { 342 csp->s_size = 0; 343 csp->s_flag |= SSIZEVALID; 344 mutex_exit(&csp->s_lock); 345 return (0); 346 } 347 348 /* 349 * Return non-cached UNKNOWN_SIZE if not open. 350 * 351 * NB: This check is bogus, calling prop_op(9E) should be gated by 352 * attach, not open. Not having this check however opens up a new 353 * context under which a driver's prop_op(9E) could be called. Calling 354 * prop_op(9E) in this new context has been shown to expose latent 355 * driver bugs (insufficient NULL pointer checks that lead to panic). 356 * We are keeping this open check for now to avoid these panics. 357 */ 358 if (csp->s_count == 0) { 359 mutex_exit(&csp->s_lock); 360 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 361 } 362 363 /* Return non-cached UNKNOWN_SIZE if not attached. */ 364 if (((csp->s_flag & SDIPSET) == 0) || (csp->s_dip == NULL) || 365 !i_ddi_devi_attached(csp->s_dip)) { 366 mutex_exit(&csp->s_lock); 367 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 368 } 369 370 devi = csp->s_dip; 371 372 /* 373 * Established cached size obtained from the attached driver. Since we 374 * know the devinfo node, for efficiency we use cdev_prop_op directly 375 * instead of [cb]dev_[Ss]size. 376 */ 377 if (cvp->v_type == VCHR) { 378 size = 0; 379 plen = sizeof (size); 380 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 381 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS | 382 DDI_PROP_CONSUMER_TYPED, "Size", (caddr_t)&size, 383 &plen) != DDI_PROP_SUCCESS) { 384 plen = sizeof (size32); 385 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 386 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 387 "size", (caddr_t)&size32, &plen) == 388 DDI_PROP_SUCCESS) 389 size = size32; 390 } 391 } else { 392 size = UNKNOWN_SIZE; 393 plen = sizeof (size); 394 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 395 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS | 396 DDI_PROP_CONSUMER_TYPED, "Nblocks", (caddr_t)&size, 397 &plen) != DDI_PROP_SUCCESS) { 398 plen = sizeof (size32); 399 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 400 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 401 "nblocks", (caddr_t)&size32, &plen) == 402 DDI_PROP_SUCCESS) 403 size = size32; 404 } 405 406 if (size != UNKNOWN_SIZE) { 407 blksize = DEV_BSIZE; /* default */ 408 plen = sizeof (blksize); 409 410 /* try to get dev_t specific "blksize" */ 411 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 412 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 413 "blksize", (caddr_t)&blksize, &plen) != 414 DDI_PROP_SUCCESS) { 415 /* 416 * Try for dev_info node "device-blksize". 417 * If this fails then blksize will still be 418 * DEV_BSIZE default value. 419 */ 420 (void) cdev_prop_op(DDI_DEV_T_ANY, devi, 421 PROP_LEN_AND_VAL_BUF, 422 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 423 "device-blksize", (caddr_t)&blksize, &plen); 424 } 425 426 /* blksize must be a power of two */ 427 ASSERT(BIT_ONLYONESET(blksize)); 428 blkshift = highbit(blksize) - 1; 429 430 /* convert from block size to byte size */ 431 if (size < (MAXOFFSET_T >> blkshift)) 432 size = size << blkshift; 433 else 434 size = UNKNOWN_SIZE; 435 } 436 } 437 438 csp->s_size = size; 439 csp->s_flag |= SSIZEVALID; 440 441 mutex_exit(&csp->s_lock); 442 return (size); 443 } 444 445 /* 446 * This function deal with vnode substitution in the case of 447 * device cloning. 448 */ 449 static int 450 spec_clone(struct vnode **vpp, dev_t newdev, int vtype, struct stdata *stp) 451 { 452 dev_t dev = (*vpp)->v_rdev; 453 major_t maj = getmajor(dev); 454 major_t newmaj = getmajor(newdev); 455 int sysclone = (maj == clone_major); 456 int qassociate_used = 0; 457 struct snode *oldsp, *oldcsp; 458 struct snode *newsp, *newcsp; 459 struct vnode *newvp, *newcvp; 460 dev_info_t *dip; 461 queue_t *dq; 462 463 ASSERT(dev != newdev); 464 465 /* 466 * Check for cloning across different drivers. 467 * We only support this under the system provided clone driver 468 */ 469 if ((maj != newmaj) && !sysclone) { 470 cmn_err(CE_NOTE, 471 "unsupported clone open maj = %u, newmaj = %u", 472 maj, newmaj); 473 return (ENXIO); 474 } 475 476 /* old */ 477 oldsp = VTOS(*vpp); 478 oldcsp = VTOS(oldsp->s_commonvp); 479 480 /* new */ 481 newvp = makespecvp(newdev, vtype); 482 ASSERT(newvp != NULL); 483 newsp = VTOS(newvp); 484 newcvp = newsp->s_commonvp; 485 newcsp = VTOS(newcvp); 486 487 /* 488 * Clones inherit fsid, realvp, and dip. 489 * XXX realvp inherit is not occurring, does fstat of clone work? 490 */ 491 newsp->s_fsid = oldsp->s_fsid; 492 if (sysclone) { 493 newsp->s_flag |= SCLONE; 494 dip = NULL; 495 } else { 496 newsp->s_flag |= SSELFCLONE; 497 dip = oldcsp->s_dip; 498 } 499 500 /* 501 * If we cloned to an opened newdev that already has called 502 * spec_assoc_vp_with_devi (SDIPSET set) then the association is 503 * already established. 504 */ 505 if (!(newcsp->s_flag & SDIPSET)) { 506 /* 507 * Establish s_dip association for newdev. 508 * 509 * If we trusted the getinfo(9E) DDI_INFO_DEVT2INSTANCE 510 * implementation of all cloning drivers (SCLONE and SELFCLONE) 511 * we would always use e_ddi_hold_devi_by_dev(). We know that 512 * many drivers have had (still have?) problems with 513 * DDI_INFO_DEVT2INSTANCE, so we try to minimize reliance by 514 * detecting drivers that use QASSOCIATE (by looking down the 515 * stream) and setting their s_dip association to NULL. 516 */ 517 qassociate_used = 0; 518 if (stp) { 519 for (dq = stp->sd_wrq; dq; dq = dq->q_next) { 520 if (_RD(dq)->q_flag & _QASSOCIATED) { 521 qassociate_used = 1; 522 dip = NULL; 523 break; 524 } 525 } 526 } 527 528 if (dip || qassociate_used) { 529 spec_assoc_vp_with_devi(newvp, dip); 530 } else { 531 /* derive association from newdev */ 532 dip = e_ddi_hold_devi_by_dev(newdev, 0); 533 spec_assoc_vp_with_devi(newvp, dip); 534 if (dip) 535 ddi_release_devi(dip); 536 } 537 } 538 539 SN_HOLD(newcsp); 540 541 /* deal with stream stuff */ 542 if (stp != NULL) { 543 LOCK_CSP(newcsp); /* synchronize stream open/close */ 544 mutex_enter(&newcsp->s_lock); 545 newcvp->v_stream = newvp->v_stream = stp; 546 stp->sd_vnode = newcvp; 547 stp->sd_strtab = STREAMSTAB(newmaj); 548 mutex_exit(&newcsp->s_lock); 549 UNLOCK_CSP(newcsp); 550 } 551 552 /* substitute the vnode */ 553 SN_RELE(oldcsp); 554 VN_RELE(*vpp); 555 *vpp = newvp; 556 557 return (0); 558 } 559 560 static int 561 spec_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *cc) 562 { 563 major_t maj; 564 dev_t dev, newdev; 565 struct vnode *vp, *cvp; 566 struct snode *sp, *csp; 567 struct stdata *stp; 568 dev_info_t *dip; 569 int error, type; 570 contract_t *ct = NULL; 571 int open_returns_eintr; 572 slock_ret_t spec_locksp_ret; 573 574 575 flag &= ~FCREAT; /* paranoia */ 576 577 vp = *vpp; 578 sp = VTOS(vp); 579 ASSERT((vp->v_type == VCHR) || (vp->v_type == VBLK)); 580 if ((vp->v_type != VCHR) && (vp->v_type != VBLK)) 581 return (ENXIO); 582 583 /* 584 * If the VFS_NODEVICES bit was set for the mount, 585 * do not allow opens of special devices. 586 */ 587 if (sp->s_realvp && (sp->s_realvp->v_vfsp->vfs_flag & VFS_NODEVICES)) 588 return (ENXIO); 589 590 newdev = dev = vp->v_rdev; 591 592 /* 593 * If we are opening a node that has not had spec_assoc_vp_with_devi 594 * called against it (mknod outside /devices or a non-dacf makespecvp 595 * node) then SDIPSET will not be set. In this case we call an 596 * interface which will reconstruct the path and lookup (drive attach) 597 * through devfs (e_ddi_hold_devi_by_dev -> e_ddi_hold_devi_by_path -> 598 * devfs_lookupname). For support of broken drivers that don't call 599 * ddi_create_minor_node for all minor nodes in their instance space, 600 * we call interfaces that operates at the directory/devinfo 601 * (major/instance) level instead of to the leaf/minor node level. 602 * After finding and attaching the dip we associate it with the 603 * common specfs vnode (s_dip), which sets SDIPSET. A DL_DETACH_REQ 604 * to style-2 stream driver may set s_dip to NULL with SDIPSET set. 605 * 606 * NOTE: Although e_ddi_hold_devi_by_dev takes a dev_t argument, its 607 * implementation operates at the major/instance level since it only 608 * need to return a dip. 609 */ 610 cvp = sp->s_commonvp; 611 csp = VTOS(cvp); 612 if (!(csp->s_flag & SDIPSET)) { 613 /* try to attach, return error if we fail */ 614 if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) 615 return (ENXIO); 616 617 /* associate dip with the common snode s_dip */ 618 spec_assoc_vp_with_devi(vp, dip); 619 ddi_release_devi(dip); /* from e_ddi_hold_devi_by_dev */ 620 } 621 622 /* check if device fenced off */ 623 if (S_ISFENCED(sp)) 624 return (ENXIO); 625 626 #ifdef DEBUG 627 /* verify attach/open exclusion guarantee */ 628 dip = csp->s_dip; 629 ASSERT((dip == NULL) || i_ddi_devi_attached(dip)); 630 #endif /* DEBUG */ 631 632 if ((error = secpolicy_spec_open(cr, vp, flag)) != 0) 633 return (error); 634 635 /* Verify existance of open(9E) implementation. */ 636 maj = getmajor(dev); 637 if ((maj >= devcnt) || 638 (devopsp[maj]->devo_cb_ops == NULL) || 639 (devopsp[maj]->devo_cb_ops->cb_open == NULL)) 640 return (ENXIO); 641 642 /* 643 * split STREAMS vs. non-STREAMS 644 * 645 * If the device is a dual-personality device, then we might want 646 * to allow for a regular OTYP_BLK open. If however it's strictly 647 * a pure STREAMS device, the cb_open entry point will be 648 * nodev() which returns ENXIO. This does make this failure path 649 * somewhat longer, but such attempts to use OTYP_BLK with STREAMS 650 * devices should be exceedingly rare. (Most of the time they will 651 * be due to programmer error.) 652 */ 653 if ((vp->v_type == VCHR) && (STREAMSTAB(maj))) 654 goto streams_open; 655 656 not_streams: 657 /* 658 * Wait for in progress last close to complete. This guarantees 659 * to the driver writer that we will never be in the drivers 660 * open and close on the same (dev_t, otype) at the same time. 661 * Open count already incremented (SN_HOLD) on non-zero return. 662 * The wait is interruptible by a signal if the driver sets the 663 * D_OPEN_RETURNS_EINTR cb_ops(9S) cb_flag or sets the 664 * ddi-open-returns-eintr(9P) property in its driver.conf. 665 */ 666 if ((devopsp[maj]->devo_cb_ops->cb_flag & D_OPEN_RETURNS_EINTR) || 667 (devnamesp[maj].dn_flags & DN_OPEN_RETURNS_EINTR)) 668 open_returns_eintr = 1; 669 else 670 open_returns_eintr = 0; 671 while ((spec_locksp_ret = SYNCHOLD_CSP_SIG(csp, open_returns_eintr)) != 672 SUCCESS) { 673 if (spec_locksp_ret == INTR) 674 return (EINTR); 675 } 676 677 /* non streams open */ 678 type = (vp->v_type == VBLK ? OTYP_BLK : OTYP_CHR); 679 error = dev_open(&newdev, flag, type, cr); 680 681 /* deal with clone case */ 682 if (error == 0 && dev != newdev) { 683 error = spec_clone(vpp, newdev, vp->v_type, NULL); 684 /* 685 * bail on clone failure, further processing 686 * results in undefined behaviors. 687 */ 688 if (error != 0) 689 return (error); 690 sp = VTOS(*vpp); 691 csp = VTOS(sp->s_commonvp); 692 } 693 694 /* 695 * create contracts only for userland opens 696 * Successful open and cloning is done at this point. 697 */ 698 if (error == 0 && !(flag & FKLYR)) { 699 int spec_type; 700 spec_type = (STOV(csp)->v_type == VCHR) ? S_IFCHR : S_IFBLK; 701 if (contract_device_open(newdev, spec_type, NULL) != 0) { 702 error = EIO; 703 } 704 } 705 706 if (error == 0) { 707 sp->s_size = SPEC_SIZE(csp); 708 709 if ((csp->s_flag & SNEEDCLOSE) == 0) { 710 int nmaj = getmajor(newdev); 711 mutex_enter(&csp->s_lock); 712 /* successful open needs a close later */ 713 csp->s_flag |= SNEEDCLOSE; 714 715 /* 716 * Invalidate possible cached "unknown" size 717 * established by a VOP_GETATTR while open was in 718 * progress, and the driver might fail prop_op(9E). 719 */ 720 if (((cvp->v_type == VCHR) && (csp->s_size == 0)) || 721 ((cvp->v_type == VBLK) && 722 (csp->s_size == UNKNOWN_SIZE))) 723 csp->s_flag &= ~SSIZEVALID; 724 725 if (devopsp[nmaj]->devo_cb_ops->cb_flag & D_64BIT) 726 csp->s_flag |= SLOFFSET; 727 if (devopsp[nmaj]->devo_cb_ops->cb_flag & D_U64BIT) 728 csp->s_flag |= SLOFFSET | SANYOFFSET; 729 mutex_exit(&csp->s_lock); 730 } 731 return (0); 732 } 733 734 /* 735 * Open failed. If we missed a close operation because 736 * we were trying to get the device open and it is the 737 * last in progress open that is failing then call close. 738 * 739 * NOTE: Only non-streams open has this race condition. 740 */ 741 mutex_enter(&csp->s_lock); 742 csp->s_count--; /* decrement open count : SN_RELE */ 743 if ((csp->s_count == 0) && /* no outstanding open */ 744 (csp->s_mapcnt == 0) && /* no mapping */ 745 (csp->s_flag & SNEEDCLOSE)) { /* need a close */ 746 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 747 748 /* See comment in spec_close() */ 749 if (csp->s_flag & (SCLONE | SSELFCLONE)) 750 csp->s_flag &= ~SDIPSET; 751 752 csp->s_flag |= SCLOSING; 753 mutex_exit(&csp->s_lock); 754 755 ASSERT(*vpp != NULL); 756 (void) device_close(*vpp, flag, cr); 757 758 mutex_enter(&csp->s_lock); 759 csp->s_flag &= ~SCLOSING; 760 mutex_exit(&csp->s_lock); 761 } else { 762 mutex_exit(&csp->s_lock); 763 } 764 return (error); 765 766 streams_open: 767 /* 768 * Lock common snode to prevent any new clone opens on this 769 * stream while one is in progress. This is necessary since 770 * the stream currently associated with the clone device will 771 * not be part of it after the clone open completes. Unfortunately 772 * we don't know in advance if this is a clone 773 * device so we have to lock all opens. 774 * 775 * If we fail, it's because of an interrupt - EINTR return is an 776 * expected aspect of opening a stream so we don't need to check 777 * D_OPEN_RETURNS_EINTR. Open count already incremented (SN_HOLD) 778 * on non-zero return. 779 */ 780 if (LOCKHOLD_CSP_SIG(csp) != SUCCESS) 781 return (EINTR); 782 783 error = stropen(cvp, &newdev, flag, cr); 784 stp = cvp->v_stream; 785 786 /* deal with the clone case */ 787 if ((error == 0) && (dev != newdev)) { 788 vp->v_stream = cvp->v_stream = NULL; 789 UNLOCK_CSP(csp); 790 error = spec_clone(vpp, newdev, vp->v_type, stp); 791 /* 792 * bail on clone failure, further processing 793 * results in undefined behaviors. 794 */ 795 if (error != 0) 796 return (error); 797 sp = VTOS(*vpp); 798 csp = VTOS(sp->s_commonvp); 799 } else if (error == 0) { 800 vp->v_stream = stp; 801 UNLOCK_CSP(csp); 802 } 803 804 /* 805 * create contracts only for userland opens 806 * Successful open and cloning is done at this point. 807 */ 808 if (error == 0 && !(flag & FKLYR)) { 809 /* STREAM is of type S_IFCHR */ 810 if (contract_device_open(newdev, S_IFCHR, &ct) != 0) { 811 UNLOCK_CSP(csp); 812 (void) spec_close(vp, flag, 1, 0, cr, cc); 813 return (EIO); 814 } 815 } 816 817 if (error == 0) { 818 /* STREAMS devices don't have a size */ 819 sp->s_size = csp->s_size = 0; 820 821 if (!(stp->sd_flag & STRISTTY) || (flag & FNOCTTY)) 822 return (0); 823 824 /* try to allocate it as a controlling terminal */ 825 if (strctty(stp) != EINTR) 826 return (0); 827 828 /* strctty() was interrupted by a signal */ 829 if (ct) { 830 /* we only create contracts for userland opens */ 831 ASSERT(ttoproc(curthread)); 832 (void) contract_abandon(ct, ttoproc(curthread), 0); 833 } 834 (void) spec_close(vp, flag, 1, 0, cr, cc); 835 return (EINTR); 836 } 837 838 /* 839 * Deal with stropen failure. 840 * 841 * sd_flag in the stream head cannot change since the 842 * common snode is locked before the call to stropen(). 843 */ 844 if ((stp != NULL) && (stp->sd_flag & STREOPENFAIL)) { 845 /* 846 * Open failed part way through. 847 */ 848 mutex_enter(&stp->sd_lock); 849 stp->sd_flag &= ~STREOPENFAIL; 850 mutex_exit(&stp->sd_lock); 851 852 UNLOCK_CSP(csp); 853 (void) spec_close(vp, flag, 1, 0, cr, cc); 854 } else { 855 UNLOCK_CSP(csp); 856 SN_RELE(csp); 857 } 858 859 /* 860 * Resolution for STREAMS vs. regular character device: If the 861 * STREAMS open(9e) returns ENOSTR, then try an ordinary device 862 * open instead. 863 */ 864 if (error == ENOSTR) { 865 goto not_streams; 866 } 867 return (error); 868 } 869 870 /*ARGSUSED2*/ 871 static int 872 spec_close( 873 struct vnode *vp, 874 int flag, 875 int count, 876 offset_t offset, 877 struct cred *cr, 878 caller_context_t *ct) 879 { 880 struct vnode *cvp; 881 struct snode *sp, *csp; 882 enum vtype type; 883 dev_t dev; 884 int error = 0; 885 int sysclone; 886 887 if (!(flag & FKLYR)) { 888 /* this only applies to closes of devices from userland */ 889 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 890 cleanshares(vp, ttoproc(curthread)->p_pid); 891 if (vp->v_stream) 892 strclean(vp); 893 } 894 if (count > 1) 895 return (0); 896 897 /* we allow close to succeed even if device is fenced off */ 898 sp = VTOS(vp); 899 cvp = sp->s_commonvp; 900 901 dev = sp->s_dev; 902 type = vp->v_type; 903 904 ASSERT(type == VCHR || type == VBLK); 905 906 /* 907 * Prevent close/close and close/open races by serializing closes 908 * on this common snode. Clone opens are held up until after 909 * we have closed this device so the streams linkage is maintained 910 */ 911 csp = VTOS(cvp); 912 913 LOCK_CSP(csp); 914 mutex_enter(&csp->s_lock); 915 916 csp->s_count--; /* one fewer open reference : SN_RELE */ 917 sysclone = sp->s_flag & SCLONE; 918 919 /* 920 * Invalidate size on each close. 921 * 922 * XXX We do this on each close because we don't have interfaces that 923 * allow a driver to invalidate the size. Since clearing this on each 924 * close this causes property overhead we skip /dev/null and 925 * /dev/zero to avoid degrading kenbus performance. 926 */ 927 if (getmajor(dev) != mm_major) 928 csp->s_flag &= ~SSIZEVALID; 929 930 /* 931 * Only call the close routine when the last open reference through 932 * any [s, v]node goes away. This can be checked by looking at 933 * s_count on the common vnode. 934 */ 935 if ((csp->s_count == 0) && (csp->s_mapcnt == 0)) { 936 /* we don't need a close */ 937 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 938 939 /* 940 * A cloning driver may open-clone to the same dev_t that we 941 * are closing before spec_inactive destroys the common snode. 942 * If this occurs the s_dip association needs to be reevaluated. 943 * We clear SDIPSET to force reevaluation in this case. When 944 * reevaluation occurs (by spec_clone after open), if the 945 * devinfo association has changed then the old association 946 * will be released as the new association is established by 947 * spec_assoc_vp_with_devi(). 948 */ 949 if (csp->s_flag & (SCLONE | SSELFCLONE)) 950 csp->s_flag &= ~SDIPSET; 951 952 csp->s_flag |= SCLOSING; 953 mutex_exit(&csp->s_lock); 954 error = device_close(vp, flag, cr); 955 956 /* 957 * Decrement the devops held in clnopen() 958 */ 959 if (sysclone) { 960 ddi_rele_driver(getmajor(dev)); 961 } 962 mutex_enter(&csp->s_lock); 963 csp->s_flag &= ~SCLOSING; 964 } 965 966 UNLOCK_CSP_LOCK_HELD(csp); 967 mutex_exit(&csp->s_lock); 968 969 return (error); 970 } 971 972 /*ARGSUSED2*/ 973 static int 974 spec_read( 975 struct vnode *vp, 976 struct uio *uiop, 977 int ioflag, 978 struct cred *cr, 979 caller_context_t *ct) 980 { 981 int error; 982 struct snode *sp = VTOS(vp); 983 dev_t dev = sp->s_dev; 984 size_t n; 985 ulong_t on; 986 u_offset_t bdevsize; 987 offset_t maxoff; 988 offset_t off; 989 struct vnode *blkvp; 990 991 ASSERT(vp->v_type == VCHR || vp->v_type == VBLK); 992 993 if (vp->v_stream) { 994 ASSERT(vp->v_type == VCHR); 995 smark(sp, SACC); 996 return (strread(vp, uiop, cr)); 997 } 998 999 if (uiop->uio_resid == 0) 1000 return (0); 1001 1002 /* 1003 * Plain old character devices that set D_U64BIT can have 1004 * unrestricted offsets. 1005 */ 1006 maxoff = spec_maxoffset(vp); 1007 ASSERT(maxoff != -1 || vp->v_type == VCHR); 1008 1009 if (maxoff != -1 && (uiop->uio_loffset < 0 || 1010 uiop->uio_loffset + uiop->uio_resid > maxoff)) 1011 return (EINVAL); 1012 1013 if (vp->v_type == VCHR) { 1014 smark(sp, SACC); 1015 ASSERT(vp->v_stream == NULL); 1016 return (cdev_read(dev, uiop, cr)); 1017 } 1018 1019 /* 1020 * Block device. 1021 */ 1022 error = 0; 1023 blkvp = sp->s_commonvp; 1024 bdevsize = SPEC_SIZE(VTOS(blkvp)); 1025 1026 do { 1027 caddr_t base; 1028 offset_t diff; 1029 1030 off = uiop->uio_loffset & (offset_t)MAXBMASK; 1031 on = (size_t)(uiop->uio_loffset & MAXBOFFSET); 1032 n = (size_t)MIN(MAXBSIZE - on, uiop->uio_resid); 1033 diff = bdevsize - uiop->uio_loffset; 1034 1035 if (diff <= 0) 1036 break; 1037 if (diff < n) 1038 n = (size_t)diff; 1039 1040 if (vpm_enable) { 1041 error = vpm_data_copy(blkvp, (u_offset_t)(off + on), 1042 n, uiop, 1, NULL, 0, S_READ); 1043 } else { 1044 base = segmap_getmapflt(segkmap, blkvp, 1045 (u_offset_t)(off + on), n, 1, S_READ); 1046 1047 error = uiomove(base + on, n, UIO_READ, uiop); 1048 } 1049 if (!error) { 1050 int flags = 0; 1051 /* 1052 * If we read a whole block, we won't need this 1053 * buffer again soon. 1054 */ 1055 if (n + on == MAXBSIZE) 1056 flags = SM_DONTNEED | SM_FREE; 1057 if (vpm_enable) { 1058 error = vpm_sync_pages(blkvp, off, n, flags); 1059 } else { 1060 error = segmap_release(segkmap, base, flags); 1061 } 1062 } else { 1063 if (vpm_enable) { 1064 (void) vpm_sync_pages(blkvp, off, n, 0); 1065 } else { 1066 (void) segmap_release(segkmap, base, 0); 1067 } 1068 if (bdevsize == UNKNOWN_SIZE) { 1069 error = 0; 1070 break; 1071 } 1072 } 1073 } while (error == 0 && uiop->uio_resid > 0 && n != 0); 1074 1075 return (error); 1076 } 1077 1078 /*ARGSUSED*/ 1079 static int 1080 spec_write( 1081 struct vnode *vp, 1082 struct uio *uiop, 1083 int ioflag, 1084 struct cred *cr, 1085 caller_context_t *ct) 1086 { 1087 int error; 1088 struct snode *sp = VTOS(vp); 1089 dev_t dev = sp->s_dev; 1090 size_t n; 1091 ulong_t on; 1092 u_offset_t bdevsize; 1093 offset_t maxoff; 1094 offset_t off; 1095 struct vnode *blkvp; 1096 1097 ASSERT(vp->v_type == VCHR || vp->v_type == VBLK); 1098 1099 if (vp->v_stream) { 1100 ASSERT(vp->v_type == VCHR); 1101 smark(sp, SUPD); 1102 return (strwrite(vp, uiop, cr)); 1103 } 1104 1105 /* 1106 * Plain old character devices that set D_U64BIT can have 1107 * unrestricted offsets. 1108 */ 1109 maxoff = spec_maxoffset(vp); 1110 ASSERT(maxoff != -1 || vp->v_type == VCHR); 1111 1112 if (maxoff != -1 && (uiop->uio_loffset < 0 || 1113 uiop->uio_loffset + uiop->uio_resid > maxoff)) 1114 return (EINVAL); 1115 1116 if (vp->v_type == VCHR) { 1117 smark(sp, SUPD); 1118 ASSERT(vp->v_stream == NULL); 1119 return (cdev_write(dev, uiop, cr)); 1120 } 1121 1122 if (uiop->uio_resid == 0) 1123 return (0); 1124 1125 error = 0; 1126 blkvp = sp->s_commonvp; 1127 bdevsize = SPEC_SIZE(VTOS(blkvp)); 1128 1129 do { 1130 int pagecreate; 1131 int newpage; 1132 caddr_t base; 1133 offset_t diff; 1134 1135 off = uiop->uio_loffset & (offset_t)MAXBMASK; 1136 on = (ulong_t)(uiop->uio_loffset & MAXBOFFSET); 1137 n = (size_t)MIN(MAXBSIZE - on, uiop->uio_resid); 1138 pagecreate = 0; 1139 1140 diff = bdevsize - uiop->uio_loffset; 1141 if (diff <= 0) { 1142 error = ENXIO; 1143 break; 1144 } 1145 if (diff < n) 1146 n = (size_t)diff; 1147 1148 /* 1149 * Check to see if we can skip reading in the page 1150 * and just allocate the memory. We can do this 1151 * if we are going to rewrite the entire mapping 1152 * or if we are going to write to end of the device 1153 * from the beginning of the mapping. 1154 */ 1155 if (n == MAXBSIZE || (on == 0 && (off + n) == bdevsize)) 1156 pagecreate = 1; 1157 1158 newpage = 0; 1159 1160 /* 1161 * Touch the page and fault it in if it is not in core 1162 * before segmap_getmapflt or vpm_data_copy can lock it. 1163 * This is to avoid the deadlock if the buffer is mapped 1164 * to the same file through mmap which we want to write. 1165 */ 1166 uio_prefaultpages((long)n, uiop); 1167 1168 if (vpm_enable) { 1169 error = vpm_data_copy(blkvp, (u_offset_t)(off + on), 1170 n, uiop, !pagecreate, NULL, 0, S_WRITE); 1171 } else { 1172 base = segmap_getmapflt(segkmap, blkvp, 1173 (u_offset_t)(off + on), n, !pagecreate, S_WRITE); 1174 1175 /* 1176 * segmap_pagecreate() returns 1 if it calls 1177 * page_create_va() to allocate any pages. 1178 */ 1179 1180 if (pagecreate) 1181 newpage = segmap_pagecreate(segkmap, base + on, 1182 n, 0); 1183 1184 error = uiomove(base + on, n, UIO_WRITE, uiop); 1185 } 1186 1187 if (!vpm_enable && pagecreate && 1188 uiop->uio_loffset < 1189 P2ROUNDUP_TYPED(off + on + n, PAGESIZE, offset_t)) { 1190 /* 1191 * We created pages w/o initializing them completely, 1192 * thus we need to zero the part that wasn't set up. 1193 * This can happen if we write to the end of the device 1194 * or if we had some sort of error during the uiomove. 1195 */ 1196 long nzero; 1197 offset_t nmoved; 1198 1199 nmoved = (uiop->uio_loffset - (off + on)); 1200 if (nmoved < 0 || nmoved > n) { 1201 panic("spec_write: nmoved bogus"); 1202 /*NOTREACHED*/ 1203 } 1204 nzero = (long)P2ROUNDUP(on + n, PAGESIZE) - 1205 (on + nmoved); 1206 if (nzero < 0 || (on + nmoved + nzero > MAXBSIZE)) { 1207 panic("spec_write: nzero bogus"); 1208 /*NOTREACHED*/ 1209 } 1210 (void) kzero(base + on + nmoved, (size_t)nzero); 1211 } 1212 1213 /* 1214 * Unlock the pages which have been allocated by 1215 * page_create_va() in segmap_pagecreate(). 1216 */ 1217 if (!vpm_enable && newpage) 1218 segmap_pageunlock(segkmap, base + on, 1219 (size_t)n, S_WRITE); 1220 1221 if (error == 0) { 1222 int flags = 0; 1223 1224 /* 1225 * Force write back for synchronous write cases. 1226 */ 1227 if (ioflag & (FSYNC|FDSYNC)) 1228 flags = SM_WRITE; 1229 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 1230 /* 1231 * Have written a whole block. 1232 * Start an asynchronous write and 1233 * mark the buffer to indicate that 1234 * it won't be needed again soon. 1235 * Push swap files here, since it 1236 * won't happen anywhere else. 1237 */ 1238 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 1239 } 1240 smark(sp, SUPD|SCHG); 1241 if (vpm_enable) { 1242 error = vpm_sync_pages(blkvp, off, n, flags); 1243 } else { 1244 error = segmap_release(segkmap, base, flags); 1245 } 1246 } else { 1247 if (vpm_enable) { 1248 (void) vpm_sync_pages(blkvp, off, n, SM_INVAL); 1249 } else { 1250 (void) segmap_release(segkmap, base, SM_INVAL); 1251 } 1252 } 1253 1254 } while (error == 0 && uiop->uio_resid > 0 && n != 0); 1255 1256 return (error); 1257 } 1258 1259 /*ARGSUSED6*/ 1260 static int 1261 spec_ioctl(struct vnode *vp, int cmd, intptr_t arg, int mode, struct cred *cr, 1262 int *rvalp, caller_context_t *ct) 1263 { 1264 struct snode *sp; 1265 dev_t dev; 1266 int error; 1267 1268 if (vp->v_type != VCHR) 1269 return (ENOTTY); 1270 1271 /* 1272 * allow ioctls() to go through even for fenced snodes, as they 1273 * may include unconfiguration operation - for example popping of 1274 * streams modules. 1275 */ 1276 1277 sp = VTOS(vp); 1278 dev = sp->s_dev; 1279 if (vp->v_stream) { 1280 error = strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp); 1281 } else { 1282 error = cdev_ioctl(dev, cmd, arg, mode, cr, rvalp); 1283 } 1284 return (error); 1285 } 1286 1287 static int 1288 spec_getattr( 1289 struct vnode *vp, 1290 struct vattr *vap, 1291 int flags, 1292 struct cred *cr, 1293 caller_context_t *ct) 1294 { 1295 int error; 1296 struct snode *sp; 1297 struct vnode *realvp; 1298 1299 /* With ATTR_COMM we will not get attributes from realvp */ 1300 if (flags & ATTR_COMM) { 1301 sp = VTOS(vp); 1302 vp = sp->s_commonvp; 1303 } 1304 sp = VTOS(vp); 1305 1306 /* we want stat() to fail with ENXIO if the device is fenced off */ 1307 if (S_ISFENCED(sp)) 1308 return (ENXIO); 1309 1310 realvp = sp->s_realvp; 1311 1312 if (realvp == NULL) { 1313 static int snode_shift = 0; 1314 1315 /* 1316 * Calculate the amount of bitshift to a snode pointer which 1317 * will still keep it unique. See below. 1318 */ 1319 if (snode_shift == 0) 1320 snode_shift = highbit(sizeof (struct snode)); 1321 ASSERT(snode_shift > 0); 1322 1323 /* 1324 * No real vnode behind this one. Fill in the fields 1325 * from the snode. 1326 * 1327 * This code should be refined to return only the 1328 * attributes asked for instead of all of them. 1329 */ 1330 vap->va_type = vp->v_type; 1331 vap->va_mode = 0; 1332 vap->va_uid = vap->va_gid = 0; 1333 vap->va_fsid = sp->s_fsid; 1334 1335 /* 1336 * If the va_nodeid is > MAX_USHORT, then i386 stats might 1337 * fail. So we shift down the snode pointer to try and get 1338 * the most uniqueness into 16-bits. 1339 */ 1340 vap->va_nodeid = ((ino64_t)(uintptr_t)sp >> snode_shift) & 1341 0xFFFF; 1342 vap->va_nlink = 0; 1343 vap->va_rdev = sp->s_dev; 1344 1345 /* 1346 * va_nblocks is the number of 512 byte blocks used to store 1347 * the mknod for the device, not the number of blocks on the 1348 * device itself. This is typically zero since the mknod is 1349 * represented directly in the inode itself. 1350 */ 1351 vap->va_nblocks = 0; 1352 } else { 1353 error = VOP_GETATTR(realvp, vap, flags, cr, ct); 1354 if (error != 0) 1355 return (error); 1356 } 1357 1358 /* set the size from the snode */ 1359 vap->va_size = SPEC_SIZE(VTOS(sp->s_commonvp)); 1360 vap->va_blksize = MAXBSIZE; 1361 1362 mutex_enter(&sp->s_lock); 1363 vap->va_atime.tv_sec = sp->s_atime; 1364 vap->va_mtime.tv_sec = sp->s_mtime; 1365 vap->va_ctime.tv_sec = sp->s_ctime; 1366 mutex_exit(&sp->s_lock); 1367 1368 vap->va_atime.tv_nsec = 0; 1369 vap->va_mtime.tv_nsec = 0; 1370 vap->va_ctime.tv_nsec = 0; 1371 vap->va_seq = 0; 1372 1373 return (0); 1374 } 1375 1376 static int 1377 spec_setattr( 1378 struct vnode *vp, 1379 struct vattr *vap, 1380 int flags, 1381 struct cred *cr, 1382 caller_context_t *ct) 1383 { 1384 struct snode *sp = VTOS(vp); 1385 struct vnode *realvp; 1386 int error; 1387 1388 /* fail with ENXIO if the device is fenced off */ 1389 if (S_ISFENCED(sp)) 1390 return (ENXIO); 1391 1392 if (vp->v_type == VCHR && vp->v_stream && (vap->va_mask & AT_SIZE)) { 1393 /* 1394 * 1135080: O_TRUNC should have no effect on 1395 * named pipes and terminal devices. 1396 */ 1397 ASSERT(vap->va_mask == AT_SIZE); 1398 return (0); 1399 } 1400 1401 if ((realvp = sp->s_realvp) == NULL) 1402 error = 0; /* no real vnode to update */ 1403 else 1404 error = VOP_SETATTR(realvp, vap, flags, cr, ct); 1405 if (error == 0) { 1406 /* 1407 * If times were changed, update snode. 1408 */ 1409 mutex_enter(&sp->s_lock); 1410 if (vap->va_mask & AT_ATIME) 1411 sp->s_atime = vap->va_atime.tv_sec; 1412 if (vap->va_mask & AT_MTIME) { 1413 sp->s_mtime = vap->va_mtime.tv_sec; 1414 sp->s_ctime = gethrestime_sec(); 1415 } 1416 mutex_exit(&sp->s_lock); 1417 } 1418 return (error); 1419 } 1420 1421 static int 1422 spec_access( 1423 struct vnode *vp, 1424 int mode, 1425 int flags, 1426 struct cred *cr, 1427 caller_context_t *ct) 1428 { 1429 struct vnode *realvp; 1430 struct snode *sp = VTOS(vp); 1431 1432 /* fail with ENXIO if the device is fenced off */ 1433 if (S_ISFENCED(sp)) 1434 return (ENXIO); 1435 1436 if ((realvp = sp->s_realvp) != NULL) 1437 return (VOP_ACCESS(realvp, mode, flags, cr, ct)); 1438 else 1439 return (0); /* Allow all access. */ 1440 } 1441 1442 /* 1443 * This can be called if creat or an open with O_CREAT is done on the root 1444 * of a lofs mount where the mounted entity is a special file. 1445 */ 1446 /*ARGSUSED*/ 1447 static int 1448 spec_create( 1449 struct vnode *dvp, 1450 char *name, 1451 vattr_t *vap, 1452 enum vcexcl excl, 1453 int mode, 1454 struct vnode **vpp, 1455 struct cred *cr, 1456 int flag, 1457 caller_context_t *ct, 1458 vsecattr_t *vsecp) 1459 { 1460 int error; 1461 struct snode *sp = VTOS(dvp); 1462 1463 /* fail with ENXIO if the device is fenced off */ 1464 if (S_ISFENCED(sp)) 1465 return (ENXIO); 1466 1467 ASSERT(dvp && (dvp->v_flag & VROOT) && *name == '\0'); 1468 if (excl == NONEXCL) { 1469 if (mode && (error = spec_access(dvp, mode, 0, cr, ct))) 1470 return (error); 1471 VN_HOLD(dvp); 1472 return (0); 1473 } 1474 return (EEXIST); 1475 } 1476 1477 /* 1478 * In order to sync out the snode times without multi-client problems, 1479 * make sure the times written out are never earlier than the times 1480 * already set in the vnode. 1481 */ 1482 static int 1483 spec_fsync( 1484 struct vnode *vp, 1485 int syncflag, 1486 struct cred *cr, 1487 caller_context_t *ct) 1488 { 1489 struct snode *sp = VTOS(vp); 1490 struct vnode *realvp; 1491 struct vnode *cvp; 1492 struct vattr va, vatmp; 1493 1494 /* allow syncing even if device is fenced off */ 1495 1496 /* If times didn't change, don't flush anything. */ 1497 mutex_enter(&sp->s_lock); 1498 if ((sp->s_flag & (SACC|SUPD|SCHG)) == 0 && vp->v_type != VBLK) { 1499 mutex_exit(&sp->s_lock); 1500 return (0); 1501 } 1502 sp->s_flag &= ~(SACC|SUPD|SCHG); 1503 mutex_exit(&sp->s_lock); 1504 cvp = sp->s_commonvp; 1505 realvp = sp->s_realvp; 1506 1507 if (vp->v_type == VBLK && cvp != vp && vn_has_cached_data(cvp) && 1508 (cvp->v_flag & VISSWAP) == 0) 1509 (void) VOP_PUTPAGE(cvp, (offset_t)0, 0, 0, cr, ct); 1510 1511 /* 1512 * For devices that support it, force write cache to stable storage. 1513 * We don't need the lock to check s_flags since we can treat 1514 * SNOFLUSH as a hint. 1515 */ 1516 if ((vp->v_type == VBLK || vp->v_type == VCHR) && 1517 !(sp->s_flag & SNOFLUSH)) { 1518 int rval, rc; 1519 struct dk_callback spec_callback; 1520 1521 spec_callback.dkc_flag = FLUSH_VOLATILE; 1522 spec_callback.dkc_callback = NULL; 1523 1524 /* synchronous flush on volatile cache */ 1525 rc = cdev_ioctl(vp->v_rdev, DKIOCFLUSHWRITECACHE, 1526 (intptr_t)&spec_callback, FNATIVE|FKIOCTL, cr, &rval); 1527 1528 if (rc == ENOTSUP || rc == ENOTTY) { 1529 mutex_enter(&sp->s_lock); 1530 sp->s_flag |= SNOFLUSH; 1531 mutex_exit(&sp->s_lock); 1532 } 1533 } 1534 1535 /* 1536 * If no real vnode to update, don't flush anything. 1537 */ 1538 if (realvp == NULL) 1539 return (0); 1540 1541 vatmp.va_mask = AT_ATIME|AT_MTIME; 1542 if (VOP_GETATTR(realvp, &vatmp, 0, cr, ct) == 0) { 1543 1544 mutex_enter(&sp->s_lock); 1545 if (vatmp.va_atime.tv_sec > sp->s_atime) 1546 va.va_atime = vatmp.va_atime; 1547 else { 1548 va.va_atime.tv_sec = sp->s_atime; 1549 va.va_atime.tv_nsec = 0; 1550 } 1551 if (vatmp.va_mtime.tv_sec > sp->s_mtime) 1552 va.va_mtime = vatmp.va_mtime; 1553 else { 1554 va.va_mtime.tv_sec = sp->s_mtime; 1555 va.va_mtime.tv_nsec = 0; 1556 } 1557 mutex_exit(&sp->s_lock); 1558 1559 va.va_mask = AT_ATIME|AT_MTIME; 1560 (void) VOP_SETATTR(realvp, &va, 0, cr, ct); 1561 } 1562 (void) VOP_FSYNC(realvp, syncflag, cr, ct); 1563 return (0); 1564 } 1565 1566 /*ARGSUSED*/ 1567 static void 1568 spec_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct) 1569 { 1570 struct snode *sp = VTOS(vp); 1571 struct vnode *cvp; 1572 struct vnode *rvp; 1573 1574 /* 1575 * If no one has reclaimed the vnode, remove from the 1576 * cache now. 1577 */ 1578 if (vp->v_count < 1) { 1579 panic("spec_inactive: Bad v_count"); 1580 /*NOTREACHED*/ 1581 } 1582 mutex_enter(&stable_lock); 1583 1584 mutex_enter(&vp->v_lock); 1585 VN_RELE_LOCKED(vp); 1586 if (vp->v_count != 0) { 1587 mutex_exit(&vp->v_lock); 1588 mutex_exit(&stable_lock); 1589 return; 1590 } 1591 mutex_exit(&vp->v_lock); 1592 1593 sdelete(sp); 1594 mutex_exit(&stable_lock); 1595 1596 /* We are the sole owner of sp now */ 1597 cvp = sp->s_commonvp; 1598 rvp = sp->s_realvp; 1599 1600 if (rvp) { 1601 /* 1602 * If the snode times changed, then update the times 1603 * associated with the "realvp". 1604 */ 1605 if ((sp->s_flag & (SACC|SUPD|SCHG)) != 0) { 1606 1607 struct vattr va, vatmp; 1608 1609 mutex_enter(&sp->s_lock); 1610 sp->s_flag &= ~(SACC|SUPD|SCHG); 1611 mutex_exit(&sp->s_lock); 1612 vatmp.va_mask = AT_ATIME|AT_MTIME; 1613 /* 1614 * The user may not own the device, but we 1615 * want to update the attributes anyway. 1616 */ 1617 if (VOP_GETATTR(rvp, &vatmp, 0, kcred, ct) == 0) { 1618 if (vatmp.va_atime.tv_sec > sp->s_atime) 1619 va.va_atime = vatmp.va_atime; 1620 else { 1621 va.va_atime.tv_sec = sp->s_atime; 1622 va.va_atime.tv_nsec = 0; 1623 } 1624 if (vatmp.va_mtime.tv_sec > sp->s_mtime) 1625 va.va_mtime = vatmp.va_mtime; 1626 else { 1627 va.va_mtime.tv_sec = sp->s_mtime; 1628 va.va_mtime.tv_nsec = 0; 1629 } 1630 1631 va.va_mask = AT_ATIME|AT_MTIME; 1632 (void) VOP_SETATTR(rvp, &va, 0, kcred, ct); 1633 } 1634 } 1635 } 1636 ASSERT(!vn_has_cached_data(vp)); 1637 vn_invalid(vp); 1638 1639 /* if we are sharing another file systems vfs, release it */ 1640 if (vp->v_vfsp && (vp->v_vfsp != &spec_vfs)) 1641 VFS_RELE(vp->v_vfsp); 1642 1643 /* if we have a realvp, release the realvp */ 1644 if (rvp) 1645 VN_RELE(rvp); 1646 1647 /* if we have a common, release the common */ 1648 if (cvp && (cvp != vp)) { 1649 VN_RELE(cvp); 1650 #ifdef DEBUG 1651 } else if (cvp) { 1652 /* 1653 * if this is the last reference to a common vnode, any 1654 * associated stream had better have been closed 1655 */ 1656 ASSERT(cvp == vp); 1657 ASSERT(cvp->v_stream == NULL); 1658 #endif /* DEBUG */ 1659 } 1660 1661 /* 1662 * if we have a hold on a devinfo node (established by 1663 * spec_assoc_vp_with_devi), release the hold 1664 */ 1665 if (sp->s_dip) 1666 ddi_release_devi(sp->s_dip); 1667 1668 /* 1669 * If we have an associated device policy, release it. 1670 */ 1671 if (sp->s_plcy != NULL) 1672 dpfree(sp->s_plcy); 1673 1674 /* 1675 * If all holds on the devinfo node are through specfs/devfs 1676 * and we just destroyed the last specfs node associated with the 1677 * device, then the devinfo node reference count should now be 1678 * zero. We can't check this because there may be other holds 1679 * on the node from non file system sources: ddi_hold_devi_by_instance 1680 * for example. 1681 */ 1682 kmem_cache_free(snode_cache, sp); 1683 } 1684 1685 static int 1686 spec_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct) 1687 { 1688 struct vnode *realvp; 1689 struct snode *sp = VTOS(vp); 1690 1691 if ((realvp = sp->s_realvp) != NULL) 1692 return (VOP_FID(realvp, fidp, ct)); 1693 else 1694 return (EINVAL); 1695 } 1696 1697 /*ARGSUSED1*/ 1698 static int 1699 spec_seek( 1700 struct vnode *vp, 1701 offset_t ooff, 1702 offset_t *noffp, 1703 caller_context_t *ct) 1704 { 1705 offset_t maxoff = spec_maxoffset(vp); 1706 1707 if (maxoff == -1 || *noffp <= maxoff) 1708 return (0); 1709 else 1710 return (EINVAL); 1711 } 1712 1713 static int 1714 spec_frlock( 1715 struct vnode *vp, 1716 int cmd, 1717 struct flock64 *bfp, 1718 int flag, 1719 offset_t offset, 1720 struct flk_callback *flk_cbp, 1721 struct cred *cr, 1722 caller_context_t *ct) 1723 { 1724 struct snode *sp = VTOS(vp); 1725 struct snode *csp; 1726 1727 csp = VTOS(sp->s_commonvp); 1728 /* 1729 * If file is being mapped, disallow frlock. 1730 */ 1731 if (csp->s_mapcnt > 0) 1732 return (EAGAIN); 1733 1734 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 1735 } 1736 1737 static int 1738 spec_realvp(struct vnode *vp, struct vnode **vpp, caller_context_t *ct) 1739 { 1740 struct vnode *rvp; 1741 1742 if ((rvp = VTOS(vp)->s_realvp) != NULL) { 1743 vp = rvp; 1744 if (VOP_REALVP(vp, &rvp, ct) == 0) 1745 vp = rvp; 1746 } 1747 1748 *vpp = vp; 1749 return (0); 1750 } 1751 1752 /* 1753 * Return all the pages from [off..off + len] in block 1754 * or character device. 1755 */ 1756 /*ARGSUSED*/ 1757 static int 1758 spec_getpage( 1759 struct vnode *vp, 1760 offset_t off, 1761 size_t len, 1762 uint_t *protp, 1763 page_t *pl[], 1764 size_t plsz, 1765 struct seg *seg, 1766 caddr_t addr, 1767 enum seg_rw rw, 1768 struct cred *cr, 1769 caller_context_t *ct) 1770 { 1771 struct snode *sp = VTOS(vp); 1772 int err; 1773 1774 ASSERT(sp->s_commonvp == vp); 1775 1776 /* 1777 * XXX Given the above assertion, this might not do 1778 * what is wanted here. 1779 */ 1780 if (vp->v_flag & VNOMAP) 1781 return (ENOSYS); 1782 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_GETPAGE, 1783 "specfs getpage:vp %p off %llx len %ld snode %p", 1784 vp, off, len, sp); 1785 1786 switch (vp->v_type) { 1787 case VBLK: 1788 if (protp != NULL) 1789 *protp = PROT_ALL; 1790 1791 if (((u_offset_t)off + len) > (SPEC_SIZE(sp) + PAGEOFFSET)) 1792 return (EFAULT); /* beyond EOF */ 1793 1794 err = pvn_getpages(spec_getapage, vp, (u_offset_t)off, len, 1795 protp, pl, plsz, seg, addr, rw, cr); 1796 break; 1797 1798 case VCHR: 1799 cmn_err(CE_NOTE, "spec_getpage called for character device. " 1800 "Check any non-ON consolidation drivers"); 1801 err = 0; 1802 pl[0] = (page_t *)0; 1803 break; 1804 1805 default: 1806 panic("spec_getpage: bad v_type 0x%x", vp->v_type); 1807 /*NOTREACHED*/ 1808 } 1809 1810 return (err); 1811 } 1812 1813 extern int klustsize; /* set in machdep.c */ 1814 1815 int spec_ra = 1; 1816 int spec_lostpage; /* number of times we lost original page */ 1817 1818 /*ARGSUSED2*/ 1819 static int 1820 spec_getapage( 1821 struct vnode *vp, 1822 u_offset_t off, 1823 size_t len, 1824 uint_t *protp, 1825 page_t *pl[], 1826 size_t plsz, 1827 struct seg *seg, 1828 caddr_t addr, 1829 enum seg_rw rw, 1830 struct cred *cr) 1831 { 1832 struct snode *sp; 1833 struct buf *bp; 1834 page_t *pp, *pp2; 1835 u_offset_t io_off1, io_off2; 1836 size_t io_len1; 1837 size_t io_len2; 1838 size_t blksz; 1839 u_offset_t blkoff; 1840 int dora, err; 1841 page_t *pagefound; 1842 uint_t xlen; 1843 size_t adj_klustsize; 1844 u_offset_t size; 1845 u_offset_t tmpoff; 1846 1847 sp = VTOS(vp); 1848 TRACE_3(TR_FAC_SPECFS, TR_SPECFS_GETAPAGE, 1849 "specfs getapage:vp %p off %llx snode %p", vp, off, sp); 1850 reread: 1851 1852 err = 0; 1853 bp = NULL; 1854 pp = NULL; 1855 pp2 = NULL; 1856 1857 if (pl != NULL) 1858 pl[0] = NULL; 1859 1860 size = SPEC_SIZE(VTOS(sp->s_commonvp)); 1861 1862 if (spec_ra && sp->s_nextr == off) 1863 dora = 1; 1864 else 1865 dora = 0; 1866 1867 if (size == UNKNOWN_SIZE) { 1868 dora = 0; 1869 adj_klustsize = PAGESIZE; 1870 } else { 1871 adj_klustsize = dora ? klustsize : PAGESIZE; 1872 } 1873 1874 again: 1875 if ((pagefound = page_exists(vp, off)) == NULL) { 1876 if (rw == S_CREATE) { 1877 /* 1878 * We're allocating a swap slot and it's 1879 * associated page was not found, so allocate 1880 * and return it. 1881 */ 1882 if ((pp = page_create_va(vp, off, 1883 PAGESIZE, PG_WAIT, seg, addr)) == NULL) { 1884 panic("spec_getapage: page_create"); 1885 /*NOTREACHED*/ 1886 } 1887 io_len1 = PAGESIZE; 1888 sp->s_nextr = off + PAGESIZE; 1889 } else { 1890 /* 1891 * Need to really do disk I/O to get the page(s). 1892 */ 1893 blkoff = (off / adj_klustsize) * adj_klustsize; 1894 if (size == UNKNOWN_SIZE) { 1895 blksz = PAGESIZE; 1896 } else { 1897 if (blkoff + adj_klustsize <= size) 1898 blksz = adj_klustsize; 1899 else 1900 blksz = 1901 MIN(size - blkoff, adj_klustsize); 1902 } 1903 1904 pp = pvn_read_kluster(vp, off, seg, addr, &tmpoff, 1905 &io_len1, blkoff, blksz, 0); 1906 io_off1 = tmpoff; 1907 /* 1908 * Make sure the page didn't sneek into the 1909 * cache while we blocked in pvn_read_kluster. 1910 */ 1911 if (pp == NULL) 1912 goto again; 1913 1914 /* 1915 * Zero part of page which we are not 1916 * going to be reading from disk now. 1917 */ 1918 xlen = (uint_t)(io_len1 & PAGEOFFSET); 1919 if (xlen != 0) 1920 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 1921 1922 bp = spec_startio(vp, pp, io_off1, io_len1, 1923 pl == NULL ? (B_ASYNC | B_READ) : B_READ); 1924 sp->s_nextr = io_off1 + io_len1; 1925 } 1926 } 1927 1928 if (dora && rw != S_CREATE) { 1929 u_offset_t off2; 1930 caddr_t addr2; 1931 1932 off2 = ((off / adj_klustsize) + 1) * adj_klustsize; 1933 addr2 = addr + (off2 - off); 1934 1935 pp2 = NULL; 1936 /* 1937 * If we are past EOF then don't bother trying 1938 * with read-ahead. 1939 */ 1940 if (off2 >= size) 1941 pp2 = NULL; 1942 else { 1943 if (off2 + adj_klustsize <= size) 1944 blksz = adj_klustsize; 1945 else 1946 blksz = MIN(size - off2, adj_klustsize); 1947 1948 pp2 = pvn_read_kluster(vp, off2, seg, addr2, &tmpoff, 1949 &io_len2, off2, blksz, 1); 1950 io_off2 = tmpoff; 1951 } 1952 1953 if (pp2 != NULL) { 1954 /* 1955 * Zero part of page which we are not 1956 * going to be reading from disk now. 1957 */ 1958 xlen = (uint_t)(io_len2 & PAGEOFFSET); 1959 if (xlen != 0) 1960 pagezero(pp2->p_prev, xlen, PAGESIZE - xlen); 1961 1962 (void) spec_startio(vp, pp2, io_off2, io_len2, 1963 B_READ | B_ASYNC); 1964 } 1965 } 1966 1967 if (pl == NULL) 1968 return (err); 1969 1970 if (bp != NULL) { 1971 err = biowait(bp); 1972 pageio_done(bp); 1973 1974 if (err) { 1975 if (pp != NULL) 1976 pvn_read_done(pp, B_ERROR); 1977 return (err); 1978 } 1979 } 1980 1981 if (pagefound) { 1982 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 1983 /* 1984 * Page exists in the cache, acquire the appropriate 1985 * lock. If this fails, start all over again. 1986 */ 1987 1988 if ((pp = page_lookup(vp, off, se)) == NULL) { 1989 spec_lostpage++; 1990 goto reread; 1991 } 1992 pl[0] = pp; 1993 pl[1] = NULL; 1994 1995 sp->s_nextr = off + PAGESIZE; 1996 return (0); 1997 } 1998 1999 if (pp != NULL) 2000 pvn_plist_init(pp, pl, plsz, off, io_len1, rw); 2001 return (0); 2002 } 2003 2004 /* 2005 * Flags are composed of {B_INVAL, B_DIRTY B_FREE, B_DONTNEED, B_FORCE}. 2006 * If len == 0, do from off to EOF. 2007 * 2008 * The normal cases should be len == 0 & off == 0 (entire vp list), 2009 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 2010 * (from pageout). 2011 */ 2012 /*ARGSUSED5*/ 2013 int 2014 spec_putpage( 2015 struct vnode *vp, 2016 offset_t off, 2017 size_t len, 2018 int flags, 2019 struct cred *cr, 2020 caller_context_t *ct) 2021 { 2022 struct snode *sp = VTOS(vp); 2023 struct vnode *cvp; 2024 page_t *pp; 2025 u_offset_t io_off; 2026 size_t io_len = 0; /* for lint */ 2027 int err = 0; 2028 u_offset_t size; 2029 u_offset_t tmpoff; 2030 2031 ASSERT(vp->v_count != 0); 2032 2033 if (vp->v_flag & VNOMAP) 2034 return (ENOSYS); 2035 2036 cvp = sp->s_commonvp; 2037 size = SPEC_SIZE(VTOS(cvp)); 2038 2039 if (!vn_has_cached_data(vp) || off >= size) 2040 return (0); 2041 2042 ASSERT(vp->v_type == VBLK && cvp == vp); 2043 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_PUTPAGE, 2044 "specfs putpage:vp %p off %llx len %ld snode %p", 2045 vp, off, len, sp); 2046 2047 if (len == 0) { 2048 /* 2049 * Search the entire vp list for pages >= off. 2050 */ 2051 err = pvn_vplist_dirty(vp, off, spec_putapage, 2052 flags, cr); 2053 } else { 2054 u_offset_t eoff; 2055 2056 /* 2057 * Loop over all offsets in the range [off...off + len] 2058 * looking for pages to deal with. We set limits so 2059 * that we kluster to klustsize boundaries. 2060 */ 2061 eoff = off + len; 2062 for (io_off = off; io_off < eoff && io_off < size; 2063 io_off += io_len) { 2064 /* 2065 * If we are not invalidating, synchronously 2066 * freeing or writing pages use the routine 2067 * page_lookup_nowait() to prevent reclaiming 2068 * them from the free list. 2069 */ 2070 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 2071 pp = page_lookup(vp, io_off, 2072 (flags & (B_INVAL | B_FREE)) ? 2073 SE_EXCL : SE_SHARED); 2074 } else { 2075 pp = page_lookup_nowait(vp, io_off, 2076 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2077 } 2078 2079 if (pp == NULL || pvn_getdirty(pp, flags) == 0) 2080 io_len = PAGESIZE; 2081 else { 2082 err = spec_putapage(vp, pp, &tmpoff, &io_len, 2083 flags, cr); 2084 io_off = tmpoff; 2085 if (err != 0) 2086 break; 2087 /* 2088 * "io_off" and "io_len" are returned as 2089 * the range of pages we actually wrote. 2090 * This allows us to skip ahead more quickly 2091 * since several pages may've been dealt 2092 * with by this iteration of the loop. 2093 */ 2094 } 2095 } 2096 } 2097 return (err); 2098 } 2099 2100 2101 /* 2102 * Write out a single page, possibly klustering adjacent 2103 * dirty pages. 2104 */ 2105 /*ARGSUSED5*/ 2106 static int 2107 spec_putapage( 2108 struct vnode *vp, 2109 page_t *pp, 2110 u_offset_t *offp, /* return value */ 2111 size_t *lenp, /* return value */ 2112 int flags, 2113 struct cred *cr) 2114 { 2115 struct snode *sp = VTOS(vp); 2116 u_offset_t io_off; 2117 size_t io_len; 2118 size_t blksz; 2119 u_offset_t blkoff; 2120 int err = 0; 2121 struct buf *bp; 2122 u_offset_t size; 2123 size_t adj_klustsize; 2124 u_offset_t tmpoff; 2125 2126 /* 2127 * Destroy read ahead value since we are really going to write. 2128 */ 2129 sp->s_nextr = 0; 2130 size = SPEC_SIZE(VTOS(sp->s_commonvp)); 2131 2132 adj_klustsize = klustsize; 2133 2134 blkoff = (pp->p_offset / adj_klustsize) * adj_klustsize; 2135 2136 if (blkoff + adj_klustsize <= size) 2137 blksz = adj_klustsize; 2138 else 2139 blksz = size - blkoff; 2140 2141 /* 2142 * Find a kluster that fits in one contiguous chunk. 2143 */ 2144 pp = pvn_write_kluster(vp, pp, &tmpoff, &io_len, blkoff, 2145 blksz, flags); 2146 io_off = tmpoff; 2147 2148 /* 2149 * Check for page length rounding problems 2150 * XXX - Is this necessary? 2151 */ 2152 if (io_off + io_len > size) { 2153 ASSERT((io_off + io_len) - size < PAGESIZE); 2154 io_len = size - io_off; 2155 } 2156 2157 bp = spec_startio(vp, pp, io_off, io_len, B_WRITE | flags); 2158 2159 /* 2160 * Wait for i/o to complete if the request is not B_ASYNC. 2161 */ 2162 if ((flags & B_ASYNC) == 0) { 2163 err = biowait(bp); 2164 pageio_done(bp); 2165 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags); 2166 } 2167 2168 if (offp) 2169 *offp = io_off; 2170 if (lenp) 2171 *lenp = io_len; 2172 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_PUTAPAGE, 2173 "specfs putapage:vp %p offp %p snode %p err %d", 2174 vp, offp, sp, err); 2175 return (err); 2176 } 2177 2178 /* 2179 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 2180 */ 2181 static struct buf * 2182 spec_startio( 2183 struct vnode *vp, 2184 page_t *pp, 2185 u_offset_t io_off, 2186 size_t io_len, 2187 int flags) 2188 { 2189 struct buf *bp; 2190 2191 bp = pageio_setup(pp, io_len, vp, flags); 2192 2193 bp->b_edev = vp->v_rdev; 2194 bp->b_dev = cmpdev(vp->v_rdev); 2195 bp->b_blkno = btodt(io_off); 2196 bp->b_un.b_addr = (caddr_t)0; 2197 2198 (void) bdev_strategy(bp); 2199 2200 if (flags & B_READ) 2201 lwp_stat_update(LWP_STAT_INBLK, 1); 2202 else 2203 lwp_stat_update(LWP_STAT_OUBLK, 1); 2204 2205 return (bp); 2206 } 2207 2208 static int 2209 spec_poll( 2210 struct vnode *vp, 2211 short events, 2212 int anyyet, 2213 short *reventsp, 2214 struct pollhead **phpp, 2215 caller_context_t *ct) 2216 { 2217 dev_t dev; 2218 int error; 2219 2220 if (vp->v_type == VBLK) 2221 error = fs_poll(vp, events, anyyet, reventsp, phpp, ct); 2222 else { 2223 ASSERT(vp->v_type == VCHR); 2224 dev = vp->v_rdev; 2225 if (vp->v_stream) { 2226 ASSERT(vp->v_stream != NULL); 2227 error = strpoll(vp->v_stream, events, anyyet, 2228 reventsp, phpp); 2229 } else if (devopsp[getmajor(dev)]->devo_cb_ops->cb_chpoll) { 2230 error = cdev_poll(dev, events, anyyet, reventsp, phpp); 2231 } else { 2232 error = fs_poll(vp, events, anyyet, reventsp, phpp, ct); 2233 } 2234 } 2235 return (error); 2236 } 2237 2238 /* 2239 * This routine is called through the cdevsw[] table to handle 2240 * traditional mmap'able devices that support a d_mmap function. 2241 */ 2242 /*ARGSUSED8*/ 2243 int 2244 spec_segmap( 2245 dev_t dev, 2246 off_t off, 2247 struct as *as, 2248 caddr_t *addrp, 2249 off_t len, 2250 uint_t prot, 2251 uint_t maxprot, 2252 uint_t flags, 2253 struct cred *cred) 2254 { 2255 struct segdev_crargs dev_a; 2256 int (*mapfunc)(dev_t dev, off_t off, int prot); 2257 size_t i; 2258 int error; 2259 2260 if ((mapfunc = devopsp[getmajor(dev)]->devo_cb_ops->cb_mmap) == nodev) 2261 return (ENODEV); 2262 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_SEGMAP, 2263 "specfs segmap:dev %x as %p len %lx prot %x", 2264 dev, as, len, prot); 2265 2266 /* 2267 * Character devices that support the d_mmap 2268 * interface can only be mmap'ed shared. 2269 */ 2270 if ((flags & MAP_TYPE) != MAP_SHARED) 2271 return (EINVAL); 2272 2273 /* 2274 * Check to ensure that the entire range is 2275 * legal and we are not trying to map in 2276 * more than the device will let us. 2277 */ 2278 for (i = 0; i < len; i += PAGESIZE) { 2279 if (cdev_mmap(mapfunc, dev, off + i, maxprot) == -1) 2280 return (ENXIO); 2281 } 2282 2283 as_rangelock(as); 2284 /* Pick an address w/o worrying about any vac alignment constraints. */ 2285 error = choose_addr(as, addrp, len, off, ADDR_NOVACALIGN, flags); 2286 if (error != 0) { 2287 as_rangeunlock(as); 2288 return (error); 2289 } 2290 2291 dev_a.mapfunc = mapfunc; 2292 dev_a.dev = dev; 2293 dev_a.offset = off; 2294 dev_a.prot = (uchar_t)prot; 2295 dev_a.maxprot = (uchar_t)maxprot; 2296 dev_a.hat_flags = 0; 2297 dev_a.hat_attr = 0; 2298 dev_a.devmap_data = NULL; 2299 2300 error = as_map(as, *addrp, len, segdev_create, &dev_a); 2301 as_rangeunlock(as); 2302 return (error); 2303 } 2304 2305 int 2306 spec_char_map( 2307 dev_t dev, 2308 offset_t off, 2309 struct as *as, 2310 caddr_t *addrp, 2311 size_t len, 2312 uchar_t prot, 2313 uchar_t maxprot, 2314 uint_t flags, 2315 struct cred *cred) 2316 { 2317 int error = 0; 2318 major_t maj = getmajor(dev); 2319 int map_flag; 2320 int (*segmap)(dev_t, off_t, struct as *, 2321 caddr_t *, off_t, uint_t, uint_t, uint_t, cred_t *); 2322 int (*devmap)(dev_t, devmap_cookie_t, offset_t, 2323 size_t, size_t *, uint_t); 2324 int (*mmap)(dev_t dev, off_t off, int prot); 2325 2326 /* 2327 * Character device: let the device driver 2328 * pick the appropriate segment driver. 2329 * 2330 * 4.x compat.: allow 'NULL' cb_segmap => spec_segmap 2331 * Kindness: allow 'nulldev' cb_segmap => spec_segmap 2332 */ 2333 segmap = devopsp[maj]->devo_cb_ops->cb_segmap; 2334 if (segmap == NULL || segmap == nulldev || segmap == nodev) { 2335 mmap = devopsp[maj]->devo_cb_ops->cb_mmap; 2336 map_flag = devopsp[maj]->devo_cb_ops->cb_flag; 2337 2338 /* 2339 * Use old mmap framework if the driver has both mmap 2340 * and devmap entry points. This is to prevent the 2341 * system from calling invalid devmap entry point 2342 * for some drivers that might have put garbage in the 2343 * devmap entry point. 2344 */ 2345 if ((map_flag & D_DEVMAP) || mmap == NULL || 2346 mmap == nulldev || mmap == nodev) { 2347 devmap = devopsp[maj]->devo_cb_ops->cb_devmap; 2348 2349 /* 2350 * If driver provides devmap entry point in 2351 * cb_ops but not xx_segmap(9E), call 2352 * devmap_setup with default settings 2353 * (NULL) for callback_ops and driver 2354 * callback private data 2355 */ 2356 if (devmap == nodev || devmap == NULL || 2357 devmap == nulldev) 2358 return (ENODEV); 2359 2360 error = devmap_setup(dev, off, as, addrp, 2361 len, prot, maxprot, flags, cred); 2362 2363 return (error); 2364 } else 2365 segmap = spec_segmap; 2366 } else 2367 segmap = cdev_segmap; 2368 2369 return ((*segmap)(dev, (off_t)off, as, addrp, len, prot, 2370 maxprot, flags, cred)); 2371 } 2372 2373 /*ARGSUSED9*/ 2374 static int 2375 spec_map( 2376 struct vnode *vp, 2377 offset_t off, 2378 struct as *as, 2379 caddr_t *addrp, 2380 size_t len, 2381 uchar_t prot, 2382 uchar_t maxprot, 2383 uint_t flags, 2384 struct cred *cred, 2385 caller_context_t *ct) 2386 { 2387 int error = 0; 2388 struct snode *sp = VTOS(vp); 2389 2390 if (vp->v_flag & VNOMAP) 2391 return (ENOSYS); 2392 2393 /* fail map with ENXIO if the device is fenced off */ 2394 if (S_ISFENCED(sp)) 2395 return (ENXIO); 2396 2397 /* 2398 * If file is locked, fail mapping attempt. 2399 */ 2400 if (vn_has_flocks(vp)) 2401 return (EAGAIN); 2402 2403 if (vp->v_type == VCHR) { 2404 return (spec_char_map(vp->v_rdev, off, as, addrp, len, prot, 2405 maxprot, flags, cred)); 2406 } else if (vp->v_type == VBLK) { 2407 struct segvn_crargs vn_a; 2408 struct vnode *cvp; 2409 struct snode *sp; 2410 2411 /* 2412 * Block device, use segvn mapping to the underlying commonvp 2413 * for pages. 2414 */ 2415 if (off > spec_maxoffset(vp)) 2416 return (ENXIO); 2417 2418 sp = VTOS(vp); 2419 cvp = sp->s_commonvp; 2420 ASSERT(cvp != NULL); 2421 2422 if (off < 0 || ((offset_t)(off + len) < 0)) 2423 return (ENXIO); 2424 2425 as_rangelock(as); 2426 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 2427 if (error != 0) { 2428 as_rangeunlock(as); 2429 return (error); 2430 } 2431 2432 vn_a.vp = cvp; 2433 vn_a.offset = off; 2434 vn_a.type = flags & MAP_TYPE; 2435 vn_a.prot = (uchar_t)prot; 2436 vn_a.maxprot = (uchar_t)maxprot; 2437 vn_a.flags = flags & ~MAP_TYPE; 2438 vn_a.cred = cred; 2439 vn_a.amp = NULL; 2440 vn_a.szc = 0; 2441 vn_a.lgrp_mem_policy_flags = 0; 2442 2443 error = as_map(as, *addrp, len, segvn_create, &vn_a); 2444 as_rangeunlock(as); 2445 } else 2446 return (ENODEV); 2447 2448 return (error); 2449 } 2450 2451 /*ARGSUSED1*/ 2452 static int 2453 spec_addmap( 2454 struct vnode *vp, /* the common vnode */ 2455 offset_t off, 2456 struct as *as, 2457 caddr_t addr, 2458 size_t len, /* how many bytes to add */ 2459 uchar_t prot, 2460 uchar_t maxprot, 2461 uint_t flags, 2462 struct cred *cred, 2463 caller_context_t *ct) 2464 { 2465 int error = 0; 2466 struct snode *csp = VTOS(vp); 2467 ulong_t npages; 2468 2469 ASSERT(vp != NULL && VTOS(vp)->s_commonvp == vp); 2470 2471 /* 2472 * XXX Given the above assertion, this might not 2473 * be a particularly sensible thing to test. 2474 */ 2475 if (vp->v_flag & VNOMAP) 2476 return (ENOSYS); 2477 2478 /* fail with EIO if the device is fenced off */ 2479 if (S_ISFENCED(csp)) 2480 return (EIO); 2481 2482 npages = btopr(len); 2483 LOCK_CSP(csp); 2484 csp->s_mapcnt += npages; 2485 2486 UNLOCK_CSP(csp); 2487 return (error); 2488 } 2489 2490 /*ARGSUSED1*/ 2491 static int 2492 spec_delmap( 2493 struct vnode *vp, /* the common vnode */ 2494 offset_t off, 2495 struct as *as, 2496 caddr_t addr, 2497 size_t len, /* how many bytes to take away */ 2498 uint_t prot, 2499 uint_t maxprot, 2500 uint_t flags, 2501 struct cred *cred, 2502 caller_context_t *ct) 2503 { 2504 struct snode *csp = VTOS(vp); 2505 ulong_t npages; 2506 long mcnt; 2507 2508 /* segdev passes us the common vp */ 2509 2510 ASSERT(vp != NULL && VTOS(vp)->s_commonvp == vp); 2511 2512 /* allow delmap to succeed even if device fenced off */ 2513 2514 /* 2515 * XXX Given the above assertion, this might not 2516 * be a particularly sensible thing to test.. 2517 */ 2518 if (vp->v_flag & VNOMAP) 2519 return (ENOSYS); 2520 2521 npages = btopr(len); 2522 2523 LOCK_CSP(csp); 2524 mutex_enter(&csp->s_lock); 2525 mcnt = (csp->s_mapcnt -= npages); 2526 2527 if (mcnt == 0) { 2528 /* 2529 * Call the close routine when the last reference of any 2530 * kind through any [s, v]node goes away. The s_dip hold 2531 * on the devinfo node is released when the vnode is 2532 * destroyed. 2533 */ 2534 if (csp->s_count == 0) { 2535 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 2536 2537 /* See comment in spec_close() */ 2538 if (csp->s_flag & (SCLONE | SSELFCLONE)) 2539 csp->s_flag &= ~SDIPSET; 2540 2541 mutex_exit(&csp->s_lock); 2542 2543 (void) device_close(vp, 0, cred); 2544 } else 2545 mutex_exit(&csp->s_lock); 2546 2547 mutex_enter(&csp->s_lock); 2548 } 2549 ASSERT(mcnt >= 0); 2550 2551 UNLOCK_CSP_LOCK_HELD(csp); 2552 mutex_exit(&csp->s_lock); 2553 2554 return (0); 2555 } 2556 2557 /*ARGSUSED4*/ 2558 static int 2559 spec_dump( 2560 struct vnode *vp, 2561 caddr_t addr, 2562 offset_t bn, 2563 offset_t count, 2564 caller_context_t *ct) 2565 { 2566 /* allow dump to succeed even if device fenced off */ 2567 2568 ASSERT(vp->v_type == VBLK); 2569 return (bdev_dump(vp->v_rdev, addr, (daddr_t)bn, (int)count)); 2570 } 2571 2572 2573 /* 2574 * Do i/o on the given page list from/to vp, io_off for io_len. 2575 * Flags are composed of: 2576 * {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED, B_READ, B_WRITE} 2577 * If B_ASYNC is not set i/o is waited for. 2578 */ 2579 /*ARGSUSED5*/ 2580 static int 2581 spec_pageio( 2582 struct vnode *vp, 2583 page_t *pp, 2584 u_offset_t io_off, 2585 size_t io_len, 2586 int flags, 2587 cred_t *cr, 2588 caller_context_t *ct) 2589 { 2590 struct buf *bp = NULL; 2591 int err = 0; 2592 2593 if (pp == NULL) 2594 return (EINVAL); 2595 2596 bp = spec_startio(vp, pp, io_off, io_len, flags); 2597 2598 /* 2599 * Wait for i/o to complete if the request is not B_ASYNC. 2600 */ 2601 if ((flags & B_ASYNC) == 0) { 2602 err = biowait(bp); 2603 pageio_done(bp); 2604 } 2605 return (err); 2606 } 2607 2608 /* 2609 * Set ACL on underlying vnode if one exists, or return ENOSYS otherwise. 2610 */ 2611 int 2612 spec_setsecattr( 2613 struct vnode *vp, 2614 vsecattr_t *vsap, 2615 int flag, 2616 struct cred *cr, 2617 caller_context_t *ct) 2618 { 2619 struct vnode *realvp; 2620 struct snode *sp = VTOS(vp); 2621 int error; 2622 2623 /* fail with ENXIO if the device is fenced off */ 2624 if (S_ISFENCED(sp)) 2625 return (ENXIO); 2626 2627 /* 2628 * The acl(2) system calls VOP_RWLOCK on the file before setting an 2629 * ACL, but since specfs does not serialize reads and writes, this 2630 * VOP does not do anything. However, some backing file systems may 2631 * expect the lock to be held before setting an ACL, so it is taken 2632 * here privately to avoid serializing specfs reads and writes. 2633 */ 2634 if ((realvp = sp->s_realvp) != NULL) { 2635 (void) VOP_RWLOCK(realvp, V_WRITELOCK_TRUE, ct); 2636 error = VOP_SETSECATTR(realvp, vsap, flag, cr, ct); 2637 (void) VOP_RWUNLOCK(realvp, V_WRITELOCK_TRUE, ct); 2638 return (error); 2639 } else 2640 return (fs_nosys()); 2641 } 2642 2643 /* 2644 * Get ACL from underlying vnode if one exists, or fabricate it from 2645 * the permissions returned by spec_getattr() otherwise. 2646 */ 2647 int 2648 spec_getsecattr( 2649 struct vnode *vp, 2650 vsecattr_t *vsap, 2651 int flag, 2652 struct cred *cr, 2653 caller_context_t *ct) 2654 { 2655 struct vnode *realvp; 2656 struct snode *sp = VTOS(vp); 2657 2658 /* fail with ENXIO if the device is fenced off */ 2659 if (S_ISFENCED(sp)) 2660 return (ENXIO); 2661 2662 if ((realvp = sp->s_realvp) != NULL) 2663 return (VOP_GETSECATTR(realvp, vsap, flag, cr, ct)); 2664 else 2665 return (fs_fab_acl(vp, vsap, flag, cr, ct)); 2666 } 2667 2668 int 2669 spec_pathconf( 2670 vnode_t *vp, 2671 int cmd, 2672 ulong_t *valp, 2673 cred_t *cr, 2674 caller_context_t *ct) 2675 { 2676 vnode_t *realvp; 2677 struct snode *sp = VTOS(vp); 2678 2679 /* fail with ENXIO if the device is fenced off */ 2680 if (S_ISFENCED(sp)) 2681 return (ENXIO); 2682 2683 if ((realvp = sp->s_realvp) != NULL) 2684 return (VOP_PATHCONF(realvp, cmd, valp, cr, ct)); 2685 else 2686 return (fs_pathconf(vp, cmd, valp, cr, ct)); 2687 } 2688